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BACKGROUND

This is the third progress report prepared under the contract
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the derivation of improved finite elements for elastic Bernoulli-Euler

and Timoshenko beam segments. The present report deals with experi-

ments and analysis performed to arrive at analysis procedures and

failure criteria for structures deformed into the plastic range. This

report contains three separate parts:
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I. Experimental Dynamic Response of a

Viscoplastic Beam Segment

R. DiMarcello and V. H. Neubert

Background

The writers and associates have conducted a series of tests of

viscoplastic beams under dynamic loading. The relation of this work to

that of others in the literature has been summarized in past reports( 1 )

and will not be reported here. However, enough of the local work will

be reviewed to show the motive for the study reported herein.

Stanovsky(2) carried out experiments on cant..lever steel beams of

rv-ctangular cross-section. The beams carried a tip mass and were

loaded by a mechanical impactor which struck the tip mass. A pressure

transducer between the mass and the impactor measured the applied

force, which was used to predict the measured strain, One of the

primary ccnclusions of Stanovsky's work was that, for mild steel, the

experimental strain lagged behind the strain predicted using a bi-

linear stress-strain relationship, This led to the study of the

following moment-curvature relationship

E Ik +C(M -M S 1Mst)

by Brown (3). Equation (I) is similar in form to a stress-strain

suggested by Malvern(4) and studied by Plass(5) and others. A

derivation cf Equation (I) starting with the stress-strain relationship
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is given in Part II of this report. Brown performed experiments on

cantilever beams in a shock machine. Moments were calculated based on

measured accelerations of the tip masses. Curvature was deduced from

strain measurements. Brown suggested values of C for Equation (1) in

the range of C = 500 to 3000 for a 1" x 1/8" beam. Subsequently tests

involving three parallel beams carrying a common tip mass were carried

out on the shock machine at the Naval Research Laboratory. Again the

moments were computed frcm measured ascelerations of the tip mass.

Static tests of beams -f the same material were made, Vogel pre-

dicted the dynamic &!esponse from measured base acceleration and found

that Equaticn (I) a satisfact3ry moment-Curvature relationship using

values of C in approximately the same range as proposed by Brown. One

unexpected cesult of these tests at the Naval Research Laboratory was

that the measured dynamic moment was less than the measured static

moment just after yielding of the -ur.er beam fibers. It was not

determined whether this was a property of rhe material or due to errors

in measurements. The main purpose of the pre3ent experiments was to

study the same beam :toss-section, but t3 use a different experimental

method fov deducing the applied mcment

Description oi the Apparacus

The appar.atus is shown in Figure I The beam was 1 inch wide,

1/u inch deep, and 18 inzhes kcng. It car:led a steel tip mass bolted

on at each end There were twc supports whirh wece designed to act

apprcximate]y as simple hinge-type supp•is. The experimental segment

was a machined-dcwn tegion at the -enez-iine 1/8 inch thick, I inch

wide, and 1 inch 1.,ng, The appaiatus had two features that were

* 4
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signuifiantly difterent from those of previous tests: (1) the test

segment was in a :egion so whi:h the shear should have been a minimum

and (2) the moment. was deduced from strain gauges at locations 1 and 4

where the beam material remained essentially elastic.

The beam supports were bolted to a base which was in turn bolted

to the table of the IMPAC shock machine, the same shock machine used by

Brown The acceleration pulse provided at the shock machine table is

appzoximately a half-sine wave with a 20 millisecond duration.

Strains wefe measured using Micromeasurement foil gauges 118 inch

long Ellis BAM-I bridge amplifiers were used with one arm active and

S�the signals were phctographed cn a Tektronix oscilloscope (Figure 2).

