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PREFACE 

Continuing in an uninterrupted manner since 1956, the biennial symposia on naval 
hydrodynamics convened for its Eighth Symposium, August 24-28. 1970 at Pasadena, 
California. This conference was jointly sponsored by the Office of Naval Research, the 
Naval Undersea Research and Development Center, and the California Institute of 
Technology. 

The technical program in this series is traditionally structured about a limited num¬ 
ber of topics of current interest in naval hydrodynamics. In the case of the Eighth 
Symposium, “Hydrodynamics in the Ocean Environment” was selected as the focal theme 
not only because of the present widespread research interest and activity in this subject 
but also in recognition of 1970 as the inaugural year of the ^International Decade of 
Ocean Exploration.” This motif for the Eighth Symposium was also aptly reflected in 
the banquet address to the participants by Rear Admiral O.D. Waters, USN then Ocean¬ 
ographer of the Navy. 

The organization and management of a meeting of this magnitude requires the atten¬ 
tion and energy of a large number of people over a long period of time. To Dr. Harold 
Brown, President of the California Institute of Technology, to Captain Charles Bishop, 
Commander, Naval Undersea Research and Development Center, and to all the various 
members of their organizations who contributed in many different ways to the success 
of the Eighth Symposium, the Office of Naval Research is deeply indebted, and to them 
we extend our heartfelt gratitude and appreciation for a job well done. It is particularly 
appropriate, however, to acknowledge the specific roles of Professor Milton S. Plesset and 
Professor T.Y. Wu of the California Institute of Technology and Dr. J. Hoyt of the Naval 
Undersea Research and Development Center who as a group carried the lion’s share of 
the responsibility for the detailed planning and day-to-day management of the Eighth 
Symposium. We take special pleasure in acknowledging the invaluable assistance of Mrs. 
Barbara Hawk, secretary to Professor Plesset, who in a most gracious and efficient man- 
ner carried out a multitude of important tasks in support of the Symposium. In addition, 
Mrs. Hawk, together with Mrs. Alrae Tingley, were responsible for the preparation of the 
typescript which was used in the publication of these proceedings. Mr. Stanley Doroff of 
the Office of Naval Research played his usual critical role, participating actively in every 
aspect of the planning and execution of the arrangements for the Eighth Symposium. 

RALPH D. COOPER 
Director, 
Fluid Dynamics Program 
Office of Naval Research 
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ADDRESS OF WELCOME 

Rear Admiral C. O. Holmqulat 
Chief of Naval Research and Aeeietant 

Oceanographer for Ocean Science 

I am pleased to welcome you to the Eighth International 
Symposium in Naval Hydrodynamica. This is a symposium sponsored 
every other year by the Office of Naval Research» with the objective 
of bringing together the leading investigators in the field of hydro¬ 
dynamics research throughout the world. 

ONR has held many international meetings during the nearly 
quarter-century of its existence. This is in line with its charter 
issued by Congress, which Includes the responsibility to disseminate 
Information on world-wide trends in research and development. It 
is for this reason, for ex,ample, that we have a branch office in 
London. 

This series of meetings, however, has a unique characteristic. 
Every other meeting is held outside the United States. Two years 
ago we met in Rome, and two years from now v/e plan to hold this 
symposium in another country. This stimulates attendance by non- 
U.S. participants. 

This year we welcome to the United States a number of dis¬ 
tinguished researchers in the field of hydrodynamics. As you have 
noted in your program, you will hear papers read by scientists 
from institutions as far away as Australia, The information made 
available through this international meeting will not only provide the 
U.S. Navy with new ideas for significantly improving its ship designs 
but also a pool of knowledge that will stimulate international coopera¬ 
tion in science. The Navy has already received Important benefits 
from an exchange of research data with other countries. 

In regard to this symposium, ONR owes a great deal both to 
the Naval Undersea Research and Development Center and the 
California Institute of Technology, who have joined together to serve 
as hosts. We appreciate very much their efforts in arranging this 
meeting and providing the excellent facilities. 

I might add as a personal note that I am delighted to have this 
opportunity to return to the Cal Tech campus, where I studied for 
my doctorate in the early 1950's. Since my field is aeronautics, I 
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cannot poa© «• an «Xpert In hydrodynamic«, although I am «ura you 
recognise that the two field» have atmUar and related problema. In 
fact, In ONR we label our program Fluid Dynamic«, with part of thla 
program dealing with hydrodynamic» and part with aerodynamics, 

A»ide from aervlng aa co-ho*u, both Cal Tech and NURDC 
have made major contribution» to the work In hydrodynamics, some 
under ONR sponsorship. For some time Cal Tech has been studying 
a problem of critical concern to the Navy, This la the damage 
caused to propellers and other vital components by cavitation. 
Theoretical and experimental investigations on baalc problems In 
Quid mechanics conducted here are assisting naval engineers In 
solving cavitation damage problem». At the »am« time, this work 
Is adding to our knowledge of the phenomenon known as aupercavlta* 
lion, which has led tc the development of »upercavltating propellers 
and hydrofoils resulting in Inc teased speed of specialised naval 
vehicles, 

A major program at NURDC sponsorship promises not only 
to reduce drastically drag resistance during turbulent Qow but also 
to reduce the flow noise which frequently Interferes with sonar 
operations. I am referring to the uee of polymer additives which 
when injected Into the boundary layer of water promises to give naval 
vehicles tht capability of burst speed. 

At p. esent NURDC is engaged In achieving a complete under* 
standing of the mechanism of the drag and noise reduction properties 
of dUute solutions of polymer additives. This will give us a firm 
technical basis for predicting what extent we can achieve drag re¬ 
duction and flow-noise suppression on Navy vehicles. 

Research In hydrodynamics 1» *.arrted out under contract to 
ONR at a variety of academic and at Inoustrlal organisations and at 
naval laboratories and field stations, Typical of the universities 
participating In the program \re Stevens Institute, the Massachusetts 
Institute of Technology , Stanford, University of California, Harvard, 
Florida State, and Michigan In addition to Cal Tech. Industrial 
organisations Include Hydronautics, Inc., and LTV Research Center 
and the Ampex Corp. Our In-house work In addition to NURDC la 
performed at the Naval Ship Research and Development Center, the 
Naval Research Laboratory, the Naval Ordnance Laboratory and the 
Naval Postgraduate School li Monterey, California, 

Each of these three elements -- the university, Industry and 
the Navy laboratory -- have a unique contribution not only to the 
Navy's fluid dynamics program but to Navy research and development 
In general. Universities provide us with the more fundamental data 
on which all good technology is based. Industry has special know¬ 
how in producing test beds and experimental hardward needed to 
prove our theories. The Navy laboratory provides In one location 
theoretical scientists working with naval engineers and naval officers 
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»Ho H*w« m «ni4#r*<*nd>Af öl lH» Nsvy*# prol»- 
lema. 

A* «Il vftMnp)» ût *htt (M* comt»lfv«l|oA «A» m* H#*** 
i)«vein^ad comftwivr prtifreit«« ta f»r»4l«;t ih* «f 
b**vw «nd pttth far ««irf«c* *Mp* la • «••««y» Tiw» $«» 41 
informât^« iH»t I# ward «aa*l«(« or *Hlf> •«omotrt« forvtrd •»»••d, 
«ad • •todMftlic d**f of tit* ••• *«««•, Aootiwr eomp ítor 
program •imolâi«« (H* UoricH portorlMtloo« of « torpedo le*vtag • 
moe'.og aubmàrta*, THI* proeld#» * r«t«Ho«ly to»«¡p#»»l*« mothod 
for datermlolng th* oporatlofMl IlmlUllon« during l«u««H. «n l»«lgtd 
lato ho* launrh prohlam* c*n h* «otwd, «od tool for th* d»«lgn of 
fttlur* «uhmorin* w»«pon «yaieyn«. 

TH* r«»»*r«H pr». •#» 1« continuou* «od comp}*«, «nd 11 t* 
rarely. If #**r po««lM«, to t*h«l « M* di*co*«ry *• th* prodnMt ef 
on* Individual or *v*n on* tnatliutlon. N***«rch ha* to h* coopéra» 
live, and ** can achieve th* moat try cooperating on an International 
acal*. A* thla meeting Indicate«, ONB and the fdaey eohacrlhe* to 
that ehjeettv*, I am aura that all of m are faced *lth th* prohiam 
of prothiclng tha maalmum amount of «IgnUtcanl raaaarch r«aúlla 
•fib a minimum of fund* and manpo*er, #« that ** «houtd all henaflt 
from a mutual «haring of our fcnouiadg*. 
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AGOtfis aï m irmmnjm tAwo^t 

ttosr Admiral O. D, Wai«rt, Jr. 
a#*awgrap>i0r ef lh* 

Mf* íorcígH gcnluso» In 
rvaldffnc«, L«di#* tmá Genllemtn: 

Uië both an horwr *nd a pira.urr to be given an opportunity 

ÍmÜJ*„!ü*u l0n,,h< 16 Kh* d¢,*l*,e, lo lhB 8lh Sympotlum on Naval 

il I* obv«»ualy an honor for a mere aaLlor to be invited to 

w *1 *%U<,.V/ **. *'íd,*nc* ®nd un<jer «uch dlatlngulahed aponaor- 
•hlp a* the California Inatttute of Technology, the Office of Naval 
Reaearch and the Naval Underaea Research and Development Center, 

I . * Particular pleasure Since It is not often the wheel of 
fortune stops right on your number and you get Invited to speak just 
fifty miles from the birthplace of a brand new grandchild. 

1 believe It's customary about here for a visiting speaker to 
tell a condescending joke about California smo4 Sut since most of you 
read the newspapers you know that we on the Hast Const are now 
living In a glass house where that subject Is concerned. After all, 
when It gets to the point where you can no longer see the National 
t apitai from the top of the Washington Monument you can't pass It off 
any longer as a morning ha*e. 

In any case I arrived here by way of Alaska where most of 
the country s current supply of fresh air seems to be stockpiled so 
my lungs arc back In pretty good condition. 

I his subject of smog and pollution in general reminds me that 
an acquaintance recently told me of an opinion poll he claimed had 
been taken among American Indians. Only 12% of them, he said, 
felt we shouJd get out of Vietnam, but 88% thought we should get out 
of North America. 

I originally Intended to say a few kind words about the sponsors 
of this annual event but changed my mind. Anything about the valuable 
work that has been done in oceanography and many related fields by 
the Office of Naval Research and the Naval Undersea Research and 
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Development Center (our chief semantlcist had us remove the nasty 
word warfare from their title) would come under the heading of 
bragging about a relative. And after bringing myself up-to-date on 
the history of the California Institute of Technology I felt there was 
Just nothing I could say. Even an amateur of science who walks 
across a campus where such men as Millikan and Mlchaelson once 
tarried to think, feels ar an art lover must feel when he walks on a 
stone bridge across the Arno where Leonardo once set his mighty 
sandal. The debt the nation and the Navy owe this Institute Is beyond 
all calculation. 

The point was adroitly made, I thought In a booklet about Cal 
Tech that Dr. Plesset was kind enough to send me. The booklet 
contained a picture of a man on a bicycle as an Illustration of the 
Institutes recreational opportunities. The man on the bicycle who 
was unidentified In the caption, was Einstein. 

Dr. Plesset also provided me with a program of Symposium 
events and I ran through It looking for a possible clue as to what I 
should choose as a topic. Several arresting Items caught my eye. 
Listed was a paper on nThe Second-Order Theory for Nonslnusoldal 
Oscillations of a Cylinder In a Free Surface." Another was on 
"Three Dimensional Instabilities and Vortices between two Rotating 
Spheres," and another on "Interaction between Gravity Waves and 
Finite Turbulent Flow Fields. " 

Well, I know when I’m out of my league so I decided to just 
make a few First Order remarks on the mission of Navy Oceano¬ 
graphy and how It Is organized. 

First a definition. Hydrodynamics Is not generally considered 
to be oceanography but then neither specifically Is anything else. 
Oceanography as we use It Is just an omnibus word for any scientific 
or engineering discipline as It applies to the oceans. 

It is nothing new. In the American Navy it goesjsack at least 
to our pre-clvil war patron saint, Lieutenant Matthew h ontalne 
Maury, who used his knowledge of winds and currents to help the 
clipper ships set their famous world speed records. In Great Britain 
it goes back to the famous voyage of the HMS CHALLENGER. 
Benjamin Franklin took a lively interest in it and so did Aristotle. 

But modern oceanography in the Navy dates from the christen¬ 
ing of the NAUTILUS and the nuclear missile submarines that followed 
it. Warfare had suddenly become truly three-dimensional. The new 
mission of Navy oceanography was to see to it that the Fleet was 
given the Information it had to have to insure Its ability to operate 
efficiently in this new and deadly area of underseas warfare. 

Before I tell you how we went about this let me say a few 
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words about the broader asoert« r,f 
consider It as our field of snerlai nography. In the Navy we 

with close to half the Federal budtrPtmpetenCu and We are entrust8d 
in this current year of fiscal austerity." 01 “ OUt 21° mUlion dollars 

Work in the entire field however is carried on a. three levels. 

like the o‘iíbÍressU--hf5%aof0"âeoí°2- ^ tnmW“ ‘»^stries 
water -- and the fishing Ur a^ready comes from under- 
greatly increased with! better annrual catch can be 
and temperatures, which influence the the ocean currents 
growing aquatic recreatinn fieir) i distribution of fish -- and the 

of marine life .the "os êmcreil’.r ^ e”’l0n' the »•'«acter 
oceanographic f.otorrarf“.. a,,d °thM 

thirty mT5r”Kderr2a«get„hcei.F.ecd"ai Th'" a” ^o». to 
degree. The Department of the WoceanofiraPÒy to some 

Drug AdmlnistraüonTn mediSne íro'mthí" T1'» Food and 
with a variety of oceanographic interests m AndJhe C°*8t Guard 
This Federal effort is nfw Eeing examined froT" JU,St a few‘ 
standpoint. The President hac e mlned from an organizational 

r ÄSnew pla”to a 

SIg’ 'r ^ ^ ^ ^ 

have the^broadest pr^rlmT» ícope“ íhe ^ 

of command wé^Srofonr0«/^1 “a g‘V' U’ S cha‘" 
the Oceanographer ot'tj Navy. U”der te<:1“*‘cal dlrectlon of 

dlvlsion^'S^dÄsIr1: T8'*"1 Wa“ “P '°- 
Ocean Science, Operations, and pLii^trlTclT: 

and Development81 SÍ.ÍmalÓfeSS^rlTnll^r En8l"f"‘"8 

recerery'îdîrfeg^ieit^umemÎf “d e8Capei eal"ee Md'”'" 
diction, yand underwater con.truítloü" onvlr',,'m“'¡'J Pre- 
dollars for these program. ,Ms yiar'. ^ illOCa"d 57 

also for^survey work'wa^launciieH6 “'’T,'1 ' Mch can ba «‘»■‘PP'-i 
nuclear deep submersible, the NS-lTha" ilrLïy 0™^«.° Us"”' 
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early tests, and Is currently undergoing some changes including 
improvemente to Its main propulsion system. The DSRV-II will be 
ready soon for launching. Our gosil with these vehicles and their 
attendant systems Is a capability of rescuing personnel down to 
submarine crush depth. They will be made available on request to 
other governments and some are already making the necessary modi¬ 
fications required for utilizing their services. 

Our first nuclear propelled deep sea vehicle the NR-I, has 
done some bathymetric work during her sea trials and is undergoing 
continuing tests to determine the limits of her capabilities. 

We are working on a Large Object Salvage System (LOSS). 
The goal is to develop a capability of bringing up a submarine intact 
down to a depth of 850 feet. 

An extension of the engineering effort is our Deep Ocean 
Technology or DOT program designed to anticipate the multiplying 
requirements of the pioneering technology. 

For instance we are well past the blue print stage on our 
proposed Deep Submergence Search Vehicle (DSSV) designed to 
operate to a depth of 20,000 feet - - a depth that accounts for 98% 
of the ocean floor. 

An Immediate concern Is with new power packs. The old 
style batteries just can’t give us either the speed, power or endurance 
now required. We need electrical systems that will operate in salt 
water and we are working on thermochemical power sources. We 
are currently sponsoring a design competitlton between two firms In 
this area. It is a long range item that already shows promise. 

Our new machines with all of the improvements we are 
achieving are no better than the skills of the men who operate them. 
To make the point by hyperbole, if I had only a dollar to spend I would 
spend 95 cents on training and equipping men and 5 cents on the hard¬ 
ware. So the whole engineering effort is concerned with extensive 
blo-medlcal work, particularly in relation to deep saturation diving. 

We are already working deeper than 600 feet in the open sea 
and 1,000 feet experimentally. We are hoping to go to 2,000 feet, 
perhaps 3,000 feet before we are through. 

This means we need more and more blo-medlcal data for 
equipment design and for shaping the selection, training, operational 
use and health care of our aquanauts and undersea vehicle pilots. 

We are taking the field of underwater medicine from its 
rather narrow corner as an occupational sub-specialty, for its 
scope transcends Its size in at least three important ways. First, 
it has forced us to study the effects of pressure on living systems. 
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h friendly neighbor, Iceland, aaked for help when they 
realized that herring, which make up 90% of their export producta 
were going to be difficult to find this last season. The herring 
migrate from Norway and stop off at the East Coast of Iceland when 

ey reach the cold edge of the Greenland current. When this current 
meanders or changes its location, as these ocean currents are likelv 
o do, . may divort the fl.h away from their aormj groÚãd. Ôe"ï V 

Iceland, as happened recently. We diverted an Ice patrol plane with 
a heat measuring sensor long enough to find the cold wall of the 
current. And sure enough there were the herring. We are plannina 
now to help Iceland develop its own capability for this kind of work.8 

We are also providing technical help in harbor improvement 

annnaiam8 ^ several South Alnerican countries, and we are running 
student^°Ur8ea on oceanography and hydrography for foreign 

nennl* °fened ou,^^168 on ice reconnaissance and trained some 
of tL a "d.al8° Prided an on-ooard oceanographer to the owners 
of the great new tanker the MANHATTAN, which has recently 
successfully navigated the Northwest Passage. Free pass a ce of thin 

assetÎShf8^16 Chfn,nel 8î10.uld Prove to be an Invaluable national 
asset both from an Industrial and a strategic viewpoint. 

Recognition of the importance of oceanography and hvdrocraohv 
to present day and future naval operations, coupled with a concern ? Y 

availabillty of technically competent naval officers within 
these areas , has caused us to establish a new Special Duty Officer 
category. It will consist of approximately MO officers o/ranks 

nsign through Captain. Promotion opportunities are equal to that 
of an Unrestricted Line Officer. s “u «mi 

n«PUta th>! 8Pecialty at the Ensign level will come from the 
Reservr^nff? Caadld.at.e School at Newport, R. I. , and the Naval 
ha a a 0íflce.r Tralalng Corps Contract Units. Applicants must 
ÎhvLrJÎ68?6 in ocean1°8raPhy» or In another field of earth science, 
p ysical science, marine science or engineering (with emphasis 
on survey engineering for hydrography or ocean engineering for 
oceanography); must have completed mathematics through calculus 
plus one year of college physics and chemistry; and should have a 

L courses01" CtteA ir mat,h?matlC8' phy8lcal 8cience and engineer- 
ing courses. Graduates of the U. S. Naval Academy and the Naval 
Reserve Officer Training Corps Units (regular students) may apply 
after approximately three years active duty. ^ 

The first three years of commissioned service will consist of 
LdT.? "‘‘/“'r'’ *» oceanographic or hydrographic .„rvcy ve... 
and a shore duty tour at a naval facility Involving application of 

ma/1ln8iraJ)hiC lnformatlon to naval operation». Subsequent tours 
may include management of research and development projects 
oceanographic forecasting, mapping, charting and geodesy, instructor 
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duty, and administration of various areas of the Navy'a Oceanosraohlc 
program, « * 

Turning to the Federal scene, the big push now would seem 
to be with the war on pollution and, certainly we need to fight it. 
Oceanography of course Is Involved here, particularly in the coastal 
eones, estuaries and lakes. 

Thousands of words are being written on the pollution of our 
environment and the new "In* word is ecology. My daughter heard 
It and read it so often she decided to look It up. The dictionary told 
her It meant the relationship between living organisms and their 
environment. Here,* she said, *1 was wondering what It was and 
I*ve been right in the middle of it all the lime.'* 

Our new consciousness of our total ecology and the drive 
against pollution are going to lead to some complex conflicts »* such 
a# between the off-shore oil Interests and the conservationists »» 
the real estate developers and the fishing industry. When you drain 
a salt marsh, for Instance, you interfere with the food chain that 
supports tice fish we need for human food. Involved also is the hug# 
and growing water recreation Industry. 

In solving our problems we have to be sure not to throw out 
the baby with the polluted bath water. 

Has oceanography got an assured future? Yes of course. We 
are going to have to turn more and more to the inexhaustible seas 
for the food and the minerals we will need for the worlds exploding 
population. 

But I don l see that future going up in a near vertical Une as 
it did, for Instance, in the space business. In the first piaee there 
are none of those big hunks of development money lying around these 
days. 

But 1 do see it going up steadily In a much more gently rising 
curve, * 

But go up it will and as It goes we will need more and more 
sophisticated equipment and techniques to gather and evaluate infor¬ 
mation and ever smarter and better educated men to program and 
run them. 
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TSUNAMIS 

G. F. Carrier 
Harvard University 

Cambridge3 Massachusetts 

I. INTRODUCTION 

tail m [ 1] a manuscript which was prepared in coniunction with 

gest procedures for nUeviat^^ 

II. INITIATION AND DEEP WATER PROPAGATION 

The wave generated by a submarine earthquake is laro-e 

Uneaíthe late^al eXteílt ^ Sma11 enoußh in amplitude so thafa 
ear theory is completely adequate for an analysis of the propaga- 

disn* i1 deep, 7ater* However, the propagation path is so^ong fhat 
ispersion and its attendant changes in wave shape cannot be ignored 

Accordingly one can adopt either the classical linear theory oi 

ftraagVesyof the8 ^ ^ Boussitnesclue formalism to study the early 
constant deDthW H P"°fagation-1 When either is done, for a bassin of 
constant depth, H, it is convenient to present the result«! in 
o a particular family of initial ground motions. We discuss here 
the waves which result when the ground motion is given by 

F0(x,t) = (irL2) 1/2exp [- x2/L2] 6(t). 

When the half width, L, of the distrubed region is "small," the 
wave which arrives at a distance x0 will have been greatly affected 
by dispersion; when the width of the generating g,oufd “^nT, 
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Fiant«' Tal?r dl8jtortions of the wave wUl be apparent at x„ 
gures la, lb, and 1c illustrate the quantitative asoects nf thP 

foregoing statement. In the notation of those figures^ 

L2 = 4ffH2. 

fwt the deptu OÍ the Water ls 3 miles and xo= 3000 milec the 
0 19 ttde^ahnWrl re^esent ground motions whose half widths are 

when the Wh‘Ch 

F = F&(x,t) - F (x + 20,t) 

i0’ That Í8’ the ground motion has a dipole character 

.¿“"oa„irïSra1'ldarofe.he T1'”'1“- tL 

SLtirinitUUkeS lt inteHresting to «PecuíaTeTn ^ew^fílga^Í)6 tÏaT 
many initiating ground motions may be of dipole form. 8 

III. RUN-UP ON A PLANE BEACH 

theory. „ow , the ahelveï J ^ m.ereêf ar.Tuch ,h„ the " 

2cnXlÂÆr fííeaary1ln - 
accompanies such a study involvesonly the ¡olutïon of I'l 3 ^ 

•- *»= no^e“ 

verHr-ni1^6/681114 ^ interest is the ratio of the run-up, h (the 

wave hlt.h’t Z? T ¡eV,V° ”hlch wat" eoefoaeheV) to 'he 
this: 8 ' ’ the edge °f the shelf. One interesting result is 

For a- = 0 

^ “ Ae'l/Z(x0/H)'l/6 
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Teunamie 

where A « 4.2 If the ground motion La upward or A » 5.6 If It la 
downward. The corresponding resulta for other values of L can 
easily be found (the calculation requires only the use of the method 
of stationary phase). The dependence on the shelf slope, 0, Is that 
which would be found for monochromatic waves whereas the depen¬ 
dence on X Is a consequence of the dispersion during the deep 
water propagation. 

IV. DEEP OCEAN TOPOGRAPHY 

If there were systematic variations In the water depth between, 
nay, the Aleutians and the equatorial Pacific, one might expect that 
the relative Intensities of the Tsunamis (with Aleutian source) which 
were Incident on different Pacific Islands might differ because of 
mid-ocean refractive effects. Exhaustive studies of this effect have 
certainly not been completed but the indications are thst this Is not 
a major reason for the different response at (for example) Wake and 
Hawaii. One might also anticipate that the Irregular deep ocean 
topographical variations could seriously modify the wave which 
propagates across the ocean. This possibility has been analyzed 
treating each event as a member of an ensemble of phenomena each 
of which take place over a topography which Is Itself a member of a 
stochastically described collection of random topographies. This Is 
motivated loosely by the fact that the one-dlmenslonal topography 
between any given source and any given target differ from that associ¬ 
ated with any other source-target pair, and the fact that the topog¬ 
raphies are so poorly known that little else can be done. The result 
of this study Indicates that the ratio of Intensity at x0 of the wave 
over the Irregular bottom to that over constant depth Is characterized 
by 

‘2t- , , e - 1 
--irr;', e + 1 

where e la the ratio of the average irregularity height to the average 
depth and L = 2itN where N la the number of wave lengths of the 
monochromatic wave whose scattering is being studied. For wave 
lengths in the spectral region of major Interest, the effect of this 
facet of the wave propagation seems to be of relatively small Im¬ 
portance too. 

V. ISLAND TOPOGRAPHY 

When the wave encounters an Islard, the lateral scale of that 
Island has the same order of magnitude as much of the Important 
part of the wave length spectrum. Thus , the pretense that the wave 
climbs a plane shelf must be corrected. The refractive effects so 
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(timai b* r«*4Uy ey gcom«trtc optica method« at 
auch wav# l#ogtha and on# muat rcaort to numerical procedure«. 
Th» rvault# o( auch «ludí«« art depleted ln Ftg«. 2 and 3, taken from 
Lautcrbachar { 2) . Figure 2 Indicate« the variation« of Intensity 
with pMltlM on a glvan (aland and Ftg. J Indicate« the extent of this 
effect for different ratio« of wave length to Island «Ice. 
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Fig. 2. Maximum wave amplification at coast (OAHU) 



Tsunamis 

Fig. 3. 
Ratio ol two-dimensional to one-dim en «lona! 
amplitude on hear)-, T i 1 j uimensional maximum wave 
, i , ,. 1 L| island diameter at ocean floor* R 
island diameter at beach. ’ R' 

ACKNOWLEDGMENT 

This work was supported in part by the Office of Naval 
Research under contract N00014 h7 n ma nom , , 01 1Ndval 
DM.,™ „r Engineering a,^ 

REFERENCES 

1. Carrier, G. F. , "The Dynamics of Tsunamis, " to appear in the 

2. Laute,■hacher c C.. "Gravity Wave Refraction by ,,la„ds . 
J. Fluid Mecha., Vol. 41, Part 3, pp. 655-67T AprU ,970. 



LABORATORY INVESTIGATIONS ON 
AIR-SEA INTERACTIONS 

E. Y. Hsu and H. Y. Yu 
Stanford University 

Stanford, California 

I. INTRODUCTION 

Ur sell fSli9561ththCOmPKreheu8ÍVe reVÍCW on wind wave generation bv 

ÏÏ^s1 weU^as e^L^^on 9tUdleS ’ 
contrlbutions have been maHo k U ,^ect’ Although significant 

of achieving a basic understandTniTof fb’ the final goal 

°L 

wave, to .ea swell. In the absence of inch Capül*r’' 

generation ^‘b““Íd°."by' 
C and the air shear velocity „* a. the In,.^* "i"> 

l. .he0"vl.“ouT"S»r.^ S"c'ha8ry 0^““''; air ““ '“a“a; 

arising from the normal ores si,li h f 1959]) with transfer 
sary phase anglo between the ni-e - 30 fhe fnterfare and the neces- 
sive wave A« n i t ^ u ^ ssure distribution and the progres- 

above tholes acc;unt7o?r I >969] , neither^ the 
generation: (1) the existence^f^0 ‘^sta>>>l3hed features of wave 

range corresponding to waves traveUng'aste'A'hS'the* 
stream velocity and U) the damping oA LyAn“adv":,*" Si'nV. 

( . 968]. IS 0¾¾ ^““aTor/s^Äli ‘to’VhV f 

overVhe^jcea^surface “L" *To™‘ "Tr ln * ty,>lcal wl"d b“ »‘"S 
lected as irrelevant to Jus- 1 meChanism can be ^fely neg- 8 Kim i 7 “rciev^nt to lull-scale wave energy tranqfer 8 
Miles inviscld model has received most sttJJirT a i Hen^' 
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The dearth of systematic measurements taken under controlled 
conditions closely comparable to those cf Miles' model was a moti¬ 
vation for our research program at Stanford University. In order 
to examine the applicability of Miles' invlscid theory, experiments 
were designed for measuring the wave induced perturbation pressure 
or inviscld Reynolds stress under steady-state and unsteady-state 
conditions. Other experiments were also devised for measuring the 
growth of mechanically generated waves subjected to wind action. 
From these measured wave growths, the growth factor of MUes was 
calculated. The objectives of this paper are to present a summary 
of our experimental data in the invlscid range, to compare our data 
and other existing data to the theory and the ocean observations, 
and to suggest specific and fruitful avenues for further study. 

II. A BRIEF REVIEW OF THE THEORY 

To facilitate presentation and discussion of the experimental 
rw.ia ^rlef outllne of *he assumptions, key equations and results 

of Miles invlscid, shear-flow theory are presented below. 

The deep-water, wave profile is assumed to be a progressive, 
sinusoidal wave, expressed as 

T) = a exp [ ik(x - Ct)] , ka « 1 (1) 

where a is the amplitude, k = 2ir/L is the wave number, I_ is the 
wave length, and C is the wave celerity. The assumptions of irro- 
tational, incompressible water motion lead to the existence of 
velocity potential. By substituting the velocity potential in the 
linearized Bernoulli equation and evaluating the result at the free 
surface, one obtains the equation of motion governing the propaga¬ 
tion of a small amplitude, surface wave 

= - p0 (2) 

where g la the acceleration caused by gravity, pw Is the mass 
density of water, and pg is the aerodynamic pressure caused by 
the wind stream. 

Miles [ 1957] assumed the aerodynamic pressure p has 
the form 0 

pa = (o + iß)paufkq (3) 

where pa is the mass density of the air, U, is a reference speed 
for the air, and a and ß are, respectively, the in-phase and 
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out-of-phase non-dimensional-pressure-coefficients 
angle <p is 

The constants a and ß were determined by solving an invlscld Orr 
Sommerfeld equation which represents the perturbations (caused 
by the water wave at the interface) to a wind shear-flow described 
by an assumed logarithmic, mean velocity distribution 

where y is the vertical distance from the mean water surface and 
y0 is the roughness height. 

The effect of the impressed aerodynamic pressure PQ on 
the surface wave can be evaluated by solving Eq. (2). It follows 
that the complex wave celerity 

Substituting Eq. (6) Into Eq. (1) yields 

where a0 is the amplitude at t = 0. 

It is convenient to measure the growth of wave amplitude as 
a function of fetch x in a wind-wave channel. The dynamic equi¬ 
valence, valid for x» L, is given by Phillips [ 1958J as 

where C0/2 is the group velocity of a deep-water wave. Conse 
quently, the fetch-dependent amplitude growth a is 

where a0 Is now the wave amplitude that would exist without wind 
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action or at x = 0. 

The total energy per unit of surface area E of a small- 
amplitude, sinusoidal, progressive wave is 

2 
E =2 Pwga 

If the energy corresponding to a0 is E0, Eq. (8) may be rewritten 

as 

E = En exp [.f-ßfl-kVßx] (9) 
g Pu 

The out-of-phase pressure component ß is responsible for the energy 
transfer from the air stream to the wave. Experimental results are 
presented in the non-dimensional form 

log,0 ETÜT = AF 
(10) 

where F is a non-dimensional fetch 

F = -^-ye* 

and 

A = (2-^) lo8|0 e = 1.03 X 10 
-3 

for p = 1 gm/cm3 and Pa = 0.00118 gm/cm 

III. LABORATORY INVESTIGATIONS 

3.1. Techniques of Simulation 

3.1.1. Moving wavy-boundary (steady-state) 

In attempts to verify Jeffreys' sheltering hypothesis, Stanton, 
et al. [ 1932] , Motzfeld [ 1937] , Thijsse [ 1951] , and Larras and 

■Claris [ I960] measured pressure distributions over stationary, 
solid, and two-dimensional sinusoidal boundaries in either a wind 
tunnel or a water channel. In the light of the critical-layer mecha- 
nism proposed by Miles, these stationary wavy-boundary experiments 
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cannot be regarded as an adequate, steady-state simulation oí the 
wind-generated wave problem, because the critical layer In the 
experiments is of zero thickness and, hence, the critical level lies 
on the stationary boundary. All of the above experiments, with the 
exception of Thijsse's indicated a smaller sheltering coefficient than 
that anticipated by Jeffreys, who expected the pressure distribution 
to be out-of-phase with the wave (in accordance with Miles' invlscld 
theory). The resulting small sheltering coefficient may be attributed 
to either viscous or finite wave-amplitude effects. 

For a more realistic steady-state simulation of wind-generated 
waves and demonstration of the Importance of the critical-layer 
mechanism of energy transfer, the wavy boundary must be moving 
with a speed equal to the wave celerity and opposite to the direction 
of mean free-stream. An important advantage in this simulation l* 
that the flow field is steady. Consequently, measuring techniques 
are greatly simplified. 

The first successful moving, wavy boundary experiment and 
its resultant presentation of the normal pressure distribution on the 
boundary were reported by Zagustln, et al. [ 1966, 1968] . Subse¬ 
quently, Ott, et al. [ 1968] extended tfïëTagustln investigation and 
used refined experimental procedures to achieve better experimental 
accuracy. Small amplitude waves with a length of 3 ft and amplitude 
of 0.65 in. were used. Because of the limited capability of the 
experimental facility, C/Ujp was limited to approximately 0.75 (U^ 
is the air velocity at the edge of the boundary layer). 

3. 1.2. Flexible wall with progressive waves (unsteady-state) 

Kendall [1970] described a series of experiments on wind- 
wave simulation in a low turbulence wind tunnel. The wavy wall was 
the floor of the constant pressure test section of the tunnel. The 
surface of the wavy wall was composed of neoprene rubber sheet 
which was constrained to form a series of sinusoidal waves (length = 
4 in. and height = 0.25 in.). The rubber sheet was supported from 
beneath by a series of ribs which were connected to Individual circu¬ 
lar eccentric cams. Each cam was positioned with proper phase 
difference on a common cam shaft expending the length of test section. 
Rotation of the cam shaft caused each rib to execute a reciprocating 
vertical motion and thus a progressive wave form was produced. 
Reversing the direction of rotation of the cam shaft produced waves 
traveling in the opposite direction, giving - 0.5 < C/Uœ < 0.5. 

The boundary conditions for the two methods of wind-gene rated 
wave simulation described above deviate slightly from those of a true 
air-water interface. If the fluid particle velocity in a wave motion 
is small compared to the wave celerity (true for small amplitude 
waves), the moving wavy boundary simulation approximately satisfied 
the boundary conditions. In the flexible wall experiment the surface 
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• troam and wat monitored by two Identical preaturo aenaora , one 
at the Interface and the other In the free atream, through a Pace 
P-90 differential preaaure tranaducer. The whole syatem was 
allowed to follow the wave motion ao that the lower preaaure sensor 
waa kept a fixed dlatance from the Inatantaneous air-water Interface 
and Intlde the critical layer. The unwanted pressure signal caused 
by the motion of the ayatem was determined by calibration testa and 
removed In the final data reduction. 

3,}, Measurement of Wave Growth 

A aerlea of experiment« was run to measure wave growth 
rate In the Stanford wind-wave channel. Small-amplitude, deep¬ 
water waves with frequencies varying from 0.9 to 1,4 cps were used 
with the maximum wind speed ranging from 1 Z to 44 fps (fan speed of 
100-300 rpm). Time recorda of wave profiles wert »btalned with 
capacltance-wlre aenaora at seven locations spaced t 10 ft Intervals 
along the centerline of the test section. Air velocity distributions 
were taken at alx Intermediate locations with a conventional pltot- 
•tatlc probe. 

Although the mechanically-generated waves were Initially of 
•mall amplitude and closely sinusoidal, they become steep and some¬ 
what non-sinusoidal with Increasing fetch In response to the wind 
action. The true wave profile could be viewed as a superposition of 
a mean wave and a spectrum of ripples. Therefore, a phase averag¬ 
ing procedure was adopted to determine the mean wave profile at 
each fetch and fan speed. The mean wave profile at each phase angle 
waa the reault of averaging 35 waves In the time series. The stream 
function fitting technique Introduced by Dean [ 1965] and outlined for 
this application by Bole and Hsu [ 1967] was used for evaluating the 
kinetic and potential energy of each mean wa m profile. Finally, the 
total wave energy at each location of the test section was adjusted 
for wave energy dissipation due to viscous action. The dissipation 
was determined experimentally for conditions without wind. 

Along with the mean wave profile, the ripple variance of the 
water surface about the mean wave profile at each phase angle of the 
wave and the mean ripple variance and standard deviation for all the 
phase angles were calculated. The ripple variance Is, of course, 
proportional to the potential energy contained In the ripple. 

IV. RESULTS AND DISCUSSION 

4.1. Water Surface Roughness (Unsteady-State, True Air-Water 
Interface) 

When mechanically generated waves were subjected to wind 
action, ripples were always present and were superposed on the 
waves. Thus, the water surface can no longer be regarded as smooth 

17 



Hsu and Yu 

and its roughness can be described by the ripple standard deviation 
r of the water surface elevation about the mean-wave profile It 

iHan/rT . 'tLl “T““'1 ’?*** «• th.íam" fetch. 
are8listed in Tabla ? adaS y°,U lncreased. The values of er are listed in lable 1 and vary from about 0.001 to 0.039 ft. 

From a least-square fit of the velocity profile Eo Í51 to tba 

^alu^f datl' ValUea8°f,U| and yo can be^obtalned and hence the 
Piled in TahVak?yC'^and ß i*** 2)* The values of Vc com- 
Tabii i T a v,and vary from °- 004 to 0.011 ft. The values in 
fhíítb1 anl,laí>11e 2 show that the riPPle standard deviation is larger 
then the critical layer thickness in all cases. It seems that the 
surface roughness or ripples should destroy the organize dictions 

^H° ÆnWhi^ LighthiU [ 1962^ Planted as theÂlcarexpïL 
of the aOÍ Müef lns.tabillty mechanism. Thus, Miles ’ interpretation 
peIturbatiInyR n9Í!r ^^h^m (adopted from Lin [ 1955] ) as the 
file at the crlHrslfí8 WOr^lne a8ainst the mean velocity pro- 
u at the critical layer is severely strained by the existence of a 

ripple layer large enough to obliterate the critical layer. 

«.The energies of wind« gene rated ripples with and 
thout mechanically generated waves are presented in Table 3 

The Presence of the generated waves decreases ripple energy si* 

generally*decr^easegh irregalaritle8 , ripple energy 
!^nn y d ^ !o / aS Wave frequency increases. Exceptions occur 
at 300 rpm and 60 ft fetch where the 1.2 and 1.4 cps waves are 

IíIctrI8oHhe energy ÍS sharPly decreased. Sample power 
p ctra of the ripples superposed on a 1.1 cps wave were obtained 
y subtracting the mean 1. 1 cps wave profile from the original water 

surface elevation time series. The remaining time series® whirh^ 
contains only ripple variation, was then spectral analyzed ’ The 

me^taT spectra of wind-generated ripple wit/and without 
mechanically generated waves is exhibited in Fig. 1. Spectral 
peaks for the two cases appear at about the same frequency but 
spectral density is drastically reduced when waves are present. 

DresenrIhnftWO P°ssible reasons for ripple attenuation in the 
presence of waves are 

a. sheltering effects retard ripple generation by the wind, 

b' rJír3; WaTWaVe fractions cause ripple energy 
to be dissipated and to be transferred to the waves as 
suggested by Longuet-Higgins [ 1969] (see later discussion 
on wave energy). 

4.2. Mean Wave Profiles 

Mean wave Profiles were determined by phase-averaging 
over records of 35 waves. A sample of corresponding pairs^f 
mean wave profiles and their corresponding original recordings for 
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TABI£ 1. RIPPLE SPECTRUM STANDARD DEVIATION 

CT X 103 (ft) 

*Waves breaking. 
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TABLE 1. RIPPLE SPECTRUM STANDARD DEVIATION 

O' X 103 (ft) 
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TABLE 2. CRITICAL LAYER THICKNESS 

yc X 103 (ft) 

RPM 

100 

150 

200 

250 

300 

1'etch 

(ft) 

10 

20 

30 

40 

50 

60 

10 

20 
30 

40 

50 

60 

10 
20 
30 

40 

50 

60 

10 
20 

30 

40 

50 

60 

10 
20 

30 

40 

50 

60 

Mechanical Wave Frequency (cps) 

0.9 

1.0 

1.3 

2.5 

2.4 

2.7 

2.8 

0.8 

0.7 

0.7 

0.4 

0.6 

0.5 

1.2 
1.6 
2.5 

2.6 

2.3 

1.7 

0.4 

1.4 

2.8 

4.9 
6.7 

11.4 

1.0 

0.8 

1.0 
2.0 

1,9 

2.2 
2.2 

0.7 

0.6 

0.6 
0.3 

0.5 

0.4 

0.4 

1.3 

2.6 

4.5 

6.2 
10.7 

1.1 

1.0 
2.9 
2.9 

4.8 

5.1 

8.5 

0.6 
0.8 

1.6 
1.5 

1.7 

1.8 

0.6 
0.5 

0.5 

0.3 

0.4 

0.3 

0.9 

1.2 
2.1 
2.1 
1.9 

1 .4 

0.3 

1.2 
2.4 

4.2 

9.8 

10.1 

1.2 

0.5 

0.6 

1.3 

1.3 

1 .4 

1.5 

0.5 

0.4 

0.4 

0.2 
0.4 

0.3 

0.8 
1.1 
1.9 

1.9 

1.7 

1.2 

0.3 

1.1 
2.2 
3.9 

5.5 

9.6 

1.3 

0.5 

1.8 

1.7 

2.7 

3.0 

5.2 

0.4 

0.5 

1.1 
1.1 
1.2 
1.3 

0.5 

0.4 

0.4 
0.2 

0.3 

0.2 

0.8 
1.1 
1 .8 
1.8 
1.6 
1.2 

0.3 

1.0 
2.1 
3.7 

5.3 

9.3 

1.4 

0.4 

1.5 

1 .4 

2.2 
2 5 

4.4 

0.4 

0.5 

1.0 
1.0 
1.1 
1.2 

0.4 

0.3 

0.3 
0.2 
0.3 

0.2 

0.7 

1.1 

0.3 

1.0 
2.0 
3.6 

5.1 

9.0 
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TABLE 3. RIPPLE SPECTRUM POTENTIAL ENERGY 

Values X 103 (ft-lb/ft2) 

RPM 

100 

150 

200 

250 

300 

fate»: 

in) 

10 
20 

JO 
40 
50 
60 

10 
20 
30 
40 
50 
60 

10 
20 
JO 
40 
50 
60 

10 

20 

30 
40 
50 
60 

10 
20 

30 
40 
50 
60 

(no wave) 

0,0«* 

0.25 
0,03 
1.30 
2.10 
2.80 

0.57 
2.56 
5.31 
9.06 

10,30 
11.77 

2.58 
7.29 

13.28 
14.82 
31.17 
36.92 

3.99 
11.74 
24.73 
37.71 
53.44 
58,84 

9,59 
21.75 
44.11 
60.64 
86.66 

102.62 

Mechanical Wave Frequency (cps) 

0.9 

0.37 
1.32 
2.67 
2.70 
4.26 
3.86 

1,16 
3.59 
4.41 
4.36 
4.22 
5.68 

2.92 
5.82 
6.22 
4.56 

10.25 
25.46 

4.65 
11.17 
13.51 
17.49 
36.87 

32.63 

1.0 

0.28 
1.57 
2.80 
3.38 
4.94 
5.89 

1.17 
3.67 
6.33 
T.63 
6.24 
7.74 

2.94 
5.90 

12.90 
20.11 
26.18 
26.92 

7.17 
10.67 
22.97 
16.18 
21.35 
19.20 

1.1 

0.04 
0.22 
0.53 
1.10 
1.64 
2.10 

0.33 
1.33 
1.44 
2.37 
2.45 
2.49 

1.57 
2.63 
2.60 
3.11 
5.64 
5.35 

2.58 
6.21 
5.92 

14.03 
20.85 
24.28 

4.68 
8.06 

13.69 
12.33 
15.11 
17.89 

1.2 

0.07 
0.28 
0.49 
1.12 
1.78 
2.00 

0.33 
1.12 
2.45 
2.87 
2.34 
3.20 

1.48 
2.98 
4.48 
6.17 
8.51 
8.97 

2.70 
5.43 
6.18 
9.55 

10,83 
13.38 

6,57 
13.03 
12.22 
12.SB 
14.21 
14.48 

1.3 

0,05 
0.30 
0.65 
0.92 
1,70 
2.06 

0.40 
1.27 
2.46 
2.87 
3.66 
5.32 

1.57 
4.13 
3.88 
6.79 
7.60 
9.08 

3.23 
7,42 
9.88 
9.40 

10.17 
11.34 

6.34 
14.35 
16,94 
10.59 
9,24 

14.18 

Waves breaking. 
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1.4 

0.08 

0.30 
0.61 
1.19 
1.43 
1.96 

0.51 
1.22 
1.99 
2.98 
2.45 
4.67 

1.33 
3.09 
3.78 
5.63 
5.58 
7.01 

2.37 
7.56 
7.94 
7.82 

11.82 
11.32 

5.37 
10.19 
10,32 
13,27 
22.43 
50.10’ 

atm .. 
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fig. I. influence of 1,1-cps wave on 200-rpm ripple 
•pectra 

' ' ' • ■ ' ' ‘■•'.f* T»« i, glv«n 1» Figs. 2 to 5. a close 
examination of these figures (wave motion is toward the left and the 
usual Sanborn attenuation scales are marked) reveals that the posi¬ 
tions assumed by the ripples Influence the mean wave profile. For 
example, ripple superposition in the 1.0 cps wave caused the mean 
h»!*? to flatt#n®d* However, ripple superposition on 
the l.j cps wave did not cause mean wave profile distortion. Many 
of the records show ripples superposed in such a way that the crest 
was sharply peaked. The existence of such conditions may enhance 

ràtio?! oí lhe âir Clow over the wave surface. 

A source of error arises from the fact that mean wave pro- 
ulei were distorted, and yet their energy was compared with that of 
Mues pure sinusoids. An expression consisting of a cosine and sine 
plus their two higher harmonics was least-squre fitted to each of the 
mean wave profiles (see below). Results indicated that the total 

22 



Laboratory Investigations on Air-Sea Interactions 

m 

Water Surface Elevation (ft) 

o o o o 

a 

o 
o 

(0 
0) 

0 
M 
a 
Oí 
> 
(T) 

cn 
A 
O 
o 

ÔÛ ■ i 4 
ki 

(It) <Pi»4 

23 

IMMIMII 



F
ig

. 
4
. 

1
.3

-c
p

s
 
m

e
a
n
 w

a
v
e
 p

ro
fi

le
s
 
a
t 

3
0
0
 
rp

m
 

F
ig

. 
5
. 

i.
3

-c
p

s
 
S

a
n

b
o

rn
 r

e
c
o
rd

in
g
s
 
a
t 

3
0
0
 
rp

m
 (

w
.b

. 
=
 w

a
v

e
s 

b
re

a
k
¬

 
in

g
; 

1 
h
ro

lz
o
n
ta

l 
d
iv

is
io

n
 =

 
0
.2

 s
e
c
) 



Laboratory Investigations on Air-Sea Interactions 

error introduced by representing the mean wave by these five terms 
was not greater than 5 per cent in any case. 

4.3. Wave Energy 

The total wave energy (potential plus kinetic) was calculated 
by the method developed by Dean [ 1965] through least-square-fitting 
an analytic stream function to the mean measured wave profiles. 
Details of the procedure were presented by Bole and Hsu [ 1967] . In 
order to compare the measured wave energy with Miles' prediction, 
wave dissipation in the channel, determined experimentally under 
the condition of no wind, as a function of fetch was added to 
measured wave energy. Figure 6 shows the energy ratio E(x)/E(0), 
as a function of downstream distance for a 1.4 cps wave subjected to 
various wind speeds, while the results in Fig. 7 are for a constant 
wind speed (300 rpm) acting on waves of various frequencies. The 
data was then reduced to the non-dimensional fetch F defined in 
Eq. (10). The final results, compared with Miles' inviscld theory, 
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Fig. 7. 300-rpm.wave growth vs. y 

are exhibited in Figs. 8 and 9. In nearly every case, experimental 
values fall well above the theoretical line. By assuming the growth 
to be totally dependent on F in the form of Eq. (9), we calculated 
a ratio of the experimental and theoretical ß values and present the 
results in Table 4, The ß-ratios vary from about 1 to 10, The 
mean ratio for all frequencies and rpm's is about 3. 

The total spectral energy of the ripples in most of the experi¬ 
mental cases was no more than about 20 per cent of the mechanically- 
generated wave energy. Phillips [ 1966] argued that non-linear inter¬ 
actions between waves should be weak. Hence, our procedure of 
measuring the growth of a single wave within a spectrum should be a 
valid means of evaluating the parameters necessary for comparisons 
with Miles theory. 
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Fig. 8. 1.4-cps wave growth vs. F 

Fig. 9. 300-rpm wave growth vs. F 

8WÄ 
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TABLE 4. RATIO OF EXPERIMENTAL TO THEORETICAL ß 

., . ,0n the other hand, our experimental evidence indicated that 
the wind-generated ripples riding on the mechanically generated 
waves had a tendency to break on the crests rather than in the 
troughs. Longuet-Higgins [ 1969] showed that, in breaking the 
ripples may impart a significant portion of their momentum to the 

[ 19701 7ieTdSobn a Strß n°n-llnear interaction. Mollo-Christens en's 
L 1970J field observations showed that there were relativelv hivh 
peaks of energy in a high frequency band located near the Jrest of 

d«a llnkrr„e-a K 1 dltHflCU,' Mollo-Christens en a data, taken in a confused sea, whether these high frequencv oeaks 
are produced as a result of the breaking waves, caused by wave 
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group« of different frequency overtaking one another, or partly by 
the generation of high frequency wave« on the wave créai» To fully 
investigate the non-ltneer, wave-wave Interaction« and to eatablleh 
the role of rlppl«» in the transfer procee«, meaaurement« almUar 

*î?0<ie Mollo»ChrtiltMeii and additional detail meaauramanta 
oí the velocity fltld below the air-water interface «hoold be carried 
out under the controlled condition« of a laboratory almulatlon. 

The IncompatlbUlttea of the Mllea* mathematical model with 
the natural wave-growth environment, a« diecuaaed In the prevlou* 
eectlon, were anticipated by Mllea, He «tated In thi* 1957 paper 

i t,,°Ur mQt*e* cannot be expected to have more than qualitative 
• ignlftcance for rough flow.* U would appear that a more realtatlc 
model and an Improved theory of energy trana fer cannot be formu¬ 
lated until detailed «tudlea of the structure of air flow near the air- 
water Interface are carried out, 

A- 4» Non-dlmcnalonal Pre««ure Coefficient« 

The non-dlmenalonal pressure coefficient« a and f> ob¬ 
tained from the va r loua techniques of laboratory simulation are 
exhibited In Figs. 10 and 11 as functions of kyt. Comparison between 
the measured value« of the in-phase pressure coefficient a (steady- 
state, moving-wavy-boundary} unsteady-state, wind-wave channel) 
and the Miles* theory Is shown In Fig. 10. The experimental values 
of the out-of-phase pressure coefficient ß, evaluated from wave 
growth measurement«, are shown In Fig. II, Although there Is 
considerable scatter In the experimental data, the deviation from 
the invlscid theory is clearly evident and Is consistent with the 
results of the wave growth measurements. Because of the limited 
capability of the experimental facility In the steady-state, moving- 
wavy-bounda ry experiment, experimental values were limited to 
kyc «0.1, 

The experimentally determined phase angle y obtained from 
the three different methods of laboratory simulation -. moving-wavy- 
boundary, flexible boundary with progressive wives, and wind-wave 
channel -- l* shown In Fig. 12 as a function of C/u , In view of 
the uncertainties among Investigators in determining u* values, 
the experimental phase angle as a function of C/U* and their cor¬ 
responding theoretical values are shown In Fig, U. The JPL-data 
includes negative values oí C, Because the measured velocity pro¬ 
file« varied to some extent with U. and C as discussed by Kendall 
l 1970] , theoretical values of y for the case In which U® »5.5 
In./sec and C » 0 were calculated. 

In an attempt to detect flow separation In the region near the 
air-water Interface In the wind-wave channel experiments, pressure 
measurements over waves of various amplitudes with constant fre¬ 
quency were made. The measured phase angles for two wave 
frequencies, 0.6 and 0.78 cp«, are shown ln Fig. I}. The scatter 
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Fig. 10. Comparison between measured and theoretical values of 
a vs. kyc 
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of the experimental data precludes any definite conclusion about 
possible flow separation. Although a unified theory is needed to 
describe the relationship between the phase angle <p and ± C/U^, 
the experimentally determined phase angles in the invlscid range do 
indicate a correct trend compared with Miles1 theory. 

V. CONCLUSIONS 

The accumul it 'd laboratory experimental evidence obtained 
at Stanford and elsewiure indicates general support for Miles1 
invlscid theory of energy transfer between air stream and progressive 
waves through the phase shift of the aerodynamic pressure at the 
interface. However, the experimental growth rate is considerably 
in excess of Miles' prediction, being approximately three times 
larger. The most fruitful avenue for further study would appear to 
be to reexamine the necessary simplifying assumptions in the Miles' 
inviscid model. The incompatibilities near the air-water interface 
suggest that detailed experimental investigations of this region are 
essential before an understanding of the energy transfer mechanisms 
and the conditions under which they occur c m be fully established. 
The effects of turbulence, possible flow separation, ripple super¬ 
position and boundary layer development are complex, but could be 
modelled and fruitfully studied in laboratory simulations. 
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AIR-SEA INTERACTIONS: RESEARCH PROGRAM 
AND FACILITIES AT IMST 

M. Coantic and A. Favre 
IMST 

Mavseille, France 

ABSTRACT 

This research concerns the small-scale physical pro¬ 
cesses responsible for mass, momentum and energy 
exchanges between the atmospheric surface layer and 
the oceans. 

Their theoretical study has been undertaken. It outlines 
the importance of turbulence and the influence of recip¬ 
rocal interactions between the various transfer pro¬ 
cesses. It has led to the design of an experiment where 
the natural phenomena shall be partially simulated, in a 
large laboratory facility. 

This one combines a micrometeorological wind tunnel 
with a 40 meters long wave tank, under controlled t°m- 
perature and humidity conditions. It has been extensively 
tested with a one-fifth scale model. It is presently under 
construction, and will be operative by 1971. 

Instrumental studies have also been undertaken, and 
results obtained in the measurement of turbulence in 
water flows. 

I. INTRODUCTION 

The knowledge of energy exchange processes between atmos¬ 
phere and oceans appears of major interest for oceanography as well 
as for meteorology. These two media have indeed to be considered 
as elements of a single system, for the dynamical and thermodynam¬ 
ical evolution of each of them largely depends on interactions through 
their common boundary. 
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One of the essential steps In the solution of the air-sea inter¬ 
action problem lies in the understanding of small-scale processes 
in the air and water layers adjacent to the interface, where the 
various forms of energy are either transferred or converted, while 
going from one medium to the other. The experimental study of 
these phenomena Involves a detailed and delicate exploration of a 
region whose thickness is of the order of the wave height. Now, 
experiments performed at sea are subjected to such environmental 
constraints that the accuracy and repeatability of measurements 
seems necessarily limited. It has therefore appeared useful to 
complement field studies by laboratory experiments, where an ex¬ 
tensive investigation is feasible under exactly repeatable conditions 
and with the possibility to control independently each of the govern¬ 
ing parameters. 

This is the program which has been undertaken at I. M. S. T. , 
and which is described in the present paper. The preliminary steps 
of this program have Included: collection of information about cur¬ 
rent research; attempt of a critical survey of existing knowledge, 
in order to find out definite research objectives; and a first theoretl- 
cal study of the physical mechanisms of air-sea Interactions, and 
o. their governing parameters. These studies have led to the con¬ 
clusion that it would be feasible to obtain, in the laboratory, a partial 
simulation of the atmospheric-oceanic energy exchange processes, 
provided that a sufficiently large facility could be realized. 

The following steps of the program have then comprised: 
the preliminary design of this facility, combining a micrometeorolo- 
g cal wind tunnel with a 40 meters long wave tank; the realization of 
a one-fifth scale model, and its use for various preliminary tests 
and experiments; the detailed design and the building of the large 
wind-wave facility; and, last but not least, the development of various 
theoretical and instrumental researches. 

The purpose of the present paper is to introduce the various 
objectives and results of our research program, and to describe the 
facilities which have been, or are being, realized. Due to space 
limitation, that presentation will be limited to a rather short account 
referring to previous publications for more details, when possible, 
ihe plan adopted is logical rather than chronological: 

- Theoretical studies; 
- Setting up the characteristics and design of the large air- 

sea facility; 
- Model tests; 
- Building of the air-sea facility; 
- Studies of measuring instruments and methods. 

At last, we shall try to draw some preliminary conclusions 
about this program, the prospects it opens, and its possible appli¬ 
cations. We shall also have the pleasure to express our thanks to 
the many individuals and organizations who have contributed to its 
realization. 
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H. THEORETICAL STUDIES 

I. The Physical Mechanisms of the Ocean-Atmosphere Interaction 

As It is well known, the small-scale transfer of energy be¬ 
tween atmosphere and oceans occurs following four various mecha¬ 
nisms , sketched by Fig. 1: 

a) Radiation, Including: i) short-wave radiation from the sun on the 
sea surface, which is partially reflected and absorbed over a 
more or less large depth under the interface; 11) long-wave radi¬ 
ation coming from the atmosphere and from the sea, and Involv¬ 
ing a radiative transfer process between the interface itself and 
the atmospheric layers (see II. 3). 

b) Evaporation (or condensation), and turbulent convection of water 
vapor, which, due to the very high latent heat of vaporization of 
water, leads to a turbulent latent enthalpy transfer from the sea 
surface to the atmosphere. 

c) Turbulent convection of sensible enthalpy, resulting from tem¬ 
perature differences between adjoining points of the system. 

RADIATION 

Short wave Long wave 

TURBULENT ENTHALPY 

TRANSFER 

KINETIC ENERGY 

TRANSFER 

Fig. 1. Schematic display of energy transfers In the vicinity of the 
ocean-atmosphere Interface. 
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As discussed in our previous publications (Coantic [ 1968] , Coa.ntic 
et al. [ 1969]), and in Part HI of the present paper, the preceeding 
considerations have been the basis for the settling of our research 
program and the design of our simulation facility. Some asPec:tsJ” 
the problem are already being the subject of theoretical investigations, 

which we shall now mention shortly. 

2. Wave and Current Generation by Wind 

The transfer of mechanical energy from air to sea has two 
main consequences: the development of currents and turbulence in 
the upper ocean, and the generation and amplification of waves. This 
latter process can be broadly described as follows: the turbulent 
atmospheric boundary layer exerts on the water surface normal and 
tangential stresses, with steady, periodic and random compon . 
As a consequence of these stresses and of the gravity and capillarity 
restoring forces, motions of a wavy character are generated at the 
Interface. As soon as their amplitude becomes aPPrfclfble ’ n°^" 
linear effects are developed, which result in a modification o 
airflow smictüre and, hence, o£ «he applied .«re,..., «he ex .««nee 
of a continuous wave spectrum and the production of turbulent energy 
in the sea. The wave amplitude is then limited by the dissipativ 
action of turbulence and viscosity. 

As mentioned earlier, the understanding of this complex 
mechanism is essential to elucidate , not onlv the dvnf^ica1^ 
also the thermodynamical aspects of air-sea interactions. A ca 
study has, accordingly, been undertaken (Hamamonjlarlsoa t 19 9, 
1970] ), first of existing theorlee (based on models proposed by 
Miles and Phillips) and later on of more recent developments in the 
researenes of Stewart, Mollo-Christens en, Longuet-Higgins, 
Hasselmann and Reynolds, among others. This helped us in identify¬ 
ing some points that have to be subjected to experimental 8tadJ' 
namely1 the existence of separation after the wave crests, the phase 
shift between surface pressure and elevation, the spatial and temporal 
variations of Reynolds stresses, and of the turbulent structure of 
flow in general. Our future measurement program has been estab¬ 
lished in consequence, taking advantage of the possible use of 11 
space-time correlation technique, and of numerical data processing 
methods to separate the "mean," the "phase average and the tur¬ 

bulent" parts of each variable. 

3, Interaction of Turbulent and Radiative Transfers 

Another typical example of reciprocal Interactions between 
the various modes of energy transfer near the air-sea interface 
the simultaneous transport of sensible enthalpy by turbulent con¬ 
vection, and by infrared radiation. The turbulent heat flux is 
usually assumed constant with height in the atmospheric surface 
laver Y However, the validity of this hypothesis is known to be 
questionable, due to a possible vertical variation of the infrared 
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radiative flux (see e. g. Munn [ 1967]). 

This problem has been approached theoretically, using semi- 
empirical expressions fitted to the emissivlty curves, and assuming 
logarithmic temperature and humidity profiles. A first approxima¬ 
tion of the radiative heat flux divergence is thus obtained analytically, 
as a function of the surface layer parameters (Coantlc and Seguin 
[ 1970]). Numerical values of the Infrared flux gradient, dq,/dz, 
in the first ten meters of the marine atmosphere are shovm in Fig. 2, 
for two different wind velocities (A: U|0 = 3 m/s; B: U|o = 9 m/s); 
two sea surface temperatures (cases 1,2: 00 = + 5 C; cases 3,4: 
0Q = + 20 °C); and two temperature differences (cases 1,3: 0|O - 0O = 
- 5 0Cs cases 2,4: 0,o - 0O = + 1 °C). The resulting vertical vari¬ 
ations of the turbulent heat flux, shown by Fig. 3, are seen to attain 
unexpectedly large values, of the order of 30 to 40%, when wind 
velocity is low and humidity is high. 

These results are considered as preliminary. If confirmed, 
they could lead to a reinterpretation of some experimental data, 
and should appeal to an extension of turbulent transfer theories to 
the case of a variable heat flux. 

/ m 
10m 

im 

10 cm 

i cm 

~Q6 -0,4 0 *0,4 ÜÜli m w/em'/m 
dZ 

Fig. 2. Computed vertical variations of radiative flux divergence 
for various atmospheric situations 
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Fig. 4. Comparison between predicted spectral behavior of turbu¬ 
lent humidity fluctuations, and measurements by Miyake 
and Me Bean [ 1970] 

5. Two-Phase Processes in the Vicinity of Air-Sea Interface 

The equations governing the mean properties of air-sea inter¬ 
actions are usually written in an earth fixed Eulerian frame of refer¬ 
ence, and different sets of equations have to be used in the gaseous 
and in the liquid phase. Due to the unsteady random character of the 
Interface, this means that an appreciable part of the system has, 
strictly speaking, to be treated as a two-phase flow. 

If one wants to take into account the obviously important 
effects of sea spray in the lower atmosphere, and of air bubbles in 
the upper ocean, the necessity of considering two-phase effects is 
still more clear. Prompted by chemical and nuclear engineering 
problems, notable progress has been gained these last years in the 
analytical and empirical description of such processes. We plan to 
apply the methods therein developed to the study of the two-phase 
portion ox the ocean-atmosphere system. 

HI. STUDY OF CHARACTERISTICS AND DESIGN OF THE SIMU¬ 
LATING FACILITY 

Conditions for Modelling Small-Scale Air-Sea Interactions 

In consequence of the physical mechanisms of air-sea energy 
exchanges, the planned laboratory experiments will concern the 
structure of turbulent velocity, temperature and humidity boundary 
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layers obtained at the Interface between an airflow and a water mass. 
The three basic processes of momentum, heat and mass transfer will 
be effectively realized by controlling air velocity, temperature and 
humidity, and water velocity and temperature. Furthermore, 
appropriate heating or cooling will provide an approximate repre¬ 
sentation of the most Important radiation effects. 

However, such experiments will be really useful In modelling 
the atmospheric-oceanic phenomenon, only If the three aforementioned 
specific features: turbulent atmospheric structure, stratification 
effects, and Interface motion, are at least partially reproduced. 
This seems feasible, provided that a sufficiently large facility can 
be realized. 

2. Simulation of the Atmospheric Dynamical Structure 

It is well known that the atmospheric surface layer motions 
can be simulated in the laboratory, in so-called "micrometeorologi- 
cal wind-tunnels" {see e.g. Pocock [ i960] , Cermak et al. [ 1966] , 
McVehil et al. [ 1967] , Mery [ 1968]). In short, these motions are 
characterTzecl, on one hand by extremely high values of Reynolds 
number, and on the other hand, by stratification effects corresponding 
to appreciable values of Richardson number. For a good modelling, 
these dimensionless numbers have to keep significant values in the 
laboratory flow. For the latter, this implies rather large tempera¬ 
ture differences, and low wind velocities. In consequence, to pre¬ 
serve sufficiently high Reynolds numbers while observing cumulative 
stratification effects, it is necessary to build large facilities. Simi¬ 
lar conclusions are reached if one considers the problem of main¬ 
taining the ratio between the roughness height at the surface and the 
boundary layer thickness or the Monin-Obukhov length, or if one 
requires the reproduction of an appreciable Kolmogorov inertial 

range. 

For these reasons, the test section length of micrometeoro- 
logical wind tunnels reaches several tens of meters and the velocity 
range is of the order of a few meters per second, while provision 
is made for creating temperature differences of several tens of 
degrees centigrade. The main characteristics of our project are as 

follows: 

- Length of the water surface forming the interface in the test 
section: 40 meters. 

- Air velocity range: 0.5 to 14 meters per second. 

- Maximum temperature and specific humidity differences: 30 C. 
and 25.10'3 Kg water by Kg air. 

The estimated performance of the facility is sketched by Fig. 5, 
which shows the rather wide range of dimensionless parameters that 
should be covered. The general scheme of the tunnel is given in 
Fig. 6. It is a closed-circuit wind-tunnel, with several rather 
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unusual dispositions, dictated by specific requirements. For 
instance, to obtain stable functioning at the lowest velocities, the 
return circuit's area has been purposely reduced; the total head 
loss has been increased by tightly finned heat exchangers acting as 
flow equalizers just upstream the settling chamber; and the diffusors 
have been fitted with vortex generators and stabilizing vanes. The 
test section's area is 3.20 by 1.45 meter, and the overall size of the 
facility 61 by 7.50 meters. The wind velocity can be continuously 
varied from 0. 5 to 14 meters per second, with a relative accuracy 
of 2.10'3, using a helicoidal fan driven by a variable speed D.C. 
motor with electronic regulation. 

Fig. 5. Estimated performance of the facility: a) Reynolds number, 
and boundary layer thickness; b) Sensible and latent en¬ 
thalpy fluxes; c) Wind-Waves' age and significant height, 
d) Richardson number. 
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SECTION A 

Fig. 6. General scheme of the wind-water tunnel 

3. Reproduction of Heat and Maas Transfer Processes 

Supposing a convenient flow structure has been obtained, the 
existence of nonzero temperature and partial water vapor pressure 
differences between the water surface and the incoming air flow will 
be sufficient to cause turbulent convective processes of mass and 
sensible and latent enthalpy similar to those encountered in the 
atmospheric boundary layer. 

The equations governing these transfers being linear with 
respect to'temperature and humidity, these last variables can be 
fixed on grounds of experimental convenience, as long as stratifi¬ 
cation effects do not arise. The estimated values of flux Richardson 
number, computed at one-quarter boundary layer thickness and for 
a temperture difference amounting to 25 °C, are displayed in Fig. 
2(d) as a function of longitudinal abscissa and velocity. At the 
highest velocities, Richardson number is clearly negligible, and 
temperature and humidity differences will be chosen, to Improve 
experimental accuracy, at the highest levels authorized by the 
equipment's capabilities (see Fig. 2(b), and below). On the other 
hand, at the lowest velocities, temperature and humidity can no 
longer be considered as scalar passive contaminants, and their 
differences will be chosen in order to obtain a given Richardson 
number, i.e. a given effect on the dynamical structure. 
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A first approximation representation of radiative beat ex¬ 
changes seems also to be feasible in the laboratory. At the small 
scale we are interested in, the main effect of short wave solar radi¬ 
ation is a global elevation of the ocean'.c temperature, that can be 
reproduced by heating the water mass. Due to the radiative trans¬ 
fer process mentioned in II. 3, the reproduction of infrared heat 
exchange it, more delicate, but its primary effect yet remains the 
cooling (or occasionally he ating) of the interface itself. This 
localized heat sink shall be simulated, either by increasing the 
cooling produced at the same place by evaporation, or by lowering 
the temperature of the ceiling of the test section, and thus con¬ 
trolling the radiative heat exchange between this wall and the water 
surface. 

The designed facility will allow independent control of air 
and water temperatures in the 5 °C - 35 °C range, with an accuracy 
of the order of 0.1 °C. The relative humidity of air entering the test 
section will be varied from 60% to 100%. Fig. 7 schematizes the 
main components of temperature and humidity control system: cooling 
and drying (by condensing) colls, heating coils and vapor injectors 
in the air circuit; cooling and heating heat exchangers in tie water 
circuit; heat generator, frigorifie unit with cooling tower, steam 
boiler, regulating system. The working principle is represented 
using the temperature-mixing ratio diagram. 

Fig. 7. Schematic diagram of temperature and humidity control 
systems 
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4. Reproduction of Interfacial Motions 

The problem of obtaining laboratory waves statistically 
similar to those encountered over the oceans has been thoroughly 
studied these last years, with the view, either to perform more 
realistic structural testa, or to experimentally investigate the 
mechanism of wave generation by wind. The works of Veras [ 19631 , 
Hidy and Plate [ 1965] , Hsu [ 1965] , Gupta [ 1966] , and of the 
Waterloopkundig Laboratorium [ 1966a,b] can be cited among many 
others. The unsymmetrical, randomly varying and three-dimen¬ 
sional waves existing in nature can be simulated only at the cost of 
building large laboratory facilities. The so-called "wind-wave 
tunnels reach one hundred meters in length and several meters in 
width, with smooth and parallel side walls and an efficient absorbing 
beach at the end. 5 

The main characteristics of waves naturally generated by 
wind along our 40 meters long tank have been forecast from the 
preceeding references and are shown by Fig. 2(c). It is clearly 
possible to generate gravity waves of appreciable amplitude, and 
thus to cover a nonnegligible range of Froude numbers. However, 
the wave age," i. e. the ratio of the celerity of propagation, C, 
of dominant waves to the wind velocity, U, remains low, especially 
ät the highest velocities. The same is true of the ratio C/U* (where 
U is the friction velocity in the boundary layer), which is known 
as an important parameter in the wave generation process. As a 
matter of fact, these two ratios control the relative magnitude of 
normal and tangential stresses exerted by wind on water, with im¬ 
portant consequences upon the various energy exchange mechanisms 
(see II. 1). It is therefore necîssary to have the possibility to act 
on these parameters, by controlling the wave height and celerity 
independently of wind velocity. This will be done by means of a 
wavemaker set at the beginning of the water channel and conveniently 
randomly actuated. It is known that the combined action of such a 
device and of wind blowing will result, after some distance, in a 
satisfying wave pattern. 

The details of that part of the equipment are sketched by 
Fig. 8. A new type of wavemaker, comprising a fully submerged 
wave plate connected to the tank by means of bellows, has been 
imagined. This arrangement allows to realize a fairly smooth 
joining of air and water flows, even in the presence of waves. The 
end of the channel will be equipped with an absorbing beach made 
from parallel tubes with a 7° slope, A slight water movement 
(between 0.1 and 0.01 m/s) necessary for cleaning and temperature 
controlling purposes, will be insured byia recirculating 35 HP heli¬ 
coidal pump. 

By A. Ramamonjiarisoa. 
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Jtia. ♦ 

It ) 

Fig. 9. Details of test section: a) Section view, showing the lateral 
quays; b) Boundary layer control devices. 

All the foregoing will make clear that we have tried to insure 
an acceptable simulation of the main aspects of air-sea interactions. 
Entire modelling, with full similarity, cannot, of course, be attained. 
We believe, however, that experiments where the various physical 
mechanisms are effectively put in action, and where basic parameters 
possess significant values, will realize a partial simulation of natural 
exchanges, thus affording the possibility of interesting investigations. 
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IV. PRELIMINARY ONE-FIFTH SCALE MODEL TESTS 

A one-fifth scale model of the large air-sea interaction 
facility has been built. The primary object was to check and im¬ 
prove various design characteristics; altogether it was also planned 
to perform instrumental studies, and to execute preliminary small- 
scale scientific experiments. 

This scale model is a detailed reproduction of all parts of 
the large facility, including not only the aerodynamic and hydraulic 
elements, but also the equipment controlling heat and humidity ex¬ 
change s. A view of the wind-water tunnel, and of the control console, 
is given in Fig. 10. 

Fig. 10. General picture of the model 
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1. Overall Aerodynamic Tests 

The first use of the model has been to test the global aero¬ 
dynamic performance of the facility. The initial design, represented 
by the upper part of Fig. 11, suffered from several Imperfections 
resulting in a low power factor and in an inadequate working stability. 
Detailed flow explorations have led to successive amendments in the 
geometry of the model (see Pouchain [ 1970] and Coantic _£t al. [1969]). 
The final design, shown in the lower part of Fig. 11, offers satis¬ 
factory performance, and has therefore been adopted in the later 
building of the large facility, the aerodynamic characteristics of 
which have been predicted from the model tests. 

SECTION A 

SECTION B . C 

INITIAL 
SECTION 0 

Fig. 11. Improvements in aerodynamic design of the model 

2. Flow Exploration and Improvement in the Working Section 

A deeper flow study of the working section has then been per¬ 
formed, of which typical results, obtained for a wind velocity of 
8.3 m/s, are displayed by Fig. 12. It can be seen that the situation 
is good in the entrance section, with a very flat velocity profile, 
and a turbulence Intensity below 0.002 (the effects that can be dis¬ 
cerned near the water surface are the consequence of artificial 
boundary layer thickening in the final part of the contraction). The 
further growth of the various boundary layers, and the fact that they 
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• i = 0,î6m 

«i=2,80m 

oi=5,60m 

Z = ISSmi. 

( b ) 

Fig. 12. Flow characteristics in the test section: a) Vertical 
velocity profiles; b) Horizontal velocity profiles; 
c) Vertical distributions of turbulence intensity. 
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begin to join together towards the end of the working section, leading 
to a fully developed channel flow, are also apparent. 

As already mentioned (see III. 5), It is therefore necessary to 
take steps to restrict the development of the lateral and upper bound¬ 
ary layers. Tests performed under different conditions have proven 
that the contemplated control method was efficient in this respect 
(Pouchain [ 1970]). Fig. 13 illustrates typical results obtained for 
various blowing rates (i.e. ratios of jet velocity to mean flow veloc¬ 
ity), while sucking through a porous wall and blowing across a 15 
millimeters height slot. The improvement in velocity distribution 
is clear. As shown by Fig. 14, the turbulent intensity distribution is 
also ameliorated. Some problems related to pressure perturbations 
still have to be solved, but, on the whole, the method appears as 
promising. 

0 8 m/« 

With blowing Uj /U* * 105 

Fig. 13. Improvement in test section's flow by means of boundary 
layer control: a) Flow configurations for three rates of 
blowing; b) Variation of boundary layers' thickness. 

55 

I . .. 



Favre anã Coantio 

£=0,87 • U1/ ^ 

Y=0 

Fig. 14. Effects of blowing on turbulence Intensity distributions. 

3. Hydraulic Tests 

The hydraulic performance of the facility has also been sub¬ 
jected to various tests. The functioning of the water recirculating 
circuit has been controlled. The working of the new submerged 
wavemaker, and of the absorbing beach, has also been found satis¬ 
factory. 

Observations of waves generated by wind in the model tank, 
such as those shown by Fig. 15, suggests they qualitatively possess 
the three-dimensional random structure typical of oceanic wind 
waves. Measurements of wave spectrum at different fetches along 
the working section have just been done, and the results displayed 
in Fig. 16 compare favorably with those of previous studies (see 
the references in III. 4). The spectral shape and evolution strongly 
suggests the existence of nonlinear effects transferring energy from 
higher to smaller frequencies , as recently postulated by Longuet- 
Higgins and Mollo-Christensen. 
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10 ' n Hilf U 

Fig. 16. Evolution of wind-waves' spectra as a function of fetch 
along the model's test section. 

Fig. 15. 
fnÄ mÍe^cíWlnd‘WaVeS 0btained for a 4 m/8 velocity 
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4. Tests of Temperature and Humidity Control Systems 

Various working tests of that part of the equipment have been 
executed. The validity of the previously chosen control methods 
has been checked, the obtainable temperature and humidity range 
has been controlled, and the stability of regulating loops has been 
tested. After some Improvements, the overall thermodynamic per¬ 
formance of the model has been correct. 

A further study of temperature repartitions upstream and 
inside the working section has then been undertaken, for different 
flow and thermal conditions. Typical results are shown by Fig. 17, 
where an initially Isothermal airflow, and the development of thermal 
boundary layers can be observed. The temperature distribution in 
the entrance section is usually good, except in extreme cases of 
large heating and velocities of the order of one meter per second, 
where parasitic stratification effects appear. 

30 20 IO 0 

Fig. 17. Temperature Distribution in the Model's Test Section 

V. CONSTRUCTION OF THE LARGE AIR-SEA INTERACTION 
FACILITY 

In view of the rather considerable size of the designed wind- 
wave tunnel, its erection was not possible inside I. M.S. T.'s main 
building. It was therefore decided to build a new laboratory, includ¬ 
ing the large air-sea facility, its auxiliary equipments and a group 
of offices, workshops and laboratories, and located in the new 
Marsellle-Lumlny Campus. Its floor plan is shown by Fig. 18. 
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The preliminary design of the facility has been determined by 
I.M.S.T. , and Its detail drawings set up with the aid of architect 
and engineering offices. The construction works have been planned 
In three stages: a) Erection of buildings, concrete structural parts 
of the tunnel, electric equipments, temperature and humidity con¬ 
trol systems; b) Fitting up of the main elements of air and water 
circuits, Including static parts (tunnel walls etc.) as well as pump 
and fan; c) Completion and equipment of the facility, placing control 
apparatus and such parts as wave-maker and boundary layer control 
devices In position. 

Works have been started In January 1969, and step a) Is 
fully completed from several months (see Fig. 19). Step b) Is now 
nearly achieved, and the first run of the wind-water tunnel is planned 
for the end of the present year.* Our program forecasts about one 
more year for the execution of step c), and the beginning of strictly 
scientific experiments by the end of 1971. These experiments will 
concern: first the dynamic exchange process alone; then, the heat 
and mass transfer processes; and later on the effects of stratifica¬ 
tion upon these three mechanisms. The execution of this program 
will clearly take several years. 

VI. RESEARCHES RELATED TO INSTRUMENTATION PROBLEMS 

Some of the anticipated experiments obviously necessitate, 
either the development of new measuring Instruments and methods, 
or the adaptation of existing ones. Corresponding researches have 
been undertaken since the early stages of our program. 

*Note added in proof: this has been achieved by November 1970. 

59 



Favre and Coantio 

Constructions' progress by May 1970: view of refrigerating 
coils, and of concrete contraction and test section. 

1. Turbulence Measurements in Water Flows 

A first work has been devoted to the measurement of velocity 
and temperature mean and fluctuating values in water flows , and of 
the associated turbulent momentum and heat fluxes. The adaptation 
to this problem of the well known hot-wire technique has been studied 
experimentally. An apparatus including a tubular water channel was 
constructed to that end, and hot-wire sensors were manufactured. 
The theoretical and experimental study of the performance of various 
types of wires and films has resolved satisfactory methods of cali¬ 
bration and measurement, particularly for commercially manufactured 
conical hot films for which dimensionless cooling laws have been pro¬ 
posed, and for slanting wedge-shaped films. The intensity and the 
spectrum of turbulence, and the Reynolds stresses themselves, have 
been determined inside a circular conduit, with a comparable degree 
of accuracy to that attainable in air flows (see Fig. 20). Later on, 
the effects of water temperature variations upon the hot-film response 
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Ca) 
Fig. 20. Turbulence measurements in water flows- ai 0,™= 1 
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Fig. 20. Turbulence measurements in water flows: b) Comparison 
of turbulence -intensities measured in dynamically 
similar air and water flows; c) accuracy checking 
of measured shear stresses. 
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have been thoroughly studied (see Fig. 21), and measurement, of the 
intensity of temperature turbulence have been executed. 

These results are given in a number of pubUcation.: Reach 
i 1968 19701 Resch and Coantic [ 1969J , Ezraty and Coantic [ 1970] , 
Ezratv f 1970] . They show conclusively that, subject to some pre- 
cautltmsÍ turbúlence^measurementa cabe if« “'«“f P"’ 
formed in water flows, using hot-film anemothemometers. 

2. Measurements of Turbulent Fluctuations of Humidity 

After the theoretical study reported ln II. 4, the development 
of a water vapor turbulence measuring technique has been undertaken. 
Various methods have been considered: psychrometry, Jew-polnt 
measurement, use of hot-wire, absorption of Lyman alpha or Infrared 

Fig. 21. Dimensionless Cooling Law for a Conical Hot-Film 
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rftdi&tton* measurement oí refractive Index, uee of the Ionic probe. 
Theee ttchnlqaee which depend on the thermodynamic propertlet of 
motet air preeent advantage* from the point of view of mlnlaturl- 
tatlon, where** thoee baeed on electromagnetic propertle* are 
advanta„#ou* from the point of view of bandwidth. P*ychrometi*y 
and Lyman alpha absorption eeem to be the moet promlalng one*, 
the latter appearing to have the beet chance for adaptation to parti¬ 
cularly difficult measuring condition* {Coantic and Leducq ( 1969]). 

For practical reason*, peychrometry hac been cho*en for a 
first deeper Investigation. A small calibrating tunnel has been built 
and various type* of miniaturised small time constant psychrometer* 
have been manufactured and tested. A prototype psychrometer Is 
used with wet and dry bal*a fibers, of which »urface temperature i* 
measured by platinum resistors (5 mlcron* In diameter), the result¬ 
ing electrical signals being fed Into a small Analogue computer, 
whose output Is directly proportional to specific humidity fluctuations. 
The physical slae of the sensing head la a few millimeters and the 
bandwidth several cycles per second {Leducq { 1970]). These results 
are only preliminary, and further studies are now being undertaken. 

1. Data Processing 

Considering on one hand the volume of measurement* to be 
taken, and on the other hand the necessity, mentioned ln II.2, to 
separate any variable In Its "mean, " "phase average" and ■turbu¬ 
lent" parts, the use of digital data acquisition and processing methods 
seem unavoidable. 

Preliminary studies have been done of a small data acquisition 
system for continuous digitising and numerical tape recording of 
turbulent variables. The recorded data could be later, pre-pro¬ 
cessed on the system Itself and eventually transferred to a large 
computer for a comprehensive treatment. This data acquisition 
system could also be useful for control process of the tunnel and of 
the measuring equipments, thereby largely Increasing the efficiency 
of the facility. 

Vll. CONCLUSIONS AND PROSPECTS 

The research program which has Just been Introduced Is 
obviously a long-term one- It Is therefore too soon to stale any 
definitive conclusion, and we can only try to survey some preliminary 
results, and to think about the probable prospects of the research 
we have undertaken. 

The main result of the work performed till now Is the detaller* 
definition of a scientific e»,périment which, although done In the 
laboratory, seems capable to glv results applicable to the natural 
processes occurring near the ocean-atmosphere Interface, The 
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Interest of this original approach la clear, but Ita success will be 
ascertainable only after fulfillment of the anticipated experimental 
program. Indeed, In spite of the growing evidence In favor of the 
laboratory simulation of such geophysical phenomena, It Is only by 
direct comparison with field data that the exact degree of similarity 
achieved with the natural process will be known. It Is, however, 
reasonable to expect, at worst, a partial success of this approach, 
namely the elucidation of some among the many unsolved aspects of 
small scale air-sea Interactions. 

Besides this main point, a few results have been, to date, 
obtained In various related domains. We shall quote: some progress 
In the understanding of effects of water vapor transfer and long-wave 
radiation upon turbulent heat transfer In the atmospheric surface 
layer; some Improvements In the technique of mlcrometeorologlcal 
and wind-wave facilities; results on the measurement of turbulent 
processes In water flows, with the aid of hot-fUm anemothermometers. 

It Is clear that much work still remains to be done, when the 
present program la necessarily limited In scope. On the other hand, 
the described facilities will offer possibilities that will not be fully 
exploited by only one scientific group. Therefore, It should be 
possible in the future to consider some cooperation with other groups, 
In order to take full advantage of the capabilities of that tunnel. 

The researches that can be performed with such an equipment 
have multiple fields of application. The results of the present pro¬ 
gram could obviously be useful for oceanography and naval hydro¬ 
dynamics (wave forecasting, shiprouting, fishing, pollution, oceano¬ 
graphic methods, etc.), as well as for meteorolory (long range fore¬ 
casting, air pollution, future climatic control, etc.), and seem also 
to be applicable In other domains: chemical engineering, air con¬ 
ditioning, hellotechnlque , and even biological and agricultural 
micrometeorology. Furthermore, new experiments could be planned 
in the fields of acoustic wave propagation, light transmission or 
reflexion, electromagnetic propagation, structural mechanics, and 
so on. In short, this facility ought to be a kind of "pocket ocean- 
atmosphere Interface," where basic as well as applied experiments 
could be done more easily and economically than in the field. 
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motions depends upon the phase with which the bubble reaches the 
surface. Depending upon the depth of the burst, these may include 
a well-formed hollow column, a very high, narrow jet, or a low, 
turbulent mound, followed by development of a prominent base 
The duration of this "initial" disturbance may be quite great, starting 
from the first appearance of a mound as the bubble nears the free 
surface, to the collapse, under gravity, of the water thrown upwards. 
Base surge of plumes are not related to shock interaction. These 
phenomena are ultimately manifested by a system of water waves 
radiating from the location of the explosion. 

If the water is of uniform depth, the wave system will have 
circular symmetry. Most of the energy of the explosion goes in o 
the shock wave and local turbulence; only a small amount (10% at 
the most) actually appears in the ensuing water wave system. 

As a result of its complicated origin, the initial disturbance 

comprises a broad, Irregular spectrum. Sincewate.r11lshifrnme 
dispersive medium, as the waves travel outwards, they will bec°me 
sorted according to frequency; the longer waves running ahead, and 
the shorter waves trailing behind. A curve of wave period versus 
time at any distant location, therefore, will monotonlcally decrease. 

In general, the energy distribution among the frequencies 
generated will not be uniform; the spectrum will be peaked near a 
frequency corresponding to a wave length which is a small multiple 
of the radius of the central disturbance. 

At a fixed distance r from the explosion, if one measures 

the maximum amplitude nmall of the envelope °£. the 
Dene rated bv a given yield W as a function of burst depth, curves 
having rtie general shape shown in Fig. 1 will be obtained. These 
curves have two characteristic peaks. 

Fig. i A schematic Illustration of the relationship 
between wave amplitude, range, depth-of- 

burst, and yield 
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The first peak is called upper critical depth (u. c.d.); the 
second one is the lower critical depth (l.c.d.)* While there is so 
far no adequate theoretical explanation for the u.c.d. , the l.c.d. 
is clearly analogous to the influence of burst depth on crater dimen¬ 
sions in solid materials, and is related to the balance between ex¬ 
plosion energy going into cratering and that vented to the atmosphere. 

Another interesting feature which has been experimentall ob¬ 
served is a change of phase between corresponding waves of trains 
generated by explosions above and below the upper critical depth. 
Such a change, in fact, is predicted between theoretical models of 
wave trains generated by an initial impulse acting on the surface an 
an initial surface elevation, respectively, suggesting that the impulse 
model may be more appropriate for explosions above the upper cr 
cal depth. The u.c.d. is a rather puzzling aspect of explosive wave 
generation. Abundant experimental data with HE charges within the 
range 0.5 - 300 lbs exhibit a large scatter under presumably identi¬ 
cal conditions, t1max varying between 0.5-2 times that at the l.c.d. 
Moreover, the scaled wave frequency at Tlmax is uniformly higher, 
indicating a smaller effective source radius. Lastly, the existence 
of the u.c.d. is still somewhat in question for large explosions , 
since several attempts to reproduce it with 10,000 ^ 
have been unsuccessful. It has been suggested (Krlebel [ 1968J ) that 
the upper critical depth effect is obtained from Interference between 
the direct incident shock wave and its reflected waves , resulting in 
more effective containment and greater cavity expansion than from 
deeper or shallower charges. As the detonation depth increases , 
the pressure Impulse on the free surface has less and less effect 
on the cavity formation and ultimately becomes negligible. This 
undoubtedly influences the shape of a theoretical cavity, which pro¬ 
duces an equivalent system of water waves, since the dimension of 
this cavity is closely related to both frequency and amplitude of the 
first envelope. Nevertheless, it appears that the large data scatter 
obtained under fixed experimental conditions at the upper critical 
depth are largely due to Taylor Instability of the collapsing cavity. 

The mathematical model described later can be adjusted to 
produce practically any type of wave train desired, by assuming 
various shapes for the initial cavity. 

II. INPUT CONDITION 

The theoretical formulation of an overall mathematical model 
for simulating the time history resulting from an underwater detona¬ 
tion is an extremely complicated task. However, keeping in mind 
ihe main object”. \i oor problem - the generation proce., of water 
waves -- many detailed phenomena, chemical or nuclear, can be ig¬ 
nored, retaining only the kinematic and dynamic features. 

For example, one can consider only the following phases, 
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both of which are mathematically tractible. 

The Compressible Hydrodynamic Phase 
The Incompressible Phase 

lortt?rSt ¡®arrlve,d by "iefining the conditions which prevail at the 
location of the exprnston and in its immediate neighborhood. The 
second makes use of this input as an initial condition to calculate the 
water waves at a distance far from the explosion. 

* The Compressible Hydrodynamic Phase 

The compressible phase of an underwater detonation lasts 
for a relatively short time. Initially, upon detonation, there is 1m- 
medlate vaporization of water around the weapon due to intense 
radiation. This takes place in a time scale of microseconds. As 
the shock wave propagates outward, the bubble front inita.lly coin¬ 
cides with the shock front (Fig. 2). Only the initial phase of the 
ormation of the bubble need be considered compressible. Bubble 

migration, expansion, and collapse can be treated as incompressible, 

Fig. 2 Qualitative relationship between shock front 
and bubble front 

or, perhaps more correctly, as quasl-incompresslble, since subse¬ 
quent shock waves are emitted at each minimum of the bubble history. 
It is obvious that, from the point of view of wave generation, the only 
problems of Importance during the compressible phase concern the 
fluid motions generated in the vicinity of the bubble and the effect 
of reflected shocks. The early, compressible phase of bubble (cavity) 
expansion can be treated by the partlcle-in-cell technique, which has 
been successfully employed in many similar cases of compressible 
flow, both In fluids and In solids (Mader [ 1967]). 
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Again, it should be emphasized that the objective is to obtain 
an input condition for wave generation rather than to solve, the many 
associated problems of bubble dynamics, shock propagation, and 
radioactive debris distribution. However, these problems cannot be 
ignored, inasmuch as they affect the wave generation process. 
Extensive work has been performed on bubble dynamics of both con¬ 
ventional and nuclear explosives (Snay [ I960]). The energy partition 
ing between radioactive potential energy, thermal energy to heated 
and vaporized water, shock energy, and kinetic and potential bubble 
energy has been investigated by a number of authors (see, for ex¬ 
ample, DASIAC Special Report 104 - Secret). Detailed studies of 
shock propagation and pressure fields have been performed by many 
investigators. Some of these studies neglect the effect of gravity; 
others make gross assumptions about the thermodynamic properties 
of the bubble. But all of these effects should be included in an 
effective model for analyzing the wave generation process, unless 
it can be shown that they can be neglected because they do not affect 
the wave characteristics. 

2.2 The Incompressible Phase 

The input condition being defined by the compressible phase, 
the subsequent cavity behavior may be treated as Incompressible 
flow. It is tentatively proposed to analyze the wave generation pro¬ 
cess through a numerical solution to the time-dependent, viscous, 
Incompressible flow of a fluid with a free surface. Figure 3 is an 
experimental example of near-burst free surface history. The most 

Fig. 3 Cavltv shape versus time - shot 11 (Courtesy of URS) 
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promising method applicable to this problem seems to be the MAC 
Method developed by Harlow and his group at the Los Alamos 
Scientific Laboratory. Further study to improve both accuracy and 
efficiency (with respect to computer time) has led to development 
of other techniques, such as SUMMAC (Chan, _et al. [ 1969]). Despite 
the degree of sophistication that has been achieved for treating free 
surface flow problems by numerical techniques, problems still re¬ 
main which require some approximation. These are related to the 
amount of energy dissipated by viscous turbulence associated with 
the plume and base-surge radiating from the explosion. Energy 
dissipated by the radiating surge is similar to that in a tidal bore, 
except for the difference in water depth. The choice of a suitable 
viscosity coefficient that realistically accounts for turbulent dissi¬ 
pation can only be made empirically, and will be related to the mesh 
size of the numerical model. This choice is also subject to the con¬ 
straint of numerical stability. 

III. WATER WAVE FORMULATION 

3• * General Analytical Generation Model 

Using the initial conditions obtained by the above methods, 
one can determine the water waves generated by such disturbance 
analytically. 

The problem of surface waves generated by an arbitrary -- 
but localized -- disturbance of the free surface has been investigSvted 
by Kajiura [ 1963] , who has derived very general solutions incor¬ 
porating the effects of initial displacement, velocity, pressure, and 
bottom motion. Kranzer and Keller [ 1959] present a simplified 
approach through the assumption of radial symmetry. The two solu¬ 
tions are equivalent under appropriate conditions, but, because the 
former permits utilization of the previous methods in the form of a 
time-dependent input conditian, the approach of Kajiura [ 1963] will 
be adopted here. 

water of 
constant depth D, the coordinate system is established with -■ 
y‘ in the horizontal plane of the undisturbed surface and z* 
vertically upward: t* is the time, r,’'(x*,y*, t*) tlie sjirf^ce.eleva¬ 
tion, V (x ,y ,z ,t ) 

The problem may be formulated as follows. In 
x^ and 
taken 

p is the time, q^x^.y*, t*) the . _ 
F) the particle velocity, and p*(x*,y,r,z'f,t’i<) 

the pressure. The motion is assumed irrotational, implying the 
existence of a potential function <E>(x*,y*, z*,t*)<, Dimensionless 
quantities are introduced as follows: 

x = x*/D y = y VO 

q = q*/D 

<f> = 4> */(dJ¿d) 

z = z*/D 

* 

V = v*/Vg/D 

P = P /PgD 
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wheie g is the gravitational acceleration. 

the linear fr«e su^fãce^conditionT1 cond ^ons '«.»«.a»-,) aad 

telx.y.fiT) > l/4„f f ( Gi, . 4 G ) ds 
«-'gV o o '1qz 0 0 

- 1/4.^(04. - irGlJ dSo 
(1) 

b^subscript'zero lad Tl'^r810'’' ‘"‘î**1 '“‘'‘tl»« «e denoted 

---- - 

noo „ 
Gtx0,y0,z0;T lx,y,z;tl =J^ . 

- sinh k 11 -f (z +z0)| 

+ 1 - cosw(t-r)j _JL-_ coah k(1 +z)cogh k(1 +Zo)J dk 

(2) 

snâlL ^fs.the ,horlzontal distance between the source point (x v 1 
and the point under consideration (x,y) i.e,, P o'Yo' 

-2 

and 

= (x - x0)2 + (y - y0)2 

<o = k tanh k. 

(3) 

(4) 

Clearly, G is symmetric with respect to t and r and with ~ * 
o source and field points. The quantities i and k a« dlme„“P„- 
ss frequency and wave numoer, respectively. 

^vPly!n8B,t'e^Xrb0.“d.arI,'0n.dl.t,i“» a"d “egratlng Eq. with 0 < t < t gives, after some calculation 

<FI +F2> dS0 

(1) 

(5) 

where 
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f, = (G,* - Gr|,) r =0 z0 = Z = 0 (6) 

and 

= £ pGrrfdT +(PGrr)r=t 

= - £ PrGrf dr + (pGrf)T=0 z0 = z = 0 (7) 

C,0n,'a1"’ “»trlbutio» to the initial veloeHv f 1 ’ ,1S the contribution to r| f from 
F, ,-r ouij.a.i.c aeiormatlon c 

represents the Influence of initial ureasurp ^- *z 
le very general; in fact, Kajiura [ 19631 gives an adcHH« ' m0del 

S"frLÍte0rde Vo 
effects nf ilnjfi ï aiJ* f* 18 P°sslble» for example, to absorb the 

‘rïS^lZ— be L"d 

3. 2 Simplified Approach 

aDna^.; íe,adV.an^ge üf thls aPPro^ch in practical work will be 
ÏSeHment Vl? dÍ8CUSS,lng the coi relation between theory and 
^ji * essential point, however, is that instead nf 

needing tc predict the complicated phenomena leadine to initial 

easily i^easurabl^quantities^^caïlisrate1 a^s^mpl^^e^source^m^odel. 

of time only;thiS ^ mlnd’ ^ reWrite Eq‘ (5) aa a Gre«n's function 

( ’ z0 = z = 0 (8) 

furthermore, it is reasonable to assume that for a sinais 

thePz°-SÍv-J in Waîer °u Constant depth> the problem is symmetrlc^bout 

tions f in EqrS(8)”8atr/perfotíme8dUrnd,the ten appropriate °Pera- 
ca, coo^nata, {,,9) PU 
dependent surface elevation pace 



Expio a ion-Ganar at aá '"'ater Uavae 

where la the Initial deformation, Nntlng that 

r* ■ r* ♦ r* • 2rr0 coa (0O - 0) (10) 

the Beaael function J0{kr) may be rewritten according to Graf's 
addition theorem aa 

Integration with respect to 0O from aero to 2» deletes the sum¬ 
mation so that 

The same result was obtained previously by Kranxer and Keller 
( 1959) using Integral transforms; In the literature dealing with radial 
dispersive waves, Eq. (12) la generally referred to as the Kranter- 
Keller solution. 

Equation (12) Is a double Integral solution that can be con¬ 
siderably simplified by additional approximations. In particular, 
for targe r and l, JQ(kr) may be replaced by an asymptotic cosine 
function, and the resulting integral approximated by the method of 
stationary phase (Stoker ( 1965)), to obtain 

where 

(14) 
0 

Is the zero-order Hankel transform of the Initial elevation n0(r0) and 

V(k) « Vk tanh k + (15) 

Is the wave group velocity, and V Is the particular value of k for a 
given r and t found from; 
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V = r/t. 

The problem now Is to choose n \ i 
water depth and explosion characterUH Way' dePendlng on 
an observed wave train. »tics, that Eq. (13) beat flts 

(16) 

3.3 Tlme1^ndentj>e^surface DeformaH„ 

and potential ene^gy tr^nsmItte?to m°del includes the kinetic 
overpressure and the gaseous eLan^ by b°th the atmospheric 
conditions are now time-dependent andaM 6 fbubble* The initial 
parameter (time, is added to the initial conÍ!tTons°?e 

-— - - • 

waves a^ a*function1 of ditoñaíon demh"?*7 Pf1rtltloned to w^er 
energy amongst frequencies, the int^durH the dl8tHbution of 
f properiy used, permits a better fU to nh °f ^^dependence, 

the first maximum of the wave envelrm b8er',atlons , not only for 

wave number k^, but al.o ,o ,he Âe^hSpe of ¡Í' C0"'ap0'’d1"* 
snape of the wave envelope. 

A« an __1 ^ -.. r 
4 ‘ wctvc envelop« 

for example, °f 3 tlme~dePendent Input condition, consider 

Toiro,r) = rb(r0, sln| ff _7_ 

T* (17) 

whe 2*6 7* f* 

expansion of a^^6?v perlod o^irst 
y irom an explosion (Whalin [ 1965]). 

The initial surface velocity at time T = 0 is 

<P 
*0 

z0 = 0 

z = 0 

T = t = 0 

- dTp -~sr 
r =0 

Zt* ^0(ro) (18) 

and the resulting wave train is given by 

T(r,t) J(M /kvg 

(19) 

of the free surface deformatio^ánd d ind®pendent of real-time history 
live at time t = 0. IOrmation and dePends only upon Its time deriva- 
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3.4 Main Features of the Mathematical Models 

[Based on Eqs. (13) and (14)] , typical examples of various 
models for initial surface deformations %(r0) are given in Table I. 
The first case, a parabolic water crater, is that proposed by Kranzer 

and Keller [ 1 959] . 

The general features of traveling wave trains given by the 

equations presented in Table I are: 

a. 

b. 

The waves travel radially from the explosion. 

The leading free surface disturbance or leading wave 

travels at velocity VgD . 

c. At a given location, the frequency of individual waves 

increases monotomlcally. 

d. The amplitudes of individual waves (cosine function in 
Eq. (12)) are modulated into groups of successively 
smaller amplitude by the slowly varying Bessel function 

J0(kr0) in Eq. (14). 

The number of waves in a given group Increases with 

time or distance traveled. 

f. The length of a group Increases linearly with time or 

distance traveled. 

The frequency associated with a specific crest decreases 
with time or distance traveled (equivalently, a given 

crest moves forward within a group). 

h. 

i. 

The frequency associated with the maximum ampllcude 

of a given group is constant. 

The maximum height of a given group decreases as the 

inverse of time or distance traveled. 

The maximum height of successive groups passing a 

given point decreases with time. 

These features are partly illustrated in Fig. 4, which shows a com- 
outed wave train at three different locations. The general decay of 
wave height with distance is the result of both radial dispersion and 
circular spreading. This radial dispersion is characterized by a 
general increase in the wave length of individual waves with distance. 

Wave crests occur when cos (wt - kr) = 1 (Eq. (13)), and 
crest order numbers are given by wt - kr = ir(2n- 1) where n is an 
Integer. It is also interesting to note that in the case of deep water, 
the trajectories of individual waves in the r-t plane are defined 

by parabolae: Tr(2n -1) = gtV4r, whose consecutive arrival times at 
anv point r will be in the ratios t:t/V3:t/V5, etc. Similarly, at any 

Instant of time t, the consecutive crest radii will have the ratios 

r;r/3:r/5, etc. 

81 

.i..... âiWHi 



¢0 
< 
H 

Le M¿haut¿ 

82 

KÜMMMI ÊkmmaiâM 

P
a
r
a
b

o
li

c
 
w

it
h
 
L

ip
 

Z
e
ro
 

N
e
t 

V
o

lu
m

e
 

D
is

p
la

c
e
m

e
n

t 



Explosion-Generated Water Waves 

Fig. 4 Schematic drawing of wave trains as function of time at 
three different locations (Van Dorn, personal communi¬ 
cation) 

Based on this formulation, an equivalent crater size defined 
by its maximum depth ’Homox and radius R can be empirically re¬ 
lated to yield W and detonation depth as shown in the following. 

However, the present formulation is oversimplified. The 
cavity shape (and not only its overall dimension) is a function of 
submergence depth and charge weight, and the phenomena of the 
upper critical depth is very sensitive to the manner in which the 
cavity is formed. 

IV. CORRELATION WITH EXPERIMENTS 

4.1 Practical Formulation 

In Eq. (13) the cosine term represents the individual waves, 
while the remainder of the expression gives their varying amplitude 
or envelope which we shall call A: 
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A=n Æm 
r V - V (k) (20) 

in »hich it 1« understood that k is the root of Eq. (16) 

.h« iJ¡ t//,T ^ rai“e 01 '• 
tOÍ ,h“f‘"‘-“-ere 

ZlTTÏ -BË“ 

«.e nature of the source dùtuX“* S’ tfeglTheXct"’/^k). 

Evaluating A at kmax, we can write 

'moif = { Tl(k)(- kV(k) \ 
dV/dk / 

1/2 

}| k = k, 
= Constant 

max 
(21) 

for a particular source deformation n fr \ j., 
amplitude of the maximum „a^ïï Â’.'e^^pôS”*^* ‘Ï! 

model, ^.TleTec/X^Är^S 
stralnts on this choice are, first that th* ^ 1*? 0 ' Ih tw0 con' 

ÍcloÍedlorm! ,ranSf°rm OÍ "°^ b‘ ^^T^r'toluAT^’ 

sary -‘tVhSe “äSlX1?«1” l"1" a“hou«1' “ ls not really neces- 
defoXation due ,o° aíí ¿pïÔsî'on’' ’'rôr'ï,, 'h ^ effeC,‘Ve SUríaCe 
.O try simp!, polynomials in r/ for ,sCpeí 

(Table I?'ÍÍ! Ü'Tí, ÍOr,mS which have b“r‘ »=«<1 in practical work 
(Table I), the last ha. been tentatively established as most suitable: 

= loJ2 (f )2 - l] ro — Ü 

u ro > R 

btriÄ1“ '“fhffoilotïï:ior ,he sake of sim^y 

The wave amplitude is then given by 
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Explosion-Generated Water Waves 

J/2 

^(r.t) = (~tjv/cik) JjlkR) cos (kr - tVk tanh k), (22) 

the two "cavity parameters" r)0 and R being embodied within our 
previous expression for the envelope amplitude, A. It is through 
empirical determination of these two parameters that we hope to 
correlate theory and experiment. 

4. 2 Experimental Correlation 

While t)0 and R cannot be experimentally measured, they 
can be determined indirectly from kmail and which are 
characteristic of the source disturbance, and also measurable. 
Hence, we seek to relate kma)( and to the characteristics of 
the explosion by experiment, and r)0 and R to kmax and T]m0)tr 
by theory. The. expression giving kma)l in terms of r|0 and R is 

dA 
dk 

= 0 (23) 

since this expression defines the maxima of the wave envelope; the 
least non-zero value of k for which the above expression holds is 
k„ ^max* 

and 
For kmQi<> 3 (relatively deep water), J?- - const dV/dk' 

A g VI j (kR) . 
r 3 

(24) 

Therefore, k can be determined from the first turning value of 
the Bessel function J3(kR); viz for 

kmax1* " 4* 20- (25) 

Our other measurable, may now be related to t)0 and 
R by evaluating Ama)t (or r^,,) at k = k^. When this is done and 
the resulting expression is simplified, we have 

ruR = i.63r,_oxr (26) 

All that remains now is to relate and k,,,,,,, to the 
characteristics of the explosion; these are W, explosive yield in 
pounds of TNT, Z, detonation depth in feet, and D, the water depth 
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in feet. A large volume of experimental data (with small chemical 
changes in relatively deep water) has been obtained at the Waterways 
Experimental Station, Vicksburg, Mississippi, from which the 
following empirical relations were deduced: 

u. c. d. 

‘r\*r = 18 

L.k* =0.44 W'° ¡jl ^ max 

0 > 
z 

\y0.3 - 0.25 (27a) 

1. c. d. 

“ ♦ ^ < n \Ar0’54 
’ImnyT = 10 W 

.Ko, =0.39 W 
-0.3 

" 0.25 2: - 7. 5 (27b) 

Insufficient Data 
Z 

w1 wtT3 < - 7- 5 (27c) 

The products 9 maxr* Siven above were determined from the empiri¬ 
cal data of Fig. 5. Corresponding data for shallow water explosions 
and other aspects of explosion-generated waves in shallow water are 
beyond the scope of this presentation, and the reader is referred to 
LeMéhauté [ 1971]. 

Fig. 5 An empirical scaling fit relating the maximum wave height 
^mcx with distance from explosion r*, yield and depth of 
explosion (data provided by Waterways Experimental Station) 
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Ü 
fS's 

Figure 6 presents examples of the matching between theoretl- 

tL :ZlenVelOP,e an? Wre records due a 9. 620 lb TNT explosion. 
The slight irregularities in the symmetry of the recorded wave trains 
arj.a^rlbuted t0 Partial shoreline reflection interferring with the 
radiating wave trains (Hwang et al. [ 1969] . But, in general the 
computed wave envelopes agree Tãirly closely with the observed 
amplitude s • 

4* 3 Limitiations of the Model Due to Scale Effects 

, . , An examination of Fig. 5 reveals that the bulk of data upon 
which predictions are based are restricted to yields from one-half to 

w hundred pounds of TNT. One wonders then just how reliable 
xtrapolation to very large yield (say, 1010 pounds of TNT) would be. 

resn vTi data avallaWe from nuclear explosions is insufficient to 
resolve this problem. Comparison between crater data in soft 
materials for both nuclear and TNT explosions suggest that the laws 
of similitude may be applied to contained explosions but may not 
appiy over a large yield range for venting detonations. In particular, 
the shock wave from a nuclear explosion travels much faster in air 
than in water, which is not the case for a TNT explosion. 

f may infer several things, however, just from the nature 
of the s c al ing^par ame te r s given by Eq. (27). Consider, for example, 

groups r|mai(r /W • and Z/W -3. In each, the exponent of W 
was chosen to best compress the data of Fig. 5 into a single curve, 

SmCe//,u/reuA>esentS anenergy, dimensional analysis suggests that 
^rnaxr//(W/pg)'/ and Z/(W/pg)'/4 are appropriate scaling parameters, 
although similar conditions also require that other parameters, such 
as atmospheric pressure and sonic velocity in water, should also be 
scaled with yield. These conditions are never satisfied experimental- 
ly, and it is therefore not surprising that exponential scaling alone is 
not satisfactory. Moreover, the fact that the parametric coefficients 
vary with Z means that the phenomena are not simply scalable 
(Pace et al. [ 1969]). Lastly, the lack of evidence for an u. c.d. at 

differentldS SUggests that the generation process is fundamentally 

For small yields (and subsequent small depth at burst) hydro¬ 
static pressure is small compared to atmospheric pressure; for 
large yields the reverse is true. In the former extreme, dimensional 
analysis suggests 1/3 power scaling; in the latter, 1/4 power scaling. 
In an analogous review of earth crater scaling, (Chabai [ 1965]) has 
proposed an 'overburden scaling law" in which the scaling exponent 
varies between these two extremes, but without convincing improve¬ 
ment in agreement to the experimental data. 
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Yield 9£20 lb. TNT 
Depth at Expieeien 25 ft 
Depth at Gage 86 ft 

1 1 I I_I_I_I_I_I_I-J 
0 KX) 200 300 400 500 

t (seconde) 

Fig. 6 Comparison of OSI 1966 Mono Lake experiments with 
theory 
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4.4 Energy Coupling 

The deficiencies of simple exponential scaling are more appar¬ 
ent when considering the efficiency of energy coupling into water 
waves. The analytic source models discussed above are 
thus the total wave energy is equal to the potential energy of t 
source model; l.e. , proportional to rfr*. Ea.JZb), 
the empirical relations given In Eq. (27) Imply that ji0R ' 
which obviously cannot be true for all yields, since it states that 
wave energy Increases faster than explosion energy ge0m " 
cally similar conditions. It is also pertinent to recall that the calcu 
1 at ling of energy based on the theoretical source model may lead to a 
significant er^or; since only the first wave train has been matched 
with experiments, it may happen that the following wave train con 
less energy than the theoretical model, as due the dissipât v 
mechanism which influences the high frequency waves. Keeping In 
mind these reservations, it is found that the energy In the wave train 

is 

E = 126 (q r) 
W max 

ft-lb. 

Then, inserting the value of V r in terms of yield and water depth, 
it Is found that at lower critical ãepth, the efficiency e is 

0.0074 W°OT= 1% (W is in pounds). 

At upper critical depth, the increase of efficiency with yield 
within the range of available experiments is even more pronounced. 
For example , e which Is 1% in the case of 0.5 lbs of TNT has been 
found to be 6% in the case of an explosion of 375 pounds, which implies 
that qr ® W0,61 at upper critical depth. Such results cannot, o 
course, be extrapolated to atomic yield. 

Since the fraction of yield energy appearing as waves Is only 
a few per cent for the largest tests so far conducted, we are faced 
with the problem of trying to distinguish very small energy dl 
enees in normalizing analytic models to actual exper ments. WhUe 
the present models provide adequate predictions for the largest 
waves over an Impressive range of yields (0. 5 - 64,000.00° lbs TNT 
equivalent), it is recognized that important phenomenological factors , 
such as atmospheric pressure, shock interaction, ^nd Y 
have been neglected, each of which can reasonably be expected to 
influence wave formation to some extent. What is really .surPrls¡£g 
is that such simple models work as well as they do, considering the 
great complexity of the process of explosive wave generation. 
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the sea ?h™Úghnf íaío8' ' ’ consider a harbor H th Let narrow mo„th M , t 

Utt.rt^V exp {- jk (x 
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cos 9, + y sin 0( 
(1.1) 
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Fig. 1. Schematic diagram of harbor opening on straight 
coastline; 4j> £r and are, respectively, the 
incident, specularly reflected, and scattered 
waves 

(from X = 0) waves on the hypothesis of the monochromatic time 
dependence exp (jwt), where £ denotes free-surface displacement 
(we omit the modifier complex amplitude of throughout the subse¬ 
quent development), k Is the wave number, and V| = 2^,(0,0) is 
a measure of the excitation of the harbor through M. By narrow, 
we imply - 

a/R « 1 and ka « 1, (1.3a,b) 

where a is the width of M, and R is a characteristic dimension 
of H. These restrictions imply that the motion within H is small, 
and that the energy of the motion induced by Vj (or, more precisely, 
by the pressure pgV,) is dominantly kinetic and concentrated near 
M (the narrowness of which implies locally high velocities), except 
in the spectral neighborhoods of the resonant frequencies of the 
harbor. An appropriate measure of this dominant motion is the flow 
through M, say I, which, by hypothesis (linearized theory), must 
be simply proportional to V,. We regard V¡ and I as the voltage 
and current at the input terminals of an equivalent circuit and seek 
a description of the resonant response of the harbor in terms of the 
voltages induced in this equivalent circuit. 

The input impedance, Z, s V¡/l, for the configuration of 
1 may be resolved (see Fig. 2a) into a series combination of a 

radiation impedance, ZM= R* ' 
where Rjll2, X. 

Fig. 

_ - i i? m ,1.,. anc* a harbor Impedance, 
jX«. where Rm|I| > X|.|l|2/w are respectively 

proportional to the power radiated from IT through M (in the form 
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of a scattered wave, £s), the non-radiated energy stored in the ex¬ 
terior half-space, and the energy stored in the harbor (we also could 
incorporate an empirical, resistive component in Zu, say R^, to 
account for an energy dissipation proportional to Rul M )• infer 
from the solution of the corresponding acoustical radiation problem 
[Miles 1948; §3 below] that both RM and XM are bounded, positive- 
definite functions of w, by virtue of which we may regard them as 
single resistive and inductive elements, respectively (although neither 
R^ nor XM has the same frequency dependence as its elementary, 
electrical counterpart). We infer from the analogy with the corre¬ 
sponding acoustical resonator [Morse 1948, §23] that comprises 
an infinite sequence of parallel combinations of Inductance I_n and 
capacitance Cn, which bear a one-to-one correspondence to the 
natural modes of the clos.ed harbor and resonate at the corresponding 
frequencies, oon = (LnCn)' , together with a single capacitor C0> 
which corresponds to the degenerate mode of uniform displacement, 
for which to0= 0. The solution within H may be expanded in this 
infinite set of modes, with the root-mean-square displacement and 
the kinetic and potential energies in the n'th mode being proportional 
to the voltage across Cn and the energies stored in Ln and Cn, 
respectively. The arguments of the preceding paragraph suggest 
that the individual modal impedances are important only in the 
neighborhoods of their respective resonant frequencies, and hence 
that ZH may be approximated in the neighborhood of w = wn by a 
lumped Inductance, say L^, in series with either C0 or the single, 
parallel combination of Ln and Cn, such that the energy in all modes 
but the n'th is proportional to L-Jl | . The corresponding equivalent 
circuit is shown in Fig. 2b (we give a quantitative derivation of this 
equivalent circuit in §§2 and 3). 

Fig. 2. Equivalent circuit for harbor opening directly at coastline: 
(a) implied by (3.2); (b) implied by (3.2) and (4.6). 
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The voltage-amplification ratio, Gn« jvn/V||, provides a 
measure of the resonant response in the neighborhood of to = to.. 
The zero th mode, in which the harbor acts like a Helmholtz reso¬ 
nator, is unique in that the equivalent circuit reduces to a series 
/■* ¿'■v * V* 4- « a - -  JT 11 ▼ I ▼ f - - _ _ 

¡ao|v° 

o and exhibits a simple, series- combination of R^, L^t- LH, and 
resonant behavior with a resonant frequency, say tõo, that is deter¬ 
mined bv a balance between the potential energy stored in H, 

V. * aad the kinetic energy stored in the vicinity of M, 
l1''• The results for the rectangular harbor [ Miles and 

Munk 1961J suggest that the sharpness of the Helmholtz resonance 
is measured by 

a 

i 

and that 

6 = {log (R/a)} (1.4) 

(Oq : o(õl/a), ^0--0(1/6), and Q0= 0(1/6) (1.5a,b,c) 

as a/R — 0, where 2n is the peak value of G , and Q is the 
ratio of the resonant frequency to the half-power bandwlSth of the 
resonance curve for the n'th mode. 

The resonant response of the harbor in the higher modes is 
strikingly different than that of a simple, series - resonant circuit in 
consequence of the proximity of the parallel-resonant frequency, 
u)n, at wh.ch Z| = oo, and the series-resonant frequency, to , at 
which |Z| I has a minimum and n •>*... — n. ön» 1. 

'n> 
We show in §4 that 

,-0,,+ 0(6), 2n=0(l/6), and 0n = 0(l/62) (n ^ 0) (1.6a, b, c) 

It follows from (1.5) and (1.6) that narrowing the harbor 
mouth does not affect the mean-square response to a random excitation 

neighborhood of o = wn (which response is proportional 
wn n'Pn ^ bandwidth of the random input is large compared 

with 60^) except in the Helmholtz mode, but that the response in that 
mode increases Inversely as 6I/2. Miles and Munk [1961] overlooked 
the proximity of parallel and series resonance in the higher modes and 
arrived at the erroneous conclusion that narrowing the harbor mouth 
would increase wnG,i/Qn for all modes, rather than only the Helmholtz 
mode, and designated the phenomenon as "the harbor paradox. " In 
fact, as pointed out by Garrett [ 1970] , this qualitative conclusion is 
inconsistent with their quantitative results, which actually imply 
(1.6) for the highej modes in a narrow rectangular harbor. Garrett 
also showed that is similarly invariant for excitation of a 
circular harbor through an open bottom and correctly conjectured 
that the result holds generally for the higher modes in any harbor. 
In brief, the harbor paradox originally stated by Miles and Munk 
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holds only for the Helmholtz mode and otherwise must be replaced by 
the weaker paradox that narrowing the harbor mouth has no effect 
on the mean-square response of the higher modes to a random input 
in the absence of friction (narrowing the mouth increases friction, 
thereby decreasing the response, in a real harbor). It follows that 
the higher modes are not likely to be strongly excited, but that the 
Helmholtz mode may dominate the response of a harbor to an exterior 
disturbance that has significant energy in the spectral neighborhood 

of to0. 

Carrier, Shaw and Mlyata [ 1970] consider a harbor that 
communicates with the coast through a narrow canal and find that 
both S0 and Q0 are significantly Increased (as might be Inferred 
from the analogy with the classical Helmholtz resonator; cf. Rayleigh 
[ 1945] , §307) . We show in §5 that such a canal is analogous to an 
electrical transmission line and may be replaced by a symmetrical, 
four-terminal network for the calculation of Vp (see Fig. 3). The 
analogy with the transmission line rests on the hypothesis that only 
plane waves are excited in the canal. An examination of the effects of 
higher modes shows that the elements of the four-terminal network 
may be appropriately generalized, but that the plane-wave approxi¬ 
mation is likely to be adequate if the breadth of the channel is les s 
than a half-wavelength. 

rr 
J— 

u2- 

Z„-Z„ 

Zl2 

Z22Z12I-0 <-12 
Î 
v2 

Fig. 3. Canal and equivalent circuit for the plane-wave 
approximation. The impedances Z|| = Zgg and 
Z)2 are given by (5.4) 

The precise determination of ZM and ZH requires the solu¬ 
tion of an integral equation for the normal velocity in M (or, in the 
case of an Intervening canal, a pair of integral equations for the 
normal velocities across the terminal sections of the canal). The 
formulation of §§2 and 3 yields variational approximations to ZM 
and ZH that are invariant under a scale transformation (l.e. a 
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re5P?ct\Vflr ”-“ndaf “ariMtonVof S? ‘"i 1 “d atatIonary with 

B-ää£SHS^^-Iu- 
tive y Insensitive to L geomet^ èí ¿T^T^0’' °C ZM ,a «'*- 
plicit approximation that dependJpttco yields a simple, ex- 

responding representation of ZH requírlír 0n ka' The C01- 
to a Neumann boundary conditioS) for i ® iGre®nvs function (subject 
analytical construction of which 1« n th*cloaed harbor, the explicit 
(rectangular, circular or clrcür-ïector ^ t th°Se ^^arfoV 
hyperbolic sector) that permit señar^ f11?410 or elliptic- 
may infer the matrix representatfon of this^^1^18/5 however, we 
polygona! approximation to an arbitraril^shÍn^1!8 lUnctlon f°r a 

197,í ooHocatlon solution of the eeneS ®h ?, d harb°r from Lee's 
results for a circular harbor in §<fwith sner<?bilem' glve exPllcit 
Helmholtz mode. It appears from thü P ^ emPhasls on the 
with a short entrance or a small harbor with^8 ^ a large harbor 
comparable with R may resonate in the^ ï ?ntry CanaJ of length 
tsunami excitation. 1 the Helmholtz mode under ^ 

II. HARBOR IMPEDANCE 

' *he » «“¿g "aï f‘?q 

CMeh,'/2 “d k-“/<= (2.1a,b) 

apondi x-°°”P°»°»'"nhe p^tkl'e Lïclty ”V"?'' dl*P1¡*cemeM, 
spending complex amplitudes, such that ’ ^ ^ U the c°rre- 

»»ere B a„d j s ^ _ 

(2.2) 

I=JMUdS (dS = h dy) 
(2.3) 

the flow through M, 

V = (f u* dy) f 4u*dy 
(2.4) 

a weighted measure of ftio m i 
of the displacement in M, where u* is the 
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complex conjugate of u, 

ZHS V/I = h'1) T udyr2f ^u* dy 

the harbor Impedance . and 

P = i R {pgh J Cu* dy} = \ pgR(VI*) 
M 

(2.5) 

(2.6) 

S/ß^46 at ,Whlí0f^gy flowa throu8h M* We may regard aV, ßl, 
( /P)zh> 31111 «ßß(VI ) as the voltage, current, Impedance and 

proportlonalit*U^ValentdelfiCtriCal clrcult' where the^onstants of 
proportionality, a and ß, may be chosen to obtain convenient 

in § butnoM* w^lCe * = P = 1 —licit ln tÄ8lon in SI, but not in what follows except as noted. 

Solving the shallow-water equations (Lamb (19321 51891 for 

,0, •!“ »»'»««y «on^io» «8h9aUhé 
of .heaLd« Sacaïn ^ °” ^ ^ 

where 

C(x»y) = (jw/g)^*M G(x,yjO,ri)u(0,q) dq 

Qx.y.-e.n) = ^ (kn-kV ^(x.yM^T!), 
n 

(2.7) 

(2.8) 

is the point-source Green's function for H, the i|jn are the nor- 
mallzed eigenfunctions for the closed harbor, and the summation is 
over the complete set of these functions. The ^ are real and satisfy 

(V2 + kX = 0 (x,y ln H), 

(fî'V)4<fl=0 on B, 

and 

iH ik dA = 6 , Tn mn’ 

(2.9a) 

(2.9b) 

(2.9c) 

rhfue irkn ar? the el8envalue8 (resonant wave numbers), and 6mn 
s the Kronecker delta. We designate the degenerate (but non-trivlal) 
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solution corresponding to 41 = const, by n = 0: 

kD = 0, +0 = A’l/Z * (2.10) 

where A is the area of H. We also note that more explicit results 
may require the use of two indices to count off the individual modes. 

The exact determination of the assumed velocity u(0,y) 
requires u and (, to be matched across M to the corresponding 
solution of the exterior boundary-value problem (see §3 below). 
This matching condition yields an Integral equation for u(0,y), the 
exact solution of which in finite terms does not appear to be possible; 
however, simple approximations to u(0,y) are capable of yielding 
excellent approximations to and by virtue of the associated 
variational principle (cf. Miles [ 1946, 1948, 1967] and Miles and 
Munk [ 1961] ). We proceed directly to such approximations by intro¬ 
ducing the normalized trial function f(y), such that 

u(0,y) = (l/h)f(y), 1 f(y) dy = 1, U.lla.b) 

In the subsequent development, we neglect the dependence of f(y) on 
k and assume that it depends only on the geometry of M. The 
validity of this approximation, which also implies that f(y) is real, 
depends essentially on the antecedent approximation ka « 1. 

Substituting (2.11) into (2.4) and (2.7), combining the results 
in (2.5), and invoking (2.8), we obtain 

4 &f*dy (2.12) 

and 

H= ■"n » 
(2.13) 

where 

= Wdyl (2.14) 

Is the modal Impedance, and is a dimensionless measure of the 
excitation of the n'th mode through M (note that Po2 * and 
Z = 1/jwA). The Zn in the equivalent circuit appear in series , Z0 
as a capacitor, and each of the remaining Zn as a parallel comblna- 
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tion of an Inductor and capacitor, Ln = pnA^n-^ an^ = ■A/p.n« The 
dominant terms in ZH as w — 0 are Z0 and the s^m of the inductive 
reactances obtained by neglecting relative to u>n in the remaining 

Zn. 

III. RADIATION IMPEDANCE 

The solution of the shallow-water equations in the exterior 
half-space (x < 0) for a prescribed Incident wave, say 4i(^»y)» and 
the assumed velocity u(0,y) in the harbor mouth is given by 
[Miles and Munk l%l] 

£(x,y) = £¡(x,y) + Ç.ji-x.y) + ï,,(x,y) (3.1a) 

where 

^ (x,y) = - I (w/g) C H0 [ k(x + ly-1! | ) ] u(0 .q) dr| (x — 0) > 

(3.1b) 

Ho ’ is a Hankel function, the first two terms on the right-hand side 
of (3.1a) give the solution for total reflection from the plane x = 0 
(as would occur if M were closed), and is the scattered wave. 
Substituting u into (3.1) from (2.11), setting x = 0, and then sub¬ 
stituting the result into (2.12), we obtain 

V = Vi - Z^, (3.2) 

where 

(ji f * dy (3.3a) 

= 2;. (0,0) (ka « 1) (3.3b) 

is the equivalent exciting voltage of the incident wave, and 

Ztl = \ (u/c2) f f Hf (k|y-îl|)f!,!(y)f(ri) dn dy (3.4) 

^The definition of Vi implicit in (1.1) corresponds to the approxi¬ 

mation (3.3b). 
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Is the radiation impedance of the harbor mouth. The equivalent 
circuit corresponding to (3.2) Is sketched In Fig. 2a. 

The velocity distribution in M for ka « 1 corresponds to 
that for potential flow. Normalizing this distribution according to 
(2. lib), we obtain * 

f(y) = *-'[ (]a)2 - y2] 2i-!/2 
ly| < a). 

Substituting (3.5) into (3.4) and invoking ka « 1, we obtain 

ZM = (w/cZ) ü + jAM(ka)] (ka « 1 ), 

where 

irAM= In [ 8/(yka)] , 

and In y = 0.577. . . is Euler's constant. 

(3.5) 

(3.6) 

(3.7) 

IY. RESONANT RESPONSE 

An appropriate measure of the response of the harbor to a 
prescribed incident wave is the mean-square elevation, say o-*, as 
determined fcy averaging over both space and time (the temporal 
average of ^ is iUJ2): 

/= ¿A"' J 
4/ I 

kr dA. 
H 

(4.1) 

Substituting ; into (4.1) from (2.7), invoking (2.8) for G and (2.11) 
for u, carrying out the integration over A with the aid of (2.9c), 
and invoking (2.14) for Zn = Vn/l, where Vn is the voltage induced 
across Zn by I, we obtain 

!= |Vn|2 silV, |Z^GneU), 

where 

Qn(K) = fir/ |Vn/V¡ J = pñ'/2 |Zn/(ZM+ Z^ | 

is the amplification factor for the n'th mode, and 

K - kZA = io2(A/gh) 

(4.2) 

(4.3) 

(4.4) 
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is »^»sn.lonle,. measure of (the square of) the frequency (similarly, 
*d .VW.-Taivoklne (3.3bJ on K,—♦w.,, a2/A «1, we obtain V 

(4.2) reduces"'^-elevatlon of by 

T ” T.2 aT : T . measure oí (the square oi 
1 “Hq/ie T;lvoklng (3.3b) on the hypothesis 
‘T ! 2 ' Vj L .f°,r /the itemP°ral) mean-square . 
virtue oi which (4. 2) reduces to 

“■’= .,¾ OsU). (4.5) 

ofthem^alXÎrc^'m’^Âl^^^^ 
neighborhood of « e v „here the sum may beapproS.ïby 

ZH= (jco/c2)[A +pn(«n-«)*'] , (4. 6a) 

where 

PnAm' (4.6b) 

»d (".«^(“at - lwSn,he ■”nn’,tl0”- <2-«. 

Qo(/f) = /C2 + [/cAo(/C) - 1]2( ^172 (4.7a) 

and 

Ms) = y« I ‘ U - «/ + [ k . g„)A„ - nj2j'l/2, ,4.7b) 

where 

(4,8a) 

(4.8b) 

A0(/c) = Ah + Aj^ka), 

An = AH + \(\a) (n * 0). 

The peak values of Gn are given by 

Qo=2«0-' and Qn = 2pfA„ (n^O), (4.¾^) 

where k = Kn is the series-resonant point determined by 

KoAtK0) = l and «„ = «n + ^A;1 (n#l). (4.10a,b) 

The amplification factor drops off sharply on both sides oî K = K 
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f0r «ni >> 1/A,. The point « = /cn corresponde 
to parallel resonance (Zn = co), for which the total flow through M 
vanishes (I = 0) whilst tr? remains of the same order as of. We 
define the Q of the resonant response near K * as the ratio of 
the resonant frequency to the half-power bandwidth, such that [the 
frequencies at the half-power points are proportional to %„(! ± j Qn')] 

Gkn(i ± q;1)] = 2"1/2 5n. (4.11) 

Substituting (4.7) into (4.11) and Invoking (4.10) , we obtain the first 
approximations 

Q0 = 2k'1 = G0 (4.12a) 

and 

(4.12b) 

Now suppose that the incident wave is random with the power 
spectral density Si (f), s uch that 

<Ti 

s%C0 

Jo 
S¡ (f) df (w = 2irf), (4.13) 

where f is the frequency. Generalizing (4. 5), we obtain 

,00 

Ho Si(f) |Gn(/f) j df (4.14) 

Power spectral density in the harbor. Substituting (4.7) into 
(4. 14), invoking w = c«/VA, and calculating the contribution of the 
resonant peaks at w = wn on the hypothesis that their bandwidths are 
small compared with those of S¡{f), we obtain 

!= (gh/A)'* £pnS¡(?n), (4.15) 

where 

-I „ -l/z 2 p® g 2 ,| 
= (4ir) Kn Gn\ [ 1 + (Qn//cn) (k - Kn) ] dK (4.16a) 

1 ~-i/2-i~2 „ 
~ 4 On Gn (QnAn-* 00) (4.16b) 
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where 

and 

^22 (j/bc)cotki, Z|Z =- (j/bc) cscki. 

Z„ - Zl2 = Z22- Z|2 = (j/bc) tan^kl. 

(5.4) 

The four-terminal network implied by (5.3) and (5.4) is sketched in 
Fig. 3, wherein the arms (Z,, - Zl2) and pillar (Z.J are inductive 

Sfgth)^1 1Ve’ re8PeCtiVely’ f0r k<<Tr (i less'4an a half-wave- 

/u. f T!ie Preced^g results remain valid for a canal of arbitrary 
(but constant) cross section S if h = S/b, where b is the breadth 
of the canal of variable depth in the sense that the effects of the cross 

rrJneiîi'tribÎî^n6^ th&t are generated bV a change in depth 
w a 1 h shallow-water approximation (see Lamb, §176 

qualitative argument and Bartholomeusz [ 1958] for a proof). 

Inserting the equivalent circuit for the canal between the 

(aqt xa-ei) CweCobtS if0ththe hairtT mOUth (at x = °) “d the harbor 
1 f. “ 1V we °btaln the equivalent circuit shown in Fig. 4a. Cal- 

culatlng I2 and the corresponding voltage drop across Zn and 
invoking (4. 3a) for the modal amplification factor, we obtain 

(a) 

! T 
V| 

C -- /’b # 

_rmm_ 

C = A — V° 

(b) 

Fig. 4. Equivalent circuit for harbor connected to coast through 
canal: (a) general case; (b) Helmholtz mode (kzA « 1, 
ki « 1 ). 
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■ 
IÄU) = IVif1 jzni2| 

= |(ZM + Z|, )(ZH + Z22) - z,2 I |znz12| 

= |(ZM +ZH) cos ki + j{(bc)"' + bcZ^Z^ slnkif'lzj, 

(5.5c) 

where (5.5c) follows from (5. 5b) through (5.4). The frequency de¬ 
pendence of Qn(/c) Is qualitatively similar to that established in §4, 
but Kn - Kn may not be small. The values of Ön and Q„ may be 
substantially larger than those given by (4. 9) and (4.12); however, 
(4.17) remains valid for n* 0, and the results therefore are of 
limited interest. There also exist modes that correspond to reso¬ 
nance of the canal itself, for which x = I is approximately a node 
and the motion excited ln H is small, but these, too, are governed 
by (4. 17) in the sense that decreasing the channel width does not 
affect the mean response of the canal to a random input except in 
the Helmholtz mode. 

We consider further the special case of Helmholtz resonance, 
assuming ki « 1 as well as kA « 1. The equivalent circuit then 
reduces to that of Fig. 4b. Calculating |V0/V, | in this circuit 
and neglecting terms of Oik^ii) relative to unity, we obtain 

Qo(k) = { ^ (i + a)ZK2 + [/cA(k) - if }'I/Z, (5.6) 

where 

a = hi /A (5.7) 

is the ratio of the canal and harbor areas , and 

A(k) = Ah + (1 + aJA^ka) +(1 +\a)(l/b). (5.8) 

Resonance is determined by KoA(ife) = 1 and yields 

= = 2(1 + a) k0 (5.9) 

and 

Po = ÎÜ + tt)'1 îc'l/2 (5.10) 

in place of (4. 9a), (4.12a), and (4.17). 
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VI. CIRCULAR HARBOR 

The eigenfunctions determined by (2.9) for a circular harbor 

of radius R are given by 

^ir.e) = A^tJÄ)]'1 JoO>/R) (m = 0), (6.1a) 

• 1/2 

Wr.e> = (|f [>-(£)] 
JmOmí/R) 

TO¡T 

(m — 1) > 

cos m0 

sin m0 

(6.1b) 

and 

j^(jm8) = 0 (m = 0,1,2,... ; 8=0,1,2,...), (6.1c) 

where r Is the polar radius measured from the center of the harbor, 
0 Is the polar angle measured from the midplane of the mouth, we 
write i|jmir,0) In place of i);n(x,y), the Indices m (the number of 
azimuthal nodes) and s (the number of radial nodes) jointly replace 
the single Index n In §2, and the eigenfunctions obtained by choosing 
the alternatives cos m0 and sin m0 are distinct. The eigenvalues 

are given by 

Kms= ffijm«) 
(6.2) 

The zero'th mode of (2.10) corresponds to m = s = 0, for which 

jòo s 0' 

We specify M by R = 1 and -Í0m< 0 < 20M* where 

0M h a/R « 1, (6.3) 

by virtue of which we may neglect the curvature of the harbor 
boundary over Its Intersection with the straight coastline. The 
essential approximation Is sln¿0M= ¿0M, which Is In error by less 
than 5% for a/R < 1. Carrying out the calculation of pn, - 
and Ah. (4.6), on the basis of the approximations (6.3) and (J.S), 

we obtain 

pms= (2 - ôjl 1 - (m/jjV [ 1 + 0(mZ<y] (6.4) 

for the cosm6 modes and pm$=0 for the sin m0 mod«s ^e 
approximation (6.4) Is not uniformly valid as m oo , but It suffices 

for all but the calculation of AJ and 

110 



Resonant Response of Harbors (The Harbor Paradox Revisited) 

"Ah = i + In (4R/a) (0M«1). (6.5) 

Combining (3.7) and (6. 5) in (4.8), we obtain 

irAms= 3.0135 + 2ln(R/a) - in(kR), (6.6) 

wherein k = kms for n # 0. 

The resonant wavelength, X.0 = Zw/kj,, G0 = Q0, and P0 for 
the Helmholtz mode, as determined by (4.9a), (4.10a), (4.12a), and 
(4. 17) in conjunction with (6.6) are given by the lowest curves in 
each of Figs. 5-7. The higher curves in Figs. 5-7 are based on 
(5.8) - (5.10) and illustrate the striking effects of an intervening 
canal on Helmholtz resonance. Qms, as determined by (4.12), is 
plotted in Fig. 8 for the first five modes. The remarkable sharpness 
of the higher modes, vis-a-vis the Helmholtz mode, is borne out by 
Lee's [1971] experiments. 

Fig. 5. Wavelength for Helmholtz resonance of circular harbor plus 
canal (b= a for f = 0). The results are strictly valid only 
for b/R « 1 and kgi « 1, but the corresponding errors 
are not likely to exceed 5 - 10% for b/R < 1 and M < ¿ 
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Fig. 7. Power-spectrum-amplification factor for Helmholtz mode 
in circular harbor. M > i to the right of the dashed line. 



r ^(MPPWPIl 

Miles 

Fig. 8. Qm9for the first five modes in a circular harbor. The dashed 
portions of the curves correspond to ka > 1 
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Resonant Response of Harbors (The Harbor Paradox Revisited) 

The period for the Helmholtz mode Is given by 

T0 = Ve = ZîrM/gh)1''2«^2. (6.7) 

Choosing R = 1000' and h = 20', we obtain T0 a 2X.o/irR minutes, 
which approximates typical tsunami periods (20 - 40 minutes) for 
X.0/2ttR in the range of 5-10 (see Fig. 5). We infer that a large 
harbor with a short entrance (i/R « 1) or a small harbor with a 
canal (l/R ~ 0.3 - 3) may act as a Helmholtz resonator under 
tsunami excitation. 
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UNSTEADY, FREE SURFACE FLOWS; 
SOLUTIONS EMPLOYING THE LAGRANGIAN 

DESCRIPTION OF THE MOTION 

Christopher Brennen, Arthur K. Whitney 
California Institute of Technology 

Paeadena, California 

ABSTRACT 

Numerical techniques for the solution of unsteady free 
surface flows are briefly reviewed and consideration 
Is given to the feasibility of methods Involving param¬ 
etric planes where the position and shape of the free 
surface are known in advance. A method for Invlscld 
flows which uses the Lagranglan description of the 
motion is developed. This exploits the flexibility In 
the choice of Lagranglan reference coordinates and is 
readily adapted to Include terms due to Inhomogeneity 
of the fluid. Numerical results are compared In two 
cases of irrotational flow of a homogeneous fluid for 
which Lagranglan linearized solutions can be con¬ 
structed. Some examples of wave run-up on a beach 
and a shelf are then computed. 

I. INTRODUCTION 

There are many instances of unsteady flows In which analytic 
solutions, even approximate ones, are not available. This is par¬ 
ticularly true of free surface flows when, for example, non-llnear 
waves or even slightly complicated boundaries are Involved. Though 
analytical methods are progressing, especially through the use of 
variational principles (Whltham [ 1965]) and, in some cases, the 
non-llnear shallow water wave equations yield important results 
(Carrier and Greenspan [ 1958]) there is still a need for numerical 
methods. Indeed, numerical "experiments” can be used to comple¬ 
ment actual experiments. 

Until very recently numerical solutions In two dimensions 

Preceding page blank 
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thoÜffhíh« ?®emed Î0 emPloy the Eulerian description of the motion 

Such s mDlôargonegÍr C°nfept,ha8 be,en used for some time in the 
r i96ql Ä ; menfiÍOral Case (e-8- * Heitner [ 1969] , Brode 
¿v V tnc,‘ t0 ma^e time expansions (Pohle f 195211 Peruana 

Í-tíí”!? K ^A,C> beßun hy Fromm and Harlow [ 1963] and further 

T f970l Ch %' -Al 1966] ’ Hirrt [ 1968i * Amsden and Harlow 
diffl7,? Ú Ch ui’ S and Strelkoff [ 1969] and others. The most 
difficult problem arises in attempting to reconcile the initially un 

Ích^me^nd6^1“1 p0SÍtl?n oíf a free surface with a finite difference 
tnív^L d the ne,C0Sslty of determining derivatives at that surface 
In the »ame way, ffiw solutions exist with curved or irregular solid " 

STii',8' V"“’1!: ar” maPPln8 techniques have b«» em? 

us. 

Section 31!1 planeS and maPP^g techniques is included in 

a rhei mf'"0r part of this Paper is devoted to the development 

of motTn Clrwh0,? f0r the SOlutÍOn 0f the Fagrangian equaHons 
”V°ti0a ln;whiCh £ul1 use 18 made of the flexibility allowed in the 

choice of reference coordinates. For the moment; we have restricted 

Sr h 970lUpubliflLldVHÍ8tCÍfi fl0r- Very recently' Hirt, Cook and 
Ta »»fai , PabHshed details of a method which employs a 

nique ngTMB îggfln8tifPa^ bUt ÍS otherwlse similar to the MAC tech¬ nique. This is further discussed in Section 4B. 

II. LAGRANGLAN EQUATIONS OF MOTION 

The general inviscid dynamical equations of motion 
Lagrangian form are (Lamb [ 1932]): 

in 

(Xtf-F) 

Xa 

Xb 

Xc 

+ (Y„-G) Yb 
Y- 

+ (Ztt-H) + i 
Pa 

= o (1) 

time t XFY’r h the Cartesian coordinates of a fluid particle at 
it p LfL G’ H are the comPonents of extraneous force acting upon 
«’JJ* tb8 P-ssure, p the density and a.b.c are any three P 
quantities which serve to identify the particle ;md which vary con- 

ÍxUVU7iy fr0n? °ne ^aí,ticle t0 the next- For ease of reference 
cídhi'atis arc,Sw! Eíerian «opinâtes, (a,b,c) Lagrangian co¬ 
ordinates. Suffices a, b, c, t denote differentiation. 
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Lagrangian Solutions of Unsteady Free Surface Flows 

If Xo> Y0, Z0 is the position of a particle at some reference 
time t0 (when the density is p0) then the equation of continuity is 
simply 

f 8J2iX¿} = Po 
0(a,b,c) 0(a,b,c) 

(2) 

Frequently it is convenient to define a, b, c as identical to X0, Y0, Z6, 
thus reducing the R.H.S. of (2) to pe; however it will be seen in the 
following sections that flexibility in the definition of a, b, c is of 
considerable value when designing numerical methods of solution. 

tithe extraneous forces, F, G, H, have a potential 0 and 
P, if not uniform, is a function only of P then, eliminating Í2 + P/p 
from (1): 

<u»x. - “A+ Vc - Vb+ w.zt - ", zb> = =0 

^<U,X0 - U0Xe t VtY„ - V„YC + W,Z0 - UaZe) = ^ = 0 (3) 

(U0Xb - UbXa + V0Yb - VbY0 + WaZb - WbZe) = -^=0 

where, for convenience, the velocities X,, Yt, Z. are denoted by 
U, Y, W. The quantities T,, Tv r3 are related to the Eulerian 
vortlcity components , 4,, t,2> Ü3 by 

ri = MYbZc - YcZb^ + ^2<ZbXc - ZcXb> + ^<XbYe - XcYb) 

re= ;,(YcZa - Y0Ze) + ;2(ZcXa - ZaXc) + £j(XcYa - X0Ye) 

r3 = MYoZb - YbZa> + ^2(ZoXb - ZbX0) + ^(XaYb - XbY0) 

(4) 

(Thus, of course, vorticity changes with time are due solely to 
changes in the coefficients of the L.H.S. of (4) which, in turn, 
represents stretching and twisting of the vortex line.) Given the 
vorticity distribution 4(X,Y,Z) at some initial time, t0, r(a,b,c) 
(which is independent of time) may be obtained through Eqs. (4) and 
used in the final form of the dynamical equations of motion, namely 
Eqs. (3) integrated with respect to time. 
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For Incompressible, planar flow the equations reduce to 

Continuity: X0Yb- YaXb = F(a,b) 

(or differentiated w.r.t. t): 

(6) 

Motion: 

By Introducing the vectors Z = X + 1Y and W = U - IV, (6) and (7) 
conveniently combine to: 

(8) zawb - ZbWo = - r(a,b) 

Other types of flow have also been investigated. For example, 
in the case of a heterogeneous, or non-disperslve stratified liquid In 
which p Is a function of (a,b),Eq. (8) becomes: 

The integral term therefore manufactures vorticity. The methods 
developed for a homogeneous fluid in Sections 4A to D are modified 
In Section 4E to include such effects. 

III. OTHER PARAMETRIC PLANES 

It may be of interest to digress at this point to consider other 
parametric planes (a,b), which are not necessarily Lagranglan. 
That is to say the restrictions Xj(a,b,t) = U, Y^(a,b,t) = V are 
abandoned so that U,V are no longer either Eulerlan or Lagranglan 
velocities. Provided J = 8(X,Y)/8(a,b) # 0, or oo, the equation for 
incompressible and irrotational planar flow remains 

(10) 

To incorporate one of the advantages of the Lagranglan system, it 
is required that the free surface be fixed and known, say on a line 
of constant b. Then the kinematic and dynamic free surface conditions 
are respectively 
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Lagvangian Solutions of Unsteady Free Surface Flows 

(U - X,)Y0 - (V - Y, )X0 = 0 (ID 

(Uf + F)X0 + (V, + G)Y0 + (U - Xt)U0 - (V - Y,)Va = 0. (12) 

Now a useful choice concerning the (a,b) plane would be to 
require the mapping from (X,Y) to be conformal. Then, of course, 
(10) simply reduces to the Cauchy-Rlemann conditions U0 = - Vj,, 
Ub = Va so that W = U - IV Is an analytic function of c = a + lb or 
of Z. 

In this way, John [ 1953] has constructed some special, exact 
analytic solutions. The kinematic condition, (11), has the particular 
solution W(a,t) » Z,(a,t! on the free surface, which implies W(c,t) = 
¡2t(7,t) by analytic continuation. If, In addition, 

(13) Ztt + (F + 1G) = lZcK(c,t) 

where K Is real on the free surface, then the dynamic condition 
thereon Is also satisfied. John discusses several examples for various 
choices of the function K. 

The potential of such methods may not have been fully realized 
either analytically or numerically. In the latter case, however, the 
conformality of the (X.Y) to (a,b) mapping is not necessarily a 
great advantage, whereas a fixed and known free surface position 
most certainly Is. 

The digression ends here and the following sections develop 
a Lagrangian numerical method from the equations of Section 2. 

IV. A NUMERICAL METHOD EMPLOYING LAGRANGIAN 
COORDINATES 

A method for the numerical solution of Incompressible, 
planar flows Is now described. It attempts to take full advantage of 
the flexibility In the choice of Lagrangian coordinates. 

A. Time Variant Part 

The method uses an Implicit scheme with central differencing 
over time, t. Thus Zp(a,b) is determined at a series of stations 
In time, distinguished by the integer, p. Knowledge of velocity values, 
Zj , at a midway station p + i enables Z (a,b) to be found from 
Zp through the numerical approximation 

ZM = ZP + tZp + I/Í (error order T3ZUi) (14) 
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where T It the time Interval. Acceleration values , Z?,, needed in 
thVi5f * aVÍJIct‘ conditlori (Section 4C) are approximated by 
<zr" - zrn/r (error order Thus the main part of the 
solution Involves finding Pf ^knowing Z*, Zp.~,/7 and their previous 
values. 

The first time step (from p = 0 to p = 1) requires a little 
special attention. Clearly Z°(a,b) Is chosen to fit the required 
Initial conditions. But further Information is required on a free 
surface which will enable the accelerations in that condition to be 
found (see Section 4C). 

B. Spatial Solution 

A method of the present type is restricted to a finite body of 
fluid, S. However, S, could be part of a larger or infinite mass of 
fluid if an "outer" approximate solution of sufficient accuracy was 
available to provide the necessary matching boundary conditions at 
the interface. The region, S, need not be fixed in time. It would 
Indeed be duelrable, for example, to "follow" a bore. 

In a great number of cases of widely different physical ge¬ 
ometry including all the examples of Section 6, it is convenient to 
choose S to be rectangular in the (a,b) plane. This rectangle 
(ABCD, Fig, i) is then divided into a set of elemental rectangles. 
The motion of each of these cells of fluid is to be followed by deter¬ 
mining the Z values at all the nodes. 

Fig. 1. The Rectangular Lagranglan Space, S, Showing the 
Numbering Conventions Used 



Lagrangian Solutions of Unsteady Free Surface Flows 

cell ,» “eaX8.íci pS“0" 01 atrllgh‘ Sld'‘ th* * 

•A = ¿[(X, - X3)(Y2 - Y4) - (X2- X4)(Y, - Yj)] (15) 

Number suíñces refer to the four vertices, numbered anticlockwise: 
other node numbering conventions are shown In Fig. 1. If this area 

p + 1 TotghTÍ6^) then PrOCeedlng ln tlme fr0m 8tatl0n‘ P ‘o 

Imag {(Z2 - Z4)P(W, - W3)P+,A- (Z| - Z,)P(W2 - 'nJ"'*) 

'PM/2,2iAP ‘°‘ 

r 
♦ - OjKV, - V.) - (U2 - U4)(V, - V,))’”** èüí - ^1 

= 0 = R, (16) 

th terJns on the L-H.S. , second line are numerical cor¬ 
rections required to preserve continuity more exactly and prevent 
accumulation of error over a large number of time steps. PThe nu- 

ÏTteÏmJ^116 0f f-11,3, at 8ome P°int ln the Iterative solution Is termed the continuity residual, Rc. 

cell 

gteT.™^):181 ClrCUlatl0- r- ^lds •»' Ä 

Real {(Z2 - Z4)(W, - W3) - (Z, - Z3)(W2 - W4)} - 2rc = 0 = Rj (I?) 

Slight hesitation is required here since, for validity, the Z and W 
values in this equation should relate to the same station In time. 

14 at the mldway stations and substituting 
, „ ~Z, + (y2)2» the T terms are found to cancel and (17) ner- 

sists when the values referred to are ZP and Wp*,/S R l3 the^lrcu 
lation residual. The modification of (17) in the case of a hetero¬ 
geneous fluid Is delayed until section 4E. netero- 

Comblnlng (16) and (17) produces the cell equation: 

Main Part 
(Z2 - Z.HW, - Wj) - (Z( - z3)(w2 - W4) 

+ Ir {(U, - U3)(V2 - v4) - (IT - U.)(V, - V )} + 2(AP-A°)i Continuity 
3 T Corrections 

Permanent Cell Circulation Term - IT, 
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+ ¿ {(wl6 +w9- w, - W2)(Z, - Z2) 

- (wl8 + Wl0 - w3 - W4)(Z4 - Zj) 

+ (W7 + wl2 - W2 - W3)(Z2 - ZJ 

- (W6 + W|3 - W, - W4)(Z, - Z4)} 

= 0 = R + IR, = R» the cell residual 
X c 

Higher 

Order 

Correction 

If required 

(18) 

The higher order correction, Included for completeness, allows th 
shape of the cell sides and the variations In velocity along themto 
of cubic form. Without It the neglected terms are of order Z0Wbbb, 
ZflbWab, etc. , wlthlt they are^ofo^er ^QWbbbbb, etc. Values 
referred to are Z and W »u »V • 

Though this derivation of the cell equation Is Instructive, It 
can be obtained more directly (except for the continuity correction) 
by Integration of (8) over the area of the cell In the (a,b) plane 
(using Taylor expansions about the center of the cell). 

The cell equations must now be solved for 
being Known, In order to proceed In time. 

WP^= (U - IV), 

In a recently published paper, Hlrt, Cook and Butler [ 1970] 
take a rather different approach In which the (a.b) piarre Is emp^yed 
merely as a tagging space. The equations are wrltte" ln 
Eulerlan terms, no derivatives with respect to a,b appearing. The 
numerical method (LINC) is similar to that oi 
(Fromm and Harlow [ 1963] , Welch, e^; al. [ 1966] , Chan, street 
and Strelkoff [ 1969] , etc.) and Involves solving for the pressure at 
the center of a cell as well as for the vertex velocities. Advantages 
of the method described in the present paper are: the Pre88ure ^f8 
been eliminated (though this may be disadvantageous In compressible 
flows); no special treatment Is required for celis adjacent to boimd- 
arles; Inhomogeneous density terms are relatively easily Included. 
However, since the LINC system Is based on the Eulerlan equations 
of motion, the inclusion of viscous terms Is more easily accomplished 
than In the present method where such an attempt leads to horrendous 

difficulties. 

i. 
C. Boundary Conditions 

To complete the specifications , a condition upon 
required at each of the boundary nodes . TJjis usually takes the form 
of an expression connecting U and V . For e^amp 8,? . b 
boundaries, whether fixed or moving in time, may be prescribed by 
a function, F(X,Y,t) = 0. Then the required relation is 
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F(XP + tUP+,/4, (19) 

Dynamic free surface conditions are simply constructed from 
Eqs. (1). If, for example, the only extraneous force Is that due to 
gravity, g, in the negative Y direction, the condition on a free 
surface suchas AB, Fig. 1, Is 

Vo 
T 8 /Yfl0Xfl - X X \ 

MY" <8)y»'Fîï( (x| + ySis'2 ) 
(20) 

where T Is the surface tension If this is required. 

Unlike the field Eqs. (8) or (18) these boundary conditions 
may not be homogeneous In all the variables. In a given problem 
only the boundary conditions are altered by different choices of 
typical length, h (perhaps an Initial water depth), and typical time, 
say V h/g in the above example. Then, using the same letters for 
the dimensionless variables, g and T/p In Eq. (20) would be re¬ 
placed by 1 and S = T/pgh . The numerical form of that condition 
used at a free surface node such as 0 (Fig. 1) Is: 

p p*l/2 p-i/< 
(X, - x/(U0P - up 'W 

p p*l/2 p -1/2 
y/(Vo - Vo + t) 

= tS(P,P - Pi) 

where P Is assessed at each node as 

(21) 

Po = 

[ (X, - X^Y, + Y, - 2Y0) - (Y, - Y^X, + X3 - 2X0)] 

[ (X, - X3) + (Y, y/]37*" 

and the accelerations have been replaced bv the expressions given 
_,. *_i_ u^*/2 *■" vP*v2 in Section 4A. Again, Eq. (21) relates 

other quantities are known. 
to V0> since all 

If the liquid starts from rest at t = 0 (as In the examples of 
Section 6) then difficulties at the singular point t = 0 can be avoided 
by choosing to apply the condition at t = t/4 rather than t = 0, 
Using Ztt = 2Z, /t and Z = Z° + (t/4)zJ72 at that station the special 
boundary condition becomes 

uf{(X, - Xj)° + J (U, - u/2} +1 (V, - v/2(vf + Tg/2) = 0 (22) 
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in the cage 0f zero eurface tension. 

D- Method of Solntinn 

W 
^ noi\rtlr ^ ^ ^ ^ 

ry conditions as well as to the facTt^^YT* and 8?me 
^yoiy noae. Due tn th» if 7 »w*vca to 

boundary conditions as well as ÎÔ the facTfV î”™ ln (18) and 80me 
can be made from val?, J J , that a «ood e«timate of 

iterative or relaxation scheme was emolí8tations ' a «imple 
volves visiting each cell in turn and Æ uSuCh 3 mcth°d in- 
vertices in such a wav that renntiti sting the W values at its 
cell residuals, R, toVeRTlKib?e imí 0í,the Pr°Ce88 red^*» the 
Particular cell, there are an ^ifiSite^^h118’ /But' °n arrival at a 
four vertex values can be altered 1 ber 0Í W3y8 in whlch it* 
residual. However, exuerlenr#» h orcier to dissipate the single cell 
on the following changes (4W emonstrated that a procedure based 

and stability to any of the others’tested^48 SUperlor ln convergence 

¿W, ^Wj = uJR(zp-Z3)/8A 

AW, 2 = - AW4 = wlR(Zg - Z4)/8A 
(23) 

r. Äv“db ^1,1■,he »"* »f cs,,, 
incremental changes have a slmnle Í by th® exPre8«ion (15). These 
pretation. As caS be seen from P^eical liter- 

mTJV °ne rePresenting pure stre'tchlna /^I! 3 c°mbi"ation of two 
which dissipate respectively the continuité í Í 0t,her pure station, 
of the residual. y circulation components 

Z\TXTt 
. P ♦ 1/2 AU 

Avp*,/2 (A2 + B2) (24) 

Th. „hol, procesa „„ then „pe>tcd t(> 

E> IHhgrnogeneou8 Fluid 

M.p.odê„* "f"lm^"niVlU ZZZíbZ^k' nu'd’ which 1. 
(••h). Ihd..d ta many C»„e. „ wlll be 003,,/.,,' ‘ta ^ 
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Fig. 2(a). The Cell In the Reference Plane (a,b) 

AQ,--ri{Z2-Z4) 

AQ2-IíÍ(Zí-Z4) r_ 

Û04 ■ -aq2 a04 ■ -ûOj, 

INCREMENTAL VELOCITY CHANGES 

WHICH DISPERSE THE CONTINUITY 

RESIDUAL, Rc (PURE STRETCHING) 

INCREMENTAL VELOCITY CHANGES 

WHICH DISPERSE THE CIRCULATION 

RESIDUAL, R, (PURE ROTATION) 

Fig. 2(b). The Cell In the Physical Plane (X,Y) 

such a way that p is some simple analytic function of (a,b). This 
is particularly desirable because by substituting for p, p., Ph in 
Eq. (9), this can then be integrated over a cell area (as in Section 4B) 

c°el? EodU?l8) Corni?,taddltlonalterm' 0P;d on the L.H.S? oi°theB) cell Eq (18). Since the expression for ep + ,/* will depend upon that 
choice of p(a,b) an example will illustrate this. 

If p is to be constant along the free surface, AB, Fig. i. 
and along the bed, CD, it may be possible to choose Z° such that 
P is a linear function of b, say p = pCD(l + yb) where 
^ - Pab/Pcd - 1 and b = 1 on AB. Then, 
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-P+l/2 flP-l/2 
"l234 ‘ °I234 

* - iln (i - jj.) [{(U, +U2 + U3 + U4r/2 - (U, +U2 + U3+U4)P'I/2} 

X {x,-x2-x3 + x4}p 

+ {V, +V2+V3+V4)Pt'Æ-(V| +V2 +V3+V4)M/2+ 4^)(7, -Y2-Y3+Y4}P] 

+ {!+ ln (1 -hl)} [(X|-X2)P{(U, +U,)P+I/Ï- (U, +U2)P ,/2} 

p, P + l/2 P-I/^N 
- (X4-X3) {(U3 + U4) - (U3 + U4) } 

P, p+l/2 p-l/2 , 
+ (7,-72)((7,+72) -(7, -72) +2rg} 

p p + l/2 p-l/2 I 
- (Y4-Y3) {(73+74) - (73+74) + 2rg}J 

where =-yAb/^l + , b34 being the b value on side 34 of the 
cell and Ab the difference across each and every cell. The first 
term Is of order the second order (iZ* The boundary conditions 
are usually Identical to the homogeneous case. 

7. ACCURACY, STABILITY, CON7ERGENCE AND SINGULARITIES 

A. Accuracy 

If the cell equation, (18), Is used without the higher order 
spatial correction, an Indication of the errors due to neglected higher 
order spatial derivatives can be obtained by assessing the value of 
that correction and Inferring its effect upon the final values of W. 
Unfortunately, the mesh distribution and mesh size required for a 
solution of given accuracy will not be known a priori and can only be 
arrived at either by trial and error or by using some technique of 
rezoning. The latter method in which cells are subdivided where and 
when the violence of the motion demands It, can be difficult to pro¬ 
gram satisfactorily and has not been attempted thus far. 

Errors due to higher order temporal derivatives are most 
easily regulated by ensuring’ that, for each cell, both 
r| W, - W3|/|Z| - Zj and t| W2 - W4 |/| Z2-Zj are comfortably less 
than unity. A workable rule of thumb can be devised In which a 
suitable r for a particular time step is determined from the W and 
Z values of the preceding step. 
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®• Stability of Cell Relaxation 

Suppose the central member, cell A, of the group of cells 
shown In Fig. 3 contained a residual RA which was then dissipated 
a<tiCi0jdlng í? th,e rela-tions (23). Transfer functions, D.B, DAr, etc., 

cel 13d where3 & ^ residual changes » ARB, etc., in the surrounding 

^B= WDABRA' etC* (24) 

Fig. 3. Z-Plane 

For example 

dab= {(Z, - Z|5)(Z2- Z4) - (Z|6 - Z4)(Z, - Z3)}1/8Aa 

whe- is the area of cell A. For convergence of the relaxation 
method it is clearly necessary that the w for each cell be chosen 
so that all (o|D| are significantly less ti in unity. It is instructive 
to inspect the case in which all the cells are roughly geometrically 
similar in the Z plane. Then 

IdabI “ IdadI = IdafI = IDAh1 ~ ~J~gA ^ ~ 
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-'AC I = D, 
d, d. 

AE I ■'AGI JAJ "skf VZ 

where d|t 
Y, = Y2 = 0 

d2 are the lengths of the cell diagonals. For square cells, 
r, - y2 - « and the situation Is stable. However difficulties may 
arise when the cells are very skewed or elongated and it is in such 
situations, in general, that care has to be taken with the relaxation 
technique. 

C. Observation on the Cell Equation 

One feature of the basic cell equation, (18), itself demands 
attention. Note that without the higher order spatial correction, the 
residuais, R in all of the cells (of Fig. 3) remain unaltered when 
the W or Z values at alternating points (say the odd numbered 
joints of Fig. 3) are changed by the same amount. Such alternating 
errors must be suppressed. Some damping is provided by the 

higher order spatial correction since it is not insensitive to these 
changes. But experience showed this to be insufficient unless all 
the boundary conditions also inhibited such alternating "errors." 
Solid boundaries usually provide adquate damping. For instance, 
in Fig. 4(a) fluctuations in U on BC, DA andin V on BC are 
obviously barred. But the free surface provides little or no such 
suppression and as will be seen in the next section this can lead to 
difficulties. It is of Interest to note that some of the solutions of 
hlrt, Cook and Butler [ 1970] exhibit the same kind of alternating 
errors. 6 

MAC technique, neglected higher order derivatives of 

ÏurlpÎi1 I1™ fnd With ne«ative coefficients (a "numerical" 
¡heTn/rL ^ ^ n1umerical Instability if not counteracted by 
the introduction of sufficient real viscosity. In the oresent mefhnH 

which cause thaTn*’ ^ * C 197°] ' the convection terms ' which cause that problem are not present. The higher order spatial 

di/Jrtî ÍOn doels 4C°nta1h] terms of diffusion order, but it cannot be 
directly correlated with a viscosity since viscous terms are of a 

different form (l.e., like /vV^rdt). Also, the higher order tpatial 
correction has a beneficial rather than a destabilizing effect. 

D. The Free Surface 

. . B/ Including prevlou.ly neglected derivatlvea, the numerical 
S“.’”£“î.;.0"dltl°" (','lthou, s“rf*“ tension) I. fouAd to correspond more precisely to: 

{XaXtf + Ya(Ytt + 1)} +i^L {X^X,, + Yaoa(Yft + 1)} 

+ 24 + YaYttff} = 0 (26) 
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where Aa Is the a difference across a cell and the second and 
third terms constitute truncation errors. Inspect this In the light of 
a linearized standing wave solution (see Section 6A), l.e. , 

._ 
X => a - M cos Vkt sh* kae 

Y = b + M cos -/k t cos ka e1'*’ 

where the variables are non-dlmenslonallzed as In Section 4C and 
k Is the non-dimensional wave number In the a,b plane. Then, 
the second and third terms of Eq. (26) will be Insignificant provided 

k « 1 and « * 

respectively. Or, In terms of a wavelength, X = 2ir/k: 

•y- » 2 and t « 4 AX (27) 

since Aa « AX, the X difference between points on the free surface. 
The first condition states the Inevitable! namely, that the solution 
will be hopelessly Inaccurate for (a,b) plane wavelengths comparable 
with the mesh-length Aa. Given that the first condition holds then 
the second says that r « 8AX. For a travelling wave system the 
same condition states that r should be less than the time taken for 
a wave to travel one mesh length. This constitutes a restriction on 
T which Is usually more stringent than that of Section 5A. If, for 
example, the depth of the fluid Is divided Into N Intervals and the X 
difference across each cell Is of the same order as the Y difference 
then T should be less than 8/N. 

A more difficult problem arises when the first condition Is 
considered alongside the fact, ascertained in the previous section, 
that the field equation provides little or no resistance to disturbances 
whose wavelength Is equal to Aa. The only resort would seem to be 
to some artificial damping technique which would eliminate or sup¬ 
press these small wavelengths. The technique used in the examples 
to follow was to relax the W values on the free surface such that 
W = ßWrsc +(1- P)W* where WFSC was the value Indicated by the 
free surface condition, W* the value which would make the numeri¬ 
cal equivalent of Wooaa be zero at that point and ß was slightly less 
than one half. 
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E. Singularities 

fK« nUwm!8f^ nuTerical treata*ents of singularities depend upon 
the avaUafalllty of analytic solutions to the flow in the neighborhood 

i yLP° . For examPle» at a corner between solid walls the 
Se™Vf I3 f ff (7 - ß)/ß P°wer of distance from that junction 
D FLß4U)fiL fÍf™'816,; Ifthial8 V2 (as at points C or 
i « 4 ! f varlation is linear and thus the numerical estimate 

of the circulât on around the cell (see Section 4) in such a corner is 
a good one. Where the angle is not ir/Z (D, Fig. 4(c)) errors will 
occur due to the non-linear variation of velocity, but corrective pro¬ 
cedures are easily devised. p 

. . A 8reat deal l«ss Is known about the singularities at a Junction 
ríia/fAref fUrï/Cnand t 8olid boundary- If the wall is static and verti- 
eauitión of m4H ff Í” =oXb = Xbt = °* etc., it follows from the 
irrotition iT f if Ya = 0 at t = 0 then it is always zero for 
irrotational flow? the tangent to the free surface at the wall is always 
torlzontal Thus the free surface condition without surface tension 
is automaticaHy satisfied at such a junction and only weak singular 

nfk f 18 exPected* But a similar analysis of the case when the 
Vf m07!uat,1 = ‘î (r®maining vertical) indicates that Ytt 

must be infinite at the junction (B, Fig. 4(a)) at t = 0, the singularity 
bhf ? 1°,garithmic In space. An extension to t * 0 has not so fir been 
obtained. One approach might be a Fourier analysis of the step in 
Xtf so that the steadily oscillating solutions of Fontanet [ 196if could 
be used. These suggest that YM becomes finite for t > 0. 

FIG. 4(a) 

--.J A -HR 

SHELF 

xBC(t) XI X2 

FIG. 4(b) FIG. 4(d) 
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horizontal then correlating the two boundary conditions yfelds: 

<Z, )a = " e'a/(cot ß cos a + sin a) (28) 

(8) and tL* boundary cS^ 

At A, t = 0 
Zft » zttt = 0 

Ztftt ' Zatf ,Zbtt ,Z ttttt 0 or oo, unless 
“=l (29) 

'tttttt * Zotttt » Zbtttt = 0 or oo, unless a = ■? or •? 

zr.v í=t/âor :hítis 

clTeUwhic°h tcít'd ‘li"e“liAI,leS ln perl°d‘'r»°lutl'ntfoifte general 

b'ehl Y30 ,Le^ Í‘ ^? “l.tmlut 

of”" îonsetttéa“ Syhoîd ÎÆcl'ndltlon' 

cell in that corner by the condition (28) at the point A and the time 
t — 0 was avoided by applying (28) at t = t /4 Juaf •* j 

the general free surface condition (Sectionne)*! 8 d°ne WÍtH 

mapplngto*6,^ ^ bV un.ultabl. 

VI. 
SOLUTIONS LTS INCLUDING COMPARISONS WITH LINEAR 

A. Lagrangian Linearized Solutions 

by substitutTng^X-'Íf^v10 Laf?ranglan equations are obtained 
oy substituting X-a+^,Y = B+ Ti into the equations of contlnuitv 

Fot iÜe l0n and íigleCtÍnf multlPles of derivatives of È, and q/ 
Konditionen J,6 a‘ld Planar flow the Cauchy-Rlemann 
Z - c (where e resu^t 80 tllat £ + iq, and therefore 

(where c - a + ib) is an analytic function of c. In the absence 
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of surface tension the free surface condition reduces to 

+ gr)a = 0 (g = 1 in the dimensionless variables) (30) 

only when the additional assumption that tin « g is made. In this 
way harmonic solutions can be obtained for some simple problems. 

In passing, it may be of Interest to compare Lagrangian 
linearization with the more common Eulerlan type, at least in some 
simple cases. For travelling waves on an Infinite ocean the first 
order Lagrangian terms are precisely those of Gerstner's waves. 
The Eulerlan solution must be taken to the third oi aer to achieve this 
waveform. On the other hand, while the Eulerlan solution is always 
irrotational the Lagrangian only approaches it. Thus the comparltive 
accuracy of the two methods depends upon what particular feature of 
the flow is under scrutiny. A comparison of the works of Zen'kovich 
[ 1947] and Penney and Price [ 1952] for standing waves on an infinite 
ocean demonstrates the same features. 

B. Example One, Figs. 4(a), 5, 6, 7, 8, 9, and 10 

In the example of Fig. 4(a), the liquid Is initially at rest in 
the rectangular vessel BCDA; between t = 0 and t = T the side BC 
moves inward according to 

XB((t) = M sin2 irt/ZT for 0 < t < T 

= M for t > T 

With a suitable choice of M and T this creates a wave which 
travels along the box, builds up on and is reflected by the opposite 
wall, AD. The linearized solution (which requires a Fourier 
analysis of the free surface boundary condition) is 

oo 

Z - c = XQ¿t) [l - £] + RkBk(t) sin (£p) (31) 

k=l 

where 

Rk = M/rrk (-^r ' ^ cosh ("t) 

Bk(t) = cos vkt - cos 0 < t < T 

= cos vkt + cos vk(t - T), t > T 
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SYMBOL 0° 0° 'i'018+° M'° W-° M-° 
+ X 0 ♦ 

°0.0 

Fi8-5- -.u.ioi;0 10.0 X 

»0owln81ree .urface;:X?«Í““e0c;“-^-¿2T^,0.53, 
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t/T = 0.0 H.O 8.0 lî.O IS O M.O 23.0 76.0 30.Q 
STWOL 00*fX«»K2 

Fig. 7. Linearized solution to example l; M = 1.16, T = 16t, t = C.60, 
• howlng free surface position at a selection of times, t 

Fig. 8. Numerical solution to example 1: M = 1.16, T = 16t, t = 0.60; 
showing free surface position at a selection of times, t 
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Fig. 9. Linearized solution to example 1: M = 2.00, T= 16t,t = 0.48, 
showing free surface position at a selection of times, t 
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Flo/«;l8 Ía a_ dlffe0rence between the wal18 AD and BC. In 
Flgs. 5 and 6, 7 and 8, 9 and 10 the numerical and linearized free 
surface shapes are compared for three cases of increasing wate 
amplitude. As the amplitude increases the similarity between the 
two diverges; both the wave velocity and the build up on the wall 
that ™* Prog«s8lvely greater in the numerical solution. Notí also 

Ä. l£Ä‘" f1?,- “’•J'’' P'ak 01 the 18 u the linearized solution. For amplitudes less than that of Fies S 
and 6 the results were almost identical. 8 ‘ 5 

C* Sample Two, Figs. 4(b), 11, and 12 

., . . Th® 8eoond example, Fig. 4(b), Introduces moving and curved 

.hi “r si th'iiquid u di","b'd ”•* »V » b,8dUPiù,„r 

For XI < X < X2, Yc0 a M for 0 < t< 1 

for t > T 
. XX ..JMX-Xi) 1 

M 8ln llxTHcllJ 

For X < XI , X > X2, Yco = 0 
all t 

Within certain extreme limits on M and T this causes a anrfar. 

tTeLhïïd^andYs^011^ dlsturbance whlch then spreads out 

?hÍ.0^7. y * deP""l0n WiVe ,h' b'd 

Z - c = iM 
oo 

■- ¡Xl)-Mt) t J Rl [i,»h(^)A|t) oo.(iî£) 
k=l 

+ B^t) sin(Íp£)J (32) 

where 

« {«'n . (k(X¿-Xll)Zj 

■tanh 

2 TTt 
A(K) = 2 sin Tjr for 0 < t < T, = 2 for t > T 

B^t) = <rk cos vkt + 1 - (1 + coa £ for 0<t<T 

= 2 + <rk(cos vkt + cos v^t - T) for t > T 
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Fig. 11. Linearized solution to example 2: M = 0.344, XI = 0.75, X2 = 2.12, 
T = 6r, T = 0.3 5, free surface positions at selection of times , t 

Fig. 12. Numerical solution to example 2: M = 0.344, XI = 0.75, X 2 = 2.1 2, 
T » 6t, T = 0.35, free surface positions at selection of times , t 
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and I is the a difference between the vertical walls. For T of 
the order of 2 or 3 and for values of M up to 0 3, at least, there 
was virtually no difference between the numérica, and linearized 
solutions. Figures 10 and 11 in which M = 0.344 demonstrate this. 

D* Sample Three, Figs. 4(c), 13, 14, 15. A Sloping Beach 

By altering the condition on the boundary AB of example one 
and empioylng the shoreline treatment of Section 5E, the interaction 
of the waves with a sloping beach could be studied. In Fig 13 a 
small wave appraches a 27° beach. As the horizontal inclination of 
the tangent to the free surface at the shoreline (ß) decreases, the 
shoreline (A) accelerates up the beach until ß becomes positive. 
The acceleration then reverses (as in Eq. (28)) and the wave reaches 
maximum run up. The backwash is extremely rapid and positions 
i Tu21' , su88est that this causes the small wave which is follow- 
ing the main one to break. By this time the cells have become very 
distorted and the mesh points excessively widely spaced to allow 
further progress. A similar succession of events takes place with 
the larger wave and smaller beach angle (180) 0f Fig. 14. Note in 
this case the large run-up to wave-height ratio. In neither of these 
cases does there appear to be any tendency for the main wave to 
break on its approach run. Indeed the reaction with the beach is 
similar to the behavior predicted by Carrier and Greenspan [ 1958] 
in their non-linear shallow water wave analysis. The wave amplitude 
was further increased and the beach slope decreased to 9° in an 
attempt to produce breaking on the approach run. A preliminary 
result is shown in Fig. 15. Variations in the application of the free 
surface condition and in the shoreline treatment have, as yet, failed 
to remove the irregularities in that solution. A stronger shoreline 
singularity coupled with an insufficiently rigorous treatment of it may 
be to blame. An optimistic viewer might detect a breaking tendency. 

E* Example Four, Figs. 4(d), 16. A Shelf 

One final example is shown in Figs. 4(d) and 16 where the wave 
travels up a shelf, created by changing the boundary condition on CD, 
fig. 1. Excessive vertical elongation of the cells on top of the shelf 
caused this computation to be stopped at the last time shown. (At 
this point the wave height/water depth ratio on the shelf is of the order 
of 2.) However, one can detect a splitting of the wave into two waves 
as might be expected from the theory of Lax [ 1968] . 
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Fig. 13. Example 3 with M = 0.30 and T = 6t, r = 0, 571. The beach slope 
is 27°. Free surface positions at selection of times, t 

Fig. 14. Example 3 with M = 0.60 and T = 8t, r = 0. 571. The beach 
slope is 18°. Free surface positions at selection of times,t 
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_L X 

tA = 12.0 16.0 20,0 21.0 22.0 22.8 23.7 24.5 

SYMBOL Q0a + x« + x 
MESH 51 X 9 POINTS 

°0.0 2.0 H.O 6.0 8.0 10.0 12^0 lli.O X 

Flg, 15. Example 3 with M=2.00, T=l6r, r = 0.481. The beach slope 
is 9°. Free surface positions at selection of times, t 
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VII. CONCLUDING REMARKS 

severe examples were taken In order to test the 
limiting characteristics of the method developed. Provided the 
various interval limitations were adhered to only two problems arose 
which could prematurely conclude a computation. First, excessive 
elongation of the cells in regions of the most violent motion could 
cause the mesh points to be excessively widely spaced; rezoning 
could, however, make it possible to continue. Secondly, it would 
appear that a more detaUed knowledge and treatment of some singu¬ 
larities s required. Work on this, and especially on the shoreline 
singularity of example three, is in progress at the moment. 

Other types of examples which have been only briefly investi¬ 
gated thus far are: the matching with a semi-infinite region in which 
some analytic solution is used; the inclusion of surface tension; the 
extension of the method to three dimensions; examples in which the 
tiuld is inhomogeneous. It is hoped to present such results in the 
near future. 

The authors are deeply appreciative of the kind and considerate 
help given by Professor T. Y. Wu. 

This work was partially sponsored by the National Science 
Foundation under grant GK 23 70 and by the Office of Naval Research 
under contract N00014-67-A-0094-0012. 
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TWO METHODS FOR THE COMPUTATION OF 
THE MOTION OF LONG WATER WAVES — 

A REVIEW AND APPLICATIONS 

Robert L. Street 
Robert R. C. Chan 

Stanford University 
Stanford, California 

and 
Jacob E. Fromm 
IBM Corporation 

San Jose, California 

I. INTRODUCTION 

The continuing evolution in speed and capacity of dioital 
pu ers has encouraged the development of manyPcomputattonÍÍv 
oriented methods for analysis of the movementVf waves ove^he 

alid in the doep ocean and over much of the slopine shelf- thnq 

co"„«ä s ' 
S°aïr^ developed o¿rfo ”.kp°LTnow».’ TÏT*’ 

nsion and appHcation 0f Carrier was made by Hwang, et al f 19691 
They studied the transformation of non-periodic wave trÍfnT^i = * 

equaU^ andl0thengCbeaiCh ^ nonlinear fallow water wave quation and the Carrier-Greenspan transform. This transfnr™ 
fixes the moving, instantaneous shoreline of the physical plane to a Zt ^Ín Ín ^ transformed plane. Although Eh?aníysls dells 
nrerfi ¡th Pl'ine íl0WS and d°es not handle breaking waves^ it does1 
predict wave run-up and reveals a significant beat phenomenon. 

Preceding page blank 
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m"d.ricOSo«lr4Ä' 11970] • The" method* ■ ba“d <"> H~ar. geo- 

equation over a grid of bottom depths. ^ 

=: sä 

Tbíís:: tadfciSS1 T.f the s,.ol"tlon to the linearized equatfons. 
treatm^ n/ M. * W°rk Was a lead-in to a more general 
terS cvlÎnX ,r7 t0m toP°graPhy- At the island they used a 
vertical cylinder that penetrates the surface and thereby restricts 

SaTedTnTeul'aï,1,“^'“'0“ N° run"uP can be cal- 

In another approach, Lautenbacher [ 1970] used linear 

wavSs 'oStSunamf °1 He ‘\5t“dy ^ c-uü.’ing waves of tsunami-like character on islands. His method allows for 

Üon^fÄ'M11 iantan?°USx shoreline and> «i course, for superpôs 1- 
dividual results from monochromatic waves. Working from 

rePrnes^taatieoqnofl0th fofrmaÍaÍÍ°n a"d employing a Hankel function 
representation of the far-field radiation condition similar to that 
used by Vastano and Reid [ 1967] , Lautenbacher used a grid of dis 

moedelPOÍrtS W n,umeJlcally integrate the integral equation of his 

rwe to eSmate tng^ , W°rk Carrler C 19661 « Lautenbacher was able to estimate total tsunami run-up from a distant source. He also 
emphasized the importance of refractive focusing effects, 

linear eíft.s^SftieTírms“:"1"'’" ** "»odelling non- 

a. 

b. 

Approximate, plane-flow models for arbitrary or sloping 
beaches and based on approximate equations. 

Exact plane-flow models. 

Quasi-three-dimensional models. 

, .1^16 aPProximate, plane-flow models are represented by the 

rT9r69Í StrreeeeTanetanid C 1%4] ' [ ^67] , Hettner 
*■ J?} —r( 1969^ ’ Camfield and Street [ 1969] , and Madsen 
and Mei [ 1969a,T^9b] . With the exception of Heitner [ 1969] the 

abDlWtb Etíefiafn Cu°ordinates- Freeman and LeMéhauté [ 1964] 
applied the method of characteristics to the nonlinear, shallow water 

outIn/tqhUe rSi °r PÍan® fl°W* They described a method forTom 
Drldictin v heÍght SOlitary WaVe °n a Plane beach. 
? ^ÍC lng tha P°int of breaking inception by the crossing of character- 
at the11 h ^ Com.Puting the subsequent bore development and run-up 
at the shoreline. A term was added to the equations to correct the 
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assui ;d hydrostatic pressure distribution beneath the wave, the 
assumption not being valid for finite amplitude waves. Camfield and 
btreet L 1969J used a refined correction term, but the results were 
not entirely satisfactory in either case. 

Peregrine [ 1967] and Madsen and Mei [ 1969a] derived approxi¬ 
mate, nonlinear, governing equations for the propagation of long waves 
over slowly varying bottom topography. In these equations the verti¬ 
cal component of motion is integrated out of the computation so a 

xx! rern/PnaCie'dimenslon Problem is all that remains. Madsen and 
Mei [ 1969a] showed that, while they and Peregrine used different 
approaches and solution methods, the equations are the same when 
Pfoíonited in, same variables. Furthermore, Madsen and Mei 
L 19o9aJ explained that these nonlinear equations, obtained under 
assumptions similar to those leading to cnoidal waves in the case of 
horizontal bottoms, give a uniformly valid description of long wave 
problems as long as breaking does not occur. In particular, their 
equations were derived under the condition that the Ursell parameter 

J 

U* = ^ =0(1) 
dn 

(1) 

where T)0 is a measure of wave amplitude, L0 is a characteristic 
wave length and d0 is the water depth. Thus, the nonlinear, govern¬ 
ing equations are of the Korteweg-deVries type (KdV) that have per¬ 
manent solutions, e.g. , cnoidal waves, for the case of horizontal 
bottoms. Madsen and Mel [ 1969a] demonstrated that, although the 
equations pertinent to each of the three groups of long waves (Airv 
where U* » 1, KdV where U* = 0(1) and Linear where U '« 1) 
have different mathematical solutions, the features characterizing 
each group are all contained in the equations derived under the 
assumption of waves of the KdV type. 

r <o4o T)hoe4^1th0d °f characteristlcs was applied by Madsen and Mei 
L 1969a, 1969b] to solve their equations for initial, boundary value 
problems involving solitary waves and periodic waves on plane slc-es 
and a shelf; their equations, like those of Peregrine [ 1967] , are 
applicable to general, uneven bottoms. Street, et al. [ 1969*] pre 
sented a numerical model APPSIM and results bliid on the Peregrine 
L 1967J method, but employing initial and boundary conditions similar 
to those of Madsen and Mei [ 1969b] . These methods reproduced the 
nonlinear breakdown on a shelf of a solitary wave, the breakdown 
i04alg Previous,y been observed only in experiments [Street, et al. , 
1968J . Furthermore, comparison shows quantitative agreement“ 
amongst these methods and relevant experiments. Run-up cannot 
be calculated with these models which employ the vertical beach (or 
island) face that was used by Vastano and Reid [ 1967] . However, 
Peregrine s [ 1967] derivation included the two horizontal space 
dimensions, while Madsen and Mei [ 1969a] did not. Accordingly, 
as an extension of APPSIM, a quasl-three-dimensional model 
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in Section Peregrine's Quations and is described in detail 

fl~a a n^^^ o r d i n a te s ^arfcf frü te ^ ^ n 61r meth°d ba«ed on 
fluids. His theory retains term« lemei*t representation of the 
the vertía motio^ th Îhe rneïhnH”^8 thc kinetlc energy of 
Heitner s approximate method permit described juat aboyf^ 
gate. Unlike those method-' Permanent waves to propa 
sentation of wave breaking i^ept on K fori?ula«°n gives a Se 
on a linear beach for plan! flow! ^ formatioa and run-!p 

®¿enne{[^%e70j?kfr\?ee'tílar[T?7SlS ^ rre,prese^d by the work of 
■All are based on the — . ’ an<^ Chan and Street f 107,-11 1 

f{v"»tas^«wrdB.as'ed o“,he m" T "“‘’''‘STS'rm o/ÎL'”' 

[S s-Äc ZI' äZZ 

m“ Âto“’ •t01“1'!“' <0 ‘»-»am" geC„e°â,io„0bth‘8PaP'„r' Br‘^ 

UNC Sl0h“h8h‘” ^b»ayh¿f verm Zr ’ ^“ZíoZtÕ' 
Ä :-tXwidL~"s lrp'r 

br the work of P H t^c h Z ï 1 '9 TnY 'd irr| - - 3 i o n ?.j methods are represe 

bulence simulation are used Seal XaCt’ heuristic models for tur 
•oíate concentration can Te ’“"“i'« «ch a, heat and 

tatdonal'mesh" a“d',h.OÍfth' Var‘ablU' ^ t «-eich, eti'.^f/”' SUrf‘C' • "ho"Ie‘nnIeed 

calculation ôuónge-pírl6od watVe'r01“d * “-"P-atlonal model for the 
topography, bottom roughness ¡¡„’HTh“ m Wlilch lhe ofiects of bottom 
The equations of motloû „0 v “l “r'h s '«»«"n were „clüdfl 

rhPt7?r*‘ 5Pa'0-dlme»slons7em:r„ " “"’T -»• "wo 
J J ' but wbile Peregrine f lOAvl xiUjk tbe rnanner of Perevrin« 

to accor ~3Är“ 
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£ ™ 0n,0nwhe modellln8 «Hong waves such as tsunamis 
J"“ ? wlth^re8^ar bottom topography and complicated ocean 

- ^omPutatlon uses » space-staggered scheme (where 
velocities water levels , and depth are described at different grid 
points) and a double time step operation In which the time integral 
la considered over two successive operations In a manner designed 

n-tíílíí*, eíí?fl V!. 'í86 L0/ ‘î1* sPace-»íaggered scheme. Among the 
papers mentioned in this Introduction, only Leendertse f 196 71 , 

elch, et al. [ 1966] and Chan and Street used computer graphic 

trÜfíÜu/K.0UtPUt,.° re8ult8* The value oi graphic display Is illus- 
* d In the resulta presented In the remainder of this work. 

