AFRPL-TR-72-88

AD 748417

NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS

VOLUME II: COMPUTER PROGRAM USER'S MANUAL

by

Jay N. Levine and F. E. C. Culick

TECHNICAL REPORT, AFRPL-TR-72-88 JULY 1972

ULTRASYSTEMS, INC. FORMERLY DYNAMIC SCIENCE 2400 Michelson Drive Irvine, California 92664

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED."

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield VA 22151

AIR FORCE ROCKET PROPULSION LABORATORY UNITED STATES AIR FORCE EDWARDS, CALIFORNIA "When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government .hereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

ACCESSION fo	f		
RTIS	¥ (** \$:***)	of	
5.0	Duli C. Hoa		
UMAN, TH SET	1		
JUSTI	ł		
SY CIŚLAIGETIO	N/AVAILACHLITY CO	DES	
Bist.	AVAIL. Saulus SPec		
$\overline{\mathbf{N}}$			

UNCLASSIFIED	. .		
Security Classification			
DOCU (Security classification of title, body of abstra	IMENI CONTROL DATA • R loct and indexing annotation must be	& D entered when i	he overall report is classified)
Ultrasystems, Inc. (Formerly Dy 2400 Michelson Drive	namic Science)	28. REPORT	SECURITY CLASSIFICATION Unclassified
Irvine, California 92664		<u> </u>	
NUMERICAL ANALYSIS OF NONLI METALIZED PROPELLANT SOLID R VOLUME I: ANALYSIS AND RESUL	NEAR LONGITUDINAL ROCKET MOTORS TS; VOLUME II: COMI	COMBUS	STION INSTABILITY IN OGRAM USER'S MANUA
	units)		
Jay N. Levine F. E. C. Culick			
REPORT DATE	70, TOTAL NO. 0	FPAGES	7b. NO. OF REFS
JULY 1972 CONTRACT OF GRANT NO	400 98. ORIGINATOR	S REPORT N	/U
F04611-71-C-0060	Technic AFRPL-	cal Repo TR-72-8	rt 8
s, so	92. OTHER REPO	RT NO(S) (An	y other numbers that may be assigned
UNTRIBUTION STATEMENT			
"Approved for public rele-	ase; distribution unlir	mited."	:TIVITY
"Approved for public rele-	ase; distribution unlir I? SPONSOBING Edward Edward	nited." MILITARY AC Is Air For Is, Califo	ce Base ornia
"Approved for public rele- "Approved for public rele- " SUPPLEMENTARY NOTES 3 ABSTRACT The primary objective of the surrest offer	ase; distribution unlin	nited."	ce Base ornia
"Approved for public rele "Approved for public rele "SUPPLEMENTARY NOTES "ABSTRACT The primary objective of the current effort longitudinal instability model, which wou for in a coupled manner. The two primary characteristics solution of the two phase lation of a transient burning rate. The tra- interesting development. It is based on a response model. The current method allo disturbance of arbitrary waveform, for all of the disturbance. The analysis also inc the first time, the nonlinear effects of vel chamber can be computed. The unstability achieves itself, begins me	ase; distribution unlin if sponsoring Edward Edward Edward t was the development and so id allow all of the various g r elements of the current insi flow in the combustion cham ansient burning rate analysis an extension of the most pop ws the calculation of propell time, including the period i cludes a model for velocity of locity coupling on the growth	nited." MILITARY AC IS Air For Is, Califor olution of a overning ph tability ana ber of the us presented whar, linear lant burning mediately coupled resp h of pressure	nonlinear analytical nonlinear analytical nenomena to be accounted lysis are a method of motor, and a coupled calcu- , herein, is a unique and r, harmonic combustion y response to a pressure following the initiation ponse. Therefore, for re waves in a combustion
"Approved for public rele "Approved for public rele "Approved for public rele "ABSTRACT The primary objective of the current effort longitudinal instability model, which wou for in a coupled manner. The two primary characteristics solution of the two phase lation of a transient burning rate. The tra interesting development. It is based on a response model. The current method allo disturbance of arbitrary waveform, for all of the disturbance. The analysis also ind the first time, the nonlinear effects of vel chamber can be computed. The instability solution, itself, begins w The flow in the combustion chamber is cal nozzle flow is found using the constant fr perturbed and the subsequent wave motior characteristics. The nature of the engine loss mechanisms in the ergine, which are and amount of particulate matter present, geometrical configuration of the motor.	ase; distribution unlin Edward Edward Edward Edward it was the development and so ild allow all of the various g elements of the current insi flow in the combustion cham ansient burning rate analysis an extension of the most pop ws the calculation of propell time, including the period i cludes a model for velocity of locity coupling on the growth ith the calculation of the stel culated by numerically inter factional lag approximation. In in the motor is calculated to e response is dependent upor e, in turn, a function of the the magnitude and shape of	mited."	nonlinear analytical nonlinear analytical nenomena to be accounted lysis are a method of motor, and a coupled calcu- , herein, is a unique and r, harmonic combustion r response to a pressure following the initiation ponse. Therefore, for re waves in a combustion wo-phase flow in the motor. equations of motion. The y state conditions are then , using the method of ction the various gain and burning response, the size disturbance and the
"Approved for public rele "Approved for public rele "ABSTRACT The primary objective of the current effort longitudinal instability model, which wou for in a coupled manner. The two primary characteristics solution of the two phase lation of a transient burning rate. The tra- interesting development. It is based on a response model. The current method allo disturbance of arbitrary waveform, for all of the disturbance. The analysis also ind the first time, the nonlinear effects of vel chamber can be computed. The instability solution, itself, begins w. The flow in the combustion chamber is cal nozzle flow is found using the constant fr perturbed and the subsequent wave motior characteristics. The nature of the engine loss mechanisms in the ergine, which ard and amount of particulate matter present, geometrical configuration of the motor. The instability model is currently subject perforated grain were considered. The ga particles in the gas stream were taken to quasi-steady.	ase; distribution unlin Edward Edward Edward Edward Edward Edward is sponsoning t was the development and so ild allow all of the various g veloments of the current insi- flow in the combustion cham- ansient burning rate analysis an extension of the most pop- ws the calculation of propell time, including the period i- cludes a model for velocity of locity coupling on the growth in the calculation of the ste- locity coupling on the ste- locity coupling on the ste- locity is dependent upor e, in turn, a function of the the magnitude and shape of to the following limitations is dynamic flow was assumed be of uniform size and inert	mited." MILITARY AC IS Air For Is, Califo olution of a loverning ph tability ana taber of the us presented wilar, linear lant burning mediately coupled resp h of pressur- teady state t grating the The steady the interar propellant I the initial . Only mot to be one	nonlinear analytical nonlinear analytical nenomena to be accounted lysis are a method of motor, and a coupled calcu- , herein, is a unique and r, harmonic combustion r response to a pressure following the initiation ponse. Therefore, for re waves in a combustion wo-phase flow in the motor. equations of motion. The y state conditions are then , using the method of ction the various gain and burning response, the size disturbance and the ors with cylindrically dimensional and the le flow is assumed to be
"Approved for public rele "Approved for public rele "ABSTRACT The primary objective of the current effort longitudinal instability model, which wou for in a coupled manner. The two primary characteristics solution of the two phase lation of a transient burning rate. The tri interesting development. It is based on a response model. The current method allo disturbance of arbitrary waveform, for all of the disturbance. The analysis also ind the first time, the nonlinear effects of vel chamber can be computed. The instability solution, itself, begins wi The flow in the combustion chamber is cal nozzle flow is found using the constant fr perturbed and the subsequent wave motior characteristics. The nature of the engine loss mechanisms in the ergine, which are and amount of particulate matter present, geometrical configuration of the motor. The instability model is currently subject perforated grain were considered. The ga particles in the gas stream were taken to quasi-steady. A series of instability solutions have been particle size, burning rate constants, and in an attempt to qualitatively assess the lithe behavior of the model is quite realisti	ase; distribution unlin if sponsoning Edward Edward Edward Edward id allow all of the various g relements of the current inst flow in the combustion cham an extension of the most pop with the calculation of propell time, including the period i cludes a model for velocity of locity coupling on the growth ith the calculation of the stelloulated by numerically inter- response is dependent upor e, in turn, a function of the the magnitude and shape of to the following limitations is dynamic flow was assumed be of uniform size and inert n calculated, and shape of to the following limitations is dynamic flow was assumed be of uniform size and inert n calculated, and shape of to the following limitations is dynamic flow was assumed be of uniform size and inert n calculated, and shape of the magnitude and shap	mited." MILITARY AC IS Air For IS, Califo olution of a overning ph tability ana- ber of the is presented ular, linear lant burning mediately coupled result to f pressult eady state t grating the The steady numerically the interact propellant I the initial . Only mot to be one- . The nozz of the main m and magn present movith data ha	nonlinear analytical nonlinear analytical nenomena to be accounted lysis are a method of motor, and a coupled calcu- , herein, is a unique and r, harmonic combustion y response to a pressure following the initiation ponse. Therefore, for re waves in a combustion wo-phase flow in the motor. equations of motion. The y state conditions are then , using the method of ction the various gain and burning response, the size disturbance and the le flow is assumed to be parameters such as nitude have been varied, del. From all appearances, ve been quite encouraging.
"Approved for public rele "Approved for public rele "ABSTRACT The primary objective of the current effort longitudinal instability model, which wou for in a coupled manner. The two primary characteristics solution of the two phase lation of a transient burning rate. The tra- interesting development. It is based on a response model. The current method allo disturbance of arbitrary waveform, for all of the disturbance. The analysis also in the first time, the nonlinear effects of ve chamber can be computed. The instability solution, itself, begins wi The flow in the combustion chamber is cal nozzle flow is found using the constant fr perturbed and the subsequent wave motion characteristics. The nature of the engine loss mechanisms in the ergine, which are and amount of particulate matter present, geometrical configuration of the motor. The instability model is currently subject perforated grain were considered. The ga particles in the gas stream were taken to quasi-steady. A series of instability solutions have been particle size, burning rate constants, and in an attempt to qualitatively assess the lite behavior of the model is quite realisti	ase; distribution unlin Edward Edward Edward Edward Edward is sponsoning edward is a stee development and so id allow all of the various g relements of the current inst flow in the combustion cham an extension of the most pop with the calculation of propell time, including the period i cludes a model for velocity of locity coupling on the growth ith the calculation of the stee locity coupling on the growth ith the calculation of the stee locity coupling on the growth ith the calculation of the stee locity coupling on the growth ith the motor is calculated is response is dependent upor e, in turn, a function of the the magnitude and shape of to the following limitations isdynamic flow was assumed be of uniform size and inert in calculated, and shape of initial dist is a wavefor behavior and solidity of the lic and limited comparisons w	nited." MILITARY AC IS Air For IS, Califor olution of a overning ph tability ana- aber of the is presented ular, linear lant burning mmediately coupled resp th of pressur- eady state t grating the The steady numerically the interar propellant I the initial . Only mot- to be one- . The nozz of the main m and magn present mo-	nonlinear analytical enomena to be accounted lysis are a method of motor, and a coupled calcu- , herein, is a unique and , harmonic combustion y response to a pressure following the initiation ponse. Therefore, for re waves in a combustion wo-phase flow in the motor. equations of motion. The y state conditions are then , using the method of ction the various gain and burning response, the size disturbance and the le flow is assumed to be parameters such as nitude have been varied, del. From all appearances, ve been quite encouraging.

والمراجع والمعاركة والمراجع والمراجع

	UNCLASSIFIED Security Classification	•- ·	•					
14.	KEY WORDS		LINI	K A	LIN	ĸŧ	LIN	кс
	· · · · · · · · · · · · · · · · · · ·		ROLE	WT	ROLE	WT	ROLE	WΤ
	Combustion instability							
	Solid propellant combustion							
	Nonlinear							
	Metalized propellant							
	Two phase flow							
	Velocity coupling							
	Transient burning rate							
	Oscillatory burning					1		
				·	1			
		1,		****			1	
		ib -		UNC		FIED		

1

And the party of the react burley and the second second

٩

ĩ

. . .

