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BACKGROUND

This is the third progress report prepared under the contract
listed above. The two previous progress reports dealt primarily with
the derivation of improved finite e=lements for elastic Bernoulli-Euler
and Timoshenko beam segments. The present report deals with experi-
ments and analysis performed to arrive at analysis procedures and
failure criteria for structures deformed into the plastic range. This

report contains three separate parts:
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I. Experimental Dynamic Response of a

Viscoplastic Beam Segment

R. DiMarcello and V. H. Neubert

Background

The writers and associates have conducted a series of tests of
viscoplastic beams under dynamic loading. The relation of this work to
that of others in the literature has been summarized in past reports(l)
and will not be reported here. However, enough of the local work will
be reviewed to show the motive for the study reported herein.

Stanovsky(z)

carried out experiments on cant.lever steel beams of
rectangular crosc-section. The heams carried a tip mass and were
loaded by a mechanical impactor which struck the tip mass. A pressure
transducer between the mass agd the impactor measured the applied
force, which was used to predi:st the measured strain. One of the
primary ccenclusions of Stanovsky's work was that, for mild steel, the
experimental strain lagged behind the strain predicted using a bi-

linear stress-strain relationship. This led to the study of the

following moment~curvature relationship

EIk=M+C(M—Mst) 1

(3)

by Brown Equation (1) is similar in form to a stress-strain

(4) (5)

suggested by Malvern and studied by Plass and others. A

derivation of Equation (1) starting with the stress-strain relationship
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is given in Part II of this report. Brown performed experiments on
cantilever beams in a shock machine. Momenrs were calculated based on
measured acceleraticns of the tip masses. Curvature was deduced from
strain measurements. Brown suggested values of C for Equation (1) in
the range of C = 500 to 3000 for a 1" x 1/8" beam. Subsequently tests
involving three parallel beams carrying 2 common tip mass were carried
out on the shock machine at the Navali Research Laboratozy. Again. the
moments were computed frem measured szcelerations of the tip mass.
Static tests of beams >f the same material were made. Vogel(l’é) pre-
dicted the dynamic vesponse from measured base acceleration and found
that Equaticn (1) a satisfactory momenc-curvature relationship using
values of C in approximately the same range as proposed by Browmn. One
unexpected cesult of these tests at the Naval Reseacch Laboratory was
that the measured dynamic moment was iess than the measured static
moment just after yielding cf che zuter beam ribers. It was not
determined whether this was s property of the material or due to errors
in measurements. The main puxpose of the present experiments was to
study the same beam cvoss-section, but to use a different experimental

method for deducing the applied mcment .

Description ci the Apparacus

The apparztus is shown in Figure }  The beam was 1 inch wide,
1/6 inch deep, and 18 1inches lcng. [t car:ied a steel tip mass bolted
cn at each end There were twe supparts which wece designed to act
appreximately as simple hinge-vype supp.rts. Tha experimental segment
was a machined-dcwn region at the -e2nter-tine 1/8 inch thick, 1 inch

wide, and 1 inch lcng, The appsistus had twe features that were
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3 significantly different from those of previous tests: (1) the test
segment was in 5 :egion 20 whizh the shear should have been a minimum
and (2) the moment was deduced from strzin gauges at locations 1 and 4
2 where the beam material remained essentiszlly elastic.

Th2 beam supports were bolted to a base which was in turn bolted
c the table of the IMPAC shock machine, the same shock machire used by
Brown The accelerarion pulse provided at the shock machine table is
appreximstely a half-sine wave with a2 20 millisecond durarion.

Strsins were measured using Micromeasurement foil gauges 178 inch
icng Ellis BAM-l bridge amplifiers were used with one arm active and
the signals were phcrographed cn a Tektronix oscilloscope (Figure 2).

Staric tescs were performed using the same beam and support
arrangement :r -he t:ble <if 2 Tinius-Qlsen machine. The trip masses

were remc ed and the l:ad :zpplied ro the <w¢ ends simultaneously by an

[

-
-

W

zzhment ty the moving head ~f <he machine, Moments were deduced

fr

m strain messurements st gavges 1 and 4 and curvsture from gauges

[¢)

2 zod %, as in the dynami: tests. Mcments were also calculated from
the t-5cal lzad spplied by the mazhine These were not in :lose agree-
ment with the moments measurved at starions 1 and 4. The diffevenze

was assumed t: be due to moment restraint provided by the "hinged!