II. THE PRESENT WORK 

Street, et al, [ 1969] gave a progress report on the develop- 
ment of computer programs fortwo numerical, finite-difference 
models for the study of long water waves. These models and their 

APpSm anHlnMMaT9 rru * 39 Ted above* 8lven the acronyms 
A F5IM and SUM-MAC. Both were based on representation of the 
motion of inviscld, Incompressible fluids in terms of the Euler 
equations of motion In Eulerlan coordinates. Flow boundary con¬ 
ditions were derived from physical requirements and the governing 
equations at the boundaries. The mathematical models thus obtained 
were then transformed to numerical, finite difference models for the 
purposes of computation. In 1969 the study had been confined to 
plane Oows, but the numerical results had been verified by compari¬ 
son with experiments and the work of others. The models were to 
provide detailed flow field data in the portion of the wave shoaling 
process where nonlinear effects are significant, but breaking has not 
occurred. 

„r P °U.r 8lmulatlon (APPSIM) Is based on the method 

I ]n^8UPplCmented by the work of Madaen and Mel 
Lurin' %,9b]* . AfPSIM **8 Implemented for quasl-two-dlmensiona 
plane flows (vertical motion Integrated out). For the purpose of 
mplementlng, testing, and verifying the program and method, we 

s mulated the propagation of solitary waves on a stepped slope which 
represents the configuration of the continental slope and shelf, l.e., 
we examined long waves in moderately shallow water. The kev 
criteria to be satisfied were y 

a. Solitary waves propagate stably on a horizontal bottom. 

b. Solitary waves decompose Into undular bores when the 
waves propagate onto a stepped slope [Street, et al., 
1968]. - 

c. Wave heights must be In good quantitative agreement with 
available experimental data. 

As reported by Street, et al. [ 1969] APPSIM met these criteria. 
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The successful application of AFPSIM to examples of plane 
motion of long waves indicated that the method could be applied to a 
quasi-three dimensional simulation (two horizontal space dimensions 
with vertical effects represented in once integrated equations) of the 
motion of waves over arbitrary bottom topography. We have ex¬ 
tended APPSIM to handle general bottom topography and both solitary 
and oscillatory wave inputs. The new method is called APPSIM2 and 
presented in Section III below. 

An objective of our exact simulation was to provide detailed 
information about wave processes near the shore and at the ocean- 
structures interface. The Stanford-University-Modified Marker-and- 
Cell (SUMMAC) method computes time-dependent, inviscid, incom¬ 
pressible fluid flows with a free surface; the method is suitable for 
analyzing two-dimensional flows. Initially, we simulated the propa¬ 
gation of solitary waves in a horizontal channel filled with fluid to 
unit depth and with vertical end walls. The solitary wave propagation 
problem possessed several key features: 

a. The theories for the wave motion against the wall were 
not in agreement with experiments. 

b. The solitary wave should propagate stably (without change 
of form) in zones not near the channel walls. 

c. Perfect reflection from the walls should occur. 

We undertook a significant modification of the MAC method to create 
a numerical scheme suitable for water wave simulation. As reported 
in 1969, the resulting SUMMAC simulation met the criteria of stable 
propagation and perfect reflection of solitary waves and resolved the 
disagreement between theory and experiment for motion against a 
vertical wall. 

The successful application of SUMMAC to the initial example 
indicated the possibility of employing a modification of the same 
technique to attack a variety of other problems. We have subsequently 
studied the generation of water waves by a periodic pressure pulse 
and the shoaling and run-up of solitary waves on a stepped slope and 
on plane beaches. A summary of the presently implemented SUMMAC 
method and results for the periodic pressure pulse problem are pre¬ 
sented in Section IV of this paper. An evaluation of the numerical 
qualities of SUMMAC and a report of the shoaling and run-up studies 
are given in Chan, et al. [ 1970] and Chan and Street [ 1970bJ . 
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III. APPSIM2 

3.1. The Governing Equations and Auxiliary Conditions 

Dimensionless variables are defined below and In Fig. 1 where 
the physical domains considered are also Illustrated. The variables 
are 

where those on the left-hand sides are dimensionless and d^ is the 
depth in the deepest part of the simulated wave tank. Here, x and 
y are fixed, Cartesian coordinates In the horizontal planet u(ic,y,t) 
and v(x,y,t) are the corresponding mean (vertically-averaged) 
horizontal fluid velocities; ritx.y.t) is the free surface shape, 
measured from the still or undisturbed water line In the tank, and 
d{x,y) is the depth of the still water. 

o. Shelf (Perspective View) 

L, 

b. Submerged Seamount (Plan View) 

Fig. i. Definition of symbols and simulated wave tanks for APPSIM2 
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If 
For waves of the KdV type that we wish to study, U* = 0(1). 

c = T)c/d0 (2) 

and 

= d0/L0 « 1 (3) 

for long waves, then from Eq, (1), U* = e/<r2= 1 and e = a2. This 
is the relation on which Peregrine [ 1967] based his expansion-ln-a- 
parameter analysis. He pointed out also that d(x,y) = 0(1) and the 
derivatives of d equal 0(<r) are necessary restrictions; otherwise, 
the variations in the depth of water are shorter than the incident 
waves and tend to generate shorter waves , thus upsetting the scheme 
of the approximations. 

Under the above conditions Peregrine [ 1967] obtained the 
momentum equations 

u, + uu, + vuy + T!x = ^ d[ (du),,,, + (dv)xy]t - ¿ dz[ uxx + vxy]t 

0 < X < L, , 0 < y < Lg, O < t 

V, + UV„ + Wy + Tly = d[ (du)xy + (dv)yy]t - £ d2[ Uxx + Vyy], 

0 < X < L|, 0 < y < Lj, 0 < t 

and the continuity equation 

+ [ (d + ri)u]x + [ (d + q)v]y = 0 

0 < X < L,, 0 < y < Lg, 0<t 

(4) 

(5) 

(6) 

These equations and the appropriate auxiliary conditions described 
below are solved numerically by a straightforward finite difference 
scheme that is presented in Section 3.2. 

The auxiliary conditions are the boundary and initial condi¬ 
tions appropriate to Eqs. (4-6) for motion in a vertical-walled tank 
(Fig. 1). For solid, vertical walls the velocity perpendicular to the 
wall is zero at the wall and non-breaking waves reflect perfectly 
from the wall. If n is the normal coordinate and U and V are 
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^viscid now31 a,ld tangentU1 fluld velocltles at the wall, then In 

n„ = o 

u = o 

v„ = o 

U„n=0 

(7) 

(8) 

(9) 

(10) 

Accordingly, for Wa„ , show„ FIg- , ^ ^ ^ < ^ ^ 

VO.y.t) = 0, v.lO.y.t) = „, u(0,y,t) s 0, ujo.y.tlet, 

Similar condition, hold on the other walla. 

th 1 x = 0_ 

SCar eta,io»,, pieg^^^ 

uy - v» = 2 dy[V • (d7T)]x - { dx[ V • (dlT)]y 

- J ddy[V -IT] + j ddx[ V . T]y 

neighborhood of Waif d O^^Jd n°ttom ls flat in the u* ay-u and Eq. (11) becomes 

(11) 

uy = vk 

beach ^n^thé^tánk= return^to ^=0°™ reilectioa ^om a shoal or 

(12) 

uy(°.y*t) = o 

and, hence, 
(13) 

vx(0 ,y,t) = 0 
(14) 
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Given ri(0,y,t) = Tl(t) and Eqs. (13) and (14) and using Eqs. (4-6) 
at Wall 1, one can uniquely determine u, v and ri there for the 
case of a prescribed incoming wave. The conditions at the remaining 
walls are, of course, not changed. 

The appropriate initial conditions for Eqs. (4-6) are the 
Initial values of the dependent variables, viz., 

*l(x,y,0) = ihU.y); u(x,y,0) = u¡(x,y); v(x,y,0) = v¡(x,y) (15) 

3.2. The Difference Representation and Computation Scheme 

For numerical computation the region 0 ^ x ^ L(, O^y^Lg 
is covered by a grid of discrete mesh points with a spacing Ax = Ay = 
A and calculations are carried forth with time steps At. To allow 
for proper representation of the boundary conditions the grid indices 
(i,j) run over the intervals (1,M) and (1,N) respectively and 
points (l,j), (M,j), (1,1) and (i,N) lie outside the tank walls, e.g. , 
x = 0 is equivalent to (2,j), etc. Consequently, L( = (M-2)A and 
LZ = (N-2)A (see Fig. 1). 

In the finite difference representation of the differential 
equations and auxiliary conditions, central space-differences are 
always used; both forward and time-splitting schemes are used for 
time-differences. The differential equations of motion, eqs. (4-6), 
lead to a highly nonlinear and coupled set of difference equations. 
These are solved iteratively, using a predictor-corrector method. 
If u, v and are known at all the grid points at tl.e n,h time 
level, the following scheme leads to calculation of u, v and t| at 
the n+i**1 level. 

First, u, v and t; are predicted at the n+lth level by use 
of the nonlinear, shallow water wave equations (Eqs. (4-6) with their 
right-hand sides set to zero). With the superscript P indicating 
the predicted value, the difference equations are, after rearrange¬ 
ment for computation, 

uij ' â (u¡j(ui*ii " ui-ii) + vij(uij*i ■ uU-i) + (16) 

vij - is(uii(v¡+ij - vi-ij) + vii(vij+i -''u-i)+TVi - Vi) (17) 

Hij - (uij (Vi) + ’li+lj - di-lj * *1i-l)) + (dij + ^1))(^1) - Uj.lj 

+ vii+i - v¡j-i) +vij(d¡M +rh¡*\ - dij-i - ^¡i-i)) <18) 
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where variables without superscript are k„0wn at the n’h time level. 

equation for u values at the n+i,h level Ce t 1 " a difference 
and time.gpiittiHg are used the f:entral. aPace-differences 
a difference equation that is imnllïlf P m * (l*-Í*n+Í)j this leads to 

from the jrh row on the leLÍand si¿e o?^^ the ^ ter™ 
terms on the right-hand side. The hear/of eqaation and ^ other 
u , V and qP values in lieu of the un^ f fiï* PjOCend+'íre is to use 
ppear on the right-hand side of the equation tifnd ^ terms which 

mostly in the j-1 and j+1 rows T?a tion' these terms being 
computation is, for each j h reSult> when rearranged for 

whe re 

Aui-ij f Bij+' + Cu^1. = E, i = 3,4,... ,M-2 

A = - ^ 

2 
B = 1 + ÜÍL 

<.'= àî u„ t 1 /1 
® u'l T ^(l“--¾¾,) 

E = “¡i -¾ “liK.ij - u,., ) 

At 
-b Wi 

At , p n 
- 4Z(T1i*lj - n¡.,j +qi + |j - t,^.) 

+ 2A5 (‘ di+ljuUli + 2diiU 

P 
+ 4<dMMvMH - - dj+ ^v.P 

+ di-'j-1 Vh!j-I - di + .j + ,Vit|jt| fd^, V,|jt 
lj+1 

+ d. V. 
Ii-lvi+lj-l " di-lj-i v¡.|j.|))- 
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4 
6 A 

(- U4IJ + ¿Ujj - uMj 

4. 1 / P P P p 
+ 4 'vUlj*| - vi-ij + | - vU|j., + Vj.ij., 

' vUlj+l + vi- Ij*l + VUIH - V: j-l )) 

19 80lve^ for a11 1 simultaneously for a given j. 
I co®fficl1einta of the unknowns in Eq. (19) is tridiagonal 

and is quickly and easily solved by a tridlgonal-matrix equation 
solver employing Gaussian Elimination, The process is repeated for 
each i until thf* nT' a_, . r .. . each j until the u™ are known. Appropriate boundary conditions 
are introduced at the ends of the j*h row in each computation. 

Tflrtl*Lthe y-™oment*™ E<l*ti5) is used to obtain a difference 
equation for the v values at the n+l‘* level. The result is entirely 

tehe rTcrhTb b® U ValUe8' VlZ” the third-order terms on 
,,¾ M Su Create a naturalDly lmPllclt system so time-splitting 

is used. Now, however, we use VP and r,P values for all l-l and 

point, ^ong . glv.n (1 = constant, Q < 4 < Kr j . -.i ^**v.*i. cv^ucxlxuiiô — constant i 
2 an,d ,we use the u values just computed. The result. 

wLen rearranged for computation, is 

Av")*1 + Sv"*1 + ev",*! = Ë , j = 3,4,..., N-2 (20) 

where 

A = - 
^ ViJ + ¿2 - dijdij-l) 43 

b = i + iáú. 
3AZ 

«r At 
C-4Ã VU 2 A 

4. 

3 dijd¡i+^ 

Pi At , p p 
E = ViJ - 43 Uij(v4li - V¡-lj +v4|j - Vj.,, ) 

At 
43 viJ(viJ*l - vij-l ) 

At 
" 43 (’llj+l - ’lij-i + Tjj,! •* i1jj.|) + 
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+ 2¿a ( 4 u¡*|jí| - uMj«l - dUI|-l »Ul'l, 

+ d j 
i-IJ-1 ui- IJ- I ■ dUlj*luj + 1)+1 + d¡.|j+l ui - Ij+I 

+ di+lj.| ui + |j.| - di.|j.|U¡.|j.,) - d¡j+|v,j+, 

+ ZdjjVjj - djj^Vjj.i) 

2 
djj / 1 . n+l n+l n +1 n+i 

" '4 ' üi-l|+l - uU|H + Uj.ij., 

" ui + lj+l + u,.,jt| + ui+|j., - Uj.,H ) 

- v,J+1 + 2vjj - vjj.,) 

Again we ule t^THdiagonal^matrS^quatiTn 8^6°^1 t?1 & giVen L 
is repeated for each 1 until the v^1 Ire ¿own. Proce88 

•quatioifforthe ^ vajÚe™M the' ntl'^ ^1.1° 

:f»inrv:tz ve10; víáer bu?rted ^ . 

Ä8- The -™8«d *>; caom;Z£lX\ZnlZ£rlt 

W.4|J tn,.,. 

1 - n+l n+, + l(dii+iiij)(ui+lj + uKj.ui.lj-Ujn;|' 

+ viH +v,j:1, - v(i.( - v/¡;¡) 

n+l 

+ J2 V|i (dij+| + ^1)+1 - djj., - (21) 

This equation is used to compute n?í* for ? < i ■< x* < . 

tirne'leveláis ^ N'‘' 

If now the second through fourth steps above are repeated with 
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Ff 11 i ^fPla,cef hy the n+1 values just calculated, the accuracy 
of the solution is increased; this is the corrector iteration. Numeri¬ 
cal tests showed that the computations remained stable if at least 
two iterations were used (one predictor, one corrector). The un+l, 
V and r)n* values obtained in the second and the third iteration 
agreed to at least four significant figures after several hundred At 
steps in simulation of solitary wave motion onto a shelf (Fig. la). 

it /-7^°mn?ar^ ccmc^tions difference form were derived from 
. * 7‘10) in the case of solltary wave simulation. The wave was 

started well inside the tank walls which were held rigid. For ex- , 
ample, for Wall 1 in Fig. 1 we have from Eqs. (7-10) at any time 
level il,, = r)3i, v,: - ~ " 
similar conditions. 

= V 3j, u2j= 0* and Ujj = - u3j. Other walls have 

For input of an oscillatory wave propagating in the positive 
x-direction at x = 0 we prescribe 

i“ = i„«i„ [ - .¾½ 
■‘-o 

At ♦ (n+ 1)] (22) 

where ri0 is the amplitude (usually small) and L0 is the wave 
The celerity C0 is taken to be unity in nondimensional length. 

terms. From Eq. (14) we have v,, = v3i. Because r|Q?', and t)"7 
are computed explicitly in the tank region, rtf+l is obtained by 1 
polynomial interpolation according to the second-order formula 

< = - K!+ (23) 

Finally, the continuity difference Eq. (21) is used for points (2j) 
where it has not been previously employed to relate uj1^ to the 
values in the interior, j > 2. With U|j known as a function of 
u2j, u3,, 
found; vP.+l 

'J 

etc., Eq. (I9) can be used in 
values are replaced by vj] 

n+l 2 — i S M-2 and the ( 
values in the first iteration. 

Figure 2 is a flow chart for the APPSIM2 computations . 
These were performed on an IBM 360/91 system. For a typical 
computation with A = 0.25, At = 0.22, M = 154, N = 54 and 126 
time steps the program required about 360K bytes (90K words) of 
core storage and 4 minutes of CPU time (about 1/30 minute per 
time step). The stability of the method is discussed in Sec. 3.4 
after presentation of computational results. 

3.3. Results and Discussion 

To illustrate the focusing effect of wave refraction and the 
reaction of waves to a shelf geometry, solitary and oscillatory waves 
were shoaled over the bottom topography shown <n Fig. la. The 
water depth in the tank was 1.0 while the depth of the shelf was 0.4 
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Fig. 2. APPSIM2 flow chart 

The deep and shallow portions are connected smoothly by a cosine 

curve. 

For the solitary wave simulation, the pertinent parameters 
were L, = 38 , i.2 = 13 , xT = 14. 5 , xs = 19.5, Yt = 7’7^» Vs = 2* T5 ' 
A = 0 25 , At = 0.2165, and rjo = 0.1. The wave was started with Its 
crest’lvine along x0 = 8.0 and propagated in the positive x-dlrectlon 
íowfrd thlS Chan and Street 1 1970a] „ho„ed that the efiective 
half-length of a solitary wave of amplitude iio = 0.1 Is about 11 so 
it is necessary to correct the initial Bousslnesq [ Wiegel, 1964J 
wave profile for the influence of the wall at x = 0; however, it was 
unnecessary to correct the leading portion of the wave for the bottom 
Influence. The initial u-veloclty distribution was calculated from 
Eq. (6) under the assumptions that v = 0, q = n(x,t) and the wave is 

moving at a constant speed Co = 1 + r)o [Wiegel, 1964] w 
constant form. In addition At was selected in accordance with the 

Courant-type condition 

At ^ 
_A_ 

Cn 

Results of the solitary wave computation are shown in Figs. 3-5. 
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The evolution of the free surface is illustrated by free sur¬ 
face maps in Figi 3, while Fig. 4 shows a v-velocity map for 
t = 19. 5. The maps are printed during program execution by a sub¬ 
routine that scales the variable values on a range running from a 
minimum of zero to a maximum of ten. Only odd numbers are 
printed at their corresponding node points. These maps are ex¬ 
tremely useful for initial interpretation of the data. Later, quanti¬ 
tative studies of results can be made because the u, v, t) fields 
are stored on tape after every five time steps and maps are made 
after every 20 to 40 steps. Thus Fig. 5 illustrates a quantitative 
comparison between the two-dimensional results and the three- 
dimensional simulation at t = 19.5 for y = 0 and y = Lz. Both 
the effect of wave refraction and the nonlinear response of the flow 

are evident. 

As another example, Fig. 6 contains pictures of the develop 
ment of the q, u, and v fields for oscillatory waves shoaling on a 
shelf. The pertinent parameters were L, 
Xc = 45.5, yT= 25.5, ys = 15.5, 

= 66, L2 = 41 , xT= 25. 5, 
7 ... . A = 0.5, At = 0.5, and 2q0 = H,3 = 

0.S05? The input wave ai Wall 1 (Fig. 1) had assumed length L9 = 20 
and speed Co=1.0 so the period To = 20. The actual computed 
length was essentially 20 also. In this case we sought to simulate a 
large region so A was large; even so 458K bytes of core storage 
were required for the program. In spite of the rather coarse grW 
the computed properties of the waves were smooth and well behaved. 

T = 21.5 

T * 68.5 

T * 90.5 

U-CONTOURS V-CONTOURS 77-CONTOURS 

Fig, 6. Shoaling on a shelf (oscillatory waves 
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ortrr, C0 Jtturi1î'e8 ln F,lg‘ 6 werc computed by a plottlno pro- 
gr. m developed by Schreiber [ I96b] . Th, facility used was ai f¿M 

pLeítreadP on a TVlay UnU ^ the comPuted contour Unes are projected on a TV screen. The contour plots were record 
photographing the surface of the screen. Several motion pictures 
have also been made with this apparatus. F 

Two 2250 units are used when films are made. First as 

TpsÎmzI’ ,h' rmi'“,ed ,i'Id °" tlpeduplng the 
APPSIM2 computer run. Later, a special program calls up the 
tapes and transforms the field data to contour llneT These are 
transmitted to the ¿250 unit,. One 1, need a. a con'troT coneoie to 

“d th' movl' “m"* «P'"!- The 
the screen 6 ^ movle ,camera mounted on It and focused on 
the screen. The camera operation Is synchronized with the suc¬ 
cession of contour plots flashed on the TV screen. Titles are also 
fC°n‘‘rucled.°n the «creen and fUmed. Judicious editing transforms 
of FI lnt° a useiul and Interesting movie. As the sequence 
of Fig. 6 shows, the evolution of the flow fields is particularlv 
Instructive. Because all the pertinent parameters are usually shown 
simultaneously on the screen with the contour plots, quantitative 

fro^Pthetotl!nh|0V|hCiCOnt0Ur lfliormatlon can be made directly 
wave he“aht £onedthePUy’ For e*ample, at t=68.5 the maximum 
wave height along the line y = 0 Is about 0.06, while alono v - I 

Ímeft Flo* 65 lb**' 7™ 19 -affected'by tt steîf ai t“his 2* 
time). In Fig. 6, the q-plot increment for t = 68.5 Is 0 01 the 
m.» mum value 1. n . 0.064 and .hr minimum 1.,= 0.026 Fur 

',>!ÜÍÍÍ*">.rV =aV'‘ 11 U neceS8ary to have .ome detailed printout In 
add.tlon to the graphic display for quantitative analyses because the 
contours arc not marked with their contour level values 

at,krr\a WC silT!ulafed long wave amplification by a circular 
submarine seamount and compared our results with the c»!fnr.rim„r,f=,i 
value, ol William, and Karthi | ,966). The fóllnX perM^em ^ram 

m." m wl^Hô^dlmé 0í'h°.lr "p,!rlm'“,al '■PP« (or a half-.eamoun 
fig. lo) with non-dimensional parameter X = 2wb/L = 3 0- x -16 

i'.-'V d ‘ZT «•“'••O'- 'O .he peak of°the lal.ndi ’ 
. is the radius of the base of the seamount, T = 16.6 is the 

f-VlYh ï' “h008"' d = bcyoni. .He eeamount base,* 
L = 23P6 TK , »ubmergence of the seamount at its peak and 

nlc'tlons irom restl fb L' = WaS 9ClCCted t0 PrCVenf flections from reaching the seamount. The amplification ratio 
Hj/H03 Af was calculated where 2ri„ and H = the trm.oh 
crest distance on waves at the island peak where d = ?. g ’ 

The experimenta1 A, = 2.42 , while A. = 2.46 accordina to 

in« toArpPlM?rry °{ M08e1, ^L~ 119701 &nd A' * ¿-70 acco rd- Ing to APPMM2 for a seamount ^ose shape was given by 

d(x> y) = {i. o - € )^^ +( 
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with 

r(x,y) = [ (x - xc)2 + yZ]1/2 

and q = 1.0 (the shape factor). This was a linear seamount with a 
sharp peak where the first derivative of d(x v> Is \ 
the higher derivatives are undefined (cf Se’/ 3 n IT f nfUOU® ^nd 
tba difficulty of ,aso.„.l„„ of ,ha Wa'íf^ 

compounded by the fact that to almulata ,h. e«perim.ntal cônïlûîL 

0.5 wheUre”im- 0 250re 50°K byte“ "" had to "se A = U.S Where ^ -0.25 would have been preferable. As a conseauence 
Î** b*lieve' of the coarse grid the short waves generated by ^ 
island wave response are not properly resolved, being of the order 
of one or two grid divisions. The solution, therefore! while not 
unbounded, appears unstable. wnue not 

On the other hand, Williams and Kartha [ 1966] did not reoort 
on the sea-state near the islands and our results might be phvsicallv 
reasonable. A test using q = 2.0 which gives a dome-like Island V 

Sondeen Af=4/Í5 ÍOr X=2Trb/Le=3.0 which is slightly 
beyond the range of the experiment. However, this A, value lies 
as does our result for q = 1.0, within the uncertainty band of re¬ 
sults presented by Williams and Kartha. 7 

^^* Stability Analysis 

.i ^^ calculations with APPSIM2 and no iteration, viz. , 
p rating with only a single predictor/corrector step produced some 

wnat ragged results after several tens of time steps! A«ordin«lv 
a linear stabUlty analysis was made to examine the amplitude pfo^’ 
parties of the computational scheme. ^ 

For the stability analysis we set dn s 1 and defined the 
constant parameters " 

» = At ■ 

ß = At • Vjj /A 

Y s At • n(j/A 

R = At/A 

(24) 

The equations defining the computational scheme were linearized bv 

"“iitlnef OÍÜy rnCe qUantUle8 38 V;‘riables -d treating the" iVuPûzi“:''" E<|-Th“- *h' 
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u?j = -è«K,n - »ki> - j PK., - u,j.,) 

" 2 r(t1¡ + |] - 111.,1) (25) 

vij =vü - 2 a<vi+lj - Vi.,j) -7ß(vjj+| - Vjj.,) 

1 R<Tl¡j + l - lij-i) (26) 

^ = - IM,)¢(,,,.,. 

- ilV+KHu,.,, - u,.,,) - ^(v+RHv,,,, . Vjj.,) (27) 

The remalnlng Eqo. ((9.2,) of the corrector st 

»ImUar manner, where P value, appeared, the^lue, from Eo" 

Eo, I 9Wrn To '•>' resulting linearised f”„oV 
Bq,. (19-21) we introduced the Fourier component solution (or error) 

_ =el.t 

>d Pfdrmlne If „ values, either real or complex, 
exist such that W 1, a solution of the difference equation and where 

'Tf^hr1 ^ ^,h' - »"« v--“—.»- 

W = w Ve"''-V W) 

fl'.âêü,P°í"‘ ln Üm' and ■P3"' Thu*’ w' Insert Eq. (28) In the linearized u, v, n equations and obtain 
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* f . '.y 

[ A] w* = 

II al2 ai3 

a2l a22 a23 

31 a32 a33 

r *-1 
U 

= 0 (29) 

general^a Fn aij (ö'*ß»Y>R»A,o-| ,(r,,(x). Because W* ^ 0 in 

satlsffed oriy " | aITo” v“' “tíhf“'' T*?' rd <2’‘ <=“ »e 
the matrix A. The condition ’ í A I 1«!? f eig,envalues exists for 

HÍneaKr 9,tabillty dePends on the amifltude of n ff of ^ 
tion by Eqs, (16-21) would be termed linearly^table!" 1 ^ 

and is notnarXtducehdehCe0reefíÍburthrKrÍX A ^ Eq‘ (29) is 
First, if 0. = ZttAA and ß ? a A 7 rasults are as follows. 
\2, 1 M| and 02 = 2^A2' then for finite At, ' X.I and 

lim j(ji| = 1 
A-*0 

Similarly, for finite A, and X,, 

lim 
At~*0 

= 1 

The solution scheme is stable in these limit cases. 

Then, ’ Cd8e 62 " namely, *.2= oo, was investigated. 

IhI = íKy.0|) 

e0quaaHoSn w!tdh Î p^ Je ^ '° * implex, cubic 

lu, I = 1 + 0(^4) 

«c.‘«dP"8’ib„Ä*‘r Wi''' ‘I'“1 

ÍPz.sImo» - 1 

(30) 

to or slightly 

(31) 

lí'."»1»11 «.'1.“ '0,li,;,ry wav‘' '«»■putatlon with a = 0. 5 and 
0.25, wc have for 1 = 0. , , Y . 0.05, o < 0.05, ß ,0 K . 0,5, 
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and 

lu, I 1 + 7 X 10 7 < 1 + o(a) 

IH2,3Lx « 1.005 < 1 + 0(a) 

MQAnf > 2A* f°i.r = 2A' 1^1=1 exactly. Forsythe and Wasow 
I IVbOj suggest that the errors may be controllable and lead to a 
stable computation when 

ImI - 1 + 0(At) (32) 

In the present case a < At because a - uAt/A and u/A < 1; 
accordingly, the condition (32) can be written as ju.1 ^ 1 + O(a) 
Our computational experience with APPSIM which has 0Z = 0 always 
and does not use iteration also suggests that the computation is stable, 
at least for several hundred time steps. APPSIM2, however, because 
of its coupled (u, V, T|) equations and the propagation of error from 
he u-field where |u|j| is relatively large compared to the v-fleld 

and q-field, does require at least one iteration (which tends to make 
the computation more like an implicit scheme) to retain a smoothly 
varying solution on a smoothly varying bottom topography. 

3.5. Prognosis 

The computational results Indicate that APPSIM2 is a useful 
means of studying the evolution of flow fields in wave shoaling over 
smoothly varying bottom topography. However, the method requires 
considerable computer storage and moderate execution time. Thus, 
APPSIM2, which models nonlinear processes in nonbreaking waves, 
should be used only when nonlinear effects are expected to be sig¬ 
nificant, other methods (cf. , Section I ) being appropriate otherwise, 

1 1969aJ lndlcate* equations of KdV type used 
ln APPSIMZ should make the method applicable to a wide range of 
long wave problems. 

Two futher steps should be made In the development of the 
method. First, the linear stability property could be Improved by 
introduction of a second-order central difference method for the 
convective terms in Eqs. (18) and (21). This central difference 
I Fromm, 1968] leads to a modification of Eq. (31) such that 

1^2,3 Imox ~ * 

for most components of Interest. Alternatively, Eq. (21) can be 
made an entirely Implicit equation for qn [ cf., Eq. (19)]; this 
will eliminate the growing contribution represented by Eq. (31) and 
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caused by the explicit nature of the rj^1 equation. Second, a series 
of simulations of specific hydraulic models should be made to deter¬ 
mine the grid size A required to resolve the smallest significant 
feature of a problem and to determine the sensitivity of the simula¬ 
tion to discontinuous bottom topography. 

IV. SUMMAC 

Chan and Street [ 1970a] proposed the SUMMAC computing 
technique as a tool for analyzing two-dimensional finite-amplitude 
water waves under transient conditions. The method is, as noted 
above, a modified version of MAC which was developed by Welch, 
et al. [ 1966] . The essence of the initial modifications consisted of 
a~iTgorous application of the pressure boundary condition at the free 
surface and extrapolation of velocity components from the fluid 
interior so that Inaccuracy in shifting the surface boundary is kept 
at a minimum. 

The objective of this section is to provide a summary of the 
SUMMAC method, of its application to water wave problems and of 
a number of new improvements added to SUMMAC since Chan and 
Street [ 1970a] was written. 

4.1. Summary of the Method 

The fluid is regarded as incompressible and the effect of 
viscosity on the macroscopic behavior of flow is considered to be 
negligible. The entire flow field is covered with a rectangular mesh 
of cells, each of dimensions 6x and 6y. The center of each cell 
is numbered by the indices l and j, with i counting the columns 
in the x-dlrectlon and j counting the rows in the y-directlon of a 
fixed Cartesian coordinate system (Fig. 7). The field-variable 
values describing the flow are directly associated with these cells 
[ Welch, et al. 1966]. The fluid velocity components u and v and 
the pressure p are the dependent variables while the independent 
variables are x, y and the time variable t. 

In addition to the cell system which represents the flow field 
by a finite number of data points , there is a line of marker particles 
whose sole purpose is to indicate where the free surface is located. 
These hypothetical particles may or may not represent the actual 
fluid particles at the free surface, depending on whether one chooses 
the Lagranglan or the Eulerian point of view to calculate the motion of 

free surface. 

The marker-and-cell system provides an Instantaneous repre¬ 
sentation of the flow field for any particular time. When an initial 
set of conditions is given, the entire fluid configuration can be ad¬ 
vanced through a small but finite increment of time 6t. First, the 
pressure for each cell is obtained by solving a finite-difference 
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Fl8' 7' C'n ‘"“P and position oí variables 

t'o'X1' a - - velocltíei 

tíe^Vk thei,r new P°8ltions, thefr jÏÏoclH16 ^a(rker Particles are 

Th'80v''r;s“*""b»' 

(33) 
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(34) 

and 

(35) 

Here, p is the pressure; gx and gy are the x and y components 
of the gravity acceleration whose absolute value is g and t is the 
time variable. Also, if the direction of gravity is the same as the 
-y direction, then g„ = 0 and gy= - 1. 

Boundary conditions are easily derived for the fluid motion at 
the solid walls of the tank (cf. , Chan and Street [ 1970a] ). For incom¬ 
pressible fluids with very low viscosity, such as water, it is suffi¬ 
ciently accurate to use at the free surface the single condition 

(36) p = p0(x,t) 

where pa is the externally applied pressure at the free surface. 
Under usual circumstances pa = 0, but it can also be prescribed as 
a function of x and t for some problems . 

As shown in Fig. 7 the computation region is divided into a 
number of rectangular cells. The fluid pressure p is evaluated at 
the cell centers, while u is defined at the mid-point of the right-hand 
and left-hand sides of the cell and v is defined at the mld*polnt of 
the upper and lower sides. Then, for the cell (l,j) the following set 
of equations are derived from Eqs. (33) and (34): 

(37a) 

(37b) 

(37c) 

(37d) 

In the above equations, variables with the superscript n+1 
are related to the n + l,h time step. Variables lacking a superscript 
are evaluated at the n*h step. Thus, Eqs. (37) are suitable for 
updating the values of u and v about the cell (l,j). The 'convective 
contributions" u* and v* are 
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“4, =“4, ♦«(-uU-vlï^. 

v‘,*i “'"•i 

(38) 

(39) 
% 

ihrougli theJconvection^proces^a^ 7 and vu4 ' respectively, 

8PeClfleBd ffinlte difí— ^PProXaUn 

the p field must be obtaine^6 C^Wer^he ^^P^t^new velocities 
nulty equation [ see Eq. (35)] ^16 ^n^te-differ'ence conti- 

n*l n a I _ , 

-vi 
Sx 5y-- 0 

ÄrM ‘“to ^ requiring D« = „ le,d. to 

(40) 

Here 

PH “ ï + EUlLtElH t Ru) 

; s Z(* + 
'6x2 6y2 ' 

(41) 

(42) 

(43) 

Near the free surface "irregular stars" ÍFIa ai 
rive an appropriate pressure equation so thft ^ U8ed t0 de‘ 
the free surface condition p = D is anni«^ Î’ lv the dl8crete sense, 
Let ’Iz- tl3, n4 be the lengths If ^ ? tbe eXact Nation, 
star (Fig. 8) and p , p n n k» íuhe ^Ur legs of the Irregular 

legs. Then, it can'be s2how3ñ fíe Irre^uUrfftar p^e^ 0Í the8e 
irregujar-star pressure equation is 

S“Mi! to E<'- Eq. (44, ,. applled to a„ 

(44) 
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Fig. 8. Irregular star for p calculatloa» 

The hypothetical particles that mark the free surface are 
moved to theli now locations according to their locally Interpolated 
values of u and v. For a given particle k we find the velocity 
component u^ for the particle by making a Taylor series expansion 
about the nearest data point of the u field. Similarly, a series 
expansion about the nearest data point of the v field gives v^, the 
y-component of the particle velocity. With U|, and v^ available, 
each free surface marker particle is advanced by the following 
formulas: 

where x" 
nth time step, 
advanced, i.e, 

rul 
ck 

X, = XÜ + u"*1 5t 
(45) 

C = < + vr 6t 
and v¡J refer to the position of the 

.Alao^the particle velocities ar* 
n+lTn , time step. 

th particle at the 
evaluated at the 

The quantities u and v are not defined outside the fluid 
domain, but they are needed to carry out the computations using 
Eqs. (37) and (43) and the particle velocities near the free surface. 
We calculate these undefined u and v values by a simple linear 
extrapolation from the fluid interior. 

A complete set of initial data -- the u and v fields and the 
position of a line of particles depicting the free surface, are needed 
to start the computation. The initial pressure p needs to be known 
only approximately, such as a hydrostatic distribution, because the 
p field is solvable if u and v are given. 
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The evolution of fluid dynamics is calculated in "cycles ,11 or 
time steps. At the start of each cycle the source term R|j for 
each cell is evaluated by Eq. (43). The pressure p is computed 
only for those cells whose centers fall in the fluid region; either 
Eq. (41) or Eq. (44) is used as appropriate. The successive-over¬ 
relaxation method is used to solve the p field. The Iteration is 
terminated when 

(m) (m-l) 

Ü 
- P U < €„ (46) 

for every cell, where (m) means the m'" iteration and c*' is a 
predetermined small positive number. The accuracy in solving pij 
at the nth time step has a direct bearing on the accuracy of satisfy- 

! continuity equation =0 [ Eq. (41)] at the n+lth step. ing the continuity equation J_/|j 
Smaller values of D[j+I result when smaller cp are used. However, 
there is little improvement in reducing Djj for cp < 10'® because 
the round-off level of the computer has been reached. 

Now Eqs. (37) yield the new velocities. Then each marker 
particle is advanced to its new position by Eqs. (45). Thus a cycle 
is completed and the next one can be started immediately. 

The convective contributions given by Eqs. (38) and (39) can 
be approximated by a wide variety of finite difference formulas. 
Chan and Street [ 1970c] show that, while the original MAC and 
early SUMMAC equations used a first-order explicit method, second- 
order explicit methods are better. Of the two second-order explicit 
schemes studied, the so-called "upstream" difference alone rather 
than in a "phase-averaged" procedure yields better results in prob¬ 
lems where free surface waves are present. In^this upstream dif¬ 
ference, if W|m represents either u^ij or Vjj+i , then for the 
case when ujm > 0 and V|m > 0 

* XP-1,~ ~v w. = w7 , + (w. - w. ) 
im im-l 2 xm-2 im 

+ (ML(wJm_e- 2wim.( ■ wim, + wiJ (47) 

where 

wim = wMm +-Z-<wï-2m " wim> 

+ («-!)' 
T~ - “'"Mm ' w|m - Zw! 4. n \ + w.J (48) 

and 
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We examined the finite difference convection equations by the 
extended von Neumann method in which nonlinear equations are first 
linearized* The resulting criteria were 

(49) 

A second criterion 

St , 1 
"Sx < TT (50) 

where C = the surface wave celerity, was derived by considering 
the propagation of the free surface waves. These were simple linear 
analyses and can only be used as guidelines in choosing the time 
increment 6t for given 6x and 6y. Because numerical dispersion 
is quite severe for short wave components, care must be exercised 
to provide adequate resolution for all the important features in the 
flow. As a rule of thumb, the smallest significant flow feature must 
be represented by at least ten cells. 

In both the MAC and SUMMAC a line of particles was used to 
mark the free surface position. A pair of (x¡¡, yñ values were 
associated with the ^ particle at the nth time step. Then Eq. (45) 
was employed to calculate (xj+l, yj+l). This procedure is really a 
Lagrangian method that tends to be unstable after a large number of 
time steps. The problem is not serious for simulating solitary 
waves [cf. , Chan and Street, 1970a] . But, in calculating periodic 
waves a given particle is moved up and down as each wave passes. 
In ti.\ï process a small number is systematically added to and then 
subtracted from x¡, and y^ contributing to very large round-off 
errors. In addition, there is no restraint on the individual particle 
positions because each is calculated independently of the others. 

To overcome the difficulty with moving particles, an alterna¬ 
tive approach using the Eulerlan point of view can be developed. The 
flow region is divided by a number of vertical lines with equal spacing 
A and rj is now the height of the free surface measured from the 
reference level y = 0 at the channel bottom. The horizontal posi¬ 
tions of these vertical lines are fixed and we only compute the change 
in r| along each vertical line as time passes. 

The kinematic condition at the free surface, from the Eulerlan 
viewpoint ii 
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an 
W = v 

an 
(51) 

6Tu nCe.u e! may be develoPed to approximate Eq. (51). 
equation h°W ^ the for'vard imPliclt method with the difference 

r.n+t 
2k. at iJk = r,+1 n+l 

/ n+l 
(2k±i - 

2A 

n-l \ 
21JuLj (52) 

is one of the best. A stability analysis shows that Eq. (52) leads to 
a linearly stable computation with slight dampltng. 

. Numfrical tests were carried out in the context of a simple 

and Eq“%^aC„Y(48C)ltL““be”!tmen,S thU <“) 

tests was 
Eq. (49) 

Now consider 6t. The maximum fluid speed in the above 
1S " ~ 0'30 and 5x = 0.5 while 6y = 0.1. According to max 

5t < ax _ o. so 
ÏÏ73ÏÏ amax 

= 1.6: 

fëTon luïd X“e.wave is c -1 •18- -»ntl- 

at < ax 0.50 
TTTg 0.424 

But the Courant condition should also be observed in conputine 
the free surface. Because we used the spacing A = 0.05 at the ^-ee 8 
surface, the condition * at tnt .. ee 

at < T7TÏÏ = °-0424 

5tU<0b04?4tÍSÍTiedii fTihereiore' the m°st restrictive condition is 
Jt24, Ina11 the test examples, at = 0.05 was used. This is 

slightly larger than the estimated maximum allowable 5t, but no 
distortions or instabilities were noted. However, the result of 
seriously violating the Courant condition, i.e., using at = 0 10 

Tk8 a+lße u0,í'Phy/1Cal distortion9 that suggest one has to be careful about the choice of at. 
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S^KJ^jS^sa-aà?« 
The numerical tests described above indiratpH u i j 

.c'-'ri.-bf.rthe 

llf HFr” vr^í' 
^•2. Results and Discussion 

generatíl tíaeinaf!fPle'n?CTÍOdlC pressure Puls^ were used to 

<w t *T^uoid°u Sr;.«1" fT'Vtrr“1 dep,h distribution y 1 rest at ^ - 0. Then, the pressure 

Fig. 9. Setup of pressure pulse problem 
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k 
T" 10.000 

m 
T* 7i.rs* 

Ak 

T ■ 30.000 
T" 80.184 

T" 43.493 
T" 82.484 

T-7Í.988 T-84.833 

Fig. 11. Periodic waves (v contours) 

P.». incÂ ¡0; if shor- Th' 

"f Â25 

«b=C8¿. 984e âST/sTS" Sic« Htf VT“ ;‘de P^anneTat 

l»cWa»t „ave, lhaîft:ar«Â“eatXe^ca1*dh”Â 

"progreíaive®” wave pâttera.'S Sï““”/ ^ L| = 60-°- Tl>»» «>« 
sets in. The wave train 1« l be analyzed before the reflection 
The amplitude increases frc m & group of dispersive waves. 

It then d^creas^oTtr/fonowinïwa^ S ob^ ^ ^ 
that the nonlinear resnonse of t-b» ^ Thls observation suggests 

stra„ce de,crIbed bv^q.t3r:r,:T^Ä 

wave inBFiCpaUo ^ 8ymmet,rical Profile, we selected the fourth 

and third-order theoHc^Wiegel1 Tgl^/3 Qith Stokes ' second-order L vviegei, iyb4J . Good agreement with the 
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third-order theory la found. 

To obtain a meaningful comparison with the profiles of the 
Stokes waves, a Fourier analysis was performed on the profile 
computed by the SUMMAC method. The SUMMAC wave profile In 
Fig. 13 can be expanded In a Fourier series of the Stokes form 
[ Wlegel, 1964] . The coefficients can be evaluated by the standard 
procedures In calculus. The first ten coefficients have been com¬ 
puted and compared with those for the Stokes' theories. From the 
trend of each coefficient, It appeared that as the order of approxi¬ 
mation increases the Stokes' wave converges to our numerical 
solution. Also, in comparison of wave speeds we find good agree¬ 
ment with Stokes' third-order theory. The difference is within 
0.4 per cent. 

In Fig. 14 the distribution of u under the wave crest and the 
wave trough is compared with Stokes' theory. The SUMMAC method 
predicts a much lower u velocity under the crest than Stokes' solu¬ 
tions. This discrepancy is probably caused by the fact that the 
numerical simulation was made in a channel of finite length which is 
a closed system and the waves have not quite reached the steady 
state, while the Stokes' waves hold for an infinitely long channel. 
Nevertheless, the slope of the u-distribution (i.e., 0u/0y) is very 
close to that of the third-order theory. 

Fig. 14. Distribution of u under wave crest and trough 

182 

ÉÜ... ... . 



^m^sss^mfwmmmmm! mrnmmmmmßmmmitommmm ÿtfJrfe 3,¾¾¾^¾ T 

Computation of the Motion of Long Water Waves 

DIRECTION OF MASS TRANSPORT 

STILL WATER 
LEVEL 

if 

BACK CURRENT 

fi.es il.so U.1S le.oo ie.es le.so ie.7S 13.00 i3.es is. so 
X/d,, 

13.33 14.00 

Fig. 15. Motion of fluid particles 

The paths of the fluid particles are plotted in Fig, 15. We 
selected three fluid particles which He on the vertical plane x = 12.0 
at t = 0.0. Their initial vertical positions are y = 0.0, 0.5 and 
1.0, respectively. The Instantaneous particle positions are plotted 
at every 5 6t's (6t = 0.05). Each particle moves in an oscillatory 
pattern which completely differs in nature from the translation motion 
in a solitary wave. The surface particle travels in a quasi-elliptic 
orbit but never returns to its original position. Thus, there is a net 
mass transport in the direction of wave propagation near the free 
surface. At half water depth the scale of the orbits is smaller and 
the current (mass transport) is opposite to the wave direction. On 
the channel bottom the particle merely goes back and forth hori¬ 
zontally and the "backward current" is also larger there. Because 
the wave channel in our simulation is a closed system, the fluid 
carried along by the surface waves must return in the opposite 
direction in the lower fluid layers. 

Finally, a comparison was made with the numerical solutions 
of Fangmeler [ 1967] . The qualitative agreement was good, as was 
the agreement in the wave phase; however, the SUMMAC method 
gave a much better treatment of the free surface that markedly re¬ 
duced the height of the largest of the waves as compared to 
Fangmeier's simulation. 
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4.3. Prognosis 

The successful application of the SUMMAC technique to 
several physical problems Indicates Its usefulness as an engineering 
research tool for analyzing the dynamics of water waves in two space 
dimensions. It Is capable of providing accurate quantitative results 
as well as qualitative descriptions [see, e.g. , Chan and Street, 
1970b] . In addition, rapid advance in the design of high-speed com¬ 
puting systems makes numerical modelling economically feasible. 

While it is possible to employ the SUMMAC technique to 
attack a wide variety of water wave problems, some limitations 
inherent in the method must be noted. First, as a result of achieving 
a high degree of accuracy in applying the free surface pressure con¬ 
dition by using irregular stars, waves after breaking cannot be simu¬ 
lated. When breaking occurs, the computation must be terminated. 
Second, only non-turbulent flows are considered in our model. 
Although laminar viscous damping has little effect on large scale 
wave motions, energy dissipation due to the turbulence can be sig¬ 
nificant. However, a recent study by Pritchett [ 1970] shows that it 
is feasible to implement a heuristic simulation of turbulence in the 
MAC framework. 
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displacement of the free surface and the solid body from their cor' 
responding locations in the basic flow Is denoted by n = h(s,t). If 
the wetted side of the solid body and the free surface of the basic 
flow are taken to be n = 0, h(s ,t) is assumed to be a very small 
quantity. In W we have found that the linearized kinematic and 
dynamic boundary conditions on the free surface for the unsteady 
perturbation potential <|>| are 

(i) on n = 0 

and 
(2) on n = 0, 

and that the boundary condition on the solid body is 

(3) on n = 0. 

In the above equations R and qc are respectively the radius of curva¬ 
ture and the constant speed on the free surface of the basic flow, and 
q is the speed of the basic flow. The + (or -) sign on the rlpht- 
hãnd side of (2) holds for the upper (or lower) branch of the cavity 
wall; these signs are necessary to make R a positive quantity. We 
should mention here that in obtaining (2) we have assumed that the 
cavity pressure remains unchanged during the unsteady perturbation. 

If we regard qc/R as an equivalent gravitational acceleration 
and the s-coordinate rectilinear, then (1) and (2) are in the same 
form as the linearized free surface boundary conditions in wat|r wave 
problems. Thus we expect that the centrifugal acceleration qc/R 
due to the curvature of the basic flow streamline should play the role 
of a restoring force in producing and propagating the surface waves 
along the curved cavity wall. 

The purpose of the present paper is to use this perturbation 
theory to study some unsteady behavior of the Kirchhoff flow when the 
solid plate is in small harmonic oscillations. 

II. THE BASIC FLOW 

In this paper we consider the basic flow to be a flat plate held 
normal to an incoming uniform stream of infinite breadth, with a 
cavity formation of infinite length as shown in Fig. 2. This is the 
so-called Kirchhoff flow. Both the speed of the incoming stream and 
the length of the plate AB are taken to be unity. A set of Cartesian 
coordinates (x,y) with its origin at the stagnation point C Is chosen 
as indicated in Fig. 2, where the point I denotes the point at infinity. 
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Fig. 2 The basic flow and its conformal mapping planes 

r™. ° , °n of 11118 Problem can be obtained by the LevUrivtt» 
method in terms of a parametric variable ; (Gilbarg f 19601) 
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f.= 
K 
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(i! 
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»olid bodyiadfe-ardjd as a 8lven function of 
o % ds, which 18 purel r f Since along the 

’ Umay be written as 

Im f, = ., f* öh , 
1 J0 5Fd8 - q0h, 

(14) 
,w ere we have set Im f t- 
basic flow. For tu v 11 to zero at a = 0 * 

“«»P-d rot ,h„ Intrinsic coordinate*an^ 'Ä dSf^ ,h' 
0,n ’ “■« "»t«- that along CB 

and along CA 

qo=w0, (s,n) a (x,y), 
(15) 

q° ~ - wo> (s, n) (x,y). 

Im f = _ P Shi , 
1 J0 TT- dx ~ %h,. 

L"M‘8SUme,ha“he~d~AB u8lve„by 

(17) 

hjix.t) = e COs ut( 

where e is a ve 

‘"'¡»'ncy of 

”spec'to j >=-XÄ^rVshe "Ä« »ir- K to us, we may write (18) as 

h,(x,t) = eejwf. 

Part of 3 with resoert < f ’ we mean the real for i „ 7 ^or 
tains j. Onl-tr tr u ^ ,C* *° ^ not with resn#»of * • °r ^ma8inarv) 
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f,(z,t) = fizïe1“”. (20) 

boundary condón'.? ^°1 '“” ” *=>' «”» »urfaco 

Re H = 0 

where 
(21) 

H a d2f 
df; 

<22> 

which is an analytic function defined in the flow field. We may also 

H = -4 JT + ~ [¿jo. - i- In f w0 ÍZaY]df 
w0 dz Wo L df0 v 0 dfo^Jdz 

- ptju.i-ln (i-ia)]f. 
L df0 NWo dfoyJ (23) 

Since the differential operator L is purely real on the plate AB 

as (19) d (20)’ the boundary condition on AB may be written 

Im H = y. (24) 

where 

Y = [- W2x + jW(w0 + -L)l iL ln dw,, + \JX 
<L V w0/J df0 df0 L 

- jW(3w0 - i-)] In w0 + jcA + w2(w0 + ~) J - (25) 

The boundary conditions expressed in the forms of l?i\ =.,,^ /ja\ 
*» determine H for point, in thoU.Tor of ‘hj f!™ (fie!dmay 

Howeveri to obtain a physicallv acceotable H nfv»«*. v> j 
ditions have to be imposed oan%aCCePtable H* other boundary con- 

We shall assume that the free surface displacement due tn tv,» 

?hl ecfi:dd:',Urba"ue o'‘I" P1“» A» *» be boS evervl?.« This condition can be satisfied if the free surfa»» />-, „i vc^y"nere. 
bounded a, the .eparation point/ ^/"/„d'i/tr p^SãrS,;’ 
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It Ls shown Ln W that the curvature of the free surface of the basic 
flow ii? 

R 
at ¿bü! 

'o “'•o w„ df„ 
(26) 

where qc = 1 in our problem. From the local mapping behavior near 
|z| = oo between the w0-, f0- and z-planes shown in Fig. 2, we see 
that 

w0 + i ~ ajZ -1/2 (27) 

and 

fo~ - iz as oo, (28) 

where a. Ls a constant. In the following analysis we always use an 
to indicate some constant. The substitution of (27) and (28) into (26) 
gives us 

1 
IT 

-3/2 
0(|z| ) (29) 

on the free surface as |zj -* oo. Since we assume that the free sur¬ 
face displacement near the point at infinity has to be bounded, then, 
from (2) and (29), we have, near the point at infinity, 

+ ! 0. (30) 

For harmonic oscillations, (30) suggests that we may write 

¢, = A(fn)eJ as oo, (31) 

since along the free surface of the basic flow 8/8s = 8/8f(>, The 
substitution of (31) into (2) gives 

h . ± R “ as oo. (32) 

In view of (29) and (28), (32) implies that along the free surface near 
the point at infinity A = 0(z',/Z), at most, in order that h be bounded 
there. With h being bounded at infinity and having a form shown 
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ò”z-')2)ásWe|z|”_°“ai"'T'r.om ttat on the free ,urfaC6 

s"cV«ïer the O»1“ « /î*' 

Í» the SoTottt/fl UV° a»“"o'”ta.a « 
»0 assume ‘thlt* "Oss the poiu, ÍfmSy. 

^ 0 as 
oo. 

to ,„y induced circulation 

' ’ an lnte«ration of (1) will 3ho^ *,/8n = 

(33) 

Ô I _ 
0(r'^) 6 > 0 

these Pointsb,° rhh0wUrfbehboundned at’/ BWÍtc r ^ dÍ8tance fro1« 

-B V m °rd" thi* *he ■>-«- he^.eS^“1“'»H.pfa.o 

To facilitate the dp^py^' 
transformation determmation of H, let us introduce a 

(34) 

T=I<£ +{) 

C = r - (r2 . 1)1/2 (35) 

where the cut in the t ro, 
-i and 1, and (r2 . i)$2 18 taken along the straight line bet 
•napping (35) m,', thi’e,,,’/. a* |t| - /“ between 

as shown in Fiß 3 ts, *■ C basic fl°w onto the uoner v,=if ’ The 
becomes ^ 3' the variable r‘ ESL y”1“' 

v "21?raprrT)|j(Ko)3r2(l.r2)(2T(l.Tt),/2 + 4t 

+ a * 2 co»jt] + (Ra)2[r(l.T!)W(4.5r^ 

-.2T>.3lTttl0Ttat,2.3TWT]t2jKoT(> (36) 

where 
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h(t) = ^^(^.1)-^(^1 T(l-^'^y(rtdT + ^ bnT.| , (42| 

n = 0 

However, to satisfy (21), bh have to be purely real. The condition 
(33) is equivalent to 

H(t) -► 0 as IT I -► oo, 

since near z = oo 

To satisfy (43), 

T ~ a2z 1/2 

(43) 

(44) 

bn = 0 for n > 2. (45) 

Due to the symmetry of our problem, which implies 

Im f = 0 on Cl, (46) 

and due to the fact that the differential operator L is purely real on 
Cl, we require that 

b0= 0. (47) 

This leaves only the constant b| undetermined. After carrying out 
the Integrations in (42), we may write 

= ¿'TT-ltg 7-2(t2- i) t J(K^)3M, (t) + (Ku)2M2(t) 

- 2irjKcoT + bj^T2-!)1^ ] , (48) 

where 

M,(t> = rr‘(T!-i)(4r t,) t ’-4(1 t.lr2] 

- 2rV-DWlníií-- 2tV'-1)3Æ>(t), 

.2, 2 ,.1/2, 

(49) 
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M2(t) = 2hT(6t2-5) + i*4t‘-1> - 2(Ta-l)l/2 14G + 

+ T(4-5^(T>-i)'«l„Ii|+(2-3^(T!-l)W Mt), (50) 

G = Catalan's constant = 0.915965594, ( ( 

1 

and 

f 1 COS (T J_ 

Mt) = J | 
7f ^ cos ' cr — 0 , (52) 

-I 

which c^o. bo expressed In term, of elementary functions. 

It Is not difficult to *ee j'."™ *4®’ '“ich ilTii the order \r 

cates'that the* b^term’ls tlímÓsí important term for the flou, field 

near the point at infinity. 

With H given by (48), (22) may be regarded as a linear, 
second order, ordinary differential equation for f. 

if We transform the independent variable from í0 «o !, and 

make the following change of dependent var.able 

/dwn\l/2 -i"’® (53) 
f = F(U(2J0 » • 

The differential equation (22) is readily reduced to 

*-ijKw4^rF = G(U. 

where 

«» = (ff 

f0 and w0 as functions of 4 ^veli (35)’. To help 

tord tiÎp^Â^l? (¾. -/ns maKe the fol 

ing change of variables 

(54) 

(55) 

us 
follow- 
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; = le 
■21/3 

F = IFe -i/8 
(56) 

which transforms (54) into 

riZF 
^ + (1- 8jKw cos 2p)F = - 4iGe 

-31)8 
(57) 

This is Mathieu's differential equation. The flow region now occupies 
in the ß-plane a semi-infinite strip shown in Fig. 4. In principle, 
a general solution of (57), or (54), can be obtained. If we denote the 
solutions of the homogeneous equation of (54) by F,(^) and F2(4), 
then a general solution of (54) is 

= W(F| , F2) {Fl ^ § FZ(X.)G(\) d\ - F2(U y F! (X.)G(X) d\|, 

(58) 

where 

W(F,,F2) (59) 

which is a constant. 

Fig. 4 A conformal mapping plane of the basic flow 
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even though thev r^'h»“!“® ^ ^fV1 tne exact forms of F, and I 

Mathieu equation given in (57) ^We shaíl”1 i °íth! s°iutions of ^e 
• ' 718^11 > astead, obtain the asymp- 1 F /■» ao /.V —► — Mr ~ ,, 7 r 

In 

2» 
.* g * r w*x 

«OÜC ,ep„»e»ta«io». íor F, and F2 aa „ - We ahoujd iVnïSn 
here that Langer ï 19341* 1,= ,1 i ^ 2 as w -* oo. We should ment 

for the .„1U,‘f th. LaÍMeretaÍo^X/ifiL«1^. r*"“,8 

we .hall deHvï ,he a.^pTo "c Î" ‘^‘"^unU. 
F, and Fn 

Let us denote 

x(0 = i^-ii 
C3 (60) 

as then, the homogeneous equation of (54) can be written 

dZF 
¿Ç? = jKwxíüF. (61) 

.td^'hi^reTw ne7„P„:r‘t%t 7eX0bhlemdLe a“"1 ^ 
in the Ç-plane is a quarter circle as shown in^ig ZY ^n^thi WhlC^ 
X has a simple zero at r - i ^ n lg* In this region 

"e£.7nC,,¿]C)ha’'8e OÍ the var¡ablego 1, WfLd’^ 

2eM= f5 .,W 

and put 

x,/£ (Ü dC, 

-1/2 

F=(f) u, 

(62) 

(63) 

the differential Eq„ (61) becomes 
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díl* ^i(íü),/2 
r(í) = («) d? w 

= _Lf4 íu3^\26í\+3i 
16 Lp (^2- l)3 J 

(65) 

A straightforward expansion of (62) shows that 

•i/S 
£ = 0(£ ' ) as C - 0, (66) 

and, of course, 

r(ê) = 0(1) as 4 - 1. (67) 

Equation (66) Indicates that the mapping (62) ma-ps the point I to the 
point at infinity in the (j-plane. The flow region ICAT in the ê-plane 
is shown in Fig. 5. From (65) and (66) we can see that 

r(£) = 0(|t) as |£| — oo. (68) 

Olver [ 1954] has investigated an equation of the form 

d^J 

dê1 
= [>z4 + r(ê)]U, (69) 

where (iz is a positive large parameter. He shows that for a domain 
D, if r(|) is regular ln D and r(£) = 0( | £; l'1^*0) for some tr > 0 

Fig. 5 A conformal mapping plane of the basic flow 
region bounded between ICAI 
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does not .JL’ , 1 d^sttfnce between the boundary lines of D 
a uniforjl urr° as J1! ^ œ in any subdomain of D, then, 
h* níí ï J V^! exPt"8l°n of U in terms of Airy functions can 
u2 utaiinaed’ ^ 1957jl later extends the result, to the case when 
reou!remen»6 CfomPlex Pa™eter. For our problem, all the above 
functlonT ÎOl a..u”lformly valid expansion in terms of Airy 
jS where i / eX,Cept that the Paranieter in our case is 
i ¡ !t,J 1 , lmaglnary lndePendent of the imaginary unit 
i used m the compiex variabie g. Since i and j do not interact 

unft of Tarsbreoregard!d aS a real quantlty 80 far as the imaginary 
is concerned, we assume that Olver's result is aDDlicable 

here and write the two solutions of (64) as applicable 

U. Al[(jKw)l/3 I] [l (70) 

and 

u2 = A[[(jK„)l/3e !'l/:!4][l 0(s>1 as oo. (71) 

rxÏr^ssirfïL18 the iÍry functjon wlth argument X, which may be 
expressed either as the sum of two converging series or as an 
integral given in the following (Jeffreys & Jeffreys [ 1956]) 

oo e 2 »¡/3 

Ai(x) = JL f 
2irl J - 

ooe 2»-i/3 
e s ds. (72) 

Substituting X = (jKw) ^ £ into (72) and manipulating the result, 
can show that 6 ’ 

we 

A if (JKw) ^¾] = i{(l-ij)Ai[(lKw)l/3ê] + (l+lj)Al[(-iKw)l/3ê]} , (7 (73) 

where (i)'/3 and (-i)l/3 will be taken as e^6 and e respec¬ 
tively. Therefore, from (63) P 

F' = (ïï|) U 

1/2 

•1/2 

Kh|) {(l-ij)Ai[(lKw)l/5ê] + (l+ij)Ai[(-iKu))l/34]}. (74) 

Similarly, 
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t ",/2 

F2 = (ÏÏ?) U2 

~I / dê 
2 - 

-1/2 

(ïïÇ-) {(l-ij)Al[{iKo)) e ê] + (l+ij)Al[(-lKw)l/3e2,ri//3|]}. 

(75) 

In (74) and (75) 

-1/2 
' d|' 

1/4 

(ïït) = (x) ’ (76) 

where | is given by (62) and x given by (60). With F, and F2 
given in (74) and (75), we may find W(F| , Fz), which is 

w/TT TT \ ~ 1 /tr \,/3 W(F|,F2) --^(Kco) e , (77) 

or 

J_~ r/4 X/4 .M^i/61 
TOTTF? (•¡^[<l+lj|e ■ 178) 

Let us now express the solution F in terms of the T variable. 
From (4), (5) and (35), we have 

f0 = KT¿, 

("cfif) =4K2TZ(T2 - 1)[ T +(T2- l)l/2]2, 

(79) 

(80) 

and 

-1/2 

(4?) t-<7! (81) 

When we change the variable of integration in (58) from t, to T, we 
need the quantity df,/dT, which may be obtained from (35) and is 

dê 
ÏÏT -[t - (tk- 1)I/2](t2- 1)-|/2. (82) 

If we denote G(ê) dê/dr by g(T)e^l<u,T , then with the aid of (55), (48), 
(79),(80),(81) and (82) 
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k(t) = Ufr +VTgTT) - n 
.i -L i.KKu.j’M^r, +(Kw)2M (t) (t2-1)'/2 

- ¿irjKwr + bjTV8 .. ijl/2j _ 

¿IK i COmplt«twUhh0re8pect to“ f.Urely feal wlth respect to 1 

co-i “ andXt.remlly ama11 38 compáreTto th0«?1* that ^h? te™’ 
neglect’ ** 

g(r) ~ LH7 ^ /rg-7) - 1] , 

^ PC 1)^- ÍKKwJ'm^t) 

+ (Ka,)2Me(T) 

The asymptotic form of F can k 
n now be expressed as 

F ~ nwirrj lF.U(r)j fT f2[ w^‘d, 
'JaB 

where a 1« thf» ! 

F2(^). g(r) and WiF^F^arTgPen /n (7¾ F'(^> 
0 , .. ' {75>> (84) and (77). 

noting .heVeSZf ““ «.«If obfinod abov, ln[(¡ 

(84) 

(85) 

(1 ±ij)8 = 2(1 ±ij) 

(1 +U)(1 - ij) = 0 
(86) 

when we are taliir,„ 
the complex velor^ he real part of (¿0) with r* 

P velocity potential f, as lth respectto j. we obtain 

^ 2e 

(Kw),/3 (r - Vt-Z.Y _ jj 
IJA) 

1/1 

XU e^'^it-Kr^Ko-2) / 
(W1* íAl^K^è]Al[{lKii))l/3e-2^] _ 
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-Al||.iKj'>."^(Ul||.|KJ/.r)j(?/;.ru^| 

* d<r J 

•l»'. í «.d » ., Mellon, oí T .r.gly.ob, 

4iv,.yi.-'<r' d. 
J| ’ 

(87) 

and 

(88) 

(89) 

4 I indicai* lhe funcdonal values nt t 

variable t I. placed by tha l«.t.gr.5on vír “ue 

*'* (t*.,’)./! 1*^«) M^r) tiKw^M^r)], (go) 

(91) 

*,<T> * T*í «(T ♦ . ij, 
(92) 

B,' U "ZZVZZ.'l b"" ito'? '■ "t,''1"'' ,ro"> ».• »»d 
•liown In (,7, .%. cKo¿V‘f¿t o„r einvonî.^V' l!r’l,,,<>' ‘"■«smion 
nece.eary, homogeneoua «olullon« of the form hereÍ0re’ when 
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A(T)eM,'Kr2)Ai[(iKw),/3^] , 

A(T)ei^,-Kr2)Ai[(iKti)),/3e-2^] ^ 

A(T,e-Mt-KTZ)Ai[(_iKw)./3g] (93) 

and 

where 

A(r) = —JiZxi 1/4 

(94) 

may be added to (87). 

|r| > behavior of-,ha aolutio» (87) f„r 

drawn In the a-plane as indicated in Fio Y &Yi °f radlus Rl ls 
flgu« U a h.paaho.a S a^on ReT^.'^ a„. 

Fig' 6 8‘^ 
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If we are travelling along S In the direction of Increasing Im tr 
and if we restrict ourself to the first, second and fourth quadrants 
of the or-plane only, then on the right-hand side of S Re [ l(<r -r2)] 
< 0, and on the left-hand side Re [i(<rz-TZ)] > 0. When either Im r 
or Re T is zero, S degenerates into the positive real and imagi¬ 
nary cr-axes. 

From (88), we note that 

a7r 1/3 (95) 

and 

Arg ê = -t Arg t + í as oo (96) 

Therefore, for t and u large, the arguments of the Airy functions 
appearing in (87) are large. Their asymptotic representations are 
(cf. Jeffreys & Jeffreys [ 1956]), 

Ai[(lKw)'/3ê] 

r 1/3 - 2ir{/3 
AitUKuj) e £] 

_ e 

AiU-lKw^e] 

r 1/3 -2irl/3 
Ai[(-lKu>) e ê] 

iri 2 a»1/4«-i3/2 j., 

¡JTiZT* e'A 

when 

8 3 

^ e 

irl_ e 

24 7 

7* ^ ^ 5tt --^-CArgéC-g- 

when 

/Kit 5/1 

l/TSTV’ 

TF _ * a TT 
- < /irg 5 < -j- 

when - 4“ < Arg ^ < 4“> 

. -f¡/4 3/2 

5T 3 
a 

when • < Arg ê < -4“ 

(97) 

208 



rnrnmimmmm 

An Unsteady Cavity Flow 

A straightforward expansion shows that, as jr j > R 

-1/4 -- 

2x (T - 1 - i) 
1/4 wi/e .3/4 

¿ le T . (98) 

the paragraph after (SI), that^s6^^^6^131311311011 haS been given in 

. 1/4 

* tg|(T> +B(g3(T)] ~ B.Z^ie^T974 

-1/4 
X [g2(r) + ^ g3(r)] ~ ^z^ie^T974. 

grï“* 0' the POleMlal by 

(99) 

the first inte- 

00« 
{A¡((lK„)l/!|]A¡(,1K„,"e-»'/>e] 

- "['iK/’e-niAitaK»,«!!} d„. 

(IGO) 

grationyinT(100)hcan Llw^ys bÍ cholenco be~ L^hPath OÍ inte- 
conung from ooe'1/4 to t ® , f , L|’ which is a path 

of fbe hyperbola S and fhe ' Sa“ thLf ?S“"! 
typical L, is shown in Fig. 6. Since alnnl r 'l '1 Z A 
substitute the expansion given in (97) (9«) íqq!^ ’ We may 
obtain s {^n’ and (99) into (100) and 

eB 

ir(2Koi) 
2 3/4 ) :/4< 
t Jooe 1/4 

luft-Kr^Ko2) 
tr9/4sinh ¢(^ ,î) da, 

where 

(101) 

4>(e.ï) = j e^VR^e372 _ f^ 
(102) 
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We noíc that along Li the hyperbolic sine function in (101) may be- 

S Thefact°ne Ka/rg2e’ 2nWeVer’ SinCe L| lies on the right of 
S, the factor exp [IKcÍ^- tZ)] will be overwhelmingly small there. 
Let us now integrate (101) by parts once to get 

eB,i i t iuit-KÄKO-2) .. ^ 
iK^j6 ^ sinh #(£,I) 

f“--_ 
ir(2K«)WTV4 (2 

iftj(t-Kr2-»K<TZ)r 5 y ~ 
tri/4 e [T^sinh $(e,e) 

006 
ttí/4 

-r 
^00 i 

4,«|ícoSht(í,í)]d,} . (103) 

The integraiecJ part in (103) i^identically zero; when we evaluate it 

factor UevnrflKmí’ = °* and at the lower ^niit, the 
inte^.l M nffW<7 18 ?verwhelmingly small. If we integrate the 
integral (103) successively by parts and note the relation that 

d4> »1/4 dT -- .1/2 
^:=-e VKwê |i~72Kwff , (104) 

. ri/2 ,r/, r 3,ri^4 -^z 
where dfe/dcr ~ VZe <r is obtained from (88), we can show 

» cB|i iut -i 
e t 

4tr(Kw) 
(105) 

Since T = 0(zl/Z) as |z | — oo. from (104), we see that the contri¬ 
bution to the potential due to fj»> is of order |zj'l/z for Izl 

JhÍa lyPl °if potential is acceptable. Now, let us denote the 
fiwf1 f the Potentlal represented by the second integral in (87) by 
1l ■ 

,(w) 2e 

(KW)'^ (t - Vrz-1 - i) Jcoe'"'74 

Ç-iu(t-Kr2+K<r2) 

X j Ai[(-1KW)I/3 e] Ai[(-IK W),/3 e-2lri/:tl 

- A1[<WV2n]Al[<W^t(t/W%(,r)4 8,8/,,,) dd. 

(106) 

210 



¡paginipppmi 

An Unsteady Cavity Flow 

To investigate the behavior of f|W* for |r | > R , let us divide the L U ill V ^x-**wt*w* — - - J - i ) 

region in the first quadrant of the (r-plane outside the circular arc 
|<rl = R| into two parts, D| and D2' D|, as shown by the shaded 
area in Fig. 6, is bounded by the circular arc |(r| = R|, the imagi¬ 
nary o--axis and the hyperbola S' representing the equation 
Re (i^-Rfe^)] =0. Dz is bounded by the real <r-axis , 1^1 = 
and S'. For t in Dg, we may choose the path of integration in 
(106) to be L2, which is similar to L, except now it lies on the 
left-hand side of S. A typical Lz is shown in Fig. 6. Using a 
process similar to that used to obtain (105) from (100), we may 
obtain, from (106), 

'1 

f(w) _ e'B'i i 

4rr(Ku) 

-ittit -I 
e T (107) 

When T is in D|, the hyperbola S will be extremely close to both 
positive axes of the (r-plane, S degenerates into the axes when r 
lies on the imaginary <r-axis. For this case we have to deform the 
simple path LZ into L3+ L4, as shown in Fig. 6, in order that the 
factor exp [-lKa)(<rZ-TZ)] will not become exponentially large along 
the path. L, is a path coming from ooe to 0 on the lower-half 
e-plane, from there along the real <r-axis towards <r = i , turning a 
small circle to the upper side of the real <r-axis and along it to 0 
on the upper-half or-plane, to circumscribe the cut in the (r-plane, 
and then leaving 0 to ooe3*1/4. Path L4 comes from ooe3*'/ to 
T lying completely on the left-hand side of the hyperbola S and 
outside the circular arc |(r| = R,. The integration along L3 is 
convergent; near both ends of the path the integral is exponentially 
small, near <r = 0 M,(<r) and M2(tr), which appear in gA<r), are 
of order (rz and <r respectively and g3(<r) is of order (r , near 
a- = 1 only M2((t) contributes to g2((r) a square-root type of singu¬ 
larity. The latter property of M2(<r) is the reason that Mgicr) 
is being kept in the integrand together with the term (Kw) M3(tr). 
We may remark here that if we did not neglect the term ZttjKwT 
appearing in g2(<r) from g(r) in (83), we would have a term of the 
form ZmKtoo-. Since the presence of such a term would not affect the 
property of the integrand along Lj near^o^ = 0 and 1, and since it 
is one order in u> smaller than the (Kw) Mjia) term, its neglect is 
justified. Let us now denote the contribution to fjw) from the inte¬ 
gration along Lj by Z(t), 

(Z?75 - « 1 

liri/A 
ooe 

) -iri/4 
tJûD« 

- iKuJcr 
Ai[<-1K4I/5 (Ï/X )'/4l ^ 
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Wang 

00,3^)/4 
1/3 -27ri/3^ n p -iKduo-® 3 p 

I] . 
Jooe 
l3 

[g2(«r) +1^(0-)] da j . 

Ai[(-iK.)-e—e] jœ^4 e-- (î/^)l/4 

Ls 

(108) 

We note that when t is in D| the Airy function 
exponentially large and Ai[(- ¡ Allt 1Kw, ÊJ is 

Therefore, L orler ,hat ^ tl zerVj’lT-Z ÍnV™" 

mr/^oSUrfc:e„"' »•= -- Thu“diL’,.We 

B, ej e"K“'Ai[(-IKlo)l/3e'2’,i/|](?/7),/4g2(e)de/ 

J ■*'"<“''Ai[(-!Ka,)l/3e-2'i/3rj(rA')l/483(e)de. (109) 

3 

TWiSe liflD8‘V.Z(T) bec»”es exponentially .mall when 
IS in D,. We shall not attempt to evaluate TS, exolicitlv in = 

paper, however, In view of (91, Pa„d (92) w. may'concíñdf.hát 

= 0[(Ko,)3]. (110) 

,¾ ^hÄ-rr % 

f,(w)~ Z(t)-r f Kr2+Kcrz) 
4tt(Kw) T3/4t Jœe3,r/4 

L/i 

XaV4sinh [2 d(ri 

(HI) 

Now> if we apply the method of integration by parts to the intesral 

nlÄnlll“" *h”W'b*'^ T *" Dr^ Z<v) belnPexpo-1 

Jw) eBi i -iu,t -I 
— i ^ e t 

47t(Kco) 
(112) 

Summing up all the results obtained in (105), (107) and (112), we 
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have 

f|~ el—g (B, e'1*1* + 15,e~i<‘)>)T~' as (H3) 

4ir(K(«)) 

From (113) we may derive the following results: (l) From (110) 
we may conclude that f, « eKo). (11) For T lying on the real T-axls, 
which corresponds to the cavity wall of the basic flow, f| Is purely 
Imaginary; this Indicates that near the point at Infinity the perturbation 
velocity W| = 8f|/0z is always perpendicular to the original cavity 
wall. (Ill) If we recall that t = 0(zl/2) as | r | — oo, we can see that 
the perturbation velocity Is of order | z for large values of |z | ; 
this , together with the result stated ln (ll), Implies that the unsteady 
free surface displacement tends to zero as |z| oo. (Iv) Along the 
Imaginary T-axls , which corresponds to the line of symmetry of the 
flow, fi Is purely real; this means that there Is no velocity component 
normal to the line of symmetry which, of course, Is what we should 

expect. 

It should be pointed out here that the order of magnitude and 
the direction of the perturbation velocity on the free surface near 
the point at infinity agree with the results obtained by Wang and Wu 
[ 1963] In the study of small-time behavior of unsteady cavity flows. 

Finally, we shall investigate the behavior of the solution (87) 
near the separation point t = 1. From (4), (35) and (5), the pertur¬ 
bation velocity W| may be written as 

Equation (114) Indicates that the singular behavior of w, near t = 1 
can be studied from that of 8f /8t near t = 1. Let us now differ¬ 
entiate fi given by (87) with respect to T. The differentiation of 
f, with respect to T may be viewed as consisting of four parts; the 
differentiation of the r appearing in the limits of Integration, the 
differentiation of the factors exp (±IKu>tz) , the differentiation of the 
Airy functions with respect to T, and the differentiation of the factor 
in front of the curely brackets in (87). Only the latter two parts 
produce terms of the form a7(rz - l)"' near r = 1; all the other 
parts either give zero or a finite contribution to Wj, Therefore, 
condition (34) and the condition that the pressure is integrable over 
the plate AB are satisfied. 

Since the solution given by (87) behaves properly at infinity and 
at the separation point, we conclude that it is the solution of the 
problem; no additional solution of the homogeneous equation, as 
shown in (93) needs to be added. 
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DEEP-SEA TIDES 

Walter H. Munk 
University of California 
San Diego, California 

ABSTRACT 

The classical Laplace tidal theory, when applied in 
numerical form to the world's ocean basins, does not 
yield results in good accord with observations. In 
part, this may be due to density stratification and in¬ 
ternal tides (coupled to external tides); and in part to 
dissipation at the ocean boundaries. At a given port 
the spectrum of the observed tides shows a complicated 
line structure superimposed over a continuum. The 
continuum rises at the frequencies where the lines are 
clustered, probably as a result of internal tides. 

Tide dissipation leads to an exchange of angular mo¬ 
mentum between the spin of the earth and the orbit of 
the moon. As a result of this spin-orbital coupling, 
the length of day and month are both increasing. Ob¬ 
servations of the moon since 1680, of Babylonian 
eclipses and of the structure of Devonian tropical coral 
(which give the number of Devonian days per year) 
confirm these calculations. 

To untangle these problems, it is probably necessary 
to make observations in the deep sea, relatively re¬ 
moved from the scattering and absorbing boundaries. 
Such observations have now been made for the last three 
years, and they yield relatively clear pictures of the 
deep-sea tidal pattern. The tides in the northeast 
Pacific can be roughly accounted for by superposition 
of a northward-traveling Kelvin wave (trapped by 
rotation to the bi idary) and a southward-traveling non- 
trapped Poincaré wave. 

In order for the calculations to be realistic , they need 
take into account the tidal yielding of the sea floor. 
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STABILITY OF AND WAVES IN STRATIFIED FLOWS 

Chia-Shun Yih 
University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

A theorem giving sufficient conditions for stability 
of stratified flows, which is a natural generalization 
of Rayleigh's theorem for shear flows of a homogeneous 
fluid, is given. Sufficient conditions for the existence 
of singular neutral modes , and consequently of unstable 
modes, are also presented, and in the development the 
possibility of multi-valued wave number for neutral 
stability of the same flow is explained. Finally, neutral 
waves with a wave velocity outside of the range of the 
velocity of flow (non-singular modes) are studied, and 
results concerning the possibility of these waves are 
given. In addition. Miles' theorem [ 196i] on the stability 
j stratified flows for which the Richardson number is 
nowhere less than 1/4, and Howard's semi-circle theorem 
L1961J are extended to fluids with density discontinuities. 

I. INTRODUCTION 

The stability of stratified flows of an inviscid fluid has been 
studied in a general way, i.e. , without specifying the actual density 

nqSftl MH Synge [\933] ’ Ylh Î 195?] • Drazin [J958V Mlles[ 1961 , 1963] , Howard [ 1961] , and others. Of these, 
Miles has made particularly substantial contributions to the subject. 

following* many queStions sti11 remain open. Among these are the 

(i) Miles [1961] showed that if the Richardson number is 
nowhere less than 1/4, the flow must be stable. This 
is a sufficient condition for stability. What can one sa) 
regarding the stability of the flow when the Richardson" 
number is less than 1/4 in part or all of the fluid? Are 
there then some sufficient conditions for stability not 

Preceding page blank 
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(il) 

(Ul) 

(iv) 

covered by 

Sict»«e”oStta for stability of a homogeneous 

fluid In shear flow? 

Are there some sufficient conditions for instability? 

Miles f 1963] has shown that the wave number at neutral 
Miles L 17 J ,,ift..valned for the same ñow, in an 
stability can be multi- distribution and 

r^ciafvSylutriSiom — 
for this , even if not completely general? 

Do internal waives flow^xlst?*0How'many mides 

^gtehe0rfe? Whit K character of each mode? 

In this paper th® mLn^with^t numerical 
general a way as possible. y ® , tlons for special flows, 
computation." Aithough spec are l ortant beCause they often 
Involving the use of computer , if the subject, and sometimes 
give us insight into and understanding oltne su j , often 

Ire of practical mtsre.t, ein glneral^rs.ults be 
more useful. The question natur^ly ^b®®tS^ith tncreasing cost in 
continually improved an s P ’g? The answer to this question 
labor, but without the use of co p dent more than anything 
necessarily reveals the attitude ° matlvPf and the results contained 
else. My answer to it is ln t^ interest or merit they may have 

*o —- fal,h- 
in addition, some 0^01«" ttr.mlÍST 

mentioned in (i) above, anc o anDiicable to fluids with discon- 

II. differential system governing stability 

If U and "p denote the velocity (in ^-d^rectlonUnd^ 

density, respectively. of ^¿““^ponent. of the perturbation in 

velocity in the1 directions of Increasing x and y, the linearised 

equations of motion are 

"ptu, + Uux + U'v) = 

(2) 
P(vt +Uvx) = - Py- SP» 

h, Which subscript, indicate partial differentiation, « denotes time. 

220 





Uh 

tpiu-ci'r'j' *»((>(.k^u-c^jF » o, (9) 

», H.w.td(1960 to 

mífiT*™?0 *"d ? <• 

SfF 
a«"-. o< mIvi te«- *• ».n nT.ssrÄs*^to 

SiMÄ3cÄ-r:Ä“-the 

^p), = ÍPI - pu)( 
(10) 

(11) 

VUiiheT, °‘ ,'*»nllnully. M a f,ee .urface p 

(U-c)2F'-gF, (i2 

thp rtppih.he!/[hc uj^er/uría0««11!00« t0 bc aPPlled *t y = d d b . 
,h.r. ,. w" •""*'• '• '"«..d O, fr„r the condition* 

(12a) 
F(d) • 0. 

The heead.,, cond!,,^ ., hott.n,. .fc.„ y , 0, 

F(0) • 0, 
(13) 
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Stability of and Waves in Stratified Flows 

P ^-^16 deviation of the pressure from the hydrostatic pressure in 
the primary flow, p is the density perturbation, g is the gravi¬ 
tational acceleration, and 

U i _ dU 
dy ‘ 

The equation of continuity 

u + y = 0 X y 

permits the use of a stream function i|>, in terms of which the velocity 
components can be expressed: 

u = V = - 4jx. (3) 

The linearized form of the equation of incompressibility is 

pt + Up, + vp' = 0, (4) 

in which 

0' = 
dy * 

If T) Is the vertical displacement of a line of constant density 
from its mean position, the kinematic relationship 

Tl, + Uq* = V = - (5) 

holds. All perturbation quantities will be assumed to be periodic in 
X and have the exponential factor exp ik(x - ct), so that from (5) and 
(3) we have 

ijj = - (U-c)ti, u = - [ (U-c)r|]', v=ik(U-c)r|. (6) 

Then (1) and (4) give 

p = p(U- c)2y and p = - p 'n. (7) 

W riting 

r)(x,y ,t ) = F(y)e iK(x - ct) 
(8) 
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(14) 

(15) 

III. EXTENSION OF MILES' THEOREM 

Following Howard [ 1961] , we set 

G = W^F, 

where W = U - c. Then (9) can be written as 

(pWG1)' - [ (pUT/Z + k^W + pw'tu'2^ - gp] G = 0. 

The boundary condition at the bottom is 

G(0) = 0. 

The interfacial conditions (11) become 

^(WG1 - U'G/2)i - Pu(WG' - U'G/2)u = g^Wc, (16) 

to be applied at the surfaces of density discontinuity, and in particu¬ 
lar the upper-surface condition becomes 

WG' - U'G/2 = gW_lG, or G(d) = 0, (17) 

depending on whether the upper surface is free or fixed. 

Multinlvlne (14) by G*. where the asterisk indicates the com¬ 
plex conjugate, and integrating from the bottom to the first surface 
of density discontinuity and then from discontinuity to dlscontlnmty 
throughout the fluid domain, and utilizing (15), (16), and (17), we 

have 

CpWllc'l*-McWl ^(îuVIclVz +Jïlu'Vi - grtw*|o/w|! 

- yg<VW*|C/w|! -YllpU'), - (pu\l |G|!/2 = 0. t‘8) 

i 

in which each of the integrals is over the entire f u^d 
of the surfaces of density discontinuity (i.e., 
inteorals over the layers of continuous density distributions), an 

the* f umm all on ‘i s ov.Vr the dUcon.lnuit.e., “„"f .t'taag Inary 
if there is one. If the flow is unstable, c( > 0, and the imagina y 

part of (18) is 

^[¡G'|!+kW] tjnse-U'74]|G/W¡! *^gV|G/W|2 = 0.^ 
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from which it is again evident that if 

gp > U,2/4 

everywhere in the fluid exclusive of the Interfaces and the free surface 
(if there is one), the flow must be stable. 

IV. EXTENSION OF HOWARD'S SEMI-CIRCLE THEOREM 

Equation (9) can be written as 

(7W2F')' +p(ßg - kZWZ)F = 0. 

* 
Multiplying this equation by F , the complex conjugate of F, inte¬ 
grating throughout the fluid domain and using the boundary or Inter- 
facial conditions (11), (12), and (13), we have 

ypW^lF’l2!- kZ|F|'] PgP|F|Z-^gA,p|F|e = 0, (20) 

¡ 

in which the summation is over the surfaces of density discontinuity, 
and the integrals extend throughout the fluid exclusive of the surface 
of discontinuity in density. The real and imaginary parts of (20) are 

Jp[(U-cr)Z - Ci2][ |F'|2 +kZ|F|2] -JpgPlFl2 - YgAiplFl2 = 0, 

2Ciy p(U - cr)[ |F'|2 +kZ|F|2] =0. (22) 

Writing 

Q = p! |F'|2 + kZ|F|Z] , 

we obtain from (22) 

JuO = cr Çq, (23) 

then from this and from (21) we obtain 

J UZQ = (crZ + c.2)^ Q + JgpPlFl2 + ^gAj^lFl2. (24) 

i 
If a and b are respectively the minimum and the maximum of U, 
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so that aS US b, we have 

J (U - a)(U - b)Q = J 0¾ - (a + b)^ UÛ + abj Q 

= [ cr +C, - (a + b)cf + ab]j Q + JgpB|F|Z p|f|2, 

i 
after using (23), This means that 

[cf - (a +b)/2]2 + C,2 S [ (b - a)/z]2, (25) 

that is , the complex wave velocity c for any unstable mode must lie 
Inside the semi-circle in the upper half-plane, which has the range of 
U for diameter. Thus Howard's semi-circle theorem is recovered. 

-2 -2 
From (19) and noting that |w| — Cj , we deduce that 

2 2 2 
k c, 'S max ( U' /4 - gß) (26) 

remains valid even if there are surfaces of discontinuity in density. 
In (26) we exclude these surfaces in the evaluation of ß. It is easy 
to see that (26) contains Miles' theorem. 

V. SUFFICIENT CONDITIONS FOR STABILITY 

Miles' theorem gives a ai/Tcient condition for stability. But 
it certainly does not guarantee Instability if the local Richardson 
number j(y) defined by 

(27) 
U 

is less than 1-/4 in part of the fluid or even all of the fluid. We shall 
sharpen Miles' sufficient condition for stability by deriving two 
theorems which constitute, more than anything hitherto known, the 
natural generalization of Rayleigh's theorem for the stability of a 
homogeneous invlscid fluid. 

For the discussion in this section it is more convenient to use 
the stream function 

4, = f(y)eik(,<-c,) . (28) 

Comparison with (6) and (8) shows that 
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f(y) = (c - U)F(y). 

In terms of f(y), the governing equation (9) becomes 

(pfV + c - U 
..... SP' 1 

(c - U)ZJ 
f = 0. (30) 

Equation (30) can be made dimensionless by the use of the 
variables new 

A f A _ 

f=V’ p= í' y -y û--y 
d ’ U - V ’ V ’ (31) 

where p0 is a reference density and V a reference velocity. Then 
(30) becomes, after the circumflexes are dropped, 

(pf)' + ^ £=0» (32) 
(c - U) J 

m ™h}ch everything is now dimensionless, the accents Indicate differ¬ 
entiation with respect to the dimensionless y. 

» = kd 

is the dimensionless wave number, and 

N = gd/VZ 

(33) 

(34) 

is actually the reciprocal of the square of a Froude number. The 
appearance of N does not necessarily signify the importance of sur¬ 
face waves, since it appears even if the upper boundary is fixed. 
I he fact that it is associated by multiplication to p' indicates that 
the entire term represents the effect of gravity in a stratified fluid 
in shear flow* 

Henceforth in this paper we shall consider rigid boundaries 
only, for which the boundary conditions are 

f(0) = 0 and f(l) = 0, 

to be imposed on the function f in (32). 

(35a,b) 
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f* iS then clfa!r,that the system consisting of (32) and (35a,b) 
gives, for a non-trivial solution, a relationship 

F (ö,N,c) = 0. (36) 

Since c is complex, (36) has a real part and an imaginary part. 

.i ' ÍS 8et,t0, Zer° and cr eliminated from the two component 
equations, a relationship ^ 
When C| 

F2(«,N) = 0, (37) 

if one such exists, gives the neutral-stability curve. It is possible, 
however, that c is real for all values of o and N, in which case 
cj - m the entire N - a plane, and then of course there is no 
neutral-stability curve because one component equation of (36) is 
C. — O O V* rl 3«. m3   1 / -ï / V f , mu ... * = 0, and the other is simply (36) Itself, with the c therein real. 

In this section, we shall assume p and U to be continuous, 
analytic, and monotonie. Furthermore, we assume p’< 0 throughout. 
We now recall the following known results: 

(i) 

(Ü) 

(ill) 

If J(y) is not less than 1/4 for the entire fluid domain, 
then the flow is stable [Miles 196l] , 

If c. * 0 then cf must be equal to U at some point In 
the flow, as a consequence of the semi-circle theorem 
of Howard [ 1961] , and 

If an eigenfunction exists for (c , a , N ), then near 
that point c is a continuous function of a and N. 
[Miles 1963 and Lin 1945]. 

Under the assumptions we have made on p and U, and in 
view of the known results just cited, we conclude that the non-existence 
o any singular neutral mode, which is a mode with a real c equal to 
U at some point in the flow, implies the non-existence of unstable 
modes. The reason is as follows. In the N-o plane there is always 
a region of stability. For we can imagine g and hence J(y) to ln- 
crease Indefiniteiy, untfl J(y) is everywhere greater than 1/4, which 
is attainable since ß is nowhere zero. Thus there is a region of 
large N for which the flow is stable, if unstable modes exist there 
must then be a stability boundary dividing the region of stability from 
the region of Instability, and hence a neutral-stability curve. As we 
approach that curve from the region of instability, c. being within 
the range of U so long as Cj * 0 and continuous in a and N so 
long as c is an eigenvalue, according to (ill) above, in the limit, 
when c, = 0, cr must be within the range of U, i.e. , the limiting 
mode must be a singular neutral mode. Hence the non-existence of a 
singular neutral mode implies the non-existence of unstable modes. 
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"o equafs^ the* maxim um'mfnimum ^ ^ ^ 
of contiguous unstable modes, as a con«™ 0068 ^ Ímply the exÍ8‘ence 
theorem of Howard. Hence we need not- ,quence of the senai-clrcle 
special border cases In eed ^ot be concerned with these 

modes it is sufficient to demonstrate the ^ non'existence of unstable 
neutral modes with a < c < b, where a isTh f ^ °f sinS^r 
maximum of U. a the «Minimum and b the 

are impos^ble ft^mototoH^ neutral mode8 
demonstration he actually showed thJ ‘ , eve*ywhere. In his 
a J(yc) > 1/4 at the place y = y where nfutral m°de with 
we need only consider the case CJ(y ) < 1/4 '.C lmp08sible* He^e 
«»«.„ce or Si»,»:» neutril modW -Fo/^/r/r™ Ä“- 

1/2 

where 

with 

fi = (y - yj 

w, = 1 + A(y - y ) + ... 

(38) 

(39) 

(40) 

tonic U only. HencÍ tíiTs1^síriítrot'on ,Sha11 consider mono- 
results in this paper.] The othe~ « 1 ti does not affect our 

•o be oí the USA/rd V,"",“1"* “ 
The result, after division by , coL.an.^ 

^ ' Mn (y - yt) - [ (In p)0'J (y - . r B,y - t ..., , (41) 

»here B i. a consta»,. N„w th. Reynolds stress defined by 

T = -ï^. (42) 

where the bar over uv mean*? 
pressed in terms of f as °r SPaCC avera8e» can be ex- 

T=-T-«(f'Ae 2aCjt 

(43) 
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f'f*\ f f is real for ,r ’ lt ia easY to spa * g, e sIngu- 

"•Pondato'aj “"«giorathiaj^'. ( If Tfff" rle& "" 

—... ?an -i 

For J(y ) < , /, xx, °n the case J(y , <7/ 
'yc' < V4 Miles Í 196il c ' * 

gave the solutions of (32): 
* /_ \ . /. . . . 

in which 

Vy} = (y - yc)(,1*')/2Wf 
(44) 

wt = i + A(y - yc)/(i ± V) +>>>j 

A glvenby(40)(butwit ’• (45) 

( V,/2 herein] and 

^ = (1 - 4Je, 
Jc = J(yc). w ^\yq!• 

less. Milesirl96lld (45} With a11 terms the ^ 
tion, if one exis^/mL* .5,06"507J showed thatnfoC°n?Ídere/d dímen8Íon 

the" ^hint by Considering" f6 eIth?r f+ or f-. WecanV^4 the soln- 
°ther ca- is strictly simn^ 8°IUtÍ0n- ^he ^Tr^LTL 

The studv of fVio 

MUuÏff’fd ’¡«f of th* «ras0ofT d|ílned by l32> »»0 (35a b) 

in '.‘u/nY/a^a, ' 
«...V .Mata ^ 

y w, we can 

(pz^w1)' + T ~ -2 — r~ 

With Z = y (C-U^W = 0’(47) 
y yc» and Y = (1 ± v)/2> 

We are now in a positi.. 
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Z°c)< W4. hWee XWconsaideriSf neonTy8aT C°nSlder the 
the same, and since the solution is either ^ thefpro°f for f- is 
we f - o. Near y we Save f+ 0r f-' N°W at V = yc 

c 
we have f = •f 

0 s - Np' 

(U-c)2 2 
PcJc 

[¡P(ln P)"/ 
p TT (48) 

is negative and 
Thus U-c 

U' and (pU1)' 
Since p' 
positive, 
hand 

tive. We know that for small ¿o^sitiCe 

are positive, U" is 

p/p IS less than (-o'/ñ\ c ^ r , u* °n the other 

Ve know that for small oosfti^ 7 Q ^i’g nÍSV P> " ÍS P°SÍ' 
w is negative, as can be 

_ r , -- oiiiaii posit 
seen from (48). Hence for any z> 

0 the term 

is less than 
behavior of 

since 

y > yc 

- Np' 

(U - C)2 

f JtA! and O ;» negative Eq„a,lon ,48) eithIMt, the 

, a:Vh, 47' .be «"»«ed by - G. 

' c / - 
Q near y 

Thon a ince Q i, ne.áfi've and . ' ln |47) be ( 
aince ï' is neá«L.g .“1',U ‘ c .ls P»a“lve Ion y > y, , and P is negative and (pU’)' oosltivp r 7c  - 

.,, Multiplying (47) by w and intpn ’f,G f111184 be Positive for 
we have S / °y w and integrating between yc and 1 , 

a'W2 + Gw^) dy a 0. (49) 

V N«e« » 
simple pole 1» two terms contained ii r '"8""' ’P1" °f *b' 
indicated by (48). Equation r-i i G T" °ne of which in Q, as 
aero. Hence the theorem! 9’ Sh°”S th*' »I*» oannot be 

Another theorem is 

Theorem 2. Tf ~ñ ^TT 

""^^^^^Tïh^îïTing u^arneTItrãTTnodeT^irenünpõ s s Ü?i 

The o n 1 y" m o d ifi c a t ion4 d e mam^ec^ fo r ^ fa ^ t ^3 T ^ Th— ^ 
Should write oemanded for clarity is that instead of (44) we 

f*(y) = zUtv)/\ (z) 

with z now defined as 
is now The equation corresponding to (47) 
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^[pz2y^w] +z2r[-Jcpz-Z + YpV - otp --Ji£l_]w = 0, 
(c - U) J 

(50) 

in which, it must be emphasized, all accents Indicate differentiation 
with respect to y, not z. The rest is strictly similar to the proof 
for Theorem 1, except the range of integration is between z = 0 and 
z - yc (or between y = yc and y = 0), and we want to show w ^ 0 at 
y = 0, Note also that U"< 0 now guarantees (pU1)1 < 0. 

Since the non-existence of singular neutral modes implies the 
non-existence of unstable modes, we have also 

Theorem3. If P and U are continuous and analytic, with 
negative and U' positive, and if either CpU')' and (Inp)" are both 
positive throughout, or U" and (In?)" are negative throughout, 
the flow is stable. 

This theorem is the natural generalization of Rayleigh's theorem for 
inviscid homogeneous fluids in shear flow. Previous attempts at this 
generalization [Synge 1933, Yih 1957, Drazin 1958] have produced 
the result that there must be stability if (in dimensional terms) 

u - s> (pUr 

|U-c|! p 

does not change sign. This criterion is not useful because it involves 
not only cr but also c¡. 

VI. SUFFICIENT CONDITIONS FOR INSTABILITY 

Sufficient conditions for instability have seldom been given in 
studies of hydrodynamic stability. In giving some such conditions, 
we shall also be able to explain why the a can be multi-valued for 
the same N, at neutral stability. 

We assume that p and U are analytic, that p' :£ 0, and that 
at a point where p1 = 0, U" is also zero. The value of U at that 
point will be denoted by Uc, for we shall consider the possibility of 
having c equal to U _at that point. We demand that at any other 
point where U = Uc, p' = 0 = U" must be satisfied. If U is mono¬ 
tonie, of course there is only one point at which U = U . c 

_ Under the assumptions made, p" must be zero at y , since 
p' is never positive, and near ye 
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= Pc(y - yc)* 

if 

y 
Pcw-in,n0t ae,r0 P' would be positive for y slightly larger than 

reallzatlon» it is immediately clear that the bracket 
n (32) has no singularity at y . Let us denote the bracket in (32) 

by the sumbol B, which is a function of y, a, and N. Then if m 
is the minimum of B/p between two points y and y , with 
0 - Vi < y» ~ 1 > for « = 0 , and if 

m (mr)‘ 

(yz - y, )2 
n = a positive integer, (51) 

by the use of Sturm's first comparison theorem we know that there 
ust be at least n zeros of f between y. and y, , whatever the 

value of f(0) and f'(0). (Note that the "p in m or in (32) is dimen 

thereTmust Z* tT al.ways.choose f(°) = 0- « (51) is satisfied then 
so that ^ K c? Í1 internal zeros of f. We can increase « 
so that, again by Sturm s first comparison theorem 

f(D = 0 

foi 

« = , a2, a3, ... , an, 

where 

»j < a, < a,< .., < a„. 

It is evident that for a = a, there are at least n- i internal zeros. 

Hence we have 

Tj?-?°rem 4» Under the assumptions stated in the second paragraph 
of^this section, if (51) is satisfied there are at least n modes with -------—i---^ XI IllUaCB Wltn 

~ UP and a ~ al ([.- L> 2, ..., n), and with a, increasine with 1. 
ForJhe_i-th_mode there ar~at "least n - i' - 

it is easy to show, by exactly the same approach used by Lin [ 1955, 
PP’ /22-123), which we shall not repeat here, that by varying a2 
slightly (now not necessarily by decreasing it, as is in Lin's case), 
c will become complex. Hence we have 

Theorem 5. Near the neutral modes stated in Theorem 4. there 
are contiguous unstable modes. ---- 
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there can be mTny vafue^fo^a f0r ÎÎ!6 Same N* given P and U, 
curves), which has been observed by Mlïes7?963^^1 ^ CUrVe (°- 
and a special U. y Mues |_ 1963J for a special p 

M (n +1)2tt2 

(y2-y,) 
2 ' (52) 

WÍyd.S"'at le“'" ln The0rem 4 C“ b8 «l»“«' »7 the word 

Ve. and fhl."?. “I “ ,‘S “'í'4 »»ah 
fluid containing a point of zero U" anri ^ 3 layer °f hom°geneous 
with uniformly large J(y) fe alway.'le^bl“"8 " **ra*lfled lay" 

VII. NON-SINGULAR MODES 

the range r“h “ 8 t"“8“8 »f 
denoted by a and b We " maxImum ^ continue to be 
that their derivative; as appeaTin ^tist 'tS C°ntinuou8’ and 
re,ahh,,helr défini,iona as £e„ hy ílfj 

fttat^comparlson theorem of aPPllcation of the 
defined by (51) and (52), eacept tS; « n, tmd M are 
trary positive constant, we have ^ C = b + e> ^ere e is an arbi- 
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If íor c = a-e or c = L+e, andany c^O, M l» lesa than 
ff2/(y - y )2 for all y, and y2 between zero and 1, then there can 
be no waves propagating with c equal to a or b, or outside of the 
range of U. On the other hand, if U' = 0 at the point of maximum 
or minimum U, and, a fortiori, if there is a region of constant U 
where U = a or b, it can be easily shown that waves of any finite 
wave length and any finite number of internal zeros n can propagate 
with c < a or c > b. All this is in contrast with waves propagating 
in a layer of homogeneous fluid with a free surface and in shear flow. 
In that case [ Ylh 1970] , if U is monotonlcally increasing with y, 
waves of all wave lengths can propagate with c greater than b, and 
only sufficiently long waves can propagate with c less than b. 
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Th« How »Hh « ire« turiic« of • fluid, homogenaou# In density, 
bol «Uh Inhamoganeou« v.locUy dUtrlbuUon, I* » aped«! c*«e of your 
“,Tä «rÄ Burn. ( H5J1 c«..ld.r.d thl. c... «»11 
•MM HU r..ulu ,ri compru.ò In V"»,.. wh.n vUcotlty l. ^low d 
lor lh« problem becom«« much more complicated. U m«y be oí 
Inter««» to note th«t V«lthuU«n end l ( 1969», 1969b] etudled thle prob- 
Um lVkln, .Uco.U, Inin .cnon!. W. obl.ln.l call. ....nlUlly 
different from Burn'« re«uU«, which I« due to vl.cou. effect«. 

At l»r«e Reynold« number the flow c»n be divided ln »n Invlecid 
reelon »nd vlecoue region* *t the critic»! Uyer «nd *t the bottom. At 
the* outer edge of the vlecou« l*y«r »I the w»ll the Reynold, «tre.s 
rennot be put «quel to «ero » priori bec.u.e « «tre.« m.y build up In 
the well Uyer. 
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REPLY TO DISCUSSION 

Chia-Shun Yih 
University of Miohigan 

Ann Arbor, Miohigan 

It is well known that Rayleigh's sufficient condition for stability 
of inviscld fluids flowing between rigid boundaries is satisfied by a 
parabolic velocity profile, whereas plane Poiseuille flow, which has 
this profile, has been found by Heisenberg and Lin to be unstable at 
sufficiently large Reynolds numbers, when viscous effects are taken 
into account. Since the present paper is a study of the stability of 
inviscid fluids,and, in particular, Rayleigh's criterion for stability 
is generalized in it, Professor van Wijngaarden's position that the 
consideration of viscosity may force us to modify some of the con¬ 
clusions in the paper is easily acceptable. 

In considering viscous effects, however, it is not entirely 
self-consistent to assume a horizontal mean flow with a free surface, 
as Velthuizen and Professor van Wijngaarden have done [ 1969a,b] , 
since such a flow obviously cannot be maintained, and must in time 
attenuate to a state of rest. This is not to say that any conclusion of 
instability reached by them is without significance, for instability of 
a transcient nature may well occur, with the disturbances growing 
for a short duration of time. In this regard the results of Benjamin 
[ 1957] and Yih [ 1963] for surface waves in a fluid layer flowing down 
an Inclined plane are relevant. They found that the speed cr of long 
surface waves, be they unstable, neutral, or stable, exceeds the 
maximum speed of flow. The absence of long waves propagating up¬ 
stream supports Professor van Wijngaarden's claim in connection 
with Burn's result, which is supported by a study [ Yih 1971] of waves 
in a flowing inviscid liquid. But the nonexistence of a critical layer 
renders rather less cogent the argument given in Professor van 
Wijngaarden's discussion. On the other hand, this nonexistence sub¬ 
stantiates the conclusion made in Yih [ 1971] (and similarly in this 
paper) regarding the nonexistence of singular neutral modes, since 
the velocity U in laminar flow' of a viscous fluid down an inclined 
plane is parabolic, with a constant U". 

We also recall that Tollmlen's sufficient condition for insta- 
bility f 1935] of an inviscid fluid is not much affected by the considera- 
tlon of viscosity, at least when the Reynolds number is large, and 
hope that the same is true with the sufficient conditions for instability 
presented in this paper. 
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abstract 

Jl«lVe?°rt treatS the Problem of the propagation of a 
surfare8iveiwtve.system 8enerated impiUsively bv^ 

waíer regina °aÍ ^ '"T* lnt0 shüaling and shallow ater regions. A topography consisting of an arbitrarv 

zes^rítu* ^31161 ^raight^contour Unes îi assumed. The linear theory of impulsive wave genera¬ 
tion for water of uniform depth is used as a basis ïor 

DoS^nin/ the spectral energy of the wave system at a 
P nt in deep water distant from the explosion Con 

dfS r 0' "’"“i' U *h" ‘■"-k.d to ?K,e„d"io p«: 
A cnoidal pr0pa*auti0n over a bottom of variable depth. 
A cnoidal wave theory is introduced to describe the 
changes in form of the individual phase waves and the 

regime S* tff ! T**™ enters the shallow ^ater 
other th»n lí ff ,°f WaVe refractlon at locations 
ishtreatetr formal to the bottom contours 
diet the tí Empirica? criteria are incorporated to pre- 
hífaht I /6«06 0f wave breaking, the decay of wave 
fn lhe ref ^reakln8' and the attainment of stability 
in .he reforming wave. Attenuation of wave height due 

o„s fd?«d IlVTÍf the n"id >»»«”rl„ KBUo nsidered. All of the above elements have been in- 

cnmn°Ttrat.ed !" & computer program. DetaUs of the 
computational procedure are described in an appendix 
Typical predictions made using this program are dis* 
Played for small, moderate, and largeCfce^trengSs 
The agreement of the predictions with experimfntal 
observations is discussed qualitatively, but^o experl 
mental data are included. expert- 

Preceding page blank 
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I. INTRODUCTION 

The nature of wave systems generated Impulsively by explo¬ 
sions at or below the water surface is of natural Interest to re¬ 
searchers in the naval community because of the ship behavior which 
results from such an environment. When water-wave systems enter 
shallow water they undergo changes in form which may have an 
adverse effect on motions depending ot. the size of the waves relative 
to the ship or small craft. While the motivation of this work from 
our point of view is ultimately the prediction of ship behavior in a 
shallow-water explosion-generated wave environment, this paper 
is confined to the prediction of the forcing function -- the wave 
system. In itself this case presents an interesting means of study¬ 
ing the shoaling behavior of a dispersive wave system, an area 
which has received surprisingly little attention. Previous efforts 
in the direction of predicting impulsively-generated wave systems 
entering water of variable depth stem from the work of Dr. William 
Van Dorn (cf. Van Dorn and Montgomery [ 1963] ) and have been 
confined to the prediction of wave envelopes. This paper should be 
viewed as a second generation of the Van Dorn model. 

As a starting point we shall tabulate some of the rather com¬ 
plex effects which occur in shallow water. Not all of these will be 
considered in the present prediction scheme but the exclusions will 
be noted. 

(a) In deep water, phase and group velocities depend pri¬ 
marily on wave frequency giving rise to the well-known 
characteristic of the system known as frequency disper¬ 
sion. As the system moves into water whose depth is 
small compared to the lengths of the waves in the system 
this frequency dependence weakens and dependence on 
water depth and wave height strengthens. Waves which 
in deep water moved through the group at phase velocities 
up to twice the group velocity now become nearly frozen 
in their position in the group. 

(b) The nearly sinusoidal form of the waves in deep water 
changes to one of sharp crests separated by long flat 
troughs. An asymmetry about the horizontal plane 
develops in which the crest height above the still water 
line is greater than the trough depth. The maximum 
slope of the waves Increases. This last feature is of 
particular Importance in ship motion prediction. 

(c) As wave height becomes significant with respect to the 
water depth and the wave nears the breaking point the 
leading face of the wave steepens and a wave slope asym¬ 
metry develops. As the siop* of the face of the wave 
near the crest approaches the vertical the wave becomes 

240 



Impulsively Generated Waves Propagating into Shallow Water 

Irreversibly unstable and breaking follows. In the 
stage before breaking there Is an abrupt Increase in wave 
height known as "wave peak-up. " Breaking may fell lnto 
one of three broad categories: plunging, spilling, or 

surging. 

(d) After breaking the wave continues as a spilling wave until 
it either runs up on the beach or reforms as * stable 
wave. Energy dissipation accompanying breaking reduc. 

the wave height. 

(e) In the case of dispersive systems entering sh^low water 
a low-frequency oscillation is superposed on the wave 
train This "wave set-up and set-down is cause y 
trasporto* mass »l«h the „y.t.m, particularly when 
breaking or near breaking occurs, and the resultl g 

counte rilo w. 

(fl When an element of a wave crest passes over a bottom 
(f) contour line obliquely 1« le retracted eo a. to £e £o” 

nearly aligned with the bottom contour line. If the bottom 
contours are not parallel straight lines a focusing of 
wave energy can occur at "caustic points" and consider¬ 
able wave height enhancement can result. 

(g) The height of waves in shallow water is attenuated by 
8 energy losses due to bottom friction, bottom percolation, 

internal friction, and surface contamination. 

(h) Incoming waves which encounter con- 
Vipaches may be reflected seaward. Under the right con 
dltions standing wave systems of surprising severity may 

be produced. 

(Ü Non-linear Instabilities in a shallow-water wave may 
cause it to decompose, or split into two or more com- 
™‘nt wave.. The haaardcu. "double roller." are often- 
times an example of thU. A different type of decompo.l- 
tion may occur when a wave passes over an offshore bar 
and nearly breaks but then recovers. One or more 
smaller waves known as "solltons" may be shed from the 
b"ck of the larger wave. Little 1. known about these wave. 

at present. 

All of these features can affect ship and small craft °Perat[°"8 
In shallow water and have been included to emphasize the complexity 
of Sfôvêrïï problem. No. all will be attempted in the Pr«dlc.lon 
OI me OVCIOAA v naner For our purposes we will consider 

rwhr.Py»e.Bem reds5CCmrak e^UionVdeep water of nearly 
uniform depth, which propagates into shallow water over a terr 
represented by parallel straight line bottom contours. We will 
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Include change of wave form with wave slope symmetry retained, 
wave asymmetry about the horizontal plane, wave peak-up, wave 
breaking, wave height attenuation after breaking, stability of the 
reforming waves, wave refraction along paths other than normal to 
the bottom contours, bottom friction, and surface contamination. 
Excluded are: wave slope asymmetry and change of wave form close 
to breaking, wave set-up and set-down, the presence of caustics, 
bottom percolation and Internal friction, wave reflection, non-linear 
decomposition, and solotonic shedding. The system will not be 
carried all the way into the beach. 

Specifically, a linear theory for impulsively-generated waves 
in water of uniform depth is invoked to describe the waves in deep 
water at a large distance from the source. From this point a 
different linear theory based on conservation of energy per unit 
frequency is employed to depict the system as it moves into a region 
of shoaling topography. The integral expressions in this theory are 
evaluated numerically using the conditions at each of a series of 
closely-spaced stations as input for evaluating conditions at the next 
station. As the system progresses into shallow water its frequency- 
dispersive nature gradually disappears and non-linear features 
dominate in the wave form and propagation velocities. A non-linear 
cnoldal wave theory is matched numerically to the previous solutions 
to carry the system in this region. The cnoldal theory is used to 
describe the profiles of the individual waves in the system and the 
asymmetry of the system about the horizontal plane. To treat wave 
breaking existing experimental evidence has been reexamined and 
an improved criterion for wave breaking is incorporated. From the 
same experimental source empirical formulations are developed to 
account for wave height attenuation after breaking and the attainment 
of stability in the reforming wave. The Van Dorn formula for bottom 
friction and surface contamination is used to account for these effects. 
The system Is computed not only along an axis normal to the bottom 
contours but also along a series of rays which emanate radially 
from the source and change direction continuously due to refraction 
as the waves move inshore over the shoaling water. 

All these features have been incorporated in a computer pro¬ 
gram. Results of this program for a specified bottom profile and 
for several source strengths are presented as figures. For the 
researcher working on similar type problems perhaps the most useful 
part of the paper will be the computational procedure which is dis¬ 
cussed in »¡orne detail in an appendix. 

II. WAVE GENERATION 

Treatment of the subject of water waves produced bv a local 
disturbance has a long history beginning with Cauchy [ 1815] and 
Poisson [ 1816] each of whom independently solved the classic two- 
dimensional wave problem which bears their names. In recent 
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yerwuKifnr,rnfIld1 Keller [ 19591 ' Kajiura [ 1963] , Whalin [ 1965a] , 
and WhaHn [ 1965b] have made significant contributions on the sub¬ 
ject. The last cited is an extension of the Kajiura work and appears 
to be the most general treatment on the subject. 

, theory as presented by Whalin relates an initial dlstri- 
ution of impulse, surface velocities, and surface deformations to 

the waves produced at some distance from the source in water of 
finite but uniform depth. To a certain extent the choice of a source 
model is arbitrary in that several models may give an adequate fit 
to experimental data with each having its own particular advantages 
and disadvantages. No physical reality is assigned to the source 
model in terms of the dynamics of the explosion; fortunately, how¬ 
ever, the dimensions of the source model have been found scalable 
in terms of explosive yield so that useful predictions can be made. 

A source model that has been found to give good agreement 
with experiment is a paraboloidal cavity given by: 

(i) 

r > r 

The collapse of this cavity at time t = 0 generates the wave system. 
In cases of large explosions where the dimensions of the cavity are 
not small compared to the water depth, this model yields a poor 
prediction and a different source model, perhaps utilizing an initial 
time dependency should be employed. 

According to Whalin the surface elevation, (r,t), for an 
axially symmetric surface deformation is: 

pOO 

»l(r,t) = - \ cos (iit) JJtrr) der 
J0 

(2) 

where T|((r) is the Hankel transform of the Initial surface deforma¬ 
tion ri(r): 

p00 _ 
^(o-) = \ n(r 

on 
n(r)J0(<rr) r dr. (3) 

All unprimed quantities in these equations have been non-dimensional- 
ized using the water depth, h. Primed variables indicate the cor¬ 
responding dimensional quantities. 

~ dimensionless radius and height of initial surface 
deformation = r0'/h, d0'/h 
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r = dimensionless radius to field point = r'/h 

T) = dimensionless elevation of water surface = ri'/h 

h = water depth 

tr = dimensionless wave number = /ch 

K = wave number = root of equation: u2 = gK tanh Kh 

ÎÎ = dimensionless frequency = (io2h/g)^2 

u = frequency, radians/sec 

t = dimensionless time = t'Vg/h 

t' = time, sec. 

The integral in (2) is evaluated using the method of stationary 
phase (cf. Stoker [ 1957] ). After doing this and making the substitu¬ 
tions the result is: 

ri(r,t) - •ïfiài • [- - J3(o-r0) • cos (err - S2t) (4) 

Here, v = group velocity = -|[ (Q/k) tanh <r]l/8 [ 1 + (Zer/sinh 2(r)] . 
^q* (4) is valid at distances from the source that are large in com¬ 
parison with the radius of the cavity and in water of uniform depth. 
A point is selected which satisfies these conditions and the spectral 
energies of the system evaluated as will be discussed in the next 
section. 

III. WAVE PROPAGATION OVER A BOTTOM OF VARIABLE DEPTH 

The extension of the solution to regions of variable depth is 
based on a conservation of energy approach originally presented by 
Van Dorn and Montgomery [ 1963]. The equation presented therein 
evaluated the spectral energy, that is the energy per unit frequency 
of the system, for the special case of propagation along a ray normal 
to parallel bottom contour lines. The derivation is presented here in 
a slightly different way to permit its extension to include refractive 
propagation. The topography considered is represented in Fig. 1 
which also shows the coordinate system and a typical refracted 
wave ray. 

The following assumptions apply: 

(a) wave frequency remains constant throughout the region of 
wave travel and is unaffected by refraction 

(b) energy is transported at group velocity in a direction 
normal to the wave crest 

(c) energy per unit frequency is conserved between adjacent 
wave orthogonals. 
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Fig. 1. Bottom topography and wave refraction 

The approach will be to consider the energy patch between 
two adjacent wave rays, S, and S2, and between two adjacent 
frequencies, w and to + dw, and to establish the dimensions of this 
patch as a function of path position. While the total energy of the 
patch remains constant the energy density changes with patch size 
and this, in turn, determines the local wave amplitude. Establish 
a rectilinear coordinate system, (x,y), with x-axis normal to the 
parallel bottom contours and the beach. Orient the curvilinear 
coordinate system (s,n) shown in Fig, 2 to the median between 
rays. Since k = /c(w,h) only the magnitude of K2, and K will 
be the same but due to the curvature of the orthogonals the directions 
will be different. Let K\ have components (f. ,m.) parallel to 
(s,n). Since the patch is small I, * f2 = / m, =? m2s= m. 

It may be shown by applicatinn of Snell's Law that the head of 
the vector k, will shift to the right along line AB in Fig. 3 main¬ 
taining a constant projection on the beach as the patch moves Inshore. 
Then, from Fig. 3, 

m, cos 0, = m cos 0 = m0 cos 0O . (5) 

and also, 

mo = KotQo> (6) 
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so that. 

cos 0. 
■Hïïr/6eo- 

(7) 

is small f’li f 

patch' width'due'to "'^«»^^.y'be feXc^Vhe^h 

— ^ouA,0dÄ"'dV!'S'br«“n'; -Î- Äp1"^' 
? m J ¿ p- ds. 

The patch width will be 

H = 2 r>de,2j' 
8=0 J0 

6Ç = 20o r £ü . cos 6p 
Jq k cos í • 

m 
ds 

(8) 

th' ptrig“:”8^;^^ “„'‘..‘".ht ln"rva* "’“‘■■«'i 

Sê = V, 6t 

^^b‘^=-o^rlnt The tlrae Imervai> {t_ 

6t = |1 dw 

ds 

= - dw 

Since y = Bw/ök, 

£ = d“J0' ¿0/V. 

r' 1 ÔV p* 
J0 = ^UUds. 

öt = - d«o , r i_ 8v 
j0 ds 

or 
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6t = dwi. ¿(-¿s) ds- 
Q 

The patch length becomes, 

ôê = v' dwi0 Tk {-£*) d8‘ 

(9) 

(10) 

If E(w) is the energy per unit frequency of the source dis¬ 
turbance then the energy between orthogonals in a frequency band, 
dw, near the source will be 

E(w) dw 26 Or 
2ir 

Since the energy of the patch has been assumed constant this will also 
be the yaluc at the field point, l, and this in turn may be equated 
to the local wave energy: 

E(w) dw-^2- = pg T)f 6£ 64, 
(11) 

where qj is the local wave amplitude. Substituting the expressions 
for 64 and 64 from Eqs. (8) and (10) gives: 

E(w) dw —=Pg nf [260o£ 

The final result is , 

cos 0, 
0 cos 0 ÿ'ds]. [v, d»f ^ (^5.) ds] . 

fg= ’’i (£ Irrl’ ds ] • [ vi £ M (-¿t) ds] • <12> 
V-- V ° _, "V 

0, 

The first bracketed factor, a,, represents the effect of geometric 
spreading between rays while the second bracketed factor, ß., 
represents the effect of the spatial stretching of energy between 
adjacent frequencies, or frequency separation. 

Computationälly, E(w) will be evaluated using the results of 
the previous section, Eq. (4), at a point sufficiently removed from 
the source and over bottom depths nearly enough uniform to satisfy 
the conditions on application of that equation. From that point on 
inshore new a s and ß's will be computed numerically for each 
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will be0Íomdpeuterde.d' Dü^wüld 'a8 Ä Constant a new t,, = ^ 
putational procedure. 1 be dlac™*cd in the appendix on com- 

depth may be rewritten aa q 4 ' ' Ot), for uniform 

cos 
(K ‘p-) 

since t1 s r ’/v' v 

number and group velocitydepend^6*1 °f vfriable dePth wave 
quency. The argument mnn* u ^ °n ^oca^i°n as well as fre- 

now be8 integration Performed°^ong the p8»Shnted ln>te8ral f°rm now becomes the patn, s. The phase term 

cos 
(12) [£ ("-f) <>■’] 

v' = v'(h.4.and h = «.•). 

eñr t,een '•’““í»*1>y«t “mïï'ïtaeinid'c —thl» development 
Âlîbi.U'Üt,,r,îqtte”c>r ~mata. and ,hd, thé 
quite viable as long as the water la j ana The -8snmptions are 
one-half wave length or deeper Tn«ií dec'p,to moderate depths, sav 
becomes progressively more non linea™ °f thÍS point the system 7 
frequency assumption Lore vulnerable ' An0n'COn8ervativeyand the 
assumption will appear in the section. evaluatl°n of the linear 

IV. NON-LINEAR FEATURES OF THE quay , « 
THE SHA1-I OW WATER SYSTEM 

of uniformVepîh^nto ^rlgion orvaíiSleL^6 K8y8tem from a region 
ription of the system retained ita n ^ deptb» however, the des- 

cribad earlier the change tajfrm'êhtî, We have de,, 
of sinusoidal form to one of sham /- hallow-water waves from one 

sect?hS With an a8sociated horizontariepïaneeParated by l0ng flat section a particular non-lin»a>. «.u Plane asymmetry,, in this 
Keulegan and Patterson [Ï?S] , tüíb ^ Cn0ldal wave theory of 
form of the waves and the wave’envelope^01’150rated to modlfy the 

by Korteweg^and de ^168^895^¾ °f WaVe theorles was presented 
given in terms of the Jacobian enint?^4118,6 the wave «levatfon wa8 
work cnoidal to dea^nl I?.11 ell.iP.tlc cn function thev 

hutlonTrnrídditloõ tÓ^he KeíreganâL^pãttiréo' »„tri- 8 ana Patterson paper cited above. 
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ín^Lluónlfiíé^T^M0 *k1 Llfhthi11 í 1954] , 

—Ä^Ä^-SÄ^aysM“ 

tr Ll" ,i%8i ™tiv.t.d, 
portico In (hi. prediction echeme Th^l ^ theory for incor- 

.‘Ä'ÄÄ»:: 

ÄS ssr.--'~££=y‘a='.r 

— siokM* brfiUed ™pi4^v?hV^/vXath 

z'nztrz z*.v "*dnd^"rd,v»."tv¿d" 

K»uJe|*n *nd p*««rrc^!dliyprónjÍ"»Tve°tVb* Wâve P^e*^ 
Tt,01,* d w,l, *ccgrateiy plac-rfl,i,î.U 8* e th* overall beat aeree 

™‘     - •>* 

(«r U..IÎ;.'.*""*1 “‘f’1*« (rom K.uloj.n ,„d p.ttsr,on 

(£)>(£)(&(>.,>¡¡¡1)]'" (15) 

¥---ÿ 

l- H , 16 
tt-tí“ W 

(16) 

(17) 

of‘, J P*r^«T give* I meaauri'o/ th, i»W** the i,r#t t0 lde^y 

Th* ^1°0 dl*Pl*'* * — -.. 1. P.,„c^ly u..(ul 
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valuehlSzero1ICcn0i;H WheVhe TdUlUS’ k' aa8^e9 its minimum value, zero, cn reduces to cosine. When it assumes its maximum 

reduces'1?1^’ lt rKdUueS t0 the hyPerbolic secant, sech. Since cos2 
t0 C°f b}" the double an8le formula and since the form of a 

solitary wave is given by a sech? function, the J function w 
apFropriate choices of k describe the complete transition from 
incïeaii1^63 t0 solitary waves. As the value of the modulus 
increases from zero toward unity the wave crests become more 

arply peaketi and the troughs longer and flatter; the height of the 
crest above the still water line increases and the depth of the trough 
decreases. The wave form is symmetrical about a vertici through 

the rrr that n0 wave slope asymmetry is reflected. Thus 

»av« “ïevaÏÏ” ^ t0 lmPr°Ve the reill“m 0f the Ph“e 

(a) to give the non-breaking waves a more realistic profile 

^ J°n^ntroduce asymmetry of the waves about the still water 

(c) to increase the velocity of the waves in very shallow water. 
This feature has not been utilized in this application. 

a.» ^»f(C0!T?Uattl0n,ally' the fre<luency» W» and the water depth, h, 
heiaht íllwd ín *giv®n frequency and spatial array. The wave 
ThÄmJi’ ÍS obtained fr°m the linear theory of the previous sectfon. 
The elliptic modulus, k, is computed from an iterative solution of 
Eq. (18). K(k) and E(k) are computed from a series expansion in 

procedure!** ther detalls appear ln the aPP«ndlx on computational 

. . .T^e application, then, involves the use of a theory developed 
by irrotational, periodic, non-dlspersive waves of permanent form 
in water of uniform depth to represent a wave system which is dls- 
persive ami not periodic passing over a bottom of variable depth and 

Irfent ThI ÍCÍ y T.40 b?ttoíf frlcti°n ^ present at least tobóme 
extent. The assumptions implicit in this extension are that the phase 
waves assume a form appropriate to their local frequency wltïïln the 

■££9.UP and that this irequency content changes only alnwlv^ ar.^T.'.TfTr^, 
a«. frot..lond ty eii ,ct\ ggjSjg ^ 
be the most vulnerable. ^ 10 

V. WAVE BREAKING AND ENERGY DISSIPATION 

Despite abundant literature on the subject of wave breaking 
there does not exist today a fully-adequate mathematical description 
of the process, and, in fact, much of the experimental evidence is 
contradictory and subject to wide scatter bands. In the case of this 
analysis the need is for a criterion for wave breaking which relates 
the wave frequency, w, the linearly computed wave height, H, and 

msmsmwm 
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the water depth h t i 
mine ihc wave height dec\ydaft«b?e¿?ÍOn8 needed which dete, 
the or pH WtVK a regain ‘hei/stability P°int at whlch 
theoretical baa, a purely emplr"ïk^cVÄ ZZ 

-- -- UC USCa. 

and MoriSraïd'crooté'fîssll1^! a'en,pJe,,tliul- Iveraon [1952] 
thih'"^*1 Shlralehl? and Sa.ikm«h ««ributlonV. 21 
airiJc*“": ranse ol d»*» oXeak ’fi p",'"te,lwhlt “ Perhaps 
lairly complete bibliograohv oí 8 ,d deca>r after hreakinj? A 
in Van Mater [ 1970] . ® Phy °f °ther worka °n the subject appears 

A com enC? and thfi catio^of°wav/ break? h Predlct8 both the 
wave^,T.0ílyPUaed but crude "Iterlon U thantga 8 yCt been devel°Ped 
The NatÍght't0"Water-dePth ratioïs equai m WaVC break8 when‘he 

So%xr„x^rrp.rh.vrloHiyaS"d-d'“— 

Xdid'r -.r - ía"í:rI.1r.v«Kef,ob‘d,ch needed for this application -rie« “«ected to develop the ci-IîpHc 
experimental data wltX im.XS'“'' ‘5 «"“'‘ally a repo"“/ 
comparison of the .hoali„B corf^ H.^0'ï'P,*''Uon• or Proposals. a 

Â'=~“ÆKiïï““™-*»ïr;: 

have been ttnL^eély fKnIfth Altbo^h"hPe tve^ÄaT 

pernaps, Is the rate of dera,r l a«ected. More vulnerable 
zone reported In the paper Ve^erH^1'1118 and the îength of the' »urf 
ments is approximately the’ si,e JÍ®1688' the 8Cale of the ejmeH 
tohtebf0lM°rin8 ^0rniulas are a resit o°f8reeWÍtll,WhÍCh We cTolLé 
to the Nakamura data. 68^ °f forking and fitting curves 

(a) Wave breaking occurs if: 

4<è-#no8,o(i|0)w 
(«h/g >0.13, Si 0.01) 

á<(*«#-t..)4tioSij:i|2)-t0.10 („Vg<0_13i saoj 
.01) 

íor .eveSrallbXm “ÍÒpeaXglv”“,0**^.81»^- A P‘°* of this criteria 
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í¡Í 'i10 ~u) * *5^ •“,l5 

I £.01 

Fig. 4. Wave breaking criteria 

Ha = Hb(W' (20) 

(b) Decay of wave height after breaking is given by, 

I.55-5S 

‘b 

where, 

Ha , hc = wave height and water depth at a point after breaking 

R, h. = wave height, water depth at breaking 
b b 

The expression is for two-dimensional waves. In the explosion¬ 
generated wave case to account for geometric spreading the expres¬ 
sion must be multiplied by the ratio «b/a where a is obtained from 
Eq. (12). 

(c) The equation for wave stability after breaking is: 

(0¾ 
W = If (0.85-0.40^.) 

Stable D 

(21) 

The wave heights in Eqs. (17) - (21) reflect experimentally- 
measured quantities; however the wave height Information we have 
at hand is computed from the linear theory of Eq. (12). Linear 
theory is known to underpredict wave shoaling as the wave height 
becomes a substantial fraction of the water depth. In addition, in 
the final stages before breaking the wave front slows more rapidly 
than the back. Associated with this developing wave slope asymmetry 
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is a rapid increase in wave height known as "wave peak-up" which 
occurs just before breaking. The effect has been observed by 
Le Méhauté, Snow, and Webb [ 1966]. On the basis of the experiments 
reported in that source, Van Dorn, Le Méhauté, and Hwang [ 1968] 
state that the increase in wave height due to peak-up is 40% of the 
linearly computed value. 

Computationally, the wave height computed on the basis of 
Eq. (12) is multiplied by a factor of 1.40 to account for peak up and 
tested against Eq, (19) for each point in the spatial and frequency 
array. If breaking occurs the increased wave height is retained as 

for use in Eqs. (20) and (21). If no breaking occurs the linear 
value of wave height is retained. 

The Van Dorn boundary dissipation equation for Impermeable 
bottoms and modified for a wide basin is: 

where, v = kinematic viscosity of water and points 1 and 2 are 
successive points in the direction or propagation. 

VI. RESULTS AND DISCUSSION 

In this section the computer program predictions for three 
source strengths, corresponding to small, moderate, and large 
explosions, will be described and discussed. No experimental data 
are included but comments will be made on the agreement between 
the predictions and experiments which have been conducted. 

The theory and the computational procedure outlined in the 
preceding sections are applicable to any arbitrary bottom profile 
with parallel straight contours and gentle slopes. However, to 
compare the theory with experiment a specific bottom profile, that 
of a test basin at the Waterways Experiment Station, Vicksburg, 
Miss. , was introduced as an input to the computer program. Through 
the courtesy of that laboratory access was granted to data from a 
series of experiments conducted there. The data has not yet been 
formally published by WES at this time, so it cannot be reproduced 
here; however general comments on the agreement between predicted 
and experimental results will be made. 

The computer results are non-dimensionalized on the basis of 
the water depth at the explosion, h0. Previous notation is used 
except that the water depth, h, is taken as the depth at the origin, 
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Radial distance along axis: 

Distance along path: 

Wave elevation: 

Offset of path from axis: 

Source strength: 

r = r'/h0 

S = S '/hg 

ti = y/h0 

y = y'Ao 
W = Y°-3/h 

In the last definition Y is the explosive yield in pounds of TNT, 
equivalent. For dimensional consistency the exponent should be 1/4; 
however experiments have shown that exponents from 0.26 to 0.30/ 
depending on the submergence of the source) provide better 
scaling. The value 0,3 is taken here. 

Results of time histories along the axis for three different 
source strengths are presented in Figs. 5-7; 

Figure 5, small explosion, W = 0.139 

Figure 6, moderate explosion, W = 0.166 

Figure 7, large explosion, VV = 0.224. 

Fig. 5. Prediction of wave system on axis for small explosion 
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Fig. 6. Prediction of wave system on axls for moderate 
explosion 

Fig. 7. Prediction of wave 
system on axis for large explosion 
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Predictions are displayed for the five stations, 59, 64, 71, 76, 100 
shown In Fig. 1. The first station, station 59, may be considered 
to be in the transition range from deep to shallow water *h® 
waves In these explosions. The remaining stations are progrès 
slvely shallower water. A frequency range was chosen whlch wouJ. 
permit the computation of the first four wave groups. The full four 
groups are shown at station 59, Fig. 6j however since only the ñrst 
two groups are of practical interest these are the only ones shown 
in the remaining displays. 

Wave breaking occurred for the large explosion but not for 
the two smaUer explosions. The individual phase waves which have 
either just started to break or are continuing to break are l^ic^t'd 
bv an asterisk in Fig. 11. The irregular shape of the envelope at 
stations 71, 76, and^OO is caused by the fact that breaking and wave 
(envelope) height decay after breaking have already occurred for these 
frequencies within the envelope. Typically, the 
a small frequency band then spread to adjacent frequencies as the 
envelope moves Inshore. 

The effect of refraction is shown in Fig. 8 for the moderate 
exolosion case only. The wave trains correspond to those along the 
ray^famUies 0.*.V. 20°. and 40°. l'VÍoO a^ .Kc,«»”.» 
the axis are Indicated. Three stations, 59, 76, and 100 are shown 
give a representative effect. 

-«WVA«- 
»■yVh0'..„ 

n r '.JlJ'. f 8• «Aftftfr-—•— 

JtÍA ÍAÀÀk»~«AAA~~ 

ií*»' 

eõ'4o» 

.o K*#0'. 
■STATIQN M 

-^õ~ -Tõ~ tòõ 
e—w 111' /flTh^ 

Flg. 8. Prediction of wave system along refracted rays for 
moderate ejcplosion 
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nt*a¥e*A ^ used the cavity dimensions sug- 
gested in Van Dorn, Le Méhauté, and Hwang [ 1968] and the wave 
peak-up, wave breaking, decay, and stability criteria which have been 
outlined previously. To improve agreement between the theory and 
observation adjustments were made to some of these empirical coef- 
îlclents. First, cavity dimensions were adjusted for the best fit 
with the results shown below. 

= Cr. 
y0.3 

h ; cL = Q 
0.24 

*0 h 

small explosion 

moderate explosion 

large explosion 

recommended by Van Dorn 

Cr 
ro 

7.80 
¿o 

i. 53 

7.82 

8.14 

9.60 

1.33 

2.03 

2.80 

f'0cnWuVe ^rea^n8 peak-up ratio was changed from 1.40 to 
1. SO, breaking and decay criteria were not changed. The criteria 
tor stability after breaking was changed as follows 

(ír) = (0.90 - 0.40 h,. hb \ g / 
Stabl« 

where Hb is now taken as the height before peak-up. 

« i.i i Thf traJ®ctory of an individual wave ray is dependent on the 
initial angle at the origin, 0O, bottom profile, and frequency. Con¬ 
sequently absolute convergence of a family of wave rays representing 
an array of frequencies is not possible. To give the best overall 
conformity over the spatial domain, 0O is adjusted with frequency, 
l.e. Ü0 = 0o(w). For the conditions assumed a simple linear varia¬ 
tion In Q,(u) was found to give a variation in path lengths which 
generally fell within a 1% band and a variation in offsets from the 
axis which fell within a 5% band. The control angle upon which 
0o(w) •" 1-J ■- — ' - ’ ~ * is based is designated 0C* 

With the background now established the following remarks 
may be made regarding the agreement between the predicted, or to 
put it more accurately, the hindcast wave system and the wave 
system observed in experiments. 

(a) For the two smaller explosions , W = 0.139 and W = 0.166, 
agreement of the envelopes at stations 59 and 64 is very good. The 
envelopes of the first group are underpredicted at stations 71 and 
76 but overpredicted at station 100. This Infers that the linear 
theory underpredicts shoaling wave height enhancement in very 
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shallow water, and also that the boundary dissipation formula used 
In the program does not provide sufficient attenuation. The assym- 
metry of the envelopes show particularly good agreement and is one 
of the strong features of the program. The observed trough levels 
at stations 71 and 76 is slightly lower than predicted. This is 
attributed to wave set-down due to the presence of a counterflow, or 
backwash current. 

(b) For these two smaller explosions the theory in general predicts 
the correct number of waves in the envelope. Agreement in phase 
is poor at station 59 but better at subsequent stations. There is also 
some grounds for suspicion of zero-set clock errors in the experi¬ 
mental data so that it is difficult to make definitive statements on this 
subject. The same suspicion makes it difficult to comment on the 
agreement of the phase velocity of the observed waves. 

(c) The agreement in regard to the form of the waves in these 
smaller explosions is especially impressive. The change from sinu¬ 
soidal form to cnoldal form quite accurately represents the observed 
waves. 

(d) The observed waves were nearly fully attenuated by the middle 
of the second wave group. Stronger attenuation in the higher- 
frequency range is rèquired in the boundary dissipation formula. 

(e) Time of arrival (based on linear group velocity) of the wave 
groups is in very good agreement indicating that transporting energy 
at linear group velocity, even in the presence of noticeable viscous 
effects, remains valid into quite shallow water. 

(f) The fit of the envelope for the large explosion, W = 0.224, at 
station 59 is only fair. The observed envelope of the first group 
reaches its maximum at a later time. It appears that for this source 
strength the explosion may no longer be considered to occur in deep 
water and that a different source model, perhaps one yielding a 
higher-order Bessel function, is indicated. In addition the observed 
troughs of the large waves were much lower than those predicted. 
Again the probable cause is the presence of an observed strong back¬ 
wash current which would have the effect of depressing the trough 
level. The presence of backwash currents is not reflected by the 
theory. 

(g) The agreement in phase is quite good at stations 59 and 64, but 
not perfect. After wave breaking sets in the phase agreement de¬ 
teriorates. One of the observed waves in the vicinity of the first 
node decomposed into two component waves both of which eventually 
broke. Otherwise, the theory predicted the correct number of waves. 

(h) For the large explosion breaking is predicted for the second wave 
at station 64. Actually, the third and fourth waves broke at this 
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location and the second wavp v , 
A different source model giving a laterías£bsecluent station, 
would probably also correct this P k t0 the first envelope 
abou, th rlghtynnmberof wa“ bt a"ie„Pr,7: bThe P"««. 
although there is disagreement in »o g * 8ubsequent stations, 
waves break. The defay rate after bíL^8®8 °n Which lndlvWual 
for the envelope heights^n the surf » aklng appears to be about right 
there is still distortionoftheen^ match ^ite well. As before 

criteria seems to give a bu?î effects* The 
but the data are inadequate fo sav concfo». i 0^Ut the ri«ht ^ngth, 
much larger number of experiments ifnei^Jf 9,0mparison with a 
empirical breaking relatiMsMn£. 1 needed to fine tune these 
»»va .y„em f„r„i»h in lde^ 

''7TP“°™P“adÍcted'““"! program*^ ^T“"8 

ildÄ0" 0f * by Sa°f[í,e5rírde?Co„- 

0) Despite the fact that the "correction fao* » 
lug for wave peak-up is somewhat distasteful^ approach in account- 

1^1unary Stage* M the minimum the neï^ Ppears useful at this 
should be refined to reflect the paak‘uP correction factor 
slope. Clearly what is needed is s o e °/ H/h- and bottom 
theory which predicts this pheMmen^15 tl0nally useable non-linear 

i-efracteCd°^se?tSS^h dat^tre^^nfol!^ WE^^^410118 al°ng the 
are not presently available for comparison. exPeriments but 

explosions the theoretical and emoiri i 8ma11 and mod”ate size 
good predictions of envelope sSÍ Í Í program Presented gives 
and times of arrival of ¿Te TT WaVe form' 
enhancement in very shallow water snH , ) Water* Wave height 
what under-predicted. The oualitx f scous attenuation are some- 
Individual «¿vea ramaiJhteo 1“ a,.yabHstdP"pCll,0n °f *he P1“" « 
the present source model gives onlv a fali- ’ lar8!e explosions 
shape. Group times of arrival and^orm ^ predi^tion oi envelope 
tinues to be well predicted. Form of near waves c°n- 
predicted. Counterflow currentsWe a ^ b ! Waves Is poorly 
waves are very large but th* ^ h prominent influence when * 
not Ptedlcted/ffi'oca,““ .S8'»a a01: °f »“'b current “is 
aatlafactory based on a limited comparison!" 0t ^ “Urf SOn' appears 
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APPENDIX 1 

COMPUTATIONAL PROCEDURE 

outlinecHn^the^previoua* sections'll^ f-1'“‘"'■‘»S *1.« theory 
predict the wa/e .^e“ "“haUow la““”“" Pr0era,n ”hkh 

InitiaHy, a monotonicaily decreasing bottom orofile I« 
ssumed with parallel straight bottom contours as shown in Fie 4 

Actually the specific profile used in this program was chosen to 
conform to that of a test basin at toe rr « a * ^ • chosen to 

w*th i - 0 at thf ° t ïUmbîl °í cl0‘ely aPaceii stations, indeed i, 

divided-in,o a „unÄ oil^i^p^^rir^Tn^Yn^d ?° 

tht normal to the bottom contours varies with the fren ^ 

,t ZT dept; a* a 6lven 1—lonu IdenCdae S“ 
s: ^™iiSdendters,aibbi:lu,Toc ^■'“tr iof o/ 

.»rÆnte'ôfi'n^noîtaprièd/01 ‘O'»«“—l'»“ Sy S’’ 

distan, ÄÄ 
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lnn|««( wav«« wish •itnUicàii! o^rm 4n ^4 * l^e length of the 
fectory. Aceortlingty the depth use^ln Eo^fef? WIl be quUe s*lb' 

E,,4, m.y bp. 

b* « -jjuâL 
** m 

*1* 1(14 

n i/t 

k âtr <, 
(23) 

n',,1 • ô;|â co. U,,«^ . Wj,|ik, 
(24) 

where » 

- envelope elevetlon function In dlmen.ion*! «y.tem. (ft) 

n;,« . wave elevation In dlmen.lor.al «y.tem, (ft) 

• ,.diu. ^ d.p,h o, ,.,i,y j,.y<temi 
«,% • path length to l"' «tatlon along k,h rav Al»« t„,, 

j .Inc. p.,h varie, with frequency y* 

'il m*nhi 

VIJ * group velocity 

■Æ-^rvA-) 
*• 

J, ■ third-order Be««el function of the firat kind 

(2S) 

(Ir),, .o.h,.,| .-H . 
• Inh 2<r¡| 4*|j / 

Th. wave number, «j(, obtained from the equation 

«f* ga(j tanh a.jh, 

and may be approximated In clo.ed form by 

* I 

(26) 

(2?) 

(2H) 
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I^!relIfnCtl?naJoiz) and J|(z) a« computed from aeries 
ejqjans Ions given in Abramowitz and Stegun [ 1964] (eqs. 9.41-9 46) 
J2(z) and J3(z) are then computed from the recursion relation ' 

Jn-l(z> + Jmlte) = (2n/z)Jn(z). 

U comput'ed'fporn'the1^.elation lh' ,t",ln8 ‘,M°' 

1 

1)1« 

UK 
(29) 

It Is now possible to compute the wave spectral enercv at the 

S;t“Xrb.,;«"g E’-ll2>- 

npg (30) 

where 

, _Ai» 
cos 0 

(32) 

The last isclor In Eq«, (J|) end (12) represents the Increment*) 
distance along the path where As» I. the station spacing on the **1*. 

The energy may now be carried forward from station to 
station as: 

■ E 
• )« 

265 

or 



mwmmw. iüük 

Fa« Mater and Heal 

12 2 
^i+w,1(^1,1,11^1,^ = ^1^^11( Pijk 

Thus 

(33) 

(34) 

In the computer program It Is the wave system envelope, B', 
that is carried forward to the next station and the new value at that 
station computed from Eq, (34). The phase term is then applied to 
obtain the wave elevation. 

The envelope function B'(w) is symmetrical about the SWL 
by definition. This corresponds well to the observed envelopes at 
the starting station in deep water, but as the system moves into 
shallow water the envelope and the phase waves develop asymmetries 
about the SWL which we seek to describe by the application of the 
cnoldai theory as previously discussed. 

The first problem Is to calculate the elliptic modulus, k, 
for once this parameter is known, all other cnotdal properties may 
be computed directly. Two difficulties are Immediately realized 
in the determination of the elliptic modulus. First, Eq. (IS) does 
not admit an explicit solution In k. Secondly, the form of cnoldai 
waves becomes quite sensitive to k as k approaches unity. For 
example, there Is a noticeable difference between the form of the 
wave determined by k* » 0.99990 and that determined by k* « 
0.999990. Further, explosion parameters of Interest require the 
determination of modulus values as large as k* » 1 - 10 . Thu# 
the following procedure was employed to efficiently and accurately 
determine k from Eq. (18). 

Write Eq. (18) as 

Similarly, 

«i - F aiikPilk 1l/2 
Vu.k - nijkLsr : ,. k J • 

g(kl 
w*h 

Wo then seek the roots of the equation 

g(k) • 0 05) 
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2 4 
Now, smaller roots of g(k), say 0 < k ^ 1 - 10' , are 

readily obtained by Iteratively searching for zeros of g(k) In 
successively finer Increments. Larger roots of g(k), say 
1-10 <k^l-10 40, are then obtained by Iteratively searching 
for roots of g(k) In half-power Increments of 10‘n, where k = 
1 - 10 . Nearly exact solutions In terms of n are then obtained 
using the approximate Interpolation relation 

n = a/ii0'575+ ß (36) 

where a and ß are interpolation constants and Q is the dimension¬ 
less frequency. This approximation is based on a family of curves 
(n vs. t) ln Wiegel [ 1964) (Fig. 2.24). 

Computer computational difficulties are avoided In solving 
Eq. (18) for values of k near unity, since the modulus k and the 
complete elliptic Integrals K(k), E(k) can be determined from the 
value of i0‘n = 1 - k , using the approximations given In Abramowltz 
and Stegun [ 1964] (eqs. 17.3. 33-17.3.36). Since only the largest 
real root of g(k) Is of Interest, the computer program searches 
first for the largest real root. If no real root is found In the range 
1 - 10‘^< k* < 1, then the largest real root In the range 0 < k2S 
1 - 10' Is computed. The smaller roots or Imaginary roots have 
no meaning. Whenever no real root Is obtained In the range 
0 < k < 1, the modulus Is set equal to zero. The computation Is 
repeated for each frequency at each location. Note that the calcula¬ 
tion Is based on the double amplitude of the envelope and not on the 
phase wave elevation. 

The distortion of the envelope to Its asymmetrical form Is 
achieved by applying Eq. (16). Denoting the elevation of the envelope 
above and below the SWL as Hi and H2 those equations become 

(37) 

The phase term for water of variable depth was given as 
Expression (13). Denoting the argument of the function as 4» and 
the field point on s as sf 

* * 
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the expression may be written for numerical Integration as follows: 

I 

^ = I «1-1,J, 
¡=0 

k • —~— + w.t' 
k cos ®i-|,j,k i 'i" 

(38) 

where 

‘.'i. 

I 

= 74-. 
¿J V,': 

As' 

(=0 
v/T 'cos 0i-i,j,i< (39) 

In r,q, (39) t¡jk Is the time of arrival of the jth frequency com¬ 
ponent at location (i,k) and is printed out for each frequency at each 
location. 

Introducing the cnoldal phase term of Eq. (14) the wave ele¬ 
vation becomes 

’lijk 3 * H2IJk + Hi)kcn2 [üijiüi (4»lik). kljk] . (40) 

The Jacobian elliptic functions can all be expressed In terms 
of theta functions, and can be computed from the resulting Infinite 
series. However, In this program the elliptic function cn In 
Eq. (40) is evaluated to any specified degree of accuracy using 
Landen's transformations. 

Let m a k , m( * 4 - m. Then for m sufficiently small 
such that m and higher powers are negligible, we have the follow¬ 
ing approximations for the Jacobian elliptic functions 

sn(u,m) ? sin u - 0.25 rn (u - sin u cos u) cos u (41) 

cn(u,m) t cot u +0.25 m(u - sin u cos u) sin u (42) 

dn(u,m) ? I - 0,50 m sin u (43) 

For m sufficiently close to unity such that mf and higher powers 
are negligible, we have the approximations 

sn(u,m) * tanh u * 0,25 m,(slnh u cosh u - u) tech* u (44) 

cn(u,m) » sech u - Ö.25 rr^itlnh u cosh u - u) tanh u sech u (45) 

dn(u,m) * sech u + 0.25 m^slnh u cosh u ♦ u) tanh u sech u (46) 
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the parametfrthmf0ÍÍeWrleducTd of0^matl0n8' intermediate values of 
approximations Tre IppHcaW^ inCreased 8uch ‘hat the above 

To Increase the parameter, let 

P = 4m1/2 / j _ mi/2 J 

(1 + ml/2)z ' P| " V ï + ml/2 / 

V = 

Then 

iT^ 

sn(u,m) = (1 + pl/e) a.n(v,p) cn(v.p) 
dnfvTp) 

dn(u, m) = (1 . (i . nl/g)) -aA(v.P) 
1 dn(v,p) 

2 
cn(u.m) a (1 . (i . p^n an (v,p) 

1 dn(v,p) 

To decrease the parameter, let 

Then 

i + 17? 

(47) 

(48) 

(49) 

sn<u,m) a (1 f p,Æ, -^(v.P) 

1 *P*n(v7p) 

dn(u,m) » (1 - p^2) ■» (v,p) 
I ♦ p,/2an2(v,p) 

cn(u,m) > cn(v’P> ! d"(v.p> 
• * pl/?en^v.p) 

(50) 

(51) 

(52) 

torm.,.«“ '.hr ... 

the computer program values of m o reate r than* 0CArnPUt* Cn* In 
using the ascending transformation Value. P*6 ^ computed •■•«rmauon. Values of m less than or equal to 
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0.6 are computed using the descending transformation. The transfor¬ 
mations are reapplied until higher powers of m or m| ar^deemed 
negligible. The currently used cutoff value is m2(m| ) = 10 . Both 
of the Landen transformations converge quite rapidly. Thus the 
cutoff parameter value is attained in three of fewer applications of 
the pertinent transformations. 

Some computational difficulty may be experienced in evalua¬ 
ting the hyperbolic functions used in the ascending Landen's transfor¬ 
mation, for large values of the argument u. This problem can be 
alleviated somewhat by reducing the cn argument, u, to its 
principal value - 4K(k) i u ^ 4K(k). Further difficulty may be 
resolved by using the descending transformation throughout the 
modulus range where applicable. 

When k = u, the cn2 term in Eq. (40) reduces to cos2 (ijj¡jk)/2 
and Hiijk = H2|jk = (Hi)k)/2 = B'. Thus, for k = 0, Eq. (40) reduces 
to 

lijk = B' cos ^ijk# 

which 1s the usual wave elevation equation. 

The matter of the frequency dependence of the trajectories of 
the wave orthogonals has been discussed briefly. In principle it 
would be possible to compute an initial angle 0ojk for each frequency 
and at each station which give a path length and a path offset from 
the axis that would fall within established error limits. Such an 
iterative procedure would Increase the computation time enormously 
and was rejected on this basis. Several schemes were tried in 
attempting to find a simple rule for the choice of 80|k which would 
give reasonable conformity In a given family of trajectories. The 
simplest rule turned out to be the best. A linear distribution of 
®ojk was c*108*n according to the following relation: 

0o,k 3 0o»k( 1 * °-04<w - °*2)1 (54) 

where 9e¡k Is a control angle for the family of trajectories. The 
choice of the above relation Is quite an arbitrary one and a different 
and more complicated bottom topography could necessitate a different 
function or the Iterative procedure discussed above. 

The refraction angle at each station along a given path Is com¬ 
puted from Snell's Law: 

0,,, » „Clo M ikiau (55) 
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The path length and offset from the axis are given by 

s 
As 

i)k " ¿j cõs0|7|t],k 

I 

y.ik 
^ As' * tan 

(56) 

(57) 

The eyatem Is tested ÏfartoTof7*"« to account for 

ÄÄV" « r** *h“r¿edlS. ÂS aïgH““r’u.h.e”n 

com^putln^decay1 after (¾ fhV 

aurf*con^beyond thtTbreakli^polnt .. 'l - •. «»«« Cuattons become: 

H ‘o)k - Hb|k(v 

(f2) Vh»/S»obl. 

a^lï(o.85- O.iOi&t). 

(58) 

(59) 

occurs within the 5reakl"8 ^rtïÎíi the phase wave Is the most 
the prediction of the exact urr val O^hej^ dure f a0 that the 

».»inn »VtK arrav consists of 100 stations« 
ln the present wave ray. (0? = 0°, 20°, 40°). 

120 frequencies, and 3 fan° lleB . y MJer [ 1970]. The program 

JeÄlÄ“ r‘Ä™. “ ™ *"d 
about 14,000 lines of output. 
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„JL1*®.WMÉNSJONM INSTABILITIES AND 
VORTICES BETWEEN TWO ROTATING SPHERES 

J. Zierep and O, Sawatzki 

Universität Karlsruhe 
Karlsruhe, West Germany 

trie rotating^pheiesrínveatlgatl^thTs ^dlui?_between two concen- 
of the well-known contribution of G I Taví*6 0r:f.?ow is an extension 
motion between two rotating cvlinde™ LJ ’ Wh° studled the 
cen.rifugil force ioet.bilS, a"“Th‘h' 
between the two flow fields is m,-* V« Vu * , Th ain difference 
force 1, a function Tf the latitude W.V 'Pïe"S lh' "«'If-gal 
three-dimensional flow and It it Õo.Tm 'íñ t'í' a" '"«ability In a 

heating correspond, to the latitudinal depend^« tf".^ 

experiments^ave hTetToVpr!maffly tuh Ve appiratu*- * Th« 
™'a“"S and the outer one (Plexiglas^ fited Vl!”" “P " <A1>™inum) 
silicon oil that contained alumimT™ rl a d* Ihe ®aP was filled with 

has been mainly the frictional torque thÍkeVpf theI"dlcat0r* Measured 
of the inner sphere constant tu» ? 1 keePs the angular velocity 

trolled by thermocouples and pïotolerToPhsrautUre u" the gap Was c— 
different flow configurations PThP g aph have been taken of the 

by Ritter and Wimmer [ 6] a¡ part of îh^is!^ 

Plotted i88theefríctaion tortue ToeíücUnt ^ dlíf®rent 8aP widths, 
that ranges from 101 to 10*. Coverlno thl^M ujVer * Reynold8 number 
accomplished by 1) using silicon oll « 8 uu range has been 

lutionC./seactd ^ ^ ^^8 the angUlar ^^c'i^îrom 0bto^o" revo- 

three 

• “ —-- 

Por detailed information see [ 5], 

gap 
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FiS- 1 4M(Re) for the relative gap width s/R, = 0.0527 

Fig. 2 iM(Re) for the relative gap width s/R( = 0.i8 
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Instabilities and Vórtices Between Two Rotating Sph eres 

the Navier Stokes equations give CM ~ 1/He, the law for creeping flow. 

toUrRP:lS»thllh0id8 UP t0 Re = 3*3 • 1°3 for the small gap and up 
to Re - 600 for the larger one. Next to this regime follows one of 

rayeV/?A WÍth ~ 1//Re* Finally the turbulent 
insTahle fT6 Wlthf.^M ~.V . 6 18 reached after passing some possible 
instable flow configurations in the transition region. In general we 
have this behavior in all cases but quantitatively there are Important 
differences depending on the relative width of the gap. The reason 
for this behavior is the multitude of the possible flow configurations. 

First we study the case of the small relative width of the gap. 
For low Reynolds numbers (for instant Re = 10) the streamlines 
are concentric circles around the axis of rotation (Fig. 3). With 

Fig. 3 For small Reynolds number the streamlines 
are concentric circles around the axis of 
rotation, s = 5 mm, Re = /v = 10 

increasing Reynolds number the streamlines change to spirals (Fig. 4). 
Close to the rotating sphere the spirals are moving from the poles to 
the equator but close to the fixed sphere the spirals are moving from 
the equator to the poles. The inner and the outer spirals join and 
form closed curves. With passing the critical Taylor number 
Ta = 41,3 Taylor vortices begin to develop close to the equator, 
is remarkable that the critical Taylor number here has the same 
value as for the concentric cylinders. The axes of these vortices 
have spiral form and end free in the flow field. (Fig. 5). From 

It 
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Fig 4 For larger Reynolds number the streamlines 
are spirals, s = 5 mm, Re = 2350 

Fig 5 For large Reynolds number the vortex axes 
become spirals and end in the flow field, 
s = Í. 05 mm, Re = 27,000, Ta = 41.6 
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the end of the vortices up to the poles the laminar flow remains 
stable With Increasing Reynolds number, the axes of the vortices 
become »avy Fig. 6) id the no» turn, turbulent after pase ng eome 
Intermediate state. (Figs. 7, 81. In this case photograph, still show 
a remarkable distinct structure of the flow. 

Fig. 6 The vortex axes become wavy for very large 
Reynolds number, s = 2 mm, Re = 16,800, 

Ta = 68.8 

TTrt. HtP laraer relative width of the gap this matter Is much 
more compileat^ In the transItmFHrf^lnar to turbulent flow 
we found that altogether five basically different but «producible 
main modes are possible. In the torque diagram all these modes 
are noticeable and they are remarkably atable as ^ ^ .. 
become existent. For this reason we called them lnbSta^1. ' 
In the experiment these different modes can be established by apply 
ing a suUable acceleration of the angular velocity. In analogy to the 

rvlindem T ?1 we have here a case of nonuniqueness. The 
iodl of Instability that l. finally re allied depends on the 
dltlon given by the enperlmentatcr. No» the main mode. I - V shall 

be discussed briefly. 

T In suite of having an overcrltlcal state no vortices become 
visible. ' The transition to the turbulent fio ^ 
mode II, that is described below. Mode I Is characte jiz-a y 
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F1g 7 The turbulent motion. 
Ta = 522 3.5 mm, Re = 53,500 

Fig. e Th^«„Ment motlon. „ = 2 mm> Se = 158i000i 
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Inatabilitiea and Vortioae Betueen Tu)o Rotat ing Sphereg 

éOià 

that In the Held between the two boundary layer« of the rotating and 
the fixed aphere -- according to the large gap -- a flow la established 
that moves with a constant but smaller angular velocity than the Inner 
rotating sphere. Obviously this type of motion prevents or at least 
delays the development of the Taylor vortices. A similar pattern is 
known to exist also in the gap between two discs Í 8] with one of them 
rotating. 

II. This regime is characterized by a flow with vortices that 
begin at the poles (Fig. 9). The axes of these vortices are inclined 

Fig. 9 Motion of Mode II. s = 12.15 mm, Re = 8,300, 
Ta = 630 

slightly to the streamlines close to the fixed sphere. With increasing 
Reynolds number these vortices advance around the poles to the 
equator. The axes become more and more wavy and finally the flow 
turns turbulent. The physical explanation of these vortices is by no 
means evident. We have the conjecture that we have here a situation 
analogous to the occurrences close to a free rotating sphere [9] or 
disc [ 10] . Very often these vortices are called Stuart vortices. 
Contrarily to the familiar pattern of vortices, rotating with alternating 
direction the Stuart vortices rotate all in the same direction. 

III. Two Taylor vertices develop symmetrical to the equator. 
Outside the vortex zone we have mode I flow. Surprisingly at the 
equator -- where the centrifugal force has its maximum -- the flow 
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Source Sink 

Pote 

Fig 10 Sketch of Mode III 

Fig 11' Motion of Mode III. 
Ta = 318 

s = 8 mm. Re = 8,130, 
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is directed inward (Fig». 10, 11). Thl» can be explained by a cellular 
motion in the field between the pole and the vortex that forcea the 
vortex to rotate in the mentioned direction. The reault La the aink 
flow at the equator. 

IV. Two palra of Taylor vortices develop symmetrical to the 
equator but now with an outward motion at the equator (Figs. 12, 13). 
Mode III is a limit case of IV reached by increasing angular velocity. 
The cell close to the equator becomes smaller and smaller and in the 
limit the flow reverses at the equator. 

V, This is an unsteady version of mode III. Vortices, 
generated at the equator, leave the equator under a small angle of 
about 10° (Fig. 14) and move on spiral trajectories to the pole. 

It is interesting to see that the critical Taylor number Increases 
with increasing gap width. Corresponding calculations for rotating 
cylinders with arbitrary gap width, done by Klrchgaßner l llj , agree 
very well with our experimental results for spheres having the same 
direction (Fig. 15). The explanation for this is that in our case the 
instability first begins at the equator and we have there locally a 
similar situation as in the case of the two cylinders. 

Fig. 12 Sketch of Mode IV 
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Motion of Mode IV. a = 12. 15 mm, Re = 2,660. 
Tn = 201 

Reproduced from 
best available copy. 

Motion of Mode V. a ” 12.15 mm, Re = 1,210, 
Ta = 95.6 
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Instabilities and Vortiaes Between Two Rotating Spheres 

Fig. 15 The critical Reynolds number for rotating 
cylinders [ llj and the corresponding 
measurements for the spherical gap 

As as theory is concerned we have treated three Droblem*. 
Without going into details we give a short summary. Problems. 

the different1) °f.íully laniinar flow and a small relative gap width 

Sethid like that qf Í8 Can be o°lved by USlng an aPProximation method like that of v. Karman - Polhausen. The results are simple 

ritPhm)rl°n-S f?r t’1® streamlines. Close to the walls these are loga¬ 
rithmic spirals that fit very well to the experimental results (Fig 4) 

„ ji b* M.0ude 1 ■' wit,h larger relative gap -- can also be treated 
easily. For the region close to the fixed and the moving sphere esti¬ 
mations can be used for the boundary layer thicknesses. For a first 
approximation results for the boundary layer of a rotating disc Í 1 21 
can be used. Between these two boundary layers we have an already 
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srisr'ÄÄÄJHfSÄS“ 
combined and ^short aíd"simple caiculaiion glves a torque coefficient 
that fits surprisingly well to our experimental results. 

r The Stuart vortices -- already mentioned in connection 

flow field. 

We .re dealing here 

«a“: which one 1. relating 

the just mentioned situation exists. 
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Kal\Vevl^ä^a?lavuhe 
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m*Ho„ abo„t th/vaCÂ 7¾1°°81 ‘ymmat" y ' *° 'ha 
analytical aralysis ïnlln d,lstributi°n that has been ™ ^ 

y is, following a different path. c°nfirmed by 
infor- 
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ON THE TRANSITION TO TURBULENT CONVECTION 

Ruby KrLshnamurti 
Florida State Universtty 

Florida Tallahassee, 

I. INTRODUCTION 

The heat flow out of the sea floor has been observed in close 
to 2000 measurements; the mean value for all the oceans is found 
he i 4 X 1U ~ cal/cm sec. i i-cc cwiu * /--j - -- ^ 
orders of magnitude smaller than the solar heating at the sea surface 
and is surely negligible in any budget of the upper oceans. Yet, 
because this7heat flux is imposed from below, it may be of s^e 
consequence in the dynamics of the abyssal circulation. If this heat 
were to be transferred purely by conduction through the ^ea water ’ 
a temperature gradient (r of i03C°/cm would be required. The 
largest depth across which such a gradient can exist without c<£- 
vectlve overturning is determined by the critical value of the Rayleig 
number R, which is defined as follows: 

1.4 Xi 0"® cal/cmZs éc. [ Lee and Uyeda 1965] This is three 

R = <rd4 
KV 

where g is the acceleration of gravity, a the thermal expansion 
coefficient, K the thermal dlftoivity. P 
and d is the depth of the layer in consideration. This largest dept 

can transfer the Imposed heat flux by conduction is only around 
3 cm If there are regions or time periods of the abyssal oceans in 
which horizontal advectlon of heat is not the dominant process , then 
this vertical convection, with its attendant vertical mixing of nutrients, 

can be an Important process. 

Some understanding of convective procèsses cän be g^ed 
from laboratory studies of a horizontal layer of fluid which is heated 

below an/cooled from above. The following . a review of such 
laboratory studies and also a report of some recent experiments in 

rotating and non-rotating systems. 

This is contribution No. 33 of the Geophysical Fluid Dynamics 

Institute. 
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II. 
m - nok- 

flow., Âri^â‘U™X0gniÏ,l“!;:i“Ce P1“« shear 
transitions, remaining in each rSe foí a n,imb,ir °f dlsCrete 
number. The transit-inn tn f u i® me for a ^n^te range of Rayleigh 
the following manner: at sufflíleÍT«1 aPpears to result !n 
number the fluid system is °f the Raylel«h 
value of R is increas^d the sTstem W dibtarbances. As the 
disturbance. As R ia increased f ?v.Stnble t0 °ne klnd of 
stable to more kinds of disturbances.1 aTOficie Îî“1? becoInes un‘ 
numbers the flow is unstaWrto^mknfkinlfo/SîsLlTr Rayleigb 
occurring with uncontrolled phase that the ftn dist,irbances , each 
bulent. Before discussing the firs't three / ^ may bC Called tur- 
experimental apparatus will be described. transitions, the 

Apparatus 

shown In Fig. Th^flnklIaVer o OÍ e:iperImental apparatus is 
with a depth8,ha. can V 0¾. 

CONSTANT 
TEMPERATURE 
CIRCULATING 
COOLER 

0 00 0^0 0 0 O 0 o o o 0 0 O 0 

Fig. 1. Apparatus 
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UumftÄV, Tn6k5rnTLnà"0V.tnbl'"d,aJ’“ 'r'*1"’ ,0“r bl°'k* •» 
> in. .hick, „.ch I. ¿ In. LUt wid’ *T*k ,h‘.Ck’ ,w° *" 

thick TU- ul . I , bottom of the lowest block, which la 4 ln 

by a^coMtînî^oltMe^tpan^fo^m.-'îjiÏL* ^nnin^i* ..nn.iornîeShacked 

cryla^e^^layar o!rUqulcl*Bvrfíic!amlUCt^^*\**k**^' 

constantCtTeî^m^UcontacfbetweenCther^in^ ^ 

arrangement of blocks aK«,,» n,„ „ ., y *'iexi8JaS8 spacers. The 
that below except that the cool I conVeCt n8,layer ls symmetric to 
from a conetanTte^ by c0ollng nuld 

uppermost alumlnum^lock. The channel^" ch.annels ln the 
flows are side bv side In * i t !S ncorn*n8 aud outgoing 
gradients. Th^ch^ñeís 

multiple », ,ï an 
rate of the cooling fluid Is 2 • 5 gal/min Thls^n ma’‘lmum ilow 
in the studies which will be descrn^íT ûu ^ aPParatus was used 
oils. For convection In me.” W,lth alr> water- a»d sflicone 

by copper blocks of which two a^e 2 In thUrk'T bl°Ck8 ^Cre replaced 
and each is 20 in. by 20 in. wide! ' tW° are 1 in* thlck 

of magnitude lar^r than tha^o/the Ílls^TheTh ^ a^°Ui thrUe orders 
of copper is 50 tfmes as iarge L that of mlrcurv'TL' 
an attempt to approach the Ideal me/cury- Thls Is. of course, 

boundaries, »«h po'orly :'ddeät^tu“dfHr.1CS,ar.llC.,ln8 

different cellar structures A !o the tranaltl°aa to 
any horizontal tempe rature varUHnn TÎ f'3 aa a dlffuser oi 

nature of the cooling channels ariaIng from the discrete 

mately 400 lb of aluminum or Voo lb of^^^"aasTs'a la^T*" 
capacity so that temperatures in the blocks^re very stable. 

concentrating the te^mp^ratur^radl00!'"6011118 1Iquld ls measured by 
the manner devised by Malkus fl954l Wh«8 ,poor c°nductor in 
transported bv the fluid ia/he i 1V54J ’ steady state the heat H 
the two poor conducto!•!: ^ °f ^ heat cond^d acros s 

H = kn 
2dr 

T2 

where kp and 
ductlvity ^layers ^ °f ,he low y y . Op is the depth of the layer, and T, , T2, T3 and 
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Icrlpu ire ^ °¿ Ur b,OCk*- The .ub- «çrlpu are ordered from iKmom to u,p. The conduetMtl.« kP and 

the n'ZTr " oí thÄl oí lho ,lc»u,‘l wht*» «t known that 
relation»^ hold * " * *Ute conduction. Then the following 

k, I¿ 
T, . T, - 

ïï“^ - kß 
i sk; T 

wher® kt, l* th,i molecular conductivity of the fluid. Thu», once the 
conductivity ,„d depth „I th. p„„r condictor. U dutnufu.d. . 
mcaauremcnt of the temperature, in the four metal block» allow* 
the determination of the Rayleigh number and the heat flux. 

vl8ualUeÍthe,nÒ^lnUÍLn,,.kC*,‘Ü,,P7drd ,n ,U,uld wcrc u>cd la 
now inH hin ,JhC alT‘nUm nakc* aligned in a »hear 

adib 1UM? h.Cy arc n“kc"' reflect light more atrongly In 
Hi m" dir8f|llon<; depending upon the direction of the »hear and of 
wheicXÍíí r« h I* unJiorm *hear. the brlghtne», !» uniform; 
t I u. th7! . differential »hear, there will be corresponding 
»right and dark regions. In the c«.e of water, ulumlrum nake» 
would not »tay In #u*pen»lon »ufficlently long. •<. another tracer 
called rheo.coplc fluid AQW 010’ wa. added to the water. Thl» 
tracer displays differential »hear», j u»t as do the aluminum flake» 
but remain* ln »u«pen*l«n about 10 time* a* ]or,g. 

. , f,ncc 9Uid J,,y®r '* funded above and below by opaque 
boundarie*, the plan form of convection I* obtained by viewing^he 

2tno ÍhT t,hu'k!ldC “* “hOWn ,n Fi«- The tracer* were illuminated 
Two 2 Wd!P ^ narrow overlapping beam* of collimated light from 
two 2 w alrconlum arc lamp». The two beam, directed at each other 
allow vbualUatlon of «hear regions at both positive and negulve 

ent Teglon* of ti e ri .a m°VCdl »“^»«»mally , illuminating dlffer- 
reglon* of the fluid, a camera I» moved horizontally on a threaded 

Hg. 2, Geomet ry for photographing ¡dan form of convection 



On the Transition to Turbulent Convection 

rod In order to keep the Illuminated region In focus. Simultaneously, 
the back of the camera rolls on an Inclined plane since the camera 
Is free to rotate about an axis through its lens. Thus, different 
regions of the fluid produce Images on different parts of the film. 
In this way, one obtains a picture of the flow pattern as If one were 
viewing from above. 

For each steadily maintained external condition, the steadi¬ 
ness or non-steadiness of the resulting flow was to be determined. 
This was found to be too difficult by simply observing moving tracers 
through the fluid since there were gentle time dependencies with 
time scales of the order of several minutes to several hours. In 
order to have a record of the flow at an earlier time against which 
to compare the flow at a later time, the following photographic 
technique was devised. The apparatus used is shown schematically 
in Fig. 3. Two narrow overlapping beams of light illuminate 
aluminum flake tracers along a line In the x-dlrection, say, through 
the fluid. The beam remained fixed in space throughout the obser¬ 
vation time. The camera was free to rotate about an axis through 
Its lens. With the camera aperature open, a synchronous motor 
drew a wedge under the back of the camera at a rate determined by 
the time scale of the time dependence of the flow. Thus, the photo¬ 
graph displays an (x,t) representation of the flow, where t is the 
time coordinate. At t = 0, the camera recorded alternating bright 
and dark regions, corresponding to the cellular structure, as a 
narrow strip of image across the film. When the flow was steady, 
the cell boundaries remained fixed in time, thus producing straight 
lines parallel to the t-axis on the photograph. With the beam near 
the top (or bottom) of the convecting layer, the tracer particles 
have an x-component of velocity which is given by the slope of the 
trajectories In the (x,t) representation. 

Fig. 3. The apparatus for photographing the time evolution of flow 
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was obtained by view! mfercury* the "piar for m f“,10 * Except 
determined by both í 6' ™^ íhe SÍde’ The ti™convection 
internai to the SdWas 
was determined 1 the cases of air pnd tJlerrnocouples 

termined only by the interna/th^moío^er" ^ 

The First Transition - * «aiOALion 

the well.¿own^ritica/Ra1"?!1^ R’ the first transitio 
from the conduction yleigh nuniber R tm n occurs a' 
occurs independí *U f Xt0 °ne of steady ceilnîl ÍS a transition 
The nature of th^ R J °f ^ Prandtl number pí ru°nVection- It 

symmbeetricPproWem ^ ^^enSly ^ 

»«h as thal pr<)lJu0c«a *- 1965] . With ¡ «rti -1?—10“1 
of material oronenn changing mean temnPr,9. tlcal asymmetr 
3täte is subcritfca! S with tempere °r by variatio. 
the fl„w „ear the ci “fable *» ilnlte”mpl!t“de'd f —»«‘on 
Stuart ,96z. Kriahaa"“1,^'”'hMagonal [Bue.e, 
our attei.tion to the case in ' In this discussion ’ Segel and 
above Rc. ase ^ which rolls are the reaH. d T'® restriet 

realized flow just 

£V?SSw~S?»»sta.-u- rolls becomes larger 777 Rc’ lor i0< Pr < in4 tu ob3erv 
wave-number ß if D77tbis range, as shown in FiJ^ SlZe °f th' 

t»r Lr£ ™f--- 
~ e,„atlon6ln th: ‘ 

H Rcrm + (w0; 

where H is the dim » 

veToacïty! 80ais'the^^^°^®^^"ontire¾u/d ^ teni- 

H exceeds P tu e-, nally imposed heaf o,,.' ls the convec 

relation (w0)C’ c® transfers this larger fl! ntreaSed Such fc 
Its temperature S f,®1' a fluid parcel nefr tlmT r°Ugh the cor 
material. As „ , 8 limited bV the thermal 7« T®1- boundary. 

H la “«inuall/ihor "5™1hfflUu!dV,‘Vf ,he ’ cne lluld is forced to 
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On the Traneiti on to Turbulent Conv eation 

The Second Transition 

vection in the Hayleigh number*^ °f St^bl^lty of two-dimensional con- 

of Busse [ 1968] J Hf shows tLïTofin inUeP^ndtr3113^0" ÍS that 
dimensional rolls having wave-numbPr r uu ^. number= two- 
Fig. 4) are stable to a Ärirlcted L ^ a/ÍnÍte band (see 
provided that R< 22,600. If R > ]? 600f inflmtesimal disturbances 
ß. Busse shows further hat the rolf nl 7 Unstable for a» 
a disturbance of rectanLl.r 1 ro1 Plan form is then unstable to 
roll axis. It is not knowïf^ ^ Wïuh °ne slde alon® the original 
flow above 22,600 is steadv Tt i ^ i e°ry whether the resulting 

Of P f,om this ta‘d ÖÄlMV“1™"0sTcshrs:he S'1'C,10’‘ 

dta.nstoâ";oïïsrydriu„ie:ibK"'*"*m"“‘9™») ^ «■« 

number, which wiU bi ubelled T Thf V“/ thi° 
from the side) are shown in ifv J Pulan forms (obtained 
rolls below RM , that oTthe ^ °n the left ^ows 

The three-dimensional disturbfnce^h^formsTníhe roïl^T ^ * 

biíic?. COsZll£ methhoBdU:r'h TtabLJ-- A °ectangula!r dfstu^- 
shear, the hypotenuse of the^-ert^Th^18^13'78 re8ions of strong 
the nature ofTe g,0wi°[ m:;ee)‘“f‘8^dd/PPOar bright, Thuf, 

attain a steady stfte) is i„ agreement^ith0^ '^Pt>'¡ment,1], to 
be noted that the rectaneul3r8rli^ ith ?,UfSe s residt. It may 
symmetry in the vertical The noLt^f f °f h-S- theory ls one with 

agreement with that computed by" Ru se foT ÏT ^ ^ 
which occurs in the exnerirnp,at r- > that wave-number ß 
tion when a circular boundarv of 01^8^6 5bthe same transi- 
the rectangular region. Both rw") ^foAvf haS been inserted into 

that spatially modulated rolls will uL up lith^he?61 ^ i969] Sh°W 
to the short side of a rectanerni f , P th their axes parallel 
container, there appeared In the almost square 
the rolls, ' roils wi« see„ ¿o„V h. 1^07.?« »f »rtfnta.lo„ of 
dicular to the line of stvhi- ir, t 8 d-rr ne °f s ®bt as well as perpen- 

experiment. The preference oTroUft^lf repetitf0:9 °f the sa-e 
parallel to the short side ma k ^1116 UP Wltb their axes 
the rolls to meet the boundSe^6833 a Pref«ence of 
This effect is displayed in Fin p" ’ an ^,6. alonS the boundaries, 
not develop because the Dlevifl’a5b'v, Pr®sumably circular rolls did 

to that of the fluid thiftherrls ue.nt.M^f1,00"'1“0*1''1^ 
duction temperature fi.ld a”d no »' 
there was fluid outside of the ring. 8 g 1 isotherms since 

steady three-dimensional'flov^he sKteady two-dimensional to 
in slope of the heat fl““ o * dU"''a change 
second change ,f slop, observid ^ 
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m°it'move%ïïtir ^l\ñ^a¿TeS.t“usi^b^^ed ’’T* If the a“Id 
the hot rising fluid to be in\>ÍT< T ,! ! 1frger in order t° allow 
a sufficiently long time to lose 0-° h 'í k^í^6 C°^ uPPer boundary for 
the process Altho ^ heat bef°re sinking and repeating 

have transferred the increased^eT^flujT^8 ^ Which the fluid could 
increased cell size is one r.f Si ' m°v'inS more rapidly with 
very large, the viscous dissií, ^* ?f C°UrSe’ lf the Cells 
boundaries would slow down the i?n TJ8/ neãr the h°r^ontal 

This will be dTsctsedlt:r^Ms0IerndineFeif ^ 
size is allowed to evolve freelv íudti™ f Í ,Fig; 4 that' when the cell 
periments of Chen and Wh^ forrd in the ex’ 
of Busse's stability diagram is filled with'nhPPr0XtIiliatelyu0ne'half 
domain P > Pc i8 Ln./lcuTu^y b“ « ’ but *he 

1 

Pr 6-7 
Pr 57 
Pr 10’ 
Pr 0-86 X 10* 
Pr 1*7 X 10> 
Pr 0-85 X 10* 

d (cm) 

12 
2 
2 
3 
5 
2 

R increasing R docreaainir 

x ® 
□ 
+ © 
• O 
A A 
★ 

Flg- 4- f?t^Äed„aCS!,Ätted 
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On the Transition to Turbulent Convection 

The Second Transition 

The only theoretical study of stability of two-dimensional con¬ 
vection in this Rayleigh number range is that of Busse [ 1968]. He 
shows that for infinite Prandtl number, two-dimensional rolls having 
wave-number ß within a finite band (see Fig. 4) are stable to a 
restricted class of infinitesimal disturbances provided that R < 22,600. 
If R > 22,600 rolls are unstable for all ß. Busse shows further that 
the roll plan form is then unstable to a disturbance of rectangular 
form with one side along the original roll axis. It is not known from 
this theory whether the resulting flow above 22,600 is steady. It is 
also not known how the selection of ß from this- band of possible 
wave-numbers occurs. 

Laboratory studies [ Krishnamurti 1970a] show that two- 
dimensional rolls do indeed become unstable near this Rayleigh 
number, which will be labelled R.j. The "plan forms" (obtained 
from the side) are shown in Fig. 5a where that on the left shows rolls 
below Rjj, that on the right shows the flow pattern above Rjj . The 
three-dimensional disturbance that forms on the rolls above Rjj 
is consistent with Busse's Instability to a rectangular disturbance. 
Since the method of photography displays regions of strong shear, 
the hypotenuse of the rectangle should appear bright. Thus, the 
nature of the growing mode (which is found experimentally to 
attain a steady state) is in agreement with Busse's result. It may be 
noted that the rectangular disturbance of his theory is one with sym¬ 
metry in the vertical. The point of transition is also in good agree¬ 
ment with that computed by Busse, for that wave-number ß which 
occurs in the experiment, although the selection mechanism of that 
ß is not understood. Figure 5b shows the same transition when a 
circular boundary of plexiglass has been inserted within the rectangu¬ 
lar region. Both Davis [ 1967] and Segel [ 1969] show that spatially 
modulated rolls will line up with their axes parallel to the short side 
of a rectangular container. In the almost square container, there 
appeared to be little preference of orientation of the rolls; rolls 
were seen along the line of sight as well as perpendicular to the line 
of sight in two different repetitions of the same experiment. The 
preference of rolls to line up with their axes parallel to the short 
side may be re-expressed as a preference of the rolls to meet the 
boundaries rather than lie along the boundaries. This effect is dis¬ 
played in Fig. 5b. Presumably circular rolls did not develop 
because the plexiglass has thermal conductivity so close to that of 
the fluid that there was negligible distortion of the conduction tem¬ 
perature field and no fringing of the isotherms since there was fluid 
outside of the ring. 

Associated with this change from steady two-dimensional to 
steady three-dimensional flow, there is observed a discrete change 
in slope of the heat flux curve (Fig. 5). This corresponds to the 
second change of slope observed by Malkus [ 1954] . Rjj showed no 
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Fig. 5a. Heat ñux plotted against Rayleigh number showing the 
second transition. Photographs show the corresponding 
change in plan form. The Prandtl number is 860. 
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On the Transition to Turbulent Convection 

Fig. 5b. »w,„g ,he plan form withi„ circular ,ld<1 

Prandtl nnmben Â “ *" *'&■ 5a- The 

TherfwfsT^1 'rnwb,?r dePendence 1" the range 10 < Pr < l04 

ae «he S , ,gT rtStritt1’ in,bhe h'a' flUX a"d 
This transition IsT^wn by the e “e l.bïïed'ÏÎr^ *T, R« ' gram (Fig. 10). y -labelled II in the régime dia- 

The Third Transition 

Rayleigh nunfber whTch wUl beT.SlS‘"r”“«''8 Y“"* *' * 

ircÄ:,hh"r;YYi“."air *r 
(Fig. 6) [Krishnamurti, l970b] Yh" chT.eV'1",1’'*' flUX CUrve 
for each of the fluids shown in FI« in uu8?r,l-2 Sl°pe wasameasured 

transition point is labeled as cur^e III’ tor Ra f T", < 10J The 
above this curve the flow «shn^ori + ,or Payleigh numbers 
The one is a sloJtL^eZtÍZZ^ dePe^ence. 
the thermal diffusion tint d2A An 0Í the °rder °f 
this mode is seen in Fig. 8 The light it PhotoSraPh showing 
of the fluid. It is a slow tmi /ight be,am was near the bottom 

there was never a noticeable tfl^observed WÍAbheigR' Bel°W Rm 
would be tilted for times of the order of d'2A Fig q” Cells 
photographs of tracer particles in a vertical sli e fh 9 t?'? Streak 
vecting fluid. Figure 9a shows steady flow in cells oTïfct T' 
cross section at Rayleigh number Rr and Pr - «An °f15tectangular 
9c show tilted cells at Rayleigh number 74 R “and RQ RigUreS 9b and 
and Pr = 860. The tilted^^cellw nftnr '4Rc and89Rc, respectively, 
always such that two IslY" Y»; “"f" ln Pal” '““'t «>« «U« 

botton, boundary, flaring apar. Úal/th'Y t' “’’‘fY th' 
were close together near the inn fi i P* Tw° sinkin8 particles 

na. vanlcal trL.portxTo ^^ 
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Fig. 6. Heat flux.vs. Rayleigh number showing the third and fourth 
transitions. Frandtl number = 102. 
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On the Transition to Turbulent Conveotion 

I Reproduced from 
best available copy. 

Fig. 7. (x,t) photographs of convective flow. The position x 
through the tank is along the abscissa; the total width of the 
photograph represents 48 cm through the fluid. The time t 
is along the ordinate. The Prandtl number is 57. 

(a) R = 28 Re; the total time is 17 minutes 

(b) R = 200 Rc; the total time is 17 minutes 

(c) R = 33 5 Rc; the total time is 15 minutes 
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corrispondYng^o^h^tUUng of^/ceii ’'VL t>"'"> deP6"'J'-'ic« 
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On the Transition to Turbulent Convect zon 

(a) 

(b) 

*c) 

Streak line photographs of tracers in a vertical slice 
he convecting fluid. The Prandtl number is 860 (a) a vef 

ibi throu8h steady two-dimensional rolls at R - 6 R 
(bl= Showing » Pa.Lcf celf, with^a ,U. relative tí,he 

‘C* 
/ ï e, . ‘ “ “Xt. xciauve to tne 
icj Showing a tilted cell at R = 89 Rc. 