2

うちょうちょう こう 書 ゆうぶんと いいいせいせい

....

1

عن وحدها للاحدة بالاطرة أند كان ولاقتار للور الألاحدانية الانتخاص ولاحتار والمعالية والملاحدة والانتخاص

meden second in the

: . .

تعملاته مصيفك كدادات عشكما

NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS

VOLUME II: COMPUTER PROGRAM USER'S MANUAL

TECHNICAL REPORT, AFRPL-TR-72-88 JULY 1972 il ine

-14 Style & second

Prepared by: Jay N. Levine F. E. C. Culick

ULTRASYSTEMS, INC. FORMERLY DYNAMIC SCIENCE 2400 Michelson Drive Irvine, California 92664

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED."

AIR FORCE ROCKET PROPULSION LABORATORY UNITED STATES AIR FORCE EDWARDS, CALIFORNIA

FOREWORD

The present report is part of a two volume set which describes a nonlinear solid rocket motor instability analysis and computer program. Volume I contains the analytical basis for the computer program and a discussion of the results obtained to date: Volume II of the set describes the computer program and serves as a user's manual.

This investigation is entitled NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED PROPELLANT SOLID ROCKET MOTORS. The two volumes are additionally subtitled as follows:

> Volume I - Analysis and Results Volume II - Computer Program User's Manual

This investigation was sponsored by the

Air Force Rocket Propulsion Laboratory Director of Laboratories Edwards, California 93523 Air Force Systems Command, United States Air Force

under contract number F04611-71-C-0060 with Robert J. Schoner as technical monitor. Jay N. Levine of Ultrasystems (formerly Dynamic Science) was program manager.

This technical report has been reviewed and is approved.

Paul J. Daily, Lt. Col. USAF Chief, Technology Division

TABLE OF CONTENTS .

のないないないないないであるというないないないないないないないないです。

and the standard

623.30

والمنافعين عراقها عارج ودينا الاجار والراكم والمتالم المناول المالية المنافع المنافع المنافع المتراصل والمنافع والمنافع والمنافع والمنافع والمنافع والمنافع والمنافع المنافع والمنافع وال

مخصف كالمناصدة كالمناقية

سالات مكالا فكالالكا فقسما فحما لقمط كالإلا سأجرو

and the second states and the second s

The particular with the most show the

:

		Page_
	FOREWORD	•• ii
	NOMENCLATURE	iv
1.	INTRODUCTION,	1-1
2.	PROGRAM DESCRIPTION	2-1
3.	DICTIONARY OF CØMMØN VARIABLES	3-1
4.	DESCRIPTION OF PROGRAM INPUT,	4-1
5.	DESCRIPTION OF PROGRAM OUTPUT,	5-1
6.	SAMPLE CASE	6-1

NOMENCLATURE

a an the second

* ******

1

1

ź

وواجلتكم محصراهما وتقتصون تحكمه وملوثكم والماليان وال

la in

The second second

تعطيسك الكلكا اللامية للميكان مالحات القدارها المركز كمعاكدتك فالمساسف الماليات المالا محالا بالاحلاط سأمينا فلكا

and the second secon

CASE CAR

A	-	burning rate parameter, Eq. (4-14)
A _b	-	admittance function
A n	-	nozzle admittance function
a	-	gas only, sound speed
a _F	-	sound speed based on $P_F^{}$ and $T_F^{}$
В	-	burning rate parameter, Eq. (4-32) also, fractional lag parameter, Eq. (5-6)
B	-	burning rate parameter for velocity coupling
c	-	ratio of solid to gas specific heats, C_{p}/C_{p}
č	-	constant in steady state burning rate, Eq. (3-5)
CD	-	particle drag coefficient
Cr	-	erosive burning constant, Eq. (3-5)
Ċ_	-	see B1
C	-	specific heat of gas at constant pressure
ດ້	-	specific heat of solid particles
ເື	-	specific heat of gas at constant volume
c_1, c_2, c_3, c_4	2′_ 4	defined in Eq. (7-34)
D	-	port diameter
E	-	normalized surface activation energy, $E_w/R_o \overline{T}_w$ also, integral defined by Eq. (8-16)
Ew	-	activation energy of surface reaction
e	-	internal energy
F	-	particle-gas interaction force per unit volume, Eq. (3-8)
f	-	frequency also, as defined by Eq. (8-14)
G	-	defined by Eq. (7-8)
g	~	defined by Eq. (6-17)
H	-	defined by Eq. (4-20)
h	-	enthalpy
h ₁₁	-	defined by Eq. (8-12)
K	-	fractional lag constant, Eq. (5-3)
K'	-	chamber fractional lag constant, Eq.(7-44)
k	***	thermal conductivity, also complex wave number

k s	~	thermal conductivity of the solid particles
L	-	length of the grain, also fractional lag constant, Eq. (5-4)
L'	-	chamber fractional lag constant, Eq. (7-44)
l	-	perimeter of the grain
М	-	Mach number, also number of points on initial line
м _b	-	Mach number at burning surface
т. Ю	-	particle mass, also surface mass flux
Nu	-	Nusselt number
n	-	pressure exponent in steady state burning rate
n v	-	constant is, velocity coupled analysis, Eq. (4-75)
n ,		exponent $\mathcal{A}\mathbb{C}$ pressure dependence of surface reaction rate
P		pressure
Prof	-	reference pressure in standy state burning rate
P _p	-	chamber precsure
Pr	-	Prandtl number
p	-	pressure, also used for Laplace transform variable
P ₁₁	-	defined by Equation (8-10)
Q _f	-	heat release per unit mass
Q	-	particle-gas heat transfer rate per unit volume, Eq. (3-14)
Q _w	-	heat of reaction for processes at burning surface
q	-	see 1
R	-	gas constant, also normalized throat radius of curvature
Ro	-	universal gas constant
Rb	-	response function, Eq. (4-35)
Re	-	Reynolds number based on particle diameter and particle-gas relative velocity
RHS	-	right hand side of a characteristics compatibility relation
r	-	linear burning rate
s _b		area of burning surface
s		dimensionless Laplace transform variable, = $i\pi v/\tilde{r}^2$
T ·		temperature
T _F	-	adiabatic flame temperature
t	-	time
t _c	-	defined by Eq. (7-33)
u	-	axial velocity
u ₊	-	threshold velocity
Ŵ	-	defined by Equation (4-28)

And the state of t

·

٠.

iv

ب

ł

AN 188

.

-12

2 Kalow Lichim

میکمیتری <mark>میکند باری در می</mark>د میدامید اگراند میدورد و میکومیور در از میدورد در مارید میدورد و میدورد و میدود دولید میدود دولید میدود دولید میدود دولید میدود دولید میدود دولید. میدولید میدولید.

w	-	reaction rate divided by gas density
x	-	axial distance
α	-	growth constant
α _p	•••	particle damping constant
â	-	defined in Eq. (8-35)
81	-	particle to gas weight flow ratio
e2	-	ratio of particle to gas mass burning rates, w _p /w
v	-	ratio of gas specific heats, C_p/C_v
δ	-	a small increment in time
δ'	-	equal to t _c ^δ
ε ₁ ,ε ₂	~	convergence criteria for characteristics calculations, also used
		in velocity coupling analysis (Eq. 4-17)
и S		thermal diffusivity of the propellant
A		defined by Eq. (4-27)
λ	-	complex function of frequency, Eq. (4-8)
ц L	-	viscosity
₹ s		equals $\bar{r}_{X/\mu}_{s}$
с	-	density
ρ _F	-	density based on $P_{\overline{F}}$ and $T_{\overline{F}}$
°m	-	density of the metal oxide particles
¢ _s		density of the solid propellant
c	-	particle radius
°1' °2	-	defined by Eq. (4-62)
Ŧ	-	nondimensional time, $\bar{r}^{2}t/4\pi$, also used in Section 2 to denote period of oscillation
τv	-	characteristic relaxation time for particle velocity, Eq. (3-1)
тт	-	characteristic relaxation time for particle temperature, Eq. (3-1)
φ	-	defined by Eq. (5-10)
φ	-	phase angle
Ω	-	nondimensional frequency, Eq. (4-9)
ц,	-	mass burning rate, per unit length, per unit cross-sectional area, Eq. (3-4); also occasionally used for angular frequency

ĺ

.

Subscripts

ないないではないで、ためになっていたないです。

Levis Lander Iv

- e end of the propellant grain
- f flame
- g gas
- ℓ for the ℓ th mode of oscillation
- p particle
- o initial or stagnation value
- t at the nozzle throat
- w at the burning surface of the propellant

Superscripts

()*	-	in Sections 3, 5 and 6 only, denotes ε dimensional variable
()'	~	denotes fluctuation
()	-	in Section 4 denotes steady state variable, in Section 5 denotes an "equivalent" gas value, in Section 7 denotes an average quantity
() ⁺	-	pertaining to a right running characteristic
()-	-	pertaining to a left running characteristic
() ^(r)	-	real part of

and and the second second

Same States

مشير يتحقن المنكلان والمراجع فالمعالم المعالم

and the second state of the se

1. INTRODUCTION

This report describes and serves as a user's manual for a new nonlinear longitudinal solid rocket motor instability program. This program is capable of treating metallized propellants and considers both pressure and velocity coupled transient burning response.

The analysis, and assumptions, upon which this program is based, are discussed in Volume 1 of this report.

This volume contains a description of all of the subroutines and program functions used in the instability program. A dictionary of all of the variables contained in blank or labeled common is also included. Descriptions of the input required to operate the program, and the output generated, are presented; followed by a sample case which serves to illustrate the text, as well as providing a method for checking out the program. うちんち ちいんちんちかいし ちい

ประชาญชาญชาย รายสาร์และรวมสายของมีสาร์สมัยสารที่มีสามสายคองให้สำหนัง หมัยส

فأغط الكلائك ومعطات ومالاتصان ومالاتهما لاتعاما ولايا والمساعدة

2. PROGRAM DESCRIPTION

Functionally, the Nonlinear Longitudinal Solid Rocket Motor Instability Program can be considered to consist of two distinct sets of subroutines: those required to solve for the steady state flow in the chamber and nozzle; and those which solve the actual instability problem. All of the subroutines and program functions which, together, comprise the Instability Program, are briefly discussed, in alphabetical order, below:

SUBROUTINE AUXSUB

Part of the nest of routines for solving the steady state problem. This routine evaluates the derivatives in the differential equations

$$\frac{df_i}{dx} = g_i$$

by calling subroutine GFUNC to evaluate the

SUBROUTINE BVP (NEW TI, LEGS, AUXSUB, FDET, IREAD)

Subroutine BVP and its associated subroutines AUXSUB, FCALC, FDET, GFUNC, LEGS, NEWTI, and RKAM, constitute a general package for the solution of two point boundary value problems. This package is part of the Dynamic Science library of computer programs and detailed information on any of these subroutines is available on request.

Subroutine BVP is the overall control routine for this package. In the current usage, nominal values for all of the quantities usually input to BVP have been set. This allows the user to employ the program without becoming familiar with the whole complex BVP package. In order to provide some measure of flexibility, however, the option to modify several of the input parameters has been retained, through the IREAD option. (See the discussion in the description of input section).

FUNCTION CNUSELT (RE, PR, SM)

This function computes the Nusselt number as a function of Reynolds number (RE) and Prandte number (PR). SM in the calling sequence is not currently used.

SUBROUTINE DØPLØT

This routine calls subroutine MPLØTS to plot the pressure, velocity, particle velocity and burning rate perturbations versus axial distance.

FUNCTION DRAG (RE)

This function computes the particle drag coefficient as a function of Reynolds number (RE).

