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EDITOR'S SUMMARY 

In this estimation of impact pressures of a drop with a solid surface, the 

deformation of the surface of the drop and the onset of post-collisional motion 

of the liquid are considered. Equations of maximum pressure are developed and 

their dependence on the extent of wetting of the solid surface shown to be 

significant. They are not, however, greatly affected by the shape of the free 

surface formed by the drop on impact. It is also shown how excessive 

flattening of the drop leads to. a reduction of impact pressures. 
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The results set out in this article are a further continuation of work 

which gave a simplified scheme for estimating the impact of a drop against a 

solid surface. 

In that work the calculation was based on the assumption that at the 

moment of impact the drop assumed the form of a hemisphere. In the present 

article that constraint is abandoned and the problem of the impact of a drop 

with a surface of arbitrary shape after impact is considered. 

In this case the axisymmetrical problem is replaced by a plane one. This 

schematisation (as shown in Ref.2) does nit have any significant influence on the 

magnitude of the impulsive pressures obtained. 

(I)  At the moment of impact of a drop against a solid surface a change in the 

shape of the surface of the drop must, occur as well as motion of the liquid 

within the drop. Instead of considering this complex unsteady process we shall 
3 

consider, as in the study of the impact of solid bodies , the limiting motion 

which occurs in step-wise change of velocity of a drop (in a system of 

coordinates coupled with the liquid, its velocity before impact will be every- 

where equal to zero). So as to take into account the change in the surface of 

the drop on impact we shall consider the flow arising in the drop deformed by 

impact. Thus, the schematisation of the process of impact of the drop consists 

in the fact that the continuous process of onset of internal motion in the 

liquid and deformation of the drop is split into two separate phases: 

(I) deformation oi the surface of the drop;  (2) onset of post-collisional 

motion of the liquid. 

Assuming that the liquid is ideal and incompressible we find that the 

problem of calculation of the motion o/: the liquid in the drop following impact 

comes down to determining the velocity potential ^ for the following boundary 
3 

conditions : at the free surface V - 0, at the solid wall the normal component 

of velocity is equal in magnitude and opposite in direction to the velocity of 

the drop prior to impact. 

In what follows we shall consider plane flow, substituting for a drop an 

infinitely long liquid circular cylinder moving prior to impact in the negative 

direction of the axis Ox (the axis Oy representing a section of a solid 

plane wall), see Fig.l. 
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The problem of calculating this flow will then consist in determining the 

complex flow potential w - ^ + ii|/ (>fi m  potential, I|I ■ stream function) in the 

region bounded by the plane solid wall AOB and the contour of the free surface 

ACB for the following boundary conditions: 

(1) at AOB the velocity component along the x axis v <■ c 

(c ■ pre-collisional velocity of the drop); 

(2) at ACB the potential ^ - 0. 

(2)  In order to determine the dependence of w on z we shall map the 

region AOBC on the interior of a unit semicircle in the region of an 

additional variable c * £ + in (Fig.2). Let us first find the additional 

function 

i? 
dw 
d? 

15 
dw dz 
dz dC 

(2-1) 

At the solid wall AOB 

dz 
dC 

dz 
dC 

- iviO (2-2; 

The function    u(C)    which is positive everywhere within the segment   AOB 

Is determined by the shape of the contour, and 

dw 
dz 

c -  1V„ (2-3) 

Here   v     and    v»    are the flow velocity components along the    x    and    y    axes. 

Thus 

Re ft    -    cKviO at    AOB    . (2-4) 

Since ^ > 0 on the arc ACB, on this arc 

dw 

dC 

dw 
dC 

•i arg 5 
i x 5 d? 

and hence 

Re n (2-5) 



Making use of this we can continue the function Ü    analytically through 

the arc ACB on to the whole upper half-plane of the region of change of C. 

After this we get for Re Ü    in the interval (-1, -», «, +1) of the axis OC 

Re iliO    - - Re «(c"1) - 
c /e~l\ - ^ MU ) (2-6) 

Knowing the value of Re fl over the whole of the axis OC we can 

determine ß by means of the Schwartz formula 

-1    .      00    i       • 

<L J I     H(t ) dT + f v(i)   dT _ f 
Ti ]/   T(T - ?) ^ + j  T(T - C) ^   J 

TUQT) 

T - ? 
dT» + iC  (2-7) 

(C is n real constant which requires to be determined). Substituting for U 

the expression (2-1) we get 

dw 
dz 

-1 •- 
T - C 

;(T - ? ') 
W(T)dT >*1 (2-8) 

For c - 5C(-1, +1) we obtain from (2-8) by means of the Sokhotski 

formula 

d£ 
dC - # U' [^f^ * ^y] -- c.(0 m f J. £ . <2-9) 

Since 

d^ 
dC 

d^ 
dy 

dz 
dC 

on AOB 
dy v  ■ 0   at the point 0 

then 

difi 
jT - 0   when C - 0 . 

From this it follows that C - 0. 

Assuming that w ■ 0 at point A and integrating (2-8) we obtain for the 

complex potential at an arbitrary point within the liquid 
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w - - f / i / [j^T + ^rj »(r)d^   " " f ] M  ln T^f dT' (2-,0) 

If the map of the region (z) on the semicircle (O is known then the 

expression (2-10) together with the function z = z(?) will give the dependence 

of w on z in parametric form. 