á"d“r..°ilyh: in the ^ ■» 

trar^port^hgiegative ‘S 
the negative x-dfrectton Za?6 t0 where the flow is ^ 
slope li the heat cur‘ve bv LTllo f rationalize the increased 
nally imposed heat 1= Î Y h ffllowing argument. As the exter- 
moví Z,er anTÏaier »ere. the Unid mus, 
the boundaries the cells m /k° accomP1ish the heat exchange at 

of the cells can help te ‘aSaln Ms“^':1''"S "v““’ ^ ^ 
dissipation along the boundaries The tUtfifp111/1 ^ increased viscous 
cells in the earth's u ! tilting of cumulus convection 

wind shear. The tilted cell 'is'befie ° hT bK eii related with a vertical 
momentum in the vertical direrH ° be /rnPortant in transporting 

It is interesting to ^ etLî in íhis^fU%maintfinÍng the wind aloft* 
cells tUt even fn thrats^e^Îfmïn 

with a JulThortlrTimelal™6 "pCrt anfosc,illat-y -ode 

y mie' (x,t) Photographs synchronized with a tern- 
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V.6 in. thick (that it 1/16 in. 1» the direction oí the line „“»úhS lí 

nÜZ'T^: ra„CScÄÄ/¾ï"“, fo™‘- 

«Ppea,sA,ôttheeeÂomh,hT;ber U ‘“a"“““ «“•‘«O» to turbulence 
oe?ilütio»,í h increased number and frequency oí these 

in. 
flÄidSIlI?er° turbulent convection in a rotating 

treated by cÍTandrasekhlrTmi I ThT¡Ínf? r sUhllLty theory has been 
very clear physical explanations^ given ^ vSfftSf'^oíaW 

ÂvîiÂf.b:s Äred by - œ!V,55rMe 
infinite pÂÂïher^.ï I cSaÎÎ'^”" *h“ f"T 
beyond „hieb ,here can be no sSl'e' s^eal ‘SÄ» Äe'vlc^% 
OI Kc. ihe Taylor number T is defined as y 

T - 4r¿?d4 
v2 

matic viscosity8 Tr“ T< t'V '"V^'î d<’pth- “d - ‘he kine- 

amplltude solution is the two^dtaensS^U sÄn'^r“”! > T 
there must be a transition from the coiducUon siate t” a ttoe 1 ' 
pendent flow as the Rayleigh number i, IncreT.ídteíond‘.S'cíiVical. 

18 i»cheTshÄ£i ÄSÄfÄ “TheTuíd" dePth> 

Äbrthlhyia 2 i' cal heater which is a fine mesh of resistance material. Above the 

firÄ."“ ^ 3 81383 P1“' — »»“h the coAX fluid 

fluid arfiho™ tohFig?u.f'°F7 arrieiay.i: "S“”* wl,h *he 
the cross instability forming on the rolls, of the°same ktad’fouid’ln’ 
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On the Transition to Turbulent Convection 

Fig. 10. The régime diagram. The circles represent steady flows, 
the circular dots represent time-denendent flows. The 
stars represent transition points. The open squares are 
Rossby s observations of time-dependent flow, the squares 
with a dot in the centre are vVlllis and Deardorff's obser¬ 
vations [ i967b] for turbulent flow. The triangle is 
Silveston's [ 1958] point of transition to time-dependent 
flow. 

the non-rotating case. Figure 11c shows the break-down of rolls 
coo r/o6! fo,rmln8 on them. The disturbance forms an angle of 

j i 2 ^ orlSlnal ro11 a*18- exactly as predicted by Klippers 
and Lortz. Figure 11c is a transient state; lid is the final steady 
state. In this state the over-all wavy pattern was not observed to 
change with time but the internal striations representing regions of 
strong shear were seen to change with a time ecale of the order of 
one minute. (Here d /v = 40 sec, d2/* “ 1 hr). Figure 12 shows 

i ^églme diagram for the rotating convection. The observed criti¬ 
cal Taylor numbers compare only approximately with those computed 
by Küppers [ 1970] for finite Prandtl number and rigid boundaries. 
The observed transitions occurred at TP = 1,5 X 10' for Pr - i> 7 

" “ ° -- -• h 3 ?‘O' ‘or Pr = 10¾. H » The predicted' 
?_!0„for Pr = ^ Tc = 1.7 X 103 for Pr = 5, 

R “ Rc and at 
values are 
and Tc <* 2 X 103 for Pr 
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Fig, 11, Rotating Bénard Coiivuction, showing cross and wave 
instabilities on rolls 

(a) R - 1,2 Rc, T = 1,1X10 , Pr = 6.7 rolls 

(b) R = 9.2 Re, T = 1.1 X 10z, pr = 6.?! c ss 

instability 

(O K = 2.1 Re, T = 2.7 X 103. Pr = JQ2; showing the 

developing of waves 

(d) R = 2. 1 Re. T = 2. 7 X 103, Pr = 102. showing 

developed waves 
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On the Transition to Turbulent Convection 

Fig. 12. The régime diagram for rotating Bénard convection 

IV. SUMMARY AND CONCLUSIONS 

Series of externally steady, fixed heat flux experiments were 
performed to measure Rayleigh number, heat flux and changes in 
flow of horizontal, non-rotating convection for 2.5X10'ê^PrS 
0.85 X 104 and 103 < Ra < 106. The régime diagram summarizing 
these experiments is shown in Fig. 10, Each of the curves I, II, 
III and IV marks a transition with a change of slope in the heat flux 
curve. The first is the transition from the conduction state to one of 
steady two-dimensional convection in the form of rolls. 

There is a second transition characterized by the following 
properties : 

(i) There is a discrete change of slope of the heat flux curve 
at Rayleigh number Ry. near 12 Rc, showing no definite 
Prandtl number dependence in the range 10 < Pr < 104. 
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(11) There is a change In the flow pattern from two-dimen¬ 
sional rolls to a three-dimensional flow which is periodic 
in space and steady In time. The change occurs at a 
Rayleigh number coinciding with Rn to within the error 
in determining R^. 

(iii) There is hysteresis in the heat flux as well as in the flow 
pattern as R is Increased from below or decreased from 
above, indicating that the transition is caused by a finite 
amplitude Instability. 

The third transition is indicated by curve III in Fig, 10. 
Above this curve, the flow is time dependent with a slow tilting of the 
cell in the vertical and a faster oscillation which has the nature of 
hot or cold spots advected with the mean flow. Transition to disorder 
is seen to result from an increased number and frequency of such 
oscillations. 

Higher transitions observed by Malkus [ 1954] and confirmed 
by Willis and Deardorff [ 1967a] have not been discussed. 

The small amplitude nonlinear theories have been quite suc¬ 
cessful in a small neighborhood of the critical point Re. The obser¬ 
vation that transition to turbulence occurs near Re for small Prandtl 
number in non-rotating convection, and for T > Tc for rotating 
convection, indicates the possibility of gaining further understanding 
of transition to turbulence through the nonlinear theories. 

The research reported here was supported by the Office of 
Naval Research Contract N-00014-68-A-0159 and by grant number 
GK-18136 from the National Science Foundation. 
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TURBULENT DIFFUSION OF TEMPERATURE 
AND SALINITY:-AN EXPERIMENTAL STUDY 

Allen H. Schooley 
U.S. Naval Research Laboratory 

Washington, D.C. 

ABSTRACT 

Stratified temperature and salinity conditions In 
water have been established In a small laboratory 
tank. A method for making measurements and cal¬ 
culating the eddy diffusivltles of temperature and 
salinity for different controlled levels of turbulence 
are described. The ratio of temperature and salinity 
molecular diffusivltles Is on the order of 100. The 
ratio of temperature and salinity eddy diffusivltles, 
for the most turbulent conditions studied, Is 14. 

The dissipation of turbulent power density (P) due 
to viscous friction was found to be on the order of 
10 larger than the power density (P1) consumed 
In changing the thickness of the pycnocllne. The 
experiments hint that P/P' may be relatively 
constant over a range of turbulence. If this is 
assumed to be true, there exists the possibility of 
estimating temperature (D) and salinity (D1) eddy 
diffusivltles by knowing the change of density, (Ap)_ 
and (Ap)s, with time (At) for a given depth differ¬ 
ence (Ah). Plots of D and D' in cmTsec vs. 
(P'/rj) = 11 0(Ap/At),^z(Ah) in sec*1, are shown 
where [r)) Is the dynamic viscosity of water. 
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L rNTRODUCTION 

ä‘ä 
on the subject Ær 8 Considerable, thoughTcn^^8 eddy dlfiusl- 
Processes are and Person, 1966] llte«ture 
tory experiments ®ere y UîîCOntrollable»9 several e^,itUrbulent ocean 
Paper is th« « ! re conducted in late foZ , exP1oratory labora- 

II- -APPARATUS. 

conductedßUrf v! shows the test cell where th0 
9 cm high! and 2*SfStic walls andTao^mï 

c hlor i de”1 depend»6 dÍ8tilled ^ter^To^sV"1]'"? fIlled ^ either 
studied!' Äd n/ Thether th«m" or salini^ ^ r OÍ 8odI^ 
mospheric nre lecular thermal di/fusivitv nf^ dIffusIon was to be 
water! tuP 88Ure and 20oC is 0 Onilï V 2f/Pure water at at- 

c^ter.msÏÏLty1diffJre™Per8aetUre dlfference sensor near 

atleftproduces^Æe%rdae0m:nadt.righÎ- L 8^d wire 
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above6 roonnrtenfpgy^t^e^^^j^bav^g^te^pg®”^“®*«^ the t0p 4 cm 
the top of the bottnJTi A thin Piece of b»l-„ f several deareea 
nozzle directed n. m layer and warm water j°0d waa boated on 
Mocdu-.^t/,. S.lndd‘CU,arI)r ¿p ôÆ0Î“«d tflI'°ugh 
‘0 th. momentum ófth. W,>d- ™* 
vertical mixinewîth MU1Ing was accomplishin „ Í! warm water flow 
•IlnLy <ilifu.l5nWi'i‘h* more d£. “f* ■»‘»Im.m, oi * 

*««, „a. Introducá thr * Wi‘ to be conducted , i0*', Wh™ * 
oontained .he .„Iutloe„’*m' »*?• In thl. cm 

Ä.mnS:£~0“f'bÄ«^ 
length of time -ni» . 1 a controlled rate and # * th interface 
the interfaces i*W/r® Ia ahown in Fig 1 ^ Î?T a «ntrolled 
empty in Fig. U) Thî * ^ the ceH wa‘s fm.ï® LCLm level where 
mechanical svaf» Th top of the "L" ahan»d . d* ^The cell is 
HL" thatwas* rotated* hf* 'u* the Picture.^fs^V“ COUpled to a 
ducing turbulence whení ^ f°rth laterally at thtTfm rPart of the 
for generating the ar^ dfsired- Table I glLaM» lnterface pro- 

8 amOUnt8 of turbulence that ^e 

Table I. Specifications of the Turh , 
Turbulence N0 w, Generator 
*-—-Mixer Dimensions 

1 

2 1,8 mm diam, 7 cm long 

Asn«;e of Swings 
^5« Per Sec 

2.5 

5.4 

aenaor waa exPerIment waa b.l 
•barn,op„*,\VjJ¿«"«to.. of a .»Ta,^*“^. «>c center 
Placed 1 cm above ÜX2 fC.m aPart. The upper iunrMC°natantan 
uPPer warm and the W. ther 1 Cm below the inf f ion waa 
was 30 microvolts for r uCOOler water- The ouln of the 
was connected to 1 sm^?Ch de«ree difference in Jem °f thl® aen»or 
which gave a tlm«a mal1 commercial miem , temPerature. ft 

was recorded k„ aecay, with controlled ’ The verucal tem 

P“l»ea ‘“‘••'•Pncad'wltt*.^^‘“¿I cyafnlir“turtS“"' 

- -Ä r~ ».¿P Co.».« t, 
ihey are identical 
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The conductivity oí P^etimun wires set le epoxy. 

b*1°w* Standard aalt solutions wer^6 **!? the other one half cm 

linear ZdT ^ °rder t0 meaflure salinity ^ Thl^^rK^6,001^'104^1^ 
linear and temperature corrections we redecís Í ary 0n Wa8 n°n- 

^e*fluring eddy diffusivlty8byth^use^f athattWa8 devised to facilitate 
of the same amplitude and time Tht f V®1"1®8 of turhulent pulses 
record of the temperature ¿¡?f The1ordInate of this chart Is a 
left t.herrn°plle shown in Fig, meaaured by 
left to right. The record sUrts ft tl? ' Whl,ch Pr°gresses from 
temperature difference starts to decrea^? ft C°rner where the 

8 minute pause allows the pulse °Pped ^or ahout 8 minutes. This 
so that the temperature diff^rencgeederatted internal waves to damp out 
can be measured and separated fromth*0 tu1rbflent eddy dlffuslo/ 
diffusion. Again at chart positions #6^4 reÍaÍÍve0ly slow molecular 
pulsed of turbulence were Produced The , ,Slmllar 15 second 
was thus only 45 seconds anH ’ The total time of turbulence 
enees «lue to eddy diffusion were recoded*9 temPei'ature dlffer- 
of turbulence. The effect of eddv diffusé aVNree 15 8econd intervals 
y the same technique using the conductlvSy sensols^ meaaured 

(. 4( 
c . r cm : V 

Flg- 2. Temperature difference at , ,, 

decay of ¿T by molecular dlfftts|ofî^V The 
time, by tarbolen, pol... la.tlng !5 »ec‘e“"UP"d th"' 



Turbulent Diffu,io„ of Temperature ^ 

ni. thermal diffusion 

sero time t^ald1 depth**0 a 8ho'yn.schematIcally in Fig 3 At 

lnfTPltratUre T¿ 18 assumed to ebTbrouinhttet regl°n of water at the 
Infinite region of water at temperature^T t0|ethtr with a seml- 

as t Zbf>rand T°1 are essentially constant for .urtíier' 14 is assumed 
ii , " omes large, the semi-infinite mn^ 1 ’ t2’ ‘ * * Eventually 
UCe beC*U“e ,h- value ^ 

Elg. 3. 

)Q . - Pth z and time t. Semi-infinite depth 
a reference. At time tn 

01 water depth z a; 
is presented vertically with , a f ..c 
a sharp temperature dis continultt Teference* ^t time 
defined as (T, - T )/2 At * jKJ assnmed, and T 

T0 remains constant. For lone t)iÎÎUSl0n haS started and 
Multe „ode! bteak, do™ ÂÙ .f“' *'ml- 
T0 does not remain constant in practice! f ^ ValUe °f 

diffuslonTheequhaHonflOW thiS m°del Is g°verned by the one-dimensional 

3T 
~St £l 

0z2 Í1) 

Wh're “ 18 'h' dlfi“8W*^ “,uaI1y -pteeeed tu cm>/sec. 

- " n ; », L'= 0¾^ oUtLee,„uIaI 
(aT?d-thT )/znd7y COndit*ionsa f°r Z> 0 and” t - Ó I 
Uz T')/2* For ^ = 0 and t > 0; T{0,t) = Í ! 8 T{z ,0) = T = 
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The analytical solution to this well-defined problem is 

T(z,T) = T0[ i - erf(x/2-/Dt)] + Tz (2) 

where 

írfíx/zVÕt) s 2/Vw y «/ayo» 
e^ du. 

From (1) the gradient of T at the boundary zQ is 

8T| Ta 
Tïz 

mmm3SBST 

VirDt 

or 

[H| ]s1®(f) 
(3) 

and 

D = (T0/tt) [;/(S)'] (4) 

2 
Since T0/ir is constant for any one experiment, a plot of 

l/t vs. (AT/Az)2 for the data points should give a straight line 
through the origin with slope Dtt/t| . Figure 4 is such a plot for 
the experiment of Fig. 2. A mean square fit gives a slope of 0.66 
with a correlation coefficient of 0.99» Since To = 2.45°C, in this 
case the eddy dlffuslvlty is D = 2.45 (0.66)/tr = i.26 cm /sec. 

In practice all plots of the experimental data do not yield 
perfectly straight lines, particularly for larger values of t (smaller 
values of l/t) than are shown in Fig. 4. Calibration and experimental 
errors are always present. In addition, as is illustrated in Fig. 3, 
the effective value of T0 is not constant for extended lengths of time 
(t = tn to,) because the experiments were necessarily conducted 
in a finite size container. However, Fig. 4 does represent con¬ 
sistency of the data with the simple analytical theory under the 
assumptions that have been made. 
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Turbulent Diffusion of Temperature and Salinity 

2 
Fig. 4. Sample of experimental data showing (AT/Az) Is a lljiear 

function of i/t. This Is In accord with theory that diffusl- 
vity D= (T^/tr) [ (1/t )/{AT/Az) ] . 

IV. SALINITY DIFFUSION 

The substitution of S for T In (4) Is all that Is necessary. 
Thus 

D' = (Sj/ir) [{/-tf] (5) 

where D' Is the diffusIvlty of NaCl dissolved in water In cm2/sec, 
S, the mass concentration of salt in gm/cm , t, the diffusion time in 
jeconds, z, depth In cm, and S0, the Initial salinity discontinuity 
In gm/cm. 
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.00001 •0001 .001 JÕT — 
OIFFUSIVITY OF NoCi IN WATtR, 0' (cn**tcl 

Fig. 5. Thermal diffusivlty D vs. diffusIvlty of NaCl In water D' 
for zero turbulence at lower left, and Increasing turbulence 
toward the upper right. 8 “-^nce 

V. DISCUSSION OF RESULTS 

Figure 5 shows thermal dlffuslvitv D vertlrallv ooi* 
dl iu.W.y D' horizontally. The poIn, Sarï.d » ^the“^* 

Thl rtpr K8enf8 thf han^book values for the two molecular diffuslvitles 
Sxer of FiffClriCUlar dz!‘ermlned experimentally when the 
,a a f Flg: ^^as not used- The point nearest the center of Fig 5 
Tabíe Y6™!!! 0f f0,Ur exV*rl™*tB U8lng turbulence #1 as listed In 
Table I. The maximum deviations from the mean are shown The 

derived1?ht ^ ^ 1S f°r tufbulent c°ndItlon #2. The mean value was 

th. rn.an ar“ :hòw”.eXP"ime,'**• Agaln d.via,Ion. from 

mn1«r 5 a ftral8ht line has been drawn connecting the 
Thi l f dlffuslvlty point with the point of maximum eddy diffuslvity 

Jlelrlv ),POlnt I somewhat below thl8 Une but the^e is Y 
cirve y At thTmn YfY T d1ata to determlne the shape of the 
urve. At the top of Fig. 5 a scale shows how the ratio of D/D' 

decrease with increasing turbulence. 7 

Turbulence in a stratified fluid manifests itself in two ways. 
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Turbulent Diffusion of Temperature and Salinity 

There la heat energy liberated due to vlacoua friction. Alao, a part 
of the turbulent energy la dlaslpated In changing the potential gravi¬ 
tational energy of the pycnocllne by changing Its thickness. 

The power density associated with a change In potential energy 
can be sht wn for water to be approximately 

P' = li^jOí^hL erga/cms sec (6) 

where g Is acceleration of gravity In cm/sec*, (Ap) Is either (Ap)T 
or (âp)$ symbolizing the change In density due to temperature or 
salinity differences across the pycnocllne In gm/cms, (ûh) the change In 
thickness of the pycnocllne in cm, and (At) »(t.-t() In sec. For tur¬ 
bulence #1, P,'a 0.0074 ergs/cm3 sec. For turbulence #2, 0.055. 

The power density due to viscous friction P was estimated by 
measuring the temperature rise In the water due to turbulence #1 
and #2 being maintained for measured lengths of time. For turbulence 
#1 this was about P, = 0.014(107) ergs/cm3 sec. For turbulence #2, 
P2 = 0.082(107). 

The ratio oí P,/P¡ = 1.9(107). and P8/P' * 1.5(107). Thus, 
It appears that the power density due to viscous friction Is on the 
order of IQ7 greater than the power density associated with a change 
In the pycnocllne thickness. 

However, the ratios for the two conditions of turbulence are 
different only by about 25%. This Is interesting, for If It should 
turn out that P/P' Is relatively constant over a practical range of 
turbulence, temperature and salinity dlffuslvltles could be estimated 
directly from the time rate of change of pycnocllne thickness (after 
Internal waves are filtered out). Possible application to the ocean 
Is Intriguing. 

For physical and dimensional reasons, let us divide P' by 
the dynamic viscosity of water n >= 0.01 gm/cm sec, and take the 
square root. Equation (6) then becomes 

(P‘/r7)'/2 == 110(Ap/At)'/2(Ah) 1/sec (7) 

This equation contains variables that are relatively easy to measure 
and has the dimension of vortlclty. It Is plotted In Fig. 6 for the 
average values of the variables used In the small scale laboratory 
experiments. 
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Fig. 6. Tentative extrapolation oí experimentally determined diffusion 
coefficients D and D' vs. variables that are relatively easy 
to measure at sea. 
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ABSTRACT 

vortex pairs íÍhomogeneoua ^¡^/3^ b ^ ‘Urbulent 
based on separate velocitv =^11 a kf® been developed 
external flow fields Involved íí«? °f í,® internaI and 
into account variations L , m°tion and i^ing 
tum, and energy? ¿ïsed' Clrfulation» tornen: 
this theory (!) a simplified t-Vi<» obtabled from 
with the rising Son ^ 7^ ÍS derived ^ deal 
stratified medï The tLoreflí,Ulent1VOrteX Paira ^ 
with systematic experimental obfe^attoL!"' C°mpared 

scales, ï/ÎsÎntro^iceïIs^T1 t0 external velocity 
the theory is specificallv der? il^ip.ortant variable and 
cases of weak & - Â fl? ÍVed/°r the two limiting 
The weak circulation hStv Ie??8 ^ ^ ^ ^^tionf 
those obtained In Z past^stv L 8lmllar to 

Ä1» “d —Äeb“a«d„“ rem- 
wUch depend onlhë *0 
from the shear laver is tn<*thf 7^Y ln whlch vorticlty 
When Ingeated eo a» to "a^e the, P“-- 
Of the ingested vorticitv ., (cancellation) 
Z ~ t'/2. UnderThf 7' he asymptotlc trajectory is 

increases towarTanC??diti°?Sfíhe velocity ratlo, 
virtual momentum coefflcirit^01?! Value ’ and the 
to zero. As a res,?h ?i?f f°,r the mot^n tends 
vorticity annihilation) corresponds ^041°11 (assuming 
complete elmUae«,, „d »UhPenedi;0e:n”0“°a;i”1:h 
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A comparison of experimental observations of rise 

and radlUS versus helght with theory (I) 
lend strong support to the strong circulation theorv 

.“aihuE ‘n8'*"d vor,1,:“y ma>r be Iars«ly 

41168e/Tf^lng for homogeneous flows, a slm- 
plifled theory (II) for stratified media was developed 
upon the assumptions: (1) the motion Is determined 

lbeyctlna“erV« l|Ín of volume' masa » anf. energy (neg- 
Îarltî fdR/dlClV amentum),- (11) complet!slmU 
larity (dR/dz - ß, a constant). C«od agreement was 
found between the predictions of this theory and the 

for 8 °f 78tematlc experiments , and pa/ticularly 
for the maximum rise of height. ^ 

NOTATION 

a 

A 

Al 
b 

B 

c 

cD 
D 

E 

G 

j 

k 

k 

K 

M 

n 

r 

R 

E 

S 

m 

Density gradient in surrounding fluid, a = (i/p,)(dP</dz) 

Initial buoyancy parameter (theory), Eq. (44) 

Vortlclty mixing coefficient, Eq. (9) 

Half distance between cores of vortex-palr 

Stratification parameter (theoryl, Eq. (45) 
Constant 

Energy dissipation coefficient 

Energy dissipation parameter, Eq. (46) 

Total enargy of convected mass 

Experimental buoyancy parameter, Eq. (44) 

Geometrical parameter, j = 0 for planar geometry, 
J — 1 for axial symmetry 

Virtual potential energy coefficient, Eq. (38) 

Virtual mass coefficient 

Virtual kinetic energy coefficient, Eq. (37) 

Vertical component of total momentum 

Parameter defined by Eq. (47) 

Radial distance from center of rising mass, r2 = £2 + nz + ^ 

Mean radius of rising mass 

Non-dimensional mean radius of rising mass, 1 = R/R() 

Experimental density stratification parameter, Eq. (53) 
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Self-Convicting Flowe 

* Time 

t Non-dimensional time, t= W0t/z0 

1:: w Hz*whIch the maxlmum heigh0t °f ri9e is ’ Velocity components, see Fig, 14 

Vertical velocity of rising mass 

Non-dimensional vertical velocity of rising ma„, w/w 

leal velocity of ideal vortex-pair / ° 

Heigh, of rising mass center above 1„ virtual origin 

Non-dimensional height of rising ma.. center, ï = ,/, 

Maximum height reached by rising m,.. 

Modified entrainment coefficient 

Local vorticity, Eq. (7) 

Total circulation about a single vortex 

Coordinate system, see Fig. I4 

Local density inside convected mass 

Density of surrounding fluid 

Average density of convected mass, Eq. (43, 

Density difference, Ap = pi _ p# 

Velocity ratio, Wj/W 

Non-dimensional vertical momentum, (M,/p)/w. R2 
'o 

W 

w' 

zmo» 

ß 
V 

r 

p 

Pe 

pi 
Ap 

4* 

P 

Subscripts 

( )0 Initial conditions 

( )j Internal 

( )# External 

I. introduction 

by Scoreri l^Tj, Woo'tî^d [ Í959] anfiTi fa1'1'16'1 °ut 
that the shear layer which is formed bef Richards f ^965] , Indicate 
of fluid and the stationary surrounding 3 fmo^ln8 isolated mass 
create a flow field whichresemHes (fnTwo "I* ^ roU UP aod 
associated with two line vortices of in two dimensions) the one 
separated by a distance 2b so r n a ^ 8trenSth but opposite sign 
bility of vortex-pai motions ini i • " The possf- ' 
analyzed over lOO years ago by Sh w‘ Thom11^ nfl^nSidered and 

ë oyölr w. Thomson [ 1867]. His analysis 



Tilidin and Shwartz 

V— h„ a 
Of the Other vortex. Such an Ideal vortex n*lr ^ u7 the infl“e^ 
surrounding fluid in a direction nern^nH) ? 1 m°VeS through the 
the vortex cores and with a velocity dete joinirl8 
separation, 2b, and the circulation f 4 yml,ned only bV the pair 
according to the relation 1 b 1 3 sin8le v°rtex, f, 

w*- r 
w ~TFÏÏ (1) 

existence of^cloíe^s^reamlini^n^a^ ^0rtex-Palr m°tion is the 
Indicated by the oval in Fig 2a Thr» firiitf t1ured mass, as 
semi-axes of the oval-shap¿d eint [ 186?] calc^ated the 
so that the cross-sectionaf ar«1!1 d maSS t0 be 2,09b and l-73b 
ratio of width to thickness is 1.2l! approximately 3.62 trb2 and the 

carefullyïaWeTvortix-pTiVs311^11 if ent.irely Posslble that 
zation, can be formed The mot) PProximatlng Thomson's ideali- 

be affected by viscosity in a r^^l flui^Tf ^ Cente rs must 
cores do not extend close to the K j.’ b 38 long as the viscous 
flow within and without this strea^ne ™ 8treamlIne. the 
that no large shearing motions or^cr« 7 80 closely matched 
ated with the motion of the captured dr38 are a88°ci- 
vortex-pairs are som^tlm^s'To'und^n^r‘aí fac‘• rnearlV ideal' 
fg. la, and are known as »contrail« » Í of 1Htlng «“rfaces, 
Spreiter and Sachs [ 1951] . Of coUi^ .Í6 SC°rer [ 1958J and 
m the vortex cores tends to diffuse and í Concentrated vorticity 
flow in the core is turbulent. ' d d°eS 80 raPidly when the 

ideal vortex^PafrsVundeíturba^nt^ndlHbablef 8h°TÏ 1Ifetime of 
tance to vortex-pairs whose behavior ll a°n8 glvf! 8pecial lmP°r- 
entrainment; indeed, it is these kind« 18 govf,rned by turbulent 
commonly observed in nature as In motIon8 which are most 

forced out rapidly through an apeare Fty6 i°k " "f8 °f fluld 
of isolated masses in nature, Fig lc ’or tib'u°r in the convection 
chimney plume. 8 ’ or in the bent-over and rising 

interior motSn^oIs^ot match the o^rfl61*12í í the f3Ct that tiie 
captured mass, so that a region of hioh v?°W ^ í6 boundary of ;he 
panied by the production of vorticity aîd bvi t ,8tS there* acco‘n- 
In other words, these vortex pairstymovp.b7uurbulent entralnment. 
equal to the velocity W? derived from Th^i 3 \elocity W urrivta xrom Thomson's model, Eq. (1). 
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Self-Convecting Flows 

rotatlon^motlons0ofthe^ortex paj Whth charact«l^»« the internal 

mh:rio,v:s’ ^ ^ 
ass loses volume to the surroundln« n,j nd the c°nvected 

in size; we denote this vortex-pair a8 C°ntinually shrinks 
• In the other case, W < \y* ^ rdeveloped’" see Fig 

Pair gains mass through the ent* t d thC overdeveloped" vortex-8 

Of these it is the latï^moSon wh ^ eXterl°r *“ld’ ^ 2c 
nature and forms th. -nata^e^'S tM.Terîr”'"0''^ ab>"-dî„ 

inside the vortex-pi!r^aTaTen bTa'!,0"^ V'Ioclty at the boundary 
be larger than the velocity of the surr b lrVe«m0ving with ^ wil/ 
boundary of the pair. Accomní! ®urr°unding fluid just outside the 
created across this boundary ?shea^!16 Velocity gradients thus 
vortex-pair on the surroundina n fJ Stresses are exerted by the 

«“‘‘I and a genera Äafe ‘n »’«■•aliment oí 
mas., . Flg. 3, Wlthln thr"“°ln.tb' volume of the conyeoted 

dC VOr'IClt>' °f.oThaTSi“ S.' “iie0'1 

Fig. 3. Entrainl 
ng vortex pair (W, > W ) 
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Sîelïfj* d0Wn ar0Und the bo«om of the 
Ingested vorticlty remains on <■ T° the extent that the 
within the interior will be steadilv î^8 plane’ the vorticlty 
vorticlty of oppositralan HnlI t 7 reduLced: of course , ingested 
annul itself, dependin^on t^ t0 mix and ^ to 
annihilation of ingested vorticlt^^161107 °u mixinB- Should effective 

«o* within one So“, ^rpaï Sd" béTn^e n veTií Zt ^ 

p£iS::tr^^r^ 

the flows at different points spice1 orH^61, slmllar circumstances , 
from one to another upon normal^aH k”16 Can usuallV be reduced 
and velocity scale (self-slmuTrUvi Th^ )an,aPPr°,Priate length 
the flow at different downstream TÍ' f|Thi / trUe' for examPle. of 
It is therefore natural to expect tha^ alllblltU^bulent jets and wakes, 
complete self-similarity during its life tW Ï I°fMeX‘Pair exhlbits 
has been made in all theoretical treatments ófTv, thia a8SumPtion 
with Morton, Taylor, and Turner [ 1 9?6l Two )6 SUHect' starting 
of this complete similarity are- tn r * °, imPortant consequences 

internal and external velocity Vcale, W/W* “u ratl° OÍ 
(2) linearity of the length scale of tVa ’ ' durlng the motion; 

tance traveled from a flrtuaf origin.6 maSS WÍth the dis' 

boundarÍe?ofatIercor^ett'edPmalCtÍfng ^ traC6S of tbe 8id« 
the dynamics of the motion and se °rm a wedge , is independent of 
similarity. In fact ^ number f i t0 Pr°Vide a check on 
convecting ™as^ - -lf- 
approximation, see, e g Scorer ^ to arreasonable 
Richards [ 1965] . 8' ' r 1 1958] ' Woodward [ 1959] and 

ratio W%8<h;riTh8eïa^e\ïneferfa "natural" value of the velocity 

served, independent ofThe ß = dR/dz ls ob- 
convected mass. The answer seems to ITno^n th 8 ^36 t0 the 
ments, two distinctly different ranges of vZe of dR/L^Ii^ "r1361-1' 
by a factor 2, have been repeatedly measured /d differlng 
two different stroke lenuths )„ 7 asured, these correspond to 

vortex motione ' rurSL^e alZ^ría” t0 "W“" «’■v 
claimed to correspond "In a re’ ui® tbe Present data may be 
value oí dR/dn, yeroulte c„^f.tenfÍe f»,''“1"'»«"»" a con.tant 
between the traces of pair rail ^ !"v^ations from linearity exist 

These deviations are su[h that Sr/hI- traveled- 4. 
throughout the observed motions. ^ ^ seems actually to Increase 
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Self-Convecting Floue 

RADIUS, R/R 

Fig. 4. The variation of vortex-n3lr ^ = 
geneous medium, experiment Wlth heIght In a homo- 
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^¿r.r r— ns:-th=* 

il. THEORY (HOMOGENEOUS FLOWS) 

and*«X- 

^lch 
Internal. 

External. 

w,(x,y,t) = W^t) -^(1,1) 
(2) 

w,(x,y,t) = W,(t). w.(|{I) (3) 

and similarly for the other velocity components. 

time asTusInthe cL^o’f compeie?e iimîra?iety!ra1’ ^ C°n8tant In 

the inner fundar; o^ont ^^IhTt^^aTr^ 
except averaged over the outer bmmriav /£v i d W* the sarne 

boundarlea .epana'ed bfa thraS-lay?.!)1”"" 

velocity difference W¡ - W 8 we take for the former, the 

= 2irR(Wi - Wa) • «(i),) (4) 

or. 
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dR We 
di= ir -1) • «(tf/) = (4,. 

(5) 

Note that the dependence nt 

velocity ratio + has been left u^specifted?11^ C°netant on the 

the r about one half of 
1° thM SCale ^ inner velocitvlscaireSllSîarÎty' ProP°rtional 
In which Wj was defined, 7 1 * 011 acc°unt of the way 

T “ RW, 
(6) 

Wgh she?r'u;“ ™rticity80fO„p°Ô í'0” ‘he ““»»»»«»»g 
within the interior, see Fie 3 fl PP ]te sign to that already 
not annihilated through mixhJ thu® .r®duces It to the extent it is 
opposite lobe. The stre^gÄtn. J^1'7 b,eing strained in the 
of similarity, be proportional to the ratioTfrtlCit7 f™84* on account 
length scale. In particular: °f a Pertinent velocity and 

y(entrained) “ Lwe ^ W¡ ) 
(7) 

The flux of entrained vorticity takes the form: 

Vorticity Flux “ Volume Flux • Y(entrained) 

a[27rR(Wri - We) . 0(4,)] f Ä^WlJ (8) 

the change In circulation vorticity: may be related to the flux of 

^=- A dt Al • 2^0(4,) • (Wj - we)'‘ 
(9) 

or. 

d(W| R) , 7 
dz -- At a • (W, - We) -(4,-1) 

(10) 

The value of the parameter A ,„ni j , . 
e«.„, ,0 whlch 0„trataed v„tIcity frolm eafhd^”d'» P»» upon the 

side mixes together 
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causing annihilation. In the case of complete annihilation, A, = 0. 

pair is conserved in motion^hrough ÏhTmTg^ne^s me^i^V01^* 
may on account of similarity be expressed in the form, * “ 

M, Tj- / , V 2 
p = = Const. (H) 

.trgÆ oi,œrrLr»fut^ ,I*“8Xmay be deduced 

M, 
p 'lívSdê dt (12) 

JheV/Îaver^f ?bal ^ ^ aeParately over the interior and 

of stmîlLlïy, V0 P ' WhiCh yleld8 termS UP°n maklil8 aaa 

ÏÏ 
int. 

VC dê dê “ W, R' (13) 

shear layer 

Yê dê dê « (W, - W¡)R2 (14) 

|AsV.e"3tobe,thef0rm0£ ^ conal»*en, with our assumptions. 

(15) KmM = K, - 

where K, and Kj are undetermined constants. 

Energy. The total kinetic energy in the vortex nair 

Í™?“““"1 °f -V ej^r eased 

K.E. 2—2 ,2-.2 
—= K¡ W.R + k#w;r' (16) 

rm, while the dissipation takes the fo 
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KE 

"Ht £- = - Wft • Cn(4<) (17) 

where for large valuea of C0 must approach some limiting value 
t-D , while for small values of 4* (ij/ -► 1 ), C0 — CD(1) • (W^j/W,)3, 

j^aws of Motion. Limiting Cases; Weak Circulation (4,-1). 

not 
T i —• - ~ i— 7-- —»“»Iting ^obco, ncan v-ircuiauon J4, — 
In this case the inner and outHFïïows are almost matched andthe 
deviation from the ideal vortex motion Is small. The laws of motion 
In their appropriate form become, 

Volume. 

dR 
Hz 

= (4, - 1) . o'(i) (5a) 

Vorticity. 

= - A|a'(l) . (4, - I)2 • W# 

Momentum. 

Energy. 

K^l) • W#R2 = const. 

(10a) 

(Ha) 

CD(1| (17a) 

Combining (5a) and (10a) leads to the result, 

W, 
* R 

Whereas, (11a) requires 

A, ^ 0 (18) 

W, 
* R5 

or oc .1/3 z “ t (19) 

so that the presumed motion can take place only If A| = 0 or 
A| - - 1) . Combining (17a) and (10a) leads to the requirement 
that the velocity ratio be constant and have the value 
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* * 1 + [ TKTl^alD ] (20) 

At the eamc time, dR/d?. la required to be constant and to have the 
value, 

(21) 

We leave till later a discussion of comparison with experiment, but 
we may note now that the prediction (lb) Is similar to that of the 
previous theory based on complete similarity. 

. ,, .Ë.Lr-9.n8 Circulation (4<» 1). In this case the Interior circu- 
latlon Is very strong relativeTôTïïe Ideal value and the deviation from 
the Ideal vortex motion Is large. The appropriate laws of motion are, 

Volume. 

dR _ ,. . 
37 = * • o (4,) (5b) 

Vortlclty. 

= - A,o'(4,) * W| • 4j (10b) 

Momentum. 

Energy. 

(K, - K24,) • W( R8 = 4, . (Mx/p) 

K.W^(WiP)!= - W,!. R. C0' 

(Hb) 

(17b) 

Combining (10b) and (17b) leads to the requirement that 0(4,) be 
constant and equal to 

■ _ Cn' 
A, (21) 

Since similarity requires that W,/W be constant, we may hereafter 
take 0 constant In (5b) and (10b). Combining (5b) and (10b) leads 
to the result 
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W, « 
UA, 

°r W|/\ “(f*) (“i 
SlVot“'"“"8 (22) “d ,5b) ta'° <Ub) leads to 'I*' differential 

(23) 

which has the solution, 

— K. 
\i I 

-A| *“ A K ■— 
‘ z = + 72 R + const* (A| ^ 0) (24) 

where 

and 

WieRô 

— K(z = in ^ + + const. (A, = 0) 

or 

£1«, 
(24a) 

Substituting dR/dz derived from (23) into (5b) yields a relation 
between iJj and R, 

+ = 
K, 

iiir(Ai-|)+K! 
(25) 

and, finally, it may be shown that, 

WT -K7R +Kf^ (26) 
0 1 1 

The type of motions which ensue from this theory In the cae 
of strong circulation are seen to depend very much on the value of 

case 
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into the vortex pair. In fact th,» V in whlch vorticlty Ia ingested 
pair changes radically a8 A,’ ^^lor^f theTo^ 
is demonstrated in the table below. nd he Value unltV- This 

■For VeilU6s of à 4,1 _ 

fo ^ ‘he Strong circulation as s'unit ^1° ÍS Seen to decline, 
invalid. The case A - l violai Pii°n must eventually become 

ÄÄ c^e. I» 

^ ;tr' 
Sr ;î:.c ï-be.c«r" 
■n. co„parison with expeeiment (homogeneous medu) 

'y°;dI"e"”‘o’h v“tde» plfr moH“„d.atit í,f°m '«Perlm.M. „„ 
of the data shown were obtained in e D homt>geneous fluids. Most 

-s» 
«d characterletica of the -Peafmêl.aÆU 
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Fig. 5. The vertical velocity vs. radius of a vortex- 
pair moving In a homogeneous fluid 

Most significant, we found In our experiments and from the 
data of Richards [ 1965] that the measured variation of vertical 
velocity and pair radius (two-dimensions) conformed more closely 
to the law W ~ R’ or z ~ tl/z than to the law derived In the past by 
others and which Is based on complete similarity and momentum 
conservation; i.e., W ~ R2 or z ~ tA test o the simple con¬ 
servation of momentum, W ~ R , Pin8f irajectory Is 
illustrated in Fig. 5 and, similarly, In Fig. 6 It Is shown that the 
trajectories, so far as they have been observed experimentally, 
conform more closely to the asymptotic law derived earlier for the 
case of strong circulation, utilizing a small value of A, 

(0 < A, < 0.2). 

In the case of strong circulation, the radius grows in a linear 
fashion asymptotically, but the theory predicts that during the Initial 
phases of the motion the quantity dR/dz is less than Its asymptotic 
value. A similar behavior was observed In our experiments, see 
Fig. 4. The matching up of these observed trajectories with the 
theory offers an opportunity to determine some of the constants of 
the theory. For this purpose we assume to begin with that A, = 0, 
since the comparison between observed and theoretical trajectories 
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Fig. 6. The rise of vortex-pairs In a homogeneous medium; 
comparison of experiment and theory- 
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suggests a small value. In this case, 

(« K,) 
[Hf] = <»!<♦£«[*.1] (24a) 

^“o“rd' *ba„ :zei%\T¿r 

~~“rS":S ™ ij t " 
iSssrsss^TfÄF 
.»..U. phase of .he mo.ioa. tLTL^^.VZÄ'? 
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motions in homogeneous flows the internal velocity scale grows 
steadily relative to the translational (external) velocity, the ratio 
approaching a value considerably larger than unity, while at the 
same time, the virtual momentum coefficient associated with the 
vortex motion approaches the value zero. The data also suggest 
that vortlclty Ingested from around one half of the vortex pair is 
almost annihilated through mixing with vortlcity ingested from the 
opposite side. 

IV. SIMPLIFIED THEORY (VORTEX PAIR MOTION IN STRATIFIED 
MEDIA) 

Convected masses in nature are often rising or falling in a 
medium of varying density, as in the case of a chimney plume pro¬ 
jected upwards into a stable atmosphere. The latter may be 
characterized by a characteristic time (the Vais sala period), 
i/7ag, where a = - (l/p,)(dp,/dz) and p, is the potential density 
of the atmosphere. The same definition can be used to characterize 
any density stratified media. 

The motion of the convectlng mass may also be characterized 
at any instant by the time, R/W. It is almost apparent that when 
the latter time is long in comparison to the Vais sala period that the 
effect of stratification will dominate, and conversely. That is, 

Effect of 
Stratification 
Vanishes 

Quite clearly, too, as the motion proceeds in time, the ratio R/W 
increases continuously, so that stratification must eventually 
dominate. When this happens , the vertical motion of vortex-pairs 
may become oscillatory, and is accompanied by the collapse and 
horizontal spreading of the convected mass, as Illustrated in Fig. 8. 
This behavior is, of course, not consistent with similarity either 
complete or of the kind assumed in the preceding section. 

It is sometimes desirable to be able to estimate the tra¬ 
jectory of a vortex pair while it is rising in a stratified media and 
particularly to predict the maximum height of rise and the time 
required to reach the maximum. For this purpose, we adopt here 
a simplified theory based essentially on the assumption of strong 
circulation and annihilation of Ingested vortlclty. In fact, the parti¬ 
cular assumptions adopted would apply if the velocity ratio, bad 
already closely approached its limiting value. These assumptions 
are: (1) the motion is determined by conservation of volume, mass, 
and energy (neglecting vortlclty and momentum); (ii) complete 
similarity (dR/dz = ß, a constant). For further justification of these 

decreasing 
RVag 

W 
increasing 

Stratification 
Dominates 
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Self-Conveoting Flows 

assumptions we shall depend finally upon a comparison between 
theoretical predictions and the results of systematic experiments. 

The energy balance is expressed as follows. 

9E 8 
IT = W U2 + V2 + w2' ) + (p - p.) g;] de dt! de 

= - (Rate of Dissipation of Energy) (27) 

See Fig. 14 for nomenclature. 

For a self-similar, self-convecting flow, the dissipation of 
kinetic energy per unit volume which occurs due to the action of 
turbulent shear stresses must for dimensional reasons be of the 
form, 

Dissipation q. pW3 
(28) mit Volume 1“ 

As a result, the energy balance, Eq. (27), for a self-con- 
vectlng mass in a homogeneous medium of the same density takes 
the form. 

K dtwV*1) _ r W3 2*J 
T dt " CD R R (29) 

where 

j = 0 (two-dimensional) 

j = 1 (axisymmetrlcal) 

and K is a constant of virtual energy, defined by the identity, 

(30) 

and where CD is a dissipation coefficient. 

Making use of (29), together with the relationship R = ßz, 
it may be shown that the height of rise follows the law, 

z(2+j/2*C0/^K)OCt 
(31) 
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,The 
between theoretical trajectories sLÍ, det?rmined by a comparison 
vations of vortex pair rise in homncrp ^ ®Iven by (31) and obser- 
Fig. 6, such a comparison leads tog^eOU8 ^edia- As ^own in 
small (D < 0.2). ads t0 the inclusion that D is quite 

would ajpíy Ï meoCmerntugmewnere cons C°mpared to the law which 

z3+j oc t 
(3 2) 

which coincides with (31) only if D - 1 tu 
¿3T ‘ tl0m *he »»"'«•»n. Jaw (3*2) 

relatlotrCetwcen radluí'ÓfYiT"1*'' n°" lo a linear 
from the virtual origin z = 0: ^ f he mass and the helght of rise 

R = ßz 

Conservation ofjnass takes the form 

d F /4\ 2+j ~i 
dît LU) nR P¡ J = 2J2TrRl+jPeWß 

(33) 

(34) 

* aad pP; ' ¡:S: average 

(!) - P<(z)j = y (p. P*) dj (d11)i d5 (35) 

mass! the mtegration is taken over the entire volume of the rising 

and (28)The f°rmulatlon 0f ÇonsHvatior^of^^ is based upon (27) 

¿ [f P¡WV+J + k(p. . pe,gzR2+i J = _ CoPj ^3R2+j 

of the rising mass while^K^cTk^ arf !?easur®d gr°ss properties 
kinetic and potential energies resnerH C°ei/Icients of the virtual 
sions, e.g. , by g ’ resPectively, defined in two dimen- 
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Kp, 
2 2 

W R 

and 

k(Pi - Pe)zjR 

+ wz) d£ d4 

Pe)(z + 4) dê dê 

(3 7) 

(38) 

nf ^ most Pra^tical instances where one is dealing with a mass 

af ?he oceaneoCr th ?Ugh th0m°fneOUS °r stratified medium such 
as the ocean or the atmosphere, the difference between the densities 

Ap/o6 <<TeChtei and aU,Tr0'Jrlldirig masses is pry small; that is 
AP/Pe « i » being usually of the order of 10 , and therefore p /p 

Bonsai ken aS ^ . TWf assumPtion' frequently referred to as'the 
out theaPProxlmatl°^ see Phillips [ 1966] , will be used through¬ 
out the analysis presented herein. K 

the threYSeÍng the B°ussine8<l approximation and the Identity dz = w dt, 

reduced to thee¿n °inStfatemantSu Eq8, (33)' (34) and {i6) ' maV be reduced to the following form in the case of a planar motion: 

or 

R = ßz. (39) 

(40) 

(41) 

where a = - (1/p9)(dpe/dz) and Ap = (Pj - pe). 

f j exPlicit general solutions of (40) and (41) may be 
iound# They are: 7 

(%) “ " "(i + 2D) + B (rTT57I " TTTn)] 

+ [jr + ¿D)]z - [ti-+Bd/2)] 

(42) 

— -n 
z 

-2 
z (43) 
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where 

A = (-^) G and 

(i) = and 

GsJïûf 
X Kp6'o 

s = 
Wo 

and 

D = 
ßK 

n s 2(1 + D) 

z = z/kc 

(44) 

(45) 

(46) 

(47) 

(48) 

The parameter G Is a measure oi the initial buoyancy of the 
convected mean relative to the initial momentum. G is taken as 
positive when a net buoyancy force is acting on the mass, i. e. 
Ap < 0. S is a measure of the added buoyancy which would result 
fi:on\™0ying the convected mass a vertical distance zc through a 
stratified medium. Since Vag is the frequency with which a finite 
volume of fluid of given density would oscillate in a stratified medium, 
often referred to as the Vaisala frequency, the parameter S can 
also be considered as the square of the ratio of the characteristic 
time of the convected motion, z0/W0, and the reciprocal of the 
Vaisala frequency. 

The maximum height oi the rising mass, reached at the point 
where W = 0, is according to (43), given by the solution of the 
following: 

[tttetztK^) -[rr¿]- [i- TFT 2D) 

B( 
i i 

T + 0/2 - TTIE )] = (49) 

It is of interest to consider certain special cases: 

1. A mass rising in a homogeneous medium with the 
same density as Itself; l.e. , A = 0 and B = 0. Then 

(¾) 
n/2 

(50) 
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or. 

(tr! (51) 

^rl8nwi,ult SU®g®sts h°w t0 estimate the dimensionless quantity n 

!hir. °pechS"8ah.íe ^y‘U °f the H»i„gqm,„eï 

homogéneo«.' nfedT^ rUlng In a 

(w.) ° t1'TTTzDiJ^ + fxrTzDr]*’1 

If A > 0, then no maximum height ia reached, but if A < 0, 

,1/( 1420) 

(52) 

£fnoi 
= [ 

i + 2D + Ia 
J]' (53) 

maximum11 H«rdíCfled ^86 0; íhe maSS 38 a functlon time and the maximum rise of the mass for a range of values of A (< 0) and D 

10 0bThí«epdfír0m E^8* (52> and (53)' are Presented in Figs. 9 and 
ín(H TÏ figures demonstrate clearly the effect of the (negative) 
ídltní bu?yan.cy and energy dissipation parameters on the time 
history of an. impulsively started rising mass moving through a 
uniform surrounding fluid of smaller density. 

„ 2a* The same case as above but for W„ = 0 and A )> n 
First of all, (43) may be rewritten: ° ° and A 

w2- w- +TríSte(^)0( ï-)" -TTT%z(£fl ■ ? 

or in this case 

W2- «5 [‘ -(£)""] <54, 

medium, i.V. ^ïe^ bu°yancy rlsln8 in a stratified 
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F“- ’• oïXïr ma"oi n“w - 

(nr) - [‘ * B(, nsyi Tttb)]*'" +xriT!7Jy ’ 5"' 

B 2 

ir+ D/zy '1 (55) 

from EqTÎsSU^aeuîng' aS a functlorl of B, i8 obtained 

vected a0/UJtlon ior ^ height of the con- 

Eq. (55) whenever D « 1 and° ß1«6! readlly obtained from 

ment« are aatlefted, Eq. (55) can be rewrlUeÎTU1”586 requlre- 

/W\ —E _a 
\W.) = z - Bz (56) 

and upon Integration we obtain 
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Vb zZ= sin £sln ' -fñ + zVbTJ 

where we have normalized the time t according to 

(57) 

ts Wgi 
(58) 

minat i8 parîlculafrly U8ef^ ^ the approximate deter- 
* the maximum rise of a mass convected In a stratified 

and ,he ,lma a. which ,hi. maxlmmn height i. ,.«^d ' 
tnrx»- For the maximum height we find 

'max = (4) 
1/4 

(59) 

and the time required to reach this height is given by 

max (60) 

This last result Is especially interesting. In experiments on 
convected masses of fluid moving through a density stiTtified 

exist in nature), since w/b = /2k/3K {t^VTg). u ually 

V. COMPARISON OF EXPERIMENTAL AND THEORETICAL 
RESULTS (STRATIFIED MEDIA) * TICAL 

of ImpuSivelvTtartid16^^ lnvestlßatJon we studied the motion oi impulsively started rising masses (or vortex-pairti) in both 

tw Ml ^ Considerations presented in theprevious section, the 
ime-histories of these motions, expressed in appropriate non- 

and* D31'!0? 7ma ; are dfermined by three Parameters, A, B 
crowth*of*th» f0r gl7" valueQ of these parameters the rise and 
growth of the convected mass as a function of time can be predicted 

A, ,a?.d< B are determlned by G and S and by a third parameter ‘ 
flcients3 K/^tl0 °f ï6 vlirtual klnetic and Potential energy coef¬ ficients , K/k, according to Eqs. (44) and (45). 

bv the iSïf the Parameters G and S are determined in each case 
y the initial conditions of the rising vortex-pair, there is no 
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practical way for deter: lining a priori the values of D and K/k. 
These latter parameters can be determined only by comparing 
certain sets of experimental results with corresponding theory. 

A series of experiments on the motion of vortex-pairs in a 
homogeneous medium of the same density, Series III (see Table 1), 
where the parameters G and S (and therefore also A and B) are 
Identically equal zero, may be used for determining the dissipation 
parameter D. The rise of the vortex-pairs in this case is predicted 
by Eq. (51) and is graphically depicted in Fig. 9 (with A = 0). 
The actual predicted rise of the convected ma3s depends on the 
numerical value of the parameter D (or n). 

In Fig. 6 are shown a comparison between experimental and 
theoretical results cn the rise of impulsively started masses in a 
uniform medium of the same density. In a log-log plot, the slope 
of the trajectory for large values of (W0t/z0) should be equal, 
according to our analysis, to i/(2 +D), and it can be used therefore 
for determining the value of the dissipation parameter D associated 
with the motion of the rising mass. Included in Fig. 6 are the 
experimental results of Richards [ 1965] , on the rise of two- 
dimensional puffs in homogeneous surroundings. The best agree¬ 
ment with all experimental results is obtained when we choose 
D = 0.2. 

The numerical value of K/k enters into the analysis only 
when there is an initial difference between the rising and surrounding 
fluid densities or when the surrounding fluid is stratified. This 
value will be also determined from a comparison of some experi¬ 
mental and theoretical results. For a vortex-pair convected in a 
density-stratified medium we found earlier that, for sufficiently 
small values of the parameters A, B and D, the time it takes the 
mass to reach its maximum height is Inversely proportional to the 
Vais ala frequency and is given by 

(61) 

This value decreases only very gradually as the value of B (or S) 
so that Eq. (61) is very useful for the experimental determination 
of K/k. 

In Fig. 11 the value of the product (t^Vag), as measured 
in the experiments of Series I and II, is presented as a function of 
the stratification parameters S; the initial conditions for each 
experiment presented in the Figure are included in Table 1. There 
are certain inherent inaccuracies in the experimental determination 
of tmox which explain the scatter. Also shown in Fig. 11 are the 
asymptotic solution for the maximum rise time, Eq. (60), and the 
exact solution, according to Eq. (43), with D = 0.2 and G/S = -0.715. 

351 



nwmmmmmrnmmmmm- 



Self-Conveating Flows 

the same figure the experimental rP u =<*' We have deluded 

verv^3^6017 differen^alue of fl- th«e\ m SerIeS 111 whIch 
£ Jy iosely with the theoretical nreHif! u°0 Were found to agree 

onA6=U tW the deplPd"ce of ïh,3"? °n D=0-2 
K/kßfor fli°ba^ly Very weak- We have used IattGk two Parameters 

relis0: tSt'Är u°i 

.otí kTuetí Tuell/rrTsf18 \ZTh 
about four times larger than the^kineM?WaS thUS f°Und to be 
in^r l0nveCiIon alone, an indication1^ associated with its 
inside the vortex-pair whlrh 1 Pf, f the intensity of motion 
This finding lends taportm sSU?*0 ^ *°tAl„eTic energy 
assumption. P tam suPPort to the strong circulation g 

lights dfTe1’“1:™!';^! ac.ua! maximum 

r/eSd r“1“™ U a»»»" a» F gT/*91”. ?,HnearIy d'"ai,y“’ 

a-ca pr"Sr»sitLi?*‘re¿cv-nB the exneniL ° Gerierally there is good ! solution of Eq. (49, for w Generally"therüs'^n T™ ^ exact sol^io. 
the experimentally measured maximum hei ÍPP661116^ between 
the exact theoretical solution maximum heigbt of vortex-pairs and 

dlct!d\VerSU&y“^e^ogf’^tex-pïr^îuh1^r'ttSUred trajectories 
dicteci trajectories. The vortev r, ( tb ir theoretically pre- 

íltínm S,ãrtlns aaadltlons ,HtyS„i"í“deVn the FI«“ra «11 had 
with different density-stratification«7 tj movinS through media 
as depicted in the figure are sÜ1 !* JH°Wever' their trajectories 
the two lumped paname.e« S °.Id I dTf"a °nIy “ the values o/’ 
conditions with the pr„perties of ,he "„^„TSi™.“' S*artl”* 

grouped uccording to their G and s lff!, f vortex-Pairs are 
of the scaling laws and scaling onrsl Confirnis the validity 
agreement obtained between thePp m®ters used herein, while the 
jectories lends further suDDort t :!^ertmental and theoretical tra- 

theory presented here for the mo^io!oT^^7 °f the slmPlified 
media. rne motlon of vortex-pairs in stratified 

VI. 
SUMMARY AND CONCLUSIONS 

pairs in1iomogL?orushmS°a0has0fbeWO'ddÍm?nSl0nal turbnlent vortex 
velocity scaling of the Litern,i f f develoPed based on separate 
the motion. These two flow fieldhs are^euic f Involved in 

regi0n °f hÍgh Shear’ whicb also format he ^ & 
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Fig. 13. The trajectory of vortex-pairs In stratified media; 
comparison of experiment and theory 
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L'Sutr‘r ™rl,tlons 
ratio of internal to external velocity sc^T^7 ^ Í1°W field- The 
important variable. The virtual 7 cales, is introduced as an 
be linear in of theform lS ^ ^ 

the^T Td Str0n® cirScPuUUoCn.llyintheVfod-Sr ^ tWO 1Imlting cases the entrainment is weak- the == : . fc>riT>er case, ^ -- i a rf 

U,; T jU*' “ th^ l-y 
ilarity and momentum con ser vat ^011^1 °n comPlete 

behavior of theTrljectory'îepends^410'1 ' ^ ^ 1 ' the asymptotic 
vorticity from the shear laver 1« I Ver^ mucb on the way in which 
the case where the shear layer the Vortex Pair In 
such a way as to cause annulation ofTh08Íte SÍdes is ^ted in 
the asymptotic trajectory is z ~ tM ^e jested vorticity, then 

the veioclty ratio, increases toward the 6 Same conditions , 
so that the virtual mnme t oward the asymptotic value 

a result, the asymptotic mn^ tUm coefflcient tends to zero As 

corresponds to a motion wiS comnW^f ^rtÍCÍty annihUatio'n 
conservation. The ratio of growTh of ?h"e and wlth '“•'ey 
Shown .„orease, dppnoachin, a llnear^^n^^^ 1» 

.Wy '“eighïarl ““ ‘h' 

-t -¾ Älhl“- 
y O a large degree annihilated. 

simplifiedThto^VïdeHÏÂ'r^hV^ ,^36 °f hom°gcneous flows a 
stratified mediJ The a^um^ons o' ^.h °tl0n °f VOrtex PairsV 

Îecïnrm ?f 1 by COnServati0^ of volume mas"7 ar!: (1) the ^tion 
lecting vorticity and momentum)- /,-n ’ ^88 ' and energy (neg- 
a constant). General laws of^i , complete similarity (dR/dz - fl 
derived and solutions , ■,,ra*ifl'd media hate bee»' P' 
cussed in detail. * ' partlculariy Interesting cases ar“'u.S- 

to depend 0„ 

otÄa^Ä 
determined from experiments - nn« ^he motion and had to be 
eter D = C0/ßK was found to be 0 2 Fun36', the dIssiPation param- 
virtual kinetic and potentÏÏl energv coeî °the7’ the ratio of 
4. On the basis of these numberfit inlvh ^ Was found be 
Pation rate is small and that the LÜ^f7^6 concluded that the dissi- 
the overall kinetic energy is large. r Utl°n °f internal motions to 

The experiments confirmed the environmental 
scaling param- 



Self-Connecting Flows 

iake" “d" co„. 
trajectories. Particularly good aeti tWe!n Predicted and observed 
mum height of rise. The time ren® i ?6nt Was found for the maxi- 
was found to be inversely pronorH^1?* to reach maximum height 
^fhTh8 liVen aPProximately by ^ Vaisala frequency, Vag, 
If the. theory* fn general the^experimënf " ^ * ^,80°0 agreement 
f simplified theory for prediction« nf ï confifmed the utility 
in stratified media Thl« l 8 motion of vortex nal-i*« 
the prediction of the beW^oTcMmne6611 lUtUIZed 
atmosphere, with very good agreement w^68 int0 S 8table 
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RADAR BACK-SCATTER FROM THE SEA SURFACE 

K. Hasselmann* and M. Schieler 
Institut fußv Geophysik 
University of Hamburg 

ABSTRACT 

Doppler spectra of electromagnetic backscatter from 
the sea surface are Interpreted in terms of general¬ 
ized Bragg models. The observed broadening of the 
spectra about the Bragg line is attributed to higher- 
order nonlinear processes. At conventional radar 
frequencies, good agreement with the measurements 
is achieved by an extension of the wave-facet inter¬ 
action model considered by Wright, Bass et al. and 
orb!trar°Ji u«* Tb® correction of wave sTcpSs and 
orbital velocities in the joint probability distribution 
of carrier-wave facets leads to significant differences 
between the Doppler spectra for vertical, horizontal and 
cross polarization. In the HF band, the Donnler 
broadening is interpreted in terms of quadiatic wave- 
wave interactions. For the usual case that the electro- 
magnetic wave lengths are small compared with the 
principal wave lengths of the sea, the theoretical Doppler 
spectrum consists of the lowest-order Bragg line and 
superimposed images of the complete ocean wave fre¬ 
quency spectrum folded on either side of the Bragg line. 
Both wave-facet and wave-wave interaction models give 
promise of extracting significant information on the 
state of the sea' from electromagnetic Doppler return 

at wave lengths short compared with the dominant wave 
lengths of the sea. 

Presently at Woods Oceanographic Institution. 
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I. INTRODUCTION 

The development of numerical wave prediction methods In the 

provldhtg^lndlrect hiformatlon 

Radar scatterometers ln/u^natlvelY, large areas of the ocean can 
oceans in a ;tationa 0n land. Following the pioneering 
be sampled using * va/o-tH f ?2l has recently detected WOrk of Cromble [ and others ^rd [ 22] has rece ^ 

the backscattered return ofi_iono®Pieral^Hfl,1!Vace at dlstances up to 
small, 100 km square patches of the sea surface 

3000 km. 

Unfortunately. both technique, .»fier '''»'J êffÏcîive' 

SO^cm^'Ba^ckscatter'mea.urements over *B 

ably shorter than ^betwee^O a'nd 500 m. 

The'ba'tTi.’ave length matching creates difficulties In relattng the 
backscattered signals obtained by these methods to significant 

state parameters. 

Scattering experiments In both the centimeter-decimeter and 

thls'modeli^the ^cks^attered r^^t^^ ^^^pgjgnlir(|ntare "determined 

;foímallymile0irndthre Mgh-wLvSÍ^bír^qu^^ ^tIrder 

SáSSSrSSS&r 
d„ ¿cran.“a[lon on”,he more 
of the wave spectrum which contains most of the wave energy. 

Fortunately, the scattering measurements, while supporting 
the Bragg theory/also Indicate that it should be regarded 
first appfoximatlon. The Doppler spectra. In par.tcular, exhibit 
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several features not predicted by the Bragg model. Generally, 
there Is a marked dependence oí the anomalies on sea state, sug¬ 
gesting that useful correlations between backscatter signatures and 
significant sea-state parameters may be discovered by extending 
the scattering theory to higher order. 

Two generalisations have been proposed: the wave-facet 
Interaction model (23, 4, cf. also 3,9, 10, 20, 21] , In which the 
Bragg-scatterlng waves are superposed on longer carrier waves, 
and the higher-order, wave-wave Interaction model originally Inves¬ 
tigated by Rice [ 18] . The models have been applied hitherto mainly 
to the cross sections, which show only weak sea-state signatures. In 
the present paper, we consider their extension to the more strongly 
sea-state dependent Doppler spectra. 

In the cm-dm bands, good agreement with the observed 
Doppler spectra Is obtained with the wave-facet Interaction model. 
The Doppler spectra are found to be quasl-Gausslan and can be 
characterized to good approximation by the mean frequency and the 
frequency bandwidth. Both parameters depend on moments of the 
wave spectrum which are governed by the high-energy, low-wave¬ 
number range of the spectrum. They can therefore be used to obtain 
Independent estimates of, say, the mean wavehelght and period. 

The model allows only for electromagnetic interactions. 
Basically, the hydrodynamlcal modulation of short gravity waves by 
long carrier waves is of considerable interest, not only for the 
description of the surface wave field, but also for its energy balance. 
The Interactions generally lead to an energy loss of the long waves 
at a rate which can be estimated from the observed upwind-downwind 
asymmetry of the cross sections [ll]'. However, because of the 
strong Influence of white capping, the Interactions cannot yet be 
described In sufficient detail to be included realistically In computa¬ 
tions of the Doppler spectra. Their effect on the Doppler bandwidth 
Is probably negligible, but the mean Doppler frequency may be more 
strongly modified. 

The wave-facet Interaction model Is valid for electromagnetic 
wave lengths shorter than about 1 m. Thus It applies In the cm-dm 
radar band, but not In the dkm band. In the latter case, however, 
the Bragg theory can be generalised by straightforward extension of 
the wave-wave Interaction analysis to higher order. The relevant 

iLonguet-Hlgglns [ 13] has shown that the momentum loss of short 
waves breaking on the crests of longer waves resulte In an energy 
trarsfer to the long waves. However, the gain In long-wave 
kinetic energy due to this process can be shown to be slightly less 
than the loss of potential energy arising from the simultaneous 
mass transfer between short and long waves. The net result of 
bo*h processes Is a weak attenuation of the long waves ( ll] . 
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perturbation parameter of the expansion is given by the ratio of the 
amplitude of the interacting surface wave to the wave length of the 
incident radiation. In the first order analysis, the perturbation 
parameter is proportional to the slope of the scattering Bragg 
wave, which is small for all electromagnetic wave lengths. At 
second and higher order, however, the electromagnetic waves 
Interact with longer surface waves of higher amplitude. In this 
case, the perturbation parameter remains small only if the electro¬ 
magnetic wave length is large compared with the amplitude of the 
entire wave field. This condition is satisfied by dkm waves, but not 
by cm-dm waves. 

The requirements for the wave-facet and wave-wave inter¬ 
action models are found to be mutually exclusive, so that the two 
exp?nf ions cannot be matched in a common region of validity. It is 
a fortunate coincidence that the theoretical wave length gap cor¬ 
responds to the gap between the two presently available techniques 
for measuring electromagnetic backscatter on a synoptic scale. 

The second order wave-wave interaction analysis yields a 
continuous Doppler spectrum superimposed on the first-order Bragg 
line. The continuum reduces to a particularly simple and useful 
form when the Bragg wave length is short compared with the wave 
lengths of the dominant surface waves -- the usual situation for 
ionospheric modes. In this case, the continuum is identical with 
the two-sided image of the surface-wave frequency spectrum, 
centered on the Bragg line as virtual frequency origin. The energy 
scale of the wave spectrum can be Inferred from the observed 
energy of the Bragg line, independent of transmission or other cali¬ 
bration factors. 

Doppler side-band structures observed by Ward [ 22] and 
others are not inconsistent with this Interpretation. However, moat 
Doppler spectra published hitherto have been analysed from rather 
short records, so that the continuum is generally not well defined 
statistically. Longer records are needed to decide whether the one- 
dimensional frequency spectrum of the surface-wave field can Indeed 
be detected in the Doppler spectrum of backscattered ionospheric 
modes above the inherent ionospheric noise. 

II. THE LOWEST-ORDER SCATTERING MODELS 

For electromagnetic waves short compared with the dominant 
waves of the sea, one might attempt to describe the scattered field 
by a specular reflexion model, in which the sea surface is repre¬ 
sented as an ensemble of locally plane, infinitesimal facets , each of 
which reflects the incident radiation according to the laws of geometric 
optics. The cross section a for the backscattered radiation (the 
backscattered energy per unit solid angle per unit surface area of the 
ocean) is then proportional to the number density of facet normals 
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pointing towards the source. As the distribution of normals in a 
random surface-wave field is approximately Gaussian, the depen¬ 
dence of log o- on depression angle 0 is given by a parabola, with 
maximum at normal incidence (90° depression angle) and half-width 
typically of the order 10° (Fig. 1). 

SPECULAR REFLEXION BRAGG SCATTERING 

O* 
O 

Fig. 1. Cross sections and Doppler spectra according to the specu- 

(qualltativej>n ^ ilr8t'order Bra88 scattering models 
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The frequencies of the backscattered waves are shifted 
relative to the frequency of the incident radiation by the Doppler 
frequency wf = - 2k' • u Induced by the facet motion, where 
!? = (]?', k^) is the wavenumber of the incident radiation and u 
the local orbital velocity of the waves. For an approximately linear 
wave field, u is a G-.ussian variable, and the Doppler spectrum 
also has a Gaussian shape. 

As the backscattered waves are reflected at normal incidence, 
it follows by symmetry that the cross sections and Doppler spectra 
are independent of polarisation. Vertical and horizontal polarisation 
are denoted in Fig. 1 by V and H, respectively, the first index 
referring to the incident field, the second to the backscattered field. 
The cross-polarised return VH and HV vanishes. 

Although applied successfully by Cox and Munk [ 5] to the 
analysis of sun glitter from the sea surface, the specular reflexion 
model falls to describe the observed electromagnetic backscatter 
at cm-dm and dkm wave lengths. It appears that for these wave 
lengths surface irregularities of length scale comparable with the 
radiation wave length cannot be neglected. Accordingly, recent 
models have been based on the Bragg scattering theory, in which 
these irregularities are regarded as the dominant scatterers. 

It is assumed in the Bragg model that the slopes of the 
scattering surface waves are small and that their wave lengths are 
comparable with those of the radiation field. The backscattered 
field can then be expanded in powers of the surface displacement. 
The first-order field is linear in the surface displacement and can 
therefore be constructed by superposition from the field scattered 
by a single gravity-wave component £ = Z exp {ik9‘ x - iwgt }. This 
corresponds to the classical problem of refraction by a periodic 
lattice. The scattered field consists of two waves s = ± whose 
horizontal wavenumbers and frequencies are given by the Bragg 
(resonant interaction) conditions 

k' + ska = k! 

U)j + SWg = Uij 

(1) 

(The vertical wavenumber component k^ determining the scattering 
angle follows from the dispersion relation Iw,) = c |k* |, where c 
Is the velocity of light). 

Backscatterlng (k* = - k') occurs for the gravity-wave com¬ 
ponents k9= * 2k', The Backscattering cross section is accordingly 
of the form 

(2) 
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where 

TaßFq(- 2sk¡ ) (a»ß = V or H, 

mean square surfacenfrmalised such that the 
parentheses denote mean^^s = d¿‘ The cornered 
number in the definition of a*0 L0 k n®®ative sign of the wave- 
corresponds to a spectral lin^ ifif been lntr°duced so that <rZa 
W-> ^ 
magnetic boundary condition, at the free*,““^'^“,1'’8 the el«>™- 

TW ' I ^ aln2 e 2 

8in 8 + -^ç _ coJe^ J 

T - i 2 HH g sin I 
c 

(sin 0 + 

VH Thv = 0 

where 
ia the dielectric con.,ant oi ,e, water. 

/*„«(“,) du, a ae^’ihe're^ï" ‘'’„''¡,“^1 X”,5<“‘|) ' d'n”«l by 
•wo linea a, the "gravity. wate Secútete,8 á" “""“''S to (,) by 

with 

Mw<j) = x^) + 

^00(^) = (Toßöiwj - su^) 

(3) 

surface wave componen/p^opagífingín th dde t0 9Catterln8 from the 
very much stronger than the other nn " h d°wnwlnd direction is 

pagating in the opposite, upw^diricLT ^ ^ WaVe pr°- 

Doppj«rT8pee?ternaearlTndklíid^uaíiutfrai88.Cr08s actions and 
" ig- !• In contrast to the specular refL thC rlght*hand panels 
pronounced dependence on polaris^lVn ^ 0" "’‘’d®1- ‘here is a 
at small and intermediate d^oreinf ^ aPPreciable backscatter 
return again vanishes depres9io" angles. The cross-polarised 
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Fig. 

for vertlcaîlynporabr8i8ede24BCm8fLbbCkH>Catter CrOSS sectlon8 [23]) 7 poiarl8ed 24 cm (L band) waves (from Wright 

and theoretical^Bragg^ross^^ct^ons ^ ^ l23] 1 °f «Pimental 
waves. The ^rfacfwave" were renrk3“7^^ cm-dm 
-bÖS|.= ^/2)^^(^), with a uniform half olane & i sPectrum 
function, S(0() = tH for n < hl^î n"t-PIane angular spreadlne 
The constant o was chosen to fll^K S(>P) “ ° for - 
Is not Inconsistent with other estimates ®erved cr°88 sections, but 
gravity-wave spectra (cf also Í 1 Si 1 çj0™ ^ rect measurements of 
cal and experimental cross sectl^Llos r ï FlgV,3 theoretl- 
here Is also very good, exceot for th« u fw/^MM* The agreement 
8910 MHz), wheíegscítteri„7by iPr.v b8tKW3re length i3'4 c->' -___ mg oy spray may be beginning to mask the 

"«*■, 2 ■"'í 3 W.„. f,ct, 
next section. However the HnLufi 1 / m°del Con8ldered ln 
model are negligible, * 1 008 írom the firat-order Bragg 
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Flg- 3. Theoretical and observed ratin« „<■ n 
sections for vertical and hnH* f1.Br*gß backscatter cross 
lengtl j 24 cm (1228 MHZ) ani w P° ^laatl^ at wave 
Wright [ 24] ) HZ) and 3* 4 cm (8910 MHz) (from 

fl^Ä8BTgÂírÂ^"1!*'10"- N“* -"«‘«e« »y 
which is generally only alightlv smaHp6 ,cro8s‘PolarÍ8ed return, 
backscatter for horizontal polarisation- °r ?.omParable with the 
wave-facet interaction model [ 23] M Can 6 cxPlalned by the 

good agreemen^ w^th°theory^the°Doppler^ specTra ln 

shaped distributions with bandwidth-ofïh broadened into Gaussian 
frequency (cf. Flo 4 ■>, , ths °; tbe same order as the Braoo 

measurements by Hicks et a 1. ^5[ 20J)- Earlier 
of the distributiona -. wfTcrwere not ^ ^ mCan iretluencle8 
Laing -. may also he conslderablv hiaü by Valeniuela and 
2 to 4, than the theoretical BraggyfÍÍ5uen'cyby iactorB of the order 
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Kader Baok-Saatter from the Sea Surface 

of .ha BÏa£ utïr.'^ end aM« 

‘^zrPittilxbè^T' ír-, 

calHn* ior alternativa acanalo“ ^1^ ,“1'“^ 

m. 
THE WAVE-FACET INTERACTION MODEL 

of a plane sutfaeï,ïfs IssumedTníhe^^3 a,8, 8man P^turbations 
amplitudes are small compared with thP ragS theory that the wave 
radiation. In a strict sense tt Ü length of the incident 
Is satisfied not only for the Brasv XPanSÍ0 k ÍS 7alid if this condition 
displacement. Thus the theorv 'f T'f’ but for the entlre surface 
electromagnetic waves of a few cn^0 r ^01-00^^ aPPlicable to short 

surface waves of high amplitude which Wolïtfîhe^^011811. l0ng 
do not enter in the final scattering expressions V^110" C°ndltion 
Le.g. 3, 4 io, 20 21 ?-îl u-a 8 ^pressions. Various workers 

Är,bh:/h±±LrsEr^ 

the scattering by the superímrfoil^ R1'1'161' Wave which modulates 
length tr/k1 is short compared with i ^ Bragg/ ^ave 
of the sea, the carrier wave T.L vl Wave length 2Vke 
facet, and the first-order scattering ^presented locally as a plane 
frame of the moving faceï. 8 ry applied in the reference 

assumption that it is'poJsfbl^ to iefln C°nf itÍ0naibeSldeS the two-scale 
mediate between the 

(k1)’1 « D « (kc) .Cl-I 
(4) 

.h* ik r011/°1 ■>' 
AtI = 0((K'D,I„ er') of the backscattlrlS hd ‘h “gafar »pread 
interaction model l. me.„t„g^ X lf "e V.Tm.tf 
the change in effective dear es,« Inn 7 , ls, small compared with 
slope 9t/8x = o(kir where t u S lntr°dxlCed bV the f«et 
This requires ke<;DKf sin 0 »S , or> g^celtUde’ 
[ 4] , ‘ . or, since Dk « 1, 0n account of 

K‘; sin 0 = k'; »> 1 
(5) 
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Similarly, a wavenumber broadening Ak corresponds to a 
frequency broadening of the Bragg line of order Aw = (dwg/dk9) Ak = 
(wy ?.kfl) • Ak (Ignoring capillary effects). The model assumes that 
this is small compared with the Doppler shift wf = - 2K'• u induced 
by the acet velocity ^u. For u = O(toc£)> where wc is a typical 
carrier-wave frequency, this requires 

DK'wfcCkVw, = DKi(kikc),/2C » 1 

Substituting Dkc « 1, this is equivalent to 

K^k'/k6)"2 »> i (6) 

Since k /kc » 1, the frequency condition (6) is less critical 
than the corresponding condition (5) for the angular resolution. The 
inequality (5) is normally fairly well satisfied at conventional radar 
wave lengths for surface-wave heights of order 1 m and higher (except 
for small depression angles, where the model breaks down, in any case 
because of shadowing effects). For electromagnetic wave lengths 
longer than about 1 m the inequality (5) is normally no longer valid, 
even though the two-scale inequality (4) may still apply. 

The total backscattered energy is obtained in the wave-facet 
interaction model by summing over the contributions from all 
scattering facets. Introducing a facet probability distribution p(\) 
with respect to the five basic facet parameters X. = (\.|,\„X.,,\.,5¿), 
where "" 1 ¿ a * -3 

(\|, \2, kj) = (uj.Ug.Uj) = facet velocity (= local 
long-wave orbital velocity), 

and (^4,kjj) = (0Ç/9x, .ÔÇ/Sxj) = (n^Oj) = facet slope, the Doppler 
spectrum is given by 

= J [ ff006(wd - 8“g - w»)] PU) dJ5; (7) 

where (rjjg, w8 represent, respectively, the Bragg cross section and 
gravity-wave frequency in the facet reference frame. 

To the modulated Doppler spectrum (7) of the first-order 
Bragg field should be added the modulated spectrum of the zero'th 
order field reflected from a plane facet, as described by the specular 
reflexion model. However, this is important only near vertical 
incidence and will be ignored in the following. 

Experimentally, the probability distribution p(\) is found to 
be approximately Grasslan, in accordance with the theoretical distri- 
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bution for a random, linear gravity-wave field, 

p(\) = (Zn) 5/21C I'^exp {- i Cj'j'x.X.j} 
(8) 

s^ctrumlnTr^fí^ Cij Can be evaluated from the surface-wave spectrum and the linear wave solutions. 

gkf/k gk,k2/k 

Cü = 
g kiVk g iv^ 

gk - oik, - wE~ 

kf krk¡ 

wkg Í^k¡ kf 

(9) 

where f Fg (kHk^/k) dk, etc. 

i , We note that the facet Doppler shift wf is correlated not 
orüy with the facet velocity, but through the correlation (u3n ) 
also with the facet slope, ' 3 '' 

(ufn¡) = - 2kj ( u^n.) 
(10) 

E,. <7) ^ ^¿S8fcrh.eof r 

«iu«Tor„‘of z sc,ay for ea'h ‘em °f v«i“4hr 

X«/9(wd) = X^wd) + x>d) 

with 

^¾). [, +qf +q; t ...J ,U) 
'¿1T\ WfZ I 

where q*, q*, ... are polynomials in (u. - au) of order 1 ? 
in the facet slope, d a<V OI oraer 1 * 2» • • • 

(l2) 
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The subscript 0 refers to values at n = 0. 

To lowest order, the Doppler spectra for vertical and hori¬ 
zontal polarisation are identical Gaussian distributions with mean 
frequency (w) = swg and variance 

( (w - (w)) ) =(0)¾ +(k!j)2(u^j (14) 

(i/n= 1,2) 

The distribution represents an ensemble of Bragg lines of equal 
energies displaced by their appropriate facet Doppler frequencies 
0)|. 

2 2 
The higher-order corrections q( , q2, ... represent dis¬ 

tortions of the Gaussian distribution due to the variations in energy 
of the Bragg lines associated with variations in the carrier-wave 
slope. These affect the shape of the Doppler spectrum through the 
correlation between facet slopes and facet Doppler frequency, 
Eq. (10). The degree of distortion depends on the depression angle 
and polarisation. In the cross-polarised case, the zero'th and first- 
order terms disappear, since CfVH)0 = (8/8n( fVH)0 = 0, so that the 
Doppler spectrum is non-Gaussian already to lowest order. 

Computations of the Doppler spectrum were made for a 
Pierson-Moskowitz [16] spectrum using a half-plane cosine-to-the- 
fourth spreading factor. 

for k, > 0 

for k. <0 

with a = 0.0081, ß = 0.74 and w0 = g/U, where U is the wind 
velocity, assumed parallel to the xt axis. The same spreading 
factor was taken for both scattering and carrier waves. 
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2 2 
For a Plerson-Moskowitz spectrum, ( co^) ~ U and 

(wfnl) ~ u* The slope moments (n|n.) diverge logarithmically at 
high wavenumbers. To obtain finite (ninj) , the "carrier-wave" 
spectrum was cut off at an upper wavenumber ka/lO. The exact 
position of the cut-off is not critical for the evaluation of (nin.) , 
and the slope moments themselves enter only rather weakly in the 
second-order term q| of the expansion (11). However, the 
existence of a divergence as such points to a conceptual difficulty of 
the wave-facet interaction model. It appears that for an asymptotic 
k spectrum the carrier-wave region of the spectrum cannot be 
rigorously separated from the Bragg-scattering region. 

Figure 5 shows the computed half-power bandwldths for the 
lowest-order Gaussian spectrum as a function of wave height. The 
values compare well with measurements by Valenzuela and Laine 
[20]. K 

Deviations from the Gaussian form due to the higher-order 
corrections q, and qî are represented in Figs. 6 - 9 in terms of 
the mean frequency ( u)/wg and the frequency bandwidth 
((w-(w;) , normalised by their appropriate values for the 
zero th order Gaussian spectrum. 

The strongest correction is found for the mean frequency, 
particularly for horizontal polarisation. The dependence on depres¬ 
sion-angle and polarisation, shown in Fig. 6 for U = 20 m/s, is found 
to be very similar at all wind speeds. The absolute values of the 
frequency shifts increase approximately linearly with wind speed, 
Fig. 7. Qualitatively, the polarisation and wind-speed dependence of 
the mean Doppler frequency are in agreement with measurements 
made by Hicks £t al. [ 13] at low depression angles of about 5°. How- 
ever, the theory is not strictly applicable in this case on account of 
shadowing effects. 

The bandwidth corrections (Figs. 8 and 9) remain rather 
small for depression angles less than 45° and limited azimuth angles 
i)j relative to the wind. Larger deviations in the cross-wind direc¬ 
tions depend strongly on the spreading factors, which are rather un- 
certainfor these angles. The experimental dependence of the Doppler 
bandwidth on radar frequency and polarisation [ 20] tends to be some- 

fÏc 1 Qrge^ a dl1fferent trend than the corrections shown in 
Figs. 8 and 9. Valenzuela and Laing [ 20] suggest that these effects 
may be due partly to spray. To a fair approximation, the observed 
bandwldths can be represented for small and Intermediate angles Ú, 
and 0 by the zero th order Gaussian bandwidth. 

Both the bandwidth and mean frequency vary significantly with 
wave height and can therefore be used for estimates of sea state. 
For the one-parametrical family of spectra considered in the present 
example, the two estimates are not independent. However, in general 
the mean square bandwidth ((w-<u,))2)* (uf> (Eq. 14) and the mean 
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Fig. 5. Comparison of theoretical half-power bandwldths (h.p.b.) 
for zero'thorder Gaussian spectrum with measurements by 
Valenzuela and Lang 20 . Doppler frequencies are In 
units of equivalent velocities Ud = «d/2k • Theoretically, 
a Flerson-Moskowltz spectrum with cos4 ÿ spreading 
function yields - 
h.p>b. [m/a] = ,.06^ (4 co.!++1) t .1^!'* (H^M ) 

where the significant wave height H1/Sw 4(C ) = 
The computations were made for i|j = 0°, 0 = 20 . 

1/2 

o! 209 U2/g. 
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Fig. 

u* 20 m/s 
VV HH 

^»20* 

<l/-aoe 

15 30 45 60 

15 30 45 60 

>. Ratios of mean Doppler frequency («) to Bragg frequency 
ugfor the wave-facet interaction model at wlndepeed 
U = 20 m/s. The Indices 1, 2, 3, 4 refer to P, L, C and 
X bands , respectively. The computations Include terms up 
to order q* In the expansion (11). To this approximation, 
the cross polarised case yields (w) = ug. 
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Fig. 7. 

f7 e-»°- 
depression angles 0 and azimuth angles°V.8 f°r ^ 
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u * 4 m/s 

Fig. 8. Frequency variance of the Doppler spectrum computed to 
order q|, normalised by the variance /wf) of the zero th 
order Gaussian distribution (U = 4 m/s). 
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'Iaaar Baok-Soatfr from 

,“•<*, "> ^'■‘n ind.p.nd.;, .,,^.0”1" P*'“>«T. c.„ th.r.}„„ 
•’■•mpl«, th. m..„ wave h.SVJ *•-•>*•• PTWv.t.e, 

ne,*ht ««d mean wave period. T 
IV. mnuiTö 

" aaic;«n wave 

• H,0™*-0'®W WAVE-WAVE INTERACTIONS 
ST*_«#•* 

actbnexD1“6? ^ atr,‘ih?íoriÍrd “«ïnalonVf th# Brag8 model can action expansion to higher order In pm f th® wave-wave inter- 
L treter, ^ no *mally a ,rn;al11natu^i^,e‘ the perturbatlon 
aa the »urface displacement of th»!. qua.ntlty ev°n when ; 1» defined 
Tn fnfle!d Con8ld°r the long wale. 0°ÏÏ? V* Wa,Ve ileld- and there i. 

act, the wave-facet interartin j amplitude separately 
waves on account of the angular res^^1 1* n0t aPPllcable for HF 
equality ki¿ « j ^ /5, CO"dltl°n (5). The i„- 
senting a wave length gap between th« mutually exclusive, repre- 
waye-wave Interaction modela 6x^1/®'^*“ and higher-order 
meter to about 10 meters. extendl"g from a few fractions of a 

second orrfi**« * i, _ 

k1 + + <rhkb = k* 

wi + 0-0¾ + <rbcob = W| ((r0,eb = ±) 

summing o ve l ^IpaTrÍof ^ ur fie e SpeCtrum ^á> Is obtained by 
component with the appropriatl SoH,aVet8iylelding a backscatterld 
and frequency <o, = w“+°Pte horl*ontal wavenumber k» =-k' 

(lí 

..(2) 

ÍCMd) o^cr ^ T Ffl~ )F9(~b)0(wd-°-o%-trbwb) dk° 0’ h **+ (16) 

(Eq. 15). T (2) 
where kb = - ^ /2kl + ^ i,«» 
d«e™r„.d by T;; 1. a ,c»«,rIns fuoctlo„ 

aurfac^a,(cf^nRef*hn8i)Un<^tfLr '^^'^^^aPoat^th^umirsturbed1*/11 
■he following da,°.t!Z ‘ad.ee. r-.rrv^-y 

t 

ÄÄrecrso‘~0 ar ‘r ^ ^ 

through the slope moments8 (njUj).^^ Sea-8tate dependence 
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ÎTtheytHFdy^af the fre^t*9 fb0th electromagnetlc 

mt ect® auch aa nonotmisoidal wave form«dteXPrei!8ÍOn of nonlinear 
«tc., that have been varloualv ^ T' nonlinear Phase velocities 
aide bands of HF Doppler spect/a. aS explanatl°n of the observed 

principal waves^f theTei^the'dom^nl ^ comPared with the 
pression angles are electromagnetic1 tV i61,30410118 at finite de* 
the integra! in (16) arise in thif case’frlmi ?ge8t contributions to 

P /riíetLM1 to th1; peak^f the 

Br“88 
tho 6-functlon In Ûielnt.grïï) deíjô/” + T“'íb = c™st (ê*p’ê«.ed ^ 
fol?6 WuCh is «iven aPProxhmatelyHbv the Curve in the kfl 
c0^relmb^,not^ng that, on account k =,co™t- This“' 
corresponds to an equally large variation ± aJh® variation 6k° 
the asQoclated frequency variftion fiM1? ^ * But for hû^kb, 

«ndl«e VarIi“tl0n ^ *lnc= tÄ/3df/dl^V"^ comPar«d 
at ffnîi»^ Wd = const reduces to ua= const * uHenCe the side 
at finite depression anales T(z> 1 jC°,n3t* 14 ia shown below that 
and the integration ovefth^ J J8 indeP«î,dent of kQ for k“ «U 

be readily clrriel„TyÏÏdSr 8 4 f°r 8‘ ' 

where 

'd) = X (cod) + X(Z)- (Wd, 

(17) 

wave 

X (wd) - 2T( 1 Fg{-82k') [Eg(a,d - 8Wg) + Efl<SWo _ ^ 

field, with < é) factqUenpCV "Pectrum °f the w, 
change of the components a and b L Fig.2 I?1)868 through inter 

order, tw^sid^âïa^e oUhe^anlface^ ^ C/rrier of a second- 

facetllCfly' DnPPler continuum aris^L^^if^7 8pectrum- 
^nterac^model> through the modiatYon'oft^ï^sÂer 

t 
These include the often invoked "hi u i 
occurring in the Bragg scatterinYv,®1161! int.erference orders'1 
oniy if the periodic scattering fiíld uVotl^6' They are gene5*ated 
turbance but contains higher harmonics PUrely slnusoidal dis- 
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Fit?. 10. Upper panel. Interacting gravity-wavenumbers ka, ^b 
for a spectral-peak wavenumber small comparea with the 
Bragg wavenumber 2k1. Strong contributions to the 
second-order Dopplerspectrum x'Z) («d> arÍBe when - 
Is close to the spectral peak. Contour lines Indicate 
curves of constant spectral energy. 
Lower panel. The associated second-order Doppler 
spectrum x*21 consists of two images of the wave^fre- 
quency spectrum 
Bragg line. 

Ea reflected on either side of the 

■Rraffp field bv long surface waves of high amplitude. However, in 
thelresent cLe° tL Doppler shift is not determined by ^ frequency 
shift w, = - 2 k‘ u Induced by the long-wave orbital velocities, but 
rather by the Intrinsic long-wave frequencies to0. Each low- 
frequency component splits the first-order Eragg line 
u(l> * W| + (rh«h into two lines W<2> = a)«1» ± <o0. Since u * the 
regions of validity for the wave-facet and wave-wave Interaction 
models may also be expressed, respectively, as wa«wf ana 
U0 » (Of. 
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surface - wat^ spec t hí Ibao^utía00 ^ ls,that U define® the 
electromagnetic calibration factors UnItti lndePendent of 
2,r,r.?,'rrge ‘™»>ph“rc mô^pVop'isre «’ ««bu.h 
S 71^1°346 the 8urface-wave spectfïi r*’ EqS• (3) ^ E<1* (17) becomes P ctrum at >^he Bragg wavenumber, 

E9(«d- 8(^,) +EB(8Ug.Wd) = _T^ 

ZT® 

mil) (2)l . 
T LiSi (9=±) 

JD* (18) 

where e' 
line. 
„(£)* The ratio><T"l<%,T(2f Ÿ Cht fJr>‘-arder Braga 

*"d .0,. ma d i„d" bS“d'rtm 'V- *»g 
m arbltrary energy units. 

, 111 the relevant limit k°« lrb 
f«î» the Picture of a .short scattering T may be de^uced 
riding on a long carrier wave Î - a® Vf. ,íba= A» exÇ ÍK^x - ^t'n 

ditT’ hrrrer' a88um<?d to satisfy thlSre1- * 'i"0^ 1®* 
?sn°n >k3<<: i> rather than the wive lac^T?6 int,eaction con- 
(5)). For small slopes Aak° << i Zl ^et/^fraction condition 
wave is presumably to alteVthe phale of *?Clpal e£íeCt °f the carrier 
and lowering the local mean reference ! 8Ca!t?ed field by raising 

ThuS lf the £lrst-order backscai-tfaC!i °f the short scattering8 
of the carrier wave is of therform 8Cattered Wave ln the absence 8 

JO 

r C e,<P ^-1 + '¿‘li! - ‘("i * a.u^t t tk’jjtj) 

C."1 *. Hlrat- 

wm^Ä^pÄSrhV0"11" P~'°! wave 

Thus 

~ 2«4Cb ni 
^ = e <P « (1 + 2i^(;b)ç>,l, = ,, O .(2) 

(19) 

^-C“'w,eap (2o) 

with C® = Ziklc^1^ , , 

HT™’ mS 18 -“Æ --V1d%oTi”crerf"geæotloa 

V8r.rd ÿ'^^^.Ugatlon ladUa.«. that .lope CM be 
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n<2> 
T _ i ■¡pry 4 

-,(2) 

-(1) = 09 (21) 

For amall depression angles (kj, « k ), the effect of the 
carrier-wave slope becomes comparable with the phase shift induced 
by the vertical displacement, and the relations (20), (21) should be 
modified to include additional terms dependent on k®. However, 
this requires a more detailed investigation of the eTectromagnetlc 
and hydrodynamic interactions.* 

Examples of Doppler spectra obtained by Ward [ 22] from the 
sea echo of 21.840 MHz (14 m) waves at ranges near 3000 km are 
shown in Fig. 11. The analysis was based on short records of one 
minute duration, so that the continuum is poorly resolved statistically 
and individual spectra vary strongly. Howe/er, there is some indi¬ 
cation of two side-band structures appearing on either side of a 
central Bragg peak. Theoretically, the Bragg line should lie at 
0.48 Hz, which agrees well with the central peak of the first spectrum 
shown, but is somewhat to the left of the main peaks in the other 
cases. The displacement of the side lobes relative to the Bragg peak 
is of the order 0.1 Hz expected for typical ocean-wave frequencies. 

energy 
(21) by 

The ratio of the side-band energy e*2* = J x(8) (wd) dwd to the 
e of the Bragg line is given according to Eqs. (18) and 

f<2) /*0) A(,) =4(kj)V) 

Ward estimates a depression angle of 12°, which yields 

C(Z>A(I) = 0.036 <(|;[m])2) 

The observed ratios of order unity correspond to root mean square 
wave heights of about 5 m, which appear rather high, but not im¬ 
possible. 

More plausible estimates of the wave height may have 
resulted from a more accurate determination of the scattering 
function ratio Tlz,/Tll) at small depression angles. Contamination 
of the observed spectra by ionospheric Doppler shifts may be an 
alternative explanation of the high ratios cl2) /e(l) . A spurious inter 
action between the Bragg line and the low frequency ionospheric 
Doppler spectrum could also have been introduced in the present 
experiment by the data analysis, since the Doppler spectra appear 
to have been computed -- as is often done -- from the time series of 

ÏNote added in proof: A detailed analysis has recently been carried 
out by D. E. Barrick "Dependence of Second-Order Doppler Side 
Bands in HF Sea Echo on Sea State," to appear in 1971 G-AP 
Int»- nat. Symp. Digest. 
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Hadar Baak~Saattor from the Sea Surfaat 

the signal phasa (or phase cosine), which is nonlinoarly related to 
the complex signal amplitude. More detaUed investigations using 
longer time series are needed to decide whether the ocean wave 8 

HF serrTchri b fheXtraCtCd the D°PPler 8P«ctrum of long range Hi sea echo in the presence of unavoidable ionospheric noise. 

ACKNOWLEDGMENT 

p T1118 ,worJi was supported In part by the Office of Naval 
Research under Contract No. ONR N0001 4-69-C-0057. ¡ 

REFERENCES 

Earnett, T\ P. •'Generation, dissipation and prediction of wind 
waves, J. Geophys. Res., 73, 513-534, 1968. 

2. Barnett, T. P. , Holland, C. H. Jr. and Yaaer P 

SeCSnaeSe°ar 6 Predic_tion with application to the 
b. China Sea, Westinghouse Res. Lab. Rep., June, 1969. 

3' Bãrrsur)LcD' E; *natreake' W- H*' "A -view of scattering from 
865 Sós! 796h8diffefent roughness scales,'1 Radio Sei. , 3, 

4' BaSa,;dFll^:'KFUk8'A1, ^•'„Kalmyk0V- A- l" Ostrovsky, I. £., 
.. . n j'f' ’ Very high frequency radiowave 

by a dlsturbeci sea surface," IEEE Trans 
AP-U, 554-568, 1968. Tirana., 

5* COX*fCtLM‘ and W' H" "Measurement of the roughness 

j. op,: s,o"t™r,,«T8pÄr?pi,ss4o!,he ,un’'8iiiter’" 

6' C'Tab,'„«Dm','6Ä"19P5e5,;tr"m 0f eCh<> “ 13-56 

7. Daley J. C Ransone, J. T. Jr., Burkett, J. A. and Duncan, 
J. «., Sea-clutter measurements on four frequencies " 
Nav. Res. Lab. Rep. 6806, 1968. requencies, 

8. Daley J. C Rangone, J. T. Jr., Burkett, J. A. and Duncan, 

S ' t. UP7wlnd-downwind-crosswind sea-clutter measure¬ 
ments , " Nav. Res. Lab. Rep. 6881, 1969. r measure- 

9. Ewing, G. C., ed., Oceanography from Space. Woods Hole 
Oceanogr. Inst. , Kef. No. 65-1Ö, 1965"- 

10. Gurnard, N W. and Daley, J. c., "An experimental „udyofa 
sea clutter model, Proc. IEEE, 5i8, 543-550, 1970. 

387 



— 

f 
WHHmmm 

Hasaalmann and Sohitltr 

li* K* - "On the m... and momentum tran.fer between 

12. Hae.elmann, K. , "Determination of ocean wave apectra from 
f6?fi;r,9^;° return from th0 »ea surface t " Nafure, UV, 

13# Bt p' Kn*[6' N** Kav,üy* J* J*» Newell, G, S., 
Ruina. J. P, and Sherwln, C. W., "The «nertrnm «r v v! j 
radiation backacattarnd iritn tha a.a.urhEl T 
Res., 65, 825-837, 1960. * J* Geophya. 

14’ Ltionn8Uor.Ä.Ms I* * *A nonllnear mechanlem for the genera¬ 
tion of .ea wavea, • Proc. Roy. Soc. A. 371-389, 1969. 

15, Munk, W, H. and Nierenbere W A ’’Hink 

füTiw."“ Phm‘p” ■*tur‘,ion ••• 

16. Pleraon, W. J. and Moakowltz. L "a . , „ 
lor Ml, d.,.ioP.d wi„d.... b.i;;d 

1964.,A* KUaj8orodBkU' J* Geophya. Res. , 69, 5181-5190, 

,7' 
6tífNãi,1C^!|blerj0Í Ual,n8 WaV° data o^a^ed by a apace craft " 

Nava Rt!?1;.l!;r„7on.Si,mPC.?,r;66W*’h‘ni,0n> omc* °f ' 

18' Rro^hS;u?;.'ce’.R'.n'r,l0n '■'•'"'romagnotlc wave from »llghtly 
Ugh surfaces, Comm. Pure Appl. Math., 4, 351-378, 1951. 

19. Semenov, B. , "An approximate calculation of scatter ln« r.« n 

8l7!“w6.''a,Urf*C”'" IVUZR*<“ofl.lk. (USSR). 9,876 

20’ Vo^eraHUaela' G* o' Lalng' M> B* * "Study of Doppler spectra 
of radar sea echo," J. Geophya. Res., Ts" 551-563, 1970. 

21. Valeneuela, G. R., Lalng, M. B. and Daley, J. C "Ocean 
spectra for the high frequency waves from^rbornï radar 
measurements," 1970 <cubm. to J. Mar. Res!). 

23‘ WArp‘u.,2n-223,A1968.m0d*1 i0r *“ CluK'r’" IEEE Tran.. 

388 

rni-ùm 



INTERACTION BETWEEN GRAVITY WAVES 
AND FINITE TURBULENT FLOW FIELDS 

DahIsI S*¥it«ky 
fl#»#«» întîitMiê of Ttítkmlê0% 

Hoboken, 

ABàîBACT 

A Uborslory Bl40, oí lh« inlvrActton sí d««p wâler 
«ravtly «uv** ftrsgrsvaing mio • lurboUm flow (leid 
produced by * Unit* width grid lowed In a wide unh 
•bowed »»ve height •Uenutllon oí neerly 90% In the 
grid w*h* end w*ve height ampiUkatlona oí nearly 75% 
I« the ■till water outelde the walte» The traneveree 
gradient of longlttidlnai flow In the wehe wee predom¬ 
inantly reeponaibte 1er the large wave deformation« 
and precluded an evaluation of direct turbulence eifecla. 

A «impie, analytical «slutlon uaing wave refraction, 
diffraction and »uperpoAltlon concept« I« developed 
which qualitatively reproduce« the me««ured result*. 

I. INTRODUCTION 

A* gravity wave* prog re«* from their «ource of origin, they 
encounter a variety of ocean environment» which may Interfere with 
their ordered motion and, consequently, aller the amplitude and 
direction of the wav* «y«tem. Although an estcnalve literature exlat* 
on the mechanism of wave generation and their subsequent propaga¬ 
tion through still water or a uniform flow, only recently haa some 
attention been given to waves moving through a non-uniform flow -- 
and these have been restricted lo relatively weak velocity gradients 
normal to the wave direction. 

In a realistic ocaan environment, gravity wave* may encounter 
region# of turbulent flow, particularly in the upper layers. These 
oceanic turbulent flow fields can be developed by various geophysical 
mechanisms. For esampte, the action of unsteady wind shear stresses 
«»•rted against the surface of the sea; the breaking of wave crests 
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■ h.- w.r.'r/turîS'nt ««H. TY !aïer“ ^ 

attenuation will reaulf n, • ’, ^ exPected that wave 

Heida and w^ë "oUoní S^cÏ at^ën^ tUrbulent flow 
Ing relatively '’quiet" local areas In th S fOÍ mPortance ln develop- 
ol .mall craft or ,ubmâ“ûe. “ ” ÍLI" í°r ». recovery 
oar etorm pa.alttg through thi 

of wav.r On'the fr.9e5,s1urTceeÔÍ“.ai|t„hMrrtl,CalhS,Udy OÍ th' P^P«rtlee 
‘nten.lty of the turbulence i. /uS,c‘?eMlyn5^lV !n»rT0,, a" '"h<’re th' 
generation in itself and where the rmec Y i il to preclude wave 
There are two tvoes of nTc , . velocity of the flow is zero. 

the attenuation of the incident wave OnÍT ’ '“í1 of whlch ««ult. In 
action" 1„ which wave energy i tra'naferred ?" ed?y inter- 
through a stretching of the vortev fn!* fd f I™ the wave m°tlon 
tends to incre«ise the mean * 1 ®nt!,ll? the turbulence which 

turbulence Itself. This straining pro^ss^iÍ^fty ass°cla*ed Yith the 
helght-leneth ratio anH ^ u u if secon<^ order in wave 

and8whe„ ,^,"^1^ S" u'm" Í ïa WaVeS 

random vetoed nuÖraUoÖiT»^ t^h le^"8. Äu“" î?” ,h 
convective distortion of the wave front = a ® d wil,1 result in the 
of scattered waves. This scattering effect6 a broad sPectrum 
height-length ratio and hennt § f,Ct is of flrst order in wave 
ai_ du n 11 * hence, predominates for waves of qmali 

;heP,t;e„„atlorfraor.««ao'ri“gdwíllTeIg«at0e"r1tthâô'th".tfhe°PH?Bea’ 
vl.cou, dissipation for wav, length, grLer than abouf iOf” '* 

tory, Undertaken at the Davidson Labora- 

wLl'dSrnde,r,adtebV?Ip?Ían,“taSnf oceani^bY Koln’0«oro£,hVP°th«.i») 
Two experimental atudle, were undertaken? ^71^ us'îd'ï^id“1'’ 

Sr/SdFra~ ~ turbulence wake and grid. This so-called one-dlmenslonaftrld «tnd 

mel^flo6 ln an attempt t0 devel°P a turbulent wake with uniform Y 
mean flow across any transverse section aft of the ortd TTnf„ t 

L??n,be .ubsequently discussed, a uniform flow ffeld was not'd?"? ' V’ 
veloped near the outer edges of the grid wake and this seriously 
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^1160 "f exPerimental atudie. 
W of 1 g f 3'ft Wide grid ln a 75-ft wide towing tank. The ln- 

nt of these tests was to allow any scattered wake system to be 
SidTl d outaide the turbulence patch. However, the finite width 

fí!dit1StO¡Prf0dUCed a Pronounced longitudinal mean flow velocity 
fatter tests ftnSVerSe !eflons trough the wake. Thus, in these 
three mndm ^ gen®rated ™ave8 were simultaneously subjected to 
5f sLZ Í 0n.effeC^3: (1) dissipation due to eddy viscosity; 

ind S def g ff V1! * convective distortion of the wave front 
and (3) deformation of the wave due to mean flow velocity gradients. 

wakes ^ww?meiltS We5e made of the wave deformation in the 
wakes of both the one- and two-dimensional grids. An analysis of 
dnJd re8ults Indicated that the velocity gradients in the wakes had a 
dominating effect on the wave deformation and thus, unfortunately 
fnr„eCa1rUded a rellabie évaluation of the possible dissipative or scatter- 

Tre nevertLle ffield UPfn the ÍnCÍdent Wave- The studies 
of11lmPortance since they provide unique results, 

obtained under controlled laboratory conditions, describing the pro- 
cnrrp6*3 dis*°rtl.°n of a deep water wave when encountering sharp 
current gradients, either naturally existing or artificially produced. 
It is shown that the wave distortion can be such as to provide locally 
areas of reduced wave motion which can be beneficial in launching 
or retrieving small craft or submersibles from a mother ship at sea. 

The experimental results are described in some detail and an 
elementary analytical model is developed which, using the combined 
mechanics of wave refraction, defraction and superposition, at least 
qualitatively reproduces the features of the test results and, perhaps 
more important, describes a possible physical mechanism respon¬ 
sible for the observed large wave deformations. 

f tv J,1?686 !tadie8 rre suPP°rted by the Fluid Dynamics Branch 
of the Office of Naval Research, Department of the Navy, under 
Contract NR-062-254, Nonr263(36). They formed the basis for a 
dissertation submitted to the Graduate Division of the School of 
Engineering and Science in partial fulfillment of the requirements 
for the degree of Ph.D. at New York University. 

II. EXPERIMENTAL PROCEDURES 

Turbulence-generating grids have been used with great suc¬ 
cess in advancing the knowledge of turbulence in air flows, but have 
been used only occasionally in hydrodynamics -- particularly in 
towing tanks where a grid must be towed in quiet water to generate 
a turbulence field. Taylor [ 1935] has shown that disturbances 
generated in the wake of a grid transform rapidly into a quasi- 
isotropic turbulent field whether the grid is towed in quiet air or an 
airstream passes through the grid. 
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and two mfsh^'ê^ft'owe?«31 'r“6”" SrldS °f'‘»‘^ d^* 
No. 2 and 3 of the Davidson^ fh * V.ariofs constant speeds in Tank 
plane of the grid Recular waS 7 n a dlrectlon normal to the 

maker in quiet water ^traveled !n the6«^!6^157 a plunSer wave- 

âæ zri'rL™ zt:^ zizz 

Several8of^he WaVG WlrC3 which P®netrated the^uirsuriïœ 

the gr!d spfed)WwMleW^r Were t0Wed ahead and behind the grid ('at 

ouLfdi ofTe^rt waíf6 ThIYutn ?ÍOfn^ ^ l0Cated both in and 

coadlt Jaefoïthe'o°é'dto^.°!:e''U,,'e,agrld "'»■•“«'■‘»tiaa • and t.at 

to aflxid poSt ¿art*sÍe,raSf8thfe 0f,tht' “d wak<i 

reflection from the gïid WaS there a measurable wave 

One-Dimensional Grid Studies 

No 3 ofTthhe grld StpdieS were conducted in Tank 

wide anchas a fatffd^th ofri' ^ 30° * l0ng’ 12 ft 
located at one end of Äf ^ sloSe^^ac^fTso^Se^i ^ 

reCfiaeÍtioan.the 0PP08lte t0 abS°rb fhe wave energy with minimum 

r“:/,"Vd‘4foT^8f-"-d 

sizes were tested; one had a mesh M = 0.36 ft and waJmaf. nf 

meOs8heM8-q0a7ei 7°^11 ^ °‘80 inCheS Wide; the other had a 
f 60 infh¡s JL fl I °f Cr°83ed 8^uare wood®n slats 

constant^ equal to S = 0^40° Sr^'id wa^ofel^f^ds of 

No. of the grid~ i^J^MtrXl^oZLZlZ 
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i 

Mesh 

0.36 ft 

Grid Velocity 

1 ft/sec 

1.7 

1 

1.7 

13.2 lbs 

Drag Reynolds No 

28,000 

49,000 

56,800 

96,500 

0.26 

0.71 

0.71 

37.9 

13.2 

37.9 

Measurements were initially made of the mean value of the 
longitudinal velocity (in the grid direction) of the grid wake at the 
centerline of the grid and at a depth of 0.80 feet below the water 
surface. At a distance of 10.0 ft aft of the grid, the wake velocity 
was 0.40 V and decreased slowly with distance aft of the grid -- at 
a distance 20.0 ft aft of the grid, the mean velocity of the wake was 
0.36 V. In these initial tests, a straight line of confetti was sprinkled 
across the 12 ft width of the tank parallel to the plane of the grid. 
Visual observations of this reference line after grid passage showed 
that the confetti moved essentially in one straight line parallel to 
the grid, thus indicating a lack of noticeable velocity gradients -- at 
least on the free surface. An analysis of the wave distortion data in 
this wake yielded anomalous results (these will be discussed in a 
subsequent section) that could not be explained by the assumption of 
a uniform longitudinal mean flow through transverse sections in the 
grid wake. Hence, a detailed survey was then made of the mean 
flow at distances of 10 ft and 20 ft aft of the grid. These results are 
shown in Fig. 2 which presents a plot of longitudinal mean flow (V ) 
versus transverse distance from the grid centerline at a probe depth 
of 10 inches below the water surface. The wake velocities (Vw) are 
normalized on the basis of grid speed (V). It is clearly seen that 
the mean flow in the wake is essentially constant for a distance of 
approximately 5 ft from the grid centerline but then rapidly decreases 
between this point and the tank wall. The significance of this local 
velocity gradient will be subsequently discussed. 

The wind tunnel results of Dryden [ 1937] , who examined the 
turbulence aft of a rectangular grid having a mesh size M = 0.41 ft 
at a nearly similar Reynolds number, show that the turbulent veloc¬ 
ity fluctuations u' as a function of distance, X, aft of the grid are: 

Thus, for a distance 10 ft aft of the 0.36' mesh grid x/M = 27.7 
and u' = V/37.7 or approximately 3% of the mean flow. At a distance 
of 20 mesh lengths aft of the grid, wind tunnel experiments have 
shown the establishment of quasi-isotropic turbulence. 
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GRID WIDTH s 11.50' i DRAFT = 20" j MESH SIZE s 5.4" 

(GRID TOWED IN 12 FT WIDE TANK) 

VELOCSTY PROBE AT IO" DRAFT 

VW = WAKE VELOCITY j V=GRID VELOCITY 

Fig. 2 Longitudinal Velocity Distribution In Grid Wake 

Wave Height Probes: Wave heights were measured by re¬ 
sts tancê-tÿ:p,ë~wâvewlrës-pënet rating through the water surface. 
The position of the wave wires relative to the grid are shown In 
Fig. 1. It Is seen that wave wires moving with the grid were 
located 1 2 ft ahead of and along the grid centerllnej 13.25 ft and 
16. 50 ft aft of and along the grid centerline; and one located 13.25 ft 
aft and 4 ft transverse to the grid centerline. The wave wires 13.25 ft 
and 16. 50 ft aft of the grid were used to obtain a measure of the ap¬ 
parent wave length In the turbulence field while the pair of wires 
4 ft apart in the transverse plane 13.25 ft aft of the grid were used 
to measure any deformation of the wave crest line as It progressed 
through the turbulence. A stationary wave wire was located 60 ft 
forward of the wavemaker and was used to examine the regularity of 
the amplitude and period of the generated incident wave. 
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as follow^ °f Wave heiShts and lengths used in these tests were 

Wave 
Length 

ft 

2.0 

2.0 

3.0 

4.0 

4.0 

6.0 

6.0 

8.0 

8.0 

Wave 
Period 
T, sec 

0.625 

0.625 

0. 763 

0.885 

0.885 

1.080 

1.080 

1.250 

1.250 

Wave 
Celerity 

^ . ft/sec 

3.20 

3. 20 

3.93 

4. 52 

4. 52 

5. 55 

5. 55 

6.40 

6.40 

Group 
Velocity 
Vg, ft/sec 

1.60 

1.60 

1.87 

2.26 

2.26 

2. 78 

?.. 78 

3. 20 

3.20 

Wave 
Height 
Hw, ft 

0.05 

0. 10 

0. 10 

0.05 

0. 10 

C. 05 

0. 10 

0.04 

0.09 

Test Procedure: Several experimental procedures were 
used in the®® studies. In one group of tests, the grid was held 
stationary 70 ft forward of the wavemaker until several waves had 
passed through the grid. The grid was then towed and wave measure¬ 
ments were made with the moving wave wires. For certain runs 
after approximateiy 50 - 60 ft of grid tow, the aft moving wave 
wire (16. 50 ft aft) was released from the tow and remained stationary 
in the tank. Thus, wave height measurements were taken both at a 
fixed position relative to the moving grid and at a fixed position in 
the tank (variable position relative to the grid). The other test pro- 
cedure was to first tow the grid for a distance of approximately 
50 ft which developed a turbulent wake and then start the waves which 
ran through the wake and overtook the moving grid. This technique 
avoided the possibility of a secondary wave formation as the incident 
wave ran through the moving grid. It was established that the results 
obtained with both test procedures were essentially similar. 

Two-Dimensional Grid Studies 

M o ti'0'dlmenslonal grid studies were conducted in Tank 
No. 2 of the Davidson Laboratory. This tank is 75 ft square and has 
a water depth of 4. 5 ft. A plunger mechanical type wavemaker spans 
one side of the tank and a sloping beach is installed on the opposite 
end to absorb the generated wave energy. 

Grid Characteristics: Two turbulence grids, one 3 ft wide 
and another 575ft vide, were separately towed in a direction away 
from the wavemaker. The grid centerline was 17 ft from one edge 
of the tank. Figure 3 shows the test setup. As in the one-dimen- 
sional tests, two mesh sizes -- M = 0. 36 ft and M = 0.71 ft -- were 
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0-80 inches vite c°nstructed of crossed sn 
of the grids were*thlhe 8°lldlty' towing speeds and W<:ioden 8lats 
viously described The^6/8 f°r the one-dimensiona^n°ld8 numbei- 

lhe sq“a" ^ ^ ^ 

“Sind'S!« if? V$,a“ °l the l0"6itu- 
With a 1.67 «mcf (Tan3 ff^i008 aft of the 3 ft wide 0& 3^ff wake across 

S ÄX- 4Ä ft' 'hpo 
..me fee both srld ^ „e«'^ '» 

IpiSilpSSHs-. 
âSs”âí;£s;sh*; 
wake velocfty^V^aa fo5mulation was established to 
distance, y, measured fnCtÍ°n of dÍ8tance, x Jt ¿Ai™Bent the 
direction Th?l l d from the «rid centerlfn»^ f the «rid and a 

The wake equation is given by: n°rmal to th« *- 

= [0.45 - 0.00745xJ [e'^T:®7^0627)8 j 

Where * and y are in units offset. 

The above formulât 

entWa7h?seí0naTy8tiÍsnisÍ0pr ''^^‘^^runntng^nïoV11 analysis 
report. Presented in a subsequent sectio'n oTthis8^1" 

forward and three 0,£s Tit 7 ,‘nf'he! oC‘ “« centerltae-X 37,be‘ 

?n /f ou i Section of rid tnw -¾„j ^ ^^nsvcrsc line 

ISrHSïHESsSrs: 
... '‘~“S HKSKS&. 
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Gravity Waves and Finite Turbulent 
Flow Fields 

Î 
v.v* 

CRIO 

GRID WIDTH-36", DRAFT = 20" , MESH SIZE * 2.7" 

.GRID TOWED IN 75 FT WIDE TANK) 

VELOCITY PROBE AT 10" DRAFT 

~ = [0.45-0.00 745 x][e'(,'67+0-062x) J 
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the wave probe. Thu« tv,«. * 

® S t ^^1*0 C G d II T*#a • T^V»« 

«••«linrïraiïï to-á08e eu;*”f' °f »av« heights and lengths were 
the test proeediires previouslv tu jne-dlmensional tests. Also 
grid location was alwavs 10 ft^aV, were followed. The initial 
proximately 60 ft ofTow L °f the wave^ker. After ap- 
continued in operation until ttl *av.“„0^ “d the *‘«n,ak«P, 
of transverse wave probes were atrain recorded in the line 
amplitude. a were again equal to the incident wave 

Results of fxper,mental investigations 

general Sehatiorof'wa'yèï'fnYt f k”! d<:acribed to illustrate the 

analysis ol the result, i. develop^dt^fs^e^n^eS“*^ 

One-Dimensional Grid Studies 

dimensional grid study was ^Dro^irl °riginal intention of the one- 
longitudinal mean flow in anv tr»n« ^ * turbulent wake with constant 
Regular waves wouldL nasseH ^ T SeCtion thro^h the wake 
made of the dissipative effects of walce and measurements 
amplitude attenuation. It was exnerf- "c,?ntrolled turbulence on wave 
waves would pass through The turhnl» ,f,the deeP watfir gravité 
wo^lHShremalning Parallel to the gridnand th ,^Íth the creat “nes 
would be essentially constant alon| a «iïen î®,,WaVe amPlitude 
as the wave progressed further into tifiT k , ‘ line and decrease 
circumstances, the amplitude attem,turbulent area. Under these 
viscous diss ipatlon and to "wave streiM W°Uld be due b°th to 
u na current from an originally quiet ar!a^ moved into a longi- 

^«d ih^L'^^r/reÄ “e"“ d:LtPdb?*' "‘h"' “ - amplitude was not constant across a f f, «. ly deformed; the wave 
there were pronounced oscillations in thl” Cre8t line’' and’ further, 
atie-h waY® Probe (whether moving orata^® an?pHtUde time hi8t°ry 
all cases, the control wave probe tl n^ry^ ln the wake. In 7 
of the turbuieni wakei indicated a' ^as flxed in quiet water aft 

P riod continuously passing into the wake area ^ amplitude and 

oscillations recorded^^botjTthe°f typlcal wave amplitude 
along the grid centerline is given Tu F?/ \ atatio"ary wave wires 
repruseutud ,« £or a „ave ,¾¾¾ ?■ The test eoudltioue 

the ef ’ The *rid velocity was 1 7 ft? “d 1''"' heiSht dd 
the wave is 5.4 £,/eec while the ajerie ^¿e'veWif*1*" ,Peed of 

K axe velocity is approxi- 
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located lÄ'ft'aft onïe gHd,' llaco^NV^' ¡Tío"8 wavc. probe 

the stationary control^wave^»tre kneift*!? ’ *"d ‘"Ce N°- ^ <■ ‘°* 
the start ot the turbulent wake Th. f* *pp™xlm*,ely 20 « eft of 
the grid motion and the time of entrv nfTh“ OÍ St?rt"uP and stoP °{ 
the wake are also indicated on this figure "í™ WÍreS Ínto 
feature on this typical teat ¡ ’ Peï*iaP8 the moat notable 
the meaaured wave amL tudrr n , ^ uprono^c^ oscillation of 

1. is seen that.Tr tïT^pèctLd . . c „ttlon““’:'^'8 W'"- 
amplitudes varied from nearly zero tovali« ’ r,eai9ured ^ave 
the incident wave. Further tyhe . f1 neWhat arger than 
values is approximately 9 î0 J bf^n successive minimum 

conslderabf;,“ "* '¿„Vu 2 ".y denied* ^ 
probe ahead of tho c 5 , 1 nearly delined, for the wave 

tude variations were reduced"and^he WaVC len8ths*, the wave ampli- 
mum values increased. A reduction tí^rid"1 per.iod ^etween mini- 
amplitude variation and increa-^d it« 8 d 8peCd reduced the wave 

mum values. dt^Irnlbl^^Xt^r/Hd0 mÍnl' 
these general observations. 1 1 f 8 d rnesh 8lze on 

tude continued foTa^on^tTm^aft5 iluc*uations in wave ampll- 

Thte is. ofUcourse, duetto Se facVt^XT^V ^ 
defined in Fig. 2 and con An, », H H ake haa a mean n°w 

after a 

a grid draft of 20 inches; and a meeh ' it/8eci 
presented for the 3 4 and R ft \l \ » ^*7 inches. Data are 
approximately 1 inch The data fVt A/ ’ each *iavln8 a height of 
sented since the lave helaht. LA» »V* WaVe length are ^ P™- 
turbulent flow area. Themata for^h^^lt 7CgUlar even in the non* 
those for the 4 and 8 ft test 1 a , ‘°ng Wave were not unlihe 
this paper. Two comoanlon ofot henCe ' arC not inchlded in 
For example the daTa föl th ï r, 7® Presented each wave length. 

7. The envelopes of the ratio h/h °foAthe^h™ given.in Figa- 6 and 
are plotted in Fig 6 alono with tin' i th t7ee rnovin8 wave wires 
at the centerline and a a oo^nt 4 ft ? ,1°° betwee» ^ave crests 
longitudinal distance of 1 3 25 ft aft of fhe ^ centerllne at a 
represents a crest line pa file tot^r J rJr^ ^ ^ 
data plot for the 3 ft wave is given in Fi» 7 u complementary 
the envelopes of h/h 8 F g* 7 where- ‘n addition to 
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<he 4 ft IO"8 WaV'Jfl; 8 and , ior 

""“Ä tt.Te heisht -.iop. 

»MC, th„ Ä-? ‘"'--M« MÄ{‘t"^s‘tl!;rsrough 

“ »“v^hérL'““1'“1- Cd not 

‘he grid as sKïn hi-to^«» ío^a ThU Can 
histories are Flg8' 6 and 7j 8 and 9- * H 13,25 ft ait of 

•»« 3 « WZT M*k. do, tLrtt‘ÍTsdJ‘;e 

r'"§S5l^a Ä's-ää1»-« »utlo» 

re s ult st8 Fctr ^t he 1 e a r „r estü ^r i^r ^t q1 the^s e^ on e ^ JerBe thfa ptíint 

Phase angle i8 ze^TmoVí6 4 ft lon« wave (Fig^öT6^^31 te8t 
the firat 20 seconds’/??ft71?8 3 Crest 1In® parallel tó ll 8 8?en that 
time Increasp» »i.8 , ft oi wake develonm«^^16/ 1 the 8rld for 

Une pro "d.? ¿.‘t,Ph*,e ^ ‘«d,ea.es .„".Lf 8''id ‘“'’C- A- 
Increases ne. «y iT 4 * off ,he Centerl,*'"y“ th« Center- 
wave (Fig 8J ï inearly with increaslnc tirv,» 1 The Phase angle 

p-.o;8or,r ut: o^ür0';^ 

»"«cT.T. lefT -1“”* ‘»e 
?kVt.t°b‘’ *' •“■‘n’c.s'of U^rr M.*«rl.s ine apparent wave ilo.¿5 ft and 16.50 ft »<■* it 
of grid travel. ™ele,ngtî «enerally increases witlf °f the grId^ 
mately 4 ft after 50 3 ft long Wave (Fig. 7) atta( increasing time 

value of 3 5 ft The84Cftnd8 °f grId ‘^el anS th “ ^^116 °f aPPr°^- 
6. 5 ft after inn h 4 ft test wave (Fig m , decreases to a 

attains a value ofeaC°nd8 °{ grid travel while the fiV* Value of nearly 
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is increased to 1.7 ft/ser 
those on Figs. 6 and 8 for*a grid sp^eTof 1*0 comPared w^h 
differences are that there arf wider variation ft/8ec' The maj°r 
the higher grid speed and, further th^ rí^ ^í u Wa7e amPlitude at 
tlon is reduced from 60 seconds to’40 secondffo/the ‘J1* phaae rela- 
from 85 seconds to 50 seconds for a ,. ds for the 3 ft wave and 
sufficient data were not collected to^f ñ V¡ave' Unfortunately, 
velocity on apparent wave lenïth 9. 1 the effect of «rld 

forihe 0 "/Sd 

Two-Dimensional Grid Studies 

gate the interaction between a^turblíl^nt8fí^f?^168 WaS to inve8tl- 
and long-crested, deep water vr^if * flOW ílelAd °f finite dimenslons 
cussed, the grid wake char!7 Wave8* As Previously dis- 
slmultaneously subjected to dissinaH8 SUCh that the waves were 
scattering dueVtu'^ dua to addy viscosity, 
and deformation of the wave due to lst°rtion of the wave front; 
in the one-dimensional investieatio^ fl°W velocity gradients. As 
the velocity gradients dominated in rWo ap.pears that the effect of 
Although the experimental program examined8 W«aVe distortlon8. 
length, wave height, grid mesh grid ^th d Ma varlatl°ns in wave 
speed, the presentation will be limit-pd * draft, and grid 
the iollowing brief rañge of condí,To'et '° ‘ -eeult. for 

X = 2.0; 6.0 ft 

Hw= 1.0 Inches 

Grid mesh =2.7 inches 

Grid draft = 0.83; 1.67 ft 

Grid width = 3.0 ft 

Grid velocity = 1.0, 1.6, 2.6 ft/sec 

major tfSct^ oTwa^e-wave iíteraST^^ 8erVe t0 illustrate ‘he 

wave êgritSeBseatapr0obe posUion^10^^ tlmC hÍ8t0ry of the 
stationary in the wake wer* movlng with the grid or 

di.nen.ioLf ’‘riVTl 'T ‘I“ »”«- 
in the wave amplitude were not observed * I*^regularity 
wave probes which traveled with the grid ""Therl V ^°86 
some indication of an irrem,T * There did appear to be 

mation a. a 8,ve„ uTJiTj^ 
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Gravity Wavee and Finite Turbulent Flow Fields 

ïoig'îhïgriï ctnÆi biïng’Âl'Îad bvVeaír0nt ,WUh ““ CT“* 

Âd V rbe 
transverse probes 4 ft apart contim o te18t®’ the Phase between two 
general, the wave height t^P ^ ^ Y lncreased w^h time. In 
a slow attenuation or amplificatio^as^hrwT Jharact®rl*ied bV either wake. p cation as the wave passed through the 

and the grid*dl^wÂdîi'e 

(No". 7), it ù^eïn that thí'/,*'C‘ For the ptnbe on the centerline 

Ä ôfîhê' ¡beCbruMtrr1- 
ot data collectL (80 eec'eS) “t ^11 b”“ ^if/' '°' *he e"tlre tlm' 

approximately 35 ^ “cÂTe^rld ap“.^“ 

w.;. heíghttíb ttoe' CÍSie I l,ndlCatr ^ 'mal1 variation2 „ 
olí u . U ' The remaining outboard probes ÍNo ^ 4 <;i 
all show increases in wave height for the entire test run TV,«« ’ ] 
probes also indicate the existence of mild "beats" in th»'* , 

i a' TreiiltalrdSr-fd"0^ S" “ '"'V“' d‘—al 

than the incident wave. It is to be noted that fn-r oil * 

me ot the centerline and an amplification beyond this region. 

Figure 15 represents similar data for a 6 ft long wave =11 

deformado 8 The 8eneral characteriftics of wave 
deformation are identical to the 2 ft long wave excent tV,ot tino 
nitudes of the changes are reduced. For eîlmple ?L ^iiní ^ 
wave height along the centerline is now 30 per cent of the incident 
wave while the maximum wave height is 35% larger than the Incident 
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Savitsky 

The envelope of wave height at the moving probes is given in 
Figs. 16 and 17 for wave lengths of 2 ft and 6 ft respectively. The 
wave probe positions are at distances of 1 ft and 6 ft aft of the grid 
and just off its centerline. The grid was 3 ft wide, had a draft of 
1.7 ft and a mesh size of 2.7 inches. Figure 16 presents results 
for grid speeds of 1.0 and 1.6 ft/sec, while Fig. 17 is for speeds of 
1.0 and 2.6 ft/sec. It is seen that there is a continuous reduction in 
wave height with time. For the 2 ft long wave and a grid speed of 
1.0 ft/sec, the amplitude is reduced to nearly 10 per cent of its 
initial value after approximately 20 ft of grid travel. It remains 
essentially at this value for the length of the test record which ex¬ 
tended for 30 seconds after the grid was stopped. The effect of 
increasing the speed of the grid from 1.0 to 1.6 ft/sec reduced the 
wave height to nearly 8% of its initial value. It is to be noted that 
there is a distinct absence of oscillations in these time histories. 

The results for the 6 ft long wave (Fig. 17) are essentially 
similar to those for the 2 ft long wave. At a grid speed of 1 ft/sec, 
the wave height is reduced to approximately 35 per cent of its initial 
value. When the grid speed was increased to 2.6 ft/sec, the wave 
height was reduced to 12 per cent of its initial value. 

An overwater photograph of the wave deformation for a typical 
two-dimensional test is shown in Fig. 18. The reduction in wave 
height along the centerline wake area and the amplification outside 
this area are clearly visible in this photograph. 

Fig. 18 Typical wave deformation for two-dimensional grid 
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Gravity Waves and Finite Turbulent Flow Fields 

in lit r U]t8- ,To more Nearly illustrate the modifications 
ÍL V ght,along a glven crest line- transverse sections throuch 
the wake are plotted in Fig,. 19 and 20 for a grid width of 3 ft draft 

dri; Vn',Te'h ? 2'7" “d *peed oi 1 Th. .¿.C« o,’ 
in FiV ‘,V v," lFig-,2'- The th<i 2 « wav* .re 

a ^< ^3' 19 whlie those for the 6 ft wave are given in Figs 20 

"the1; ™rddala ar.0ï,alned ,r0m 
Hi t rded wave height at times corresponding to the indicated 

‘-o8 ahe^d of and behind the grid. A maximum phase shift of 
only 30° was discernible in the test records. 

for a hi of a 8een.that a substantial reduction in wave amplitude exists 
line di,. e °f nearly one grid width on either side of the center- 
rna^i f wave height amplification occurs at approxi¬ 
mately two grid widths from the centerline and the wave amplitude 
appears to be unaffected at distances of approximately 4 grid widths 
the"? centerllne* This pattern exists for distances wfll aft of 

and ahead t0 Tte that’ as the wave Passes through 
and ahead of the grid, where the wake does not exist, the deformed 

I fuei?d*lt0wtUrn t0 itB original uniform height. Again, it is 

pared Îotheef, ft WaVe ÍnmUuh attenuated and amplified com- 
Fiel iq and6?n 0t^er condition8 belng equal. (Compare 
orfd h 19r. rd 2°’, 8 al8° intere8tinM fo note that reducing the 
gr d draf from 1 67 ft to 0.83 ft has a negligible effect on wave 
deformation for the 6 ft wave. (Compare Figs. 20 and 21.) 
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Savitsky 

Fig. 20 Height of wave crest line in transverse sections normal 
grid ¢,. \ = 6 , Hw= 1", grid width = 3', mesh = 2.7", 
draft = 1.67' , V = 1 ft/sec. 

to 
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Gravity Vavee and Finite Turbul ent Flow Fields 

bl. .ff?«'Äilvrd‘f™«.,nr0m.2'7 5-4 lnCh“ h“ b »'81181- 
lncr...ed X a,.TÔ?wâ™ «Si "«„i"'/“"8 *he wld,h 8'ld 8-ca oz wave attenuation and wave amplification. 

HI. ANALYSIS AND DISCUSSION 

_yiBcoua and Turbulent Effecta 

to relaíi1n«»lí»ÍÍl!Íanaly’,la OÍ the exPerimental reaulta was directed 

's i>r"lbl' 
grid-generated -eke. It wai fo„Íd thM ft. ? °nUS natU,r' °f the 

ÂÆteT b!rfrCOU’’,ed ^.íi.fciilfd^ahZr^pTra- 
of the wave height waaZegrat/d al 8tudiefl’ tn lhis caBe. the square 
the wake to oh fin T mea.fff Sf ft. . S. “ '?* V1".' P“,ta* th'°“8h 

1» Table t for wave and grid dlmeisionf StSdZbZvEícZ;*"1 

duceShneintiegr1ten expre88Íon representative of wave energy pro^ 1 
duces nearly almllar results with and without the tnwed grfcí PIn 
fact for some teat conditions, the Integrated energy for wave a In 
the presence of the grid results in values somewhat h »he-Tan for 
the case of no grid -- but this is attributed to experimental inar ^ 
C™l*a- 11 thu® appears that viscous dissipative effects were ouite 
small and, although they most certainlv pviofo^ i s ^ 

"a^vôr* r ,CC“rllíy di'»‘«"b^Z'a^rnuÄ'r' 
transverse wave probes were inadequate to trace the unexpected 
large wave height deformation which developed along a CKSt line. 

lent fieldTSd’ 

imparted by ff gfÄ« ïïf II "Sd'o”? ÏÏ'Vtr™ 
*1*11? an order of magnitude larger than the wave energy in a 
Crestline length equal to the grid width. ^ 

For the one-dimensional testa, it will be rerallf»H »Ur. 

tions T8114 at t giVen posltion in the wake exhibited large fluctua- 
hlstoHes was characteri*ed by irregularities in the recorded time 
h stories. These results could certainly not be accounted for bv 

thf, f” h°ftm.tChi,n‘*ma in ,he ‘“■■bulent field. I, appeared then 
at for both the one and two-dimensional studies the principal 
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TABLE I 

Comparison of Wave Energy With and Without Towed Grid 

h, 

Wave 

V / h2 dy 

(with towed grid) 

Grid* 

D M 

E = HZY ng nw1 

(no grid) 

Transverse Section 

Position** E 

6.0 0.09 3.0 1.7 Q.Z¿ 1.0 ft/sec 

6.0 0.09 3.0 1.7 0.22 1.7 

2.0 0.09 3.0 1.7 0.52 1.0 

6.0 0.09 5.5 1.7 0.22 1.0 

2.0 0.09 3.0 0.85 0.22 1.0 

6.0 0.09 3.0 0.85 0.22 1.0 

"9 g 

5MF) 0.067 ft3 0.069 ft3 
6\(A) 0.063 0.060 

32\(A) 0.058 0.064 

2X.(F) 0.081 0.082 
2X.(A) 0.081 0.083 
7X.(A) 0.081 0.079 

5\(A) 0.081 0.081 
6X(A) 0.087 0.092 

32X.(A) 0.081 0.075 

2 MF) 0.093 0. 100 
2X(A) 0.087 0.099 
4M A) 0.087 0.099 

5MF) 0.081 0.098 
6MA) 0.072 0.078 

23MA) 0.081 0.091 

2MF) 0.081 0.079 
2MA) 0.070 0.076 
4MA) 0.070 0.078 

* + 

Wave and grid dimension in feet; L = grid width; D = grid 
immersion; M = grid mesh 

(F) is transverse section forward of grid (ft) 
(A) is transverse section aft of grid (ft) 
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O-avity «a»e. and Unite Tyriulent Flow Fields 

Ar f°a of 
regard, the results of PhUlips f 19591 J"13? effects • ^ this 
possible convective distortions of th9 re examlned to determine 
scattering interference betteentave ITt Tl fr°m 
found that the observed results could not h "“ field' Tt was 
turbulent scattering, M ‘ be acc°onted for by the 

had a minor eífe^on^a^e^eformatlo^^it16110C a8Sumed to have 
possible interference between the meai'floJ6"1^^'1 ‘i0 examine the 
and the incident wave. The velorio r, «1 gradient in the wake 
mean flow aft of the grids are pSd'in F ^ ^ ^ lon8ltudi"al 
and two-dimensional studies , iespectivef ßSr‘ 4 f°r the one- 
a relatively sharp velocity gradient hpt Y’ ” b0th cases there is 
wake velocity to zero velocity a the tanT^n JegÍOn 0Í Constant 
case and to zero velocity in the still laíer i 0r thC one-dimensional 

wake in the two-dimension^ cLe sT^iSr^ t0, the finite «rid 
of elemental theories of wave refraction dlf ^ suPerposition 
it was found that the observed resultl could and lnterference , 
reproduced and physical mechaniqm« h ,u ' a* ^ea8t, qualitatively 
large wave deformation, ob.e^ved d''"lb,d '°r the Y 

alnce fhe« •"V™"“»*’ >««• 
such as existed in the one-dirr,™«! ssible reflection effects 
analysis will provide the foundatl OIfal 8tudlea- Further, the 2-D 

l-D „„die, which proved be t^eVore'ccmplexcL”""1'“ °f 'h' 

Wave Interaction with Finite Velocity Field 

finite wake area ait°oTtheVs The inngitudina] mean now in the 

by an empirical formulation^! ^ 10 8‘ 4 ÍS 

where 

= [0.45 - 0.00745x] [ e 
■t 67 ♦ 0.06Z* )' 

V :rrÍd"ve7òcUr,;n0n8Í""l"’al VelOCitV in Wak0 
X = distance aft of grid, ft 
y = distance normal to grid centerline, ft 

counter a variabloHcurre^t field6^ Sti11 deep water en- 
tion as the waves. The waves areWinitH1im0Vfng ln thC Same direc- 
to an extent dependent upon the incident wa by the current 

current, and the velocity gradient, ,» theTahet^Si‘oSSl^ 
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Savitsky 

«>f the wave-wake system is shown in Fig. 22. 

Pb»*« v:L^/"^v;atep CúgÂ;ave8 in *,ui •». given by: 

Co = gAt 
(3) 

where g = acceleration of eravltv \ - , . 
ko = wave number = 2ttA r - wav 0 ~ .wa,fe length in still water, 
After the waves have run0from° sHlllZ relatÍVe to 3ti11 
matical condition that must bT sat íu° a current, the kine- 
remains constant while the wLe Wh 'V Period, T, 
Hw change. Given a current velocitv V tv, velocity and height 
period is expressed as: ^ w’ c°n8tancy of wave 

2n 
* = ~T = k(c + vj = ko(c0 + vwj (4) 

where the subscript, -fers to the .,m water eo„dm„„s. 

Thus: 

ilo - -C + Vw C2 
k C0 + Vw 

"o 0 

For the present case V. = 0 so that: 

£ C V* n -j - —--n>= o 
Co C0 C0 

and 

(5) 
C = 7(C0 + + 4VWC0) 

iWnh;Lh sarnie dlrectforf as Äe^ ÍOr P-gressing 

relativ^t^theT-iYs’: f0r WaVeS Wh°8e CreSt Une is at an angle 

C = I (Co + VC0J + 4VWC0 cos 7) 

where a is the angle between a 

(6) 

wave ray and the x-axis (Fig. 22). 

of the w^pL7r°eîa,U'ia‘!he,he b0tt<>m C' th' ave speed relative to the water and the loral r-„.- ,, ., , , vector sum 
and the local current. 
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Gravity Waves and Finite Turbulent Flow Fields 

V*s 
LONGITUDINAL CURRENT FIELD IN WAKE 

C0 »WAVE VELOCITY, STILL WATER 

C = WAVE VELOCITY, IN CURRENT 

a = ANGLE BETWEEN WAVE RAY AND X AXIS 

Fig. 22 Wave-wake system 
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Saviteky 

^ =T, +Ü 
(7) 

The wave length for waves procresslnv in fv,« j. 
current is thus: 8 ng th 8ai«e direction as the 

\ 

(8) 

wave length rel^fiv^o^her.fo11 °Wlng current Is to increace the 

through^uficur”rent°field**!s^obtalned ac^ -aves traveling 
principle that waves will travel » auPplLicatlon of Fermat's 
a minimum. Applying he metLd ^ i 8,UCh ^ the travel tlme i- 
to a time history of the oatÎ ^.i ,ïUlUd °f variat^ns will lead 
the current. Fo^ the ^rposes of 7T Pa88ln« trough 
that the wake properties do not vary with^lm!*8 ’ b6 a88umed 
assumption since it has been demonstrated tha't Til! iS a reasonable 
1 ft/sec, the mean wake-velnrîfv *o j J °r a Sr^“sPeed of 
the wave speeds. Mathematicallv the °f le88 than 
minimum time path of a given wave rav^hTo^ih ^ t0 determlne the 
f ned by a position dependent víoTuT TecÎTr ® TheCUrrenu 781°0 de- 
direction of the current are known ^ect°r’ The magnitude and 
The magnitude of the wavT crest of poflltlon ^ 2). 
given by Eq. (6). The problem ja f relatlve to the water is C, 

ray such as to mlnlmlzT the time ne^esltr^toV110 Pwh °f a WaVC 
to a point B. Analogous optimization Iwl * ‘rraVe!, from point A 
are described by Bryson and Ho [ 1969f f°r dynamlc systems 

The equations of motion are: 

x(t) - - V^Xiy) - Cix.y,») cos a 

y(t) = - C(x,y,a) sin a 

with initial conditions 

(9) 

and at end of computation 

x(0) = x„ 

y(°) = y0 
(10) 

x(tf) = X, 
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Gravity Wavee and Finite Turbulent Flow Fielde 

points A andnBanT-lne,d ^rn}inal„tlme °* integration between 

ofeUp^ed8;^; ai: ^tisfie^and* tha^ tl^e'perf^rmanc^indejf J^a) 
lapsed time tf is a minimum expressed mathematically. 

p'f 
J(«) = 

^ n 
dt 

ai) 

is a minimum. 

of th. system *í‘ me'h0d’ 0f Cal‘:“luS °f ''»'‘«‘o- • 'he H.mlltoslan 

H(*.y.«,1,.(.,) = 1 + (.,(- V>. C cos o) - XC .1»« 
(12) 

equations'1 are: S L>8™8e multlplle+s. The Eul.c.La8sa„ge 

i - flH 
“ inr 

i _ 0H 
y~ "5ÿ 

X = |iL x ïïx; 

; - 9H 
y - 5X7 

0 = 8H 
w 

The terminal conditions are: 

\(tf) = 0 

H(tf) = 0 (14) 

Since the Hamiltonian is not an explicit function of time ri - 0 anri 
H is a constant. Further since W - n ,+ +Í. + , , H ~ 0 and 
then it follows that H = 0 ’for all OS t Stf terminal condition. 
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Evaluating 8H/8« from (12) and using the condition H = 0 
leads to a determination of the Lagrange multipliers. 

ÔC C cos a + -gij sin a 

VJC cos a +^- sin «) + C2 

8C 
(15) 

\y = 
w cos n - C sin o 
*-KT*-~~*5 
VW(C cos a sin«) + C£ 

The remaining differential equations are employed and, after 
extensive algebraic manipulations (which will not be reproduced 
herein), the following expression for «(t), the angular trajectory 
for minimum travel time, is obtained. 

¿(t) = [vw< r V 8C 8C , „2 8C . , _ 8V„ 8C , z •C t™- - V.„ if— + C T5r- sin « + C ^ sin^ « V»WW + C W 

.2 8VU 
+ G ^1» sin « cos « + C2££L cos « - 2C cos « 

-8^80,2,,, IV^/Scf . x^z8C 
CSrWCOB a - S?\w) Sln <* cos « + Cz3- COS « 

. C2 sin « + 2C »£sin « + C2^cos2 « 8y8a "Sy’ScT 

+2c ^sin a coa a+sin2 a] ! 

(16) 

The partial derivatives of C and Vw contained in Eq. (16) 
are obtained from the definition of C and Vw as follows: 

C = i jco + J 

V.(x,y) = (0.45 - 0.0074k) e*p[ - (T;kn\mJ] 
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Gravity Waves and Finite Turbulent Flow Fields 

Thus: 

and 

SC - VwCo sin « (Cw2 + 4VWC0 cos a)'l/2 

SC 
w 

c0 cos a (C2 + 4VWC0 cob a) lÆ 

SC a . IÄ B V 
C0 cos a (C0 + 4VWC0 cos a) -g-J* 

8ZC 
SxÔ» 

C0 sin « (Cq + 4VWC0 cos a) 

„ .-3/21 
+ 2C0 cos (C0 + 4VWC0 cos a) J 

1/2 

8ZC 
SySa 

C0 sin a W* [- (C0 + 4VWC0 cos a) 
-1/2 

o -3/2l 
+ 2C0 cos a (C2 + 4VWC0 cos a) J 

S2C 
Sa2 

9 * 1/2 
- Vwc0 cos a (C2 + 4VWC0 cos a) 

- 2V C2 sin a (C2 + 4VC cos a)' 
WO '0 w 0 

3/2 

^ = -0.00745V exP [- ( i. ¿7 +-0.~CïïZx)8] 

+ V(0.45- 0.00745x) «XP [-(l,¿7 I Ö.Ö62x) ] 

^l = V(0.45- 0.00745x)exp - (l.¿?/ó.60¿'¿x )8 

- 8(l.¿7^0.m)feZx) ( i.¿7 A.ÔÕèfi) 
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POP i The8e equation* we.■ r programmed and evaluated on the 

wav.' M Reíí*C“°" ob,.|„,d (or ..V.^ 
« gtha , grid speeds, and initial wake lengths The oreaent 

report presents the results for ‘«"gm*. I he present 

k - 2, 6 ft 

Grid width = 3 ft 

Grid submergence = 1.67 ft 

Grid mesh = 2.7 In 

Grid velocity = 1 ft/*ec 

Wake length (xj = 40 ft 

*lhe e,mPlrLcal formulation for the wake velocity Is assocl- 

'i.“* 8'0,T't'y' Th' Í” th. 2 and 6 ft 
waves are plotted In Flga. 23 and 24. These refraction Hiaorar«« 

tn\ wavflaypath"^ obt ^ "0rtho8onal" »^‘hod where- 
crest lines BhoP, d ^ the COmPuter solution. The 

8t “ 8 a^0' on the diagrams are everywhere perpendicular to 
he orthogonal* and represent the crest position at times correspond- 

by the ÄPwa8ve sneedVar ThlS Ume iritervaJ' mutliplfed 

po^itn°ofsu7cVeeesTvee t^rresTs1."1 ^ determíne8 the 

It la evident, for both wave lengths, that a laroe 

betweenTpo^nTl f.CfUr8 f°.r the ’«ogfh of wave crest Initially located 
tween a point 1 ft from the wake centerline and a point 3 s ft from 

the centerline. In fact, this 2.5 ft length of crest is .tretcheí/o 

hito^th tIm®8 thls len8th after the wave has traveled only 30 ft 
Into the wake. The local crest line divergence for the 2 ft wave is 

‘It" í** fer :he 6 « A .imllar l.rg. .t7,tcL,7. «í. 
dent for the length of wave crest between 3.5 and 5 0 ft 

íoTlflzedYenoth0311^6 °íthÍ8 extreme divergence of orthogonal* for 
localized lengths of wave crest, it is not expected that refraction 

lnterfeqreence effects* repreaent the Pre"ent wave-current interierence effects. In fact, It is expected that diffraction ¡.inn» 
the wave crest must occur to provide for a flow of wave enerov if’onc. 
the crest. This modification will be discussed subsequently.87 ^ 8 

ran h- The qua|lta]l're results obtained from the refraction analysis 

crest leng^Ys t^ ^ de8Crlbin8 the behavior of adjacent finite7 
wave cXVvidíd ^V%paaBea throu«h the -ake. The incident 
wave can be divided Into four separate lengths as follows: 

1) Crest length between £ and 1 ft. 

2) Crest length between 1 ft and 3.5 ft. 

3) Crest length between 3.5 ft and 5.0 ft. 

4) Crest length beyond 5.0 ft. 
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Gravity Waves and Finite Turbulent Flow Fields 

field js BT?n ^ and 1 ft-- In thl8 reKion- th« current 
ld 18 essenuany constant across any transverse section and in¬ 

creases slowly in the longitudinal direction. The effect on this finite 
wave is to increase the wave length in accordance with Eq. (8). For 

20^eav, I A ; it/8ec’ the 2 ft wave len8th should increase by 
20% whiie the 6 ft wave should increase by 10%. This is in reason¬ 
able agreement with the results in Figs. 23 and 24. Since the wave 

inno8rd^ntrea8r* .lt 13 expected that thc wave heights will decrease in order to maintain wave energy balance. 

* »! Phillips [ 1969] accounts for this wave energy balance in 

wMrb^tthe C?Se OÍ 1)on8~crested waves running into a current in 
dotted n6 8f, aC,eAVer°u!lty VarleS ^ lon8itudinally. His results, 
plotted Fig. 3.6 of his work, snow that for the present conditions 
a wave height attenuation of approximately 15% is expected for the 
2 ft wave and approximately 8% for the 6 ft wave. This is consider¬ 
ably less than the experimentally attained values of 80% to 90% 
attenuation previously discussed. Thus, the refraction procedure 
alone does not account for the results observed in the vicinity of 
the wake centerline It will later be shown that diffraction effects 
applied to this length of wave crest can indeed result in large local 
attenuations of wave height. K 

., . Between 1 ft and 3.5 ft. The orthogonals for 
this crest length diverge rapidly in a direction which causes the 
local wave crest to be redirected out of the wake area into the still 
water. This finite crest length advances in a constant direction 
relative to axis system at a speed and wave length equal to the inci¬ 
dent wave. It then crosses the undeformed Incident crest line at a 
distance 5 ft from the wake centerline. As a first order effect, it 
can be assumed that the wave heights decrease as the square root 
of the ratio of the initial wave ray separation to the separation at 
any subsequent position of the local crest. For the 2 ft long wave at 
fft aft the grid (28 ft into the wake), the wav! height 
(fig. 25) indicates that the average wave height for this local crest 
is approximately 30% of the incident wave height. 

. Jhe deflection of this local wave crest length into the area of 
w*vini;iS "ave co^daooount for the irregularity observed in the 
wave height time histories at fixed points between 7 and 12 ft from 
the wake centerline. 

Crest Length Between 3.5 and 5 ft. For this length of wave 
crest' was seen that adjacent orthogonals converge and finally 
cross, resulting in a caustic curve [ Pierson 1951]. On the basis of 
simple theory, the wave became infinitely high on the caustic which, 
of course, ts not the case. At present, quantitative analysis of the 
wave height at and beyond caustics must still be developed for the 
case where variable currents produce wave distortions. 
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aJway¿ wake"^urrent ThÍ8 °f WaVe crest ls 
through still water with no alteraUon^n w^ C°ntÍnU°U8ly Pro8re«a« 
During its forward progress It r. ,n wave length or speed, 
deflected wave cresï originating h^t lnto(the caustic area and 
wake centerline. 8 8 b tween 1 ft and 3.5 ft from the 

Application Of Analytical Resulta 

«egrnent, th^rÍfra^Tion iTsuíts^^10"ÍOr each wave crest 
themselves insufficient to represent the^ ‘f thÍa 8ectIon ar« in 
nonetheless invaluable in forming the h ‘f8t. reault8* They are 
information about the complex processes ^ ^°^8 q^itatlve 
a wave system with a finite current field ng the interac*ion of 

are firsfSed^o" ompute’wav^heYghtÏ °í ^ refractlon analysis 
sections through the wake. The difïîle^ 8 ^re8t llnes in transverse 
are for a transverse section 12 ft ¿í i/th68^8 preaenttd herein 

Tl^d e^ending 40 ft aft of the grid (as lhïwn8U ^ f°,r, 8 current 
Thus , the wave has progressed 28 if! .u" l° Flg8- 23 ind 24). 

ofTÍTff Thf grÍd Wa8 3 ft wldei had'a mehseh^k2e "ime of com- 

for ¿ ft anda2dftaio°n; ^The e^* iC°-P^ati‘onsi wír’f^V/^ 
conditions have already been present 

qualitatively the6 measured0Íre8ultsOwíiUta!lC,n 18 mainly to compare 
fhlnÍPilíy,Íng aS8UmPtions were introduce?6 analytical results, 
that the local wave height between adiar/f F 11 Was assumed 
Proportional to the square root of thÎdÜf orthogonals is inversely 
rays. Thus, 4 °0t 01 the dlstance between these adjacent 

5; = (4*r (17) 
where: 

: ::zT T- a<ijac""raya **•« 
íoZ?écV.i’nZe batwean r‘y »» th, de- 

HWfl= local wave height in still water 

Thi I', V“al WaVa h,!l8ht alon* cre.e 11„. 
This enabled wave heiahto u 

the centerline to a distance app^oxfifi^telv^ f1°f f 4 Cr®8t fr0m 
Beyond this point, there ¡s a superpífitiinlí thC centerllne. 

ment with the undisturbed length of the incident wave In ÍhTsTreV8“ 
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the two waves are combined in proper phase as indicated by the 
crest line plots in Figs. 23 and 24. The section of wave crest that 
develops into a caustic has not been included in this elemental con¬ 
struction. The results of this simple refraction analysis are 
plotted in Figs. ¿5 and 26 for the 6 ft and 2 ft wave lengths. It is 
seen that this procedure results in essentially unmodified crest 
heights jus\ aft of the physical grid; then large reductions in wave 
height for areas transverse to the grid and, finally, increases in 
wave height in those areas where the deflected segment of the wave 
combines with the undeformed segment of the incident wave. The 
results of the refraction computations do not entirely agree with the 
experimental data -- particularly in the region of the grid wake where 
the test results show significant attenuations in wave height while 
the computed results show no wave height attenuation. 

Considering the variation of computed wave height along the 
crest line (Figs. 25 and 26), it is seen that there is a large increase 
in wave height for positions less than and greater than approximately 
6 ft from the grid centerline. At this 6 ft point, the computed wave 
height is a minimum. These transverse gradients cannot remain in 
equilibrium and thus represent a source of energy flow along the 
wave crest from the regions of large wave height to the point of low 
wave height. This is a diffraction phenomenon which exists simul¬ 
taneously with refraction effects. A rigorous theoretical analysis 
of this problem appears to be extremely complex and is yet to be 
developed. For the purposes of the present study, a simplified 
analysis is developed which combines the results of elemental solu¬ 
tions of wave refraction, diffraction and superposition. Although 
not completely rigorous, this simplified approach is tenable and 
relatively easily applied. 

Diffraction Effects: As normally considered, wave diffraction 
occurs when part of a wave is "cut off" as it moves past an obstruc¬ 
tion such as a breakwater. The portion of the wave moving past the 
tip of the breakwater will be the source of a flow of energy in the 
direction essentially along the deformed wave crest and into the 
region in the lee of the structure. As explained by Wiege’., the "end" 
of the wave will act somewhat as a potential source and the wave in 
the lee of the breakwater will spread out with the amplitude decreas¬ 
ing exponentially along the deformed crest line. The mathematical 
solution of this phenomenon, which is taken from the theory of 
acoustic and light waves , is described by Penny and Price [ 1952] , 
Johnson [ 1952] and Wiegel [ 1964]. The solutions for two basic 
diffraction phenomenon are presented by Wiegel: one is the case of 
a semi-infinite breakwater and the other is for the case of waves en¬ 
countering a single gap in a very long breakwater. The solution for 
both cases are presented by Wiegel in the form of contour plots of 
equal diffraction coefficient, K, defined as the ratio of the wave 
height in the area affected by diffraction to the wave height in the 
area unaffected by diffraction. For the case of the wave passing 
through a single gap, the solutions are presented for various ratios 
of wave length to gap width. 
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In applying these diffraction results to the present study, It 
has been assumed that the refraction phenomenon previously dis¬ 
cussed divides the wave crest Into several segments which are 
separately diffracted as they pass through the grid wake. Specifi¬ 
cally, the segment of the wave crest just aft of the grid Is assumed 
to behave as though it was a section of the wave which passed through 
a breakwater gap equal to the grid width. The justification for this 
analogy follows from the refraction results given on Figs. 25 and 
26 where It Is shown that, for a distance of approximately one-half 
the grid width on either side of the grid centerline, the wave height 
In the wave cannot be maintained at a constant height since just out¬ 
board of this segment the refraction analysis yields a small wave 
height. Thus, It appears reasonable to assume that diffraction 
effects will be developed and that this centerline segment of the 
wave will reduce In amplitude and spread transversely along the 
crest as It proceeds into the grid wake. The diffraction coefficients 
will be taken to be those corresponding to a wave at a breakwater 
gap as given on pages 188-189 of Wlegel. 

One other portion of the incident wave which appears to be 
modified by diffraction is that segment of the incident wave which is 
located 5 ft outboard of the grid centerline. From the wave refraction 
diagrams on Figs. 23 and 24, it Is seen that wave rays and crest 
lines outboard of 5 ft are not influenced by the grid wake. Simple 
refraction considerations then result In a wave of constant amplitude 
along this length of the wave front. Again, this constant ware height 
cannot be maintained and a defraction process develops which causes 
a lateral spreading of the wave crest Into the wake area with an 
attendant reduction In wave amplitude. This lateral flow of wave 
energy can be compared to the case of water passage past a semi- 
infinite breakwater, the solution for which is plotted on page 183 of 
Wlegel. Typical diffraction diagrams for the case of breakwater 
gap and semi-infinite barrier are given in Figs. 27 and 28 of this 
report. 

The computed results for these two diffraction processes 
are plotted in Figs. 29 and 30 for the 6 ft and 2 ft wave lengths 
respectively. Again, the computations are made for transverse 
section approximately 28 ft Into the grid wake. For the 6 ft wave, 
the ratio of effective ’’gap width" to wave length is 3/6 = 0. 50; for 
the 2 ft wave, the ratio is 3/2 = 1.50. It Is seen that the Initial 
constant height wave segment between the grid centerline and 1.5 ft 
outboard is diffracted to approximately 0.30 of this height and Is 
spread laterally to a distance nearly 12 ft from the grid centerline. 
Considering the diffraction of the entire wave segment initially 5 ft 
outboard of the grid centerline, It is seen that this section Is spread 
inboard to the grid centerline with a corresponding reduction in 
wave height at approximately 0.30 of its initial height. It Is seen 
that, for this wave segment, the attenuation of wave height as it 
spreads to the centerline Is much more rapid for the 2 ft wave than 
for the 6 ft wave. 
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Gravity Waves and Finite Turbul ent Flow Fields 

Superposition of Elemental Resulta 

superposed fuoriVto orov'i?.“,“0” a”d.‘““'“•‘»u result, have been 

height distribution along ^crea^Une^a^i/n1 e,,lmat' ï ,he wave 

SÂ^ÂÍí£^*^dr-r*™«e 
K P oceaure is used In this superposition of elemental results: 

1.5 ft outboard ‘".‘dSfrYaed^XteX”^ Vit ÏZ*™ “d 
plotted on Figs. 29 and 30 Y Dreakwater gap techmque as 

SSSá^sSSSSH-? 
plotted on Figs. 29 and 30. ^ WaVC heights for thls segment are 

tain the6fInal'wave ifefght d‘«rlbutlon.a”d <d’ *" ““P'rPosed to ob- 

.TdT" oír r; ^'p 
processes responsible for the observed Hef6418 ^&t the Physlca!l 
grassing into a" finite curïe^Æ^e 

Mo^rrÂÂÂd0' f“ pr<,blrbe di- 
phenomenon.t0 ~ lh‘S 

One-Dimensional Result« 

slonal r«^irpra«vfoeù:iyede“riyb*.d hî.5db“" made 0i ““ 

ments from the opposite wall. These continuously crossing wave 
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segments passing over the incident wave may develop distortions in 
wave height time histories such as observed in the experiments. 
The wave height irregularity at any point in the wake thus precludes 
a reliable evaluation of the dissipative effects of the grid-produced 
turbulence since only two wave probes were used in this study. 

IV. RECOMMENDATIONS FOR FURTHER STUDIES 

J'11® ?,rlginal. °bjective of the present study was to investigate 
fSdl^nïriÎLM6 ^teractlon between gravity waves and turbulence 
fields generated in the wake of a towed grid. Unfortunately, the 
lffagrîUodinal mean flow velocity gradients in the wake had a dominating 
effect on wave deformation and thus precluded a direct evaluation of 8 
turbulence effects alone. Although, in a realistic ocean environment 
leîoïitvTradttt T ^ generated ^ and exl8t simultaneously with, 

4 n °Cean currents. it is nevertheless of fundamental 
scientific interest to study separately the effects of turbulence fields 
with no mean flow interacting with gravity waves. The results of 
!S,!Y\emental turbulence study can then be combined with velocity 
ilso tíe t0 rsP/esent wave passage through realistic ocean currents. 
^:.8°th® results can be used alone to study the wave interaction 

i*olat®d turbulence fields such as exist, for example, in regions 
of splash turbulence developed by breaking waves. P 8 

It ^s thus recommended that the present study be contlnuea 
an experln^®ntal apparatus designated to produce localized 

shoÏÏi ï n° il0W’ The «Perimental procedure shouid be capaWe of generating turbulence fields of controlled eddy 
!ÍrflAUrbuljTe ^"sities . depth of penetration below the free 
surface, and length and width of turbulence patch. It is further 
recommended that the turbulence generator be capable of develooina 
tlon oYboth elther a h0riai0ntal ^18 or a vertical axis or a combhfa- 

studv n{TlZ OÍ th,! v?rtex difectlon will be important in the 
study of the eddy viscosity interaction in which energy is transferred 
r iq?qlhe.uaVe motlon t0 the turbulence. As discussed by Phillips 
the9flild íear?heage °f WaVe reSUltS in 8tralnln« the elements of the fluid near the surface in a manner periodic in time. The mean 
bî/x!* cycle °f th® incident wave is of second order, namely 
«A) , where o i8 the amplitude and \ the wave length of the7 

írlíüf WT' i® W,aVe m0tlon thuS Provld« a mechanism for 
. u 8 V? v°rtex llne8 that operates in addition to the stretch¬ 

ing inherent in the turbulence itself, and so tends to increase Ü2, 
ÎT 8<î“are vorticity associated with the turbulence. It is ex- 
P®?.4®*1 thls Possible mechanism for transfer of wave energy 
will be for waves Interacting with vertical vortex fields. In this 
case, the vertical velocity gradient in the long-crested wave stretches 
the vertical vortices in the turbulence field, but should not effect the 
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"'"P -..ig».d ,o Coalrol th. 
standing this dissipative process. b 4 m8tructive in under- 

turbulen^fSds^Tthlo1 mea^flow is^develoP controlled 
series of grids In a physlcallv cnnfi a sinuao^ally oscillate a 
barrier confining tlwf turbulent fllS d ^ ln sti11 wat«r. The 
vertical plates housing a recta»*»}0 be construc<:ed of four thin 
water surface to a depth below thf?« * peJnetrating through the 
After oscillating the grids the rert We? en?s of the 08CHlatlng grids 
above the water surface just as !^t“gular ba"ier can be lifteV ^ 
an interaction between wives anrf\ k i®8 apProach ®o that there is 
tw. reoagul., containervarldTo“' Th‘ 
Of turbulence areas. The use of aUscm^.^®8!nt VarloU8 al*«a 
area has been investigated by Murrav f 1¾ ? Bu! I* a con«ned 
studies of horizontal turbulent rH-ff Í ^nboratory 
Which filled a 50 cm lide chlL^rT^ hU 7°^' tha Ä 
1 cm in diameter and 5 cm apart Tb». comP08«d of several rods 
each 30 cm apart, and had a stroke of 40^^ C^1u lsted of 3 *rid8» 

Murray^ '»« 8»«,.ed •urbdenc^arld'.“1^'0”* 

lente generation. TMsT^prec'laeWth^obie'"^^'15/ ar°* turb“- 
experimental procedure. ^ objective of the proposed 

which are elíentuíySog"^^ fn^t^“8 turb“lance fields 

3. The turbulent velocity distributions are Gaussian. 

scribes the varUnce!°f tarbulence effectively de¬ 
turbulence field. tlme 1 and scale length of the generated 

nique appears Tcfbe Idequa^forgeneratií*“16^6 1stimulation tech- 
matically definable locali.ed turbulence HeW^11 and mathe- 

turbulence generator ïveof the ^ ft * ^ mountin8 the from the side walls TVi» ff square tank awav 

the turbulence field and me^hantcany genital ri°8Clllated to generate 
approach this field. Just prior tn tll generated gravity waves would 
turbulence, the rectang^ar barrie. ! wavespeaching the area of 
grids would be lifted cfear of *. OU?ding the °8cillating 
would interact only with the turbuwl ““rff®® 80 that the waves 
lateral diffusion of the turbulence are^^nf 1° exPected ^at the 
to group velocity of the gravity waves so tb^6 Vfíy 8l°W comPared 
sage of several wave lensths ^b^ t kSi° that’ at least for the pas- 
assumed to be stationary. ’ turbulence properties may be 
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Parametric variation« In this «tudy will Include: 

1. length and width dimension* of turbulence area; 

2. depth of turbulence area below water surface; 

3‘ °f 0»c^atlng rod. alone to Inve.tlaate 
gravUy wave''.«Idly orl.nfd vor.lc..‘a„d 

4. .pacing of horizontal o.clllatlng rod. to inve.tlaate the Xrc.-:reen h"iion“iy "‘"“d ^ 
5. combination of (3) and (4) to con.truct a grid having a 

Î!rîonfUlarime,r OÍ Varyln* dimension, to provide^ 
various scale, of two-dimen.lonal turbulence; 

6’ arc.dÄyrcm“1“to obtai"v,riou* ■>< 

7. vary length and height of gravity waves. 

Measurements should be made of the wave-heiaht Mm. 

to tha presence of turbulence! Forthir ^T, In •'•“«■'l"« tue 
slowly towed through the turbulence .rek to char."«"«.“ 1^^.,^, 
cal properties with and without the presence of"n“„ri”“*.’,*,‘,tl- 

practical ^7^1 \ 
waves interacting with local turbulence areas. gravlty 

V. CONCLUSIONS 

in,.r,c.fon'b7.wr.‘r„7“p*waîrrWgi,'.;rwr,aken '° ‘-"'‘i*“ 
turbulent Dow field generated by a finUe wUt’h^rld"”78 ‘i“0 * 

Ä"ä.°ct a”d p-cuded^ÂTir 

refraction? Lff“ct7onÎL7lôt7rfe1‘réncreableat7ê.nafl7“.d.ïd<:°d7b‘"ad 

::dsum",r“h;e 1747,7 ",7? i1??; j^‘'“"^7a“adÄ'“ 
«.Sir original value.8 The wî?e hTight. iuûldï’Â“'^ 
■»creased to v^ue, 75% larger «.^“’.“rd^'du.! 
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with ¡1!!».* f , eur*-w* í¡«íd. A combinat 

...h ..ÄrsÄ ä'JirÄ'Ä 
# ,, *PI>**r« that the pretent reaoiu may b« 

L i/“! *#Cal# proc*du,’t* í»r locai *,auit,(n-«yoi , 
b.hl»d .uppvn Mf »’“.Sn, .0 
Undini crali in » foUowin* n* ,u 

T.rh!rPrV* hi#l*ppr8cUUon *° Dr- R- Hire« 
Ttchnology for valuable dl*cu««ion* and tech- 
durin* »ha cour.e of (hla «tudy. He l. al.o 

Î W..J; PUr*on* Jr. «nd C, Neumann oí 
MhIh*. V0,,llDU*id *nc0ur*I®fT>ent and helpful 

u, t*0r EriC S- Po»^^r of • fhanhed for ht« thorough review of the 
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DISCUSSGON 

Dr. N. Hogben 
National Physical Laboratory, Ship Division 

Feltham, Middlesex, England 

Dr. Savitsky has undertaken a very interesting investigation 
of the effect of turbulence on waves in an oceanographic context. 
Hts main finding is that waves can be dramatically attenuated by 
turbulence from travelling grids. He explains this in terms of 
refraction and diffraction and comments on the potential use for 
quieting sea waves. 

Whilst listening to his presentation it occurred to me that his 
findings may also have an Important bearing on the understanding of 
wavemaking by ships. It is a common experience that the wave 
system originating from the stern region of a ship tends to have 
much smaller amplitudes than would be predicted from the usual 
theories. I would be glad if Dr. Savitsky could comment on whether 
this suppression of wavemaking by ship sterns may be at least partly 
explained in terms of a refraction and diffraction analysis such as he 
has described in the paper, applied to the interaction between the 
vorticity and turbulence in the boundary layer and wake and the stern 
wave system. 
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REPLY TO DISCUSSION 

Daniel Savitsky 
Stevens Institute of Technology 

Hoboken, New Jersey 

It may be possible for ship wakes to locally a“e”u,at*J** "ave 
generated by the afterbody. If the mechanism described »h« PaPer 
Is applicable, it would necessarily require that wave amplitudes be 
larger at some distance transverse to the ship wake. This, of 
course, follows from considerations of preserving war «n*r8J* 
Much further study of afterbody generated waves would be necessary 
to determine the association of ship-wave attenuation with th 
mechanism described In the present paper. 
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CHARACTERISTICS OF SHIP BOUNDARY LAYERS 

L. Landweber 
University of Iowa 
Iowa City, Iowa 

I. INTRODUCTION 

When I accepted the invitation to lecture on ship boundary 
layers, my original plan was threefold: a) to review three-dimen¬ 
sional boundary-layer theory, b) to discuss the few available appli¬ 
cations of the theory to ship forms, and c) to present certain un¬ 
published results on ship boundary layers that have been reported 
in several theses at the University of Iowa. In the course of 
attempting to "catch-up" on the literature on three-dimensional 
boundary layers, so that I could pretend to be an authority on the 
subject, I encountered so many excellent review articles, that it 
became apparent that a revlew-of-reviews was hardly likely to 
match the immortality achieved In its category by the song-of- 
songs. " Rather It seemed to be more useful and interesting to 
examine the validity and applicability to ship forms of the assump¬ 
tions of existing methods for computing three-dimensional boundary 
layers, and to suggest and partly to implement certain approaches 
which appear to be better suited to the ship problem. 

Some of the common assumptions of three-dimensional 
boundary-layer theory are the following: 

1. Assumption of small cross-flow -- that the direction of 
flow within the boundary layer deviates by only a small angle from 
the direction of the streamline at the outer edge of the boundary 
layer. 

2. Assumption of methods of calculating tv/o-dimensional 
boundary layers for determining the velocity component parallel to 
the outer streamline, even when the small cross-flow assumption is 
avoided. 

3. The assumption of monotonie cross flow -- that as the 
wall is approached from the outer streamline, and angle of deviation 
of the boundary-layer streamlines increases monotonlcally up to a 
certain value at a small distance from the wall, beyond which it 
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remains nearly constant. 

4. The assumption that three-dimensional boundary-layer 
problems are best treated with equations in streamline coordinates. 

. A stlmulatlng article by Lighthill [ 1] on the fundamental 
significance of vorticity in a boundary layer initiated the development 
of a proposed method for treating ship bound ary-layer problems. 
This will be presented in two sections; a first in which 'he vortex 
sheet on the ship hull, which generates the irrotational flow about it, 
is determined; a second in which the vorticity equations for a three- 
dimensional boundary layer, in te-ms of a triply orthogonal coordi¬ 
nate system, are derived. The significance of the first part is that 
it furnishes the Initial values for the second. 

So there will be no "review"; but it still seems desirable to 
touch upon the ship boundary-layer treatments of Lin and Hall f 2l . 
Webster and Huang [3] , and Uberoi [4] , and the contributions in the 
theses of Pavamani [ 5j , Chow [ 6] , and Tzou [ 7]. 

II. NATURE OF THE SHIP PROBLEM 

In comparison with other three-dimensional boundary-layer 
problems, that for the ship is much more complex because of the 
presence of a free surface at which the body is moving partly im¬ 
mersed. Some ship boundary-layer problems will now be described. 

. . 10 ,The firSt step in a boundary-layer calculation, the deter¬ 
mination of the Irrotational flow outside the boundary layer (the outer 
flow) is a difficult problem. Solutions employing linearized free- 
surface boundary conditions and thin-ship theory furnish inadequate 
approximations. The development of more accurate methods of cal- 
culating the Irrotational flow about ship forms is a current research 
problem [ 8] • 

2. At Froude numbers sufficiently low so that the free sur- 
í?C<Lmay ^ treated as a rigid plane, (zero-Froude-number case), 
the three-dimensional flow about the double model, obtained by 
reflecting the immersed portion in this plane, is of considerable 
Interest. Methods of computing the irrotational flow for this case 
are available [ t, 9]. Calculation of the viscous drag for this case, 
and ltd ratio to the frictional resistance of a flat plate of the same 
lengtn, wetted area and Reynolds number, would yield the so-called 
form factor of the hull form which is required in one method of 
predicting ship resistance on the basis of model tests [ 4]. 

3, The three-dimensional boundary layer is very sensitive 
to the shape of the bow. The nature of the boundary layer near the 
forefoot, which determines whether or not bilge vortices will be 
generated, can also be studied at zero Froude number. Bows 
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:i'thh r:^irz:n tano:u.™"0' at which 
may occur. 

over a hull surface area°whî ™bers the boundary layer will lie 
and draft and the surface-wave Sofîiï 7°* equilibrium trim 
number. The curvature of the outer stS0^!116 hlJ1 at that Froude 

rongly affects the cross-flow m -amlines at the free surface 
velocity profiles [ 6.7]?L effect whicíT“ °f the bo^dary-l^er 
boundary-layer studies at zero Froïde numbSf Ignored 

metha7e‘°fa7the radll of r thlckness becomes of 
methods of thin boundary-laver dil f Curvature> and the 
fication. A detailed study of bouS^ fnn0t b® USed with°ut modl- 

raffonaJ8 de®irable in connection wit^the^ele^^046riStlc8 in ^18 
rational methods of computing the vi«r!í develoPment of Improved 
stern appendages from the nofnt fcous drag, and the design of 
Of cour... If f„ch a and «vi,«".». 

b. a great boon to th. propell.r'd.“" .',, ^ wa!“- 

ÄA*? d'r‘a=Par.d,^t 

nui,?. r:doSrb.‘of“',.«°r d¿ihe r« 
With each of these four parameter«6 ^ fl°W pattern would vary 
boundary Jayer for man^ 00^0^¾^¾.° ^ 

in. 
SHIP boundary-layer calculations 

ated by Uberoi [4] / To determTne°tfr n^ber have been calcu- 
reduced a distribution of m discrete irrotatIonal flow he1 

close to the hull and determined their L fu®8 lyirl* withln but 
taneously n linear equations ohfa< a 5en®tbs by solving simul- 
condition on the hull at n points Thlt Y Satisf^ing ths boundary 
used to calculate the streamlines! S°UrCe dIs^buf ion w.s Uaen 

two-dimensionai alongg e^c^stTe^iSine^-1 S£l0W WaS treated as 
and shape parameter determined v, ^ dl»d tbe mcmentum thickness 
semi-empirical procedure flSj A ^tmensioní 
been obtained with little additional effort Í ?Proximatlon could have 
three-dimensional boundary-layer nroced 0n® °f the bailable 
flow been used [ 11] , since these woSd ]assu1ming small cross- 

nSK the ^adtg ofsÏÏeimlînes 

noara. bow and aboirS.1bTnl'.f^“xf-P* ’ 
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reUtln/tÄ^pa^«” ‘h formula ta il -- .eter. H« with the outer velocity II at tall (designated by the subscrint' t^a^'tîf outer veloclty U, at the 
stream at infinity^ uj, ] ^ thC Veloclty of the uniform Joo» 

U 
Ht-I 

mVy^Tnfegrrte7foThIhvi:y%:r^^^^ boundary-layer theory 
this empirical relation is unlikely to be universXTaHd11;!, S1fnCe going procedure, which 1« tliat „/„.n iversaily valid, the fore¬ 
drag, emphasizes the need for additl(Laimpl0yeä ^ comPute viscous 
Utica of «L thick bou.r4ÄiTZr“ 0n ,he Cha"Cter- 

• ship lärm atFa nonaero^Froude0r »n 
applied by Web.ter and H^ng [ 31 “Slíloí‘ !''!î develoP'd and 
resistance f 12] as presented h,r 8 theory of ship wave 
tables from which the outer flow can be deterk°V87 i13 furnishe8 
streamlines on the hull ThllZ f ^determined along three 
is then computed by a small cross11 lay!í jl0ng these streamlines 
coordinates, due to Cooke f 14l Thi me.th°d emPloying streamline 
two Series-60 forms of 0 60 0 M ^°0 ^611 apPlied to 
of Froude and Reynolds numbers Aif-Wyfc ^°efllcients, over a range 
cross-flow is basic to the method" it "* Ugh the assumPtion of small 
estimate the locations of s^JratiA neve^theless applied to 
the basis of Cooke's criterion that^ena^t!0,1 these streamlines on 
flow is 90°. criterion that separation occurs when the cross- 

pufing atnbÍn,Tbrerdta.8„t^ÍÍnZdanrr*rí,merd8 
method which does not assume small ^ indicates that a 
a three-dimensionaf ex^ensinTf cros s-flow, and which employs 
for the variation of the st^eam»^1 e3h 8 entrainment hypothesis [ 15] 

predictions of tL croL-fl^^hárrÂL^vT“ gÍVe8 bett6r 
flow, and a constant value; of the shape parameter&S aTíí 8mallf^r°ss' 
however, yielded values of the momentiL tMcknl' fU f methods, 
ment with experimental results Smith^ j 7 in Poor agree- 
is probably due to the adoption of Lpirica^relatTons foVíhe 
stress fron, two-dimensional theory relati°ns for the shear 

These results of Smith indicate that the Webster-Hnan« r. 
cedure for calculating separation points rnnld f ^ 8 pro' 
by «he .doptiop Of the^best 

however, can be ueed reliably to calculate the vlecôue drïg. ' 

eh,p form. Ae the method of Cooke [ if] , the moment “m in,.gZ 
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equation in the streamwise direction becomes a differential equation 
for momentum thickness after assuming a power law of variation for 
the streamwise velocity profile and a semi-empirical relation from 
two-dimensional boundary-layer theory between the shear-stress 
coefficient and the momentum-thickness Reynolds number. An 
additional assumption, that the cross-flow angle varies as the square 
of the distance from the outer border of the boundary layer, ás intro¬ 
duced to determine the cross-flow. Finally a new auxiliary relation 
between the shape parameter and the momentum thickness is derived 
by combining the streamwise momentum and energy integral equations 
and Introducing one more assumption, another semi-empirical rela¬ 
tion between the dissipation coefficient and the momentum thickness 
Reynolds number, also borrowed from two-dimensional theory. 

Each of the five assumptions of the method used by Lin and 
Hall is of doubtful validity for a ship boundary layer. Boundary- 
layer data on ship forms, which are discussed in subsequent sections, 
indicate that the cross-flow is not everywhere small, that the two- 
dimensional relations are not generally valid in a three-dimensional 
boundary layer, that a power law is not a good approximation for the 
streamwise velocity profiles, and that the cross-flow angle cannot 
obey a quadratic relation. 

Finally, a paper due to Gadd [ 16] , which the author has not 
yet seen, should be mentioned. He determines the outer potential 
flow, taking wavemaking into account, and applies this to calculate 
the boundary layer on an equivalent body of revolution, neglecting 
cross-flow. In referring to this paper, Shearer and Steel [ 17] remark 
that "Gadd has recently applied a three-dimensional boundary-layer 
theory to the pressure distributions obtained using the Hess and Smith 
method, taking account of the free surface, to give friction distribu¬ 
tions which agree very well with measured values. Comparison of 
this theory with some of the experimental values detailed herein (in 
[17]) are given in ... " (in [ 16] ). 

IV. BOUNDARY-LAYER DATA FOR SHIP FORMS 

It has been indicated that the relations for the shear stress 
used in calculating two-dimensional boundary layers may not be valid 
for a three-dimensional boundary layer. In order to investigate the 
applicability to ship forms of these and other empirical relations that 
have been proposed, it would be desirable to have a set of data, in¬ 
cluding pressure distributions, mean velocity profiles for both the 
streamwise and cross-flow directions, and shear stresses, for some 
shiplike forms. 

Full scale boundary-layer measurements on a 210-foot ship, 
the USS Timmerman, have been reported by Sayre and Duerr [ 18] . 
Mean velocity profiles are given for four points along the hull, at 
speeds of 6, 10, 15 and 20 knots. The measured boundary-layer 
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Characteristics of Ship Boundary Lay er s 

nr0°Vul oîUtfe'w'thThfw^p^fï“"^0"8 *hte “»dulated 
Of the cf curves for various wate/lin * .1^°^ mteresting Mature 
the waterline even at depths where the f ÍS theiJ large variati°n along 
negligible, to .gr.ement wfth i“"1 ShouId be 

».neee to calcuU.tog ^ 

the incid?n?fl0owtnTheXrecTioan\ftr?Íd ^ aXlS rati°S 20:4:1 -d 
in a wind tunnel by Pavamani f 5l He °ngest axis was investigated 
both pressure and shelr^trei the distribution of 

flow directions in the boundary layer^ WU^the^aT ’ 38 Wel1 38 the 
not possible to probe the boundarJlJ,'« . t}l,the equipment used it was 
curvature. It was found regÍ°nS °f largest 

section increased in the direction of increas curvature ^ tranSVerSe 

dimensional turbulentboundary^aye^^are^ne^ue^^Yourfg?^ ^66- 

CT = 
2rn 

pus 
= 0.0176 (—) 

-0.2 

0.268 

and another due to Ludwieg-Tillmann, 

CT= 0.246 X 10-O'678H(i^j 

Se null ‘Vto Si" to1;,?8 i'.S6 wal1’ P ls lhe density of 

e is .he bonndany-toSeSSS “„SrSieVntf. SoS^ftTh'e^"’ 

Sd ^toShSsSaprpSSeSeterÒfShJbou i' ^’"v 
Although not done by^Pavamanl °^tQha b,oundary-layei- velocity profile. 

predictions by these7formulas with hfs ^ USed t0 comPare the 
by Preston's method his shear-stress measurements 

one on the centerline'and the otheT'^the^ichluv of ^ ^idsecti ,°n' 
given in the following table. vicinity of the edge, and 

comparison of measured and computed shear stress 

AT MIDSECTION OF 20:4:1 ELLIPSOID (Rx = io6) 

^Measured -Young Ludwieg-Tillmann 
at centerline 

near the edge 
0.00330 

0.00466 

0.00380 

0.00444 

0.00283 

0.00318 
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above formulas gives good agreement tith í v of the 
Pul lable- U is Planned to continue the ,YOUng 8 Seems to be 
with the aims of representing Ms ^ ^i" °f Pava^l'a data 
formula, and to compare his measuremë by an altemative 
the boundary- layer characteristics. tS ’"lth eomP«ed values of 

V. SHIP BOUNDARY-LAYER PHENOMENA 

downwards^long a Ser.urÍ.-^Â,0' Pass 
the underside of the hull. Because of îh ^Ü8e' and cont,nue along 
bilges, the cross-flow anele in th^ Kf thf larSe curvature at the 
and the resulting secondary flow has^K layer become lai-ge 
a pair of so-called bilge vortices f 2zf ri t0 roll‘uP into 
assumption is „„ suitable for treitingttuÄS.V“»11 

Ss«eïh‘”f a la,'ee0b‘ulbVtodtheabott'íf23]iIel',p rtiîc]5 be eliminated 

~ eof 
S-shaped velocity profile, i e on^i h u aT°Und a bI18e result in an 
How angle changes in pas’sing f^m^ sign of the cross- " 
layer to the wall. In any cas® shípít r llmIt of the boundary 
so that streamlines would under™ b°WS frequeutly designed 
ture, S-shaped velocity profiles^ould^68 " the Sign of the curva- 
of monotonieafly varyMgPCross-flow an^“^ i > that the assu^Ption 
quently assumed quadratic variation, »ouW be improper.“1“ ire- 

layer ft"“ ““ b°a»^ 
a wave trough to a crest is equivalem to n. T C i* Climbing from 
adverse pressure gradient. If the free-J? fSing tbrOU8h a region of 
and continues long enough señaran " urface slope is large enough 

lace. Secondly, the curvature îï a sñ 7“1 Mar *he '«« aur-® 
tends to generate a secondary flow Chnw'lTl“!' Crest alo»e the hull 
nhen °f SeParation at some distance beneath the fS attrIbuted a second 
phenomenon. oeneath the free surface to this 

on a boundary layer was confirmed by TzouÎtT SUrface wave 
free surface by a sinusoidal ceiling in a wl Í I * He Slmulated the 
and photographed the flow direct on/M T®1' ^ ^served 
vertical ogival strut, as indicated bv a boundary layer of a 

ported at various distances rom the wMl^T 1 ^ threads SUP- 
by solving the Navler-Stokes eo^HnJ* also verified the effect 

nreIlCa^' by a combination^of a finit^diff6 equation of continuity 
with the Blasius solution for a flat plate f T“ metk°d togetber 
his experiment. These results indfraîe ' r & simPlified model of 

of the small cross-flow assumption for shirbo^aryla“ 
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VI. THE COORDINATE SYSTEM 

selected in infinUeTymany wa^^uch68 ^ & 8urface s can be 
d ,s,taLnce ^ong the normal to S for^ h & net' to8ether with the 

or.h4oSaSÍS T ,r‘Ply 

eq00*,81^-^^ r‘**ll*®*‘V^SQu*ref[t24]*1ha^Uh^*ap,SP”lpt*P”fle<^U^”nS 

When the _... 7 ’ 
w -' ‘•«ogonax systen 

<o s, the 'he 5 »long the no,m^ 
parallel to S. It is shown in texts cm'diff vl°U8 reasons, said to be 

that8th°iPrlripal Curvature, and only thesY^ ^ «eometrV ^at the 
that the surface normals alone themL«! V1^®8’ have the Property 
; = const, and r) = con8t .f^ 8enerate developable surface« 
surfaces £ = const., forii/a mutuali*^86!.' to8!ether with the parallel 
reason Howarth [ 25] and Landweber f 261 h0g0?al family- F°r this 
principal curvature as surface conrH» 2* e*nP1°yed the lines of 
of motion. Nevertheless, according formulatlng the equations 
Is an undesirable restriction " a C^abtree, et al., [ 27] , "this 
mo« of the con,«b«.,.™0”’,, .¾¾ 
layers. Preferred is the streamlilL 1 * tbree“dlmen8ional boundarv 
geodesics and rectangular coordin t “c°ordinate system, although 
Howarth [ 28] has adopted the line« «/ havelalso been used. Only 
coordinate system in his treatment of nfcurvature for the7 
Isyer near a stagnation point. the three-dirnensional boundary 

One is thatHie ‘cas e s °o wMcTth10^^8 streamHne coordinates 
flow streamlines could be readllv ob^L^J6 u®®*1 aPPlied, the inviscid- 

pfoPvin* £ale P1®*110'38 of living the boindaVl t0^®1, ls that Poetical, 
Ploying techniques developed for two-d^« ^"1^®1, ecluations, em- 
are avance for the equations in layera, 

in®thod8 are based on the assumnH« co°rdlnates. The simplest 

flv. ofThea.7iThods1rc0orÄ0thSemb‘*h tU)" °h^' 

C«c ‘r,"'’1 °‘th"yonrVmo"iõÍ'odhreb°“”da/y on * Calculation of the velocitv dlsf-riv,, ft ®^ reasons does not apply 
form at the particular Froude m,Ik th® streanilines on a ship 
of difficulty as that of soMng t^hreV-dLtrk1°f ‘î1® same order ^ 
equations. For the zero-Froude-n, ^mens3ona^ boundary-layer 
for computing the potential flow f 8 9^- tí Case' methods are available 
approximate method due to ctflllton [ i2 ítTí6numbera a- 

calculation of three streamlines ion¿ a Ihip"^8 ^8 £°r 
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Landweber 

Another consideration is that the streamline pattern on a ship 
form la a function of four parameters, the Froude number, the 
Reynolds number, the trim angle and the draft-length ratio. Thus, 
if streamline coordinate were to be used, it would be necessary to 
calculate a great many coordinate systems. It appears to be more 
practical to select a unique coordinate system which depends only upon 
the geometry of hull and is independent of the above four parameters. 