SUBROUTINE FCALC (AUXSUB, FDET)

Part of the nest of subroutines for solving the steady state two point boundary value problem. This subroutine controls the integration of the differential equations and the print out of the solution. (Controls the printing of the conserved quantities and their derivatives. The printout for the actual flow variables is controlled in Subroutine FLOVARS). The printout is controlled through the ITRIG and L'IR_iG parameters, as discussed in the description of input.

adeal in the standard states and a state of the states of the second states of the second states of the states

SUBROUTINE FDET

in co

Part of the nest of subroutines for solving the steady state two point boundary value problem. This subroutine calculates the difference between the mach number at the end of the grain as calculated by integrating the equations of motion and the mach number calculated from the fractional lag nozzle solution. and then prints out the result.

SUBROUTINE FLOVARS

This subroutine solves for the flow variables themselves (U, T, P, U_p , T_p , p_p from the conserved quantities, as required by the steady state solution package.

The flow variables are also stored according to the mesh size used in the characteristics solution. (The variables are stored every NTRIG-th step). These variables are then printed out, and some are later modified in Subroutine LINEX.

The steady state solution is achieved by integrating the chamber pressure until the mach number at the end of the grain matches that calculated in Subroutine STEDYST. The flow variables at the end of each iteration are printed out.

FUNCTION FORCE (R, RP, U, UP, T, TP, PF)

This function computes the drag force between the particles and gas as a function of local gas and particle properties.

なたちとうないたちないです。

SUBROUTINE FPT (I, J, KP)

This subroutine solves the field point unit process which makes up the bulk of the method of characteristics solution. The arguments I, J, KP correspond to points 1, 2 and 3, respectively, in the analytical description of the field point solution.

The subroutine faithfully follows the analytical description and except for the following points, does not require further discussion.

The total burning rate at point 3 (W3) is found by extrapolating from the last time a transient burning rate calculation was made (TIMTB(NK)), using the burn rate derivatives (DWD^m). Linear interpolation is used to obtain the burning rate at X locations between those at which the burn rate is found directly.

In the solution for the particle density at point 3 (RHOP3) it was convenient to drop the area terms at this time. In the future, if variable area ports are considered, this portion of the program will have to be modified.

SUBROUTINE FRAKLAG (E, GBAR)

This subroutine calculates a fractional lag solution for the nozzle. In doing so it establishes compatible values of K (the fractional lag parameter and GBAR (the isentropic exponent of the equivalent ideal gas). The parameter E, which relates the actual gas mach number to the equivalent gas mach number, is also calculated. At the conclusion of the subroutine the results of the fractional lag solution are printed out.

人というなななからないのないのという

SUBROUTINE GFUNCT (XXI, F, G, PF)

This subroutine is part of the set of steady state routines and it evaluates the derivatives in the differential equations (see subroutine AUXSUB). The variable XXI is the local value of X at which the derivatives are to be evaluated.

FUNCTION HEAT (U, UP, R RP, T, TP, PF)

This program function calculates the heat transfer between the particles and gas as a function of gas and particle properties.

SUBROUTINE INPUT

This subroutine performs the following functions:

- 1. Zeroes COMMON/CHAR/
- Sets nominal values for some of the \$DATA input variables and some other constants.
- 3. Reads Title Card.
- 4. Reads \$ DATA Input
- 5. Calculates additional initial values
- 6. Writes out the \$ DATA input quantities
- 7. Changes the units of various quantities from those input to those used internally, as follows:

Nondimensional areas at the end of the grain and throat are calculated from the input diameters.

$$\Lambda_{e} = \frac{\pi D_{p}^{2}}{4L^{2}}$$
$$A_{t} = \frac{\pi D_{t}^{2}}{4L^{2}}$$

L is changed from inches to feet

^Pf. is changed from psi to psf

 $\rho_{\rm S}$ is changed from g/cc to lb sec²/ft⁴ (slugs)

 $o_{\rm m}$ is changed from g/cc to lb sec²/ft⁴ (slugs)

 σ the particle radius in feet is calculated from the input particle diameter in in microns, by multiplying it by $\frac{3.2808}{2} \times 10^{-6}$

C is converted to feet/sec and then divided by the reference pressure (in psf) to the n th power.

$$C_{p}$$
 is changed from $\frac{BTU}{Ib_{o_{R}}}$ to $\frac{ft^{2}}{sec^{2}o_{R}}$

x is changed from
$$\frac{cm^2}{sec}$$
 to $\frac{ft^2}{sec}$

SUBROUTINE INT

This subroutine is the master control routine for the instabi' y solution.

First various initial quantities and counters are set. The initial data as computed in subroutine LINEX is then printed out, and if called for, it is stored for plotting at a later time.

A cycle of the characteristics solution is then computed in two sweeps by repetitively calling subroutine FPT. The characteristics are tested for crossing. If crossing occurs, the solution is terminated. The characteristics cycle is then completed by calling the left hand and right hand boundary point routines,

1200 . 5. S. 404 355 2

LHB and RHB, respectively.

and a finance of the second contraction of the second statement of the second second

At the end of each of the above cycles the mesh point having the smallest value of time (not counting the right hand boundary point) is identified. Sub-routine INTERP is then called to interpolate the results back into a rectilinear mesh, at the original x locations and time = t min.

Every NBCALC characteristics cycles, a new transient burning rate calculation is obtained. After calling subroutine TRBRNA to update counters, subroutine TRBURN is called to calculate the burning rate perturbations at each of the points called for. Burning rate solutions are obtained only for every NTB th point on the initial line. The burning rate derivatives are then calculated by simple first order differencing and the mass burning rate at each location is found by adding the perturbation to the initial value. The burning rate at those points where it is not directly calculated, is then found by linear interpolation.

At this point the solution is then printed out every NPRNT characteristics cycles. The pointers K and L, used to direct storage for subroutines FPT, LHB and RHB, are then shifted back to their original values in preparation for the next cycle.

Before the next cycle is begun, however, several tests and/or operations are performed. If the last calculation carried the solution past the next plot time, the variables of interest are stored for plotting. If the number of times this information has been stored (JPLØT) is equal to the maximum specified (NPLTF), subroutine DØPLØT is called and the stored information is plotted (NPLTF curves to each graph).

In order to reduce the storage required to compute the burning response over many cycles part of the past history is dropped, periodically. After NINT burn rate calculations have been performed the burning rate perturbation is calculated as the sum of two parts (see subroutine TRBURN). The first part due to a disturbance starting at t = 0 and ending at the time corresponding to the NINT th calculation (^tNINT) the second part due to a pressure and/or velocity disturbance which originates at ^tNINT. After 2 * NINT calculations the effect of the disturbances during the first interval, up to ^tNINT, is dropped completely (it should have become negligible if NINT has been chosen large enough). This process is accomplished by storing

A CANTER SAME TO SAME A SAME A CANTER A SAME A S

the second interval disturbances (PTB2 and VTB2) and their corresponding burn rate perturbations (EMTB2 and EMTBV2) over their respective first interval values. The storage for the time vector, TIMTB and time interval array, DTIM, is also shifted, and the counter NCYC is reset to NINT (it was 2 * NINT). The values of the running integrals (RUNI etc.) are also reset. This process is then replaced every additional NINT cycles. Hence, if desired, large times can be reached without running out of storage.

Before the storage shifts are effected pertinent variables from the first interval are printed out before the information is lost. (Future modification could allow this information to be saved on tape, disk or drum files).

After the above portion of the routine the current time is compared to TMAX. If TMAX has not been reached the whole integration procedure is repeated egain. If TMAA has been reached the program checks to see if any plots versus axial distance have been stored and not plotted. If so, $D \oslash PL \oslash T$ is called. Additionally, if e^{-in} NINT burn rate calculations have been made when TMAX is reached PTB1 of the plotted versus TIM TB at x = 0 and x = 1. If velocity coupling is being considered VTB1 and EMTBV1 are then plotted versus TIM TB at several different x locations.

SUBROUTINE INTERP

After each cycle of the characteristics solution is completed this subroutine interpolates within the characteristics mesh to obtain a set of points at the original x locations on the initial line, all at the same time (TMIN).

As a result of the mesh geometry and the velocity at the end of the grain, the right hand boundary point always occurs at a time somewhat less that all of the other characteristics intersections. The routine, therefore, extrapolates (linearly) to establish a right hand boundary values at TMIN.

Linear interpolation is then used to find values for the variables of interest at each of the original x locations. At this stage each of the points will, in general, be at a different time. Another linear interpolation is then performed to obtain a series of points, all at TMIN.

SUBROUTINE ITER (FI, XI, XNEW, NOO)

This subroutine finds the root of an equation by the secant method.

の方というないないと言いいういったというないがです。

の一般のないであるというできょう。それでいたので、このできたので、ためであるというできょう。

こうちょう たいかいたい しょうかい たいしょう

SUBROUTINE LEGS

This subroutine is part of the set of steady state routines. It is a general matrix inversion routine and called from subroutine NEWTI to aid in calculating the next guess for the chamber pressure, PF.

SUBROUTINE LHB

This subroutine is part of the method of characteristics solution and solves for points on the left hand boundary x = o. It follows the analytical description of the solution faithfully, and as such, does not require detailed discussion. (See subroutine FPT for some additional comments).

SUBROUTINE LINEX

alar her i den her her her som her som her her her her som her

This subroutine performs additional computations required before the characteristics solution can be initiated, as follows:

1. If NSET = 1, the steady state solution is bypassed and uniform initial conditions with no mean flow are set up in subroutine LINEX. This option is used only under special circumstances when the program is being applied to something other than a solid rocket motor.

2. The steady state solution, calculated previously, is modified by the addition of a pressure and/or a velocity perturbation. Currently, the initial perturbations are of the form

 $P = P_{0} + \partial P \cos(\pi x)$ $v = v_{0} + \partial v \sin(\pi x)$

P and P are normalized by the chamber pressure, PF; while v and w are normalized by the chamber sound speed, AF. In the future, the program should be modified to allow a choice between several types of initial perturbations; or the perturbation calculation could be made into a Program function, so as to be easily modifiable.

The initial gas temperature and density are modified isentropically, to reflect the initial pressure change. The initial particle relocity, temperature and density are surrently not perturbed. 3. The next portion of the subroutine performs a series of initial calculations required for the transient burning rate calculation. First, blank common is zeroed. The transient burning rate parameters A, B and B_v are then tested to see if they are compatible with the constraint

$$\Lambda < \frac{B+1}{(B-1)}$$

If not, the solution is terminated. The remainder of the routine either calculates initial values of quantities at t = 0, or quantities which need only be calculated once.

PROGRAM MAIN

The main program calls:

Subroutine: Input to read in and process the input data; Subroutine: STEDYST to solve for the steady state solution; Subroutine: LINEX to prepare the initial line data and, Subroutine: INT to carry out the method of characteristic solution.