SUPp.:TS

Material
The mster1al wis a 1020 steel, zocld-rolled and annealed, aftet

ma-hining, at 800 °C t:r one hour

X L e R i, arrwteken 3~ s T A rebee Man | v b Aot an w7




Test Results

Measurements from gauges 1 anéd 4 showed that the arrangement and
response were symmetrical, It was assumed that the momenzs was not a
function of position between the supports. In Figure 3 the moment
versus curvature from two static tests is plotted as obrafimed at gauges
2 and 3. 1In Figure 4 a static curve is compared with a dynamic curve
obtained from a 10 inch drop of the shock maczhine. The data tends to
confirm that obtained on the Naval Research Laborztoiy shock machine
in that the elastic stiffness EI is hout the same under dynamic and
static loading. Also, shortly ~vr~r che suter fibers yield, at about
120 inch-pounds, the dynamic woumgnt becomes less thun the static
moment for the same curvature. As the lcading increases, the dynamic
moment again exceeds the static moment. Thus, the "sag" in the
dynamic moment curvature curve again is evident.

In Figure 5 the same dynami:z curve shcwe in Figure 4 is shown as
curve 1 and :oupared with that from anocther specimen. The curve
numbered 1 represented the first test of a beam- The curves 2, 3, 4
and 5 were succassive 10 inch drops of another beam that had previously
been dropped sevoral times. The curves show the efte:z of reloading.
The behavior is not completely understood, but this trend on successive
drops toward greatur curvatuze for the same moment is obvious.

In Figure 6, 1 “e result of increasing the drop height on
successive tests 1: shown. Curve 1 is the result of a 10 inck drop
following the drop which produced curve 5 of Figure 5 Curves 2 and 3
resulted from successive 12 and 14 inch drops  Note that the curvature

scale on Figure 6 is different from that of Figures 3, 4 and 5.
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One of the points of primary interest in the present data is the

tice delay between the occurrence of maximum moment and maximum

curvature. This time delay can be directly related to the constani C
. in Equaticn (1). The following simple mathematical exercise will help

show this relaticrship.

P Relationship Between C and the Time Delay

]

5 ‘ The purpcse here is to assume a simple form of momznt loading and
solve Equation (1) for the resulting curwature in order tc relate the
3 constants to associated phase angle or time delay between maximum
moment and maximum curvature.

During the elastic range it is immaterial as tec the time and rate
of loading., In the plastic range the loading is assumed to be

sinusoidal. The following thecretical moment-zime input 1s used:

- M= Sl k = Slcot oftit (2)

.
3 M=8S k =M t = to 3

b 1y 'y

%, S,¢c

i M=8, k + sin w(c-to) t2to ()

\3 1 y

3

L

% Here ky is the curvature at the knee of a typical moment-curvature plat,
fe | and is attained wheo nearly the entire criss-section begins to underge
g plastic deformation. Also §; = El 15 the elastic bending stifiness.

g

E In terms of symbols used in reference (1), Equation (1) could be

{ written
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P Moy RM-M_) (5)
S st
1
Here R S1 = C.

During elastic loading M = Mst’ S0

k = cot osts<to (6)
and k = ky t = to (7)

For tzto, we assume a bi-linear static moment curvature relation-

ship:
M, = My +s, (k-—ky) (8)

Substituting (8) into (5) yields the following linear differential

equation:
¥y = ...ii. - )
k + RSZk = Sl + RM + R[Szky My] for txto (9)

With M as prescribed in (5), the resulting solution for k is

-(t-to)
RS

2

k = ky + dle - dl cns w(t-to) + d, sin w(t-to) (10)

2

R a w(Slwsz)
where dl e T—
S1 (W "RSZ)
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(aw2 + RZaS
d2 =

and a=

Considering only the sine and cosine terms in (10) the phase angle

¢ between moment as prescribed in (4) and curvature k is

o

tan ¢ = L

2

R w(Sz~Sl)
tan ¢ = N T (11)

w” + R 8182

For the present data, it appears that w2<<R28182.

w(SZ-Sl)

R8182

Then tan ¢ = (12)

If, in addition, 82<<S1

tan ¢ & - -5 (13)

Letting ¢ = wt, with T the time delay,

and tan ¢ = ¢, then from (12)

S,-S
2

1
RSlS2

(14)

&
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el Since C = RSl, from (14)

c s 201
- 18

W

1

2

c 2
;L

(15)

25 oy v rSun

é The value of T can be scaled directly from data, such as that of
4

& \ Figure 7. If T = -0.2 x 10"2 sec. and 82 = 0.2 Sl’

3 -

¥ C = 2000.