.I Starv tests were performed using the same beam and support

j a:rangemen ;n :nhse t-be si a Tinius-Olsen machines The rip masses

were .Emc ed and the !:ad -pplied to the :wc ends simultaneously by an

attzchment ro the moving head -1 the machine, Moments were deduced

frcm strain measurements at gauges I and 4 and curvature from gauges

2 and 3, as in the dynami: rests. Moments were also calculated from

the trcal !:ad applied by -be ma.-hine These were not in -lose agree-

mený with the mcments measured at stations 1 and 4. The difference

was assumed tc be due to m=nent restraint provided by the "hinged"

supp.::s

The m~tefif] w7s a 1020 steel, told-rolled and annealed, aftez

mad-hining, at 800'C icr one hour
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Test Results

Measureognts from gauges 1 and 4 showed that rie arrangement and

response were symmetrical, It was assumed that the momeni was not a

ftinction of position. between the supports. In Figure 3 the moment

versus curvature from two static tests is plotted as obralr.ad at gauges

2 and 3. In Figure 4 a static curve is comparei with a dynamic curve

obtained from a 10 inch drop of the shock mashine. The data tends to

confirm that obtained on the Naval Research Laboratory shock machine

in that the elastic stiffness El is -',out the same under dynamic and

static loading. Also, shortly c che outer fibers yield, at about

120 inch-poundr, the dynamitc rnmmnt becomes less thcai the static

moment for the same curvarure. As the loading increases, the dynamic

moment again exceeds the static moment. Thus, the "sag" in the

dynamic noment curvature curve again is evident.

In Figure 5 the same dynami: curve shcwr, in Figure 4 is shown as

curve I and zompared with that from another specimen. The curve

numbered 1 represented the first test of a beam- The curves 2, 3, 4

and 5 were succossive 10 inch drops of another beam that had previously

been dropped sevaral times. The curves show the efie-.: of reloading.

The behavior is not completely understood, but this trend on successive

drops toward greater curvatute for the same moment is obvious.

In Figure 6, '"e result of increasing the drop height on

successive tests i shown. Curve I is the result of a 10 inch drop

following the drop whtch produced curve 5 of Figure 5 Curves 2 and 3

resulted ftom successive 12 and 14 inch drops Note that the curvature

scale on Figure 6 is different from that of Figures 3, 4 and 5.
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One of the points of primary interest in the present data is the

time delay between the occurrence of maximum moment and maximum

curvature. This time delay can be directly related to the constant C

in Equation (1). The following simple mathematical exercise will help

show this relationship.

Relationship Between C and the Time Delay

The purpose here is to assume a simple form of moment loading and

solve Equation (1) for the resulting cur..,ature in order to relate the

constants to associated phase angle or time delay between maximum

moment and maximum curvature.

During the elastic range it is immaterial as to the time and rate

of loading. In the plastic range the loading is assumed to be

sinusoidal. The following theoretical moment-time input is used:

M S 1 k = Slcot ost-t (2)

M S= ky =M t =to (3)ly y

Sco

M S k + sin w(t-to) rto (4)
1ly W

Here k is the curvature at the knee of a typical moment-curvature pl~t,

and is attained whea nearly the entire ciz.ss-seotion begins to undergo

plastic deformation. Also S1 = El is the elastic bending stiffness.

In terms of symbols used in reference (1), Equation (1) could be

written

r,



+ R (M-Ms) (5)
S Sr

Here R S = C.

Du!-ing elastic loading M = Mst, so

k = c t ort:to (6)

and k = k t = to (7)Y

For tzto, we assume a bi-linear static moment curvature relation-

ship:

S= + S2 (k-ky) (8)

Substituting (8) into (5) yields the following linear differential

equation:

+ RS2 k = M + RM + R[S 2 k -M I for tZto (9)

With M as prescribed in (5), the resulting solution for k is

-(t-to)
* RS2

k= + y de R d CISW(t-to) + d2 sin w(t-to) (10)

wereR a  (S S2)
lee S1 (W 2.-RS2 )



7

(aw2 + R2 aS1 S2 )
d2 = 1 ( W2 -R S 2 )

Slo
and 1 0

Considering only the sine and cosine terms in (10) the phase angle

Sbetween moment as prescribed in (4) and curvature k is

d 1

tan 4 =
2

R W($2-S)

tan (11)
W 2 + R2S2S2

1 22

For the present data, it appears that W2 <<R2 S1S2 .