SUBROUTINE MPLØTS

This subroutine is a general CALCOMP plot routine and is used as follows: CALL MPLØTS (X, Y, N, M, NØ, LEN, TITLX, TITLY, HEAD, NX, NY, NH, FAC, LABL) where كمكلات ليتخال والمحاط فتقطع متوالته والتقطيم

X	8	vector or doubly dimensioned array (N x 1 minimum) of independent variables (see M for usage)				
Y	=	doubly dimensioned array of the dependent variables to be plotted. (N x NØ minimum)				
N	=	actual dimensioned length of the columns for the X and Y arrays. N <u>must</u> be at least 2 cells longer than the used dimensions of the X and Y arrays.				
M	=	a flag such that if				
		M > 0	there is an X vector corresponding to each Y vector curve, i.e., the $Y(l,J)$ vector would be plotted versus the $X(l,J)$ vector.			
		M < 0	there is only one X vector corresponding to all of the $Y(1, J)$ curves.			
		M = 0	same as M >0 except no legends will be plotted out.			
		$ \mathbf{M} = 1$	<pre>legends will be plotted out with LABL(1) = Hollerith header LABL(J) = numerical value corresponding to the J-1 curve</pre>			
		M = 2	legends will be plotted out with LABL(I) = Hollerith name for the Ith curve			

		1.1.	
		M = 3	no legends will be plotted out
		M = 10,20 or 30	same as $[M] = 1, 2$, or 3 except that a border will be put on the plot frame
NØ	=	number of curve	es to be plotted per frame
LEN (I)	=	a vector of leng curve (i.e., nu column of the Y	oth NO containing the length of the Ith mber of data points stored in the Ith ((J,I) array).
TITLX(I)	=	a vector contai	ning the Hollerith label for the X-axis.
TITLY(I)	=	a vector contai	ning the Hollerith label for the Y-axis.
HEAD (I)	=	a vector contai heading.	ning the Hollerith label for the master
NX	=	number of chara	acters in the X-axis label.
NY	=	number of chara	acters in the Y-axis label.
NH	=	number of chara	acters in the master heading labcl.
FAC	=	the factor by w will produce a size.	hich the plot will be scaled. FAC = .8 plot compatible with an 8 $1/2 \times 11$ page
LAB L (I)	=	vector containi numerical data	ng either Hollerith and/or floating point (see M-description).

Common Linkage

In addition to the calling sequence, a labeled common area exists through which the user can exercise additional control over the plots. The label common area is

CØMMØN/RRIL/AXL, AYL, HT, ISYM, INC, LNTYP, NLPC, NDEC

where

AXL	=	10.0	lenght of the X-axis
AYL	=	8.0	lenght of the Y-axis
HT	=	<u>.14</u>	character height for header labels
ISYM	=	<u>4</u>	ISYM+1 is the number for the starting symbol on the graphs
INC	=	<u>1</u>	increment at which data points within a vector will be plotted.
I.N TY	P =	1	see the CALCØMP write up for subroutine LINE for the usage of this variable
NLPC	;=	<u>4</u>	number of curve legends per column
NDEL) =	<u>5</u>	used when $M = 1$ or 10. Controls the number of digits to the right of the decimal point on the values used in the legends.

Note: The values underlined are the nominal values and have been set via DATA STATEMENTS. Therefore in order to change these values, you should use an execute statement in your program.

SUBROUTINE NEW'II

This subroutine is part of the next of subroutines for solving the steady state two point boundary value problem. It uses Newton's method to generate new guesses for those initial values which must established in order to satisfy the boundary condition(s). In the current application, NEWT1 generates guesses for the chamber pressure, PF, until the mach number at the end of the grain matches that calculated from a fractional lag nozzle solution.

SUBROUTINE PHIF

This subroutine is called from subroutine FRAKLAG and is used in conjunction with subroutine ITER to insure that the calculated values of K and GBAR ($\overline{\gamma}$) are compatible.

If $\gamma = \overline{\gamma}$ there are no particles, and the flag KTEST is set equal to 1. This flag is used elsewhere in the program to determine which calculations may be skipped when there are no particles.

SUBROUTINE PRNT

This subroutine prints out the initial line, as well as the solution.

^o After each NPRNT cycles of the characteristics calculation.

° At each time when the variables are stored for plotting.

° At the final time.

The header card containing case information is printed at the top of each page.

FUNCTION RATE (PF, RI, UI, TI, G, A)

This function computes the steady state mass burning rate, $\overline{\omega}$, in nondimensional form.

SUBROUTINE RHB

国際は国家が現代的な影子が見たいたちでも代われ

たいとうないないないないないであっていたので、このとうないないできるいないないないないできると

This subroutine is part of the method of characteristics solution and solves for points on the right hand boundary x = 1. It follows the analytical descrotion of the solution faithfully, and does not require detailed discussion. (See subroutine FPT for some additional comments).

FUNCTION RHS (FG, A, RHO, RHOP, U, UP, T, TP, W, DTIM, X)

This function is called by FPT, RHB and LHB to evaluate the right hand sides of the compatibility relations for both the momentum and energy equations.

The parameter FG is used to control which characteristics line is being considered, as shown below:

- FG = -1 Right running characteristic
- FG = 1 Left running characteristic
- FG = 2 Energy equation along gas streamline

This subroutine is part of the set of subroutines which solves the steady state two point boundary value problem. RKAM is a general subroutine for integrating simultaneous ordinary differential equations. It allows a choice between the Adams-Moulton and 4th Order Runge-Kutta methods. In the present program the Adams-Moulton method is used to integrate the six simultaneous differential equations which describe the steady state flow in the chamber.

LEAVING STREET ALLESSING ALLESSING

SUBROUTINE SCAL

たいたたいがたたいだとしたからないたいないないがしたとうとうです。

Subroutine SCAL is used in conjunction with the plot subroutine MPLOTS. It is used to optimize the selection of a plot scale.

SUBROUTINE STEDYST

This subroutine does the following:

- 1. Call subroutine FRAKLAG to find the fractional lag nozzle solution.
- Solves a transcedental equation to find the mach number at the end of the grain as a function of port to throat area ratio. (Uses the results of the fractional lag solution).
- 3. Sets the boundary values at x = 0 for each of the six variables FI(1) ... FI(6).

4. Calculates <u>chamber</u> fractional lag parameters, AK and AL. These parameters are used to obtain an approximate solution for the particle flow in the chamber when the flow is near dynamic equilibirum, and hence is subject to numerical difficulties when treated in the regular manner.

5. Subroutine BVP (which is actually a nest of subroutines) is called to solve for the steady state flow conditions in the chamber.

SUBROUTINE TFUNC

an 177 and a barran water a ban of a barra ba

This subroutine computes gas viscosity as a function of temperature. The relationship currently contained in the program is actually Sutherland's law for air. This functional relationship should be changed to more accurately reflect the viscosity of the gas mixtures found in solid rocket motors.

SUBROUTINE TRBRNA(TMIN)

Each time a new set of transient burning rate calculations is to be made this subroutine: updates the required counters; stores the current time in the TIMTB array; calculates the size of the latest interval, DELTA, and stores it in the DTIM array. The TEM(I) array used in the trapezoidal integration procedure, is also calculated.

SUBROUTINE TRBURN (IK)

This subroutine calculates the transient burning rate response at the IK th x location.

The subroutine is actually divided into two distinct parts. Each part is structured identically: the first part calculates pressure coupled response; if KPRES $\neq 0$; the second part calculates velocity coupled response, if KVEL $\neq 0$.

THE REPORT OF A DESCRIPTION OF A DESCRIPTION

Each of these parts is further divided into subsections. When MCYC < NINT the burning rate is calculated normally as a function of a single pressure (PTB1) and/or velocity (VTB1) perturbation.

 $\frac{MCYC < NINT}{(only pressure coupling is illustrated)}$

When MCYC is between NINT and 2 NINT the burning rate is calculated as the sum of the response to two perturbations, as shown below.

shit season ten samblanakan

2-18

--

ACREAL MADE - 1

In an effort to minimize the computation time associated with the calculation of the burning rate, the numerical evaluation of the quadratures* is broken into two parts. The integrals in which τ is a parameter must be evaluated from t = 0 to $t = t_{min} - \delta$, each time (unless part of the past history has been dropped (see subroutine INT). These integrals are calculated using the Trapezoidal Rule. The integrals involving ξ only can be evaluated in a running manner; the contribution from each successive interval being added to the sum of the previous ones (RUNI, RUNVI etc.).

ንም እንዲሆኑ በብዙ የሚሰር የሆኑ የሚሰር የስም የሚሰር የሆኑ የሚሰር የሆነ የአስት በርስ የሰው የሚሰር የሆኑ የሆኑ የሚሰር የሆኑ የሚሰር የሆኑ የሚሰር የሆኑ የሚሰር የሆኑ

FUNCTION VPERT (ARG1, ARG2)

The calculation of the velocity coupled transient burn rate perturbation required the following expression to be evaluated

$$v_1(lul - u_t) - v_2(\bar{u} - u_t)$$

With ARG1 = lul and ARG2 = u_t the first part of this expression is evaluated. ARG1 = \bar{u}_0 and ARG2 = u_t yields the latter part of the expression.

See Equation (4-68) in volume 1.

3. DICTIONARY OF COMMON VARIABLES

All of the variables which appear in Common* (blank or labeled) are defined in this section. Blank Common is considered first, followed by the labeled Commons in alphabetical order.

COMMON	NAME	MATH. SYM.	DESCRIPTION
BLANK	PTB1(I,J)	$\left(\frac{p}{p}\right)_{1}$	first pressure perturbation
	PTB2(I,J)	(<u>P'</u>) P2	second pressure perturbation
	EMTB1(I,J)	$\left(\frac{m}{m}\right)_{1}$	burning rate response to first pressure perturbation
	EMTB2(I,J)		burning rate response to second pressure perturbation
	TIMTB(I)		time of Ith set of burning rate calculations
	DTIM (I)	Δt	TIMTB(I) - TIMTB(I-1)
	TEM (I)		multiplier used in calculating burning rate integrals
	EMTB(I,J)		total burning rate perturbation, J=l next to last time, J=2 current time
	MTB		total number of X locations at which transient burn rate is calculated
	DXTB		distance between locations at which transient burn rate is calculated
	TCØN(I)	$\overline{r}^2/4x$	
	VTB1(I,J)	$[e_1 (v - v_t) - e_2 (\bar{v})]$	- U _t)] ₁ first velocity perturbation
	VTB2(I,J)	$[\boldsymbol{\varepsilon}_1 (\boldsymbol{U} - \boldsymbol{U}_t) - \boldsymbol{\varepsilon}_2 (\boldsymbol{\bar{U}})$	- U _t)] ₂ second velocity perturbation
	EMTBV1(I,J)	$\left(\frac{m'v}{m}\right)_{1}$	burning rate response to first velocity perturbation
	EMTBV2(I,J)	(<u>m'v</u>) m 2	burning rate response to second velocity perturbation

متلغانة الاندار أوجارها هارسا

いたりないので、「ない」のないないので、「ない」の

「おうちょうちょう」 たんないたいたい ちゅうしゃ にんたいないちょう たいちがたいちょう ちゅう

and and the start areas and references

*With the exception of some common blocks used entirely within the confines of the BVP rest of subroutines for solving the steady state two point boundary value problem.

3-1

والمعالية ومكرف والمعارية والمعارية والمكركين

<u>COMMON</u>	NAME	MATH SYM.	DESCRIPTION
BLANK	C1(I), C2(I), C3(I), C4(J)		constants in pressure coupled burning rate integral
	CV1(I), CV2(I), CV3(I), CV4(I)		constants in velocity coupled burning rate integral
	RUN 1 (I)		part of pressure coupled burning rate response integral that is evaluated in running manner
	RUN2(1)		see RUN1 but for second pressure disturbance
	RUNVI (I)		part of velocity coupled burning rate response integral that is evaluated in running manner
	RUN V2 (I)		see RUNV1 but for second velocity disturbance
	DWDT (I)	d <u>u</u> dt	time derivative of burning rate

ACE This common contains all of the quantities which can be input to the steady state solution package (subroutine BVP). Those of interest in the current program are discussed in the description of input.

BNDS	ĸ	storage pointer in characteristics solution
	L, ELL	storage pointer in characteristics solution
	NS1	set equal to 1
	NE1	sct equal to N
	NS2	set equal to 2
	NE2	set equal to N
	FLAG	not used
	Ν	M-1
	Μ	number of axial locations in characteristics mesh

COMMON	NAME	MATH SYM,	DESCRIPTION
CHAR	TIM (I , J)	t	time
	X(I,J)	x	axial distance
	U(I,J)	U	velocity point
	UP(I,J)	Up	particle velocity
	T(I,J)	Т	temperature
	TP(I, J)	Тр	particle temperature
	RHØ(I,J)	0	density
	RHØP(I,J)	0 ₀	particle density
	P(I, J)	P	pressure
	W(I,J)	ω	mass burning rate
	WP(I, J)	မ	particle mass burning rate
	A(I,J,ADUM(I,J)	a	sound speed
មា.៧ន	TIT	**	•
2 22 Y/ L/	01	U	velocity
	UIP	Up	narticle volocity

UIUvelocityUIPUpparticle velocityRHØIodensityRHØIP ρ_p particle densityTITtemperatureTIPTpparticle temperature

FPLØT

TPLØT(I)

NFL TF

HEADER(I)

maximum number of plots that can be drawn on one curve What I to a fifth . I be a destablic weather the states is the

althe start and a second structure of the barreness of the second start of the second second structure of the second se

ð,

plot times (see input descrip.)

contains case title (see input descrip.)