If it sufficed to study thin boundary layers, there would be a 
free choice of orthogonal surface coordinates on the hull surface. 
But the boundary layer near the stern cannot be considered thin, and 
a continuation of the boundary-layer calculations into this region 
could not be undertaken with the equations for an orthogonal coordi¬ 
nate system unless the surface coordinates had been selected to be 
lines of principal curvature. 

VII. DETERMINATION OF LINES OF PRINCIPAL CURVATURE 

First suppose that the equation of the surface S is given by 

F(x,y,z) = 0 (i) 

where (x,y,z) _are the rectangular Cartesian coordinates of a point 
P on S* Let ds = i dx + j dy + k dz denote a vector_element of arc 
along one of the lines of principal curvature, where Î k are unit 
vectors along the x,y,z axes. Then 

grad F = VF = TFx > jFy + kFj (2) 

is a vector along the normal at P and 

dVF = "ds • WF (3) 

i®.the change in this vector along the normal in moving an increment 
ds from P to P' along a line of principal curvature. It can be 
shown [ 29] that the normals to S at P and P' intersect if and only 
if 3s is an element of arc of a line of principal curvature. This 
implies that the vectors 

ds, VF and ds • WF 

are coplanar, and hence that 
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Also the condition that ds be normal to VF Is 

ds • VF = 0 (5) 

Equations (4) and (5) are the differential equations of the lines of 
principal curvature. 

In terms of their components, (5) becomes 

Fx dx + Fy dy + Fz dz = 0 (6) 

and from (4) we obtain 

<F,F„ - F,F„)M*)2 + <F, F„ - F F„)(dy)! + (FF, - F, F 

+ <F«F„ - F„F„ t F,F„ - FF,) dy dz 

* <F,F« - F,F„ t F,FW - F,F ,) d= d* 

+ IF, F,< - F»F„ + FyF„ - F,F„ ) dx dy = 0. (7) 

Because of the quadratic nature of (7), the simultaneous solution of 
ifc) and (7) yields a pair of solutions for (dx, dy, dz), which can be 
shown to be orthogonal. Thus, from an initial point P, one can 
calculate the lines of principal curvature in step-by-step fashion. 

If the equation of the surface is given in the form 

Y = f(x,z) (g) 

wh®**® X is directed from bow to stern, z is positive upwards, 
and the plane y = 0 is the vertical plane of symmetry, then (6) and 
(7) can be combined into the differential equation of the projection of 
the lines of principal curvature on the plane of symmetry, 

[pqt- s(l+q2)](^)2 +[(1+P2)t- (1 +qz)r] || +[(i+P2)s - pqr] =0 

(9) 

where 

P = f*, q = fz. r = fxx, s = fxx, t = fH (10) 

and the principal radii of curvature p are given by 
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orthogonal cLrjÎüÎiu\thVíín p,rfmet*r* oi «»« 
ture are given in ( 26j. *n*!* Principal curva- 

VIH. EQUATIONS OF VORTICITV IN A BOUNDARY LAYER 

porunr. ‘rflortlí/i ta'i'ü.ündTii'ui"*'‘Í’.ÍV’ lm' 
the velocity Held can be calculaird b/iVl’ nf .^e vortIctty !*nown, 
vortlcity i. dt/iueed and connected Uw* Secondly, 
propertlea and h»nce It more rradiu, I!,8 d,U*l.ly tK“n othor nold 
From the mathematic a) point oí vfew L ehthUM ^ 
eaeier to *olve the dlííu.ion eauatlõnV«, 1#* th*1 lt l* 

yer m0m*nlUm ^u*Uon« ioverned by ^uteíVraTJlo^ToÍ^' 

«nd ha.^omTibutld0! by LI«h'hU1'* 
vortlcity, « Neither he nor LlghÍhOl howeverT. " °* 
vortlcity equation, for a three-dlm„ñ,v! , * h.*Ve ^^ulated the 
*U1 now be undertaken. *'‘men.lon.l boundary layer. Thl. 

b. ,or - "■‘•■»p'—m.l Buo m.y 
dv 
it V X w ♦ 8r*d(| 

P «) curl 02) 

vortlcity, *t 'denote^tlme1, the nu!d* “ * CUrl ^ f* ,h* 
g the acceleration of gravity^ * U a^erúrll' P ‘J** mMt 
upward., and v I. kinematic vl.co-l^ *C?rd *U# P0*“»'. 
quence oi (U), obtained bv atmlvino ,y* .,An mrnedi,tc con*«- 
.arfare b, |s ^ pP‘y,n8 l^« nonellp condition at the wall 

*rad{f ♦«*) * * ^ =«*rl on (13) 

S* ‘¡»P«-— .rWI.«. o, 
b-r. .1 E„ ,u, .. obuta ,7, 
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du 
öt = curl (v X u) - V carl curl u (14) 

v*.?oÄ»:r. has b"n 'itoi"»"d-Th' 

In rectangular coordinates we would have 

curl curl ^»VXfVXc^VV'w-V^B-V2;: 

since V • w = 0, and (14) could be written In the form 

(15) 

« 5*X n^+;TC‘uïî“v-5;-w|J + ^ 

ÍÍL'¡'ii,¿t0J0btalr the c<1uivaJent «t oí equation, for a three-dlmen- 
It■ rr’ * lr‘ply orthogonal coordinate 
lTt TrL ,«P'y),, here hid° and h»dP *«-c elements of arc along the 

iis: tur'î'r^T“” °n Si "d * " ■>•». »>• - 
cr...L„,L“,'(): v!' k.""0“ “"'t V'C,°r* ,h' °< m- 

^B *(u 4 V + *jw* 

From « - curl v we have In this system of coordinate. , with h - 1, 



Landweber 

Fnu;. Vf'ß'O) = H, » V«. ß>°) = H ; let K , K be the curvatures 
in the plane tangent to ZS of the arc2s a = c'onst2. and ß = const let 
fK3'K.be tbe Principal curvatures of the surface 5 corresponding 
to the directions of increasing a and ß. Then we have [ 2óf 8 

h,(1+K3Y), h2=He(l+K4Y) 

whence 

(16) 

1 0h, -f. JliLi - - Kj J_ dh¿ _ k4 
h, 1 + k5y ' h¡ if - TT^; 

and, also from [ 26] 

4Y 
(17) 

-J_ 0»l2 , _J_ ah, _ Ko 
V7 ^ i +k4y - h,^ w-rnt~ 

Hence the expressions for become 

1 Ôw 3v 
h~t W‘^'TTKt 

n „ 8u 1 8w K.u 
n-r,--R;m f-rñr^ 

r s ' lï »« * K.v 
Î r^Y 

Kbu 
T-ñr¿ 

Ai the wail, the nonsllp condition gives 

(18) 

(19) 

(20) 

(21) 

. “ 8v — flu 
e< ^ “it; (22) 

?lnce the shear-stress vector at the wall Is 

f m - flv \ 
tTy) (23) 

we see that 

T a pw X Bj, (24) 

This indicate* that the vortlclly lines and the skin-friction lines on 
S form an orthogonal net, as is well known. 
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anrf v Since in a boundary layer w is small in comparison with u 
and V, and derivatives with respect to a and ß are small in com- 
parison with derivatives with respect to y, we are justified in omitHno 
the derivatives with respect to a and ß in (19) (20) and (21) Tn a ^ 

and kK vUnidath ^761- lt, may be necessary to retain the terms K y 
nevlecf tl, ,6 deno"lin1ators of 09), (20), and (21), but we shaft 
foilho Î f? U*1*"18 ln the Present treatment. Thus the expressions 
for the vorticlty components in a boundary layer become ? 

Ê-0vk- 
& ‘ K4V 

Öu , „ 
8Í +KSU 

(25) 

(26) 

4 = K|V - K2u . (27) 

Near the wall the y derivatives are dominant so that the expression 

form! curvatures are larfe, as at tU bilges of a ship 

«nrf w ^ undi n are tui0wn» tbe corresponding values of u 
are glCen £ " Íntegr*t,n8 fhc <““***"111 equation. (25) and (26), 

u*e *rCr KSyJ \ He 3 dy 

V a 
crt V 
\ 4« dy 
Jn 

(28) 

(29) 

somewhat more simply than by the Blot-Savart law. 

. We cfn [>ow obl*in the components of curl w in the boundary 

«?7‘clflT(,M“-.v.c:6-1 ■" "" » »na. 

curlú. i, . .|D . 

carl u • ïj ■ ^ * K,4 

(JO) 

(Jl) 

curl *,» K,n K|4 (J2) 
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and similarly, from (19), (20), and (21), 

curl (v X <0, ë, [J-^ {UT1 . v4) . (wê _ uC) _ ^(wê _ ^ 

+ e2[^ K - WT,) - ^ ^ M . v4) + Kj(v& _ wr))J 

e3 [h| a5 (w^ ~ (v4 - WT)) 

+ K,(w5 - U£) . KjtvC - wr),] {33) 

n egl ec Ung3 srnaîf t er ms ^ CUrl “ l" the bou^ary layer we obtain, 

curl curl w . ë a_ 
' «Y 0 ■ IK. * K.> 

cun curt ;. .. . (Ki, K<) 8t! 
fy 

(34) 

(35) 

cu*l curl Ü • 5, . K, ^ . K, j3 ♦ K|K>{ , u^,. (J6) 

Substituting r..ult. In,« „„ ylold. ,h. vor„cUy 

$ * r, - «.et-*, .«[|^. (KW |t j (J7) 

‘K¿'-a' * >S!v;-.„ . , 

It ■KTKl-t-bU • K,l»{.un . K,(«t-un), „„ 

..-u,„ 

*'• r.Â,r1i0i;^ylí:al2f..,s, ««„u... .-0 
tat tonal flow »bom lhe hui» In.^ioí* Í* ,heel ior *"0- 

rim VOrt,CUy -h-n ^# f*“' *‘V" th# 
from rc.t to tu conatam »ped aL.TÍÍ accelerated 
vorte» ,het ,. developed R iono^r«.^ ,h«* 
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IX. INTEGRAL EQUATION FOR A VORTEX SHEET FOR IRROTA- 
TIONAL FLOW ABOUT A THREE-DIMENSIONAL FORM 

A three-dimensional form bounded by a surface S Is im¬ 
mersed in a uniform_stream of velocity U in the positive x-direc- 
tlon, of unit vector i. We shall suppose that the fluid is inviscid 
and incompressible. Let us assume that the disturbance of the flow 
due to the bodyjnay be represented by a vortex sheet of strength 
■y = yo where a is a unit vector tangent to the surface S such that 
the fluid within the body is at rest. 

In crossing S in the direction of its outward normal, 
designated by the unit vector n, there is a discontinuity in the tan¬ 
gential component of the velocity of the fluid, of magnitude y, in 
the direction with unit vector 

s = o X n (40) 

By continuity, since the fluid on_thc Interior side of S is at rest, 
the velocity components in the õ and ñ directions at the exterior 
side oí S must also vanish, and hence the velocity at the exterior 
side oí S is given by 

yo X n * y X n (41) u 

Since, a priori, the mutually orthogonal directions of the 
streamlines, 1, and of the vortex lines, o, are unknown, it is 
necessary to Introduce a set of orthogonal, curvilinear coordinate 
lines on S, 4 « const, and *1 a const, ^Denote unit vectors in the 
direcUons_of increasing 4 and *1 by c and ë , with sense such 
that e( X c * n. Put * 

V * V, * C*V u s V * V (42) 

Then, by (41), wc Save 

(43) us V * - y 

An Integral equation for the vortlcity vector y can bo derived 
from the condition that the contrlbuMons to the velocity on the interior 
side of a point P oí S must sum to *ero. This gives 

in which the integral, obtained from the Iliot-Savart law, represents 

465 

*- 
*
*
 

- 
j
i
i
.
 

1 
-r

íP
l 

[iT
iÜ

TÍ
ÍB

IÍ
?

 



Landweber 

and, bp!) Points 0 of S, 

with respect to the coordinates of P ^ Vp denotes the gradient 

in the given form^eiaul^ r* ^hlch^16 ^°1 numerlcal evaluation 
P, occurs in the denominé 0 approaches 

eliminated, however, in the foliowing ruanner^ 3 SingularIty can 

First take the cross-product of (44) by ñp t0 obtain 

r,Js[v0xvp(-J.)J H5) 

v^Xh'tkrd >*. 
nearly parallel to n0, and hence th.» iñ/» lr jro?®"Proauct ?s very 

o° ™2t'b;!z'Vcr0rï '• îKdiû:*1 
~^.lngui.Hty of thp 

"» »»do, .0 eliminate thl. .In.ui.,^, „„.ld„ the 

fY' (,»0)jx‘ V, • ) ■ v,õ„• ^a(~) 
= - Ypnp 

in. i yp . „p s 0> AJgo wc write 

Í dS»-i, [ "e • V,(^) ,. 7o(_!_)] dSt . 2 

PQ 

v„(~) 
' ‘«>0 

rP0 

(46) 

f mm 

LTt:L't »' 

(4 7) 

we obtain from (45), 
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Js[(v0 - V X y, (pi-)] xïp ,,¾ - vP ¢, -w • vp (pi-) dst 

= 4irUi X np . (48) 

The singularity has been removed from the first integral in (48) 
because a factor proportional to rpo is contained in 

V0 -Vp ~ rpQ * (^SÓp • 

The second Integrand is also singularity-free at P since 

n . V-/'—^ ¡süí-lJlEfl = Si— 
P P^rPo/ 'It 2Rrp0 

and 

n • V 
0 VP (¾) “2R'r™ ' 

Thus we see that (np + nQ) • 7p(i/rpo) is regular at P. 

A procedure for obtaining a numerical solution of the integral 
equation (48) consists of replacing the integrals by quadrature for¬ 
mulas to^obtain sets of linear equations. Expressing y in terms of 
e, and e, as in (42), for each of n points P the quadrature for¬ 
mula yields a linear equation in the unknown values of u and v at 
n points 0. This g)vca n vector equations or, resolving in the 
directions e, and e. at P, 2n scalar equations in 2n unknowns. 
When 0 coincides \^th P# the integrand is set equal to Eero* 

Taking the scalar products of the members of (48) by ë p and 
we obtain the pair of scalar equations 

Í. s » Vp) X ■ ê1P ds0 * (ëp ♦ Õq) . vp (~)hs0 

4nUl -ip (49) 

Í, ‘ Vp) x ^* «2PdS0 ♦ '■'P £ 6p ♦ V * Vp(-~) ds0 

■ 4«Ul * Cjp , (50) 

In applying these equations, one needs to express y0 and ñQ in 

467 



Landweber 

terms of the unit vectors 
direction cosines of 

'IP* 
np. This requires that the 

10* C2Q* 

e2p and 
and nn relative to e. 'ip* e2P and np 

be calculated for each combination of P and Q; i.e. , -äntn + i) 
tables of direction cosines. Furthermore, if (xp, yp, zp) and 
(xQ, yQ, zQ) are the coordinates of P and Q in_a Rectangular 
Cartesian coordinate system with unit vectors i, j , k, then 

rPo =1 (xQ - V + j <yQ - V + k(zQ 
Zp) 

and the expression of Vp(l/rp¿ = rpo/rp0 in terms of e|p, e2p and 
np requires that n tables o.f dh’ectlon cosines of the latter set of 
vectors with respect to the i , j , k system also be obtained. These 
direction cosines and the components of rpQ can be readily deter¬ 
mined if the equations of the surface are given in the form 

F(ê,Tl), y=G(ê,íl), z = H(4,q). (51) 

A procedure for solving (49) and (50) by iteration is suggested 
by the following modifications: 

j* (Vq - VP)n X Vp('?^')' elP dSQ + UP.n*' £ fr? + V ' VP dS° 

= 4irUi • e IP (5Z) 

J (Ÿq " Yp)n X ^P (-^) ’ e2P dSQ + VP,"*l ^ ^P + n«P * % ( rp(J ) dS0 

= 4wU l • e2f,. (53) 

For ship forms the foregoing procedure can be used to deter¬ 
mine the velocity and vortlclty distributions and the streamlines and 
vortex lines on a double ship model at zero Froucie number. At non¬ 
zero Froude numbers, a similar pair of integral equations can be 
derived, but these would be considerably moie complicated because 
of the contributions of the wave potential to the velocity on the body 
surface S, 

X. CONCLUSIONS 

It has been indicated, on the basis of the limited available 
boundary-layer data on actual ships and ship models, that the various 
Integral methods, with or without the small cross-flow assumption, 
and employing streamline coordinates, are of dubious applicability to 
ship forms because three additional assumptions concerning the 
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velocity profile, the cross-flow angle, and the shear-stress coefficient 
are not in accord with these data. If the energy Integral equation is 
also used to obtain an auxiliary equation, then an additional assump¬ 
tion concerning the dissipation coefficient comes into question. 

Two significant ship boundary-layer phenomena, the generation 
of secondary flows and possibly of vortices at the bilges near the bow 
and at a wave crest along the hull, indicate that cross-flow angles 
may become large, so that the small cross-flow assumption would be 
napproprlate» The possibility that the cross-flow may change in 

sense and that the velocity profiles may become S-shaped both at the 
bow and along the wave profile on the hull must also be taken into 
account. 

Lines of principal curvature are recommended as the basis of 
the orthogonal coordinate system for treating ship boundary layers 
because, in contrast with alternative choices, this system remains 
orthogonal even in the thick boundary layer at the stern, and because, 
unlike the streamline coordinates, the former system does not change 
as the draft, trim, and the Froude and Reynolds numbers are varied. 
For this reason, equations for determining the lines of principal 
curvature have been Included. 

Since Integral methods seem to be wedded to the use of stream¬ 
line coordinates, the recommendation that these be replaced by the 
lines of principal curvature implies that a differential method must 
be adopted. One such method, based on the work of Bradshaw, 
lerrlss and Atwell [ 3l] for a two’ dimensional boundary layer, has 
been extended to the case of a three-dimensional surface by Nash [ 32] . 
An alternative approach based on determining the vortlclty in the 
boundary layer, strongly promoted by Llghthlll [ l] , motivated the 
derivations of the vortlclty equations In principal-curvature coordi¬ 
nates and the Integral equations of a vortex sheet for Irrotatlonal 
flow about a three-dimensional form. Considerable further develop¬ 
ment is required for application of these vortlclty equations to a tur¬ 
bulent three-dimensional boundary layer. 

Lastly It should be remarked that presently we cannot deter¬ 
mine the outer flow about a ship form with sufficient accuracy for 
reliable boundary-layer calculations due to a combination of errors 
due to linearization of the freo-surface boundary conditions, approxi¬ 
mate satisfaction of the hull boundary condition, and the effects of 
viscosity on the wave making, in comparison with the outer-flow 
approximation for the flow about a body without a free surface, the 
effects of viscosity arc experienced much farther upstream along the 
body because of the phenomenon of Interference between waves 
generated near the bow and ttern. Because of the strong Interaction 
between the outer flow and that in the boundary layer and wake, It 
appears to be necessary to develop an Iteration procedure, alter¬ 
nating between these regions, which hopefully would converge to a 
solution for the flow about a ship form. 
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Feltham, Middlesex, England 
laion 

wUhfÆmeT“ The “d P“‘— 
«he review of experimeS./da.elve’ '„The'p^er"£ dlwKÍ'.Te? 
tion to work which Í reported in Í964 (Ref. (+))7 it comprised 

äX*"“" ‘I'M- hhL7rfJ"Z2î 

keel, likewise attriboted to aeoond^lflow'effêct.^aolh" ‘7 
velocity profile, attributed to trallln/vorTlce" were ftul?1” 0" 

references 

{*) Hogben, N. , "Record of a boundary layer exploration on * 

jSy mï.iCaî 8hiP m0del* M Shlp Divl«io» NPL Report No. 52, 

(**) Wîgley, W. C. S., »'Calculated and measured wave resistant 
of a series of forms defined algebraically," Trans. R.I.N.A, 
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DISCUSSION 

The British Ship Research Aseeeiatien 
Northumberland, England 

d«aU.d^?udy ÂÎ8nûûveVth?ct9bôÙnLdâ°dTber'' Ple* ¡ot a more 
sterns especially in very ÄS , °rm, V °£ ‘hi* 

the models^of'thjfull^aiUre^form6*^ “j" apl>are"‘ tha' -om. of 
gross separation aSe í«,„ I"''"1"* 
for the viscous pressure resistance bei™ ÍÍ v ^ ^nL41118 acc°unts 
Incidentally, in this reference the corría ^lgh aS 30% of the total* 
sistance or gravitational cnmr> * responding wave making re- 
the total. graVltatlonal component was stated to be only 3 to 5% of 

ditions whic ^faring ^bout ^ epar at ion Sbut 110^W6 r '8 PaPer to con¬ 
tain, to methods of calculatinp the fihet> °s. ’ aS ^ar as ^ can ascer- 
the added pressure resistance8 which this l41'688 af*er separation and 
glad if the Author would care to ™ l rmgS about- 1 would be 
calculation methods for these conditions T the. Jev,eloPment of 
in some of the latest full tanker for™ th 1 W0U11!d ,al8° mention that 
separation is taking place on the O u re 13 li4tle doubt that 
having to be accepted. 8 1PS at 8ea and the sltnation is 

an important 0^6°bu^oOingOO detelop8ÍStanCe has always been 
is becoming even more mnorOn, d®vel°pments ^ tanker forms it 
Professor LandweOer'* pOperOs Oe“ ^ O 4hÍ8 Cla8S of shiP- 
and importance at this tine and Í loolfO01^6’ ? particular interest 
ments in his approach to The problem t0 fUr4her develoP- 
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RiPLY TO DISCUSSION 

L. Landweber 
University of Iowa 
Iowa City, Iowa 

at„rf. aMr; Lackenby emphasizes the importance of boundary-layer 
studies on tanker forms. Since the resistance of a tanker is mainly 
viscous, and the power-wasting phenomena of bilge-vortex formation 
and «tern separation are viscous in origin, it is clear íhaí sucT 

occurrence.nee^ei*' “ t0 deVelop d«'lS“s which 

fi,« For the particular tanker form to which Mr. Lackenby refers 
the wavemaking resistance was stated to be only 3 to 5 per clnt of ’ 

tanke°r model1 meXPhrÍeKCe,hfn 06611 that the Wave re3iatance of a tanker model may be about 10 per cent of the total, and that if a 
proper bow bulb is fitted, it may be reduced to about 6 per cent 

rathe/tír8 have fou.nd that bulba tanker models reduce viscous, 
to be resoTveT6 r68lStanCe’ this indicates that the problem remains 

i . 1 ^ke ^ thank Dr. Hogben for reminding us of his 
important 1964 boundary-layer paper, one of the very few available 

ahiífn °f ShlP 0Unda,ry layers- Explorations of thJ kind on other 
nf nJ arearg6ntly needed to guide the development of methods 
of computing ship boundary layers. 
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STUDY OF THE RESPONSE OF A VIBRATING 
PUTE IMMERSED IN A FLUID 

L. Maestrello 
NASA Langley Research Center 

Hampton, Virginia 
and 

T. L. J. Linden 
European Space Operations Center 

Darmstadt, Germany 

I. INTRODUCTION 

A large aircraft in supersonic flight undergoes large variations 
in flow field over its surface. This paper is concerned with studying 
the response of a structure excited by convected turbulence at nearly 
zero pressure gradient and by shock-boundary layer interaction, 
with the inclusion of the coupling due to the acoustic field on each 
side of a panel. Shock waves on thin-walled structures can impose 
severe loading problems, the most common of which is the self- 
induced oscillation which is generated by an oscillating shock. The 
shock wave can easily couple with the forcing frequency present in 
the environment, including panel resonances. 

From interior noise point of view, the upper region of the 
airplane fuselage is considered the principal noise radiator. The 
aerodynamics in this region are known from the Prandtl-Mayer 
relation, and further downstream by shock-boundary interaction. In 
addition, the fuselage skin experiences traveling shock waves which 
run up and down the skin during the acceleration period, which might 
last twenty minutes for a Mach 3 airplane. 

In supersonic flight, the vibration of the surface is Influenced 
by the back pressure resulting from the radiation of sound on both 
sides of the surface, so that, the surface motion and radiation are 
coupled phenomena. The interior noise level is determined by skin 
panel vibrations. For radiation below the critical frequency, the 
major source of sound arises from the interaction of the bending wave 
with the discontinuity of the boundary. Above the critical frequency, 

Preceding page blank 
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SecTo^ stoppers , etc. , have little 

the panel is In the form of Mach wave r'adiatTom6 radlation bV 

simplificatioiîii^îh^modefcïn bein Pai?er indicates that some 
significant interaction between ïhe nW * íl* (1) that there no 
on the plate; and (2) that the panel dian^r^ th! ferodynaynio forces 
son to its thickness so that thin Fv ernent *s small in compari- 
1». however, acou.tlc^ The plate 
internal cavity. P ° the external flow field and the 

plex structureî^Dowelfl lh%9Î°1Ved p,'oblem {°r a ”■»- 

Fahrendflow. 
to the acoustic coupllno of íflejdhwf't * ï“ °tder Whttithatlon 
the duc. Maidanek[ Consider s'1 an* Infinite ‘“'tÎT í‘!ld th"“*h 
coupled acoustically to an external flow flelH orthotroPic Plate 

53S5ïiSsi|Sf|™ 
KíssrtóWáSÂÂSS'® 
II. measurements 

a) The Experimental Arrangement 

Jet Prnlîi!)00^ ^vostigated was the sidewall boundary laver of the 

o7fSctdtUeCed i -d~tero^ 

has been previously reporte’d by MaestreUo [1%¾ P“el "‘P0"51' 

Suiä'Äirarr.i^Ä 
on all four sides of a 3/4 Inch X 3/4 l„c¿ titariut" 

^MHtanL1““1“” alIOy “ntalnInS 6% « vanadium. 
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was Intended to simulate the clamped edge condition. The panel 
ormed most of one wall of a rigid cavity measuring 14 X 8 X 6.6 

Uiches. The other surface of the panel was exposed to the flow field. 
The pressure differential across the panel was variable. The experl- 
ment was conducted at two pressure differentials, viz. 0.06 and 
14 psi; the latter corresponds to the actual differential between wind 
tunnel pressure and local ambient. 

f u TÎ16 fide, ^11 0f the tunnel waa modified to accommodate 
two identical, rigid, steel plates, which supported the necessary 
instrumentation. One plate contained an array of holes in which 
pressure transducers were mounted. The pressure transducers 
were mounted on the center-line of the tunnel in the streamwlse 
direction at the same locations where the mean static pressure 
measurements were made. Two types of pressure transducers 
were used; one, the conventional lead zlrconate tltanate type made 

Cor1.nr»HC Ref.eViarch',1)16 °^er a capacitance type made by Photocon 
Corporation with sensitive diameters of 0.06 inch and 0.09 inch 
respectively Correction due to finite size transducers was made 
adopting the Coreos [ 1963] approach. The panel displacement was 
measured with Photocon capacitance, displacement transducers 
mounted on brackets which could slide along a bar and could be set 
precisely by means of a screw mechanism. 

The output of both pressure transducers and displacement 
transducer were recorded on Ampex FR-1800H 14-channel tape, 
recorded in the FM mode. Four channels were used for simultane¬ 
ously recording data for correlation measurements. The maximum 
dynamic range was obtained by splitting each data channel into two 
tape tracks through phase matched fUters to separate the lower and 
higher frequencies. 

b) The Wall Pressure Field 

Measurements indicated that the flow field in front of the 
SK*)k CiOSe\y aPProximated the properties of equilibrium of an adi¬ 
abatic flat-plate boundary layer [ Maestrello 1968] . The flow in 
front of the shock has the following characteristics: Mach number 

ture=T - S67oeR Ve\OClty Y® = 2'10° ft/sec' total tempera¬ ture Tt - 5670 R, boundary layer thickness 6 = 1.37 inch, bound- 

nlL -ynrn«^ Cv,emDent th}?kness 6 = 0-445 Inch, momentum thick¬ 
ness - 0.083 inch, Reynolds number R = U,6/U = 4.87 X 10®, skin 
friction coefficient Cf = 1.27 X 10^, and =39.8 
eter Coles 1964] . f 9 % =39.8 Coles param- 

, ., ,The Pressure ratio across the shock is a well defined function 
of Mach number, for a 1 5 half-cone angle, the pressure ratio is 
approximately 8.5. Experimental results show, however, that this 
ratio Is considerably smaller (Ap = 2.3). It is postulated that inter¬ 
action with an expansion wave originating at the base of the wedge is 
responsible for lowering the pressure differential and producing an 
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Fig' U DlatrClhPH 8SUne Fluctuatlons and Mean Pressure 
Distribution Downstream of the Shock 

aenÄudc"8‘ya ÄnS'bo^v U C“*- th« »•<>*= 
separation: farther downstream íhJn«7 klarg® enouSh to cause a 
goes back to the flat plate conditio^ ^econies reattached and 
within a few boundar^layer theses 8 tranSitl°n takes place 

distribution and*the8ratio’0^1^1° °f the mean Pressure 
P^/pi vary wUh a* cons is- Çressure fluctuation 
at x/ô “ 2.3, where st ibscriptrlastl0r8d1Pdnd b0th reaCh a max"mum 
downstream of the shock, res^ectivel^ rf' I"ea,LuPstream and 
the effect of the shock on the 7' g* ' Beyond x/6“ 6 
[1963] Indicate, a .ïm°ûn behltlL/h.?’“" Va”UI“s- KI»«er 
pressure in the spearated recion and fluctuating 
the same Mach .««p at 

: dl1” ,he »¿.«Iment^ÏÏ: HÄÄ” 

and d„Jat“ro“Äira*rr.tw„dÄ T?::* 
normalized by requiring /’“Vm d - i i a8’ ’ h Pe Ta ar® 
deviation f ^qUlrIng Jo d = 1 ln ord” to demonstrate the 
deviation from the zero oresan-r» 4 _ 
just downstream of the shock more en ^ For the spectra 
narrow low frequency band whila f gJ ls concentrated in a 
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7r(w)U /5 

0.0001 

1.0 
"fi- 

Fig. 2. . Power Spectral Density of the Wall Pressure 
Fluctuation 

the shock;. The normalized power spectral density found upstream 

w6/ue - 2Ck unrr!Sp0nds t0 the zero Pressure gradient, and peaks at 
6/,U* u , W ile downstream the spectral density is modified in the 

region be ow the peak. It is significant that by altering the local 
flow conditions, only the low frequency ends of the spectra are 
appreciably affected. It Is noticed that the pressurePflucutation 

x/0“° where the shockPimpinges show a notice 
able deviation from the general pattern in the higher frequencies 

tu« „ Measurements of the cross-correlation are shown in Fie 3 
The cross-correlation characteristics are a function of position * ’ 
downs.r.am of 'he .I.oc" fhe eres-corola,i„„ bet^ín pÓàmon. 
/6 .33 and x/ô - 3.80, the farthest apart, has characterUHro 

thïtlhe rat^be/011110^ pressure gradient boundary layer in 
telocUv U /U -Tv*1? ^üVeCui0n veloclty and the freestream 
velocity uc/u» -0.72 and that the correlation between those 

polat, 1. at 11 .Isnlílça»,. The ero.e-correlatlon oT.he .h"'.« 
distance between a/6 .0.33 and x/6--0.75. shews that the 
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Fig. 3. Longitudinal Cross-Correlation of the Wall 
Pres sure 

ralÍOn^eíClty ^ rfryiow U<=/U« = 0-13 and the correlation is very 
% , correlation between x/6 = 0.33 and x/ô = 0.25. where 

x/o - 2.25 corresponds to the maximum static pressure ratio is 
negative. The shock induces the boundary layer to separate and the 
recirculation within the separation region permits the sign of the 
pressure to change. Kistler argued that the fluctuating pressure 
in the separated region arises from the combined action of the turbu¬ 
lent shear layer and the recirculating flow. The picture, however, 
is not yet clear enough to develop a model for time dependent loading, 
since the geometry of the separated region is the primary variable 
in estimating the pressure amplitude and resulting phase. 

No measurement of the lateral cross- 
during the test! however, for the purpose of < 
of the panel, it is assumed that the pressure 
that in the case of zero pressure gradient e" 
and n is the spatial separation [ Maestrello , 
overestimates the lateral cross-correlation, 
far from being homogeneous. However, the 
be exceeded by a factor of 2. 

J-correlation was made 
computing the response 

¡ decays similarly to 
^ a* where az = 0.26 

1968]. This choice 
since the flow field is 

overestlmatlon may not 



Bwmmmmmmmm 

Response of a Vibrating Plate in a Fluid 

c) The Panel Response Field 

Measurements were made of the power spectral density and 
cross - correlation of the displacement. Typical results are shown 
in Figs. 4 and 5 for a pressure differential of 14 psi. The static 
deflection of the panel was 0.06 Inches at the center, and the dynamic 
deflection was small in comparison with its thickness. 

The displacement spectral density at the center of the panel 
show pronounced spikes , the lowest frequency of which corresponds 
to the lowest mode of the panel. The accuracy beyond a frequency of 
3100 Hz was poor due to the spatial resolution of the capacitance 
transducer, and therefore the spectrum beyond 3100 Hz was ignored. 

Space-time correlation measurements were made along the 
panel centerline from x = x1 = 3 in. y = y'= 3 in, at one-inch inter¬ 
vals up to a maximum separation of 6 in. The correlogram indicates 
a convected feature with a phase velocity ± UCp = 770 ft/sec. This 
convection velocity corresponds to that found in the previous experi¬ 
ment using the same arrangements, except that no shock was present 
[Maestrello 1968] . 

10 
■9 

£ 
: Í «= 566 

X * x' *= 0.5 ft. 

y «y*•* 0.25 ft. 

Me * 3.03 

Press. Diff. Ap - u psi 

10 
H 

J 1 -1- -1-1 .-1 I 1 1 1 _1. I I_j 
700 t00 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 

FREQUENCY Hs 

X 

Fig. 4. Displacement Spectral Density 
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In comparing the results of the present and previous experi¬ 
ments , It is concluded that the sign change of the convection velocity 
is attributed to the presence of the shock. Furthermore, the cross- 
correlation of the wall pressure also reflects a phase change for a 
separation of 2.5 inches, which is In the same location as the phase 
change which occurs for the displacement correlation In Fig. 5. 

III. ANALYSIS OF ACOUSTICALLY COUPLED PANELS 

a) Two-dimensional Finite Panel 

The vibration of the panel is Induced by an arbitrary, external 
pressure field F. It Is assumed that the panel motion does not 
Interact with the turbulent boundary layer, l.e. , the forcing field Is 
not altered by the plate motion. However, the panel Is acoustically 
coupled to the fluid on both sides of the panel. 

The equation of motion for an harmonic component of the dis¬ 
placement, W, of a thin panel with a force, F, and a pressure 
differential, pz - p( + 6p acting upon It, obeys the equation 

BAZW - ppwZW = F + pz - p, + 6p (1) 

where the bending stiffness, B, may include hysteretlc damping, 
and where pp Is the mass per unit area of the panel, w is the 
angular frequency, p2 is the acoustic pressure on the streamside of 
of the panel, p, Is the acoustic pressure below the panel and 6p 
Is the static pressure differential. 

The perturbation pressures, p, and pz, are related to the 
velocity potentials, which satisfy time-independent wave equations In 
the appropriate regions. In solving these equations one uses a 
boundary condition which relates the potentials to the panel displace¬ 
ment. These relationships may be made more obvious through the 
use of Green's theorem. Thus, It is required to solve a system of 
three coupled partial differential equations, the first of which is not 
separable for the clamped edge boundary condition. 

Pl and pz may be found directly as function of W. Thus, 
consider first the cavity. The acoustic velocity potential, tp, satis¬ 
fies the Helmholtz equation 

A<p + k tp = 0 (2) 

with boundary condition 9ç>/8n = 0 on all walls except on the plate 
where 0^>/8n = - IwW. 

The Greens function, g, for a cavity with hard walls satisfies 
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,I*V lfH 
• ' i'^t. 
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1=0 

X = X' = 0.25 FT 

Y = Y' => 0,25 FT 

PRtSS. DIFF, Ap = 14 psi 

400 Hz HI PASS FILTER 
Mg = 3.03 
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CORRELATION 
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Fig. 5. Broad Band Space Time Correlation of the Panel Displace¬ 
ment Along the Center from x = x' = 0.25 ft, y = y' = 0. 25 ft. 
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the equation 

Ag( r I r ) + k£g( r I r') = - 4ir6( r - r') (3) 

and Is given by Morse and Feshbach, Vol. II [ 1953] 

g(r/r') 
4tt 
acbc 2 Z €men 

rmrx mirx' mry mry1 
COS -COS - COS -rr1- cos “T—*“ 

ae ac °e bs 

^mn s^n m=0 n=0 

cos k^z cos kmn(z' + d) z > z1 

cos kmnz' cos kmn(z+d) z < z' 
(4) 

where 

,, 2 2 . z . 2 / mirx / nir\ 
kmn = kc - (—) - 

and kc = w/cc where cc is the speed of sound in the cavity of dimen¬ 
sions ac, bc, d. 

By applying Green's theorem, the Integral equation for <p is 
obtained, 

— \ C C — — M r.') — 

plate 

Now using the boundary conditions, this becomes 

(5a) 

'PÍ r ) = - y Jg( r/^¡)w( r¿) d r¿ (5b> 
plate 

The pressure p. is related to <p by 

P, = - lwpe<p 

where pc is the mass density of the fluid in the cavity. 

To compute p2, it will be more convenient to operate with the 
differential equation. Let the acoustic velocity potential in the flow 
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« 

‘ 

field be denoted by l)j. By applying the Fourier transform on the 
(x,y) coordinates, one gets the ordinary differential equation 

dtO.P.z) n^(„,p,a)=o 
dz 

((») 

where 

= k2 + (M2 - l)u2 - 2kMa - ß2 

^,00 _00 

4/(x,y,z) ;= \ \ da dß eito,t+^y) ^(a.ß.z) 
*■¿00 ‘-'-Op 

k = w/c, M is the flow Mach number and c the speed of sound in 
the region above the plate. Only the positive exponential solution to 
Eq. (6) is chosen, since it is the solution representing outgoing 
waves. Thus, 

4i(a,ß,z) = A(a,ß)e IC* 
(7a) 

The boundary condition, arising from the continuity of normal dis¬ 
placement is 

d'Mo'.ß.z) 
dz 

= - IcLW 
z=0 1--0 

where the differential operator 

L = k + 1M 
~5x 

Thus , 

7- . LW it* 
^(a.ß.z) = - c -j— e * (7b) 

Now, since 

/N 
LW = Ç f dx' dy' e‘i(aX+^y ’ LW(x',y') 

J0 J0 

then 
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dx' dy' CU.y.zlx'.y'.ojLWix'.y', 

íaU-xV^y.yVç^.^)] 

where 

(8) 

-*- _► r»00 ^00 
G(r|r,) = \ ( da dß e 

^00 ^00 (9) 

which is found in Appendix A to be for 
supersonic flow, 

2iri ¡«-(Mu+yü^-R2) 

G(r I P) = 
M -1 Vu - P‘ 

0 outside the Mach cone 

and for subsonic flow. 

G(717) = -¿Tri £ 
¡«■(Mu+Vu^R2 ) 

Vi-m2 y?+p 

sr.í‘^’,rk/^“d -(x-xvyn?. if fii 
A 

(k - aMJVi 

(10) 

\ 
L VV 

then Eq. (8) would read 

£ dx'dy' W(X',y.)L*G(x,y,aU',y., 
0)(11) 

fS ally correct if L*G i 
bution, which is to say that one partiallv i ^ interPreted a distri- 

y at one partially integrates to obtain Eq. (8). 

Now using Eq. (8) 

P2(x,y,z) = - ip0cLijj(x,y,z) 

ip c2 pa pb 

~ if2" J0 Jo dX' dy' G(x-y* z|x,,y',0)|L|2W(x',y') 

(12) 
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mm 

where p0 is the density of the fluid above the plate, and where partial 
integration has been utilized. Had Eq. (ÍÍ) been used instead, 
Eq. (12) would read 

P2(x,y,z) T T dx' dy' W(x,y)|LjZG(x,y,z|x',y',0) (13) 

which is reducible to Eq, (12) by partial integration. Thus, super¬ 
sonic flow does not present any especial difficulty aside from the 
fact that G is singular all along the Mach cone, and this is an 
integrable singularity. 

Inserting the expressions for pg and p, Into Eq. (1) results 
in a single partial integro-differential equation to solve, viz., 

BAZW - PpW2W = F + õp+if^ £ G(x,y,|x',y')|L|2W(x',y')dx»dy* 

+ JJ 8(xC,yelx¿,y¿)W(x,y) dx dy (14) 

plate 

where the subscript c refers to the cavity, thus 

Xc 

ye = y + 

Equation (14) presents a formidable computational problem. The 
Green's function g is known as an infinite series which is alow to 
converge (1/n) thus compounding the difficulty by an increasing num¬ 
ber of necessary operations to maintain a given accuracy. 

An alternative to solving Eq. (¡4) is to convert it to an Integral 
equation for its Fourier amplitudes and to solve the resulting equation. 
The advantage is that this equation is simpler (though it is a singular 
integral equation). The following notation shall be employed: 

f(K)*¿ 
r _ .¡7-T _ 
J d r e f{ r ) 

supp (f) 

A —♦ J iU*f * IT 

f ( r) * T- \ dK e f(k) 

K-space 
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The result of applying the Fourier transform to Eq, (1) i8 

BA VV - pp « W = f + Pj - p| (15) 

where 

Í * F ♦ 6„ 

tThhue.,ilrat term in (15) may bC evalua*e* “»Ing Green's theorem; 

-s’w. K4i ♦ f d7,[.-“"mw.k'w)] (lt., 

sz'»;" ,o * r',,d' pi*n' ,h* 

w « önw B o \ 

a*w ®5w i on ed*e 
®s ®n 8 s* ; 

where . *• In the direction of the edge. i.e. , the Ungent< ThuB> 

A* W ■ k4w ♦ A{ W) (16b) 

where 

Äi W] . ÿ dr,(|-y . i(i?.ir) J-Jf) e"' '• 

if more general boundary condition« «re to be considered (• » 

rtlht íldLttn?Ílt0n) ‘i* tbOVt! *xFre»,‘on mu*» be replsred by the 
uf,ht.t,!rroÄ,Fr0m th* (7b) -d ^ equation prÄq, 

. te'y • »»i' i,*, 

From Eq. ($b) It is found that 

(17) 
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P, = "lí® f ^8(K (TjWU,) 
plate 

-*n[w] 

where 

8(kl^', = J dTetK r g(T|T') 

plate 

Substituting these results Into Eq. (15) gives 

BT(K)W(l0 ♦ BA[W] -0[W]=i(K) 

where 

(18) 

(19) 

T(K ) = K4 - - lPec^2 - *2Mg) 
(19a) 

Let 4,b denote the finite Fourier transform oí a beam eigenfunction, 

îîthJLnsl0^^0?!4 .erf°.Urifr rePrc*entatlon ‘hat the inform an 
orthogonal set on the Infinite interval. Thus, expanding W as 

is,« 

or alternatively, W as 

(20) 

(21) 
mtn 

.“^^C¾!'',«ïv.VP"''‘0n■ ln,° (1” ’"d •“‘’■•"“«“i «“‘■in. 

r~« 

W-4¿ wrt . 4>„ 

where 4>*« are the projections of 

* — 

*( k * 8 “Hi 8 z ^se4la(**)4«(pb) W 

(22) 
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and 

(-Mf) ^.(0] 

-° [-.(:)-.(¾)]) 

deform in Î ^ PUftatl0n lnte8ral rmnrs may be simplified by 
deforming the contour on the «-plane. Due to the manner in which 

T(7F7fl T t1ran8f.0r™ was chosen. the integrand, except the term 
T(k), is single-valued and analytic in the lower half-olane Th,. 
contour will thus , be deformed7 in this half plane tm" deformation 
^det^ermined by the analytic properties of the function ifk), 

T(«.ß) = («2 + ß2)2 . 2gL lT0 
Z 2 

« M \ 
~T7~ ) 

Vk2 + (M2 - 1)«2 - ZkMa - 

This function is two-sheeted with square-root type branchpoints at 

kM ± \/kz + (M2 - nß2 ïirrj- 
The sheet associated with the positive value of the square root will 

ation.r PhySlCal 8heet> 8inCe lt Po-ds to outgoing radl- 

each shJe^wtíh0^ haS ten,Zeroa on the two sheets, four zeros on 
Plate and he oîhl » me *' ,corre8Pondlng to resonances of the 
plate and the other two zeros are located near the branch points on 
one of the two sheets , Independent of each other. 

It Is convenient to make the following substitutions 

u = £2. 
Pp 

The Eq. (19a) may be written 

and = ££L I ft 
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T(ff,p) = (** +ß2)2 . Y4 . 
7 k2 + (m2 - l)a2 - 2kMa - ß2 

In the present case, p. is a small number (~ 0,0015) so that approxi¬ 
mate values of the zeros may be found, expressed as a power series 
in |i. To the second order these zeros are 

± ± u.- 
at=At 

[/ 2 2_ 

1 . 1,.8 
)1- 

7[k2 + (M2 - l)ß2](A*4 + 2A*2ßZ + p4 - VY 

where 

f = kM ± 7kZ + (M2- l)ßg 

* M2 - 1 

a(±),(±)2= A(±)((±)2 

W4 
[MA(±),(±)2j 

'] 1 
4A(±),{±)2(PZ+Af±)l(i)2) [>! 

pTI" 

where 

The last four zeros exist on both sheets. The location of the first 
two zeros may be distinguished into three possibilities: when 
y < A, then a't and a* are respectively on the unphyslcal and 
physical sheets; as y Is Increased such that A¡<v<AÍ,then 
moves off the unphyslcal sheet and crosses over to the physical 
sheet and at remains unchanged; as y is further Increased such 
that A, < y then crosses over to the unphyslcal sheet and 
remains unchanged. A typical configuration for the poles and branch 
points is shown in Fig. 6. 
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• 

Fig. 6. Integration Contour for rmnrt 

The above contour, Fig. 6, is deformed to circulations about poles 
and branch cut In the appropriate half-planes of analytlclty as Indi¬ 
cated below, Fig. 7, for the upper half-plane. 

Fig. 7, Deformed Integration Contours for 

The function T has been analytically continued Into the k-plane by 
giving k a small negative Imaginary part; so that, the branch points 
and the poles are displaced off the real axis as indicated In the 
previous figures. 

The branch-cut Integral Is given by 
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HP) 
r® ¿JaalfBAfa-flI.nfo fll] / 2ipoCg(k-aM) 

'-'A f n i -.2 a at <2 frï / n a1IL>.aIl/\Z ¡lue? ta«f... .«i « ^ ^ p^*:aMF 
ZkMa-ß* 

) k*+(M*- 1 )oe- 2kMo-p* 

where o = a; - It. So that 

2wi Z reeldue g dP + f ^(Pb)I(P) dp 
<0B 

•o it may be readily performed numerically ualna Laeuerre-Gau.. 

ÄHU1” *eCOnd lntegral U more dlttlcS, It o.cUlate. with 

lated ÏHr.0Â fm ,mÄ,tlmu,n ^«e. of the Indice, are pol.tu- 
i™*! hi! J"tifled‘t "ince the lndex tnver.ely proportional to 
•»•rlmêÏt^ïoÏÎ NOW tht,re cerUirUy •**•»•. írom the 
mTv h.T^.P J w T’ a ,malle,t l*nVh to which a disturbance 

bi 1 , 1* ¿íter h*vln* »olved Eq. (22) the plate displace¬ 
ment la simply the Fourier transform of (21), thus, 

W<~>- ^ ,.(1) 
fHaA 

(23) 

where ?m is a beam eigenfunction. 

for W L°"ndr:hei^Urd1PrM,Ure level ln the C4vity th« expression for W from Eq, (23) U inserted Into Eq. (5b) to give 

c<>* •^(«♦d) cos ~.-x*coe 
■.*. ® V - ■ ? 

ni#fi f t§ mu® *»«> 

where !„, and are given In the appendix B. 

Similarly, the radiation may be computed from Eq. (12). 

niirm Th* for j*,U n0‘ * deterministic function as has been im¬ 
plicitly assumed from the outset, but a stochastic variable whose 
correlation properties are known, either via a model or dlrecüv 
from experimental data. Thus, It would only be meaningful to com- 

oí the foríe íríe*Ver48e* ^ re,Pon,e b,*ed on •»•‘»•Heal average, of the force (l.e. cross-correlation). The procedure to be used 1. 

U th^t” ?oe.nen0bUttP,rOCedUre dUe t0 Ro,enblÄtt I 1962J * th* .»otatlon 
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»(T,«7'.«,).(x-ix7,,.) ,2,, 

R( r ,t; r’.t') = R(T - T*. t - t') 

or 

R(r - r',t-t')dr dt * <dM(x~ ) dM (X-t,, )) 

where dM <«-,) i. the Stielje. me«ure of th« proco... The oro 
cedure may be .imply atated a. the problem oí ílndina a Fredtwfl™" 
eSííüíoí °^c ^ «ubeequenüy repre.cntlng Xr, *by .Uch a. 

•JÄ. b> ,h* •'«'"'“"«‘o- -nd 

ÍOO 

R(T-'P,t.t'MT',i») dT* dt (25} 

Ry ^Pf'1Vln, ,h* r““r'" Thu. U» 

mT-T',..,', .(¿)* i(? djr du 

Now let 

{¿.»■MrIk ,w) j-* r dM 

It follow, from (24) and (26> that 

(26) 

- K*)6(w-w') 
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»ln« (d.VKX-HM <X7f )) = R(7d7 dt. 

Thua the Zjj* Independent random variables with unit 
variance and with *¿ro mean If EXf ( . 0. The transform of (26) 1. 

x-.-f 
^•00 

7R(K ,u) e 
s—. •»nr-Tt^ö 

dK dw U7) 

A «imple calculation reveal« that (2?) satisfies (¿4), 

The»c result» will now be applied to the plate dliplacement, 
Thu«, the cro«»-power spectral density (CPSD) of the plate response 
is given by (asterisk denotes complex conjugate) 

(w(t,^ «.(i)..a)s(f')..(ft<w11.w^ U», 
»V'if.o 

Now If the solution to Eq. (22) Is represented as 

then 

W. 
1 
M 

( Ws.n ) * ^ kl^.j **I ) 

Further, 

rtCD ^QD ^ ^ 
=\ T .^r (ß'b) .J* f*(j7-.n 

T(K)T (K') ' V 05 

The force F is now Identified with X—, so that 

<?(K)?*(K')) B [fi(K .^«•(K-.u,)]1'* (^Z^) 

» [A (K ,w)R*(K,,w)]/í 6(K - K') 

In summary then 

(W.,w*) . ) f dK àJ°?.k((»i-M«(ir.4,)U.V.ur(abi 
'M -° ¡ni<ll' 
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Analogous to (28), the expression for the r*P<;n / d 
In term. 0f EW^W* from (29) rL .! 0Í P» can be bitten 
radiation. UV,• The 8ame can alao be dont for the 

D^menalonal 

plate dl^en^n\llVe^VlaTcPeUtÍ!d0thatWe an8Ume that the tranaverae 
In the tranaverae direction With the e° wavts propagate 
may be written h theae slmPHilcatlona Eq. (2<1) 

where 

W" + ^ ramW« = ^ 
m 

r .r,.*;,K*,At'«(ï)] 
nm J urv rrrr—-—~ 

(30) 

(31) 

where 

riu\ Lt4 4 4*Y4(l .- T(K) s K - y - —__Y k 

A1 + (Mc - 1 )KZ - 2kKM 

’ 1 - K?M*) 

and 

4>n = f dK ^n(aK)F(K) 
T(K) (32) 

The circumvention of the branch i 
be deacribed ahortly. P lnt“ 0 the above «xpreaslons will 

aolution^o^ijO) thC ^nverse matrix to + ^ then the 

Wn = 2 Gnm<l>m 
m 

Now performing the en.emble averages as before givea 

<wmw;) * ^ 
Gmr< M«*) 

but 
f,« 

(33) 

’ 
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Response of a Vibrating Plate in a Fluid 

( Ms) dK 
-CD 

(aK) fdK- 
-00 T*(K') 

<F(K)F (K1)) 

To make the discussion concrete let 

<F(K)F (K')) = PMôfK' - (K - ) 
Uc 

which corresponds to a spatially uncorrelated pressure field with 
convection velocity Uc and power spectrum P(w). 

Thus 

* f00 
(«l’r't».) = P(w) \ dK 

-w 

hr (aK)^,(aK - 

T(K)T (K (0 

U„ 

(34) 

The major contribution to the integral for rmnt Eq. (31), comes about 
when the peak of i)jn is close to the peaks of l/r(K); since i|,n is a 
highly oscillatory function (period = Zir/a) with a peak at xn A and de¬ 
caying with the distance from this point and l/T(K) is a non-oscilla- 
tory function with peaks whenever K equals the real part of the poles 
which are roughly located at y times the four roots of unit and the 
trapped wave poles near the branch points (k/(l+M ) )(k/(M-1)). But 
for the frequencies we are considering (up to 3000 Hz) only the pole 
near k/(l+M) lies on the physical sheet. For this frequency range 
the trapped wave pole is bounded by 0 and 0.15 and the pole near v 
by 0 and 0.6. Now, the peak of t|jn is given by Xm A which is numer¬ 
ically (see Appendix B) 0.155, 0.26, 0.36, 0.465, 0.57, 0.67, ... 
and the period is 0.206. The height of the peaks decays roughly as 
(1/Ka)3 is 0.05 of the first. The function l/T(K) also has peaks that 
decay in the same manner. Thus, the infinite matrix rmn has appreci¬ 
ably non-zero entries only in the upper left-hand corner. Consequently, 
we need only compute Tmn for the first 4 or 5 modes, say, and then 
invert this matrix + I to obtain the upper left square matrix of order 
4 or 5 of Gmn and thus for higher modes 

^mn = ^mn 

So that 

<wmwn*> = <<M*> 

for other than the first few modes. 

The contour for the integral in (34), Fig. 8, is similar tc one 
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——A- 

Fig. 8. Contour for (<f> <j>*) in Eq. (34) 

® 
î> 0 

0 

Fig. 9. Deformation of Contour in Fig. 8 

deserihed eariier but the term T*(K - (k/m)) introduces further 
poles and branch cuts. The contour and its deformation are shown 
in the Figs. 8 and 9. In Fig. 9 only the contours for that part of the 
integrand which is analytic in the upper half-plane are shown. 

^m(K) may be written 

VK) = Sm(K) + T (K)e' 
Ko 

where 

Sm(K) = - 4N(t^^¿T_Xw 

(aK)4 - Xm 

and 
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Tm(K) = Nm ÍXm + iamaK) (• 
cos Xm_ch Xm 

(aK)2 - Xm (aK)‘ + X 

Xm \ 

+ yl/ 

/ :av\ ( S^n Xm ■(■ sh Xm \"1 
WmXm - laK) ( , ,, ê 2 , „.Z , Z j 

' (aK) - Xm (aK> +Xm/J 

with am and Xm defined in Appendix B. 

Now 

where 

and 

*;(K)*n(K - ^-) = L(K) + U(K) 

-l(K-0Í)ov 
L(K) = S*(K)(s„(K - -g-) + Tn(K - ^-)e ° ) 

U(K, JWW)(s>(K.^)tTn(K-^)e'(K^”) 

Thus, we have 

.00 
.. , C AV MK) i U(K) 

<*"*") =P(“)J„dKT(K)TV-^1 

The above expression is evaluated as a sum of residue contributions 
plus branch-cut integrals. 

5 

PW <*"+«> = R's j 
j=l 

Mzj) 

T(zj)T (Zj - -gr) 
+ I, +I2 

12 

+ Ziri / Res 
Lj i-i 

L(z ) 

ZIZi (T(z)T (z - 
J < uc 
1=9 

where the Zj are identified in the above figure. 

. +1,+1, *. co . i 3 4 
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R«$pont« of a Vibrating Platt in a Fluid 

Thu» only !| *nd will contribui». Th»r»lor» 

TO*<^ *) • « Î S _ïlîl ♦ i» 

¡n 

♦ it f j-411-T“ ( * *« 

!'* * 

By th» »»m« »rgumtnt which «limlnttcd t| *nd lj w« m»y r»pl*c« 
1, and l, by pr«t»ndtng that i# and i, ar* on th» phyalcal »h»»t 
and thu» 

t} • • 2«i R*a { ~ } 
9 **H 1 T(a)T (t . Ä»r 

and 

1« ■ * 2*1 R** {-—— } 
***» lT(»)T U * 

To «valuat# th» r«»ldu«» it la n»c»a»ary to datcrmln» 

. . t . luv*(ltMV ♦ a*«4 - a*M* ■ IkM*«* k'» -JtH*} 
T'(*l » 4» ♦ •“ 1            ..——* 

Jk* ♦ (M* . l la* - 2kMa* 

Th» following ralallonahlp» among the pol»a ar* valid 

• « • ^ »* * -¾ * *• H * ^ 4 *• 

*« • -¾ * *• ^ ♦ «i 

Llm f—g* •••• .1 » Llm F 1 ■ Llm Í *-j -V 1 
i l- (a • rfH «—«P-T (*) J *—«tIt (a H 

i,/(. • i>‘) 
T*(al • a* • y* * iimi„„,i|í 

^ “ a * 
I .. 

/k* ♦ (M* • Ua^ • 2kMa 
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So 

!*(**) * T'(i» 

Thu* 

Slmtl*rly 

Lim 

Lim 
i«» * 

[ t u ) 
5LT ^ M * 

Li,n[v-: ]-T 'iv 
* “"*% * |Â • «ir I "* 

Mr 

l-T* U,» Lim 
*"‘c1 T (* . ^ ) 

i~r—V]*T‘W 
l Tl* . * 

Ltm 
»-*», tT (» . ^ I- 

I • 
I.'CPQ ' ? 

Ui ._así. 
«Mi * -**. T*(,,)T ^ » T'Ik^IT |*,| . ^ ) 

U(^ **r) 
—t» 

U(^ • *,) 
..""""i"'" .t"" 

T{^ ♦ *,)T T<^ ♦ â| )T* (^} 

»lg- * ^ 

ÏC •jr * 

♦ —ÜjiL.-- *  _Li*jL __ ♦ 
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L|tc***1 
I7U * T1— *--Ht——   

+ <‘,í ñ^rr^FT^) 

ln Eq.TÎÎîr’ thOW,h #lmP,er '«Mon, w* m*y #yaJu*t® (he Integral 

Ak<í)] A.IK) ♦ BJKJe* 

where 

and 

H.1KI . . - , 
• In \m * ah xM - —-9^ 

^oSVu ^Z^.i'-ÍTr'"1 ln'° '•«■>'• •"•Ir.lc tu 
*«d C we Have “'■?. 

upper 
term# by C* 

r-‘ï'.C^T^ - 

•here 

O'IKI . A4Kl(s;(K, . T.'lKI,*) 

and 

G (Kl . n.(K|(T*(K) • Sa(K)e) 

The enntour „/ Integration la Indicated belo». 
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§ * 
** 

Fig, I i. Contour for Eq. (31) 

The contour la deformed In the appropriate half-plane* and 
branch cute are replaced by pole* a* diacuseed previously. Thu* , 

We now Invert the matrix 6m, ♦ F**» Let ua denote thla Invert* by 
G,| * Then 

where the tilde denote* Herrn!tUn conjugate and turn of p and q la 
Implied. The final etep, then, become* the dlagonallaatlon of the 
CPSD matrix Í Wi»W*} thu* giving the PSD for the actual degree* 
of freedom of the ayatem. 

c) Acouatlc Power, Power Radiated 

In computing the power radiated, we make uae of the unitary 
matrix Uq which diagonalited the CPSD matrix. The average 
power radiated, to the far field, P, la given by 
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*«ymptotic form at 4> m»y be compuied. Thle form it 

'Hr,6) 
r—oo 

where 

t^SäiüsaL?» 
A(e)e 

Jzaikr 

. k«‘/ eet 9 % , ‘ficvrww“) 
AWmSo **'* WÍÂ,) 

The acoustic velocity in the radial direction u, is given by 

Ü (r,0) 

, - M* »lnye^M co, 9) lU e) 

M* - 1 

glv* n* by**Ur* * P’ * ‘n th« i«r-field would measure i. 

. i»*. ä{£L * 
M1- 1 

. .üatí£*!l 
*r - Y 

The we rage radiated intensity is given by the expectation value 

I ■ ■j Re ^ pu ) 

• . Ui££_ IM/i ^M1 ¡ÏÏTj ♦ M cos B) I „ e. 
• » -* 

M1- I 7 ) 
• gyfcV» »wTT ♦ M COS 9) a 

KM* - ij* ' 

Now, 
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' iirkrj, - u» .U.I . 
where 

and where 

( W(,')W*(,| • ( W. W,*> 

f V Ü'L Í*"01« .010 u"UarV m*,rüt *Wch dletonell.ee < WmW*) , 

Ut i d*^#,írm*UOn,‘° Lh* degree' oi Further, let K. denote the power In the m'* degree of freedom, then we heve 

<W(x*)W%)) . V #i(x')UwK,&Mu;|#il{x) 

Ihr ^i**1^^* hâv* been encountered, they ere simply the 
finite Fourier treneform of the **<*) eo that, P “ 

(AWA*(9)) . 2 Uj *,(-.) 

wbe re 

Ik coi 8 . 

s - V« • "m* .In' e 
hr - i 

M 
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APPENDIX A 

If we make the following changes in variable» 

i « ^{M1 - 1) a - *M 

k 

then expression for the Green's function in Eq. (9) becomes 

¡«Mm ♦ («*♦ /9*)] 
G(x,y,s (x'.y'.O) * e J J d4 dß ^...|.|.j- 

-• -® 
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(••• M ♦ F, Vol, 1. Page 823) 

dis* 
Vm* - i 

R* « (y - y')* + ** 

The contour oí Integration for the above Integral la ahown below. 

Define 

l(u)»f die^HÍ'’(R^t* - **) 

By conalderlng the aaymptotlc íorm of the Hankcl function, the above 
integral ia aeen to be convergent in the upper half-plane for valuea 
of u and R auch that 

u > R 

that la, the region Inaide the Mach cone. 

The contour may be deformed to be a contour along the branch 
cut aa ahown below. 

4-ew» 

Thua 
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I(U> ‘1 I Jl d4 
1 btt?« I'.II|T OfoO¥i Out 

-£” .'“Hf .£" .■V’wVFTTi d4 

8 * 2 f" e^JotRÁ* - **) d4 

We thu* get <•«* Magnu* and Ober Hettinger, p, 179) 

hVra 

I(u) « 21 ' 

•o that 

c<r|r,,-7^T 77-7 

2vi e 
iirMNicc* 0*tm6) 

VM* - 1 R sin e 

APPENDIX B 

Ijn, * ^ coa --¿X 

X, s K ♦ %L± 

*'(j) * -in - ah iÿî + af (coa - Chit2) 
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K1» w^mi) 
V a a. / 

+ cos iv^)] 

+ISTS5) {[v(^)J - “s[(^ + t’)a + v(^)] 
'a ac / v 

la +i2£| rac-aV ]-sin| f mir/ 
LV a ac ) |a ae 1 2 1 L~v 

+ (^)^+(^1°°3^ ‘ ^[^(^)] (ch + ar3h 

niTT , 

*vk>; 

where 

„ _ cos Kr - ch Kr 
r - sin Kf + sh Kr 

and the normalization Nr is given by [ Dzygadlo 1967] 

-2 1 1 
Nr = (sh 2xr - sin 2/(r) + —(sh Kr cos Kr - sin Kr ch Kf) 

+ jfi- (ch 2Kr - cos 2Kf - 4 sin Kf sh Kr) 

+ "r [l +-| (sin 2kt + sh 2xr) 

- (sin Kt ch Kr + sh Kr cos /fr)j 

and the eigenvalues Kr are the roots of the equation 

cos K. cosh /C. = 1 



wmrn 
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and are approximately given by 

~ 730 «2 = 7.853 Kr = (2n + 1) 

¿•.pe'ctíveíyT'‘8 "“h ’ “d a“ b «'l 1¾. 

APPENDIX C 

A[w]=^ dr.^.KK.T)^ e-iTT] 
drr 

Now 

A[^m(f) ^¾)] = Q(m,n,a,ß,a,b) 

" Q(n,m,ß,a,b,a) 

where p is defined in Appendix A and 

0(111,0,0-,ß,a,b) 

= HP+ «ia^ch «n + JJ dx e^d) 

four integr^lsnay b6 f°Und by aPProPriately combining the following 

J» a 2lLi(Ä+.) l(«-*)j 

r Kaa.nn) i{aa+Kn) -| 

~ 2 L aa - Kn ' «a + /Cn J 

J0 a 21L oa + fcn oa - X J 
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RECENT RESEARCH ON SHIP WAVES 

J, N. N*%wn*n 
*4*»û*k*ftf Intiitut* ¢/ UthnolOM 

Cambridge, Waaaashzamttt 

ABSTRACT 

ThU p*p*r U cone* rt»«d »Uh vrio«. ••?««* 
(•r-hold *»v* patt*m *«n*r»«*«í by * •kip or ®*«*r 
moving body In *i**«ly iranaUllon. S*cl»nn tt conUiir»* 
. brt*( derivuon ol th. cU».uai Kolvln ^«.rn. 
b«*«4 upon Un**r invl*<id **** th*ory. In s»t,t,>n ” 
loll■ *c*l* •«-rial photograph. l^d 
.*V»« (•n»r*t*d by lb* Firry Bo*l UNCAT ENA, and 
compared bolh *Uh «h. »»«oryjnd 
ob.arvaicon. ol a .mall modal of lb* *"^ ****! * 
In Section IV ». diacua. * »«»Ing «anh **P*tlmanl. 
d**ign«d lo compar* lb* »***• g*n»rat«d by a ***** 
wall* with «h* naniln«*r theory lor tbla hall lorm, 
F malty. I« Section V. . third-order •olution . oa,. 
Unad for tb* Kelvin wav* ayatem, which Indica»** th 
«Marline* of - nonlmear ina.abiUty on tb* ca.p Un*. 

1, INTRODUCTION 

Ship wave, ar* .ntriguln* from arvrral vtrwpolm*. To the 
ob» er ve r U a moving v.a.el. either levman or profclonal, they 
«re a fa.c mating pattern on th* free .urface -- m \ ‘ 
later In* might, in fact, regard them a. a thing of baaaty. Toth, 
naval architect they are of primary intereat a. a ^ 
radiation, and hence of wave drag on the vea.el. Mnt* * **' , * 

.uiD hydrodynamici.ta of all di*c iplinea . they are a * rce of 
complication, inieractmg with, and affe«tmg ‘h* ‘ ^. 
of. .uch field, a. Vi.coue drag, propeller-hull * **• 
keeping. and maneuverability. To a naval veaael .hip wave, are a 
lisible aource of detection, via lb!. for hundred, of wavelength, or 
^length, down.,ream and to each aide of ,he v...el*. trach.^^^ 
Similarly, to the operator» of all type, of veaael.. th y 

hydrodynamic I»,. they are the aource of .eemingly endleaa cHalUngaa, 
both analytical and computational. 
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Stimm 

“r,:'-0,hVK,;T.v.v* m pâ^ïï.û«„ 

de4ir*t«d contribution» oí H«% iorli *,„♦ ,►' „ V <,'>‘f4< ‘* <rom ,h« 
in thU »ydi-nc», «ho labor.d .nK t? °*hm**¿ & whom »r» 
iacUUat*d by d!¡ilT« 2 / ,p‘**v' lhrorY *t «». 
m. „ «..m^sr'r'rr ---- 

Bâmjësâ^^ th» p»»t d»r»(jr rran« «mK^i ' ** «•ngincerlng »It«i«tion», In 
lor*. »L^ndon/dTh«*» *#umM?oñ ,' "",U,*"<I ... 
n»ld. Som. ol ,h,.. ä.dülVm.Ä- "r *" '"vl-l‘l 
K»lvin>Mirhd»n » k m»«* ** fand »montai improv«m«nt» oí the 

hmT.d”'.;,TwMo ir,;;..W’”" “-T ór;."m ^r:.*i 

of the Ferry Boat ÜNCATí NA a«,« P< . h*v# b#Pr* m»d» 
ve»»»I, in order to verlív ihr K i *f •I*’ model oí the «ame 
.»• tch íor v»rl.t l. I» ,V ,n p*,,*,rt, Prediction and to 
fn addition, » »erle. oí ^Lr^ZniYhlZ íro", -cale eííect», 
with the objective oí confirm«*» thl .tínTi T,*d" m 4 towin* **nN 
predicted by Ho «re I Idr.? i ir $ r! r.t n<*n,ln,'*r Ph**e JUmp» 

¡r.^rirrvnF1' 
(pXVrarv?, 

*.. lUlTn ... «“"'»• «' 

H, THE KFLVIN SHIF-WAVE PATTERN 

....une^Mr.M^aierJ:;;1 10 4 *h«p ^1. *e e«, 
individu»! pl»ne «„er **ve. q'^ * ¡f r »pace, oí 

.erved to t». Oí .m*n »mpilt^e relative t^ thHr^^XnVh " »'‘nd* th 
relevant Reynold« number* are oí order IO*»n irt* .2*1 * d ,hP 
led to » linear potential - Oo« m^el The iJf*L \ ,^ *« 

(I) 

*>¿0 



****** 8***ar&k on Skip Vjvtn 

*hûV.it«UnJ«Kr «"Srdtrirtî ‘, \h* -•^*namb«r (2.A. If 
r*«p*ci to v.rlwfon. of tim«. ,. ,h* **v* *i«h 
of th« «tv* motion c*n be readilv tin* ” m*,,.c dynamic prope rite* 
Hal, »hieb differ* from the above only a*f*it£T *h* y*,ei,ïv P0*«»- 

t- If/wle*1* 

k • «*/*. 

u obum.7 bTim;:^: t*;'r,ïîiti0fl ,°1 ,h— «»—«.ry 
(or fra- 

UKd.y,) * r di, r A(k,ej(,'lU«*®,i •f# *»•#}» 
•fn • a 

wl 
(2) 

u, (Z,. „ „,y) 7,¾ » tt. 

*# * * ♦ Vt 

V* * y. 

then by direct aubttltidlon 

Thl* integral -ein 
A(k,0)t o ie** 

depend on Um*. 
for arbitrary amplitude function* 

w * k V ro* e 



A"# swan 

or from the di«per»ion relation. 

k * (*/ V*) »ec* 0. 
(5) 

from M obvlouihphy*.lc*Uriument) ïhît\h*‘ ÍO,lo•• (4) (or 
He in the interval - w/¿ a o s . , *hp wâvr ¿‘»’ecilon 9 muet 

d..crlp<lo„ y,ii ..!.. 

tïi.y) « r ,(0 A(0>e,,,/v,,M<,,i* ,-r ••»il 
■*n it) 

-ich ,. u,. .um„, (or m.„v ... 

jh«l li lhr pol., r«dh,, R .’’J", ^ ,rom '‘I f,V doitn 
typical wavelength 2»v*/e then /rr ,»* *r*t comP|ire^ to the 
the dominant contribution?'!« (fe) tlll ! * •t^Uonary phae* 
where the pha.e function ,rom ,ho** *«1»** 0 

(r/V*1 »ec* 0 (* «o, © ♦ y #|n 8j 

la atatlonary, or 

(7) 

B I 
IÔ *®c 0 ** co* # * y »ln 0) m o. 

Carrying out the Indicated differentiation, It follow. ,ha, 

* tan 0 ♦ y(2 »ec* 0 - |) ■ o. 

cr that the aigniflcant ahlp 
wave, win be »ituated at point • *’„.h that 

The behavior of Oil. function i. indicated u r. 

í«*mre, of a Kelvin »y.tem »re «mmedlítlíy cfe.i:* ^ ^ e'*®nl 

I. 

- r * ■■ u. ■ » 

u*'.;»*«" ”• "> * i»/«i < 



R*o*nt Rtfarah on Ship Vaviê 

I. In th* interior oí the aector, two distinct wave system« 
will occur, the diverging (|i| > J5°) and transver«# 
(i#! < J5°) aystem*. 

Fig. I Plot of y a. from Eq. (9), •« a function of the 
wave direction 0. 

Finally, If the loci of a given wave crest are plotted, by 
requiring that the wave phase (?) be constant, while (9) ia aatiafied, 
the familiar Kelvin wave pattern shown in Fig, 2 la obtained, (The 
phase difference of e/2 between the two wave ayateme along the cusp 
line la not explainable from the above simplified argument, but is a 
natural consequence of the method of stationary phase. Fig, 2 is 
reproduced from Lunde [ 1951 ],) 

Fig. 2 Wave crests of the Kelvin wave system (from 
Lunde ( 1951)) 

The amplitude of the Individual elements in '.he Kelvin wave 
system will vary, in accordance with the function A(8) or the "free- 
wave apecljrum" of the vessel. Moreover, the wave amplitude will 
vary as R ^ for large R, In consequence of the radial spreading 
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oí *av* energy, Thie rr.ull follow*, too, from the 

irÂr^ICh* ‘h i‘ddUio"* ,eU* u* ,h*f ‘he ttmnumtlZx r**T 
near thf r,‘t n ». fU*P lln* - A ^Uortnly v.itd eMp,r,.lon 
t ,510? TKPt .T h** obulncd bv Petera j 1949) and by Ur*ell 
I 1960). The latter work Include* numerical computation*. V 

»I, PHOTOGRAPHIC OBSERVATIONS OF SHIP WAVES 

sectionPî,‘CfM* « developed in the preceding 

zz: *:r-.:‘r.:h vr,. 
Srr,ú.^Â^;r3!" t 

b?°l0*íibl}) or'ííom óbHc OÍ lh#|,’t'*,r’il*Id *****. Gullloton { I960); 
Fia Vii qULAn8,*e* (W*h*u»«n -«d Laiton* {i960). 

m.Tc; :-:,“r,r- r whi'. 
W: ,dbew. P, Cl /.kí1"16 on *í'r‘*í sonnai*.anee prepared during 

^...nrr'; .bir¿‘í.r«J>V.'"U,M- "or "*• " *•" 

fj-pf o^r;." xt^.%r»a:cM? t::,::.:,1 
•ng ^ fcg ieet waterline beam and 9 feet draft, displace* 400 ton* 

¡d. 
with depth* of 70 feet predominant. Origmally, thi. ce..rl u.. 
ho*en for observation because of the severe wave system« «,» i 6 

•t generated, in consequence of it* high (0. J«, Froude number Pre¬ 
liminary observations from a surface ves.el indicated 

-"p" •“¡■«'•«i.ny * 
the^cu.p line of the Kelvin wave .y.tem, but ,t U apnareM from Z 
subsequent photographic observation* that these *aVT, n Iri ? 
located inside the I9‘*28* boundary of the cusp Une! l* ®re 

J - 5 TTherCr "i <hB P^0,0*r*Pha obtained are »how,» here a* Fig, 
* V* ^ ' w#r* m*d‘* ^ * Haaselblad ¿-1 /4 x ¿. l U iLl A * 
and a wide-angle lens of I« mm local length. Figure» Í ,i,d 4 mcr* 

\ «Z .«,-/- •>» •—«.h 
f, ». l* :l*ur s *n oblique shot from 1,600 feet A u , i„-- 
from these photographs, the predominant wave* generated are L 

d|VerH,ag **U® *y,Mem* ‘V1»« If»Ide of the I9]o 
line. In Figs, 1 and 4 we have drawn in boundary lines s | W»' 

..... 



F1 ¡Vo,1:', ñi'“.;'' ,hf, «nc'tena .y„cm .Ull 
-•-T-.M?r i*,? "« 'VPlc.1 1«I6* eSp. «•«•f tangrnt Unes superimposed P 
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fl«. « A-rUI view of lhe UNCATENA, further down- 

tv;r,-'’.?'«eo',,ï.,h' >»»"><l*ry line. ,„d 
ypícaJ 3S 16 tati|¡cnt lines superimposed 

5¿6 



F‘g* 5 
"" UNCATENA 

from the center of the wake whi^t. i . 
çu.p ÎIne or boundary of Íe*wat* îv«em “rh* ,h°“Jd ,U on the 
1» to some extent arbitrary «in . V ut?' The *pex ot thl* center 
amplitude function A<0), a.’it app^Ti OÍ the 
veaael, the location of he ahlpïbow í6,\.ior thl# Particular 
(x.y) coordinate, i. arbitrary it U cli t th* °r,gln oi the 
the apex of the UNCATENA cu,p line.li «’ " l*Ct' ir°m ^18, J ,Kât 
by a distance of about one .hip feneth Au'^V OÍ lt# bo-- 
with other observation« of »uti. 8 *. conclusion is consistent 
cmphaaize here7hat ,n princL?V.Ve{pVf* * Gadd • -d we 

this observation and the vtPtedi7U<:ntrad,Ctl0n 

which .íô”db7Tngem‘tgolh3ew.dví cr^J.9^9*1' oi 
the i9°28' boundary angle and the ISOu* ! n the CU’P Ilne*‘ Bo*b 
stantlally confirmed bv he.*., WaVe Cre,t an8^ are sub- 
obtainable from these photograph! f£ct '*''1^ th* *ccur»cy 
any phenomena in these tests whirk *' wf hav® not observed 
Kelvin description of the far-fieid wave ‘n^onBi*t‘în, witb the linear 
nonlinear near-field diatnrt « ®** aplte of the obviously 
‘Ul,y ., SiwV Th.«“'. «■?•- 
irom the .hin’. Vietou. wah,- anH ^ r,r*> f' eii==t On lhe wave. 

Ä 'vVrir*"' 
..... ,m- =»u,d °ot 

5¿7 



Neuman 

îîctVh.VLTltt1 r4nTrr war sy,tem o{ thl* and the 
the .hortír 8râP r0m directly »bove tend to empha»Ue 
the «horter, and hence ateeper, diverging wavea.) 

in th- be ***" !n 411 ‘hrec Pboto8r*pha, but most noticeably 
in the downstream portion of Fig. 5, the diverging wave system * 
inchrde. three discrete group, of waves. aep.rVd by reUtlveTy 

!'* w k.node•* The observation of three wave groups i. 

î »d Laitone i l^r’rh lhc, Fi«* 23 of Wehausen and Laitone l «960J. The explanation of this phenomenon is somewhal 
ntroverajal. One posaibUity is in term, of the conventional "bow" 

" U tu '¡T": "d, por;lb1» o“1*" wui,.IjS", 
I. .polkiblV„ÍÍr ,'kV'.h'i Mr, “•"i Vl'”' '■ ‘h*'' wl'“' ">l* •ynthral. 
ihe f th •hlp, U ,B ^appropriate in the far-field where 
the •» at ionary phase approximation developed in the previous section 
Is valid. Indeed, if two dl.Crete "bow" and ".tern" wave sv.t.^L 
are superposed, in the Kelvin stationary pitase approximation the 

do wirft. * 0n,y T W4VC provided that the^obserTaondït.nc, 
downstream i. large compared :o me separation distanc e between the 

LZ t 7’*, P"" WlU' OÍ coatee, be interference effect, . 
with regions of reinforcement and other regions of cancellation 

Ít’e wltthhVonrdf1or radÍatÍOn and diiirsc“on patterns which we aa’s^ci- 
ÜmT ht "ondl9Pcjr»‘ve problems, in the present context these 

Is iat the n^W ^ th* amplItude Action MO), and my own view 
is that the nodal regions between the three observed wave systems 
correspond to aeros of the function A(G) for this partícula/vessel 
ind«d. it is not difficult to perceive , W some part, of the., pheio-* 
graphs, a phase difference of 180° across the nodal regions V 

fng wlv«; in'the mte^ ^ addlUonfal nodal linL’8 *"d discrete diverg¬ 
ing wave. ,n the interior portion of the wave system, but these will 
correspond to relatively short wave, which are not so strongly 

o.“« Xu.'"*"1, ‘ná mor' q,"ckiy •"•"“■•'i bv *ucL. 

.hat .hii* °ne P“?9lblc measure of the validity of Froude1. hypothesis 
th 1 ,,,?ip*wave «tf«!, are dependent only on the Froude number and 
the hull form, a series of photographs have also been made with a 

¡ , J fiberglass model was constructed, and equipped with a 
single battery-powered electric motor and screw propeller and a 

rd," 6 ^y "h. moir. 
for th-taH¡oh ÍU,9ln.gIe prop®1 le I* and rudder, with an antenna mast 

or/the* Orarle a °R i v- Te*t run8 Were made with 'hls ^dcl 
Unlverfuv Bridal Ms hi. hP. í°8raphif ob9e rvatl°''* ^om the Boston university Bridge at a height of approximately 50 feet. These photo- 

fe^gth’leM* T-rdC WUÍ a Mn'noUa 35 mm tamera and 28 mm foc^l- 
ngth lens. Figures 8-10 show the model wave system from various 

dfliTu aanh C’’ U70rtUn*tely’ no observations could be made from 
dhl ’t80 that rneasurement8 of the wave angles are not 

X XL" ';',Tde' ,C*,|C- * ■ " ®bow indeed .h.. 
s to the model discrete bow and stern wave systems are 
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1® 
M m 

Fig. 6 UNCATENA model 
bow view 

Fig. 7 UNCATENA model 
side view 

istlnguishable, whereas further downstream these bl ^ apparent 

iverging wave pattern wUn «everal nodal^ rj^ ^ ^ 

hat, on the model scale, mor four or possibly five dls- 
istinguished far ^ous attenuation is stronger at 
rete groups can be not . correspondlng to the model scale, 
he smaller Reynold,s.£U"lhe attenuation of the short diverging waves 
t must be presumed that ,thpe r efiects , such as the higher level 
n the full-scale tests is Ml-scale flow. Another 

loUceable4 dlf fe^nce l ^ the ob vio R r ^ app roxim^te^y 

[nhetardveierg8;ng8irÄ fulléale photograph shown in Fig. 5. 

Fig. 8 UNCATENA model and wave system 
(compare with Fig. 5) 
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uncatena 
aerial view model and wave system 

.■!ræÆSÊm-^^.^4Sm 

Reproduced from 
aesf available co 

UNCATENA model and wave system 
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Reaent Research on Ship Waves 

This infers a sienifiran*- jirr 

rfiff»..:! tln.g* but ‘his tentative Slstance from convcntiona 
—wv*v*i tea 

Photographs J® ^8361 Sh°uld wUh CÏSoys orVtereT^ 

IV. 
TANK TESTS OF A WAVY WALL 

ISS?-ÄVirS|S™iis“Ä 
Wifl becomrSnÍattUadbleWaVíh 38 °riginahY^etelope^by WhfthT^f 771 

and wavenumbePr.aCFrigureWnCfsthere h ^ abrUpt 
shows the calculated L7 J ! rePr°duced from Howe f IQAfil J 
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It should be noted that Howe'* choice oí a «peclfic problem to 
which to apply the Whltham technique wat bated largely on the rela¬ 
tive ease oí veryifying the result* with a suitable experiment. We 
therefore set out to conduct such an experiment In the MÎT Ship Model 
Towing Tank. For this purpose a model was constructed oí Formica 
plastic laminate, bent to coniorm to Howe'a damped sine wave, with 
fiberglass and polyester resin reinforcement and fairing of the back 
side of the Formica. The model was 10.4 feet long, by I.S feet 
vertical^ depth, and was immersed to a wetted draft of 1.0 feet. This 
model was fitted to the towing carriage in an off~center position 

to maximize the effective width of the tank and minimise reflections 
from the tank walls* The tank width ta 8e4 feet# and the model was 
set up to give a separation of 5.5 feet between the wavy aide and the 
facing tank wall. Teats were carried out at a speed of 4 feet per 
second, and the wave system was observed visually, photographically, 
and with a pair of wave probes which were placed at varying distances 
from the model to obtain a total of sixteen longitudinal wave record*. 

Figures 12 and 1 3 show the model in operation, and the re¬ 
sulting wave system. In no case was a phase-jump observed. In the 
region where it was anticipated. One can discern a somewhat Irregu¬ 
lar local effect along a longitudinal line about one foot from the tank 
wall, but this phenomena extends to the front of the wave group, la 
parallel to the longitudinal axis, and, moreover, originates further 
away from the model than the predicted phaao-jumps. This discrep¬ 
ancy is unexplained, although D. J. Benney (private communication) 
has pointed out that the existence of phase-jumps can be questioned. 

Fig. 12 Photograph of the wavy wall and wave pattern looking down¬ 
stream 
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V. TMlRD'OfiDCR 1WTE**CT10N5 IN KELVIN *AVE SYSTE«S 

m.crdrt. S ■».. ;hm»^'r0* 

¡«ta¡¡ w'LÏ!*“*!" i"*i«i«i it u («’'..“uíó”-,.*^!’^,*';".,. 
•ciion* to eecur. Tha« t»o er o,.-* __é_____ »««««5 uu«r- 
crvrr large .c«l«. oi SLiTÎ^ JZZ prim.ry en imertct, 
portion t th.fr «.*° *# tû ,r*r“í*r * 

Mo<|v.i.d hy ih. o«curr#nc. ol thlrd-ord.r mtr r*. tt™. 

•* noted In the provtou* a.ction. t h*** atudled th. 9W' 

ä ----- pnrj:^:¿r- 

.ImvTr.i.tlan.rr ph... r««alu IrTlnv/HV C11*P lln*' *h*p# ,ht 

«~l r\on]ln».rlll,. i.wûlîdî«?». hSJT*1 ' '¡i'" "**' 
-v«w h... e b. üS^ífiTSiíiísTíi'L'rs“!?: -1 “>• ‘u 
Ib. ho» mould r.u. ,uP„im: ilnlüllt^fVkL::7.,- 

g*llon on Uv* Ir*« avirlac*. and takln* slac* .*„»•. » . p”^** 

• "'Y "'•<'• *bi Ml n.blln.Vrl.i.Vc'.b 

.«ui, ttTLuiu, t 77‘,d ,,l“"r ^ 

SJd 



Rcetnt B*$*arah on Ship Vavê* 

sê * Y**. ■ 0 on i ■ O j *”u 

»her* tabeeripte denote p*rti*l derlvtUve*. The noitlion tnd co 
ordinale eytlem are at deílned In Section II. By tuiUMy ^on- 
dlmenelonalUIng the coordinate*, we may replace (10| by O e con 
dttlon 

on *.0. (»1 

The general tolutlon of thlt free-turface condition and of Laplace • 
equation, not Including local effect* near the disturbance, it (cf. 
Eq. (61) 

r va 
dB fid)* *»•*1 l HD 

,y». (In 
/2 < B < 

(*.y). where k • (g/V*) **cf 0, k • (k co* 0. k tin 0), and * « 
Section II the wave angle* were restricted to the sector 
e/2. Here we allow alt values of 6 in the integrand of (I *) • *n 
order to avoid taking the real part of the complex exponential: 
C(U° ImU « IW .rV«. ."1 <. 
t»w radiation condition we shall assume that (12) holds only If x is 
large and negative.) 

Th* tecond-order I re*-surface condition, analogous to (tl). 

is 

♦ti * 01,, ‘ ^0. * ?* 01,^.11 * 
(li) 

Bv inserting the flrtt-order solution (12) for 0, ln (I ï), and repise 
>ng product* by repeated integral*, it follow* that a particular solu¬ 
tion of (IÎ) will be 

rt* ‘„“S« 
d@ \ dtf «• ) í<^ «(•, .H»* (l-l) 

where 

i.*- * W* 

The weight function W is an algebraic function, determined bylh* 
v.rlou* derivative. ,n (IÎ), and It can ^ •‘“T* ‘L^ ÜM kLlon 
contain, only removable .ingularitie*. 
of the method of .tationary phase. ♦»* till b* 
R from the disturbance, and this .econd-order potential will e 
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masked by the first*order potential ¢, a OiR ?|. 

Extending these results to third*order involves straightfor¬ 
ward but tedious analysis. The third-order free-surface condition 
is analogous to (111, but involves more terms on the right-hand 
side: 

•„ ' ■ - ¡V*. • Viv.l* • 2.,• V*,,, 

* v*„ • • v‘, • v*„' 

“ ♦lit*»!! * (IS) 

A particular solution, analogous to (H|, is given by the triple Integral 

whe re 

(0,) ♦ k(0}) 

The weight function W(0, ,0 ,0J is singular at points where its 
denominator vanishes or where 

(17) 

and It Is necessary, therefore, to study the roots of this equation. 
It can be shown that the strongest singularities occur along the cuap 
line', for example, at the point 

0, s 0| a 0j - * • 1S°I b". 

The Integral (16) Is Improper at these points and we, therefore, 
conclude, a* In many linear wave problems, that a steady-state 
solution cannot be assumed a priori, but must be derived as the 
appropriate limit of an initial value problem. 

An expedient Initial value problem is obtained by regarding 
the right-hand side of (15) as a pseudo-pressure distribution, im¬ 
posed on the free surface from an Initial state of rest, and then 
looking for the steady-state limit which results. To avoid unneces¬ 
sary algebra we rewrite (15) In the unsteady form 



Retêaroh on Ship Vay«# î 

* ^1»» 2#ta* * ♦s»! " P(x.y) 0«) 

ing to (16) 1« readily >btíü¡ed a^d fn theHíii A *ol“t on corr*«po«wl- 
the only modl/kaUon kto rep'lac«? Fo */1 7W * W* find 
denominator oí W b/ the ne£ equafion ** * ‘h* 

k.tl * « ♦ I aec 0.)* * 0, 

I** 

(19) 

H„. .hfÄiuc'/.'ÄW’cii.tS’ T0 b* 
between manv oí .he 1 AÎ.L 1 ^ ' #,nc* c»"c«Hatlon occura 
poaalbUltlea ior error the*f"nr view oí the numerous 

Hr-« ;hT;:tf, r::t. r- 
!»nd.„Uy by olh.r. who .r. .Ulln, ,o Ucbl. i,.br, 

•ame íorm T*ve• on th* CU*P ,ln« oí the 
...d..huh..„d..o.hi"..» ïï'Z'" 

r¿n‘ 
5,7u.h. 

VT. CONCLUSIONS AND RECOMMENDATIONS 

§ ,. , Th* c*P**on above la the atandard one íor these* and report. 
«•«"rS^The h*v,B obviously rai.ed more que.tlon. than w. have 
answered. The observations oí the UNCATENA »how th.< . 

lurther than la possible In a conventional towln* tankl. But are th. 
f l/>a.rK nC*ai n<H,ld in ,h* Pbotographs oí the full* scale vessel and the 
t/¿4th'scale model due to dUi.rence. in photosraphk côîditfl. 
and eaperlmental errors, or are the tr«tïv.r.*e iavl, (anS .hon 

HeVrer,Jîgw^rd em0Díh,.t!>*tfrtUUy 4mPI“ud« «be modeï\cïle* 
¡hl 1.^1 rsïï. Ph^,C*Uy recomm®nd further esperlment, in which 
•cale ves« “anJ tí* 9u«ntltatively. both íor the full- 

a i and íor Its model. This task can be simplified If only 
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***• traiuvttrc« ur*«. 

’ n,U'M* •intUirlyl, * °W rt,t°> •»" In UM mo!f.l%ta" 

,v- *• 

"^■ncXr^r^w"r”''“ «CuVuitm ln l«ct, ihe p),. . tvy W*U ahcpv àut ta vt. ,y • tfl* a„«ctlv« 

Mî.*,"1“'1”' »Wcku iíííl1"* n"'“ *mÄ. ,.* « 
•infularitUa* or UkLZ?PW «ioirty vírvhf. ¿ . to° i*r 

c^;re*!d by /urt^r rleHm. , ‘f n0* ,lfe*ly o00**,'"* ,0c*J 

■»111 pr...ur. “>• Pn—nc. o, . .,¾ 1“^* <«r • 

SÄ **'” 'M'£ i1’1”r»M«.''Í*íM*u"»|'«py .mi,.,. 

out wi 
tutton aiao i, 

«'■ »«Äir/.vi'u*'"^ *• 
formad by ««varal Mí/ÍTma Th* •ub,e«luem aÄD.rf *h* ,ervle«« c 

UNcÁTrtíCCrel«ht biut .he nKe •tud*nt* D•vl7M¾• P«' 

ÂTSîîi, íü:" f,^ -•-•'.ñr ■" 
nf N*n Hing, wl.h phJ,0" "''.'♦•'‘ng ... Cfíl." 

Z&L^Fi^ by Mn. I»«'« 

»I «Ít”".- “» 

538 



H«»4arah on Ship Uav*§ 

REFERENCES 

Gftdd, G., "Ship Wavemaking in Theory and Practice»* Trane. Royal 
Inat, Nav. Arche., Vol. Hi, 4, pp. 487-506, 1969. 

Gullloton, R. S., "The Wavee Generated by a Moving Bod^,” Trane. 
Inet. Nav, Arche., Vol. 102, 2, pp. 157-174 

Howe, M. S. , “Non-Linear Theory of Open-Channel Steady Flow peat 
a Solid Surface of Finite-Wave-Group Shape," J. Fluid Mech., 
Vol. 30, 3, pp. 497-512, 1967. 

Howe, M, S., “Phaee Jumpe, * J. Fluid Mech. , Vol, 32, 4, pp. 
779-790. 1968. 

Inui, T», "Wave-Making Reeietance of Shlpe," Trane. Soc. Nav. 
Arche, and Mar, Enge., Vol. 70, pp. 283-353, 1962. 

Lunde, J. K. , "On the Linearised Theory of Wave Reeietance for 
Displacement Ships in Steady and Accelerated Motion," 
Trans. Soc, Nav. Arche, and Mar. Engs., Vol, 59, pp. 
25-85, 1951. 

Newman, J. N., "Panel Report -- Nonlinear and Viscous Effects 
in Wave Resistance," Seventh Symposium on Naval Hydro¬ 
dynamics, Rome, 1968, 

Newman, J, N., "Third-Order Interactions in Kelvin Ship-Wave 
Systems," J. of Ship Research, Vol. 15, 1, pp. 1-10, 1971. 

Peters, A. S., "A New Treatment of the Ship Wave Problem," 
Commune. Pure and Appl. Math., Vol. 2, pp. 123-148, 1949. 

Phillips, O. M., "The Dynamics of the Upper Ocean, " Cambridge 
University Press, 1966. 

Ursell, F., “On Kelvin's Ship-Wave Pattem,“ J. Fluid Mech., 
Vol. 8, 3, pp, 418-431, I960. 

Wehausen, J, V,, and Laitone, E. V., "Surface Waves," Handbuch 
der Physik, Vol. IX, Springer-Verlag, i960, 

Whltham, G. B., "A General Approach to Linear and Non-Linear 
Dispersive Waves Using a Lagrangien, “ J. Fluid Mech., 
Vol, 22, pp. 273-284, 1965. 

539 



Neuman 

DISCUSSION 

SOME DEVELOPMENTS IN SHIP WAVE PATTERN RESEARCH 

tatÍOna\lnhÍT\\dhÂrat0ril‘ Ship Mvi'ion Ultham, Middlesex, England 

i» ir¡ i KUUUCTION 

in :hip— 
Equivalent Source Arrav' concant rf P^t.8Je,* ‘n 4PP,icatl°n oí the 

the development oí a Lilly .utômïLh ^ I; the second ii 
analyaing the wave, a , J,y*tCm oi •’«o^ing and 
prepared a. Reí. l.‘ * ed account oí which is being 

U EQUIVALENT SOURCE ARRAYS 

• »ource di»tr!bufi'orT whîrhngTo *Tnea”Ftheo^rr*,’,lt Purp'>*t‘ 

predicting ,h. ■" ■’'’’""''I"' 
wavemaking on changing tank width and dept 

measurement, behind ^seHe's oí *3 mode^ l0ti.nterPret Wâve pattern 
and systematically varied beam " ,h P*rabollc huIJ iorm. 
gat ion ha, been mLe of the ^ve pattern. ^ ^ f ,nVeSti- 
i'*rm. (a parent and 2 derivative,) tested bl bf.*hmd 3 ,ype huîl 
case aí these more rean.urmíL?,^^.^^?1 iRef* 11 ' ,n th- 
were iound to vary significanilv with’e<luiya]«rit source arrays’ 
results ior one V ínsicji:á¿ythe —p> 
•ource. and sinks appear at a distance ab» J ’ r V b* ,e*n ,hat 
creased with inrrea«¡„„ r a dl8tance ahead oí the bow which in- 

wave phase velocity dÜi m T* °i 2nd order increase, of 
bow regions. mearity of the waves generated in the 

“* AUT°MATED RECORDING AND ANALYSIS 

system haP.rnowybeee^dMirô^d*,^0^°"h"* analy#i8 
-ry array oí 4 capacitance probe. wl£ p!^u^oTp^'and^o^!' 
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Fig. lb Wave pattern resistance 

puter program which analyses the tapes as punched by the recording 
digitiser. The probes themselves are as described in Reí. 4. The 
computer program uses the Matrix method oí analysis developed 
with this application in view and described in Reis. 4 and 5. It works 
by a least square fitting of an appropriate function to the wave sur¬ 
face defined over a suitable grid of positions. 

Some sample results for a 20 foot model of one of the trawler 
type models tested by Everest (Ref. 3), are shown in Figs. 2 and 3. 
Fig. 2 is a copy of part of a computer output. At the top a tabulation 
defining the wave ordinates Z(XR.YJ 'as measured' by listing R. 
X* Yh and Z (R is a serial number, X,,. Y„ are longitudinal and 
transverse coordinates respectively in feet, and Z is the wave 
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146 
147 
148 
149 
150 

25.218 
25.436 
25.653 
25.871 
lb.101 
26. 524 
26.742 
11. ill 

.395 

♦ 59. 
+ 60.058 
+ 60.275 
♦ 60.493 
+ 60,711 

8.000 
6.000 

4.000 
1.333 
6.000 

4.000 
1.» 

1.333 
8.000 

6.000 
4.000 
1.333 

1.643 
0.244 
0.722 
0.893 
0.7 

0.739 
0.623 
0.538 
0.804 
0.353 
1.111 

CASE 535.100 SPEED 8.710 

N THETA 100 DC,, AL 

10 

12 

00.00 
32.09 
45.87 
53.12 
57.70 
60.92 
63.35 
65.25 
66.80 
68.09 
69.1« 
70.13 
70.96 
71.68 
72.35 

0.695 
-0.460 
-0.636 
-0.127 
0.005 

-0.028 
-0.048 
-0.137 
0.056 
0.076 
0. 185 

-0.068 
0.003 

-0.074 
-0.021 

-1.112 
•0.Ill 
0.683 
0.218 

-0.277 
-0.397 
-0.217 
-0.021 
0. 145 
0.068 
0.038 
0.047 

-0.082 
0.063 
0.062 

0.0608 
0.0051 
0.0235 
0.0019 
0.0024 
0.0050 
0.0016 
0.0006 
0.0008 
0.0003 
0.0012 
0.0002 
0.0002 

0.0003 
0.0001 

08.481 
10.019 
12.191 
14. 144 
15.887 
17.468 
18.923 
20.276 
21.546 
22.747 
23.888 
24.977 
26.021 
27.025 
27.993 

-0.0371 
-0.0030 
0.0319 
0.0166 

-0.0334 
-0.0748 
-0.0635 
-0.0093 
0.1011 

0.0728 
0.0621 
0.1174 

-0.3172 
0.3709 
0.5631 

0.0232 
-0.0124 
-0.0298 
-0.0097 
0.0006 

-0.0052 
-0.0139 
-0.0620 
0.0387 
0.0812 
0.3033 

-0.1708 
0.0100 

-0.4387 
-0.1856 

100CW> 0.1041 I Tbl» U lo be compared with 100CW-0.09375 obtained by 
Everett with 15 foot model of the tame form (Ref. 4),] 

25.218 
25.436 
25.453 

8.000 
6.000 

4.000 
'.333 

CZ 

1.661 
0.194 
0.764 
0.85? 

DZ 

♦ 0.018 
- 0.051 
* 0.042 
- 0.041 

147 
148 
149 
150 

itt 
59.840 
60.058 
50.275 
60.493 
60.711 

i. jaa 
8.000 
6.000 
4.000 
1.333 

V. it 

0,502 
0.766 
0.607 
0.693 

• 78 
0.036 
0.038 
0.254 
0.418 

RMS RESID 00.163 RMS Z 01.080 

Fig. 2 Sample computer output 
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elevation in inches). In the middle is a tabulation of wave spectrum 
parameters accompanied by the resulting wave resistance coefficient 
100 Cw. The first 4 columns define the amplitudes and resistance 
contributions of the various wave modes in notation which corresponds 
to that used for example in Ref. 4. The last 3 columns define functions 
used for computing 'equivalent source arrays' in notation explained 
in Ref. 1. It may be seen that the resistance coefficient 100 Cw checks 
reasonably well with a result obtained by Everest for a smaller model 
of the same form, using manual pointers on transverse cuts analyzed 
by the method of Eggers (Ref. 6). 

.At^the bottom is a tabulation defining the wave ordinates CZ 
'Xr' Yr) ’as fitted1 in the same format as the 'as measured' results 
but with an extra column listing the difference between measurement 
and fit. Fig. 3 shows a sample profile plotted from the computer 
output. 

Fig. 3 Profile at y = 1.333 feet from tank centerl me 
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VARIATIONAL APPROACHES TO STEADY SHIP 
WAVE PROBLEMS 

Masatoshi Bessho 
The Defense Academy 

Tokceuka, Japan 

INTRODUCTION 

Although there have been many fruitful engineering applica¬ 
tions of the theory of the wave-making resistance of ships, It is still 
not possible to completely explain the wave resistance of the usual 
surface-piercing ships. The so-called order theory gives us Insight 
into the structure and composition of our approximate theory; howcves-, 
we do not yet have a consistent and practical theory which is univer¬ 
sally acceptable. 

The author has speculated on what would be the best approxi¬ 
mation to our boundary value problem. In this connection, is there 
a useful principle which corresponds to the Rayleigh-Ritz principle 
in the theory of elasticity? The present paper will provide a partial 
answer. 

Our first aim is to introduce a variational principle which 
corresponds to the linearized boundary value problem. This is 
accomplished by introducing Flax's expression from wing theory. [ 6] 

Our second aim is to find an alternate expression which will 
enable us to treat blunt bodies, since Flax's method is useful only 
for thin wings. Gauss' variational expression [ 24,25] for the 
boundary problem of a harmonic function is introduced for this pur¬ 
pose. This is shown to be equivalent to extremizinp the Lagranglan 
or kinetic potential. The resulting dynamical interpretation of the 
boundary value problem is similar to the approaches of many other 
authors who have studied free surface problems by using the 
Lagrangian [3,12,13,14]. 

I. FLAX'S VARIATIONAL PRINCIPLE 

The variational principle introduced by A. H. Flax in wing 
theory [ 6] may be directly applied to our problem. Those unfamiliar 
with this principle are directed to Appendix A. 
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U the KuU*-Joukc«rsàt condition (6,7,8) la aatiafied at lhe 
trailing edge , we have the reciprocity relation 

by (A, SI and (A. ¿41, where p U the preaaure , w U the vertical 
velocity component, and tildaa denote reve rae (low qoantitiea. The 
integration is over the wetted portion oí the «hip hull S, 

Let i(* .y) be the free aurlace elevation. The variation o( 
the integral 

J ( (ï» - P»4, * pw| d* dy l » (I.¿) 

due to variation« of p and p takes the form 

Since the variations èp and 6p are arbitrary, the pressure which 
ext remises the integral 1 is equivalent to the solution ol the boundary 
value problem (A.¿5) and (A.¿6); that Is, the problem (or the pertur¬ 
bation potential 0 with the conditions 

(1.4) 
a w a . |ij 

on the free surface. The stationary value of I is the drag; namely. 

where p0 denotes the correct solution. (6,24.¿6] Thus, the bound¬ 
ary value problem is converted to a variational problem, me solution 
of which Is suggested by various methods of approximation. | 6] 

If we introduce the error integral. 

(p - po)(w - 4e) dx dy , (1.6) 

we see from (1.1), (1.4), and (1.5) that 
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E* • D - !♦ (1.7) 

Th«reiore, Flax'* principle produces an approximate eolation which 
maJtee the error Integral (1,6) stationary. ( 21] 

TW« method euggeate powerful means (or obtaining approxi¬ 
mate solutions, but unfortunately It has been applied only to thin 
hydroplanes and wings. ( 7) 

H. GAUSS' VARIATIONAL PRINCIPLE 

In this section, we assume there Is no free surface. Then 
the velocity potential has the following representations for the source 
sink and doublet distributions: 

(2.1) «see 

and 

1 > 0,1,2 (2.2) * • * * 

Here , quantities with the suffix aero stand for the correct solutions 
while those with other suffices are not necessarily correct. For thas 
potentials we have the following reciprocity relations: 

(2.3) 

and 

(2. 5) 

Gauss's variational principle for the Dlrlchlet problem states 
that if we consider the functional 

(2.6) 

where 
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*6 1» given on <5^ 

*|>«n the /unction # whi K . ^2* ^ 

« OÍ ,h^ p*cIprocIty (i.V)!01 ™* U ‘-Uy verified*^ *°lu* 

thf fewJ,!.* **fT1c way. we rnav en« 

<o7<S:Z7£j^ 

where 

H ’ * 2W dS, 
í¿.8) 

~ *•*«« on 5. 

,0 ,Í. pr...„( vajj 

Ä —m by 

J ' 'Íl, *<2ír-V<IS. 

*■>« uk,n„he v.rl,tl U-‘0» 
« ne variation, we have 

6J 
5 f Js bw» - \) dS. 

r . i2*li) rorn this wt* «g»« *1, 

í¿4’251 ',U,valM‘"‘> probIcm. 

N°w. since 

JÍ, ‘iff HV*;d,. 
(2.12) 

where D is th 
a naturaj measure"«/«,^161' donia‘n and dr i 

ure °i the error nr * 17 is a volume „1,. 
"f *n .olTíZ ;Tm- 

' lfff0 
(2. 13) 
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which become# 

E * (b - ^ dS* J» - J> U 

by Green'# theorem. Here, 

j. .♦..a* 

I. the correct vaiue. We #«« ciearly th»t 

6E b - &J. 

(¿.IS) 

(¿. Ifc) 

since £ 1# non-negative, we have the Inequality i »0) 

Je*J. <¿- 

U l# well known that among all function# 4> having a finite 

energy Integral, 

T S IÍSW dr, (2. 18) 

,„a , given norm., ‘T."oriin^V^^-'.ol-tuTlnlLÙ",- 

T 2 j0. I 1.4] (2.19) 

Tu. ! ,v,.. .¿„ai nf (2 17) and we now have the variational problem 
(2 78) a. an Invllutory' transformation of the latter minimization prob- 
!em (See, for example, the textbook on variational calculus [ ll].) 

in. A VARIATIONAL PROBLEM FOP THE LAGRANCIAN 

The preceding principle can be oaslly extended to flow in a 
gravitational field. Let us consider tue functional 

T - V, (3.1) 

where 
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T ■ ‘UI i7*<' dr (3.2) 

and 

v* (J.J, 

^^“„“"„sis^LÎïïïSSr’tT*; *• *•)».. 
♦ h.. . „v.„ r,<,rmal d. ,* ,™i. 151 A-""-"k." th. («clon 

on s and F. (j#4) 

Taking the variation oí L, we have 

Jjf - st)H ds. 

’'h“:h " 11,0 tru- )1-. n.» d.aec.ed (,.. 

8L'‘iij0 ♦'■’“dr , lyy pS, dS, (3,14] (3. 5) 

where 

p/? = - i(7*)8 - g;. (3.6) 

etationïr^v^u^of6 I"***“ the 
iS just an extension oí Kevin's nbdíí! ^ 18 harmonlc- This oi nemn s ninlmum energy principle. [ 1,4] 

oí L is attained wheü'the^fret iuríacr0"10 ' the •tatlonary va3ue 
zero. The latter is an exten!., l ^ ? ls «»«tant and 
minimum added mass. [ 3,H] ° abouchinsky's principle of 

st rain ^condition ii>s1 con ver ted^to^ be transíormed that the con- 
te^m which is aero 
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P * T - V- 0.7) 

Assume thet 4 Is harmonic and, for simplicity, assume that the 
Integral over an Inspection surface at infinity vanishes. Making use 
of Green's theorem we have 

P * *ÍÍÍD l4, * ^t] dT ‘ ÍÍÍ, t* d* dy 

0.8) 

where 

and H is the depth to the bottom. 

Taking the variation, we have 

Therefore, when 

p * 0 on F and * 0 00 S and F, (3.1 i) 

P Is stationary. This result was first given by J. C. Luke [ 12,13) , 
who pointed out that the volume Integral of the pressure is equivalent 
to the Lagranglan. 

Furthermore, we may write (3.8) as 

P = M - H, 0.12) 

where 

H = T + V 0.13) 

and 
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■•-Hi ♦. dr. (3.14) 

^ulí T?mentUm 0Í th® 'y,tem tn the x-dlr#ctlon and becomes 

M «..dS-Jf «>ds. 
S*F v WS.F 

when 4 saticllea the boundary condition. 

Hence, 6P a 0 means that 

6H » 6M. 

(3.15) 

(3.16) 

That i., when the variation oí the total energy equals that of the total 

.ir1“""10"',he p“-mui «>• Är 

as 
For purposes of application, It may be convenient to write P 

(j ♦(x* + !♦») dS - 4 CT t dx dy. 
S*F 

(3.17) 

train n? 1 *PP1,ed to a «guiar, two-dimensional wave- 
cat on of tM thX ‘ n genur^' thcre 18 aome difficulty In the appll- 
cation of this theory since the Integrals P and L may not be finite. 

finite amplitude walí!"?^P°tentlal ÍOr 8 

model^Hlfe'the Pdlíí^c“i*y m»y be to assume a flow 
FU,d Iwh h Rlab°)ichln8ky m°del ( 3] In cavitation theory (see 

caS¡ Áh0t'heVer’ thl“ muy be lmP08slbIe l" »be three-dimensional 
flciem io thatrth?yamay te lr,troduce P^yleigb's friction coef- 
there are Itm downstream will die out. In any case, 

»^,ric^„emv„tr„*.. m>k' “• h',itant ,o b'*"’,h' 

^ u...Flna11^' let US con8lder Ibe linearization of the free surface 
condition. Neglecting higher order terms In the Integral over the 
water's surface and assuming that 8 

gü(x,y) = - <j>,(x,y,0), (3.18) 

we have 
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ib) 

<■ surnciENTir 
t*«C£ distance 

f'lg- 2. Rlabouchlnsky Modela 

where 

and 

p = pF + Ps , 

Ps * ' iX *(x- + i V ds. 

Pf='ÍÍI dS. 

Accordingly, If we act 

+ g<J>j = 0 on F, 

which ia just the dynamic boundary condition, then 

Pp = 0, 

and we are left wiUl a varie,lonal c„culu. 
problem for P 

(3.19) 

(3. 20) 

(3.21) 

(3. 22) 

(3.23) 
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IV, THE LINEARIZED PROBLEM 

The v»rl«tlon*l problem for Ps (3. 20) le not aatlefactory 
elnce there la no reciprocity relation for thla form. We must Intro¬ 
duce the reveraed flow potential aa waa done for Flax'a principle. 

Let ua conalder the Integral 

L%«.^ « L*Gt,4,) » - i dx dy, (4,1) 

Aeaumlng that and are harmonic and aatlafy the free eur- 
face condition, we have, by Green's theorem, 

3 ‘ i = - I j'j’ dS. (4. 2) 

where S is the surface of a submerged body. Thla la the recipro¬ 
city theorem for a submerged body. [ 8] 

If - ¢,, then 

lV*) H j £ «W.dS * L(*,$), (4. 3) 

where 

dx dy. (4.4) 

L is called the modified Lagranglan integral ( 5] . Note that L($,4>) 
has a finite value in the linearized case but not In the finite amplitude 
case. 

If S Is the wetted part of a surface-piercing body which Is 
under the waterline before the free surface is disturbed, there is an 
additional term from the surface integral. [15,16,19,20,21] The 
reciprocity theorem, in this case. Is 

L*(4.,,Í2) * - i ¢,12 dy - ï ¢,^2,dS 

“ij VtsdS- <4*5) 
s 
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When ^ and ♦* « - x„ L* become* 

(4.6) 

where n i* the Inner normal to the waterline curve L In the hori¬ 
zontal plane. Thu*» the flr*t term In the right-hand aide of (4,6) l* 
the correction for the change of the wetted surface S. [16] Thi* l* 
justified, on the one hand, by the dynamical meaning of the Lagranglan 
and, on the other hand, by the linearlaatlon procedure of the pre¬ 
ceding section. 

For the case of a pressure distribution over the water surface, 
we may Integrate (4.5) by parts and make use of the formula* in 
Appendix A. This results in the expression 

2 dx dy « dx dy 

(4.7) 

Thus, the reciprocity becomes [ 8) 

£*(p,,pf) - £ P.^dx dy * P,t,dx dy (4.8) 

where 

Making use of these reciprocities , we may easily show the 
equivalence of the boundary value problem to the variational problem 
for the functional I*, where 

for a submerged body, and 

for a pressure distribution. [ 24,26] 

557 



Beaeho 

Alternate representation* for these Integrals are 

I = 1- {$o• $0) - L ( 4> - ^0, ♦ - ¢5), (4.12) 

and 

(4.13) 

where the *uíílx aero stands for the correct solution. These for¬ 
mulas show that the variational principle extremlxes the Lagranglan 
of the error and that the stationary values are just given by the 
Lagranglan. 

The difficulty arises In the case oí a *uríace-p»ercl-jg body. 
From (4.12), the functional to be extremlsed Is 

Taking the variation, we have the boundary conditions equivalent to 
this variational problem. 

♦ ** - gto* ♦, * gto on L, (4.15) 

♦ »* - - X» on S. (4.16) 

But we have no knowledge of the surface elevation on L, a priori, 
as this problem may be Indeterminant. ( 17,23) We must remember 
here that the solution Is unique only when the detachment points are 
fixed by the theory of cavitation. (3,14] 

This difficulty may be avoided by Introducing a homogeneous 
solution for the two-dimensional, linearised case (see Appendix C) . 

For the present case, we might proceed as follows; Let us 
consider the difference between a surface piercing body and the 
limiting case of a submerged body moving very close to the free 
surface as In Fig. 3. ( 23J The boundary condition on the water 
surface above the submerged body must be e 0, but since the top 
Is also the free surface, this Is equivalent to 

*, a l.(x.y) a 0 on T, (4.17) 

or integrating, we have 

♦,(x,y,0) a - gt(x,y) a Const * func (y) on T. (4.18) 
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(a) SUBMERGED 

(b) VERYSUGHTLV SUBMERGED 

(c) SURFACE PIERCING 

Fig. 3. Slightly Submerged Ship 

(4.1 

oi» a thÍn layer °f Unif0rm fl0W 

When this layer moves with the body, 

<Mx,y,0) = - gC(x,y) =-1 on T> 

and we clearly have the case of a surface-piercing body. 

body is equivalent1, tííhe variaüonÏÏ p^oMem ííÍoT Aft 
this problem, we mav calcnlafA ^ ^ 14,,10). After solvint 

InatMr Plane by (4*18)^ but 11 wUl differ from6 rr9)0ninVer In this case, it might be necessarv in*- T '4*19'’ in general, 
which satisfies condition (4 19) [T phÍS Potential 
This procedure may not be ^ ^tent^. 
water plane is difficult. ? ” 1 b cause the treatment of the t 

ing tw^bo^dlr^vaÏarpÎoM^mT^Te?^^^ t0 consider the foil 
into two parts, Problems. Let us split the velocity potentia 

(4. 20) 

with boundary conditions 
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<)>IX = 0 on L 

<¡>1,, = - x„ on S 
(4.21) 

Ce = tz = Ceo» given on L 

4>ev= o on S 
(4. 22) 

The corresponding functionals are of the form (4.10) for ¢.. 
and of the form (4.14), without the third term on the right-hand side 
tor cpg. 

For the present case, ^ must be equal to 1/g by (4,19): 
noweyer, in general, it will be arbitrary and, perhaps, a constant 
o^the form (4.18). (|>2 is called the homogeneous solution. [18,22, 

Finally, it should be noticed that the Lagrangian is closely 
related to the far-field potential. For a submerged body, we have, 
from the boundary conditions, (A.9), (A. 11), and (4.3), 

B = - Jj*g xxy dS + 2L(tf>, <j>) 

= 2L((f>, <|>) + V, (4. 23) 

where V is the displaced volume. For a surface-piercing body, 
interpreting condition (A. 10) as a correction for the real wetted 
surface, we have 

'$ ' gri. dy= v* (4. 24) 

where V is the displacement volume under the still waterline. 
Therefore, we can write (A. 11) as 

B = V + 2L*( 4.,^, +¾. (4. 25) 

where ¢, and «fr2 are defined by (4.21) and (4.22), with ;20= 1/g. 

For a pressure distribution, we have, from (A. 18) and (4.8), 
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where p2 is a homogeneous solution, as is <|>2) and |2 = i/g. 
Since B is also a measure of the total lift, this formula shows that 
u h^mo8eneous solution for the constant surface elevation influences 

the lift, as we have easily verified by the reciprocity (4.8). [ 26] 
It should be noticed that, in this case, the condition A = 0 in (A. 18) 
insures the continuity of the planing hull. 

Kotchln’s function (A. 17) is also given in the form 

H(e) = - j dS - <¡>e£ dy + 21-%.¾), (4.27) 

where has the boundary values 

^di/= - <l>ev on 

and 

gCd = % = - tx 

(4.28) 

«Ms called the diffraction potential. [ 23,26] Here, the second term 
of (4.27) may be omitted as in (4.25). 

For a submerged body, there is no Integration along L and 
H may be written as 

H(e) = -Jj's (<l>e + id)3'./dS- 

Finally, for a pressure distribution, 

H(0) = 2pi*(p,pd), 

(4.29) 

(4.30) 

where 

= ■ ‘í’ex* (4.31) 

V. CONCLUSION 

We have presented two variational principles for the boundary 
value problem associated with the waves of a ship advancing at a 
constant speed: The first is Flax's principle, which makes use of the 
stationary character of the drag. This principle is useful only for 
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based on Gausz’fl^prlnctol^^whi îhl,"vlne■• [‘.24] The second Is 
lern to a variational problem "tm co"v<1,rts **>« boundary value prob- 

■*oa ol Rlabouchlnsky's prlneVet Ä? '¿aVs“] ¡^7 

•h= l-agranglan^nd'has^recentW bee>n T oharacter It 
orm, to study water wave dispersion Drobl Y Luk?’ in a m°re general 

ais o have analogous p r Inclnleaf^ nu? robJlema • [3,12,13] We 
and for the radiation of energy due to®^«^ 80,Und WaVe dlffraction 
rolling oscillations of ships25^,28%¾^' 8way^g. and 

«he boSa;rvÍ^roPbí.m1f,e„d«Phi,!lle lh« “ynamlcal meaning of 
mately by the Rayleigh-Ritz ^ US t0 solve them approxi- 
ever, when we try to applft^^ ^r6?re* f 6'28,29^How- 
are two difficulties: PP Y Principles to our problem, there 

the traUlng^waU! ÚŸhis ma/bïbecauso of 
model as in Fig. 2, or by íntrod^ing Intr°dacing an artificial 
linearized case. * oaucing a reversed flow for the 

case the wave profil^i^not^n^wn^l SUí'ía<:e'piercing body, in which 
case. This difficulty may be avoided Z 7™ in the llnearired 
solutions [ 27] which appear in thl Íase i Í g hom°geneous 
bution. [ 26] ^ m tne case of a surface pressure distri- 

repres^iTa L^mSVofTnX0!?1 Tdot ^ ^ necessarily 
approximation. For this reason it mav h aUg,g?St new me^ods of 
engineering purposes. ' y be useful> especially for 
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APPENDIX A 

The Linearized Velocity Potential [2,23] 

Let us consider the flow of water around a ship S, taking the 
coordinate system as In Fig. 1 and the velocity of the stream at up¬ 
stream Infinity to be unity. 

z 

Fig. 1. Coordinate System 

The pressure p(x,y) on the water surface Is given by 

■^p(x.y) = - <f>n(x,y,0) - g£(x,y), (A.i) 
P 

in the linearized theory, where p Is the water density; g, the 
gravity constant; £, the surface elevation, and <(>, the perturbation 
potential (d<|>= - u dx - v dy - w dz). The suffix stands for difier¬ 
en iiation. 

The kinematic condition on the water surface is 

<l>j,U,y,0) = £x(x,y). (A. 2) 

Since the pressure on the free surface Is constant, the potential 
must satisfy the condition 

<(>xx(x,y,0) + g<|>2(x,y,0) = 0. (A. 3) 

A solution which has a source singularity at a point Q and 
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satisfies the above water surface condition can be expressed a. 

——film rrgt'-tisiMQ'*y) 

{ ,m "p^ V-to JvJo ■ 

aiid6" /«"cis’o’t y sin e TSfílx\,y'’ 'Z'K r(p-Q) = TO 
»ai call thl. the fidame^t“ e- Hereafter, we 

the following values asymptotical?y: 1 y* TW solutlon approaches 

S(P,Q) 
x»x' (A. 5) 

, r>*/z , . 
S(P,Q) -? 

x«x' ^ Xw/Z sec¿0 d9. (A. 6) 

By considering the integral 

f f [<MQ)S(P,Q) . (KQlS^PyQ)] dS(Q) 

*sj ds- 

Since * and S satisfy condition (A. 3) on F. we have, finally, 

WF) = J.fs K(Q>S(P,Q> - «Q)S,(P.Q)J dS(Q) 

"?JL [«QIS.'tP.Q) - *,.(Q)S(P.O)J dy', (Al7) 

where L is the curve on which F cuts S. 

the water^uSlceTwelbave011 ^ dU6 t0 apressure distribution over 

^ = ¿Iís P(Q)Sxt(p.Q) dx' dy', (A, 8) 
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Sns^m*rthTt1,iA¿oVe“itl‘at'dr.,tefd ,A-1' by Part'- W« have 
over S and F, Including L. 1 d SUrface «Nation are continuous 

we oÄf a“:;4.“rctfrrra^“d (A-6' *s' 

Zirr3 
where r = Pü and 

A‘S{ +edS4lL *‘dV’ 

(A. 9) 

(A. 10) 

(A.11) 
ds-i£ d)r. 

The expression for A may aleo be writtea a. 

A^h*"dS'i§§t ♦.dady, (A. 10') 

domainf Vhfs'muat^e zero^othe^ï outward flux fr°m the water 

°f th<i rc‘Istance «her than from the wàvê'a^ëplaïh.' * ,0UrCe 

we aleo have the kinematic condition on the surface of the ship. 

°n S- (A. 12) 
Therefore, 

ÍJS = -j J xvdS = 0, 
s (A. 13) 

FrerÂnë^tûî:Pwb.etWvëh' “dUt“'b'd 

sit *.dy = -j'L5dy = 0. (A. 14) 

avoid this difficulty8may b^tTtlke^hí rï^1 Ca8eS' Way to 
On the other hand, for the consistency of the^heoty^U mly beS* 
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preferable to take 

U. 9') 

instead of (A.9). 

Far downstream, we have 

► w/2 

^-ir/S 

/■»ir/2 

X « -î "f J ^e(Pi9)H(0) sec20 d9, 
V -m/n (A. 15) 

where 

<MP,e) = exp [ g sec20(z + 1¾] (A. 16) 

and 

H(0) " ‘ dS ■ f dy. (A. 17) 

For a pressure distribution, we have simply 

A = 0 

and 

B Pg P(x,y) dx dy. 

(A. 18) 

where 

H(G) = Pgl£ P^'W^dx dy. (A. 19) 

to UX Ufl2radÄ COnditl- corresponding 

1 ~ 
pP(x,y) = ♦x(x,y,0) - g£(x,y), 

^(x,y,0) = . ^(x,y), 

(A. 20) 

(A. 21) 

and 
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♦.<(*.y.o) + gï,(*,y,o) = o. 
(A. 22) 

3(p.q) = s(o,p). 
we also have 

(A. 23) 

SX.(P,Q) = S,,(Q,P). 

The boundary condition, for thl. c„e a™ 

in = - 4>v = Xg 

and 

(A. 24) 

iv on s. 
(A. 25) 

= - w = - i?z = w = - ^ 
X on s. 

(A. 26) 

appendix B 

The Progressing Wave 

^“Är^*Ä»^^Ä;MÄwaye, 
We take the form of the complex potential to be 

^ + 4 = - ia exp (kz - ikx), 

where the origin is on the undisturbed waíer leve!. 

The integrals to be evaluated are 

(B.l) 

p = M - T - V, í-C-ív. ■as (V ¢) dx dz, 4-V= £ f 
(B. 2) 

P 2,1 ^ 
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where 2ir/k is the wavelength. 

Assuming a surface disturbance of the form, 

£ = b + c cos kx + d cos 2kv, (B. 3) 

and integrating the expressions for M, T, and V, we have 

2 
— M = irca[ i + k(b + + (c2 + 4b* + 2d2 + 4bd)] , 

g 

i T = [ 1 + 2kb + kZ(cZ + 2bZ + dZ) + k3cZ(2b + d)] , (B.4) 
P ~T~ 

iv.f^ + d' + Zb2). 

Differentiating P with respect to a, b, c and d, and equating 
the derivatives to zero (by the principle (3.16)), we obtain the follow¬ 
ing stationary values, neglecting higher order terms: 

5 2 2, 
c = a(i +-| k a ), 

b = 0(k3), 

d = ka2. 

(B. 5) 

g/k = 1 - k2a2, 

¿Tbf c'd+l^, 

£-Vk c2(! +^k!c2l, (B. 6) 

¿P,¿(T.v),fkV. 

These expressions agree with other well-known results. [1,2] 
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APPENDIX C 

A Variational Principle for the Stream Function 

in the tw°-di"iensional case, we may use a stream function 
instead of the velocity potential. Let us introduce the stream 
function as follows: 

<frx(x,z) = ijjz(x,z), 4»z(x,z) = - 4iÄ(x,z). 

Then, the boundary conditions for 4/ become 

^(x,0) - gi|;(x,0) = 0 and $z(x,0) - g$(x,0) = 0, 

»z) = - -- on S, 

&(x) = - 4j(x,0) and ^(x) = 4<(x,0). 

(C.l) 

(C. 2) 

(C. 3) 

(C. 4) 

Introducing a modified Lagrangian integral, 

L = dx dy - -|J &|l2dx, 

we have, directly, the reciprocity 

L = L (4i2,^|) 

(C. 5) 

(C.6) 
dS 

In particular, from (C.3), 

dS '(+Ã) = ÏA, ^ = ds = 1 f 

,i£ (V+.|!dxdy ' if Cdx = L(»..+o). (C.7) 

The variational problem with the function 

571 

IttttiÜiMttÜ 



Beeeho 

(C. 8) 

Is equivalent to the boundary value problem for tj;. Here, the 
boundary values, il'o and 'l'o» ar® given by (C.3). Since a stream 
function has an arbitrary constant, we should also consider the 
modified problem with boundary conditions 

4*0 = - 'i'o = C: constant on S (C. 9) 

which Is the homogeneous problem. [ 22] 

If condition (C.9) holds, the surface elevation at the fore and 
aft ends Is C (Instead of zero for the condition (C.3)), but the x- 
component of the velocity at the same points Is -(1 +gc), by (C. 2). 
Hence, the water flows in and out the body unless C = - 1 /g. Thus 
an adequate condition for a surface piercing body Is 

. 1 ÿ = - z - — on S (C.10) 
g 

Throughout this section, ws have treated a class of functions 
4» and 4 which are finite and continuous everywhere. Aa long as 
the integrals considered exist, the method may be applied with some 
minor changes to other classes of functions. 

The question of the uniqueness of solutions will be left to the 
future. 
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waveÄ/Änce of sh,ps WITH TRANSOM STERN 

Naval Ship Research anTDevelopment 
Waehtngton, D.C. Center 

abstract 

and6 transom 
The total wave resuianre nf y an/ndlre^ method, 
larlty distributions fm- a u a i:oni^lnation of singu- 
various parameters of the^bulb and th m/nimized with 
at each Froude number T»,« « d transom stern 
«ta body streamlines 

introduction 

srrn8!^rf^^^^-:-in ships having transom 
cargo vessels, because of the advantage* d®Stroyer8 also for 
well as modern improvements in 8¡ 8 0Í more cargo room as 
cargoes over the stern. Recently a ,l0ading and unloading 
thxs author [ 1] , and a mathematical model ^ 8tUdy Was made bV 8 
applying a higher-order ship-wave thTn.t í STUggested ln of 
theknatMhe P^oblem again from a different anile thÍ8 paper' we shall 

problem in a more practical manner. 8 » i*e. , approaching 

problems7diarrctUanf indSectPPïrthiedit0 ^ ShÍP hydrodynamics 
with a given ship and finds a corresî« îreCt aPProach one starts 
tion for it, then, calculates physicaf àn;»lnf8f^athematÍCa* rePresenta- 
results by experiments. On^he other han^168' and verifles th® 
mathematical model such as a simmlLÎf °n® could start with a 
the physical quantities of the mod(fl findythe8tribUti°n’ and calculate 
check the behavior with the experimental re c°rresponding ship form, 
knowledge in designing practical “"®ntal resuha, and utilize the 
Both approaches are useful in the develop^8*8 an indlrect approach. 
Reference 1 by a direct approach itwa^T !, I Ship science- In 
might b. „pr.,entod by a „ab uá. a,bag 
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proportional to the »tarn draft. Now, we would like to uae the In- 
ir,*KCt ?ppr04C,i to atern theory. Noting that a alnk line 

ÎÎ..H ioÜ/n *'"* i* to ‘he con.t.nt pre.aure dl.trlbutlon 
aíd .t Ï U prod,UCC0 * negative coalne regular wave 
and a depreaalon .n the free aurface Immediately behind the alnk line. 
VcZShlVJ? *et.,tr0*mil"e' «‘mllar to the tranaom-atern ahlp from 
a combination of a normal ahlp-aIngularlty distribution and the tran¬ 
som a Ink. 

i , .. F.r,t.th* í*,««-auríace streamline due to a two-dimensional 
sink line Is plotteu to establish the validity of this model, which will 
be used later for plotting the streamline near the tranaom. Then, 

.V cra.M,nlmPl,e °rl8ln*i,hlP • Ingularltles are considered so that 
since the ^ Cfno .* modiiled t0 tho,e h»vlng transom sterna. 
Since the tranaom alnk la supposed to behave like a stern bulb [ 1] 

cin.Tde Vf™ .T™" * b0W bulb [ 3>4] made of 4 *ou«-ce I» also considered together with the stern sink to cancel bow waves as well 
as to supply source strength which helps form a closed body. Thus 

afetlTUTw,tren8thiB ^ th° b0W blUb 80Urce together with the tranaoiii 
stern sink are calculated to minimize the total wave resistance. 

The wave resistances with and without the bow bulb and the 
transom stern are calculated. The Sretensky formula for wave 
resistance Is used since It la much simpler to program In the high¬ 
speed computing machine than the Havelock formula. Finally, 
approximate waveforms near the stern are Investigated, which will 
help In designing a good afterbody near the transom stern. 

This is part of a project in which the ultimate goal Is to under¬ 
stand more the physical meaning of a transom stern in the wavemaking 
resistance of a shlpi to obtain better design criteria for ships with 
tra"8“m 8‘®rnfl! to find out the possibility of an Improved ship design 
with the gained knowledge, and, hopefully, to design a good ship with 
a transom stern, making full use of high-speed compute*s »s wel;, as 
testing the model In a towing tank. 

Although this Is a small part of ship-designing problems, It 
Is not easy to complete In a short time. At this stage, it Is merely 
hoped that this paper will achieve several objectives: (1) to validate 
the mathematical model of a ahlp having a transom stern as a stepping 
stone to analytical Inveetlgatlon of transom sterns, (2) to determine 
the practical ranges of parameters within which the application of 
bulbous bows and transom sterns would be beneficial, and (3) to 
initiate a computational procedure which would be used for an overall 
design program using a high-speed digital computer. 
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Vavtmaking Rtaietano» 
of Ship, with Trantom St,rn 

U. 
A SINK ON THE TWO-DIMENSIONAL FREE SURFACE 

Lamb [ 5] «howed a formula (nr »v,* t 
Point .Ink with the »trength M locltíd -f ir8*-*'iriace ahape due to a 
conatant speed U to -x dlrerH° 1 d x * V 8 0# moving with 
>• °» ■»« (r.. .urr«f "fn‘f" °"'Í* wh.r.‘”, h 
upward, Th« wave height la S 8 • and +y pointa vertically 

( , 
-jj~ <- 2 cos k0x 4* «»fi ^ r 

W Jo 

Itt» 

0 m + k : 
dm1 in x > 0 (») 

where 

ko = 
U7 

/■»® -m» 
\ e dm ( n 

5 J0 m2 +k2 = ( ( ? - Si kox) cos kox + Ci k0x sin l^x} 

in x > 0 

Si u 

Ci u 

(2) 

(3) 

(4) 

V = 0.577215665 
(5) 

wave height due tod^stAbuÜon'f ÍS ComPared with the 
it can be easily seen that of c°nstant pressure p0 on x<0, 

JÛL = 
Pg (6) 

holds, 
in x < 

Thus, from the Be 
0 can be given by 

rnoulli equaiicn the fo rrn of the free surface 

b = 1 + iSa 
n 

r00 em< 

Jo ^Mprdm) ■ 
0 

in x < 0 

r xS 0 is plotted in Fig. 1 and 

(7) 

The wave height fo 
it clearly shows 
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'U 

1. Stem Waveform by a Sink Lin«. T 

¿»in* Line Transform Stem 

the appropriatenees of thi. n 

S,v ä '■ 'hW* •'r'»'" 

Thl. fclnd Of ,wUh, a ■»“ "ux eo„ü To ,Cut u ty a 
Investigating the flow s'™* . body was treated b'tTÄf'le"/ãt2"M- 
distribution of the 

Y ’loe0*, in X S 0 
(Q\ 

with the parameter a ä 0 k* « 

atmospheric^rese1180”1 **"" “e" pVe^r/1,88 ^ near 

^. .«ern, and .»y dl.con:iLT,LT0„“f1"hThúiÂ,W*J'17^c'j™T 

m' SHIPS WI™ TRAi-S°« 8^«NS AND BOW BULBS 

base surface with eith«Íb ^.°1185 a 8üurce distribution Ji d by C°m' 
- - a Æ.Â 
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Vavêmaking fivtiêtanoa of Shipa vith Troxtom Stern 

'.MÍ c^r.™Lírr ri"*' ,lcrn' ‘nd p*rp«nd!cul«r to th. 
îîlrn !?« »?« " !h* P»“«''»*»«» »««Ion U U known lh*t the tr.n.om 
*1! J , ^•represented by a .ink line at «he atern, it la thareíore 
natural to deduce that tha «Ink could contribute In cancalling atern 

LILLh * m°v,n8 p^«* produce, negativa coaln« regular 
wave, behind, the proper main hull ahould have a hull ahape that 
produce, poaltive coalne atern wave,. To InveaUgate the beat ahape 
o tranaom aterna, In a almple way, we have choaen two aimple bare- 
tlonai ’ r*pre,en,Bd ,n ,h® Michail aenae by the following equa- 

and 

y' * TTÍ- 1* * co* j» In H 
< * < 

In 
1 < X < 0 

a < 0 

(9) 

00) 

where L, B, , and H are t) j ahlp length, the beam, and the draft, 
reapectlvelyj (x.y.e) l. the right-hand rectangular cartc.lan co- 
ordlnate ayatem with the origin 0 on the free aurface; the x axia 1, 
In the direction of the uniform flow velocity at infinity; and the x 
axle la vertically upward. The hull In Eq. (9) produce, the favorable 
atern wave, for the transom stern but has cusps in both ends and is 
called a cusped cosine ship here. The hull in Eq. (10) Is rather a 
common parabolic hull form, not particularly favorable for the tran¬ 
som stern. The corresponding source distributions by the Mlchell 
approximation are 

in 

UB| 
0-( = sin (Ztrx) 

(11) 

D(y = 0, - 1 < x < 0 , - H/L < z < 0) 
(12) 

and 

°e a+2x>> ln (13) 

The theory of superposition can be allowed In the sense of the Mlchell 
ships. For convenience, we set 
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»Hh 

tim 

(14) 

B - B, ♦ 8, 
05) 

*h*r* B t. ih. b.*m oí « ««perpo^d .hlp. 

conaldcrtd* «■ ,r4n*om ,,#pn* * »rlan*uiâr •' -»pp of «tarn draft (• 

• • * «y * Hj/L, In » 

ywh<%r# r>k0h.ukci on * —^ 

(»b) 

T*“*ltt2r| o?) 

i:/Ä^rrw^^r.t^ce anrrtev°fbp dctermi^ 
dl.trtbutlon foPr the er^o^t^rnruke^ä.0"1"8 1 ’ ^ — 

V. a U / H, - 
Ti (ir ♦ °y) (18) 

with the strength tr ■. la rnnaM«»«^ ' *»y_0i*-z. 
tribu... to form a cíoí.d body w"h bulb lb»' 
ae well as to reduce bow waves. k dl8trlbutlon at the stern 

IV. WAVE RESISTANCE 

prevlousfy'carTb^w^rkten^cco^0°8 mentlo-d 

<x> 
R = 16,r^ ^ , 2bZ _z 

ipuV w —r(p + Q ) 
m *0 2b - 1 (19) 

where 
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f • 
m 

• wb*n m » 0 

2 whan m ae | (¿0) 

(¿1) 

■ tank width wh«„ tht .hip i. u.ted, 

p*lQ.Js (1I) 

b... h^*.1:».^;.«“' f«.«»«™ to, .h. 
Iritegratlon, we obtain ’ d th bulb' performing the 

Ow B 

1 -co«(kb)^^ZrÍ-^ «ln{kb)B,l ... . 
' k*b*- 4n* ekVL^ T^J*E {23) 

P*= ¡^{'-^(vS1)} 

p5 = cos (kb) exp (kz(b2) 

Q, = sIt (kb) 2B2 ) . B, „ 1 

<bV-4.2 

(24) 

(25) 

• E 

q2 = o 
(26) 

(27) 

Q3 = - sin (kb) exp (kz(b2) 
(28) 

strÄCbV respectively^re8POnd ^ ^ ^ ^1, tranSOm 

E = ! 1 - exp (- kb2j3| -J. 
kb 

P = P, + aP2 +-^P3 

(29) 

(30) 
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fim 

and 

Û • Q. * »Ot + Q> 
on 

With the (unction* P and Q evaluated and *ub*tUuted nto Eq, 09). 
the wav* reaiatance may be mtnlmUed with reaped to auch parameter* 

' V aa o and c 

V. OPTIMUM TRANSOM STERN AND BOW BULB 

A «...ud technique I. employed to obttln the opUmU« «lg.. 
OÍ o and eb for given k, B,/L, B,/L, and H/L* Namely, 
solve two linear almultaneou* equation* in a and <rb 

û « 2o(pJ + O') + 2eb(P2P, + QjQ,) + 2(^ P2 + Q,QZ) a 0 

||- n 2o(P2P5 V Q2Q5) + 2(rb(Pj + Oj) + 2(P,Pj + 0,0,) = 0 

(3 2) 

for a and ab, where 

P.P,* 
16ir2k 

w ¿ *» -TT- P,PI 
2bz - 1 1 1 

(33) 

m*0 
etc. 

from the formula of wave resistance. Cases of d 
B # 0, B, = 0 and B, ^ 0, Bz * 0 were calculated for each Froude 
number F„, which will be shown later. 

VI. SLENDER BODY THEORY 

For the case of Bz = 0 , the cross sectional area curve is a 
cusp at both ends. Thus a slender body theory can easily be applied 
here. The result will be only the change of 

1 (34) 

and 

Bt A 
u ï 

(35) 

<n P, and Q. in Eqs. (23) and (26) of the wave resistance of the 
previously described Mlchell ship, where A is the área of the mie- 
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where 

The last integral can 

^„akU, Hc.i.ta»" or sup. oM "«««" S‘*" 

• hip iectlon. 

The „.„a., 

^rr.pVr.rbr™..m .¿n M^U lhe 

Y« lor th. c... ol low rroud. oumbdr. e tHi th0 

■ lender .hip theory ll »leo further from that developed by 
«lender ship theory can be modliled tunn 

Maruo l ‘U* 

In the cYlattr,n.0oi7n?eg7atl8otnabyep-t8;o(Èq.^IT 
consecutive applications of integration y f 

P t IQ = C <r exp jkb(Zb + lx) + IZiry^l dS 

. 1 K o-(0,y,Z) exp (kzb2 MZiry^) dc 

~ Tkb |JC(0) 

. Ç a(-1 ,y i z) exP jkb(zb ‘ + l2iry vT 1 dC 

C «rt-l.y.z) expjkb(zb- 1) +I2try^¡dc| 

Jc(-l) 



This reduces the influences of the line singularity approximation of 
ship hull singularities in two ways, (Í) by the factor 1/b , which 

cos2 8 
1/k2 

corresponds to cos 8 in the Havelock wave resistance formula, 
(2) by the factor l/kz which is the smaller if the Froude number is 
the smaller. Of course, the number of terms have been Increased 
in the singularities along c(0), which is the intersection of the free 
surface and the transom stern, and c(-i), which is the straight bow 
stem line. 

VII. STREAMLINES 

To establish the validity of the mathematical model of the ship 
with the transom stern, the double mode] [9,10] scheme is Inadequate 
because free-surface waves play a vital role in the flow field of a 
transom stern. 

Fortunately a slender ship model [11,12] gives an easy repre¬ 
sentation of the wave height along the train of ship. The wave height is 

£(x,,y|) = (x|*7, >°) (39) 

and 

ç>(X|,y|,0) = - tr(x,y,z) dS 

CW /OÍD 

sec26 \ - 
‘¿IT •-V) t - 

JtU) 

k sec¿ 8 - ifi sec 8 
dt d8 (40) 

where 

= (X| - x) cos 6 + (y, - y) sin 8 (41) 

and S is the ship surface. 

The inner double integral was treated by Havelock and was 
represented by both a Bessel and a Struve functions. [ 13,14] We 
will consider, for simplicity, a source distribution which becomes 
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Vavnaking 

ff(°.y.*) * ff(-l (y|15J a 0 

By m.Wn, u,. 0, 1M, Ulu 

8rÄle the w«ve-height Eq, (J9, 

Cixj.y,) = -¿!(x,,y|,0) 

•BcB.rr-ÎOe^, 
c(*) J.F Jo * , "" 

ífj 

do 

Re 
îFT7. 

xi>y ;t,8) 

where 

tr t - k -- dt d0 1 X aec 8 - ifi aec 0 

wi = Xi Cos 0 + (y, - y) sin 0 

t - k sec 0-l(i sec 0 

(42) 

(43) 

.rv-^c ,sec,6 
-1 dxJ,f.( 8eC 9e dc (44) 1 UA Je(x) 

Integrating , by part, wl,h ^ ^ ^ ^ 

Ife,,y,;t,e) . ^[¿^(O.y,,) aecä0e,"'”> dc 

■ â J,(|)n(-> ,y,z,.eeJe eXp |t„^ co. ^ 

r° 
-1 dx e'if)( C0* ® d2 T 

J-l ^C(x)<r(X’y’Z,8ec3 0 ef(ÍU,| + Z,Jdc (45) 

For simplicity o- 10 v 

for ml y distributed, respectí'velv’' lî’y ’ m are assumed to be uni 

Contribui!“ ZrZt ryPTmatebd by '»o “toe« lonS 'viue.'“,“' 

oyf ^ ““‘f - 
fire,, here. y theory, and wU1 be l^iVri’at'ïf 
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Now 1*1 m lnv**U««<* Ifc* U*1 ÍIH»r4) l*rm #1 Ihm l»l** 
gr«) I, From lh* llornry 

f{K,y,t) mmp ((((R, «o* * ♦ y, * y «»« *1 *u) 4« 

ev|> (ti(tl, «*»• # * y, *»« 9)) 

Wlih Ihl« . «* go bsclt Io lh* oi**-h*l||M tq. (92) *«4 
conatdrr lh* value* only on y, * 0 

0) da 
f ’ r..,¾.« 

*^ ** e ll(l b «««*9 (* **« 91 
(4?) 

Changing lhe contour oí tnlogratlon »Uh r*«p*ct to I 1« a rompí*« 
plane auch a« Havelock | I ij uaad, »• hav* 

- ¿u IT **»'<4. ",c0d0i0 
♦ Ç d*M*(a|C Im aac 0 coa (ka, îi «ac 9| d0 

• 'òrf dx M#(x|[| — log |*,-k| • Yc(k|lll-x|)| 

X atgn (x,• x) ♦ H^kxcx)] 

r*h 
♦ ^ dx M"(x)Y0(k |x|-x |) (4«) 

where Y ta the Neumann function, H la the Struve function, and 
sign (x,-x) Is +1 for x,-x > 0 and *1 for x,-x<0. 

When only the Integral of the flrat term oí ! In E<|, (4SI la 
taken, we may approximate the wave height aa fallows, for x, < 01 
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Letting 

'-f-rrfH 
we have 

® m*, 
i “ ) —b-tt dm 

'0 m1 + kl 
i. * Ç e ’,_ 1 In X|< 0 

“ ' it + i {(| * Slkx«) co' >«, + Clkx( .In kxt} , 

and 

- ¿ (( I - sik.,1 CO. ta, 

+ Clkx, sin kx,}. In x( > 0 

Therefore, for Xj < 0 

C| ’ ïïüt^ii10« l*i I * D - 4 j^'dx log (Vxl + bV< + B/2) 

4 /, w 
+ ïï 7 “ Slkx,) co. kx, + ClkXj «ln Lx(}J (52a) 

and for x, > 0 

r r' 
^ “ ÜU L4xi^°8 *| - 1) - 4 J dx log (/xE + Be/4 + B/2) 

tÿco. ta,.^:.<((|.sita,) co, ta, 

♦ Cita, sin ta,)] (52b) 

"•2.c'i.gTh.b!ocïïrox1' 

r = . a /"l? '’■«i'1'0*0) -I(H. 
V K -D-(1 ■ e ) co. (kx +| ) (53) 
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Wavemaking Feaietanoe of Shipe with Transom Stern 

The wave height near the stern due to a point source at the 
bow c*n be approximated also by the method of stationary phase: 

Cb = 4k exp (kz, ) y^T C08 (kx, + J ) (54) 

aonro^r^K®^01?1* n!fr the,Btern due to the transom stern sink, 
approximated by the two-dimensional one, was given earlier, say £ . 

sent »n^n & ^ of ^ C2> Cb, and would repre¬ 
sent an approximate wave height in the waKe of the ship near the 

‘SITS Ktern* ,3he|Strevamlln®8 0n the body near the «tern can be obtained by considering the pressure which is given by the singularity 

thih™ ™ l°K a8xrt8 "T6 ln Eq8- (6) (7)* The streamlines near the bow may be obtained by a double model approximation. The inte¬ 
grated scheme to produce approximate body streamlines will be pro¬ 
grammed for a high-speed computer in the near future. 

VIII. NUMERICAL RESULTS AND DISCUSSIONS 

t T.he,optl?ia;1LstrenSth of singularities for the transom stern 
, ¿ arJe Sll0;*n ln FIgS* 2‘ 4* and 6* The former is 

¡therT 1 tÍ T1** 0f îhe deadr}8e an«le « of the afterbody near the 
in! la ! lS “ho^in terms of the radius of the correspond- 
ing half body produced by the point source located in the infinite 
medium. These are all functions of Froude numbers for the given 

i “* wa™ resl8tance at each Froude number is computed 
for the given hull with the transom stern and the bow bulb optimal at 
a given Froude numberj see Figs. 3, 5, 7, and 8. 
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4. Optimal Values of Bulb Size and Transom Deadrise Angle 
for a Cusped Cosine Ship, using the Slender Body Theory 
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Wavemaking Resistance of Ships with Transom Stern 

Fn 

Fig. 5. Wave Resistance of Cusped Cosine Ships with Optimum 
Bulbous Bows and Transom Sterns, using the Slender Ship 
Theory 
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Fig. 8. Wave Resistance of Ships of Cusped Cosine and Parabolic 

(xf= O.S5)8 and Wlth0Ut Bulb0US Transom Stern 
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Wavemaking Resistance of Ships with Transom Stern 

For a slender body model, Eqs. (11) and (35) are used for 
the bare-hull source distribution, which is called a cusped cos^e 
ship here. For a Mlchell thin ship model, computationsai- e per - 
formed for Eq. (11) for cusped cosine and parabolic ships. For the 
combined bare-hull source distribution, the Influence of the locaüon^ 
of transom stern x8 Is shown in Figs. 6 through 8. It can be under 
stood that there is an optimal location for the minimum wave resis¬ 
tance as in the case of a bulbous bow; however, it is not computed 

here. 

It is interesting and reasonable to see that the optimum size 
of the bulb becomes the smaller for the lar?e Froude numbers over 
0 4. and eventually the strength becomes negative at Fn> u.5. m 
other words , for a large Froude number, a ship behaves like a slngl 
point doublet far behind the ship so that the only way to reduce the 
wave height is to reduce the ship volume. 

Indeed it is possible to take advantage of the transom stern 
as well as the bulbous bow to reduce wave resistance in the Froud 
number range Fn < 0.5 by a proper comb Inationoftheship ul 
shape and the transom stern and the bow bulb. For the case of a 
high-speed ship such as a planing boat, there is no alternative to 
evade the detrimental cavitation without having the M! separation 
occur at the transom stern, whether it is beneficial to the wave 

resistance or not. 

The numerical results of streamlines are not given in the 
oresent paper because of their complexity. The approximate 
method Jf computation of the streamlines near the stern is shown in 
the previous section. When the ship draft is fairly large, compared 
with the wavelength, the ship shape from the singularities can be 
approximately computed from the double model, ^wever for a 
(•vananm stern the free surface follows immediately behind the 
usuaUy s^low drafted afterbody. Thus, the modified slender body 
theory used in the previous sections , combined with a double model 
aooroach to the forward part of ship hull seems to be promising. 
Some imaginative approximate configurations from the concerned 

source distributions are shown in Fig. 9. 

Last, but not least, the Importance of experiments on the 
design of ships with transom sterns should be 
are very few experimental results available I 15J. However , this III to be done in close coordination with the theory so as not to grope 
in the dark. The theory is now on a solid foundation. More t me an 
effort are needed to achieve experimentally usable and complete 
resits on'hips with transom stern. In the future, the author hopes 
to finish a systematic computer program for designing ships with 
bulbous bow and transom stern that includes information about the 
wave resistance, the bulb size, the transom-stern draft, and the 

main hull shape. 

¡MUI 
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A Cusped Cosine Ship with Bulb and Transom Stern 1 

A Cusped Cosine Ship with Bulb and Transom Stern 2 

A Cusped Cosine - Parabolic with Bow Bulb and 
Transom Stern (x # 0) 

Fig. 9. Imaginative Diagram for Ships with Bulb and Transom Stern 
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Midship section area 

Defined by Eq. (21) 

Ship beam 

Ship beams associated with two hull forms given by 
Eqs. (9) and (10), respectively 
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Cosine function defined by Eq, (4) 

Domain defined by Eq. (12) 

Defined by Eq. (29) 

Froude number, U/(gL)l/2 

Acceleration of gravity 

Draft of ship 

Stern draft 

Expression defined by Eq. (44) 

Expression given by Eq. (51) 

Expression defined by Eq. (50) 

Lg/UZ 

Ship length 

Source strength 

Pressure 

Expression defined by Eq. (22) 

Expressions defined by Eqs. (23), (24) and (25), respectively 

Expression defined by Eq. (22) 

Expressions defined by Eqs. (26), (27) and (28), respectively 
Bulb radius 

Wave resistance 

Ship surface 

Sine function defined by Eq. (3) 

Velocity at x — - cd 

Ship speed 

Tank width 

Rectangular coordinates 

The x coordinate of the location of transom stern sink 

Ship hull forms given by Eqs. (9) and (10), respectively 

The z coordinate of the location of the point source for bulb 

Dead rise angle of transom stern defined by Eq. (16) 
Wave height 

Two-dimensional wave height 

Wave due ,0 ,h. flr.t, .eco„d .„d third t.rm o, 1 

Wave height due to bulb source 
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VavÊimklnç of Shipo víth Tranto* Star* 

Wave hvighi Ou« Io «râo*om *I*ro »l«k 

Sourc* tircnglh tor »Mp huit 

Source tirenfih given by C<|t. tllj *«d (11), r#*j>*cil¥*ly 

Source etrength for bo* bulb 

Source etrength for treneom etern 

Denelly of *eler 

Ouenilty given by Eq. ($) 

e e e e e 

DISCUSSION 

Georg P. Welnblum 
/netituf for Sokiffkoo 

Hamkorg, C*p»ang 

Some general remerhe may be permitted, eepecleUy fr»m 
the point of vlo* of eppllcetlon. 

So far Inveetlgatlone of more practical character deal pt** 
far ably *lth the bo* *ave form at lone. *hlle Itneartaed *ave re- 
• (•lance theory treat« *lth e^ual love the forebody and the after tody 
of dleplacement ehlp«, Fe* e «périment« only have been conducted 
to check, ceterle parlbu*, the advantage of form eymmetry *lth 
reepect to the mide hip eectton In real fluid. Such teete have been 
performed hy the pre«ent writer »Ith bu)boue form# by comparing 
simplified «hlp huiles 

ai »llhoul a bulb (naked hull), 
b) e bulbous bo* only, 
c) a etern bo* only, 
d) bulbe aymmetrically arranged el bo* and etern. 

These «vpi»riment* are useful In the present contest, starling 
from the author*« and my peraona) viewpoint, that in Idea) fluid a 
similarity can be reached ln »ave effects due to a lransom stem and 
a bulbous bo* (because of a similarity In form representation by 
dipole arrangements). The sketch enneised «hows an Impressive 
Improvement by the symmetrical bulbous ship design (d), and this 
Indicates, that the combination bulbous bo* * transom «torn should 
be useful as shown theoretically by the author. 
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The application of linearized wave resistance theory to slow 
full ships following our present state of knowledge overstrains this 
theory heavily. This theory should not be discarded, however, 
completely as long as it is used as a heuristic principle only, i.e. 
as means to look for solutions which must be checked experimen¬ 
tally. 

It is recommended to use in this sense several earlier inter¬ 
esting papers published by the author. Considering the present 
critical attitude towards linearized wave resistance theory in general, 
I wish to state that Its use (including perhaps some correcting "im- 
provements for practical purpose still can be highly recommended 
in case of medium or especially high Froude numbers. It should be 
remembered that in the range of the large wave resistance hump 
values computed by Mlchellrs theory may differ by an amount only 
from experimental results which corresponds to the scatter of the 
latter derived from models in different scale. Therefore I welcome 
the author s present second approach on the subject of transom sterns 
although the correlation between form and generating singularities 
(so far rather indicated than carried out) may still require further 
studies. 

With regard to the author's statement about lack of systematic 
experimental evidence it is suggested to look into report No. 167 
Institut fuer Schiffbau Hamburg and to check if something useful can 
be found there. 
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DISCUSSION 

S. D. Sharma and L. J. Doctors 
Umvereity of Michigan 
Ann Arbor, Michigan 

tu il 1,1 ^ °ral dlscu#Bion at the Symposium Professor Maruo and 
the first-named discusser challenged the validity of the author's 
Fig. 1 because they felt that the wave profile should have been dis- 
continuous at the location of the line sink or the pressure step. 
X =t 0. Dr. Ylm Insisted that his figure was correct, arguing that a 
simUar curve is shown in Lamb's "Hydrodynamics," p. 405. In 
the meantime, we have examined the problem more closely and 
arrived at the following conclusions. 

Let us examine the case of the pressure step first. Consider 
a two-dimensional pressure distribution, 

P<x) = Pol1 + 8gn(x)}/2, (Dt) 

on the mean free surface, z = 0, moving steadily with speed U 
along the direction of Ox. The resulting motion can be described by 
a velocity potential <Mx,z) subject to the conditions 

^„(x.z) + (f>u(x,z) = 0, 

p(x) - pU^(x,0) + pgt(x) + ppU«Mx,0) = 0, 

UC,,(x) + <bt(x,0) = 0, 

^x 2(x,-00) a o. 

(DZ) 

(D3) 

(D4) 

(D5) 

wher* z = CM describes the free surface elevation and the limit 
P ls understood as usual. It Is easy to verify that the solution 
is 

«■‘.yl = - ok. k„. g/u!. (D6) 

U4 ■= - (P./Pg)U +.gn(x|}/2 . Kp./.pglj’ fffciikxj dk (D7| 
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The limit n +0 then leads to the following real expression 

p«tw/p.= -U d„ 
Jr o 1 + 

{1 - sgn (x)} cos (kox), (D8) 

which is Indeed continuous at x = 0 although the wave slope 
becomes infinite at that point. This is evident in the accompanying 
Figure (see Curve 1), but does not show up on the scale used by the 
author in his Fig. Í. 

Fig. Di. Comparison of Wave Profiles for a Line Sink and 
a Pressure Step 

On the other hand, one can also approach the problem as the 
limiting case of a submerged line source as the submergence lends 
to zero. The velocity potential for a line source of strength m 
(that is, output 2irm per unit length of line) on the line x = 0, z = - f 
is found to be 

+(x,z) = m 
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and the wave profile 

t i 

t(x) = U<Mx,0)/g, (DIO) 

now becomes 

-Ul(x)/2irm = - dw 

(Dll) 

It Is obvious that for f = 0 the wave profile of the line source be¬ 
comes discontinuous at x = 0. For any nonzero value of f the 
profile remains theoretically continuous at x s 0. However, for all 
practical purposes it Is discontinuous In the limit î — 0 as shown In 
the accompanying figure (see Curve 2) for kof = 0.00001. 

If we assume p0/pg = - 2irm/U, then the potentiale of the 
pressure step (D6) and the line source (D9) become identical In the 
limit f “*• 0. But the wave profiles differ by the first term of (D8). 
Incidentally, the author's Eq. (1) differs from our (Dll) by a factor 
of 2. But his relation (6) seems to have a compensating error of 
factor 1/2 so that his wave profile (7) does agree with our (D8). 
We have not Investigated what effect this discrepancy has on the 
author's further calculations of wave resistance. But we did notice 
an obvious slip In Eq. (18) for the strength of the line sink repre¬ 
senting the transom stern. If it. Is regarded as aline density, 
apparently a factor L is missing on the R.H.S* On the other hand, 
If o’, is interpreted as a surface density, then the R.H.S. should 
contain the Delta function ¢(0) as a factor. 

We also find the Idea of using a line sink to represent the 
transom stern rather unconvincing. The line sink would tend to 
force the flow around the corner of the transom, which In practice 
occurs only at low speeds, but In a highly viscous manner not 
tractable by Ideal fluid theory. The case of real Interest Is the 
one at high speeds wher? the flow separates smoothly from the 
transom. In this regln a, we feel that the line sink should not be 
used so that the excess sources In the hull can produce a senrd- 
Infinlte half-body. We would appreciate the author's comments on 
this point. 

Notwithstanding minor differences of opinion, we wish to 
congratulate the author on his Imaginative approach to a very inter¬ 
esting problem. 

* * * ♦ * 
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REPLY TO DISCUSSION 

B. Yim 
Naval Ship Research and Development Center 

Washington, D.C-, 

The author would like to acknowledge Prof. Welnblum's 
encouragement. The author fully agrees with him on everything he 
mentioned. As Is Indicated In the text, the model of the transom 
stern assumes the linear free-surface condition although, In 
practice, very often nonlinear phenomena, e.g. , a rooster-tall or 
cavity collapse, do occur. Therefore, this point also needs care, 
In addition to the error In Mlchell's thin ship theory or the slender 
ship theory. 

* * * * * 

REPLY TO DISCUSSION 

B. Yim 
Naval Ship Research and Development Center 

Washington, D.C. 

The author sincerely appreciates the deep Interest shown by 
Drs. Sharma and Doctors regarding his paper. 

About the validity of Fig. 1, the author will attempt to make 
a detailed explanation. First, the author would like to point out that 
the discussers agree by their Eqs. (D6) and (D9) that, with p0/pg = 
- Zirm/U, the potential due to a point sink located on the free surface 
at X = 0 and the potential due to the corresponding uniform pressure 
distribution along the free surface from x = -ooto x = 0 are 
Identical everywhere In the flow field and on the boundary. This fact 
has long been known. Thus, velocities cf the two cases are Identical 
everywhere, and the wave heights of the two cases are Identical from 
the relation (DIO). Namely, one problem with the given pressure 
distribution Is In fact the same problem with the properly given source 
distribution as In many fluid mechanics problems. Admitting this fact, 
it is Impossible to claim that the representation by pressure gives 
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I 

the smooth boundary and that the representation by source gives 
the discontinuous boundary. To elaborate a little more, the discussers 
did not notice that the boundary ahead of the location of sink or at 
X < 0, z = 0 Is no longer a free surface but has become a part of 
body boundary formed by the sink flow field, where the pressure Is 
a constant different from zero. This may be understood better If we 
consider another Identity of potentials due to a point sink on x = 0, 
z = 0 and a uniform distribution of doublet In - x direction on 
-oo<x<0, z=0. The body boundary created by the two-dimensional 
sink Is considered to form a part of a transom stern heuterlstlcally 
In the second section to justify the three-dimensional mathematical 
model In the following sections. It will be easily noticed with a real 
scale how readily acceptable the boundary would be and how proper 
and simple this model Is. 

Here the author also appreciates being advised that the factor 
of 2 Is missing on M In his equations In the second section of the 
author's paper. This factor has nothing to do with any of the numeri¬ 
cal results. In fact, the second section has no numerical relation 
with the results derived In other sections. 

* * * * * 
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BOW WAVES BEFORE BLUNT SHIPS Akin 

OTHER NON-UNEAR SHIP WAVE^PROBUMS 

Gedeon Dagan 
fchmon-Urael In,tit;ute of 

Haifa, Israel 
and 

Marshall P. Tulin 
Hydronautiae, Incorporated 

Laurel, Maryland 

notation 

b, b 

ww 
e'i * Vdl| *d2, 

C0 

D' 

f = f + ty' 

Fru = U'/(gL')l/2 

FrT * U'/(gT')l/z 

h'(x') 

¿' 

N = V/T' 

P = p'/pu'2 
t' 

T1 

W1 a u' + ly' 

Preceding page blank 

»lun. .h.p. 

b ■» «». 

Arbitrary constants 

Drag coefficient 

Drag force; ß = D'/pU^T1 

F=''/«'«t'w, ,=t.s/ir!. 

Length Froude number 

Draft Froude number 

h =nh'g0/U'2eSCrlblng the b0dy "haPüí » a h'/T'; 

Forebody length; ffaf/g/u'2 

Characteristic length; f ai'g/u'2 

Dimensionless free-surface elevation 

Dimensionless pressure 

Jet thickness; t = t'g/U,Z; Fat'/T' 
Draft 

Complex velocity; w = w = w'/U'{ W » w'/(gT')^ 
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U' Velocity at infinity 

+ ^y' Complex variable; z = z'g/U,z; z = z'/T'; 
7. = T-1 /t * Z = z'/T 

Angle at bow 

Gauge functions 

Small parameter 

Auxiliary variable; % = £/e 

Free-surface elevation; t; = r)'g/u'z; t] = V/T'; 
N = ri'/T' 

Logarithm of complex velocity = r + 10 ft = fn(l/w) 

I. INTRODUCTION 

The conventional linearized theory of ship waves is based on 
a first-order perturbation expansion in which the length Froude num¬ 
ber is of order one, while the beam Froude number (thin ships) 
and/or the draft Froude number (slender of flat ships) tend to infinity. 
While the theory is in fair agreement with laboratory results in the 
case of schematical fine shapes (e.g. Weinblum et al. [1952]), it is 
of a qualitative value at best in the case of actuarüGIls. To improve 
the accuracy of the linearized solutions, second order nonlinear 
effects have been considered, either in the free-surface condition 
or in the body condition (e.g. Tuck [ 19Ó5] , Eggers [ 1966]). 

A different nonlinear effect, overlooked until recently for the 
case of displacement ships, is that associated with the bow bluntness. 
It is well known from the theory of inviscid flow past airfoils or 
slender bodies (Van Dyke [ 1957]) that the linearized solution is 
singular near a blunt nose in the stagnation region. The singularity 
may be removed by an inner expansion in which the length scale is 
a local one associated with the nose bluntness. 

In the case of a free-surface flow with gravity the phenomenon 
is more complex. The pressure rise in the stagnation region is 
associated with the free-surface rise and the formavion of a breaking 
wave or spray and the existence of a genuine bow drag. The inner 
expansion of the Bernoulli equation shows that the Inertial nonlinear 
terms become more Important than the free gravity term, for 
sufficiently high local Froude numbers. 

The bow nonlinear effects have been recognized a long time 
ago in the case of planing plates (Wagner [ 1932] ), but they have been 
always associated with a relatively high Fr, , such that the lift/buoy¬ 
ancy ratio is of order one. Here we are primarily interested in the 
case of displacement ships which move at a small FrL and the hull 
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50U VaVe8 a”d °í;íer Non-Li™°r Ship wave Problems 

^rL• '1 'nònHneap1 Inertiaj ^fects 'Ll^ PractIcally independent of 
near a blunt bow. eCtS may be important nevertheless 

by the bowSblÍntÍesÍrhasXbeeÍnÍ*!.nta-l,COnfÍrmation of the role played 
From towing-tank tests with ^66^06^60611^ by Baba [ 1969] V 
it was found that in ballast confín geosims of a tanker (cU 0 77) 
appears before , auast c°nditions at a Fr « 1 ? = k b , , ''' 
Fr - i y r-.- ^be ho"'’ At the maximt.rv, n> ^ «¿a breaking wave 

.HÍuted' pe8;cä 0£e«rtSd‘::íred ln ^ wïvl c'i4’ 
by waves gave only 6 per cent Bah ^ While the ener&Y radiated 

^ V , ° = D /0> S PU'ZT' = 0.0r for F? the breaking 
has indicated a larger breaMn« FrT-1.7. Sharma Í 1969] 

tT ? --[‘¿Veí08w%r3.hrM„Tbokd'!d 'fhe •»»•‘“■"«»lonal p.ob- 
The two-dimensional study is a necel 7 °f semI-infinite length, 
of a theory for three-dimensional hn 7 Step in the development 

= way to more realisttc computa,ions by fuXr fppVoSa“»^!’6'’8 

mathématicaTpoíu'o^vl’ow^’tUt'V"“"*“,,‘í Vfer>r Useiul i'om a 
Thls assumption is entirely i istifleH f ^6 t0 the llmit FrL - 0 
here and for determining the bow flow ÍV?1311 Fr¡- considered ’ 
ñuenced by the trailing füge conditio^' " 3 n0t sen8ibly in- 

II. 
THE FREE SURFACE STABILITY ÍSMai i t- (SMALL FrT EXPANSION) 

Wg nnng 4.i_a 

F.f,. Ädirk*hsva7eii““o8r7‘;8 no” <>“' *»« », 
ÄaU!-“^’ - -TtíSy't’enld'ra"; 

that breaking wav'e 'incepUo,,',° delated Í^ííf *f “mooth- w‘- aa.um 
surface. According to Taylor's crlterioñ (1^0^¾¾ ttV"' 
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Fig. 1 

Fig. 2 

(o) 

(VIEW FROM FRONT) 

IREAKINGWAVE (b) 

(UNIFORM) 

‘1 

. Baba's [ 1969] experimental results. (a) Breaking wave 
before a tanker; (b) Baba's two-dimensional representa¬ 
tion of the breaking wave. 

A 0(-1) r M*n A 

V! HT* 

Small FrT flow past a box-like shape body, (a) The 
physical plane; (b) the linearized dimensionless physical 
variables; (c) the auxiliary £ plane. 
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free-surface becomes unstable when the normal acceleration 
vanishes. In our case this occurs when the centrifugal effect related 
to the free-surface curvature offsets the gravity acceleration. Since 
we expect the free -surface to become steep as FrT Increases , 
there must be a critical FrT characterizing instability. 

The gravity free-surface problem is, however, nonlinear. 
To linearize it we consider a small FrT perturbation expansion, 
i.e. and expansion for a state near rest. Referring the variables 
to T (Fig. 2) and (gT')l/2 and expanding as follows: 

F(Z) = $ + i* = FrTF, (Z) + FrT3Fz(Z) + .. . 

W(Z) = U - iV = FrT W, (Z) + FrT3W2(Z) + ... 

N(X) = FrT2N( (X) + FrT4N2(X) + ... 

(1) 

(2) 

(3) 

we obtain from the exact free surface and body boundary conditions 
the following equations: 

at first order (Fig. 2b) 

¢, = 0 

W, = 1 

(ASBA) 

(X — - oo) 

(4) 

(5) 

i.e. a flow beneath a rigid wall replacing the free-surface at its 
unperturbed elevation. In addition 

N = 4 i1 - U|Z) (X < 0, Y = 0) 

second order 

*2= - U,N, 

*2 = 0 

(AS, X<0, Y = 0) 

(SBA, X > 0, Y = H(x)) 

(7) 

(8) 

i.e. a flow generated by a source distribution along the degenerated 
free-surface, and 

N2= - U,U2 (X< 0, Y = 0) (9) 

It is easy to ascertain that *2 is zero at infinity such that 
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the total source flux is zero. Similarly Ng is zero at both the origin 
and infinity. In fact the first order solution gives the exact values 
of N at infinity and at the stagnation point, the higher order approxi¬ 
mations correcting only the free-surface shape between these two 
anchor points. The above expansion is consistent and hopefully 
uniformly convergent. It differs from that suggested by Ogilvie 
[ 1968] who has kept terms of different order in the same equation 
in order to obtain waves far behind a submerged body. 

The solution of the first order approximation for the box-like 
shape body (Fig. 2a) is obtained in terms of the auxiliary variable 
£ as 

W, (£4) 

1/2 
F, = ;/tt (10) 

where the mapping of the linearized Z plane (Fig. 2b) onto t, 
(Fig. 2c) is given by 

Z = i(C2 - 1)I/Z +iin[U2 - 1)I/Z - £] (11) 

Hence , by Eq. (6) we have 

N»= T-Ti 

For the second order approximation (Eq. (7)) we get 

*2 = 
(£ + D 1/2 

(ê - D 3/2 
(4 < - i, p = o) (12) 

given along the £, real axis (Eqs. (8) and (12)), leads by a 
Cauchy integral to 

± Re r * 
ir J.| <M£) ,00 

d)V 
rn: 

1/2 

Ug and Ng as functions of 4» are easily found from Eqs. 
(13) and (9) (for details see Dagan and Tulin [ 1969] ). The shape of 
the free-surface at second order is given in Fig. 3. As expected, 
the profile becomes steep as FrT Increases. 

612 

mmtmm 



Bow Waves and other Non-Linear Ship Wave Probleme 

Fig. 3. The free-surface shape in front of a rectangular body 

The dimensionless pressure gradient component norma] to 
the free-surface is proportional to 

where the first two terms of the expansion contribute to order Fr 6 
in the pressure gradient. Taylor's marginal stability is reached /or 
the value of FrT which renders Eq. (14) equal to zero. This value 
has been found to be FrT s 1.5 and the point of instability at X = 0. 

Although the expression for the pressure gradient can hardly 
be expected to converge rapidly at such a high Fr , the result is of 
the order of magnitude of that found by Baba and would seem to con- 
firm the mechanism of free-surface disruption assumed by us. 

The effect is nonlinear since only when taking into account the 
second ovder term does the steepening of the free-surface depend 
strongly on Frr There is no bow drag in the small FrT limit. 

The present method suggests a possible way for determining 
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Fig. 1. Th# irre* «urfacr thap* in from oí » rtcUng l«r body 

Th» dimenaiorUffat pr»a»ur# gradient component normai to 
the free- euríace la proportional to 

♦ Kr (H) 

where the flrat two term* of the expansion contribute to order Fr * 
In the preaaure grHtenl. Taylor'* marginal atablllty la reached for 
the value of Frt which render* Eq. (Mf equal to aero. Thl* value 
ha* been found to be Frr»l,* and the point of InatabUlty at X*O.J. 

Although the expre**Ion for the pre*r ire gradient can hardly 
be expected to converge rapidly at euch a high Fr., the reault I* of 
the order of magnitude of that found by Baba and would *eem to con- 
firm the mechanlam of free-aurface disruption a*aumed by ua. 

The effect U nonlinear since only when taking Into account the 
second order term does the steepening of the free-surface depend 
strongly on Fr?, There Is no bow drag In the amaJI Fr, limit. 

The present method suggests a possible way for determining 
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t'ï.r.lSïe"" ;L*hr„^r.rtlng'.rail' tMcftrÎittïî.he“0"' ^ 
It. application to thcee-dtolnaloial bow.I.^o'tf^Tn'du”: 

IIr‘ MOdS?H FROUDE NUMBER APPROXIMATION (THE JET 

(a) The Outer Expansion 

-,ep^:„,,0aÄa,hfl0Whm0de1’Wh‘ChS: a“nw:ae,anSid0blem 

car,on “theTree »„rfaceenc™d”mo»?d ^ l<> *h' 

and aaglec.^Lto'n^/eîZw eV„cWh1,1hat',<:r /?m Plan‘"g the"‘'»’ 
la equivalent to that ol the bn'ak^g wave (Fla ><>"> 
expand the exact equations of flow ln an V- iVn a' Mo"over we 
expansion, con.l.ten, with the usual llnearlaed ah'lp w"ve .Wy."" 

foe ,„,frcí:„uTh"^oníCdaáhd'waesr„;‘aLiyTodpe,'.aií: r„r«hebly valid 
rnodepate0dFr0nS ' tha, ^JuU'X nve„ 

T * 

made I7r™s 
Ixä; [%]a WuC[eid%7l)0ll°Wed ln 3lmilar P-Mam.^u "e'pa«“’ 
l plane Fig dcwLated „Th th' 'aPa-alon In an aíxillary 
through the «ansformatíoò COn,PleX P°*entlaI Pla“ (FIe- 4b' 

df t 
(15) 

We assume now that the jet thickness t tVa«» * 
the stagnation point b are both o(l) .„ch that under ^„ r"" ° process t -*■ 0 r - riii\ *u =1100 pr'ät under the outer 
Plane (Fig. 4e|.' S ' 1 they coales“ with the origin of the ; 

of the complex* velocitydlt*°nS We 0btaln by “ sy,,e'>"tkal expansion 

w(U = 1 + 6,(e)W|(U + 62(e)w2(4) + ... (l6) 

after taking into account that by definition the body profile has the 
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U' 

(") 

(c) (J) 

h,(.) •-» ♦ (I -«)(.'"/‘-1) 

(.) (I) 

Reproduced from „4, 
best available copy. 

Fig. 4. High FrT flow past a blunt body, (a) The physical plane; 
(b) the complex potential plane; (c) the auxiliary £, plane; 
(d) flow past a completely blunt shape (physical plane, 
outer variables); (e) the body first-order boundary condition 
in the outer expansion; (f) the zero order boundary conditions 
in the inner expansion. 

equation 

h(x) = eh (x) (17) 

at first order 

6, = e 

Re (w| + ik|) = 0 

Im k,(£) = - h,(4) 

(í<0, p = 0) 

(Ê > 0, p = 0) 

(18) 

(19) 

(20) 

where 
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and 

,<-r 
z = 4 - e 

w d; 

CD 

w, dC 

at second order 

(21) 

62=C‘ 

Re (¾2 + lwa) = ' Re[^wi + 2^i> ] (ê<0, (j. = 0) 

(e > 0, Ji = 0) Im w2 = * 'J Ir0 w|2 

w2 -*■ 0 it - co) 

(22) 

(23) 

(24) 

We determine now the first order solution by replacing the 
body along 4 > 0 by an unknown pressure distribution (equivalent 
to a vortex distribution, see Stoker [ 1957] ) of strength g,(£). 
The function k^t,) satisfying Eq. (19) and the radiation condition 
becomes 

r*® 
,(t) =½ \ 

^ «Jo 

-¡(Ç-v) 
Ei [i(;-V)]g,(v) dv (25) 

Eq. (Z0) becomes now 

.00 

if Ree-«" 
^ J0 

Ei [ i(t - v)] g (v) dv = - h.(ê) (26) 

The integral Eq. (26), with a displacement kernel, may be 
solved by the Wiener-Hopf technique. 

The Fourier transform of Eq. (27) reads 

M(\)G,*<\) =-L. I N,-(\) + H,+(\)] 
vZtt 

(27) 

where M, G, , H,, and N, are the transforms of the kernel, , h 
and the free-surface profile, respectively. 1 

The kernel's transform has been factorized by Carrier et al. 
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[1967] 

M(\) = 
M'* 77¡Y¡ =ím' WJ[ m'H)] 

^-«ÍSUSÍlèjhK.ífg, *]| 
(28) 

vWed '^‘h*’?e?eTa^v^Vdy7l,^pe”0h"(^. aC“mPU*h'd • P™- 

Ä: /^“The^aSVC*,,^8',0/'he CrPle"^ 
slngularUy at the^r'lgto110^8""“"” « ««t o°rder t„'ô ““poU,’’“" 

forebody „U1 ytald the .kme Lít^dlfbod^ 0o?dW„'"8th SCile 0Í th' 

With (Fig 4e) 

H,,W = (I^1 e'X£h'(«,d« 

_i_ 1 + 1 -a 
y2 ix ,, .t/z ir-i/r 

i 

(2ir)'‘ ^ (2n) 

we obtain from the separation of Eq. (27) 

(29) 

G| + (30) 

where the laqf- 

application of Liouville^s Theorem, 6 b^ingTrbitrr fr0m tHe 

integral appearing i! ^U) ^uMl^l60 exa.ctly’ because of the 
or large ^ by efpandfngM^ be carried out 

(see Dagan and Tulin f 1 97011 Li' , carrying out this process 
f- *,(£) ,he Vicinity ^ a* >l>e following 

g (I) = __2- 
1 ■ • \l/2 (ttC)' 

Í--0 5 
(3 1) 

d,( are related in a unique manner to c. 
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F rom Eq. (31) we obtain 

w'“,=-^to,;w,,'t,+! ^ «-»> «, 

which is the central part of our analysis. 

„?;he/^PreS8l0,n of the second order solution, satisfying 
Eqs. (22), (23), and (32), was found to be 7 8 

WgUM^ + QdnÇ) 
(33) 

WlththeSeUrmaarteltg=thO(er2,eSUltS ^ expansion' we have- 

w = 1 
(trc)1^2 ^1 + 3/2 riv3/z 

+ cO(tl/z in ;) (34) 

l - e [al t 2a(i)l/i!] + t^^lL t in ; 

i t 

-ijn & +CZ Y _!ü 
çUI, 1/2 (35) 

and e2, being again constants related to c,. , c2.. 

The velocity has the familiar square root singularity at first 
order and a source singularity at second order. The free-surface 
is continuous and attached to the bottom at first order, while at 
second order it rises at infinity. The eigensolutions of the problem, 
which represent in fact the linearized solutions of a free-surface 
flow past a flat horizontal plate, as well as the flow details near the 
bow will be subsequently determined with the aid of an inner solution. 
It is worthwhile to mention here that only at second order are the 
details of the adopted model (i.e. the jet) manifested in the solution. 
Any other model attached to the bow will produce an identical first 
order solution. 
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(t>). The Inner Expansion and Its Matching with the Outer Solution 

We stretch now the coordinates and adopt the following innei 
variables, 6 

£ = Ç/e; W = w; z = z/e; t = t/e; b = b/e 

and expand the function Õ = in(l/w) = r + 10 in a perturbation 
series 

(36) 

O = f20 + A|(e) JJ, + ... (37) 

For the body of Fig. 4d we obtain from the inner expansion of the 
exact equations the boundary conditions for fí0 specified in Fig. 4f, 
which represent a nonlinear free-surface flow without gravity. The 
conditions at infinity are provided by the matching with the outer 
expansion. Only in the case of the straight bow of Fig. 4e are the 
inner conditions so simple. In a general case we have to solve an 
integral equation for 0 [ Wu, 1967] or to start with a given 0(?). 

The solution of w0 is readily found in the form 

(t)'* - (?/.)'/z 
¡72 

(Ç) + (tA),/z 

~ 1/2 ^/ir 
(Ç)/Z +b 

L(;),/z - S 
exp (38) 

where the exponential represents the eigensolutions of the problem, 
doi being arbitrary constants. 

Expanding w0 for large Ç we obtain 

w„ = 1 - 2[ (t/tt)1'’2 - ßb/Tr]-^ + 2[ (t/ir)l/Z - ßb/nf - +^1- + ... (39) 
Ç I ;,/z 

= J dÇ = Ç - 4[ (t/Tr)‘/2 - ßb/ir] + 2[ (t/ir)l/2 - ßb/irf in Ç 

in \ - si +2d0iÇl/2 + ... (40) 

Before proceeding to the matching we rule out the eigen- 
solutions appearing in Eqs. (38), (39) and (40) because they lead 
either to an infinite velocity in the jet or to an infinite jet thickness, 
depending on whether d0¡ are positive or negative. The matching 
of w° and z (Eqs. (39) and (40)) with w and z (Eqs. (34) and* 
(35)) now gives 
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r = caz, b = ^hïl 
d,, =0, d,. = 0 (41) 

•nd both Inner and outer aolu.Ione are unlq„ely determined. 

Our estimates of t an^i k , =,: äs rsuE-“™» a 

(c) The Bow Drag 

integration in thezone ^Fig^^f) ^ b°W Í8 Í0Und by the Pres3ure 

(1 , d. 

b w v ^ 

(42) 

tionalongnBJWmiy brre^cVdbi6-1^61' ^ half Pla^ the integra- 
around the origin J. After exnanHi1046^1/^1011 -1 lníinity (at H) and 
the origin, we get for D P ng /wQ ■*■ w0 at infinity and near 

D = Í— 
2 (1 + cos ß/rr) 

(43) 

flndlngeTu^ff.UeTâfthÍK 0f E<í- <43l. »ith Baba', 
and a8»!, ““f b.nn. with P = ff/2 

C0 = 2D = 0.34 
(44) 

which ia roughly four time, larger than the value estimated by Baba. 

factors explain this'di'screplncr ' The « ‘u" iolIowlne 
solution, the lack of details on K asyaptotic character of the 

important, the crude representation^ R T6 °/’ may be the most 
flow by a two-dimensional equivalent (Fi/ îaf aphree-dimensional 4U1 valent (r ig. la). Future experiments 
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^ theoretical dev..opm.„t. glv. lhe ,o 

like blunt roundÏws^^Îhfs Ut^e^caPPlt0 0ther b°w shaPes, 
higher order than in thet^ple^lTbW ^ 

futhuerreashtauPdí:s.aS ^11 38 t0 ^ree-iin.ensionübodfeViflÄ0 

IV. CONCLUSIONS 

surface bow drag haTe bee'n derived^ lnCePtl™ ^ of a free- 

fi:Är:^ÄEa Hr ^ 
inertial term of the Bernât tÄ^Ä! 

Baba [ «i *ose found by 

out two-dimensional experiments Thp th H t0 be d°ne by carrying 
«.ehded, with add,.,oil 
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DISCUSSION 

L. van Wijngaarden 
Twente Institut?, of Technology 
Enechede, The Netherlands 

of Taylor'a inatabUi^^8Th.y^e^as Ícrite^f aUfthor3' lnterpretatlon 
bility that the normal component of “iterlon for marginal ata- 
interface between gas and fluid vanishes^This ^ a* ^ ^ 
for a plane Interface. " ^his is Indeed the case 
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For a plane Interface and 
variables indicated in Fig. 1 we 
have 

8v 9p 
p,5F= ' W* 

interface 

For negligible gas density Taylor's 
result is: 

fluid 

gas 

Fig. i 

stabie: > 0 * 

instable: < ^ 

marginal 
stability: 

The question is whether this criterion (8p/8y = 0) holds also for 
more general Interfaces, As an example consider the spherically 
symmetric implosion of an empty gas bubble (Fig. 2). The equation 
for the radius R is 

.. • 2 
RR + Eco 

P 

where p^ is the pressure far away 
in the fluid, p® > 0. From this 
relation 

• • n 3 • 2 Ä rr=-J¿®-4r <o. 
p 2 

The inviscid equation for the only velocity component v is 

8v . 9v 
SF+V37 

i 8p 
~ ‘ p 15r 

Since v(r) = RZR/rZ, it follows that at r = R 

1 Ö£ _ Ö + 2R 
7 87 - - R +-r- • 
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This vanishes never and according to the foregoing criteria the 
motion is stable. 

However Pies set and Mitchell [ 1956] proved that in fact this 
spherically symmetric implosion is unstable. This demonstrates 
that for interfaces which are appreciably curved like in the author's 
case, the criterion for marginal stability is not always that the 
normal pressure gradient vanishes. 

REFERENCES 

Plesset, M. S. and Mitchell, T. P. , "On the Stability of the Spheri¬ 
cal Shape of a Vapor Cavity in a Liquid, " Quart, of App. 
Math. , 13, 4, 1956. 

****** 

DISCUSSION 

Prof. Hajime Maruo 
Yokohama National University 

Yokohama, Japan 

I congratulate the success of Dr. Dagan's beautiful analysis 
of the wave-breaking resistance discovered by Baba. As in the 
discussion at the 12th ITTC, this resistance component has been 
regarded so far, as a portion of the wave resistance. However the 
present analysis indicates that it is not the case. The wave-breaking 
resistance seems to have a nature akin to that of the spray resistance. 
Which is the beiter classification, the author considers, whether it 
belongs to the wave resistance or to the spray resistance? 