S•0($2-SI1)

Then tan -RSI1S)2 (12)

If, in addition, S2<<S1

tan4) - S (13)

RS2

Letting W = WT, with T the time delay,

and tan Z 4), then from (12)

S -ST 2- 1 (14)RSI S 2
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Since C = RS1 , from (14)

•S S-SI
C 2 1 (15)

The value of T can be scaled directly from data, such as that of

Figure 7. If T = -0.2 x 10-2 sec. and S2 = 0.2 S

C • 2000.

With = 5000, R a 0.4,

Note that RS 1600 and the exponential term in Equation (10)
2-

drops out quickly.

Results and Conclusions

The purpose of the work was to test the same rectangular beam

cross-section using a different apparatus for direct measurement of the

moment-curvature relationship on first loading:

(1) The result of previous tests with accelerometers appears to be

confirmed; namely, that the dynamic moment becomes less than thex static moment Ghortly after yielding of the outer beam fibers

occurs. This is apparently in conflict with Equation (1) and the

common assumption that plastic flow will not occur unless the

dynamic stress is greater than the static stress.

(2) An equation is presented for estimating the value of C in

-_ Equation (1) directly from the measured time delay. The value

obtained for the present data for commercially annealed steel is

in the range of that proposed by Browu(3) and Vogel(6) based on

more tho )ugh analyses.
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(3) The apparatus has several advantages over a cantilever beam

arrangement. One is that there is practically no shear in the

specimen. A second is that some of the difficulties of deducing

load from acceleration measurements are eliminated. A third is

that the distance between the point where moment is sensed and

curvature measured is greatly reduced. Also most of the material

between the two points remains elastic, so there is little like-

lihood of the time delay being due to wave .travel time between the

two points.

(4) The study has dealt primarily with first loading of the speci-

men. However, the data from reloading of the same specimen,

especially Figure 5, bears further study. Brown gave examples of

similar behavior. The fact that the moment is always less on

reloading than on the previous loading was initially unexpected.

There had been speculation that Equation (1) could be used for

the i th reloading if Mst were replaced by Mi_,, the relationship

obtained from the previous dynamic loading. The present data

indicates that prediction of response to reloading requires con-

siderably more study.
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II. Relationship Between Moment-Curvature and

Stress-Strain Constitutive Relationships

W. Vogel and V. H. Neubert

Much basic: study has been devoted to the behavior of materials in

simple tension or compression, Tests have been performed which have

led to constitutive relationships including rate effects. The purpose

here is to attempt to develop the moment-curvature relationship for a

beam based on an assumed stress-strain relationship. The development

follows that presented first by Vogel( 6 ). We assume that the total

strain rate ý could be represented as the sum of S' the elastic strain

rate, and E", the plastic strain rate, that is

=' + e". (16)

In Figure 8 a cantilever beam carrying a concentrated load is

shown. If the beam is long and slender, it is assumed that shear

effects may be neglected with regard to effect on yielding.

Vogel(6) assumed that the total stress a in the plastic region, of

area A2 , could be represented by

a = ast + be" (17)

The moment M due to st-ess in the plastic region, if the beam isP
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symmetrical with respect to the neutral axis is

Mp f a w(y)ydy (18)

where w(y) is the width of the cross-section.

Using (17) in (18)

Mp = f a st w(y)ydy + b f ;" w(y)ydy (19)

The first integral is the contribution to Mst due to the stresses on

A 2 In the second integral, let S" = - 5' from (16).