COMMON	NAME	MATH SYM.	DESCRIPTION
FRAK	MEB	M _e	mach number of equivalent and
	Е	E	relates \overline{M}_{e} to M_{e}
FSTART	FI(6)	f _i	vector of steady state variable
	PF	P _f	chamber pressure (psf)
JAG	МСҮС МК		number of times transient burn- ing rate has been calculated
	NCYC		number of cycles over which burning rate integral must be integrated
	NK		NCYC + 1
	NKM2		NK - 2
	NCICZ		NCYC - NINT
	NK2M2		NCYC2 + 1
	JK		indicates which x location is
	DELTA		time interval between current and last burning rate solution
	SQDEL	•	1 solution
	NPRNT, UTH, N KPRES, CNV, BV	INT, KVEL, , DPV	see description of input

Ē

COMMON	NAME	MATH SYM.	DESCRIPTION
LBDRY	XIO		head end, $x = 0$
	UI 0		velocity at $x = 0$
	UIP0		particle velocity at $x = 0$
	RHØI0		density at $x = 0$
	RHØIP0		particle density at $x = 0$
	TIO		temperature at $x = 0$
	TIPO		particle temperature at $x = 0$
	UCØN1		not used
MARKE T MATCH	DP , NSET ME	M	see Description of Input mach number at the end of the
MAX	TMAX, MAXIT		grain see Description of Input
MIZ	LCYC		number of complete characteristics
		3-5	cycles computed

and a transferration of the second states of the

en anterna l

j.

COMMON	<u>NAME</u>	MATH SYM.	DESCRIPTION
NTERP	All of these of the secon	arrays contain the quar d characteristics swee	ntities calculated at the end p, but before interpolation
	TIMT(I)		time
	XI(I)		axial distance
	UT(I)		velocity
	UPT(I)		particle velocity
	TT (I)		temperature
	TPT(I)		particle temperature
	RHØPT(I)		density
	PT(I)		pressure
	WT(I)		mass burning rate
	TMIN		time at the end of the last characteristics cycle

A Development of the Second second

areas barre

والمتعادية والمتحافظ والمحافظ والمعالية والمتعادية والمحافظ والمعالي والمعالية والمعالية والمعالية والمعالية والمعالية

PLØTQ	XPLØT(I,J)		axial distance
	PPLØT(I,J)	$P-\overline{P}$	pressure perturbation
	UPLØT(I,J)	ប-ប៊	velocity perturbation
	UPPLØT(I,J)	Up-Up	particle velocity perturbation
	WPLØT(I,J)	w-W	mass burning rate perturbation
	LEN (I)		number of points stored for plotting
	XLABL(I)		see subroutine MPLØTS
	NH		number of Hollerith characters in Header Title
	JPLØT		number of curves stored for plot- ting on each graph

COMMON	NAME	MATH SYM.	DESCRIPTION
PRØX	AK	K	velocity fractional lag parameter in chamber
	AL	L	temperature fractional lag parameter in chamber
PRS	PFE	₽ _f	chamber pressure (psf)
RRIL	see subroutine	MPLØTS description	
TESTING	KTEST		KTEST = 1 if there are no par- ticles
TØL	EPS1, EPS2	• ₁ ,• ₂	convergence criteria for char- acteristics solution
TZERØ	PZERØ(I) UZERØ(I) UPZERØ(I) WZERØ(I)	$\vec{P} + P'_t = 0$ $\vec{U} + U'_t = 0$ \vec{U}_p \vec{W}	perturbed pressure at $t = 0$ perturbed velocity at $t = 0$ particle velocity at $t = 0$ burning rate at $t = 0$
		3-7	

10 A 10 A 10 A

ş

AND TRANSPORT

COMMON	NAME	MATH SYM.	DESCRIPTION	
VARS	see Descri	iption of Input		
ZIN	IREAD see	Description of Input		

É.

135 1725

91.74%

X 1. 60

State of the second state of the

100

uccher and a second second is

いたかいたい

いたはないのとうないできょうのないのない

4. DESCRIPTION OF PROGRAM INPUT

Program input for the instability program consists of two distinct groups. The first set of input controls the instability solution, while the second set controls the steady state solution which provides initial conditions for the instability solution. Many of the input quantities have been assigned preset nominal values; these quantities need be input only if it is desired to alter the preset value. Nominal values are indicated where applicable. In many cases, the second set of input can be eliminated completely, since nominal values have been preset for all of these quantities (see discussion of IREAD, below).

4.1 Instability Program Input

The first card of this set contains the case title in columns 1-70. This title will appear at the top of each page of output and on each computer plot. The input, itself, follows the title card, and follows the standard NAMELIST format. The first card of this set must contain \$DATA starting in column 2. The last card must contain \$END starting in column 2.

The input variables in the DATA namelist are described below in functional sub-groups.

Engine Geometry

DPØ RT	Chamber port diameter, D _p , in inches.
DTHRØT	Nozzle throat diameter, D ₊ , in inches.
L	Length of the grain, L, in inches.
RC	Nondimensional throat radius of curvature, R, R _c /r _t . (Nominal value = 1.0).
SK	Area = SK(X-1) + Ae, currently only SK=0 (constant area) should be used.

Steady State Burning Rate Constants

जन **र्**ष्ट्रम् एक

~~<u>~</u>~~

The steady state burning	rate is specified as $\vec{r} = \widetilde{C}(P/P_{rof})^n(1+C_{1,u})$
CTILDA	Constant in burning rate expression C in face
CK	Erosive burning constant, C, , sec/ft
CN	Pressure exponent, n.
PREF	Normalizing pressure, psia (nominal value = 500)

<u>Gas Constants</u>

CP	Gas specific heat, Cp, Btu/lb ^O R.
Gamma	Gas isentropic exponent,
Pr	Prandtl number, Pr, (Nominal value = 1.0).
TF	Adiabatic flame temperature, T _F , ^O R.

Statistics Statistics

C.K. Links

XXX XXX

Propellant Constants

RHØS	Density of the solid propellant, te, g/cc.
RHØM	Density of the metal oxide, r_m , g/cc (Nominal value = 4).
СКАРА	Thermal diffusivity of the propellant, K_s , cm ² /sec.
PDIA	Particle diameter in microns.
A	Transient burning rate parameter.
В	Transient burning rate parameter.
B _v	Velocity coupling transient burn rate parameter (currently set equal to B in Subrouting Input).
С	Ratio of particle to cas specific heats, C _s /C _p .
CNV	Velocity coupling transient burn rate parameter (currently set equal to CN in Subroutine Input).

BETAL	Particle to gas weight flow ratio, B_1 . (To run a case with no particles requires only that B_1 be set equal to zero).
UTH	Threshold velocity to erosive burning response (Nominal value = 0).
Program Constants	·
Н	Integration step size for steady state solution (Nominal value = .01).
IM	Total number of points at which steady solution is obtained, = $1/H+1$ (Nominal value = 101).
EPS1	Convergence criteria for ρ_3 and a_3 , ϵ_1 . (Nominal value = 1 x 10-5).
EPS2	Convergence criteria for ρ_{P_3} , ϵ_2 . (Nominal value = 1 x 10-5).
TMAX	Final value of time. Computation ceases when $t > T_{max}$. (Nominal value = 0.1). Currently the value of TMAX must be selected such that not more than 500 of the character- istics calculation cycles (not wave cycles) will be computed. In the nondimensional coordinate system used, the time increment for one computation cycle is approximately equal to the distance between points on the initial line. For this reason the total compu- tation time goes up with the square of the number of points on the initial line.
PFO	Initial guess for chamber pressure, psia.
DP	Magnitude of the initial pressure pulse, $\Delta P/P_F$.
DPV	Magnitude of the initial velocity pulse, ∆U⁄a _f . (Nominal value = 0).
Flags and Counters	
NPRNT	Solution is printed every NPRNT-th cəlcula- tional cycle, (Nominal value = 10).
MAXIT	Maximum number of iterations allowed for the characteristics solution at a given point. The solution continues, even if it has not converged. : Iominal value = 3).

NSET	Provides an option for bypassing the steady state solution. NSET = 0 is the nominal value, and a steady state solution is obtained. NSET = 1 provides for the generation of uniform initial conditions. This option <u>should not</u> be used. It was set up specifically for some check out runs and is not now currently operational.
IREAD	This flag determines whether the $\$INPUT$ NAMELIST SET must be included in the input deck. If IREAD = 1 (Nominal value), the \$INPUT Namelist data is not required and no attempt will be made to read it. The nominal value specified for each of the quantities is used by the program. Use IREAD = 0, if it is desired to change one or more of the $\$INPUT$ nominal values. With IREAD = 0, the $\$INPUT$ is read, in Subroutine BVP.
NPLTF	Sets the maximum number of curves that will be drawn on one computer plot. (Nominal value = 4, can be set less than 4, but not higher, unless the necessary array dimensions are increased).
NTRIG	The steady state solution at every NTRIG-th point is stored for use on the initial line for the method of characteristics. The maximum total number of points allowed on the initial line is 200. The number of points on the initial line is given by $M = 1+IM/NTRIG$, done in integer arithmetic. NTRIG has been assigned a nominal value of 2, which provides 51 points on the initial line when IM = 101.
NTB	The transient burning rate integrals are evalu- ated starting at every NTB-th location on the initial line. Burning rate values at other locations are computed by interpolation. The total number of points on the initial line, less one, must be exactly divisible by NTB, i.e., (M-1)/NTB must be a whole number. The program will automatically terminate if there is an improper correspondence between the values of M and NTB. The maximum number of locations at which the burning rate integrals may be evaluated is currently 26.
NINT	After one transient burning rate calaulations have been performed NINT times, the burning rate is calculated as the sum of one response to two perturbations. After 2 NINT calculations the response to the first disturbance is deleted and storage is shifted. (Nominal value = 1,000,000).

i siderati

KVEL.	≠0 velocity coupling included, = 0 no velocity coupling (Nominal value = 0).
KPRES	≠0 pressure coupling included, = 0 no pressure coupling (Nominal value = 1).

In addition to the above quantities, an array must be specified to govern the times at which the variables will be stored for computing plotting. This array is denoted by $TPL \emptyset T(I)$ and has the maximum dimension of 20. The variables $P' = P - P_0$, $u' = u - u_0$, $u'_p = u_p - u_p$ and $\omega' = \omega_0$ are stored at each x location, the first time a calculation cycle ends at a time greater than or equal to each successive value of $TPL \emptyset T(I)$. Each time the variables have been stored at NPLTF different times Subroutine MPL \emptyset TS is called; which then processes the stored information and writes out the plotting instructions on tape. If 19 or less plot times are specified the program automatically inserts t = 1,000,000 as the last plot time. Therefore, if plotting is not desired TPL \emptyset T need not be input, as TPL \emptyset T(I) will be set to ...,000,000 and will never be reached.

If $TPLØT(1) \le 99$ the program also plots the pressure and transient burning rate histories at x = 0 and x = 1. One can choose to have these latter plots, and not the aforementioned set, by choosing a value for TPLØT(1)greater than TMAX, but less than 99.