* * * * * 
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REPLY TO DISCUSSION 

Gedeon Dagan 
Teahnion-Israel Institute of Technology 

Haifa, Israel 

The authors have Indeed applied Taylor's Instability criterion 
to a flow field which Is different from that considered originally by 
Taylor: The free-surface Is curved, the basic flow Is not uniform 
and the Instability Is local. 

For a plane free-surface Taylor [ 1950] has shown that any 
disturbance, of arbitrary wave length, is unstable for 8p/8y < 0; 
moreover, the rate of growth of the disturbance amplitude becomes 
large for small wave lengths. It is reasonable, therefore, to assume 
that for wave lengths which are much smaller than the radius of the 
curvature of the free-surface, Taylor's criterion is locally valid. 

The radius of curvature of the free-surface (r') may be 
large. At instability V'Vgr1 1, i.e. r’/T1 ^ V'VgT1. : quite large. At instability V'Vgr' a i, i.e._ r / i ■= v / B x . For 

the marginal Froude number characterizing instability, f ^r¡r ~ 1 • J» 
it was found that V'/V^ s 0.7. Hence, in this case, r /T = « was foUuu xiiQi. i / >ao ~ - ■ ■ • --• - ■ 

(v'2/vœ ) Fr Z- 1 • For a draft T1 of order of a few meters , dis- 
turbances ofTwave lengths much smaller than r' are physically 
conceivable. 

Although the example suggested by Prof, van Wijngaarden, 
of a collapsing spherical bubble, shows undoubtedly that Taylor s 
criterion cannot be applied indiscriminately, its resemblance with 
the case of a steady free-surface is questionable. The inspection of tne case oi a sucauy xxwv.-.-, -,- --- . 
Plesset and Mitchell [ 1956] article reveals that only for R/Rc 

i -V. /-i 1 
(R being the actual radius of the bubble and R0 its initial radius) 
the disturbances are unstable, although the pressure gradient is 
positive. The two cases are quite different. 

We agree in principle with Prof, van Wijngaarden's criticism 
concerning the need for a more rigorous treatment of the local 
stability of a steady curved free-surface. Unfortunately, the basic 
flow itself has been determined only approximately and further 
refinements of the stability criterion do not seem justified at this 
stage. The aim of the computations presented in the paper was 
limited to offering a model of the free-surface breaking and the order 
of magnitude of the marginal Froude number. 
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REPLY TO DISCUSSION 

M. P. Tulin 
Hydronautias} Incorporated 

Laurel, Maryland 

The wave-breaking resistance is undoubtedly similar to the 
spray resistance rather than to the wave drag. It is a local phenome¬ 
non related to the shape of the body. The energy is not radiated, 
but dissipated locally. On this ground, the theoretical analysis pre¬ 
sented in the paper is based on a model of a semi-infinite body, 
with neglect of the downstream conditions. 

* * * * * 



SHALLOW WAV! PROBLEMS IN SHIP 
HYDRODYNAMICS 

E. O. Tuck and P. J. Taylor 
,of Ad* la ide 
Adelaid*, South Auêtratia 

ABSTRACT 

T diiCU“,WO U,lc ProUem. In .hallow 
TnH »! *hlP ‘jyd'-odynamlc, nainely the .quat problem 
iT.r!1! problem oí 4wave Í0ríc to beam .ea,. Sq^, 
la an important phenomenon in very .hallow water 
í“*"“ »' “>• •<«"«” of .cr.pl,„ bp„õm. "p.„ l“" 
trim in cL,^ '«'"'“"«'«'•"o« *ork op .Ink.,. ,„d 
rim In canal, and in a wide esepan.e of »hallow water 

we Indicate here how the »hallow w.ter re.ulT. c.: 
be obtained from, a ilnlte depth theory ae the deoth 
becomes »mall. Un.teady problem. aí.ocUted wí Í 

piactlcal Importance, a« for a »hip »tandlnc at an ea- 

Äo-To"/^.'*.^' W,! p”vld' »"C .¿Pl, rom. 
beam sea^/ ^ °rCe °n a Unkcr hul1 ln regular 

I. INTRODUCTION 

principally with ahidlov^ wl^r 'and^o^wlt'h n , ap®r U conc®rned 
except in Section 4. The distinction h*\ th dep,h oi ^»t^r, 

of effectively Infinite depth , “J “"¡«‘"Ih ' '"i 
ever ,h. effect of the bottom I. con^red. °W **'" *h"- 

water d,"^ whUTh^VLTe^iV^"-° d—“r • r.p.e of 
lems as compared with infinit h u ^kan8e* to the flow prob* 
saruy dom^îît effectÎ oftt ^ *l*n,i,c»n* bu‘ "°t oece.- 
.hip/ 0„ Ihc^Âídf.íe' ".‘iïliïlT.r :ï:,b'hr''" °í th* 
the depth i. .o .mall ,ha, lhe n.rrpwlp, of lhe ífíd o, O.“ héí . 
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dominant effect on the ship hydrodynamics. 

A degree of quantitativen«gs may be attached to this concept 
of shallowness in a number of ways. Physically and most significantly 
we require the depth to be so small that the hydrodynamic part' of the 
pressure distribution in the field of flow not too close to a disturbing 
influence such as a ship is to a good first approximation Independent 
of the vertical coordinate z. Thus the only pressure variation with 
z is hydrostatic. 

If there are waves present, ambient or made by the ship, it 
is consistent with the above that their wavelength be much greater 
than (say 5-10 times) the water depth, and hence the resulting 
shallow-water theory is sometimes called a "long wave theory. " 
However, this terminology can be misleading, since most of the 
results obtained also apply when free surface effects are negligible, 
as for a ship moving at very low Froude number, when the wave¬ 
length is vanishingly small. An additional requirement for significant 
effects of shallowness in the ship hydrodynamics context is that the 
draft of the ship be comparable with the water depth, so that the 
water bottom does have a profound effect on the ship. 

In this paper we are concerned principally with two major 
problems, which are apparently quite distinct from each other, but 
in which similar phenomena appear. The first problem is the classi¬ 
cal squat problem, associated with steady forward movement of the 
ship in calm water, while the second is an unsteady problem associ¬ 
ated with the response of, or forces on, a ship without forward motion 
in beam seas. 

Squat is the change in draft and trim of the ship as a result of 
hydrodynamic pressure variations over its hull. Acceleration of 
fluid particles as they pass the middle sections of the ship tends to 
produce a diminution of pressure there, and hence a downward force. 
There is also an upward force near the bow and stern stagnation 
points, but the effect of these forces is small since there is a much 
smaller area over which the positive hydrodynamic pressure can act. 
In any case, the developing boundary layer and ultimate flow separa¬ 
tion tends to eliminate the upward force at the stern. 

Thus we expect a net downward force, which leads to a down¬ 
ward displacement, an increase in draft, or slnkage. At the same 
time we might expect a much less significant angular trim effect, in 
which the presence of the small upward force at the bow and the lack 
of such a force at the stern may give a bow-up trim. These conclu¬ 
sions are confirmed qualitatively at reasonably low speeds. 

In fact, of course, being a simple Bernoulli effect, squat is 
present in any depth of water. An interesting and immediate conclu¬ 
sion we may draw is that, like all Bernoulli effects, squat depends 
predominantly on the square of the ship's speed. This seems not to 
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and Ship'S caPtains, who are generally 
control but em ^ jquat as a danger to the vessels under their 

"a foot /ÍSÕ"" ,1° adOPt ‘ Hnear s„ch a. 

lem if onn£lWW ’ SqUat is obviously a most Important prob- 
1 m, if only because it may cause a ship to actually scrape the bottom 

is LT u ÍS thÍS danger Present' but the rnagnitude of the sirTage 
is actually increased by the proximity of the water bottom. This is 

tlT^,rlC^' Since the effective "hannel of now is constricted bv 
the additional boundary, leading to even greater acceleration of fluid^ 
particles across the middle sections of the ship. 

a resulOoTÍrb intereatlnS additional phenomenon in shallow water is 
a result of a close analogy between long-wave theory and linear aero- 
dynamics, in which the Froude number F = U/Vgh based on water 
depth h plays the role of the Mach number. Thus we expect extra¬ 
ordinary effects in the neighborhood of F = 1, c.f the "snnnrt 

critical * anH !ndefed both theory and experiment confirm that this 
critical speed is of crucial importance. Theory, at least in its 
linearized form, predicts infinite slnkage at F = 1 , while in both 
experiments and in observations at sea we obtain a dramatic increase 
in draft associated with the generation of a type of permanent wave 
or bore accompanying the ship near F = 1. 

The squat problem is discussed in Sections 2-4, each section 
presenting a different aspect of the problem. In Section 2 there is a 
lateral as well as horizontal constriction to the field of flow, and a 
hydraulic-type theory applies, while with the removal of the lateral 

h! ÄifleS4lnf i10" sballow-water theory can be used. 
In Section 4, for the only time in this pape r we use a finite-depth 

HoPaP°tCh.ifnduPIiiSent calculations °f sinkage and trim which are 
close to the shallow-water results when the water depth/ship leneth 
ratio is reasonably small. F v lp -engtn 

Problems of ship motions in shallow water, i.e. of flows of 
an unsteady nature, are of special interest again because of the 
dangers inherent in large motions when there is very little water 
beneath the keel. However, even If this danger of Jo„„dtag“«e 
not present, one might be wary of using present theories of ship 
motions for cases when the water depth is known to be significant, 

water d'ep'th1 only"10h ^ StrlP the°ry deal (successfully) with infinite 

flníH fi/0r*.íeíÍ”ÍtetíeS^ ’,Ve concentrate here on a particular mode of 
flmd flow, that involved in pure sideways (sway) motion of the ship 
or of force on it. This mode is of interest for a number of reasons , 
some practical, some theoretical. From the practical point of view 
we expect this mode of motion or force to be of great significance 
when a ship is berthed or positioned in such a way that the dominant 
seas are from abeam, or when it is being manoeuvred sideways by 
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tugs or bow thrusters. 

F rom the theoretical point of view, this mode is interesting 
in that it provides a transition between the case of a fully-grounded 
ship where the clearance is zero and the whole flow must pass around 
the ends of the ship, and the case when the depth is sufficiently large 
compared with the draft of the ship to allow nearly all the flow to pass 
beneath the keel. At draft/depth ratios intermediate between zero 
and unity (but close to unity) the ship acts like a porous wall, some 
fluid particles passing "through" (i.e. under) it, while others are 
diverted toward the bow or the stern. 

Just as the steady problem has an aerodynamic analogy, so 
the unsteady problem is shown in Section 5 to be analogous to an 
acoustic scattering problem, with the ship playing the role of a partly 
permeable acoustic barrier of negligible thickness (assuming the ship 
is thin). Some results may be obtained directly from the acoustic 
literature for such ribbon-like barriers, but new computations are 
needed for the general porous case. 

In Section 6 we describe techniques for obtaining the effective 
acoustic porosity of the ship, i.e. the extent to which each section of 
the ship blocks (or rather, fails to block) the flow of fluid particles 
beneath it. This porosity is then used in Section 7 to obtain sway 
exciting forces on a Series 60 ship at zero speed. 

II. ONE DIMENSIONAL THEORIES OF SQUAT IN SHALLOW, 
NARROW CANALS 

Perhaps the most easily treated shallow-water problem in¬ 
volving ships is that for ships moving in a waterway so restricted 
in both width and depth that the problem may be treated as if one¬ 
dimensional. The effect of the ship is then little more than that of 
an obstruction in an (open) pipe. 

This approach clearly has very important applications to 
canals and river traffic, and it is not surprising that a number of 
similar analyses have been made in response to actual squat prob¬ 
lems arising in the use of such restricted waterways. For Instance 
Garthune et al. [ 1948] and Moody [ 1964] , following the method of 
LemmermanT 1942] , derive a squat formula for use in the Panama 
canal, Constantine [ 1961] , following Kreltner [ 1934] , was concerned 
with the Manchester ship canal, Sjostrom [ 1965] with the Suez canal, 
Tothill [ 1967] with the St. Lawrence seaway and Sharpe and Fenton 
[ 1968] with the Yarra river, Australia. No doubt every important 
shallow and narrow waterway has had its Independent squat investi¬ 
gation. 

The theoretical development is in the main quite elementary, 
once we accept the one-dimensional hypothesis, which can itself be 
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justified either by careful asymptotic analysis or by physical reason¬ 
ing. Suppose the canal has cross-section area A(x,Z(x)), when the 
water surface at station x is defined by z = Z(x), z being a co¬ 
ordinate measured vertically upward from the equilibrium water sur¬ 
face. If, similarly, the ship has section area S(x,Z(x)) at station x, 
and the water has only an x-component of velocity u(x), then continuity 
requires u(A - S) = constant, while Bernoulli's equation applied at the 
free surface gives ^u2 + gZ = constant. 

If we take Z = 0 far upstream, where u = U, S = 0 and 
A = A0, we have 

u(A - S) = UA0 (2. 1) 

and 

|u2 + gZ = |UZ. (2.2) 

In this formulation the ship is fixed in position and the fluid streams 
past it in the x-direction. Elimination of u gives 

/U2 - 2gZ (A(x,Z) - S(x,Z)) = UA0, (2.3) 

a transcendental equation from which the water surface elevation Z(x) 
at station x may be determined in principle, for a canal of arbitrary 
section (not necessarily uniform or vertical sided), and a ship which 
occupies any proportion of the available canal area at any station. 

In this most general case we should then return to the Bernoulli 
equation to obtain the pressure on the hull (which turns out to be hydro¬ 
static) and integrate to obtain the force and moment on the ship. In 
principle the net vertical force would exactly balance the ship's weight 
and the trim moment would be zero, if we had started with the ship in 
its correct squatting position. In practice we should have to devise 
some kind of Iteration procedure to move from an initial guess to the 
correct position. Such a general and exact study seems not to have 
been carried out, although it would be of some considerable interest. 

Most Investigators avoid this problem by treating an Idealized 
ship which is a straight-sided cylinder, and Ignoring end effects. In 
that case Z is constant over the length of the ship, and it follows 
that the ship simply rides up (Z > 0) with the water, maintaining 
constant displacement. If at the same time we restrict attention to 
the case when the canal is constant in section area, and in the region 
of Interest at the free surface has a width W independent of Z 
(locally vertical sides), then we have from (2.3) that 

Ai2 - 2gZ (A0 + WZ - S) = UA0 (2.4) 
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where S is no constant. On squaring, (2.4) gives a cubic equation 
which may hi solved directly for Z. Alternatively, following 
Constantine [ 1961] , we may treat the problem in an inverse manner, 
solving for the speed as a function of Z and obtaining in non-dimen¬ 
sional form 

(2.5) 

where 

F = U/Vgh (2.6) 

d = - Z/h (2.7) 

and 
s = S/A0, 

h = A0/W 

(2.8) 

with 
(2.9) 

as the mean depth. 

Constantine [ 1961] discusses the nature of the flow predicted 
by (2.5) and presents curves of F against d. Equation (2,5) permits 
only a restricted range of Froude numbers F for any given blockage 
coefficient s, namely 

(2.10) 0 < F < Fjis) and Fz(s) < F < oo, (2, 1 

where Fj (s), F fnl are critical Froude numbers shown in Fig. 1. 
No steady flow is possxoie mine trans-cruicai region F, < F< F-, 
and Constantine [ 1961] discusses how an unsteady bore forms ahead 
of the ship if it attempts to exceed Fj. Notice from Fig, 1 that the 
trans-crltical regime becomes narrow if s is small, and as the 
blockage tends to zero there remains a single critical Froude number 

The last result is relevant to an alternative linearized ap 
proach to solution of (2.3) not utilized by the previously referenced 
investigators, but described in a somewhat different context by Tuck 
[ 1967] . Instead of specializing the shape of the ship, one now makes 
the approximation that its section area S is everywhere small com¬ 
pared with the canal section area A. If we again take for definite¬ 
ness the case of a caned whose undisturbed section area A is inde¬ 
pendent of x and equal to A0, the water elevation Z will likewise 

jjj ' 1 ' ' 3 2/3 1 2 
Roots of the equation s = 1 - ^ F 
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be email relative to the mean depth ^ 
by Its Taylor series expansion with respect to a, 

_¿£ + ... )(A(x ,0) + Az(x,0)Z + ... - S(x,0) - ...) = UA0.(2.H) 
(U 

On collecting terms 
of leading order In (2.11) and setting 

A0 = A(x,0) 

S(x) = S(xi 0) 

W(x) = A^x.O) , 

(2.12) 

(2.13) 

(2.14) 

we have 

^ A + uwZ - US = 0, 

l.e. 
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d = s TTf5 
(2.15) 

where F, d, s, h are again defined by (2.6) - (2.9) respectively, 
although all these quantities may now in principle vary with station 
coordinate x. However, if they do not, (2.15) can easily be shown 
to be the result of direct approximation of (2.5) for small s<. 

The most interesting feature of (2. 15) is of course the singu¬ 
larity at the critical Froude number F = 1 , which is to be expected 
from the fact that the former transcritical region F, < F < F2 has 
shrunk down to an isolated "forbidden" Froude number at F = 1. We 
shall make use of linearized results like (2.15) throughout the re¬ 
mainder of this paper; however, It is well to bear in mind in "ach 
case that we may expect singularities at the critical I roude number 
and that, should these be of concern, they may be explained, studied 
or removed by non-linear considerations simpar to those of the 

present section. 

III. TWO-DIMENSIONAL THEORY OF SQUAT IN WIDE, SHALLOW 

WATER 

The theories of the previous section are useful only in widths 
of water comparable with the beam of the ship. Since the important 
blockage parameter is the ratic of the maximum ship cross-section 
area to the cross-section area of the channel, naive use of these 
theories for very wide channels leads to the conclusion that the squat 
effect tends to zero for a given ship as the channel width tends to 
Infinity. But of course the basic Bernoulli effect must still be present, 
even in an infinite expanse of water, so that there will still be squat, 
and indeed substantial squat in this case. 

Analysis of shallow-water flow past ship-like bodies in in- 
finitely-wide water was first attempted by Michell [ 1898J in his 
famous wave-resistance paper. The relatively greater importance 
of Michell's infinite depth formula, the derivation of which consti¬ 
tutes the first part of his paper, has perhaps led to little interest 
being taken in the second part of the paper, where he treats a shallow 
water problem. This is unfortunate, since Michell s approach is 
what we might now call an aerodynamic analogy, even though his 
paper ante-dates aerodynamics! 

The problem treated by Michell concerns steady flow at speed 
U in the x-direction past an obstacle of thin cylindrical form, with 

equation 

y = ± |b(x), < i, (3.1) 
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extending from the bottom z = - h to the top z = 0 of the w^ter. It 
is apparent right from the outset that with this model of a ship we can 

where T T OÍ ÍOr thC "Ship" haS vertlcal sides every- 
wave resUUnce PaS8eS lt' Mlchell's only concern was with 

H ^ T1Je n^ather«atical problem is specified by a disturbance veloc- 

Spïïce's equatfon 81 V'l0C“y “ 2(Ux + *>' ’““W"* 

- h < z < 0, (3.2) 

the bottom condition 

n 0 dz on z = - h, (3.3) 

the linearized free surface condition 

g§z + u2'|^ = 0 on z = °* (3.4) 

and the linearized hull boundary condition 

!^=±iUb'(x) on y = 0+. (3.5) 

Both eciuations (3.4), (3.5) are linearized on the basis that the ship 
is thin, i.e. that its slope b (x) is everywhere small, so that <j> and 
its derivatives are small, as is the free surface elevation. 

We now apply the assumption that the depth h is small. The 
corresponding approximate equations may be obtained formally by 
stretching the z-coordinate with respect to h, then carrying out an 
asymptotic expansion in terms of the small parameter h/i see 
Wehausen and Laltone [ I960] . However, the leading terms are 
easily obtained by simply expanding <j) in a Taylor series with re¬ 
spect to z, about the bottom value z = - h, i.e. 

<|>(x,y,z) = <Mx,y,-h) + (z+h)(()2(x,y,-h) 

+ i(z+h) ^„(x.y.-h) + ... . (3.6) 

The second term in the expansion (3.6) vanishes by (3.3), 
and we use (3.1) to express <t>zz in terms of c|>x|( and <|>yy , writing 

635 



Tuck and Taylor 

*(x,y,z) = <t»(x,y,-h) - |(z+h)ZV^x,y,-h) + ... 
(3.7) 

where v'= (92^) + (92/9y2) • On substitution in (3.4) v,e obtain 
immediately to leading order in h the equation 

- ghV2«t>(x.y.-h) + Uz<)>xx(x,y,-h) = 0, 

or 

[(1-FZ)¿+|^] 4>(x.y.-h) = 0, 
(3.8) 

where F = U/Vgh. 

Equation (3.8) is 
linearized aerodynamics ^ tw£" the role of the Mach number 
fluid, with the Froude number^ F P^ymg ^ solvlng ,3^ 5ubject 

(see e.g. Sedov [ 19o5J). . /p < <\ or supersonic (F > 1) 
to (3.5) is identical to that for subsome (F^^D or^xp ^ ^ 

flow over a non-lifting wing o «Wnamics' Of course Michell was 
directly the result, obtained “ icîst» could have 

SÄwÄenrst solution o, any boundary-value Prob- 

lem for a non-trivial general boundary. 

, . mi Vn (3 81 is different according as F < 1 The character of Eq. (3.8)is ^ boUc> and different 

mathematical^»rop^srttes fl^tbe^hydrsdynamlc^part 

onh:^:.-ÄÄÄ body surlace, namely 

P = s 

1 - F 

r00 b'ui 

2X00 x- 

(4) d| F < 1 

(3.9) 

PHI- b'(x), F > 1, 

zWï^ 

the bar denotin« a Cauchy principal value ^ 

given by (3.9) -^¿'‘.“»Uow-waV.r approximation and there is no 
neglected as part of the shlp approximation. The complete 

£:Ä.*«rÄ i. obtained by adding to (3.9) the hydrostatic 

pressure. 

direction^and'there^s^no^netm'oment.'lvflchell^ound'by8 integration 
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Shallow Water Problems in Ship Hydrodynamics 

of p times the slope b'(x) that the net force (wave resistance) h 

( 0, F < 1, 

F, = 

~ r?2*3- î [b'W]z dx» F > 1. 
2 VF* - 1 J-f 

(3.10) 

No doubt Michell was disappointed in his conclusion of zero 
wave resistance in the more important sub-critical regime, and 
indeed this conclusion may have contributed to the neglect of his 
shallow-water results. However, we can expect no other result 
from the present theory, which lacks a dissipation mechanism in the 
sub-critica1 regime to leading order. This feature it has in common 
with linearized aerodynamics. However, in aerodynamics the drag 
vanishes even according to nonlinear theory for Mach numbers every¬ 
where less than unity, whereas in the present water-wave problem 
it is only to leading order that the wave-making dissipation mecha¬ 
nism disappears. No second-order calculations seem to have been 
carried out to find the non-zero subcrltical wave-resistance, and 
this is a problem which merits attention. 

Micheil's analysis for a wall-sided "ship" was extended to 
ships of arbitrary cross-section by Tuck [ 1966] . In this case we 

1966enane!. i0aPr1í 3 ^’ although the analysis in the 
1966 paper is rather complicated, the main conclusion is quite 

noTlfl tbe/nethJod of matched asymptotic expansions (Van Dyke, 
I 19Ò4J), Tuck showed essentially that Micheil's result (3.9) for the 
pressure still holds , providing we interpret the function b(x) as the 
gfan thl^kPe?g. of the ship at station x, averaged over the full depth 
of the water, i.e. set r 

b(x) = ^ S(x) (3.11) 

where S(x) is, as in Section 2, the cross-sectional area of the ship 
at station x. Thus, for example, we obtain again Micheil's wave 
resistance formula (3.10) but with (3.11) used to rewrite it in terms 

On the other hand, the modified geometry of the ship does now 
allow non-zero vertical-plane forces and moments, and we find an 
upward heaving force 



Tuak and Taylor 

F3 = < 
2^h/ri3rí.idX^.idêB'(x)S'(ê) loß *x-e I ' F<1 (3,12) 

--- (* S'(x)B(x) dx, F > 1 
2hVFz - 1 

(3.13) 

and a bow-up pitching moment 

F<1. 

5=< (3. 

oU2 C1 
-pg ' \ S'(x)xB(x) dx, F> 1, 

2hVF - 1 

14) 

(3,15) 

In where B(x) is the width of the ship at the waterline at station x, 
act Ue force written down in (3.12) is invariably negative at sub- 

cntical speeds so that a slnkage is to be expected rather than a lift. 

* : T<íCk ^ 1966J also glves fcrmulae for the actual slnkage and 
tr .,.7isp^acements of the ship in response to these forces, assuming 
equilibrium with hydrostatic restoring forces, and provides some* 
computed results which are in reasonable quantitative and excellent 
qualitative agreement with experiments of Graff et al. [ 1964] . There 
is a need for mere experiments, especially in the iFëry low water 
depth range, but it would appear from the comparisons so far made 
that the theory is quantitatively accurate so long as the depth is less 
than about one eighth of a ship length, and the Froude number based 
on depth is less than about 0.7. 

may be ,worth ^serving here that the integrals in (3. 12) - 
(3. 15) are fairly insensitive to the shape of the section curves 
B(x), S(x). For instance, the ratio 

X. = 
* /-1 dx B'MS'té) log |x-ê I 

f_£ B(x) dx ‘ S(x) dx 
(3.16) 

is neariy an absolute dimensionless constant, taking values between 
2.0 and 2.4 over a very wide range of B(x), S(x) curve shapes, 
including actual ships and mathematically defined curves. Thus a 
nearly universal approximation to the subcritical vertical force is 
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Fr ' X B(x) dx s(x) dx (3.17) 

F2 f!i SM dx 

6~ 2Tr7Trp ^ (3.18) 

Finally, introducing the displaced volume 

V = «f-i S(X> dX (3.19) 

t^d making a fUerthere assumption (justified in most practical situations) 

(3.20) 
r_ 2\U¿ V 
0 "Tib L? 

where L = 2i is the ship length. 

ieeta„dnuri»CW.''rd'ifw.S.’ ^ T“ h V In cubic 
values foe ^ ^ (cons.ava.lv., 

6 = 0.13 
U2V 
hl7 * (3.21) 

äSSSSSSSSST«?^- 

£SS3“S^?#^ 

;í.^v^cs•Ä‘ss;Ä“:,r^£t¾'£■. 
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eating mathematical feature of this small . 
larity at F = 1 becomes stronger as w/L —^ hTlt ^ that thC sin8u' 
verse square root (e.g. (3 iZiWn in,« i- °' chan8ing from in- 

M g* ■ 12,) to lnverse first power (e.g. (2.15)). 

■Another conclusion in the 1QA7 

the sinkage at width w and that at infinite -afif that the ratio between 
ent of the .hape, "peed ef th" hi» Æ 7' alT,t 
parameter (w/L)-/l - f2 Thus sfa f p’.d,ePendlng onfy on the 

(3.21) !) of tL infinite wldtfsTnlcagr we8 WÍth^eStimate (eV6n 
effect of finite width by use of the fniversTl^ ? estimate the 
paper. For example/at low values Ï F I g the 1967 
ship lengths Increases the sinkage by 10%' dtu °f ÍW° 
over the infinite width values. For channel widths^ g,l V 33%' 
length a one-dimensional theory as in SecUo^l U s fff 0116 Ship 
and probably to be preferred. Y U 1 18 sufficiently accurate 

IV* Wm#;'XTNESIDFNpTHTHEORY °F SQUAT IN IN™TE 

SupposeWS(x)egis the cíoss-L^tf1011 by presenting the solution I 
moving at velocity U in water ofVJt?^^^ 

S*(k) = f1 S(x)eikl< dx. 
J -f (4.1) 

Then consider 

dk kSV(k)e'ikxJ d\ ■ 
-iXy 

-00 -00 

• feqz +—•—cosh qz_kz cosh q(z +h) 1 

L Slnh<îh sinh qh(kz-Vï^hlh)J (4-2) 

where K = g/U2 and q = (k2 + \2)Í 

has .heÄVp1o^re"10e"ait.V2,ciS.cSrm"ly “ 

(i) v2<f>=0, - h < z < 0, r = (y2+z2)2 ^ 0, 
(4.3) 

(ii) 8(|>/az = 0 on z = - h, 

(ill) K(dcj>/dz) + 0Vax2) = 0 on z = 0, y * 0, 

(4.4) 

(4.5) 
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U 
(iv) 4> — - S'U) log r + f(x) + 0(r Io« r) as 0, (4.6) 

The physical interpretation of 4, is as follows. The contribution 
om the first term e inside the square brackets is just the 

to S-ixf în > fi*1 Mdl,iÍ.rlíUti0n OÍ aourceB> oi "trength proportional 
to S (X), m a fluid which extends to infinity in all directions. The 
contribution from the second term inside the square brackets cor- 

t™8 in°trh Presence of a bottom wall at /. •- - h. while the last 
term in the square brackets corrects for the presence of a free 
surface at z = 0. 

The last property (4.6) indicates that the given solution (4 2) 
can serve as an outer approximation (see Tuck ( 19641) and will 
match an inner approximation which satisfies the correct boundary 

oot'entlal11"°° ^11 8urface- Thus (4.2) gives the disturbance 
potential for flow around a slender ship in finite depth of water, no 
shallowness assumptions having been made. 

rho 1 Ihe fun<:^on in (^6) is oí crucial importance, and may 
cleariy be considered in three parts, arising from the three terms 
in the square brackets in (4.2). Let us write 

i(x) = f(jo(x) + g(x) (4.7) 

where 

= - igiïho* 4I«'-,*,. ¿ y'( di ïùfzjçfi 

(Tuck and von Kerczek [ 1968]) is the corresponding function for the 
double-body flow in an infinite fluid (no bottom or free surface), 
while g(x) is the contribution from the second two terms in the 
square bracket of (4.2), and takes the value 

g(x) = Î dkksWfc*A*(k) O-oo (4.9) 

whe re 

¿*(k) = - 2 
ÍiOO r 

k 
i + 

*> Vq* - kz L k - Kq tanh qh ]• (4.10) 

In the integral (4. 10), if *h < 1 there is a pole on the real q-axl. 
at q = q0(k), where 
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k2 = Kq0tanh q0h 
(4.11) 

and this pole must be avoided by passing beneath it in order tha-. the 

waves are behind the ship. 

i i nf A*(ki may be written as a Cauchy 
Thus the real part of A l ) evaluated by standard numeri- 

principal value integral, which ca f A^(k) can be obtained 
cal quadratures,whereas the I>art A ' 
from the residue at the pole, and we have 

TTK _ Efl âSfl , Kh < 1 

f V^2 k dk 
JA*(k) = 

(4.12) 

0 , Kh > 1. 

* • J n(v\ follows bv further numerier,! quad- 

from (VT S actii iumerlc.l v,l«, o£ gW »:™ 

. ._ ¡a (-Vie forces on the ship, 

w„ich i— siv“by 

p(x,y ,z) = Poo^.y*2) - pUg'M 
(4.13) 

.here p„(x.y,e) is .he press«» o„ a doable body ia an infinite 

fluid. Hence the vertical force 

nl 
F = F00 - pU \ dx B(x)g'(x) 

3 3 J -i 

_ y00 . ¿U2 C dk k2S*(k) B*(k) A*(k), (4.14) 
" 3 J.«,, 

and the trim moment is 

nl 
F rF^+pUl dx xB(x)g'(x) 

5 5 J_i 

F<» + pu2 Ç* dk k2S*(k) xB^(k] A+(k), (4•1 5) 
- F5 J.oo 

ï-00 V00 are the corresponding quantities for the submerged 

haUrf thl infinite fluid doable body. B(x) is again the waterpla 
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width curve. \ ^ 
BW. XBW 

pOo „00 

by compute reprograms Tuches be comPuted separately, e.g 
Tuck and von Kerczek [ 1968] ° AUern/ti ^ 18 and Smith I 1964í °r 

of water depth and of ^ F"’ F" are 
these are constants which are a prepay ^ 

metry, wL'rl^n^gíeftfng^wtosUv^fV^O ^ f°r®Tand-aft sym- 
S(-x) = S(x) and -xB(-x) = -xBíx^ c:*5 i ’ J0 addu:on» since 
respect to k whereas xB* i « ; ’ S is real and even with 

xB is imaginary and odd. As a result, only the imaginary part (4 iZ) and 0dd* As a result, 
in (4.15), and we have (k) contributes to the integral 

F5 = 
PU‘ 
27* 

i: 
dk kZS*9(xB* )JAJ 

(4.16) 

J °» F = (Kh)~z < 1 

£ \ dqnqnk ç.*/K] „ „ 

^ Jo ÆTP 1 ’ <k)' F>1< 

I ^00 
1 ££ 

(4.17) 

and^r]- F™ whan thï^MD d'"1’ res"lts are obtained for F - F® 
Evaluation 5of the”‘p'S.icãrttta ZnZ 
quires only a single numer.V^i pt ^ moment F5 from (4.17) re¬ 
estimation of the Fourier tran J.^ cïe.(ap^rt J50m the Prior 

). However, in the general case an addition0 ' xB7* However, in the 
mine the real part of A*(k) from (4.10^ÍS needed to deter- 

corresponds to lettin^^h Í4 i° finite-dePth results 
relative to a typical effectif ^ 7/ W!u 6t, th/6 depth tend to ^ro 

(4-11) we have q0h - 0 as kh - O^nd henc^ kI-PJjSiCUlar’ fr0rn 

sîmm^yîÎaT f°r F > 1 > (4-^) i-s for ships wS-^nd-aft 

F5-££_li_r° 

^Vf2-1 
dk kS*JxB * 

PU' 

ZttTf1 
= r S’(x)xB(x) dx, 
- 1 

(4.18) 

(4.19) 
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s im U a i-6 m an n 'vr t h af alf of the shí/6 Straightforward to show In a 

nothing happens to them and in nr( P watei" ^ePth and hence 
However, when the depth Is small thn Pvf nhey remaIn In the formulae, 
dominate the totaj eap^lHo ‘ ^ ‘^S? 
may be neglected. so that F f«o 

age andÍuptr-crmcaítHmforT'M0 8^-critical slnk- 
section-arL cu^es a le^th L PT,Wïh parabollc waterline and 
and block coefficient* 0 533g Thi *’ b.eam of 60 ft* draft °f 20 ft, 
analytical convenience but*is not g'°metrJ and alze was chosen for 

lO^'and^furthermor^'requH-^i1 n~uir^erical^intígr'atTcm of38 
fluid contribution F* in (4. A?! d separate estimation of the infinite- 

cc 
(J 
LU 

0 

1 E 
b- 

Fig. 2 Finite depth squat for a ship 600 ft long and ¿0 ft draft 
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Instead of using sophisticated numerical techniques for F® 

wa er EuflTVnT ^ est\mr*tzd bV assuming that the under-3’ 
could be approximated by an equivalent spheroid, with the 

same length and displacement. If we define the slenderness e by 

. rrzT 
- \lT L? ’ (4.20) 

ratio of the equivalent spheroid, 
ctn be ohtirf'"i i fluidufoi:ce on the submerged half of the spheroid 
can be obtained from the formula given by Havelock [ 1939] in the 

TT00 TTZ F3=-pU ' f B(x) dx - Cs(e) (4.21) 

where 

Cs(e) = I +I(1 " 3eZ + 2eS) (1 - 
logi-/r^^ ' 

(4.22) 

matton* ^2^ is8 ßenerally sma11 ■ an ade9uate slender-body approxi- 

cs<*> = - çZ(log|e +|) + e3 + 0(e4log e). (4.23) 

U i ^4,22) is of course in exact agreement with 
Haveiock s [ 939] more general formula for ellipsoids whose sections 

tion-Th Ci^CUlaM °in °rther hand (4*23) is within 10% of computa¬ 
rá 0 2 !nH iT, IiaTf1KCk 8 /fJ0rmda for general ellipsoids, providing 

.2 and the half-beam/drait ratio of the general ellipsoid lies 
between 0.65 and 7.0, a range of parameters which Includes the 

!u Ku SÍXa\ SOme Preliminary numerical computations 
using the theory of Tuck and Von Kerczek [ 1968] have shown that 
( . 3) is a good estimate for non-ellipsoldal geometries, while 
Havelock [1939] himself made satisfactory comparisons between 
his ellipsoid estimates and experiments of Horn [ 1937] on actual 
ship models, so that there are grounds for believing that (4,21) 
subject to (4.23) gives a useful prediction of the infinite fluid zero 
if roude cumber slnkage force. 

, *lnl*® dePth computations were carried out for water 
depths of 100, 60 and 30 feet. The results for the smallest of these 
depths are in very close agreement with the shallow-water theory 
of Section 3, shown dashed on Fig. 2, over the complete range of 
Froude numbers shown. This Indicates that a water depth/ship length 
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water theo^f BuMhe^reaultT at tJicÍ thT ^ ^ U8e °f shallow- 
ably good agreement with shallow-wato /if depth are also in reason¬ 
underestimating sinkage by about 20% 'rh^' ^ latter theory 
estimate at 100 ft depth is about 40? corresP°nding under¬ 

water-depth/ship length rat?o S ît(>LÎ ^ COnsider a 
water theory for sinkage. * 1 in 6 as too great to use shallow- 

the flhiteTptre;^”Xw watt'lX'«3' ,h'between 
dominantly due to the infi, = r predictions of sinkage is pre- 
(positive) ie “ S " »^e 'e™ F? i„ (4.,%. ,Pf 4,. 

all depths merely oscillate -ibo!,)-4] th ^epth cornPutations at 

shallow-water cur^e. The^oslin^^ WhiCh/8 qulte close to ^e 
Fig. 2; they are quit¡ similar to i / Cl6arly vlslble ln 
wave resistance curves, and have the sTme ^/1°11°^8 in theoretical 
ference effect. One may thus sneculate ^ i?la.natl°n’ as an inter- 
lations, we may obtain /useful emZi f that> by ignoring these oscll- 
finite depth sinkage by adSin/ theTn 8C/eme f°r co^puting 
to the infinite fluid zero Fronde numbed , eStimate (e,g- {3*21» 
Further work needs to be done to test this / f«0mPUted by (4‘23)- 
some significance since computations £,=1 au8gestion, which is of 

ent section are too complicated and exoef6/ ^ l the0ry °f the pres- general use. Pleated and expensive of computer time for 

experiment have /eTbeeÏmade^bït thed^ff ^ computations with 
depth and shallow-water results avoe^r between the finite- 
to explain most of the discrepanrip« =1 ln the right direction 
between shallow-water thoorv and ft lready noted by Tuck [ 1966] 
[ 1964] . in particular mon7d t Î ! experimeats of Graff at al. 

100 ft, (h/L = 0.167) LhZÂ'i pe'ÎXÎS0.TtÎOr 8 dftiril 
curves occur at about thp ninv,f v j s In the sinkage and trim 

respectively, and that tt írim ' °'94 and 0*’g 
Froude number as low as 0.8. ° become significant at a 

V. THE ACOUSTIC ANALOGY FOR UNSTEADY LATERAL FLOW 

very special aspTc^of^he ptoWe^of Tl shall.be cfncerned with a 
namely computation of the exciting forte t rnotl°n® ln shallow water, 
the influence of regular beam seas A n & statlonary shlP under 
and partial solution of the problem of shTn T**? iorrn^on 
is given by Tuck [ 1970] Most oth« hÍPi motions in shallow water 

w».«, ,.i. F-i”ai;K«;\r9t]wKtaiiÄrotio''s 

hi. in h*rb“"’ 
be made of the thesis by Ogilvie f 10601 * t'¡ must also 

Spione expansion wL d^o^fetcÄr" 
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l°a Water rrobu^ " 

dimensiona! diff„o,i„„ Pn„bIemi. 

--rk “d ’ — 

o- = Vgh k. 
(5.1) 

The potential of this wave will K» * ! 
where ” be taken 10 b« the real part of 4,,.-1.-., 

*°SAJ?' 
e'ky 
nr 

e & - o-tá - n ° dz <r <p - 0 on z = 0 

(5.4) 

“d a b°U"da,',r »" «t» Ship', hull of the form 

9 /a 
d¿ (¢0 + ¢) = 0 

»her. 8/»n „.„0,.. different.a.^n norma. ,0 the hull. 

“^0”w%nCà "nSkac",^ff°b7»at-eppron,»,,^. ,0 
series with re ipect to (z +h) Pr, Ti6’ exPanding in a Tavlor 
substitution of (3.7) in (5.3) we now^ind ^ apPlies' but on 

(5.3) 

(q2 _2 V 

+ Spj^x.y.-h) ‘»■^(Xty.-h) r o, 
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i.e. <f>(x,y,-h) satisfies the Helmholtz equation 

VZ«|> + k2<j> = 0 (5.5) 

in the (x,y) plane. 

The Helmholtz equation is of course simply the "reduced 
wave equation, and so applies to any scalar wave problem in two 
dimensions, for sinusoidal time dependence. In , 
describes linear acoustics in two dimensions (e.g. Morse [ 1948J ), 
and many results obtained in solving acoustic problems may be 

utilized. 

For example, we may treat immediately the scattering of a 

thin cylindrical ship, as in Michell's model of Section 3’ ^1Ch 
extends from top to bottom of the water. 
from the theory of Section 3 is that, even in the limit as the thtcK 
ness tends to zero, the thin "ship" is capable of scattering beam 
waves. Thus, to leading order, the problem is independent of 
thickness, and reduces to acoustic scattering by a ribbon or stHp 
of zero thickness placed broadside on to the waves , with a hard 

boundary condition 

94 = 
3y 

constant on y - 0. < f , (5.6) 

The exact solution can be written down as a series of Mathieu 
lanctloJ (Mors. Rubens,em [ 1938]). Results fur the scatter ng 
cross section, the far-fleld polar diagram and the force on the strip 
can be computed from this series, but only with some difficulty, 
especially for high frequency. Alternatively, Integral equation for 
mulationJ of the problem can lead to useful high and low frequency 
rsvmptotic solutions (Hönl, Maue and Westphal [ 1961] ) or even to 
efficient numerical solutions (Taylor [ 1971] ). Such numer cal 
results are included with the discussion of the general case m 

Section 7. 

Once aeain this idealized ship is deficient from the practical 
( ■ ^Tn narticular it allows no account to be taken of flow 

Cn.att r/hJ ofS ship? fn aTsUuati» of real Interaat wav. 
energy is not only scattered, diffracting around the ends of the ship, 
but aiso transmitted underneath the ship if there is any reasonable 
amount of clearance. The most interesting situation is that which 
applies when the amounts of disturbance scattered and transmitted 
fre of the same order of magnitude; we shall see later that tnis is 
true for draft/water depth ratios in the range 0.5 to 0.^5. 

We shall retain the approximation that the ship is thin, and 
hence slender, since it must have small draft. However, th 
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possibility of fluid passing underneath the ship means that we must 
replace the "hard" boundary condition (5.6) by a more general con¬ 
dition, expressing in effect a relationship between the velocity 
(94>/9y) + AVg/h of fluid passing "through" (i.e. under) the strip 
y = 0t, |x|< f and the pressure difference (proportional to potential 
difference) across the strip, which causes this underflow. Thus we 
write 

(5.7) on y = 0+, 

where P = P(x) is the "porosity" of the ship section at station x. 
If the ship is actually touching the bottom, then P = 0 and (5.7) 
reduces to (5.6); at the other extreme, if there is substantial 
clearance, P oo and the jump in potential across the strip 
tends to zero, leading as expected to zero force on the ship. 

In the following section we indicate how to obtain the porosity 
P(x) for any given ship and sea bottom geometrical configuration. 
The problem of solving (5.5) subject to (5.7) is then identical to that 
for acoustic scatcering by a "semi-soft" or porous ribbon with finite 
acoustic impedance, see e.g. Morse [ 1948]. However, no general 
procedure seems to be available in the acoustic literature for solving 
this type of problem, and we present in Section 7 a numerical 
approach based on an integral equation formulation. 

It should be remarked that as k — 0 the present problem 
reduces to uniform steady streaming flow across the ship, the free 
surface being replaced by a rigid wall. This problem was discussed 
by Newman [ 1969] , who presented solutions for the added mass of 
the ship in such a flow. The present theory can be considered a 
generalization of Newman's theory to allow for waves, and gives 
results which agree with Newman's in the limit as kf -*■ 0, i.e. as 
the waves become long compared with the length of the ship. 

VI. THE DETERMINATION OF THE EFFECTIVE POROSITY 

The problem formulated in the previous section is to be inter¬ 
preted as an outer problem, which provides a solution for the scattered 
field <|5 everywhere except within a beam or two of the center plane 
y = 0 of the ship. In this latter region, the outer solution must match 
an inner approximation which describes the detailed flow field beneath 
the hull. This flow can easily be shown (Tuck [ 1970] , Newman [ 1969] ) 
to be locally two-dimensional in the (x,z) plane, and to satisfy the 
two-dimensional Laplace equation 

(6.1) 
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in that plane. Furthermore, the free surface condition reduces to a 
rigid-wall boundary condition 

M = 0 
Oz 

or z = 0. (6.2) 

Thus the inner problem is identical to that treated by Newman [ 1969] , 
who assumed that (6.2) was valid everywhere. 

The boundary condition at "Infinity" for this inner solution is 
that the inner solution should match the behavior of the outer solution 
in a common domain of validity, say many beams away from y = 0, 
but not so far away that y is as large as f or 2ir/k. In effect, 
this simply means that the inner boundary condition (5.7) for the outer 
solution becomes the outer boundary condition for the inner solution. 
Thus the inner approximation to the disturbance potential <)> must 
satisfy 

lf + A^I^TP<f> as y** oo (6.3) 

which is satisfied if $ is asymptotically independent of y, i.e. 

a£êã 4. -T as y -*■ ± 00 (6.4) 

implying 

•§4-0 
dy as y — ± 00. (6.5) 

The boundary condition on the hull is (5.4) but where now 
d/dn denotes differentiation normal to the hull cross section T at 
station X, and where, since ky is small in the inner region, we 
may replace the incident wave ¢,, by 

*’')■ i6-6' 

i.e. by an incident stream of speed A-Jg/h. Then (5.4) becomes 

£4= . a II ÈX 
dn Jh dn 

on r. (6.7) 

Thus the inner approximation to 4> is the potential for flow due to 
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.:¾ 

motion of the section r* 
moving in the y-direcHo^8 Hu* Were an infinitely 
being at rest. 7 direction with velocity A^g/h, th 

odd functionPof y í® the.nat>Jral symmetry cínditi^8^4, If ln 
determined, and^he °ni°rmity with (6.4)7 then * ? that ^ ls an 
provide a « ÿ Âïk.,. 

me„.lonlrSr™dL0^eaCl«Ipreo,bim foî solvlng thl. two-dl- 

Ship sections we have (Tavloi 197,1, J0',“"““1 «d quite genifi 8 

“the m',hods — * 

Thes^sourci^^i^^^^H^^^^w^h^varraWe^u7 " of 

r7it”r,6-iv3-3''“s-“sÄ:^ 
in order to satlsfWA ^tempt to choose the sourr b°undary condition 

»hlch the source iïîrpÂthiÂ 

the source density to hf 11 segments, on each of u 4 aPProxl- 
to a set of linear a/ooK6 ^onstant. The integrï i?,a^ CllWe a88ume 

äu?“8*1'« ■ - - -~íírsr."dTS£r 

It is convenient to define a bWi, 
me a blockage coefficient 

C(x) = 
(6.8) 

thatthto oSe^J°^ With this definition 
speed A-v^Th oi*L divide the potential ’¿"b 8ee» fr°m (6,4) 

Sir--« 
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■water of depth 0. lZot * tagg smoments on the bottom of the 
C = 0.598, while our program w^,h 3 = rteeglvesC = 0.603. Although 
recU»gl. and 121” ver gu<>d f„ th. present application, 

;?cr.Ca“.riwybe aid hai been improved by n.e of a large, nnmber of 

segments, especially in the neighborhood of the corner . 

Another check is by means of asymptotic estimates f°r smal! 
clearances (Taylor [ 1971]). A formula which is valid for arbitrary 
sections, providing they have substantially vertica! sides 2b unU: 
apart and a substantially flat bottom c (« h,b) units from the water 

bottom, is 

C = 
bh 
c 

(6.9) 

For strictly rectangular sections, this formula may be improved by 
estimation of the »«. term In an asymptotic expansion for small 

c/h, giving 

CeHi+aiOg 
C TT 

JL + — - b + O(c). 
4c TT 

(6.10) 

For the rectangular section used as an example above, (6.9) gives 
C = 0.625 while (6.10) gives C = 0.597. 

Indeed, it must be noted that rectangles are not a fair test for 
the computer program, since the generating source strength becomes 
infinit «Tat the sharp corner. We should therefore expect far better 
accuracy for smooth ship-like sections. For instance, the Program 

• «o ypanltq with accuracies of better than 1% when applied to the 
oval-sl^pod8. nelsons generated by a single isolated dipole in a channel 

(Lamb [ 1932] ). 

Figure 3 shows computations of C(x)/i for a Series 60, 

block 0.80, tanker hull (Todd [ 19631 The result. 

“t ir^ÄhrSVa'teVo^Ä-^^fVf f °-b8e“d.h 0 5 In neither of these cases is there a great deal of »ater beneath 

To a maximum force (see the following section) less than a quarter 

of that for the full-blocked situation. 
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invera e^the porosUy Ph) for an bloCka«e c»«ffi=ient C(x) or it, 

we have all the information aiouï the'ThlnftaM“" *eomet>-y’ 
the outer acouatic-llke problem to determine ,h! neCe,*arV •» s°lv' 

sf?ä!35£3?:SSF ä 

arv Tins potential is proportional to the pressure difference 
oss the ship, and hence we may obtain the net force F on the 
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ihip in beam seas in the form 

Kg = - Zio-ph T <Mx, 0t, -h) dx. (7,1) 
J-i 

lí**1* 4o«h°,WS comPutations of |F2|/2pghfA for the Series 60, 
block 0.80 ship whose blockage coefficient C(x) was given in 

/* Tllis Particular scaling of the force was chosen so that the 
high frequency or short wave limit kf — oo is 2.0, This limit cor¬ 
responds physically to the case when the ship acts as a perfect 
reflector many wavelengths long, so that a pure standing wave exists 
in its neighborhood. This is true for all values of P(x), i.e. for all 
draft/water depth ratios, because as the waves get shorter and 
shorter they are less able to penetrate beneath the hull. 

Fig. 4 Side force on Series 60, block 0.80 ship, due to beam seas 
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For non-z\roeep(xh)e th° tW° end* o{ the <hiP' 
since nart nf tK. th almliar but much reduced effect, 
shin a í Í h Wave energy 18 tran8mitted directly beneatn the 
ship, and a less strong diffraction pattern produced! 

The force decreases markedly as the clearance ¡a • 
“? •?« «hip presents les, of a barrier to 0....,. 5..1. ene”V 
If in fact the clearance Is large, p - » „ rü fl , ! „ 
(5.71 .ha, ¢(.,0+,-h) - - A/fri C(x> heno. ,h0.¡ “ "'>m 

— ZlpghkA f C(x) dx. (7.2) 

sTu^efaPcheyonCtLÍnHtfrtPreKtatÍOn<iOÍ th/8 Umlt ÍS that the eííect oi the free surface on the disturbance flow field about the ship diminishes as the 
clearance increases, until the flow is effectively the same as the low 

accelerationT** ^ Pha" ““ ^ ^ accelerations. This is In line with an interpretation (Newman Í 19691 
of C(x) as related to the added mass of the section at xT wUh the 1 
free surface replaced by a rigid wall. The resulting forca F. is of 
course numerically small, if C(x) is itself small. * * f 

.. r1a 0n the oth®^ hand> the only cases shown in Fig. 4 correspond 
hence / Sma11 enou8h to give significant blockage C(x), and 
y. nce a net force comparable with the standing-wave value 4piih/A 

llZ l jPPTVhVhla limiting value 18 a -efol. usuaHy conservã- 
wUh’caut\Tn fr ÍOir C caranCe8 °f îhiS 0rder’ but that lt shoold b® used 
Clearances 168 (Very l0ng awelP or ior noo-small clearances. In the latter case, e.g. with draft/water depth < 0. 5 

total force? ^ ^ S 8ub8tantlal over-estimate of the 

The computations presented here are samples only. Thev 

imi970ie fonSlder!J eXtef,l10,na of 8imilar computations given by Tuck 
l ] r a mathematically idealized ship with a blockage coefficient 

C(x) = c>2 - X2. (7<3) 

In fact the results for the Series 60 ship are not greatlv difieren» 
from those given by Tuck [ 1970] , a reflection of^he fact th« ^1 ji 
ls not an unreasonabie approximation to the shape of the curvei in 

f/earance^ ind^t^f^Vh0118 ’ lnc;u.din8 other 8hiP geometries and 
’u d treating the case of incident seas from directions 

other than abeam, are given by Taylor [ 1971], 
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* * * * * 

DISCUSSION 

Prof. Hajime Maruo 
Yokohama National University 

Yokohama, Japan 

In the present analysis , the problem of the shallow water 
effect is discussed on the basis of a self-consistent linearized 
theory. According to the investigations into the same problem both 
theoretical and experimental, which were carried out at the University 

ui °- ° severa^ Yeara a8°> nonlinear phenomena appeared remark¬ 
ably in the Irans-critical speed range. This problem can be analyzed 
by a similar way to the nonlinear theory of the transonic flow of a 
compressible fluid. At that time, however, the theory of the tran¬ 
sonic gas flow had not been well developed, and the former investi¬ 
gations were obliged to confine themselves in the analysis by the 
analogy with the simple one-dimensional duct flow. Nowadays the 
theory of the transonic flow around a body has been developed to a 
great extent. The mathematical technique used in it may be available 
to the problem of the nonlinear shadlow water effect. 

* * * * * 
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REPLY TO DISCUSSION 

E. 0. Tuck and P. J. Taylor 
University of Adelaide 

Adelaide y South Australia 

We certainly agree with the comments of Professor Maruo 
regarding the importance of nonlinear phenomena in the trans-critlcal 
speed range. Indeed, the transonic analogy was discussed in the 
paper by Tuck [ 1966] and further work on this aspect of the problem 
was suggested. 

* * * * * 
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SINGULAR PERTURBATION PROBLEMS IN 
SHIP HYDRODYNAMICS 

T. Francis Ogilvie 
University of Michigan 
Ann Arbor, Michigan 

NOTATION 

a¡j added-mass coefficient 

bjj damping coefficient 

b(x,z) hull offset 

Cjj restoring-force coefficient 

C(x) contour of body in the cross section at x 

Fjn(t) force in j-th mode due to body motion 

FjW(t) force in j-th mode due to incident waves 

g gravity constant 

g(x,z;c) Y offset of camber surface 

G(x,z) g(x,z5€)/e 

h(x,z;e) half-thickness of body (equal to b(xtz) for a symmetri¬ 
cal body) 

H(x,z) h(x,z;ç)/c 

H»|x) part of free-surface deflection in problems in two 
dimensions (see Eq, (5-15)) 

H projection of a body onto the y = 0 plane (the center- 
plane of a ship) 

i 

ijk unit vectors parallel to three Cartesian axes 

kf m Fourier-transform variables corresponding to x, y, z 
respectively 

Kn(z) modified Bessel function of second kind 

L length of a ship, or the segment of the x axis between 
bow and stern cross sections 

663 



F pipiiiiipipipppiipipipniiiiiiippppiippp; mmm wmmm PPIiiPIKIHH 

mj 

m(x) 

nJ 

nU) 

n 

N 

P 

r 

r0(x'e) 
r 

s 

s(x) 

S 

T(x) 

TU 

U 

v(x,y,z) 

X y z 

X Y Z 

zn(x»yjc) 

®n(x,z;c) 

Vn(x,zje) 

6 

c 

&(x,y,t) 

Ogilvie 

(j - !» ••>- * 6) a set of functions defined over the sur¬ 
face of a slender body (see (2-75)) 

added mass per unit length of a slender body 

<J= 1Ï ’ V ’ set of functions defined over the surface 
of a slender body, equal to the components of the unit 
normal vector for j = 1, 2, 3 (see (2-72)) 

damping coefficient per unit length of a slender ship 

ïüto the"body°rmal t0 b°dy surface (usually taken positive 

unit vector in a plane x = constant, normal to body 
contour in that cross section 

pressure 

radius coordinate in cylindrical coordinate system 

radius coordinate of a slender body 

xj + yj + zlc 

half-span of a horseshoe vortex or a lifting line 

local half-span in wing cross section at x, or cross 
section area of a slender body (taken as the cross section 
area of the submerged part, for a ship) 

half-span of a wing of large aspect ratio 

keel depth of a ship at cross section at x 

transfer functions between motion variables and forces 
on body 

speed of a body, or speed of an incident stream (the 
latter invariably being taken in the positive x direction) 

fluid velocity at (x,y,z) with uniform stream at infinity, 
U = 1, flowing around a body 

Cartesian coordinates 

stretched Cartesian coordinates, e.g., x = X, y = eY 
«=ijZ fo^a slender-body Problem, xyz beingfar- 
fleld coordinates, XYZ near-field 

terms in a near-field expansion of ^(x,y;e) (cf. 
Cn(x,y.-€)) 

‘frnixiO»z.'c) in thln-body problem 

normal velocity component in the plane of a sheet of 
dipoles 

motion-amplitude parameter in ship-motion problems 

small parameter in most problems considered 

displacement of the free surface 
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&n<x»yîe) 

4(z) 

r:ix,y) 

^(x) 

Vx) 

0 

0(x,y,t) 

K 

Mfl(x,z;c) 

V 

êj(t) 

p 

<rn(x;€) 

o'nix.zje) 

<Kx,y,z,t) 

^n(x,y,zjc) 

fjix^.z) 

$n(x.y,z;€) 

^j(x,y,z) 

X(x,y,z) 

+j(x*y ,z) 

^ix.y.z.t) 

^j(x,y,z) 

--,¾t far"field of tU.yie) (cf. 

t3V°mpleX Variable z onto an auxiillary plane (in Section 5) 

problemart °f free"surface deflection in ship-motion 

free-surface deflection in problems in two dimensions 

KLirÄ: tñrrln Iow-speed ptobi'm ^ 
angle variable in cylindrical coordinate system 

m«!;deP"¿ee‘dP*rt ^ce deflectlo„ 1„ shlp- 

g/u , a wave number in steady-motion problems 

density of dipoles on a line (see (2-4o) ) 

density of dipoles on a line (see (2-40) ) 

density of dipoles on a surface 

w2/g, a wave number in oscillation problems 

displacement in the j-th mode of motion (see Section 

water density 

density of sources on a line 

density of sources on a surface 

velocity potential (the arguments may vary, but d> 

probtemf n0tes the comPlete potential function in a 

in Section 5.4, potential for the problem in which the 
free surface is replaced by a rigid wall 

terms in a far-field expansion of <(>(x,y,z;e) 

normalized potential functions (see (2-73), (3-28) ) 

terms in a near-field expansion of <Mx,y,z,e) 

normalized potential functions (see (3-44) ) 

terWW PfotentIaí for the Perturbation of a unit-strength 
incident stream by a slender ship “ 

normalized potential functions (see (2-76) ) 

pÄf:fÄ;d^;td,lty p°temlal 

normalized potential functions (see (3-45) ) 

radian frequency of sinusoidal oscillations 

Oj (x,y ,z) normalized potential functions (see (3-46) ) 

0) 
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MISCELLANEOUS CONVENTIONS 

^) Velocity Potential: The velocity is always the positive gradient 
oTthe pc~ ' Potential function. 

2) Coordinates and Orientation; In problems Involving a steady 
Incident flow, that ñow is always In the positive x direction. 
The vertical axis is the y axis in 2-D problems, the z 
axis in 3-D problems. 

3) Time Dependence: In problems of sinusoidal oscillation, the 
time dependence is always in the form of the exponential 
function, 6^. In such problems, the real part only is 
intended to be used, but we do not indicate this explicitly in 
general. 

4) Fourier Transforms; These are denoted by an asterisk. For 
example, 

cr*(k) f. dx e'ilW(r(x) ; <r(x) - 1 f" ,, Ik* . 
dk e <r (k); 

^**(k,l¡z) = T f dx dy e lilU ^^(x.y.z). 
-oo oo 

5) Principal-Value Integrals: These are denoted by a bar through 
the Integral sign: 

f. dê f(ê) 
Tnr • 

6) Order Notation: There are three symbols used: O. o,~. 

a) "y = O(x)" means: |y/x|<M as x — 0, where M is 
a constant not depending on x. 

b) "y = o(x)" means: |y/x| -* 0 as x — 0. 

c) " y ~ f(x) " means jy - f(x) j = o(f(x)) as x—0. 
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I. INTRODUCTION 

This paper is a survey of a group of ship hydrodynamics 
problems that have certain solution methods in common. 

The problems are all formulated as perturbation problems , 
that is , the phenomena under study involve small disturbances from 
a basic state that can be described adequately without any special 
difficulties. The methods of solution make explicit use of the fact 
rhat the disturbances of the basic state are small. Mathematically, 
this is formalized by the introduction of one or more small param¬ 
eters which serve measures of the smallness of various quantities. 
The solutions obtained will generally be more nearly valid for small 
values of the parameter(s). 

However, the problems will also be characterized by the 
fact that they are ill-posed in the limit as the small parameter(s) 
approaches zero. Thus , we call them singular perturbation prob¬ 
lems. Special techniques are needed for'treating such problems, 
and we have two which are especially valuable: 

1) The Method of Matched Asymptotic Expansions, and 

2) The Method of Multiple-Scale Expansions. 

The first lias a well-developed literature, and it has been made 
particularly accessible to engineers by Van Dyke [ 1964] . The 
second, which has a longer history, is perhaps less well-known, 
but we now have a textbook treatment of it too, thanks to Cole [ 1968] . 
Because of the availability of such books , my treatment of the 
methods in general will be extremely terse. 

The necessity for treating ship hydrodynamics problems as 
perturbation problems arises most often in the incredible difficulty 
of handling the boundary condition which must be satisfied at the free 
surface. Even after neglecting viscosity, surface tension, com¬ 
pressibility, the motion of the air above, and a host of lesser 
matters, one can still make little progress toward solving free- 
surface problems unless one assumes that disturbances are small 
-- in some sense. Historically, it has commonly been assumed 
that the boundary conditions may be linearized; in fact, this has so 
commonly been assumed that many writers hardly mention the fact, 
let alone try to justify it. 

The two methods emphasized in this paper can also be applied 
to problems involving an infinite fluid. In fact, neither method was 
applied specifically to free-surface problems until quite recent 
times. Section 2 of this paper is devoted to several Infinite-fluid 
problems. My justification, quite frankly, is almost entirely on 
didactic grounds. The methods can be made much clearer in th^se 
simpler problems, and so I include them here, although in some 
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cases the infinite-fluid problems can be treated adequately by more 
elementary methods. 

Most of the material in this paper has appeared in print 
elsewhere. My intention has been to present a coherent account of 
the treatment of singular perturbation problems in ship hydrody¬ 
namics, and so I have reworked solutions by other people and put 
them into a common notation and a common format. In some cases , 
I have made conscious decisions to follow certain routes and to 
ignore others. I am sure that I have made many such decisions 
unconsciously too. I have tried to give credit where it is due, but 

LafT. ° SUrT thaî 1 ^aVe commi«ed some sins of omission in the 
reíerences. I apologize to those whom I may have slighted in this 
way • 

Nature of the Problems and Their Solutions 

We neyer. really derive the perturbation solution of the exact* 
problem, we derive, at best, an exact solution of a perturbation 

¡«i ' We f°,rmUlate an eXaCt boundary-vaJue problem, 
th® Problem. solve the simplified version, and then hope 

that that solution is an approximation to the solution of the exact 
problem, 

T1iua' there will almost always be open questions about the 
vaiidlty of our solutions, and these questions can only be resolved 

?/r&r?Pari8;r ”ith exact soluti°ns and experiments. We can 
in nl1*1!6 h0pe ielng rlg°rous* In fact, it is difficult to provide 
completely convincing arguments for doing some of the things that 
we do; in many cases , our approach is justified by the fact that it 
works I Much progress has been made in this field by people who 
try approaches "to see what will happen. " 

onaf m Thls d°es "ot imP1y that we «hoot in the dark. It does sug¬ 
gest that we often depend more on intuition (or experience, which is 
the same thing) than on mathematical logic in deciding how to solve 
problems. The »mall disturbance assumptions by which free-surface 
problems have traditionally been linearized must have been tried 
first on t .s basis. The predictions which result from making such 
assumptions agree fairly well with observations of nature, and so we 
are encouraged to go on making the same assumptions in new prob¬ 
lems. We may expect to be successful sometimes. 

—, , There are also open questions about the uniqueness of solutions. 
Engineers do not often worry about such matters, but they should 
certainly be aware of certain situations in which the dangers of 

Exact" means only that nonlinear boundary conditions are treated 
exactly. I neglect viscosity, surface tension, compressiblhty, 
etc., and still call the problem "exact." Y 
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non-uniqueness are especially great. The history of the study of 
free-surface problems provides numerous examples of Invalid solu¬ 
tions being published by authors who were not sufficiently careful on 
this score. We have learned to be careful about imposing a radia¬ 
tion condition when necessary, although newcomers to the field are 
still occasionally trapped. Questions about stability of our solu¬ 
tions are not so well appreciated, but of course solution stability is 
just one aspect of solution uniqueness. A particularly startling 
example has been pointed out in recent years by Benjamin and Feir 
[ 1967] : Ordinary sinusoidal waves in deep water are unstable. This 
has now been demonstrated both theoretically and experimentally. 
It comes as no great surprise to those experimenters who had tried 
to generate high-purity sinusoidal waves for ship-motions experi¬ 
ments , but it was certainly quite a surprise to the theorists , who 
apparently did not suspect any such phenomenon before its discovery 
by Benjamin and Feir. 

Since we shall be considering small-perturbation problems, 
we may expect the solutions to appear in the form of series expres¬ 
sions (not necessarily power series I). Often, we are content to 
obtain one term in such a series. Practically never do we face the 
question of whether the series converges. In fact, ve usually just 
hope that the series has some validity, at least in ar. asymptotic 
sense. 

The question will arise from time to time, "How small must 
the small parameter be in order that a one- (or two- or three- or n-) 
term expansion give valid predictions?" In ship-hydrodynamics 
problems, it is quite safe to assert that the only answer to such a 
question must be based on experimental evidence. In fact, even in 
simple problems, the knowledge of a few terms is not likely to help 
much with this question. For example, suppose that one tries to 
solve the simple differential equation: y"(x) + y(x) = 0, by means of 
a series of odd powers of x. How does one know that a two-term 
approximation is accurate to within one per cent even if x is as 
large as unity? One might compute the third term, of course, and 
compare it with the second term, hoping to guess what the effect 
of further terms would be. If it were too difficult to compute that 
third term, one could only hope that the solution had some validity, 
and perhaps one would try to find some experimental evidence on 
which to hazard a guess about validity. So it is in our shlp-hydro- 

Wlthin the last few years, a leading German journal published an 
article on wave re.'.lstance in water of finite depth, in which it was 
concluded that a body had Identically zero resistance if it were 
symmetrical fore and aft. The author was, I believe, primarily 
a numerical analyst, not familiar with the pitfalls of free-surface 
problems. He did not impose a numerical condition equivalent 
to a radiation condition. (This is one reference that I intentionally 
omit. ) 
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arara^^XVac“ ^ b“ *° <“-«»» thU pota, ta«her 

^ramaäÄw’aT.a“ TrSIZ^Z^ °f the 
this paper I avoid deflninc the «malí aPPr°xlmate problema. In 
usually unnecessary and ft is danaelo a^aníetu^1,qUantltativel>r• U is point also. y dangerous. I shall return to this 

1,Z’ hatched Asymptotic Expansions 

Van Dyke° f 19641 U <laHPr1obleins ’ the approach advocated by 
is familiar with (or has accost to Mr'' i!1“!11 »" *ume that the reader 
definitions and ci„«hpTs wllfle m’etaÄe°"ly * 

bill,y o/the^nfethod ^ 
Find the solution of ,he dSferentlanC,i„nr1;'iM ioUo”ln*: 

ey + 2y + y = o, 

subject to the initial conditions: 

y(0) = 1; y(0) = 0. 

ftitacedT and 

The exact solution for this problem is: 

Pi* 
y(t) = + P.e 

P| - PS 

where 
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If we consider that t = 0(1) as e 
mation is valid for y(t): 0, then the following approxi* 

y(t) ~ e 
-t/2 

This approximation could be obtained step-by-step, iteratively: 

2Vn+ yn = - fy„.i 

Whj ~ ^ Yn^‘ However, it is not uniformly valid at t - 0 
and the constants cannot be determined. On the other hand we' 
could consider that t = O(e) as e-. 0 and rear ran« the exact 
anriUtl°n ^cordmgly. This is most easily done if we set t = <r 

fs ÍhenT everythin8 in ter™ of T. The approximation for y(t) 

y(t)~l+^.J)+c^.r+^)+ ^ 

This approximation could be obtained completely from the dlffer- 

by an Ueratlon scheme in which we let y(t) ~ / Y Ir-t) 
the individual terms satisfying the equation: y' ^Y«tT*e'* 

Yn"(r) + 2Yñ (r) = - cYn.| (r) [ Y*n a dY/dr] 

and the conditions: 

Y,(0) = l; Yn(0)=0, n > 1; Y^O) = 0, n-l 

However, this solution is not uniformly valid for r — oo; tn fact 

,h*'u 

Äb:r 
r2nidlvn- rfV>.he eÎP°nentlal8 ln th« exact solution decays very 

, Í the °th1er decay® at a moderate rate. The contrast in* 
these two time scales, along with the fact that each has its dominant 

mltched astmoToVi 0Í.t[me‘ allow9 us to aPPly ‘he method of 
matched asymptotic expansions to this problem. The Van Dyke 
prescription for doing this is as follows: ^ 
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t = €T and rearrange thë rêluiî into“ OUte.r èxPansi°n, substitute 
truncate this expression aftr l term" ^ to 

term inner expanai.-.^ ^ f ms, which gives the m 
in the m term imie^ exoansinTi-TTTT 6r exPanst°n. Similarly, 

outer .oïuiL^ltfbe'ô’bÜfnidt' f”''1““ Patagraphe , the 

in the outer s^lítion! Ld so an ite"^^^ f tern?ine the constants 
requiring, however^that inner SCheme is now available, 
simultaneously. In the examnlp tK°U-ter exPansions be obtained 

talned eompleieiy „d ludeSdeM Î eiTb" ”lu*10” ““ld b<¡ “>>• 
accident which occurred because of the0U1ter’ ,but this is an 
lem above. Ordinarily in ca^eo i v,)Sumple nature of the prob- 

the method of m.tched LymptX m‘8h' COn“der usin* 
step-by-sten to finH *P . exPansions, one must proceed 

«hePo.hyerS^índ, «d ao'oT ‘n 0"e eItP"Sl°"' *h'" ‘"term t 

we 
We use th^equivalence ^ 
write: 8 ’ lrequently. For example, 

N 

4>(x,y,Z;c)~ ^ <j»n(x,y,z;c) 
n=0 

This means that: 

N 

^ ~ ^ = °^<W as c 0 fo 
n=0 

r fixed values of (x,y,z). 

k'y.'J1 âho id bXed“ “.'J, 0-, Tbe qaallficatloh that 
we „oudd have the equiviie« ííal~“; 

ly(tie)- ¿ y„<t¡e)| = o(yN) as 
n=l 

£--0 for fixed t, 

and, for the inner expansion: 
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N 

|y(t;e) - ^ 

n=l 
Yn(T;e)| = o(Yn) as 

0 for fixed 

as ,eíl-.h“d »‘fa for 

con^t'.iï ,s: ¿V-iï °*hhv nd> 
Xle ws'l«'"- rnS,‘0'’''1" 

ô«.r T "ma wÄeth*»i“”^“= ‘à» ds.^LTihs^,»1; 

5;:piS=2SSSS? the procedure bv which th<a *■ Y t0 success of the mefhr.^ • • 
to each other. After au th s“11"'5 oi th« solution 'rí^‘3 Í”, 
same solution. ' do feptesent just two aspectTof the 

|#3SS“rSS»=.ir..„,. 

^S-^^wäSsSS?. 
[1 + e + e' + e3 + 

•J =[1 + -e 2 + l'!* • ••] 

e + 

[4 
+ ?'3 + 

...] 

.] 

On the right-hand side, let: 

+ f 4-3 •] + 

fo(c) = i + 4^ + — ç2 + A c2 ïïe + • 

fn<e> = Tfo(ç)> fo r n > 0. 

Then we can write: 
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« N 

1 £"‘ I 
n=0 n*0 

MO as e — 0. 

Jret themPPan convergent serles (if c < 1), but We can inter- 

Fs SeruieS jU8t as welh The 9erles on the I«« 
bave Í 4 ' the °ue °n the right is not’ because individual terms have their own e substructure. 

not a f^r conslstency can become a religion, but it is 
about the re1!6/- ’ Conslstefncy (°r the lack of it) tells us nothing 
about the relative accuracy of otherwise equivalent asymptotic 

terms8given by:^’ ^ C°Uld deñne a thlrd a3ymPt°tic series with 

g0(e) = l/(l-c) ; gn(e) = 0 for n > 0. 

This series is grossly Inconsistent, but one term gives the exact 
answer for the sum of the previous series ! Occasionally one can 
make educated guesses about such things, replacing a few consistently 
arranged terms by a simple, inconsistent expression having much 
greater accuracy in practical computations. Mathematically, these 
different asymptotic series are equivalent, and, if e is small 
enough, they will all give the same numerical results. But we want 
in practice to be able to use values of e that are sometimes not 
small enough. " 

We shall work with consistent series , for the most part, in 
spite of such possibilities of improvement through the use of incon¬ 
sistent series. Most newcomers to this field of analysis find that 
there is a considerable element of art in the application of the 
method of matched asymptotic expansions, and I personally consider 
that the improvement of the expansions through the development of 
inconsistent expansions is the highest form of this art. Except in 
one respect, I do not intend to pursue the possibilities of inconsistent 
expansions in this paper. 

The exception that I make is the following; Many singular 
perturbation problems lead to asymptotic-expansion solutions of the 
lorm: 

N n 

^ Z ann>€n(1°8 €)m 
n*0 m=0 

where anm does not depend on ç. We can, of course, write this -- -nm ucycuu un t. vve can, ot course, v 
out in a long string of terms quite consistently arranged, 
my practice will be to treat the sum: 

However, 
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il 

h"ie) £ anm(log cf 
m«0 

as a single term (albeit inconsistent) in the series Yh U) An 

opSf r V“ » 

u,m Lii îu!Ith u ' is correct way- (Some of my colleacues 

»“ fo^., * P trl^ ta‘h" th“ * hl8h" «P”»"”« ofa" 

m*r»Kio Tîie*ulauSlCaî examPle ln physics of this kind of mathematical 
probiem is the boundary layer first described by Prandtl in 1904 The 

maSrlay" brmeS “T311" ^ 
her) hut T. 7 , aPProaches zero (R is the Reynolds num- 
W ' but^he Presence of the boundary layer cannot be neglected 
and theV HnK ®OVernlng differential equation becomes lower o'rder 
and the body boundary conditions cannot all be satisfied. Unfor¬ 
tunately, Prandtl did not realize the generality of the analvsis whirh 
he introduced into the viscous-fluid problem, Ld. lackffie 

Sgíeeí-o?d=”^” SUCh Pr0blam<’ ha C“"ld “'’“i 

I-tMs -zTr p”“ra- 
tion problem in ship hydrodynamics. " However, I shall not do this 

^kl'S °f the Problem°is excel- 
lavl'ri = ’ he 1a1nalysl'3 concerns only laminar boundary 
ntnl i' d really 0f quite limited Interest in ship hydro- 
aítíríenHi Flnally'the/ormal Procedure breaks down completely 

cause ma?o?8d?ff?e 1H & , Vu ^ the singularities that occur there 
obtain M I difficulties in all attempts to use the formalism to 
obtain higher-order approximations. 

insultin^tb/^fm Ínt Sh0ald be emphasized, even at the risk of 
suiting the Intelligence of readers who have read this far. When 

™Lr rí“”, €, ~ °d We a” ‘“Piying existence of a 
qu nee of physical problems in which the geometry of some funda- 
menta! parameter varies. For example, in Prandtl's boundary- 
layer p^biem, we may consider that viscosity changes as 

n ~ /ntíi u ‘ 111 the simple ordinary-differential-equation example 
presented above, we may think of a spring-mass system in whichíhe 
mass is changed systemittcally from one experiment to the next. 

of orohrhen!We 8ulender'body theory. we consider a sequence 
in WiïiCh th.e body chanSes each time. The theory always 

Stv of tehe°n 8Í5ÍeffXÍStfnCe °f SUCh a SerÍeS 0f Problems , and the quality of the predictions improves as the problem more nearly fits 
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the limit case. Thus, we shall be able to apply the results of 
slender-body theory to bodies which are not especially slender In 

Uiïn tCho8e8,HTeHmay !XpeCt that the Predictions will be less accurate 
than the predictions that we would make for a much more slender 
body. But we never know a priori how slender the h«Hy f„r 

fhi.'ïh be ‘■“'dlïïîr and it would b. „rongTo 
iat 1. thaht°í,try Tal" ‘0 ne'dl'-llk« bodle». All that wc can 

ao-alendor bodiesf aCCUra,e ÍOr “"Ch th»" 

1.3. Multiple-Scale Expansions 

J“ the Problems of the previous section, we had two ureatlv 

rri ? :CaleS f0r the lndePendent variable. The fact that enabled 
us to obtain two separate expansions was that each of the scales 
dominated the behavior of the solution in a particular region of space 

eLur^t i?S" Peri0d °f tlme- The maj°r practical concern waT to 
ensure that the separate expansions matched, because they reallv 
represented just different aspects of the same solution. V 

are present section is devoted to problems in which there 
are again two greatly contrasting scales. However, in these prob¬ 
lems, it will not be possible to isolate the effects of each scale 
n o a more or less distinct region of space or time. The effects 

of the two scales mingle together completely. However, we may 
stül expect to be able to identify these effects somehow, just because 
the two scales are so different. ause 

Thfra .are cl*ssical Pr°Wems of this kind, the most famous 
Cole8fT¿A8l n0nllnear effeCtS °n certain Periodic phenomena. 

, / V68-1 discusses a number of these problems. Perhaps the 

?o"fmLierr he°o a °ne: Fhld aPP-*imate solutions tor small c in the problem of a linear oscillator with very small 
damping, where the differential equation might be written: 

2ey + y = 0. 

JnHbVm If 'du the soiution satisfy the initial conditions: y(0) = 

with lí,/ n rhy8lCa^ly’ we exPect that the astern will oscillate 
with gradually decreasing amplitude. It would be desirable if the 
approximate solution at least did not contradict this expectation 

1 

With Ze ?\ißht try representing y(t;c) by an asymptotic expansion 
that thpS?i C f t° € Z/yn^if). We would find immediately 
that the first term in this expansion is just: y0(t;e) = cos t. This 

tSheeeTrSeoqU te reasonaÍle' since 11 represents a steady oscillation at 
tevr, rqthnCy aPProximate to the undamped oscillator. The second 
term in the expansions would be obtained from: 

676 

¡ittaüiittÚ 



Singular Pertuvbati 
on Probleme in Ship Hydrody 

namioe 

y(t;e) = e‘*t 

V, + y, - - 2<y0 = 2« .Int, with y, (0, = y, ,0) =, o. 

Pr<.MeT’lS„‘“'ct'° .tt.iitr.r81“« Solution of thi, 

yiític) = c[ sin t - t cos t] . 

fa^ermVhls%^Ff^ be iiHPyi -xpansjon is correct anH e V?8 wU1 grow even 

■y yslidi Oven for very large 

TI« «oc, solution is easily found, of Cou,se. I, ,.. 

loosÆ?,.^^^ 

,hVehffedca,7o‘f"d8; °r 'he oSr„rifS"fli;S*¿f fre<.-ncyWcl„td 
"slow-time" scal^P accum^late gradually. Thus1" ef/0?8 time' 

the real-time problem hÍCh enables us to aparate them ^ of 

handling such problems tha^in thi6 fofrrnalism available for 

thT^Í0^ exPanslons. More i feftT,0/ method of hatched 
the individual problem solver In th J ^ and ingenuity of 
procedure 1. fairly dear, T^d ^ ‘he 

yit.ej in a series such as this: 

where we define: 

y(t,e) y0(t,r;e) +y|(t,r;e) + 
’ • # 

t = ct ; t = T +f,^;e) +fz(r;e) +..., 

* 

Strictly speaking, the series reilW i ir 
t = 00* ^ly is ur-iformly valid except at 
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considerably, but it is not cltfJLT'1^0^ the Solutlon 
if the exact solution were not availahlp116 T°Uld il'now to make them 
the form: available. Tne exact solution takes 

y(t;e) = e' [cos T + (t/r) sin r] , 

in terms of the new variables. (The factor It /t\ a 
on t.) Here it is ole a V / neJact01 (t/r) does not depend 

solution as wall a, th* p^bkm n “Cales ^ 
between t and r to be eonleal'e t expect tile oelationship 

approx mation. (Otherwise the waves downstream in 
approximation would grow larger anH 1= 1 e.a^ 1 the hlgher 
similar problem involves the fscil^Ho ^^’^^0111 limit'> A 
face, in which the wave length of the^ f 0n the free 8ur' 
In the third approximation. * For example Tw] ^ 

very low sTetdSrÓfTS““/' lhlS m'th°d Is th« P«“™ of 
simple., ,Lh cïïe has been dbenssed by OgSy", Th« 

length^cafes^ssocfafed^íth b'ody k“ds »' ^ sÏÏes* 
and the length scale U2/a u- y dimens*ons and submergence, 
of the free surface Presuma^ ^ the 
near the free surface in a "bounrfa Sha¡8 effects Prirnarily 
varies with Uz/g as ihat tariahlf 7 wUh thlckne^ which 
effects of the body dimensions a^! aafpr°ache8 zero* But the 
surface (or at least near a part of U ^ free 
length scales cannot be separated into disHnc^6 e*fects of the two 

discussion of this problem^appeau-s^nSectio^S^ofVhepresent 

which th^ayproKÍlSfvlKlí1'FS °f Sh‘P hyi'odynamlcs I» 
have obtained approximate solúu™ i Z «-ample, many authors 
bodies by alternateïv ^tisfvhîa í K% fv r0b]emS involvlng submerged 
free-surface condition theL8 t ^ condition, then the 

.»age. whe» ,»I1“Ùd”,Ln ,^C a«sIeydCOtSdI,‘r' TZ A‘ violated hnf îf lo - ® atisiied, the other is beini? 
violated, but it is assumed that the errors become smaller and 
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Î 
smaller with each iteration. Such a procedure is discussed, for 
example, by Wehausen and Laitone [ I960] , who point out the use¬ 
fulness of Köchin functions in such procedures. However, there is 
often a question about the precise nature of such expansions. In the 
first approximation, for example, the effects of the free-surface 
are likely to drop off exponentially with distance from the surface. 
This makes it inappropriate to treat depth of submergence as a large 
parameter in the usual manner, because exponentially small orders 
of magnitude are either trivial or exceedingly difficult to handle. 
I do not believe that anyone has yet shown how to treat this problem 
systematically. 

II. INFINITE-FLUID PROBLEMS 

It is mainly the presence of the free surface in our problems 
that forces us to seek ever more sophisticated methods of approxi¬ 
mation. However, the nature of the approximations can often be 
appreciated more easily by applying those methods to Infinite-fluid 
problems. In this section, I discuss a number of problems that are 
geometrically similar to the ship problems that are my real concern. 
In some cases, it must be realized that the methods used here are 
not necessarily the best methods for the infinite-fluid problems. 
However, without the complications which accompany the presence 
of the free surface, one can better understand the significance of 
the coordinate distortions, the repeated re-ordering of series, and 
the matching of expansions. 

The reader who feels comfortable with matched asymptotic 
expansions is invited to skip this chapter. 

2.1. Thin Body 

A "thin body" has one dimension which is characteristically 
much smaller than the other dimensions. In aerodynamics, the 
common example is the "thin wing," and, in ship hydrodynamics, 
one frequently treats a ship as if it were thin. In such problems, 
the incident flow is usually assumed to approach the body approxi¬ 
mately edge-on, and so the thinness assumption allows one to 
linearize the flow problem. 

In this section, thin-body problems are treated by the method 
of matched asymptotic expansions. This is not the way thin-body 
problems are normally attacked, and, in fact, I do not recall ever 
having heard of such a treatment. At the outset, I must point out 
that there are good reasons why this has been the case. If the body 
is symmetrical about a plane parallel to the direction of the incident 
flow, one does not need inner and outer expansions for solving the 
problem. And if the body lacks such symmetry, the lowest-order 
problem cannot be solved analytically, and so the method of matched 
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asymptotic expansions does not offer the possibility that one may be 
able to obtain higher-order approximations. 

In fact, the problem of a thin body In an Infinite fluid Is not 
a genuine singular perturbation problem (although it may contain 
some sub-problems that are singular, such as the flow around the 
leading edge of an airfoil). However, I believe that the problem of 
a thin ship is singular; I shall discuss this In Section 4. There has 
been a considerable amount of misunderstanding as to what consti¬ 
tutes the near field and what constitutes the far field in the thin-ship 
wave-resistance problem, and the rectification of such misunder- 
standing requires a careful statement of the problem. 

It is conceivable that this interpretation of the thin-ship 
problem muy be useful in formulating a rational mathematical 
idealization of the mane uve ring-ship problem. 

For convenience, I separate the thin-body problem into two 
parts; a) the symmetrical-body problem, and b) the problem of a 
body of zero thickness. Tc reat an arbitrary thin body, with both 
thickness and camber, one should certainly consider both aspects 
at once. It is not really difficult to do this, and indeed the problem 
of an unsymmetrlcal body of zero thickness actually involves thick¬ 
ness effects (at higher orders of magnitude than in the symmetrical- 
body problem). I have kept the problems separate here only for 
clarity in discussing certain phenomena that occur. 

2-/1- Symmetrical Body (Thickness Effects). Let the body 
be defined by the equation:-- y 

y = 

±h(x,z;e) for (x,0,z) in H. 

0 for (x,0,z) not in H, 
(2-1) 

where K 18 the part of the y = 0 plane which is inside the body. 
(It is the centerplane if the body is a ship. ) The "thinness" of the 
body is expressed by writing: 

h(x,z;e) = eH(x,z), (2-2) 

where e is a small parameter and H(x,z) is Independent of e. 
The body is immersed in an infinite fluid which is streaming past it 
•with a speed U in the positive x direction. The flow, in the 
absence of the body, can be described by the velocity potential: Ux. 

It will sometimes be convenient to say that the body is defined 
y the equation: y = ± h(x,z;e), implying that the function h(x,z;e) 

is identically zero if (x,0,z) is not in H . Also, note that we shall 

680 



Singular Perturbation Probleme in Ship Hydrodynamioe 

frequently drop the explicit mention ■>£ the e dependence. 

the body shrinks down to a sheet of zero thickness 
aligned with the incident flow. Thus, the first term in an asymptotic 

Seïrn potential VeT ty ln the f&r fleld ls Juflt the ^cident- 
as foUows- general, let thefar-field expansion be expressed 

as 

n 

<Mx,y,z;c)~ ^ ♦„(x.y.z.-c), where (j>ni) = 0(<}> ) 
n«0 

e 0 for fixed (x,y,z). (2-3) 

Then we have: 

<J>0(x,y,zjc) = Ux. (2-4) 

The far field is the entire space except the y = 0 plane 
since the Potential <|>(x,y,z;c) satisfies the Laplace equation through- 

ílUÍ1 do5nain* the individual terms in the above expansion 
satisfy the Lapiace equation in the far field: ^ 

+Si* Ki= 0 for lyl>0- 

At Infinity, we expect (on physical grounds) that: 

7(^ - Ux) — 0. 

(2-5) 

(2-6) 

Therefore, for n > 0, every 4>n must be singular on the y = 0 
plane or be a constant throughout space. The latter would be too 
trivial a result to consider , and so we assume that <(»n is Indeed 
singular on the y = 0 plane. 

But what kind of singularities will be needed? Because of 
the symmetry of the problem, it is not difficult to show that a sheet 
of sources will suffice. One can use Green's theorem to show this. 
Alternatively, one can use transform methods for solving the Laplace 
equation, which is practically equivalent to solving by separatlonof 
variables. Whatever method is used, the result is the same; 
Tnlx»y*z;€) has a representation: 

♦„fc.y.siO = - ¿ f i dt_ (,.,, 

where <rn(x,z}€) is an unknown source-density function. The outer 
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expansion is just the surr of these: 

N 

♦(x,y,z;c) ~ Ux JL 
4tt 2 o; 

n»l 

<rn(Ê,C;e) dé dt 

®J-® [(x-è)* + yE + (z-t)*]1^ ,<2 8> 

™* l’ ,h' m°*1 P”"1“' expansion for thl. problem, 

.be aj*pT"Ä.,odSo„: i^iir/sroí 

y = y/e. (2-9) 

«presstn'wlth rispectTo^ re-°rder the re8ultlng 
difficult, but the following methnrf f**f approach to this process is 

.he desired reap,,. ,o any number of",e°L*n ^ 

1) Take the Fourier transform of *fl with respect to x: 

♦n(k¡y,z;e) = - ~ Ç di <r*(k;i;€) C00-ËÎ_lJÎ!L 
4^-o» J-®[x2+v2 + (z. [^ + yz + (2-uz] 

1 poo 

2ir J ^ (k;íi«)K0( |k|Vl y^ + (z-;)2]) 

,2i 1/2 

The convolution theorem was used in the first step above." ' 

2) Take the Fourier Transform next with respect to z: 

*n (k:y:m*> = - ¿ dz e'ilT^K0(|k|[y2 + z2]^ ) 

- £aJ[jSi£5i£) •(|‘8+m*)l/2iyi 
2(kZ + m2),/2 6 

where (rn (k,mje) is the double transform of cr„(x,z;e). 

into a power^er\es"Î' Y = CY and exPand the exponential function 
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♦n Wy;m;c) a - -gn lk,m:e) f. ^ ¡ ,,. 
l> * 7T <V(k- * m<, 

* TT ,,Y‘(k' * m‘l' * . .,1 

+JJ e,|Y|1{k* + m*j 

Note that: 

** 

2(k2 + m2)'/e " <k'-0¡m;e) = an (k,m;e) . (2_10) 

^lso; we observe that If f**/u , 
then (k2 + m*)/**/1 (k,m) ls the Fourier tra t 

- + f ) rwi . ,f (k»m) ia the Four * transform of 
" efInln8 the in-rse transform 

and Inverting the above eerie , ^ eerie, .,rm-by.„rm, „„ 

♦»«».Y.eiO-^x.a.g, tl , , , 

1 ' ^ ît'IyI 

n« + 

♦irOvrfo t2 t 
,‘,I*X MlJ nZIII J T • e . 

THe ie the l„„e, expa„.lon of a ^ (2-‘2i 

In order to comhi m " °UI'‘' e>tl,ansl'>n. 

Sanï^T/e f-’S-^n.Yof'te^r“ "™- 

m"'Iy ^ “Âr,ù»d“£,IE:‘ïr‘* 
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$(x,y,z;c) ~ Ux 0(1) 

+ a (x,z;c) O(e) 

0(ffz) 

+ a3(x,zj€) +I |y |(t2(x,z!î) - j |yf(ol)(|( + a,^ ) 0(e3) 

+ 0(e4). (2-13) 

Note that we have reverted to far-field variables. We must here 
consider that y = 0(c) In order to recognize the orders of magnitude 
as Indicated above. 

Next we must find the Inner expansion of the exact solution. 
Substitute y = cY In the formulation of the problem. The Laplace 
equation transforms as follows: 

♦yy= - + ♦„)• (2-14) 

The kinematic condition on the body Is: 

* ♦x11* " * ♦A = 0 on y = ±h(x,z), 

which transforms Into: 

V *'“(♦»n* + W on Y = ± H(x,z). (2-15) 

We assume that there exists a near-field asymptotic expansion of the 
solution: 

N 

4>n(x,Y,z;e), where = o(4>n) as e— 0, 

for fixed (x,Y,z). (2-16) 

We could show carefully that: 

4>0(x,Y,z;e) = Ux . 

(Perhaps it is obvious to most readers.) We then express the con- 
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dltions on the near-field expansion as follows: 

[L] ilv +*2yY + ^v 

(2'17> 

[Hi *. +*íy + *3y+ •••" * l2! HH,+ + ^ H,+ ...1 

on Y - ± H(x,z) . (2-18) 

Solution of the ¢, problem. From the [ L] condition above, 

It Is clear that: 

*>YY= ° 
(2-19) 

In the fluid domain. Therefore ¢, must be a linear function of Y. 
In view of the symmetry of the problem, we can set. 

$l(x,Y,z;e) = A,(x,z;€) + B, (x,z¡c) | Y |, for |y| >H(x,z). 

(2-20) 

The body condition reduces to. 

$,y(x,±H(x,z),z;c) = ± e2UHx(x,z) = ± B^x.z*) = 0(ee). (2-21) 

U àîw-S 
slon appears to be: 

<Mx,y,z;c) ~ Ux + A,(x,z;c) + B,(x,s;e) |Y |. 

Its outer expansion is obtained by setting Y - y/e. 

4>(x,y,z;e) ~ Ux + i B, (x,z;c) |y | + A^x.z;«) . 

0(1) 0(c) °(«2> 

The order-of-magnltude estimates were obtained as follows: B, is 

O«*). from U-21). If oa, 

ri^r‘e^n.lot ^ ^ A' 
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The two-term outer expansion of the two-term Inner expansion is: 

<j>(x,y,z;e) ~ Ux B^XfZjc) |y | . 

0(1) O(e) 

On the other hand, the two-term inner expansion of the two-term 
outer expansion is, from (2-13), 

<j>(x,y,z;e) ~ Ux + a, (x,z;e). 

There is no linear term here at all, and it seems that we cannot 
match the two expansions. 

It is a very comforting feature of the method of matched 
asymptotic expansions that things go wrong this way when we have 
made unjustified assumptions. Our mistake was this: When we 
found that apparently B( = = 0(0, we eliminated the possl- 
billty that there might be a term which is O(e) in the inner expan¬ 
sion*. Now we rectify this error. Once again, let <t>| be given by 
(2-20), but suppose that both "constants" are, in fact, O(e). The 
body boundary condition Immediately yields the condition that: 

B|(x,z;e) = 0, 

and so we have: 

4>|(x,Y,z;c) = A|(x,zk) . 

The inner expansion, to two terms, is now given by: 

$(x,y,z;e) ~ Ux + A,(x,z;c). 

When we match this to the inner expansion of the outer expansion, 
we find that: 

A|(x,z;c) = «,(x,z;í) = 4,(x,0 ,zjc). 

(See 2-11.) Now we have matched the expansions satisfactorily, but 

*This trouble would have been avoided if I had started by assuming 
that the expansion is a power series in c , as many people do in such 
problems. However, that procedure can lead to even greater diffi¬ 
culties sometimes. 
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the result Is not yet of much 
A, or a,. Ii 
be rewritten: 

.. u w„„h 

4(x,y,z;c) ~ Ux + $,(x,0,z;e). 

íar-fi’eíd0 ^ly by the 
other words , in the near , i n the centerplane. In 

ofapproxta«.,,, ,h“ d'8"' 

m-ch straight- 
*2 = 0(e2), since we still have the nonh1^841"8* WC may exPect that 
to satisfy. In this case, then, nonhomogeneou8 body condition 

^(xpY.z.-e) = A2(x,z;c) + Bt(x,z;e) f Y |, 

and the body condition requires that H /v vri errtr ¡ . 
three-term inner expansion is: B2'x*z.O - e UH^x.z). The 

♦(x.y.aiO-Ux tAt(x>I.t) .,*UH,(x,t)|Y|. 

0(1 ) 0(e) o(f2) o(€2) 

Tha two-term outer expaoeloo of .hi. three-,erm loner exp.n.ton 1.: 

♦(a.y.el«)- Ux tuh,(«..lt)|y|. 

°(1) O(e) O(c) 

fTrom (2"Í¡;"m lnner exPaa,lon of the t.o-.erm outer exp.„.,„„ ,.. 

♦<x,y,.,,)- u, ..,(,,.:,) ly|e,(x..„). 

í";i,s.!:.(í;‘.h’.V;d ,r roU,,°.trh: *■»” match if: Q ierm 01 ‘he outer expansion.) These two 

^(x,Z;e) = ZUh^x.z;«) = O(c). 
(2-22) 

the first far-Viel(TapproxlmaaVÜon)Und <r,}x,Z í^, the »ource density In 
.. U the familiar r.ful, ÄKy“ Tã^lTtT' 
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now also write down o,(x,zjc) by combining (2-7) and (2-li): 

*,<*.«€> = ‘ f f ^ , O(C) . 
2 ^ ¡(x-5) + (x-S]2Jw 

We have the two-term outer expansion -- with everything in it known 
-- and the three-term inner expansion -- with the "constant" 
A2(x>z;e) not yet determined. 

Solution °f the higher-order problems: From the [ L] con- 
dition, (2- 17)# It can be seen that $^(x,Y>z;€) is not linear in Y. 
However, the differential equation for $2 is easily solved, the body 
boundary condition can be satisfied, and matching can be carried out 
with the outer expansion. The result is: 

'XX 
$3(x,Y,z;€) = A3(x,zíc) + B3(x,z;€)|y| - | c2Yz(a|w_ +atJ, 

where 

Bj(x,z;e) = «2[ (or,^ + , 

A3(x,z;e) = o3(x,z;e). 

We also obtain o^, through the matching, 

(rz(x,z¡e) = 2[ (o^h),, + (a^hjj , 

and this information also gives us az and Aj. 

Summary: Symmetrical Body. The results for both near- and 
far-fleid expansion are stated in terms of the far-field coordinates 
(the natural coordinates of the problem) in Table 2-i. In a sense, 
the results are rather trivial. There could be difficulties near the 
edges of H, but, barring such possibilities, the inner expansion 
could be obtained from the outer expansion and then matched to the 
body boundary condition. This Is actually the classical thln-ship 
approach. The outer expansion is uniformly valid near the thin 
body, except possibly near the edges. 

In the classical approach to the thin-body problem, there Is 
usually a legitimate question concerning the analytic continuation of 
the potential function into the region of space occupied by the body. 
Sometimes one avoids the problem by restricting attention to bodies 
which can legitimately be generated by a sheet of sources, but this 
Is not very satisfying. The method of matched asymptotic expansions 
avoids the question altogether by eliminating the need to ask it. What 
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appears as if it could have been g^eratedï the disturbance 
but close-up we allow for the possibiíltv tha^tM °f sources. 
afar may be somewhat Inaccurate In °bservati°n from 
continuation presumed in the present method.U ^ analytic 

field pi«"”“Æet“’Se' ¡‘„SZTo 'ÍT'T 'hM th' f“- 
A particularly appealing (to me) version of anrh^011 ÍS n0t Possible- 
provided by Maruo [ 1967] for the mnrV, UCh 3 proof bas been 
a heaving, pitching slender sJdp m^vine wi’th6«0,?1^1^46'1 problem °f 
the surface of the ocean. P °Vln8 wIth filiite forward speed on 

result of thePfact that a well,thln-body solution is the 
by giving a Neumann boundarï condition ^ problem can be stated 
ation will be quite differpnf u ndition over a surface. The situ 
in the far fielt it woÏdTe 3l-d--body theo^ 
on a line, and that does not lead tn fV 781 boundary conditions 
in three dimensions. Similarlv weTT P0Sed potential Problem 
fluence of two boundary conditions tr°Uble &t the c°^ 
try to treat a ship problem by the method^ lndeed occurs when we 
free-surface conditions cannot be satfofllj11 i®!'1 above- The 
be traced back to the behavior of the íar ffold^ ^ dLf{lc^y can 
n ersection of the centerplane and the undisturbed foe*! turfact. 

0f ro, th, sake 
represented as follows: thickness.^Tïïin it can be 

y - g(x,z;e) = çG(x,z) for (x 0 i 
\x,0 ,z) in h , (2.23) 

ZZ .Hket- Ä;on_ 

at least in theneera8rSfiieSldqUandSÍellar î° thC symmetrical-body case 
Here. In the near field, ’let there^rln expln^fonj8 ^ 

<Mx 

n 

.y,z;e)~ ^ ‘i’nix.Y.zje), 

n=0 

ieems’agaíí ÍVl¿u"'. t“-' Th' 

[Ll V-1 % + *>„* *.„ * ... 

e f4’'», + *!„ + $2<l( + ÿ2ii + ...] . 
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the body boundary condition is now: 

[ H] $,Y + $2y + i3y + 4>4y + ... 

~e2[ UGX +($lxGx +^0,) + (^¾ +$2zGz) + ...] 

on Y = G(x,z). (2-24) 

f[ref^1Utl0n f0r 4)1 18 generally an expression linear In Y but 

<Mx,Y,z;e) = A*(x,z;ç) = O(t). 

fluid on its two sides anrfth^iT °dy comPletely isolates the 

A?**.™ ™ b0th 8ide; °f the bodSy-° S tuïnst0out8,SiUnmfeacth,athÎt ^ 

One next obtains: 

$2(x,Y,z;€) = A2(x,z;c) + Bgfx.zif) Y . 

From the body boundary condition, the following is true: 

*2Y(x,G,zj€) = B*(x,z;e) = f2UG,(x,z) . (2_Z5) 

Thus , we find that 

Bz(x,z;e) = B2(x,z;c) s B2(x,z;e). 

Similarly, one can proceed: 

*s(x.V.,;0 = A*t B*(x,2:<)y . 1 tV,Af„ ♦ A*, ,, 

where 

B3(x,z;e) = e?[ (GA* )% + (GA* ),] . 
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It turns out that ^od^wiTh^ the symmetry; 

43 

‘"^ *S"“- u 
order than the ¢, term Sírílt r”“ °f *'n'ra,‘»»higher 
«u^enereted, Ld ^ ^“ 

y = 0. The relation^ ^2-If to ***?* excePt for the plane 

discussion of them. But now It wil^not^f« VaHd' 38 WeU as the 
singularities on the centerplane- clLrl f ^ Provide °nly source 
singularities which lead to Clearly we must also provide 

fact, since the body has zero tMc^ P°tentlaJ I« 

•he y.,. Th^^Ä»'Ä-- 

f(x,y,z) = x.r r_ute.ç) de de 

[(*-£)* + y2 + (z., y- + (2-5)^2 
(2-26) 

?0h:íer.ÍrSnt,OeV^^Âfu^^ »V .he „me 
4u mat was used before. One finds that: 

f*Vîy;m) =1 (agn y)p*V,m) e,,IChí*m2,,/2 . 

tave.rTeïïeernm-i,yf.TeCrm? ^t’z-ith'' “ 

v**(k, m, = (k. tm. r ,**(k>m) = . 

/i 2 X 2.1/2 * \¿-c<) (k tm J1'2 

The blowing reU.lon.hip. ekl., b.twoen two (unctlons ^ ^ 

p(x,z) = JL r r”_ y(^,ü da dç 

^(x,z) =. j_ r r __[h»* ■»• p„i d£ d^ 

[(x-l)2 + (x-C)2]'/Z ’ 

(2-28) 

(2-29) 
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(Noie the comparison between Í2 ?r\ j l 
and (rn in Table 2-i. in fact 0 ,¾ ai}d the Nation between a 
formula in Table 2-1 ) tk«. 2"29) gives the inversion of 

^ *«•»■ of ¡dJtVZZZT“0" °‘ °»h„eo„ be 

f(x,y,z) = •jipfx, z)(sgn y) . Y(x z)v 1 z, 
Yt ’2,y“ Hy(8gny)(K„+p„) 

+ Tiy3ÍYXx + Y«) + iy^agnylfu +, 
y ' gnyi^*« +2^rz +^„„) + ...} , 

This may be compared with (2-12). ^ ^ 

Now let us assume that the two-term ^ * 
W° term outer expansion is: 

♦(x*y,z;e) ~ Ux f® f”_t1 (è,Z;e) d£ Hr 

-°9 -® fix+ y2 + (x.;)2j3A2 

assumptions ár^too^i^estrict*!* 3nft Y' are both O(e). (If these 

ThbeBntheeT °f the ™*od ¿i miched^ beC°Te Clear ln tbe 
the inner expansion of the 

^y.2,0-Ux±Mx,2;c).y , 

0(1) OU) Od) OU) ou2) 
OU3) 

tiÄ V 

of the inner expi^sloní^e^fnd0thlÎ6 °f thC °Uter Mansion 

(2-31) 

(2-32) 

A, (x,z;c) = ± Pj(x,z;c); 

Bjfx.zje) = - eYl(x,z;0. 

From (2-25), We find that: 

y,(x,z¡€) = . lUG.Ix,,) . . Ug^x.s,,^ (2 33) 

Z“' Ä 
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dÂÏÏÂÂ C7Kr„0" th,K >r = 0 pl“e c*"sed bv the 
would pres umablvr e s tr ict thf lit ®ame Plane* Now we 
and ao (2-29) ia vaiM fv. pôle distribution to the region H 
H, .tac', ,^dli.,h1ed;“*'.•>' tet.gratlon i. reduced®,o j„”t' 

I. not true In (2-28) Th.“ ”S a „en^Ifl 0“Slde ‘ But *h' 
ponent of velocity, Y,(x z) over „ 7 nT'Zero normal com- 

Integratlon In (2-28)Ycannot'be reducedío jus^«6’ rTf range °f 
we know YiU.z) only on H from Í? iS J l Uniortunately, 
nothing. X ri, from (2-33), and so we have solved 

iMÏÏS 
SÄ-r"..‘.i xx“ °f ‘“^«íXt-oír" 

dipoles Ïvir^wÎr^Bions^ thePceb!em ! WC u^7 Should dlstrlbute 
plane y = 0 XhU f8 dT«St / ^ ” and ^e part of the 
called W. Pressure must be d°W™tre!im °{ H- Let the latter be 

no body there to support a pres sure 8 W' slnce there Is 
manner, one can then show^hat 8u }j!TPm 1 f v.he U8Ual aerodynamics 
this way, the integration ranee in /? mu8‘be zero on W . In 
over just H . 8 ( - .9) can be reduced to an integral 

terms 0?fvÍ«iX iT,‘r"tb„‘,X" ÎT'''’ work'd 
distributions , maMy b.Üu.. thJ î?11'",'? P”'" u8ln* dlP»1' 
whether a vortex line mlahf hV ^ ^ ? have to worry about 
nectlon is fairly simple between th^f the ?Uid reglon- The c°n- 
single di.cr.te^horTeshoe vortév‘Ívt‘*°i-*r*J0n8 i “'.““rse. A 
and z — — s anOownstream to V - d g 3panwtse between z = 8 
dipoles of uniform densitv «nre ^ 00 c°rresPonds to a sheet of 
by the vortex li^T The n \ w °Ver the plane re8lon bounded 
vortex strength^*' (unetl°" C8" b' »ritten, io, „nt, 

♦(x,y,z)=JLf T __di 
Jo r t \z X .. 0 [ (x-êr + y2 + (z-g2]yz 

= f f* —d; ... r 1 + 
[x + yZ + (z-4)e]l/2 ] 

= ^ [tan'' Ä - tan'' 7½ + tan*' WL^y^U-s)2! 
* 8 x(z-s) ZTS 

tan' WIx2 + y2 + (z+7f 
x(z+8) 1] . 
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The normal velocity component in the plane of the vortex is: 

v*’0 •*>=¿ (¿í [> * . [, + ) 

the HiT,ofc^-nln?e Can be described in a similar way if we allow 
8lmnHeU dr, y Vary with the 8Panwise coordinate, z. For 

;M=». The 

Í* pOO 

di Mt) \ 
* 

dt 

-éf; 

'o [ (x-ê)2 + y2 + (z-t)2]** 

dt 

(2-34) 

(x-t)Z+y2 + (z-t)2]S/2 ' 

(2-35) 

and the normal velocity component is: 

Vx.o.„ =. 4£ ai^!H [, . (2.36) 

t+0,th%fau^íor the 8in«le horseshoe vortex 
from s ß to { uB) " ?Z;8) ' and b) we Integrate over a span 

may Und s„me by““ 

eyond the wing tips so that quantities which become infinite at the 

(ThiffuTe yiiwd mfln,lte contributions that cannot be integrated.^ 

Lea «L"r.ïï,e.rLerba“e;,brLtTa"n,ly ^ Phy“C“ iS 8<>U”d’ 

Finally, wc can use the above procedurea tn 

Th“ 

♦,(x,0,a) = .¿£ , 

(2-37) 

r> 

6(z) is the usual Dirac delta function. 
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where L is the range of x covered by the lifting surface (the 
length of L being generally the chord length), and s(x) is the half¬ 
span at cross section x. On H (the projection of the wing on the 
p ane y - ), the normal velocity component, ^y, is known, either 
by direct application of the body boundary condition or by matching to 
a near-field solution, and we obtain the usual integral equation for a 
lifting surface. 

We shall not be concerned here with the various methods of 
attempting directly to solve this integral equation, either by analyti¬ 
cal or numerical methods. In fact, analytical methods do not exist, 
Si°ii ^ I,kn°w’ except for a few special geometries , such as 
elliptical planforms. The pair of equations (2-28) and (2-29) forms 
a remarkable analogy to a standard boundary-value problem in two 
dimensions which is analyzed thoroughly by Muskhelishvili [ 1953] . 
One three-dimensional case has been solved analytically by a method 
that has some similarity to the standard methods for the 2-D prcb- 
lem* this was done by Köchin [ 1940] . Even his circular-planform 
wing led to so much difficulty, it seems unlikely that it will be 
generalized to other planforms. 

Analytical solutions have also been obtained for circular and 
then elliptic planforms by formulating the problem in terms of an 
acceleration potential in coordinate systems appropriate to such 
shapes of figures. This was all done long ago. See Kinner [ 1937] 
and Krienes [ 1940] . l 

There are many numerical techniques for obtaining approxi¬ 
mate solutions of this problem. However, I ignore these and proceed 
to analyze a special configuration which can be treated approximately 
as a limiting case of the general lifting-surface problem. 

2.2. High-Aspect-Ratio Wing 

i*,,» í 1 int®resting historical fact that Prandtl's boundary- 
layer solution really contains the essence of the method of matched 
asymptotic expansions, but Prandtl failed to observe that the same 

W £o°b?™drrk S hU TT11"6 problem. I» the bound"”! 
layer problem, he really required the matching of two complementary 
asymptotically valid, partial solutions. It was probably Friedrichs 

Drobl5emWh° ift? rec°8n^ed that the high-aspect-ratio lifting-surface 
?vf° jleT °,uld be treated the same way. Van Dyke [ 1964] discusses 
vîewlfiVat!°ÎÎ °a liftln8-ll]ie theory in some detail from the point of 
different eva8ynmEt° <; exPanslons- My presentation is not 
different from Van Dyke s in any startling ways. There are some 

’ Ptrtln because 1 have ln mind applications to plalïïng- 
problems eventually, partly because I am not an aeronautical (or 
aerospace) engineer at heart. 

The conventional approach to solving the problem of a wing of 

696 

U..Í.U. ùimtAHAlL. 



Singular Perturbation Problema in Ship Hydrodynamioa 

h gh aspect ratio is to simplify (2-37) by arguments that relate the 
ar/umenti16 jnvoiving (x-^)2 and (z-t)2. (Quite comparable 

nt® are used in the conventional approach to the theory of 

I inteL^H g8,) K ra,dlCal in (2'37) Can be amplified, then the 
over t 1 rKf“ Parf0,r^ed' and °ne 18 left with ^ust the integral 
dWníinn i ^ ^'D inte8ral equation is reduced to a one¬ 
dimensional integral equation, which is oí a standard form. 

rPt,,™ thf í*16,411,00 oi matched asymptotic expansions, we 
return to the original formulation of the problem and derive a 
sequence of simpler problems , rather than try to work out approxi- 
wina i80» 11°^ “nV1® inte8ral equation. The large-aspect-ratio 
wing is slender in the spanwise direction. This means that cross 
sections parallel to the z = 0 plane vary gradually in size and shape 

z varies; in particular, the maximum dimension in the z 

dimension ?25 (the 8pa")' ls much ««ater than the maximum 
dimension in the cross sections. We shall make whatever further 

:88¾1°°^ OÍ ÍÍ.3 klnd that we need ln order t0 ke«p the solution well behaved The small parameter can be defined as the Inverse 
of the aspect ratio, that is, 

e = 1/{AR) = (area of H)/4S2, 

where N is the projection of the wing onto the y = 0 plane. As 
V\n?! nece®8ary t0 be so specific about the definition of 

i nn lnt fufllt misleading. A wing with aspect ratio equal 
to 100 might be slender in the required sense if, for example, there 
were discontinuities in chord length in the spanwise direction. In 
anjease, the wing shrinks down to a line, part of the z axis, as 

Let the body be defined by the following relation: 

y * g(x,z) ± h(x,z), (2-38) 

bndv(h«°a'?L ln H * ,Seeu FlgUre U'1)* U 18 not necessary that the ody be a thin one, in the sense of the previous section. I do 
however, specify that it should be symmetric with respect to’ z, 
for the sake of simplicity in what follows. Both of the functions 
g(x,z) and h(x,z) really depend on e, of course*, but we shall 
generally omit explicit mention of the fact. 

^her!i lS anrlnci^en,t iJow which, at infinity, is uniform in 
t X direction. Let the far-/ield solution be represented by the 
asymptotic expansion: y 

In fact, g and h are both O(e). 
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Fi8- (2-1). Coordinates for the HiO a ^ 
High-Aspect-Ratio Wing 

*(x,y,z) ~ Ux + 
WX’Y’Z), 

n=i 
Where K, = o(A) V as e-^o, 

for fixed (x,y ,z), (2.3 

--V.ÄÄ (x -iS0 8 yP?r0efl8,ed( In notation. ) Sine, 
Whichdenoted by *„ an _.0’ M < S) in the limit as 

•1». there ¿e p'iS?,V 

'Z~u there* -'rf ^pVeíÂ" I? * “M I a!.„ 1C inat there may be a sheef ji , tne Pr®vious section 

II« In the* ph'„ * *h« the^“¿eeh‘;¿0*^ *1”r8”1*rt“' 
w < s win b.yd„o0;M™'p“'«i «h. y.. 0 pianr!oVr<T‘c* 

the far field view. It i/0”y', H has all but di..p¿aat 

We can now write the outer expansion in the following form: 
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4(x,y,z) ~ Ux •*îi,T n=l 5 0 

Vn(0 dj dC ?e. i . 
s Jo [(x-4) +y + (x-c) ] 

\ ' s. 
+ JL y fs_tniim_ 

4Tr né J-s [x2+y2+(z-;)2]3/î n=l 
N 

Hs 
n = l s 

<tt 

^ J-S [x2+y2 + (z-C)2]^ 
+ ... . (2-40) 

The first sum contains terms which are exactly of the form given 
in (2-34), that is, they represent a lifting line with a strength 
yVn(z). The second and third sums represent lines of dipoles 
oriented vertically and longitudinally, respectively. It is implied 
above that the sums are asymptotic expansions, in our usual far- 
fleld sense. 

We shall presently require the inner expansions of these 
terms. We obtain the inner expansions by assuming that 
r = (x1* + y8)1' = 0(c), which implies that both x and y are small. 

Inner expansion of the lifting-line potential: Each of the 
double integrals containing a ÿ can be rewritten as a single integral: 

JL r c_níLüdí 
4lrJ-SJ0 [(x-l)2 +ve + I 

¿II “i iV-»1 ^-¾) ("ü,] ) • 

Now break this into two parts: 

(2-41) 

1) The first term in brackets on the right-hand side does not 
depend on x. As y 0 (i.e. , for y = 0(f) ), its contribution can 
be represented: 

where the double sign is chosen according to whether y > 0 or 
y < 0, respectively, and the special Integral sign Indicates that the 
Cauchy principal value is Intended. This representation is valid only 
for ¡z I < S, but that is no restriction here. It may be noted that 

699 



Ogilvie 

ôî ;0p^í”£í *h* f*r0Vï*<5S" ,7dv °' ">*«nituj. 
some other order of magnitude wlfh * * * a term were 

of cone latencyM would éliminât! it t0, C' th® deifn‘tlon 
of magnitude of moat of the untnV 1 hi* The ordera 

down Since the flr.t term, £ ^ then be wrItte" 
«tatementa: 0'c^' we «•**« make the follow- 

’’O' Aoo* 0{e); Aq,, B ‘CM: Ofe1); A0e. B0ne OU"*). 

w.hS n0tt!U thC P— .o 
log f * 0(1), (See the diacLllon * oim^Y^g that 
Then we can aay that: 8ilon of conaiatency- In Section 1.2. ) 

6o 3 0(€). 

ia very convenUn^wh^1**cÍSíí'to íü,^BtÍ¡.n#*f*íl*ld exP*nilon 
the Inner expanalon. All we need tn i ! ^ °Ut*r ^^»«•lon of 
^d rearrange the term, according to their d ?”' r dlii*tently 
if we conaider that r « Oil» »k- 8 » thelr deP*ndence on «. Thua 
Inner expanalon ia: ^ th* °Uter «P*o-ion of the one-term 

♦<x.y.*) ~ *0<x.y;a) - Ux t 6{) log r + J + ^ 

°(1) °(<) Oie) o(e) 

+ Asl£°±A * Bo, .in 0 .., 
r -+ 0(<s). (2-51') 

Oif*) Ofe1) 

a a y m p tot ic all y TmllllUor which exp*n#ton* "ith ^ 

ou*®* 'ii,h** *»«W «» ,h. 
have to match the one-term inner i exP*n.ion, which would 
expanalon. From (2-51 ') and (2-«JP“*10",01 the ‘^o-term outer 

o tí ist», we thu. conatruct the equality: 

“» * «.lo, , * V"' J* V “« ♦{,,(•»[i-iI]. 

Thi. c.„ b. only 1( th, („Uo.ta, .ep,rat.ly 

«„■0, lo-.^y,,.,, V|(l| 
(2-52) 
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ti 
r—^ 

« 0(*n) a. 
n«0 

with (x/c, y/<, *) fixed. (2-48) 

The flret term tn this expaneion aatiafiea the condition*: 

*0M * * 0 In the fluid reglón, 

* 0 on the body. 

(2-49) 

(2-50) 

f/v T î'~ * IVclear that th* Inner expan.lon, 
2v,y’ - n° * T11,*1 m*tch th* one-term outer expansion. 
Dotent lai nrT,Kt. ThU, *0<x*y»*> ‘he .olutlon oí a two-dlmen* lonal 
P° "“X) Problem, and a rather conventional problem at that: In a 

the MtneÍ,HrriUg »Íhíi b0dw df*W,n PerPendicul»r ^ the apanwl.e axla, 
the Laplace equation In two-dlmenalon*, a 

Tondiaonltmi ^•««•"»condition on the body, and a uniform-flow 
« The dllrfctlon oithe uniform flow 1. the .ame 
field d tl0n OÍ the actual lnc‘dent «tream as viewed In the far 

the methirfC.er,f*? d°í* ,4tl*fyut,h*,L*place Ration ^ two dlmen.lona, 
the method, of complex-variable function, are available for deter¬ 
mining It. properties. In particular, If we assume that V#« l. 
bounded everywhere in the fluid region and single-valued too, then 
4>0 can be expressed as the real part of an analytic function of a 
complex variable, the analytic function being such that Its derivative 
can be expressed by a Laurent series. Thus, we can write for 

♦0(*.y;*> * Ux + 60 log r 4 q0 tan1 * + Ann + X 00 
*0' co» o 

+ BQ1 »toe + Aflg COS 29 »of ^ 26 
,(2-51) 

where r = (x + y*) The constants" are all unknown function, of 

ftrlamSfr,îWfi*<irCOOrdJniaî.e' t#Tm rcPre«ent. a uniform 
i 1 l!uinitV’ *Iidi.h4v* performed one matching to 

determine this term. The second and third term, represent a source 
and a vortox. respectively; the fourth term, a constant, Is Included 
for generality; the fifth and sixth terms represent a dipole; etc. 
Such an expan.lon a. (2-51) la valid outside any circle about the 
origin which encompasses the body cross section. 
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I have taken the trouble of writing out the Inner expansion of the 
outer expansion In three ways just to point out how. In this problem, 
there is an additional term In the lowest-order expression each time 
we add another term of higher order In the outer expansion. Each 
it the three terms Included In (2-14) contributes to the c term In 
(2-45c). This phenomenon occurs frequently, and Its occurrence Is 
the reason that one must proceed step-by-step in the matching. In 
the present problem, one would be in some difficulty If he tried to 
write down an arbitrary number of terms In each expansion and 
Immediately start matching. 

Next we formulate the near-fleld problem. Instead of making 
the formal changes of variable, x * eX and y = eY, we shall simply 
understand now that, In the near field, 

X * 0(c) and y * CKO; also 8/8x » 0(e ') and 8/8y * CH«'1). 

Of course, differentiation with respect to z does not affect orders 
of magnitude. 

The Laplace equation can be written In the form: 

(2-46) 

where the right-hand side Is (2 higher order than the left-hand side. 
The boundary condition on the body Is: 

0 * ♦,(g, * h,) - + ♦jlg, * hj) on y a g * h. (2-47) 

The last condition is equivalent to requiring that 84/$n = 0 on the 
body, where 8/8n denotes differentiation In the direction normal to 
the body surface. An alternative statement Is the following: 

3 (* t* 
v( 1 + (g„ ± h,)*] 

, uiht&ilh,,, on y = g * h (2-471) 
vTÏMg7*h7ï 

where 8+/8N Is the rate of change in a plane perpendicular to the 
z axis, measured In the direction normal to the body contour In 
that cross section plane. Note that the left-hand side Is 0(+/c), 
since differentiation In the N direction has the same order-of- 
magnitude effect as differentiation with respect to x or y. The 
right-hand side, on the other hand, Is 0(4«), since g and h are 
both 0(«). 

Now let there be an Inner expansion: 



IWMl 

namiot Singular Perturbation Probleme in Ship Uydrody 

Y,(2) = O(c); n((z), x((8), , Q(e*), 

ä,0b;pro0vehnr ^ The.e .tatement. c*n 

how:v.^r;;heTrh'b.di"":p.r«sf„oh:.,>'oMem - 

where 

We can write the three-term outer expansion now: 

♦ix.y.a) ~ Ux + ♦.(x.y.e) t ^x.y.a). 

♦,(x.y»*) * C T -Yi(t) dfe d; 
4’J-. Jo l^iT* yS • 

♦2(x,y ,z) a X f r Y¿(0 dÇ_ 
WJ-S í(x-4)2 fy2+(*.;f]Vi 

+ 2-[S ^x\,(Ül dç 
»J.S [ Xs + y2 + (a-^)*)VS 

(2-44) 

(2-44a) 

(2-44b) 

The Inner expansion oí the one-term outer expansion is. of course: 

#x.y.z)~Ux, [0(e)] (2-45a) 

to any number oí terms. (Recall that x = O(e) in the near field ) 
The inner expansion oí the two term outer expansion is: 

#x,y,z) ~ Ux +■£ YlU) [l-itan1 £] ( O(e)] 

(2-45b) 

Finally, the inner expansion oí the three-term outer expansion is: 

#x,y,s)~ Ux + y, (z) [l - i tan 1 l] * * *h,(z) ( 0{c)j 

X 2s(x2 + y*) 

rs , (2-«c) 

•M,i,w r]. (o(,*)i 
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zz’zxt, <“■ b'h'— - :: »oIäk.. 

(j-4., ^.,Ti: "-ûV"dmc^k^«.h;.c?th„';hhrbd ■‘■’r', 

« -ää;« r.‘,h *bi'oi - - ■*»» 

^(1 -|t.n' ï)( 1 ♦Oí«*!), 0 < tan'1 £<„; 

^(3 - |taaH ï)( I *o(,'|) . ï<2, , 

Combining thi« result with the prevlou» one we finrt th.» 

loT"«:?““0" ^oT'-jrj'ssz i. 

* i! fnr^W '-9 J° [ (x-é)* + y* + (t-;7ï^ 

for O < tin'1 J< ¿n. (2-42) 

mp.. y.™ ,'°z '/..iy.v^r.io«r •""•v *»« 
.»d third .u™ o, (2-40) h,v7,h. foUowhi^innlrVxpanilont:-eCOnd 

1 
f dt ~rm(g) ♦xM»)ir1 . ni 2 -, 
Js [x* + y8 + (z-;)8]Ví L 77(xî + JL1 f °<f lo8 o] .(2-43) 

Note the occurrence o/ the logarithm oí « I 

r: 
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io« Probleme in SHp B>dredynamU, 

The firat of theae three 

.oi^ÄÄ^v.'/ îim'V, voi",ï “'""«'h’ 
coordinate Tt i i f ld 8olutlon'a dependence nt,00, l" ^he near-fleld 

» «>. otherwise two-dimereio^";“^ *,thr"-'i‘"’'o«loneI ea.ct 

with'thbe°lval"labin|>1' '"'’‘'‘""''•"olytic'trfuton1’' ‘“‘b"* ■om'h°’ 

«o.utiob «-»OJ^ ™.thod.^ 

SäSäSS-SS: 

When we substitnf« 

pïniïd;fi.2;e«ùr"ed,i"^y 

'n + = * I" the fluid domain. 

SÆSvr^^-““™ i\7Xzr r rid,,..,,^ UT7^d^7::CT 
¢, + ¢. 
'« v,yy in the fluid domain. <" -« vftWHiain* 

«SSsSäSSSmä«- 

3Í1 
w 0 on the bodv. 
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.".p:rSEfi‘r ■? - - 
*,(».y;.) - V »l»,/ * Sll„8 r t n,t„-. 11 , a„ co, e 

t t ;4u_£^ ^ 

r* r* + •.. . (2-53) 

^-¾ >' ' - o,(). 

•,^0(f)i «,.„..b = 0,A- .,,.3,, = 0^.,,. 

Mx.y.z) ~ Ux 

0(1) 

+ notan'1 J +^00+^ +ß 
a „ 0(e) 

r r ‘','>8r*'li'a" i*A,0. 0(,') 

Fl (2‘54) 

0i ß'-- -hü’ . (2-55) 

condition ai lÍfinlTy?"" thSt thC *' Pr°Wem should have had as the 
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l*i - ßiy I — O as oo, 

pr.1: “rr/'Âr^' :h/}: »• 
(2-53) ar. then known, ^ Pr0bl'm> “d *“ ■>' •I'« -erm. 

term ou^r exparÍLÍoí the^tw^Ïrm t0 matCh the three* 
,nner exParl«lon of the three-term ouf»eXPan8l0f wUh the two' 

(2-350, and all of ,h. «arm. 

U* * .0 .an" J + Aoo. + ^ ^ f + ^ 

1 X 

+ A|0 = Ux +7 Y,(z) [l - i tan' X] +mííLt*M*} 
2ff(x2 + y*) 

'&£ 4^*íV,(al [i -i tan' i] . 

The unknown quantities ar*- a » 
iied only If; ‘ 'O’ > ^i* Yg* This equation la satis- 

6| - 0; 
¿ y2(z); A.« = 10 3 7 y2u); 

^,(z) = 2irB0|; \,(z) = 2xA0l. 

far ar e^LTompÏe^eVÆo w6n 8 6 The re ï quantltie8 Produced ao 
second approximation*; there Isa corral 8°*UrCLe 8tren«th ^ ^e 
far-field description; then» io otion to the vortlcity In the 
noan-fiOd pnobCl Vh. ‘° th' ■«».tan.’"., "h. 
dipoles In the far field Is known. Tt Is Íntereltí ! and lon8^dlnal 

" vhro:h'd ‘rr*-^" 
(oand .ha, th.y [00 d.,»„ml„ed 'CaoiV*“ b' 

1" th. near ■>«., 
---»uivmg a boisson equation In which the 

ro“»^1,;:;/108r 
no net source strength. ^ boundary conditions etllow for 
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»'"s r 
Ä pT/obi™;2—-°"4‘“i 

TABLE 2-2 

HIGH-ASPECT-RATIO WING -- SUMMARY 

Terms Far-Field Near-Field 
Expansion Expansion 

Quantity Determined 
by Matching 

Ux Sr 1 Condition at Infinity for 
4>0 problem 

2 Vortlcity, ^(zhlnfar 
field 

3 Downwash velocity (condi¬ 
tion at infinity for 4>i 
problem) 

4 Correction to vortlcity in 
far field: densities of 
vertical, horizontal 
dipoles in far field 

One point in particular should be noted: The near-fielH 
problem w., not linearized. U one can predict the ílow .round the 

irj Tr r1 ,0r^î '"“f1’ »PPear I" the near-Held problem, one 
ia not limited to consideration of, say, thin wines All thaf to 
necessary is that the spanwise length^« much greater th^ the 

chTnee8 l°nth nht}!f two;<llmen8ional problems and that there be gradual 
Needless tn! flow 8e°metry in the spanwise direction! 
tiDsdlanrf 1 ^y' ? la. u condltlon is usually violated at the wing 

ó J! the/,naIy8is breaks down there. It may be hoped that* 
seHnreilCÍ¡.°n °k lmP°rtanï Physical quantities is not affected too 

cannoise foi^d yVnUfti,hlgher and hlgher approximations certainly 
somehow extra 8lng^arlties at the tips are removed 
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2.3. Slender Body 

slender body whSl^L^rÍent^d^i^h'íts1^6^6 Í1°W ar0Und a 
lar to the Incident flow. Now we- -í8 l0n® dlmenslon perpendicu- 
body which i. orlen«Jwith Í.T0„'°âwr ',he flow “«-nS a »lender 
to the incident flow. The samp a 8 approximately paralle 
applied to the body in thi8 pmble^T^1^ rtstric«°ns wilï be 
dimensions should be small comn* ' that its transverse 
that cross-section shaP size ^ t8 long di^ension and 
along the length. ? ' SlZe' and orie^tation should vary gradually 

•lender bo^u/Í^â^tacIde^now “c“1 Pfe''io''s action concern 
• ection really preeente "»lender-íodyXoíy? 0nly thIs 

the0rï h“ 

flow from the body; furthermore there^fr? ÍS "u seParation of the 
a Kutta condition might be applied The orL^,3edges at which 
continuou, and elngle.yalued througho« the nÚudo"“./”." ^ 

Important ••pect'»1! aerodyüamfc. U^he de“lrf *'• Certainly an 
slender body which does generate a vorfe ^10° °f llft on a 
delta-wing aircraft and many slender mis si^6'’ m°dern high-speed 
lifting bodies. There are several ImnT^ ^ uf^ ®enuine slender 
problems which may ultimately be b^st T shÍP;hydrodynamics 
approach. Most important nerhl a^ed by a slender-wingt 

ship An attempt is made in this direction °f a maneavering 
Sobolev [ 1963] , but it is not very surrp! f W Fedyayevskiy and 

Obviously, a ship is a "lifting body " but T fM l- u • 

t“«e"^Vuh.1 lîr *"m tap11- ^V™ÄVroce.Crrdta, 

ll¾^„V7u,«cgo•.,ar?ä^;,„I:2;!1“«^:c'„■'a“o•,' t ^ «-erms in my usage. 

•pan I„cre,^eVmonÓto*lciÚye5Óln“remSetdf?r ”in8S Which the 

the part of the wing aft of this location00 “Vîf maximum sPan, but 
all of these conditions are satisfledt t^- uncamber«d- Not 
ing problems. d in the interesting ship maneuver- 

1 
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Fig. (2-2). Fluid Velocity Near a Slender Body- 
in Steady Motion 

The physical ideas behind slender-body theory were developed 
fifty years ago, and the original way of looking at this problem is 
perhaps still the best way. Take a reference frame which is fixed 
with respect to the fluid at infinity. As a slender body moves past, 
one may Imagine that its greatest effect on the fluid is to push it 
aside; the body also imparts to the fluid a velocity component In the 
axial direction, but this component should be quite small compared 
with the transverse component. Both components should be small 
compared with the forward speed of the body. 

In modern slender-body theory, we attempt to formalize this 
estimate of the relative velocity-component magnitudes. We devise 
a procedure that automatically arranges velocities in the anticipated 
order: 

1) Forward speed 
2) Transverse perturbation 
3) Longitudinal perturbation 

When this pattern comes out of the boundary-value problem, we 
then investigate further to see what other patterns follow from the 
same assumptions. The whole body of assumptions, results, and 
intermediate mathematics constitute what we call "slender-body 
theory." 

In aerodynamics, the original intuitive approach of Munk was 
not completely displaced until the late 1940's. The newer, more 
systematic approach which developed then is described well by Ward 
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[ 1955] . For the first tim» u 

«„Mene. h0* the ¿“'ZZ ZZZZ t0 P”di" »“» -on,. 

izTi ‘ «vr7w'Än;ain,:”cted- 

Í >*°] ody ln th' 

Âa£S3rbîr^ - 
“«ÄÄ ‘Är zv 

and [ 1964] corrected manv nf hi P : f°r to° but Joosen I iqaîI 
advocated the Greenhls mistakes. Mewman f 1 oaII 963j 
a.tlng reaulta. reen ^-..h ,nd pSâd'sóm.4Jlntr° 

camb'idgel,ft"*.rd "î«"“« «" hi.- do" 
Ward', approach, and*!t ^Zaaate Z d¡m^> in prlncipf'oi 
function method. Of course the fh°fk Wlt’' ‘han ‘he Green's 
expansions has its own set of difficulties °ff mfChed asymPtotic 
it is the method that I shall pursue * PrlnciPle- However. 

tions which^re^tni^ aualysis can be no better than th 

^y>4îZZJZ\*:t^ 
specified bÿ'ihflf^F^pïHlMsüoç f-et the body surface be 

^">y with 
fished by Newman [ 1970] r ., , P, ^^“dynamics , has been Dub 

d8,«'^íy '“■"P'ons'.'r.lh o.'h'f,and S,t. 
diet too). Newman has provider) 1 ^ Perbaps occasionally contra 
in intent to the one by Lighthill f j QA^r'^ that seeni3 comparable 
I am trying to place slende boiv ?S°] ' nJentioned above, whereas 
lar perturbation problems My u°ry into a hierarchy of sin0n 
application of the 'methód'o'f f OÍOS"3815 ^ ^ ‘^devel^ment8“^ 
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r = ro(x*0) X in A, 

where r = (v2 + n ï 

the X axis." It will bè Ïssume^d that3^^ n!faSUref a^ou*: 
take the most conventional definition of e^nlmely thatUbe11' " 
measured in a right-handed sense from the v axL (t k 

teTtlcd ; xlí;reAC!sVtehe epartt0c ^ ^ ^ the - J—ni -be 
c^CÄhemld-le"8th”Ctto»-S^«2"‘^ 

As usual, assume that there exists a velocity potential 

the Laplace equation takes the form: 

♦rr + r 4»r + ---^+ ^xx = 0, for r>ro(x!0). 

The kinematic boundary condition on the body can be written: 

Í 

(2-57) 

Vo, ’ ‘frr = 0 on r = ro(x,0), (2-58) 
V 

With respect to the physical arguments presented at the 
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moving With the body^TterefÓr*' °thé °f ’■'í"”"ce now 
be ordered: * the vel°city componente should 

8+/8X ~ U = 0(1); S*/8y,8*/82.8*/9, = „(i|; 

0(* - Ux)/8;; = o(8(^/8r). 

?-tiïïrè 1 ?sThee;itedea^er:rolíattehellmlt 0PeratÍ0n ÍS that 
relations should be valid neaV thê body Pa™""- Th'*' »'■‘er 

but thereTs »bleb 1. 0(.|. 

have component, with differing order, of mYgmtude?'1 W‘U 

ma,icaiiyhrf"irtír^i;7e^ui\r:ír"walv.c^ 

r = eR, y = cY, CZ, 

- Y’,Z' *• - » 
suppose that the potential In fj,» „ 8r, f a Thus, 

VntiU.Y.Z). Ählde Î;a“v.,ÏÏve?h".ï'.rrl:,'M " magnitude: ve "ave the following orders of 

SÍ= U +H = ^1) + °(*)! = = OV dv e TSV ~ y = "Sy =7J7~ °{*A)s 

11=0(^)5 

ieSt^Cn'ems* 1 me“- *h« 'b« -„.verse 
are proportional to the^’eîdèr“ N’,lh*,' ‘‘•.th'V 
circumferential velocitv comnnnPmf P tíTu* .* N te ^8° that a 
(l/tRISt/Se = 0(#/t),Xhe„ weTte^m R /õm TJX'"’!''''1 = 
near field), and so circumferential anH t-aríi i 1 (that is, in the 
have the same order of ^agnitüdÍ ,COmPorient8 
tud nal velocity component is ofè) = 5(^) wWeh is" 

comCemT!'" °f magnlt“d“ ,h“ ^ .~;eT.ío°?íriy' 

to any o'îthenâtJÿtLTe “rSEf.thf «“forentlatlon with re.p.c, 
effect. Thu., we „« the Car, 
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I 

cylindrical coordinates (x,r,0) In a very conventional manner. 
Ae c -* 0, the slender body becomes more and more slender, 
shrinking down to a line which coincides with part of the x axis. 
(This Is the line segment that l defined as A previously.) In the 
limit, there Is no body at all and thus no disturbance of the Incident 
uniform flow. In the far field, the disturbance Is always o(l). 
Therefore the far field consists of the entire space except the x 
axis, and the potential function must satisfy the Laplace equation 
everywhere except possibly on the x axis. 

At Infinity, it Is reasonable to require that the perturbation 
of the Incident flow should vanish, which Implies that the pertur¬ 
bation potential must be regular even at Infinity. A velocity potential 
cannot be regular throughout space, including Infinity, unless It is 
trivial. Therefore the velocity potential must be singular some¬ 
where, and the only place In the far field where such behavior Is 
permitted Is on the x axis. Our far-fleld slender-body problems 
all reduce to finding appropriate singularity distributions on the x 
axis. 

The Far-Field Singularity Distributions. In the far field, 
the first term In tire asymptotic expansion for the potential function 
will be Ux. AU of the following terms must represent flow fields 
for which the velocity approaches eero at Infinity; they represent 
distributions of singularities on the x axis. The nature of the 
singularities can only be determined In the matching process, and 
so we must generally be prepared to handle all kinds of singularities. 

One of the easier ways of doing this Is to apply a Fourier 
transform to the Laplace equation, replacing the x dependence by 
a wave-number dependence. The resulting partial differential 
equation In two dimensions can be solved by separation of variables 
in cylindrical coordinates. When we require that the potential 
functions be single valued, we find that the solutions must all be 
products of: 

Kn(jk|r) or ln(|k|r) and sin n9 or cos nÔ, 

where Kb and In denote modified Bessel functions. Since In is 
poorly behaved when Its argument Is large, we reject It, so that the 
solution consists of terms: 

Kff( |k j r)( a cos n© + ß sIn nO) . 

The quantities o and ß are constants with respect to r and ©, 
but they are both functions of k. They also depend on the Index n, 
of course. The general solution is obtained by combining all such 
possible solutions. Any term In the far-fleld expansion of the 
potential function might be of the form: 
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00 3J 

Y j* dkefaK,(|k|r)[«¿(k) co. ne +»¿(»1) «Inné] , 
nib '® 

(2-59) 

and are unknown function.. The mo.t general 
far-fleld expan.Ion compri.e. the Incldent-flow potential. Ux. and 
a .urn of term, like the above, that la, 

M 

♦(x.y.a) ~ Ux + ^ ♦Jx.y.z) for fixed (x.y.z) as e -• 0. 

(2-60) 
m>i 

It will be necessary to have the Inner expansion of the outer 
expansion. This means that we must interpret r to be 0(c) in 
the above expression., Instead of 0(1) as heretofore, and re¬ 
arrange terms according to their dependence on e. The easiest 
procedure is to replace any of the K„ functions In (2-59) by Its 
series expansion for small argument. We obtain formulas such as 
the following: 

n = 0: 

dk e'k*Ko(ik*r,iC¿k) 

~ • l-2^r dk e‘ta V)<k> - ¿ y dk eita a^lk) log ; 

(2-6la) 

n > 0: 

1 

-CizzüJ (C«)n8r” 
2nrn V8ln/ J-oo 

dk 

W" 

iki * 
® ^ies(k). (2-6ib) 

Physically, the n a 0 integral represents the potential for a 
line of sources. This can be seen directly from (2-61 a): As r -* 0 
the function is proportional to log r, which Is the potential function ' 
for a source in two dimensions. However, the strength of the 
apparent 2-D source Is a function of x. tn fact, the Integral defin- 
ing that strength is Identical to the Integral which gives the Inverse 
of a Fourier transform. Let a^x) be the function having a^k) 
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as U» Fourier transform, and further define. 

<rm(x) ■ - 2* a^x). 

Th.» the re.ult In (2-61.1 cn be rewritten: 

>f" dk .^1^(1111,).^1-Tí'»14 l°Br' ^”í*lx,' U“*' 
J.a, 

where 

i (X) * riog 2|x‘ei 9gn (x'6)* 
* j.® 

By manipulating the (ul. Int.gt.l con,.Inin, K,. on. Lo -Ho» 

that: 

1 
I* 

* i r80 dt _ 
C dk K^lkl rla^k) * ” T« J ^ t {x t)1 + ^ 

(2-62) 

Which U easily recognised as the potential function for a line distri¬ 

bution of sources. 

Similarly. th. h. Uterpreted 

Of dipoles. tluad,:lpoleiVhe ln'te^a^ reduces to the potential In two 
the Inner expansion of the Int g con<|lder the varuble x a8 a 

plu^arneter*. tVÄ have a different 2-D dipole strength at 

The Sequence of NeaJ~ changes of variables 
we can Tõ7malise our írucedure then a8K9umlng that 
already mentioned, r“iR' ^ p Y or Z does not affect orders 
differentiation with ^Is/1 shall simply retain the ordi- 

IrTvÄ" * VÍ and°^sf andj y ^ 

Æï'.'l» oÄ"**«4«“'- ThU- for C”mPl" ^ ' 
In the near field. 

the Laolace equations and the body 
In cylindrical coordinates, the ¿;ap 

boundary iondltloo ... b. »rltt.o .. «■»«*•• 
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[L] 

[H] 

♦rr ♦r +-4 

V( i + (r^Ao)*] VTi + (rty'rjj)1] 

(2-57*) 

on r = ro(x,0). (2-581) 

The definition of N is analogous to that In (2-47*). H la a unit 
vector lying In the croaa section plane at some x, perpendl^ar to 

ponenta^°Ur °f ^ ^ ln that Cr°88 sectlon* lt ha8 ^ three com- 

(2*58MreHka r’ ^ 8 dulrectlon#- respectively. Equation 
2 58 ), Ike (2-58), expresses the fact that 8*/8n = 0, where n 

Is the unit vector normal to the body surface. 

Let the Inner expansion be expressed as follows: 

N 

'y’Z)~ Z as f - 0 for fixed (x,y/c,z/t). 
sksA 

♦(X 

Substitute this expansion Into the [ L] and [ H] conditions above: 

2 
t LJ ^>^(*0 + + *2 + ¢3 + ... ) * - ($0iii+ +...); 

[H] 

y*1' w '' -s -a •••» - - »w0l||i^ wliu| 

d4>n . 84>. . 8<J> 
. 

v(i + (^¾)2] 

The operator is the 2-D Laplaclan In the y-z plane, that Is, 

—, *-■- 
8y2 8z8 8r* 

S1 . 1 8 . 1 8£ 

777 7¡? * 

It can be proven that the first term in the expansion, ¢,,, 
represents just the uniform stream: ® 

^0(x,y,z) = Ux. 
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^ *i = 0 In the fluid domain; 

f H,] 84», 
w 

Ur- 

f[ 1 + < Vro)Z) 

on (2-63) 

fuÄ pí'obíím1^;1^ i:xr^ro ^ ^ »* i. 
a; JJ* beginning of their slender ¿dlî^y.u' »f ^ 
oí their analyals I) For an arbitrar J (It waa 3180 the ^ 
solve thi. boundary-v^ue proble" n ’i ^ ^ t0 
a problem today. However that ia no‘ ^uch of 
bera, because the formularon of th,, IV refdy t0 WOrk wlth num’ 
we have not specified the behavior of^ aTíniinííÍ quite .ComPlete: 
requires that we match th» ,,„i, , 1 ,at ‘nfinity. To do so 
r.r fl.ld ,xp “k,'°W" ,olutl',n ■>' problem ,h. 

oltud. of‘*V “* »>out ,he order oí meg- 
member l.'oií/ofbe^n^T.k'.M' 0(0 *01 the left-hand 
direction), «“eh together taply 1" the tr.r.v.r.e 

¢, * 0(e2). 

Actually, (2.63) saya only that ¢, cannot be higher order than f 
llficr ( rt t «• ;*% #-1 • * J-» « .J ____ 

.8. 
It couli^e'Inwer orderT/the me,Uf“r! b!,üi$££ Prior then ,> 
required but ^“ doeVn"«'^ 

In Sect™’. 2?’ tí we’c'a" '0 ,h' *» Problem 
■hen we c.n enpre.r Í, In . .Trie, t. n‘k V 

“ornTTe m^;eb;„%J‘Tf'cotr'tuT 

lr‘"Xh„\l.°Ur m"h“d ”U1 •>»» “■ ‘»‘e “h.‘v. rn'eVT'en*"“' 

b^ween tbl»0problem°and 'Z prTble'm'oi's'ctToTTT* Z’T“’ 
homogeneous here? XhuT, Tne^^TL^ct'ÏÏIt'tt"’ ^ T "M 
zero net source strength inside thAo^ i 1 lu th may be a non- 
What happens at infinity Is a «o ^ ^ Problem. 

iup^se^íhimVre mÎghAeA ^ at ‘^UyV a^ w^ ’ 
latlon flow could occur. In the pr^pA^^^^i^m ¿iw“' 
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wUl repre.e“ l”õinwUh^deloch;Vtóf.WnnMÍ5ihtICXPeCt ^ *’ appears to be „o reason t0 expe^^o^ 

It would be tedious to go thronoh 
were used previously, and so^ sh/n Same ar8uxnents that 
would be obtained after a careful^! m7 8ummarl*e the results that 
field. ¢, doe. indeed ywJ.^lS«n?/r0tr8a- 10 ^ near 
magnitude at infinity, Zxd there is no^H W!>lCh 18 bounded i" 
represented by the series: circulation. Thus, it can be 

$1 (x,y. c, ]no r ^ Aji COS e ^ B,| sin ft 
cv 2nr + ... . (2-64) 

and Bn are O(eAin) (lam ’ ^y definition, and so AM 

are 0(log e).) In the matching quantltles whlch 
round, and the log r and constant!- *' 1 are lo8t ln the «rst 
Inner expansion of the outer expansloí^8 arC ÍOrced to match the 

‘ermVMe2^rcaíPmatcOhnt,hí2‘60)' TÍ7 3 llne °£ —ces in the 
That is, in (2-59) and (2-60), we hive*the lî^ng: " Pr°perly- 

ainM = binik) = 0 except for n = 0, 

The tv/o-term outer expansion and its two-term in - 
two-term inner expansion are: 

♦(x.y.z) ~ Ux + ~ \ dk K / lui l , 
2*1® dKe (2-65a) 

* (2-65b) 

where (2-61 a') has been used to express the latter. 

Matching between the near-field and far-fleld then shows that: 

A'°S,r'(X> <2-66a) 

C' 8 (2-66b) 

following sfep,1."1"? McïlngTho11 °^h °n Vr°CCCd8 throu8h the 
bounded velocity at infinity 2) The th ** rePrC8ents a flow with 

y miinity. 2) Then the ¢, problem is completely 

~ Ux + I? ^ (x> i°8 r - ¿f,(x) 
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formulated and can be solved »■ , 
problem, the function A«(x) can h* the 80^utlon the ¢1 
matching, gives o-.(x) and the far fi jermlned> which, through the 
4) From the matchlng'relation for _eAtwo'term ejípan»!«!» Is known, 
the near-field potential is known m S with formula (Z-ôía"), 

c,(x) t„m inci°“.. a, ^,0ta¿rT£t .aMu'rA«rm,:,*“d th* 
aectbns. Thla seouence nf P u eifect8 of Interaction among 

the necM^tt"oTíôlviM^SÍflow^í-obA0**1 I C*C be CorTiputed »ithout 
dtaw a ol«,"a which .„íclo.,“°h.Cv ,«t,òn„ hTÍ:ar',nneld Pl'tU"' 
across this circle is just A „ Frontil kj* uTh net flux rate 
(2-63), one can show that there U a^n °dy boundary condition, 
surface, and it is given by ü”(Í)."wherethC ^ 

■¿w 

X. (2-67a) 

(2-67b) 

ro(x'0) = cro3S section area at 

The two fluxes must be equal, and so we find that: 

oj(x) = A(0(x) = Us'{x). 

xT^;hno,a7«o:.*"”*Ä.r10"*1 ,o ,he o' '-«• »>*» 

although u'orirup^htr,^0,;1^" r." ■ 

, i ^ar field, the solution to two terms I« aviaii 
metric, although the ^ l8 not a body „£ r”Sutbn ^ 

f(x,y.s)~ Ux +^log r - J-f/vW^n co« 9 f B„ sin 8 , 

-d, at large r. the axially symmetric terms dominate this series. 

found that the third ^ nT c a n* be" l m er or e ^ H three terrns’ lt wU1 be 
dipoles, both vertlcalív and horlln 7?, ted.in term8 oi a llnc oi 

•^■cotuiVsr1 

matching, ¥h... unhnoUi L^ot 
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'«PllciUy thM: *' probl'm discussed above. In fací, one finds 

Ai (*) 

_ 00 

J-00 

dk 

Hiï 
«"“ajík); B..(x) = f" 

vLqo 

dk 

Hiï 
«""‘b* (k) 

enOUgh lnf—«on to 
íleld exPanslon. The sLe !nn appear ln the thIrd term 

mine the strengths oí quadripoles In thw exPan«ion would deter- 
expansion, etc. , etc. ^ arlPoles ^ the fourth term of the far-fleïd 

term) contains much i^ormatlo^^bo^t1 th^^!)1!011 (CVen at the second 
information which is largely Uckinc In ¡¡'ree'dimensIonal effects. 

Dorf a ?ardy pointed ont that o^y the víf "eafr,ríleld exPansion. I 
portant information about 3-D fffefts in thf f" term contaIns lm- 
“fP“8,100*, The reat of the ¢, soïftion H tw°-term near'iield 
of the local section and the local rife d,ePends °n just the shape 
size. If higher-order near fieM * 1 f chan8e of section shape and 
hat they ,re influenced '"n bv ,t,!''.'"* ‘°mà’ " »Ul be .,'* 

iact, the ,,co^8tant,, term in á> 'yo-term outer expansion. In 
to the incident stream, caused bv^ ^ interPreted as a modification 
sections of ,h. body 'the cffectá ‘í'í,"”'"" “» lhe «her c *„“. 
transverse velocity field ^f extra incident flow on thp 

-her ^-..»otAíf/or^ín^r/fíe";;1. 

lacking without meftiff0oTttheípoffflf1r'body theory w°oJd be seriously 
»nds. If a body has a wfnt endP “Ina1tr0phlC eíftíct8 of body Y 
some neighborhood of the end Anf breases linearly in V 

frPid8 a ValuC of «To «IW is discontinuous , 

alende* 30 °bvloua v flaUon of oír t0 ", flnlte value at 
slenderness. » But trouble develop? fven assumptions about 

body. For example, If the tip is pointed /. w.lthout a blunt-ended 
still be a stagnation point right at^he nl f CU8Ped). there will 
the assumption that longitudinal ^ tMs Ca8e violate8 
velocity is a second-order quaÍtftynUrbatl°n OÍ the inclde^ How 

There are milT/ex^mVleTiate?i^tw^ bc overlo°ked with impunity 
we have such luck, we musfbe6"1"^8 Pap«r- ^wever, even when 
sions go awry. P Pareci to have higher-order expan- 

this section, w'cn!!a^-^8ci1^^0!18 forward In 
namely, a slender body which I« * klnd °f bõ?y as in Üectlon‘"¿. 31 
incident stream. However now 8,ned aPProximateIy with an 

PVible.m in WhiCh the body Performs a,time-dePendent 
while it moves through the fluif. 8malI-amplltude oscillations 
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It would be entirely feasible to consider the general problem 
in which the body oscillates with the six degrees of freedom of a 
rigid body. (We could even include more degrees of freedom by 
allowing deformations of the body.) However, the major concepts 
should be clear if we allow only two degrees of freedom, a) a 
lateral translation, comparable to the heave or sway of a ship, and 
b) a rotation, like the pitch or yaw of a ship. 

In this section, I shall depart from my usual approach and 
firut treat the problem for a perfectly general body, then Introduce 
the slenderness property at the very end. This introduces a bit of 
variety, but more important is the fact that some general properties 
of the physical system can be pointed out, without any confusion 
over the effects of assuming slenderness of the body. 

We use two coordinate systems: Oxyz is fixed in the body 
with its origin at the center of gravity, and O'x'yV is an inertial 
system which moves with the mean motion of the body center of 
gravity. With respect to the stationary fluid at infinity, the mean 
motion is a translation at speed U in the negative x' direction; 
thus, in the O'x'y'z1 system, there appears to be a flow past the 
body in the positive x1 direction. 

The two reference systems differ because the body oscillates 
in the z direction, the Instantaneous displacement being denoted 
by IjU), and rotates about the y axis, the angular displacement 
being denoted by |,|(t). In a more general problem, we could let 
4.(t), 42(t), and 43(t) denote surge, sway, and heave (displacements 
along the x, y, and z axes, respectively) and ^(t), ê9(t), and 
56(t) denote roll, pitch, and yaw (rotations about the x, y, and z 
axes, respectively). It will be assumed explicitly that 4j(t) isa 
small quantity, so that squares and products can be neglected in 
comparison with the quantity itself. Furthermore, it will be assumed 
that £j(t) varies sinusoidally in time and it will be represented by 
the real part of a complex function varying as e1"1. We shall not 
usually bother to indicate that only the real part of a complex 
quantity is to be implied. Thus we can write: 

4,(t) = iw4j(t). (2-68) 

The relationship between the two coordinate systems is as 
follows (see Figure (2-4)): 

x = x1 cos 4, - (z'-ij) sin £5 <* x' - z'£s ; 

y = y': (2-69) 

z = x' sin i6 + (z'-lj) cos x'i5 + z' - 43 . 
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CS 

X l 

Fig. (2-4). Two Coordinate Systems for 
Oscillation Problem 

The absolute velocity of the center oí gravity is: 

- Ul' + Iwijlc' a (. Uco8 4,- i<43slne9)i 

+ (- U sin 45+ ic4s cos 45) k (2-70) 

= - Ui +{iu43 - Ue5)k (2-70-) 

Xeã°:yz “d -'■j'.-') 

Let the body surface be defined by the equation: 

S(x,y,z) = 0. (2- 7 !) 

by nT th' vec,0r 'o inwardly directed, 

n .n,l tn^ t„jk. (2.72a| 

follow.:“ iS "> "'-I'. « "umber of other definition., a. 

" foiiows?"'1 th° ab0v' dufinition of to 1 = 4,5,6 „ 
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rX n = n4i + n6j + rigk (2-72b) 

where 

r = X) + yj + zk. 

In particular, note that: 

n3=n*k and n5 = zn, - xn,. (2-72') 

2) <f>¡: This is a normalized velocity potential. It satisfies: 

Kx + ^'yy + = ® fluid region; \ 

-¾1 = nj on S(x,y,z) = 0; > (2-73) 

I V4>¡ I 0 at infinity. / 

3) v(x,y,z): This is a normalized fluid velocity, equal to the 
fluid velocity at (x,y,z) when an incident stream flows 
past the body, the stream having unit velocity, i , at 
infinity. It can be represented as follows: 

v(x,y,z) = 7[x - <j>((x,y,z)]. (2-74) 

4) m¡: This quantity is related to the rate of change of 
v(x,y,z) in the neighborhood of the body, as follows: 

m, i + m2j + rrijk s m = . ( n • V )v; (2- 75a) 

+ m5j + m6k - - (n • v)(r Xv). (2-75b) 

In particular, note that: 

8*.z . 
m3 = Tin = ^•zn* (2-75a1) 

m5=-¿(Í-r Xv) = - ¿(zv( - xv3) 

= = - n3 +¿ (z*lx ' X^lz)' (2-75b') 
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*'» + +'yy + +l„ = 0 i„ flul(| regIon, 

'Sn'~ m¡ on S(x,y,z) = 0; 

0 at infinity. 

(2-76) 

Iv^i 

sX/iedícf/V* C3^5beif:een theae Co“dltion8 

Wx-Y’*) = ^(x.y.z), 

*5(x,y,z) = - ♦jix.y.z) - (Z* . } 
X Mf' 

(The last term does satisfy th» j , 
satisfy the Laplace equation.) 

V \X/f* O «  f A 

are 

(2-76’) 

(2-76") 

¡sJq cquarion. ) 

motion can be evr, aCt 0Í classIcal hydrodynamic *ued quantities. 

nation implich In tMSPeCt t0 the body- Note Stu/ C°°rdInate 
S Ä -PeÄ , the ’.r.Ä “ “rrl- 

reference frame, the velocity potentialTs:^7, In the b°dy-flxed 

f - Ucos ^6- l<438lnès]^(x,y>z) 

Th £»+ 1^,00. ^,y,2|tlu£i¥j(iy ^ 

J. ne nature of fv»« 

wh'" »' compare the 
absolute vef«ci*f. Potential obtain11 mu8t also be 
TTtHT^roXt fluid- that is , the grad ei: ^,8^8 the 
Thu., we 

----- extra term to provide for the 

¿SieCnTv^ ,j: lts 
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apparent incident stream ln 
latter has the velocity potential Ux^IrH0" r.®ference frame. The 
i»! y P 1 Ux ' ar,d 80 the complete potential 

♦(»'.y'.«',!) » U*' - (u cos S5+ iuijaln y,z| 

+ (- U sin l5+ 1s43 cosi5^x,y,2) + iuts^lx.y.z) 

(2-77) 

Ux'- U$|(x,y,z) +[iW^(x,y,z)]|3(t) 

+ [i^5(x,y,z) - U+3(x,y,z,]ê5(t) . 
(2-77') 

reference °f the inertial 
presaed In terms of the body-fixed system^'Sude here is ex" 
incident stream is defined in term« ^ T' that not only the 
the body motion is really defined^n °,f primed coordinates, but also 
particular, heave motion U a trln^^o^"^]68 aS Wel1* in 
fixed with respect to the fluid at infinity. 1 b°dy al°ng an ^18 

sure: = The Ber"0um 'q"ati0,’ mu5' b« »”1 ‘or computing the pro,. 

- P = ■M Í (*? t *} * ♦*). 

Th. lln..r approximations of the dsrlvatlv.s her. are as Mows: 

♦fM(M%3+(la>U)*l2] ê3(t) 

+ [(M%, - (1„U)43 ♦ (iuu)(s+ij. xt^ue,,,,; 

“t* - ♦,,] *[l»+JS3(t) +[1^. U+3> - U^lyt); 

3 - Ui ♦,,! + Í e3(t) + [ U45ï. u+3>¡ |5„): 

3 - “[♦.,] +Í1“VÍ3W +[!»♦,, - U*3it U+|>J5s(t). 

th1 dr°”l"l i».dca.lc 
equation and simplifying 

» 
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_ £ _ U2 g g 
p T v L (iw) + (iwü)(^ + V. y 

M(MSsMIuU,(t5t..vv.ua(+j+ v.v4s)JM[) 

In the terms containing £1 

Mrgt^al"dtt"cha“*-u^''»‘»-‘hVd"¿rrr^r.l“;rt‘r/^ 

oscillation6if°gíveeÍTyrent) COrre8P°ndiog to the j-th mode of 

i|,t) = £ ds “iPk.y.a.t) » ^ 1,,1,(,) ♦Fp, 

w°"* °Uoe, ‘T-Ya? ;¡:-rand Fi» •». 
transfer functions" T¡¡ are: J ' 1,2’3' the latter is sero.) The 

T33='Pis dS (1")2*3 + (luUJWj + 

TM - - p Js ds „j((i„)%51 ((„u),^ * ..v*,) . u3,^ t y. v 

T’3 = ' PX dS ”sf + (iulWj + V.v ♦,)) I 

T« =•<■]] ds n.1 (1U)!+S t »„U,^ 

we introduce the eleíidêrn“ e'’,p¿™oíí1“'d1'°1'sld'''al>1y. «ven before 

S;‘r.“ "p°-.n;u“cn:h.””'m,: 

£ ds”jl*-V«= dSm,4,. 
s 

The other theorem is Or»nni0 e-u 
all of the functions decrease sufficiemV ^ aPPlyIn8 lt* we note that 
is no need to account for effects it infinlty^'rh^1' that there T35 we have: ‘"iinity. Thus, in Ts, and 

)j( 

proportiínaTír Vr2 ^P^^^dipoies at infinity; thus, both are 

ripole, thus is proportional to l/r^aU^fnity10 repre,ent a ^d- 
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I. 

Similarly, |n 

i] dS = 
In T38' w« manipulate one 

ne integraJ a« iollow«; 

I, <w*,*..7V.£ «(Vs.mjV 

•Í ds • ♦j,*, * . 

■‘l ■“V.'jl ■,, 

Similarly, 1„ xM And wj? ^ 

J dSnjf^f y.V*)er r 

5 dSn^-J5 

he l4#t lnt«gral In the la.t two e 
'W° c.„ b, r.wrlt,.n: 

J, “•‘"»♦i. i •J', <15..XV♦, 

■J'í dSlBXç<**,>-"X^k,) 

"J] dSn|^|. 

T« - - p(m!Js dS 

728 



HP 

Singular Perturbation Probleme in Ship Bydrodynamice 

Thete resulta have been obtained with no assumption« made 
about the shape of the body. The only assumption was that the sinu¬ 
soidal oscillations had very small amplitude. 

Now, finally, let us assume that the body Is slender. The 
only effect Is that we lose the terms containing nt+t. For a slender 
body, n} and n9 are 0(1) as the slenderness parameter, ¢, 
approaches sere, whereas n, is O(c). From (2-73), we see that 
♦. is therefore higher order than and by a factor of e. 
Tnus: 

Seldom in practical problems do we ever retain terms with such a 
great difference In orders of magnitude, and so we neglect the terms 
containing n, ¢, if the body is slender. 

In the ship-motion problem, the quantity corresponding to 
TjS will be 

(M*1*1S* ¿¡b,j) , 

where ass and bj, are the heave added-mass and damping coeffi¬ 
cients , respectively.* The other T|j'e have a similar Interpreta¬ 
tion In terms of pitch added-moment-of-lnertla and damping coef¬ 
ficients, cross-coupling coefficients, etc. We note that there are 
three kinds of terms here: 

a) Terms Independent of U. These are all of the same form: 

(2-78) 

b) Terms proportional to U. These occur only In the cross 
terms, Tjj , with l# j. For a slender body, we have: 

In the ship-motion problem, is complex. Here, of course, 
+ 1 Is purely real, and so there is no analog to bt|. 
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T3,'T™.,U/1u)t(0I( 

T«3 * ♦ (U/l^ T»> 
33 (2 

C A term ProPortlonal to U* tki 
U . Thl. occurs only ln T . 

ini 

(2-79) 

(2-80) 

T-, * T(0) 95 135 + (U/lu)2 r(0) 
33 (2-81) 

h"v ívS 

Hvr: 
=---- ,u" • Æ"“ *• -- d.pT.t:--;d.;,..,. 

from the kinetic-ïïlJr?10"* U the above formul,. 
tW. fact I, formula by use of th» i ^ 4re drived 

- o» - ¿X, .:r;r”ÄS£F-" 
_,.Fo,r th* »ake OÍ Comnl • _ . formulas for the^T* c°mP^®tene»*, j wrue 0 t , 

note firat that w. «Í * a •lender bodv in the final 

*t approximation: 

+ tjM - 0, tn the ne4r ^eld 

From {2-72'l u ¡. 
^ ). It i. rather obviou, that fnr , 

"a*- «or a slender body, 

and thu*, from (2-73); 

's s * an^ i + 0{c*)], 

♦»a - afji 1 +0(^)]. 

Now let: 

m(x) ■ 
* added n,a«i per unit length, 

(2-82) 
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where C(x) la the contour around the body In the croaa section at x. 
Then clearly, 

where L la the domain of the length of the body. Similarly, we 
nhtaini 7 

Collecting these results, we have: 

(2-83) 

HI. SLENDER SHIP 

Of all the problems discussed In this paper, the slender-shlp 
problem has led to the most Important practical consequences. 
Therefore it Is not unreasonable to devote the longest chapter to the 
problem. Even so, some aspects will not be covered; perhaps the 
most Important missing example Is the case of slnkage and trim of 
a ship. 

In the four sections, two steady-motion and two unsteady- 
motion problems are discussed. The first steady-motion problem 
is the wave-resistance problem, that is, the problem of a ship in 
steady forward motion on the surface of an infinite ocean. In the 
second section, the problem treated is essentially the same, but the 
Froude number is assumed to be related to the slenderness param¬ 
eter in such a way that Froude number approaches infinity as slender¬ 
ness approaches aero; this rather unnatural relationship Is discussed 
at some length. In the third section, I discuss In some detail the 
problem of heave and pitch motions of a ship at aero forward speed; 
the results are not at all surprising, but the method is quite clear 
in this case, which helps one In approaching the final section. It Is 
concerned with the problem which is the combination of the first and 
third problema: heave and pitch motions of a ship with forward speed. 
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3« i. The Moderate-Speed, Steady-Motion Problem 

The theory preaented here is due to Tuck [ 1963*] *. The 
analyele -- aa far aa I carry It here -- ia not very much more diffi¬ 
cult than the analyala of the Infinite-fluid problem, and ao It will 
only be aketched here. 

The theory la attractive for Ita almpllclty and Ita elegance, 
but unfortunately it haa not been aucceaaful In predicting wave 
reeiatance. The reaaona are not entirely clear, although they have 
been dlacueaed for many yeara. See, for example, Kotik and Thomaen 
t 1963J . The difficulty could very well be that real ahipa are juat 
not alendar enough for a one-term expana Ion (or perhapa any number 
of terme) to give an accurate prediction of wave realatance. Thla la 
the old queatlon, "How a mall muat the 'email' parameter be?" 
Another poeelbillty la that the error arlaee because the loweet-order 
slender-body theory places the source of the disturbance precisely 
on the level of the undisturbed free surface, and so there are no 
attenuation effects due to finite submergence of parts of the hull. 
(These two possible causes of error are not entirely separate.) 
Still another possible cause Is considered in Section 3.2. 

The hull surface will be specified by the equation: 

r * r0(x,e>. (3.1) 

Now It will be convenient to measure 0 from the negative s axis, 
since most ships are symmetrical about the midplane. We assume 
that r0 » O(e) and that Bnr0/8xn * O(c), aa needed. 

There is a velocity potential satisfying the Laplace equation 
and the same kinematic body boundary condition, (2-58), as in the 
Infinite-fluid problem. The Incident stream is again talcen in the 
positive X direction, that la, with velocity potential Ux. The two 
free-aurface conditions are: 

gl #5 + 4¾ « -j U*' on s * t(x,y); (3-2) 

on s = t(x,y). (3-3) 

Finally, there is a radiation condition to be satisfied. 

This reference Is not readlly available, but the material which la of 
Interest here can also be found In Tuck ( 1963b] , Tuck [ 1964a , and 
Tuck [ 1964b] all of which are gathered Into Tuck ( 1965a] . 
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Ab UBual, we assume that there is a iar-fleld expansion: 
N 

♦<x,y,z)~ ^ *Jx.y,z), where = o(^) as ¢-0, 
A<0 

for fixed (x,y,s). (3.4) 

and a near-field expansion: 
H 

*x,y.z)~2 *n(x,y.z), where = o(4»n) as e - 0, 
n«0 

for fixed (x.y/e.z/e). (3.5) 

íTrom weMcrwÍ°o;tÍirn%SUb“tltUted lnt0 ^ OÍ the exact «ndltions . 
.oî^ed .ImuîLeoÏÏryî"0 of ProWem8 -^ch must be 

be just ilrat tCrm ln the mansion for * must 
vanlshsi ls r- o “"^rm-stream potential, Ux, since the body 
süi.fil! ÎL t 0 ^ h® a“ymPtotlc representation ♦ ^ 
satisfies the free-surface conditions (trivially). The secondt^rrr, 
represents a line of singularities on the x axis On«» >»,11 u. 
to allow the most general possible kind of singularities on thia°l?nÍ 
bu. i, 1. „0 .„,¡,,1.. t0 ftod that Ju,t ,ource. 

Turùir^' .y.l Tiï 1*" of * °f *—«. on th. "« sunace. One can show that higher-order singularities „„» u. 

TilTfleld ‘b? n®ar’ileld "olutlfn- Alternatively, one can construct 
a far-fleld solution using Green's theorem and show that It reallv 

a Hne dl8trlbUtl0n OÍ 8°— See! Îofexample7. 

.»pHj C^n uae claaalcal Havelock source potential to ex- 
pre.s the desired potential for a line of sources , but Tuck's pro- 
dooMe F m^r* fonv*nlent ln the «lender-body problem: Apply a 
double-Fourier transform operation to the Laplace equation P/e- 
varUble: ^ ^ °rdlnary dLiferentlal equation with z 1. Independent 

- (kf+ lt)^,',*(kli;*) +4**(k,|jB) = 0, 

1 * are the transform variables, and the asterisks 
d ote the transforms. Assume for the moment that the line 
sources is located at z = 2()<0. The aCe dSÄÜl eíu.tton 
z“z *Th gi*?rraVy'uWlth a dlfierent «olution above and below 
linea?ized ?ree f C !íf?er reglon la ÍOrced to 9ati»fy the linearized free-surface condition, the solution in the lower region 

i!U“z "ínn* gre1atdepthlf* and the two must have the discontinuity 
- zq appropriate to the source singularities. Finally, one mj^ 
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allow *e — 0. In phyatcal variables, the result Is: 

too 

-CD 

1 
^ix.y.i) = - j die «^»♦(kJKodklr) 

,, u* r® iki » * r® At 
Hm \ dk e ** k*(r*(k) di e , 

4tt J.® J-co V(k2+I*)[ g7(k’+il )-(Uk-lp/Z)2] 

(3-6) 

where p denotes a fictitious Rayleigh viscosity, ouaranteelns that 
the proper radiation condition Is satisfied, and a (k) Is the Fourier 
transform of <r(x), the source density, * 

The two-term outer expansion is: 

♦(x.y.z) ~ Ux + 4|(x,y,z), 

which has the two-term inner expansion: 

♦(x.y.z) ~ Ux +-J a(x) log r - ¿ f(x) - g(x). 

where 

í(x) « £ * ái v'(i) log 2|x-fcj sgn (x-£) 

(3-7) 

(3-8a) 

(3-8b) 

g(x) = llm 
p~*0 4n 

lm üi f* 
-»0 V-flO 

j. ikx .8 . l 
dk e k ir (k) \ 

® *^-00 
di 

7õT*?í[W(kl«‘i -(Uk-lp/2)*] 

(3-9) 

The expansion should be compared with the corresponding expansion 
for a line of sources in an infinite fluid, as given in (2-65). We now 
have an extra term, g(x), and the terms containing <r(x) and f(x) 
differ by a factor of two from the earlier result. The latter variation 
is not important; it results from the fact that the line of sources was 
tween at z = z0< 0, and those sources merged with their images 
when we let z0—0. * 

Define o-(x) * 0 for values of x ahead of and behind the ship. 
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two-term outer^xplnaîon thatch* 0Í thÍ8 Inner exPan8Í°n oí the 
•* a functl- of Just X Ärr, T''«'?" 811 «nUined 

. In the near field were inri, iniin/i.te*fluld Problem, all 
n ttie single function of x, f (x) wÍ n th® firat »Pproxlmxtlon) 

this for the free-eurface probiem. h*Ve » «•n.rtílx.tlon of 

^^“tC;hat the fir8t term in the 
Potential, Ux. The next terrr. gain JU8t the unlform-etream 
equation in two dimensions (in theVro*«“!]"*41^ th° LaPlac« 
boundary condition as before, (2 63): P 1 and th* aame b°dy 

9Í1 _ Ur0 (x,0) 

Í1 + (^/r0)2]W 
on r3ro(x,0). (3.10) 

A8 In the lnflnite-flUld Pr°b1-’ conditions suggests that 

= 0(e2), 

since r0 = o(e) and B/dN^O^). 

equation, note° th^ordeïsÍf ‘ In the Bernoulli 

gC+U\ +7< +i>f +*f)+ -o * ¿ '* ‘y 'l' ‘““O on z a C(x.v> 
Oí;) 0(€2) Oí«4) o(cz) o(e8) 

rÄ- oîLCSm„1S°Sdêd'^dU' the. oth'” containing 

ä: o--® -ï.r.r.,"rdî,o,o». 

uc* +*igtx +Í,y;y - + ...» o 

°(C) o(;ee) o(t) o(c) 

on Z a t(x,y). 

Glearly, ». can d„p ,h. ,.rm co„talnlng ^ ^ ^ 

order oWgUtSlVÓ/U“' írom U¡é kínT“®?!'“'1' 1 wlth *!>• 
:ZPOraV^ 1 = °<f). However the d^TV C°"‘lltion' one might 

C °* which means only that t Condltlon then implies 
assumed. In fact, the only assumnÎ, u.8^1, °rder than we 
conditions is that: Y option which is consistent with both 
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i = Oí**). 

The kinematic condition then reduces to: 

on z = 0; (3-11) 

thus, ¢( represents the flow which would occur in the presence of 
a rigid wall at z = 0. From the dynamic free-surface condition, 
we can compute the first approximation to the wave shape: 

8t(x,y) ~ - (U*,, 
z-0 (3-12) 

It may appear to be a paradox that we have a flow without waves, 
from which we compute a wave shape! But, like all paradoxes, it 
is a matter of interpretation and understanding. We shall return 
to this point presently. 

Since ¢, satisfies the Laplace equation in two dimensions and 
a rigid-wall condition on z s 0, it can be continued analytically into 
the upper half space as an even function of z. All of the arguments 
used in the infinite-fluid problem can then be carried over directly. 
In particular, at large distance from the origin, we can write, as 
in \2~64) g 

C| + r + 0( 1 /r), as r oo. 

The two-term inner expansion can be matched to the two-term outer 
expansion. We obtain 

Al0 = 2<r(x); 

Ci a - *(x) ■ g(x). 

Note that there is again a factor of 2 difference from the Infinite- 
fluid results, (2-66). Of course, the term g(x) is new here. 

We can again determine A,0 and thus <r in terms of body 
shape, without the necessity of solving the near-field hydrodynamic 
problem. By the simple flux argument, we find that: 

Al0 = 2Us'(x), (3- 13a) 

where a(x) is the cross-sectional area of the submersed oart of 
the hull. With this convention, we find tïïat * H 
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o"(x) = Us '(x), (3-13b) 

just as In the infinite-fluid problem. Again, we have been able to 
determine the complete two-term outer expansion without explicitly 
solving the near-field problem. This occurs because the source¬ 
like behavior which dominates far away from the body (still in the 
near-field sense) can be found simply in terms of the rate of change 
of cross section, and it provides all the information needed for 
determining the two-term far-field expansion. 

Enough information is now available to determine a first 
approximation of the wave resistance. It can be computed in either 
of two ways: i) Integrate the near-field pressure over the hull 
surface, or 2) use the far-field expansion and the momentum 
theorem. In either case, one obtains: 

Dyy = wave resistance 

i 
1 

r® r® 
p j J d<r(x) d<r(ê) Y0(k|x-£ I), 

-00 -00 

where 

<r(x) = source density, given in (3-13b), 

K = g/U8, 

d<r(x) d<r(x) 

Y0(z) = Bessel function of the second kind, of order zero, 
argument z. 

This is the slender-body wave-resistance formula which is so 
notoriously inaccurate. At speeds for which one would hope to use 
it, it gives values that are too high by a factor of 3 or more. 
Generally, one could not (and should not) expect to correct such 
errors by including higher-order terms, and so it is rather futile 
to pursue this analysis further. 

Streamlines, Waves, Pressure Distributions. I mentioned 
previously the apparent paradox of prescribing a rigid-wall free- 
surface condition, then using the solution of that problem to compute 
wave shapes, as in formula (3-12). Such a procedure really can be 
quite rational. 

Once a velocity potential is known everywhere, it is a fairly 
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simple task for a computer to figure out the velocity field and to pro¬ 
duce streamlines. Figure (3-1) shows the streamlines around a 
Series 60 hull, calculated from the near-field slender-body solution 
by Tuck and Von Kerczek [ 1968] . The upper boundary of the figure 
is the rigid-wall streamline. Figure (3-2) shows the same stream¬ 
lines in two other views. These drawings are accurate (in principle) 
to order e. This means, loosely speaking, that they show the 
streamlines on a scale which is appropriate for measuring beam 
and draft of the ship. Thus, we see that some of the streamlines 
start near mid-draft, pass under the bottom, then return to approxi¬ 
mately their original depth. These are variations which show on a 
scale intended for measuring quantities which are O(e). 

The wave height, on the contrary, is 0(e2), as we found 
earlier. Therefore it should not show in these figures. Our 
assumptions have led to the conclusion that wave height is small 
compared with beam and draft. Thin-ship theory, on the other hand, 
predicts that wave height and beam are comparable -- without being 
very explicit about the ratio of wave height to draft. 

In the section of Fig. (3-2) showing hydrodynamic pressure 
along streamlines, only the waterplane curve (denoted byW) is really 
consistent. On any streamline, the pressure will vary mostly because 
of the changing hydrostatic head along the streamline. Such pressure 
variations are O(ç). If we were to work out a second-order theory 
and p’ot the streamlines, the shift in streamline position from first- 
order theory to second-order theory would lead to a hydrostatic pres¬ 
sure change which is 0(ç2). This is the same as the order of magni¬ 
tude of the hydrodynamic pressure, but it is Ignored in the figure. 

On the other hand, if we were inside the ship measuring 
pressure at a point on the hull, we would not care which streamline 
went past that point. We could use the Bernoulli equation to esti- 
m«'ce the pressure at any point, and the estimate consistent to order 
V would be found from the equation: 

o = £ + gz + U$lx +i($fy +$?z). 

3.2. The High-Speed, Steady-Motion Problem 

In the preceding analysis, we have said nothing explicit 
about the speed other than assuming that it was finite. The first 
term in the velocity-potential expansions was Ux, and all other 
terms were assumed to be small in comparison. 

In principle, there is no reason to provide or allow a con¬ 
nection between Froude number and our slenderness expansion 
parameter. However, the practical manner in which a perturbation 
analysis is used may justify our making such an unnatural assumption. 
In practice, we work out an asymptotic expansion, which provides 
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Fig. (3-2). Steady-Motion Streamlines and Hydrodynamic Pressure 

Theorv HiH, AcCf^in^ to First-Order Slender-Body 
Theory (Side and Plan Views). From Tuck and Y 
Von Kerczek [ 1968] . 
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a description that becomes approximately valid (In a certain sense) 
as the small parameter approaches zero. But we use the expansion 
under conditions In which the small parameter Is quite finite, and 
we just hope that the resulting error Is not too big. The size of that 
error may depend on other parameters of the problem, and we may 
possibly reduce the error by allowing such other parameters to vary 
simultaneously with the basic slenderness parameter. 

In the steady-motion problem that we have been considering, 
the small parameter € could be thought of as the beam/length 
ratio. There Is a completely different length scale In the problem, 
namely, U /g = F L, where F Is the Froude number and L Is 
ship length. This length Is proportional to the wavelength of a wave 
with propagation speed equal to ship speed. When we assume that 
F = 0(1) as ¢-0, we imply that the speed Is such as to produce 
waves which can be measured on a scale appropriate for measuring 
ship length, and we imply that this speed Is unrelated to slenderness. 

If we are interested In problems of very-low -speed ships or 
very-high-speed ships, In which the generated waves are, respectively, 
much shorter or much longer than ship length, it In entirely con¬ 
ceivable that our severely truncated asymptotic expansions may be 
made even more inaccurate by the extreme values of Froude number. 
We may Increase the practical accuracy by assuming, say, that 
wavelength approaches zero or infinity, respectively as c — 0. 
This is not to imply that there really is a connectlou between speed 
and slenderness. It is done only in the hope that wavelength and 
ship length may be more accurately represented when we use the 
theory with a finite value of ¢. 

Formally, the low-speed problem may be treated simply as a 
special case of Tuck's analysis, as described in Section 3.1. One 
finds that the appropriate far-field problem contains a rigid-wall free- 
surface boundary condition (in the first approximation). Thus, both 
near- and far-field approximations are without real gravity-wave 
effects. However, this formal approach is quite improper. The diffi¬ 
culty is so serious that we devote a special section later to the low- 
speed problem. It is perhaps the most singular of all of our singular 
perturbation problems. The difficulty, in essence, is that we have 
treated all perturbation velocity components as being small compared 
with U, and this leads to nonsense if we allow U to approach zero. 

At high speed, a slender-body theory can be developed along 
lines paralleling Tuck's analysis. This has been done by Ogilvie 
[ 1967] . The resulting near-fleld and far-field boundary-value prob¬ 
lems are quite different from Tuck's however. No numerical 
results have been obtained yet from this analysis. 

Near-fleld and far-field regions are defined just as In the 
previous slender-body problem. In the far-field, the velocity- 
potential expansion starts with the uniform-stream term, Ux, 
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by a «arm „hlch ,atlaflea the .^Zr^Zl^ZT 

Sa«ufledT^r:re^rrfsxtb:^YLïC^ 
Fr”adè“ÍLÍbe'° "f^U^VT^Í8 ""/'“"e “d then aeeame that 
in such a way that F - " 'f ° ï' sle»d'nne»a parameter, e, 

gravity constant, g, app^acWLo l„-.hïsUmï Ir' 

be*,tg ”:«“Se' lt °Ut’ ls: « = °<'>- we •nolt^e“!.'» 

condition1"thp h ^PP,ears °nly in the dynamic tree-surface boundary 
* h hfdy boundary condition will be the same as in the Y 

Srn, Eaq (7-¾) Pr ’ ^ (3'10)' and in the lnfinite fluid prob¬ 

iere the^fre^-sur^c^dis^urb^ance^is"^^"^If'we ^t tV °' 
the velocity potential. *(X,yXbe expressedT ^^81°0 °f 

N 

<|>(x,y,z) ~ Ux + ^ <f»n(x.y,z), for fixed (x.y.z) , 
n=l 

matear”110 ^ klnematic free-surface conditions are, approxi- 

on z = 0. (3-14) 

We do not know the relative orders of magnitude of t and <f> 

lit bin?’ bUt tKitUdy °f the Pcs s ibilitie s shows that only one combi- 

magnitude °S Then’ fai^elyj that ^ and are the same order of 
magnitude. Then, in the dynamic condition, the term containing 

fhe fjhÍ?her °rdfr th.an the 0ther term’ and A can be neglected in the first approximation, that is, ° 

$ix = 0, on z = 0, (3-14) 

which implies also that 

+1 - 0 on z = 0. (3-15) 

Thus, the free surface acts like a pressure-relief surface, with no 
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modified condition at z = 0 Ruf i 
the term ¢,^ wouId be tranVformld:8 P088101«* F°r «ample, 

*1, ix'y»C(x.yi) e (x,y,0) ♦ (x#y,0) + ... . 

O(H) 0(e2) O(e) O(e) 

ordinary kind of^knOoo^aiU OÍJna«nltude> and so this 

dlt‘°" -- ,he •'"“J (unknown) loclonTtta 'h' C°“' 

n.n.t b.TdHÄnCthrÄ*ro“»®ä»t‘; ^ 

““ Ul.»*,, 1,-¢,, 0„ 2 = Ux,yK 

Each t.™ hnnn I» O(t), and non. can be Ignored. 

aolve a n'nl"'ifprob]emrfùî'ïo“ôbtaTn0r'Âb1' po*1,lon °‘ having to 
near-field potential function. However ?itr"nnT|Pr°*in’atl°n to ,h' 

“Ä urn: pf.ti: r “^ÄÄgl-a 

irof th',r" '*“,‘g" 

(near-fiSd)dprobÍehmVe ft ^ a?ply at inflnlty in the ¢, 
Predict the form o"he so u5on 7s ^ this case' to 
showed that: Elation as r - oo, but Ogilvie [ 1967] 

¢. /v:v -All sin 0 r . ^Itx.y.z;--- [ j + 0(l/r)] 
as oo, 

where An is a constant to be j m, 

behavior. This might have been e¿Tcted of IS ^ SOUrce-like 
expansion of the outer expansion D-T7f U "Tu6’ SinCe the 
of a two-dimensional dipole. An inteíml^ fWC he characteristics 

used to a bow that there atatime",. “reptre«"1’“510" Ci" b' 

following: Suppose Iha^at^me^'x8thi“ problem ntay be the 

Ch.y), and that alTknow ^'.fibaT ^ 

îheTaSChe L^lrndVtr^.SaÏon'r'r °" ^ = 5l ’ 
ÂÂÏ.ghe-0rd" *»">■ -n>d h“ap“ifebdOVoe„-^ 



Ogilvie 

Using Green's theorem, we can write: 

1 
log r' - ¢, -)] d/1 

the"rosrs section^*with*(y'O') lntegra,tlo£ la carried out in 
Jree-surface cont^t and"a 

ïr-rr nothing and can be ignored Je assied that ¢( is known on the frep , , ® rea. we assumed 

condition, we know /8N on the h^l If weTeMhJfltïd^TÎ^ 
(x;y,z), approach the hull surface we obtain !n iM , ld point' 

surfa«, Uiïins°r8n 0nt thei hUl!, and,a$*/0N unknole^heTraeei0n' 
but it should be possible to so^ït^ann™1 3n, lnte8ral «quation, 

..».da,., num.,1^ QrS1^'‘■T1511'' 
can be used to express $ at all n i * yre®n s-theorem integral 
the solution of a^InteKral'eouaüon'i!, "dí ^ ^°88 sectIon- Thus, 
potential to be found. q ln 006 dimensl^ allows the 

free-surfiice^comiltlonsha^Jsual^ve{Je11 C°ntained in the 

the kinematic conditions to^redfot^t^r^ju^w^t^Vm^ 

C(x + Ax.y) = t(x,y) + Ax 4x(x,y) + ... 