Mp (gst)A2 + b (f -2') w(y)ydy (20)

If plane sections before bending remain plane after ')ending C- ky,

with k the curvature at the cross-section, Also, we assume , S E

and (20) becomes

1 = (M s)A2 + b k IA 2 (21)p st 2 2 E

On the elastic region A,, C = 5st so the contributi:on to the moment

Ms due to stresses on A2 would be

Ms= (M st)A (2

T tMstame (22)

The total moment is 14 = 1p s 4 o
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bH

M 1 + bk 1 2 (3st A EA2 E223

" A 2 + 1
or- - (HM- ) (24)

EA 2 blA2

As the bending increases A2 -) A as A, o where A is the total

area of the cross-section, resulting in

= + (M - M (25)
El H st

* Although there are assumptions in the derivation of Equation (24) which

are open to question, the form has some logic. Written in the form

• • E

EI k: + - (M - M ) (26)
A 2  "A 2  b st

it is clear that when the section is entirely elastic, IA = o and
2

o =oresulting in M = M
2 st

Comparing Equation (25) with Equation (1) and Equation (5) in

EPart I, it is clear that C REX. If this is true, the results of

the present study may De extended directly to beams of oher cross-

sections without further tests. An inwvotigation is in pr6gress to

check this result.

Equation (25) may be derived in a rnore dire,-zt way if one uses an

equation presented by Malvern(4) as follows:

+ = + [-s (27)
b sf
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Since this applies to the complete loading range, we need not distin-

guish between elastic and plastic regi.onso Letting = iy, we multiply

(27) by y and integrate over the cross-section, arriving directly at

the relationship

E+ brM-Ms (28)

b s
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III. Theoretical Response of an Idealized

1• Viscoplastic Cantilever Beam

A

R. Weiss and V. t1. Neubert

Introduction

One of the goals of the present work is to arrive at equations

suitable for design analysis of structures loaded dynamically into the

plastic range. For many existing computer ptograms using finite

A elements, it is easy to include a new element once its behavior is

stated in the form of a transfer matrix, a flexibility matrix, or a

stiffness matrix. With this in mind, the transfer matrix and the

stiffness matrix were presented in reference (1) for a viscoplastic

beam element which behaves according to the equation discussed in

Part• I and II of this report:

El + R (M-M ) (29)

To retain a linear form of the differential equation it was assumed

that M could be represented in a piecewise linear manner, the
st

simplest form being

SMst SI k o~ksk (30)

j 1st M14y + S2(k-k) kzk y
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which is shown in Figure 9. A brief discussion was presented in

reference (1) of the form of solution of the differential equation of

a cantilever beam under dynamic loading assuming that Equation (29)

applies for the entire beam length.

To gain experience with the analysis based on the matrix equations

presented in reference (1), which are valid in both elastic and plastic

ranges, a computer program has been written for the exact solution of

a two-segment cantilever carrying a tip mass as shown in Figure 10.

A The need for two segments arises from the two ranges of curvature in

the bi-linear form of M st as given in Equation (30). In order to

account for the ith beam segment in the constitutive relationship, an

additional subscript is now inserted, so that Equation (30) became

:t S il k c kyk
(31)

SMst : y + S12 (k -ky) k *ky

The first subscript is the beam segment number, the second subscript

the loading range on the linearized Mst versus k range. With the bi-

linear curve used here, S implies the elastic range and the

plastic range.

The loading to the beam of Figure 10 was taken as a base acceler-

ation Y (t) of a triangular form as shown in Figure 11. This approxi-

mates the pulse obtained from the Barry Shock Machine at the Naval

Research Laboratory as discussed in reference (1).

t
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ýo

(YO) max-

0 tr td

Fig. 11 Y vs. t

As the beam is initially loaded L1 = L the total beam length and

L2= 0. As the loading increases the moment at the base would first

exceed M and a plastic "hinge" begin to develop. If at this time a

plastic hinge is inserted having a finite length L2, the moment at the

elastic-plastic interface between beam segments 1 and 2 would be

slightly less than My, but would continue to increase as the dynamic

loading increases. As soon as the moment at the interface equals My
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the length L2 would be increased. The rate at which the interface

moves depends on the material and the loading rate. To gain experience

with the effect of hinge length on beam response, hinges of various

lengths L2 were used and their lengths keep constant throughout the

analysis. This is equivalent to analyzing a beam made of two materials

where the material in segment I has such a high yield that it always

remains elastic. In later analysis this limitation is removed so that

L2 = L 2(t).