Steady State Input

all a share was a share to be a share to be

The quantities which control the steady state solution are also read in using the NAMELIST format. The first card of this set should read \$INPUT, and the last card \$END. When used, the \$INPUT data immediately follows the \$END card of the \$DATA NAMELIST. The quantities that may be input are described below. Nominal values have been preset for each quantity and are indicated.

HI	Integration step size for the steady state solution (Nominal value = .01).
LTRIG	Controls the locations at which the steady state integrated values and derivatives are printed. (LTRIG controls the printing of the conserved quantities and their derivatives, not the flow variables, ρ , u, P, etc., themselves). LTRIG = 3, (Nominal value) print only at x = 0 and x = 1. LTRIG = 2, print at every NTRIG-th step.

ITRIG	Determines the frequency at which the conserved quantities, and their derivatives, are printed. ITRIG = 1, the results are printed each iteration. ITRIG = 2, the results are printed only after the final iteration. ITRIG = 3, (Nominal value), the results are not printed.
NTRIG	Must be identical to NTRIG in the $DATA$ input set. Here it governs the printout as shown, for LTRIG = 2. (Nominal value = 2).
MAXIT	Not the same as MAXIT in \$DATA input. Here MAXIT sets the maximum number of iterating allowed for the steady state solution. If the Mach number at the end of the grain is not matched, to within the convergence tolerance, in MAXIT iterations, the solution is terminated. (Nominal value = 10).
КВ	If $KB = 1$ a bounding procedure is used in conjunction with the iterative solution. Other- wise $KB = 0$ (Nominal value). Unless the initial chamber pressure guess, PFO, is off by at least an order of magnitude, or more, the bounding option should not be required.
BSEVEN	If KB = 1, the chamber pressure will not be allowed to change by more than the value of BSEVEN on any one iteration. This bounding procedure will usually slow the convergence rate, and therefore should not always be used. However, in some cases, particularly when the initial guess is qui*e poor, this bounding allows a converged solution to be achieved when the

والمحتو فتنقل والمراقبة والمحارفة المحاوية ومرتجع والمحارية والمحارية والمحاركة والمحارية والمحاركة والمحادية والمحاركة والمحادية والمحادية والمحاركة والمحادية والمحادية والمحادية والمحادية والمحادية والمحادية والمحادين والمحادي

A subset of the subroutines used to solve the steady state problem consists of library subroutines designed to solve a general two point boundary value problem involving up to 20 differential equations and constraints. All of the options and features of this general routine are not required in order to solve the present problem. As a result, the list of input has been restricted to the quantities shown above. The other items, normally required as input, have all been preset in subroutine BVP (and should not be changed), or are of no consequence in the present program and have been ignored.

iteration would, otherwise, be unstable.

5. DESCRIPTION OF PROGRAM OUTPUT

The printed output from the instability program is described below. The output is presented in the order in which it appears. Sample output for the test case is contained in Section 6 and should be referred to in conjunction with the text.

5.1 Printout of Program Input

The DATA namelist input quantities are printed out in sub-groups which correspond exactly to those shown in the discussion*; i.e.,

> ENGINE GEOMETRY BURNING RATE CONSTANTS GAS CONSTANTS PROPELLANT CONSTANTS PROGRAM CONSTANTS FLAGS COUNTERS

The input units for those quantities having dimensions are indicated.

5.2 Fractional Lag Solution

The next page of output contains the parameters calculated as a result of the fractional lag nozzle solution. The quantities themselves are easily related to the variables in the analytical description of the solution.

5.3 Steady State Solution

The flow variables of interest are printed out at the end of each iteration of the steady state solution. The axial spacing of this printout corresponds to the spacing of points on the characteristics initial line and does not represent all of the points calculated, unless NTRIG = 1.

At the top of the page the current value of chamber pressure is output in psi. At the end of each iteration the number of the iteration, and the error in matching the mach numbers at the end of the grain, are printed out. When convergence has

*The quantities UTH, NINT, KVEL, KPRES, CNV, DPV, BV have yet to be integrated into the output format. These quantities are printed out after the plot times. been achieved the message

STEADY STATE SOLUTION COMPLETED is printed out.

5.4 Instability Solution

For each point on the starting line pressure, velocity, temperature, burning rate, particle velocity, particle temperature and particle density are printed out. These quantities are also printed out every time an additional NPRNT characteristics cycles have been completed.

The case title, run date, and time (in hours) are output at the top of each page, to aid in run identification.

The total number of characteristics cycles computed (LCYC) and the corresponding nondimensional time, are also printed.

The solution is also output each time quantities are stored for plotting, as well as at the end of the last cycle.

Just before the instability solution is printed at the final station a summary of the transient burning rate calculations is printed. The output quantities are as follows.

TIME	time at which the results were calculated
PW	pressure perturbation
EMW	total pressure coupled burn rate perturbation
VW	velocity perturbation (as used in calculating velocity coupled response)
EMWV	total velocity coupled burn rate perturnation
EMW1	pressure coupled response to the first pressure disturbance only
EMWV1	velocity coupled response to the first velocity disturbance only

If KVEL = 0, the aforementioned quantities are printed only at x=0 and x=1. If KVEL $\neq 0$ transient burning rate results are also printed at several intermediate x locations. P. State

ale handling

والمقارم ومعادلاته والمروحة الأقلط أبادان والمقاد المتكار المكاملة والمكام متكاريك والمكاري والمكاري والمراجعة

الات المعالمات المالية بالمالية المالية المحالية المالية. المالية المالية المالية المحالية المحالية المالية المالية المحالية المحالية المحالية المحالية المحالية المحالية Portions of the output from a sample case are presented in this section to facilitate program check-out. The sample case includes both pressure and velocity coupling.

Copies of the CALCOMP plots generated by the sample case are also included so the operation of the plotting routines can be checked out.

いたいなどのないのであった。

فتساللا لمناصبة لأكتر يحتاجها أعاده منادلا فالمناحمة المتعادية والمحاصد فلمكرم وللمعالمة والمعالم والمعالية والمستعا

MULTINIA HUMMING MALE CONSTANTS GAS CONSTANTS 1,994/00F +01 CTLLDA (IN/SEC) 3.40000F-01 CP (RTU/LR OG-N) 4,794600F-01 7,39000F +01 CK (SEC/FT) 0. GAMMA 1,200000F-00 2,350000F +01 CK 3.00000F -01 PR 1,00000E+00 2,350000F +01 CN 3.00000F -01 PR 1,00000E+00 5,00000F +01 PREF (PSIA) 5,00000F +01 PR 1,00000E+00 5,00000F +01 PREF (PSIA) 5,00000F +02 PRINT 1,00000E+00 ANT CONSTANTS FLAGS AND COUNTERS FLAGS AND COUNTERS 6,110000E+00 A.000000F +00 H 1,000000E +02 NPRNT 10 4,00000F +00 H 1,000000E +02 NET 0 5,00000F +01 HM 7,460000E +02 NET 0 1,150000F +01 TMAX 7,460000E +03 NFTF 4 1,150000F +01 TMAX 7,460000E +03 NFTF 4 1,150000F +01 PP 1,4000000E +03 NFTF 4 <th>Pa.JCOS</th> <th>(p1*x)</th> <th>Az11.5.Rz.64</th> <th>V AND P COUPLING</th> <th>UTH=_04</th> <th>062372</th> <th>12 HOURS</th> <th>ļ</th>	Pa.JCOS	(p1*x)	Az11.5.Rz.64	V AND P COUPLING	UTH=_04	062372	12 HOURS	ļ
1.994/00F+01 CTILIDA (IN/SEC) 3.40000E+01 CP (RTU/LR DG-R) 794600E+0 7.39000F+01 CK (SEC/FT) 0. GAMA 1.200000E+01 2.350000F+01 CN 3.00000E+01 PR 1.200000E+01 2.350000F+01 CN 3.00000F+02 PR 1.00000E+01 5.00000F+01 PR 1.00000F+02 PR 1.00000E+02 MT CONSTANTS PROGRAM CONSTANTS FLAGS AND COUNTERS 5.110000E+02 MT CONSTANTS PROGRAM CONSTANTS PLAGS AND COUNTERS 5.100000E+02 MT CONSTANTS PROGRAM CONSTANTS PLAGS AND COUNTERS 1.000000E+02 MT PA P	5			HUNNING WALE	CONSTANTS		GAS CONSTA	NIS
7.39000F.01 CK (SEC/FT) 0. GAMA 1.200000E+00 2.350000E-01 CN 3.00000E+01 PR 1.00000E+00 5.00000E-01 CN 3.00000E+02 PR 1.00000E+00 5.00000E-01 PREF (PSIA) 5.00000E+02 PR 1.00000E+00 MT CONSTANTS PR0GRAM CONSTANTS FLAGS AND COUNTERS 0.110000E+03 MT CONSTANTS PR0GRAM CONSTANTS FLAGS AND COUNTERS 0.110000E+03 MT 1.766000F+00 H 1.01 HRNT 10 1.766000F+03 EPS1 1.000000E+02 NET 0 5.00000F+03 EPS2 1.000000E+05 IREAD 1 1.150000F+01 PF0 (PS1A 1.400000E+03 NFIF 4 9.00000F+01 DP 1.000000E+03 NFRIG 2		1,994	\$ 0 0 0 E + 0 0	CTILDA (IN/SEC)	3.40000E-01	CP (R)	1U/LR 0G-R)	4.794600E+01
2.350000E+01 CN 3.00000E+01 PR 1.000000E+03 5.000000E-01 PREF (PSIA) 5.00000E+03 TF (DEG-R) 6.110000E+03 MMT CONSTANTS PROGRAM CONSTANTS FLAGS AND COUNTERS 6.110000E+03 MMT L.766000F+00 H 1.000000E+02 NPRNT 10 MAT CONSTANTS FLAGS AND COUNTERS NPRNT 10 MAT MAXIT MAXIT 3 EC) 3.00000F+00 IM 101 MAXIT 3 EC) 3.00000F+01 IM 1.00000E+05 NEFAD 1 S) 2.00000F+01 TMAX 7.460000E+05 NFFG 4 MAXIT 1.000000F+05 INEAD 1 0 3 S) 2.00000F+01 TMAX 7.460000E+05 NFFG 4 4.00000F+01 DP 1.00000E+03 NFFG 5 5 9.00000F+01 DP 1.00000E+03 NFFG 4 5 9.00000F+01 DP 1.00000E+03 NFF 5 5 9.000000F+01		7.39(000uE .nl	CK (SEC/FT)	••	GAMMA		1,20000E+00
5.00000E-n1 PREF (PSIA) 5.00000F+02 IF (DEG-R) 6.110000E+03 AMT CONSTANTS PROGRAM CONSTANTS FLAGS AND COUNTERS 0 1.766000F+00 H 1.000000E-02 NPRNT 10 4.00000F+03 H 1.000000E-02 NPRNT 10 2.00000F+03 H 1.00000E-05 NSET 0 3.00000F+01 HAX 7.460000E-05 IPEAD 1 4.150000F+01 TMAX 7.460000E+00 NPLTF 4 9.00000F+01 DP 1.000000E+00 NPLTF 4 9.00000F+01 DP 1.000000E+00 NTR IG 2 9.00000F+01 DP 1.000000E+00 NTR IG 2		2,35(0000E+U1	CN	3+00000E-01	đ		1,00000E+00
Int Constants Program Constants FLAGS AND COUNTERS 1.766000F+00 H 1.00000E-02 NPRNT 10 4.000000F+010 IH 101 MAXIT 3 50 3.000000F+03 EPS1 1.000000E-05 NSET 0 51 2.000000F+01 IH 7.460000E-05 IREAD 1 51 2.000000F+01 TMAX 7.460000E-05 IREAD 1 6.400000F+01 TMAX 7.460000E+03 NPLIF 4 9.00000F+01 DP 1.000000E+03 NFIF 4 3.700000F+01 DP 1.000000E+03 NTRIG 2 3.700000F+01 DP 1.000000E+03 NTRIG 2		5 . 000	0000E-u1	PREF (PSIA)	5.00000F+02	TF (DE	[G=R]	6.11000E+03
1.766070F+00 H 1.00000E-02 NPRNT 10 4.00000F+00 1M 101 MAXIT 3 50 3.000000F+00 1M 101 MAXIT 3 50 3.00000F+00 1M 1.00000E-05 NEET 0 51 2.00000F+01 FPS2 1.00000E-05 IREAD 1 51 2.00000F+01 TMAX 7.460000E-05 IREAD 1 6.400000F+01 TMAX 7.460000E+03 NPLTF 4 6.400000F+01 TMAX 1.400000E+03 NTRIG 2 9.00000F+01 DP 1.00000E+03 NTRIG 2 3.700000E-01 DP 1.00000E+01 NTR 2	ANT	CONSTAN	VTS	PROGRAM C	ONSTANTS	FLAGS A	ND COUNTERS	
4.00000F+n0 IM IMM		1.766	5000F+00	I	1.000006-02	NPRNT	Ä	
C() 3.00000F-n3 EPS1 1.00000E-05 NSET 0 S) 2.00000F+n0 EPS2 1.00000E-05 IREAD 1 1.150000F+n1 TMAX 7.460000E+00 NPLTF 4 6.400000F-n1 PF0 (PSIA 1.400000E+03 NTRIG 2 9.000000F-n1 DP 1.000000E+01 NTR 3		00 ° *)000F+nn	HI	101	MAXIT		
5) 7,00000F+00 EPS2 1,00000E-05 IREAD 1 1,150000F+01 TMAX 7,460000E+00 NPLTF 4 6,400000F-01 PF0 (PSIA 1,400000E+03 NTRIG 2 9,000000F-01 DP 1,000000E-01 NTR 2 3,700000E-01 NF 2	EC)	3•000)000F-n3	EPSJ	1.000000E-05	NSET	•	
1.150000F+n1 TMAX 7.46000E+00 NPLTF 4 6.400000F-n1 PF0 (PSIA 1.400000E+03 NTRIG 2 9.00000nE-n1 DP 1.000000E+03 NTR 2 3.700000E-01 NTR 2	1S)	2,000	0000F.+00	EPS2	1.000000E-05	IREAD		_
6.400000F-n1 PFO (PSIA 1.400000E+03 NTRIG Z 9.000000E-n1 DP 1.000000E-01 NTR Z 3.700000E-n1		1.150)000F+n1	THAX	7.460000E+00	NPLTF	•	
9.00000F-D1 DP 1.00000E-01 NTR Z 3.700000E-D1 2.		6.400)000F-01	PF0 (PSIA	1.40000E+03	NTRIG		•
3.70000E-D1		000-0)000E+n1	ŊР	1.000000E-01	NTR		•
		3 .70 0	1000E-01					