- r /,. ..V . Ax - 
= ;(x,y) +lrK2(x,y>C(x,y)) - 4>,yCy] +..., 

Similarly, we predict the value of ¢, on the free s.irfa™ • . 
downstream: 1 surface just 

¢, L.a„.,> =4' +tA,l + 

where the right-hand side is evaluated at (x v rfv „U a .v, 
dynamic boundary condition is used to evaluate’Í’7 ' 

»X • 

the Probfom at%aormerexXe\^vrurerthePfreSUmabfly haVlng 8°lved 
formulate the equivalent problem at t +h Ax^The^6* t0 

n verweu be >» «-U .he^ko.? 
ñl?atl f n0 elegant prescription for carrying out that essential 

:: 
difficulty may be the stability of the method. 
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with amplitude which hT'ohf)to'^e PoaslhUlty of predicting wave« 
tude to ship beam and draft Such.' comParable In ampli- 

dimth 1£"rther lnve«tigation,* but It is Sso thl ^ make“ the analysis 
diiflculty, viz. .. the necess tv of snL H ^aU8e oi the major 
near field. lty of 8olving a nonlinear problem in the 

one oí th^refÍL^ranerattVntionm^/h'f ÍOr publIcati°n in 1967, 
seemed to be quite at variant-* that the conclusions 
[1967]. Simple observation shows that^at* Rlspin ^ 1966J and Wu 
dominant fluid motion should be cravItv’r^laVîw8^6^ dlstance# the 
whereas my high-Froude-numbef anai 1 ted free-surface waves 
motion in the far field. Actuallv predicta no true wave 
complete harmony if w*e cons^r’a^faV^Pr°blem are ^ 
from the ship is Oic“1 \ f-haf i ar-far field” in which distance 

The two free*-surface ióndltiVnV Tnlafí in?^ Ship ^ 
format, and we would expect to finH n lnto thi usual linearized 
region. ^ 111(1 Pr°gressivu waves in such a 

expects typical waves to be'verV long^^n^M Fr°ude number, one 
longer than the ship. The apnroorlaf» * thI.S case* considerably 
an Isotropic compression in s^ale far ^8tortion °f coordinates is*^ 
usual anisotropic stretching of In contraat to our 
the body. In theifTwo-dlmensional \ 1 cross-plane near 
and Wu [ 1967] performed just suí! adi^rH^RÍ8pÍn ^1966 
discussed at some length later when tortion. Their problem is 
problems, fe n later, when we come to two-dimensional 

Inconsistent ^SoímS be ausÎfSrrSîîingfCa8e ln Which an 
we arbitrarily replace the free-surface condlM^ fi^d* SuPP08e the 
usual moderate-speed condition, Condlti°n, (3-15), by the 

U *XK + g4>y= 0, on z = 0. 

“puÄTo”"!!^ l?,h; îhen thl* ls qulte 
condition do.,' not cap««»t ^ tW. 
by (3-16). There will be aÏÏ Jf the wellT ^ °f dipole8 ^PHed 
the free surface. If such an inconel =f11~fk?°Wr.extra terms involvini 
matched to the near-field solution then ther'fie\d aolution can be 
tlon obtained previously can be avoided pA far-fleld s°lu- 
further study. ^ avoided. Perhaps this is worth 

3.3. Oscillatory Motion at Zero 

by means TiTm^Soïd“ 
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yield .ny re.ull. «he. «« 
However, it l« ll“tructlve obvious and^t is then clear how the 

Sumeiar used8Äce of ' 

Uh.mü”.C.°Ä'rrrr.-ÄÄh. applied »Uh 
reasonable faith in its predictions. 

Only the .lender-body Ideell»..!»» °f ‘ “hp"“ 
prediction methode In the ehlp-mo on pro . 1940'e until the 
Lod.1, which wee “enelvely .tudled from *« >«. ^ 

early I960'., we. ^„d pUch motton., .. 

-dicf»ÄSlb ä-“ 
lead^t^the pr.^Utlon^ol resonance. ^n^heeve p 

p^nÄrdfmon'.W.'Äy Neimen [ 1961b hut no on. he. need 
Ufor prediction purpo.ee. It 1. too complicated. 

aender-hody theory a. on. tto. eppe«.d to hav.^çomperebl. 

difficulties, but these ^ ^f ^atioïa! now exists and is fairly 
and a theory which is essentiaily rational no 
successful in predicting ship motions. 

!„ early ver.Ion. of the 1«.°Ki«‘loS.TÄ; 
all Inertia effect. (both ehlp and üuW 1 ^ .flec,. The theory 
approximation, aiong with hydrodynami^^ FPougde.Krylov approach, 
was even more primitive t an 8ure fleld 0f the waves, un- 

SrC^hCeflrm¿o^:s.UP^ 

Ô°fW»"ye. 'Ä Ut® ma“ °‘ *he s"PP0»ed *° b' MBU8 
in the lowest-order theory. 

These deficiencies ere removed by 

quency of motion l. high. «cm.*;»» 1. Ol^r'. 
assumes that the frequency order of magnitude as the 
then the ship Inertia fo^®lBr“\,ng forces. The hydrodynamic 
excitation and the buoyancy calculation of ship motions at 
force and moment also enter into the calcuJ^ for exarnple, 

the lowest order of * jJ^ver, correcting the slender-body 
by Newman and Tuck [ 1964J . However, 

*Note that "strip theory" is a special case of "slender-body theory." 

**€ is the usual slenderness parameter. 
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theory In this way was -ejected by many workers on the ground that 
the resulting theory would be valid only for very short Incident waves, 
whereas the most Important ship motions are known to occur when 
the waves have wave lengths comparable to ship length. 

The choice was this: 1) Follow the reasonable usual assump¬ 
tions of slender-body theory and obtain a rather useless theory • 
2) Accept the formal assumption that frequency Is high and obtain 
a much mere Interesting theory -- which turns out to be very slmQar 
to the Intuitive but quite successful "strip theory of ship motions. 
In what follows, I make the second choice. 

The reasons for the success of this choice have become cl®ar 
In the last few years. In one of the most Important practical prob¬ 
lems, namely, the prediction of heave and pitch motions In head 
seas, we can truly say that we are dealing with a high-frequency 
phenomenon. Because of the Doppler shift In apparent wave frequency, 
fairly long waves are encountered at rather high frequencies; the 
waves are long enough to cause large excitation forces, and the 
frequencies are high enough to cause resonance effects. At zero 
speed, on the other hand. Incident waves with frequency near the 
resonance frequencies of a ship are likely to be much shorter In 
length than the ship, and so their net excitation effect Is much re- 
duced through interference. For typical ships on the ocean, most of 
the heave and pitch motion at zero speed If, caused by waves with 
length comparable to ship length, and so the frequencies of such 
motion are well below the resonance frequencies. Thus, at zero 
speed, prediction of ship motions can be treated largely on a quasi- 
static basis; the system response Is "spring-controlled rather than 
"mass controlled." 

The problem Is very much like the simple spring-mass 
problem discussed in Section 1.2. If the mass of a spring-mass 
system is very small, we can Ignore Inertia effects at low frequency. 
Thus, if the system is described by the differential equation: 

•' , , tr Jwt my + ky = Fe , 

the exact and approximate solutions , given by: 

* Newman and Tuck showed, for example, that the lowest-order 
perturbation potential resulting from ship oscillations satisfies a 
rieid-wall free-surface condition, even with forward speed In¬ 
cluded. Maruo [ 1967] has the same result for the forced-oscüla- 
tion problem. Newman and Tuck performed calculations with a 
second-order theory for the zero-speed case and found practically 
no change in their predictions due to second-order effects. They 
did not make such calculations in the forward-speed problem. 
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y** = Fe " /(k - mw2)t yop = 

7a11 « ». 

a smaUTSH^l.r^ ^P^xlmate aolutlon If we evaluate It with 

of high f^ncVb^reatc^^^^^ °n, th(e —ption 
low frequency, but, if the appropriate Sm^l ^ to Problems at 
enough, an inconsistent approximation parameter ia «mall 
a consistent approximation. is no wor8e numerically than 

judgments of what* ¿'"smair^^d v^t ^ tr/lng t0 make absolute 
careful definitions of ^smairoa^m Je , 1 avoid 
if the definition is not pLcise one c^n ugely for this t ¿asonj 
numbers into the definition I In the « m temPted to put 
{os.lbly judge WSy Lw ".leSdeí-'^M*'1, C““' 

Mgh the frequency mu., be for the refluIts to hLT.ome'v^ld^,. 

nc,a,io„^,aI17Ä^;78o.™Ull’,h‘P„”rl‘'';-- 1 «>. »ame 
See Section 2.32. 7 dilatory motion in an infinite fluid. 

The .hip In 1,. mea„ po.Itl0„ wUj be defIned by the 

S0(x,y,z) = -z+ d(x,y) = 0, (3-18) 

Slowing ^^0¾^1 instantaneo^ hull position is defined by the 

S(x,y,z,t) -- z + d(x,y) + g3(t) . x^{t) = (319) 

in the zero-spefdnLs0eSr UpwSd^eave^iÎb11811 lt ^68 n0t matter sidered positive. pwara neave and bow-up pitch are con- 

Symbolirily^wTwrÎÏ t^1at7°tion8 have very small amplitude. 

êi (t) = O(eô) as either e or 6 approaches zero. 

amplitude" TW^convenleT^eaumptlon^iie^1. 'u.'pj0'1" 
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ï.oy'î~ » it- -»ip «.... for ilX'dand lt 
beam and draft, even at ^thi'shTp" ^ 
potential, wave heieht mnf» aPProach zero as ç -*■ o 

ohaVvaarIÂrd 311 “:h" -‘'P-«™ % 
valid as f-*o and 6-0. We fymptotlc exPa^lon8, 
which are linear in 6. The steal ^n8l8tently carry terms 
correspond to the 6 = 0 ca.e at ^ n problem« already treated 
trlvia!. The problem ahead f.’ to soZT'u’ the 6 = 0 cas^ is ‘ " 

slendÍrnV ^ °f motl°n amplitude C m°tlon8 Problem 
nderness parameter, we shall ionsistltl^alT^^terms. 

needed in íormulaUn^ínneaVmot8/611'161^0688 assumPtlon is not 
«peed; it is convenient howe^T inrra^.fat Ward 
theory- r* in Practical application of the 

“• 1 U8e a complex e^o^ntlltotaïf SinU8oidal a.t radian frequency 

equation Ä“ 1“ Pthe Laplace 

UJ 0 = 8;++ tl[+t+ t t 
Z1». », *,J, on a = S(x,y,t)¡ (3.20a) 

on 2 = &(x,y,t); (3-20b) 
[Bi 0 = *-1. »»,i, - », t c,, 

[ cj 0 = »,3, + ^s, . ^ t S) _ 
on S(x,y,z,t) = 0. (3-21) 

flTd6 «^^mtlL^toUa^InïXïr ShíP WhiCh 18 forced by 
field the slenderness assumption lead« ^ water» !n the far 
function can be represented by a ni «f ? to1exPect that the potential 
From previous experienrp ^ 11.°^ 8Insularities on the v avto 
would sußlce 1„ oi 

Since these sources represent an oUn’ ^8 tUrns out to be correct 
the sources will also vary sinusoidal/,!1^8 Shlp’ the 8trengths of * 
source distribution on the x axis- y' Suppo8e that there is a 

He {^ixie1“'} , 
- CO < X < 00. 

Obviously1*1 (r,¿)b? “J° beyond the ends oí the ship 
— -0. ThetU“i«,h^---Ät^;„at 
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*“W« th'h«r|r>etVnc"Ó“a^ympto“°c “xof0r ’’"'‘“•f' could 
I - ¿U. and lot the first torTta“. chhT ♦'ï*” *"» 
linearised free-s„rfaee ^ The 

[A] 0 = g; + <f> t» on z = 0; 

[ B] 0 = - ^ + çfj on z _ 0t 

These can be combined into the following: 

♦x - v* = o, on z = 0, (3-22) 
where v = w2/ff - oU'h t »u , 

guess how differentiation akers ord field’ U is very difficult to 
tion frequency is very high then th- o£.rfa8nltude. If the oscUla- 
lt would be reasonable, pger’hapsn ‘¿«"«siting waves are very short- 

and there would be no oblious basis for H the coordinates , 
The approach which I take here 1¾ doing this anisotrophically 
above-stated linear problem Sol"e the 7 
the solution for high frequency of oÏchÎIh obeeTrVe the behavior of 
problem is not stated ini consistant man100* u" °ther worda. the 
solution we rearrange it and make it ^nsbíe’nt WC have the 

form: deslred potential function can be written in the following 

*(x,y,z,t) = Re {«•(x.y.zje*"*}. 

where: 

Mx.y.z) -. -¿£dê u(£) .‘'J0,kÆ^rr 7T) 

(3-23) 

(3-23a) 

r-J-fdk^/rk, r dl 

" ■ (3-23b) 

butlon of froe(-,urfice“ourceb““'dirsetahd“'rb2 *"P'»Posing a diatrl- 

sense indicated. Form (3- fbHs obtaKed h P°le ln the obvious 
^ (k) is the Fourier transform of a(xl- 3 tran8form method; 
Ogilvie and Tuck [ 1969] . Again details may be found in 
preted as a contour integral; there arel"01 ln1tegral is to be inter- 
both formula,. the pa,h “f 'T' In 

ur nas oeen chosen so that the 
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solution has a satisfactory behavior at infinity, viz. , it represents 
outgoing waves. 

We need the inner expansion of this potential function, that 
is, we must find its behavior as r = (y2 + z2)1'2 — 0. The basic idea 
here in finding the inner expansion is to use the second form of 
solution, convert the contour Integral into an Integral along a closed 
contour, and use the calculus of residues. The Integrand of the 
inner Integral has four singularities, located at I = ± i0 and at 
i = ± l|k| , where l0 = (v2 - k2),/2. The first two are simple poles, 
but the second two are branch points. We "connect" the latter via 
the point at infinity; see Fig. (3-3). It is drawn for the case that 
|k| < v; if |k| > v, all four singularities are purely imaginary. 
The contour is closed as shown if y > 0. (Otherwise, the contour 
is closed below.) The Integrals along the large circular arcs 
approach zero as the radius of the arcs approaches infinity. Then 
the inner Integral in <Mx,y,z) is equal to 2iri times the residue 
et i = - !0, less the value oí the contour integral down and back up 
the Imaginary axis. The latter can be shown to be O(e), and so the 
inner integral in $(x,y,z) is: 

Íoo 

m 

di e 2triv 

CO (k2 +i2)'/2- V (V2- kT2 
e^^+Ote) 

Next, we assume that the source distribution is smooth 
enough that (r(x) does not vary rapidly on a length scale comparable 
with ship beam. This assumption Implies that <r*(k) decreases 
rapidly with Increasing values of k, and so the value of the above 
inner Integral -- a function of k - - does not really matter except 
when k is small in magnitude. Accordingly, we expand the above 
expression in a manner appropriate for small Ik I. We obtain 

Fig. (3-3). Contour of Integration Defining the 
Velocity Potential of a Line of Pul¬ 
sating Sources: Zero-Speed Case 
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^(x,y,z) e* _J_ f® 

4tt2 J.ffi ‘ dk e (r*(k) --^vz-iy 

^-00 

(vZ - kZ),/2 

dk e'kxor*(k){l + ...} 

m,h the ,tae d'pe"d">" -introduced, we have: 

(3-24) 

«Mx.y.z.t)«* Re {io-^eWgifwt-^y) , 

TM ' ‘ (3-25) 
inis approximation reoreaertt 
Particular, the wave is moving 3 trav?11In8 wave; for y > 0 in 
y < 0, we must start oveT clo«. °m the line 0* sources For 

simple approximation above is valldÍOe1í°W î°8lcally' Thus the very 3» r «Si •ft 
ger than a wave length. the wave generator is much 

waves . With this information in hi8^"8' two-dlmensional, gravitv 

mulatlon and solution of the neaí-fleld pr^bleS.”10^ 0n t0 the for- 

tlons:_^ar field' We make the Usual spender-body assump- 

ev^1 without^h^ abov^analysTs31^^ T* ^ doubted this fact 
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W Jï ' VF = °(f ). 

equation in ^wo^/meíaíons^6 POtential Action satisfies the Lapl ace 

^yy + ^rr ~ 0, 

and the linear free-surface condition 

+2 - V(^ ~ 0 on z = 0. 
(3-22) 

wamid °hder °f (ïr diÏno^0 termS here are of the would obtain just the rigid-wall L / assume high frequency we 
condition implies that we shalîbt solving Ca°ndltifn' ^=0-) This 
two dimensions. .At inflnlfT. i a 8ravity-wave Droblem tr. 

.ha. the *PP,op;u£™Xl»u£Zi:r the Sio? ln 

aPPtopriateSform° PU‘ ^ cÂ/SÛTSth“ 

= = iA + st 
{l+dy2)l/Z (1+d2)l/2 

= hju¿s_^ kh + dtit i3 - xj^ 
(l+dy2)'/2 (1+d2)^ (3-26) 

order th^Ä1 rluineVterär8 To tírr WhÍCh 18 ^ hI«her write (see (2-721)): * T the same approximation; we can 

n3 = n • k 
(l+dyZ)l/2 ’ n5~_Xn3- 

Thus, the boundary condition is: 

Ü ~ t 
ÖN Vs^njjêgî on z = d(x,y). 

(3-27) 

we can define 
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^‘yy + ~ ® the fluid region; 

l^= n¡' 

\ - vti = 0 , 

on z = d(x,y); 

on z = 0, 

(3-28a) 

(3-28b) 

(3-28c) 

LaplaceVequatio*n and a'z’ïbtï Ctf8e'a*he "«¡»fjr th. 2-D 
th^linearlzed fr=; lhe'/ must 

simple condition at infinity, we rnustTmo!,^’ OÍ the Prevlous 
radiation condition and a condition nf P) lu th® ,2'D outgoing-wave 
depths. Thus, the bóldary^Su" nroblem i? 
cated than in the infinite-fluid 1 , much more compli- 
assumption, we have only 2 D ornhl ut’ thanks to the slenderness 
email-amplitude a„„mp,lo„, píeSêm» 

The actual velocity potential function can now be expressed: 

«a.y.z.tl-ReC^ ^(ti+jla.y.z)]. 

Lj = 3,5 J 
(3-29) 

It must be observed that earb Ai i e 
ation condition. It is necessary to PleX' because of the radi- 
scheme for solving these problems R VI ^ apProPriate numerical 
integral-equation methndo ba k * maPping techniques and 
incidentally haí «u«^sfully applied. Note, 

«he *, pnoybiem“^ce ,ahe {ïÎ»dhe?;e°a Teau^r5 solutlon of jest 
approximation to be made that _ ssumPtlon allows the 

^ 3 

the flow^ppear^olakipfacIVn'c“8 S "“'“"-‘P “•'»■'y. that is, 
section were independent of tbp ^°88 s®ct/ons as ^ each cross 
the solution of this problem with fr1,8* V Í? consistent to follow 

at each croas séctlon^from which force-ptm-unit-lenKth68^!!11^ and moment on the shin can bp of* P Unlt length, then force 
We obtain the following formulas for tbc f approPfiate integrations, 
ship resulting from the" SotTon of th'e ship."06 ^ m°ment 0" the 

ïj (t) = 
j^dsnjtg^-xCg) +(^(^+^¾)]. (3-30) 

symbolj.¾.^denotes^ha/the^rfte“ JH 5 ,f0''Pl,Ch "'»"''■'t. »"d the 
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i» te j.o:^rdmLY,%p“rdaCiigiSÄ 
m,x) +¿n(x). p f di n * 

JC(x) 3 3 (3-31) 

otr ctNäfe?,: °,,he 
r„Ä^ .:ä«ä7" PSÄ:ngth" 
find for Fm(y); PProxi^tlons that and n5 - - xn3, we 

F"M ° dS - «“»'i, O* (i3-^)[mW *„W/1„J , 

m C (3-32) 

^(0= Pgj^ dSxn^.xS,)*,,^^ dxx«3-xi5)[m|x)t„(x)/M. 

Finally, we abbreviate these formulas: 

íj(t) = - ¿ [(iufaj¡ +(lw)bj| +C ]êj(t) , (3-33) 

i=3,5 

where 

== JL ^ mM>' 

= - \ dx xm(x) 
JL 

= \ dx x2m(x); 
JL 

a35= a53 

55 

b35 ~ b53 

55 

= \ dx n(x); 
JL 

\ dx xn(x); 

b55 = ) dx x2n(x) ; 

- Pg J dS ^ = 2pg T dx b(x,0); 
% JL 

= - Pg £ dS xn3 = - 2pg T dx xb{x,0); 
50 “L 

- Pg r dS x2n3 = 2pg T dx X^ÍX.O); 
s0 

33 

C,, = c 
35 53 

s0 VL 

b(x,z) is the hull offset at a point (x,z) on the centerplane 
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The -wave-excitation problem can be formulated as a singular 
perturbation problem, but such a problem has never been satis¬ 
factorily solved, even for the zero-speed case. Fortunately, another 
approach is available for obtaining the wave excitation; this is the 
very elegant theorem proven by Khasklnd [ 1957] . It allows one to 
compute the wave excitation force, including the effects of the diffrac¬ 
tion wave, without solving the diffraction problem. Since we thus 
avoid the singular perturbation problem altogether, only the final 
results are presented here. (Reference may be made to Newman 
[ 1963] for details of the zero-speed case.) Let the incident wave 
have the velocity potential: 

(|)0(x,z,t) 
Igh ^vz+ilwt-vx) 

the corresponding wave shape is given by: 

£0(x,t) = he 

This is the head-seas case. For an arbitrary body, the heave force 
due to the incident waves is: 

F*(t) = pghe1“'* J dS e'™ {(1 - + iv^n,} . 

If the body is a slender ship, with axis parallel to the wave-propa¬ 
gation direction, this formula simplifies to the following. 

F*(t) « Rghe1“'* J dx e‘i,/X£^ df ry^l - v<^. (3-34a) 

The corresponding expression for pitch moment on a slender body is: 

F5"(t) Pghe iwt C dx e iW(-x) f 
Of 

df n_el,i(l - v<t> ). (3-34b) 
C(x) 

In the expression (I - in the integrand, the first term leads to the 
force (moment) which would exist if the presence of the ship did not 
alter the pressure distribution in the wave; in other words, It gives 
the so-called "Froude-Krylov" excitation. This fact can be proven 
by applying Gauss' theorem to the integral. Dynamic effects in the 
wave ("Smith effect") are properly accounted for. The second term 
gives all effects of the diffraction wave. 

A final rewriting of the wave-force formula is worthwhile. 
The above approximate expression for fj(t) can be manipulated 

into the following: 
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The ñrsí term shows the Froude-Krylov force quite explicitly; the 

"efftrH 0f undHthe quantity in brackets is often called an 
effectif waveheight, the second factor being a quantitative repre¬ 

sentation of the Smith effect. The second integral term has been 

SxetSrVhV7mS of^th® v®rtical sPeed of the wave surface. 
^(x.t). This term should be compared with the force expression 
for the calm-water problem, (3-30). For a slender body! the hydro- 
dynamic part of the latter can be written, for j = 3f 

-ipwj' ds n3[i3(t)<|>3+Ê5(t)<y -ipu r dx [£ (t)-xi_(t)] f df 
S0 JL 3 5 Jc{%) 

The last quantity in brackets is the vertical speed of the cross section 
at any particular x. Comparison with the second term of Fw(t) 
shows that the latter is almost exactly the same as the hydrolynamlc 
force that we would predict if each section of the ship had a vertical 
spe®, . ; This analogy would be exact, in fact, if the expo¬ 
nential factor, e , were not present in the F^ft) formula. 

Except for that factor, what we have found is that Korvin- 
Kroukovsky s well-known "relative-velocity hypothesis" is approxi¬ 
mately correct according to the analysis above. The hypothesis is 
particularly accurate for very long waves, in which case e"1«* i 
over the depth of the ship, but it is less accurate for short waves. 
Again, it should be noted that we have no absolute basis for savin«? 

oínn/fJ TVe 18 8h0rt °r l0ng ln this resPect. In com¬ 
puting the Froude-Krylov part of the force, it is well-known that the 
exponential-decay factor must be included in practically all cases of 
practical interest; this has been amply demonstrated experimentally. 
It suggests that one should be wary of dropping the exponential factor 
in the diffraction-wave force expression. 

Summary. In the far field, we assumed that the effects of 
the heaving/pitching ship could be represented by a line of pulsating 
singularities located at the intersection of the ship centerplane and 
the undisturbed free surface. For a first approximation, we tried 
using just sources, and these were sufficient to allow matching with 
the near-field solution. In particular, the inner expansion of th» 
outer expansion showed that the near-field expansion would satisfy a 
two-dimensional outgoing-wave radiation condition, at least in the 
first approximation. With this fact established, we formulated the 
near-field problem; it reduced ultimately to the determination of a 
velocity potential in two dimensions, the potential satisfying a linear 
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r^Tcotpt.T.uSp"^ r “ 
expressed as integrals nf aririo^i * ^16 ^orce anci moment were 

per-unit-length, eimtlí of°whfclf and damping- 
potential for the 2 ¿ problem the velo^ty 
excitation force and moment ¿as ía d1eterrnination of the wave 
Khasklnd formula? wWchnermîtH I d °f, by aPPlication of the 

problem Involved in solving for the^dlf^racüon wa?^111” perturbation 

3,4‘ Qsc]natory Motion with Forward Sgeed 

oscillating shipbwith forwTrdepHhydrodynamlc force on an 
ent from the same problem in fhe tJ8 ^ fuadamentally much differ- 
rno- complex, ,o b. s»re, bu, „„ n.w° 

native appLSríavÍLVn“ devîeedbf ““ ' 1,6,I • Altec- 
some of these were mentlnnerl 1 nurnerous other authors; 
characteristics of the OgUvle-Tnck'am "5tlon- T,he «“«Ingulehlng 
the method of matched a'symptoUceS*^ ""s 1 ^‘o.tlon of® 

âââ^iî “snä r«Zt' r °! “/?rÄ«that 
the size of ship beam and draft. mPHtude of motion relative to 

of the cJnhterräeg???LfroTthe shaio8UTl,d to. move wlth the mean motion 
uniform stream at infMtí and ^e’tale^,1* \Ppears that there a 
X direction. The z axiÜt« ^C am ln the P08ltlve 
the plane of the undisturbed free surface f?°Tu? °rlgIn located in 

the right-handed system. (Pos^1^/^Is meVsteí to^aíboTr^8 

Let the velocity potential be written: 

<Mx,y,z,t) = Ux + UX (x,y,z) + 4i(x,y,z ,t), (3.35a) 

discussed VSectil}i ^ 8teady-m°tion problem 
>J>(xfy,z,t) includes everything that m^Th* w.e/^P^ a8sume that 
motion potential so that Wx.v z tf Ufdded tor the 8teady- 
probiem. We shall also the ftee sur^ H f 
into two parts: urface deformation function 

C(x,y,t) = T)(x,y) + 0(x,y,t), 
(3-35b) 
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«»¡»Z«, terturbation rrobl 

S"8 ln Shi? «ydrodynamu* 

where t)(x,y) ¡ ., 

addedt ¡^-^tlon prob- 
K*.y,0 is lhe complate g^-.« J; »ha.ev.r mu., be 

3 3 , Me body .urface . ( "«-««f.« deiormT.S 

îction 
«me 

Mt> = o<e6), us0(€ ■l/S 

S” the" eelumpti0n9 ^ (he sii ' 

q nt analy«i3, it turns out 

^x.y.t) = o(ew6) 0. 
ô,> 0ix*y.t) = 0(e6) 

as either eg '' 

soIut,o„ a. , 
Can be written: P lnt of view, the expan- 

O(6°e0) O(60ez) 

0(5'^) o(6'e2) °<5)-(3.36) 

The order of 

PhysicIlXrifidíi^nitVíe^í^ Was fo^d in Sect! 

'“«e certain .¿ecST.0“,“ “'»"lerSS^é' 
aoíro ‘|he ’ame b"', for/l™* *0.co™e »ut^f the a^/’ ,estab>l»hed to 
approximation.) Iorcing atrip theory to come ou/8 à* We are 

Th« i.— .. aS the fir8t 
uui aa the j 

9~r"¿TeV¿- 
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part'of th^potential T ^ retaIn two terms in „ 
in terms of 6.) a]* nof0"' (The Prob^m is still liinIre'dePendent 
scripts to the aLÍ! , not convenient to be renLÜii linear. however, 

and conditions which are^ S° 1 Sha11 simPlyPwrite ^ attaching sub- 
nitude appropriât^ f f asymPtotically valid to 11 °utJe<ïuations 

^,y,Z,T P iatet0 keepin^ ^ te-ain tÍVe04ts7odnrofOfmag- 

In the far field rr 

successful if wo =.n JU, a “iatribution of -"gain, we 

sources. The stead°W f°r the ^istence of both !t’ We are 
the steady-motion D/ohi°UrCe dÍ8tribution is exact]v l ^ 
be given by ^et the density of theU t 6 as ia 
the bow or stern TK ine ^ = 0 for the vaÎ.iL r ady SOUrce« 

(wft + 2iUU4,>tu^tgfe=o 

Then it can be shown that: 

on z = 0. (3-37) 

Mx.y.z.t)' 
poo 

1„dk'*v‘wy ¿Laiülyl tsUJh 
C vk +f . W(1 t-Uk/^2 

where o-*(k) la h, tt (^- 
is taken as in Fie % °urier transform of tr(x) and ti, 

ík < V i r , i8* (3-4), where k and i, ' anci the contour C 
(ki < k2) of the equation: 1 k2 are the real roots* 

(3-38) 

* 
There are two real roots if t = rr / 

"iêu/ffiT,“'- si”“ w;;.“l8e>tí^!'he -o„ 
r I 1 /4thl’ d are assured that r >> f/I 0(1 ^ ‘ then also 
ai veV; btkde C0^fPlex Pair come together and7 H°WfVer' If 

p-b.^ ï.ad.-ln“ a'r,?eT' si ä'U" 
>ere are four real roots of tha* uF°r StI11 8maller values of 

760 



SinguUv Perturbation Problems in Ship Hydrody namtos 

® 
--^ ■*■ » * k 

® 
k»». 

Fig. (3-4). Contour of Integration Defining the 
Veloeity Potential of a Line of Pul¬ 
sating Sources: Forward-Speed Cas* 

[*^]4-[ír= o 

in the i Cplane.r The^ntoli^C ^exiends^/ P°leS °n the real 3x18 
poles in the I plane all fall on d ,irom ' 00 to + <*>• The 
and then C is the entire ^ ^ lf ki < ^ < k2. 
being necessary. ’ no ePecial interpretations 

The above expression for iLív ^ i 
expansion, but it is not a conslsi-Pnf 'y' is a one-term outer 
fthown by Ogilvie and Tucinïïat a m exPansion- It is 
sible if r = (yz + /)'/2 I off amuch «I^Pler expression is pos- 
placed here on the restriction Iha*8 e I 0; ernPbasis should be 

^(x.y.z.t) lüjf 

Ztt 

pCO 

^-00 
dk eikx o-^k) 

(3-39) 

We can take this as our one-term outer expansion of ^(x.y.z.t). 

r = 0(e). Thefwe^ndfhat:^ ^18 expre8slon la obtained by letting 

+(x,y,z,t)~ieiu',el'(l-i,/|) 
[o-(x) - 2S(u)U/g)(z - I lyl )ir'(x)] . (3-40) 

Since wr _ 0(1), it la not appropriate to pv-no ^ *u 
function further. This is a twr/» xpand the oxponential 
expansion of 4,; the first term "renrf expansIon of the outer 
sional, gravity wave, just as in the yf1 8 30 °ut*oln8» two-dimen- 
bu. the .ee0„7,erm 
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increases linearly with distance from the x axis. The latter is a 
rather strange kind of potential function; it represents a wave which 
becomes larger and larger, without limit, at large distance. How¬ 
ever, one must remember that this is the inner expansion of the 
outer expansion of i|j(x,y,z,t); it means that there are waves near 
the x axis which seem to increase in size when viewed in the near 
field. At very great distances, one must revert to the previous 
integral expressions for i|j{x,y,z,t). 

We must next find an inner expansion which satisfies con¬ 
ditions appropriate to the near field and which matches the above 
far-field expansion. One finds readily that: 

4>yy + i|/H = 0 in the fluid region. 

to the order of magnitude that we consistently retain. Thus, the 
partial differential equation is again reduced to one in two dimensions, 
and so we seek to restate all boundary conditions in a form appropri¬ 
ate to a 2-D problem. 

The body boundary condition must be carefully expressed in 
terms of a relationship to be satisfied on the Instantaneous position 
of the body. This condition can then be restated as a different con¬ 
dition to be applied on the mean position of the hull. It can be shown 
that: 

~ ^ - xj 

(i+dyZ)l/2 

[e,/26] 

s + - ues + U(Í3-x4sHhOyXvi - X» ) 
(1 + dy)l/2 

[C6] 

on z = d(x,y). 

(3-41) 

The derivative on the left has the same meaning as in the previous 
slender-body analyses: It is the rate of change in a cross section 
plane, in the direction normal to the hull contour in that plane. The 
first term on the right-hand side is the same as in the zero-speed 
problem; see (3-26). The quantity - U|5 has a simple physical 
interpretation: it is a cross-flow velocity caused by the instantaneous 
angle of attack. The remaining terms all arise as a correction on the 
steady-motion potential function, Ux Î the latter satisfies a boundary 
condition on the mean position of the ship, which is not generally the 
actual position of the ship, and so it must be modified. 

Intuitive derivations of strip theory usually omit the terms 
involving X* However, in a consistent slender-body derivation, 
they are the same order of magnitude as the angle-of-attack term. 
(This says nothing about which is the more nearly valid approach I) 

The free-surface condition reduces ultimately to: 
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^ll + 8^z 

[e^6] 
2U*>. - 2öXyS . v>,rA 

[e6] 
on z = 0. (3-42) 

-f S (3-37,ft and 
•re basical,I °?°r ‘»o team, on .he rlsh."?' Î’ the te™ 
the oscUlation anH^h Ín °rl«in; they involve 8lde here 
The term 0¾ ÍS\8te,'ldy P^turbatkm of th» , ^1003 between 

"ía ä 

is just the free-su^ K the other terms are all „«aí fIrst aPPr°^- 
by Newman and Tuck f 1 qA°aTdary condition obtainehdIgine^t0rder* ThIs 
approximations would in9 f and by Maruo [ l%y] hi_vÍS Problem 
on z = 0. On *u involve nonhomo«enem,a M * HI«her order 

Ogilvie and Tuck a ^ the lowe8t-°rder cond}Ho^H ta8t* = 0 on 
boundary condlfi ? given above. Howeve? 1 " °btalned by 

ïÂir.n~‘r- 

«Ä^iciä »o ‘k«Â°Æe 
basis for chóosina 866 here that that goÏÏ wT« °îî«WOUld be jU8t 
theory had Drove gf uUmption8 was selfcted o„1 u Ieved* This 

Predicting ship mottó^.8’“ m0'' acc”«= ProeedureCa“^LuePfor 

r.To/,VB the following fo,m:- Pertlcnlar, let the .oluíon be eap«0,”^”;»- 

^-.o=Ií«ltW)t(lu)tTOíJMth 

(3-43) 

* 
In other words, we j , 

Wa” and “e‘ •“ “erlví I, ¿“XT'“ hOW -trip theory 
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«i satisfy the following con- 

4l» + *i¡7 ' 0i \ “ ni on a = dU.y); ij! - v#¡ S 0 on a = 0; 

(3-44) 

^yy + *J„ = 05 = mj on 2 = d(x,y); = o on 2 = 0; 

(3-45) 

^Jyy +0Jn = °# iiJn = 0 on 2 =d(x,y); 

ßjZ * = ■ <l/g)[24>jx + 2Xy#jy + Xyy^j] 0n Z = 0< 

(3-46) 

The quantities nj were defined previouslv in f? 7?\ , 
components of a generalized normal vector’ Als¡ the m hh 
mj were defined earlier, by (2-75) In fV,»’r. 'ath ^^tMes 
v(x,y,z) (see (2-74)) be Äed by In ,h,i f"'« n»«»«»». let 

v(x,y,z) = V[x +x(x,y,2)]. 

,he body “d =:dy"Ä„^? 

tlon, „b^hb b1ra;rnVn%drsÏ‘t,gni”“Y»T3a,40h,the,f"’“'“ 

S’baVe^"^er„.Tdra'llei 
ponent grows linearly in amplitude as'TyT'^ ln^vhlch one com- 
that Just such an Interpretation must be given”* 66 

Ibove forWl5r WT.Cann0lP0S3lbly find solutions to the problems se't 
can'loe ^compareí to »"'“‘“on' ä' 
pressure distribution were annlloH °nd|;tlon th*t would result if a 
a pressure field were applied^extern^o 6 ^ fart' if being given by PP externally on z = 0, the pressure 

P(x,y,t) = ipuUêj(t)[ 24>ji( + 2xy$Jy + xyy4'j] , 

then the potential function would have to be (Ut/miÊiít) 
Ojix.y.z) satisfying the conditions stated previoSy. ^his 
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"pressure distribution" is periodic in time, and it is also periodic in 
y as I y | —*■ oo; the latter comes from the term containing í1]** 
Furthermore, the time and space periodicities are related to each 
other in just the way that one would expect for a plane gravity wave. 
This can be proven by studying the boundary-value problem for . 
Thus, there is an effective pressure distribution over an infinite 
area, and it excites waves at just the right combination of frequency 
and wave length so that we have a resonance response. In an ordi¬ 
nary two-dimensional problem, there would be no solution satisfying 
äll of these conditions. However, our solution need not be regular 
at infinity; it must only match the far-field expansion. And the far- 
fleld expansion predicts an appropriate singular behavior at infinity. 
It is shown by Ogilvie and Tuck that the solution of this inner prob¬ 
lem does exactly match the above far-field solution. The way the 
pieces of the puzzle all fit together is rather typical of the method 
of matched asymptotic expansions, and it indicates at least that the 
manipulations of asymptotic relations were probably done correctly! 
(It still says nothing about the correctness of the assumptions.) 

There is no benefit to be derived by repeating here the solu¬ 
tion of the above detailed problems. Rather, we jump to the results 
for the heave force and the pitch moment, and we do little more than 
compare these results with the comparable formulas in two previous 
problems: 

CASE i: The oscillating slender body', with forward speed, 
in an infinite fluid (Section 2.32) 

CASE 2: The oscillating slender body (ship), at zero forward 
speed, on a free surface (Section 3.3) 

In all cases, let the force (moment) be expressed in the form: 

Fj (t) = - [(iw)Zaji + (iw)bji +Cj|]£¡(t) . 

1=3,5 

We define cj| to be independent of frequency and of forward speed. 
(We must make some such arbitrary convention, or the separation 
into aj| and cji components is not unique. ) With this convention, 
Cj| represents just the buoyancy restoring force (moment). Thus, 
Cjj = 0 for all j,i in case 1; in cases 2 and 3, Cj¡ is given by: 

[cjj] = 2Pßj>L d* U--xj^^bU.O) . 
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Table 3-1 shows ajj and bj¡ for the three problems. InCases 1 and 
2, the results have been obtained from Sections 2.32 and 3.3, re¬ 
spectively. For Case 3, the present problem, the lengthy derivation 
will be found in Ogilvie and Tuck [ 1969] . Some points should be 
noted: 

1. All of the terms’ in Case 3 Include the corresponding 
Case 2 terms, l.e., the added mass and damping at forward speed 
can be computed in terms of the added mass and damping at zero 
speed, plus a speed-dependent component. Formally, we could also 
say that Case 1 Includes all of the Case 2 terms , with n(x) set 
equal to zero. From this point of view, the only differences among 
the three cases are the forward-speed effects, 

2. The coupling coefficients b35 and bS3 include a forward- 
speed term TUajj in both Case 1 and Case 3. This means, first 
of all, that there can be some damping even in the infinite-fluid 
problem. Secondly, it means that this contribution to the damping 
coefficients is not altered by the presence of the free surface. Note 
that in neither case is it necessary to Ignore the steady perturbation 
of the incident stream (the x terms in (3-41), for example) in order 
to obtain this result. 

3. The other coupling coefficients, a36 and a.., contain 
similar speed-dependent terms in Case 3; they arise at the same 
point in the analysis as the terms discussed in 2 above. We could 
arbitrarily Include such terms, ±(U/w )b33, in Case 1 too, without 
causing any errors since b33 is zero anyway in Case 1. 

4. In Case 1, there is a speed-dependent term in aS3 which 
is lacking in Case 3. The reason for the lack is that such a term 
is higher order in terms of t in the ship problem, because of the 
assumption that w = 0(6-1^2). There was no need for a high-frequency 
assumption in Case 1, and so the extra term could legitimately be 
retained. 

5. If, in Case 3, one arbitrarily includes the forward-speed 
term, -(U/wrajj, in the aM coefficient, making it Identical to the 
Case 1 coefficient, then it is consistent to modify b9¡} in a similar 
way, namely by changing it to: 

’»= iL dx x^x) - (U/w)Zb 
33 

The relationship between these forward-speed effects is quite the 
same as that discussed above In paragraphs 2 and 3. In the b5S 
coefficient of Case 1, we could also Introduce an extra term, 
-(U/wrbj3, without causing any error, since bj, is zero anyway in 
this case. Thus we can maintain the symmetrybetween Case 1 and 
Case 3. 
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TABLE }-i 

NOTED In .11«.«. mix) .nd n(x) xr. d.lln.d: 

m(x) ♦ T- nl*> * P . p f dl n,4s# 

;^mc.LdU\^r«*ÄJV «d äeTT “. -<• •• »«*> • °- 

noti 21^.fnuVoidií ¿'T’í “h'äirri -Lîii i‘o*,«*ndy-,»*“Th.Bi 

I . ^ dx [^"^dy [♦'(x.y.O) - ♦i(x.y.O)] • 7; ♦l(x.Wx.O).«)] . 

,h.r. b(x,i) glv.. th. hull o«..t corr«lx.ndini 10 th. pota» Ix.O.x) ou th. c.nMr^.M. 
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i» r. í®rwir<***P*»<í ««rm* nol y«t dUcu««*d art (Ko«« 

at SjTf JcTi»« . f1*«"1, L Th»y Wi*® 'rom «h. inclu.lon 
ri,ï ^ ?'Jn ,hL* í«ocllon, aa In (J.4Î), and «he Sîf. ‘nc,,id,n* ,ho,# fwwMoM »• • con.aquanca of lho fact 

I#w h,>NofM.*ha"ri lK.<,k«Líí'.Ü2,*ft!,f ir'#‘BuriÄC« condition, la not «r°, < w, lho right-hand aida of (J-42) rapraaanta an Interaction 
' Z”? ,h* <or*Vd maUon «“» «h* oacUlatlon. Ona might try to 

aimplify matlara by aaaumlng that one can neglect the effecta of y 

..- * Du,r: 

*tt 1 “ * ¿Uv,,, on a « 0, 0-4?) 

OU ^6) 0(f 6) 

the right-hand aide I« atUl not aero, and we would «till have the 
ill (iinctlnne to contend with. In fact, It may be recalled that thla 
remaining term on the right-hand aide waa the one that cauaed the 
major trouble In Interpreting the Oí problema. Neglect of the y 
terme lead* to the condition on ííj (cf. (3-46)); 

0,, - vfl| * . U/g)^¡t, on a a 0, (3-48) 

and It la the one remaining right-hand term which cauaee the eolu’.lon 
ÍOí n *° d,veri*! *l infinity. The usual procedure at thla point la to 
aet O, a 0, turn the other way, and juat ignore these problems. The 
resulta are in remarkably good agreement with experimental obaer- 
vatlona, and one still wonders how this can be rationalized mathe¬ 
matically. 

Finally, we should at least mention the problem of predicting 
wave excitations in the forward-speed problem. The singular per¬ 
turbation problem involved in solving for the diffraction waves has 
not been satisfactorily worked out yet, at least, not in a manner 
compatible with the approach presented above. 

One might hope to avoid the diffraction problem by using the 
Khasklnd relations, as in the zero-speed problem, (See Section 3.3.) 
In fact, Newman ( 1965) has derived what I call the Khasklnd-Newman 
relations. These provide a generalization of Khasklnd's formula, 
relating the wave excitation on a moving ship to the problem of forced 
oscillations of the ship when the ship is moving in the reverse direc¬ 
tion. Unfortunately for our purposes ."Newman Va'ërlvatlori fe based" 
on an a. Prlort linearization of the free-surface, in the sense that our 
terms InvbTVTng y can be neglected. Therefore , the appropriate 
diffraction problem cannot really be avoided in this way. Also, it is 
necessary to have avaPable the potential function for the forced- 
motion problem, and this includes at least a part of the functions 
even if the y dependence is ignored. 
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Singular Perturbation Probleme in Ship Hydrodynamioe 

_ ., l*‘ * not-yet published paper, Newman has applied the 
Khaaklnd-Newman relations in the iorward-speed problem by arbi¬ 
trarily Ignoring the fl) functions In the forced-motion potential 
function. He finds for the heave excitation force: 

where, as before, w is the frequency of oscillation (that la, the 
frequ.ncy of encounter) and v « we/g: the frequency mea.ured In an 
earth-flxed reference frame is denoted by w0, and we define 

= “Wg- The actual wave length of the Incident waves is \ * 2w/vA. 
The two frequencies are related as follows: w * w0 + UwÎ/h. These0 
formulas are all valid for the head-seas case only. 

This formula should be compared with (3-34a), which was 
the corresponding result In the zero-speed problem. The first 
term In brackets yields the Froude-Krylov force, and the second 
term yields a pure-strlp-theory prediction of the diffraction wave 
force, which can be Interpreted approximately in terms of the 
relative-motion hypothesis. The remaining terms represent an 
interaction between forward speed and the incident waves. 

Again, it should be pointed out that more than just nonlinear 
effects have been neglected in setting Qj equal to zero. In fact, 
the usual linear free-surface condition for ship-motions problems 
can be written: 

+ = " 2U4(t)( - U^xx» on z = 0. 

(Cf. (3-37) and (3-47).) Even the inclusion of the Í2j terms still 
omits some effects usually considered as linear, namely, the effects 
of the term - U i);,,,, in this boundary condition. These effects are 
higher order in the theory presented here solely because of the high- 
frequency assumption. 

IV. THIN-SHIP THEORY AS AN OUTER EXPANSION 

It has already been shown how one can view a symmetrical 
thin-body problem in terms of inner and outer expansions; the usual 
description of the flow around such a body is really just the first 
term of an outer or far-field expansion. It was not at all obvious that 
one had to use such a powerful method on such a problem, but it was 
clear that one could do this. Probably the only advantage of doing 
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chapter. It l. «n a matcf of "¿"JMuHa In thl. 
be able to .how that the probl^TjfacK jPe7*P" *»11 
nation. On the other hand, perhap. aomel^m t* * ,r,VUI **pU‘ 
i® fU7her re,ea^b on the auble^t '0^^ be »««mulaied to 
with the outcome. J n elther caae, I »hall be happy 

Jluid, thln-body príbíwn ** th® lní,nl‘«- 
♦<x,y.a), whlch satlaflea the Laplace equat'bn? ^ * Veloclly PO«*ntlal, 

^ ♦ ♦„ + 4U » 0, 

everywhere in the fluld doma,n and the 

inj *«h. ^ ♦y + ^jhj, on y « * htx.a) . * c,f{x#ï)> 

Now we add on the two free-aurface condItlon#; 

U1 lue-8c + 
[B] 

on 

0 = *„ on 

z a i<X,y); 

z = ;ix,y). 

Also, we must specify a radiation condition. 

In the far field, where v — o/i\ 
of the expansions: y " U'1'’ we assunie the existence 

N 

♦(x,y,z) ~ Y *n(x.y.z), 

mo 
N 

£(x,y) ~ 2 tn(x,y), 

for fixed (x.y.z); 

H5| 
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w*> «••um# rl|N ««r«y ih«i 

fef n««4 t«,y/f,«), 

• ü«. 

IH* «mir« of Ihr pUnr Py • 0 {Li .L ^^ *° ** 
f«r n*l4, tt (• •«•Uy t9mti ,k*tylh_ »h* <«* «urf«r«) «• ihr 
»Ion mu«t bP cf ih* firm ^ ,#rm ,n ,h* e«»*r •»p«n- 

♦,i*< *y«»I • » oJJHv‘ .C»C(*,y,*j4,o.t) 44 44i 

:£?•> °¿r. *wf -‘r * • »• 
it»u«J Cr»tna» function for • tinr«r:*«rf ^ ^*****5».*1*4) I» ih» 

mol,on 

CM * «G, *0, on « • 0, 

-w « . ,/U*. O, ... 00,.0,,., ... h.. ,h|a 

, * 0» on * • 0. 

For lalrr convvnlvnc«, we define 

V*.«> * ♦.U.O,*), 

«nd «o oj(xj&) ha* ihe property too: 

HJ) 

ttíit + *ío,f . 0, on * , 0> {4 4) 

w“1' «lv'n bV O I). ,h. ,»o.,.rm ou,.r O.p.„.)o„ 
Mx.y.t) - Ux ♦ ♦.(x.y.a), 
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If' p°T.*.»cí £,.^,'xr/f'““u “■ f"**""- 
PllclUy, Irom (4.11 .„d'V.íl I '»P'"' •!««•■> •»■ 

Ih. ¿ZZ™"' "" •uríac*.condl.Ion» led. 

Ml 

l»| 

o ■ gZ, . U4-, 

* j (< * *'i * {it;,i 

Oie) 

OU*) 

on * s 0; 

0 ■ liZi - 
'* '* 0{c) 

♦ UZîi - - Z,*^ ♦ *,z{% + *tyZgy 0(e* 

+ *•* • on 2 a o. 

The lowcal-order condition« in | A] and [ B] together requl 

+ **!, = 0, on z = 0. 

We see that this 1« automatically satisfied bv our d> fv u - a i » 

fl'V'»- 's" ríe flrat «rm In “a L^n.^ fcV».;. Jh.»*,’ 
in the near field is also determined: snape 

re that: 

Z|(x,y) - - j v()l(x,0). 

tV’be rreafseyd8íoyrSlonly freeusurface appears in the near field 
to be raised (or lowered) by just the limiting value (as y -* 0) of 
;<x,y) in the far field. Again , a rather trivial result 

It is a T C0"8lder‘î?e terms ln the iree-surface conditions, 
following matter- The two conditions can be combined into the 



0 ■ ♦»„ • «*», 

♦ U ,.i. 
y'»«)* 

‘ i*(a'.0'M,« + TO(oi +°U 

TJ ‘V'iii f T] ö'i«0»* T f| h»z2,’ 
(4-7) 

în « ondition j A] „ we note that different' 
respect to y yiclda: at ion of the 2 

« terms with 

0 = ßz2y * lA II* 

Ä";/;,^%rzH“vor»e'r;'-^“rhrr,lT 
Ing”" J"-' X- Fn>m ^-71 a"d l4-«. »' can tl,Lr w"To*ther'oí"w. 

o - I hggglx.O) + iihgjlx, 0)J U j y j + (a function of x). 

This must be true for any y, and so we obtain the condition: 

0 = hxxx + Kh ̂z» on z = 0. 

and so wfjùut *„‘e ‘o'-17 

wort on^o't'h ¡l;xr:::r?T% 
lar arcs in this case.) ' aternne is made of circu- 

to the prediction thâÍ the^u^ vllïcit^îef r the0^^ H^8 ’ ^ Came 
of a tangential component which is essentiallv j j n ^ ^ consists 

untenable. surface, such results are simply 

difficuityrre;g^T;u™th:tmnowS 
if^udiïd further.Seem P°SSÍble that the Procedure might be fruitful 

asymptoUhcexpeansSioLdoeffÍn; InäT ^ ^ ^ 
the same as the near field In a slender^^7^1 th" 
a region in which y = 0(e) and Z = O(e) as e - 0 It foîln 
this assumption that 3/3v aTüT“ a/flss k *.u u u- It follows from 

orders of magnitude byaVctor Æ the,efíeCt 0Í Chine‘"‘ 
•bat this region „ injrposedte,^ Z^tZ^TáílT^ 
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the free «uríace, Thu», It I. no 
try to make the previous inn.,. ! ,on*cr ««cesaary or even proper to 
condition.. Prev‘OU9 ‘«ner expan.lon satl.fy the íree-a¡ríace 

♦ in this new^near íeld^ül LJx^F Th ^ the exPan8Í°n of 
expect the next term to be rather trlvliT I;Urthe.rmore* we can 

- And In f.c, thst three-,.rm8,^<\,0°'0'1;"drr,M.dL'wa 

♦U.y.,| - Ux t al(x,0) t Uh.(x.O)|y| 

^i) O(f) 0(cz) 

The corresponding wave shape is found to be: 

0(<T2) 

;(x.y) ~ . ^Q|x(x,0) 
O(e) 

g[Uhxx(x,0)|y( +i^.a (X( 
T 
g -0)a'xxx<J (x,0)J ^ 

¿[<(x.O)tU^(x,0) +(i2j4(ll,0)] j 

0(e2) 

f?ir« -mu 

Vlous (thln-body) near-field expansion a 67 matCh the Pre- 
they satisfy the free-surface Condition« •l’" ' ^ Furthermore, 
imposing unacceptable restriction on the^ T neCesslty 
just one aspect that requires spec al caîe- ^ ÍS 
tions cannot be satisfied on the surface ®ï "SUrfac/ condl- 
The reason is that the first term of 7u ~ 0 in this near field. 

differentiation with respect to zï a^V e,XPansulon Is 0(e),and 
magnitude by i/e. Thus suppose f d t0 change orders of 
function f(z) on z = Ç in terms of ís f ^ 1° eValuate some 
derivatives) on z = 0. The usual nroc ^alue /and values of its 

me usual procedure is to write: 

f(£) = f(0) + ^f'(O) + 

°(f) 0{e).0(f/e) 0(e2). o(f/e2) 

With ou, ... oí .s.„mptl„»3, thi8 expa„si(,n ls useleas; we canMt 
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terminate U. The one almpllílcatlcn which la admlaalble here la to 
evaluate i(z) and ita derivative* on z sZ,, where t * Z, o(çl.* 

I have not worked out any more terms In any of these expan* 
alona, but I suppose that the next term In this near-fleld expansion 
will be much more Interesting. In the far field, It Is well-known 
that the third term In the expansion of Ok* potential function will In¬ 
clude the effects of what appears to be a pressure distribution over 
the free surface. It was shown by Wehausen [ 1963] that at the Inter¬ 
section of the undisturbed free surface and the hull surface the solu¬ 
tion is singular, and he represented the singular part by a line 
Integral taken along this line of intersection. From the point of 
view of the method of matched asymptotic expansions. It should be 
possible to represent the far-fleld effects of that line Integral in 
terms of an equivalent line of singularities on the x axis. The 
strength of the singularities would be determined, as usual, by 
matching the solution to the near-fleld expansion. At this stage, 
thin-ship theory will have become a singular perturbation problem. 

V. STEADY MOTION IN TWO DIMENSIONS (2-D) 

Sometimes we study two-dimensional problems with the Intent 
of incorporating the solutions into approximate three-dimensional 
solutions, as in the treatment of high-aspect-ratio wings and In 
slender-body theory. And sometimes we investigate two-dimensional 
problems simply because the corresponding three-dimensional prob¬ 
lems are too difficult. 

The problems discussed in this section are in the second 
group. It is not likely that any of these problems and their solutions 
will have practical application before several more years have 
passed, even in the context of strip theories. Here are some of the 
most fundamental difficulties related to the presence of the free 
surface. 

The first two subsections concern a 2-D body which pierces 
the free surface. Such a problem is Intrinsically nonlinear. We 
might try to formulate the problem as a perturbation problem, in 
this case involving a perturbation of a uniform stream. However, 
there must be a stagnation point somewhere on the body, and at that 
point the perturbation velocity is equal in magnitude to the incident 
stream velocity. It is not small! If the stagnation point is near the 
free surface, the free-surface conditions cannot be linearized. We 
must find methods which are adaptable to highly nonlinear problems. 

Such a method is the classical hodograph method, used since 

The same difficulty arises also in Sections 3.2 and 5.42. 
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S"0tion f.1. ‘"IC‘J'ï' wM'h ■».CU...,, Â.dïJli*,** '° * 

In Section 5.3. a hri»/ ji 
studied by Salvesen í 196Q1 ,.dl8CU88,on *« P^.ented oí th„ „ 
I» a cage ln which th» c 69 ’ 1 Conta,n« two aspect* nf if"® Probler" 

ES?- " 

expansions^ 'Thíw'"0"','"0" dl,c“**cd In'th.V'ctîô" * Cl'ar "«"'Plc 
be modified In s ih aVC en8tb obtained in the first a"1 °n «cale 

unbounded at iníinbitvqUent(aPPrOXlmatlons - or the sET "h**10" mU,t 
-e bounded in ^'ude^- we knovv perfectîy^/Æ 

™'?réË7i;BBvr-^ 
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approach 2„0. s?c" “ U^cr.almy perm,s<lb » ‘-J-o- 

and sô'îhewâtc Mr"' ,eads tTa^equ.n’c'éÂ'i'’''’""'' pro"dare 

•n altccnatlvc method"!, >»■>. In 11"’’ 

5''- g.ravlty Effects !„ p,-, ^ 

-Sldcr 
A F ,-7 1 c°mpletely satisfaetm^ PT? Problem and deter- 
A- E. Green wrote several y °f-n8íactory. In the middle 1910'! 
his approach is well r, ^ Pers on the subject and tu ^ 
Plate io 1 c wall-presented bv Milne Tu J ' r the essence of 

Show» tol0FC,a8te^:!*h »i,*r.illng edge a. the 0°^°» i/o^’é, A fla* 
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a.s™ed^o%tv?,L1?aC;!n0s^8;arit^Urr»"g^é,èd:"T^ 
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The physical plane shown in Fig. (5 n ¡Q i 
g* (5 1J is also the complex 
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Fig. (5-1). Planing Problem In 
the Phyelcal Plane 

f 

1_ *,m 
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*♦0 c 

Fla. (5-2). Planing Problem In 
the Plan# oí the 
Complex Potential. 

b X My piano. Let F(s) * ^x*y)T4h^Xp^)b*(i«te0a mapping oí 
eioclty potential for ^ Pr°ble™*thown in Fig. (5-2). In which 

% plane onto an F pla . (¾. n U 1« aaeumed that 
ointe arc marked to.cortre,p°^nt000Fl8t‘ Furthermore. we have eel 

* 0 and 4--0 the P®l"Vre;mHne. tJ, which Implle. 
= Ua °n ^ of*¡¡ Jat and that Ua la the rate at which 

^r.r.hfn“ ó!-'-- «*> 

:n;r.\:ïlir\ í ». «...... « ¡: tv,.* 
md y direction» , r<;spe^' VC,iJ¡ , haU-clrcle .nd U. di.m.ter. 
»V wW ‘»«Lf ”* r S Pdln.“r. m.rk.d to Cd,...,»". « 
319 shown ln Fig. (5-3). Ag » p f .lc pjanino surface, on 

_  tVyat the maoplna function Use» is no y 

Fig. (5-3). Planing Problem In 
the Plane of the 
Complex Velocity. 
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© 

Fig. (5-4). Planing Problem In 
the Auxiliary (l) 
Plane. 
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Sa now wo b*v« t M • iuncllon ol C, *• w«U «• ¥ «n4 * *• 
(uncllon« of 4. 

Thoro »r» ihr«* j»r*nm*r* In iht« 00101(00, «, b, «ml C* 
none of which hne been delermtned y el. By leitlnf ¡4 j “* oa, Oreen 
cerne lo lhe conduelan thel lhe flow 1er ewey 1« e uniform alreem 
«• require«! only If: 

gmmmmmmmmm 

ce* coa o end VU * O • ein ». (1*11 

(Both eletemenie ere neceeeery lo eeotd an emblgully 1ft elfn.) Aleo, 
one can uee lhe t(4) formula lo eeeluate « el lhe leading edge of 
the plate: 

„ •»# 
e(* 1) « » le , 

(Compare Ftga. (5.1) and (5-4).) Thle provldee a releiionahlp 
among a, b, and c. Bu* there ere no more condlllona lo be found 
unie«« we Introduce more Information about the phyeUel problem. 
For example, we could uee the aolutlon with unaperlfled value« of 
a and b. and work out the formula for lift on the plate. (Milne* 
Thornton give« the formula.) If then we (Ut the value of lift, we 
have another condition on a and b. However, thl» I« rather a bach* 
ward* way of going at the problem. We are moat likely to want to 
aolve the entire problem juel to find the lift and other intereating 
phytic al quantifie#, and ao we have nol gained much If we muet 
aeaume lhe value of the lift aa a given datum. 

There la another anomaly In thle reault: The value of h 
(See Fig. (5.1)) ha« not been u*ed In any way. In the formula for 
t(4), let 4 • 4. with 14! very large. Then every value of ■ com¬ 
puted ln thl« way give* a point on the free «urface far away from the 
planing «urface. With a conalde^able amount of tedlnua algebra, 
one can eliminate i and expr«*«« y a« a function of x (at least 
asymptotically, a* |xj — ml. The f1r«t term I» the mo«l Inter- 
eating: 

y 
*5 ( )*»§ ja I * constant ]. 

Thus, far away from the planing surface, the free surface apparently 
drop« off logarithmically to • **», The «lope of the free surface 
approach«« «ero (« l/|»¡) and «o there 1« no violation of our aaaump- 
tion that the flow at Infinity I» «Imply a «treaming motion parallel to 
the x aal«. But obviously the «»sumption that the trailing edge was 
located at a height h below the free.«urface level at Infinity waa 
quite meaningless, and it cannot be enforced In the solution. 
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Ther* aro thus two dlfficuitlea* it Tk l. 
unlquff (A common dlfHculty in freo „irr, lb°tV1* i« not 
unaccepubl, b^H-vlor at Infinity. “tr*amMnff Problem.^ 2) It haa 

i «%?! , who rJcoirÄ thM the .0? H byiIil*P,n,1 1966J and 
oí a near.field (!,£„, expan.lòn õf thl0^ ^7*" * Problem Part 
^p.n.lun doe» not nace.a.rUv .-M.1 PJV* ,nlution- Inner 
Infinity; it muH only maüj »ome , V 0bv,0u,, «^Itlon. at 
Riapln and W« produced the appr0DHatreeXP(an',l0,, in 3 ProPer way* 
that matching doe* occur. Thi effect.* r UtCr fxPan,lona and showed 
i-r field, which l. h.rTy .urprl.lne for appear ilrst in 
«ne expects to find gr.vlïy iavi. aïlhï« l,W° "ea,on': >> Far away, 
divergence of the free.surface shane ^ d(i#turbance, 2) The 
that one might expect the smallest an n * 80«ut*on l<* so weak 
the free surface Into the reel ,> ‘ amount o{ «favlty effect to bring 
ih. small cíísct oí gravUy evemuíÍr t0 flnd lt: thus. g 
but only far away from the planing iurface'! haV° 3 con8e9«ence, 

Rlspin defines the small parameter; 

P 8 Kf/U2» l/F2 

ot>Vd',„L;,.'rh: h "r ^ 
tobe 0(1), Smallness of ß I» achieved ^ is consldered 
U - o,. Rlspin treat, his small oar!!-. V 8 ^ 0 or 
slonallaing everything, so tint he tl Cr ProPer«V by nondlmen- 
whether U - moro-Oo .11 d°C8 not have to «Pacify 
I shall treat g as a admail ^ C,han8c a11 variables now, 
arc the same as Rlspln's, nPf course ^’ ^ ^ Section 3*2: the results 

magnltudVAV'oM/ß)' îyp‘ral lun8ths are assumed to be 0(l/ß) in 
coordinates ,° say, ^ ° my l0°8e n°tatlon- We ^ould define new 

z = Pz; Px; y = ßy. 

and consider that 

a» 8-0 in the near fle!!i.''RatheT U,an fleld- wblle z = 0(1) 
nind that such orders of maenlM.de l uÍ8.’ W6 Sha11 Just keeP In mind that such orders nf m .„„u ,1 3n a° thls ’ we sha11 Just keeP 

note that d/dz - OdJ In are to be assumed. Also, we 
field. ' ’ ln near ^ »"<1 d/dz = 0((1) i„ the ¿r 

«tretched^coordlnate proS^Ther "l“,1 C°mm°" k,nd of 

- ^::hrz:: ¡:zr¿z;í ir^T-— 
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limit, and'í'íhe f\?8"\^mPÄrflSr.Srar t0 V*"‘Sh ln *he 
just the Incident uniform stream Thlff ^ ^81°11 must represent 
represented: stream. That is. if the outer expansion is 

N N 

F(zjß) Fn(2;ß), w(z;ß)~y 

n=0 
Wn(z;ß), 

n=0 

for fixed ßz 

a s ß -*• 0, 

then clearly we have: 

F0(z;ß) = Uz, and W0(z^) = U. 

JatioTr "Sr ‘"T r ■ matching procedure is rather nhtri j r' " much of the 

lac. deter mil«1 the^ value1 of ^ ^ 

In orde^tÏfacmîatTthe matchfer eXpansion is not quite so obvious. 

Í» «“ í púãeí just Î^'ÏIÂJeX’ÔUÂÏroSnEr“™ 

Re[ir+%7W|] = o on t) = 0, 

where A = a/7r(b +c). (The factor A is just the value of A,/at 
Slfl»W,iyk£r0m the P1“1"* surface. ) No,e S the f£»t term U f 

ÎêYÂi"thhe “TY8“ *PaCe “d sa.*.fyïh°.”co„rdlS„r5tn . 0 
occur. ’ h exclusion of the origin, where singularities may 

^¿S-iSSSSSiiSrr“ 
sufficiently general solution* i, the following " 

W, (tip, a le-1«^' dte"’"/u![Ä+^] . 

where C| and Cz are real constants 
matching). 

T 

yet to be determined (in the 

Í.IScílí^ígrr-r/erÍXSn;!1"'10''8’ WM'h 8” "-d*d 
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Singular Perturbation Problems in Ship Hydrody namtos 

The two-term outer expansion is now: 

w(z;ß) ~ U + W,(£;ß), 

found:W| 8lVen aS above• Its inner exPansion to one term is easily 

w(z;ß) ~ u - 

We cannot really say positively that these two terms are the same 
order of magnitude, but it turns out that they must be if this exores 

expansion m TThe ^ °f the o-^-fnner 

wlzft»1 WM T™y {t0m 0r°°n'‘ S<>1"tl0" 

w(z;ß) ~ U +lU-^in a 

Then, obviously, we find that: 

C2 = - U sin a. 

We cannot determine the other constants, C,, from the solu 
ions so far obtained. It is necessary to solve ¿r tie second term 

in the inner expansion, and Rispin carries this through. Then, he 
matches tue two-term outer expansion of the two-term inner expan¬ 
sion with the two-term inner expansion of the two-term outer eman 
3ion, finding that C, = - aU/ir. Thus, C, is proportTonal to S 

iTfeacat S-he ¿ldtleaVeS lnthe jet; the C| te"m presents a sink, in lact. ( 1 he Cj term represents a vortex. ) 

Rispin obtains estimates for h as well, but the results are 
rather complicated, and it would add no perspicuity to the present 
section to repeat them. The important point in principle is that it is 
possible now to specify the value of h and not come to a contradic- 

,a r®sult* The far-field description has effectively provided 
a height reference, because of the effect of gravity. This effect 
does not change the first-order inner solution, but it does modify the 

nd’frder) teT.m" ^The velocity magnitude is not constant on the 
free surface in the second approximation.) 

In the second-order term of the inner expansion, there is 
another interesting phenomenon, namely, the apparent angle of 
attack changes. This means, physically, that the-occurrence of 
gravity waves modifies the inflow to the planing surface. In the 
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near field, it is still not possible to see the waves that exist far 
away, but the latter have the effect of making the incident stream 
appear to be rotated somewhat. It is like a downwash effect (although 
the physical origin is quite different). 

If one were given a planing problem such as we formulated 
early in this section, with the incident stream and all geometric 
parameters prescribed, it would be necessary to solve for the 
parameters a and b. One equation relating these parameters has 
already been mentioned, namely, the equation relating the length of 
the plate to these parameters. The other equation comes from the 
expression (which was not written out here) for h as a function of 

a and b. 

Rlspin avoided much tedious algebra by solving the Inverse 
problem. He assumed that a.b.and c were given, then solved 
to find h. He also had to treat the angle of attack as an unknown 
quantity, and he found an asymptotic expansion for it. (Note that 
only two of the basic parameters can be prescribed arbitrarily, 
unless we are prepared also to let i be an unknown quantity.) 

One final comment on Rispin's work must be made. H| finds 
terms of six orders of magnitude: 0(1), 0(ß log ß), O(ß), 0(ß log ß) 
0(ßZ log ß), and 0(ß2). But he finds also that they cannot be deter¬ 
mined one at a time. Rather, they must be taken in groups: a) the 
0(1) terms, b) the terms linear in ß (the logarithm being ignored), 
and c) the terms Involving ß . This is the same kind of matching 
procedure that would have been used if he had adopted the working 
rule that logarithms should be treated as if they were 0(1). (See 

Section 1.2. ) 

5.2. Flow Around Bluff Body in Free Surface 

A problem related to that of Rlspin [ 1966] and Wu [ 1967] 
has been studied by Dagan and Tulin [ 1969] . They have concerned 
themselves with the flow at the bow of a blunt ship, where any kind 
of linearization procedure must be completely wrong. In order to 
handle such a situation, they have adopted essentially the same pro¬ 
cedure that the previous authors used, namely, they set up inner- 
and outer-expansion problems in which the nonlinearity is confined 
Initially to the near field and the effects of gravity are confined 
initially to the far field. Then, by limiting their study to a two 
dimensional problem, the nonlinear near-field problem can be solved 
by the hodograph method, and the far-fleld problem is a simple vari¬ 
ation of a well-studied problem in water-wave theory. The geometry 
of their problem is shown in Fig.(5-5), which is reproduced from 
their paper. They argue that at very low speed there will be a 
smooth flow up to and then down under the bow, with a stagnation 
point at the location of highest free-surface rise, but that that flow 
becomes unstable as speed increases, until finally a jet forms, as 



Singular Perturbation Probleme in Ship Hydrodynamics 

Fig. (5-5). Bluff Body in the Free Surface 

sketched in Fig. (5-5). Regardiez of whether their description of the 
flow at very low speed is correct , this jet model appears to be 
entirely reasonable physically; a barge-like body usually causes a 
region of froth just ahead of the bow, and this froth is probably 
caused by such a jet being thrown upward and forward, then dropping 
downward (which the theory overlooks). Thus it seems appropriate 
to study the formation of such a free-surface jet by the use of free- 
streamline theory, and one may expect that the details of the formation 
of the jet are not terribly sensitive to the effect of gravity. 

The body, as shown in Fig. (5-5), extends downstream to 
infinity. (In a sense, the whole problem is part of the inner expan¬ 
sion of a much larger problem, in which the stern of the body would 
be visible and in which waves would follow the body.) Thus, there 
is no Kutta condition or equivalent which can effectively cause a 
circulation type of flow in the fluid region. In Green's problem, for 
example, the flow at great distances appears to have been caused by 
a vortex. It is this property that causes the apparent logarithmic 
d flection of the free surface far away from the body, and it is this 
property that requires the far-fleld description (as in Rlspin's 
problem) to contain a logarithmic singularity at the origin. Dagan 
and Tulin have no such logarithmic solutions. 

They find that the jet appears, from far away, to be caused 
by a singularity of algebraic type. Specifically, the outer expansion 
of their inner expansion shows the complex velocity behaving like 
Z-3^2, where Z is the complex variable defined in the physical 
plane, shown in Fig. (5-5). Thus, their far-field expansion must 
exhibit a singularity at the origin of this same type. 

This result, if correct, is most interesting, for, as Dagan 
and Tulin point out, it means that the far-fleld expression for 

Their Section til. 2 has some questionable aspects. 
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pressure is not Integrable, and so one must use the near-field ex¬ 
pansion for any force calculation. Furthermore , it is a disturbing 
result, because it suggests that many previous attempts to incor¬ 
porate bow-wave nonlinearities into linear-theory singularities 
have been futile exercises. 

Personally, I am not yet willing to admit that the possibility 
of having the complex velocity behave like Z'1'2 is really to be re¬ 
jected, as Dagan and Tulin claim. Wagner [ 1932] analyzed the 
region of the jet and the stagnation point for the flow against a flat 
plate of infinite extent downstream, and he showed that this flow, 
from far away, has the behavior of a flow around the leading edge 
of an airfoil, that is, the velocity varied with Z'l/2. Physically it 
seems rather difficult to imagine that, by curving the body around 
just behind the stagnation point, one causes such a drastic change in 
the apparent singularity. 

Dagan and Tulin present a figure (their Fig. 2) in which they 
have placed many symbols showing beam/draft ratios of more than 
a hundred ships, and it is quite evident that most ships have values 
of this ratio considerably greater than unity. They then use this fact 
as an alleged justification for claiming that their 2-D model of the 
bow flow (as in Fig. (5-5)) will have some validity in describing the 
flow around the bow of an actual ship -- since most ships are pre¬ 
sumably of the 'flat" variety. However, this claim is completely 
misleading. The theory might apply to a scow, but not to a ship. 
After all, beam/draft ratio is measured amidships, and even ships 
« largest block coefficients have entrance angles less than 

Also, it is appropriate to mention again the warning against 
defining a small parameter precisely and then trying to interpret on 
some absolute basis whether a particular value of the parameter is 
small enough. " For example, it is conceivable that a thin-shlp 

analysis would be valid for a ship with beam/draft ratio of 10, 
whereas a flat-ship analysis might fail for the same ship. I am not 
saying that this is likely, but it is possible. In one problem, a 
value of 10 might be "small," whereas in another problem a value 
of 1/10 might be "not small. " 

Notwithstanding these objections, the paper by Dagan and 
Tulin has provided a refreshing change in outlook on the bow-flow 
problem, and perhaps it will be more fruitful eventually than the 
usual attempts to place complicated singularities at the bow in the 
frame-work of linearized theory. 
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5.3. Submerged Body at Finite Speed 

Since the principal difficulty in solving free-surface prob¬ 
lems follows from the nonlinear conditions at the free surface, we 
are always seeking new arguments to justify linearizing the condi¬ 
tions. One possible basis for linearizing is that a body is deeply sub¬ 
merged. Then its effect on the free surface will presumably be 
small, even if it is not appropriate to linearize the problem in the 
immediate neighborhood of the body itself. 

Such problems were discussed by Wehausen and Laitone 
[ I960] , where the previous history may also be found. Tuck [ 1965b] 
introduced a more systematic treatment for the case of a circular 
cylinder. Salvesen [ 1969] solved the problem for a hydrofoil (with 
Kutta condition and thus with circulation), and he compared his 
results with the data from experiments which he conducted. In the 
earlier studies of such problems , the approach was usually an itera¬ 
tive one in which the body boundary condition was first satisfied, 
then an additional term was added to the solution so that the free- 
surface condition would be satisfied; the latter would cause the body 
boundary condition to be violated, and so another term would have to 
be added to correct that error, but then there would again be an error 
in the free-surface condition. And so on. The free-surface con¬ 
dition that was satisfied once during each cycle was generally the 
conventional linearized condition. Thus, if the procedure converged, 
one obtained a solution which exactly satisfied the body boundary 
condition and the linearized free-surface condition. The contribution 
of Tuck seems to have been in systematizing the procedure in terms 
of a small parameter varying inversely with depth of the body and in 
pointing out that a consistent iteration scheme Involves using the 
exact free-surface conditions as a starting point. Then, as the 
boundary condition on the body is corrected at each stage, so also is 
the free-surface condition made more and more nearly exact. 

Tuck concluded, in fact, that it was more important to Include 
nonlinear, free-surface effects than to Improve the satisfaction of the 
body boundary condition if one were most interested in certain free- 
surface phenomena, e.g. , predicting wave resistance and near¬ 
surface lift. Salvesen agreed with this conclusion only on the con¬ 
dition that the body speed be not too large. At fairly high speed, 
his results indicated that precision in satisfying the body boundary 
condition was just as important as precision in satisfying the free- 
surface condition. Figure (5-6) is taken from Salvesen's paper; it 
shows the theoretical wave resistance of a particular body as a 
function of (depth) Froude number, the resistance being calculated 
by three different approximations: 1) linearized free-surface 
theory, 2) theory in which the free-surface condition is satisfied to 
second order, and 3) theory in which both the free-surface condition 
and the body boundary condition are satisfied to second order. The 
differences are quite apparent. 

■iM I 
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(From Solvcsan (1969)) 

F'8' <5'6K S:?"“'“1 ^ave-Resistanct 
curves for e = t/b = 0.30. r e 

one case -- of 4u^ntity, and yet thaf- 18 Pre~ 
01 same ^ , Laai: oiiference icj Mar7;ry cn"e iiseif- “¿salo, 

Salve sen defines his sm^ii „ 
small parameter as follows: 

es t/b, 
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Salvesen expands the complex potential in a ,, , , 
in two alternate ways: P n n a series which he groups 

F(z) =[Uz +Fb0] +[Ff| +Fb|] + .. . 

= Uz +[Fbo+Ff ] +[Fb + Ff ] + 

(5-3) 

(5-4) 

rnSfon^dT^rg^pInginirsî fs ^ 

.h». ft"rd£Sorm“iThL.%fr;:a8rurta'h- d Salvese''points 

Thus, in (5-3), we must determine J F ^ U^iforrm incident stream. 

Next, Salvesen assumes that Fi. )a r>/^\ í r 

body. The two terms sn ) a a 0 1 °'e' f r away from the 

He {F¿o + F/( + i/cFb + i/cF. } = on y = b (5-5) 

Îcr.hê„%l{UsLSeXÂ1St“S?”edF;“be —‘»e sue- 

‘L™,i"“'„eSdso’.hï ,nwh:„i.SS 

tL^UVZZÍ Zll'ZX’âll fi: free“1“, Pr°P'^- 

.tte“" .Sa“ '» P™-d' » cot:c?Äeaf„eaarW 

It is in this last step that the Tuck-Salvesen approach HifiWo 

0?e^ ÏLn7hVe0fUS treatrentS °f SUChproblems- If Fb, is really 
order f the fre^surface condition ought to be satisfied to that 

coídition^^F • * Can ShOWn that thlS lmPlies the following 
f2‘ 

Re {F¿( + F; + i/cFb| + i/cFf } 

= Im {F" + 
b0 + Ft| + iKFio+ iKFù} - (Vzu) I F¿ + f; f. (5-6) 
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The right-hand side of this equation takes account of the nonlinearity 
of the free-surface conditions , since obviously it involves just the 
potential function from the previous cycle of the iteration, r), is the 
free-surface elevation from the previous approximation; it is given 
by: 

M*) = * (U/g) Re {F¿0+ F^}, 

with the right-hand side evaluated on y = b. One might try to cut 
corners in (5-6) in either of two ways, namely, 1) Ignore the right- 
hand side by setting it equal to zero, 2) Drop the terms Involving 
Fb| on the left-hand side. The first is equivalent to retaining just 
alinear free-surface condition. The second is equivalent to neglect¬ 
ing the effect of the second-order body correction at the free surface; 
this is the "inconsistent" second-order theory to which Fig. (5-6) 

Apparently, Salvesen did not prove one important step in his 
development, namely, his claim that Fbg is 0(1) near the body 
and 0(e) far away from the body. In fact, with his definition of 
e - t/b, it appears that the statement is wrong. The potential Fb 
represents just a thickness effect, since it is the solution of the ° 
problem of a symmetrical body in a uniform stream. Although the 
body can be replaced by a distribution of sources, the disturbance 
will appear from far away to have been caused by a dipole, and 
so it must have the form: Fbg~ C/z. If the body were a circular 
cylinder, we could evaluate C: C = Ut , where t is the radius of 
the cylinder. The complex fluid velocity on the îtqq surface caused 
by the body is, in the first approximation, - C/z*= 0(e2), since 
z = X + ib on the level of the undisturbed free surface. This con¬ 
clusion contradicts Salvesen's assumption that the free-surface 
disturbance is 0(e). but perhaps it does not matter. At this point, 
the results would presumably be just the same if he had defined: 
ç = (t/b) . (The argument above for a circular cylinder agrees 
with Tuck's conclusions.) 

When the first free-surface correction is found, namely, 
Fft » its effect in the neighborhood of the body is not diminished by 
an order of magnitude, since at least one part of Ffj involves an 
exponential decay with depth, the exponent being /f(y - M. Near the 
body, y « 0, and so the exponential-decay factor is e , and it has 
been assumed that Kb is 0(1). (See Salvesen's paper. ) 

2 
Since is 0(ç ) near the body, the order of magnitude 

of the next correction term, Fb|, must be the same. This time, 
however, the nature of the body disturbance is quite different from 
a dipole disturbance. The effective Incident flow corresponding to 
Ffi is not a uniform stream, and so the presence of a sharp trailing 
edge on the body requires that a Kutta condition be imposed, and 
then a circulation flow occurs. From far away, it appears that Fb| 
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is caused by a combination of a vortex and a dipole. If the strengths 
of the two apparent singularities were comparable, the vortex 
behavior would dominate the dipole behavior far away, and the 
induced velocity would diminish in proportion to l/z, rather than 
1/z , which was the case for the dipole. Thus, Fb| would be 0(63) 
near the free surface. In the absence of a sharp trailing edge which 
can cause the formation of a vortex flow, the corresponding Fm 
would be 0(e*). This matter remains to be resolved. 

There are other interesting aspects to this problem. One 
relates to the interpretation of the small parameter, e = t/b. In 
defining such a dimensionless perturbation parameter, one nor- 
mally assumes that the smallness of e can be realized physically 
either by letting t be extremely small or by letting b be very 
large. In the present problem, this choice is not really available 
to us. The reason is that there is another length scale in the prob¬ 
lem, namely, l//c = U /g, and this length scale appear0 generally 
in combination with the dimension b. It has been ass' I that 
Kb = 0(1) as e -► 0. Therefore, if we want to consir 3 problem 
of a body which is more and more deeply submerged, —► oo), 
then we must also restrict our attention to higher and higher speeds. 
This is awkward. 

Finally, one more important aspect must be mentioned. The 
relation2between wave number , k, and forward speed, U, namely, 
K = g/U , is based on linearized free-surface theory. In general, 
if one seeks to find the nature of nonlinear waves which can propa¬ 
gate without change of form, the wave length of those waves is not 
related to their speed in this simple fashion. To be sure, the 
relationship is approximately correct if the waves are not terribly 
big in amplitude, and so one might expect that the wave length or 
the wavenumber can be expressed as an asymptotic series in e 

K0 + K\ + Kg + 

with Kq = g/U . This can indeed be done, but it turns out to be 
much more convenient to assume that K is precisely given and then 
to find the value of forward speed that corresponds to that wave 
number. Thus, one expands the forward speed, U, into an asymptotic 
expans ion: 

U ~ Uq + U| + U2 + . . . . 

This procedure is discussed by Wehausen and Laitone [ I960] , and 
Salvesen uses it in his hydrofoil problem. I was able to omit mention 
of it in writing Eqs. (5-5) and (5-6) because it turns out that U| = 0, 
and so the effect of this speed shift (or period shift) does not enter 
the problem until the third approximation is being sought. However, 
this is a classic example of the kind of expansion described in 
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experiment » i- r t nifw c I 

EROUDE NUMBER -0,79,£.1/b.0.30 

(FROM SALVESEN (1969)) 

Fig- (5-7). Third-Order Effect 
on Wave Length 

the fîlud appr°fxi°^Hon Tould notfbr 3 Ta.riation ?i e¡ther « or U 
miTntit T great difficulty in prediain^'v ^ mfinity- and so one ' 
quanti independa explicitly on L wave^heTgS that 

clearly thf^haig;7^1^^611 ^ Salvesen Í 1969] . It shoWs very 
solution. In fart u „ icngtn that arises in thP , ry 

l-ngth is practically fhTcnly thlrf’ 'h"' lhe changc oTwlve 
speaks well for SalvesenVÍaperite^'taúelt^J'11» 

5’4- at Low Spe.a 

height co^npùiaticfnfTÎ 5~8 ’ fr°m Salvesen [ 1969) I,eaults Presented 
first-, second °anH fnM ^ay that sho^« the relat ’ P. entS the wave' 
expheased hy^th'e b“' *h' 

H ~ H, + H2 + h3> where HfHl = o(H.) as 0. 
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Flg. (^-8). nr,t-. Second*, and Third- 
Order Wave Heigh«, at Low 
Speed»■ 

lüre^ÄrVe^ä: “ Th- the 
j! --- w* me ion , 
ttgure ahowa the three ratio. w /iu ^ ., • -- .... 
«hat I» , each curve show« the* relâfi ' for n»l,2,J( 
height of one oí the ilrat three te l° lh* W4V« 
Aa apeed decrease, (toward the rlTht h.oH **ve^‘«h« «penalon 
aecond-order part come, to domine uíTu!! í, 0/Kthe n*ure>* !he 
then the third-order part dominate, thi r, li"Çar*îh!ory P*rt- *nd 
likely that the fourth-order term wr hIh T*1 tW°’ 1 tecm* tjolte 
extended, then the fifth-, , or^r ^ ^ ^ 

more properly, t/b^where^b^^th0"^* j0ndilion *h*t t (or, 
Froude number la ,Imply a oaran ^ b°dy .deP,hJ l» very arnall; Hi 

unliormiy valid w'lh r«.p«ct numb*"*0Ti >• -c 
Fig. (5-8) really »ay,, Fr<,udc number. That i. 3)i that 

In the expanaion of the i o I u Ho n "n c.^rThr Uc '*lrPady bepn "’entione 
assumed that the lowe.t-order aporoiîî^H •Ur,,te* “ h*» been 
stream term, Ux¡ .1) other teîm. ^ ‘‘ J.U,it 'hv ^rm. 
must be very small compared to ^1, tejl °! ^ Potenti^ 
we consider the limit procea» U - 0 fv' And h * * r'on»en.e If 
been lucky: it could hive tu"ed out thatch. Ü7C', ** m‘*hf have 
approached aero more rapidly than U V Per‘urb*“°» 

have here a genuine -ingJiar ^e'^rbïûon problem. ^ SO ** 

*;<h expcriment,, 

' cxPerlmonti «cording drcr.n.m, ôf tod'y'.p.'."““^"'' 
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frliT* iUW’ö#* •f* fondKlon* «xcepi íorw*rd «pitad «re Identical 
tn all «Mperimenie. We «hall dUcuae what happen« when WU — 0 " 
tUf *1*,. «náer.tand by the limit operation that we ere p.,.lng 
ÍIüV* ,h* oí experimenta toward the limit caae In which 
there 1« no forward epeed at all. tn each experiment. U la a 
cone tant. 

n , ** ft ,7..0, e*rUlnJr 411 nuid motion to vanlah. 
But we would like to know to what extent the velocity field vanlahea 
In proportion to U (that U, what part la O(U)), what part vanlahea 
more rapidly than U (that la, what part la o(U}), and what part, 
If any. vanlahea leea rapidly than U. 

In an Iftflnlle fluid, the velocity everywhere la exactly pro- 
ÜÍTÍ kÜ* !1? tk! v*,oci,Y «PProachea teroi It drop« 
h !íí ! / * * circ“l*tlen around the body, and It drop« 

off like i/r If there le no circulation. But in both caaea the 
conatant of proportionality la Ofü). No matter how dlatant our 
U*!!! o ob,*r''4,lon 14 from ,hp body, Ike velocity la 0<U) a* 

At very low «peed, one expecta that gravity will force the 
tree aurface to remain plane. The conatant-preaaure condition will 
be violated to the extent that the magnitude of the fluid velocity on 
that plane la not quite conatant, but the error in aatlalying the dy¬ 
namic condition will be proportional to the aquare of the fluid 
veimrlty magnitude. The kinematic condition wTTTbe aatlafled In a 
trivial manner. Accordingly, It eeeme quite reaaonable to aaaume 
that the tree.aurface diaturbance la 0(U*) aa U — 0, and ao the 
velocity potential In the Aral approximation la the a ame aa lithe 
free aurface were replaced by a rigid wall. Let the rigid-wall 
velocity potential be denoted by y). Clearly, It la true that: 

■ o<u>. 

Thla follow« by the «ame argumenta aa thoae ueed in the preceding 
paragraph. The more Important problem la to determine the order 
of magnitude of ( +(x,y) . éplx.ylj, where b(x,y) la the exact 
velocity potential for the caae of the body moving at apeed U under 
the free aurface. 

In order to be epeclflc now, let 4p(x,y) be the velocity 
potential In two dtmenalona which aatlaflea the condition«: 

0, on body; Ux| — 0, aa x - oo; '1^0 s 0 on y = 0. 

a 
Thla la the aame point that I belabored In the laat paragraph of 
Section 1,2, Again, t apologite to thoae to whom It la obvious. 
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The body is at rest in our reference frame. 

aurfaceprob^m'excent thïïv Sat,Í8fÍes a11 ^^ditions of the free- 

The latter coulTb^useV^f cfefine'the0^^^011 ^ the free surface- 
the free-surface disturbance is exprèssed'by ' ThUS ’ if 

n(x) ~ ti0(x) + il,(x) + ... . 

the dynamic free-surface boundary condition says that: 

11 (x) ~ T)o(x) H [U8- ^(X,0)] 
(5-7) 

“lÔc^’fUlÎwEîct“ nOW vIola,ed’ »ut ,» additional 
plausible that: 8 °(U * C" “"*« lh«- And so It appears 

<Mx.y) - <Mx*y) = o(u). (5-8) 

processX^1?-8,^.^™“^'-” *hi8 ““>-»1»- The limi, 

for«\Tp“?aítsh.‘wdayrf™orconsi8dS8b{Í“‘E 
sense that Salvesen did. However both t a u * sma11, ln the 
be large compared with the lenoth aad ^ are suPP°sed to 
that all dimensions must be ^ lmply this if we sta^ 

around ÍÂyta ^Äue'^Äi:’„,88 ,terTe“18' ?' ^ 

surfait Sí8*“"'?»- T1- »ody ein be quitetear " the“^«' " “ 

Õ<WCt'lL ifSfbT“"’ at ‘r* P8rt OÍ lh' Ä “theV““*^ 
such*an effect tncTuZed" ÄX™ Ó7,h 8U'Í8“’ “d 
which is supposed to be valid as U — 0. 4 * f the aPProximation 

two pos Tibletpp roaches1 'in the foUoíhígstb.e^Uonií ' C°",lder 
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gTlfc) + 2 [ ^X + $y] --i U = 0, on y = T|(x); (5-9) 

4Vlx - ♦y2 0. 

Ií = ». 

on y = T|(x); (5-10) 

on the body; (5-11) 

<Mx.y) - Ux — o, as X —-oo; (5-12) 

The rigid-wall potential, ^x.y), satisfies (5-11) and (5-12) too, 
but it does not satisfy the free-surface conditions, of course; 
instead, we have 

= 0, on y = 0. (5-13) 

Now we introduce one more potential function, the difference between 
the above two potentials: 

$(x,y) = <f>(x,y) - <^(x,y) . (5-14) 

It must satisfy the body boundary condition, of course, and it 
vanishes far upstream. On the free surface, which we now define as: 

y = 'n(x) = ti0(x) + H(x) , (5-15) 

where it¿(x) is defined as in (5-7), the new potential satisfies the 
two conditions: 

0 = gH(x) - I $0^.0) 

1 r ,2 
+ 2^ + ^+ 2+O^x + 2*0^ + ¢, + 4>y] |yl7)U) ; 

o = [no(x) + h'(x)][+0, + $xl lyS7?(x) - [ S +$y] ly,,(x) • 

(5-16) 

(5-17) 

These conditions are still exact. An obvious approach to 
solving for 4>(x,y) and H(x) is to re-express these conditions on 
y = T)(x) as conditions on+y = 0. Here I shall assume that this can 
be done in the usual way. Then it follows from the exact conditions 
"ï —— 

This is the crucial point which distinguishes this section from the 
next section. 
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that the following „e appropriate .Impllfloation.: 

® gH(x) + > on y = 0; 
(5-18) 

*> “ liw^ - no(x)*0>y on y = 0. (5-19) 

^,LX“ncHbeddll‘°n! Í' rlSh'-h*"'! 
I» fact, (5-1,, .atlafled by the «¿ partir ^ £i,I'd surfacE- 

■vGD a P® 
- \ dS P(S) 
^-00 8 - ^ ' 

where 

= X + iy, 

PU) . ^x)+0i(x,o,. (5-20, 

™53Î°ï0ïï.ftfrctÎe„ PpW ec.?Âr iS7à ï’8• ’ ““■“-IKI-vUl 
velocity Which 1, needed* to correct tie Tow oi the n,“d 
error Incurred by takln» thp fv** t ^ fl ld because °f the 
the potential function é5x v) to nJtrfaC,t at, y = while using 
is the same correction wh icVh t0 P^fscribe the velocity field. This 
with (5-8). Now we may observe8 ionnecti°n 

V*.y) - °(U|, It follow, that p(x) = ¿(Ú^'tZ; 2,oi a"d 

Iv# I = OiU3) as 0. (5-21) 

This is certainly a much stronger conclusion than (5-8)! 

* problem,lneyeegnfn ^ürllZtrlTl ^ ^ ^ S°lutÍOn of the 
the body boundary condition. HoweveT si’nce'hïexî ^°63 SfÍSÍy 
arises from a defect of a 1 ai > since the existence of i> 
it 1, difficult to Imagine that inTah41"8 the ireo-aurface conditions, 
nitude of i is n^^orrect^ above eatimate of the order of mag- 

Numerical procedures could read! 1,. 1-.0. 1 , 
solving problem, of the above ,£>e In fac? ¿iXT OUt , 
one algorithm which handles the oroblern of . tH M8 needed is 
the normal velocity component on a surTace distHbution of 
Plane rigid wall. The integral par, ,he' 
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lead to a non-zero normal velocity component on the body, and this 
would have to be offset by a flow which does not change the condition 
at the plane y = 0. Presumably, all higher-order approximations 
would be solutions of problems which are identical In form to this 

one. 

A variation on this approach has been discussed several 
times by Professor L. Landweber, although he has not published 
the work. He points out that the usual linearized free-surface 

condition, 

n + K. 
8x2 

= 0, on 0, where K = g/UZ, 

becomes the rigid-wall condition when U 0, and so one mlgM try 
an Iteration scheme in which <|> is expanded in a series, <|> ~ ^ . 
and the terms are obtained as the solutions in an Iteration scheme: 

= 0, $ 1 9 4>n-l 
K 9xz 

(for n > 1) on y = 0. 

In order to test the scheme, Professor Landweber proposed trying 
to obtain the potential function for a Havelock source in this way; this 
obviates the need to satisfy a body boundary condition, and the known 
potential for the source can be expanded in a series in terms of 1/ K. 

Neither of the above schemes appears very promising to me. 
Salvesen's findings about the singular low-speed behavior seem to 
condemn any approach which overlooks the pecuiiar nature of the 
free-surface problem at low speeds. The next section should make 
clear why I am pessimistic about these approaches. It should be 
obvious even now that the wave-like nature of the problems has been 
lost, but the difficulty is more serious than that. 

5.42. A Dual-Scale Expansion. According to linearized 
wave theory, the wave-like nature of a free surface disturbance 
loses its identity exponentially with depth. A disturbance created 
at the free surface is attenuated rapidly with depth, and a disturbance 
created at some depth causes a free-surface disturbance which de¬ 
creases with the depth of the cause. The depth effect is essentially 
proportional to e"*, where, as above, K = g/U and y is measured 
as positive in the upward direction. 

As U approaches zero, this depth-attenuation factor ap¬ 
proaches zero for any fixed y. In other words, theufree- 
effects are restricted to a thin layer which approaches zero thickness 
as U 0 We might say that the free-surface is separated from 
the main body of the fluid by this "boundary layer" in which there is 
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Sin3Ular ^neme in SUp Bÿdrodynamice 

«he ^Ik'ôiïhÂd”” "^oüreraL'fenJr'ith f condl“t>"» ‘"«e 
layers, we should expect the occi,^.« 1 í ,WÍth viscous boundary 
region and also some difficulty in sat^f6 .° derivatives Intíhls 
a face of the boundary layer. 7 1 Satisfyln« boundary conditions on 

much greater l^ne^irettbn^haTí °f COX1*ae’ the derivatives are 
us to stretch coordinates anlsotropiíanv^ /’ ^ faCt 
cesses of the method of matched ?. ^ , d apply the nmit pro¬ 
surface boundary layer, hole^et thUP? iC exPansion8* In the free- 
possible approach. From the linearst d°eS n0t aPPear to be a 
will be a wave motion with wa ^n.ear ^beory, we expect that there 

derivatives wUl be large in at^eist^wnd^î?1,6 0(UVg). Thus, 
layer -- in the directhfn normal to the la lnSÍde the b°undary 
parallel to the layer. C layer and ln one direction 

tl968])rídW^Ve«r.y«"Â'"° T““ a8° '*" Ogilvie 
Simply assumed that the first a™ ?1 Procedures. Rather, I 

(5-.4,, wo^d *' - defI"d I” 

®(x,y) = OIU5); i.lx.y), ¢^.,).0,^. 

4.40, th. .„iace deflectio„ functlon wouid be given by (5 |5)i 

H(x) a 0(uV H'(x, a Ofu2). 

components”w™iîd”bïdô(°*\rdaî 'hose'' j"st eo that the velocity 
Change, a quantity by 1/U?'l„ “II“a,Umed 'l1*' d.'.«»-.ntl,tio„ V 

cadlng up ,0 (5-21) Inílbutêd Suv ST.“““',' The “8“»™.. 
ity components, and the i/u2 efflc/of diff conJecture about veloc- 
just because the free-surface characíerilt^ ! ^ °n ^as chosen 
Important to note that the rißid-wLl nnti ^ ÍS U/*• 11 ls 
the solution, and these state^nt Potentlal, is stm part of 

differentiation do not apply to it. ^n^cf ° rderS °f magnitude and 
pletely known, and so it is not necessarv’to p88?1! that ls Com' 
effects of differentiation. necessary to conjecture about the 

panslon methíd[S, iVa^e^s^umedXat aí °f .multIPle-scale ex¬ 
can be represented as the sum of twn f aPProx^matI°n to the solution 

only on the length scale ¿;^píatX ^e í0H8, The flr8‘ depends 
second function depends nrt^-n ? th b dy ge°metry. The 
appropriate to U2/g, buMt also den0 ^f11®4118 measured on a scale 

thus on lengths typlc’al 0} the bodv H ^ the.fir8t funCtion and 
possible to keep clear when di« 7' ^0^ever. It seems to be 

with respect to each of the length'sclies are b6lng Carrled out 
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way: /o'uímaUenoúlrih" TÏ be de8c>'lbed ‘» the following 
many wave length, oí the eu'rface dfoturtãncè °tL*íÍ,°f 
turbance is caused bv thp Hnritr •#* * initial dis*- 

motion, and Its dimensions are^haC/acteristtÎÍSolfStheeb,,rdlgld'T^all,' 
causes a free-surface distnrha«^» ^ tl f the body* 14 
created. But these waves Ire verv waves are 
disturbance from the bodv aDDear*^ short' whereas the initiad 
in flow conditions when viewed on the scaled 3 sll8ht, ^"^^ormity 
length. The method is, in7act auite «C°”lpa1rable to the wave 
such as the W-K-B method. ’ q * similar to classical methods 

find that^the”approxfmat^ffree 14ste,d above are actually applied, we 
and ,5-19, mS<5-'8' 

gH(x) + $0,((^0)^),(^,1¾^)) “ 0; 

$y(x.ilo(x)) - $0)((x,O)H'(x) « p'(x)5 

(5-22) 

In^oth'condlUona re uTbe ívÂ/d on" ^ ^ * 
on y = 0. The reason is the same tVt V^ °n ^ = . rather than 
the near-field problem: lí we trTed i 8 In SeCti°n 3'2 ln 
^(x.rTo), say as follows: ‘‘ the U8Ual way to e*f>and 

^(x.Tio) = 4.(x,0) + Tiofyix.O) + i r¿$yy(x,0) + 

'order'oi ma'gnltude^cco/ding to" ^ rIgh,-h“d •«a ‘8 the .ame 

-10= OIU2), and, symbolically, w™L“‘7¾i°”,ó(l/yj•r‘1sCl,1”• 
expansion procedure is not useful. ' ^ ( /U ). So this 

the following?0 COnditIons above can be combined consistently into 

^’Tloix)) +f ^x.O^ix.r^x))* p'(x). {5.23) 

p?ou!m~?nih^^^ c°ndition for another 
pose that a pressure distribution ni \ i y of Sravlty waves, sup- 

The free-surface condition wouTd'bei^ ' 8 34 3 SPeed U‘ 

$y(x,0) +-|-4>xx(x,0) p'(x) , 
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Sxngular Perturbation Problems in Ship Hydrodynamics 

W P0,te?*lal f“ncti0n ^ the P'otlem. Replace U 
Z t0* ’,': ÏI 2^al stream speed," and evaluate the condition 
for Vfx^vf 'l th,tn í18 conditlon transforms into the condition found 
for ® x,y) in the low-speed problem. Thus, on a "local" scale 
(in which a typical length is U2/g), the free-¡urface condition is just 
a very ordinary condition; one cannot see that the stream velocity 

onaangsec8alSe gnhwLtngtthr ^ SUrfaCe' beCaUSe the cha^e °, o ®cale l.n whlch a typical measurement would be a body dimension- 
the change is very gradual. Also, the level of the undisturbeTfree 
surface appears to change gradually, as given by (5-7)- this chance 
also cannot be detected on the "local" scale. 7 ' change 

... „ It:,is now clear that the two length scales are quite distinct, 
cannot separate the fluid-filled region into distinct parts in each 

cr^ua/Vh117 °ne IT?* SCale needs t0 be considered. Rather, the 
Sr1, b^68 aPPear on the body-size scale appear to 
modify the short-length wave motion in the manner of a modulation. 

In trying to find a potential function which satisfies (5-33). 
I made a nonconformal mapping: 

satisfies a compHcated paTtl aí differentia7 eq uat’ioÍfn'te Jm^of x’ 
and y but the terms in the equation can be arranged according to 
their dependence on U, and it is found that the leading-order terms 
are simply the terms in the Laplacian, that is , 

i’y'y' ~ 0; 

all other terms are higher order. In this new coordinate system 
he free-surface condition, (5-33), is transformed too, but agai"’ 

the leading-order terms are just the same after the transformation 
(but expressed as functions of x' and y'). Furthermore, the 
boundary condition is then to be applied on y' a 0. Let us now 
drop the primes on the new variables, for convenience. Then the 
problem is as follows: Find a velocity potential, 4>(x,y), which 
satisfies the Laplace equation in two dimensions and the free- 
suriace condition: 

4*y(x,y) +| «(>ojx,0)$x)t(x,0) = p'(x), 

where 

PW = iTo(x)«j>ox(x,0). 

In addition the potential must satisfy a body boundary condition; 
this has not been carefully formulated yet, and, in any case, the 
only soiution thät has been produced so far Is one that satisfies 
the free-surface condition but not a body condition. There may be 
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some good justification (or rationalization) for proceeding this way, 

but it is really an open question. 

With such restrictions and reservations expressed, we can 
write down a "solution" of the above problem. Define: 

<j> 5 Re (yz)}; $(x,y) = Re{F(z)} ; 

k(z) = gL^. 

-2 

Note that: 

f¿(x) = <|»0x(x,0); k{x) = g[ ^„(x.O)] 

Then the solution is given by: 

|^- 1 ^ du k(u) F'(z) = -irj ds p'(s) \ 
nr» -00 

Hjp- exp [' 1 ^ du k(u^] 
•00 C 

The l integral is a contour integral starting at x = - oo, located 
entirely in the lower half-space. It should pass above the location 
of the singularity in k(z). This solution represents no disturbance 
at the upstream infinity, as one would expect. 

Far downstream, this solution can be approximated: 

F'(z) “ Zte'1'“ C ds p"(s) exp f"iKs - iÇ du[k(u) - k]J , 
V'-QQ S 

where K = g/U2. Then, from (5-22), we obtain the wave shape far 

aft of the body: 

n00 
. \ ds p"(s) sin[ /((x - s) + K(s)] , H(x) 

g J. 

where 
pO) 

K(s) = J du [ k(u) - k] 

Calculation of the wave resistance is then very simple in principle 
(ín factice, it is a very tedious calculation.) Note that the exprès 
slon for the wave shape downstream does not require knowledge o 
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Singuïar Perturbation Problems in Ship Hydrodynamics 

re airwave bit’Í> ’ lî^ ÍS ’}hf surface disturbance far away is a 
rigÍd wLVnroblem TM^ SÍZe depend 0rÜy °n the elution of the 
vicinity of ike bod^' ^ U6 OÍ ^ WaV6 disturba^e in the 

carefullv bv b6 u®eful1’ 1 am sure> to formulate this problem 
carefully by the method of multi-scale expansions. The aonroach 
descHbed by Ogilvie [ 1968] is very heuristic and‘leaves Zcb ^e 
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THEORY ANO OBSERVATIONS ON THE CSE OF 
A /MATHEMATICAL MODEL FOR SHIP MANEUVERING 

IN DEEP AND CONFINED WATERS 

NÜ« H. Norrbln 
Statina Skappapten/ningaanatalt 

Sweden 

ABSTRACT 

Thi* paper «ummariaea an experimental and analytical 
•tudy of ahlp maneuvering, with «pedal emphaul« on 
the uae oí a research-purpoae nimulator for evaluating 
the behaviour of large tanker« In deep water aa well «« 
In harbour entrance* and canal*. In an Introductory 
Section «orne new result* from full-scale measure¬ 
ments and simulator «tudles are given to Illustrate the 
demands put on a mathematical model in the two ex¬ 
treme applications: course-keeping In deep water and 
manoeuvring In a canal bend. 

Well-known derivations of rigid body dynamics and 
homogeneous flow solutions for forces In the Ideal case 
arc Included to form skeleton of the mathematical 
model. Separate equations handle helm and engine 
controls. Coefficients and parameters are made non- 
dimensional In a new system— here designated the 
"bis" system as different from the SNAMC "prime* 
system generally used — In which the units for ms*■, 
length and time, respectively, are given by the mas* 
of the '»hip, m, the length, L, and the time required 
for travelling one ship length at a speed corresponding 
to V" - FftL n I , A/g. 

Seml-emplrtcal methods are suggested for estimates 
of the force and mamau derivatives. Special considér¬ 
ation Is given to added mass and rudder forces In view 
of their predominant Importance to course-keeping 
behaviours the rudder forces measured on a scale 
model are corrocted for differences In wake and screw 
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N*? n8 beior* application to /,,11 
Non-linear contributions to h.íiw'*0*1® PredlctionB 
in second crder derivative. . , 0^'8 are ‘nclude, 
flow concept. p»vatlvea, relevant to the cross' 

flned - wat eV cas°e 'na‘hematllcal model to the co 

hy Newman .néoLrTtf^ th' ^reticJrlsZTs 
•Pedal experiments. 'ln !^e nvidl?found from 
mer/ercnees appearing Inforces inH^ hydrody^amic 

th® Ppc«ence of port anH .If u d moments due to 
strictions and bottom den,k ,i tarboard side wall re 
by additional term. contalîiiÎlS^008 are rePpe8ented 
^lth re*Pect to three sultablc8™^^ °rder derlvatlves 
n “ ^ ñ » T,, . 0,t3 gement parameters! 
metrical forces are cónÍlíLíla ^ 8 Cajlal the asym^ 
« ffect» from port (p) and sUrb^H/“f ÍO the aúded 
tb*n a* »he effect of a„ off rd (a) walls pather 
Primarily r, t. a mea.ure ;í?J,trelInf Poaltlon; 
m*a«ure of the bank spacing. P°8^on. T¡ a 

ot rnSÍ^^ÍaU^bílneA61' applled ior evaluation 
tanker In the VBD labora, ^°r * Swedlsh 98 000 tdw 

• hallow water. Obllo,,». * formed in "deep8 and 

*• -,1=- du,L,c„ &rv1.?„SM,u w'"a1*« ™ 
t»nk. and In two Sue.-t^î 8 ve,rtIcaJ wall in the deep 

ot shallow water was ^peciX?^0'18* The effe^ i M,-b,g dau fol £, rge tn ÍOrce n°n- 
?” addcd ma*« and inertia are ?ll°mWaU eifect8 

,0 Fuji no, í:.Vcc0,Ltíy?,T “d 

tzv-'z r£T"-jr *■* ,.■> -à .p,rü 
«•«At*. Analogue^miuteTdT* Wlth ^-caletrÏÏ 
•how the effects of shall^ are «íver> to 
manoeuvre, and upon cour.J ^ Waler Upon definite 
Ing auto-pU„t trlmknob H*nt hlUXSiL transIents foUow- 

•re included to Illustrate auf^Dif1?'11^ ? f'w results 
ot the tanker In free water 7?,°' po8,t‘°n control 

wall, and in ,híÜl0W Water- between 
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Ship Maneuvering in Deep and Confined Waters 

Ship Maneuvering in Deep and Confined Waters 

i. introduction 

On Course-Keeping in Deep Water 

native «afts1 í ^ °C?anS ls some 3800 m- Small 
oceans. New shins are h illt between nearby islands in these 
containers or bulk carcoes at a fn,Sport ev®f lar«er quantities of 
between the continents8 "atnimum ^ financial expense 

to control^ mammot^f/1^ °bvious that the helmsman shall be able 

were initiated at SSPA in autumn iVéT^toV1'aimuiator studies 

a. automatic control ^rÂe^^ênTuTl^ ^ “ W'“ 

=‘S“SS"££~.3t=2S. 
play proved to make course keeping more easv thP ^I . f dÍS' 
even more essential to the auto puft y’ Slgnal was 

type trials6 8S?^°r flndln8s were confirmed in subsequent proto- 

sim^rcpelÄrdisÄ^reVri^ 
pseudo random white noise of predetermined rnnt mo 

."ràlgL'tàZgbyÇse^smÂ^ 

i“aJetlrM°ioCu"eda.°'Sl °‘ shIP “ »sU a‘ »« the mod.'l 
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Full »eilt singlt-ehannti r.cord ( H.lmim.n; Author) 
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time may“”« »â/JS^wUhto?/«, r,0O,t1°f,1'"*th- «„man r«spo„,« 
of Fig. 2 d«m0netrat« riíut. of ‘imSTt.'S Th' 
prototype already referred tn = sim^lated steering of the tanker 

four different sizes. (Note that r ^11 aS °f her fictlve models of 
TM ®m^llest "model" is in 8cale ÏÏoO run antI-clockwIae with time.) 
SIcfh should permit free-sailing tests iJal' ^ a length of 3- 1 m. 
The two helmsmen, which each Lf 1 Avérai in-door faculties 
steering philosophy and who were alW^d 1° r,epresent one kind of 
each case, both failed to maintain wed a short training period in 
smaller "models. " malntain the proper control of the two 

by the effectivetfn>ertia^ byC°Ur8e is governed mainly 
force available, and by the time^hi«0^? n? moment* bV the ruddery 
cal model intended for studies of manu^or 3 applied- A mathemati- 
therefore be quite simóle- In on .ma”ual or automatic steering mav 
include proper corrections for the^arge the test basIn model it may 
in rudder force data. (Cf. Section VII 1 * °ften Posent 

real-timeÍgsUtreai3ghrterunningh,e re^orded^111^01' ^6>-curves from 
mathematical model, but it al^n nn . V use of the "complete" 
linear model as well as with a modef^M ruSUltS fr0m tests wIth a 
dynamic contributions than those In látL0ntaIn8 no other hydro¬ 

forces. No major differences were exnerHeadde,d,lnertIas and ^er 
models of increasing simplicity. Perienced in using these three 

On Manoeuvring In Confined Wate rs 

are no t ^malf compl’r rf 6 3 and drlft velocities, which 

l^r^1 °f considerable complexity^ aTsIî ^emands a mathemati- 

nor^^tdtÄ 
wm be ”"e •“—<< .u^,r,0ÂVÆePd.Pw«r's 

voyagesTshtLTaíd8terdmCte^\hpo0r?sabehiS d tíT" 180° m* But ocean 
inner continental shelves Addfn .b hInd the shallow waters of the 
by ma„y of ,he Imports «« 

Straits of Dover and Malacca, the Panamaer ’ 8Uch as the 
now closed. ' the Manama Canal, and the Suez Canal 

limited by bottom T/docan^ha HÍPS haVe alwayS been 
canal locks. With few exceotion! tu harboors, and of canals and 

keel clearances ~ by ship owners or bv^^fplaced on under- 
chosen solely with a view to prevent a^ ~ have been 

canal bed erooid“- T»“‘ -b sue'Maf 
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Helmsman W 
Helmsman N 

Fig. 2. Simulator tests of manual steering of an unstable 230 000 
tdw tanker In real and speeded up time . Yaw rate versus 
helm angle. (Numbers along curves indicate minutes in 

real time. ) 
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"Complete" model: 

Model using inertia and rudder forces only: 

Helmsman N Helmsman W 

Fig. 3. Simulator tests of manual steering of an unstable 230 000 
tdw tanker using alternative mathematical models. Yaw 
rate versus helm angle. 
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a nominal blockage ratio of 1:4 for ships in northbound transit at a 
maximum speed of 13 kilometres per hour, corresponding to a mean 
back-flow velocity of some 1.5 m/s. 

Today new limits are imposed by the depths of ocean sills as 
well as by the depths and widths of open sea port approaches. The 
potential dangers of a large oil tanker navigating in such waters 
under, say, the Influence of an unexpected change of cross current 
must not be denied. Whatever nautical experience the master or 
pilot may possess , he is still in need of actual data and of means to 
convert this Information to helm and engine orders. Automatic 
systems on a predictor basis are likely to appear in a near future, [ 3] . 

In the planning for dredged entrance channels and harbour 
turning basins the maneuvering properties of the ships must no longer 
be overlooked. The upper drawing of Fig. 4, reproduced from 
Ref. [ 4] , shows part of the plan view and a typical section of the 
buoyed channel for 200 000 tdw tankers unloading at a new oil ter¬ 
minal. Before entering the 90° starboard turn the speed is brought 
down to less than 2 knots, and the tanker then proceeds under slow 
acceleration by own power. Braking tugs are used on quarters, 
and forward tugs assist in the S-bend. The lower diagram of Fig. 4 
is taken from SSPA records of yaw rates in the passage; the initial 
curvature corresponds to r1 = 0.175, and the maximum rate of 
change of angular velocity is of the order of 0.0005 °/s2 at a forward 
speed of 2.3 knots. 

In general the lateral forces on the ship will all Increase as 
water depth turns smellier, and the dynamical stability is also likely 
to Increase. From extensive measurements by Fujino it appears, 
however, that the picture is not so simple, and that for some ships 
there may be a "dangerous” range of depth-to-draught ratios, in which 
the dynamic stability gets lost, [5], 

Recent model tests Indicate that the large-value non-linearities, 
such as the lateral cross-flow drag at high values of drift, do Increase 
even more than the linear contributions governing the Inherent stability 
conditions. Whereas these non-linearities may be omitted in the 
mathematical model of the ship in a canal the bank effects here intro¬ 
duce destabilizing forces, that are again highly non-linear. 

The effects of well-known forces experienced by a ship sailing 
parallel to the bank of a canal are clearly apparent in the record from 
a Suez Canal transit here reproduced in Fig. 5, [ 6] . (The positions 
in the canal as well as the width between beach lines were derived 
from triangulation by use of two simple sighting instruments designed 
for the purpose.) Upon approach to the Km 57 bend the ship is slightly 
to port of the canal centre line. The pilot orders port helm for two 
minutes, by which the ship is pushed away from the near bank and the 
desired port turn is also Initiated. Back on centre line the ship 
mainly turns with the canal. In spite of a starboard checking rudder 
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Part of y»w rate record in transit 

Fig. 4. Example of yaw rates recorded on 210 000 tdw tanker In 
harbour approach. 
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she again moves closer to the port bank, and again port rudder has 
to be applied, etc. 

a il S°. lar studies of ships moving in canals have been 
dealing with straight running. It is believed that the mathematical 
model which is presented here may also be extended to the case of 
slowly widening and bending canals. 

II. SYMBOLS AND UNITS, ETC. 

When applicable the symbols and abbreviations here used 
have been chosen in accordance with the ITTC recommendations 
L7j. Some new symbols are introduced to define the position and’ 
orientation of a ship in confined waters. (See also Section X.) 

tho Th 8?fte,m°f axesJixed in sPace is 0oXvy0z0> that fixed in 
the body or ship is Oxyz. The point of reference 0 lies at distance 
Lpp/2 forward of A.P. of the ship. (Cf. Fig. 6 and Section IV.) 

0o 

Xo 

Fig. 6. Inertia frame and body axes , etc. 
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wise =.a«r”«í¿7cb"¿‘"t8‘v“1” units un ss othcn- 
non-dimenstonal forms TThhih !''d trelati"',s »fu expressed in 
■prime" system us7ly' adopted 7 ° 7 »»■'-ätoensioLlslng 
system, further pressedï see“;» 1.7" "»‘s'' 

to «lme.A ParUal^tTerivatíves^of forces°r d“ -P's- 
», .»• Proper suhseript aÏÂ'the 

table I 

Ah 

■°rm 
B 

CD 

D 
«-► 
F 

Fnh 

FnL 

K 

kq 
Kt 

Channel section area 

Section area of hull lc 

Added mass. I = 1,2,3; j = 1,2,3 M 

Il II 1 = 4,5,6; j = 4,5,6 ML2 

1 = j = 4,5,6 ML 

fndfefliüaSS Ín horiz°ntal oscill. . - *** juntai os( 
m a free surface, neglecting 
gravity 6 K 

Added mass in horizontal oscill 
unbounded fluid ’ 

Total proj. area of rudder 

Moveable proj. area of rudder 

Beam of hull 

Cross-flow drag coeff. , 3-dim. 

Diameter of propeller 

Force vector 

Froude number on depth 

Froude number on length 

Moment of inertia 

Mass product of inertia 

Propeller advance coefficient 

Rolling moment about x axis 

Propeller torque coeff. 

Propeller thrust coeff. 

M 

M 

L2 

L 

L 

2 

L 

MLT' 

ML 

ML2 

Fnh = V/v^ïï 

Fn|_ = V/vÇl = V" 

I" = k2 zz 

2m-2 ML T 
J = u(l - w)/nD 

K0 = - QP/pn2D5 

Kt= T7pn2D4 

818 
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Symbol Definition 
Physical 

Dimension 

L 

M 

M 

N 

Q 

R 

R 

T 
TP 

rp 
A L 

u 
V 

Ve 

V, 

w 
w 
x,y,: 

yr 
yRR 

a 

a 

aA 
b 

c 

co 

g 

g" 

h 

h 

ki, 

Length of hull 

Pitching moment about y axis 

Moment vector 

Yawing moment about z axis 

Torque about propeller shaft 

Turning radius 

Resistance 

Hull draught 

Propeller thrust 

Kinetic energy of liquid 

Total flow velocity 

Velocity of origin of body axes 

Speed of water current 

Ship speed over ground 

Channel width in general 

Bank spacing, half of 

Hydrodynamic forces along body 
axes 

Y-force due to rudder 

Y-force on rudder proper 

Depth to top of rudder 

Water surface elevation 

Slope of lift coefficient curve 

Height of rudder 

Flow velocity past rudder 

Cross-flow drag coeff. , 2-dlm. 

Gap between rudder and hull 

Gravity vector 

Depth of water 

Vector in general 

Coefficients of accession to 
inertia 

L 

MLZT'2 

ML2T'e 

ML2T‘2 

ml2t‘2 

-Z 

-z 

L 

MLT 

L 

MLT 
Z -2 

ML T 

LT 

LT‘ 

LT 

LT 

L 

L 

-I 

-I 

MLT 

MLT 

MLT 

L 

L 

LT' 

LT*2 

L 

Undef. 

-2 

-2 

Remarks 

L = Lpp 

N" = N/mgL 

Qt = turbine 
torque 

r' = L/R 

X(R) = - R 

V" = V/VgL 

2W = W, - Wp 
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Symbol Definition 
Physical 

Dimension 
Remarks 

Coefficients of accession to 
inertia 

zz 
m 

P 

q 
P*q.r 
r_ ome 

Corr. factor for rudder Inflow 

Corr. factor for rudder Inflow 

Non-dim. radius of gyration 

Mass of body 

Number of revs, of prop, in 
unit time 

Pressure in general 

Stagnation pressure 

Angular velocity components 

Max. radius of equivalent body 

s 

s 

t 

t 

u,v, w 

w 

x,y,z 

Wo' 

A 

V 

vn 
A 

Ar 
Ar 

$ 

of revolution 

Lateral thrust factor 

Slnkage 

Time 

Thrust deduction factor 

Components of V along body 
axes 

Wake fraction 

Orthogonal coordinates of a right- 
handed system of body axes 

Orthogonal coordinates of a right- 
handed system of space axes 
(inertia frame) 

Weight displacement 

Volume displacement 

Volume displacement at rest 

Aspect ratio 

Aspect ratio of rudder 

Do for rudder + plane wall 
image 

Velocity potential 

820 

M 

-,-1 

„-I 

L 

T 

LT 

MLT 

L3 

-2 

1 = 4,5,6 

Cf. eq. (7.4) 

m " = 1 

T" 

ML1 T*2 

ml'1 t'2 

Cf. Section VII 

t" = t/VL/g 

A = ppgVo = mg 

Normal approx. 
V = Vo 

Ar = be/Ar 

Ar = 2Ar 
lV $" = $/lV¡l 
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a 

ß 

Y 

Y 

6 

ó* 

6, 

€ 

i 

n 

ñ 

% 
e 

p 
(T 

<P 

* 

* 

U 

u1 

Angle oí attack 

Angle of drift 

Frequency parameter 

Coeff. of heading error term 
In proportional rudder control 

Rudder angle (deflection) 

Rudder angle ordered by auto 
pilot 

"Effective'1 rudder angle 

Phase lead angle 

Restricted water depth parameter - 

Shlp-to-bank distance parameter 

Bank spacing parameter 

Port bank distance parameter 

Starboard bank distance parameter - 
Angle of pitch 

Body mass density ratio 

Mass density of water 

Coeff. of rate of change of 
heading term in proportional 
rudder control 

Prismatic coefficient 

Angle of roll or heel 

Angle of yaw, or heading error 

Circular frequency 

Reduced frequency 

Ml/ 

tan p ■ . v/u 

Y * Vw/g a u"w" 

"Rudder ratio" 

6» a 6 for v»r»0 

i « T/(h - T) 

n a % 

ïï * n, - n„ 
np= L/{ Wp - y8) 

\ * L/(Wt . y0) 

p e m/pV0, For 
norm, surface 
ships g, a i 

"Rate (time) 
constant" 

w" » JT/g 
w' a wL/V <s w*/u" 
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Ul. NON - DIMENSIONA LIZ ING BY USE OF THE "BIS" SYSTEM 

Th* uto of non-diinentioniU coefficient« (a accepted In all 
branch»« of «hip theory, and when motion «tudlea are conaldered 
•v«n th« variable« of the equation« are often normalized. 

Within the field of maneuvering a unit fo* time 1« usually the 
time taken by u body to cover the di»tance of it* own length, and the 
unit for velocity then la mo«t naturally given by the momentary 
•peed V * (u + v*)1 . if the body does not move forward thla defi¬ 
nition I« la«« attractive. In the ayatem juat mentioned — which Is 
recommended by ITTC and which in moat case« Is fully adequate — 
symbole for non-dlmenatonal quantities usually are indicated by a 
prime. 

The unit for length almost always In chosen equal to the length 
L of the body, and for the common surface «hip more specified 
aet IS 

The unit for mass la mostly taken as the mass of a certain 
volume of the liquid, defined in terms of the body or ship geometry. 
In the "prime" ayatem already referred to reference volumes are, 
say, jL [ 8j or j L T ( 9) , the latter one used with the reference 
area LT suggested by the wing analogy. 

In case of bodies, which are supported mainly by buoyancy 
lift, the main hull contour displacement 70 is perhaps the most 
natural reference volume: if body mass then is m = p • p • V0 the 
non-dimensional masa la equal to p. (When treating heavy aircraft 
dynamics dauert choae ppv in place of pV for the mass unit, 
( iOJ.I In normal ship dynamics p = 1, whereas for heavy torpedoes 
p • 1.3 - l. 5, sayi the symbol p will be rejected In certain appli¬ 
cations. 

Here a consistent normalization of motion modes and forces 
will be made in a new ayatem, the "bis" system, where the unit for 
mas« la m a ppV0, the unit for length is L and the unit for linear 
acceleration la equal to g. the acceleration of gravity. From this 
the unit for time is VL/g, and it also follows the Table below: 
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TABLE II 

Unit for "bis" system "prlmen system 

mass (M) 

length (L) 

time (T) 

linear velocity 

linear acceleration 

angular velocity 

angular acceleration 

force 

moment 

HPV0 P T 3 
IL 

L 

7ï-/g 

fgL 

g 

7gÃ 
g/L 

t^PgVo 

P-PgVoL 

L 

L/V 

V 

V2/L 

V/L 

L 

L/V 

V 

v7l 

V/L 

v7lz vV 

£v2l3 

f v2lt 

^ v2l2t 

Reference area 
2V0 LT 

It will be noted that, in the system suggested, a non-dimen¬ 
sional velocity is given by the corresponding Froude number, and 
that all forces are related to the displacement gravity load 
A = ppgx7!, of the body. (Cf. quotients suchas R/A, "resistance 
per tons of displacement," used in other fields of applied naval 
architecture. ) 

It is customary to form a non-dimensional force coefficient 
by dividing by the product of a stagnation pressure (q = (p/2)V*) 
and a reference area, and of course the new system will not demand 
any different rules. In place of the velocity V, however, here is 
chosen that particular velocity which corresponds to FnL = i, l.e. 
the normalized stagnation pressure is q = (p/2)gL. The reference 
area then is seen to equal p(2V0/L). 

IV. KINEMATICS IN FIXED AND MOVING SYSTEMS 

The two orthogonal systems of axes here used, O0x0y0z0 
fixed in space — the Inertia frame — and Oxyz fixed in the body, 
are shown in Figs. 6 and 7. The orientation of the body axes may be 
derived, from an original identification with the inertia frame, by 
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4h0e ¿h ♦ 5?-«hat 

^ab» * 

/ 

Fig. 7. Graphical^dediiftlon of the absolute time derivative of a 
vector OP( = h defined In the moving body system 

the successive rotations through the angle of yaw, 4/, the angle of 
pitch, 0, and the angle of roll, <J>, respectively, defined around the 
body axes z, y, and x In their progressively changed positions. 

In_j cerfaln moment of time the^relajlon between the space 
vector 0oP = xoP and radius vector OP = xp, Invariant In the body 
system. Is given by 

X0P- xoO= AxP 

where the orthogonal transformation matrix reads 

(4.1) 

m 

1 
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cos 4>cos 0 -siii^c°8^ ^co8 8® 8^n<^ sin8in^ + cos 41 sin6 cos 

A- sln4jco80 cos ip COS++ sln^ sin 0 sin+ -cos 4> sln^+sin4j sin 0 cos 

-sin0 cos 0 sln<^ cosOcos^ 

(4.2) 

When applied in opposite direction the transformation is 

5 A Kp - ^ = A(^>P ‘ *<*) (4.3) 

where A is the transposed matrix, in which rows and columns 
appear in interchanged positions. 

In particular, note that the gravity vector g0 = ga^ will be 
given by the column vector 

g = A 

- g • sin 0 

g cos 0 sin ^ 

g cos 0 cos ^ 

(4.4) 

in the moving system. 

From Fig. 7 will be sejyi how the absolute (total) value of the 
time derivative of any vector h in the bodv system may be calcu¬ 
lated from the relation 

hob. 3 h + ß Xh (4.5) 

The angular velocity vector (2 may now be expressed in 
terms o_¿the Euleriajj angj(¿s and their time derivatives: For the 
vector h there is h0 = Ah and 

h K = A(Ah + Ah) = h + AAh 
GD9 

(4.6) 

and so the column vector (2 is obtained from the corresponding anti¬ 
symmetric angular velocity matrix for the product A A, 
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0 = 

$ - sin 0 
• . 
ijj cos 6 sin ¢ + 0 cos 4 
• • 

4* cos 0 cos ¢-0 sin ¢ 

(4.7) 

are 
The angular velocity components resolved in the inertia frame 

¢ = p + q sin ¢ tan 0 + r cos ¢ tan 0 
♦ 
0 = q cos ¢ - r sin 4 

4 = r cos ¢ sec 0 + q sin ¢ sec 0 

(4.8) 

In the special case of motion in a horizontal plane in absence 
of rolling and pitching it is 4/ = r. 

In Section VIII an expression will be required for the absolute 
acceleration of a mass element dm at Ration P(x,y,z) in a body 
moving through the water with velocity V. From (4.5) then 

Vp = 

0 -r q 

r 0 -p 

-q p 0 

u -ry +qz 

v +rx -pz 

w -qx +py 

(4.9) 

and by a repeated application of the transformation formula 

u - rv + qw - (q* + r2)x + (pq - r)y + (rp + q)z 

v - pw + ru - (rz + pz)y + (qr - p)z + (pq + r)x 

w - qu + pv - (pz + qe)z + (rp - q)x + (qr + p)y 

ob* (4.10) 

In the presence of a homogeneous steady current V0e a term 
AV0 is to be added to the right-hand member of Eq. (4.9). In 
practical applications this current may be assumed to take place 
in planes parallel to the horizontal, so that V is fully identified 
by V anc^ V • cesy to show that the column matrix for the 
acceleration in (4.10) will remain unchanged. To the surface ship 
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in horizontal maneuvers, this homogeneous current will only mean 
a steady shift of the path; alternatively, if a certain straight course 
is required heading shall compensate for the steady drift. The 
local finite current, on the other hand, generates varying outer 
disturbances and shall be handled by other means. 

V. FLOW PHENOMENA AND FORCES ON A SHIP IN FREE WATER 

Ideal-fluid Concepts 

As a source of reference for further discussions this Section 
recapitulates some of the characteristics of the flow past a ship in 
free or open water. 

When a double-body ship form - l.e. , a body which is sym¬ 
metrical about the xy-plane — moves forward in a large volume of 
ideal-fluid water the streamlines adjust themselves according to the 
laws of continuity. The shape of those streamlines remain the same 
at all speeds. The Increase of relative velocity past the wider part 
of the body corresponds to a back-flow or return flow of the water 
previously in rest. This disturbance in the potential flow pattern 
extends far into the fluid volume — a beam-width out from the side 
of the body the super-velocity still has a value, which is some 80 per 
cent of that just outside the body. 

From a resistance point of view the steady forward motion 
within this ideal homogeneous fluid may lack some realism. Accord¬ 
ing to the d'Alembert's Paradox the body will experience no resultant 
force. However, if the body is to be accelerated the kinetic energy 
of the fluid must be increased. This energy increase is manifested 
by a resistance, which for a given geometrical form is proportional 
to the mass of displaced fluid and the amount of acceleration, l.e. 
to the product of an "added mass" and the acceleration component in 
the direction considered. The resultant force is not necessarily 
orientated in the same direction. 

In the simple steady motion the total energy certainly will 
remain constant, but as the body moves forward through virgin fluid 
there takes place in each transverse section a repeated particle 
acceleration and transformation of energy. The Impuls pressure 
distribution thus generated will normally be unsymmetric, and so a 
free moment results on the body. This moment may be expressed 
by a combination of total-body added mass coefficients. 

In the general case of a complex motion in the ideal homo¬ 
geneous fluid all the forces and moments will then be available in 
terms of added masses and inertias, according to the theories 
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originated by Kirchhoff [11] and Lamb [ 12] . In spite of the fact that 
these forces will be modified by the presence of viscosity in the real 
fluid, and that new forces will also be generated by the viscous 
effects, these ideal results should be considered when formulating 
the mathematical model. 

If U is the velocity vector of the lacal fluid element the 
total kinetic energy is given by TL = (p/2) f ITdr, or in a potential 
flow generated by the Impuls pressure p4 

TL=-Sf 
8$ 
SK (5.1) 

The integration is to be extended over the total boundary, i.e. over 
the wetted surface of the body. Let the potential be written in 
linearized form as 

$ = ¢, u + $2v + $3w + $4p + $9q + $6r (5.2) 

with respect to the six component body velocities u¡. The six 
coefficients $¡ then are functions of the body geometry and of the 
position in relation to the body. 

The condition for fluid velocity - 0$/8n at the body boundary 
to equal the body normal velocity may be formulated by use of the 
directional cosines for the normal in the Oxyz-system, whereby 

2Tl= Í! AUu¡uJ 
id )d 

or 

2Tl = - X' u2 - Y4 V2 - ZÄw2 - 2Ywvw - 2X wu - 2X. uv 

- K^p + M^q - N. r2 - 2MJ, qr - 2^ rp - 2K^pq 

- 2(X^u + Y^v + Z^w)p - 2(X^u + Y^v + Z^w)q 

- 2(XfU + Yfv + Z- w)r 

(5.3) 

Here there are 21 different added masses (A¡j) or "accelera¬ 
tion derivatives." Force derivatives with respect to a linear accelera¬ 
tion are of dimension M, and moment derivatives with respect to an 
angular acceleration are of dimension ML2, as are the mass moments 
of inertia. Cross coupling derivatives such as Xi = - A|4 are of 
dimension ML. 
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If the body has a plane of symmetry there remain 12 different 
acceleration derivatives , and for a body of revolution generated 
around the x axis there are only the three derivatives AM, A?2 and 
A66 

The motion of the ideal liquid takes place in response to the 
force and moment expended by the moving solid. At any time this 
motion may be considered to have been generated Instantaneously 
from rest by the application of a certain Impuls wrench. The rate 
of change — cf.Eq. (4.5) — of the impulse wrench is equal to the 
force wrench searched for. Again, the work done by the impulse is 
equal to the increase of kinetic energy, and as shown by Milne- 
Thomson [ 13] the force and moment on the body may therefore be 
expressed in terms of the kinetic energy of the liquid, 

8V 9V 
(5.4) 

(The partial derivations shall be considered as gradient operators.) 
The complete formal expressions for the inertia forces in the ideal 
fluid have been derived from Eqs. (5.3) and (5.4) by Imlay [ 14] , and 
they are here given in Eq. (5.5). 

= X(¿ + Xw^ + u(l) + Xq^ + ZWW<1 + Z^2 + + XpP + 

- Y*vr - Y^rp - Y,rz - X*ur - Y*wr + Y*vq + Zj.pq - (Y^ - Zf)qr 

Yid = X.u + Yww + Y^q + Y4v + Y¿p + Y^r + X^vr - Ywvp + Xfr2 

+ (Xr Z')rp - ZjpZ - Xw(up - wr) + X^r - Zwwp - Z^pq + X^qr 
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*,d = V + V + V • xvwu + Xfuq " Y*w2 " (Y¿» " Zf)wq + MfqE 

+ Yf.v + K¿ + Kfr - (Y. - Z.)vr + Z.vp - m/ - K.rp + X-uv 

- (Y4 - Z^)vw - (Y. + Z^wr - Y-wp - X-ur + (Y. + Z^vq 

+ Kfpq - (M^ - Nfjqr + Y^v2 

Wjd= X^ù + wq) + Z.(w - uq) + M^q - XA(u2 - w2) - (Zw - X^wu 

+ Y.v + K^p + M.r + Y-vr - Y-vp - K.(p2 - r2) + (K^ - Nf)rp 

- Y*uv + X.vw - (X. + Z.)(up - wr) + (X¿ - Z'Hwp + ur) 

- Mfpq + K^qr 

Ñ.d = X.Ú + Zj.w + M-q + X.u2- + Ywwu - (X. - Y-)uq - Z. wq - K.q 

+ Y.v + Kfp + N.r - X.v2 - X.vr - (X¿, - Y. )vp + M-rp + Kàp2 

- (X¿ - Y.)uv - Xwvw + (X. + Y. )uP + Y. ur + Z.wp 

- (X. + Y.)vq - (K^ - M.)pq - K.qr 

(5.5) 

Forces In Horizontal Motions - General 

Especially, for a body which Is symmetrical with respect to 
its xz-plane and which Is moving In the extension of Its xy-plane, 

(5.6) 

there are 

= X.Û - Y,vr - V2 

Y(d = YyV + X¿ur + Yf r 

Ñid = Nj.r + (Y* - X¿)uv + Yf (v + ur) | + X4(u2 - v2) + Xf(u - vr) 

By careful application of sound reasoning it is suggested that terms 

+ X4(v - ur) + X^r 

+ Xa(u + vr) + X^r2 
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to the right of the bar may be dropped» Terms containing the coef¬ 
ficient Yf have been retained in view of the fore-and-aft unsymmetry 
present particularly in propelled bodies. 

The coefficients for u in X, for v in Y, and for r in N 
with signs reversed — are the most commonly well-known added 

masses and added moment of inertia respectively. These Inertia 
coefficients also appear in some of the cross-coupling terms. 

Lamb's "coefficients of accession to Inertia" relate added 
masses to the mass of the displaced volume V (kj¡ , i = i, 2, 3) and 
added moments of inertia to the proper moments of inertia of the 
sarne displaced volunie (k^ , i = 4, 5, 6). Lamb calculated k,,, 
k22= ^33 ai?^ ^35= ^66 *or sphereoid of any length-to-dlameter 
ratio, [ Í5J. For ellipsoids with three unequal axes the six different 
coefficients were derived by Gurewitsch and Rlemann; convenient 
graphs are included in Ref. [ 16] . For elongated bodies in general 
the total added inertias may be calculated from knowledge of two- 
dimensional section values by strip methods* applying the concept 
of an equivalent ellipsoid in correcting for three-dimensional end 
effects, (See further below.) 

Of special interest in Eq. (5.6) is the coefficient Y$ - 
in the "Munk moment," [ 17], (See also discussion in [ 18] .V) This 
free broaching moment in the stationary oblique translation within 
an ideal fluid defines the derivatives 

mh - _ ^22 ~ k|i Nri _ 2V ,, . 
1Nuv~ jj, » N¿_ (lc22 - kii) (5.7) 

(Cf. Table II.) The factor kgg- k|( may be looked upon as a three- 
dimensional correction factor. 

Due to energy losses in the viscous flow of a real fluid past 
a submerged body the potential flow picture breaks down in the 
afterbody. In oblique motion there appears a stabilizing viscous 
side force. So far no theory is available for the calculation of this 
force, but semi-empirical formulas give reasonable results for con¬ 
ventional bodies of revolution. Force measurements on a divided 
double-body model of a cargo ship form have demonstrated that some 
de-stabilizing force is still carried on the afterbody but that most of 
the moment is due to the side force on the forebody, predictable 
from low-aspect-ratio wing or slender body theories , [18]. 

Similar measurements on a divided body in a rotating arm 
shall be encouraged. Contrary to the case of stationary pure trans¬ 
lation the pure rotation in an ideal fluid involves non-zero axial and 
lateral forces. From Eq. (5.6) the side force is given by X’ ur, 
whereas the moment here is Y^ur. For bodies of revolution “the 
distribution of the lateral force may be calculated as shown by Munk 
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[ 17] whereas strip theory and two-dimensional added mass values 
may be used for other forms. The magnitude of Ideal side force as 
well as moment are small, however, and In a real fluid the viscous 
effects are dominating. 

There are reasons to believe that the main results of the 
theories for the deeply submerged body will also apply to the case of 
a surface ship moving In response to control actions at low or 
moderate forward speeds. Potential flow contribution to damping 
as well as Inertia forces depend on the added mass characteristics 
of the transverse sections of the hull, and as long as these character¬ 
istics are not seriously affected by the presence of the free surface 
the previous statement comes true. However, an elongated body 
performing lateral oscillations of finite frequencies will generate 
a standing wave system close to the body as well as progressive 
waves, by which energy Is dissipated. The hydrodynamic character¬ 
istics then are no longer functions of the geometry only. At a higher 
speed or In a seaway displacement and wave interference effects 
will further violate the simple image conditions. 

VI. CALCULATIONS AND ESTIMATES OF HULL FORCES 

On Added Mass In Sway and Added Inertia In Yaw 

A brief review will here be given of the efforts made to 
calculate the added mass and inertia of surface ships in lateral 
motions. Four facts will be in support of this approach: The added 
masses are mainly free from viscous effectsj the added masses 
appear together with rigid body masses in the equations of motions, 
and relative errors are reduced — this is especially true in the 
analytical expression for the dynamic stability lever, which involves 
only the small Xÿ the added masses are experimentally available 
only by use of non-stationary testing techniques , and in many places 
experimental data must therefore be supplemented with calculated 
values} the added masses are no unique functions of geometry only, 
and experiments must be designed to supply the values pertinent to 
the problems faced. 

The velocity potential for the two-dimensional flow past a 
section of a slender body must satisfy the normal velocity condition 
at the contour boundary as well as the kinematlcal condition for the 
relative depression velocity at the free constant-pressure surface. 
In case of horizontal as we^l as vertical oscillations this latter 
linearized conditions is a>2 + g(8i/8z) = 0 — cf. LambJ 12] — or, 
introduciivg the non-dimensional potential = $/LvgL and 
w" = uy/L/g, 

9$'t 

Sz" w $» (6.1) 
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For steady horizontal drift at moderate forward speeds one 

finds a similar condition 

8$" „2 
ïïi-" = 13 ■ L 

(6.2) 

which shall govern the local accelerations of the flow in the trans- 
verse plane penetrated by the moving bodyi [ 18]. 

As is seen from the two equations above the vertical velocities 
at the water surface are zero in the limit of zero frequency or zero 
drift, and negligible for w « Vg/L or ß Fnl_ « i. The water sur¬ 
face may therefore be treated as a rigid wall, in which the underwater 
hull and streamlines are mirrored, i.e. the image moves in phase 

with the hull. 

For high frequencies , where w » Vg/L, the condition at the 
free surface is ¢ = 0. The water particles move up and down normal 
to the surface, but no progressive waves are radiated. At the juncture 
of the horizontally oscillating submerged section contour and the free 
surface this condition may be realized by the added effect of an image 
contour, which moves in opposite phase. (Cf. Weinblum 119J .) The 
value of added mass in this case, "neglecting gravity, is smaller 
than the deeply submerged value by an amount equal to twice the 

image effect. 

Added masses A'H for two-dimensional forms oscillating 
laterally with very low frequencies in a free surface have been cal¬ 
culated by Grim [ 20] and by Landweber and Macagno [ 2iJ , using 
a LAURENT series with odd terms to transform the exterior of a 
symmetric contour into the exterior of a circle (TEODORSEN map¬ 
ping). By retaining the first three terms this transformation yields 
the well-known two-parameter LEWIS forms [ 22] ; other combina¬ 
tions of three terms have been studied by Prohaska in connection 
with the vertical vibrations of ships [ 23] . Two terms (and one single 
selectable parameter for the excentriclty) define the semi-elliptic 
contour as that special case with given draught, for which the added 
mass is a minimum. Landweber and Macagno also made calculations 
of the added masses AH in the high-frequency case. For the seml- 
elllptic contour A/A' = 4/irz, which result was first found by 
Lockwood-Taylor , [2¾] . 

A basic theory for the dependence of the hydrodynamic forces 
on finite frequencies was developed for the semi-submerged circular 
cylinder by Ursell, [ 25] . By use of a special set of non-orthogonal 
harmonic polynomials he found the velocity potential and stream 
function that satisfied the boundary conditions and represented a 
diverging wave train at infinity. Based upon similar principles 
Tasai extended the calculations of added masses (and damping 
forces) for two-dimensional LEWIS forms to include the total 
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practical range of swaying frequencies, [ 26]. His results are con¬ 
densed in a number of convenient tables and diagrams; the added 
mass values are seen to vary even outside the limit values cor¬ 
responding to zero and infinite frequencies. 

An application of a generalized mapping function technique 
to ship section forms of arbitrary shape was performed by Porter, 
who studied the pressure distribution and forces on heaving cylinders, 
f 27l. A wav of solving the two-dimensional problem without resort 
to conformal mapping was developed by Frank, who represented the 
velocity potential by a distribution of wave sources over the sub¬ 
merged part of the contour, now defined by a finite number of off- 
sets. The varying source strength was determined from an integral 
equation based on the kinematlcal boundary condition 

Vugts [ 29] contributed an extensive experimental and theo¬ 
retical study of the hydrodynamic coefficients for pure and couple 
swaying, heaving and rolling cylinders, based on the previous works 
by Ursell, Porter and de Jong, [ 30] . The coefficients of the 
THEODORSEN mapping function were defined by a least square lit 
of the geometry of the cylinder contours to off-sets in 31 points. Of 
special interest is the good agreement obtained between experiments and 
the theoretical predictions for the added mass of a typical midship 
section; the oscillation experiments do not cover the very low fre¬ 
quencies , however. Although small the difference in the calculations 
for the actual section fit and for an approximate LEWIS form was 
mainly confirmed by the experiments. 

When used with the strip method the Integrated section contri¬ 
butions to total added mass and inertia shall be reduced by the 
appropriate "longitudinal inertia factors" for three-dimensional 
effects. Following Lewis these factors are usually taken equal to 
those derived for the prolate sphereoid in a similar mode of motion. 
This is only an engineering artifice, and it is certainly not correct, 
sav, in case of accelerations in yaw for normal hull forms; thus 
these correction factors are mostly omitted in hydrodynamic studies 

of sufficiently slender bodies. 

In a discussion of the strip theory Tuck [ 31] Included the 
results of all the added mass and damping coefficients of a surface 
ship at zero forward speed, calculated by use of Frank s close-fit 
method with 15 off-se s for each of 23 stations. The total added 
ma» (AÏÏ and mom.n« of Inertia (aJJ of a Serle, 60 Bloek . 70 form 
are here* represented by full lines in Fig. 8. Tuck also examined the 
forward speed corrections to be applied to the integrated values; 
thus, especially, he put A66= A°6 + (iT/u2) * *¡z> or in present 
notation 
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Fig. 8. Total added mass and added moment of Inertia for a 
Series 60 Block .70 form according to theory and 
experiments. 

(Note that the strip theory is not valid for small "reduced frequencies 
w' = u"/u", where it shall be replaced by a slender body theory, [ 3l].) 
The dotted curves in the diagrams indicate predictions for 
FnL = u" = 0. 20. 

The Series 60 Block .70 form was subjected to oscillator 
experiments in lateral modes at several frequencies and forward 
speeds by van Leeuwen, [ 3 2] . The results for the naked hull with 
rudder at FnL = 0.20 are compared with the predictions from strip 
theory In Fig. 8., The experimental values fall well below these 
predictions in the entire range of frequencies, especially in case 
of the moments in yaw. Although it is inherent In the testing tech¬ 
nique that very low frequencies could not be included van Leeuwens 
results do cover the critical range around to" • u" = 1/4. 

Consider a surface body in steady motion along the centre¬ 
line between two parallel walls width W apart! the diverging bow 
wave displays an angle to the centreline. If the motion Is steady 
the reflected wave will pass aft of the body only If W/L > tgß, 
regardless of the speed. For the simple travelling pressure point 
the cusp line angle is equal to 19947 according to the Kelvin theory, 
whereas slightly different values may be observed for real ship 
forms. In case the body is oscillating (as in the simple example may 
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be niuiU-atcd by « pul**Ung »ourc«) additional waves will form, 

T» ,«h 7L°Ve.r !*h *Jpeed 8^w* M low ir*S««nclea these waves move 
* .1 ' h*n ^ l>fdV* 40 «he diverging wave front folds forvard, 

f"“ *l * C*r,Uln ÍOte"*r?% *Pecd there i» now a new requirement on 
V <orT,ld î M°Kd ¿nth*rí«renc®- For combinations of u> and 
l . o£o ^ W^lCh V * w u- - 0.272, the opening angle equals 
Î*alt°i« s\no W th * íurlher ro<*uction In speed It rapidly reduces 
JÎa JL *’,Y, *PPro*che* */<• This latter condition is assocl- 
ated with a specU.l phenomenon of critical wave damping, as has 
been shown from theory as well as experiments by Brard, [ 33] . 

ran.. o/íehíLw** WUh ! ,Mp ÍOTm ln Uteral ««dilations a narrow 
dUíMh L rÜ.í7qJUenJ * may be ldentlfled by a change of the 
Silin K h<S hydr«dyn*mlc forces, which was clearly demon¬ 
strated by van Leeuwen's ana,!ysls. 

j Whereas there is a discrepancy In the absolute values of 

l í ,heTnnUrl,-0mP/fed ‘n Fi** 8 thi* d‘«crepancy could be reduced 
ih«rtH.tPS * ‘'•’•ee;d‘menslonal corrector; more elaborate 
theories of forward speed effect* for slender bodies at low fre- 
quencles may urlher improve the comparison. In the main, there- 

u ,h,‘ ,h‘ v*rl*''°"0' *'id'd m“' ”“h 

Added Masses in Maneuvering Applications 

The performance problems set up In maneuvering studies 
usually Involve a short-time prediction of a transient response to a 
control action, and it Is therefore convenient to be In the position 
to use ordinary non-llnear differential equations with constant coef¬ 
ficients. This, of course, Is In contrast to the linearized spectrum 
approach to the statistical seakeeping problem, which will more 
readily accept frequency-dependent coefficients. (Frequency- or 

í,^ñhZCndtenwl,4l * 7,ult J( v,,COU8 Phenomena will be touched 
upon below.) Which values of added mass are now to be used In the 
equations for the manoeuvring .hip? It shall be noted that It Is hard 
to Judge from the behaviour of a free-sailing ship or ship model which 
Is the correct answer unless special motions are carefully examined. 

U was early suggested by Weinblum that the low added mass 
values of the high-frequency approximation should be adequate for use 
In dealing w th problem* of directional stability, where starting con- 
dltlon* should «‘mul*«e Impulsive motion, ( 19]. Weinblum also drew 
attention to Ref, ( 34] , In which Havelock proved that the high- 
frequency value* appeared In horizontal translations with uniform 
acceleration, regardless of the Initial velocity. 

The Impulsive pressures experienced on the tapered bow and 
stern portions of a slender body In oblique translation may be calcu- 
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lated from the sectional area curve slope and the added mass 
characteristics of the transverse sections, as shown by Munk [ 17] 
and experimentally verified for the submerged doublebody ship form 
in Ref. [ 18] . The good agreement obtained between total yawing 
moments measured on this form and its surface ship geosim suggests 
that the deeply submerged added mass values should apply in this 
case. It is observed, however, that the water particles in way of a 
certain section station here are not repeatedly accelerated from 
rest as is the case when considering the cylindrical part of the hull. 
Again, if the principle of superposition of damping and inertia com¬ 
ponents to the total hydrodynamic force shall be retained for general 
motions it shall be necessary to adopt the zero-frequency added 
mass values . 

An illustrative discussion of added masses with special 
application to the design and analysis of experiments is due to 
Motora in Ref. [35] . For the determination of the added mass in 
sway to be used in the aperiodic equations of a maneuvering ship he 
recorded the direction of the acceleration imparted to a model by a 
force suddenly applied in a certain direction. The added mass then 
could be found from a reasonable estimate of virtual mass in surge. 
To obtain the added moment of inertia in yaw he recorded the angular 
acceleration following the impact by a pendulum, the momentum 
loss of which was also known. He suggested that the Inertia values 
so derived should correspond to the Impact or high-frequency type, 
but the results included from tests with a series of ship models indi¬ 
cate sway mass values of the same order as those valid for the deeply 
submerged case, and moments of inertia in yaw of magnitudes cor¬ 
responding to finite frequency surface values. 

In a recent paper Motora and co-authors [36] compare the 
results of new experiments and calculations of an "equivalent" 
added mass for a ship model in a sway motion, which is Initiated 
by a ramp- or step-form impact input of finite duration. The calcu¬ 
lations are based on Tasal's section values in the frequency domain 
[ 26] , and in agreement with the experiments they confirm that the 
value of the equivalent added mass defined is a function of impact 
duration. (Cf. Fig. 9.) If the duration is infinitely small only the 
equivalent added mass is equal to its high-frequency value, and it 
becomes larger the longer the duration. Thus these results help to 
explain the earlier findings for added masses as well as for added 
moments of inertia, for which latter the impact technique then used 
did generate rather short input impulses. 

For application to normal ship maneuvers it may now seem 
justified to use the low-frequency or deeply submerged values. 

In recent years it has been widely accepted that the accelera¬ 
tion derivatives for a surface ship model may be evaluated from a set 
of "pla.nar-motion-mechanism" tests in pure sway or yaw. The 
acceleration amplitudes are varied by an adjustment of oscillator 
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amplitudes, »hereas ^e frequency Is kept as low r^ning length 

permits, [32]. * Wic>;,red“Ce,f«£rí/a“ V= »"• u" = 0.1 In 

The'derWathfes^so^obtained tly he expected to be somewhat 

hlgher’than the zero-frequency values. 

ThV™st^ dimensional LEWIS forms “ d dence on principal geo- 
of finite lengths indicate ^e main p ^ length.to. 
metrical characteristics. P . tuose 0f a semi-elliptic 
draught ratios the eH ipso id va ues^ . Moreover, it will be seen 
cylinder, (tt/2)pt . ' 4. ¿ eral -Y1' likewise is rather 

ilAX for íírsVcSfiiíeSr/oÍrespo'ndln, to midship 

sections. 

,. m’iÄisrÄÄSHBss?-“ B/T, as may be seen from Fig. 10. In a mor g 
on 
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a) 

SSSãSHíâsss-íí,.. 
Yv (B/T)ç>, by which the intercer-t« ^ f, gIven by the Product 

then corresponds to the initmtely Fong c'yn'dc"'1"1 ” ' <2T/L' = ‘ 

dlagr,mIni„‘1"d“0tnhfelíeS“PeS„°“ “f values the 
oot^611 as a number of oscillator* SUiltS by M°tora just referred to 
SSPA In ,he HyA PMM. The “ „eS ch'’ ' ^ tests r"„ fo? 
dimensional corrector is clearW = character of the three- 

diagram may be used for approalmatresTimati“..8"88“"“ tha' the 

Non-dimensional added moments Inertia, 1„ terma of 
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product - NJ1 • B/T, are displayed in Fig. 10b, compiling experiment 
data from different sources. Here the two-dimensional LEWIS-form 
values for high as well as low frequencies are Indicated by off-sets 
to the left in the diagram. Motora's i960 Impact test data, which 
appear on a level close to the high-frequency prediction, do not 
indicate any definite dependence on draught-to-length ratio. These 
data as well as low-frequency PMM data clearly indicate an Increase 
of moment of inertia with reduced fullness. This trend may be 
expected in view of the deep and narrow bow and stern sections in 
fine forms — certainly the deeply-submerged ellipsoid is not repre¬ 
sentative for a ship form in yaw acceleration. 

Semi-Empirical Relations for the Four Basic Stability Derivatives 

Among the large number of first-order force and moment 
derivatives, that are used to describe the linearized hydrodynamics 
of the moving hull, only four appear in the analytical criterion for 
inherent dynamic stability with fixed controls. These are the stability 
derivatives proper, Yuv, Nuv, Yur and Nur. From simple analogy 
with the zero-aspect-ratio wing theory of Jones [37] they turn out 

as in Table III. 

TABLE III 

Non-dim. system: 

Ref. area: 

Symbol and analogy 
value : 

"Prime" 

YJ 

N'. = - 

Y1 A r 

’ Y/3 

% 

n; 

LT 

JT 

2 

TT 
4 

jrr 
4 

IT 

8 

2T 
L 

2T 
T 

2T 
L 

2T 
L 

L 

-’•(?)* 

-Hr)' 

f ' (If 
- f • (ff 

"Bis " 

2V/L 

Y" x uv 

N" uv 

Y" 1 ur 

N. 

— 

2 

TT 

4 

JT 

4 

JT 

8 

LT* 

-V 
LT2 
"V" 

LTg 

V 

LT2 

V 

Although this analogy has been verified in principle for a submerged 
double-body model as well as for the surface model at small Froude 
numbers [ 18] , it shall not be expected to furnish an adequate nu¬ 
merical prediction. It suffices to point on the alternative relation 
for a closed body in a perfect fluid, given by Eq. (5.7), and to the 
fact that at least some negative lift is still carried on the run of 
normal ship-form hull. The bow lift or transverse force is not 
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coneenírâteci to the leading edge as in case of a rectangular wing but 
distributed over the forebody as an effect of fullness and section 
shape. Certain modifications to the hull form are known to affect 
the force derivatives, but do not appear in the simple form 
parameters of Table III. The fin effect of screw and rudder con- 
tributes to the derivatives even in the case of vanishing aspect ratio 
oí the hull. 

From the analysis of a large number of derivatives it has 
been found that the scatter of data in a plot of, say, Y" versus the 
parameter Lf /V is somewhat smaller than the scatter of Y1 on 
base of aspect ratio 2T/L. v 

The diagrams Fig. 11-12 include stability derivative data 
for normal ship form models with normal-sized rudders propelled 
at medium Froude numbers on even keels. The dotted lines shown 
correspond to the simple wing analogy. The full lines are derived 
by linear regression and upon the tentative assumption of a - 1:2 
relation of moment and force intercepts at zero aspect ratio. Their 
equations are given as 

Fig. 11. Stiffness force and moment derivative data with mean 
regression line. (Cubic fit to experimental results.) 
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Fig. 12. Rotary force and moment derivative data with mean 
regression line. (Cubic fit to experimental results.) 

Yyy =- 2.66 - 0.04 = - 1.69 • - 0.04 

N¿'v= - 1.01 -^-2 + 0.02 = - 1.28 • J • + 0.02 

Y" ur 
LT2 it T T2 

1.02%!- - 0.18 = 1.29 ~ • =4- 
V 4 V 0.18 

(6.4) 

N¿'r= - 0.74 -y- LT2 , ir LT¡ 
+ 0.09 = - 1.88 ÏÏ * “V“ + 0.09 

and of the data 100, 86, 67 and 79 per cent respectively, appear 
within ± 20 per cent of these mean values. 

It is obvious that these expressions should be regarded as 
guide values only, but they may also be used for comparative studies, 
especially when steering on a straight course is of main concern. 
In this latter case it is more important to have a proper knowledge 
of the control derivatives, whereas Eq. (6.4) may furnish adequate 
estimates for the hull forces; they again shall be corrected for 
alternative control arrangement alternatives, however. 
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in the next Section an approximate method will be given for 
finding the control derivatives of a rudder of conventional design. 

i i6«^0**16**03* case °f an isolated rudder experiencing the nomi- 
nal inflow at the stern of the ship it would be easy to calculate its 
contribution to the total "hull + rudder amidship" derivatives from 
a knowiedge of its control effectiveness. In general the Interference 
etiects in behind condition are much more complicated, and in fact 
the contribution searched for mostly is quite small. Even more, 
then, the effect of a modification to rudder and control derivatives 
comes out as a very small change in the stability derivatives. The 
diagram in Fig. 13 is compiled to correlate the effects of such modi¬ 
fications as reported by Eda and Crane [38] and documented in test 
results available at SSPA. Obviously new experiments are required. 

* uni.Rjfe^enC,e Sha11 here also be ßiven to the methods of estimating 
stability derivatives for surface ships as suggested and successfully 
tested by Jacobs, [39]. y 

The aerodynamic wing analogy should only be valid for small 
Froude numbers as the limit solution of a general lifting surface 
integral equation. The effects of finite Froude numbers on the 
lateral stability derivatives of a thin ship of small draught-to-length 
ratio was studied by Hu, [ 40] . According to Hu the force and 
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=35Sä“S;;":™“S“ss-“ 
with various experiments is pr^seííerb^Newmln^uÍ] thN( the0ry 
also points out that the free surface may give Hse to 1 LvÍÍ 
force as a thickness effect, and indicated solut¿n°to that p^m 

moment, which ar^ th^morïconsist^nt^a fi^/68111^ í°r the drlft 
the speed dependence is given by SÍStent' a first approximation to 

(N") » = (N" ) 
' uv'u ' Nuv'o + A N" ¿ III uuv ,u' (6.5) 

where i N" ~ i í ÍM" 1 
will be someV 20 per c^t'iowe^th^8^ zero-Peed values 
of Fig. 11. P 1 l0Wer than those indicated by the mean line 

Small-V,Ine jWUnarltte, 

w„ co„?iudÂtWÍohifah,etÍ.ef'‘Ur£aC! ‘'í'“" 0n add'd ■»*»»=» It 
motions were to be regarded re<iuen(” es involved in manoeuvring 

effects should be ejected to aone"’."^ Íhatufr!qU,enCy (or memo ry) 
Phenomena were ofTore conce^n“ hlSt°rieS Were VÍSC0US 

submarine6, tS^rn'S^nf^^V8 furnished by ^e pitching 
behind the bow planes but in ca^e % operating in the downwash 

momentum and the impulsive pressures Thf fn H cross-flow 
experienced bv the hull in f ^ . * The forces and moments 

aertved by Brard in case of a special descriptive model, [ 42] . 

differential eSoníltU‘aLrÏm deíl“d ^ "dI"»'’' 
dependent coef«rlenf0 i! . g r U1 Possible to use frequency 

is likely to bf Slcte'd te .Táfe ,«atr1>r dependence 
to design eaperlmmS for stí t ¿ 11 ls th”«fore advisable 

which are 1„P„ enough ,é ;rS„dnctíl«7^â.e0rva?„tre'yre,I“<í',C‘'iS ’ 

“ <1^ r^ô£”£F‘ 
' 1 43J • Th.s indicates that the high-frequency part of a normal 
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deS^ct8 !S?Sf:».n, U 0b5CU"d by ,he 

The steady motion of a full form may also be accompanied 
y non-steady separation and shedding of vortices, which will 

nol,t= captive measurement», or It will modify thê force fldd and 
be a cause of unpredictable scale effects. In Ref. [«f Nomoto 

Sös-Ä^r=rÄÄSSer 
taking place on fÄe ^ «mMn^rb^^^rc^fflcSr"“ 

ôr àrímosth'“: “*ios • »This s ^ ^ 
dfoeram fo Fia la ‘“r“! *" yaW ‘““"■’‘"S ™>™"l - .»e 
linegaritî-di^ni!* ^ ^ “ and 30 indirectly for the small-raíe non- 
tesfo wSh thes7hdll“ yaw- rate-ver sus -helm diagram from spiral 

Unsymmetrical separation may also take place on a hull 
moving along a straight line with a small angle of drift If transverse 
the^eT1 m?ment both are mainly linear functions of angle of drift 
the centre of pressure will remain in a forward position onlv 

diminui17 aft. with onset of viscous crossflow. A'three- 
hifl rna separation, which suddenly develops on one side of the 
hull, may explain the strange behaviour of the centre-of-pressure 

in Fig 14b 1?er TÍ1 t!lted by B°ttomley [ 45] , here reproduced 
similar trends W W m°dern hulls s«nietimes indicate 

, iully. Possible to approximate these effects by a small- 
value non-Unearity term in the mathematical model, which may 
then be used, say, for the prediction of a ship behaviour which is 
extremeiy sensitive to winds of varying directions [46]; if the sepa- 

however.P ^ ^ °nly thlS Predlctlon ^ meaningless, 

Large-Value Non-Linearities in Lateral Forces 

a™ d The Predominant non-linearities present in the lateral forces 
* ^n07lSC0US cross-ilow resistances, and they can only be 

established by experimental procedures. It will be assumed that 
the empinca! relationships may be expressed by finite polynomUls 
derived by curve-fitting, and that these same relationships therefore 
also may be fully defined by a finite number of terms in the Taylor 
expansions. This convention motivates the use of appropriate 7 

c™cients!Ct0rS ln fr0nt °f the derlvatlves within the hydrodynamic 

force -cr°-mT TU^e at]™aris.hlP towing iUs possible to define a Y- 
D T * v > the sign of which is governed by |y|/v. Thus 

Y(v2, |v|/v) = IY 
vv(lvl/v) 

V2 Iv 
-. ..cu I y I , 

l/v, or, for convenience, ¿Y 
Ivlv V V. 
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») Nomoto's explanation of effect of 3-dim. stern flow separation 
I Above ) 

b) Lateral force centre of pressure acc. to measurements 

by Baker and Bottomley ( Below ) 

Fig. 14. Small-value non-linearities in full form model 
testing. 
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Note that che factor \ has been retained, which should not have been 
the case If v and |v| had been treated as Independent variables; 

this, however, would only have been a formal artifice with no 

physical significance. 

In straight-line oblique motion the non-dimensional lateral 
force is Y" (u", v", v"z, |v"|/v"), or, in accepted writing 

Y"(u",v") = YyV u"v" + ÍY"|v |v" |v" (6.6) 

where |Y." = - CD • LZT/2V. It is obvious that here two terms 
are added/which each one corresponds to a certain flow field. In 
the discussion of the "linear" term it was pointed out that the ideal 
flow picture would remain valid over the bow portion of the hull, 
and in view of the finite time required for the development of the 
viscous cross-flow these conditions may still be true at larger 
angles of drift. (Cf. non-linear theories for the lift of zero-aspect- 

ratio wings. ) 

Fig. 15. Calculated and measured lateral forces on a cargo liner 
model in oblique towing. 
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An experimental evidence of the practical validity of the 
superposition in Eq. (6.6) is illustrated in Fig. Í5, based on force 
measurements at SSPA on a 3.55 m model of a cargo liner with 
rudder and bilge keels, [47] . In this diagram the quotient 
Y/(p/2)VZLT =(2V/L2T)Y"/(u"2 + v"2) is plotted versus ß = - arctg v/u, 
and the viscous cross-flow component is seen to dominate the entire 
range of 10°< ß < 90°. 

The variation of cross-flow drag coefficients with drifting 
speed and hull geometry has also been discussed in several papers 
by Thieme and by other authors, [48, 49, 50], In lack of experimental 
results for a special case in the non-linear range it shall be possible 
to use these results; a typical value of cross-flow drag of a tanker 
form is Cp = 0.7, The contribution of cross-flow drag to moment- 
due-to-sway may then be ignored. 

In a similar way it is possible to approximate the non-linear 
rotary derivatives. If cD (> C0) is the mean section drag coefficient 
the moment-due-to-yaw derivative is ^N|lr|r = - (cD/32) • (L2T/2V), 
except for a three-dimensional correction factor. (For rough esti¬ 
mates jN'|lr|r = 0.03 • ÍY|"V|V , which is verified from experiments.) 
The force-yaw velocity derivative now is zero to this approximation. 
Additional effects of skegs and screws contribute to non-zero values 

of ^N!vlv as wel1 as ¿Yirlr * 

In the general case the local cross-flow resistance is pro¬ 
portional to |v + xr |(v + xr), and from symmetry relations the 
coupling terms are seen to include the derivatives Y|V|r and Yvjr| , 
etc. (In the cubic fits more often used these couplings are repre¬ 
sented by terms in Y vvr and Yvrr , etc. — cf. Abkowitz , [5i].) 

The contribution to Y due to the combined sway and yaw may 
be written Y|V|V | v | v(r/v) + Y|v|r |r|r(v/r), i.e., Y|V|r may be looked 
upon as the derivative of Y|V|V with respect to yaw velocity r per 
unit v, etc. 

Forward Speed and Resistance 

The principal effects of viscous and free-surface phenomena 
on the resistance to steady forward motion are well-known to naval 
architects. The correlations of wavemaking and separation with ship 
geometry are still less satisfactory. However, alternative methods 
are available for full scale powering predictions from standard series 
or project model data. As will be further discussed in next Section 
the adequate synthesis should supply information not only on shaft 
horse power and r.p.m. but also on hull resistance and wake 
fraction. Speed trial data therefore require an analysis such as 
proposed and used by Lindgren; in case of very large and slow- 
running ships it may be necessary to include scale effects also in 
the open-water characteristics of the screw propeller, [ 52] . 
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A simple guide to ship resistance values may be obtained 
from the mean line of Fig. 16 , which summarizes the results of a 
limited number of SSPA trial trip data in terms of the total specific 
resistance R/A - - [X ]y Q on basis of Froude number FnL or 
u . (A similar plot of total resistance in lbs to displacement in 
long tons versus Taylor speed-length quotient, based on model data 
was published by Saunders, [ 53] ) The mean line also reflects the ’ 

KhTf tKend 0f <he. ^es i-8*’3'1'106' speed-dependen ce for the individual 
ships in the proximities of their design speeds. 

Fig. 16. Specific resistance figures as evaluated from ship trial 
data at SSPA. 
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A Imple guide lo *htp re.l.unce vàlue» may be oùîeined 
from the mean line oí Fig. 16 , which aummarites the rrault« of a 

r«Üîlncr»M''.' TA,“1*1 trV“‘ ¡V’r™ »' 'O' •«i -p«,nc 
/a * .a ^ . * jjfiffo on °í Froude number F*i or 

i * ^ •lJnüar reistttánce in Ibi to diipUcc ment in 
wa«8 DU hfl hVTKU%Tayi0r ',P?et,-1,cn8th quotient, baaed on model data, 
genera 1 1 ^ ™*n ,lne al#° the 
fhin. lnt ( , "e*,,,*,?c**«Peed.dependence for the Individual 
• hip» In the proximities of their design speeds. 

Hg. 16. Specific resistance figures as evaluated from ship trial 
data at SSPA. 
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A close approximation to a resistance curve with tvolcal 
humps and hollows requires a multi-term polynomial in u. Estab- 

L ‘."“TT” make- ->f a >‘"V; axpónen. uai term «((u/u, )p to characterize the curve In the vlclnltv nf ,, 

oF"„ ^V^T1"6 ‘“T* ■>,“ 2 -»« eSfr-p”^ rlngi' OI interest, which Is associated with an almost constant advance ratio 

Mgher^orderterm- sie^cUonTx.^ ^ ^ neCes8ary to lnclude a 

Forward Resistance Due to Lateral Motions 

When the ship deviates from the true forward motion addi- 

lossin iT8 fPPCar !" arlal dlrection- The main cause of speed 
loss In a turning motion Is due to the axial component of the centri- 
p tal mass force and the hydrodynamic contribution X. • rv of 

oblige S°n?,”C%“ rudd" t"'as and *h' -1.1 force du« ,o llque-hull lift and wave-making shall be considered. 

l'j'îal-flow hydrodynamics identifies Xr* with - 
mass effect Is virtually almost doubled. (Cf. (5.6).) A recent 
analysis of turning trial data indicates much lower values of X 

i J In a st,eady turn the «bip proceeds with her bow pointinc 

opposed’to8íorwÍriníh+ V't = ‘ (n? + Xrv) V /« * P indicates a force 
pposed to forward thrust. In running on a straight course the fre- 

drlfT/ °! tbe yfwlnl? motlon normally is so low that yaw rate and 
drift angle are In phase during most (but not all) of the time and so 
an average parasite resistance results. ime.andso 

. . Let the response to a sinusoidal motion of the rudder be 
4- = *o * «ln U f er) and ß = ß0 • sin (wt + Co). Averaging over a 
number oi complete periods gives 

Y$# i#e* the 

rv* 

Tß ■^COH (Cf - £) (6.7) 

r ,uAVhC n°mai merchant -.hip will pivot round a point closclv 
aft of the bow at low frequencies * rough estimate of the average V 
product la given by frv)^^* - (ÕP / ¿)^, ® 

j a A Plan' wi«R I" f uni/orrn flow wUl experience an Induced 

thiaMmoirieUtl C°‘ 3 ,/nm5L ‘ AccordlnB ‘o certain experiments 
this simple relation may still be used with a correction factor for 
the twisted flow over a rudder behind a screw. The calculation of 
rudder lift will be shortly discussed in the next Section; using a 
nominal aspect ratio equal to twice the geometrical one the correction 
factor Just mentioned will be of the order oí i. 2 - 1.4. 

MB* 
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Typical estimates for tankers give as a guide value a relative 
increase Jn forward resistance due to a rudder deflection of 6 
radians AX(6)/X(u) = 3.5 or 5 • Ô . For small sinusoidal helm 

S/ôY/MuÍ- ira7f * Yr*86 tïf 2uasl-statlonary application gives 
aííi6 f ~ ^ 75 or 260 , which may be compared with the relation 

AT(5)8^54]63tS Wlth a Marlner 8hlP model in Japan. 

At propeller advance conditions removed from the steady 
forward motion state the Induced rudder drag will be given by 
4 xcc8S* |c c6 , where c = c(u,n) is the effective flow velocity 
past the rudder and where the coefficient ¿XjUg is proportional 
to the control derivative jrY"c& and to the ratio8 I./TtYln com- 

?onHUrPPllfat 0n^aiiS°.fntyPe limlter wln be need to simulate the conditions for a stalled flow. 

,Tíe ''f800.118 llft experienced by a slender ship hull in oblique 
translation is also accompanied by an induced drag, but the axial 
component of the resultant force still is expected to be positive. 

niCKirdln? lu the zero-a8Pect-ratio wing analogy the resultant force 
tY the n theWflg)e betw8en the normal to the hull and the normal 
to the flow. With increasing aspect ratios the resultants move 
towards the normal to the flow.) The break-down of the ideal flow 
over the stern causes a change of viscous pressure resistance 

fnr'lYY' an.dtwave-makln8 effects wll! cause a further Increase of 
forward resistance. 

These effects are here Illustrated in Fig. 17 by results of 
axial force measurements on the surface ship model and the sub¬ 
merged double-body form otherwise described in Ref. [ 18l . From 
an inspection of these and other surface ship model experiments It 
is suggested to use a term 

X(u,v) 
6 Xu»v ¿»M' (6.8) 

l°alu?n?rhîîYthe. aXl,al YrC<; dUC t0 liãteriá drlit* An approximate value of the derivative is given by ¿X 
u*vv 200. 
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Flg, 17, Change oí longitudinal force with hull lift ln oblique 
towing oí »hip model and »ubmerged double-body geoalm 
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VIL SPEED AND STEERING CONTROL 

In general the subject of steering and maneuvering may not 
be separated from that of propulsive control, and this is specially 
true in case of ship behaviour at slow speeds. Moreover, in model 
testing the interactions between hull, propeller, and rudder are 
likely to cause the main problems of model-to-ship-conversion, 
including scale effects of a hydrodynamic nature as well as other 
model effects due to the dynamics of the testing equipment. 

Large seagoing ships are usually propelled by a single centre 
line screw, or by wingward twin screws. In case of a tandem contra¬ 
rotating propeller arrangement most of the characteristics discussed 
below may be calculated for an equivalent single propeller. In case 
of close-shafted twin screws of overlapping or interlocking types 
the interaction with the rudder should be specially considered. 

It has been repeatedly proven by handling experience that 
twin screw ships should be fitted with twin rudders. Recent model 
tests indicate that with a suitable design of the rudders, including 
a certain neutral position toe-out, this arrangement may favourably 
compete with the centre line rudder alternative also from a propulsive 
performance point of view. 

In the application of the first-order steering theory, first 
Introduced by Nomoto in 1956 and strictly valid only for Inherently 
stable ships , there appear only two constants: a (desired high) 
gain K, which represents the ratio of rudder turning moment to 

yaw damping, and a (desired low) "time constant" T, which 
measures the sluggishness of the ship response, and which repre¬ 
sents the ratio of ship Inertia to yaw damping. As was subsequently 
also shown by Nomoto [ 55] the non-dimensional quotient K'/T' 
turns out to be proportional to the parameter LAr/V for ships with 
similar stern arrangements. This quotient may therefore be looked 
upon as a rudder-on-ship effectiveness factor, proportional to the 
initial yaw acceleration Imparted to the ship by a given helm. 

Some ten^years ago maneuvering trials were run with three 
tankers of the Gotaverken «10 000 tdw series, all similar except for 
the stern arrangements, ( 56). The SSPA analysis of zig-zag tests 
with respect to the rudder-on-ship effectiveness factor just mentioned 
offers a unique illustration of the merits of these arrangements , 
Fig. 18. In particular, note that the two alternatives with rudder 
behind screw (screws) prove to be equivalent In case of same total 
area of rudder, and that the use of the larger area of a twin alter¬ 
native therefore is especially favourable. 

A propeller or a rudder, or the combination of a propeller 
and a rudder, acts as a stabilizing fin as well as a manoeuvring 
device, the contributions to the fin effect from the propeller and from 
the rudder-behind-propeller arc of equal order. It should be 
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Fig. 18. 
Results from first-order analysis of full-scale zio rao 
tests with three 40 000 tdw tankers, similar except for 
stern arrangements. except lor 

af^cf thisbfin^iff'cror'thc^hTe^of a'hysterfsU toop ^>Prec^a^^y 

will help In acluai dlr.ctU.nal ™nîl»l h Í ’"í" P“,<lb>y achieved 

¡Ion. a. well a. laterArC'.l^l.rS ,o,f.V .- - 7°^^ "T' 
in order to adhere to the thrust deduction conclpt Se faftn/ ,Tp‘ 

^;.^rrc":r".\iLrrrec-,,or,1.b*"-“cr: 

Normally the lateral forces due to T. anr) t . , . , 

r >,,T! tta" '» * rejultant (orcé apï led íomí 0 7 é"beMnd" ' 
ïéee;°;,:f,h,t ‘'‘"’d T;'t 'T1"* momen.P(hu. obtained' U Zt larger than that produced by lhe «la! (orce, along the .halt | S7| 
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Normal twin- Starboard $cr*w 
«raw propulsion dlmg 

Fig, 19. Force fields on twin-screw tanker on straight steady 
course. 

The diagrams in Fig, 19 illustrate the symmetric force field 
around a twin-screw tanker in normal straight course conditions, 
and the steady state situation when running with starboard propeller 
idling. The non-symmetric suction force on the port quarter is 
balanced by the forces due to drift and checking rudders. The drift 
angle is a fraction of a degree only, and some 90 per cent of the 
compensation force is due to the rudders, set at some 5 to 7 degrees. 
With the twin rudder arrangement it should be possible to maintain 
7S per cent of the speed in this condition. The Induced resistance 
due to rudder lift would be larger in case of a single rudder between 
the propellers, but the main cause of speed loss of a ship propelled 
by one of Its screws only Is the additional drag from the idling 
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propeller; again, that drag may well be increased by a factor of 3 
if the propeller is locked. 

The characteristics of a propeller in axial open-water flow 
are usually given by tables or curves of well-known K-j- and Kq 
coefficients versus advance ratio J. In yawed flow the propeller 
also experiences a lateral force and a (small) pitching moment, [ 58] . 

In behind conditions the effective angle of drift at the pro¬ 
peller still is roughly 2/3 of the nominal local angle, high enough to 
let the propeller contribute the fin effect already mentioned. (The 
sidewash behind the propeller then has a further straightening effect 
on the flow to the rudder.) The effective advance ratio is modified 
by the effective wake in the factor i - w; here w will be chosen as 
for thrust Identity. The effective wake, again, is modified by the 
drift of the ship, being higher for a starboard drift angle than for a 
port one and a right-handed propeller [ 59] ; here that effect will be 
taken as of second order. 

Finally, the vertical asymmetry of the flow field is responsible 
for the appearance of a lateral force on the propeller of a ship even 
if drift or yaw are zero. In case of a single screw ship this latter 
force may be put equal to 3 to 5 per cent of the thrust, [ 60] . A 
right-handed screw tends to throw the stern of a loaded ship towards 
starboard, thus requiring a small starboard helm to be carried on 
straight course. Other free-running model tests prove that draught 
conditions may change this picture, and that the ship on light draught 
may have a tendency to turn to starboard, ( 6i], 

The hydrodynamic thrust T (Tc, T,, T.) and torque Q 
(Qe, Qt, Op) - which is negative in case of a right-handed screw on 
a driving shaft - will be given as quasi-stationary functions of 
Instantaneous values of forward ship speed, u, and screw r.p.s. , 
n (ne, n,, np). The thrust is a major factor governing the flow 
velocity past the rudder, and this velocity likewise will be given in 
terms of u and n. Rudder control derivatives usually are deter¬ 
mined from model tests in one or two conditions of screw loading 
only. In order to find an adequate prediction of full scale control 
derivatives for the more general propulsion case it is necessary to 
combine model results with a simple procedure for calculating the 
total control force due to rudder deflection. 

From the hydrodynamlcal point of view the typical all¬ 
movable rudder in behind condition is equivalent to a twisted wing 
on a pointed afterbody. There are a number of additional complica 
tions , however: The spanwlsc velocity distribution is highly non- 
uniform, the flow along the chord la accelerating or decelerating, 
the gap between wing and body is within a retarded boundary layer 
flow and it also varies with the angle of deflection, the boundary 
conditions at the free surface violate the vertical symmetry aspect 
even if there is no suction-down of air, the shape of the body stern 
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is far from say a simple axisymmetric cone. The modern half-spade 
rudder on a fixed horn (the Mariner-type) is a hybrid of the all¬ 
movable and the flapped types , and other common forms all have 
their special characteristics. The procedure here adopted is not 
a substitute for the detailed calculations necessary for a certain 
project design, but it will furnish a good estimate of control forces 
and make possible the extended use of model results referred to 
above. 

The Rudder or "Control11 Derivatives 

It will be assumed that for each rudder configuration may be 
defined ’'equivalent" values of rudder area, rudder aspect ratio, 
rudder angle and rudder advance velocity. 

A detailed study of the velocity field in the slipstream of a 
propelled tanker model and of the pressure distribution over the 
rectangular rudder fitted to this model was reported by Lotvelt, [ 62] . 
The distorsion of the spanwise loading due to slip-stream rotation 
was clearly demonstrated, but the diagrams did not Indicate any 
definite influence of the rudder image in the hull and free surface; 
the gap distance from top of rudder to stern profile was some 12 per 
cent of rudder height. Straightforward calculations of rudder lift 
from known relations of lift curve slope versus geometric aspect 
ratio and an average advance velocity based on the simple momentum 
theory proved to give good agreement with the rudder forces measured 
by a force balance or integrated from the pressure field. 

Unfortunately in this case no simultaneous measurements 
were made of the total hull-and-rudder forces, and there is still a 
lack of such data for normal surface ship forms. However, already 
from the old experiments by Baker and Bottomley [ 63] it was seen 
that the total force due to rudder deflection was increased by some 
40 per cent in presence of a deep cruiser stern close above the 
rudder, and that a third of the total force then was carried by the 
hull. 

Let b be the height of the rudder at the stock, or the higher 
value forward of it, and let a be the depth to top of rudder at the 
same station. With a projected area Ar of the rudder the aspect 
ratio of rudder + plane image is equal to Ä = 2bZ/Af. The lift 
curve slope aj is taken from the theoretical curve derived from the 
Welsslngcr theory [ 64] , or from empirical curves available. 

The geometrical aspect ratio usually is of the order of 1.5, 
i.e. the rudder is not a low-aspect-ratio fin, but it seems still to be 
possible to make use of the results for wing-body interferences 
applicable to such fins. In particular, the ratio of the lifLon a rigid 
combination of a wing and a cylinch-lcal central body, L¡¡a , to the 
lift of the abridged wing alone, JL^ , is simply given by 
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(i + a/a+b)2 , [ 65]. Next, for the calculation of the lift carried on 
the axially oriented body and on the wing deflected to the flow, it is 
observed th^t_the exact theory by Miréis [66] may be approximated J — J mwtm ^ — mm vm 

by L„o ~ VL?,~Lag= ¿TU + a/a+b). Except for a correction factor 
the control derivative for the ship will be calculated aa 

^ Yclel8 = 1^' 72* Y¿= aÃ(1 
+ -2-) 

a+b' 
Ar L2T 
LT 17" 

(7.1) 

where Y". unlike Yi is defined also for zero forward speed. 
The modern naif spade or Mariner type rudder has a fixed horn, 
which divides the upper part of the rudder in ratio Ah/(AU - A^. 
The right-hand member of (7.1) may then be multiplied by a factor 
1 - (1/¾) • (Ah/Ar). 

The effective rudder advance velocity c (squared) is calcu¬ 
lated from the mean square velocity of the screw race and an esti¬ 
mated mean square velocity past the rudder outside the race. If w 
is the wake factor as Integrated by the propeller (thrust identity) the 
effective square velocity above the race in a normal single screw 
arrangement may be taken as uz(l - 4-w) . Inside the race, which in 
average conditions has a diameter some 10 per cent smaller than 
the propeller, the ultimate mean square velocity is given by 
u2(l - w )z(l + (8/rr) • (Kt/J2)), where, for u > 0, 

KT ~ KToo + |ÿ| KTo + Kr/ 
(7.2) 

is to be approximated from the open water propeller diagram. Where¬ 
as the thrust may be analytically defined for all combinations of u 
and n - see below - the working conditions of the rudder are known 
only for a positive thrust, in which case 

cuZh u* + cun un + ¿4ln M" +Knnl 
(7.3) 

From an analysis of a large number of control derivative 
measurements on models it appears that a correction factor of 
0.7-0.8 shall be applied to (7.1) when combined with (7.3) to give 
the force Y(u,n,6) =pV/L- lY^. * <*6. This correction factor is 
understood to take care of gap effects and non-ideal geometry of the 
hull + rudder arrangement, etc. 

The four constants in Eq. (7.3) depend on screw character¬ 
istics and wake factors, and they are therefore unique for the model 
scale. To facilitate a correction for this scale effect in the control 
derivatives the diagram in Fig. 20 has been compiled, chiefly from 
Ref. [ 67] and data available at SSPA. The slope of curves of wake 
factors against ship or model lengths increases with hull fullness; 
especially SSPA experience of full scale tanker trials rarely Include 
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Fig. 20. Scale effects on wake factor w as Integrated by propeller 
In model and full scale. 

effective wake factors above 0.38. 

In Fig. 21 the control moment derivative N* for a 98 000 
tdw tanker is presented as a function of forward speed u and shaft 
speed n, for a i:70 scale model as well as for the prototype. 
(Extrapolation to slowly reversed propeller is shown dotted.) In 
particular it is seen from the diagram that the turning moment from 
the rudder at self propulsion point of ship Is only some 60 per cent 
of the model test value. 

During a maneuver the effective change of angle of attack 
of the rudder Is a function of nominal helm deflection 6, drift v, 
and yaw rate r, and change of screw loading. Again accepting this 
quasl-stationary model It Is 

6e = Ó + (kv • £ ♦ kr iji-) |6j (7.4) 
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Fig. 21. Relative change of rudder control force with change of 
propeller advance conditions for 3.6 m model and 98 000 
tdw tanker prototype. Diagram based on model tests at 
VBD and SSPA , and on speed trials. 

where typical values are ky= - 0.5 and kr = 0.5. (An alternative 
but less explicit method to Include the same phenomena is given by 
Strom-Tejsen and Chislett [68] , who make use of a number of 
coupling derivatives such as Ygrr, etc.) 

Helm Control 

The manual or automatic pilot exerts the control through the 
steering gear, which is supposed to have a time constant T-, 
causing a small delay in the rudder angle 6 obtained. The value of 
Te may vary say between 0.4 and 4s, the first figure being a good 
catalogue value and the second one not seldom realized in shipboard 
testing. The steering gear or telemotor system often has a back¬ 
lash of about half a degree. 