2 With S, = 5000, R = 0.4,

5 Note that R82 z 1600 and the exponential term in Equation (10)

drops out quickly.

Results and Conclusions

" LI s A W St dae

N

The purpose of the work was to test the same rectangular beam

cross-section using a different apparatus for direct measurement of the

B o TR

i
3
t

3

moment-curvature relationship on first loading:

(1) The result of previous tests with accelerometers appears to be

A DA S BTk T e Hrrah i T

confirmed; namely, that the dynamic moment becomes less than the

static moment shortly after yielding of the outer beam fibers

occurs, This is apparently in conflict with Equation (1) and the
J g' common assumption that plastic flow will not occur unless the
dynamic stress 1s greater than the static stress.

(2) An equation is presented for estimating the value of C in
‘}ﬁ Equation (1) directly from the measured time delay. The value
N ; obtained for the present data for commercially annealed steel is

(3) (6)

‘7%; in the range of that proposed by Browu and Vogel based on

more tho igh analyses,
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(3) The apparatus has several advantages over a caatilever beam
arrangement. One is that there is practically no shear in the
specimen. A second is that some of the difficulties of deducing
load from acceleration measurements are eliminated. A third is
that the distance between the point where moment 1s sensed and
curvature measured is greatly reduced. Also most of the material
between the two points remains elastic, so there is little like-
lihood of the time delay being due to wave .travel time between the
two points.

(4) The study has dealt primarily with first loading of the speci-
men, However, the data from reloading of the same specimen,
especially Figure 5, bears further study. Brown gave examples of
similar behavior. The fact that the moment is always less on
reloading than on the previous loaling was initially unexpected.
There had beern speculation that Equation (1) could be used for

the ith reloading if MSt were replaced by Mi—l’ the relationship
obtained from the previous dynamic loading. The present data
indicates that prediction of response to reloading requires con-

siderably more study.
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II. Relationship Between Moment-Curvature and

Stress-Strain Constitutive Relationships

W. Vogel and V. H. Neubert

Much basic study has been devoted to the behavior of materials in
simple tension or compression. Tests have been performed which have
led to comstitutive relationships including rate effects. The purpose
here is to zttemp: to develop the moment-curvature relationship for a
beam based on an assumed stress-strain relationship. The development
follows that presented first by Vogel(6). We assume that the total

strain rate € could be represented as the sum of €' tke elastic strain

.
rate, and €", the plastic strain rate, that is
2 21 2
e=¢'+¢", (16)

In Figure 8 a cantilever beam carrying a concentrated load is
shown. If the beam is long and slender, it is assumed that shear
effects may be neglected with regard to effect on yielding.

1(6)

Voge assumed that the total stress 0 in the plastic region, of

area A2’ could be represented by

6 =0, + be" (17)

The moment Mp due to stress in the plastic reglon, if the beam is
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symmetrical with respect to the neutral axis is
Mp = fA o w(y)ydy (18)

where w(y) is the width of the cross-section.

Using (17) in (18)

= e (
Mp IAZ Oge w(y)ydy + b [ €" w(y)ydy (19)

The first integral is the cortribution to Mst due to the stresses un

A,. 1In the second integral, let €" = € - €' from (16).

M =), +b f, (€-¢€") wiyydy (29)

] st A2 A2

If plane sections before bending remain plane after ending ¢ — ﬁy,

. . g
with k the curvature at the cross-section. Also, we assume £ = F

and (20) becomes

Mp = (Mst)A +bkI, -~ (21)

2 2

On the elastic region Al’ o= ost so the contributlon to the moment

Ms due to stresses on A2 would be
M =M ) (22)

The total moment is M = Mp 4 Ms’ or

T S,
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b
. AZ
M= HSt +pk IAZ - (23)
. s 1
or k= 5 + 5T M - Mst) (24)

As the bending increases A2 + A as Al + o where A is the total

area of the cross-section, resulting in
k=t + 2 (M- ) (25)
EI

Although there are assumptions in the derivation of Equation (24) which

are open to question, the form has some logic. Written in the form

K = 1 E -
BI, k=10 +¢ M-M) (26)
2 2
it is clear that when the section is entirely elastic, IA = 0 and
2
Y = 1 5 M= .
MA2 o resulting in } Mst

Comparing Equation (25) with Equation (1) and Equation (5) in
Part I, it is clear that C = §-= REX. If this is trus, the results of
the present study may pe extended directly to beams of v.her cross-
sections without further tests. An inveaiigation is in progress to
check this result.