VARIABLES WILL BE STORED FOR PLOTTING WHEN TOME FIRST EXCEEDS EACH OF THE FOLLOWING VALUES 0PV=0.00000 7.45000 1000000.00000 BV=.6400 CNV= +300 KPRES= 1 4.85000 · UTH= .04000 NINT#1000000 KVEL= : 2.40000 00000.0

and the second first of the second state of th

CONVERGENT SOLUTION

5+6249E=0	3+2257E=0	1.0087E+0	1.2480E+0	1.1617E+0	3•2972E+0	6.4521540
	ż					
×	SL	8	لما	GBAR	USTAR	TSTAP

CONVERGENT SOLUTION

ME8 = 8.19822909E=02

1.6488E-06

MEUSTAR ...

14

and a second throw to be the second state of the

CHAMBER PRESSURE = 1400,0000 PSTA

enterningertischatische stältner und sinder den der staten staten staten ander som en som en som er som staten sidert der tider si

AUHA	+111e.	.37114			.37111	.37110	80176.	.37107	.37104	-37102	• 37100	25075			.37053	.37079	27076.	.37070	.37065	.37050	.37055	.37050	• 37044	.37038	.37032	• 37025	.37018	11015.	400/E*	14702.	4969E.		.36964	.36955	.36946	.36937	• 36928	.36918	• 36905	• 36495	79896.	0/100°	- 20200 - 2020	40400.4	240044		.36807
10	1 ~ n 0 0 0 0	1-0000	1 • 00000		1.00000	66666	66666 *	66666*	66666*	66666.	86666	•99998 •	*****	.00007	.99996	. 99996	.99995	• 99995	*6666*	*6666 *	£6666 *	£6666°	26666*	16666	06660*	06666	• 9 9989		• 99987	98777 •	.99986 00085	CD777	69993	-99982	18666.	08666.	879978	• 99977	94666	51666	*1666°	21464	12666*	0/666*	49444°	0000	•99964
٩Ŋ	0 • 0 0 0 0 0	•00144	1 M200 *	•00431	81200 ·	00862	-0100S	•01149	e9510.	•01436	• 015A0	•21124	HOH10.	110200	02269	5443	.02547	•02731	.02A75	61UEU*	•03163	• 0330R	• 03452	• 03596	.03741	• 03AA5	004040	5/I\$0*	• 0 4 3] 9		04409		05044	•05189	• 05334	• 054A0	• 05625	• 05771	• 02917	• 06062	• 0620A	•06354	10490.	- 06647	• 06743	044000	•07233
3	.07202	•07202	20220+	-07202	.07201	10270.	.07201	.07201	.07201	10220.	.072nl	.07201	00220.	002204	01200	00120.	.07199	.07199	06120	•07198	07198	.07198	.07197	.07197	.07197	•07196	.07196	-6110.	.07195	+6120*	+6120*	01173	26120	-07192	16110.	16120.	06120.	•01190	.07189	.071 AR	•07188	-97187 	04120*	•07185	CA110*	401/0+	•07183
-	1.00000	1.0000	1.00000	00000		00000	66666	6000°	66666*	66666 *	,9999A	• 9999R	16665°		90000 .	90000	99995	• 99995	* 6666 *	*6666	£6666°	20000.	2 6666	16666.	06666 *	06666	• 99989	99988 99968	.999A7	58666°	.99985	• • • • • • • • • • • • • • • • • • •	54000	18666.	0999A	• 99979	.9997R	14666	.99976	94995	\$4666	51999.	12666.	04666*	20000 20000	70774 0004e	•9666•
n	0.0000	-00144	• 002RB	-00432	00200	00844	.010nB	-01152	.01297	[+ + [0 .	.015A5	622 lu*	•01873	41020.	-02300 	02451	.02595	.02740	.02RA4	•03029	e1160.	A155C.	E34E0*	70360.	•03752	.03R97	• 04042	• 04147	• 04332	• 0447R	•04623	4 1 0 4 0 °	05050	.05205	• 05.351	•05497	•05643	.05749	.05935	18090 ·	.06228	• 06374	12590.	• 06667	• 0681 •	14440.	•07256
۵	1.00000	1-00000	66066	46066	10000	90088	1.9000	. 49978	\$4005	.93966	9995 R	13000.	24066*	66999.		0000	99899	.99876	69869	9984B	46894	9 9818	-09802	.99785	.94767	.99749	• 99730	.9971]	06490°	.99669	.99647	57577 50000	11444 1000	.99653	,9952A	20266.	.99475	.9944R	.9942A	16266	• 99362	65566°	10566.	69666	16699.	40266°	95166*
×	0.00000	60020-	• 94000	00000°		12000	.14000	.16000	. 14000	,2000	.22000	.24000	.76000	0004/.	.32000	34000	3600	, JAOOR	.4000	.42000	.4400	.46000	.48000	.50000	.52000	.54000	.56000	.58000	• • • • • •	. 62000	.64000	00040.	- 70000	.72000	.74000	.76000	.78000	. 80000	.82000	. R4000	. A6000	.88000	00000	.92000	.94000	.96000	000000

A

Contraction of the second second

Sec.

ERRORS AT END OF GRAIN

F(1) = ABS(ME-MEBAR) NUMIT

8.17702581E-04 0

ERRORS AT END OF GRAIN

F(1) = ABS(ME-MEBAR) TIMUN 0

8.69125212E-04

Contraction of the second s

シスピアンをつけたがします

ERRORS AT END OF GRAIN

NUMIT F(1) = ABS(ME-MEBAR)

1.21040039E-05

STEADY STATE SOLUTION COMPLETED

CHAMBER PRESSURE = 1377.73775 PSIA

.

1. 18 get

AUMB	+117E.	+37114	e37114	.37113	37112	111/2.	0:126+	60[/E•	•37106	+01/E*	20126.	+37099	•37096	E602E+	060/8.	000170	24016.	8/0/6+			50U/E*	ACU18.	+CU/E+	84UZ6	540154 540154	• 37036	0EU/E*	52015.	1016+	60016.	-37002	*366A#	,36986	.30978	01696+	•36961	26696.		+2662+	92636	1961	.36904	.36894	.36883	.36872	.36861	·36849	.36838	• 36826	.36813	.36801
41	3.00000	1.00000	1.00000	1.00000	1+00000	1 • 00000	66666.	66666	66666 *	66666*	66666 •	86666°	86666	86666	26666.		95666	96666	.99995 	64666	\$6666 •	****	E6666*	26665	26666*	16666.	06666*	60000 1	• 99989	88666	48666	98666	• 99985 2000	48666	E8666.	28666.	19666*	08666*	51555 ·	. 99978	11666*	• 99976	• 4665 •	E1000.	51666.	02666.	• 9666	99968	• 99966	.99965	.99963
٩Ŋ	0.0000	•00145	•00200	•00436	• 005A1	• 00726	• 00871	1010.	•01162	•01307	•01453	•0159×	•01743	•01849	+E020+	04120+	• 02325	• 02471	91920+	29120.	• 02908	•03053	66 I E0 •	• 03345	16450.	• 03637	• 03783	626EU•	• 04075	• 04222	•0436R	• 04515	.04661	- • 04HAB	•04954	.05101	• 0524R	• 05395	24550.	•05689	• 05H37	•05984	.06131	.06279	•06427	.06575	• 06723	.06871	•07019	-07167	.07316
3	.07783	.07283	.07283	•07283	.07293	684L0.	• 07293	•072R2	.07292	.07282	• 07282	.07282	•072R2	• 07282	•07281	18270.	.07281	.07281	.07280	01280	.07280	61220*	.07279	.07279	.0727B	.07278	.07278	11220.	.07277	.07276	• 07276	.07775	.07275	+1210+	•07274	• 07273	.07273	-01272	s1270.	.07271	.07271	.07270	•07269	.07269	.0726R	.07267	.07267	•07266	•07265	•07264	•07264
F	1.0000	1.00000	1.00000	1.0000	1.00000	1.0000	66666*	66666*	66066.	66666*	66666*	86666	99998	4999R	46666*	16666.	499996	96666	3000e	• 99995	*6666*	¥6666 *	• 99993	59992	26006*	16666*	06666.	64064 ·	68666.	4999RA	.99987	• 99986	.999R5	*8066*	699A3	286a6.	18696.	08666°	64666*	81666.	e99976	• 99975	44974	£79973	<2666.	02666.	• 99969	.99967	• 99966	.99965	• 99963
н	0.0000	•00146	10200.	•00437	• 005R3	• 00 128	• 00R74	•01050	•01145	11610.	•01457	•016n3	•01749	•01895	• 05040	•02180	55820.	.0247A	• 92420 •	• 02770	1020.	•03067	•032n9	• 63355	.035n2	8495(•	•62395	.03941	• 040AB	.04235	-043A2	.04578	• 04675	• 0 • 973	•04970	•05117	.05244	.05412	•05559	.05707	• 05455	• 060n2	02120.	.0629R	.06447	• 06595	• 06743	• 06892	•07041	04120 ·	•07338
٥	1.0000	1.0000	66000	.99997	*6066	l 60ho •	.99987	F8000.	87029	di 666°	• 99065	.99958	, 9995A	14000.	15000.	12660	01000.	,99899	.99887	*L999.	.99860	.99845	,99A3N	.99A15	.99798	.9978]	,99763	• 4466	.99725	.99705	48966	.99663	0440°	9 9618	46366	.99570	.99545	•99519	26406*	.99465	15490.	00406°	.99379	64166	9931R	.99287	.99255	6266°	.99188	199154	61166.
×	00000	000200	• 0 • 0 0 0	• 96000	いいいざい *	.10000	.12000	. 14000	.16000	, 1 R N N N	•2000	.22000	.24000	• 24000	.28000	000000.	•32000	00040.	• 36600	. 18000	• • 0000	00024.	.44000	.44010	.4A000	•50009	.52000	.54009	•56000	.58000	.4000	00029*	•64010	. 46000	•6R000	• 7000	• 72000	• 74000	• 7606.0	• 78000	. ROOD	. 82000	-84000	. 96000	. RR000	.9000	.92000	.9400	.96000	.98000	1.00000

and and

and the second se

فوعفان موازق فكالمعملان ومريان ومؤالفة وولالاتها ومعاورتك أراحتم مراكب والمالي ومعقول والتعالي فالمريان كالروامات