(3)  The impulsive pressure on a solid surface can be determined from the 

formula 

p = -p^ . (3-1) 

Passing to the limit in (2-10) when C -»■ C we obtain for the complex 

potential at a solid surface 

1 

-i 

w - - •£   M(T) In .' " S dr + ic(y - a) (3-2) 

Substituting in (3-1) the value of the potential   <fi    taken from this 

formula and the value of    U(T)    from (2-2) we define the impulsive pressure at 

any point of a solid surface as 

1 

D    .   ££  f  $L m iiJLji dx    . (3-3) 
TT    |    di 1 - 5T 

■1 

It follows from this expression that at the boundaries of a wetted surface 

the impulsive pressure is equal to zero.    The maximum pressure which arises at 

the centre of the drop will on the basis of  (3-3) be equal  (substituting    5*0 

in (3-3) and carrying out partial integration)  to / 

1 
2pc   f  M dT     . (3-4) 

(4)  Let us consider how the magnitude of the maximum impulsive pressure 

depends on the shape of the drop after impact and the magnitude of the wetted 

surface. For this we calculate the maximum impulsive pressure p^ for several 

different contours of the free surface following impact:  (1) arc of a circle; 

(2) ellipse;  (3) inversion of ellipse relative to a,circle passing through its 



LT 
1653 

minor semi-axis. Each of these contours is determined by two parameters, one of 

which is the half-width of the wetted surface a. 

The second parameter is defined such that the area of section of the 

liquid cylinder remains constant before and after impact (condition of 

incompressibility). As the second parameter we shall take the maximum width of 

the drop in the direction of the abscissa axis b (Fig.l). For the magnitude 

of the pressure pA we get the following formulae respectively (it the radius 

of section of the liquid cylinder before impact is denoted by R): 

(1) Arc of circle 

n     .    2pc   /   1 - [(1  -T)/(1 *T)]29/7r dr Ape   / 1  - t2e/,r . 

* *    I    1 + [d - T)/(1 : T)]
2e/ir   T    "      ^    i    (l + t2e/lT)(l-t2) ' 

....  (4-1) 

Here 6 is the angle between a tangent to the arc and the solid surface at 

their point of intersection measured from within the liquid (boundary angle). 

Its relation to a is given by 

a   "   R/?8in9>-8in2e    • (4-2) 

(2) Ellipse (a and b ■> major and minor semi-axes of the ellipse 

respectively) 

1 rj 2   r 
Pjk    .   f  f   [(a * b)e-B + (a - b)eB] ^ ♦ 2pc ^ - b    | S2Ll dT (4-3) 

K   -   1^1    . b    -   ^- (4-4) 

v 
2K(k) 

R      - I 

r  /u •       /(I    +   T2)2k2   -   1   \ . ^ ,.     t, F ( k, arc sm —i —z   I when    T < x        (4-5) 
\ k(I  - T  ) / 

/                           1  - T2     \ F ( k', arc sin 5— ) when    T > x    .  (4-6) 
V k'd * i)J 
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Here K and F are respectively the complete and incomplete elliptic integrals 

of the first kind, and k and k' the module and additional modulus of this 

integral, the modulus k being determined from the major semi-axis of the 

ellipse by the relationship 
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K(k') 1    .   /a2 + 2R2\ 
K(k)   = 2*   W^T2) (4-7) 

We should observe that even when    (a//2 R) > 1.5    the difference between 

(1  - k^/k    and    1    is very small and    k' < I.    Thus in (4-3)  the second 

integral can be discarded and  the expression for    B    simplified. 

Then 

l-k' 
2pc /a2 + b2 

COS  ' 
2K(k) (.. arc cos ^.     (4-8) 

In this case 

k. . 4e-K(k> K 2r?1 *2 * *2v K = TT      2 In -z =■ 
L a    - 2Z*j 

(3) Inversion of ellipse 

Kft') - i   when -i->2 
2        /2R 

where 

4cpab dt 

J  (b - a)T + (b + a)      fl       2 
U TT /b - a 

4cpab      ^  lb + a  ,,  n-. 
—-—-  arctg Jr-r-I     (4-9) 

b    =    ÄK2 - a2 

b - a 

(4-10) 

When   a = b    all the contours considered become a semicircle of radius    /2 R 

and for the maximum pressure we get the value given in 

2pca 
'** 

2 /2 Rpc 
TT 

(4-11) 

(5)  The dependence of the maximum pressure on the width of the wetted part of 

the solid surface for the types of contours considered is shown in Fig.3 where 

the graphs for the change of the relation a  - pjp^   are shown as a function 
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of a ■ a//2 R. These graphs show that the magnitude of the impulsive pressure 

is considerably influenced by the magnitude of the wetted solid surface; the 

shape of the free surface formed by the drop on impact does not greatly affect 

the magnitude of the impulsive pressure. At the same time the results of these 

calculations show that excessive flattening of the drop and also insufficient 

flattening of it lead to reduction of the impact pressures. The magnitude of 

pAik as determined from (4-11) gives the value of the upper limit of the 

impulsive pressures arising on impact of the drop. 



10 

No. 

1 

Author 

M.I. Khmel'nik 

M.I. Khmel'nik 

3 L.I. Sedov 

4 M.A. Lavrent'yev 

ß.V. Shabat 

REFERENCES 

Title, etc. 

On the impact of a drop against a solid surface. 

Izv. Akad. nauk SSSR, OTN, Mekhanika i 

mashinostroyeniye, No.4 (1960) 

The impact of a spherical drop against a solid 

surface. 

Izv. Akad. nauk SSSR, OTN, Mekhanika i 

mashinostroyeniye, No.4 (1961) 

Plane problems of hydrodynamics and aerodynamics. 

Gostekhizdat, Moscow-Leningrad (1950) 

Methods of the theory of functions of a complex 

variable. 

Gostekhizdat (1958) 

LT 
1653 



w 
I 

«8^ 

4 
i ^-/ 

Fig.i 

■»* 

Fig.2 

Trani.1653 
Fig.1.3 

n 

as 

Ok 

a n* 
< 

v3 

\ 

I 
 i  i* 

0.8 1.6 fi 

Fig.3 

Fig.1.3 

// 