The function of an auto-pilot may be said to be essentially 
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of the "proportional + rate control" tvne althrmaV, =„ i + 
control shall be added to take care í f iftegrator 

angle 
With the simple Ideal auto-pUot "calling for" the rudder 

« - Y+ + -+ the transfer function of the feed-back loop Is 

Y = Y 
2 ^83 ** Ye-*, = --1_ 8>' 

1 + Tes (7.5) 

Typical values for the gain or "rudder raHm" ■> j 

helmïta,î" ““'S Pll<>t ln d"P “■«« »««"S .'e , "‘(^lêr helm per degree heading error! anrl n- - líe I / 'ae8rees 

helm per degree per second of change o'f headYugr^^c^S!, 

unstable tanke^may be^tudled^rTa Bod^dí61718"010Í Say an Inherently 

avoidable ^ ^-.10^/-0^10^..^001.1° í1"0 

ESlsSíHS=S3iHí-- 
because of the learning ability of the opeïTtor! SlmulatÍOns just 

tankers^by^us^of^a^ransfe^function^in^whhTh^the ZTZ tí 
constants were derived by extraño!afV u. u f 1 d time 

dynamics , [69], UndoubLdly „eP»ts?c iXÃo^r^iÂ1 

Propeller Thrust and Shaft Torque 

screw, i7vei„0rb%re?er“g,8ne»"8or*h.‘lPerrte P;fpall,ld by «-«-blade 

ÄSrÄf'ifS^FÄ-i-'iy1 
power - proportional to steam inlet pres^ufe“-^*.'™^^" ^ co"sta« 
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gT» = L1 • It;U2 f T;un + L • IT,"(n |n |n + L • '¿T^ 

(qJ" - QV)A = L’g • Of* + L'l/2 g+,/2 

+ L'z • lûlu* + r'Qlun + ïü",„ Inln + iû" n 

Nf" n + L* g • Q F" n 

■RT (7.6) 

‘uu ‘un inln 
in« „2 
2wnn' 

with 

2Tuu • (1 - w)2 • ÎK . etc. 
(L/D)Z TJJ 

The steady-state hydrodynamic thrust and torque are given 
as functions of forward speed, u, and rate of revolutions, n, based 
on open water KT and KQ characteristics; K_ and KQ are first 
approximated by square functions of J = (u/faD)(l - w) or l/j. 
(Note that a linearization of these characteristics does no^ result 
In a linearization of the (u,n)-dependence.) The Nordstrom data 
[ 70] may be used when reversing or transient maneuvers are con¬ 
sidered. In general It is then necessary to confine the analytical 
functions to limited ranges of propeller advance coefficients, l.e. 
to use alternative coefficients as In Eq. (7.2). Harvald has presented 
useful information on the propulsive factors at arbitrary steady-state 
advance conditions, [ 71] . The effects of separating boundary layer 
flow along the stern of a retarding ship are still less predictable. 

The added mass and moment of inertia Involved In unsteady 
maneuvering of the propeller are functions of the momentaneous 
advance coefficients as well as of the rate of change of r.p.rr,. In 
small changes from normal propulsive conditions the added inertia 
is small as blade angles of attack are small. Naval architects often 
use a value of 30 per cent of rigid screw inertia for the added Inertia; 
although this figure originates from model tests with screws oscil¬ 
lating at zero advance coefficient It may still be used as an effective 
average value during the short reversing stage of an engine maneuver. 
In fact this stage is dominated by the large control torques and by the 
way they are used. 

When simulating maneuvers with diesel-powered ships it 
shall be observed that normal r.p.m. control is not possible for n 
less than some 35 - 40 per cent of design shaft speed n0. The torque 
delivered is here rapidly reduced, mainly due to loss of charge air 
pressure. (For high r.p.m. Q¡¡ is almost zero.) Slow speed 
maneuvering must be performed by intermittent use of the propeller, 
which requires repeated starting of the engine. Reversing maneuvers 
must await drop of speed to some 60 per cent of the full speed value, 
at which lower speed braking air may be applied. There is also a 

862 



jUl t n^njnj,!, ^ mmwmmmm WKÊÊÍKÊÊM 

Ship Maneuvering in Deep and Confined Vaters 

ínjec^dTo1 start'in'gTne'back!."^For ^ may be 
of diesel maneuvering the reader is rpf!,CUS jl°n °f detailed features 
[ 72]. g reader ls referred to a paper by Rltterhoff, 

maximimío/sonfJ80°per^ent ^ a 

Qe = 2/fQç (i . ¿ . nâk.) 
K (7.7) 

âe[e?! î° at dCS!8- 

realized' that ai.a» produÄ'a^EfuX'dTt® 

VIII. MODELLING THE DEEP-WATER HORIZONTAL MANEUVER 

The General Case 

lnn„e„c?of'.¡;iPgTavitby%Órfe't,t-a’ "’“""S >*"d" <h'- 

rS”a/ÄlS 
dvnamica »ill be Inc, Jed ^ °f lhe ^ ^ 

on .£ mas^eiementsi^cf. 

dm 0 0 

0 dm 0 

0 0 dm 
abs 

m-pV0 0 

0 

0 

m-pV 

0 

0 

m-pV0 
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K 
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N 

O -(mzg-pVoZB) myG-pV0yB 

mz<j- pV0zB 0 -(mxG-pV0xB) 

-(myG-pVoyB) mxe-pV0xB 0 

0 

0 

g 

(8.1) 

Upon summation the coefficient matrices of the acceleration 
terms, the mass and inertia tensors, expose as 

m = 

mKX 

0 

0 

0 

myy 

o 

o 

o 

mzz< 

I = 

where the elements 

I*x *^xy "^x 

-Ixy lH 'V 

.-Izx _Iyz 

are defined by 

= E dm 

= - E X X dm 

Ex dm = m • xs 

Ey dm = m • yG 

E z dm = m • zG 

E (Y2 + z¿ >dm = Txx 

(zZ + X2)dm = lyy 

E (x2 + yz)dm = 

E xy dm = IRy 

E yz dm = Iyz 
E zx dm = IZ]| 

(8.2) 

(8.3) 

Many authors prefer to introduce the virtual masses and 
moments of inertia into the equations given above. Here the added 
masses will consistently be assigned to the hydrodynamic reaction 
forces in the right-hand members; in Section Vit was seen that these 
forces may include other inertia terms otherwise easily overlooked. 
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In most practical applications the xz-plane is a plane of 
symmetry, so that yG = yB = 0 and Ixy = 0. Except In a'few special 
cases, such as when dealing with hydrofoil crafts, etc. - the dis¬ 
cussion of which is outside the scope of this paper - other terms 
may be safely ignored in view of the smallness of the products of 
inertia and the perturbation velocities involved. 

The Merchant Type Displacement Ship 

In what follows the discussion is restricted to displacement 
tV-» ■** _ i t—1 t—I _ * ships, for which m = pV0 and V ss V Forward speed is always . ' -u - - . iuiYvaiu o JJ c: c u is ajWc 

associated with a sinkage and change of trim, most obvious as 
squatting m waters of finite depth, but the manoeuvring dynamics 

ti beJSUÍfIC. ently wel1 described bY the equations in four degrees 
of freedom, i.e. the surge, sway, roll and yaw. Then 

mju - rv - x0rZ + zGrp| = X 

mjv + ru + xGr - zGp | = Y 

l*j> - l2xT - mzG(v + ru) = K - mg(zG - zB) s in <j) 

^r - + mxG(v + ru) = N 

(8.4) 

Whereas the initial roll as well as the steady outward heel 
may be appreciable in case of say a highspeed destroyer these 
angles are also known to be quite insignificant in the tanker case, 
in steady turning a heel, proportional to - (L/Re) • Fn2L , may produce 
an effective camber of the waterline flow around a fine hull, but this 
hardly applies to merchant ship forms. 

Leaving the roll equation the present deep-water model is 
given as in Eq. (8.5). It shall be pointed out that the derivative Y" 
includes the potential-flow contribution X" and the derivative N" 
the potential-flow contribution Y» . In the forward speed equatio'n 

is given a value that is smaller than its ideal value equal to - Y.". Avr 

(i - xu")u = r1 -jX”uuuz + lV .u4 + g . T"( 2~uu“ ' ^ K ■ 24 AuUuuu' + g ‘ T''(i -t) 

+ d +X")v4J +L(x¿' + ix;-r)^2+LV • ¿X'vvvu|v|vz 

+ L 4 X"lcl88 Ie lc5e 
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(1 - Y;)v = L(Y/' - x¿-H + (Yu"r - l)u^ + L-^ g-,/2 . j Y"ur uZ4, 

i * " ^ «z U i _ * V2 "1/2 1 ». p »II 

L Yuvuv+L 8 ‘I Y,; 

+ L-IY",r M+Ku M^Y¥"|f| v|4-| 

+ L'] T Yle,cS I c I c ^ ^y8T ,l 

(k» + N"^* = L'' (Ni' - *G>v + L-1 (N-'r - xg)ui¡j + L-V2g-'Æ . j. N|¡uf. u2; 

+ L"Zn"vuv + * I Nu”uyu2v + L 2 • ^ N("|v |v|v 

+ IN|rlr +L*' * N"v|r M+ +L-' • N" v|4j I 

+ L'!! ’ I N!clc8 Ic|c6e +L-1 kj^gT" 

(8.5) 

Eq. (8.5) is to be combined with Eqs. (7.3), (7.4) and (7.6). In 
case of twin-screw ships (7.6) is to be properly modified and terms 
corresponding to sp • Tp and ss • T, are to be introduced in (8.5). 

Some Elementary Concepts 

So far as small motions are considered forward speed and 
r.p.m. remain almost constant and the rudder force and moment 
may be regarded as functions of nominal helm Õ. The yaw-rate/heln 
relation is given by the transfer function ' 

Y.), a = K 1 + T3s 

1 + (T. + T.)s + 7,7,31 
(8.6) 

and the open loop heading response by Y. = (i/s) • Yi-., which mav 
be used with Y2 from Eq. (7. 5) to study the closed-ltop system 
with transfer function F = Y,/(1 + Y, Y2). y 

The static gain and the three time constants in (8.6) are built 
up from the coefficient of Eq. (8.5). T3 is always positive. The 

louati^n TfS ' aue Siven bV the roots of the characteristic 
equation. If s = - (1/^), the root to the right on the real axis, 
turns positive the ship is inherently unstable. The analytical criterio] 
for dynamic stability suggests the dynamic stability lever 
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lr - 1J' = ^f-: S - Æ 
Uf 1 uv 

(8.7) 

to be a suitable measure for the degree of stability. In particular It 

charac^e U f illu»tratlon when studying the effects onto the stability 
characteristics of changes in the stability derivatives. V 

stable ta"ke” are slightly unstable, or marginal 
V = Jv* For such ships the pivoting point position is 

given by the simple relation 

r5F 
T7 

1 - Y" 1 ur 
(8.8) 

which may be approximated by ÖF/L = 0.45 + (l/3)(6„„(B/Tl - 21 

thÍS corresP°nds to = 0.5. (The formula 
in fact indicates an acceptable value also for the destroyer, about 
u.J.J Again, the pivoting point position - or the drift angle 0- 
is a critical parameter to study when entering shallow waters. 

IX’ FHOMITHEORYTER FLOW PHEN°MENA AND SOME RESULTS 

Mostly on Resistance 

n i „Inchii\note8 for a third volume of "Hydrodynamics in Ship 
Design Saunders collected a number of citations, ranging from 

to.Moody, which all illustrate the classical picture of 
ship behaviour in confined waters as it has been derived from obser- 

bv iqhn i S?le and I" m0del testS> [ 73i * He also concluded that, 
by I960, the ventures and progresses made in analytical studies of 
8 lp Hoaooeuvring in shallow waters remained scarce. One exception 
was offered by the papers by Brard, [ 74] . The problems of inter¬ 
action between meeting or passing ships, or between ships travelling 
abreast - closely related to the bank effect problem of the single 
ship - had been dealt with by Weinblum [ 75] , Havelock [ 76] , and 
Silverstein [ 77] . J’ 

Undoubtedly much more effort had by then been devoted to 
the changes of frictional and wave resistance of ships in axial motion 
in confined waters , and an important survey and contribution had 
been given by Schuster [ 78] . 

Ocean-going ships generally move at low speeds in shallow 
or narrow waterways, and hence the deformation of the wave system 
is small. According to Schuster the wave resistance is not notably 
affected by a limited depth for speeds below F h = 0.7, at which 
speed the excentricity of the orbital ellipse corresponds to a diameter 
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difference of about 5 per cent. In case of a bottom depth of 15 m 
this again corresponds to a ship speed of 16 knots. 

In Ref. [ 79] Weinblum demonstrated that the wavemaking 
in a canal is a complicated function of speed, depth and width. In 
general it is therefore not possible to define a single effective 
length to characterize the canal dimensions in a speed number. 
However, effective canal speed includes the back-flow, and just as 
a critical speed in shallow water is defined by the speed of the 
solitary wave, Vgh, experimental evidence advocates a critical 
speed in a certain canal correspondmg to a certain-Boussinesque 
number B = FnhV( h/W) + 1. (Here W is equal to Ji^lf the mean 
width of the section.) For a rectangular section Muller proved that 
the maximum wave resistance occurred at Fn|, = (2(h/W) + i)'^2, 
[80], In a canal 15 m deep and 120 m wide this corresponds to 
Fnh = 0,81. Again, let it be assumed that a significant change of the 
wave resistance due to the confinements will be found only at a speed 
equal to or higher than 70 per cent of this critical speed: this now 
gives a speed of about 13 knots, much to high to be experienced In 
canal transits involving normal blockage ratios. It may be concluded 
that the additional resistance terms to appear in the speed equation 
normally need not to account for the oscillatory wave-making com¬ 
ponents . 

Reference shall here be given to recent studies of the un¬ 
steady flow conditions existing within a critical speed range for a 
ship in a canal; this range tends to zero when the width of the canal 
tends to infinity, [81, 82], 

At sub-critical speeds the wave-making itself may influence 
the lateral force and moment on a ship moving along a bank, as 
shown by Silverstein, [ 77] . In case of the low Froude numbers met 
with in practice also these effects may probably be ignored, and the 
water surface may thus be treated as a solid wall. At FnL = 0.078 
or Fnh = ° .32, realized for a 98 000 tdw tanker proceeding at a 
speed of 14 km/h through the Suez canal, the longitudinal waves will 
have a length of some 10 m, i.e. onlv 4 per cent of the length of the 
ship. 

The back-flow producing an increase of frictional resistance 
will also produce an increase of sinkage, and '.i case of small bed 
clearances this will of course indirectly affect the lateral forces 
sensitive to the clearance. These secondary effects must be born 
in mind when comparing predictions from theory with results from 
force measurements on models, which are free to heave and trim. 
In the normal evaluation and presentation of such measurements, 
however, it will be considered more practical always to use the 
nominal under-keel clearance. 

The viscous resistance, including frictional as well as 
viscous pressure resistance, may be calculated accepting a plate 
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friction line and a form factor, characteristic for the super¬ 
velocities along the hull. This resistance now may be written 

I X’uu£, where u is the forward speed of the ship. In 
confined waters there are additional supervelocities, the effect of 
which is equivalent to a back-flow along the hull and waterway 
bottom, where another boundary layer is generated. The two bound¬ 
ary layers will reduce the effective under-keel clearance, which 
tend to increase the trim by stern. Separation and unsymmetrical 
eddy-making within the boundary layers may initiate yawing ten¬ 
dencies in straight running, or change the behaviour of the ship in 
manoeuvres. 

Graff has suggested to consider part of the mean back flow, 
AU(,, to be due to the lateral restriction, and the other part, 
to be due to the finite depth, [83] . In normal applications AU 
small compared to u, so that 

AUh, 
is 

Xv = ¿XUV(1 +-^-b)(l = |xVulJu2(l + Kb)(l + Kh) (9.1) 

The effects of a plane bottom at distance h below the ship 
waterline and a pair of parallel vertical walls , each one at distance 
W from the ship centreline, are those produced by an infinite array 
of image bodies with spaclngs equal to 2h and ZW respectively. 
At the double-body ship centreline the lateral perturbation velocities 
cancel whereas the axial components add together. (This simple 
concept is not valid for W or h small compared to B or T, in 
which case additional doublet distributions are required to prevent 
a deformation of the body contour.) Graff choose to calculate an 
approximate value of Kb for an elliptic cylinder, extending from 
the surface down to the bottom and having a beam given by the three- 
dimensional form displacement. (Thus Kb is dependent on canal 
depth, although the final calculation is purely two-dimensional.) 
For the calculation of Kb he used an equivalent spheroid and results 
for supervelocities earlier published by Kirch, [84] . His final 
results are given in graphs and compared with model measurements, 
which confirm that this method offers acceptable values of resistance 
allowances for moderate confinements. It is thereby also possible 
to define a suitable form of resistance derivatives to be evaluated 
from model experiments from case to case. 

In particular, a limited re-analysis of some of the data 
given by Graff indicates that the resistance increase in shallow 
water will be proportional to the increase of an under-keel clearance 
parameter Ç, = T/(h-T). Further analysis of the results for sinkage 
in shallow water according to Tuck's theory are likewise in favour 
of the use of this parameter. (See below.) 

In waterways severely restricted in width as well as in depth 
the increase of resistance is a complex function of blockage conditions. 

869 



1 

Norrbin 

fea°lTtáncíítteatf Wit? a RhÍne Ve88el [85;| lt spears that the added 
resistance at a given forward speed may be approximated bv an 

roughly!°n ^ ^ AR = a * (BT/Wh) + b f (BT/mi • ¿ or, 

2,,2- 
uu{Ciju t n (9.2) 

melnewidth=?V^rflfla bank, spacin8 Parameter defined from the 
mean width 2W of the canal cross section. (See Section X.) 

, , The higher resistance in confined waterways is associated 

Ts fuAher redPucePdelbler efflciency' and the tot^ Propulsive efficiency is turther reduced by an increase of the thrust deduction. The 
influence of flow restrictions on thrust deduction and wake factors 
has also been considered in a paper by Graff, [86] .In most simu- 
the°r appllcations thls letter influence may be ignored. However 
the computed vaiues of r.p.m. and speed attained at a ?iven engine 

s[c“.n/„^°[ 87] COmP“”d W“h’ complfed by gl 

Sinkage and Laterztl Forces 

( the la8t deCade the aPPl^ation of slender-body theory 
has furnished new understanding and quantitative estimates to the old 

vZeZenT °i Slnkage and lateral motions in eonfined water 
Further developments of the theories and more accurate measure- 

dictionsî"6 reqUÍred to brid®e a SaP sti11 remaining in force pre- 

the hanifnfian efsantially forward motion of the ship in shallow water 
to tíe 'ÍÍ0W 'Z incureased a11 round the frame sections, and according 

constaminX the0ry °f7UCk the dynamÍC Pressure is largely constant in the water around a cross section of the hull and over the 

of same h Se uX Ít' [ 88] * Up°n ass^Ptlon of a water depth 
of same order as the draught, the draught and beam being small 
compared to the length of ship and waves, and by use of the new 

for the e í asyrnptotic expansions" Tuck derived formulae 

Ind ÏupïïrcrflîcÏ^LdÎ 30 ^3° f0r the SÍnkage and trim at Sub- 

In C4.a1e 0r shipf with fore-and-aft symmetry the theory pre¬ 
dicts zero trim for subcritical speeds, and zero sinkage for s^per- 

HenthX SpaeJS* Forismall t0 moderate Froude numbers based on 
depth the sinkage varies as speed squared,and, using the under-keel 
clearance parameter defined here, according to the upper curve of 
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Fig. 22. Sinkage in shallow water of Infinite and finite width, 
recalculated from Tuck's results. 
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In Ref. [89] Tuck has extended the theory to canals of finite 
width, In which the ratio of slnkage Into the water (or trim) In the 
canal to the slnkage (or trim) in shallow water Is given by a unique 
curve on basis of a simple width-and-speed parameter. Replottlng 
this curve as In the lower diagram of Fig. 22 Tuck's results are 
shown to yijpld a square dependence on the bank-spacing parameter 
h when F„h « 1. 

M nIn canala Presenting higher blockage the total slnkage or 
squat Is dominated by the contribution from water level lowering 

as a consequence of flow continuity. From the Bernoullle and conti¬ 
nuity equations an approximate relation for the hydrostatic ship 
slnkage in terms of ship lengths is given by 

Here <pL and aWL are the prismatic and waterline-area coefficients 
of the ship. Other methods of the practical calculation of squat are 
discussed in Ref. [ 90] . 

At low speeds wave making is concentrated to bow and stern 
of the ship, where changes of the local velocities do not influence the 
blockage conditions, and it shall be possible to calculate the forces 
on the ship without regard to wave making. The absolute speed still 
is a parameter, as it is seen to affect the hydraulic as well as the 
dynamic squat in a canal. 

Kan and Hanaoka first presented low-aspect-ratio wing 
results for the calculation of transverse forces and moments on a 
ship in oblique or turning motions in shallow water , [ 91]. As the 
theory predicts the same correction factor to be applied to all deep¬ 
water values it seems to be essentially a two-dimensional theory as 
it is in deep water. Newman studied the same problem by use of 
the method of matched asymptotic expansions and by the assumption 
of a three-dimensional flow, differently orientated close to the body 
and close to the bottom (and upper image wall), [ 92]. His results 
bear out the effects of finite length, most obvious in case of moments 
due to yaw acceleration. 

Newman considers the inner flow to be a two-dimensional 
cross-flow of reduced velocity, at each section depending on a 
blockage parameter in the velocity potential. The outer solution 
assumes flow to take place in planes parallel to the bottom wall at 
nominal transverse velocity as the body is reduced to a cut normal 
to the flow, this being physically similar to the flow past a porous 
plate. The results as applied to forces on a wing of low aspect 
ratio (or to a ship) are given in a simple diagram in [ 92] , and here 
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InnV/* iTu t0tT ^omParl«°n« with ship model value. In Fig., 33 
t j r A comparison of sway force and moment derivative, 

derived for the SSPA tanker model was Included In ( 92] . A small 

OÍ "îfiîei£orce derlvat^e appears in the pre.ent comparl- 
son, due to modified assumptions for non-linear vi.cou. cro.e-flow 
contributionj cf. Section X.) 

The lateral forces acting on a body of revolution In axial 
motion in rlose presence of a vertical wall have also been studied 
by Newman, [ 93], The source distribution inside the body is 
mlrrorea in the wall, and in addition the calculations require the 
original distribution to be off-set towards the wall. This three- 
dimensional source distribution defines the velocity potential and 
so the forces may be found by use of the Lagally theorem. As 
expected from experience and approximate image theories for 
bodies not close to the wall there is an attraction towards the wall, 
increasing monotonically up to a finite value of body-and-wall con¬ 
tact. It is concluded that for geometrically related bodies with 
same sectional-area distribution the suction force will be inversely 

t0^he le1ng‘h- whereas the yawing moment will be inde- 
pendent of length vai iation. The results also indicate that there 
will be a bow-away-from-wall moment for bodies with a stern, which 
is blunt compared to the bow, and vice versa. 

»., In Fig* 23 calculations by Newman's method are compared 
with the results of force measurements on a tanker model towed 
along the vertical wall of a ship model basin. (Cf. Section X ) 
Basin depth was equal to 0.29 Lpp, total basin width equal to 

’ Hp* T ,e diagram is plotted on ratio of wall distance to 
maximum radius of equivalent body of revolution, defined by length 
and displacement of model hull + image. The better agreement is 
obtained for that equivalent body, which also has the same sectional 
area curve, but even then the experimental results are some 25 per 
cent in excess of the prediction. At larger separations the differ¬ 
ence is still larger. Comparative calculations using Silversteins 
not-loo-near-wall results for an equivalent ovoid T 77] , are 

included in the diagram; in this case the prediction is better for 
larger separations , but in all much too high. 

nt As long as the body is not too close to wall contact the 
Newman theory gives a linear dependence for the lateral force on 
ratio of body radius to centre-line wall distance, i.e. it is propor- 
tional to q, or T)p defined for starboard or port wall distances in 
next bection. This linear dependence suggests that the lateral force 
on the ship between two parallel vertical walls may be obtained by 
adding the effects from each one, which idea may also be supported 

Potation of old DTMB data [94, 95] given in Fig. 24. 
The diagram includes force and moment measurements on a twin- 

formW tanker model ln several canal sections of simple rectangular 
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Fig, 23. Latera] force on a body moving parallel to a vertical wall. 
Measurements on propelled tanker model and theoretical 
results for bodies of revolution. 
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Fig. 24. Asymmetric forces and-moments on a twin-screw tanker 
model moving parallel to the vertical walls of canals of 
differing widths and depths (From DTMB test data) 

The theoretical results for bow-away-from-wall moments 
are somewhat modified in practice, where bow wave and screw 
action contribute to make the tendency felt in ships of all types. 
Thus, in general a ship that moves off the centre-line of a canal 
must use helm towards the near wall and it takes up a small bow- 
from-wall equilibrium angle. Typical values derived from [94] 
for the 721' tanker off-set 50' from centre-line of the 500' X 45' 
section are 15° helm and Io drift. 

The motion in shallow port approaches may involve much 
larger drift angles, and the behaviour of the ship is markedly 
affected by the increase of lateral cross flow resistance due to 
under-keel blockage. The diagram in Fig. 25 is compiled from 
shallow water test data in Ref. [ 49] , and from Japanese data in 
Ref. [ 96] , which also Include measurements in presence of a wall. 
Again the parameters £ and t) are used for the presentation. For 
moderate ^ cross-flow drag increases in proportion to £, just as 
the linear force derivatives, but the dependence on q is of higher 
order. The cross-coupling between £ and q may probably be 
Ignored in practical applications. 
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Fig. 25. Ship model cross flow drag coefficients as influenced by 
change of depth and presence of vertical wall 

X. FORMAL REPRESENTATION OF CONFINEMENT EFFECTS 

Waterway Description 

The uniform straight canal with a rectangular section is the 
most simple case of a waterway confined in depth and width, but 
even there several parameters are required to characterize the 
flow phenomena taking place. It was seen in the last Section that 

W^1u f,tanCe Parameter r, and the under-keel clearance param. 
b°th we.r® us/ful to°l8 for the description of certain effects. 

Their first merit, of course, is due to the zero values defined in 
unrestricted deep water. 

Figs. 26 and 27 show a more general section of a canal. 

finí a ftanaîi.l U81?Ä desJc,ribed hy its mean depth between the bed 
lines, its widths at bed and beach lines, and its cross section area, 

ratfted T>ithe "J1!18111? s®ctIon of a transiting ship by the blockage 
ratio. The position of the ship in the canal Is mostly given by the 
off-centre distance, and by the angle to the canal centre-line. Here 
approximate expressions involving the new parameters only will 
be given for the main geometric characteristics. 
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m 

The depth h is considered constant between the bed lines. 
The mean width 2W Is defined as the quotient between cross 
LctlonTrea Ae and depth h. The ratio 2W/* Is a better param¬ 
eter^ wldth-to-beam relations the more shal.cw Is the canal. 
For use with theoretical results for thin ships the width parameter 
will here not be related to beam but to ship length L. 

As seen from Fig. 27 the bank and ship positions may be 
given by^coordinates normal to a datum line essentially parallel to 
fhe main direction of the canal. The orientation of the ship is given 
by the heading angle measured from the same datum lln . 
basic geometric parameters are defined as 

Under-keel clearance parameter 

Port bank distance parameter 

St'bd bank distance parameter 

; = T/(h - T) 

tip = L/(Wp - y0) 

il, = L/(W, - y0) 

(10.i) 
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^ = tl* + rip 

^ = n» - np 
(10.2) 
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on the ship in motion parallel to a wall is essential^ inversely pro¬ 
portional to the separating distance, i.e. Y(u,ri#) = |YUU7?s* u2ils, 
and that the effects of two walls may be approximated by super¬ 
position. Thus for Y(u,Tis,tip) 

(10.5) 

As the ship moves closer to one of the walls, or as th^walls 
are closer, this expression shall be completed by terms in tls and 
I'Hpl’lp* or alternatively, in ryn. 

The effect of a limited bottom depth is included by additional 
terms in and ifn£. The forces due to steady sway_and yaw are_ 
assumed to be increased in proportion to uvt) and urt), and to uvil£ 
and urT|t, respectively. The dependence oft added Inertias on the^_ 
confinements are represented by terms in v£ and vn%,r£ and ni‘t,, 
all so far evaluated from the results published by Fujlno, [ 5] . 

XI. MODEL TESTS 

Test Program and Model 

Five years ago an experiment program was designed for a 
tanker model with a view to put to test the analytical model set up 
as well as to obtain basic simulator data for a first canal transit study. 
Full scale measurements should subsequently be made with the 
98 000 tdw prototype in the Suez Canal, but these plans could not be 
fullfilled, of course. 

In November 1965 a rst series of three component force 
measurements were orderet' to be run with a i;70 scale model at the 
VBD Laboratories in Dulsbi rg. The test program Included straight- 
line oblique towing of the propelled model in "deep" and shallow water 
in the large Shallow Water Tank and rotating arm tests at same depths 
in the Manoeuvring Tank. It also Included straight-line oblique towing 
of the same propelled model in two Suez-Canal-type sections with a 
water depth equal to that of the shallow water tests. Most of these 
tests were run at self-propulsion point of model, determined from 
straight course speed runs in the waterways studied. All tests were 
performed at maximum "Suez draught. " Resistance and propulsion 
tests had earlier been completed at SSPA with a 1:35 scale model on 
several draughts, and ship speed trials were analyzed to support the 
prediction of full scale screw loadings and control derivatives on 
model test draught. (Cf. Section VII.) 
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In AprUAl%6 to «tlbíLh neL-to1“ S,:“Ilo“,WM« Tank were ordered 
straight-line motion close to one stlfiness derivatives from 

Tke teat d4 are TyaraâÂ.1" r^ 

0f 0'465 m/> =—ond^S“a rptpe^TfkS.: TSZJt. 
•anker o^.USXrKr/töÄ'td"'^1"81'-''"^" 
owners in October 1965 for use in 7 Se.^eS' delivered to the 
Suez Canal on a reduced draueht TJn Cru<?e ol1 trade through the 

if.70 scale model are given iníable^ TarínfíÍríenSÍ°ns of shiP and 
Fig. 28. The prototype has a Marine ’ f nd thC b°dy plan is shown in 
and no bilge keels; a^ew tests werl ' P! rUdder' normal b°w 
of a bulbous bow and of bilge ke^ls of lnvestif^e the effects 

vi uuge Keels of common design. 

Fig. 28. Model of 98 OOU tdw tanker k j , 

Model tested on "Suez draught1'30 V 3nd proiiles- 
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TABLE V 

Length, Lpp = L 

Beam, B 

Design draught, TCWL 

Suez draught (38'), T 

m 

m 

m 

m 

Propeller diameter, D 

Pitch ratio, P/D 

Area ratio, A VA 
d o 

Number of blades , z 

m 

Ship 

253.00 

38.94 

13.45 

11.58 

Displacement, Suez draught, V m3 vi 933 

Slenderness ratio, Suez draught, - 
Lp(/V '3 

Midship^coefficient, Suez draught,- 

CB forward of Lpp/2, XQ/Lpl> 

Long, radius of gyration/Lpp 

7.15 

5.606 

0.991 

+0.0185 

0.23 

0.74 

0.65 

5 

1:70 Model 

3.614 

0.556 

0.192 

0.165 

0.2680 

0.1021 

Rudder area, total, Af 

Horn area/Af 

Relative rudder area, Ar/LppT 

Height at stock, b m 

64*8 0.0132 

0.182 

0.0221 

9.80 0.140 
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Results for Force and Moment Coefficients 

Figs. 29 - 32 show plot of force and moment coefficients 
from tests in deep (free) and shallow water, and the analytical 
approximation obtained by stepwise regression analysis. Results 
from the near-to-wall experiments have been given in Fig. 23. 

In the evaluation it was consistently assumed that the changes 
of first and second order derivatives due to finite depth could be 
approximated by terms proportional to £. As the tests did Include 
two values of £ only, one of which very small, this does not effect 
the derivatives derived for these two depth conditions, nor the "true- 
deep-water" values. 

Further, because of the scatter of experimented data it proved 
suitable to perform the analysis with an assumed value for the deep¬ 
water cross-flow resistance corresponding to C0 = 0.7; cf Section VI. 

In agreement with earlier findings the test results inuicate a 
very marked Influence of shallow water on the non-linear force contri¬ 
butions, and on the lateral force due to yaw in particular. It shall be 
observed that the analysis involves a change of sign in the first order 
rotary force derivative as water depth is reduced. 

The force and moment derivatives derived from shallow water 
and canal tests will be presented in next Section. 

and shallow water. 

884 



RUBC 
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Fig. 30. 98 000 tdw tanker — Moment coefficient N"(ß)/u" in 
deep and shallow water. 

Fig. 31. 98 000 tdw tanker— Total force coefficient Vir^/u"2 
in deep and shallow water. 

885 



UJUUHJI-WUII! wmmmm 

Norrbin 

Fig. 32. 98 000 tdw tankpr — 
in deep and shallow wate?.6^ coefficient N"(rVu".i 

“■ ^U1TS F0B C°»™™ENT DERIVATIVES 

— (cr«r2?r— - ‘-e“Ä'LÄ.hown 

f“lñÓ îsî a^imVntal' 0bla,iMd for the SSPA 
SSPA ,i¿U,f,d "k‘,h "‘oolotioS from Nei^SU.“TbHshod 
i and thn re»„lt, aï. tl°n *‘taear d'P«ndance 0/,¾^ 1 9,1 ’ The 

r^^d^-'r- on 

bf -.‘p.rt^.X0! "Hem:,írf “”a¿~ Inc awxiness moment. 
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Fig. 33. Stability derivatives as influenced by finite depth -- results 
for SSPA tanker compared with Fujlno tests and Newman 
theory. 
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û Fujkie "Mwtfm" 
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) * 

Fig. 34. Increase of linear and rotary acceleration derivatives with 
Increase of parameter t according to Fujlno testa end 
Newman theory. 

V »« 

^ t* »« 

1*1 
1-1- 

Flg. 35. Rotary force derivative for tanker as a function of waterway 
depth and width, rcploitcd from Fujlno PMM data 
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Flp, 37. Rel. change of lateral acceleration force derivative for B 
tanker as a function of waterway depth and width, replotted 
from Fujlno PMM data. 
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Fig. 38. Rel. change of rotary acceleration moment derivative 
for a tanker as a function of waterway depth and width, 
replotted from Fujlno PMM data. 

The diagrams in Fig. 35 - 38 are compiled from Fujlno's 
measurements of rotary and acceleration derivatives In shallow 
waters and in canals. The dotted curves suggest a linear Increase 
of all these derivatives with £ in unrestricted water, and a more 
complex dependence of ¿ and T) In a canal. (Cf. end of Section X.) 

XIII. SOME ASPECTS OF SHIP BEHAVIOUR IN CONFINED WATERS 

Here a few comments will be given on some of the results 
obtained in a computer and simulator study performed for the 
98 000 tdw tanker. The diagrams In Figs, 39 - 45 all Include results 
directly drawn on the analogue computer recorder. 

The only full scale maneuvering trials with the prototype 
ship so far available are a 20o/20° zig-zag test and a Dieudonné 
spiral, both run at full speed on full draught. These results are 
compared with the computer predictions — or hlndcasts - for the 
ship on Suez draught In Figs. 39 and 40. As the difference In draught 
is not likely to have a significant Influence the agreement is quite 
good. It shall be observed that the derivatives with respect to 
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ShiP Mweuverina in n 
“P and c°»fi*.d Uat.r, 

somewhat accldentaj. XaCt pr<!dlc«on of overawing 

*• ..tl.Jt.g00Td^»Utlon o/ apeed loaa In th 
Position of the ehip^!! dlííer*nce U lively to be^**** m*n#uv' 

P * Prea*ure-type .peed log. b* du® t0 ^ «fr 

■treightTco*uíííP|íarfd ,Imulator model) 1* 

« alow .peed a. wÄ^Vm'* the to^ loop i^ ‘ on 
•Piral prediction i*7 hl«h* In Fig. /, i.d ,h i- *bout 3.5° 
**»• initial atabillcv i •haUow water (t = 3 37 ?_.,ho'*fn 'he 
Jurn «• increaí^ a 'T*' , ^ - 1.3,. „eri 
Sitial »lability on wCtil i" í*Ct0r *ov«»-ning ¿A •‘•bUity in * 

Sg- ^ -¾ • 3?, 
-V'«'- Sí as-; I?" 
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Fig. 40. 98 000 tdw tanker - 4%(&e)-dlagram írom «piral teste ln 
deep water. Comparison of full scale trial < (x,o) and 
computer prediction (-), 
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T* 

Fla 41 98 000 tdw tanker - Low «peed •Plr^ í1,U8ra"J.í-r0m 
F g* computer prediction, for deep and .hallow water 

A .ImIU. trend U »0. taÿ». ‘»‘JS 

fe o'f'lSÜ!«.«. depth" .. dettned by Fujino, ( 5). 

Figur. <2 .ho*, prediction, lor 20” redder .t^preep.-.. 

ln dÍ3J¿«rta«hi'.toÚorw c.e “.‘.éicUtod with th. lerge 
oT:Ío.". oo^.,. SlnrU.r re.-It. h.ve e.rU.r been 

reported by Schmldt-StleblU, I 99J. 

„ , anj fuij scale experience la known that the 
b.,m.^r.;“rdSon...^ô..r”^,^.hipin 

maneuver, that involve a change of cour.e ghallOW Jat ‘ for 
Maneuver, by u.e of auto pilot, are repeatable and well .uited for 
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Fig. 42. 98 000 tdw tanker- Computer prediction« of 20" rudder 
• tep response in deep and shallow water. Approach speed 
7.6 knots. 

Fig. 43. 98 000 tdw tanker - Computer predictions oí i0° course 
change manoeuvres by use of auto pilot knob setting. 
Two speeds in deep water. 
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Fig. 45. 98 000 tdw tanker - Computer prediction, oí on-track 
control by auto pilot. In deep and confined water.. 
Approach .peed 7.6 knot.. Initial off-.et ¿0 m to .larboard. 
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comparative Studie«. The diagrams In Figs. 43 and 4^eí*r . 
course change maneuvers predicted for the U 
deep water and at the lower speed In shallow water, ®«cuted 
using the same normal setting oí auto pilot controls. There are 
several overswings In shallow water, and checking helm Is large. 

The final diagram. In Fig. 45 furnish 
tlon to the changing problem, of course control ta 'hjUow water, 
and In canals. These problem, are also dealt w th by Eda and 
Savitsky [ 100] , and In considerable delaU by Fujlno , I 1G1J. 

It Is assumed that the ship Is movin8 a‘.low •peed.°oK»nnel 
straight course parallel to the required track (In a buoyed c^ann*{’ 
say) but off-set Z0 m to the starboard side. A signal proportional 
to this lateral error, calling for 1 degree rudtler per m oiftrack' 
l. fed Into the auto pilot. The upper curve, for the fre* ^ater COn 
dltlons demonstrate that the rudder r^1° *•ttln* maf* b* d 
(from normal 3 to say 10) In order to .tabUlae the.Mpon the re¬ 
quired track. This control work, reasonably *atU 
shallow water, but It tend, to make the ship 
line In the alternative case between parallel walls In deep water. 
Obviously the presence of the near wall accelerate, the first swing 
towards and bayond the centre-line« 

The two lower curves of Fig. 45 relate to the ship In a 
typical part of the Sue* canal. In the shallow water the effect of the 
near wall is even more pronounced, and the stern of th® S^P * 
danger of hitting the bank. However, by turning do^? the 
error knob to *ero the auto pilot Is made to behave like the * 
perlenced helmsman, already referred to In the Introduetlon. Thus , 
the ship first sheer, bow-off the wall before the auto pilot applies a 
counter-rudder In order to slowly press the ship laterally away 
from the wall. The ship is seen to be almost steady on to the centre 

line within two ship lengths 
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THE SECOND-ORDER THEORY FOR NONSINUSOIDAL 
OSCULATIONS OF A CYLINDER IN A FREE SURFACE 

Choung Mo ok Lee 
Haval Ship Htatarah and Davtlopmant Cantar 

Waahington, D.C. 

ABSTRACT 

A nonlinear hydrodynamic reaponee reaultlng irom 
vertical oscillation of a horlaontal cylinder in a free 
surface at the sum of two monochromatic frequencies 
is investigated. The fluid surrounding the cylinder is 
assumed incompressible, its motion irrotatlonal and 
Us depth infinite. 

It is shown for the case of a semi-submerged circular 
cylinder that when the two frequencies are close to 
each other the hydrodynamic force associated with the 
difference of the two frequencies is greater than the 
steady force. In the limit as the two frequencies 
become equal the above two forces also become equal. 
It therefore appears reasonable to Include the differ¬ 
ence-frequency force in the calculation of the maximum 
steady force when the excitation of a body consists of 
narrow-band frequencies. 

I. INTRODUCTION 

The hydrodynamic problem dealing with a horlaontal cylinder 
undergoing a vertical simple harmonic motion in a free surfact has 
been investigated by many authors. Ursell ( 1949) treated a semi¬ 
circular cylinder using the method of multipole expansion and ob¬ 
tained the pressure distribution, added mass . and damping of the 
cylinder. Later Tasai ( 1959] and Porter ( I960) extended Ursell’s 
work to cylinders of ship-like sections using conformal mapping. 
Frank { 1967] dealt with the foregoing problem by the Green’s func¬ 
tion which resulted in a distribution of singularities. Lee ( 1968) , 
following Porter's work, extended the potential solution to second- 
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Lea 

ff;!.*"* P*,""b*"0n *"«• ¡» o< motion amplitude to 
n*JJ bcun. la the preaent work thla cylinder-oacilUtion orr.hu«, i. 
extended to the cae where the cylinder 1. O.cUlated 

iorcea act lug upon the cylinder include the effecta oí interactiona 

quenc fea 'of* the*baa Sc” atTect0 P“rt ^ ,Um *nd ir.- 
T* b**Sc •P*ct*,um. The magnitudea of theae aecond- 

Unearltv<of°thT f111 *C ^ovlde » -ea.ure oithe non 
fluld f^a ¿riodlcedl!.TCKre,p0n” oi lnv‘«‘d incompreaalble 
free aurf^e d‘-turb.nce generated by an o.clll.tlng body In a 

rtHt,in.iir,r0dy4.n*,T!lc ‘î11*1»1411«* «uch *• added maae and damolna 
obtained from the theory oí oacUlatlng cylindera in a free enriará 

[ iJ^,U|*ntry ![e•Pon•® ot «h4?« to wave*. Recently Taaaf 

K * ,tternPt ,0 provide information on the nonlinear relation 

perhapa by uaing the acheme auggeated by Haa.elmann [ 1966) 

a i *. Th! P.robl®m to be Inveatigated in thta work ta the íollowin» 

ienrtkij aal1! t0.nBeh0|r‘*°îîU2 Cyl,nder which 4* «ymmetric about it. 
at the .ui 0r »w *,Uïmer8ed ,nd íorced to oaclllate vertically at the a um oí two monochromatic frequenciea. The maxlm..r« At. 

placement oí the cylinder from it. mean po.ition ia .^"med^o be* 
•mall compared to the halí-be.m oí the cylinder Th* n?^« w, u 

^níiird:.r.'“hn^^0"*r.v.rni?u^osr«Vd,íubr'*"wC 

* * bound*ry*v*Jue problem for a velocity potential The klnemat.c 
end dynamic condition, to be aati.fied on the free .urface ar! 
linear and the poaltion oí the free auríace ia a priori unknown An 
exact aolution of thia problem in a clo.ed iorm cannot be attained 

iVp^rîSïd^Thf* i0,“tl°" b*,ed °n * lineariaation oí the problem 
puraued In thla work. The linearisation of the problem i* carried 

r.mLl%^Vam?ter°io eXP th* Veloc,,V P0»*n‘4«J in term« oí 
!.*"? 11 P*r«meter formed by the ratio of the half-beam to a tvoical 

* PI®c*'«ent amplitude oí the cylinder motion. The flrat-order 
perturbation potential conaiata oí two potential. , $ (x v t) and a 

T#hCe .0.cWhHlCh T01"' °nly °ne of th*^ iuadamentalVrequenclea* 
The aecond-order perturbation potential conaiata of five potential.' 

wo of them are ♦ and ♦ which are aaaoclated re.pectivelv with 
frc,u,„cl,. .„ul ,h. i«nS.m.„ul frequencle,. 

dlSfíírínce‘nTÍL r*rd *,,ocift*d «»Pectlvely with the aum and the 
difference of the fundamental frequencies, and the last one èJx vi 
Is independent oí the frequencies and ia a steady potential. ’ The 
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solution« for the first-order potentiale were given by Uraell f 1949] 
ï"“1, ¡W ■ ' I I «or .id F,.„M , 967) .mon,"".,.1 ' 
The solutions for three of the second-order potentials 4 * .n¿ 
fr -- I‘v.n by Pa rasai« ( 1966) and Lee [nil] lk tU‘JrXaTnt 

♦^lÜl^V^wuÎbe'îlven"" ÍOr ^ r®maintn« »«cond-order potentials 

„ ,T^*Ä «options are based on the method of multipole expan- 

Um .AÍ'nlV t0 th.V empl0yed by L®e 1 ,966J • An »"t.re^ting^rob- 
íeTní,s i non"!!? ! Pre*ent W°rk U * •^face-wave problem con- 
c.rning a non-decaying pre.sure distribution on the free «uríace. 

in a^,0!UÍ.10V0Í Pr«»«ure*<l‘*tr»>ution problem is shown in detail 
in Appendix C. The potential 4#, associated with the difference fre- 

¡ not.nili? 0ÍJVt1,Cul.*r fl«n‘ilcanc« ln practical problems. 4, 1. 
îuencU«^ Z'ÎÏ1' * °*‘y-v*rying in time if two fundamental fre- 

f^rce. -»rK IS*" OÍ b0di** *Uh ‘"•‘«»‘^cant re.toring 
ia^fc form -MUÍ?*r*l s ^ no4,ín* PÍ»‘íorms, any hydrody- 
cíSd /.»i.* i.Wh h * co",tan#t ln time or v»ries slowly with time. 
If Ü act. fo, e*fUr,lo"a from th* position, oí .uch bodies 
¡«I .\m f 1 ,1 8 tlT®* ♦# mu,t be circulated in order to deter¬ 
mine this slowly-varying hydrodynamic force. 

tlon ‘a" ,he pre•*n, wo*£ numerical results obtained from the «olu- 
♦# are shown. These Include the pres su re-distribut ion a*M>ut 

ôn rtmÜUÍhle«l!ted flrCuJ*r ‘b* hydrodynamic force acting 
on It. and the outgoing waves. These results are shown with other 
first- and second-order quantities for comparison purposes. 

It. FORMULATION OF THE PROBLEM 

A Cartesian coordinate system Is used with origin at the 
interaction of the undisturbed free surface and the vertlcal line of 
symmetry of the cylinder. The x-axls is in the undisturbed free 
surface and the y-axls is directed upward. 

Any point in the apace is described in complex notation by 

e ■ X My « re' . 
(I) 

The region outside the Cylinder and 
from the region outside a circle in 
by the conformal transformation 

the cylinder boundary is mapped 
the (-plane and its circumference 

¿ ( ♦ Y a L4*"» a v ^ “ínj ^ • 
n«Q 

( * 4 Mn « Ve**, X a i, 

(2) 

(3) 
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where a and 

Lee 

given by 

*r« real confiant». 

Pointa on the surface of the cylinder at ita 
mean position are 

*o* »<Kacos o + *2»« cos (2n ♦ Do 
UaTi -— 

»*0 0 

Vf * *Ko"‘« - / ^ 1)0 Í 
»ÎO 0 

(4) 

b * *o^o-0). 

d " lyoUo«*»/2)i- 

(5) 

(6) 

.»= b.ídV >= b. ,h. a um o( 
T. . “ »impie harmonic motions with different f remionr-i«. 
The motion of a point fixed in the body is expressed by quenciea- 

y(t) » h0(sin + sin »2t) (7) 

rhe7ned,;;d^f;:mt;1vhh:L^,canit>onr.:pre,cn‘*thc amputude of 

b. .,,.u.t“:i.,,a;"Â?oVr.Tí".vr.' r r0““" •« 
*(*,y,t) is expressed by * OÍ ve,ocl*y potential 

(sis + * V1* * 0. (8) 

to inflnity^ along'both* he* pos^t Íve1 aiící negãtívã^x- axes*" *t he* n uld***0^* 
b=..um which U ., a„d ,h. lmn*V..Î ¡U“.«' ol'h" cylinder. 

If we let the equation of the free surface be expressed by 

y 8 V(x.t). jx| > b. (9) 
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the kinematic and dynamic boundary conditions on the free surface 
can be given respectively by 

♦„(x.YU.tMJY.Ot.t) - <*r + Y, » 0, <I0) 

and 

4>f(*,Y(x,t),t) + gY + if*,* ♦ ♦*) • 0, (it) 

where a constant atmospheric pressure and an absence of surface 
tension on the free surface have been assumed. Taking the substantial 
derivative oí Eq, (11) and eliminating Y(x,t) by using Eq. (10), 
we obtain 

<i»n(x,Y(x,t),t) + g*, + 2d>,4>fl + 

+ 2$,(12) 

Let the equation of the cylinder surface at Its rest position 
be given by 

S(x0,y0) « ííx^) - y0 » 0 (13) 

where f(x^ represents an Implicit functional relation between x# 
and y0 through the parameters k0 an. a . Then the equation of the 
oscillating surface can be written as 

S<x0.y0 + VW» s + h0<*ln »i1 + 8ln vj) - Y * 0. (14) 

The kinematic condition to be satisfied on the cylinder surface is 

V*(xe,y0 + VW •*) * n * Vn » - (i5) 

where n is the unit normal vector on the cylinder surface and points 
into the~îluld and Vn Is the normal component of the cylinder- 
surface velocity. Since 

VS 
Z'WST 

st 

Eq. (15) becomes 
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**(X0’y° + y(t,*t)f,(xt>) * co. <r(t +ff2co. a2t). (16) 

* t‘; the harmon,c Con^ of 

BtL B4> 
n a ïïï 

clockwiae ÄÄ C— l" tha ~ 

+ yW ,t) - - . 

To complete the specification of the boundary-value orohl-r« 

abou*the ^-° **" ,ymmetry <>í th® flow 

«Hx,y,t) * *(-x,y,t). 

:îr^rniCd-7Hrû^.rbi0t ï:zxi:d\rd Buríace 

^(x.-OO.t) e o, 

end the solution should represent outgoing plane wave, as |x| - oo. 

HI. PERTURBATION EXPANSION 

b«...Ä«* ,?VÄvsr*v,’!:,,r"1,rch ,he 
Y « AX + BX 2 

where the Input X la given by 

X » e-'V + e-*V 

components InvoVv^"To^ut^^re ^ ‘“T™* 
*, - a,, and a "d.c." shift. Therefore, we makV a oerturbati 
expansion of the complex velocity potential n 
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H(z,t) « 4>(x,y,t) + liMx.y.t) 

0i * perturbation Para,T>eter e * h,/1» ^ the following 

H a «h“1 + c2H(t> + eJH,5) +.., 

= cl*1" +1+10) + «W*» + i+‘«, +e^(J> +i+‘», + ... (17) 

e3qjanded°a*ty P°tentlaJ and atream iunctl°n given above i. further 

* a «.(x.y.t) + +2(x,y,t) 

= *((x,y)e **'' + * (x,y)ei0*\ 
(I 7a) 

k(2) 

0 7b) 

* = ♦jU.y.t) + +4(x,y,t) + ^(x.y.t) + 4>#(x, y ,t) + +?(x(y,t) 

3 9»j(x,y)e + + 

+ v■,(Vff^>, + Vx,y) 

4<,(x.y,t) + +j{x,y,t) 

= ♦((x.yje J 1 + *2(x,y)e (j7cj 

*{t)‘ +5<x*y-t> +*4U.y,t) ++9(x,y.t) ++#(x,y,t) ++T(x,y) 

= ^x.yje'^’ + V-*V + + ,e•,¢"*¢^,, 
^ 5 

+ *,6 * + *7(x,y) 
0 7d) 

etc. , where 

♦k3*k« + >|,,' *k58 ♦if 

for k a 1 ,2,... ,6, and j a VT?. In these expreaalona , only the real 
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parta are needed, so whenever there appears an expression oí the 
product of two comolax iunctions one of which is a time harmonic 
involving with j a v-T, it should be understood that the real part of 
the expression is to be taken. 

The convergence of these perturbation expansions will not be 
discussed. As usual it is hoped that the first few terms of the ex¬ 
pression would yield an adequate approximation to the exact solution 
of the complex potential H(x,y,t). 

The expansion given in Eqs.(17) and the Bernoulli equation (11) 
suggest that we also assume the expansion 

Y(x,t) * e[ Y((x)e + Y2e 

», , -lie,* 
+ Ys(x)e + Y4e * 

-((o’,» cr-)t -j(e,-«rjl 
+ Yse r + Y6e * + Yr(x)] + 0(es) (18) 

where 

+ ^ks ^or ^ * Í » 2,. , , 6» 

Substituting these expansions into the Laplace equation and the boun¬ 
dary conditions and equating the terms of the same order lit c as 
well as of the same harmonic time dependence, we obtain a set of 
linear boundary-value problems. In this linearization process tfte 
Instantaneous boundary of the fluid is expanded in Taylor's series 
about the undisturbed position of the fluid boundary. 

The linearized boundary conditions for the functions 
(j = 1,2,3,4,7) are shown in Appendix A where It is shown that in the 
limiting case of a, * a. the relations = ?2> s ^ * 9jz and 

s can b* established. These identities mean that when 0-, a e, 
the perturbation expansion given in Eqs. (17) reduces to that for the 
case of a simple harmonic oscillation which was investigated by 
Leo ( 1968]. * y 

The linearized boundary conditions for the functions and 
are given next. 8 

3.1 The Boundary-Value Problem for »n(x.y) 

is harmonic in y < 0 except in the portion occupied by 
the cylinder at its mean position. On the free surface 

%(x>0) ‘ Vî * h5(x) U9) 
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where 

K3= f *tf/g. 

W ' - J',/(î«)(»,,«.0)(,tn - K¡%) . 

in which 

K, = -SIL 
1 8 1=1,2. 

On the cylinder surface, 

- %= m5U0.y0) 

whe re 

(20) 

(21) 

■ - J| ((*,.,(-0.7.1 * . ,i(>) , (22) 

or, In terms of stream functions, 

*9<xo*y<,) = - j I (*ly(x0,y0) + *iy). 
(23) 

In the far field - 0 as v - ™ ^ 
going plane waves as |x| -* oo Furth» repre8ent on¬ 
flow condition which is eipress’ed by ^J-x.y) 3 8ymmetrIc- 

3*2 -he Bo^dary-Value Problem for ^Ix.yl 

cyl 1 nde^at‘itsTnean^posUlon^ OnSrie Íuría«10" °CCupled by the 

where 

%<x.O) - = h#(x) 

K6 * “ »,) /g, 

(24) 
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h6(x) = - ^/(ZgH^x.O)^ - K^zy) - 2(^+^)} 

+ jV^gH^lyy - K|9>|y) - 2(^(x^2x + Ç>|y^2y)} (25) 

and the bar signs mean the complex conjugates, l.e. 

^ = Pic - jPis for 1=1,2. 

On the cylinder surface 

«Wxo-yo>f,(*o) - p6y = m6(x0>y0) (26) 

where 

m6 = j 7 {pZyy(xo-yo) - P|yy ' (P2xy “ P|xy>f'K» (27) 

or, In terms of the stream functions, 

^6^0.yo) = j I (*iy - *2y). (28) 

In the far field Pgy'“*' 0 as y - oo and <p$ should represent out¬ 
going waves as |x| —*■ oo. The symmetric-flow condition Implies 
that 

P6(x,y) = Pg(~x,y). 

IV. SOLUTIONS FOR <p5 AND <p6 

It will be assumed that solutions for the first-order potentials 
V>i and ç>2 are known. The method of multipole expansions for 
finding <pt and ç>2 Is described In Appendix B. 

The main difference between the first- and second-order 
problems Is In the free-surface conditions. A first-order problem 
has a homogeneous differential equation for the free-surface condi¬ 
tion (see e.g. (A-l) of Appendix A) whereas a second-order problem 
has an inhomogeneous one (see e.g. (19)). When there exists a non¬ 
constant pressure distribution on a free surface of negligible surface 
tension the first-order free-surface*condition for an incompressible 
irrotational flow is represented by an Inhomogeneous differential 
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equation such as Pn /<ru < 

mêmmmm 
these problems surface pressure distribution o , aves artsing 

aWehTe” Ä1»- pressure dUtniK l- F°tentla:i associated with tv,« n , DUJ • we 

that it is knotnb^e10cn ^ the free 8«face by w ?Z if" °f VarIable 

Ea-m' 
KÄAhrorr g 
a« identical to thoae tor the S“« “T™1“' Prob1'” “ G i. 

there Ue cêrtSn r"?'*"5'-““ Potenti^^™“» a’V* by h« 

functions, " h and h the ''£««-»urtoc^re 
to be satisfied w h6 g ven by Eqs. (20) snH /^iP 3Sure 

S“r=^S=:S5igu 
and 

ha = 0(1/X2) 
(29) 

h6 = a0e 

",hare >« a»-i P «re given I 

({(Kl-KjOlxl-#} 
0(1/x2) 

by 

(30) 

ao = - <r2) 
and 

(30a) 

Here the quantities Q 

ß = 9, - q2 - ir/2. 

k and q^ for k = 1 ,2 
(30b) 

are associated with the 
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first-order potentials and ^^.foî/eVpoïÏnU^ 
of asymptotic behavior of the first oro ^ 

Kky )lKkl*l-qk) 

Vk~ - i1*0»* e 
for k * 112 as co. 

It l. »pp.ront from Eq. t30’ Jh“ ‘‘„"ridírMlon ta d<.rWli>8 >1'« 

ÂrwnsrrJcK «uw h.. 

4.1 
. , Caae Where Fr^.Surface P^-«»re Distribuían 

Solution for a Case wnere x—--- 
la SpeclTTe? 

in .XL section we 
given pressure distribut °n ”"lb tl n8 which have harmonic time 
attention to the pressure J^^^^rmore we consider the two 
dependence and are even ^ .. preBsure distribution decays In 
special cases: the one "herejhe pr«»^ one the pressure 

the manner of l/x »■ J J . outgoing plane waves as M 

hl^^lnen’dence of the form 

w(x.y.t) = W(x,y)e 
..lull 

where W , Wt * i*. ^ *" ^ 
surface boundary condition is 

Wy(x,0) - KW = h(x) 
(3D 

, », mrPBsare distribution and is even 
where K = wVb *"d lhthn"oI W .hould repre.ent outBolng 
ln x. w. expect tha^' Vridfurthermore the. W((x.-») = 0. We 

ÄÄ"»VJä. problem Id two ce.. 

se Is given ln Wehausen and Laltone Í i960] 
The solution for this case is given 
in the form of a complex potential 

h{x) = 0(1/x2) a« lxl 
a>. (32) 

F(z) = W(x,y) + IW (x,y) 
V ,y pOO 

e./.f MS). 
J-00 

iK(l-i) 
di 

pOO 

(j - i) \ 
J-00 

, -iKU-O sc 
)e d&. 

(33) 
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El is the exponential integral defined by 

E,W'.i T1,1' f»' larg (,)(<,. 

Ca.c2: hW . A.W'W + 0(I/xi) ^ |x) ^ o 

w!rAfÄ:»*»-e„»mberand A ,s 

(34) 

a complex constant 

fu»«»® wX7Äh u1:« "• "Vä:: a harmo“‘c 

Wly(x,0) - KW, = AejK‘lxl 

W|y(x,-oo) = 0 

and 

W, ~ Be jK'lxl 
as oo 

f*h,e W, ^‘L^dTippíX'c ar“11 B = B' * •i8" The ">l«lon 

W,(x,r) * £gleJ.■ , ^'"’-Ed-lK.a, 
K' - K' 

Wow we let 

] -(35) 

w2 s W - w, in y < 0> 

It can then be shown that 

W2y(x,0) - KW2 = h(x) - AeJK,Xls h(x) 

where 

and that 

h2(x) = 0(l/x*) a8 jx,œ 
W2y(x,~oo) = 0 and W2(x,y) = w2(-x,y). 
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The solution to this problem is given by Eq. (33) a* 

F2(Z) = W2(x,y) + iW*(x.y) 

00 f*00 

= h (4)e'"<(,'*, E,(-iK(z-£)) <U ♦ 21 V h2<4)e‘ 

+ (j- U y" h2(4)e-"‘,K,44. 
00 

Thus Eqs. (35) and (36) finally give 

iK(»-£) 
d4 

(36) 

W s W, + Wg 

00 h|(4)e*iK(,'t,E1(-lK(z-4)) d4 ♦ 21^ hjt)* '*'*'0di 

(37) 

If we seek a solution to the problem described in Section 3.1 
except the body-boundary condition, given by Eq. (2i), we can ob¬ 
tain it from Eq. (33) of Case 1 of this section as 

F5(z) = W5(x,y) + iW5(x,y) 

.'ÍKs<l'£)E|(-iK6(z-4)) d4 ♦ 2i£ h5(4)e■'K^‘<, d4 

-íKs(i.£) >00 

+ (j - i) h5(4)e d4 » (38) 

in which we let h^x) = 0 in -b<x<b since the velocity potentials 
are undefined in this line Interval. In the same way, if we seek a 
solution which satisfies all the conditions except the body-boundary 
condition given by Eq. (26) in Section 3.2, we can obtain U from 
Eq. (37) of Case 2 with the constant A replaced by a^e ’^ (compare 
Eq. (30) with (34)). If we express the solution in the form of a com¬ 
plex potential and let K' = K( - Kg, we find that 
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F*U) • W,{*,y> ♦ í W* (x,y) 

at 

mi 

where * eigne correepond to k * 0 end h#(x) »0 In - b<x<b. 

4.2 Solutione for », end e^ 

We will now ehow how to uee the eolutione obtained in the pro¬ 
ceeding eection to find fs end We introduce e new hermonic 
function defined by 

(40) Gk(x,y) • - Wt 

in the domeln oí y < 0 except for the portion occupied by the cylinder. 
Here the eubecript k cen be either 5 or 6 unleee specified a* one or 
the other. The boundery-velue problem# poaed in Section* J.l end 
3.2 cen be written In term# of e# 

(41) <y*,°) - « o. 

- G^» m||(*0*ye) - (W^.y^f'ijg - Wky). (42) 

or in term# of the hermonic conjugete# of G^, denote by G* , the 
above boundary condition can be written a# 

and 

Furthermore Gj i# even in x, G,,, — 0 ee y — - oo, and Gfc 
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• hould represent outgoing waves as |xj — oo. 

Th**se boundary-value problems are almost identical to those 
for the first-order velocity potentials. Thus we find them by the 
same method used to find the first-order potentials which is described 
in Appendix B. It is often called the *multipole-expansion method*' 
since the potential is expanded in an infinite series of poles . located 
at the origin, of increasing order with unknown strengths. Each 
pole satisfies Laplacian equation everywhere except at the origin, 
the linear free-surface condition of the type 4>r(x,0) - K4> > 0 and 
the infinite-depth condition, and is even in x. However, since each 
pole vanishes as |xj — oo the radiation condition of outgoing plane 
waves is not satisfied. To circumvent this a source singularity 
which has all these properties plus the property of outgoing waves 
st jxj * oo is added to the multipole-expansion series. The unknown 
source and multipole strengths are found by satisfying the remaining 
condition which is the boundary condition on the body. Specifically 
we assume the solution for Gk to be 

Ga(x,y) s A (43) 

Here b^ * Qh * unknown strength of a source at the origin, cfc0 * 0, 

* a source of unit strength at the origin. 
f 

where jQ indicates that a Cauchy principal value is to be used, 

sin Urn - l)o 
(2m - l)k** 

* multipoles of unit strength at the origin, 

ba* and cam Ä 1 **■* unknown multipole strengths, and q. 
represents unknown phase relations between the forced motion of the 
body and the pulsating singularities at the origin. The expression 
for the harmonic conjugate of Gk is 

(b»m * JcsJMÎm(x(k,o).y(k.<»)) (46) 
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where 

for m S 1. (48) 

(47) 

Our teak ¡a now to find the unknown coefllcienta b,,* and ck_ and 
the phaae relationship from the boundary conditions on the body 
surface given in Eq, (42). Since the boundary conditions on the body 
are simpler when written in terme of tha stream functions G* than 
in terms of the potential functions Gk, we use the Eqs, (42a) and 
(42b) to obtain these unknown quantities. Thus we find that 

00 

Since the q^e are independent of the points (x0,y0) on the body, we 
see by choosing an arbitrary point on the body, say (xi(X„,e'), 
y’U,.®')), that 0 * 

(50) 

Substitution of Eqs. (50) into (49) yields 

and use of the earlier definition of bk = Qk and ck0 • 0 in this 
equation yields 

. ( f 5—SlliF*» dp ♦J»e“k,'#sin K, 
Bk(*¿,y¿> V Jo P * Ka 

1ÍH-E2À dp + j.e“*’'« sin K.x* - 
* w 
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Since this equation is valid for all values of a in the interval 
(- */2 , 0) on the circle of radius K* In principle we can take an 
infinite number of o's to set up an infinite system of a linear alge¬ 
braic equation which can then be solved for and c^Q,,. 
In practice, the infinite series is truncated, so only a finite number 
of these unknowns is sought; this finite number is equal to the number 
of chosen o's. The proof for the convergence of such a truncation 
scheme was given bv Ursell [ 1949] . Once the values of a number N 
of bjj and (l.e. m * i ,2,.., N) is known the values of 
q^ ana uk are readily obtained from Eq, (50) by 

(52a) 

(52b) 

where 

Thus we finnaly can express the solutions of the velocity potential's 
Q* by 

^(x.y) ■ C^(x,y) + W^x.y) for k « 5,6. (53) 

V. PRESSURE, FORCE, AND WAVE 

5. i Pressure on the Cylinder Surface 

If we expand P which denotes the pressures on the cylinder 
in the same way as * was expanded in Eq. (17), we find that 
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11 ' •* * *VI1) tn Taylor aerie« about the mean 
position of the cylinder (x0,ye) and substitute 

y(t) * h0(sin <r,t + sin 

* cb{«ln ffjt + sin ejt) 

SÄSÄ, o*'.,"*""8',h' """■ln pow"*of'“d >" 

p * * {piixo*y9>«,r|t + p2* ***' I 

* «'{p,*'*'1' * p,.'1'''' * p,.-"''-*” 

+ p«e + Pr<xo'yo)} ♦ (54) 

From the Bernoulli equation, 

P - - P*f(x0,y0 + y(t),t) - pg(y0 + y(t)) . | (♦[ ♦ **y), 

** í;p**11® P.r***ure PKVo* expand the right-hand aide in 
accordance with Eq. (17) and equate terms which are of the same 
power of c and of the same time harmonics. We then find the ex- 

and*theTr*Am ^ P,'i <l " * ‘ "7) tn t*rm- of v«îoclty potentials 
and their derivatives. The expressions for these p,'« are ‘ 

Pj “ jP(*'i(*o« 1¾) ” gb) for 1 » 1,2 (55) 

PUÎ “ ” P + ^ for 1=1,2(56) 

P^-pJ-JK 'WX'.yJ 

+ 7 (ff«^u +azP2,)} . 

P6*-p{-J(e, - «rjífsíx^y^) 

p^* 7 Z {^^<*0^0) - 7 + . 
»«i 1 

(57) 

(58) 

(59) 
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where the bar sign mean« the complex conjugate e.g, 

*2* * *2«* ” ^2*i‘ 

IÍ we let 

6j « tan'1 (RCj P|/lmj p,) for l » 1 ,2.6, 

we can expreas these pressures in the form 

P¡ * JIp¡I* **' í°r * * 1,2,....6 

or, in association with the time harmonics, 

jpj sin (Wjt + 6,) for 1» 1,2,...,6 

where 

b)| » 

a, for l a 1,2 

2^,.¾ for l » i ,4 

e, + ff2 for l * 5 

o\ - or for 1*6. 
i 2 

(61) 

5. 2 Vertical Hydrodynamic Force on the Body 

The vertical hydrodynamic force acting upon the body is given 
by 

r/(t) 

F a - 2 \ P cos (n,y) df . 

Here <0(t) Is the Instantaneous position of the point of Intersection 
between the bottom of the body and the y-axls, l(t) the Instantaneous 
position of the point of contact of the body with the free surface, and 
cos (n,y) the direction cosine of the unit normal vector on the body 
surface In the y-dlrectlon. The positive direction of the unit normal 
vector is into the fluid, and the Integral Is taken along the cylinder 
contour. Eq. (54) enables us to show that for the family of cylinders 

924 



Noneinuaoidal Oooillatione of a Cylinder in a Free Surface 

mapped according to Eq, (2) 

F S 2i*0 dx°[C{P'<Xo’y°>e +P*e ^1} 

^{p5e•,^<^*, + P4*",*a|*+ Pje'^^1**^*^ 

+ p#e i(^"'ri,,+ Pr}] + 0(€*). 

IÍ we let 

F a e(i,e + {¿t ) 

+ €^^tse,^9', + i4e" 

♦ * ,r, 

1*»*» 
‘s* 

+ ou5), 

(62) 

(63) 

then we find that 

£, a 2 Ç Pi(x0(X0,a) ,y0(X,e,»)) dx 
JO 

a 2 Ç p.ix^^.oJ.y^^.oHT^) da for 1=1,2.7 (64) 
J.*/t 

where the expressions for p, are given in Eqs. (55) through (58) 
and 

T(a) - a X0 sin a 

n<0 

{ÏR,l^iâ.Ü Bin (2n + 1) a I, 

If we let 

y, = tan’ (Re, f,/lmj £,) for 1 a 1 ,2,... ,6, 

we can show that 

* If,I ain (u,t + y,) f°r 1=1,2,...,6 (66) 
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where the «j's are defined In £q. (61). 

5.3 Outgoing Wavea at jx[ = oo 

Equation (li) shows that 

Y(x,t) = {«„(x.Ylx.O.t) + 

If we substitute the expansions given in Eqs. (17) and (18) into this 
equation and equate the terms of the same order and time harmonic, 
we find that 

a Jfor 1=1,2, (67) 

YU2^x> * ^ {j2orl ’ °) ' T* ’’¡’’l» “ 7 it + ffy)} for (68) 

Y»(x) = J ^5(x,0) - 5jLp(f)fj|y + f2^|T) 

(69) 

Y4(x).JÜ¿L0(,6(x,0) ^(f,f2, + ^ 
iy' 

" + 

Y7<x> ' - 4 i (^(x,0)fu + fiyf(y - 2K(^ly). 
i*l 

(70) 

(71) 

If we let |x| —oo (or X.-► oo for oaO or - w) only the 
pulsating sources contribute non-vanishing values (see the expressloi 
for the first-order potentials in Appendix B, and for s>, and in 
Lee [ 1968]). Thus we find that 

*((x,0) ~ - Q¡e dp + ÍV*Íy C°" K'x)ly=( 

)(Kjlil-q¡) 
s - JxQiC for l * 1,2,3,4, (72) 

where the Q|'s are the source strengths, the qj's the phase re- 
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latlonshlp between the forced motion and the pulsating singularities 
at the origin, and 

2 

for Is 1,2. 
g 

We can also show from Eqs. (43) through (45) by letting |x | — oo 
(or X — oo for a * 0 or - it) that 

(73) 

where 

and then Eqs. (38) and (39) can be used to show that 

(74) 

il/tr u ti-i o\ —. 

where a0 and ß are defined in Eqs. (30). The far-fleld behavior 
of the derivatives of the functions ¢) (Is 1,2,3,4), G¡ (1 = 5,6), 
W9, and W- can be shown to differ from those exhibited In Eqs. (72) 
through (75) by factors of the appropriate wave numbers Kj. If 
these results are applied to Eqs. (67) through (71) and some mani¬ 
pulations are carried out,we can show that as ]x| oo 

for l * 1,2, (76) 
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YU¡<*) - ~ + (gQ,Ki)2 M«,,.,.2,,, 

z8 
4<r I T00 

+ Ti|jb hi*2(^ cos 4K.ê dé|Zeií4Ki,,"-el^ for t_ 1 

Where hs(x) and h4(x) are defined i 

6(+2 = tan 

2 (77) 

m Eq' {A"2) of Appendix A and 

(/b hU2^) cos 4K^ dê) 

where 

Re( (/b hi*2(é) eos 4K¡é dé) ( 

YS(x> ~ ^ Q9(«r, + (r2)ej(Kÿl,,-q») 

+ 7p- QiQa^i^íK, + K2)ej*(K,*Kí,h,,-V<l2>) 

4. ¿(<r, + o-,) If00 (g ( 
« IJb h5^ cos Ksê dê| e1 K^x,+08> 

e5 = tan1 ^ l_lmi (Jb yg) coa K.g d|) ( 

Re 
j (fb\W eos Ksé dé)^ 

Y«(X) " f Q6(a. - 

where 

g 6 1 '2' 

+ 2^ Q,Q2<r'0'2ÍKi - K2)ei^K,'K2,l’'l‘(q,'q^ 

+ ^(‘TI ~ O'?) I P*1 .2 

8 üb h6(^ cos KS^ dd ej(K*'*U®«, 

06 = tan’1 ) ~ Imi (4 ha^) eos dé)j 

‘ ReJ ( /b h5(^ Cos K5é dé)) 

Y7(x) ~ 0. 

(78) 

(79) 
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VII. 
numerical RESULTS 

m deep water, \ = 2™/*? are p? ?d* ng length of Suavity waves 
each value of a, 'the blues' ^ 2b> 10b' ^ 20b. FoV 
so that the wave lengths obtained hJ\C°- Ft are chosen of X^ríVSH lengtb® obtained1 by are cho8en 

is Of interest to examine how significan?^ practical situations. It 
Wr‘C f"Ce 0f <>^-nc.-ir4uenc“Vc^^rt0^« h?d„. 

u* C . 

of hydrodyTaÏÏic^^re “p f°r the d*c 
those quantities which are assL’cK?,?*?^ ^ce' those quantities which are as^oci^e^wit??^ h»r?6 * "^ ^ 

q^n%tirsUlcrahtedhwrrtPhrtehent °ri:g--8 -e I"" SeqTehneCy’ 
not computed be^use^l qVanïïue?"11611?’ P»' V and v 
rom the known values associated* with tha ?ten be aPProxlmIted 

yj^6^)?1!?0^"and'^whicifar^e bo PU^°a ^th^quantities ^p- ? ^ 
shown with the quantities prese^^cS^66 f 1%8] are also 

frequenJy!8dgievenWbyer gravity wave length based on the difference 

^6 = -¿Ii_ 
K 

= x< 
i + 

-x¿Ai 

where 
(XA> - 2Æ7T 

1, = -¾ and \2 = 2 ire 

C 

^•eAi as a function of X A 1= u 

as K= Wx" r»*d 2x0b:h^ 

tWPPWPpi 

! 
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1.1 1.2 1.3 1.4 1.6 1.6 1.7 1.S 1.9 ZO 

A ■ XjA( 

Fig. 1 Difference-frequency wave length 
vs. fundamental-frequency wave length 

spending frequencies are respectively 

a, {= VTirg/T, ) = 4ug/b , V irg/5b , and V irg/lOb . 

o-g is obtained from X = k2A( = cr^/Og2 as 

o-2 = V Zirg/iX.,!) . 

Thus we have 

for = 2b, (r2 = V Trg/(bX) 

for X., = 10b, (t2 = / irg/(5bX) 
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Noneznuaoidal Oscillations of a Cylinder in a Free Surface 

for X, = 20b, <r2 = V 7rg/{ 1 ObX) =. 

ïn Table 1, the values of 6¡, = (r,2b/e and fi - /n- „ ¿-w / 
for X. = 1 0 Í0 n ? n =i-^2 u \ fna °6 ~ '^i - tfg) “/g are given 

Îndivfd^dî11 c^bï’refer’reTt'a^roprlate 

and t Í ZÄ Î'ÏA - “d 6f 5< = = «,. are given. 

62 and 6g versus 

TABLE 1 

X, at three different values at and 6 

Xi = 2b and 6. = n X, = 10b and 6| = ir/5 \ = 20b and 6( = tr/10 

J6 

1.05 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

2.992 

2.856 

2.618 

2.417 

2. 244 

2.094 

1.963 

1.848 

1.745 

1.653 

1.570 

182 X 10 

680 X 10 

.238 X 10' 

475 X 10' 

753 X 10' 

106 

138 

170 

203 

237 

270 

-2 

-2 
0.598 

0.571 

0.524 

0.483 

0.449 

0.419 

0.393 

0.370 

0.349 

0.331 

0.315 

0. 365 X IO'3 

0. 136 X 10'z 

0.477 X 10'2 

0. 950 X 10'2 

0. 151 X 10'1 

0. 212 X 10'1 

0.276 X 10'1 

0. 341 X 10'1 

0. 406 X 10'1 

0.474 X 10'1 

0.540 X 10'1 

0. 299 

0. 286 

0. 262 

0. 242 

0. 224 

0. 209 

0. 196 

0. 185 

0. 175 

0. 165 

0. 157 

X 10 

X 10' 

0.182 

0.680 

0.238 

0.475 

0.753 

0.106 

0.138 X 10' 

0.170 

0.203 

0.237 

0.270 X 10'1 

,-3 

,-2 

,-2 

1 X 10 

X 10 

X 10'J 

X 10'1 

X 10' 

X 10'1 

X 10' 

f tu In 2’ ,3, and 4 the maximum hydrodynamic pressures 
at three points on the cylinder, 0=- 90°, - 45°, and ~ 5° are 
shown as functions of V for V, = 10b. The maximum pressures 
iPgl and |p7| are obtained from Eqs. (58) and (59). The pressures 
are non-dimensionalized by pgb and are denoted with bar signs 

in tiiPoPp6f: ?6 'Pgb‘ The values °f Pi and_ p3 which are not shown 
m these figures are respectively equal to p2 and p4 at 1=1.0. 
1 he maximum hydrodynamic forces T2 (= lf,|/2pgb^) 7 and 

T, which arc obtained irom Eq. (64) are iho'wfa/funcli^ oV i t 
igs. , 6, and 7 for X., = 2b, 10b, and 20b, respectively. Figure 8 

shows the phase angles y2, y4, and y6 which are defined by Eq^ (65) 
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Honainuêoidal Oêoillation» of a Cylinder in a Prat Surface 

Fig. 4 Fir«t- and aecond-order pressure* vs. I ■ K-A. 
at 0 « - 5° for * 10b 

for <* 10b, The radiating-wave amplitudes at |x| > oo are shown 
In Fig. 9 for K| ■ 10b. In this figure Y1 Is defined by Y. ■ ¡Yf|/b ■ 

and Y#a are obtained In the following way. We 
can show from Eq. (79) that 

Ya(x)e ' ^ A( cos )ks|x| - (a( - e^t - | 

+ A2 coe J Kj|x| - (e, - e^t + 0,( 

- Yebcos |(K, - |x| - (e, - e2)t - (q, - q^J 

where 

A, * I (e, - , 
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Monêinutoidal Otoillatione of a Cylinder in a Pr*e Surface 

<», - »Plj’" h,(£> co, Ktid£|' . 

* ¿g * cr2^i “ Kj). 

Furthermore we can reduce the above expression to 

„ . . ‘Her-9,)1 
Y6(x)e ~ Y60cos lKS¡xl - + 06'| 

Y6b cos ) ^Ki * Kî) lxl * (ff, - <r2)t - (q( - q^l 

where 

Y6o=[Ai+a2 + 2A, a2 cos (q6 + 0s)J /2 , 

06' = tan' J A£ ¿la Qfi - A, sin | 
I A2 cos 06 + A, cos q6 | 
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Fig. 8 Phase angles oí first- and second-order forces 
vs. X for X.,= 10b 

Fig. 9 First- and second-order wave amplitudes at 
|x| = oo vs. X for X., = 10b 
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Fig. 10 Phaie angles of first- and second-order waves 
at |x| * oo vs. X for a 10b 

We then define 

and 

In Fig. 10 the phase angles q, (see Eq. (76)), 
are shown as functions of X for X., = 10b. V - and q, - q2 

VII. DISCUSSION 

If the forcing motion on a floating body has a very narrow 

occur in a frequency range of about twice the forcing frequencies. 
However, two components of the second-order force are exceptlor 
to this case. One Is the steady-state force and the other Is th¿ 
force with frequency eque) to the difference-frequency between a 
of theHWT freque"cieB ln the narrow-band spectrum. If the value 
of the difference-frequency, «r, - (r2, is very small, the force whli 
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Ch*n«'- '•'V •lowly 
c.„ .how ,h,, 1„ .h. lUu"';dc." * f'ud0-«‘"y 'oo». In inc. », 
frequency force reduce« to the ***>* 1 ** a* tl,at ti,e difference- 

i,.i, -h.» „.,,. „i,<how„lnVp'ód'úTrh«/,",0" 

*' * = ^ a V2 * ««d **s *T 

pJzTand p55! Í'^Sublth •how immedietely that p, = p , p * p = /1.■ 1, íoV i-vsnb.«..,.,,..p,o 4«; Pj-P.^ 
J “* f • 0, 1. e. j1?* ■e?’ ^ ’ anc^ ^ th*t a» 

Since 2f„ ' ¿Tf I a,nd ln FiB- 8 that y«^-w/2 a. 

Íh^ inith(la Ca8e’ ^ ^ tha* Yeí1 Ye <66) and í7 i» nega- 
the relation f6=f7f0r a « e.!® ^ /2 in *° maintain 

2- 

For «ufficiently «mall value» nf ~ 

expression of the forcing motion becomes ' ' ^ W* Can 8how that the 

4’ = -ip <>■,1 + sin <r2t 

* 2 sin <r2t cos - i ^ t 

derived frim £^(63)“^VóV)0--ÍOr hydrodynamlc 

(80) 

force can be 

f2| cos —t sin (<r2t + y ) F« e2jf 

2 i 
+ € }4|fJ COS (0-, - <r2)t sin (2(r,t + 

21 + Y«) 

+ If. sin Y6 cos (a, + o(e5). 
(81) 

* °d it^ f o!r c e's't o^ t h i s ^ e at i n g^ m o t ^ ^ ^ ^ The re8Ponfle 
of beat oscillations: a slowly-varvino8«? 4 J8, made of two kinda 
steady component. For comoarisnn n slnuö0ldal oscillation, and a 
of the different components of the hydroTynamic f relati^e magnitudes 
(81) are shown in Table 2 for X - j T f ce ®lven in E<1- 
Th. valu,, Table 2 art ob',ln',; “b X= 
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TABLE 2 

The magnitude« oí hydrodynamic forces for X., = 10b and X = 1.1 

*2 1. 58 

1.00 

0.01 

0.04 

rj«ln yj 

t7 

i a 2,4,6,7) 

It is clear from Table 2 that the firat-order force dominates 
the second-order forces. For instance, if we assume c = 0.1 the 
ratio of the first-order force to the largest second-order force is 
2e Ii2|/4e*|f4| « 16. It is also clear that the magnitudes of the 
difference-frequency force and the steady force are much smaller 
than the first-order force, so they appear unimportant. However, 
when such forces act upon a body which has very small restoring 
force for a sufficiently long period of time a considerable excursion 
from its mean position can occur. One can see from Figs. 5 through 
7 that the |f8| is larger than the |f7j in 1.0<X<2.0. This 
ms ans that for a sufficiently small value of the difference-frequency 
Ain estimate of the maximum "steady" force acting on an oscillating 
body should include the difference-frequency force. 

If we assume that the motion of a wave maker is described 
by Eq. (80), the expression for the free-surface elevation, Y(x), 
for large x can be given in the form 

Y(x) ~ €2C, cos ff| 2 <T¿t coa ^2lXl * P| ' 

+ ee|4Cg cos (o-, - <r2)t cos (4Kz|x| - P2 - Zo^t) 

+ 4Cj cos (tr, - o-gK cos (2K2|x| - P3 - 2<r2t) 

+ Yg(x) cos (at - <r2)t | + 0(e3) (82) 

where C,, C,, C3, ß,, ß2, and ß, are quantities which can be ob¬ 
tained from Eqs. (76) through (78) and Y6(x) is given by Eq. (79). 
We can see from the above equation that the xar-field outgoing waves 
are made of four independent wave components. The terms other 
than the one associated with Y6 represent beating phenomena with 
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the beating frequencies of (0-, - tr2)/2 and ir, - itj. Although the 
values of C2 and C3 are not shown in Fig. 10, they are found from 
Lee [ 1968] to be about the same order of magnitude as Teo and 
Ygb. This means that the dominant contribution to the free-surface 
wave elevation comes from the first-order term whose beating fre¬ 
quency is (<T| - <r2)/2. 

We can conclude that the hydrodynamic force and the outgoing 
waves associated with the difference-frequency of two nearly equal 
frequencies are much smaller than the corresponding first-order 
quantities and are of the same order of magnitude as the other second- 
order quantities. An examination of the figures suggest that if the 
difference-frequency is sufficiently small an estimate of the effective 
"steady” force can be obtained by doubling the pure steady force. 
However, since the magnitude of the difference-frequency force is 
always larger than the steady component this estimate may be a 
low one. 
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APPENDIX A 

Description of the Boundary-Value Problems for the 
Potentials for i = 1, 2, 3, 4, and 7 

The application of the perturbation expansions given by Eqs. 
(17) and (18) to the exact boundary conditions given by Eqs. (12) and 
(16) yields the following: 

On the free surface: 

?iy(x>0) - Kj^j = 0 for 1 = 1 and 2, (A-l) 

where Kj = of/g, 

*iy(x,0) - 4K|.Z?>( = - j *j.2(x, 0)(^,.2^ - K|.2*(,.a,) 

+ |A-« 

for i = 3 and 4, and 
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m 

*7((x,0, X I . |x Rej . KÂ()] « Hx) (A.3) 

where ® = g, _ 
’’ke - J^i * 

On the body; 

^kK'Vo^o) * ^ 3 - ba, for 1 = I and 2, (A.4) 

^ixK,y^f*(jg . f » . jb 
,y T 'ra.tíuy'Xo’yolt (*J - *(i.2)yy) 

m>{xo‘Y¿ ^or 1 = 3 and 4, (A-5) 

and 

*7*(xo-yo,f,<V - ’’ry a - 7 Imj [(?,„, (x0,y0) + ^iy)f'(Xo) 

S mJxo’Y0)' 

*'yy " ^yy] 

(A-6) 

In the far field 

4>jy(x, - oo) = 0 for 
i = 1 » 2, 3, 4, and 7 

represent outgoing pfane^aves Fo°r th = i’ 3’ and 4 should 
conditional fxí = ¿ k ^ F r the steady P0‘ential « the 
servation (sei Lee ñ OAal »Id be dete^ined by the law of mils rl (see Lee [ 1968]) 

Symmetric flow condition: 

r.lx.y) 'rj-x.y, for i = 1, 2, 3, 4. ,„d7. 

In the limiting case of 
(7) reduced to rl = a2 the Arcing motion given by 

y(t) = 2h0 sin a, t 

reduces 10^ ^ 2ho/b- the Perturbation expansion given by Eq. (17) 

*(*.y.t) ^(x.yje’^ + 
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which is the same expansion as that assumed by Lee [ 1966] . We can 
easily establish the identities = <pz and ?3= <pA. It will now be 
shown that for <r = tr we also have <p = 2? and ?.= ?,. Equation 
(20) gives 0 3 6 7 

• 2^.X^X + ^,y^y)t - jl||^.yy " K,^,y) 

- ¿(Wz* +*V2y)| - 

SO for (T( = O'2 

hsix) = - j J^(x,0)(^|yy - K^|y) - 2(^ + <p* ) J . 

Comparison of this with Eq. (A-2) shows that 

h5(x) = 2h3(x). 

Equation (22) gives 

=-)1 liVvV + 'í»,1'''*.» - [. 
so for <T| = o-2 

m5= - Jb ! ^xy^o'yo^'^ - ^|yy I 

Comparison of this with Eq. (A-5) shows that m. = 2m . The far 
field conditions and the symmetric-flow condition for both p and 
*3 are essentially identical. The above results lead to the conclusion 

can be shown to be equal to <p by a similar proof 
if h6(x) (Eq. (251 for <r, =f &z) is compared witlihJx) (Eq. (A-3)) 
and mg(x) (Eq. (27) for = <r2) is compared with m7(x) (Eq. (A-6)). 
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APPENDIX b 

EvaluaHon of the Flr.t-Ord.r V.1oClty Pot.ntl.l 

s£j?^2£“irX"Ä'?*'“a«r 
value ppoble'mfor0^^1- /iS 8hown in AppendTx 'the Wnda^f* 

yjZ 
Vç», = o, 

V,yU.O) - = 0, 

VvyoX'ix) -^|y =. b(r), 

*>Jy(x,-oo) = 0, 

*l(x’Y) s 'Pl(-x,y)l 

^ «.a radiation condition can „e erpUcltly 

J(““0oRei,»'l. * JK,»,) = 0. 

£f" ÎHTrr f «ve problem. On, 

i-e. the method of Green's . IbutI°n see Frank f 1967H 
S;:thod °f muitipole expans/rs ^lT He ^ ^^on oY^ 
the problem without the boundary condition611' W® con«ider 

3,. It we transform tbe proKÄ",^ 

(B-l) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

’V'^ik.a) = 0, 

K,ajk - ) iin + l)a^. / 
( ¿j ^»*1 ?ntL I M(X,,0) 8M 

8a = 0, 

(B-7) 

(B-8) 

Ä*“«'f0e“Vr^eaiI!»mhtShVh:.,,aan"d’v0rmi‘tl°„ ty E,. u, 

°heh:Xe.c,rcle --o-:u^fThrc;dr,r 
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M{\,a) = M(X., rr - a), 

and In place of Eq. (B-4) and (3-6) we require 

(B-9) 

M—0 as X — oo in -irSa<0. (B-10) 

The solution of this problem is 

O) 

(B-ll) 

where m is a positive Integer. Mm is often called the multipole 
of order m. Although this expression for Mm trivially satisfies 
Eq» (B-o) in the ^-planejthe expression above still does not repre- 
sent the outgoing plane waves. To satisfy this radiation condition 
we introduce a source function M0(x,y) which satisfies all the 
required conditions except the boundary condition on the body. The 
expression for the function M0 is 

where I0 means that a Cauchy principal value is to be used. There¬ 

fore we represent our solution as 
09 

where bm and cm are the unknown strengths of the singularities , 
q is the phase difference between the motions of the body and the 
fluid, b0 = Q = source strength, and c0 = 0. The unknown constants 

m, cm, and q are to be determined from the boundary condition on 
the body given by Eq. (B-3). 

We Introduce the stream function ¢) which is the harmonic 
conjugate of the velocity potential <9,. The Cauchy-Rlemann relation 
gives on = 'i, 's along the contour of the cylinder where s is 
the arc length of the contour in the counter-clockwise direction. The 
boundary condition for ¢, on the cylinder can be shown to be 

(B-14) 

The expression for ¢( in terms of the harmonic conjugates of Mm 
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denoted by N„ u ea.tly f„und to be 

00 

*1 = 2 (bm + jcm)Nm(x(X,a),y(x,a))e-j<’. 
m=0 (B-15) 

where 

N =- s^n 2.ma 
\ 2m + K,a I Coa (2m - 

00 
(2m - 1)\ 2fn-l 

V i42. + 1)agnti cos (2m + 2n + 1 ) 
2m t ¿n + 1 p-rh^n^l ~ J 

n=0 for m > i , (B-l6) 

and 

»ro 
sin kx 

dk + ÍTreK|y N°~ " £ K.-k' aK *j»« " ein K,x 

Substituting Eq. get 

00 

2 <bm + jcm)Nm(x(\In),y(x,n))e-j<’ = . 

(B-l 7) 

m=o b(rlxo- 

eh:,-ifnX^Ld 

(B-18) 

3 and 
b-plane, to show 

oo 
e'Jq = - bo-, 

|X°/f¿ (bm + jc-r.)Nm(\0,a') +QNo(x.>y¿)) 
m=I J ' ' 

Equation ,B-„, can 8ub„ltuted (B.18) ^ ^ 

? 

Z » NJ V», - .O', 2* a NaK.y.) . No(Xo,yo) (B_ 
20) 

where 

Am = 

Íí£2 

ftom Eq. (B-20) tot th-e „„¡ZXrcôeXüní 
ients Am. However the 
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infinite series in Eq. (B-20) is truncated to a finite series to obtain 
an approximate solution by a matrix inversion. After finding some 
finite number2 of bm and cm and using these coefficients in Eq. 
(B-19) we find the values of Q and q. 

APPENDIX C 

Solution for the Problem of Sinusoidal Pressure 
Distribution on a Free Surface 

We seek a solution for the following boundary-value problem: 

vV^x.y) = 0 in y < 0, 

W|y(x,0) - KW, = Ae^'*' (C-i) 

where K = w2/g. A is a real constant, and K' = w,2/g* K Further¬ 
more we require that 

W|y (x, -oo) = 0, 

W, ~ BeK'1,ejK'1x1 as |x| — oo 

where B is a complex constant, and 

W, (x, y) = W¡ (-x,y). 

If we let 

we can easily show that 

(C-2) W|cy(x,0) - KW|c = A cos K'x, 

W|ly(x,0) - KW|S = A sin K' |x I . (C-3) 

2The exact number is determined in the sense of "an approximate m 
the mean" for the function on the right-hand side of Eq. (B-20). by 
the series on the left-hand side. 
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can b^shown tÍbi11110^011 W|c WhlCh haS aU the re<îulred properties 

ApK'y 

W|e = k^k" C08 K'x‘ (C-4) 

t^Sw.416^01'6 eff0rt t0 80lVe f0r W- We find it by using a 

.00 

J-oo 
e ,pXwií(x»y) dx. 

The Laplace equation requires that 

or 

- P W.S + W.tyy = o 

wi*(p;y) = c(p)elply. (C-5) 

h™d'aidVy?eld,tU"d ¡”l° the FOUrier tr“*form of Eq- 10- 3),the left- 

K, - KWÙ a UpI - K)c(p) 

and the right-hand side yields 

Í00 

e'iP>< aln K'|x| dx = 2A f“e-*P* sin K’x dx 
J00 \JQ 

= * f00 ief(K'-p)x _ „¡(KVpJx 4 J.. _ - 2AK ' 

1 J° pZ-K'2 ’ 

(C-6) 

where the apparent improper integral above is interpreted as a 
generalized function.3 Thus we find that 

IpI - K)c(p) =-^ 2AK' 
^ or c(p) = - 2AK' 

(p¿- K'Z)(|p| -Tg 

g 
Another way of interpreting this is that of Lighthill [ 1967] who let 

«' =<o0 + je, cao so that s e^'e’^ where Ki=(w2-eVg 
approaches K' when p (= e2w0/g> - 0. 
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If this expression is substituted into (C-5) and the transform is 
converted we find that 

-oo 
w r , AK'C” 
'V*’!'' - '—J „ jpi.. K'!)(|p| - K) P 

ZAK'f00 er'cos px 
(p2- K'2)(p - K) 

dp 

ir J, 

00 

{ 0 C0,pi‘ V(K «-K')(ptK') 

+ (iC-KHp-K') " (K^-K^Mp-K)} dP’ <C’‘7) 

Apparently there are poles at p = K* and p = K. However if the 
inverse transform of the right-hand side of Eq. (C-6) is taken, it is 
readily seen that the Integral must be Integrated as a principal-value 
integral in order to recover the original function A sin K'|x|. This 
means that the integral in Eq. (C-7) associated with the second and 
third terms in the square bracket should be taken as P. V. integrals. 

/-»* py p00 -tpi 

If we let 

»oo p.iPz 

'0 

and make the change of variable t = i(p +K')x, we can show that 

,oo 

•MKi 

Again the change of variable t = i(p- K')z enables us to show that 

»oo.py_ ('■“-ip* 

I, = R.1'.ll<'' Ç00 4— dt = Re1[.iK'‘El(iK'I)] . 

I. r ®__££®J2ï_ dp = ^eí j ^Tdp 
Jrt p-K' J0p-K Jq P-K 

= Re. [ e"IK l E, (-iK'z) t iTre’IK *] 

where ± signs correspond to the case of x % 0. Similarly the change 

of variable t = l(p - K)z in 1^ /*(epy cos px)/(p - K) dp leads to 

ï j = ReJe'^E^-lKzJT lireIKl] 
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Sá. lhaTS.’l'"r ta?- *nd we observe IxUoo 3 e S1n K |x J. This implies the existence of a sinu- 

lates the radTatfo^condit^n^hafthe" ^ ^ fIeld‘ I<: obviously vio- 
K'. However a careful exam^H. °fU Plng waves have wave number 
is just one of the ^0^^ «oí , thVnLteS^ K shows that it 
discarded, if desired, because of problem which can be 

stltutingthe expressions oStained fbov^fi” Td^í^’t ^ ^ 
and discarding the last integral in fïd Zt *’ ^ 

W(s(x,y) = .iir_ii_+Ig__1 
* Lk + k' IT-lcJ 

p re!_^E|(iK'z) , 

* *- K+K' k'-K 
— K Z^‘l(-iK'g) 

We combine Eqs. (C-4) and (C-9) to finally obtain 

1 + AeKV 
J ÏTTT? Sln K'|x|. 

(C-9) 

W,(x,y) 

- i — Rn. F e^^iliK'z) 4. e"*K^E,{-iK^z 1H 
^ 'L K+K' K - K1-J • 

±iz_ 

(C-10) 

o: 
nee lim e Ej(±iz) = 0, we see that 

|x|—00 

lim W| = — _ 
|x|-*oo n K'-K 

K ' V 
A e ' ejK'lxl 

as is required. 



Nonsinusoidal Oscillations of a Cylinder in a Free Surface 

DISCUSSION 

Edwin C. James 
California Institute of Technology 

Pasadena, California 

I would like to direct a question to Dr. Lee concerning the 
pure steady force. Apparently this type of force can arise in free 
surface problems and is attributed to a mean drift of mass in the 
direction of wave propagation. The action of such a force applied 
to an unrestrained body results in a sinkage or a lift. The question 
is then, how does one physically explain the steady force when the 
symmetry of the problem dictates that the mass transport at the 
station X = 0 should be zero? 

* * * * * 

REPLY TO DISCUSSION 

Choung Mook Lee 
Naval Ship Research and Development Center 

Washington, D.C. 

A mass transport phenomenon arises in the higher-order 
theory of surface waves (see, e.g. Wehausen and Laitone [I960, 
pp. 660-661]). Since the present work deals with a second-order 
problem of free-surface waves, it may be expected that mass- 
transport will occur in the present problem also. Although I have 
not touched upon this subject in the text, I discussed it in some 
detail in my previous work (Lee [ 1968, pp. 317-318]). 

As the discusser pointed out, there is no mass flux across 
the y-axis. Then, the question arises as to the origin of the mass to 
supply mass transport. I answered this question in this previous 
work by showing that the role of the steady potential p7(x,y) is to 
counteract the mass transport phenomenon. This means that 
should behave like a steady sink whose strength is equal to the total 
mass drift through two vertical control planes encompassing the 
cylinder, divided by Zu. The lowest-order contribution from <p7 
to the steady force is fourth order, as is proved by Bernoulli's 
equation. Thus, the second-order steady force still exists while 
the mass transport phenomenon is nullified by the pure steady 
potential <p7. 
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THE DRIFTING FORCE ÒN A FLOATING BODY 
IN IRREGULAR WAVES 

J. H. G. Verhagen 
Netherlands Ship Model Baein 

The Netherlands 

I. INTRODUCTION 

A floating body In waves experiences a hydrodynamic pres sure 
force which is exerted by the surrounding fluid. Several factors 
contribute to this wave pressure. One of them is undoubtedly the 
conventional unsteady exciting force, which makes the body oscillate 
at frequencies in the region comprising the bulk of the energy con¬ 
taining waves. 

Another factor originates from higher order forces due to 
various non-linear effects. In general these non-linear effects are 
too small to influence the high-frequency motions of the body. They 
can, however, be of Importance in that part of the frequency domain 
in which the wave energy is very small, l.e. in the low-frequency 
range, in particular if one of the natural frequencies of oscillation 
of the body lies in that range. 

In the limiting case -- zero frequency -- one arrives at the 
well-known drifting force. 

It will be obvious , to assume that the force on a floating body 
in irregular waves comprises not only a steady part but also a slowly 
varying part, slow in comparison with the mean period of the wave 
spectrum. The steady as well as the slowly varying part of the wave 
force, both of which are proportional to the square of the wave 
height, are denoted by "drifting force." The present paper is con¬ 
cerned with the slow drift oscillation of a moored vessel in irregular 
v/aves. It is based on general observations revealed by an extensive 
test program on the behavior of moored bodies in a seaway. 

Preceding page blank 
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II. GENERAL OBSERVATIONS OF TEST RESULTS 

A study of the test results on the behavior of moored floating 
bodies In Irregular seas revealed the following general obssrvatlops: 

1. The horizontal modes of motion -- surge, sway and yaw 
show two separate frequency regions. A low frequency 
region corresponding to the low natural frequencies of the 
moored system, and a frequency region corresponding to 
those of the energy containing waves. 

2. The long periodic motion Is excited by waves or by a wave 
group with amplitudes high compared to the mean wave 
height. In the considered cases, where a linear stiffness 
of the mooring system Is employed, It appeared that the 
amplitude of the long periodic motion for a given vessel 
and mooring system Is proportional to the square of the 
significant wave height divided by the mean wave period 
îwifS /* for various long crested seaways coming from a 
given direction. 

3. For a given body and mooring system tested In various 
seaways no clear relation could be discovered between the 
time averaged excursion from the equilibrium position In 
still water and the amplitude of the long periodic motion. 

These observations are obtained from extensive model tests conducted 
In the Seakeeping Laboratory of the N.S.M.B. at Wagenlngen. 

The behavior Is not unique to moored vessels. Alao the towing 
force of a vessel towed In Irregular seas show the same tendency as 
well as for Instance, the slow oscillations In torque and thrust of the 
propeller of a self-propelled model as observed In the seakeeping 
model tests. 

HI. DISCUSSION OF THE RESULTS 

The third point of the above mentioned observations deserves 
particular attention. The drifting force on a floating body In regular 
waves -- the time averaged position of the body Is fixed In space -- 
1s dependent on the joint action of waves and body motions. The 
force Is proportional to the square of the wave height and dependent 
on the phase between wave and vessel motion. 

If we consider an Irregular wave as build up of a regular wave 
whose amplitude Is a slowly varying function of time (slow as com¬ 
pared to the wave period) and a stochastic variable phase, the cor¬ 
responding energy spectrum will be narrow. The drifting force on the 
floating body In that case will show the same dependency of the time 
as the square of the wave amplitude. The amplitude of modulation 
will be the same order of magnitude as the time averaged drift force. 



Floating Body in Irregular Waves 

For a given moored system with approximately linear spring 
stiffness and damping coefficient the same linear relationship must 
be found between mean excursion and low frequency amplitude of 
motion for various seaways. This appears not true. Especially In 
heading waves large discrepancies can occur. From this observation 
I am led to suppose that It will be not allowed to describe a practical 
wave spectrum by a slowly modulated regular wave In order to 
explain the obtained test results. 

Based on the mentioned observations I am led to suggest the 
following hypothesis. 

Hypothesis: The wave forces on a moored body In Irregular 
waves which are responsible for the excitation of the mass-spring 
system In Its resonance frequency are the second order low-frequency 
wave forces on the body In fixed condition, l.e. the drift force due to 
the reflection of waves. 

The Influence of the ship motions can be neglected. 

One of the conclusions of this hypothesis Is that the exciting 
force for the long-periodic motion Is a function of wave character¬ 
istics and shape of the body alone, and not dependent on the mooring 
system or on the weight distribution of the moored body. 

The hypothesis Is supported by numerical motion calculation 
for comparison with experiments , which will be shown later on. It 
Is needed however to extend the number of comparisons In order to 
obtain the restrictions of the proposition. 

The proposition can be made acceptable In the following way: 
Suppose the Irregularity of the wave could be described by a more or 
less regular wave pattern In which a few discrete steep waves are 
present. Intuitively It can be stated that the occurrence of a few 
high waves In an otherwise nearly regular wave pattern gives rise to 
some violent ship motions. Through Inertia effects these motions 
occur mostly after the corresponding high waves have passed the 
vessel. 

Hence, Interaction between the high waves and the resulting 
motion on the pressure distribution around the ship's hull Is drasti¬ 
cally reduced, by the mentioned retardation between exciting force 
and resulting motion. Hence, the effect of such a single high wave 
on the floating body Is consequently restricted to the Instantaneous 
effect, l.e. the effect of the wave reflection, on a fixed body. The 
corresponding exciting force due to reflection Is only dependent on 
body form and wave characteristics. 

Conclus Ion: The mean drifting force on a floating body in 
Irregular waves Is dependent on the joint action between waves and 
body motion. 
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The slow drifting oscillations of a moored vessel are caused 
by forces due to the reflection of the waves against the fixed obstacle. 

The remarkable observation that the amplitude of the long- 
periodic motion for a given body and mooring ¿ystern in various 
seaways of given direction Is proportional to ^|/5 /T can now be 
explained as follows: The force due to reflection of Irregular waves 
against a fixed obstacle Is proportional to £^1/3 ^ the body 
dimensions (L) In the wave direction Is not too small compared to 
the mean wave length X. (L./X > i ir). A "high" wave can be defined 
more formally as a wave with amplitude a fixed number times the 
significant wave height. The change of occurrence ger unit time of 
our socalled "high" wave is then proportional to l/T provided all 
of the considered random waves are Gaussian distributed, are at 
least distributed In the same way. If the combination of floating 
body and mooring system Is considered as a mass-spring system 
with linear stiffness and damping coefficients the resulting long- 
periodic motions will be proportional to £*1/3 /T. In consequence 
of the many assumptions made In the above reasoning, one should 
be careful to adapt the explanation without reservation. A firm 
foundation Is needed. 

IV. MODEL TEST RESULTS 

An extensive test program has been carried out In the Sea¬ 
keeping Laboratory of the N. S.M.B. on a number of models In order 
to obtain systematic information on the station-keeping abilities of 
moored vessels In a seaway. Some results of motion tests on one 
of the vessels will be given In this paper. 

The vessel Is moored between four horizontal linear springs 
and tested In various seaways approaching from ahead and from 
abeam. A sketch of the mooring system Is given below. 
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The stiffness of each spring amounted to 5 tons/m. and Is 
Independent of the elongation. The main particulars of the vessel 
are: 

Length - beam ratio = 5.3 
Beafn - draft ratio = 3.65 
Block coefficient = 0.750 
Midship section coefficient = 0.997 
Waterplane coefficient = 0.896 

Wave spectra were produced similar in shape to those 
analysed by Pierson and Moskowitz for fully developed seas. These 
spectra can be described by: 

A -B/ai^ 
3,(0,) = Ae 

^ w° 

Both the produced and the hypothetical spectra are given in the 
Figs. 1 through 5. 

The significant wave height Is defined as: 

1/3 = 

The average wave period Is 

f = 2n^ 
m, 

where 
,»a> 

(o,) do, 

The distribution of the wave elevations confirm well to the normal 
probability distribution. 

The motions of the vessel and the forces in the horizontal 
springs were measured In three irregular head seas and three 
irregular beam seas each with different characteristics. The 
duration of each test run corresponded to approximately half an hour 
for the full scale vessel. This time period Is considered to be 
sufficiently long for a reliable statistical treatment of the recorded 
quantities. A typical recording of a horizontal motion of the moored 
vessel Is given In Fig. 6. A low-frequency . otlon in the natural 
period of the ship-spring system Is present upon which high-fre¬ 
quency motions are superimposed. The spectral density of the.surge 
and sway motions are given in Figs. 7 through 12. The distribution 
of the forces and of the motions deviates from the normal distribution 
though In many cases the deviation la not large. 
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Fig. 2* Wave distribution and spectrum 
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Fig. 8. Distribution and spectrum of surge 
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Fig. 9. Distribution and spectrum of surge 
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V. 
CALCULATIONS12TWEEN EXPERIMENTAL RESULTS AND 

Some tentative calculations have been carried out ampllivlmr 
and Illustrating the aforementioned suppositions. »mpiuyinj- 

Maan Drifting Force 

drlftli'8jorco on the moored vessel In the long- 
created Irregular waves has been determined by a linear superposl- 
U<m of mean drifting forces In the regular wave components of^ 
known wave spectrum. As has been shown by Maruo [ l] a.o the 

HnenaCrPmeÍÍ, tl0n C“ be ftPPlled »0 determine the non- 
dSng fo“e if * ead the mein l°n«ltudlnal 

Jo pgt;Be/i- c 
(d 

In beam seas the mean lateral drifting force Is 

F„(W) 
51 2pgL \ -—s.(w) du 

Jo ipgÇ*L t 
(2) 

Formulas for the mean drifting force In regular waves on freely 
aZ^ngJ «mplotoly «»trained or elastic moored bodies are 
obtained by Maruop] and Newman [ 3]. Numerical calculations 
nl ai* °*n *p®cl£lc formulas for ,'he drifting force 
on a slender body. [ 3] As Is well known, the agreement of these 
calculations with experiment la on the whole not very satisfactory. 
The slender body approximation results f.l. In a vanishing mean 
fer* «d1 dr,lft ng Therefore an engineering approach Is pre- 
Tfc. dM,ln? ®vallable experimental data on a similar ship form. 
The estimated curves of the longitudinal drifting force In regular 
head waves at aero forward speed and the transverse force In beam 

mV»nd O? f .K1" FlgBA fnd 14 * U8lft« the8e daU th® expression 
, , (2Lf0P the mean dr£ftlng force In Irregular waves can be 

shown ln Th« /e-nits compared with the experimental results are 
shown in Table I. The agreement is reasonable. 
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Fig. 13. Longitudinal drift force for head seas 

Fig. 14. Lateral drift force for beam seas 
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TABLE I 

Wave 
characteristics 

Mean drifting forces 
In tons 

B 
£ 

U 
o r* .»J 

as 
ti M 
Mr? ^ 0) 

tf> rCl 

U 
(U 
DO 

^0 h a 
0) 

C (¾ 

Ö 
o 

•r4 

s 
a> 
tH 

0) 
> 
CTÎ 
£ 

<u 

TJ 

ci « 
tí ü 
o 

h4 <8 

-o 
o 

Is 
S 0 

a 0 
1>S 

TJ 
(D 
U 

« S 
£ m M (U 

^ S 
OJ 

0) 
4-* 
(T) 

ïS « U 

> o 

£ « 
h îî 
H <S 

2.30 

2.49 

4.83 

1.19 

1.96 

2.30 

6.6 

9.5 

10.1 

9.8 

9.6 

6.6 

head 

head 

head 

beam 

beam 

beam 

2.9 

i .2 

3,3 

3.4 

1.1 

2.7 

1.4 

4.9 

29.6 

1.7 

5.6 

23.4 

The low frequency drifting force 

This part of the drifting force has been estimated as follows: 
The measured wave height record 4a(t) Is squared £z(t). This 
squared wave height function can again be analysed by a spectral 
analysis. The spectral density function of jÇ(t) is determined. 
For an example see Fig. 15. As can be seen from this figure It 
contains the sum and difference frequencies of the original wave 
height spectrum. The difference frequencies are now of special 
Interest. They are related to the envelope of the original wave 
height record. 

The r.m.s. value of the low-frequency energy variation Is: 

'Ed,« = [ i 

1/2 

diff. frsq. 

o-- ... Is proportional to the mean square value of the fluctuating 
part of the wave height envelope. The energy In the fluctuating part 
of the envelope curve depends largely on the occurrence of "high" 
waves. As discussed earlier the occurrence of "high" waves Is pro¬ 
portional to i/T per unit time. So the relation between the r.m.s. 
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F‘8' 15' »o^aifdZ’i,,r ,U\Cll0n 01 * hiÜf »‘"'O» th. square of the wave height 

ofZ l*v.Vb7co”.,.“e,’Cy ener8y V"u“°” “■* *»« characteristic! 

“fdiff 3 constant • 

~2 
( W 1/3 

Figure 17 shows that the produced 
well. wave spectra fit this relation quite 

In a Hn.d°poèÍtI I1"»'"* ‘h' ve...I 

= 5Pga*B sin2a 

wave 
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Fig. 16. Relation between the low-frequency enertry 
variation and wave characteristic* 

when a la the wave amplitude and aln1« 1* the mean .r,«.«,« 

tÎdlîiîïtUr**” the Un88nt ** the #hlP'8 waterllne 4nd longl- 

become*NOW ^ T‘m,a' value oi lhe low-frequency exciting force 

*n “ B «ln8® 

end the r.rn.*, value of the low-frequency motion l* 

cr * w» ^ * W0i 

xh. .ï,:zsin; ;^hd.,h' •«o»**»*«*! «•»>«• «. t.m. n. 
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TABLE II 

lnm 
» 
T In sec 

oy In rn 
calculated 

iTj In m 
measured 

2.30 

2.49 

4.83 

6.6 

9,5 

10.1 

0.96 

0.86 

2.87 

0.87 

0.77 

2.54 

I« 

Th« reflection force on the fixed ve.e.l In regular bea.r, wave. 

F a ÍPga2Lv 

„„„g Y 1. , coefficient depending on the 
For the wave lengths under con"llJ*ra series 60 models Is 

:Ut ò‘.5.bt™.dvli°u” iMreaaea up to one for ehorter wave, and 
decreases for longer wave lengths. 

Now the r.m.s. value of the low-frequency exciting force In 

Irregular beam seas becomes 

oy a 
Ti 

YPg^t dtff 

and the r.m.e. value of the low-frequency away motion l. 

experimental results are shown In Table III. 

TABLE III 

t In m *WifS 

» 
T In sec 

<r In m 
calculated 

a1 In m 
measured 

1.19 

1.96 

2.30 

9.8 

9.6 

6.6 

0.72 

2.12 

3.99 

0.67 

2.05 

4.56 
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DYNAMICS OF SUBMERGED TOWED CYLINDERS 

M. P. Paidoussls 
McGill University 

Montreal, P.Q., Canada 

I. INTRODUCTION 

Interest in the dynamic stability of towed ships dates back to 
the halcyon-days when solutions to engineering problems could still 
be obtained by experience, without the aid of sophisticated analysis. 
Certainly, operators of horse-drawn barges in canals must have 
been aware of possible instabilities and remedial actions. Never¬ 
theless, to the author's knowledge, the first substantive paper on 
the subject, by Strandhagen, Schoenherr and Kobayashl [ l] , did not 
appear until 1950. This is also surprising, if one considers that 
both the analytical techniques and physical concepts were understood 
long before that; indeed much earlier work does exist on the closely 
related topic of stability of airships moored to a mast and kite bal¬ 
loons, starting with the work of Balrstow, Reif and Jones [ 2] in 1915, 
and followed by the work of Munk [ 3] , Clauert [ 4] , and Bryant, 
Brown and Sweeting ( 5] , for Instance. 

Strandhagen et al., and the dlscussors of their paper, firmly 
established the following Important criteria for stability of a towed 
ship: (l) the point of attachment of the tow-rope should be ahead of 
both the center of mass and the center of pressure of the (static) 
lateral hydrodynamic forces acting on the ship; (ll) the ship should be 
stable when moving untowed; (ill) In cases where (li) is not satisfied, 
then the system could be rendered stable by either short enough or 
long enough tow-ropes. It Is noteworthy that the criteria for stability, 
at least for the linearised theory of small departures from course, 
apply to all towing speeds, so that for a given configuration a (rigid) 
towed ship is either stable or unstable irrespective of how fast it is 
being towed. Instabilities were found to be of two distinct types: 
(a) yawing, l.e. a aero-frequency, amplified motion which in aero- 
elasticity would be referred to as 'divergence', and (b) oscillatory 
instability, where the system, when disturbed, oscillates about its 
position of rest with increasing amplitude. 

More recently, interest in the instability of submerged towed 
bodies has arisen mainly in connection with sonar applications. Here 

Preceding page blank 
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the body housing the sonar device is towed deeply submerged by sur¬ 
face craft, for the purpose of hydrographic survey, submarine 
detection, or location of schools of fish. We must refer to the work 
of Strandhagen and Thomas [ 6] , Richardson [ 7] , Laltinen [ 8] , 
Patton and Schram [9] , Jeffrey [ 10] , Schram and Reyle [ ll] » and 
Whicker [ 12]. The stability problem for the sonar-type towed bodies 
is of course quite similar to that of a towed glider [ 5] . The work 
referred to here deals with the dynamics of the towed body system 
as a whole; the geometry of the towed body for these applications 
tends to be fairly complex, and the analysis quite elaborate. 

A considerable amount of work also exists on the equilibrium 
configuration and the dynamics of towing cables, starting with McLeod's 
[ 13] and Reif and Powell's Í 14] work, to more recent work by 
Landweber and Protter [ 15] , Pode [ i6] , [ 1 ?] » O'Hara [ 18] , Köchin 
[ 19] , Sames [ 20] , and AlbasIny and Day [ 2l] ; this represents a by 
no means exhaustive list of references. 

The author's Interest in this field comes from work associ¬ 
ated with yet another application: that of the Dracone flexible barge, 
which Is a flexible sausage-like container towed behind a small craft, 
and used for the transportation of oil and other llghter-than-water 
cargoes, including the sea transport of fresh water to arid lands 
(e.g, to some of the Aegean Islands from the mainland). The new 
element that enters the problem in this case is that of elastic forces, 
making this a problem in the general area of fluldelastlclty (cf. [ 22l). 
The first analysis of stability of the Dracone was by Hawthorne [ 23] . 
Later, the author studied systematically the dynamics of flexible 
slender cylindrical bodies Immersed in axial flow, for various con¬ 
ditions of end-constraint [ 24] , [ 25] , including the case of a towed 
slender cylinder [ 26] . In the latter case, both rigid-body type in¬ 
stabilities and flexural instabilities were shown to exist; stability 
was highly dependent on the towing speed. 

It was suggested [ 27] that cylindrical or quasi-cyllndrlcal 
containers towed underwater by a small submarine could be used to 
transport liquid cargoes to and from arctic ports, avoiding the 
hasards of surface transportation in ice-covered seas. The con¬ 
tainers could be either flexible or, more likely, rigid; there could 
of course be a string of such containers towed by the same submarine. 
This idea has taken added poignancy since the oil discoveries In the 
Arctic. 

In this paper we shall re-examine the problem of stability of 
a submerged cylindrical body, both flexible and rigid, towed by a 
submarine craft. 
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II, THE EQUATION OF SMALL LATERAL MOTIONS OF A 
FLEXIBLE SLENDER BODY IN AXIAL FLOW 

We shall derive the equation of small lateral motions of a 
slender body of revolution of the type shown in Fig. 1(a); the body 
is supposed to be supported somehow so that it is not washed away 
downstream. The fluid is Incompressible and of density p; it is 
flowing with velocity U parallel to the x-axis, which coincides with 
the undisturbed longitudinal axis of symmetry of the body. The body 
is of mass pêr unit length m(x), cross-sectional area S(x), and 
flexural rigidity EI(x). 

Fig. 1(a) Diagram of a flexible, slender body of 
revolution in axial flow 

We consider small motions y(x,t) and assume that y, 
By/bx, 0*y/0x* to be all small, so that no separation occurs in cross- 
flow. Moreover, we assume that db/dx is small everywhere, 
except perhaps at the ends of the body, so that no separation occurs 
in the axial flow (except perhaps at the rear end), and so that 
slender-body theory may be used. Also d(EI)/dx is assumed to be 
small, which, together with the restrictions on the displacement 
function, allows us to use the simple Euler-beam approximation to 
describe the flexural forces. The body is further assumed to be 
of null buoyancy and uniform density, so that no constraining force 
in the y-dlrectlon nor a moment is necessary to keep It lying along 
the x-axis, at least at aero flow velocity. Furthermore, the motions 
are considered to take place within the (x.y)-plane, which for the 
sake of simplicity is assumed to be horizontal. Finally, we neglect 
internal dissipation in the material of the body. 

We now consider an element &x of the body. The forces and 
moments acting on it are shown in Fig. 1(b). Q is the transverse 
shear force, ^ is the bending moment, T is the axial tension, 
Fh and FL are the normal and longitudinal components of frictional 
forces per unit length, and F4 is the lateral invlacld force per unit 
length. 
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part of an infinite cylinder; boundary layer effects have also been 
^he virtual mass M(x) = pS(x), and v(x,t) = [ (8/et) 

+ UO/ôx)][y(x,t)] , which substituted into (4) yield 

Fa = pS[(8/8t) + U(8/8x)]Zy + pU[(8y/8t) + U(8y/8x)] (dS/dx). (5) 

j T>»e frictional forces, as proposed by Taylor [ 30] , and elabo¬ 
rated by Païdoussls [ 24] , [ 25] are taken to be 

fn = ÍcN(pS/D)Uz sin i and Fl = icT(pS/D)Uz cos i, 

where i is the instantaneous angle of incidence on the cross-section 
and is given by i = sin-' (v/U), and D = D(x) is the diameter. 
Accordingly, FN and FL are given by 

fn= icN{pS/D)U[(8y/8t) + U(8y/8x)] and FL = icT(PS/D)Uz. (6) 

Finally, we note that the bending moment is related to the flexural 
rigidity by 

*1 = EIOV/Sx2). (7) 

Now, substituting (6) into (1), neglecting terms of second order 
of magnitude, and integrating from x to L, we obtain 

T(x) = T(L) +icTpU2fL[S(x)/D(x)] dx, 

V'here T(L) is the value of T at the downstream end. We consider 
that T(L) is non-zero and that it arises from possible form drag 
at the end. We accordingly wri^e 

T(x) * ic2pS(L)U2 + icTpU2rL[S(x)/D(x)] dx, 
%J v (8) 

where c2 is the form-drag coefficient. 

Substituting now (3). (5), (6), (7) and (8) into (2), making use 
ol jl), and neglecting terms of second order of magnitude, we obtain 
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E2(EIê) + pS(m +ds)V + pu(|ï + u|ï)^ 

-2PU2[c2S(L) + CTj’ Ijjj ax]|¿ +m|^ = 0, (9) 

zti: i*.:?» “bSomr*11 lat"*1 For * “if°rm cyii"- 

4 MU2 
[C2 + CT'Í:5Í]|¿ +m|í =0' (10) 

where the diameter, D, and M = pS are now constant. 

*u We note that in the absence of frictional forces, (10) becomes 
taf fOV®rnl”g f.or smaU motions of a cylindrical beam con- 
00¾.¾¾ fluid 3/J ’ W^ere We mterPret M as the mass of the 
internal tn^ idfPer TÍÍ length- The Physlcal similarity between the 
ra«/ff\^d .e^ernJal flow cases is striking, albeit that in the former 
laterfl frlctlon doe8 not enter the problem. We shall refer to this 

We finally note that Eqs. (9) and (10) also hold to describe the 
motions of a towed flexible body, if we identify U as the towin« 
S?!! VPr°Ilded the tow-r°Pe forces are taken into account as part 
of the boundary conditions. K 

III. BOUNDARY CONDITIONS 

Clearly the boundary conditions will depend on the mode of end 
constraint. Let us consider the case of a towed flexible cyU-drlcal 
mlny ®H°Kn ln Fig* The body consists of a uniform cylinder ter¬ 
minated by a rounded nose and a streamlined, tapering7'tail' incor¬ 
porated to provide reasonable axial flow conditions over the body. 

towlng craft moves horizontally in a straight 
course with uniform velocity U. so that the tow-rope in its undi«- 
turbed state lies along the x-axis; we also consider the assumptions 
made at the beginning of §2 to hold. assumptions 

V , We may use £q. (9) to analyze the system, together with 
boundary conditions stating that (a) at the downstream end, x = L, 
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Fig. 2 Diagram of a towed flevlhi» i 
with streamlined "nose" and CylInder 

“îi- x H>°.mb.“d“g moTem ir«" Zbu°a ndh(b) ,he 
that ", normal component of the tow-rooe’m n ®hear force is equal 

aÄ*.1:Pir,Ur '.h'ä“ LXToT'il'** 
of\he 

boundary conditions. For this proce^t^be1111 lnC°rporated ln the 
Ikd taü * V L’ Where and f are tT!? WC muat have and taU, respectively; yet f, inH / e th len8ths of the nose 
enough to permit the use of slender hZ j ® con8ldered to remain Kreat 

the^rol’l "í 8mïïi:^®p;^aT°Xlmati0ni [23J t 
the problem by considering v and th«, i * L,’ we may further simolliv 

»7Ävr °s*s ‘ ^ ?b' Ä- 

tow-rop« pull, I, ^° * ,h' f"“- *ri.”ng',inÄ“"i 

r* ÔO , p1!/ a 

•)o T* X ' (^T + u (pSv) dx - p(J) 

and Xt0 J" ^ 
dx = 0, 

dx = 0; 

I 0Q rtL 

d- + “¿ ) (PSv) d*-fL m ^ 
1 U/2 

the parameters f. and f M«hi«.u . 
slender-body invlscid-flow theory 3w^r^t according to 
the theoretical lateral force at the’n introduced to account for 
not being fully realized because of uAhe Ut^® ,^1 * resPectively, ot (a,.the iateral flow not belng 
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bí°.“^aT.Ia^r *"'?*• “d 1') U« Cf fin., 
nina fu,, # ^ j ®qual to the tension in. the cylinder at x = 0 plus the form drag at the nose, i.e. y r at x - u, 

P = iMUZ(c, + c2 + ctJL/D). 

h™ltUftln? P int° the above equations and assuming y and 
be constant over the intervals of Integration, we obtain 

V to 

[El|^+f|Mu(|ï + ü|ï) 

+ ¿MU2(cT¿ +c, + c2) Î + (m + f.MJx, 1^]^^ = 0, (ii) 

[- £1¾ - + U|ï) +(m f-f^xjl^]^ = 0, (12) 

where 

1 ^ L 
X| = SJ0 S<x) dx and Xj, = ~j S(x) dx. 

L'"^2 

"¿"artoVthi body.8 a"‘i D ar” <,Uan,i*ie‘ P'“"1»1"« "> *»« cylindri- 

b. i» tbi" á-d^o*1:' u'zi *° 

^V(™,JdC,™.<8/Æ=«“e'11y?e!MU!<8y/e3<l ah,>uId ba *» 

»dTÍ rt^-í otha 

[ ^]«.0= [JäL; °- (13) 

characteristics vínose u *nalyalo> ln ^ich the shape 
V T and taU were absorbed in the two parameters 

thn»2h Í2' are obJrlou8a The disadvantages are equally obvious* al- 
though we can estimate f, and f,. cLmot eaatly cÄS Siam. 
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,, , f _„ni uo taken to be between zero and unity* 
The range of f, and f2 will be taKen eraduaîly tapering 
the latter limit ^obviously much more likely 
nose or tall, and no flow separation, ^ U obvt y{ & taU( on 
for f, to approach unity than for fr ^ me 

the other hand, f2 

IV. EQUATION OF MOTION AND BOUNDARY CONDITIONS OF 1 26] 

The equation ol motion given by Eq. l!^ '¿¡¡J'^ca'le the 
that prevloualy derived ^ ln »hieb .rlc.lonM 
íorcèr«.« 26). The boundary condition, are Identical. 

A. we .hall make u.e of the re.ult. obtam.d In [ 26] . w. give 

the equation of motion below, for reference. 

* i ct(T!)Ií - = °' 

Th. equation of motion »^ÄllÄ: 

theory' of [ 26) . 
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V. DYNAMICS OF TOWED FLEXIBLE CYLINDERS 

5.1 Mathod of An*ly>i« 

Upon exprcating the equation oí motion and the boundary con* 
dittona Ln dlmenalonleae form, the dynamic« of the ayatem may be 
found to depend on the following dlmenelonleaa par amete re: 

(1) f, and If, which were defined In S3; 

Ui) CCN( «cT, c. and Cf, where t * L/D; 

(III) A » a/L; the ratio of tow* rope length to body length; 

(lv) X. * *./l* and x. * **/L, where x. and x. were 
defined In tl; 

(v) u ■ (M/EIl’^UL, the dlmenalonleae towing apead. 

It la noted that according to the aeeumptlona made In the theory, 
m • M. 

We ahali not preaent the analyala here, ae U la adequately 
documented elaewhere ( 2S) , ( 27}. Suffice It to eay that aolutlone 
were obtained of the type 

where Y la a function of x/L, t ta a dlmenalonleae time and w 
la the dlmenalonleae frequency given by 

0 being the circular frequency of motion. In general, t* will be 
complex. Clearly, we have an Infinite eat of frequent lea, aa,« ae 
the ayatem haa an Infinite number of degreea of freedom. If the 
Imaginary componenta of the frequenclea, Iml«,), are aU poeittve, 
then the ayatem will be atable. If, on the other hand, for the jth 
moda we have 1m (wt) < 0, then the ayatem will be unatable In that 
mode; now If the correepondtng real component of the frequency. 
Re (wj), te aero thla will repreaent a divergent motion without oacll- 
latlona, which we a hall call yawing; If Ra (w.) * 0, then the Ineta* 
blltty will be oeclllatory. 
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Dynamioê of Submergtd Touêd Cylindêr* 

We observe in Fig. 3 that both the xeroth and ilrat mode* 
lead to inatabUltles for small, finite u. The instability associated 
with the xeroth mode is a yawing one, while that associated with the 
first mode is oscillatory. We see that for u > 3,05 the oscillatory 
instability ceases in the first mode, re-ap|>earing at u * 3.65. 
However, at much lower towing speed (u * 2.3) the system loses 
stability in Us second (flexural) mode, as shown in Fig. 4, and at 
u ■ 4 In its third mode. In short, this particular system is subject 
to several types of Instabilities; at low towing speeds it is subject to 
quasi-rigid body instabilities, and at higher towing speeds to flexural 
oscillatory instabilities as well. 

Figure 5 shows the xeroth and first mode of a system with a 
well streamlined nose and a very blunt tall. We see that it is not 
subject to yawing Instability, and the first mode is only unstable in 
the range 0 < u < 0.9. It is, however, subject to flexural oscillatory 
instability (not shown) in its second mode for u > 5.29. Accordingly, 
a blunt tall stabilises the system considerably. Also shown in Fig. 5 
is the first mode of a system with a less than perfectly streamlined 
nose; we see that the range of first-mode oscillatory instability in 
this case is larger, l.e. 0 < u < I. 75. 

Fig. 5 The dimensionless complex frequencies of the xeroth and 
first modes of a flexible cylinder with *CT • 1. 
Í ■ I, c,e 0, f.s 0, c. * i, A ■ I» X. * Xf ■ Also 
the firet mode with Í * 0.8, (Theory of ( 26J). 
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Fig, 8 Photographs In consecutive (rames showing a cyllnde, 
11. I In,long and 0.54 in.diameter with strean^llned nose 
and tall executing (a) criss-crossing, essentially rigid- 
body, oscillation (8 irames/aec), and (b) second-mode 
flexural oscillation (24 irames/aec) 

Quantitative agreement In the various instability thresholds 
and stable sones, based on estimated values of some of the theoreti¬ 
cal parameters, was also fairly good. 

5»3 Results Based on the New Theory 

Typical results based on the new theory and obtained by using 
Eqs. (10) - (13) are shown In Figs, 10 to I 3. 
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(•) (*» 

rig. 9 Photograph« In consecutive frame« showing a cylinder 
15.8 in. long and 0.68 in. diameter executing (a) criss¬ 
crossing, essentially rigid-body, oscillation (8 frames/sec), 
(b) second-mode flexural oscillation (24 frames/sec), 
and (c) third-mode flexural oscillation (24 frames/sec) 

f igures 10 and i ! shov, the dynamical behavior, with in¬ 
creasing towing speed, of the aeroth, first, second and third modes 
of a system with well streamlined nose and tall and A = I; this is 
the identical system, the dynamical behavior of which, according to 
the old theory, is shown in Figs. 3 and 4, We observe that, accord¬ 
ing to the new iheory, the system is considerably more stable than 
predicted by the old theory. Thus, the first mode is unstable only 
for u < 0,74 (not discernible in the scale of Fig. 10); moreover, 
the unstable locus originating from merging of branches of the 
seroth and first modes regains stability at u » 6.3. Similarly, the 
system loses stability in its second and third modes at respectively 
higher towing speeds than predicted by the old theory. 

Further calculations were conducted for the same system as 
above but with other values oí f*. always taking c. * 1 - f . U was 
found that the first mode is not uniformly stabiliaed with decreasing 
f2 as was the case with the old theory (cf. Fig. 6). The ranges of 
instability of the first mode, for various values of f., were found 
to .be as follows: 0<u< 0.74 for f2*i; 0<u< 1.66 for Í. «0.8; 
0 < u < 1.65 for fj* 0.6; and 0 < u < 0.70 for lt « 0.4. Thus the 
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Fig. 10 The dimeniionlc.« complex írequencle. oí the teroth and 
íírat mode* of a flexible cylinder with fi » I - c, = 1 
f* = » - c,» 1, fc* » ce « i, A b 1, X, 3 X, ■ 0.01.’a* 
0 eo'Ct) 0ri dirnenslonlea* lowing speed2 u. (New 

ToïliïlïrJT*1?* t0 that/cl»lln8 to the first mode in Fig. 6 will 
in fir maximum at is< i; i.e, the system is least stable 

.£i°de* K°l * Periectly streamlined tail as predicted 
Z h\T the0ry’ b“* ior a somewhat less periectly streamlined 
1 ji.^he,TCOnd *nd thlrd mod*s* or* ‘he other hand, arc both un¬ 
conditionally stabilized as the tail is made blunter; thus, the 
threshold of mstabllIty of the second mode i. at u * 2.83 for f2 = !. 
at u* 3.85 for iî=0.6, andat u» 4.38 for f2s0.4. 2 

Figures 
with ecN» ecT e l 

‘ f* * 0* 7* iWe r‘°‘c ‘h*1 the *effccYòf a'íes,“than perfecUy' 
T? n°r n t0 de*tablllie the system in all it. ocillato^ 

modes. Thus the first mode is unstable for 0 < u < 2.80, and the 
second and third modes lose stability at, respectively u * 3.21 and 
u * 5« 40 (cf. values given above). 

2 and 13 show the dynamical behavior of a System 
»' X. “X, 3 O.oi, f . 0.7, c, - 0 ami 

Also shown in Figs. I 2 and 13 (dashed line) is the behavior 
of a system with ccM-ccT-0.5 and all other parameters the same. 
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Fig, 1 1 The dimensionless complex frequencies of the second and 
third modes of a flexible cylinder with f, = 1 - c. = 1, 
lls 1 ; c2= l> ccn= ccT= 1, A = 1, X, = X2 = 0.01.’(New 
theory). 

This system is unstable in its first mode for 0 < u < 3.43 and loses 
stability in its second and third modes at u = 3.04 and u = 5.14, 
respectively. As we may regard the smaller values of ec 'and’ 
CcT to represent a smaller e s L/D, we may conclude that reducing 
the slenderness of the system renders it less stable. 

Other similar complex frequency calculations establish that 
the general conclusions regarding optimal stability are essentially 
identical to those given by the old theory, in spite of quantitative 
differences in the thresholds of instability. The main difference 
appears to be that the first-mode instability is less extensive, in 
terms of the range of parameters over which it is possible, than 
predicted by the old theory. (Here it should be mentioned that these 
calculations are still in progress and that stability maps of the type 
of Figs. 6 and 7 are not yet available.) 

The question now remains on how well this theory is capable 
of predicting the experimentally observed dynamical behavior of the 
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system. The observed behavior of flexible cylinders with increasing 
towing speed [ 26] can be summarized as follows: (a) at low towing 
speeds a 'criss-crossing' oscillation developed in which the cylinder 
inclination was of opposite sign to that of the tow-rope; (b) at 
slightly higher towing speed, sometimes a narrow region of stability, 
or a region of stationary buckling, was observed; (c) at higher 
towing speeds, second-mode, and at yet higher towing speeds, 
third-mode flexural oscillation developed. The above are typical 
observations provided that the tail is not blunt and the tow-rope not 
too short; if they are, then the system remains stable for apparently 
all towing speeds. 

We first note that, in terms of qualitative agreement, the 
results depicted in Figs. 12 and 13, for instance, agree with the 
experimental observations. Thus, at very low towing speeds the 
system is subject to first-mode oscillatory instability and yawing, 
the former ceasing at slightly higher towing speeds, while yawing 
persists (presumably corresponding to the observed buckling). At 
yet higher towing speeds, the second mode loses stability, followed 
by the third mode at even higher towing speeds. 
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FLg. 13 The dimensionless complex frequencies of the second and 
third modes of a flexible cylinder with f, = 0.7, c, = 0, 
f, = i - c2= 0.7, A = 1, X, = X2 = °*01!-ecN =^=15 
-ecN=ecT=0.5. (Nev/theory). 

We next consider quantitative agreement for one specific 
case, the details of which are given In [ 26]: a cylinder with quite 
well streamlined nose and tall, e = 20.4 and A = 1 (cf. ^ 
of [26]). Theory is compared with experiment In Table 1. The 
rationale for the choice of parameters used to obtain the theoretical 
values has been discussed in [ 26] and will not be unduly elaborated 
here. The parameters used are ecN=ecT=l, A =i, 1, = 0.8, 
c, = 0, f,= 1 - c2 = 0.7, Xi = X? = 0.01. It Is noted that, although 
the tail is quite well streamlined, f2< 1 and c2 * 0 were taken 
(cf. [26]), as the tall cannot be considered to be perfect in the sense 
described In §3, i.e. with regard to two-dlmenslonallty of the lateral 
flow and lack of separation In the axial flow. On the other hand, the 
nose, although of identical shape to the taU, must have a value of f, 
nearer unity, as no separation takes place over the nose. Accordingly, 
f = 0.8 and c = 0 were taken In the new theory* (the calculated 
values of the old theory, also given In Table 1, were obtained with 
f. = 1, which is considered to be unrealistic, as the lateral flow over 
the nose is no more truly two-dimensional than over the tail). 
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aoint of cessation oí criss-crossing oscillation, 

clpâr"l.o'n Ä .hêorcuil V.U.. cjlcoi..^ w»h ( = I-«,- 
ÓH (Vto^ta parenthesei In Tabla t) yUM. bat.ar *■ 
anticipated. 

VI. DYNAMICS OF TOWED RIGID CYLINDERS 

D, 1 The Equations of Motion 

We consider exactly the same conilgurUlon ». In Fig. ** *£* 
Impose the restriction that the body be rigid. Y 
Is reduced to one of two degrees of freedom. The ® . the c«nt«r 
ordinates may be taken to be the lateral Í 
of mass, yc, and the angle that the body makes with the x axis. 
Accordingly, the displacement at any point Is given y 

y = ye + x<j>. U4> 

For «he .ake of almpllcUy, we ».aum. «h.« «ha c.n.a, of ¡n... cotn-^ 
cides with the geometric center of the body, x, and ? U 
Fhr convenience w. now . fron, .ha cantar of .. 
that the body extends from x = - L/2 to x - / . 

Instead of deriving th. a<ina«ion. of tore, unfmoga^fbolu«. 

ta mlrtZVt «hà^lòn'»?montan, balança. Th. 
boundary conditions are incorporated through the Integra O ^ ^ 
first te7m of these equations; alternatively. »J« 8h®Jr 1 u on 
ends may be viewed as forces replacing the effect of nose 

the main part of the body. 

Thus using Eqs. (10) to (14) in the manner described above, 

we obtain the following two equations: 

[ M(L + x(f, + x2f2) + m(L + x, + x2)] Vc 

+ [-icNMUL/D + f, - L.) yc + Ts MuZct^c 

- •|[m(x| - x2) +M(x)f, - x2i2)]L^t MUl[z - ] ♦ 

+ MU2[-|cNi+f, -f2-^7 cj**0* (l5) 

and 
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■ î< • «A» ♦ mu», - V|y, . \ HUUI, • l/y, 

■ » [“"-'(-n -íJfiA) .„L*^ .Bijjn)]-; 

• (•« ¿r ctnt. v 1 ,h* dlíí*r^e* n«v*r •*c«*dínf 

a . .¿i: *°.n l/d,*"* t •: rT.z‘ 
•oluttoRa oí «h« form ^ * * * m'L’ Mn4 

n * H.-' and « . ♦a-1 

ír*<»U#nCy «• W . QL/ü, 0 
a^d V «I.« ,TP C‘r.ClÜÄr oí oaciiUtlon, Sub.Utu.ln. « 
«•«» ♦ ÍAIO th. non-dtm«n.ton.]ii«d Mu.tlon. and noVinlMIV?.* * 
...umptlon. raquir. m ■ M, »• obuT * n°,lfti ,h** °ur 

)M **,il *í j *€„*£,-tjM ♦{ í etl/A } [ H 

♦ |*ÍU,U ♦I,) - Xf(l ♦ipM.,.*) ♦{¿-■J 

f í? fca 4 í| * í4 ■ ^ (l/Ajcf4 { ♦ • 0, 

and 

I-i ] »,(» n.d ♦ípl-«/) -I jíí, ♦IJKU) . ( « WA) j H 

!l ? *4 «id *í,| »ípjHa4} *(^(*,*9 *2“ tcjM) 

♦I|d/Aic„-j (í, ♦í,)}}# *0. 
<IS| 
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Similar «quatlona *r«r« ohíalnad «rh«n using th« tli«ory of { 26j, 
U«, Eq*. (IOa), (ill, (U) and (11), namalf 

\[l* X,(l *1,) ♦ X,<1 4 t { -fjM) ♦ [ î c1f/ A) I H 

* ) * -J Uli* +i|> “ XiH ♦ t ¿ 

♦ (^r(c„*cT) ♦*,* 1,-- ct^A} I* « 0 (l?a) 

)* 1-2 Xi(> ♦(,) - ‘JXjO MjiH-w'i-l-jtf/fpHwl) - l| cT>/A) jH 

♦ I l| *ix,(‘ ♦(.) XjO H^K-«1) * 7? ccjM) 

+ ii ct^A * i(i. ♦ vM * " 0 (IBa) 

For non-trlvla) «otutlon, th« determinant of the coefficient* of 
H and 4* In (17) and (18), or In (17a) and (IBa), must vaniah, yielding 
a quartic in w, 

w ♦ Aw* ♦ A«* ♦ Cm * E * 0 (19) 

(,.2 Calculation* Baaed on the Theory of 126] 

The aim here wa* to compara th* dynamical behavior of th* 
rigid body to that of a fWlble body; «• the rigid body may be regarded 
a* a flexible one of very large flexural rigidity, It would be reasonable 
to expect correspondence of the dynamical behavior of the rigid body 
to th* 'rigid-body' mode* of the flexural one, l.e. the aeroth and 
first mode*. Recalling that the dlmenalonl*** flow velocity In the 
c*#e of a flexible body was defined a* u • (M/El) UL, the dynamical 
behavior of the rigid body should approach that of the flexible one a* 
u 0. Two seta of calculations were conducted, an described below. 

The four rigid-body frequencies, given by (19), were computed 
for a number of case* and the values compared with the existing com¬ 
plex frequencies of th* flexible body. A* an example, let us compare 
«be <■*** corresoondlna to Fig. J* The four frequencies are w, * 1.956, 
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two ar« aaaoclalad with the eeroth mode, and the other two with the 
Uret mode and It# mirror image about the ( tm (w>) -axle. 

SurprUingly, the correapondence oí the rigid-body irequenclea 
to Lhoee of the ílealble body, for the apparently arbitrary value oí 
u • 0.7 per.let. íor other valuee oí Í,, aa shown In Table l. This 
value of u ■ 0,7 can be explained as ioilows. We have defined the 
dimensionless frequency of the rigid body by **,»• ÍÍL/Ü, On the 
^her hand, the dimensionless frequency of the flexible body was 

d*íln?^ *• */diJfl.ntn/'t»EI^ * which m*y ^ rewritten as 
**»S ! where u is the dimensionless flow 
valoclty (15,1). The agsumptlons made In the theory require that 
m » **• *°wi& ■ eîuilL/ü. Now, If the dimensional frequency, 
0, of the rigid body And oí the flexible body are identical, we may re¬ 
write this as V2 to# and we can eee that identity of the dimen¬ 
sionless frequencies will occur when u e l/vl» 0.707. 

Calculations were also conducted to pin-point the thresholds of 
yawing and oscillatory Instability In terms of if, A etc, , snd to 
compare with the existing stability diagrams, e.g. Fig», b and 7, 

RIG 
Otl 

TABLE 2 

ID-BODY AND FLEXIBLE-BODY FREQUENCIES COMPARED 
»er parameters: A • 1, tf £„■ f cT ■ t, f, • l-c, ■ 1, c,« I-Í-, 

Xi ■ Xt • 0,01 

h 

Rigid body Flexible body (u ■ 0,71 

«1 wt Wj tt| W| W) 

1.0 

0,8 

0,4 

0 

1.95 

1.95 

1.96 

2.01 

-0.76 

-0.10 

-0.08 

0.42 

0,58-0,161 

0,84-0.191 

1.15-0,201 

1,28-0.011 

1.91 

., e 
1.91 

1.95 

2.02 

-0,71 

-0,29 

-0.09 

0,42 

0,58-0,15» 

0.81-0,181 

1.14-0.191 

1,28-0.0041 

. ^ *2** c**e oi * ri*ld bo^y w,th psrameier. corresponding to 
those of Fig. 6, It was found that oscUlatory instability extata for 
0SftS| and that yawing occurs for f, > 0, 5. Correspondingly, for 
the case of Fig, 7 it was found that yawing persists throughout, and 

• 
Upon examination, the at; 4e branch of the seroth mode as given in [¿6] 
W*B found to be In error} the locus mov* » away from the ( Re (w)l . 
axis much faster than shown In Fig, 1,( ¿6), The corrected value 
for u ■ 0,7 Is given here. 
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i,»0-“-, o»«« *«.i. 

.h„.|„J“L''*Z,;,o;"*‘r*7; *"* ‘«■•trud.d (H,.. H and ,5, 
-<.K .H„.. ,„ b. ,¾. -t 1“ * t°r c<»«p*ri*oo 

*■»«. 14. The effect of *Cb. cc .„j # 
rl|ld ry||„d«r .,îh V.T , •.“•““{«» «I . 

• '•'':1.*■ ■*.-o.»,: _}Ct'.Vi, icf ■ 0.5j fe, « I. (Theory of (2*6)). 

th*n et., the region of netn¡«iTo^^* ^'e *• foneldereble Jeee 

ypi*.n,n,7::rv"' 

deflmtl"‘he“‘.'".Ve"'1Vh°" '0W''0,>C h" * v#rV 
wUlty la concerned. Verv in«» y*,0,n» *• iar a« oacUlatorv In.ia. 
dentjy have a v#ry weak^tabnuin^Vf^*' °n th* °ther hmnd> ev‘- 

of {h® rl«ld body ii/epreJïnt*d-bilth,^sIk^0 dyn*m,c*J behavior 
flrat mode, of the ne*ible body .-»t'.^*hu*Vior of the 4er<>*b and 

ya»ln* in.tabUity ^o^^ifVcVed* by1 va^ing ^ 0< varying A, (.#. by altering 
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Fi*. »$, Th« «ficct oí A on «UbUlty oí a rigid cylinder 
with Í, » l-c, ■ I » tCj,■ «cf ■ 0,5, ct » l-f 
•«d X, »Xj-O.Ol. (Theory oí ( 26)). 

the tow-rope length. In the caae oí the rigid body thle become* 
obvious upon considering equation (191. Since the threshold for 
yawing InstabUtty Implies « • 0, this threshold la established by 
the equation E ■ 0. Now E Is found to be 

E • (c^/MllI«^ ♦ c^ - ltt\ 

Clearly we see that the threshold la not dependent on A. This seems 
to be In contradiction with Strandhagen’s et al. (i j criterion (III) for 
the stability o< towed ships (as given In $1); on closer examination 
oí their own work, however, we tee that the equivalent oí term E, 
In their case aleo, contains A as a common factor. Accordingly, 
we must conclude that the only form oí Instability the existence or 
non-existence oí which may be controlled by the tow-rope length Is 
oscillatory. 

6» * Calculations Based on the New Theory 

Calculation* were alto conducted with the new theory. It was 
found that, in this case also, the dynamical behavior oí the rigid 
body corresponds to that oí the aeroth and first mode* of the flexible 
one at low towing speed* - quantitative correspondence of frequencies 
occurring at u • 1/V2 as before. 

Stability plots were also constructed (Fig*. 16 and 17). These 
are markedly different to those given by the old theory (Figs, 14 and 
15), the main difference being in that oscillatory instability according 
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Fll* 16 The effect of cc. 

H,v"Ã,;,:c.v'cxf1.,*.“ r.t"7 

Fig. 17 The effect of A on .Ublllty of a rigid cylinder; 
c* s l'(f **h * fct * 0.5, li, • Xi ■ 0,01; 
.7~ ^ “ ‘“«I * ‘ï-Í. * 0.8, C, » 0. (New 
theory). 
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to th« new theory occur, over . much more limited r*nge of .y.tem 
parameters, while yawing la more prevalent. 

Comparing Fig. 16 to Fig. 14 we note the io11®^ 
differences* (l) yawing, being independent oí cT according to n 
tw thenory*; l. represented by s single line; (11) according to the 
new theory oscillations persist to progressively lower value, of ij 
as l?reduced, while the oppo.lte trend wa. predlcted by the 
old theory; (ill) according to the new theory . for Í. “ » "iîî- 
are large region, in the (ccM. fj) parameter space wh.re y.w ng 
occur, alone, but not where oscillations occur alone; on the other 
r.n2 according to the old theory the oppo.lte ,. true. Howe « 
thl. last point applies only for /,-1. » may be seen that ior f 
and 0.7, the result, of the new theory become much more like those 

of Fig. 14 in this respect. 

We note that the on.et of yawing is independent oí Í, a* 
as c,, »e »hat the line shown in Fig, 16 applies to al * 
therein. Once again considering term E of Eq. (19), which in thl. 

0.8 

f,» c,. case Is given by E- (e^/iAilJ *cN-Uj. we .ee that 
and A are all parameter, that cannot affect the onset of yawing. 

Wc next compare Fig. 17 to Fig. 15. The res’dt* are quite 
similar, except that (when f, » 1) oscillatory instability occur* °^er 
a more limited range according to the new theory thaï, predicted by 
the old theory. However, the results of the new theory J®? f' 
when compared with those of the old one for Í, * l *r* 
The result, for f, « 0.7, not shown in Fig. 17, are of In ere.t In 
Til oscillatory instability, in that case, occur. JJ® 
whole plane, he. for ft> 0.013 for A^O.l and for f^ 0,008 for 

A « 0.2. 

vit. CONCLUSION 

In thl. paper we have reviewed an existing theory for the dy¬ 
namics of flexible cylindrical bodies towed underwater, and developed 
a oTranel theory for rigid cylinders. It was ,hown that, whereas the 
dynamical problem in the case of rigid cylinders is independent of 
towing speed. In the case of flexible cylinder, the dynamical öeh*'ior 
and stability) of the system is highly dependent upon towing speed. 

It wa. found that, In general, flexible towed cylinders are subject 
lótoíh n.«,r.l and •■l.UI-boV 1..,.1.111,1... I*"" 

, ,ow towing speeds. It was also established that at 1 
towing speeds, the dynamical behavior of the flexible cylinders in 
their two lowest modes (the so-called reroth and Hrsl) correspon 
!hat of rigid cylinders, which of course have OÍ ÍF 
rfnm Thus the study of the dynamics of towed flexible cylinders 
yields sufficient information to establish the dynamical behavior of 

the corresponding rigid bodies. 
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cylindcrA,)nwhich!0s7¡rb8enitedPTeDnlCd ^ nexlble *nd ri*ld 
more clo.ely. The main dl/ieî«” inîhe r ,th®lfphy*lcjü •y«1«»" 
old and new theorle* are aaaociatBd íi.Í!». obulned *>¥ the 
body mode« oí the *y»tem «n« ir¡ th b*h*vl°»’ of the rlgld- 

• ystem to be more -table In iT, nr7t («cUUt^ pr<dlct“ the 
In it. zeroth (yawing) mode than doe. the oM theory *"* 9tMbIe 

périment!**Quantitative^ãg^roement^Ctóifot^l^* a8re<,ment ex- 
untU a mean« ta found fo/aci uratelv * be a“*e,,ed definitively 
of the dimensionless system Parametee m n n8 th* VaJue* 

NeyertheleeeMtlapoaVlMTlo m^Xen^^“1^ f' and ^ 
parameter* ba.ed on experience from Ik 8* e,tlrnat«» of these 
«bat basis quantitative ígr«em«nt between^ 1 25¡ * °" 

dearly leaving .7oÄl‘to SVesl^!**" t0 

crossing InatabUit^w^ldímifled w^híhl^ ’ the. ob*erved crl«*- 
first-mode oscillatory IneUb iftî P^dlcted 
theory predicts that the system^ also .* M*® iaCt th** ln mo,t caae* 
over the ,.me range of towing .peed! TK *0 y*Wlng ‘f‘*«ab‘li«y 
observed frequency charade rt mH t . ^ * * ®uPP°^t«d by the 
-erved effect of varying A foJ1 n!tOÍ ?,fU1*tlon and «b» ob- 
thcoretlcally Indicated for the hah ^‘ng e«*en“«lly ». 
thus been presumed that oscillator^ i°r ^Km* ilr*t modc* 1« bas 
of instability. There Is, however^w lúernittl* Prevaîen« ^rm 
the observed behavior, namely that ** X* lnterPretatlon of 
nonlinear manifestation of yavíliÍÍ criss-crossing oscillation I« a 

not be proven by the present IlL.V thÍÓ'ryT^ P°'tuUted* but can- 

tensive exíêrtimennUtTbtn^cludq.^e!,UOn,, 7™^' Morc and ex- z:: Är - 

opposed to pure translation TM« iATm * nvo,vc angolar motion as 
cylinder moment.rtly SS*-.?i' upon considering the 

the forces acting onthecïllnd.rArÜ thC X'axU: ,n thla 
configuration, except that the t exactly as In the equilibrium 
the tidy. 1. *;íT * "“•’h"'« torce „„ 

hot. th.. the Inviecid hydrodye.aZc? 
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while at the tall It i. - f^U^Ôy/dx), producing a moment tending to 
exaggerate the original tncliruUlon. However, there are Coriolis 
iorce. proportional to MUO'y/ax 8t> which always oppose rotation 
(cí. Lq. (10)]. 

To understand this action oí the Coriolis forces we consider 
the related physical system oí a hinged-free tube containing flowing 
fluid (as mentioned in Í2), depicted in Fig. 18(a), which was first 
considered by Benjamin ( 32]. We see that if the system rotates 
about A without bending, the fluid suffers a Coriolis acceleration 
which has a reaction on the tube always opposing the motion. This 
is clearly a stabilising effect, as energy has to be expended by the 
tube to keep the motion going; as further elaborated by Benjamin, 
this represents the action of a pump from the energy-transfer point 
of view. r 

<»! 

Fig. 18 Rudimentary representation of a pump and a 
radial-flow turbine 

We next consider flexural instabilities. Clearly everything 
mentioned so far applies here also. But we also have another force 
coming into play. Once again we consider the hlngcd-free tube con¬ 
taining flowing fluid, as shown in Fig. 18(b), where the tube is 
momentarily ’froaen' In the bent shape shown. The centrifugal force 
of the fluid acts to Increase the curvature further. This is clearly 
a destabilising force, energy flowing from the fluid to the tube; it is 
the action oí a radial -flow turbine. In flexural oscillations we have 
a play between these 'centrifugal' forces and the Coriolis forces; 
•hen the former prevail, then Instabilities may decelop. 
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More formally, we may consider the work done, AW, on the 
cylinder over one period of oscillation, t,. In much the same way as 

was done In ( 24]. We find that 

AW * (1 - ly‘ * uW'1,.0 dt - " -^MUJ0 * '’W'1»«. 

.,4" fi1^) (y! * uñ') ax it- 

dt 

(20) 

“„fr ;eo«Ä°"* 
That if" f,m=Pfi= >. then Instability can only arise fr°™ ¿.l8C^U8 
(cf 24]). We next consider the first two terms of (20). We not® 
ihat for arbitrarily small U stability wUl be governed by whether 

U-Vfo' Yodt ■ "-V fo' Xdt 18 POSltiVe °r negatlVei U 18 C!,e"’ n 
therefore, that a well streamlined nose (f, = D and a blunt ta ( 2 ), 

both tending to make AW < 0. will may' 
hcvsver . th^^t^lion^e^etnea more^connplex^, V 

now ot-taln, and yy may oc r , , „--illation. (It is 
representing the mean value overo P id t for 08clllatory 

noted that from Figs. 8 and y “9** DC “ «tronolv neaatlve, and 
.raJ.bllltl.. w. «•'■'rally .'’•’'''"'„í.bÂè value!) Stability will 

depend on the magnitude of t,, 1,, y0* Yl Cl” ’ ,, <?0t 
Vies can be formulated beyond t\ie statement of Eq. (20). 

It was found that the most effective way of stabilizing a towed 
system is by making it blunt at the tall, which has ^ dleadvantage 
of Increasing the towing drag. Clearly, what is needed is a bhint 
tall without separated flow! The present work and that of [ 26] Indi 
cate that small f2 and large c? (both associated with a blunt tali) 

have individually stabilizing effects on the 8.,//.^^1 
what we need is a sufficiently small i2 for stability, and * »rnall 
c2 lor moderate form drag. From the boundary colJdltlo”s "°t8 
fbat a small f» has the effect of reducing the lateral shear exerted 
Ly lb. Än ,‘h. cjlindbr. Accordingly ,11 the «11 1. -dc very 
flexible with the rest of the body essentially rigid, the fuH shear 
force might not be transmitted to the cylinder, simulating the effect 
oí a smafl f» yet Insofar as axial flow conditions are concerne , 
they would be fairly good. Of course, this particular ^iutlon m ght 
give rise to other problems, e.g. whlplash-type behavior of the tall 

may be envisaged. 

Another point of possible practical interest hinges on the 
fact that a towed flexible body , which is unstable at tow big spe , 
may be stable at an intermediate range of towing speeds. <°n the 
other hand, a rigid towed body of the same shape would be unstable 
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at all towing speeds.) Accordingly, in the case of a flexible towed 
system this suggests the possibility of removable stabilizers; these 
would be operative only at low towing speeds, and would be removed 
at the operating speed to reduce drag. Incidentally, the above 
would generally also apply to articulated towed systems, made up of 
a number of rigid tubular sections flexibly connected [ 32] , [ 33] . 
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AND SYSTEMS IN A SEAWAY 

Paul Kaplan 
OoeanioBt Ina. 

Plainvieu, New York 

I. INTRODUCTION 

At present, increasing interest is being devoted to the prob¬ 
lems of deep sea operations of vessels that must remain on station 
for an extended period of time in order to accomplish their intended 
mission. This concern was given its initial Impetus by the success¬ 
fully conducted preliminary operation of drilling through the ocean 
bottom from a surface ship in the operation known as the "Mohole 
Project," as well as the increase in oil exploration in deeper water 
depths. On the other hand, from the point of view of military 
operations, there is need for placing instrumentation packages and 
other military systems on the ocean floor for various purposes of 
National Defense. These operations require a definite degree of 
precision, safety during the course of the operation, and the capa 
bility of returning to a particular locale and retrieving information 
and/or the equipment itself for further study of data or for emplace¬ 
ment in another location. 

As a result of this emphasis on deep-sea operations, it is 
necessary to determine the response of representative moored ships 
in the open sea, and also to determine the characteristics of the 
important parameters associated with lowering loads from such a 
vessel to the ocean floor and returning them to the ship. The 
parameters that are of Interest to the personnel aboard the ship are 
the forces in the mooring cables, the displacements and tensions in 
the lowering lines, the degree of precision in placing the loads, the 
accelerations acting on the loads, and the magnitudes of Impact on 
the ocean bottom. In order to arrive at some appropriate engineering 
estimates of the capabilities of carrying out such operations, appli¬ 
cation of available theoretical hydrodynamic studies can be made to 
deal with problems of this nature. 

The study of motions of ships at sea is a general problem of 
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ttavai concero, *nd ha« received increaaing emphaei* during the laet 
fifteen year* or ao by virtue of the advance of etatieticaJ method* 
which describe the effect* with greater realism than in previous 
studies based on simplified wave representations. Major concern 
has been devoted primarily to the problem* of an advancing ship in 
head seas, with the prime variables of concern being the heave and 
pitch motions. Recent studies, however, have been concerned with 
motions in oblique waves, wherein lateral motions (sway, yaw, and 
roll) are also important. All of these studies involved large ships 
advancing in waves, and only limited theoretical studies have been 
developed to predict adequately the motions in all ala degrees of 
freedom under these operating conditions, A treatment of the motion 
of a free ship with six degrees of freedom in waves Is a formidable 
problem that has not achieved a complete solution si the present 
time, and when the influences of mooring* are also included, the 
problem is further compounded. Nevertheless, there exist# a need 
for some means of preliminary estimation of the expected motions of 
a moored veae»l, and there is sufficient hydrodynamic information 
available to allow a study that will ndicate the expected range of 
amplitudes of motion so that the results obtained can be used as 
guide-lines for operating personnel. 

Another releted problem that is assuming more significance 
recently la that of a moored buoy system. These smaller payloads 
are planned for uee over large ocean region* to provide a network 
of environmental reporting stations that will yield continuous data on 
the important properties of the ocean and atmosphere for use in 
weather forecasting and other technologies dependent on air-ocean 
interaction. The effective design and engineering development of 
such systems requires an ability to predict the buoy (and hence the 
transmitting antenna) oscillatory motions and structural acceleration 
loadings in various svaways; the determination of the tensions along 
the cable under various operating conditions: etc. Knowledge of such 
results will greatly enhance the design of hanifling equipment for 
both launching and retrieving of buoys at tea, and will also provide 
baelc information on system survivability under extreme environ¬ 
mental conditions. 

A tool that can provide engineering estimates of such Informa¬ 
tion is s mathematical model that describes the essential mechanical- 
dynamic characteristics of s moored buoy system. This mathemati¬ 
cal model will be a system of equations and relationship* that aliows 
the calculation of the spatial configuration, dynamic motion and 
internal tana In ns of a specified moored buoy in a given excitation 
environment. The hydrodynamic force acting on the buoy hull and 
the forces acting on thee able system (hydrodynamic. Inertial snd 
elastic) are coupled ao that each affects the other, especially when 
considering dynamic effects snd rapidly varying motion«. Certain 
similarities exist between this prob."m and that of a moored chip, 
together with definite differences as well. The appiicability of basic 
techniques of analysis from one problem to another provides useful 
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in«ighi and extend* the utility of bade "tool** used in hydrodynamic 
and dynamic Investigation«, 

When considering the problem of maintaining a ahip on • tat ion 
for a tong time period, various concepts for achieving a minimum 
deviation from a derired operating point are possible, with the two 
main methods being that of fixed mooring or by use of a dynamic 
positioning system. In certain situations where mobility is required, 
as well as due to the high capital cost of a mooring system for very 
deep water ope rations, the associated high cost of emplacement and 
the dangers of damage due to large storm conditions, a mooring 
system does not appear to be attractive. Dynamic positioning is a 
more recent development, which has only received limited applies* 
blltty to dale. 

In order to provide the information ncessary to determine 
the possibility of an application of dynamic positioning, it is neces¬ 
sary to carry out particular analyses to determine the environmental 
conditions appropriate to possible operating areas; the resulting 
forcee and moments acting on the ship; the arrangement and type of 
control effectors; the possible signal systems that provide the error 
and command signals for actuation of controls; possible control 
system concept designs; etc. 

The important quantities that must be determined for proper 
design of the positioning system are the disturbing forces that act 
on the ship. The major forces and moments that affect the ship 
stationkeeping ability in this case are th* more-or-less steady type 
of •drifting“ forces imposed by the environment, and these quantities 
are amenable to computation by means of hydrodynamic analyse* 
using available theory. 

In all of the foregoing situations the importance of hydrodynamic 
force evaluation and its applicability to obtain desired engineering 
performance data is paramount. Many publication* are available in 
the literature on ship motion theoretical studies that can be applied 
to the above problem areas, with reasonable expectation of validity 
for the results. The central theme of this Symposium, "Hydrody¬ 
namics in the Ocean Environment,* is certainly appropriate to the 
preeent International Decade of Ocean Exploration which will em¬ 
phasise the technology that will yield benefits to Mankind, The 
application of the basic developments In hydrodynamics of ship motion 
to the applied engineering problems associate with maintaining 
vessel operations at fixed positions in the ocean, which will be 
required as part of this extensive international effort, is a vital 
element In achieving improved system performance. It is also a 
good illustration of the direct application of many years of basic 
research toward the solution of problema that are anticipated as 
further and deeper venture« into the sea are made. The present 
paper is aimed at providing a limited description of the use of 
hydrodynamic analysis when applied to some of these problem areas. 
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II. SCOPE OF INVESTIGATION 

U la aaaUy a «an that thara ara a hoat of problema aaaoclatad 
with the a objecta considered Is thia paper. Aa a result, aoma limi¬ 
tations are imposed ao that only certain aspects are considered In 
<l*t*ll. The region of application of the resulta In this paper la In 
deep water, ao that no shallow water effects are considered. This 
limitation thereby excludes problema of ship oscillation when 
moored at docks In harbors, which la an Important problem that can 
be treated in a similar fashion to those herein by proper Inclusion 
of shallow water effects. The main emphasis within this paper Is 
on the seaway and Its effects, and In some cases the Influence of a 
current will not be considered. However It Is known that currents 
are often present together with sea waves, and their combined effect 
la often very Important. In addition the presence of a current la 
often necessary to establish certain static equilibrium conditions 
for a vehicle about which the seaway disturbances are Imposed, 
and In that case ce Hain assumptions are made as to the existence 
of such Initial conditions for purposes of simplifying the analysis. 
Similarly, the presence of any wind effects is also not considered 
In detail within this paper. 

When considering the problem of the motions of moored 
systems. It Is known that the effects of drift forces are also present 
and that they produce an Important influence on the resulting motions 
and cable forces. However, In an effort to obtain tractable solutions 
and to provide Information on the characteristics due to different 
force mechanisms, these effects will be considered separately. 
Illustrations of the dlffsrent Influences that act on vehicles and 
systems In a seaway will be presented separately, with some dis¬ 
cussion given to the expectations with combined effects in a realistic 
situation when more t'.sn one mechanism I« acting on a system. 
The discussions of results are devoted to the more important 
phenomena Influencing performance of a system In the sea, and they 
wUl be given throughout the paper for each case treated. 

in, TECHNIQUES USED FOR MOORED SHIP ANALYSIS 

In order to determine the motions of a moored ship in Irregular 
waves. It la necessary to determine the response In regular sinu¬ 
soidal waves. The aim Is to predict these motions, and the technique 
to be utilised Is that of spectral analysis [ 1) wherein the statistical 
definition of the seaway In the form of Its energy spectrum Is used 
as the initial data. The energy spectrum of the time history of each 
motion of the vessel In response to Irregular waves is evaluated for 
the corresponding degrees of freedom to the energy spectrum of the 
seaway. These operators are obtained from the solutions for the 
motions In sinusoidal waves, and In accordance with the basic 
Î»remise of this technique of analysis, a linear theory of ship motions 
• • prerequisite. 
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Th* equation» oí motion in regular wave*, for alx degree* oí 
freedom» are formulated according to linear theory by the balance 
of Inertial, damping, recto ring, exciting, and coupling forcea and 
momenta. Both hydrodynamic and hydroatatlc effect* due to the body 
fluid interaction are Included in the analyaia, together with the 
influencée of the mooring ayatem, The longitudinal motion* (heave, 
pitch, and aurge) are coupled to each other, and aimilarly, th* 
lateral motion* (away, yaw, and roll! are aleo coupled. There ia 
no coupling between the two planea oí motion*, In accordance with 
linear theory. 

The hydrodynamic force* and momenta auch aa damping, 
exciting effect* due to wave*, etc., are determined by application 
of th# method* of «lender-body theory. Eaaenllally, thla theory 
make* the aaaumptkm that, for an elongated body where a tran*verse 
dimension Is small compared to its length, the flow at any cross 
section Is independent of th# flow at any other aectlon; therefore, 
the flow problem la reduced to a two-dimensional problem in the 
transverse plane. The forces at each section are found by this 
method, and the total force ia found by integrating over the length 
of th# body, A description of the application of slender-body theory 
to calculate the forces acting on submerged bodies and surface ships 
In waves is presented In | 2) , where simplified Interpretations of 
force evaluation in term* of fluid momentum are also given. The 
hydrostatic and mooring forces and momenta are combinad with the 
hydrodynamic terms, resulting in linear combinations of terms that 
are proportional to acceleration, velocity and displacement in th# 
various degrees of freedom. Ail of these expressions, when related 
to th* appropriate ship inertial reactions by Newton's law, lead to the 
set of six linear coupled differential equations of motion. 

Solution* of the equations are found for regular sinusoidal seas 
with varying wave length and heading relative to the barge. The 
response amplitude operators are found from these solutions together 
with the phases of the motions relative to the system of regular waves 
Assuming a knowledge of the oncoming irregular sea conditions (*,g, 
in terms of sea state, a* specified by an associated surface-elevation 
energy spectrum from Information In ( ij), the «et of energy spectra 
for th# ship notions are determined, information on average values 
and probabilities of relatively high values of the amplitudes of oscil¬ 
lation* in th* ship-motion time histories for the different degrees of 
freedom are found from the ship-motion energy spectra in accordance 
with the methods of ( l], Cross-spectra are also used to determine 
the energy spectra and hence the various average values and th* pro¬ 
babilities for the remaining quantities of interest, such as load- 
displacement time histories and other quantities which are linear 
combinations of the ship motions and their time rates of change (the 
presence of lowering lines for placing loads on the ocean floor ia 
considered in this analysis). These energy spectra may also be 
obtained from the aolutiona of the differential equations by linear 
superposition, and explicit us# of cross-spectra here is necessary 
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only for obtaining phaa* Information. 

-UK no^M‘.V.V“,b7„7!c,.0„.brj?r*"d --«.. 
realia tic from the practical i/n.If Thi* m*y b* «omewhat un- 
devoted only to the?mo<IonÍ l^iL cÏbl^^ “inC* Conc*rn 
reaaonable (., di.cu.aed pMvI^.U^ T^^irr* thU ^ 
moored with bow and .tern monrinL h p '• »*»umed to be 
«VP*. The line and .nchor Zor«ïf . of,COnv*,fon*> Une aod ancho 
* particular .yeten, e.pUuiït T U'UUed íor thi» «»«dy ii 
and utilüiaa a Lut llnV.fttj îSl. of m^L” ! ^ * 
aide red aa well, but «eparate anaW.c. toXi 8 ,.,ne,uC*r‘ b® con* 
orientation, reatorlnaTorce vari.H * determine the atatic 
The extent of linéarité for the.e dîffe^r^tfïli"«1*1 ^ C*^r,€<, oul- 
muât be determined for uae in the Dr/.enfTf 7 *rr",*«"»«nta 
effecta of the mooring, wm he / Î!" ^ oi The 
particular diaplacemfnta of Ïuree* .°^ r7t0r,n* ‘»««‘a the 

«pring-llke» term, ,n the equation. ToViíile^el pr0vid,n* 
Aa a mult, there are certain na«„,»t t ,h**® degree, of freedom, 
the.e motion., which do not ordiÜaíuy 
moored) ahlpa. The uy occur *n caae of free fun* 
Influence on the motion, of ho\v^olVv^^J0 7V* * n*»H«ldle 
hydro.tatic re.torlng effect.. * PU h* *nd ro11* whlch have large 

•hip, fqSn,8.1?! LLm^àtTd'lo dLV*r,rU* ,?oU<>,,• oi 'hc moored 
ing cable., ,h# düpT.cemlV J 'L'T ,'^ ÍOrCea in th* moor- 

a function of the different degree, 01 ¡r1**!,0" In,thf ,ow«rln« Un«# 
platform moored In the nc.wav* The ^ { e®do,T* oi lh® o.clll.ting 
ten.Ion, which are function. of*»he .hlo h"* ^ dt*P1acement and 
the aeaway ,nd all of the h,p mo“on. are then related to 
on theee quantitle. provide in for mat fon on* d®*crm‘ncd* Operation, 
particular ,ea .ute., a„d in IddUiónTh c«P®cted .mplltude. for 
the load, .re date rminid and .Sfu !rM,°n* ei 
m#.!». .. ...,., ,., .,.Jy ., 

IV. EOUAT K)NS OF SHIP MOTION 

,...,. ï!7£.7iï:£ œ ‘¿'lw rr,v'- -- “• 
freedom. A right-hand carte.Ln rLfif ! ,0 ^ ,U degree, of 
the axe. fixed in the body, and with the^rUd l* cho*en with 
of the body. The x-axf, t> , l®!n at the center of gravit 
*« Poaitlv/ to portf and\he ^ the8 y-ax 
are defined to have a fixed orlcntatimT^ ,ve «P»ard. The.e axe. 

the body, but they can tranalato with Le b^*dv Td rOU**,W,lh 
motion, cm be considered to be .mall o.cdn.H«! t * 
po.ltlon given by the axe. The dvn.n °,cU1.tion. .bout a mean 
dl.placement. X, y, *nd . v*ri*t»le. .re the Hne.r 

..«.U,, „up,rí, ■„ .„;v»h,7hp.',v;:,rr- *nd ,h' * wntch are defined a. poaltive in 
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* direction oí poaltlve rotation about the x, y, and * axe* , 
respectively, (l,e, port upward, bow downward and bow portward). 
The positive direction* of the force* and moment* acting on the 
body are elmtlarly defined. 

The force (or moment) acting on the body 1* composed of the 
Inertial force due to dynamic body motion* (denoted a* F,), the 
force due to damping (denoted a* F$), the force due to hydrostatic 
restoring action 'denoted a* F*), the force due to the mooring* 
(denoted a* F»), and the force due to wave* (denoted a* F„). The 
equations of motion are then established a* 

mV • F « F, ♦ »V ♦ Fh ♦ F* ♦ F„ (1) 

for rectilinear motion* (with • representing any rectilinear dis¬ 
placement, and m the mas* of the ship), with similar representa¬ 
tions for the angular motions. A discussion of these different type* 
of force* Is given below, together with some results obi* -.ed, for 
purposes of Illustration. 

The hydrodynamic forces and moments due to dynamic body 
motions are of Inertial nature , and do not contain any terms of dissi¬ 
pative nature. The effect of the free surface Is accounted for by 
different frequency-dependent factors that modify the added masses 
of each section. All coupling* of Inertial nature are exhibited In the 
results of the analysis. In the case of dynamic body motions, the 
simplified results of siendor-body theory states that the local force 
on any section Is equal to the negative time rate of change of fluid 
momentum | 2] . For the vertical force (s-force), this Is expressed 
by 

111 “ * Í 1 AJSWJ * 

where aL Is the added mass of the cross-section and wb Is the 
body vertical velocity, given by 

wb ' (r. - 40) * * - 40. (J) 

In the above equations , the coordinate 4 I* a "dummy* variable 
along the longitudinal coordinate x (and coincident with it), and the 
time derivative D/Dt Is just the partial derivative 8/dt, since there 
is no forward speed. The quantity Aj} Is the added mass of the 
cross section, Including free-surface effects, which Is obtained from 
the work of Grim ( Sj for the class of sections known as Lewis forms. 
The total vertical Inertial force I* then found to be 
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* *"CA*,dí’‘ ♦^*AÍ{d6.s 

where 4k .„d 4, are the bow and .tera «-coordlnat.. ra.p«ctlv«ly 

Äcr^Ä;"«ÄTcd.it:rY™ 
rectiona to refer the fina] force* to the gr rV tV po#,tlon* c°r~ 
made after finding the force* referrlrf r OÍ gr*vlty Potion are 
The detaUed procedure* for detc^mlnl- /w* irfe-*uri«e poaltlon. 
moment) reauJta, a* well a. aii ,u r8 the"* force (and 
hydroatatic, etc, nature are deacrÍbld^nTòl ^ ‘ 
report on which the preaent aectlon of thiJ 6 * 1# the 
of thia, oniy Hmlted dl.cua.lon o?!he b“ed‘ In vlew 
will be preaented. malnlng forcea and momenta 

•r. prTm:Xms^'"hc;«*"<‘rr„m'n<u *" '»•■'p*“»« i» »««.. .„d 
th. .u,l.c. y.u”h ÂÎX“1“ \*h' •»‘P motion, on 
to infinity. In accordance with the two *ner*y bV Propagating outward 
for the anaJyata oí InerUtü Torri.V tre*^ent uaed 
concept la uV.d m0t,0n8 ' th* — 
due to wave generation With the r»M f r't* 4t 8 •ecllon of *be «hip 
generated two-di^ena^n J wave, to th th!,oi ‘b« heav^- 
oi the .hip .action denoted by * thi^erTiíai*0Í. he*V,n« mot,on 

N u 
Pg^/ 

wa "“(■hf A (51 

flcl.nu, «h.r. B* 1. .h. I„c^ w.m ,„d X “°t"h. 

The vertical damping force at each aectlon is 

dZ, -af * - n„ù . 49), (6) 

v-lcii* ^rnVròrÍr.í.^by "» 

1024 



Mooring and Petitioning of V,hi0lta { 
a Seauay 

'<» s * Nt* + N.flß . 

where 
Í7) 

N, pu 

and 

(8) 

Nlff » P«(^/J bA/e d4 . 
V ^ (9) 

mome"* e‘tct.ment" y‘eld the Uterjü damping force, pitch damping 

energy dUsipation die^o* waîe0gedn^!îP!i1®' err‘Ph®«i« waa placed upo 
* them.elve. and cSntrlb?. ?* vl.coua effe« Mon of lhe vi ua damplng t;r¿n¡-rlJ“*e d*mpiM. The contribu¬ 

tion U* £°blC •«•Ption o/ roll, Ron ! °r m°*t motlon 
«on la often amall for moat norm.i T, d*mPln* due to wave gener 
other drag mech^l.m.0;0.^. *?d ^«ou. effect. (Jr 
Importaijce, eepeclally lithe •> in , d^I*ma,t,ni> aaaume greater 
caac, the roll dampmg u oft * if U ^tted ^ bUge ke?l.. u th4. 
Ration I, u.ed to determine .;mín0rÜ,,n?r ÍOrm> *°d « iproxt 

rn’inellf80 ”bUlned íro^ ^odel exp^m^nU/tT*" rePr««ntatlon. 
"... -s 

taS>*d”’*^Ck"oy3i»VSnu “uiT°7,nu *• "I* 
"e.îoVin Th»0nJy dl*Pla«ma„ï. thit wlîl l;el:i r10n? "jatlc lace¬ 
re, to ring effect, are heave, pitch and e it « ln hydroatatlc 
theory, the local hydroatatlc veític^ fori; ?" the b*,la o{ ltne*r 
déplacement. U 1 ^ iorce change due to vertical 

if* 1 * PgB' '(* - iO), 
(10) 

«"ÄAV.V.Trfi« * isr»*'1,-*'“«' ta...- 
come, from the total Immer.’inn lci ®ifectlve buoyancy change 
reatorlng pitch moment la ’ rtlUarly* the hydroatatlc 

s . Ç «II 
(in 
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i“« S,'0 hy<lr0,'*,,C "«oHng vertical /orce .„d pi,eh 

and 

zh - - s* d4 . * + Pg JÍ',b*4 d4 • e. 

H-pgjVsd{.,.pg^*BVdí 
f* 

0 2) 

0 3) 

^ caze of roU motlon. the hydroiUtic r#itorini #f/ect u gtven 

Kh a - PgVjGMjé s . W JCM jé. 
04) 

"P¿VT. Âí-dlÂ.^1 “ -• .c K.I.M. 

-'r ^■^'•“p-T.'^lTJte^ír;,0 *T- »• .. pa#t the a hip hull, together j . * on* a* *he wave* progrès« 
»d H,mp|ns. Thi buC'cVe '"m* »' l-'r iï 
aented by yanCy efiect the verilea] force 1, repre. 

«mbined to determine 

wití, re:p^%;^h77¿‘<> b. « laobd heCX‘ 

«Ll?fn'!Leníerne” oi lh- »hto I. also fnlrrr ÍOr the ‘"««•nc« of 
relating the beam to the wave fenoth 1°J A correction factor 
thla purpose since the shlpforms rÜl fw th!, hcadln*» 1» Included for ‘ 
are often not very ale^eTX.lS oVSl^ ^ «PP^ation 
«bd moment, by thr.c m.thod. .r. p^ÜTnÄfl]" ”"V' 

lion on «íôrch^áct‘;u,“lc'íro;n1n°r!.c®,,!rCí'drd Informa- 
1* given below. The particular J stud,ed ln tW* Investigation 
formulated and solutions carried « t*! ^ wh,ch the «quatlons^re 
v..„, ,, rd ,„ thr pr "n^m/ry MorúVrn,PUSS ’• Wh"h »*• 
1« considered representative of th- el d U1,ln* 0P*r«‘ion. This ship 
Which will be Utilised for deep/.-Ïcnn*»* OÍ ^on“truc*lon type barges 

l”íf‘™â;;âío* “ 
fn TaM?,? 
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Numerical Values 1 
Length Moored-Barge System 

Beam = L = ¿60 ft 

Draft = B = 48 ft 

Vertical distance from CB to CG , = 10 * 
Vertical distance from free = (BGI = 9.8 ft 

Vertical distance from CG toT/jT " ^ = ^ = ^ 

V ii iree surfai 

' dlS,a',Ce i'“" CO ÍO keel 
Metacentrlc height 

Displacement 

Weight 

Mass 

Pitch moment of inertia' 

Yaw moment of inertia1 

Boll moment of inertia2 

Surge period3 

Sway period 

Heave period 

Pitch period 

Roll period 

EtS'eVi “P,¡"8 ">”»**« foe mootl„g 
E,iec Xrrin8 ‘v..on, ,Pring constants 

Sway 

= |KG| = 15.1 ft 

= |GM|= 8.16 ft 

= 2823.2 long tons 

= 6.324X106lbs 

= 197.624X103 slugs 

= 706. 7X106slug-fte 

= 706. 7X106 slug.ft2 

49X10 slug-ft2 

= W 

= m 

= r, ■y0 

= I» 

= i 
"t = ?8. 69X106 slug.ft2 

= Tgurge= 79 Seconds 

= Tsway = 64.5 seconds 

= Thao»e= 4. 6 seconds 

Tpitch = 4 seconds 

Troll = 7. 75 seconds 

1 250 lbs/ft 

= kx 

= ku 

= 1250 lbs/ft 

= 3 750 lbs/ft 

633. 75X105 lb-ft/rac 
= 15 ft 

Yaw 

Depth of barge = 

Assuming longitudinal gyradi 

8^out added fluid inertillit il = ^ 

3ff°fecf motions ‘hese are un tranSVerse Radius = 

ellectro^rs^^r1; ttermined in terms of 

and ^terpretation^f8 criu36! SOmeVVhat ’ The 
P-om model tests [ 7J . * Condltions, this will^^;0^- 

Bridge strand wire ^ 

e’ °f CrOSS section 0. 595 in2. 
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Mooring and Positioning of Vehicles in a Seaway 
§| 

In analyzing the mooring forces and moments, the barge isi 
assumed to be moored by a conventional line and anchor system, 
with both bow and stern moorings. However, for application to 
deep-sea conditions with depths of the order of 1000 fathoms, a 
certain particular mooring scheme is utilized. This scheme 
utilized a long-wire rope for each mooring leg assembly (12,000 ft 
in length), which is supported in the water by a series of submerged 
spherical buoys. The buoyancy of these buoys keeps the rope taut 
along its entire length, thereby not allowing it to assume the usual 
catenary shape. With this arrangement, an initial tension is applied 
along each mooring let, and any changes in mooring forces on the 
ship (and therefore also in the cables) occur as a result of elastic 
forces resulting from ship displacements. A layout drawing of such 
a system is shown in [ 4] , which has direct applicability to ships of 
the same general displacement as the construction barge presently 
studied. 

The displacements having greatest influence on the moorings 
are in the horizontal plane, and these are surge, sway and yaw. 
Since the mooring lines are fairly taut and are under an initial 
tension, the elastic restoring effects may be taken to be fairly 
linear, i.e. the restoring force is proportional to the displacement. 
The proportionality factor for an effective displacement along a 
single mooring cable is found from a knowledge of the modulus of 
elasticity of the cable material. For the present case of 1-lnch 
diameter bridge strand wire rope, which is 12,000 ft long, has a 
cross s/action area of 0.595 in2, and an assumed modulus of 
25 X 10alb/in2, the effective spring constant for a single wire rope 
is found to be C = 1250 Ib/ft. This linear result only holds below 
the yield point of 60,000 lb of static force (in a single cable), but it 
is anticipated that the maximum deflection necessary for attaining 
this force (viz. 48 ft) will not be experienced in the present case. 

For the purposes of analysis, the barge is assumed to be 
moored in an arrangement similar to that shown in the following 
sketch of the mooring plan. A longitudinal displacement of the barge 

along X, denoted as Ax, leads to an effective displacement along a 
single cable given by Ax cos a, where a is defined in the sketch 
above. The force in a single cable is then C Ax cos a. The long!- 



. 
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tudlnal force component at one end of the ship is represented by 

(CAx cos a)cos « + (CAx cos a)cos a = 2CAx cos2 a, 

and since an extension of the ^^^“^^ocVu^s.^Thes? forces 

Trf ^ftoHnifo^cfs andethe’ net result is a longitudinal force in the 

barge due to the moorings, given by 

(16) 
X = 4C cos2 « * X = - kHx, 

m 

where x is the surge displacement variable. 

In the case of sway dl3Placem®^l’nthcomponenetsdfo?net Y- 

force on thfbarge/accouÆ f"r a,11 the cables , leads to a net 

mooring lateral force given by 

Xm = - 4C sin2 a • y = - kyy. 
(17) 

, 4-= Y<* L/2 where L is the ship length. The 

fararÂÏrfnd'oAho^p is then 

2C sln2a • ^ = CL sin2« • (18) 

(19) 

and the contribution to the yaw moment is 

CL sln2o • +(t) =-2 CL* sin* • + 

at .ach end. Since the forces at «^“L^yÄhÄ'r). 