Equations of Motion

The equation of motion of the elastic-plastic cantilever beam in

terms of displacement yl of the tip mass relative to the base is

A'Y 1 + A2 Yl + A3 Y1 + A4 Yl 1 Y + B2 Yo + B3 (-My + S2 2 k

(32)

where

A =1.

D A L 3R SS +3 ýRS S + 3LL 2R S S + L 3R S S
2 1 21R22 1 2 RS 1 1 S 2 1  12 11821 2 11821
DA $l21S2 LL

3 S!IS21D 3 = mI

DA 3R SI11S 218S22

4 m
1 m1

B 2-A

B B2 =-A 2
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D B =3L 2 (L1 + L2 /2) R S1 1 S2 1
31

B B - M + It.)kB3 3  y S2 2 y

•,3 21
D SL 32 + 3L L S + 3L L2 S + L5 S

1 21 1 2 11 1 2 11 2 11

For the prescribed pulse, the solution for yl can be expressed

exactly during the three stages of loading in Figure 11, the rise era,

the decay era, and the free vibration era. The solutions written

below are in terms of generalized initial conditions occurring at yield

time t at the onset of development of the plastic hinge.Y

For the rise era, o:t-td, the initial conditions are

Yl (t = t y) = Ylr

Yl (t = t ) =lr

The solution is

1  (t - ty) r2(t ty) [c 2 cos r 3 (t ty)]
Yl(t) =CI e y + e2 3

(y max ABr B

+ c sin r3 (t - t ) + y0) max [ +B t ](3 2)

(34)
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C2 -. r r 4 r r2  Gi + r G -2r 2 G 2 + ~ r

2r 2 2 Y2l
C3  s

S2= r1(r - 2r2) Glr + 2r 2 G2r - r

+ C2 )r )Yir2 2 2 2 2 2
c3 r r22 r3 -l2 Glr + 1I 2G)2r

:• ~r=(r1 - 2  1+r-r3 +rA+ (r2 - r ().) Ylr

•"r 2 (r I - r 2) 2 + r 32

B1 1 B2 3

lr Ylr A4 tr y A4 A4

S• (yO) max
G2r =Ylr A4 t

For the decay era, the initial conditions are used in the form of

(33), except the subscript is d instead of r. The solution is:

y (t) = De - + e r [D2 cos r 3 (t - ty)

+ D3 sin r 3(t - t)] - (td m [BI - B2(t - t) A

B3
+ - (35)

A

-i4
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12=-• lr 2 r2)3Gld +22 G2d +-l

s

2D =2 d 2 r { 2 2dYldI

Sr3 rs

S

3 2 ~r( 1 -2r G3 +r 2 Gld 1 2 3d2

3 S

+ (r 2 -r 1 ) Yld

G (y 0o) max [ B(t t A3 B21 B 3

ld [Yld - B2(td - t1) -4 A ,

G~~d ~ 4 dAtt 2drAB] A

G (yO) max B2
2d ld +A 4 (td - tr)

After the pulse is terminated, for t>td' the initial conditior.s

are used as in (33) with an a subscript instead of an r. The soluticon

is:

r(t -y) + e ty)[ o r(

Yl(t) = E1 e +E 2 cos r 3 (t - ty)

Bs+E 3 sin r 3(t t ty) + A43 (36)

14
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Beams Studied Using a Constant L2

To more effectively study the effects of key parameters such as

the material constant R and plastic hinge length L2 , a computer program

was written which calculates tip displacement, velocity and acceler-

ation, base moment and curvature, and the time rates of change of both

base moment and base curvature at various intervals of time until the

dynamic moment at the base equals the yield value. When the beam has

yielded at the base, a plastic hinge is inserted at time t y , and again

the response variables calculated, including the moment at the elastic-

plastic interface. Realistic values for the base acceleration were

obtainied froo, reerence (1), Figure 11, page 110. The values used are:

(yO) max = 100 g m 1  0.012 #sec2 /in

t = 0.004 sec. l S21 = 5000 #in 2

td 0.006 sec. $22 = 500 #in2

L L + L2 = 5 inches
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Values of yield moment (247 in#) and yield curvature (.05 in -1) were

gotten from reference (3).