Equation (25) may be derived in a wore dlre:t way if one uses an

(4)

equation presented by Malvern as follows:

.0 14
=3 + b [o Gs:] @n
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Since this applies to the complete loading range, we need not distin-
guish between elastic and plastic regions. Letting € = l.cy, we multiply
o (27) by y and integrate over the cross-section, arriving directly at
I
A the relationship

E . N 1
Ik=5 + & M-M L (28)

T
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III. Theoretical Response of an Idealized

Viscoplastic Cantilever Beam

R. Weiss and V. H, Neubert

Introduction

One of the goals of the present work is to arrive at equations
suitable for design analysis of structures loaded dynamically into the
plastic range. For many existing computer programs using finite
elements, it is easy to include a new element once its behavior is
stated in the form of a transfer matrix, a flexibility matrix, or a
stiffness matrix. With this in mind, the transfer matrix and the
stiffness matrix were presented in reference (1) for a viscoplastic
beam element which behaves according to the equation discussed in

Part: I and II of this report:
k=== +R M- Mst) (29)

To retain a linear form of the differential equation it was assumed
that Mst could be represented in a plecewise linear manner, the

simplest form being

]
w
~

M osksky (30)

st 1

M

st My + 82 k - ky) kzky

e e eam
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which is shown in Figure 9. A brief discussion was presented in
reference (1) of the form of solution of the differential equation of
a cantilever beam under dynamic loading assuming that Equation (29)
applies for the entire beam length.

To gain experience with the analysis based on the matrix equations
presented in reference (1), which are valid in both elastic and plastic
ranges, a computer program has been written for the exact solution of
a two-segment cantilever carrying a tip mass as shown in Figure 10.

The need for two segments arises from the two ranges of curvature in
the bi-linear form of Mst as given in Equation (30). In order to
account for the ith beam segment in the constitutive relationship, an

additional subscript is now inserted, so that Equation (30) became

M, =8,k csksky
(31)
Mg = M, + S5 k - ky) k.:ky

The first subscript is the beam segment number, the second subscript
the loading range on the linearized Mst versus k range, With the bi~

linear curve used here, S,. implies the elastic range and S12 the

il
plastic range.

The loading to the beam of Figure 10 was taken as a base acceler-
ation ;o(t) of a triangular form as shown in Figure 11. This approxi-

mates the pulse obtained from the Barry Shock Machine at the Naval

Research Laboratory as discussed in reference (1).

iy e i e 2
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Fig. 9 Bi-linear Static Moment vs. k
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Fig. 10 Two-Segment Viscoplastic Beam
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As the beam is initially loaded L, = L the total beam length and

1

L2 = 0. As the loading increases the moment at the base would first

T R

'i exceed My and a plastic "hinge' begin to develop. If at this time a
'5 plastic hinge is inserted having a finite length Lz, the moment at the

elastic-plastic interface between beam segments 1 and 2 would be

; slightly less than My’ but would continue to increase as the dynamic

B loading increases. As soon as the moment at the interface equails My’
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the length L2 would be increased. The rate at which the interface
moves depends on the material and the loading rate. To gain experience
with the effect of hinge length on beam response, hinges of various
lengths L2 were used and their lengths keep constant throughout the
analysis. This is equivalent to analyzing a beam made of two materials
where the material in segment 1 has such a high yield that it always
remains elastic. In later analysis this limitation is removed so that
L, = L2(t).