ÄÄ^-Äin^bars. is^iven by 

(20) 
Nm=-CL sin4’ a * 4* = " 

The variations in the forC^ound”1 Tin«8they1 are related 
motions of the barge caa ^^^^^en’that the longitudinal dls- 
klnematically to t^\e ^ ^¿^gp^cements , y + <L/2>+ at, 
placement, x, and the net l^tera p b combined to determine 
the bow and y - <L/2» ‘‘^^“‘"^'“JSngTable. The cable 
the net variation In elongation of each moo g , co3 while 

displacement, due to “«S'ng mo““0íôn. of sway and yaw are- 

as the cable u a*the b<”" "the s,ern' 
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theíabíÍ«6^?^^8 Cable dlsPlacement directions occur for 

-- bT“ri¿.": ,e"'ral 

= c[xcos o± (y±y4;) sin o] 

where C is the effective spring constant for a single wire rooe 
and particular values for each of the four cables are given in the 
following where a positive cable force is defined as that which pulls 
on the restraining anchor support on the ocean floor. P 

The expressions for the individual cable forces (c.f. sketch 
of moorlng-line system) are listed below: 

Bow 

~ cos a +(y sin Q.J port 

f2 = C^x cos a - (y + sin aJ starboard 
(21) 

Stern 

F3 “ ^ [x cos a - (y - sin aj port 

= c[x cos a + (y - y ij;) sin a J starboard 
(22) 

T - ?An°rt preaen* case where the barge is moored with a = 60° , 
- ¿bü ft, the mooring system restoring constants are 

kx = 1250 Ib/ft 

ky = 3750 Ib/ft 

k^= 633. 75 X 105 lb-ft/rad 

(23) 

These values are the effective spring constants for surge, sway and 
yaw, and as a result there also exist natural periods for these 
motions in the case of moored ships. There still exist natural 
periods of heave, pitch and roll, as in the case of free ships, and 
these natural periods are relatively unaffected in the present case. 
The introduction of the existence of natural periods in surge, sway 
and yaw (with possible large motions associated with resonances in 
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Üw»t degrees oí freedom) le the mein character ist ir -/ , 
applied to ahlpe that dtetl&fuiebee the reeuStlne mntin* T n** 
of free «hipa in w*v«$. ranting motion, from thoae 

V, SOLUTION OF EQUATIONS 

The equation, of motion reeUt from comblnln. all of th* 
con.titu.nt term, dl.cua.ed above, and aolutlona caí be oh.It 
by converting them to a almpler form for .Infold“«vo l^. 

eaclting force, and moment* are ainueolda) function, the 
motion. *U1 aleo be .inueoidal with the ..me frequency. ’ Defining 

* ■ *e 
lei 

y « ye 
i«i 

a ■ ce 
1*1 

X. . TU'*'. •«i 
etc. 

the equation, of motion are then converted to (compl.*) .l.ebralc 

•»m*"'« <•>-1» ".pyZ 

■*" ° vj»] r* 

» - ’’■r ■ r <24) 

met He ‘—“r* Wher*?h* co*«‘cient m.trU i. .ym- 
metric, l.e. ■ afc . . The matrix element, are defined 

d4 

4*i ■ (* mw* ♦ iwN, ♦ kt) 

•iS * « m |BG(w* 

a„ * - (m ♦ r^^Ajj di) J ♦ iwC.N, ♦ pg 

a„* a„a wlj^ A„4 di - lwN,g- PB dt 

a»= * (l4 +£bAM^^) w8 ♦ iwCgNg + pg d4 

The lateral equations are represented by 

(25) 

(26) 

(27) 

(28) 

(29) 
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rb„ 

Lb» 

»»«t 

h* 

b.. 

b.3l 

bj 

bS4j 

’r 

? 

5 

Y 

V 

m K ♦ ÎÜC)Y_ 

(30) 

b„ - -(m ♦ J di) u* ♦ IwCj Nj ♦ 

'il* b!» » b 

*»,» • bj, « . u*^ Ajjt di * iuiNj^ 

bl» * h»! • - w (A^j ♦ (75C)aw) di ♦ lwCyN,|BC| 

C1* f <li) w* ♦ iwC^ f 

* <A«f * (OCiA^Ji di ♦ IwN^BCl 

bjj “ * «A^ ♦ iwN^ ♦ W |CM I 

3t2 

biS “ b* 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

hHp- !n f^c.lng 

u°" 

the ^dymouôn^JnTSlï1^^* are reUled Wnemttlc^ly to 
once tht dlííerent method, oí lo^werin/fo1»^^ *impI* to dete*,mine 
•tudy, vie. center.lowered loidr/nnl ,are "Peclf,ed ‘hi. 
lowered loads as the i !.. d boom-lo'*'e»-ed load«. Center- 

•ort of opening through the shlp^keei ^nd^M*^*'1 through ®ome 
l* done at Just about amld.hlo/ ThVV, ?*} * assumed that this 

vector component, of tTÂ^d^win^ ^ d,,pUCem!,nt 
and are then given by .imple geometry a. * *’ S and ** 
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•t ■ X 

• , » y ♦ |KC|4 (37) 

«, * s 

where x, y, z and ♦ are the instantaneous ship motions oí surge, 
sway, heave, and roll, respectively, and KG is the vertical distance 
between the center oí gravity and the keel. 

The tension, T, in the lowering line is given by the relation 

W, w 
T - wj . y?ï * ■ . (38) 

where Wj is the weight ol the load, and only vertical effects are 
considered to affect the tension. At rest, 

T * To■ W|, 

so that upon representing the tension as 

T * T0 + T' * ♦ T' 

where T' is the tension change due to dynamic effects, one obtains 

T* 
W. (39) 

Thus the tension variation due to the dynamics of the ship motion is 
directly related to the vertical acceleration of the load, and it is also 
proportional to the weight of the load. 

In the derivation of the formulas given above , it is assumed 
that the trajectory of the load attached to the line is such that at each 
instant it is on the vertical line through the point of attachment of 
the lowering line to the barge. It is also assumed that the elastic 
effects of the lowering lines may be neglected; the only dynamic 
Influences considered being those due to the ship motions. The 
neglect of elastic effects in the lowering line appears to be a fairly 
safe assumption, since the major influence would occur only if the 
wave frequencies excited the natural frequency of wave propagation 
in the lowering line. In view of the lack of specification of the line's 
physical characteristics, as well as the expectation of wave-propa- 
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<?Ie vât©d at an anale a * a„ »***. . 
horizontal projection oí the bíomTenÍh Í0^the r*»*vant 
for computational purpo.e* in the 1 C°* a ^ l* c°n»idered, 
b«rgc, to be 150 it X .hol L*** ot 4 260 « length 
horizontally at an azimuth anale v meÎ!* i* 41,0 orl«nted 
I" >•.. count*rclockwlae .„.a, v,.V;.d 

(Wchionc"»*1« givenXymetltB ,helr »quUlbrlun, 

y 
s» - X - {I cos o') sin y * 4* 

s,r= Y + (Í cos o') cos y • tjj 

= * - (i cos o') cos y • 0 + (Í cos o') ,ln y , * 

and the line tension (fluctuating part) T'r » -j 
are represented by 8PartJ. T and vertical acceleration 

(40) 
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T,y 
~g * ^ ( » +1 co» o'(*in y , co* y • @|] HD 

«limvjth angle/ TC... d;"0*', 'h' ^ 
tho.e for center-lowererf îniü** û ! ^erlved on *>»* «me b«.i. ,, 
pivot* «bout the *hlp CG Thé’i C 08 a,,umed th*i *)>* boom 
quantities L. «ro..r «° Un.^r of the.e 
■ hip-motion .olutfon. combination, of the in.UnUneou. 

w.ve ¿tto.TLÍvinfrwutñev* ln/e*Pon-e to * regular .inu.oidaJ 
wUI also be sinusoidal ^of thJ ^ Propagating In a given direction 
posses* a different lí ' but wUI* in ««««ral, 
wUI, In general, differ from ^ *mPl“ode of each motín 
to the latter bÁng liLclZof the J,^,7"' * the rMl° oi the form, 
of the wave relative m tha fc.Üiî , ^ (r*<>u*ncy 4,1(1 ‘be heading 
ratio function . known ..%K? ng OÍ *he bar«e* 4nd thl* »mplltude- 
particJar motion oHnte est l^T operator for the 
characterization of the In.Iordelr to 4rrive at an effective 
case these motions themaefv*"^ 0n" n 4 r4ndom ,e»> In which 
known a* the spectral cnerov aTf * random oature, the function 
each motion mist be found ^Thls'^nerf/ the. en*r*y epectrum. of 
atlon of the squares of the ^pStu^:^ liLZlT OÍ ^ ^ 
of the motion, as a funeti«« 17/1- alnusoidai components 
total area ^deî the . Ire^cY 4nd ^4ve direction. The 
the statistical Information on lieífL l-Jnt *8 rV* ConUln# much oi 
amplitudes, etc., for the Dartin.ia5 4!"Plitude4» near-maximum 
arbitrary ,ne P4r‘*cular motion considered. For an 
aroitrary motion, represented by the l-auharrir.» *n ;r;.T¿r0'lh** ,. 

* (w) |T,-(w) J 2 a'(w) (42) 

for 
sea .aíhereCUÂj)lXradfbhar8e headin« in 4 unidirectional Irregular -, wnere a (w) Is the wave soectrum anH ir I i .l 4 
amplitude operator for that heading. d l* the «aponse 

pi.rJ::97c7^t ztm:, ln ■ ■*>« 
.na ::r.:y,h‘‘ b“n 
to three particular wind speeds Thn f n i Ä sta‘es' correspondlr 
conditions. speeds. The following table Illustrates the 
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Table 2 

Sea Wind Speed 
State v9 (knots) 

Slg. Wave Surface Elevation (Time 
Ht. Hy* History and Energy Spectrum) 

r.m.s. value, TU. energy, ' 
* , (ft) e2. (ft)* 2e2= E 

3 14 

4 19 

5 22 

3.3 0.81 

6.9 1.75 

10.0 2,50 

0.66 1.32 

3.05 6.10 

6.23 12.46 

The Newmann wave spectrum for a unidirectional fully- 
developed sea represented by 

, 6 ■tflVlwVj1 
A (w) * Cw e (43) 

where C Is an empirical constant having the value 51,5 ft /sec®, 
\m la the wind speed In units of ft/sec, and A (w) has the units 
ft2-sec. The wave spectrum for a non-unldlrectlonal sea, allowing 
for angular variation (a two-dimensional spectrum). I» represented 

hy ï j 
- Cw V^^cos2 ß,, for -!<?*< +J. 0 < w < +00 

A2(w,ßw) - n 

0, otherwise, (44) 

where ß. Is an angle measured from the direction toward which the 
wind Is blowing (the predominant wave direction). In this case, 
the motion spectrum occurring for a particular barge heading ßB, 
measured relative to the wind direction Is 

¢(1.1) (u) = A2(w) 4 \ dp*cos2 ßjTi^u.ß)!2 (45) 

where ß = ßw- ßB, and this energy spectrum will depend upon the 

ang1® Pb* 

From the spectral density function, ¢ ' (w), for a particular 
motion, there may be obtained. In principle, all the statistical or 
probabilistic properties possessed by the random process. The 
total area, E,, under the spectral density function curve, as defined 
above, 
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■1' 
du # (u) 

(46) 

i* equal to 2«f, |.e. twice the variance n( 
responding tlme-hlatory curve UrïZWt* H ordtn*te* on the cor- 
seaway 1, . Gaussian iï íoím.'l , t a-eumptlon that the 

a linear .y.tem (ln thI, ca8 fhe bargV) theTelVf WMCh ^ CXCUln« 
the system wUl In turn represent m rJ*. , *** re*Ponses oí 
The probability oí an ordîïatVõí a oírt.é •tochâ,tlc Process, 
t-jo value. 1. given by the definite integr^ôí thV îying between 
bUlty density between those two limit.* Ïi\G Proba- 
variance «r,. Thus E, nr , mlt** and will be a function oí the 

bUlty oí the occurrence of instint™^ U*?d t0 eatimate the proba- 
IrK.re.i, V. ,“'°r T‘Ü.';'■ !" “V of 

’*r*' or “*'-m«xlmum vju.,. Chir«Urd|."tV",rf'?i!''"tly'°,:C“rrl"i 
history may be obtained in term, ni »K- * .tl the time 
behavior of the envelope of the reeird E| by relatln8 the 
ous amplitude of the tine history curvéis'»Kf*1**1 the ,n,t*ntane- 
relatlon. are based on as.V/m.^ tbi.- quantity. Such 
•pectrum, and yield expressions ioVth "band behavlor o{ the energy 
tion (half the diítanc.Tetween tÜ. tíoueh^*^ *mpl*lud® oí o.cllla- 
the mean of the highest i/3 oí such amonté OÍ ^ 0*cUlatlon), 
cant amplitude), and other reUtcd .“Ttl ical’n^"^" 38 the 
ior a specified sea condition In _ ", Cal Param<fters of interest 

Pitch amplitude and .IgnlficMt pitch a^pH^eV«"10"* ÍOr aV<!ra8C 

9a* = 0.88 VÜ 

9.lg, = 1.41 v/Í¿ 
(47) 

VI. DISCUSSION OF RESULTS 

“P*«« 
headings were carried out for wave Jen^thl * range oí possible 
800 feet, which covers the ran« «f i f ^ varying from 100 feet to 
motion in an operational 8 Periods significant for ship 

the equations were obtained foTuie"^^ 563 SUte 5* Solutlon8 to 
(both amplitude and phase) of the varinmpleX*1 re8Ponse operators 
Representative solutions for a particular ^1° T8 relatlve to the wave, 
longitudinal and lateraTmotion amniu f wave length, for both the 

angle ß are shownlnF^s Za^ ^8 ’ oi tha heading 
amplitude operators as WH r*r r°m thIs data the response 
are obtained aid rep'reaeíutive / frequency l*1™* - =^T). 
5. Application of the tecS uuea ofripectrralPreSented,lri FIgS* 4 and 
results In spectral eneravdeülV?, afectrf ^perposition theory [ l] 
in Sea State 5 (as an examoï«? Ïi/S“68 {0\ P*rtlc^ barge motion, 

ng.. 6 ,„d 7, aa ^^“roaX“1“'0'1 
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xltwO 

0 UodiontJ 

Fig. Z. Amplitude of response for unit-amplitude wave as a function 
of direction of wave relative to barge. Longitudinal 
motion; \ = 3001. 
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Y(fW!) 

* (rwJion«) 

f írwíiqo») 

8 (dtçf»»i) 

Fig. 3. Amplitude of response for unit-amplitude wave as a function 
of direction of wave relative to barge. Lateral motion; 
\ 3 300’. 
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(•«•pM*« «mpIltM« •*•«••«,)* I«, ,,rt, 

(•««p«**« >mpllt«4« «p.,>io,|> p,,,«, |r#f|* 

"*■4' “x;.*: “mpU,ud' op"at"' <■>’ 
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(«»«►»»•* unÿltK «• «rott»)* l«r •••*. |TT(|* 

1 J,, »„H 

(»..p««,. i,f yn |fyy|» 

Fig. 5« Response amplitude operators for lateral 
motions. 
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Mooring and Positioning of Vehicles in a Seaway 

Fig. 6. Spectral energy density for translational barge motions 
for Indicated barge heading Pb 
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Fig, 7, Spectral energy density for rotational barge motions for 
indicated barge heading ßB 
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Mooring anã Positioning of Vehicles in a Seaway 

In the present study the angle for the predominant wind direc¬ 
tion was taken to be ß0 = 0. and a variable barge heading angle, pB, 
introduced to allow for the relative heading of barge to wind. The 
relationships of the wind direction, the wave heading, and the barge 
heading are shown in Fig. 8, together with the difference angle 
ßw - ßs representing the wave heading relative to the barge heading. 
Also shown in this figure are the conventions made use of later for 
the designation of the forces in the mooring cables and the azimuth 
angle for the boom used to lower loads from the barge. 

VECrOR WAVE 
propagation direction 

Fig. 8. Orientation and relations between barge, wind and waves 
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SEA STATE 3 RMS VALUE 
(ImI) 

0.4 ^ 

... 1 

X 1 

1_1_1_1-1-1- i i_1-1-1-ä® 

Ab , BARGE HEADING Idegreej) 

SEA STATE 4 RMS VALUE 
( fed ) 

SEA STATE 5 RMS VALUE 
((•all 

Fig. 9. RMS values of the translational barge motions as a function 
of barge heading at indicated sea state. 
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SEA STATE 3 RMS VALUE 
(rodiom) 

SEA STATE A RMS VALUE 
(radiant) 

SEA STATE 5 RMS VALUE 
(radiant) 

Fig. 10. RMS values of the rotational barge motions as a function 
of barge heading at Indicated sea state. 
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MINIMUM 
RMS VALUE 

Fig. 12. Minimum r.m.s. values of added-dynamic line tension 
(pounds/slug) and vertical load acceleration (feet/second ) 
for boom-lowered load, as a function of barge heading at 
indicated sea state 

cases the cable force r.m.s. values are greatest near crosswind, 
and least for upwind and downwind barge headings. 

All of the results obtained in this study provide useful infor¬ 
mation for application to many operations that can be performed at 
sea, using a moored ship as the base. The major questions con¬ 
cerning these results are their degree of validity, as well as the 
capability of extending the results of related situations such as shallow 
water operation, different mooring systems, the effects of nonlinearity, 
etc. Some extensions and/or applications of the present theory have 
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RMS VALUE 

TTtn RMS values of mooring 
Fig- 1 heading at indicated .ea state. 

oí mooring cable forces as a function of barge 
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work at sea is available with tbe8tohi , d Performing engineering 
analysis presented here. theoretical hydrodynamic 8 

1052 

ihka MüüSSÉÍtji -/HíiitÁ-. . "Jl -cl. 1./,, .1 



Mooring and Positioning of Vehicles in a Seaway 

VII. MOORED BUOY ANALYSIS 

A moored buoy system Is similar in many respects to the 
moored ship case, and simplifications are made in order to treat a 
representative problem. The buoy system is assumed to be a single 
point mooring,- with a surface floating buoy hull connected by a 
flexible line to the ocean bottom. Both slack and taut types of 
moorings are included in the analysis, and the surface buoy form 
can be either a ship-like form, a spar shape, or an axlsymmetrlc 
discus shape. The analysis is restricted to motion In a single plane 
and the current direction and wave direction thereby lie in this plane , 
making a two-dimensional problem. Allowance for current magni¬ 
tude variation with depth is considered, with its main influence being 
In the static equilibrium problem (which will not be treated in detail 

here). 

Considering the static equilibrium problem, a free-body 
diagram of a differential element of the cable in the plane of interest 
is shown in Fig. 14. The cable bends and the tension varies along 
its Ä ”o af to keep all the indicated forces 1» equilibrium The 
cable weight acts vertically and the tension forces are directe 
along the cable axis. The hydrodynamic forces due to the current 
are resolved into components normal and tangential to the cable 
direction. These unit forces are represented as follows: 

F(<M = CN • -i- pc(Vc sin <)>) (48) 

G(<fr) = CT • i pc(Vc cos (49) 

where 

p = mass density of fluid 

c = cable chord length (in current direction) 

and C C are appropriate drag coefficients. These coefficients 
depend on ?he cable cross section and surface geometry. 

The summation of forces along the direction of the caole 

axis yields: 

T + G(¢)( 1 + e) ds - Wc ds sin (|> - (T - dT) cos (dc|>) = 0 

For a differential element, d<J>~- 0, so that cos (d<t>) 1.0. This 
gives the differential equation for cable tension in terms of the inde¬ 
pendent variable s, as follows: 
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Vc = current velocity 

T = cable tension 

9 = distance along relaxed cable 

« = cable strain 

4 = angle of cable from horizontal 
Wc= unit submerged weight of cable 

GHj) = tangential unit force componet due to current 
w = normal unit force component due to current 

Fig. 14. Cable Free-Body Diagram 
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dT = [ - G($)(l + e) + We sin <f)] ds . (50) 

The summation of forces normal to the cable axis yields: 

F(<t>)(l + e) ds + Wc ds cos - (T - dT) sin (d:)») = 0 

and with d<j> — °, we can approximate sin (d())) by dè. Neglecting 
higher order terms involving products of differentials, resits in L 
equation for the differential angle: 

d4i = 1 [ F((j))(l + e) + Wc cos ¢3 ds. (51) 

The strain, or cable elongation, is obtained from the following simple 
relationship for an elastic cable material: ß 8lmple 

6 = (52) 

where 

Ac = cable (load-bearing) cross section area 

Ec = effective static elastic modulus of cable material. 

Associated with these equations is the representation of the 
forces and moments acting on the buoy due to the wind and the cur¬ 
rent (not considered here, but discussed in [ 10] from which the 
present analysis is abstracted). All of these effects are considered 
to be in equilibrium with the weight, buoyancy, and cable forces. 

. All the forces and moments acting on the buoy due to current 
and wind are considered to be in equilibrium with the weight, buoyancy 
and cable forces. At the surface buoy we then have: * 

+ = T cos $ 

Lc + B(0,h) = W + T sin <t> (53) 

Ma + Mc = T(fc2 + ^)l/2sin (.() + 0- tan' |£) + B(0,h)ÜZ(0,h) 

where 
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Da = drag due to wind acting on a buoy 

D„ . L-, M. = current-induced drag, lift, and moment acting 
on buoy 

T = cable tension (at buoy attachment point) 

<|> = cable angle from horizontal (at same point) 

B(0,h) = buoyancy force 

W = total weight of buoy 

ic, zc = horizontal and vertical distances respectively 
from cable àttachment to CG 

^(0,h) = hydrostatic righting arm 

Thus, for a given buoy configuration in a particular condition of sub¬ 
mergence in a given current, Eq. (53) can be solved for 0, T and 

that is, the buoy trim equilibrium and the cable tension and angle 
at the buoy. This result then becomes the initial condition for the 
static equilibrium cable geometry calculation. 

When considering the problem of the dynamics of the complete 
moored buoy system, separate considerations in the analysis are 
given initially to the buoy and to the mooring system, with ultimate 
combination (i.e. coupling) exhibited later. The motion of a buoy 
in waves considers the buoy to be equivalent to some type of hull 
form, and the restriction to planar motion results in analyzing only 
three degrees of freedom which may be considered to be surge, 
heave and pitch. The equations of motion of the buoy are formulated 
in the same general way as for a surface ship, described previously. 
The only possible additional Influence in the present case of the buoy 
is to allow for the effect of a uniform surface current, which can be 
included in the equations by interpreting the current as an equivalent 
forward speed of the buoy hull through the water. However, for 
simplicity here, this effect is deleted when analyzing the buoy wave 

responses. 

For the case of a ship-form buoy hull the hydrodynamic 
force derivation is similar to that shown previously for the moored 
ship. The general equations of motion in the vertical plane for the 
coupled motions of surge, heave and pitch can be represented in 
a more specific form as 

a|,x +a,2x +a170 = Xm + Xw (54) 
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W + a25¿ + a26Z + a27® + + ^96 = Zm + Z (55) 

a3tx + a^z + a^z + a«z + a„e + 34' 33' 36 l370 + ^60 + a390 = Mm + Mw (56) 

where the mooring forces are represented In general form and the 
wave forces can be represented as sinusoidal functions of time for 
different wave frequencies. The mooring forces will depend upon 
the mooring arrangement (l.e. number of cables, attachment point, 
etc.), whereas the functional form and degrees of freedom in the 
force representation depend upon the geometric arrangement. 

Pn„atI.FOr degree of freedom, the coupling with the pitch 
equation, and vice versa, occurs as a result of hydrodynamic 
inert al coupling (potential flow theory) and hence the symmetry 

tti« aJ? = 3,311 I® attaln®d* This result is due to the equivalence 
the off-diagonal terms of the added mass tensor representation 

of inertial forces. With the longitudinal force mx assumed to act 
through the center of buoyancy (CB) of the hull, a pitch moment 

m|®G|x 0<;cur8\ i-6- a3| = mlBG|=a Where |.BG| is the 
ve-tlcal d stance between the CB and the CG (center of gravity). 
The remaining terms in the surge equation are a.. = m and some 
estimate for surge damping a|2< 11 

IP6 8urg® dat"Ping can be represented in a number of ways, 
ither linearly with allowance for the current by means of perturba- 

t on theory, or in a nonlinear form as a drag coefficient representa¬ 
tion, etc. (see [ 10] for more details). Ordinarily, this surge 
daniping term is not very important in its influence on the resulting 
ship or buoy motions since there is no natural resonant response 
in surge. However, in the present case of a moored buoy there is a 
restraining surge force from the mooring cable and there may be 
some resonant surge motion. Thus , the proper inclusion of the 
surge damping force on the buoy hull can be Important for dynamic 
behavior calculations. y 

The mooring cable forces acting on the buoy hull are con¬ 
sidered separately further ahead in thin study. They are important 
since such forces affect the buoy motions, and the buoy motions in 
turn determine the boundary conditions as well as the input excitation 
for the cable dynamics. The techniques for inclusion of these effects 
in the overall mathematical model are considered later in this inves- 
tigation. 

A spar buoy hull form is axisymmetric about the vertical 
axis and hence motion analysis can be carried out for the three 
degrees of freedom with slender body theory techniques used in the 
analysis of the hydrodynamic action on a long slender spar form. 

mz = - pgS * z + zd + z + z,, (57) 
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The mooring force will depend upon the ^ waterlIne intersection. 
fv0|Hetri' and is dele<:ed temporarilv f moorin® arrangement and 
exciting force can be evaluated f m consideration. The wave 
determined from work in [ 11]^ d he Wave generation damping is 

njetnc ^yT:ïiri:?^ivtr-a™ - ° 
Of a vertically risinv T sIng the results of f I2I * y 

evaluated for^he cofdS wh^"68 at Zer° forw^<S spied and ^86 
the v.aterllne down is of interest '’rhe^ MUbmerged Porti°n from 

guiar sinusoidal waves is (from [ 12])^^ pres8Ufe °n the body in 

P = opa 4ttR 
pg ( ~X~c°8 0' cos o)t - Sin wt) 

(58) 

i^thetc^hulfiaiiaT0 c.00rdi^tes of the 
on a section of the spar buoy is then l0Cal vertical force 

tiZw 
-fir* = - 2R tan «J p de' 

Ja (59) 

force is a dRM (the sl°Pe of the body contour), the local vertical 

^“=Pgasinwt. e?^A 4|! 
oT (60) 

zw = Pga sin cot \ ek* 
J.L (61) 

°Y part.kfw|2th/V(í’)//ó)*hlCh Can be »‘“PlUled furthsr by l„,,ei.atlon 

The S“Se e7‘“ for ^ ^ *3 ,.P„aeMed as 

i,tïMt.ii)ï]d5tXitXw+Xn (62) 

Älnld'L'1“ C'C- l0CatI“ ‘he |-axls, and ,he wave força 
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x.=n -L J0 
P cos e'R d0 d4 = 2pau> \ ekCS'(l) dê • cos wt (63) 

The surge damping force expression due to wave generation (pro¬ 
portional to x) ln [il] and to this should be added the surge damping 
due to real fluid drag effects, which Is nonlinear. This drag term 
Is represented In the form 

I T AP J_L t* + té - £g)0] I* + té - Ég)0¡ dê (64) 

where Ap is the lateral projected submerged area of the buoy and 
Cß Is a drag coefficient whose value is «* 1.2, the value for long 
slender bodies and sections in an oncoming normal flow. 

The pitch equation for the spar hull form Is represented by 

.. n0 
y) = - P j_L s'(ê)[x + (ê - êg)0](ê - êg) dê 

- Pg£L (ê - êg)S,(ê) dê • 0 + Md + Mw + Mn, (65) 

and the wave Induced exciting moment Is given by 

Í0 

L té - êg) dê 

r0 

= 2paw2J (ê - êg)ek^S'(ê) dê • cos wt (66) 

The pitch damping moment coefficient due to wave generation Is 
given by [ 11] , and as with the surge damping above, the pitch 
moment equation has additional nonlinear damping given by 

ZT^P.Jl tX + té - êg) 0] + (ê - êg)0 I (ê - êg) dê (67) 

which must also be Induced. By considerations of symmetry, a 
cross-coupling damping term due to pitch angular velocity, 0, will 
appear In the surge equation, which Is given by 
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and a similar term will occur in the pitch equation, proportional to 
X, given by 

Me = - ¿yT e^S'd) dê * f (ê - ê0)ekes'(ê) dê • i. 
g3 J-L J-L 

(69) 

All of the above expressions can be combined to produce the coupled 
surge and pitch motion equations of the spar buoy, together with the 
heave motion equation. The effects of the mooring are included in 
terms of the appropriate degrees of freedom to allow computation of 
the complete system response, which will be the end product of the 
program. 

The disc-shaped buoy hull is analyzed as a case of a shallow 
draft vessel. The section in the water is a circular cylinder with a 
small draft compared to the cylinder diameter, and the form is 
axlsymmetric. The hydrodynamic and hydrostatic forces are found 
using the shallow draft approximation, as in [13] , together with other 
simplified representations for the wave-induced forces. Because of 
symmetry relations, where the disc-shaped buoy is assumed to be 
circular shape, some of the coefficients in the basic equations of 
motion, Eqs. (54) - (56), are Immediately evident: 

a27 = a34 = 0 

a29 - a36 - 0 * 

(70) 

Specific values of certain other coefficients are readily evaluated 
for a circular discus shape, and they are given below. Assuming 
that the discus buoy is a cylinder of radius R, and draft d1, the 
following heave restoration coefficient value is found: 

a26= pgwR . (71) 

For the case of the pitch restoring moment, the basic term (cor¬ 
responding to the hydrostatic portion) of the coefficient a39 is 
obtained from the expression 

where 

Mh = - W I GM 10 

W = weight of buoy 

¡GM) = metacentrlc height 

(72) 
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I GM I is the difference 
Z Action J the di.placed buoyancy vector 

with the vertical axis. 

The metacentrlc radius ‘^“^“ergT.ícuôn of Äc 
lateral displacement of the CB of h h g ent of inertia 

cylinder. This is ^^^^t^^/vertical centerline plane, to 
of the waterplane area about the q{ lnertla found m be 
the displaced volume. buoy volume given by ttR d » thP^.. i. vR‘/4, and »Ith the yal^ of the buoy volun. mBtacentrlc helght lew! 
metacentric radius is R /4d , leaumg 
given by 

(73) 
|gm| = 

4a 
IbgI 

Is the vertical distance between the 
CB and CG of 

. > T _Ji—I»r— I \AJ IM. fc. * * ^ 

where |BG 
the buoy. 

Similarly, vaiues for added^mass^and ^^^^ed on con- 
disc-shaped buoy can be found fro ^ ^ case the total 

^^as^Æ^Ârection is given by 

y A^dx = pR3My 
(74) 

. i Mil Similarly, the added pitch 
where the value of My is given In [ 13] . SimUa y. 
Inertia term is represented by 

y a^x2 dx = pR5ii (75) 

where the vaiue o, ¡g^y 

^^.rrr-dr-pec.'i'v.t“ ^ 

25 
y Nj dx = pR3wNy 

(76) 

and 

= y Njx2 dx = pRpuI-^ 
(77) 

1061 



mmrmm. mm .. 

wjmmim' HMSpW)<gfPBIBi^B Mj 

Kaplan 

Parameter7?^ N’ H‘ *** inditalod »“ frequency-dependent 

«he îhf'c^xr. w!thX^p;d■^io''• "for 

CZT; "VI“ ¿ *t r0 oi *h» 5‘\Âvh"„ÿ. 
carried over to the present raa* f ^11 ame, exPressi°n> and can be 
priate values of dr afeo bu?V' wi‘h appro- uiaK coemcient and reference area for the disc. 

Zw = 2pg i(x)ri{x,t) dx 
R (78) 

where 

f(x) = /r5“^ 
(79) 

-- - -<*.*> *• - 

tl(x>t) = a sin — (x cos ß - cwt) 

sln(i = a sinte - wt) 
(80) 

2 C * 
Zw = " 4PgR a sin wt J (1 - or2 coa y^d,, 

(31) 

where o- = x/R and V = 2irR/\, leading to 

zw = - 2irpgR2a • Mil sin wt 
(82) 

where Jn( ) is a Bessel function. The oitrh mr,rva„-,t * 
waves is given by ” piten moment term due to 

Mw= - 2pg f xf(x)r|(x,t) dt 
J-F> (83) 
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leading to 

1^ = 1 pgR^lJ^v) - J3(\)l =°8 wt • 
(84) 

For the surge force due to waves the pressure component In 
the axial direction Is required, and this la found ^^rmsQÍ t 
axial gradient of the wave amplitude record along the disc. For a 
hull of draft d', the surge force due to waves Is given y 

Xw = 
rR a 

2pgd' 1( f(x) -g£ dx 
R 

(85) 

which leads to 

Xw = - Zpgird'Ra J| (y) cos (86) 

Thus the above expressions complete the representation of the terms 
required for treating the motion of a disc-shaped buoy In regular 

waves. 

VIII. MOORING DYNAMICS 

The Initial treatment of mooring cable dynamics will be based 
upon a complete formulation of equations of motion for a continuous 

that is assumed to be completely flexible and extenslbl . 
an¿yaU ‘ ““wcted ,o ,v.o-dtaensio„al motlo„ 1„ « 
which Is coplanar with th. oncoming current and «»aj' ^ 

tarp rnnverted from directions along x- and y-axes tuxea m 

Í£S.Âclll«T™tÒ0rmi,Ca“d’ vtÄ -lue 
to the cable as basic variables. 

The basic equations of motion In the x- and y-directions are 

„ 9u _ + G(1+€) cos * + F(l+c) sin 4» 
^ Ut" Us V 8s(i 

8v 
R W 

8 fT +G(l+e) sin.iji - F(1 +e) cos <(> 
UsTV 9s(l +e)/ 

Wc 

(87) 

(88) 

u i tViP «um of the cable mass and added fluid mass per unit 
C.h/when'^n.lS'eínrau “lougatod element of the cahle, of.ength 

(1+e) ds. From geometric considerations 
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dx 
if = (1+e) co. ¢, |j=(l+e).t„ + 

and with the definitions 

u = Bx 

it can be shown that 

W ■ 

U = u sin ^ ~ y cos <() 

V = u cos <f> + V sin (J) 

US - V<f>s= - (1 + ¢)((), 

(Ö9) 

(90) 

(91) 

(92) 

(93) 
and 

V-+(94) 
wh«e the . and , aubs„lpta repre8ent partiai deriyatiTO operaUoii^ 

baslc dy”V+»™"cquatl"o»f?anLn^r«a."dÄe"fo™° 'he the 

U, - V+,1 ■-T^+F(l+e)+w0cos + 

(J.[ vt + u*,] = T, + G(l+e) - wc sin ¢. 

In addition the relation 

(95) 

(96) 

e = _ T 
rar (97) 

dynamics aré’Êqs’. (93)^(97) ’’wherUThf 1,“nS g0verninS «he cable 
basically Unemaiic. Fo, ¿he “ ,° f'1«*»»» ere 
time derivatives, Eqs. (95) and (qÎ\ ^ CaSe' ^6, neSlecting 
as given in the static equilibrium cia" 1°^¾^ 

In Eqs. (93) and (97)?Ua lineaAzattonï dI£f®rential equations given 
Defining the expressions nearizatlon Procedure can be applied. 
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U = U0(s) + UHs.t) 

y = V0(s) + VU.t) 

T = T0(s) + T,t8 

4) = ^0(s) + +'(8 

e = e0(s) + e'(s,t) 

(98) 

(99) 

(100) 

(101) 

(102) 

ttan 
po.«!»»» *n"Arßt o^rder term, done, leed, to 
terms up to lirai 

(103) 

(104) 

8ln 4, = sin (V W “ 8ln ,1>0 + *' COS +° 

cos += cos (+0++1) “ cos +o - +’ ^ *« 

The garnie terms are e.andedlntheform 

F = F0 + FyU' + FvV + ^+1 

G = G0 + GyU’ + GvV1 + G/ 

the partial derivatives of the ¿oadrJhfafcÏÏ^accompllshed 

to'partlcular ^t’^^^^J^atat^veloclty so.^tfonB..íífn1enWitdñed 

(105) 

(106) 

where the partial lndlcated. This can be (93) 

and (94) v/h«n Ume deriv 
with Eqs. (114), ar 

Un = 0 

V0 = o 

(107) 

(108) 

The linear perturbation equation, are then given by 

, ,. (1+i,)[FU'+FvV'*r++’]+F„.'tWc,'.ln*. 009) 

-^U' = To+’+T'+o,-^1^»^^ V ♦ 

.,V = T-+(l+e0)lOuU-vV+G++']+O0c'-We+'cos+0 
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(1 + e0)<f>; = V^0# + V0^J - U, 

*; = K + 

e _ T' 
e 

(ni) 

(112) 

(113) 

Th! Ko? 0ÍjíífSt °Jder lln'îar Partlal differential equations. 
The boundary conditions for this set of equations is the next task of 

tK?P?rtanC?*» ^°.r a m,oored bu°y in a combined current and seaway, 
current is felt acting on the buoy and also on the cable. How¬ 

ever, the wave effects attenuate rapidly with depth, and hence the 
wave forces act on the buoy along with no influence assumed on the 
cable, in that case the buoy motions due to a regular sinusoidal 
seaway (assumed for analytical simplification) are transmitted to 
the cable at its attachment point, and the cable motions are then 
sinusoidal in time at that point. 

are give^hbyb°Undary Conditions at the “chor point at the sea bottom 

U= V = 0, s = 0 (114) 

and at the buoy attachment point for the cable, s = i , the boundary 
conditions are much more complicated. The velocities at the buoy 
attachment point are given by 7 

u = X - z„0 
U 

V = z - fc0 

(115) 

(116) 

where x, z and 0 are the wave-induced surge velocity, heave 
velocity, and pitch angular velocity, respectively, and Zc and lc 
are the vertical and horizontal distances from the buoy CG to the 
cable attachment point. The normal and tangential velocities are 
defined by Eqa. (91) and (92), and considering the wave-induced 
motions to be of the same order as linearized perturbation terms , 
the boundary condition relations for the perturbations are 

U1 = (x - zc0)sln $0 - (z -ie0) cos <|>0 

V = (x - ze0)cos 4(,+ (i - fc0) sin 4>0 

(117) 

(118) 

at s = J, where x, z and 0 can be represented in the e1“’ form 
for a sinusoidal wave input. The boundary conditions at s = 0 are 
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u' = V' = o (119) 

where only four boundary conditions are necessary since c1 can be 
eliminated as a variable by use of Eq. (113). 

The representation of the boundary conditions at the upper 
end of the cable (s = ¿), at the attachment with the buoy, shows how 
the cable motions are influenced by the buoy motions. However, 
the buoy motion is also influenced by the cable system dynamics 
since a mooring force acts on the buoy as well. The mooring force 
that affects the buoy motion is due to the component of tension at the 
attachment point, which leads to 

Xm= - T'(i) cos <M*) + T0(i) sin 4»0(f )4»'{f ) 

Z_= - T'(f) sin <^0(f) - T0(¿) cos *0(f)<)>'(*) 

Mm- 

(120) 

(121) 

(122) 

where these expressions are component terms on the right-hand 
sides of the respective equations, e.g. Eqs. (54) - (56). With 
T'(f,t) and ^'(^ »t) represented as f(s)elw' forms the total system 
of buoy and cable can be solved using linear equations of motion for 
sinusoidal wave inputs at different frequencies (assuming the non¬ 
linear damping terms in the buoy motion equations are linearized). 
The "feedback*1 nature of the equations governing the buoy motion and 
the cable motion is illustrated by the above discussion, where the 
cable tension force influences the buoy motion directly and the buoy 
motions determine the cable upper point boundary condition. 

As mentioned earlier, the study of a moored buoy system is 
closely related to other mechanical cable system problem areas. 
The case of a moored ship is, of course, very similar to a moored 
buoy but the distinguishing difference is the relative masses that 
are Involved. For a moored ship case, the ship is so large (rela¬ 
tively) that it can be realistically assumed that only the quasi-static 
forces applied to it by the mooring cable are significant, and that the 
cable dynamics do not influer.ee the ship's response; that is, mooring 
cable dynamic forces can be assumed small with respect to other 
excitation forces. Thus, the dynamic problem of the ship and the 
cable can be treated separately. Similar reasoning applies to the 
surface condition of a cable-towed body system. However, the 
analysis of the component forces involved in such systems is appli¬ 
cable to the present case of a moored buoy system, keeping in mind 
the required coupling in the mathematical model, as shown abo’-e. 

The equations developed here for a moored buoy system have 
to be solved in order to determine the necessary information on 
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Bystem performance. The methods to be applied should recognize 
the problem as Involving complicated two-point boundary value prob¬ 
lems, or alternatively another technique that replaces the equations 
by a set of difference equations or differential-difference equations 
simUar to the case of a beam vibration problem can be applied (see 
L10J for a discussion of different computational techniques for this 
problem). The solution of the class of partial differential equations 
given above Is a specialized simulation problem that is the subject 
of presently on-golng research so no further detaUed discussions can 
be given. The development of these equations is another illustration 
of the application of knowledge of hydrodynamics of ship motion 
toward other related problems of engineering significance. 

IX. DRIFT FORCES DUE TO WAVES 

When a floating vessel is acted upon by waves it experiences 
forces and moments that are predominantly oscillatory-llke In 
nature, with the frequency characteristics similar to that in the 
spectrum of the oncoming wave system. These forces are also 
linear with regard to wave amplitude. In addition there are also 
nonlinear force contribution« that arise from the presence of the 
vessel hull modifying the Incident waves by virtue of its function 
as an obstruction, as well as the effect of interaction between the 
vessel motion and the incident waves. These nonlinear forces are 
much smaller than the linear wave forces, but nevertheless exert a 
significant effect on certain degrees of freedom of the vessel. 

- . The major nonlinear drift forces of importance to the problem 
of maintaining a desired position in a seaway are in the longitudinal 
and lateral directions relative to the vessel, as well as the yawing 
moment that tends to rotate the vessel in heading. Some theoretical 
studies of these quantities have been made, but only for determining 
average values in regular waves, with the work of Havelock [ 14] , 
Maruo [ 15] , Hu and Eng [ 16] and Newman [ 17] serving as typical 
€Xcim]3JLGS • 

. , Havelock [ 14] treats only the drift force in head seas. His 
formula is based on the heave and pitch motions and their relative 
>hase to the incident wave. The theoretical approach of Hu and Eng r ,4 , 7---, Twr ^ , «vproacn oi nu and . 

L Í6J , which follows that of Maruo [ 15] , yields expressions only 
the lateral drift force and draft yaw moment in waves. (Maruo'a 
V dill f a — 4 ¿>3 a „ a .«3 4.1. _ J__- . « /•. f \ __ 

for 
--a*!, wavca, \iviaruo S 

results only considered the lateral drift force.) While their results 
are quite general, they have only been reduced to workable formulas 
under the restrictive assumptions of a thin ship, with small draft, 
in long waves. These results indicate infinite (practically unrealis¬ 
tic) forces and moment as the wave length goes to zero. The maxi¬ 
mum lateral drift force occurs in beam seas (varying as sln3ß) 
and2the maximum moment occurs at an angle of 45° (varying as 
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Newman’s method [ 17] , based on slender body theory, does 
show some comparison with very limited experimental work lor 
lateral drift force and yaw moment which Indicates rough agreement. 
His results for longitudinal force, for which no experimental com¬ 
parison Is given. Indicate that this force In head seas generally 
exceeds the lateral forces for a given wave length condition. Further¬ 
more, these results Indicate that the maximum lateral force occurs 
In bow waves (ß “ 45°), with the force going to zero In both head and 
beam waves. 

The results of Hu and Eng [ 16] Include the effects of sway, 
yaw and roll motions , with no Influence of heave and pitch Included 
(as to be expected for thin ship analv.As) while Newman [17] only 
accounts for heave and pitch motion effects without any Influence of 
the three lateral degrees of freedom. Thus there Is a question aa 
to the proper representation of the drift forces that would reflect 
the Influence of the Important dynamic motions that produce these 
forces. The analysis by Maruo [ 15] presents a final expression for 
the average lateral drift force In beam seas that depends upon the 
reflected wave amplitude, which In turn Is defined In terms of the 
relative motion between the Incident wave and the resulting heave 
motion. The presence of sway motion has no effect on the lateral 
drift force since the body acts like a wave particle In beam seas 
and no relative motion occurs (to that order). A similar result Is 
Indicated for submerged cylinders In the work of Ogllvle [ 18] , 
where the average lateral force Identically vanishes. 

In all of these hydrodynamic studies, the force Is found to be 
proportional to the square of the Incident wave amplitude, since the 
nonlinear pressures are represented In terms of squares of generated 
wave amplitudes, squares of fluid velocities, and products o. first 
order oscillatory displacements with derivatives of fluid velocities. 
While the previous hydrodynamic analyses have baen concerned with 
the average drift force for a regular sinusoidal wave. It Is Important 
also to determine the actual time histories of these forces, especially 
for the case of an Irregular Incident wave system. In that case it Is 
expected that the drift force will be a slowly varying function, In 
terms of the frequencies contained In the defining Incident wave band¬ 
width, and It Is of Interest to determine the basic representation of 
the forces, the response of floating vessels to such forces, the 
statistical properties, etc. 

In order to Illustrate the basic characteristics of these forces, 
particular attention will be given to the case of the lateral drift force 
acting on a vessel In beam seas. Using the results of Maruo [ 15J , 
the later drift force acting on a cylinder (In the two-dimensional case) 
Is given by 

Y £ 1 ~2i 
•j PgAjz- 

1 2-jr*2| z A 

-■ J Pga A, I - - i (123) 
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where i 4-1¾ 

S^rïtSSïï—Âï-- 
nf "• ï4 lf seen that this expression i„ lu °f the relative heavi mo- 

•h. rVr/ircÄt; h“ 
be shown that the mean value „ftM. t d h' ‘»«Went wave. It ca° 
chatao,,tae, hy a wave S 

Cd 

F, = f£ 
Jo a« 
j. ~2 A (w) du a* VS w. 

e5"(43K2(“’ “ the Ne"m““ »Pectrum rept.eentation given in 

(124) 

Hon of the VriftUÍÒ8,c0ebha“dbi"„thcabaf1; d'rivatI™" for determina 

composed oi 

fndÄ "¿1;^^.“#^““;^ 

nnoUon"^epresented6by ‘" » 

z - 1 = b, sin «|t t b2 sin (^t t ¢) 

the .qua« of this term is given by 
(125) 

(z-r\)Z= b(Z sin2 u,t + b| 8in2 (u2t+<f,)+2b b . 
2 W 2b,b2 sm u,t sin (oj¡¿+4>) 

_ ! /,2 g 

2( I + b2 + 2b,b2 cos [(u2 - u,)t + j| 

- Ifb,2 cos Zw.t t bf cos 2,„# t+, . 2bib2 cos 

(126) 

e^Ä:s;r:r.r rde—• —p .e™. 
narrow band assumption), and annt-v,0"^ varyin8 terms (due to the 

higher frequency oscillations, i e a^hf^1113 ff terms rePre8enting 
wave terms. If a time average 'of'thil „g fre<3uencies than the 
seen that :he combination of the con f q.uantlty ls made, it will be 
term remains and the highe/frequen^J8 ^ the slowly varying 
first grouping of terms can be relr?«? I™ dr^ out- and that this 
nvelope of the combined signal given 
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are represented bv?^ ' ^ resulting relative heave motion, 
freqieScfes wfth tb. OÍ 3 arg®r nUmber of terms of different 
relative to a / frequencies having only small increments 
relative to a single reference frequency (as a result of the narrow 
band assumption), the contribution to the drift force value in that 

aS* Can be shown to be given by an expression that is also identified 
as the square of the envelope of the total signal. This identification 

generaieivPbetatÍt0n^0fÍhiS î.yP<î °f exPre8sion for the drift force can 
generally be extended to the case of an arbitrary input, including a 
random input which is assumed to be made up of a combination of 
different frequencies within a narrow band. Thus a simulation 
technique in the time domain for this term requires determination 

tht8ha,,amHfl0Pe °i the1ln1put slgnal <relative heave motion), squaring 
requ’r,Ä’e to produce the 

the wavJampnL'ërandTna'rLdoT.e'â u'u ^eWy vlrytag” °f 
function of time, where this slow variation is considi red relafive to 
the wave frequencies and the linear wave-induced forces. Since 
the wave surface elevation and all linear terms derived from it are 
assumed to be Gaussian random processes, the drift force is known 
‘0b¡ n°n-Gaussian in regard to its probability density. In order to 

it wnu1HUb?er f waCie*rlZat.l0n °f the Pr°Perties of the suction force, 
it would be useful to determine the probability distribution and 
spectral ProP®rties of this force. The accomplishment of this task 
will be aided by the simplified interpretation of the drift force that 
was presented above. 

Considering the drift force as the square of the envelope of a 
Gaussian random process, certain information is available concern¬ 
ing the probability density of this type of function. A square-law 
detector Produces an output proportional to the square of the envelope 

I ?nlh • ifpiîhe inpUt 18 a narrow band Gaussian random process 
J which is the assumption used in the present analysis. For a 

particular input into such a square-law detector, the probability 
density function of the output (denoted as w) is given by 

p(w) 
-w/f(w) 

w > 0 (127) 

is the mean value of the square-law detector output. 
On that basis, the probability density for the drift force in a random 
sea can be represented by 

P(FJ = 
. 1 -F/Fy 

Fy > 0 (128) 

where Fy is the mean drift force, and hence the probability distri- 
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but Ion is given by 

P(Í < x) = 1 - e'* 
F 

(129) 

In addition to information on the probability density, additional 
statistical properties of the drift force are provided in terms of the 
autocorrelation and power spectral density functions for that force. 
The relationship between the statistical characteristics of an input 
to the nonlinear form of drift force representation, to the output 
characteristics, as defined by the autocorrelation and spectral 
density, is a useful description which can be applied in further 
analyses and for simulation studies. The problem of a square-law 
detector has been treated in the available literature, e.g. L 20J and 
the results can be applied to the present case. If a general narrow 
band Gaussian random process, represented by the variable x(t),2 
is the input to a square-law device, and the output is defined as r , 
the autocorrelation function Rr2(T) is given by 

Rr2(T) = 4ffj + 4rJt) 

= (I1) + 4Rj(t) (130) 

where 

(131) 

autocorrelation and power spectral .densities ol the input function 
are given by 

where 

0 

(133) 

wave spectn 
formulation. 
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The power spectral density ot the square-Uw device output 

is then 

SiM=!J RÎ(T)e*‘-TdT 
r w *v-qo 

= 4(r2)2 6(w) + ” dT 
(134) 

where 6(W) is the delta function. The la.t term on the right In 
S? (134) can be evaluated by using the definition. In Eq. (132). to 
Eq 
that 

fV,(T).-'^dt »'tO.I“'' i»’ 
J-oo ÎSB 

5^)5,^ - «') dw’ 
-05 

dT 

(135) 

which leads to the final result 

S .<w) - 4(7*)* 6(w) ♦ C S^S^«-«') dw*. 
^ ''•Ä 

The power .pectralden.ltyof 1 ^^¡Vh " delU tIon term (that 
proportional to the drift for • . . force) and a convolution 
represent# the non-.e.o lui depend en the 
,n,Pe,rJ ol the tnpnt .pdc.r^d.n.lty .hO..^pu, „ 
nature of the particular Inp • . «auare taw device with an 
obtained by the hi.h .,.- 

Ü.".....» s* >- 

representing the envelope, 

A Partien.., appllcatlenj. ul Ä 
this analysts Is given ,# pre»«ni. The vessel chosen for 
such that an Irregular b rUss l moored barge treated previously, 
this Illustration I. the same CU331 ,pC<t,um cor- 
and the sea condition la A mathematic^ 
re.ponding lo a 24 kt. wt»d ulTwhoee amplitud, char.ct-rlstlca 
representation of a mter cir #QU,r« root of the Newmann 
are approximately the same 1 programmed on an 
•pectrum formula (E«|. ( * > a,nr rstor Input, and produced 

^ufp^ZTr^res.mrd . 

ion 
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motion in b«*m was s*t up on th* anaJof computar, «Uh th« 
input «avr força a «citât ton «« «untad lo ba proportional to ti» «aa# 
record, and aoiutiona obtained for •(!), Ova haava motion aa a 
function of tima, and alao for { *(t> - »Hl!) , the relativ« haava 
motion. 

At the earn* tima another equation *aa programmed on thie 
analog computer repreaentlng the uncoupled a«ay motion of the 
moored barge, via. 

. 
(m * A„>> ♦ N,^ * b?y » ^<1) (I IT) 

«here Y^d) la the «ave eacittng force. Thie ear Itlng force *ae 
elmulated to repreaent th# linear «ave-Induced force and then the 
nonlinear drift force, with eaparate aaluttone obtained for each 
excitation above in order to Ulualrate the different output reeulta. 
The linear «ave excitation force «aa repreeemed aa proportional 
to Mil. after a *0° phase shift over the pertinent «ave band«idth, 
»hich ie an adequate approximation. The nonlinear drift force «ee 
represented by 

Y*,f, • ofLlJla - q)*. M l») 

•here the ( ) symbol representa the envelope operation, and a 
constant value I» aeaumed for Xf The envelope of a lime*varying 
function le obtained by rectifying the signa) (l.e, an absolute value 
Circuit), followed by • to« paea filler. 

The reeulta of thie e Until el too study ere shown In Tig, 1% 
for the rae» of linear »ave force eacitallon and In Fig, I» for th# 
drill force input. The time histories of the surface «ave motion, 
away motion output, and Input exetting force are ahown I« each 
figure. The linear «ave force response la aeon In Fig. IS to be 
generally oscillatory, of the same genere! frequency content as the 
wave input, and with an amplitude of the same order at the «ave. 
Th* input excitation force t^qa somewhat higher frequency contem 
(alnce it la proportional to *t) and It rear ha# amplitudes of 4 X 10* lb. 

The a»#y motion In Fig. lb, due to the nonlinear drift force 
Input, hat an entirely different character than the surface wave 
motan or the «ave» indue ed au ay motion shown In Fig, IS. h la a 
long period, almost regular re «pons s si the natural period of away 
for the moored ship, vis, hd sec, Isa# Table 1), The input force 
that caused this response la aleo ahown in Fig. IS, a* derived 
according to Eq, Mil) and If can be seen to be a atowty varying 
function of time, reaching a maximum «blue of about *0,000 th and 
causing a r« »p- os* reading up to IS ft In amp!Ilude. Thue the 
characteristic a of the slowly varying nonlinear force, of much 
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rig, I», Sway motion reaponae to linear wave force in irregular 
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Fig. 16. Sway motion reaponae to nonlinaar drift force In irregular 
beam aaaa. 
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smaller magnitude than the linear wave force, produce large motions 

- 

combined,tha.T„°’the‘Sutic8whe^bolh force»1"«''1’' 

mo^on Of f8hlmUltane^U8ly' t0tal 0utput would represent the actual 
motion of the moored vessel. The resulting large motions would 
cause significant stretching of the mooring cables, leading to larger 
orces in the cables than indicated by the linear w^e eSts above 

1 infvara8 ^ ^ ThuS ProPer consideration of the non- 
n ar wave forces and their influence must be included in any 

analytical estimation of expected motions and forces of moored 

Sng1ihUee”feyc,':qUlri"g tUrth" at and ,lmu- 

r„ , ai? aid in obtaining further insight into the characteristics 
of the lateral drift force in this case, an evaluation was made of the 
power spectrum of this force using the expressions given in Eq. 136) 
for the part that represents the random variations of this force 
about its mean value (the convolution integral term). The result 

Ifflr? 7,1? 18 Srnwn ^ ^8, 1 7' and wheu considering the 
effect of the low pass filter, all values for w > 1,0 will be eliminateri 
The. u c be that the irl[t f01.ce itsaIf ls con” r.,ed Sío* 

frequencies, and that the response of a dynamic system with a verv 
1°W_natUral frcquencV U-«, the ship sway motion) will result in a 
hanH TMSP « um ^oncentrated at an even smaller low frequency 

full ; ram W, 8 U8U/lly f0Und in the results of model tests and 
precedes âSyÏ“0’ “ a'‘ exT^anat*on 1» Provided by the 

X. APPLICATION TO DYNAMIC POSITIONING 

When considering the case of dynamic positioning, various 
forces act on a free vessel in the open sea that cause it to move from 
its required position. These forces are the relatively steady forces 
due to wind and due to current, the oscillatory-type forces due to 

^rlfí f0rces• The wind generates forces and moments 
b cause of its impingement upon the abovewater surfaces of the hull 
and superstructure, while the current forces act on the underwater 
hull (and any submerged drilling equipment, if that is the purpose for 

TheK 6 Steady f0rCeS Can be overcome by the generation 
steady forces by some type of thruster mechanism that will act to 

maintain the ship more-or-less in its desired location. 

The oscillatory-type forces due to waves are very large, and 
no force-generating system installed on a vessel is expected to be 
able to overcome such effects. The ship will therefore oscillate 
back-and-forth in response to these large wave forces with 

essentially no net deviation of significance from its average position. 



m 
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Fig. 17. Representative power spectrum of lateral drift force. 

It is the drift forces and moments whose mean values tend to move 
and/or rotate the ship off position, with their level of fluctuation 
causing dynamic responses that produce ship motion. Thus some 
means of control must be applied to "modulate" the forces developed 
by the thruster system in order to minimize the ship's average 
motion relative to its desired position. 

The ship will experience drift-like forces in the lateral and 
longitudinal directions, as well as a yaw moment, and the philosophy 
of applying control forces to the ship will be aimed at countering 
these forces by orienting the ship in the proper direction so that the 
resultant force is acting along the ship's longitudinal axis and there 
will be no significant moment. It would then be possible to use the 
main propulsive thrust of the ship, assuming controllable pitch 
propellers, to counter this resultant force. Lateral forces that are 
developed by particular thrusters, or other force systems, will be 
used to overcome any tendency of the ship to rotate out of its pre¬ 
ferred direction due to any resulting yaw moments. The force 
magnitudes in regard to average values can be estimated from the 
results of some of the cited references given in this paper, and 
some idea of the time history variations and maximum magnitudes 
expected relative to the average values can also be Inferred from the 
work presented here. 
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, , . In, f complete simulation study of the resultant motion of a 
snip In which a dynamic positioning system is to be installed, all 
three degrees of freedom (surge, sway and yaw) will be coupled and 
the forces and moments will be dependent upon the relative orienta¬ 
tion with respect to the incident wave system. This will be a some- 
w at complicated analysis, but the tools are generally available for 
Bterminlng the various hydrodynamic parameters entering into such 

a study. It will also be necessary to consider the type of signal 
system that would inciate the position errors of the ship, together 
with a signal processing operation (i.e. control system design) that 
e« \i necessary in order to achieve the desired type of operation, 
similarly, some estimate of the response time of the thruster force 
development must be included in determining ship response so that 
a measure of positioning accuracy can be obtained as a result of the 
analysis. 

In view of the complexity of this problem, a discussion of a 
simple application will be given for the case of sway motion alone in 
beam seas. In that case the equation of motion will be similar to 
that given in Eq. (137), without the presence of the linear spring 
term (that was due to the mooring in the previous case). The 
response due to the linear wave forces will be generally the same for 
this case as In the case of the moored ship, as shown in Fig. 15. 
However, the effect of the drift forces will cause the ship to continu¬ 
ally deviate in position within a very short time. The deviation will 
be almost a quadratic growth with time since the response is similar 
to that of a constant force acting on a system primarily represented 
as apure second derivative dynamic response. Thus a control force 
is necessary, and the control rule should Include terms proportional 
to sway displacement and velocity, i.e. the control force will be of 
the form 

Yc = - C,(y - y0) - c2y (139) 

where y represents the lateral error displacement relative to the 
desired position, y0, and this control force is included in the basic 
equation 

(m + A2g)V + Nyy = Ywaves + Ydrif, + Ye . (1 40) 

The lateral position error, which can be obtained from an 
acoustic reference system placed on the ocean bottom, will contain 
the Influence of the higher frequency response due to the linear wave 
forces and in addition the control signal that Includes the lateral 
velocity error will contain more "noise" in the resulting control 
signal. This can be overcome by the inclusion of appropriate filter 
circuits associated with the control signal processing, which Involves 
the use of standard servomechanism techniques within the state-of- 
the-art of control design. A closed loop feedback system using the 
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appropriate measured Inputs can then be evaluated in detail by com¬ 
puter system simulation to determine the optimum gains to be*used 
In the control rule ln Eq, (139). The only guidance that can be given 
for this selection, based on simple dynamic principles, is to select 
the value of (the gain C, that will produce a resultant frequency that 
lies between the frequency associated with the maximum spectral 
energy of the predominant wave system and the very low (near aero) 
frequency for large responses to drift forces. The value of the gain 
C2 should be such that,' when added to the normal ship damping, 
the resulting response of the system will be relatively "flat' through¬ 
out the major band of disturbing frequencies for the drift force. 
All of these characteristics can be refined in the course of control 
system analysis and design, as well as from the simulation results, 
and further discussion lies beyond the scope of the present paper. 

XI. CONCLUDING REMARKS 

All of the preceding problem areas discussed in this paper 
have illustrated the application of a specific area of Naval Hydrody¬ 
namics, vis. hydrodynamics of ship motion In waves. The utility 
of presently existing techniques of analysis for solution of practical 
problems in ocean engineering, with emphasis on mooring and posi¬ 
tioning of vessels and other systems in a seaway, has been shown 
within the limits of the present state of development of this field. 
Greater emphasis toward consideration of certain nonlinear hydro¬ 
dynamic forces for application to.these problems has been indicated, 
especially in view of their predominant effect In certain modes of 
motion. Possible directions for future research and development 
activities in this field will Involve consideration of better techniques 
of representing the form of these forces in terms of body geomatric 
parameters, more concentration of basic model measurements for 
comparison with theory, and techniques of simulation in dynamic 
analyses of motion behavior. This information will be fundamental 
in establishing computer models for determining many aspects of 
system performance at sea prior to actual construction, thereby 
providing insight as to expected problem areas and methods of solu¬ 
tion. The methods of applied hydrodynamics for these purposes are 
generally available now, and it remains for the ocean engineering 
profession to determine the utility or applicability of these tools 
to the particular practical problems that they face in their own 
operations. 
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WAVE INDUCED FORCES AND MOTIONS OF 
TUBULAR STRUCTURES 

J. R. Paulling 
University of California 

Berkeley, California 

ABSTRACT 

Many types of stable ocean platforms consist of space- 
frame assemblages of tubular structural and buoyancy 
members. An approximate method of predicting the 
hydrodynamic forces and resulting motions of such 
structures is described. In this procedure, the force 
on each member is’computed by assuming that the 
member is long and slender and all other members are 
absent. Such forces for all members are summed and 
Introduced into the linear equations of motion of the 
entire structure, which may then be solved for the re¬ 
sulting platform motions. Reasonably good agreement 
is obtained between the results of such analysis and 
model experiments with several different platform 
configurations. 

l. INTRODUCTION 

Many °f tlie stat,le floating platforms which have been nrn- 
posed or constructed for deep water drilling mlnln» ? 
m. „, and recovery of heavy 

^ «K88®”1]*1»,8®® °f tubular members. R. H. Macv [19691 
describes and Illustrates several oil-drilllnc olatformn fui 
One of them, BLUE WATER tt ^ i < 8 Pi Ltforms of this type. 

. J icei in diameter, with four vertical corner caisann« ?a 7 

operates It a Sof”Ä «‘feet^i .T.co„?p{S£rm".ÁDco 

s, and operate in water depths of up to 600-1,000 feet. 

Preceding page blank 
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McClure [ 1965] described a platform which was designed for the 
MOHOJLE deep sea drilling project. This platform was to consist of 
two submerged main horizontal pontoons 3 5 feet In diameter, and 390 
feet long, with a centerline separation of 215 feet. Three vertical 
caissons extended from each ho'rlzontal pontoon through the free 
water surface to support the main working deck. This platform was 
intended to operate in a water depth of 14,000 feet, and was to be dy¬ 
namically positioned by means of trainable propulsion units controlled 
through a central computer system. The foregoing types of platforms 
are referred to as "column stabilized, " which implies that pitch and 
roll static stability are obtained primarily from the waterplane mo“ 
ment of inertia of the surface piercing vertical column. 

A third type of platform for which a tubular space frame con- 
figuration has been proposed is the tension leg platform, an example 
of which is shown by Macy [ 1969] and described by Paulling and 
Horton [ 1970] . This is a moored stable platform for which the 
buoyancy exceeds the platform weight, and the net equilibrating 
vertical force is supplied by vertical tension mooring cables secured 
by deadweight or drilled-ln anchors. As a final example of tubular 
stable platform structure, we mention the spar-type platforms, the 
PfoT-fi examPle of whlch is FLIP, described by Fisher and Spiess 
[ 1963] . The platform consists of a single cylindrical member of 
tapering cross section arranged to float vertically, with a small 
portion of its length projecting above the surface of the sea. 

All of these platforms share a common characteristic in that 
their configuration consists of a space frame assemblage of relatively 
long, slender, cylindrical members, with the addition in some cases 
of small buoyancy chambers or pontoons. All share a common ob¬ 
jective of producing s working platform having minimum wave- 
induced motions, even under relatively severe sea conditions, l.e. , 
a platform which is "transparent" to the wa»ss. The positioning 
methods used differ greatly in each case, ranging from essentially 
no positioning, in the case of FLIP, dynamic positioning with no 
physical connection to the sea bottom, in the case of the MOHOLE 
platform, to various types of anchoring systems exemplified by the 
tension leg and the column stabilized platforms. The sea environ¬ 
ment and resultant platform responses are similar in each case, 
i.e. , all are intended to operate in relatively deep water under 
severe environmental conditions, with platform motions which are 
small compared to the overall dimensions of the platform and to the 
length of waves Involved. Our objective here is to describe a pro¬ 
cedure for analyzing the forces and motions which can be applied 
equally to all of these platforms if suitable account is taken of the 
type of anchoring or positioning restraint involved. 

Such an analysis of wave-induced forces and motions forms 
an essential part of the process of designing a platform to perform 
a specific mission. At least three such functions are envisioned. 
First, for a platform of given geometry, a range of sea conditions 
may be investigated to determine what limitations may be imposed 
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on the platform's performance by the resulting wave motions. 
Second, given a set of sea conditions and platform requirements, we 
may investigate a family of platform configurations to determine 
those members of the family which will be able to perform the 
specified mission under the stated sea conditions. This kind of 
analysis, in turn, might form a part of a more extensive system 
study aimed at determining the most cost effective platform system. 
As a third function, the force distributions on structural members 
which are obtained during the force and motion analysis may be 
used in connection with the detailed structural design of the platform. 

The general procedure followed in analyzing the dynamic 
behavior of such a platform is to assume that it behaves as a rigid 
body having six degrees of freedom. The external forces which 
excite the motion of the structure are associated with the fluid motion 
relative to the structure, and with the structure's mooring or position¬ 
ing system. Two alternative methods are available for the computa¬ 
tion of the fluid forces. In the first, the fluid is assumed invlscld 
and its motion irrotational, and we proceed on the basis of classical 
hydrodynamic theory to seek a solution to Laplace's equation in the 
fluid region subject to certain boundary conditions. These include 
kinematic boundary conditions on the free water surface and on the 
wetted surface of the structure itself, a constant pressure dynamic 
boundary condition on the free surface, a dynamic boundary condition 
on the wetted surface of the body, which is derived from the rigid 
body equations of motion, and other conditions far from the body 
which are necessary for uniqueness of the solution. This approach 
yields great insight into the fundamental nature of the fluid phenomena, 
and is exact within the limits of the necessary fluid idealization and 
motion linearization. Its implementation, however, is beset with 
almost Insurmountable difficulties unless the geometry of the body is 
extremely simple. 

The second method is less exact in principle, but provides 
approximate means of Including real fluid effects and of dealing with 
geometrically complex, realistic configurations. This procedure, 
which is employed in the present analysis , is termed "hydrodynamic 
synthesis. " Here we consider the complex structure to be assembled 
from a group of simpler bodies whose individual hydrodynamic pro¬ 
perties are known, perhaps as a result of an analysis of the first type 
above. A fundamental assumption is then made that the hydrodynamic 
force on the assembled structure may be computed by taking the sum 
of the forces of all of the component members. In the simplest case, 
these forces are computed as though.each member were completely 
remote and independent of the rest of the structure, but subject to the 
same pattern of body and fluid motions. The forces computed in this 
way might be refined by introducing modifications to the fluid flow to 
account for the hydrodynamic interaction between adjacent members. 

The result of this hydrodynamic synthesis is a system of 
hydrodynamic forces acting upon the assembled structure, containing 
terms dependent upon the incident wave system and upon the motion 
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This total system of external forced nfu°r dynarnic position system, 
acceleration of the body by Newton^ n^YT*** t0 the mass 
of coupled differential equations of l’f« d ~.W* ylcldIn* a «y«tem 

solved ,o obtain the tlme-d.pend.n, mo,“» of thV'etTc“ r."* *" 'h'n 

to ext.t'be't'eér.Ti'orcê^âid th«'™V r'!a,l!,"‘hlP -111 1» ...anted 
Two important consequences follow m°tlon Parameters. 
(1) The hydrodynamic forces actlno on th!6*»1*11 OÍ <UCh *8,umP‘l°n: 
into two independent parts one deoen^n- 3t,ruCture may b- divided 
motion, and the second depending orüy Ï?tt!* ollncldent w*ve 
(2) A prediction of the platform reaoon« » Platf«rm motion, 
way may be obtained by superimposing the r * redlt"tlc r»ndom 
regular wave components. r,mposin8 the response, to the seaway', 

empirically oVby^omparin^Its"*es^*,1 either 
analysis. An exact analvsU f. * wlth of an "exact" 

simpllfied class of geömet es thatTH ly °n,y ÍOF ^ * 
for the realistic case sub ect îô „ .?lldUy of the «".parlson 
forced to an experimental te« Wt* *re' ‘berefore. 
evidence on the usefulness of linear techiloue*"! ‘ We h*Vr coo«iderable 

pr.‘r t»e‘? 2:¾¾]19¾ ^ 

II. THE EQUATIONS OF MOTION 

d.vi.tioIh'r„"0““ -ill ». r.P.....d .. . ama, 
to define two coordinate system# Th ^n * ** convenient 
tive to the structure such that O i# 1 rr»/!/* .0?YZ’ l* itxcd rel** 
of gravity, Y ,, directed vertid./,; up" 'r/UÍ 'd&'V 
to the mean waterplane. In many cLe^ It’ * ^XZ l> P*r«nel 
symmetry to arrange these axes^o fh^»‘ may Ukc •‘dvantage of 
principal axis of InertU Also in someT.® °r ""i! oi thmm * 
ordinate system may be ...Ch f ' a Ca*e*' a designer*, co- 
which I, parallel to OXYZ but wt»«t orl^d‘,,J8n Pu«PO*M. 
Quantities defined in this latter «v-.lt. * ,* ,oca‘*d «Is»»h«re. 
to the OXYZ system by .Impie c^rinTttt^T* br tfan‘f°^*d 
assumed that this is done, P rdinate Iran.lbrm«, and It i, 

that it oc c up^e s ^the* miea n*po» U ion 'of OxV¿ ‘l “Z* i" 7«* *«»* 
in waves. In general, it Is founri n, ' platform move* 
Inertial properties and the force# actUe0^.^ ‘0 ¢*P^*•* 
since the geometry of thettruttf re , ’^^ ^‘n °XYZ 
other hand, it is more convente«. . ' d ‘Vh * •lr*,,rn' On the 
motion In the space system oxv«* r,*prr** the equations of linear 

and because b, ^ ^ f ,n#r‘UÎ ultimately wish to obtain the motion of the platform 
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In term« of tim« dependent deviation* from thi* meen position. The 
linear die placement« of the center of gravity of the platform from U« 
mean position may then be expressed by the small quantities aft), yft), 
s(t). measured In the oxya system. We next express the rotational 
motion of the platform In terms of the Ealerten eagles e{tl, £(t), yft). 
These eagles are so defined that the angular displacement between the 
two coordinate systems, oxya and OXYZ. may be created by Imagin¬ 
ing the platform as first oriented such that the tero coordinate systems 
coincide. It Is then routed about OX through the angle a, then about 
the new position of ÕY through the angle fi, and finally about the new 
position of OZ through the angle y to bring the platform to tbs final 
position of angular displacement. For small value# of e, f), y, the 
two coordinate systems will now be related by; 

The equations of motion may now be written. It Is convenient 
tIon In oxya, tinta 
have been expressed 

first write the equation for transíalory motion In oxya, thua It le 
body - *—-* assumed that all forces acting on the 

in this system, giving 

f, * tnx,. 1*1,1.). 

where the x, * x(t), y<0, end s(t), respectively. 

The equation* of angular motion may be moat easily written 
In the body coordinates, OXYZ. «lace the moments end product# 
of Inertie of the structure are constant In this system. If the ««ter. 
nal moment* are also expressed In OXYZ, the Euler equal tons for 
rotational motion In rotating coordinate* are obtained; 

Here, 

of the angular velocity vector In OXYZ, 

of inert Is about l axis If I * J, 

s prodnet at Inerlla If I ♦ |, 

Plot# that the transformation expressed by Eq. (II can be applied to 
ferries sod velocities a# well as to coordinate#» 
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in the direction of propagation oí the waves, r| Is directed upward, 
and 4 is defined so as to form a right-handed coordinate system. 

Wave Forces 

In order to be consistent with our assumption of small plat¬ 
form motions, an assumption of small incident waves must also be 
made. The velocity potential for regular infinitesimal gravity waves 
moving in the direction of the positive ê-axls is 

<p(4 „ r t) = coahM?¿á) sin (ke - u*). .Mil.»1/ w cosh kd Tn«r (8) 

The pressure is given by 

pg1! - P Tit ' (9) 

and the linearized velocities and accelerations in the t- and t|- 

directlons by 

8® 

u "-if 

• 8u 
u = ijr 

8 

(10) 

dv 
W ’ 

We shall first compute the Froude-Krylov force which is 
given by the first term in (7). This integral, which is to be evaluated 
over the entire Immersed surface of the body in order to obtain the 
total force, may be replaced by the following volume Integral through 
the application of Gauss' theorem 

yjpnds = . 1¾ . ■§£) dv. (Ha) 

The corresponding Integral expressed for the moment referred to the 

int-«**“» i* 

m * - C Ç p( r * » ) ds 

• (“bl 

Note tiu»t in defining these integrals for a member which projects 
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through the free water surface, the pressure and its derivatives 
vanish for that part of the member's surface or volume above the 

free surface. 

The evaluation of both of these integrals is a straightforward 
but rather tedious process, yielding the components of force In th® 

directions and the moments about these axes. We first per 
form^the^ndicáted differentiation of the t»0 term, in the pree.nre 
equation »ith re.pect to ¢, q, and t, thenjnb.titute for { , q, 
and r , values transformed to the o xy z-coordinat • 
elemk. of volume 1. given in õãya by A dv »bore A U the 
constant cross sectional area of the cylinder. Since the cross 

seçtional dimensions are assumed small C0^reáJ°^ and^conse- 
length, the integrand may be assumed constant over A and, cona 
auentlv, the volume integrals are reduced to one-dimensional 
integrals in x to be evaluated over the length of the cylmdr 

member. 

If the member is completely Immersed, the evaluation of 

buoyancy^corr'e'spondU^ t^the^v'ariatlon6in e^fe^tlve weight density 

of the fluid as a result of the wave motion. 

of mteg^r^^Ä--s:e Ä ft Ä 

that part below the mean waterline, yields a f over 
for a completely submerged member. ^ is oîthl same 

sm^Äi^mignUu^Vhe'L^e amplitude. Since the velocity 

potential, (8), and therefore the sec°nddf in the 

‘Srot*u“:;uTThfhyÄcTÄ Ä ^Ã-ion to 

this part of the integral. 

vo1um.^rÂa‘=?^ldÂfïïÂ 

riÄÄ:oÄ“ÄfÄnÄ^ 
appropriate derivatives of the pressure expression. 

The first parts of the last two terms in (7), i.e., the drag 
»d nddld m«, fotco. associated with »ave induced water mo.Un^ 
are each computed in a similar manner. Let u¡ and u¡ P _ 
the components of fluid velocity and acceleratioji In , wit ¡ 

- - the corresponding components in oxyz. A coordi 
and U| 
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rotation may be expressed by o(j such that 

II¡ = O-.j Uj 

2_ • 
u¡ = o|jUj . (12) 

The components of force on an element of length, dx, in the öxvz- 
dlrections are given by 

dT'l = (jljjUj flijup dx, j = 1,2,3 (13) 

where pj and Xj are added mass and linear drag coefficients. For 
the cylindrica! member, only p22, p«, X22, and X33 are non- 
zero, while for the point volume all of the df 
X are nonzero. 

ic- - *33 — “ 

diagonal terms in p and 

The forces may now be expressed in oênC by the Inverse of 
the above transformation 

dFj s'oiji d’Fj 

= (PjjUj + X|jUj) dx (14) 

Here, the added ma¿s_and drag coefficients in oêTiÇ are seen to be 
related to those in oxyz by the following expressions. 

Hij = «j¡hjaij 

Xij 3 * (15) 

_Ç.0í£e8P0ndlng expressions for the elementary moments 
about oxyz and o|r}t may be written. The total forces and 
moment may be obtained by integrating thes.e expressions over the 
length of the member, noting that u¡ and u¡ contain terms with 
the same trigonometric functions of time which appear in the Froude- 
Krylov buoyancy Integrals, (11), and may, in fact, be combined with 
them in carrying out the integration over the member length. 

Evaluation of these Integrals yields a set of forces and 
moments in oê^. A coordinate translation and rotation may now be 
applied to express these forces and moments in the space coordinate 
system oxyz. 
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Mot ton-Dependent Hydrod, n>mic Torr.» 

are the vtloclUe^oVfhe who** compon«»ii« 
and are given by ¿ i i f. t 8^,vtty ol ,h* ‘tructure In o*yt 
an angular velocity vector * 6 ' ** »UnlUrly define 
rotat/on, ab^y, d^.í^T^ 
resultant veWih, «.r - o, x<* *» resultant velocity of a ** In Í6». The 

^"pT ,7- » - 

ifon^‘;2ir„^Vo^:Ä/r/c^!'ip''v- 
P ™«y b. «V L ï - .*"? '"i”'1’'-1 P»'"' structure t y 8 on the x-axts of a member of the 
vectors*^ mfy °bU,n the v*,oc“V *nd acceleration 
to (12). Th« a , hLw^errliSliteE,h‘ <7i bVK* ,r4n,i0rm*“0n ,imUar 
to the .pace 

* (U, •«v.Ha»!»..., 

bS8.,ivh: ÄÄb "-¿‘.ä ä v7^'. sf 
mom..,. o..r ,h. U„*«: i° th. mTUlT*"'"1' ^ 

rrr th“ ^,h* '*•' »' >•“ æâ’â:... 

The Added Mass and nrafl r».r/i^^nt| 

tng forces arising from viscosity Thr .uJn ? fnd 1UnS*nt,<ü •í»«ar- 
«.y:.,, to...,. l„ 0..:::,:::.-, 
force proportional to rclath-e Quid acceleration t, ^ 
lotulllv. bul. a„d p.,Uy „„ ,h. buÜ o, o?. 

pruporiionai to relative flu d acceleration t. u_Ü 1., 
intuitive basis and parüv on the hLl. r L ’ \ ^ P*rUV' <>* 

motion and the exciting wave motion. Le, «, revdew .omÏônET 

An 
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tndkOêd toreé» and Motion» of Tabuier St rue tur«» 

ju*Uüc*(ion for thl» ■Impltflcotion, 

Moruo ( I9M) *«4 H*v»|ock [ !9%4j h«v# dl«cu**«4 lh* tore«» 
m •ttbmorgrd bodlo* «hfch oro t»u»«d by w*ve« of •moll amplitud* 
lo an ideal fluid. Maruo deal* olth tb# t«o • dimana tonal problem of 
a horUontai cylinder completely aubmergad bolo» th# «arfar* of an 
Ittvitcid fluid, and glvaa *om# rtaulia which can bo compared directly 
with £<$. (7). ¡n particular, he «howa that, for the caae of a deeply 
•ubmergod cylinder, the "eaact“ total force I« equal to twice the 
Froude - Krylov force, Eq. (7) , and that thle corresponds to a value of 
the added ma«s coefflcienl equal to that of the cylinder In an inílnile 
fluid combined with the wave motion at the centerline of the cylinder, 
U the cylinder I« near the free surface, the force dl/fer* from this 
deeply submerged value by an amount dependent upon the depth of 
submergence and the wave length. The error, however, ie »mall 
If both the depth of submergence and the wave length are greater than 
• evsral cylinder diameter*. Similarly, C. M, Lee ( 1970) has 
analysed the problem of an oscillating cylinder submerged beneath 
the free surface, and has show'll that the added mass coefficient for 
forced motion approaches the infinite fluid value within a small error 
if the depth of submergence is more than two times tht cylinder 
diameter and the length of generated waves is more than about five 
times the cylinder diameter. For our present purposes, these 
results imply that we may assume a constant value of the added 
mass coefflclsnt In Eq. (7), since In the majority of practical situ¬ 
ations the cylindrical members will be sufficiently deeply tubmerged 
and of sufficiently small diameter compared to wave lengths of 
Interest to fulfill the above conditions. Thus the first and last terms 
In Eq, (?i can be expected to give a good approximation to the non* 
dissipative parts of the force on the Individual member considered 
here. 

The drag or velocity dependent force acting on an oscillating 
body under a train of waves is associated with two phenomena; (II lh* 
dissipation of energy in surface waves which are generated as a 
result of motion of the body, and (¿1 the viscous effect# which are 
felt both as tangential forces on the surface of the body, and as a 
deviation of the pressure distribution from Us Ideal fluid value. This 
latter effect, which is associated with the formation of a wake and 
vortices downstream of the body, will cause the added mass coefficient 
to differ from Its ideal fluid value as well. The drag force astoclated 
with free surface wave effects decay» to «ero with Increasing depth 
of submergence at the same rate that the added mass coefficient 
approaches the Infinite fluid value. Therefore wave damping is of 
little significance to the configurations being considered here. The 
drag forces associated with viscosity are generally of much greater 
importance, and also less clearly defined. The usual method of 
approximating these forces, Wiegel | 1964) , Is to assume that they 
behave In a manner similar to the drag on a body Immersed in a flow 
of constant velocity. In such case, the drag force is expressed as a 
quadratic function of velocity and the drag coefficient is found to be a 
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K , ln »ppWtnt concept io th* pr«.«nt 
function of Roynold* ÏJJVflttU motion gulling írom *>« 
.Ustión ln ohlch - ^ *57^10«. *• mlght computo *R*y"fld* 
.aD*roo»Ulon oí **v« *nd boáy mo_, ” ,fv cboo»« lh* dr*g co«f- 

u«ln* tho nv«*« *b«olu** v 1 r’ 171 , ho old thon bo o 
nclont *ccordln»iy. The dro* term ^év«r, dootroye the Uneorlty 
quadratic function of velocity. T • ,ppro*\m*$lon Involved, U 

I« not worth the added complication. ‘ iMr#(or, d.ftned. at d*.crlb«d 

an oqulvelont #uch that the linear drag *0^* •* a 
lr. Blagovoehchoneky UJJ ^ p,rio4lc motion at th# nonllntar g 

Th. »< «ioclty 
folio»*. A*.am. . tlnutoldal v.rUao 

given by 

y • v# tin «.A. 
(Ib» 

Th# linear drag fore U given by 

Bi - Sr» 

and the nonlinear drag b* 

The energy dl.tipat.d per garter cycle of motion l. given In th. 

Untar cate by 

r*'*" i 
r , \ V* dt. 
HOo 

qnd in the nonlinear cate by 
•At« 

Equating the two r ny g l* • d Vonl Ine a r «e Í - 

irr^Til^cSfofn. Z (quadratic drag» the re.ult U 

'Dl r?c< 
(17) 
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Thus , It is seen that the use of such equivalent linearization 
ZflrZ ^ Pfior ^nowled8e of the amplitude of the motion. No 
difflGulty is introduced by this in the case of the wave force on a 
®îia‘i10n.ary member. However, the amplitude is unknown for the 
ti0'?* m°tl°n of,the member. This leads to the necessity for an 
iterative solution in which we first assume an amplitude of motion, 
compute the equivalent linear coefficient, and then solve the equa- 

*Z\OÍ T“” Ufing îhiS Value- Thls 8olution is used toqcom- 
fhl refined value of the linear drag coefficient, which is used for 

KiS0lutl0u °f th* e^uatlons of motion, and so on. It is 
questionable whether the approximations involved warrant more than 
two Iterations, as noted by Burke [ 1969]. 

Hydrostatic Forces 

A floating body which is displaced in heave, pitch, or roll 
Do0rti„itfiefqU!ilbriUîî1 P.08141011 experiences hydrostatic forces pro- 

^ t0 the!e d1lsPlacements as a result of the changes induced 
in the immersed volume. There will be no forces in surge, sway, 
or yaw since these displacements, which are parallel to the freey 
surface, cause no change in the immersed volume. 

Jhese forc®s* including coupling terms, are computed by 
retint f architectural formulas. Thus, the vertical force 
resulting from a small heave displacement, x2, is given by 

Fy = ’ pgAwx2' (18) 

where Aw is the waterplane area. 

Similarly, the moments of this force about the x- and z- 
axes (static coupling terms) are given by 

Mx = PgAwzwx2 

Mz = - Pg-Aw^j.* 
(19) 

placements I°e m0me”'S rM”1“n8 fr°m 'maU “S“1" d1«- 

M = - PgVGMa, (20) 

where GM is the appropriate metacentric height, V is the volume 
displaced by the structure, and a is the small roll or pitch angle, 
either x4 or x6 in the notation of Eq. (6). 

Finally, the force in the y-direction resulting from a small 
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roll displacement, x , is 

Fy = Pg/iWZV*X4 » 

and for a small pitch displacement, x~ 
6 

Fy = - pgAwxwx6 , 

(21) 

(22) 

XW, zw are the coordinates of the center of gravity of A . These 

fr'co^ ?ClUde(d *" *he "iUat‘on' of ««le rV.tortag oi coupling force terms. ® 

The Restoring Forces 

a TIJree types of restraints have been described in the Intro¬ 
duction, dynamic positioning, spread array mooring, and vertical 
tension leg mooring. B 

A dynamic positioning system incorporates two principal 
components: sensors for detecting deviations from the desired 
position, and thrustors which may be activated automatically or 
manually to exert a force tending to restore the structure to the 

SmtdHOSÍ il0n\ In the slmPlest system, the thrustors are actuated 
This wonlTbÍatg Trt a ÍOrCe ProPortional to the displacement. 
This wouid be termed a pure proportional controller. Real systems 
seldom operate this simply but incorporate time lags, back lash, 
and other non-ideal characteristics. Increased sensitivity and 
response may be built into the system by having it sense velocity (rat< 
control) and acceleration. If the system can be approximated by 

disnÍ]L?atUr*e3 ’ ^i6' if the apPlled thl'ust can be linearly related to 
dispiacements, velocity, and acceleration of the structure, then the 

nf ySi-<em COrnstan1ts mfV merely be introduced in the force terms 
o the equations of motion, (b), as additions to the already defined 
hydrodynamic and hydrostatic terms. 

In a spread mooring system, several pretensioned anchor 
lines are arrayed around the structure to hold it in the desired 
location. If the structure moves from its mean position, the tensions 
in the anchor lines change and these changes may be related to the 
geometry (catenary), elasticity, and hydrodynamic properties of the 
anchor lines. It is usually permissible to neglect the hydrodynamic 
forces on the anchor lines and to approximate the force by a linear 
relationship between force and displacements in the plane of the 
a-nchor line. The displacements at the point of attachment of the 
anchor line may be determined in terms of the coordinates of this 
point for given displacements of the structure. These are resolved 
into horizontal and vertical displacements , Xi , 7i , ln the plane of 
the anchor line by a transformation similar to (12). The horizontal 
and vertical forces exerted by the anchor line may then be expressed 
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as 

(23) 

These forces may then be transformed back to the oxyz coordinates 
for inclusion in the equations of motion. The anchor spring constants, 
k ... kyy are computed from a knowledge of the aforementioned 
elasticity and weight-shape characteristics of the anchor line. 

In a tension leg mooring, the mooring lines are vertical and 
provide essentially total restraint against vertical movement of their 
upper ends. Figure 2 Illustrates the horizontal force which results 
when the upper end of such a mooring line is displaced horizontally 
as a result of surge, sway, and yaw. The restoring force in the 
direction opposite the displacement, xn, of the end of mooring line 
n is given by 

(24) 

The displacement, xn, may be expressed in terms of its components 
in the X- and z-directlons , in which case the corresponding com¬ 
ponents of Fn in these directions will be given by (24). 

MOORING LEG “o’ 

mm 
Fig. 2. Restoring force in tension mooring legs 
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IV. SOLUTION OF THE EQUATIONS OF MOTION 

..c.u.Jîî.is; T-*, 

wav« motion ln th« preaenc« oí th. ^ ,opc** r**^Hnf from tba 
'«m >1» m0.l„n o/ 

.cTnV^^rr »"• '•"» .-.LTiTATuÍ^. •econd and third term on th« RKS oí Eo. (T) tw. . ^ 
dependent force« arc contained in th* onji ».1 RUtform motion 
three of the RRC «# r#. > *«• aetond porta of tarttta two and 
The wave mot depeMinl'icrf. th* hr4ro*,*,lc •«<* f*«tralnl fere««. 
potential M.umed m repre.ent t»i VaVI m«i^! v«U»«Uy 
«oldal function« oí UmT ul. rílrr j,«. ^ "’ J*1 ^ 
the standard form, placina th« mm in« JL_ . *t|ti «1 Inoa of mot loo into 

ÄiÄ Ä- tÂïirrs 
of the*form*** OÍ ^ -«nd-order difï.r.ntï,‘itttn. 

Z ^ + *U* *1 * k«!*) ♦ c,,*,) • r* «(a (yt # «,), (in 

*, • «ln (a ♦ 4,), 

where xtl I« proportional to 
The quantity oporttonal to Fm, therefor* to th« **«« amplitud«, 

/*, or the amplitude of reepona# to unit wav«« 
vaH.. wlth w.v^ frequency, for*. T/fo. f ion 
of frequency and b«c*u«e the coefficient* *, *. c the LHS o/ litl 
may alao vary with frequency. The .quar. of thí. ÏÏlr^nl.!« 
then the reaponse amplitude operator, which may he combined .to. 

. '¿aZ‘.P'.Ci'.y. rUtform r.apon.* „ 

V. MODEL EXPERIMENTS 

A number of model experlmenU have been conducted ln ib* 
Unlverelty of California Towing Tank in order to teat several part* 
of the procedure, deecrtbed in the previo«* ,.etfon. rZ lnlfltí 
objective of the etudy wa* to evaluate the tenefon lea oUtfnrm a 
all experiment, deal with thU conflgur.tiom 
were made on elngle cylinder member« to ieef aom* of sk» hvdro 

fnnreTÍÍai0wC.eveP.redN«r*e®d T* 0t ‘h# rFinn¬ in regular wave«. Next, experiment« wer« conducted In regular 
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***• i*é**9é **4 ÊÊfti&m» êf tmèmtmr Ommimm» 

**«•* <ê»lm§ ê pint&t'. 
tím 4NHc«4»k4t|fy amé 

«I tfi4*g«Ur pl«« ten« te 
' «I «»tetitete ««4 m««rl«« i«««taMu »I * 
I «I • mmmàmt *f cvlUtertc«} mamirntr. 

IteMrtev ml 
tmtrpmatt* atrmamta «Wtetettef ml a 
n**lly* •repatlmatat wmta m*m4* I« ramfem «tete te tett f»« ««piK* 
tellty ml li***r #«p#rp##tfte*, 

TI« * » »*“f *rr *nl ié títrn rr o4*l amé *«p*f Un*«l«l apparaim* 
I» akmmm I« Ft§, Í» Tte» «»4*l ««nAptratte« •!»••• I* fyplc«} ml a 
mmmhmt «I tteM* «••«*4. mf iter«« Imma ejUméara êrrmm§mé 
te term «a *^4UM«r«l nu«*!* «IIA ikt** «r mmr» amrittml !•«• 
• «sppwntef (te 4#< fc. A* iflrtporf «A4 f«tefte(rf<4l p*» *(i»4i*4 
I« -b*** (««U WM Itet r*!*i|w* pr^MftlM «4 bmmftmi rmlmmm c««i«Um4 
I« ite» mnlc«! ««4 !•*•. 

flf. I* «4 *Mp«rim**(«J «ppArMwt 
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F*k!!f«tÿ 

Trmn flf. ) H f* »•**% tkmt ImltwnmUMimm *** firoH4«4 
lot m*M>*rim§ m®4*t ftMHlMw, t«MÍ«4i **ti*U*m* la ilw» ifMkor-tay !•••• 
•A4 tactéMi «wm «mfati-^4«. TM »«rf« «»Ml«« •>•• ••«•M «Ml ««a- 
mm*4 •» m «!•<«rl««l «Igaal b* • «nlalMar« I«* tarf«« pM*Mi*tt»*Mr 

% iK« ffw»4«l thrtMtgh • «irlAf *«4 ptail«* •r»«A4»m*«i. Ta* 
—a mm ÊHàk * -ii- «k # al «h f a« ai- â--»«Ml «i-aC mm fttbafe •*«*«aât* 1 ff lbaa 1414¾ in4 • • ««# •*» • F ^ ^ F flNi C w^frm fwmb'Sïïmww wfl I ww « * **• 

ml «4wc^ «wi* |jn*frM#4 I# §!*• IM f*» H#f4*í•«*•«*, 
Tawil«« mM*r« »#r« la«l«ll«4 la «*«à fn««rl*m »*f, Tfc«»« <<w**i«i*4 
ai amaU prmvUif rtaga i*ferl**i*4 fr«m •••«ni««« at«l«l««a •!**l 
(«Maf *»4 m#wwi*4 «4 II» M<t«i4 («U air «b» §•§*». Fawtr g*f*a «• 
•*cli ring ««r* i««««***4 I« far» a f<oH»r «rrr «••(•i na Iirl4f«* lia 
aMfM «f «rltkli U t® llw apfila4 lare*. TM I»rl4f« «a» 
balai»c*4 lalltally I» l»l«a «M »M lattlal alallc faaal«A. TMralar* 
«*lf »h* lima 4a^*«4®M variail»aa ar* r««or4*4. 

TM mMfwrta of IM** (orra a«4 mr-tfo® traaa4M*ra, «a «♦15 
a* (M ®«I|»hI of a roa 1*1 am* «Ir* «av* m«iar, «or* r*«or4*4, «aIn* 
a m«i)llcMMWi*l oactllograpl»« Döring • «f*rtnwmla I« rmtsémm ••***» 
a atmoltaAMWM ratorglog «»• ma4a «f tM aam« goaallllaa I* 4lgll«l 
term o« magoall« lagwr f«r |ir*f*aal«g bf comfiMar. 

Üi»i§* Cyllagaf Km*rlm*«ila 

TM Ural gr«wiÿ of ♦«frarlmaMa ♦♦** t««*4otl«4 «*•!«§ a atogl* 
dreotar «yttMlrtra! moé«l M«lng MmlafiMrical »«»4a m4 mmt*é 
M I«« toga, mm al •a<»i **i4. 0»lf «M l«cI4*r.» r«g«*lar »av*a a«4 
tanate a variai lona «or« »*<«»4* I, TM m«4«t 4tm#«ateAa «»4 UM 
tongilloria ««rot 

L «igtl» 
Dla#n««*r 
f>r|rth ml rf»«#l 
«•IgM 
Vaiar 4«fNH 

1,44 ft 
0, ¿«1 ft 
0.T42 ft * 2.» >» 4la. 
4.4 IM 
4. If fl 

For <M« coitftgvrMte«, <M iort»fNrt*4 uoate« varialiooa I« IM 
mooring loga »Ul M •««al I® IM hféfméfnamlt ter«#« a«|»r«**«4 te 
ftg, |f|, *,*«. iMr* «Ul M no Iteoar toofklteg 4«t**a« IM ututeo 
variait*fta ««4 IM motte«# of lM moMI. TM** r*««tl«, ter r«gol«r 
*«v«a of |,4| êmamé pmfimé, «a4 ••»oral 4lff«r«M ar»|Ullo4«« «ir Ik teg 
IM mo4ot at 4, 44, and 44 Mgr»*», aro «M«»» te Tig. 4, Knfwrftm««* 
tal JM»!«*« «M» lM *m|»tU»Mte« of ter** «w rial tena «Web «or* m*a*»ro4 
te lM ««« mooring teg*, TM tMortrtIcal H«*a Mva M*o 4*i*rmlr»*4 
te tM m*IM4 4**frlter4 Mr* *«4 M M*v*|o*4 ( ItM}. Havol»«4*« 
pfo«*4or* il«oa tM «av* for«* ar*4 ,i *m*M or* a *|*Mr«l4 Having If* 
long ••!• twfUM*M*l, moving MnoaO* a irate of r*«oiar »av*t, For 
tM |ir***M «omgouiton IM âg^ronimailng «ptMrofd »a* *•* >m«4 to 
Mv* tM «am* i*0Mli and dIamMar •« tM cyllndar mod*). TM 
da*Md ««rv* laMtlod *'(»r*a*nt «orfc* «** «#«*>01*4 M Eg, |f| 
aaatotilAg tH* Inflntl* fiold vaio* of onlty for tM addod ma«a «o*ffl*l*M 
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Wa## imé*9*é f;rï*t mmé mH#*» ef fmbmtar ftfwPtor«« 

Flf. #. T•«•to« !*i «timl« cftlMtor 

«rf «II* tm4 m *«*4rMtc 4r«« (««((UUm at «mtr. 

WUM« Ov* Umtl* «t «cewracf, th# far««« «r* 
i**n l* ••»Tf H*»** »If *Uh mmwm K*lf N lar • tmn$rn mi hmtghtm immtmé. 
Tb* tmm thmvrmtttml prmmémrmm êr* •••n ï« gt«* r*t«üt« «I mbo*t 
*^»*1 *i*|r** ml «oftjarmity •(«». *^*rim**n«» 

TrUoialar Ptmtfmrm 1 I» >»»alar Wmmm* 

Ktupmrlmmi* «ImlUr to «UM« »(()» • »logit <rilo4tr ••t» 
n*«t c9n4fMt*4 ollfe * too^l*«» plmUorm mméml. TM* ma4*| •»« 
• lmU*r to IIm en* atmwm »thmmmtUtUf I« rig, J mm€»pt (Mit «Ht mtln 
HorUonUl ^ootooo» o»r» of «toi trot* f H— *«wf (H* •Ho*«.»*«*# 

bf • #^*c* frtmt «rr»Ag*«n»M ml WWf »maSt 
«•rti«*) a«M Inc Ilota H***. TH* <Um*n*lo«M of «M* mo4*t« r«f*rro4 
ta •• M»4«i I, art glttn Hol«*: 
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MaPê înduoêd Force« and Motion* of Tubular Structure« 
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rt|. 6. Surge motion -- Model I 

Figure 5 contains a comparison of measured and computed 
tension variations In tbs mooring legs for three dlffarent wave 
periods and Fig. 0 contains the platform surge motion ' i 'n. the 
agreement between computed and measured values Is about as good 
as In the case of tbs single cylinder. Two features should be noted 
here. First, a mean curve drawn through the experimental tension 
variations appear* to curve slightly concave downward with Increas¬ 
ing wave height, thus Indicating a measurable nonlinearity In this 
quantity. Second, better agreement between the computed and 
measured values Is obtained for motions than for forces. Note that 
Use motloi s are shown for two different values of the assumed 
quadratic drag coefficient. The effect of a substantial change In 
(his quantity la seen to be slight. 

Triangular Platform 1 In Random Wave* 

A second triangular platform was tested in both regular and 
Irregular waves. This platform, designated Model l, was similar in 
arrangement to the platform depleted In Fig. 5 and had the following 
eharacterlattce; 

Weight 2Í.49 Iba 

Buoyancy Ji.JOlbe 

Length of elde 3,1 ¿ft 

Main horlsontal pontoon dis. 0.187 ft 

Vertical cylinder dla. 0.181 ft 



Paulling 

Draft to centerline, 
horizontal pontoon 

Water depth 

0.78 ft 

4. 70 ft 

This model was tested In six different random sea conditions, 
representing two families of wave spectra. The first family of 
spectra, designated "A," have their peak ordinate at a wave period 
of about 0.9 second. The second family, or "B,( spectra, have their 
peak at about 1.55 seconds. Both families for several different 
significant wave heights are shown In Fig. 7. These two spectra 
were used In order to adequately excite the model over the ranee of 
wave periods of Interest. 8 

fig. 7. Experimental tank wave spectra 
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Have Induced Forcee and Motions of Tubular Structures 

The model response Is shown In Figs. 8 - 10 for waves mov¬ 
ing parallel to the X-axis. The first two of these figures show the 
mooring tension variations, and the last shows the surge motion 
versus wave period. In each case the ordinate is the double ampll- 
tude of the force or motion in question divided by wave double ampli¬ 
tude, thus the amplitude of the transfer function obtained from a time 
series anaiysis of the random wave tests. Points on the figures dis- 

Än ran,1°mu,WaVe re8Ulta ior three a‘«n‘“cant wave height, 
within the applicable range of periods for the "A" and "B" spectra. 
Also shown on these figures are results from experiments In regular 
waves, and theoretical predictions. 

. It i- Interesting to note that the random sea tension variation 
results display an apparent amplitude dependence in the range of 
onger periods. This is the range in which drag forces would be 

most strongly felt and no doubt points to a possible deficiency in 
the process of linearizing the drag force. 

As before, the surge motion shows very good agreement 
between experiment and theory. 

0* »0 I« I« H 94 
*wvt W VCOhOt 

Fig, 8. Tension variations In anchor leg l 
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y*P0 Induo«J For«*, and dation» of Tuba lar Strmetnra» 

VI, CONCLUSIONS 

m#_,-1 *'**}**• * comp.ri.on 1, .ho-n oí o*|>*rI. 
montai m«*« or «monto *n4 tlworoUcal prodictlono oí olattorm mat ton* 

tKoo rot icol rooulto «oro obtolnod by tho « implo* t form oí tH# sro 
codoro »« »hich conotont laflAtt* Ouid ««loo* «oro *»,*m*4 (or »44*4 

lüTiii Ci°** J****** Um*t drH ¢00ÍÍIcloot# »or* uood. ond 
b^t^^mom^r ? for .ho hydrodynamic Intorforonc* 

ot %h* *«'««*«. Th* íirot («o oro up* of o^orl- 
*nd **J*Imhfot!.,h^!.,h*! ‘Í* !bVrV,<1 P*r,orm*"<* oí * I nf i « mombor* •fid oooomblof*« do««, Indood. follow a noorly linoor pottorn In 

elditV rd ,W* E“*** U **41 hr ‘h* pr«*«n« pro. c^aro. Tho loot group oí «oporlmon.oj rooulto «how noorly oqjjly 

ÍSL,e««*ÍtÍtlLb0lAH*,ttUf *nf ****•. Thor* U, hiw.vor, oomo conoUtont nonlinoor amplitud* «orUtion ln iongor ««voo. «* 
m*y b« •oon ln ng. f. * ’ *• 

It I* prob*bl* that th« good «groomont 1* otMalnod b«cou*« 
<oft»»*t«d of «••«mbiagoo which «ati*íi*d th« 

Initial •••umptlon roaaoitabty woll, I.*,, 

(1) All mombor* w«r« long, alondor cyliodor* r«iatlv«ly 
•parooly dlotribtMod throughout th* atructur«, 

{11 Th« bulb oí th* mombor* wor« «ubmorgod «uíílciontlv 
d*«ply bolow th« fr*« aurfac*. 

(I) Tho croo* cocí tonal dtm*n*loft* of all mombor* w*r« 
• mall compared to th* wav«* u*«d In tho •xporimont*. 

{4j Th* motion* oí th« mod«!* war« «mall comparad to lho 
modal dim on* Ion* and to tho wav* length*. 

,. ... Th# «l®r*m«ttlonod nonlinoor boh* vier probably Ulu*tr*to* 
tho faUuro ot * singlo valu« of tho linear drag cooiflclont to ad* 
quatoly roprooont »hi. component of the hydrodynamic fore* over th* 
«Mir* rang* of froquonrloo. 
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SIMULATION OF THE ENVIRONMENT AND 
OF THE VEHICLE DYNAMICS ASSOCIATED 

WITH SUBMARINE RESCUE 

H. G. Schreiber, Jr., J. Bentkowsky, and K. P. Kerr 
Lockheed Miaeilee and Space Company 

Sunnyvale, California 

I. INTRODUCTION 

The F’S’ Navy's flrst DeeP Submergence Rescue Vehicle 
(DSRV) was launched at San Diego, California on January 24, 1970. 
This vehicle was designed and built by Lockheed Missiles & Space 
Company (LMSC) under contract to the U.S. Navy's Deep Submergence 
System Program Office (DSSPO) to provide the capability to rescue 
i cfweW a su^mar^ne immobilized on ths ocean floor. The DSRV 
is 50 feet long, 8 feet in diameter, has a flberglas external hull and 
an inner (pressure) hull made of three Interconnected HY140 steel 
spheres. Propulsion and control of the vehicle are provided by a 
stern propeller In a movable shroud, horizontal and vertical ducted 
thrusters located in pairs fore and aft, and a mercury trim and list 

T.uemw An ITte*rated Control And Display (ICAD) system developed 
at the Massachusetts Institute of Technology Instrumentation Labora¬ 
tory enables the DSRV operators to correlate Information from 
sonars, closed circuit television, and advanced navigation devices, 
in order to perform this intricate rescue mission. The mission 
scenario of the DSRV Is as follows. Word and position of a dis¬ 
tressed submarine is received and the DSRV and Its support equip¬ 
ment are flown by three Cl41 aircraft to a nearby port. The DSRV 
is then loaded on to a mother submarine, by being attached to the 
after escape trunk, and transported to the area of the downed sub- 
mjrine‘ The DSRV then detaches itself from the mother submarine 
and descends to the disabled submarine, and mates to one of the 
escape trunks of the distressed vessel as shown in Fig, 1. The 
rescuees are then transferred into the aft two spheres of the DSRV 
and returned to the mother submarine, 24 at a time. Because of the 
possibility that the distressed submarine may be at an unusual atti¬ 
tude, and there may be bottom currents, the DSRV must be able to 
perform this hovering and mating maneuver In a one knot current 
and at attitudes up to 45 degrees in pitch and roll. 
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Vehicle Dynamics Associated with Submarine Rescue 

This hovering and mating operation puts the DSRV in a new 
and growing class of submersibles which because of their missions, 
are required to hover, work, search, and otherwise maneuver at 
low speeds. This requirement for low speed, high angle of attack 
maneuverability is far outside the range of operation of the conven¬ 
tional fleet type submarine and consequently analysis designed to 
predict the dynamic behavior of conventional submarines is not com¬ 
pletely applicable to the prediction of motions of the DSRV and other 
submersibles of the same class. The adequate prediction of the 
DSRV dynamics requires six degrees of freedom and a simulation 
capable of predicting the forces and moments at high angles of attack 
wherein the vehicle will experience lateral forces equal in magnitude 
to the axial forces. To be useful, the simulation must be precise 
enough for use in the design of the automatic control system. The 
operational environment is also quite different from that normally 
simulated in that the vehicle must hover and maneuver in currents 
at near zero forward speed and in the presence of the disabled sub¬ 
marine which causes considerable disturbances to the flow field. 
This paper, which is divided into three general parts, presents one 
approach to tae simulation of the dynamics of a highly maneuverable 
submersible. The first part describes the simulation of the free- 
stream vehicle dynamics or thé dynamics outside the Influence of 
the distressed submarine. The second section deals with the inter¬ 
action forces and moments caused by the presence of the distressed 
submarine and includes a discussion of a test program conducted to 
measure these forces and moments. The third section describes 
the application of the resulting equations of motion in conducting a 
man-in-the-loop simulation of the DSRV motions during the mating 
maneuver. 

The equations of motion were developed at LMSC and pro¬ 
grammed on a Remington Rand 1103A computer. They were used 
to determine the preformance characteristics of the vehicle to be 
used in design studies and to provide equations of motion for use in 
the control system development. The interaction forces were 
measured in the 12-foot variable pressure wind tunnel at the Ames 
Research Center in Mountain View, California. Tests of this nature 
were necessary due to the lack of data on interaction forces and the 
possutility that these forces would provide a significant influence on 
the vehicle and control system design. The manned simulation was 
performed at the Marine Systems Division of the Sperry Rand 
Corporation to provide demonstration of the ability to manually con¬ 
trol the DSRV within the limits necessary for mating and to deter¬ 
mine operational limits for this mode of operation. 



Sohr*ik*r, 8»ntksutk§ and tarr 

II. FREE STREAM DSRV DYNAMICS SIMULATION 

equations or motion 

Th® development oí • dynamic elmuiatton of the Dees Suh. 
mergence Rescue Vehicle (DSRV) ieUw , dii/er^t app^lch tL 
the method« used In moel eubmerlne etudlee. Thle devUtlon fram 

7>Pr°*Cï U n*c,,,*rY hoceoee of th* h*«lc difference, 
the mode oí operation oí the DSRV compered to that ©f coneentlenel 

.obmerln... While the enelyele oí • eubmerin« te (ene rali y con- 

flüíd t°hírDSRCvX^Í ‘Î* V*hiCl* «R**«« I" *n Infinit, fluid, the DSRV dynamic, muet «leo be eimuUted «Mie hoverln. m4 
docking in the preeence of « downed aubmerine. The convention«! 
method u.ed to elrmüet« the dyuunice of* eubmertne t. to caicedete 
the poeltion oí the center of gravity oí the vehicle uaine »near torce 
and moment coefficient, for the complete vehicle which are refer- 

the DSRV d.«!ntfr¿ fr*Vlty; Th* b"lc «««*“«*«« «Í motion for 
ÎÎ! d way‘ from ,hU ctmventlanAi method, flr.l b» 
the choice of an axla eyetem and eecondly in the manner of han-11 In. 
the forcee on the vehlclae and appendage*. * 

Aid« Sy.tem 

Sine« the DSRV 1. required to a*aum« ancle# of «S® to the 
horlaontel in pitch and roU (very unrealietic for • conventional • ¿b 
marine) a mercury trim and ll.t ayetem te incorporated which move. 

TheV¿ÍÍC¡ha*t rh<fUkf<i,r*Vlty 10 thee* ettitudee. The fact that the vehicle a c.g. move, with re.pect to the vehicle 
during maneuver, make, it a poor choice a* a refer«*«« point for 
de.crlblng force and moment coefficient. .Inc« they would heve to be 
changed a* a function of c.g. petition. U.ing the c.g. e. . refer- 
enc* axi. ay.tern would aleo lead to complication« in de.crlblng the 
vehicle . motion with re.pect to the di.tr*..*d .ubmertn* *lnc* the 
motion of the axi. cyatem with reapact to the vehicle would be In- 

^*l 7hí*J?l0Clty OÍ **'* Therefor*, an axi. .y,t,m 
fixed to the body wa. ueed e. e reference point. Since the axi. eye- 
Ijf1 *t th* c#nt#p ot gravity and term, to account tor 
tWi *hlit muat be Included In the equation, of motion thare U no 
advantage in choo.ing the nominal vehicle c.g. a. the center of the 
axle .yetem. There are, however, advantage, to having th* a-axi. 
lie along the vehicle centerline .tnce th* beak DSRV *hape l.*TTõ3v 
of revolution. Thle axial eymmetry provided by having on* axle of 
the ayetem lie along the vehicle center Une greatly reducer the number 
of croee coupling coefficient, required to de. rib« the force* end 
moment, on the body. The po.ltlve direction of thle axle to forward 
•° that positiv« vehicle velocities are associated with vehicle forward 

. Wl*h i1** »trough the centerline of the tranafer 
skirt (280.8 inch*, aft of the forward perpendicular) the number of 
croee coupling coefficient# are reduced end the direct reference to 
the centerline of the transfer aklrt •impilfire the description of 
relation.hips between transfer skirt and the hatch during mating 
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$***•<#* *ê»9*itt0i stitk ã*»0m0 

m*f>»**9t*. ti» pw*iii*«r« 4if««iU« «f IM« mmlm U éí'»*«*»4 <**»* 
»Uli »im40t4 * (.««• 4r«v«mlc* TM y—*« 

U fc iími «»*-«1« t • —I« »•**» **€fl*« »llà |^*l*l»* éír*e*i*5t* 
dw *!éfWr4 £» jif'crt** • TM* 
a, f, § tKPéf IrftflM U to *• Mto«l*í **l* 
X, f, X. (àraafX tlM air4«r*4 ratoUaaa ♦. t, **ê ♦ •towl là* 
• # y mhI a aaia, Tl» eHgtft »I to*nt*l **»• tfMMNR la la«4»*4 at 
tito ir If U ,-4 ÍM *'H»< ;* *♦ » •< «K* atan al a t i.m|wnatl— 
aaé ia# X Y y4a*>* ta parailal to tí» «alar a«rf»«a *t*á th* vaMcla 
aata te ttet X t pito«* 

TI» Calar aaiflaa ara tormaf te «1» tetía*taf marw»#?. «ità 
ti» tero «trata»» taitiaUr «otee 14a««, a drat »»altea. (£#?, la 
f»rterm#4 flatef ti» ayatam I«,, f|t 2). W««t a rotelte*, 
te |»»t^»m«4 atora« «ha f, «ate t««<4lt*f te ti» «tratam (a, f,, a^, 
A «Mr4 rotolte«, («#. ato»» th» ■ «ata fcftftfa lt» ttoéf arta 
«ratam, la, », a| to ti» filial pmHtem. TI» t»a«atoft»aite« matrt« 
ratalte« tha (X, T, II tf«tam te ti» (a. », «I afatam teraafli Uto 
«éoaa #r4«ra4 rwtatte«« t* ti»« 

t 

«aaftoa# caafata# ate# 

• te# *»«4<o*#.c*af ««a* ate* allí#•te#«*###«»«# ate#«oat 

ate#eoa#«aaa»ala»ate# a te# <aa# • tito* a te# coa« coa# «oa^Jljl. 

t» ramate# lo rata>a ti» Colar aoft* tat»# to ti» roll, ptiefc a»# »a* 
rat**, I#,«.r| r««»*c1i*at», Tt» »«tattea I* 
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Sm4r uJmtftíJ^ ÎÎIgîîctSf tk^lV f th* T9*1*** «•««•r Ia a* 

í^1; ''‘h ”%** *® »*» rí°Xr ï! Ve*V*,km ^**• 

ilmV t to«» * *» » mT, 

“ ’ ^ • »*) • 1,(,, . Jl . jy w , J, 

T«. H—. « .,. ,ttmi 

D~*~ •*•*' »I 

•<*»i î»«h Om tnom«ni« «»»d «^4v4|*. «,«2^.* of ito ^4 
•«in« jk»Im. sine« (lw *Wvi th* 

«» «IMtk«« ton.Ui, 0f «id* »# 

•tt*» là* rotaiianAl vo<u>r ««r«I91 th* **'* ^•««m 
'* ^ r*#aJu oi ‘W. «^r*ii^{íj OÍ ,h* ^ 

‘•f * fl* * H Hr * m I v;#rii. ^ 

t,4 Ml# - 1,»^ * m rvf.Vi.^.„ 

i sm;. 

¡¡SS* ^«XT!«m.V â’tï'Ulr }. *» «4* of 
^•WcU c«***» o# ir,y!l>. TjltL™ •W* "* *« «W«t ih« 
4i«irIb«Uoo «botri «K1« bod, Mt. # ,# * *rmm«ry in ««,tM 

b*«« drW4 fronT^ , Tf‘’* ^ ‘^«»* 

on IImi rlMeiVd*Jh*3.^11!* (tel1 mom*^*»* y ^n,, «M M 
* lf#* •''*•*« o^r«„on.^; «toto*to. . 
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>«••4 In (H* 4*««*,fof p,ní,tê »UTl..*/ ^ v*^T *** *»•««* 

TM«* 4» net **rr^rfo* notmí* ÍÜ?!!?!4 
th#r*for* íf# ^ inci^^i» ih* **«*•“«»< ••» 

------- 'XZ. 
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?0kial* Sfmamittê *0to«iatêd uitk Submarimê ##•#»* 

«Ml Un {T,, T,, *m4 Tf) tftttfn UJ»k*( Ftf. i, 

Tfc* v«rUt>!« btiiMi tAftJu ifc, T) «ra h*r4 î4mOu «ach »«h * 
cecity el SO© ¡pM«e4* «I •«**as«r, Waur cu b* lraul«rr*4 to u4 
frana ib* ••* fr««n *Hh*r «r b®*fc luk* «t • rat* al 2 |aüon« p»r 

THa m*re«ry trim «yatam i# a a*< «f !•« lanJi* (4,S| €«•- 
talalA* 22S pttmmdt at marcary an© iS pouáa al «U. A p¿mpln§ raía 
of i galion» |Hr miopía proai4*a a nai »•IgM cbufa •( S.l p««a4a 
par *a««*4 bataaan Itw tw> unk». Wlto O»* liai tyatam raaarvolr 
faU i£t mu Imam) a ¿S 4*(ra* trim a* «i* i» aitalubla. 

u mi mm* nmvom 
fl 
rj ass« Mit tarn 
ta tOMMs ftm tau 
»* an nua ia#« 
H K3»a*#« * m 
ff an vatwaf «auatt ! 

•On mu tam 

#or»*to WHMft« tottan U&m 
an vmmi taaait Va*K 

Fif, 2. DSR V Trim *a4 Liai Oyalam Tanka 

Tba liai ayafam cwialata of ihr*a apharlcal luha aacb «Uh a 
capacity of 2TOO poan4a of marcary, Tha t«o ilat luha Cl, I) ar* 
toe at *4 2,2 faat aWa* ih* vatiicl* c »Martina an4 ara a aparata© try 
4,4 faat, Th* raaarvolr (I) la locata© ) faat baio» tha caMarii#»*, 
Th* configuration of tha ilat ayatam piping an© »at»tag la ah©«® ta 
Fig. 2, It ia not*4 that tran*far can b* *ffact#4 batoaan Uat tanka, 
bMoaaa aach ilat tank and raaanrolr and hataraan tha taro Uat tanka 
tl*4 to gat K* r and IK# raaar *ir, Itamptng rata can ba »arlad bat»a#n 

lilt 



Schrtibêr, Bêntkautky and Ktrr 

Flf, I. LUI Sy«t#m Schematic 

O mná ¿* GPU (41,1 p«r «»for.4 ««l cImm««}. Darin« rail 

,h# f*ï* U <on,roU#4 Prop«riten*Jlr. tu *11 o«K*r 
me«*t of ©p#niton, rnt* U a«*«. 

Variai Un of BC U ar remplit had By tranaUrr)»« from Uw 
raaorvoir to iBa two Hat i*Aka, Boll damping U «ccamsltahad W 
iranaUrring hoionn liai lank* fe, (ut angla. )•*• than 11. 4 d*Vr... , 
*»d botwoon raaaraolr and il» appropriai# tiai lank for Hat aagia* 
graaiar than 11,4 dagraat. ^ 

«• * nal waight in tank n . poand« 

êm m rat« 0f changa of o.ighi in tank n . pound*/aacond 

• comm andad rat* of chango 

WS * ft** ******* ^ i*1^ * far vortical Buoyancy, noutra! 
trim and maalmum $t - DSStV m aurfaca 

D * Dapth, fact 

Baaolina oparation U rap rao anted By 100 pound# piue a car. 

inîtf !V 4»TfJ^i*Ch f# !h* Y*rUbl* pound* in 
each Hat tank, IdOd pound# In tha Hat ayttam raaarvolr, and a^ual 
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Vêki9t* Ü^namioê Attaaiataá ttíth Submari 

4l«irlbatton ol m«rcury bmtmmn th» two Ur Ir un*«. Hol« thkt *U 
more«ry o«t|ht* !Ut*d r*pr««»nt th» dllf»r»nc* Ut ««Ight 

marcary *nd «a *o!um» of oll. 

Tsbl« I •tmun*rU»» Ut* lorotlon of oU took« «itd th« v*U* of 
“«g • 

TABLE t 

Mytieta S»*r*m»t«r§ of B*)U«t uñó Trim »ylw 

Tank ■ lit) y (ft) a (ft) 
w* 

(Initia) weight) 
*«•* 

(capacity) 

1 

2 

) 

4 

5 

4 

ï 

.J.JT 

•1.1? 

-1.1? 

lt.9 

•IS, 4 

U.?5 

*12, ) 

0 

2.21 

• 2* 21 

0 

0 

0 

0 

1.01 

-2.21 

•2.2) 

•2. «4 

-2.50 

«2.46 

• 2.24 

¿404 

9*. 

9). 

210 

¿10 

¿00 

¿00 

¿590 

¿590 

¿590 

410 

4¿0 

500 

500 

W, • 140. J69 pound» 

• 0,1115 f»«t 

Th» «ff»et« of varUtlon* ln th» «nrlght of «aur In tha vartahf» 
Mia*t unh o« tg hav» t>»»n ln«lu4»d In th« haalc v«htcl* »quatlon* 
and th« variation« computed in thl» »»ctlon ar» du» onlv to vari¬ 
ation» In in» Hat and trim ay»t»ma, 

Chan«*« In depth effect both the den«lty of the «ater and th» 
compressibility of th» hull. The net affect on buoyancy, «Min« tem. 
per ature« and «allnlile« corre«p»ndln« to *ob-t repica) «ater« cor* 
respond« to a «radUnt of 0,1 pound« per foot of depth. Under normal 
condition* th. required ballaet ch^n*» I* dlvldd »ouaily b«t*»*n th* 
two variable beiiaat tank«, TIum, for n.utral condltinn* 

w*» W^« 0,05D 

W, * *0.010 

All operation* ar« written with t • 0 eorr««pondtn| to noutral 



mmm 

Sekrëib»r, têitkautkç «má Kerr 

bwyutCY *1 lb* iAllUi o^wratln« 4«piJi of Jhe problem. 

Thofl 

* Ws • Ç w, 41 a* 1.1,1,4,1 
0 

w. • * 0.0)0 41 a . 6.7 

^Wm mhi€h U “**4 ^ Ul# V#W<1* mairte u 

’»«i •****, Wto*%* 

Location of the center of gravity t* given by 

* • **** * ?Bl*f 

% ♦¿w., », 

LtEt *je. 

i* • 
s# 

tl 

2m». 
i* I o • » ,1,1,4,1 
'll 

Pynamtc Farcea 

body ÍOrC** J*rU# b#c^#* «i motion of th* 
# •?*** ï* **,#r *r* 4eílne4 In term* of hydr- 

ISîZi.nïIZ.7iÍ lfM n‘*' TK# hr^odynem.c force end mLen, 
chífle 12. 2 , ,hl* "P0'* *r* ^ llw •I»n4ar4 non-4lmen*Iona 
2ÎÏÏIÏÏS «»«4 « m0„ ,to4lee, it ha. been found that a »et of 
« *a«teaal coefficient, provide, a much eaaler iwmemlalur# Th 

«ter.^f T™™CT1Ui"*î£î ITl“**4 * «^«cripted cap»,. 

riauJ«. fL °P ^ **U *h,ch moment 
. tL, M and N for moment coefflciente deacrlblna the m«. 

mente about the a. y, and , body a... re.pectlvely) 

The .ub.crip,» vary in number and form and denote the 

Ib,fi*n a%ïî*ïm*, 'hM ,h# Co*fí,c,,,nl mu a, be multiplied by to 
obtain a force or moment on the body. For enmata * ^ 1. 
dimenelonol aalai drag coefficient eine* «hen multiplied by' u juf 
the equare of the aaUl velocity, «, it reeulte In an aalaj force 
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Vtkiöl* 9¡t*am(ú* A»*coiût4d üit* Submarin* $*•<>*• 

ntt i»h. mn 

X^uiol • r.«,- SunU«rty. U ih« pUchln« mom.m 
u.;1 4 th* no rin* l velocity. *. Th. u.. oí .b.olut. *»»— 
co.fflci.nU provide for «h* propr *l«n. on th. orc. .nd mwU. 
Mtf toMMM of most el tí» *»*r .ymrn.t ry oí J h« DSR V 
U«. the .brood, th. co«ííIdent. *r* ind.p.nd.nt of th. direction of 
vorloit. velocity compon.^.. Th. direction of th. J^oclty 

erial l* dependent only on th* direction of U» »««« 
r«|.rdle.. oí «h*lher th. vehlcl. i. r>tn* foro.rd (a > 0) or b.ck* 
..Ärd (a < 01. Since the .t«n of 2,w I» nefotíve tbo D^mol tore 
do. to norm.1 velocity 1. ei*.y U. th. oppo.lte direction oith. 
rvorm.l velocity, A brief d..crlptlon of ¡rir.t 
r.pre.entâtlon of hydrodynamic force.ontb. toáf teU^ee^Tlr.t 
con.id.r the force, on the Ml.ymm.tric b.re body of M DSRV end 
then edd force. r*.alUn* from ..ymmetr e., *ach ** lhV""' 
• hirt end .plitt.r pUte. Th. r.pr...nutlon of JJJ* 
»nd «Id dr.« force, on .n m t. y mm .tr l cb. r . body! • r . i *1 i v. y 
«•U known .nd c.n be obtained from eleoder body R*J* ,2, 
other pot.ntlU flow enaly.l., Reí, J. or te.t dot. .nd i. of th. form 

Y#; ♦ Y»r ♦ YfW r|ai ♦ Y^e|a| 

♦ Z«q ♦ qlttl * 

The., lift, .ccel.r.tinf .nd .*1.1 dr.* fore, ere normally 
u*.d to .tmvii.l. the dyn.mlc. of #ttb*,**^|* “Tuol .n«l..-oí. 

SSSUS.* Vi .zX 7tL-w. 
i»rmal velocity, », fne* to 0 .. a I * ^ ^ force Thle 
«orme! to th. flow e*p.ri.«ce. . .»tnlflc«nt normiltor««^™ 
normal force 1. da. primarily to flow 
Reynold* number effect, proportional to th*‘"f"?*1 * 
w*. Wind tunn.l and water tunnel teet* th* !l4â0neblv 

v;: t. " Ä.:hv.T wää 1 
norm,! .SSo., „o. r.d .od Z^« U .h. •'.’«l ÏSSMIÎIT 
.n«l* of etteck carve. PltcWn* (y.wln*) of he »••••> «“ ‘ÏîrlîtlOB 
veri*tion in normal velocity along lhe V....1 *rs<i th.r.for. ^ v,r 
in thi. normal drag over the body. U remain, then to develop a 
method to account for the dlatrlbaÜon of thle loctí J«™» 
C.u.ed by pitching and yawing. The aat of a .trip theory 
provld.. ■>». ,h. no:m.. !oro.J».JhO ^ ^ 

■' f.T^i‘1?,t Aoffiu liOt L, la Ih. "c»l norm^ ..loci«» "«1 
»h.r. X i. th. dl.Uno. b..-.- 
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Sohr*ib*r, Bentkovtky and Kerr 

the point In q««*tion and the center of the axle (- forward). Thl* 
integral can be evaluated at each etep In the integration of a elmula- 
tion when the dUtributton oí le known but it provee both 
curnberaome and time conaumlng. On the other hand, for a nearly 
cylindrical body auch aa a mtealle or the DSRV, teat data haa ahown 
that a fair representation of both the force and moment are obtained 
when a conatant value ie uaed for Z^,»( from the noae of the vehicle 
to the forward edge of the ahroud, a diatance L, from the noae. 
Thla then allows the value Z'»m to be removed from the Integral 
and aete the equality Z«m * Replacing the local normal 
velocity w by Its equivalent w ♦ qX, the integration 
^ »i«it Jboéf (w * qX). I (w-qX) j dX «till poses tome problems because 
of the absolute value signs « To accommodate these two Integrals 
are formed depending whether the center of rotation, the point where 
w ■ 0, la on or off of the body, Expressing the ratio of the distance 
the center of the axis ayatem la off of the noae, Lt, and the length 
L, aa K, ■ Lt/L, the center of rotation is forward of the noae when 
"(f11-,*,* K# *nd oi th€ ‘«xfy .wfh*" K* - » the value 
w I w j can be replaced by ( |w|/w)(wT■( |w|/w)(w*4 2wxq + x2^) 
and the integration 

rV*-i 

:-«3 ' w* |w' j dx ■ Z 
i i r»•»-«•» 

•tat V-J dx 

resulta In three terms 

where 

ClewI « ! f ♦ Cswi~Jq? 

t 
« L¡ Z' 

Ct • L,S(I - 2K,)ZUrt 

C, « L,4/4 (i - 3K, 4 IK.'lZ.f«, 

When the center of rotation la on the body Kt2 w/qL. fc K, - 1 the 
integral must be divided Into two parts to account for the sign change 
in w'lw'l at the center of rotation and 

dX * * w**dX-£ w^dxj 

where the jq|/q 1« used to denote the direction of force since the 
local normal velocity forward of the center of rotation depends only 
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Vehicle Dynamics Associated with Submarine Rescue 

on q. This when expanded to 

-w/q 
- ZW|„| -1-3-1- F f (w2 + 2qxw + (qx)2) dX - C (w2 + Zqxw + (qx)2) dJ^ 

q L J-Li J-w/q J 

and integrated yields a four term expression for the normal drag 
with the center of rotation on the body 

c4*q/hl wVq + C5<(q/|q| w2 + C6ww|q| + Cy^q|q| 

where 

C4W= 2L,/3 Z'W|W| 

C5w= lJ (i - 2K)Z^, 

C6„= L* [(1 - K,)2 +K2]Z' 

C7*= L.4/3[U -K.+KfHl - 2K,)] Z; 

“wlwl 

MtMl 

In a similar manner the lateral drag terms for the sway or V 
equation are developed and result in Clvv|v|+ C^r |v| + CSv,v/|v| r2 
for the center of rotation off of the body v/-rL,> K, or v/-rL, < K,-l 
and C4vr/|r |v3/r + Cgyr/lrJ V2 - C«jv|r| +C7vr| r I for the center of 
rotation on the body K, ä vZ-rL, — K, - 1 with 

C|¥ = L, Yy|W| 

CjyS L,5(2K, - i)y; vlvl 

C3y = L< /3(1 - 3K. + 3K. )Y;m 

C4* - 2L(/3 Yylyl 

C9y = L2 (2K. - 1)YJm 

C6y=i;[(l -K#)*+KÎ]yJm 

* L," /3(1 - K, + KÍ )(2K, - 1 ) Yiw, 

This then completes the simulation of forces on the axlsymmetrlc 
bare body of the DSRV, This representation has been developed 
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Schreiber, Bentkowaky and Kerr 

keeping in mind the fact that it wm k» 
and/or analog computer and several °n a di«iial 
made to allow for mechanization of thp^1^11® assumPtions were 

—» type8 „f e,Pr:::r 
y — Mwu. e 

additional coefficients ^ the bld^bel ,nd sPlitter Plate add 
Provide. A complete set of thesí term^H ^^rles tLy 
developed, their numerical valued»Ue t0 symmetries were 

Importance established, wlti the redulíT .^'u^ their relative 
m the simulation as an end goII hf number of terms 
terms of the form Xpwqw, xrvrv X J $et%TmAned that additional 
Yqpqp. Yv,W|vjw , zJp2 7 nr 7 r& 4 * XrDrp, Ypp, YDwpw, 

DSRV d6 rqUÍred f0r adeíate’ simllktío^of theí ' Z|J,ul^ul 
DSRV during the hovering maneuvers. h dynamics of the 

Jprop, thTrtltttlltlTtl/,fShf^ ^hroud, propeller, 
Fdist * complete the force equations. dUrin« mating. 

abtei °f,7oment aquatilllrVaflSrfor moltedftV,r determinati°n of 
nl Hned/irrm ^0061 tests conductedfat NSRnr<’tie/0^fficients were 
nautics (Ref. 5), and theoretical valull ™ (Ref* 4) and Hydro- 
maining coefficients. A complete set % computed for the re- 
the DSRV Model for Analya^ Hf I °f].e’“t,loM motion used for 

values of the hydrodynamL coelflcleití ,¾^.8 Wl,h numerlcal 

m[u t q* . rv - Vs’ + r1) t y6(pq . + Zf,(pr + ÿj 

= h X,rtw r Xrvrv f XUM u|u| t x„r! t X a2 t x 
qqM T Ar 

- (W0 +) VVt| - A) sin e + XBh . -f y , v 
^ -"-shroud r Xprop + xthr + X, 

rprP 

dist 

PW ‘ yGÍr2 + p2) + zG<qr - p) + Xg(qp + r) j 

= Y,WYt4+V+YrMr|u|+YpwPw+Yqpqp 

+ Yvlwiv|w| + Yplul p|u| +Yvlu| v!uj 4 
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Vehicle Dynamics Associated with Submarine Rescue 

mmm 

+ [C,vv|v| +C2vr|v| +C3v-Mr2]** 

+ 1-C4vf7f T + C5v|7rv2 + C6»v I r I + ^7vr I r N* 

+ (W0 + ^ Wt. - A)cos 0 sin * + Yshroud + Yprop + Ythr + Ydist 

♦ V V 
Terms are cancelled when —s— > K. or —-r~ < K„ - 1 

-rL. * -rL* ® 

♦♦ V 
Terms are cancelled when Ks ^ ~p£~ — Ks - 1 

Clv = 1 pL8 Yvlv, 

C2v = ¿ PLS3 (2K, - 1 )YÿIV| 

C3v = 4pl.4/3(1 - 3KS + 3Ks2)YJIv1 

c4v = 7 P ■^y5, Yvivi 

c5v = ipL,2(2K8 - i)Y!,lv, 

CSw = ^pL,[(l - k/ +K8]Yy'|v| 

C7v = i pLs4 /3(1 - Ks + Kg )(2K8 - 1 ) Yylv| 

Heave: 

• 2 2 • * i 
m[ w + pv - qu - zG(p + q ) + xG (rp - q) + yG(rq + p)J 

= Z^w + Zpq + Zppp2 + Zpvpv + Zprpr + Zyvv2 + Zryrv + Zfrr2 

+ ZU|U,u|u| +Zw|u|w|u| +Zq|u|q|u| 

+ (W0 + ^ W(j - A) cos 0 cos (() + 
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Schreiber, Bentkoueky and Kerr 

• • 
+ [C|wwJw| + C^qiw) + C^ipq J 

+ l CwIqT T + ^TqT^ + 

+ ^üiroud + ^prep + Z-iht + 

Terms are cancelled when w/qL, > Kf or w/qL, < Kt - 1 

I 

Terms are cancelled when Kf ä w/qL, & K, - i 

C|w = 3 PL. Z wlwl 

C?ws ■j pL^(1 - 2K#)z;M 

Cîw'TP1-.4/^1 • 3K,MK,f)Z^ 

C4w=^p2L,/3 Zi., 

c5»=7pL! • 2K.>z:... 

c«w=-|pl.5[o - k,)? +k.2]z;w 

CTw=7pL,4/3(1 - K. ♦Kfm - 2K.)Z; 

Yaw: 

I2r + (ly - l,)qp + m[ xqÍv + ru - pv) - yo(ú + qw - rv)j 

= Nfr + NyV + Np^pq + NU|¥| |u|v + Nrtl»i r|u| + Nppwp 

+ Nyqvq + N^uip ju| +NMv|w¡v 

+ ( W0xe + ^ Wj. xtj ) cos 0 sin $ ♦ W0y(jsln 0 

+ ^shroudxshrd ^ ^thr + ^prop+ Nsist 

+ [ C|r r I r I +C2rj^|-vZ +C4,|r|v]* 
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C* . (I - 

c,, * * SL.Vlí ♦ il * K*l*1 y;, 

-KÍíiYu, 

Ch • I #L* /4(K*• (I . K,î*î 

»oil: 

• ^ 
*,P ♦ H, - Ijlq*- * mj y#<* * pv - qui - (v * ru . p«)) 

• V * K,; ♦ K^qr ♦ K.^vj.l ♦ KV» ♦ K^vq * 

♦ K^v|a| * K„ v|y| 

♦ W.y# co. 4 co. « . *l(lco. 8 .In « 

♦ 
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Sâkr»iètr, têntkêvtkf mmé i*rr 

FUcK. 

- Ijipr * î»| «ffw • t.- • rv) - * pv . qu)} 

• * fcVpr 

* * K." * «„r* - |W#N ♦ T W„ *,,» lu t 

. *.,«»*»<*• • «• ♦ * ******* ♦ 

♦ {<^,1»!^ ♦CSt»i*f ♦ <^}** 

#T*rm* st« c*ae*U*d »h«« */qLt > Kf «r */%L« < K, • I 

**T*rm* •;• caAc«U*4 *h«n Kt fe w/qL, t K, > I 

C,,♦ (ï * K«í4) Z4m 

• 7 Pk-l /¿{K* ♦ (I * K*»*} ZU»< 

* * "f Z^,i 

C^-^pí/JLÍI-K,* Ml * KJ*)ZU* 

c^-^pZ/ilJik,1 mi - 

*(* - î**t»i 

- -J pL? /4{ - K,4 ♦ (I - K*}*] ZU. 
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iekrtibêr, «<uf *#rr 

TAULE 2 (Coal*«».) 

C-~*tP'C t«ist 

XU 

Y* 

Y* , 
* (PN( 

rU 

K 

Km 

MVm 

Km 
*• . 

xi, 

Xîr 

y; 

v; 

Ym 

z4 

Hor. Dtm#ft*î«nAî 
-{- 
-1.2 X IO’1 

I.t X 10** 

*1.0 X I0’* 

• i.6 X »0* 

•.T XIO*1 

2.1 X I0*4 

1.0 X »0** 

• 1.0 XIO* 

*1.7 XIO* 

*1.1 XIO* 

S. 12 X 10 * 

*».l X 10 4 

2.1 X 10* 

-2.» XIO* 

-1.0 X10 * 
_ * I 

4.9« X 10 

*1.4 XIO'* 

-1.1 XIO* 

-1.14 X 10* 

1.4 XIO* 

I. 14 X 10'* 

1.1 XIO* 

-1.1 XIO* 

r*ctor 

»/IL* • 

l.«> X 10* 

P/IL% • 

1.20 X 10* 

*>/2L*. 

S.92 X 10* 

DiinfiMloRAl 

-1.44 X 10 

1.72X IO* 

*1.40 X IO* 

•4.12 X 10* 

1.04 X 10* 

2.44 X IO* 

1.40 X 10* 

-1.40 X 10* 

*4.44 X 10* 

-1.72 X10* 

4.12X 10* 

*4.4 X 10* 

2.?4X 10* 

-1.14X 10* 

-1.4 X 10* 

5.9SX »O* 

-1.1 X 10* 

-7.7 X 10* 

*7.91X 10* 

8.1 XIO* 

7.91X 10* 

7.7 X 10* 

-7.7 X 10* 
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fihiaU Synmmiai Aêiooiafé with Sub+arin* t 

TABLE 2 (Coat*4«) 
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Soknlbêr, Bimtkewky and *#rr 

TABLE i (Corn'd.) 
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SHROUD IltNC ro^CEjj 

Ui «nd I/ThTmf,\!hf[>^ * f f * f me¥4y* *‘«« í««*d «i th« 
n* a Vw by imir «trut* «mc« «õ® kB.ri 

* ,¾ <0If!lÂ®d ®» th* «hroud rtn« *r« obt«ln«d from 
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• r* then looked up on Flg«, 4 end 5 end velue, of lift, L,» end dreg. 
D,, on the .hroud ere ceiculeted from 

L, • P /iS^V* end D, • P/2S,C0V* 

with 

S, » b,C4 

.. * » » * 1 V 

b, * 8 feet 

C,■ 1.83 feet 

The lift end dreg on the .hroud are then re.olved into force, on the 
throud T« and tren.formed into the body axi. »y.tem, * 
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TH« moment» on the *h*oud are the product of the »hroud force and 
the diaiance of the a hroud center from the center of the axta ayatem 
aa ahown In the moment equation*. 

THRUSTER rORCCS 

The prop da Inn ayatem of the DSRV conalata of a alnglc con- 
venttonal aerea propeller for anial thruat and four ducted aerea 
propeller* arranged In forward and aft pair* for lateral and normal 
thruat. Thia ayatem provide* the vehicle with five degree» of 
maneuvering freedom (heave, aaay, »urge, pitch and yaa| and pro¬ 
vide* force* and moment* auf fielen! to meet hovering requirements 
in currents of the order of one knot. The control of the sixth degree 
of freedom, roll, la provided by the trim and litt ayatem, A com¬ 
plete treatment of the development of the maneuvering ayatem la 
contained In Ref, ?, The following treatment will prêtent the data 
used in the simulation with a little explanation of it* development. 

Main Pr »peller 

The main propeller i* a 6-foot diameter, wake adapted, 
three-bladed propeller with a blade area ratio of 0.24 and a maxi¬ 
mum apeed of 1.64 revolutions per second. 

For estimate» of the vehicle maneuvering performance the 
propeller thruat and torque characteristic» are required for ahead 
and astern motion of the vehicle and for positive a* well a# negative 
propeller rpm. "Behlnd-the- chip* teste of the DSRV propeller were 
performed for all four operating modes at the Naval Ship Research 
and Development Center (Ref. 8), 

The curve* of the tLrust and torque coefficients. Fig. 6, are 
typical for ahead and astern operation of a propeller and can be 
expressed In the form 

K » a ♦ bj ♦ cJ* 
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The coefficient* a. b. c hive been evaluated eeparately for each 
qundrant of the propeller curvee, and the reault.ng thruet and torque 
coefficient* are used as an expression of the steady and transient 
characteristics of the propeller force* and moments. During 
maneuvering the propeller may also experience velocities normal to 
its axis. The resulting effect on the propeller thrust In the axial 
direction and torque about the roll axis have been estimated and the 
form of the coefficient* can be rewritten Including this effect as 
follows: 

K - a ♦ bf,, ♦ cjJ ♦ d(J* ♦ jJ )n 

where 

u 
nïï 
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J - v - ir 
v nd 

•j =Z_lil 
w nd 

u,v,w = x,y,z components of vehicle velocity 

r,q = components of vehicle angular velocity relative to 
yaw and pitch axis 

i = distance of propeller from coordinate system origin 

The coefficients of the y and z components of the propeller 
force and the corresponding moment coefficients can be similarly 
estimated and are proportional to Jv and J* respectively. For the 
computations of the vehicle responses, all six force and moment 
components have been considered. The resulting propeller force 
and moment equations are: 

Xprop = 755 n |n I - 58 un - 3.8 uZ + 26 n (vp2 + wp) i/Z 

= - 365 n2 - 172 un - 45 u2 + 26 n(vp + wp)l/2 

= 755 nZ + 60 un + 22 n2 + 26n(vpZ + wp)l/2 

= - 365 n2 - 13 un + 22 n2 + 26 n(v2 + w2) 
P P 

^prop = - 30 nvp 

= -12 nvp 

2prop = - 30 wp 

= -12 nwp 

; u > 0; ->■ -0.21 

;u>0,^S-0.21 

; u < 0, n 2: 0 

; u < 0, n < 0 

; n 2 0 

¡ n < 0 

J n 2 0 

; n < 0 

prop 530 n j n J - 6.5 un - 4.05 u2 + 22n(vp + wj)'/2 + 131 ñ ; 

u 2 0, ii2 -0.21 

= - 468 n - 155 un - 38 u + 22(vp + wp)l/2 + 131 ñ ; 

u 2 0, £ < -0.21 
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= 530 n + 80 un + 35. 2 ue + 22(vp + Wp)l/Z + 131 n ; 

u < 0, n 0 

= - 468 n2 - 8 un + 15. 2 u2 + 22(vZ + wZ)l/Z + 131 n ¡ 

Mprop= - 765 nwp 

= - 306 nWp 

Nprop= 765 nvP 

= 306 nvn 

u < 0 , n < 0 

; n > 0 

; n < 0 

; n > 0 

: n < 0 

where 

Vp = v-25.5r 

wp = w + 25. 5 q 

Ducted Thrusters 

There are two pairs of ducted thrusters used for maneuvering 
in the pitch and yaw planes, as shown in Fig. 2. The four-bladed 
propellers are 18 inches in diameter and have a maximum speed of 
9.8 revolutions per second and produce side force through a combi¬ 
nation of impeller thrust and a change in the pressure distribution on 
the hull (Fig. 7 and Ref. 7). The thrust due to variation in pressure 
distribution is very dependent on forward speed and the total thrust 
coefficient for the steady state ñ = 0 condition was measured at 
NSRDC as a function of forward speed (Ref. 9). Force coefficients 
derived from this test are shown in Figs. 5 and 6 as a function of 
u/|n| where n is the propeller RPS. The steady state force is 

obtained from the relationships 

2 * 
Xfhr mf = nmfT3 

2 * 
^thr mo = nm<r4 

Ythr yf " nyf lnyf ' 1 

Ythrya =nyo!VT2 

$ÜJf 
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Vehicle Dynamics Associated with Submarine Rescue 

^thr mn= ^ force due to thruster mn 

Mflir mn moment due to thruster mn 

Nthr mn = Yaw moment due to thruster mn 

M = Direction In which force acts 

n = f for forward-thruster, a for aft-thruster 

with the force (T| » T2 » T3 , T4 ) and moment coefficients 
(M, , M2 , Mj , M4*) shown in Figs. 8 and 9. 

Fig. 8. Effect of Forward Speed on Duct Forces 
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When the propeller in the duct is accelerating, the thrust 
component due to the propeller is a function of the ratio of jet 
velocity, Vj, to propeller speed, n. The thrust coefficient for a 
propeller of this type was estimated from data taken from Ref. 10 
and fit with a second order curve resulting in 

Tpmn=: 10.63 nmn|nmn|- 5.04 Vjrnn|Vjmn| ; > o 
‘inn 

= 10.63 nmn|nmJ + 6.0 nmn|vimn| - 5.04 Vjmw|yjmn|j 

Vimn < 0 
mn 
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where the jet velocity Is obtained by Integration of the expression 

= 0.035 (Tpmn - 1.91 V,JVjmn|) 

The forces on the body due to pressure distribution changes are a 
function of the jet velocity alone and are expressed as 

Tbmf= 0.655 Vjmf|Vimt|(Tt* - 2.93) 

W°-655 V Jmf I \mf (T, - 2.93) 

The resulting forces and moments on the body are then expressed as 

Xthr mf= 0.655 Vjrof T3 

X,hrmo=0-655 Ví"fT4* 

Ythr yn = Tpyn + Tbyn 

^ Ihr in = Ypzn ^ ^"bin 

zf = 1.06^1¾Tpif + 1.31 Tbzf 
zf T |Q* T, T,0 

Mfhrza= 1.13 ^4Twa+1.31 ^-^Tbzo 

M, thr ; 

1 pza 
20 T 2 Teo 

l^thr yn = 0. 238 T^ + 0.73 nyn 

N,hr y, = 0.98 

^Shr ya 

$ * * 

JS/ijQ rp 31 I _ ■^Tpy, -.- , ^ ^ 
TyO Py T2" T2o 

= i.04 —^Tpya + 1.31 ■—3¾ T, 

bzf 

■20 V T20 
bya 

Nthr zn = " 0. 238 T|zn " 0. 73 njin 

* 
wil^ T10*, T20*, M|0*, M2o being the values of T, , Tz , M, and 
M2 lor 0 forward way (u = 0) 

1145 



Schreiber, Bentkoueky and Kerr 

III. SIMULATION OF DSRV/SUBMARINE INTERACTION FORCES 

The flrsM6/! are î,W0,f0Îma 0f DSRV/submarine Interaction forcea. 
Jatlon avatemTonrh^ of,,íorce P^duced when the shock mltl- 
The second °n ^ deCk and transmit8 a force to the DSRV. 

by the bottomTnd ^ H® ^U8ed by Changes ln the fi^d cuased 
action forceT. n aubmarine and ^ be called flow Inter- 

SHOCK MITIGATION SYSTEM 

th» t Ti6 8h,°,ck mltigatlon system Is primarily designed to orotect 
Aflerandíer Sklrt and ab80rb shocks in the event of obstacle collision 

transfer skrrfmav8be lt0 i^í ^ & rftractable base from which the * 
surface! ^ V b lowly lowered t° contact the hatch mating 

th» t T?e Sh,°1Ck ?ystem consists of a bumper ring concentric about 

eSerdC / 8 f (8ee,Flg- i0)- The rlng 18 attacked to eight struts 
Sulic oistro0n/ n1-/0 ^3 °n the °Uter hul1* Each 8trut has a hy- 
tl Piston/cylinder arrangement designed to attenuate Impacts 
as well as extend and retract upon command. ' 

A simplified model of the shock mitigation system is pre- 
conîrolSd PUrP?8es of simulating near normal impacts during the 
ontrolle«! docking event. Figure 11 illustrates the DSRV with four 

vertical legs extending down from the four hardpoints on the outer 

FULLY 
RETRACTED 

FULLY / 
EXTENDED-' 

.1=,-= = = , 

Fig. 10. Shock Mitigation System 
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hull. Each leg acts independently of the other three and is limited 
to axial deflections only. The force elements in each leg consist 
of a spring in series with either a damper or a constant force 
element depending on both deflection magnitude and rate. Other 
forces applied to the leg ends are due to lateral friction at the con¬ 
tact surface. The equations that follow, approximate the force 
effects on the vehicle due to near normal impact during docking. 
The approximation is good if the deviation of the transfer skirt 
mating flange plane from the plane of Impact at instant of contact 
is less than 10 degrees. Also, the vehicle velocity parallel to the 
Impact plane should be less than 0. 5 fps at time of contact. 

The resulting equations will give a disturbing force and 
moment expression, XD|ST, YD1ST, ZD|SP KDIST, M0IST, and N0)ST 
for application to the vehicle model equations of motion. 

Using the direction cosine matrix 

"cos+cosG cosiesin0sin$-sin4iC0s<|> sinv(jsin<t)+cosi|jsin0cos<() 

[ D] = sinocos© cosacos<j>+slm|jsin0sin4. sim|jsin0cos ^-cos^sln^ 

sin 0 cos03ln<t> cos0cos<t> - 
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[D]*' =[D]T 

The forces on the , th 
leg can be calculated: 

Subscript V refers to vehicle axis systems. 

Y ■ ivl 

= Xv + Xj 

= Yv +Y¡ 

z»i = zv 

Also, 

Xvj = u + q^i - rYj 

Yvj = y - pZ{ + rX¡ 

Z¥i = w + pYj - qX¡ 
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+ [D] 

If Z 

Á¡ = {K/C(Z¡ 

. 2 
F*i= -CA¡ 

if 

Zi - 

Ai = o 

Fsl = - K(z, - Ai) K(Z| 

Fgi = - li ,000 lbs 

Ai = Zi - 11,000/K } if 

Aj = dA¡/dt 

Fg| = - 11,000 lbs 

A| = Z| - 11,000/K ^ if 

Ai = dAi/dt 

In all cases. 

Ai = A, 
Jo 

dt 

. , »2 »2 1/2. 
F,! = ^F,i {Xj/(Xj + Y. ) } 
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i - A, ^ 0 

A|> 0 

Aj < 0.58 ft 

Aj < 0.5 ft/sec 

A|> 0 

A,2: 0.58 ft 

- A¡)< 11,000 lbs 

A,> 0 

A¡2 0.58 

- Aj) > 11,000 lbs 

Aj >0 

A| < 0.58 ft 

Aj > 0.5 ft/sec 
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Fyi = ^/{Yi/ix' + Y!2)'78} 

P-e^xl‘3* ^d, ^zi been calculated, they are transferred 
back into the vehicle frame of reference and summed: 

The physical and geometric properties of the system are shown below. 
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i,h Leg (ft) Y¡ (ft) ■Zi (it) 

1 

2 

3 

4 

2.8 

2.8 

-2.8 

-2.8 

2.8 

-2.8 

2.8 

-2,8 

8.2 

8.2 

8.2 

8.2 

K = 310,000 lba/ft 

C = 44,000 Iba-sec2/**2 

y. = 0.1 lbs/lb for wet rubber on steel 

TESTS TO MEASURE FLOW INTERACTION FORCES 

Because of the complex flow phenomena, tests were required 
to obtain measurements of the forces applied to the DSRV during the 
mating sequence with probable currents of 0 to 1.5 knots, wherein 
the flow forces are dependent on the approach attitude of the rescue 
vehicle, the orientation of the bottomed submarine, and the proximity 
of the two bodies. 

In order to obtain meaningful experimental data, the following 
test requirements had to be satisfied: 

(1) The tests had to be performed at full scale Reynolds 
number, and 

(2) The environmental conditions had to be known. 

Test Facility 

The operating characteristics of existing hydromechanic test 
facilities were investigated to determine the facility most suited 
to conduct the test program. Because of the stringent combination 
of test conditions, i. e., (1) test operating Reynolds number range of 
2 to 6 X 10 per foot, (2) rescue vehicle angles-of-attack up to 45°, 
and (3) varying proximity of two bodies in the test channel, it was 
determined that the test requirements extended beyond the operating 
characteristics of all hydromechanics laboratories. However, the 
National Aeronautics and Space Administration (Ames) 12-foot vari¬ 
able pressure low turbulence wind tunnel was capable of meeting 
all the test requirements. The Ames Research Center is located at 
the Moffett Field Naval Air Station at Mountain View, California. 
The DSRV test program was conducted at this facility, which operates 
at subsonic speeds up to approximately Mach 1.0. The facility was 
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NPA%rfedTbv.y the Ar^old«esea^h Organization under contract with 
NASA. The operating Reynolds number per foot versus Mach-num- 
ber range of the tunnel is presented in Fig. 12. With a 1 /30 scale 
model of the bottomed submarine, Reynolds numbers up to 6 X 106 
based on the model diameter could be achieved at a Mach number of 
0.2 This corresponded to the full-scale Reynolds number in a 
1.5 knot current. Compressibility effects at a Mach number of 0. 2 
are known to be insignificant. Because of the large size of the test 
ctennel and the available equipment and instrumentation this facility 
afforded a unique capability for the DSRV program. Y 

Fig. 12. Operating Characteristics of the Ames 12-Foot Pressure 
Wing Tunnel 

Test Section and Model Support System 

The test section is circular in cross section except for flat 
fairings. Figure 13 presents a schematic sketch of the general 
arrangement of the test section and the DSRV model support system. 
As Illustrated, the sting-type model support consists of a fixed strut 
mounted vertically in the wind tunnel to which is attached a movable 
body of revolution carrying the sting and, in turn, the DSRV model. 
The strut functions as a support and guide for the body of revolution 
which can be pitched in the vertical plane by means of motor-driven 
lead screws. The range of pitch angles is 10 to 20 degrees; however 



Vihitrl« Oyna,U. »M Sutoarin. 

pitch angle» oi 45 degree, were obtained u.ing a bent .ting. 

The 1/30,h »cale »nbmarln. model orUnteVbZ 
plane Installed to simulate the ocean ± ^ and ± 45 degree roll 
into and normal to the current a . DSRV model was set at 
positions. For these model along Its 
various attitudes when approaching photographs 

vertical1—“Ä which fu^ru Äv.^ 

Models 

The 1/30-scale model oi«»e bottomed^ubmarine,^.»«» I- 

Fie. 16, was constructed of poplar w • 8<2 feet. The model 
model was 1.07 feet and its over section in order to position the 
was constructed with a remo 1 1 d vertically along the centerline 
DSRV sting-support, which Is 1 tforward hatch„ The model was 
of the tunnel, over the are gaij i.n order to simulate 
also provided with a small and a larg gubinarlnes. The forward 
Permit (594) and.f^.P¿aCjL(a¿Alarge sails was as shown in Fig. 

hoX - foÄ iS aft hatch^was Considered. 

5. 
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AFT HATCH 

NOTE: THE MODEL SAIL ASSEMBLY 
COULD BE ROTATED ±?2.5 
AND 45 DEGREES ALL DIMENSIONS IN INCHES 

Fig. 16. 1/30 Scale Submarine Model 

The submarine model was mounted on a flat rectangular plate, 
1/2" X 40" X 45n, to distribute the load on the ground plane. The 
roll positions of the planes and sail were adjustable to simulate sub¬ 
marine roll angles of 0, ± 22.5, and 45 degrees. 

The DSRV model (1/30 scale), shown In Fig. 17, was con¬ 
structed principally of aluminum. The diameter of the model was 
3,3 Inches and its overall length, 19.73 inches corresponding to a 
full-scale length of 49.33 feet. The transfer bell extended 1.3 
inches below the baseline of the DSRV hull. 

Instrumentation 

The overall steady-state forces and moments acting on the 
DSRV model were measured by a strain-gauge balance mounted on 
the end of the supporting sting within the model. A type T-0.75 
(l.e., 3.4 inch diameter) six-component internal strain gauge was 
used for the test program. 

A seven-track FM tape recorder was used to record the 
balance outputs and to provide a time code in order to locate specific 
data for later analysis. Additionally, a switching network was pro- 
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m 
m 

Fig. 17. l/30-Scal'e Model of the DSRV 

vlded for each data input to provide direct data entry to an oscillo¬ 
graph as well as the conventional "Record onto tape/Play-back from 
tape to graph" and for quick-look at model oscillation frequencies 
where they occurred. 

Test Conditions 

The test program (Ref. 11) consisted of 258 runs, at Reynolds 
numbers up to 6.0 X 106 per foot, and the DSRV positioned at 6 or 
more locations (distances from the submarine model). The data 
were recorded for about live minutes for each set of test conditions. 

The vertical distance from the mating surface of the DSRV 
rescue bell to the mating surface (hatch) of the submarine, Z¿, was 
varied from 0 to at least 12 inches, which corresponds to 30 feet, or 
about one submarine diameter, in full scale. 

As shown in Fig. 13, an angle adapter was used to obtain 
different pitch angles , Grv, of the DSRV. For these test conditions , 
the angle of attach, arv» of the DSRV was the same as 0rv. Angle 
adapters of 0, 15, 30 and 45 degrees were used. When the sub¬ 
marine model was removed from the tunnel to obtain DSRV free 
stream conditions, the vehicle's angles of attack (pitch angles) 
were obtained by a combination of adapter arrangements and pitch 
of the strut mechanism. 
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REDUCTION AND PRESENTATION OF DATA 

The proximity effects are described by a time independent 
term and a time varying term in each of the six equations of motion. 
These components are functionally dependent on the proximity to the 
distressed submarine, Zd, the DSRV attitude angle, 0r¥j and the 
orientation of the distressed submarine relative to the current. By 
means of the tests conducted in the Ames facility, these effects 
were determined primarily for two orientations of the submarine to 

hi!t,Clrrencn1|iead;i0n ancí athwartships. The tests were conducted 
with the DSRV mating at both the forward and aft hatches with 
various attitude angles of the DSRV and roll angles of the distressed 
submarine. The DSRV yaw angle was zero for all test conditions. 

Time Independent Interaction Forces 

At the Ames facility the balance data were recorded by 
printing devices, punched onto paper tape by a Beckman 210 com¬ 
puter, and carried to the laboratory's computing center. The 
rf!u ^ steady-state force and moment coefficients were computed 
at the Ames center in the body-axis system. The force coefficients 
were non-dimenslonalized by the DSRV's maximum cross sectional 
area; the moment reference arm for moment coefficients was the 
maximum diameter of the DSRV. 

In order to determine the DSRV characteristics in free 
stream, the submarine model was removed from the tunnel, and 
the forces on the DSRV were determined through an angle of attack 
(pitch angles) range from - 12.5 to + 35.0 degrees. The resulting 
normal force, pitching moment, and axial force coefficients versus 
angle of attack are/shown in Fig. 18. These results are shown to 
correlate well with previous free stream tests conducted at Hydro- 
nanties, Inc. (Ref. 5). ' 

Interaction coefficients were determined by plotting the 
measured data and extrapolating the curves to the free stream con¬ 
ditions. 

The interaction coefficients are: 

^Y¡ ’ Cz> ^n¡) Force Coefficients ’ i ‘■i 

C2(, CM(* CN Moment Coefficients 

where 

cx¡ = C*<>„ + K TT* • 

Cl¡ = C!«. + K 
9rv - 9m 

15 , etc. 
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0 OC Notes AMES DATA 
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K 

Fig. 18. DSRV Free Stream Characteristics 

where and K are functions of the vertical distance between 
the bottom of the transfer bell and the hatch, Zá. 

8rv Is the pitch angle of the DSRV (In degrees). 6„ denotes 
the mean DSRV attitude angle (the angle to which the data Is refer¬ 
enced) In degrees and can be converted to disturbing forces and 
moments as follows: 

Xdis. dbs) = CX| ‘ PV£2 , etc. 

Ldlrt (ft-lbs) s CL| d^-j pVc , etc. 

It was determined early In the experimental program that the flow 
forces encountered during mating on the forward hatch with the 
Skipjack sail configuration wore more severe than those with the 
Permit saU geometry, and flow forces encountered during mating 
on the aft hatch are less severe than those encountered on the for- 
ward hatch. Hence, almost the entire test program was conducted 
with the Skipjack sail, and the data presented herein are repre¬ 
sentative of the most severe flow forces that the DSRV will experi¬ 
ence during mating with a downed submarine. 

1159 



Sohriiber, Bentkousky and Ktrr 

Wh n th" DSRV ^ approaching the dlatreased aubmarlna 
i ng it a centerline and headed Into the current, a auction force la 

applied to the DSRV when it la within a one aubmarine diameter of 
the batch, Fig. 19, becauae of the accelerated flow and the aaaocl- 
ated reduced pressure« between the DSRV and the hull. Thla auction 
force Inc reases aa the displacement between the bodies, Zj, la 

The maximum value of the suction force, F, decreased. _ 
a 1 knot current is 45.5 lbs. 
theory presented in Ref. 12. 

rp. , w . ' -»uctlon « - 
This result correlates well with the 

for 

Fig. 19. Time Independent Flow Interaction Forces -- DSRV Matins 
Parallel to Submarine Centerline 

In contrast, when the DSRV Is approaching the distressed 
submarine athwartshlps and headed Into the current, interaction 
forces are applied to the DSRV when It is within 2-1/2 aubmarine 
diameters (75 feet) of the hatch. Referring to the solid Cu-, * curve 
aÍ lt ls apparent that the maximum suction force Is also 
45. 5 lbs f for this orientation in a 1 knot currente 

Note: The subscript 0O denotes that the attitude angle of the DSRV 
is zero. 
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m 

Fig. 20. Time Independent Flow Interaction Forces -- DSRV Mating 
Normal to Submarine Centerline 

Although the DSRV was heading athwartships directly into the 
current for this series, it is shown in Fig. 20 that lateral forces 
were applied to the vehicle, i.e. , Cy., Cn,, and Q¡ were not equal 
to zero. This result is due to the fact that a cross flow results when 
the current is deflected off the sail and the DSRV is therefore not 
heading directly into the resultant flow. The magnitude of the side 
force, Fgjd, , in a 1 knot current is 300 lbs. 

Time Dependent Forces 

During the test program, the outputs of the six-component 
balance (i.e. , normal and lateral forward and aft gauges and the roll 
and axial-force channels) were recorded over a five minute interval. 
The long recording time was established to provide a high confidence 
level during analysis of the unsteady effects (Ref. 13). 

The information was digitized by data conversion and input to 
an IBM 7094 force and moment conversion program. The output of 
the 7094 program was then used as input for an existing LMSC Power- 
Spectral Density Computer Program. 
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Plots of typical power-spectral energy versus frequency In 
model scale are shown in Figs. 21 and 22 for the unsteady normal 
force and pitching moments acting on the DSRV. These conditions 
were for the DSRV mated (Zä = 0) athwartshlps on the forward hatch 
of a downed submarine with no roll. 

The full-scale natural pitch period of the DSRV can range 
from 41.5 to 72 seconds, corresponding to a BG value of 1 to 3 
Inches and a weight of 75,000 lbs. This Information shown in terms 
of model data for a 1 knot current In Fig. 22 Indicates that there Is 
no significant concentration of energy near the DSRV natural fre¬ 
quency; therefore, motion excitation at resonant conditions will not 
be significant. 

The standard deviation of forces and moments In model scale 
were determined as the square root of the spectral energy, which 
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Fifi. 22. Pitching Moment Power Spectral Denalty vs. Frequency 
(Model Scale Values Shown) 

was obtained from the Integrated power density ^«f^Valf-^aie 

«Vt^TÂ ÏZit ïZÏÏS *' f5.-scal. magnitud, .t the 

ÄÄÄXis wUhCthersaU rolled 22.5 degrees 



. mm 
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Schreiber, Bentkowsky and Kerr 

Into a 1 knot current and mating on the forward hatch, was 690 lbs 
well within the thruster forces available. Furthermore, during 
mating, the operational procedure will be to head the DSRV, within 
practical limits, into the actual flow (the resultant of the current and 
the cross-flow due to deflected flow off the sail). This operation 
will result in a reduction to the side force to a much lower force 
level. 

INCLUSION IN THE MATHEMATICAL MODEL 

Attempts to mathematically simulate the Interaction forces 
by using the potential solution of flow around a cylinder on a plane to 
generate the flow field were unsuccessful in the time available. In 
addition, not enough submarine-current configurations were tested 
to verify superposition techniques. 

The parameters C^ ana i\ oi me previously mentionea 
Interaction terms were appor\xmated in the simulation by two-slope 
nonlinearities. Figure 23 shows the two slope approximations of the 

and K of the previously mentioned 

Fig. 23. Interaction Force Parameters 
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experimental data equivalent to Fig. 20 with the Initial conditions 
starting with the DSRV 35 feet above the submarine i.atch. 

The method of simulating the steady and unsteady Interaction 
effects is shown in Fig. 24. 

Fig. 24. Simulation of Interaction 

IV. MANNED SIMULATION 

Early in the DSRV program it was decided to Initiate a 
manned simulation study, whose primary objective would be the 
investigation of the operation of DSRV under manual control con- 
dUWs using mlnimLn backup displays. The control system aboard 
DSRV is relatively sophisticated, providing substantial pilot assist¬ 
ance in the form of augmented stabilization, decoupling of egr 
of freedom, and automated control loops. Although ^ gi[eved 
operating modes of the DSRV were not to be manual, U was believed 
that a manual control capabUity was essential for backup in the event 
of failure or damage of the primary control system. 

The simulation program was confined to the most severe 
segment of the rescue mission, the mating of the DSRV to the batch 
of the distressed submarine (DISSUB). This segment starts when the 
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»< •-. dISSUb. Md 
to tho «ccurocy required to a, . an' h** pooltlotiBd Itaolf 
Ltloo would J „.’d" toi.»rX th. U“ '*'“?^ ■'•J- T»'- •Imu- 
and direction and dlttreaard »,,hma i °f Curr*nt magnitude 

co„„o,KÄ^rÄ^.d'?““1 

o«rly Jtt d‘.ISnVlïïïiîi'w JírmuTòm^ •““‘'‘•"«y 
the parameter* oí varloua contri „i * me de*18n inveatlgatlon oí 

.imul.,™.’ pr»«r«> «m^.m.„..d 
Simulator) v.hlcl., tASS op.r'u™.3,'».'?'í" *lr Samarlo. 
fo.albUlty ol manual control ÄÖX, "'“'‘'l1'«1' >l» 
trolled variation oí the environment. * *" V d d * perrn,t con' 

located at the Sperry"wt/lne'sv ,,,annc^,*in]ulallon program waa 
Virginia. This iac111ty had nrevint-f °‘Vl“lon ln Charlottc.ville, 
studiea oí the NR-1 research subm^.lkf"" U“?d ÍOr ,lmulatlon 
developed for the NR - I were avaUabC Íor'th "nlTo °{ th* pro*ram* 
Ron Rau, one oí Lockheed’s DSRV . / n Di>RV •tud,e"* 
for the simulation study Pn°t8 ' *erv«d *» pUot 

facility description 

an Ambling ZOrhybrl/computl^wIth in 

memory’cy^le^of C ^ 
and division, ha, aSOuUc^d.ib^.bn “7i'0r ■"““‘PllMtlon 
Simula,, the vehicle, coordl/ati ,-,.IÍfo™Í.V0* 200 Wa* u,'d ,0 
effectors, current Interaction nHÍ0^matlons • actuators and 
EAI-231R wa, ».edTor dT.nl.v .i„ '’ ,*,"1 ,h' ■"“'"d The 
ballast and trim systems.SP ay generat,on and for simulating the 

a cab driver,0w"ot0d'h:.C,nr.dlh' ,,ln;,“la,l0,’ iacU,tV Itblud.d 
contained a control atatíÔn côn.u.î r'"11 a"d pltch'- Th‘ cab 
system Inputs, variou, m.t.r ,™é d? ° C°Mro1 ■S'1'* “<l »'her 
Figure. 25 and I! .Sow ™heCfTod t.? Y"'. and * TV d,’pl»y- 
respectively, d its lnterlor display arrangement, 
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INSTRUMENT PAnIlI 
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EHamag 
anusE 

ISWAY Vitocitïl 

Fig, 26. Instrument Panel 

ELEMENTS OF SIMULATION 

Vehicle 

Because the mating operation is confined to low current 

rSrind thrush16 *Hntr? 18 obtalned hV means of the main propul- ., . trusters, the shroud remaining locked amidshlDs The 
relatively limited capabUity of the AmbUog computer neces’eitaîed 
,om. approximations of the equations of mo.lôïï““s.ur.Ttt ^ 

^“^tLpÄ«e:tcoofÄo^ maJ°^ 

of f», uThe effect of thls approximation is shown in the comparison 

effect ;î: .«Äe“«,«. 

ofthe^m.ÂlÂé.ï^^Â-r--,-^- 
impie intégration routine was employed, as shown in Fig. 28. Y 
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HEAVE VS ANGLE OF ATTACK 

Fig. 27. Comparison of Simulation and Analysis Models 

Un.| . Un.j, 
“Un-i +-~5- 

EQUATIONS OF MOTION 

ú »flu, V, w, p, q, r) 

SOLUTION , 

V^ 'ETG> 
AND u ■ u„ . + li„ * n n-| n 

ITERATION INTERVAL 62.5 OR 125 MILLISECONDS 

Fig. 28. Computation of Vehicle Motions 
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Throughout the course of the program, vehicle responses 
using the simulation model were compared to responses computed 
from the more complete analysis model, which had been programmed 
with a more sophisticated integration routine. 

Vehicle Control System 

The control effectors available are main propulsion for 
surge, a pair of horizontal thrusters for yaw and sway, a pair of 
vertical thrusters for pitch and heave, and mercury ballast control 
for list and trim. Experience with DEEP QUEST and other submer¬ 
sibles had shown that independent control of the thrusters was not 
effective, since each horizontal thruster, for example, affected both 
yaw and sway. To achieve effective control it is desirable to sepa¬ 
rate the commands to each degree of freedom. Thus, a sway com¬ 
mand would be applied equally to both fore and aft thrusters , while 
a yaw command would be applied differentially to the two thrusters. 

Vehicle control (except for trim and list) is obtained from 
two hand controllers. The block diagram of the system, including 
the actuators and effectors, is shown in Fig. 29. The output of 

DSRV STICK SUMMATION AND THRUSTER SIMULATION 

Fig. 29. DSRV Stick Summation and Thruster Simulation 
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Displays 

in nerJ:r:rr,? ar aIfUable aboard the DSRV îo* assistance 
»,F\ 1 Tin? the final matin8 maneuvers. These are a TV camera 

hiïh ri«0! H r0,Ígh a viewport in the m^sphere lower hatch, and a 
high resolution short range sonar (SRS) mounted to a retractable 
boom in the transfer skirt. Only the TV was simulated. DetaUs 
aimnlatpf10^1106 of the.SRS were not avaUable at the time the 
simulation study was performed. Also, with good visibility, the 
I V Is a much more informative sensor than the SRS. 

=. j mid,sphere TV disPlay was simulated by photographing 
nrnde! of a submarine. The photograph was then scanned by a 8 

CRT, using a flying spot scanner. The size of the area scanned is a 
function of the distance from the camera to the hatch. The dis¬ 
placement of the center of the hatch from the center of the screen 
:^01301^31 t0 the dlstance between the hatch center and the inter- 

section of the camera axis with the hatch plane. Because of the 
relativeiy small angles between the DSRV and DISSUB planes, no 

miade t0 provlde foreshortening effects. Reproductions 
of the TV display are shown in Fig. 31. The four radial line seat 
ments at the extremity of the picture represent the staples on the 

attaThaerineÄ t0 WMch & McCann Rescue Chamber can be 
thl pilot.' The8e apleS provide Promise centering information for 

Fig. 31. TV Display 
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The moat significant meter displays are those of doppler 
velocity, attitude rates. The doppler sonar, located 8.9 feet aft of 
the C.G. and 3.3 feet below the centerline, provides 3 axis ground 
velocity data. Since the doppler sonar Is offset from the center of 
gravity, angular motions couple Into the doppler signals, and in 
some situations were Interpreted by the pilot as translation veloc¬ 
ities. 

Displays were also provided for roll, pitch and heading angles, 
and for sonar altitude above the DISSUB. Current magnitude and 
direction Indicators were available, but were not used In the simu¬ 
lation, since the corresponding sensors were not installed In the 
vehicle. The additional displays shown In Fig. 26 are associated 
with the anchors and haul down winch control systems. 

Shock Mitigation System 

The shock mitigation system serves a dual purpose In the 
mating operation. The primary one Is that of dissipating the kinetic 
energy of the DSRV when It lands on the DISSUB. The second function 
was realized only after the simulation study was started. Prior to 
dewatering, the DSRV Is connected to the DISSUB primarily by verti¬ 
cal thrust forces from the DSRV and coulomb friction. Because of 
the existence of the shock mitigation system It Is not necessary for 
the DSRV to land precisely on target. As long as the shock mitigation 
ring encloses all the staples, the DSRV can slide on the DISSUB deck 
until precise alignment Is reached. 

As described previously the shock mitigation system has been 
simulated as four Independent damped springs. The natural frequency 
of the DSRV-shock mitigation system is approximately 11 radians per 
second, which la too high to simulate with a 62.5 millisecond Iteration 
Interval. Accordingly, the spring constant was reduced, with a re¬ 
duction in the natural frequency to 1.7 radians per second. The 
damping constant was also reduced to maintain essentially the same 
percentage damping. 

Anchor and Hauldown 

Exploratory runs were made using both the anchors and haul- 
down as mating aids. No help was obtained with the anchors, and 
very limited assistance was obtained from the hauldown. Schedule 
and budget limitations did not permit an Intensive evaluation of this 
problem at the time. Some digital simulation was performed at a 
later date with the hauldown system, which Indicated that It should 
provide substantial assistance, particularly when the DSRV Is re¬ 
quired to mate bow dp to the current. These results were confirmed 
on simulated tests made with LASS. 
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Fig. 32, Mating Geometry 

A TYPICAL SIMULATION RUN 

The mating situation to be described is depleted schematl» 
cally in Fig. 32. The DISSUB is rolled 225 degrees in an athwart- 
shlp current, so that the DSRV is required to mate bow up. With 
the DSRV heading into the free stream, the Interaction forces and 
moments are as depicted in Fig. 33. Deflection of current off the 
sail of the DISSUB causes a starboard sway force on the DSRV. 
The corresponding yaw moment is counterclockwise at large separa¬ 
tions, but becomes clockwise as the DSRV approaches the DISSUB. 
The normal force provides a suction effect at relatively large dis¬ 
placements, but becomes destabilizing as the DSRV approaches the 
DISSUB. Thus the normal force, due to interaction, adds to the 
force due to the free stream and tends to push the DSRV away from 
the hatch. Pitch moments remain rather constant over the distance 
Included in the run. 

In performing the mating operation the pilot attempts to head 
into the local stream rather than into the free stream. He sees and 
feels" the DSRV sway and adjusts his heading to minimize the sway 

motions. Thus, the relative heading Is not into the free stream but 
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rather 1« In a relatively arbitrary direction. The effect* ol heading 
changée on the Interaction problem are Uluetrated In Fig, J4, 

Flret of all, ae the OSftV heading la changed, Euler angle 
variai tone occur {Fig, 14a). Where Initially lhe DSRV wae not re- 
«)ulr«d to llet at all. It muet no» both Hat and trim, and can no 
longer make precie* llet and trim adjuetmente prior to landing. 
Concurrent With thee* change«, the free etrcam current componente 
change »Ith Heading (Fig, J4b) which muet be compensated appropri¬ 
ately, 

Aeauming that the ideal heading correeponda to aero away 
force, the variation of optimum heading with distance to hatch Is 
shown in Fig, J4c. The optimum relative heading le approximately 
JO degrees, with a significant heading change required ae the separa¬ 
tion te decreased. It »11.1 be noted from Fig. J4d that the tero head- 
ing yaw angle does not correapond to the eero ya» moment angle. 
This is due to the horleontal gradiente In fluid velocity along the 
length of the DSRV, Thus, there le no yaw plane equilibrium con¬ 
dition, and yaw plane control becomes a more sever* problem than 
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DISSUI ROLLED 22.5 DEG 

A nJrtH«A5S4;ANGLES®IQUi|®D 
TO PARALLEL HATCH PUNE 

30 60 

YAW ANGLES (DEG) 

20 

10 CYAW ANGLE REQUIRED TO 
MAINTAIN ZERO SWAY FORCE 

-L _L J. 

CÜRR^f^póÑÉÑTSlÑDSRV 
4VeSFOR ANGLES AS IN (A) 
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DISTANCE TO HATCH (FT} 
30 

30 50 
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OF (C)*OM£NT UNDE* COND|TIONS 

«CT10N OF MOMENT ISj /dir'l_ 
l-\TO INCREASE ANGLE 

JL 
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DISTANCE TO HATCH (FT) 
30 

Fig. 34. Counteractlng Interaction Force, by Heading Change, 

pitch plane control. 

these colder'WCnir»FfgOÎ3ïe r“ ““«et 
displacements x, y and z nfÏL , Th® vfriable8 Plotted are the 
center of the hatch in the coorrH^T*™ °íthe DSRV ‘he 
in Fig. 32. ^o plotted are DSRV aa ahow« 
the DSRV, zero hiadlngbeinc into ?ltCh and headtn8 angles of 
minute interval durinB the S ^ i, r8,! ltream* F°r 8 one 
are replaced with RPM traces from^’ ?itch ajd yaw angle traces 

horizontal and main prop'eier , V"“Ca1' 

f» elevellttZde?^ ât'a clmefaïiSït“» õf zYfceu“ 'treírn' 

ThY WüSlÄrre^T.'Ya'mYreY"*1 “d *h? “MOT K)'. 
occur on a mission, so that the advant ve^e transient than would 
in distance is overcome b^heVete^To °f ^ relative P^ximity 
brium. At the start the pilot turned * * r?atrore dynamic equilf- 
to maintain equilibrium Simultane to1por*.about 20 degrees to try 
ar. adjusted to try to S;totXÏDsR¾'• r°U ^ F“'“ “S'«« 
the hatch plane, sifter about two 
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half the distance to the hatch »h-.« 
while adjusting his x and v* ******** Httui* 
angle has been Increased to^bout 3S ri» *“ *5? Proc«*« tha yaw 
made, the DSRV touching the deck som» d®«ctnt i. 
after the start of the problem At tourhri * Î5. ®xc*,a oi 3* 5 minutes 
perfectly aligned in the x direction h, ^ °Wn DSRV w*» almost 
center in the y dlrectioï On th» ri ¿ W** na4rly 5 feet off 
(trace not shown) in an attemnt t vertlc*l thrust was applied 
current. Roll and pitth “X were^d Uíted oíí b> ^e 
Jour legs in contact with th? deck Not» ^ , fry to aU 
DSRV continues to roll and oitch ‘ ^ durIn* thi' ‘^e the 
the DSRV to slip aft about zfs feet * ran*lent> a* Impact caused 
the misalignment in the y axis Aft»™ Wt“ ^orrected. •• was 
the DSRV under control and couldAf nearly 5 the pilot had 
the shock mitigation rlng and 8fart ^enriCe th* flnJÜ 'Action oi 
time the computer was placed imo HOLD T^f1"8 pump* At thia 
were 0.10 feet in the x direction i ^ Th* ?“* mf»alignment. 
within the required tolerances The finí/6 Í09t the Y direction, 
were 36, 6 and i6 degrees rVspLtiveÏy ^ PUCh ro11 an*laa 

£f landing.0rlTtahftyimehtLWpilodt ïer^aterth & COmpletely 
plane and the deck hatch plane were m£?Ti S* iUn' *he DSRV ••«J 
roll and 2 degrees in pitch so tLt !n fo 8Ü ,âbout 7 d««re*» «n 
were not in contact wUh the decïa^di mlti*«tlon lags 
made. No instrumeSl^ exist.could «>• 
attitude data which could result in a sehrioI?,SRV provlde thl* relative 
The problem can be alleviated in oart hi 0Per»tional limitation. 
which provides a larger stabilizing moment' of jhe hauJd°wn system 
angles. 8 uizing moment, reducing the offset 

latíon, í.ÂÂto" h'*“'“»*. In .h. .b». 
mitigation hydraulic cylinders. Roll and^Ir Vr ,Vr0i,r oi the shock 
achieved with this system, while maintTl ï.all*nment could br 
alignment. maintaining the horizontal plane 

observations. FirstîietherthrtusteaCtiVity leads to two interesting 
fashion, that is, either m^l^rt8haref0perated ln a ^ng-banf 
This, despite the fact that an accurate propoZrtlonahlUr8ítli ,comrnandad* 
available. Second, the activity of ïhe t C°ntro1 •y#tem l* 
greater than either the vertkal thruster 0r til is 

ïhe frequen^ of thíhoHzo^ti* anvlron«»«t!üïuî^} rig.™* 
in the thermal design of the thruate^motorl1.^ lrnpllcatlon« 
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Flf, $6. Lxp« rimant ai Kaaulta 

RESULTS OF MANNED SIMULATION PROGRAM 

maruJlt P*#.ulU,oi th* •‘«mllion .tudy ar« .um- 
Tithleh rIr°A tUrV** *r# •hown* *>*>•* ior th. ”*T ru,'Â* of *Wc*» »If« JS **• an example, and thoac of earlier 
«!“ wlWcÍ **r* mâd* P «-tor to the Inclua Ion oí thi.hóck 

did ÏLi #lm'U*,íon» Performance of the final runa 
did not meet thoee of the exploratory runa. Schedule con.treinta 

Ît.tTm K ,*Uh Sf *i tí- -hock mitigation 
astern. The pUot beltexea i»at with euch training the reaulta of th. 
two aete of rune would match more cloeely. 

,. ... ^ b*fu oi ,h##* reaulte, we have tentatively arrived at 
the following performance prediction., 

a) Mating on the aft hatch U fea.lhle for current. In excee. 
of one knot at all attitude, of th. Dl&SUB (up to 45 degree.) 

rent*4**^**** **** with reaped to the local cur* 

bl 
?" jfriT*rd h*lch» w* fc**» to dialingul.h between 
longitudinal and athwartahlp current.. In athwartahip. 
cúrrente the goal of mating In a one knot current can be 

ÍOr ^ hi*h DISSUB «U angle. Which require th. DSRV to mat. bow up to the currant! 
with reaped to longitudinal currente, on thoac aubmartne 
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b) 

classes which have sufficient clearance between the sail 
and the forward hatch to permit the alignment of the 
axes of the two vehicles, mating is possible in currents 
weli in excess of one knot. For those submarine classes 
which do not have sufficient clearance, mating is limited 
to about 3/4 of a knot. 

Drod,mtT™ea,!£anneM su1"lulation Program yielded some Important by- 
product results which impacted on the vehicle design. The most 
significant ones are as follows: 

a) The splitter plate behind the transfer skirt was originally 
incorporated to reduce flow separation behind the skirt 
and minimize axial drag. Model testing unfortunately did 
not verify this drag reduction. However, the splitter 
plate was found in the simulation to provide sufficient 
r?L.,fmp1ing ,to Permit mating without automatic roll 
stabilization (automatic roll stabilization is, however, 
provided even in the manual mode)# 

The shock mitigation system had originally been designed 
t° energy only for impact' velocities in excess 
of 0.25 feet per second. Below 0.25 ft/sec, the system 
acted as a spring. However, because the DSRV is 
neutrafly buoyant, it wfll bounce off any spring unless the 
impact energy is absorbed. As a result of observing this 
phenomenon in the manned simulation study, the shock 
mitigation system was redesigned to provide damping for 
all impact velocities. H 8 

c) The relative attitude indicators required to assure angular 
alignment have not yet been incorporated in the design. 

oa_„The r®aults the Ames tunnel tests have been Invaluable in 
m tino air ,Uf^erataindllî.g of th<: Problems Involved in submarine 

«»ting. In the early phases of the simulation program, before the 
Ames results were available, mating runs were made under free 
»smT fr „ Aithough there had been apprehension about the 
a^ -/ of the pilot to perform the 6 degree of freedom control function 

DSRT€LÍOUfnd,th,at exPer1ienced aircraft pilots, with nominal 
tral,ning’ could control the DSRV with ease. Success- 

Mi Wi tí !,nî8 UP to two knots were anticipated for virtually 
cíndiAonsin excess of two 10101:8 for the most favorable 7 

* lvClj8ion of the latoractlon effects, particularly on the 
^-arKd hat,;h» damPened our optimism. The performance^goals 
could be met, but at considerably reduced current magnitudes and 
requiring considerably more pilot training. 8 ’ and 
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Prior to the start of the Ames test program, It was believed 
that the most serious interaction effects would be in the pitch plane, 
due to Bernoulli or "suction" effects. The experimental program 
was organized primarily to determine those forces. As we have 
seen, yaw plane interactions are more critical than those in the 
pitch plane. It would be desirable to have additional data, particu¬ 
larly with respect to interactions as a function of yaw angle and (for 
the longitudinal current) as a function of lateral separation of the 
longitudinal axes of the two vehicles. 

Recognizing the above limitations in the test conditions, no 
attempt has been made to use the Ames data quantitatively in the 
control system design. The data has been useful in the following 
areas: 

a) It has provided an appreciation of the yaw plane problems 
associated with mating. 

b) The force and moment gradients observed have been used 
to select and verify the static gain requirements of the 
automatic control system. 

c) The non-steady interactions have provided an input which 
could be used to establish the dynamic requirement of the 
actuators and effectors, in particular the pumping rate 
requirements of the list system. 

The DSRV is completing preliminary sea trials and will soon 
be conducting mating trials. Before too long we will have some full 
scale verification of the usefulness of the Ames test results. 

IV. CONCLUDING REMARKS 

This paper has presented an approach to the problems of 
simulation of the dynamics of highly maneuverable submersibles. 
All elements of the simulation are covered in considerable detail 
to provide an adequate base to build on for others with similar 
problems. No such comprehensive reference was available for our 
use. 

Although the model test data are not presented in their 
entirety, a reasonably complete description of the test procedure 
and results should allow determination of the usefulness of the data. 
Several references ave given for more complete test results. 

It is hoped that this paper Illustrates where Naval Hydro¬ 
dynamics is a continually expanding field and must take into con¬ 
sideration aspects of control system design, man-in-the-loop 
analysis, and numerous other fields not normally considered as 
relevant to the theoretician. 
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cf th. .SScñrThf^ar^rr» a^i1”8 ‘(h,e d,rel<>t>”e”‘ 
manner but rather the simulation was buQt^nn^/h lCi?Uy rifor°us 

ÄS ÄÄeÄ ¿äS Ä ~ "e 
qulred on a Ugh. ech.dule and rSSv.lySSe nfw ÄeSL"' 
analysis were initiated. Since the DSRV is present Í 
for sea trials the validity of the simulaHnn aV» iri paring 
and correlation b«.„ee„ ïh. et ‘ÄdS ^dfhe'reÄ Ä"* 
simulation ahould provide venable In.lght for futh.r eCatloS. 
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