In Figures 12-16, the tip displacement versus time is shown for

various values of R and L2 . It was hoped that some of the respanse

variables might be found to be relatively insensitive to hinge length

and that this would simplify desigp analysis. To date, it has been

found that hinge length is quite important. On each figure one example

curve is also shown for R = 1 in which the hinge was inserted at t = 0.

The effect on prediction of maximum displacement is an error of 20%.

In Figures 17-20, the moment M2 at the elastic-plastic interface is

plotted versus time. As soon as this moment reaches the yield moment

the hinge would be extended if both beam segments were of the same

value. The main use for the curves at present is that they give an

analyst an idea of the rate of propogation of a hinge for various

values of L 2 and R.

Results Using a Variable L2

The next step was to use a variable viscoplastic hinge length L2 '

For the present examples, L2 was incremented in 0.05 inch intervals.

The process was as follows. As in the previous examples, the moment

at the support was monitored. As soon as it reached the yield moment

M , a viscoplastic hinge 0.05 inches long was inserted. The moment M2

at the elastic-viscoplastic interface would at that instant be slightly

less than M . The timewise variation in M2 was then monitored and, as
y

soon as M2 = My, the hinge was lengthened by .05 inches. This process

was continued to allow the hinge to develop as required by conditions
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at the interface. The effect of the incrementing procedure and its

relation to convergence is being studied further.

In Figure 21, the effect on the tip displacement y1 (t) of having

a variable hinge lenb_.. L2 is indicated for R = 0.1. The solution for

L2 a variable is compared with those previously discussed for L2 = 0.05,

0.25, and 0.50 inches. It can be seen that the variable hinge solution

is very close to that for L2 = 0.50 inches. In Figure 22 a similar set

of curares is shown for R = 1. Here the more exact variable hinge

solution is closest to that for L2 = 0,25 inches.

In Figure 23 the variation of L2 with time is plotted for R = 0.1

and 1. For R = 0.1, the hinge reaches its final length of 0.5 inches

in a relatively short time. For R = 1, the hinge spreads less rapidly

and reaches a total length of 0.3 inches. It is interesting to note

that these total hinge lengths are approximately the same as the

constant lengths whose solutions for y1 on Figures 21 and 22 most

closely agreed with those for variable hinge length as discussed in

the previous paragraph. This may have some practical utility, since

it is easier to solve for response ,g a constant hinge length,

However, at present we have no way to predict the hinge length without

carrying out the more exact solution.

The variation of moment M2 with time at the moving interface is

shown in Figure 24 for R = 0.1 and 1, For R = 0.1, the hinge develops

to its full length rapidly and then the interface moment begins to

decreasa. For R = 1, a cyclic decrease and subsequent increase in

moment each time the length of the hinge is incremented is much more

pronounced, indicating that an increment length smaller than 0.05

inches should be used.4.
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Summary and Conclusions

The purpose of this part of the report has been no present some

results from a computer program for the exact analysis of the visco-

plastic beam under shock. The displacements calculated using hinges

of constant length L2 and variable length L2 should be upper bounds,

because elastic unloading and shortening of the hinge have not been

accounted for in the curves presented. The c6mputer analysis can

easily take these effects into account. Oae of the final goals of this

theoretical study is to investigate the effects of yielding of supports

and foundations on design shock spectra.

In the overall study of development of yielding and failure

criteria, the importance of experimentrl data can not be over-

emphasized. The constitutive relaticnship postulated in Part 11

accounting for dependence on cross-sectional shape of a beam needs to

be checked experimentally, and modified, if necessary. Different

cross-sectional shapes of various practical materials need to b.

investigated. In general, the ability to calculate using the digital

computer presently exceeds the amount of experimental data available

for guidance of analysis.
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