Equations of Motion

The equation of motion of the elastic-plastic cantilever beam in
terms of displacement Y, of the tip mass relative to the base is
Apyp v Ay y, +Ayy + Ay, =By +By + B3(-My + 5,5, ky)
(32)

wvhere

Ay =1

3 3

2 t 2
DA, =L RS,,S + 3L L2 R SllSZl + 3L1L2 R 811821 + L2 R 811821

2 1 21722 1

35..5
1
b4, - r;1 21
1
3R 811591502
D A, = ——=
1
B, = ~A,
B?.f-‘-Az

B £ m e Wl s e P B S {2 o S et 4 s
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2o

3L2 (Ll + L2/2) R 511321
D B, =
. 3 my

B*-B(M+Sk
3 = By (= Mo+ 5,50k

D= L3 S,y + 3L2 L, S,, + 3L1 L2 S,, + Lg

1 521 159 51 2 511 S

1l

|
_é ‘ For the preccribed pulse, the solution for y, can be expressed
exactly during the three stages of loading in Figure 11, the rise era,
the decay era, and the free vibration era. The solutions written

below are in terms of generalized initial conditions occurring at yield

| R A g

% time ty at the onset of development of the plastic hinge.

AT

e o T 8 SN
o B

For the rise era, oStStd, the initial conditions are

t,)

¥y (t y

ylr

n
T
~r

t

B yp (E=t)) =y, (33)

)
cT
~

{

\ The solution 1s

rl(t - ty) . erz(t - ty) [

yl(t) =c e €y cO8 r3(t - t:y)]

v *
B (yo) max A.B 33
. +c,sinr (t -t ) + ———— |B +Bt-—=| +—
3 3 y A, € 17 %2 5, A,

~ (34)
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_ l 2 2 . s
3 “@ 2 |2* ra) G = 21y G ¥V
P s
13
3 c=—:L r.(r, -~ 2r,) G, + 2r, G —.y.
2 r2 1*1 27 "1r 2 2r 1r
s
_ 1 2 2 2 2, 2\
cq = rl(r2 - r3 - xlrz) Glr + r, - T, + r3} G2r

r,r

3's
; oy =)y,
A 2 2, 2
ﬁ r_ = (rl - rz) + ry
: &) A, B B,
3 G =y - Yo/ max B. +B t - 3 72 _ 3
‘%} 1lr ir A4 t:r 1 2 7y A4 A4
¥ . (; ) max
{ G, =y, - —_
j 2r 1r A4 tr

For the decay era, the initial conditions are used in the form of

(33), except the subscript is d instead of r. The solution is:

r,(t -t ) r,(t - t)
= 1 y 2 y -
yl(t) Dle + e [D2 cos r3(t ty)
(;;) max : ) A3BZ
+ D, sin r (¢ - t )] - +=—7———= |[B, - B (t, - t) - ==
3 3 y A4(td tr) 1 2 °d A4
B*
3
+ T (35)

g
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_ ‘—1- 2 2 _ o
D, = 2 || +rg] Gpg ~ 2rp Gy F Yy
8
D, = = ( 2r.) G, + 2r, G,, - .
2772 Ty 7 2E90 B T 4Ty Pag T Ya
S
1 2 2 2
Dy =—— rl(rZ Ty r1r2) Gpg t|F1 ~ T2 T3] Gy
r r
3 s
+(ry, -1y vy
) A.B B
Yo/ max 3°2 3
G1g “ Vg * A, (c; -~ ) By = By(tg -t -3 v

oy
\jo, max B2

G =y b ——— =
2d 1d A4(td - tr)

After the pulse is terminated, for t2td, the initial conditiors

are used as in (33) with an a subscript instead of an r.

is:
(t
r, (t - t) )
= 1 y' + e
yl(t) = El e

*
B,

+ E3 sin r3(t: - ty)] + KZ

- ty)

The solutidn

[E2 cos r3(t - ty)

(36)
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*

E, = — {r, (e, -1,) 23| wae g, -y
2”2 \1 Iy ) (Y14 A, T2 Y1ia = Y14

S

B*
1 2 3 _ 2\ .

By =—3 r1(‘2 ry rer) Yia & | tl1-nt 3] V1a

r3 rs 4

+(ry - r9) ¥y,

Beams Studied Using a Comstant L,

To more effectively study the effects of key parameters such as
the material constant R and plastic hinge length L2, a computer program
was written which calculates tip displacement, velocity and acceler-
ation, base moment and curvature, and the time rates of change of both
base moment and base curvature at various intervals of time until the
dynamic moment at the base equals the yield value. When the beam has
yielded at the base, a plastic hinge is inserted at time ty’ and again
the response variables calculated, including the moment at the elastic-
plastic interface. Realistic values for the base acceleration were

obtained from reference (1), Figure 11, page 110. The values used arc:

(;;) max = 100 g L 0.012 #secz/in
., 2
L. = 0.004 sec. Sll = S21 = 5000 fiin
_ 2
ty = 0.006 sec. 822 = 500 #in
L = L1 + L2 = 5 inches

R L Y e e A A CU IR
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Values of yield moment (247 in#) and yield curvature (.05 in_l) were

% gotten from reference (3).

N In Figures 12-16, the tip displacement versus time is shown for

A various values of R and L2. It was hoped that some of the respcuse
variables might be found to be relatively insensitive to hinge length
and that this would simplify desigp analysis. To date, it has been
found that hinge length is quite important. On each figure one example
curve is alse shown for R = 1 in which the hinge was inserted at t = 0.
The effect on prediction of maximum displacement is an error of 20%.

ié In Figures 17-20, the moment M2

plotted versus time. As soon as this moment reaches the yield moment

at the elastic-plastic interface is

the hinge would be extended if both beam segments were of the same
ko value. The main use for the curves at present is that they give an
analyst an idea of the rate of propogation of a hinge for various

K. values of L, and R.

Results Using a Variable L

2

The next step was to use a variable viscoplastic hinge length L2¢

For the present examples, L2 was incremented in 0.05 inch intervals,
The process was as follows. As in the previous examples, the moment
j at the support was monitored. As soon as it reached the yield moment
f, , My, a viscoplastic hinge 0.05 inches long was inserted. The mement M2
;2 f at the elastic-viscoplastic interxface would at that instant be slightly
§ { less than My. The timewise variation in M2 was then monitored and, as

soon as M2 = My, the hinge was leng“hened by .05 inches. This process

was continued to allow the hinge to develop as required by conditions
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i at the interface. The effect of the incrementing procedure and its

relation to convergence is being studied furzher.
E: In Figure 21, the effect on the tip displacement yl(t) of having

a variable hinge len,... L, is indicated for R = 0.1. The solution for

3 2
L2 a variable is compared with those previously discussed for L2 = 0.05,

i 0.25; and 0.50 inches. It can be seen that the variable hinge solution

S ! is very close to that for L2 = 0.50 inches. 1In Figure 22 a similar set
;» | of curves is shown for R = 1. Here the more exact variable hinge
¢z solution is closest to that for L2 = 0.25 inches.

?, In Figure 23 the variation of L2 with time is plotted for R = 0.1
‘f‘ f and 1. For R = 0.1, the hinge reaches its final length of 0.5 inches
igv f in a relatively short time. For R = 1, the hinge spreads less rapidly
>ii z and reaches a total length of 0.3 inches. It is interesting to note
3} ; that these total hinge lengths are approximately the same as the

5’ ) constant lengths whose solutions for y, on Figures 21 and 22 most

‘g : closely agreed with those for variable hinge length as discussed in

‘5 ; the previous paragraph. This may have some practical utility, since
.gh é it 1s easier to solve for response g & constant hinge length.

f? ; However, at present we have no way to predict the hinge length without
JE; ; carrying out the more exact solution,

 §§ The variation of moment M2 with time at the moving interface is

shown in Figure 24 for R = 0,1 and 1. For R = 0.1, the hinge develops

to its full length rapidly and then the interface moment begins to

i decreaga., For R = 1, a cyclic decrease and subsequent increase in
moment each time the length of the hinge is increment.ed is much more
pronounced, indicating that an increment length smaller than 0.05

5? inches should be used.
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Sumnary and Conclilusions

The purpose of this part of the report has been =0 present some
results from a computer program for the exact analysis of the visco-
plastic beam under shock. The displacements calculated using hinges
of constant length L2 and variable length L2 should be upper bounds,
“ecause elastic unloading and shortening of the hinge have not been
accounted for in the curves presented. The computer amalysis can
easily take these effects into account. Oxe of the final goals of this
theoretical study is to investagate the effects of yielding of supports
and fcundations on design shock spectra.

In the overall study of development of yielding and failure
criteria, the importance cf experimentzl data can not be over—
emphasized, The constitutive relaticnship postulated in Part 1i
accounting for dependence on cross—sectional shape of a beam needs to
be checked expe:rimentally, and modified, if necessary. Different
cross~sectional shapes of various practical materials need to be
investigated. In general, the ability to calculate using the digital
computer presently exceeds the amount of experimental data available

for guidance of analysis.

—
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