Not the state of the second state of the

COUPLING INTH= 04 ۵ AND > A=11.5.R=.64 P=.1Cns (P1+x) FST CASE

0.00000 082372 TIME

R

12 HOURS

C ø 5257

37030 37106 37106 37108 37096 37096 37096 37096 37009 , 36996 , 36978 , 36978 36934 . 36872 . 36872 . 36849 . 36849 37054 37048 37043 37043 36724 .37113 .37112 .37112 .37110 .37110 37096 37092 37078 37078 37069 37059 36826.36813.36801 +11Le 4111E **4117E** 1969E .36894 .36853 ACHR • 99999 • 99999 • 99999 • 99999 • 99999 • 99998 • 99998 • 99998 • 99998 • 99998 99995 99995 99999 999999 999989 999989 999889 999889 9998899 9998899 9998899 9998899 99986 999885 999885 999885 999983 999973 999973 999973 999973 999973 999973 999973 999973 999973 999973 999973 999973 999973 1.00000 1.00000 1.00000 1.00000 99965 99965 1.00000 .00000 10 01743 01889 02034 02762 02762 03053 03199 03345 03491 03637 03783 04075 04075 04075 .04515 .04661 .04808 .04808 05101 05248 05395 05542 05542 •00436 •00541 •00726 02180 •02325 •02375 .06575 .06723 .06871 .07019 .07167 .07316 .01162 .01307 •01453 •01598 06131 •06279 000000 .00145 .01017 4959A4 .00290 9 07265 07265 07265 07265 07265 .07283 .07283 .07283 .07283 07282 07282 07282 07282 07282 07282 07282 07290 07290 •07280 •07279 •07279 •07279 •07278 •07278 07276 07276 07276 07275 07275 07275 07273 07273 07272 07272 .07270 .07270 .07269 .072A3 .07291 .07291 .07277 07269 07258 3 1.00954 L.01508 L.01598 L.01574 L.01574 L.01553 L.01555 L.01525 L.01492 -01409 -01359 -01304 -01304 -01244 +8700 -1.00600 2.00503 1.00404 1.00404 1.00303 1.00200 1.00700 .00001 .09885 .01033 .01145 .01311 .01457 .01749 .61855 07189 07338 •00A74 02010-02046 = 47140. 44140. 44140. 135559. 1995950. .97516 .97516 .9775 .86775 .07739 .06786 .06306 .05799 99135 98491 97851 45999 45999 45490 46490 46736 92203 91760 91347 90965 .1000. .0710. .97218 .96594 89267 89173 9119 . 67759. 99599 .01068 .00426 19799, ۵ .74000 24000 24000 22000 32000 32000 32000 32000 32000 32000 . 42919 . 64090 . 66009 95000 00009-. 54000 . 85000 . 70000 0000000 92010 44000 72000 . 79000 ROSO0 82000 .88000 00006 92000 94900 00020. 04040. .49000 10084. ×

12 HOURS	
082372	.19911A
	IIME =
UTH=.04	
V AND P COUPLING	
Åz]],5,72s,64	10 = 10 10
ps.]CnS(p]ex)	
TFST CASE	

ыл -

the second a second and

RHOP	.36744	.36797	.36825	• 36838	5489C.		- 30835 - 3025		- 30H0	00000		. 30H/8		00000		017070 00070	23702.	364026	+ 5040 +	00405.	60070 00070	*****			13116.			-37066	.37078	06076.	10176.	.37111	.3712a	•37128	.37135	-37142	.37147	.37152	•37156	.37162	.37168	.37174	.37176	.37183	.37157	.37191	121124
19	1.01015	1.01013	1.01007	1.00977	E8600*1	1 • 00966	1+00945	12600 1	1.00843	20400.1	12000-1	69/00*1			40000 T	100001			1.00331	0/200.1	50700+T		20000-1	00000		- 70044	00761	99698	.99636	.99575	.99515	•99457	10466.	.99347	.99295	99246	66166	• 99156	91166.	.99080	99048	02066 .	.98996	• 94976	.94960	.98950	*****
٩Ŋ	0.0000	• 00325	• 00651	• 00975	66210*	12910.	04610.	95.20.	• 02566	21 420.	• 1 S I •	644E0*			140404		07C30		10460.	12000 •		1400.	274701 •	101010 10101			102100 102220		.07541	.07627	.07701	•07763	•07A12	•07R50	.07A76	.07893	•07899	.07895	.07879	•07R49	.0780A	.07757	• 07699	•07633	• 07559	•07477	7557D+
3	.04018	.08016	• 0A013	.08004	•07995	• 07982	99610*	846/04	•07929	+06/0*	04410.	•07851 • • • • • • • • • • • • • • • • • • •	126100	46//0.	45/104	21110.	23710		945104		16670.	アフォービー	10410.		145.10+		22010	512100 52270.	.07182	.07135	.07089	•07044	.07000	.06956	• 1690 •	.05872	.06833	• 06795	.06759	.06724	.06693	• 06662	• 06636	• 06609	.06598	• 06567	10400+
+	1.00979	1.00977	1.00973	1.00962	1-0044	1+00933	51600+1	06400-1	1.00A63	26HUU•1	561 UU • I	1.00762	22/00•T	1.00435	100001	16500.1			#1700•1	00200	00200	65100•1	1.000 4	65000	50464 10000			.00705	99646	.99587	•9953n	+09474	• 60419	.99367	• 99317	01266*	•9925	•991A3	94166	21106.	590R2	•99056	•99033	.99015	C0066*	• 98993	¥¥787.
Þ	0.0000	•00346	• 00691	•01036	01379	• 0] 720	15070+	525200	22120.	•0304	145611+	41920.	F-F900				• U 7 3 4 2		/ [[43 •	16590.	14540+	54/90+	11490.	+11110+		214104		100101	07869	.07949	.08017	.08071	.04111	•08139	• 0A]54	.08157	• 0A149	•08131	•0804	• 0R043	59670.	.07911	•07R31	•07743	•07645	• 07538	67470.
0	1.04140	1.08124	1.08077	1.07998	1 • 0 7 8 8 8	1.07749	1.07579	04570.1	14120-1] • F F F F		1.06291								1+0/0-1	1.01534	12010.1	12000	04444 04440				01200	94897	96405	.95924	.95455	.95001	•94C64	.94145	.93746	89LE6.	E10E9.	69769°	+0+26 °	£+126*	1016.	6UL 16.	.91541	10410.	- 01 300	14216
×	0.0000	•05000	.04000	-0600	• 08010 •	-10000	00021.	00041+	• 1 • 0 • 0	• 18000	00000.	00022*		00000	00000	60026.													62000	.64000		. 68000	. 70000	. 72000	.74000	.76000	. 78000	. 80000	.42000	.94000	• 84009	. 8A000	.9000	•92000	.9400	• 96000	• 98000

6-9

a a mar a contraction states (1955)

A. 15

	• 1 CUS (PI • X)	A=11.5.8=.64	V AND P COU	PLING UTH=.04		082316	CHUNE 21	
		Lryc = 10	e		= JMI1	1 • 994652		
	×	٩	2	F	3	ЧD	41	dûna
	0000	1.03837	0.0000	1.00515	.06579	00000	1.00438	.35766
	00020	1.03824	22200	1.00514	.06592	00250	1.00436	.35777
	4000	1.r377R	00462	1.00508	•06595	15400**	25400 1	5)/CC.
	6000	10320 L	00012	1.00486			1.00614	35753
				1-00469	20000	01208	1.0399	.35748
		ALEED.I	01435	1-00449	.06632	01429	1.00382	.35744
		64150-1	5510	1.00.07	- 06652	01637	1.00362	. 35743
		1.12947	01719		06672	01A33	1.00340	.35743
	8000	1.02734	01889	1.00374	.06647	-02010	1.00314	.35743
7777 -07110 -07110 -07212 -07621 -07611 7777 -07110 -07111 -07519 -07611 -07611 7777 -07111 -07519 -07611 -07611 -07611 7771 -07519 -07519 -07611 -07611 -07611 7771 -07519 -07519 -07713 -07611 -07611 7771 -07513 -07513 -07611 -07611 -07611 7771 -07713 -07713 -07713 -07713 -07713 7771 -07713 -07713 -07713 -07713 -07713 7700 -07713 -07713 -07713 -07713 -07713 7001 -07711 -07713 -07713 -07713 -07713 7001 -07713 -07713 -07713 -07713 -07713 7001 -07713 -07713 -07713 -07713 -07713 7001 -07713 -07713 -07713 <		1.02503	02048	1-00345	.06622	021A5	1.00288	.35745
	0002	1.0270	06120-	1.00314	.06578	02332	1.00261	.35748
6.0000 1.01772 07579 1.001215 .06441 02772 1.00116 .355 6.0000 1.01761 07579 1.001149 .06441 02772 1.00116 .355 6.0000 1.01761 07571 1.001149 .06441 07763 1.00116 .355 6.0000 1.01761 07573 1.00116 .355 1.00116 .355 6.0000 1.00776 07517 1.00116 .355 6.0000 1.00776 07577 1.00116 .355 6.0000 1.00776 07577 1.00116 .355 6.0000 1.00776 07577 1.00116 .355 6.0000 1.07576 07577 1.00116 .356 6.0000 1.07576 07577 1.00116 .356 6.0000 0.06211 0.05212 0.07516 .07576 .07576 .07576 .07576 6.0000 0.06211 0.05223 0.0513 .07576 .07576	4000	1-0204	A1620	1.00282	.06535	02461	1.00233	.35753
0.000 1.01517 -0.07519 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02753 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 1.00116 -02754 -00116 -00754 -00754 -00754 -00754 -00754 -00754 -007544 -00754 -00754	6000	1.01772	02422	1.00249	.06491	02570	1.07205	.35760
1.01105 07574 1.00142 07723 1.00147 0773 1.00147 0773 1.00147 0773 1.00147 0773 1.00147 0773 1.00147 0773 1.00147 0773 1.00147 0773 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 07736 1.00036 0776 1.00036 1.00136 1.00136 1.00136 1.	DUCA	1.01517	02509	1.00215	.06448	02657	1.00176	.35771
R2000 1.011/16 -075/13 1.00118 -075/13 1.00118 -075/13 1.00118 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 1.00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00016 -075/13 -00116 -075/13 -00116 -075/13 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 -00116 </td <td>0000</td> <td>1.01262</td> <td>02574</td> <td>1.00182</td> <td>.06410</td> <td>02722</td> <td>1.00147</td> <td>.35785</td>	0000	1.01262	02574	1.00182	.06410	02722	1.00147	.35785
Action 1.00750 07533 1.00013 07730 1.00016 07730 1.00016 07730 1.00016 07730 1.00016 07730 1.00016 07533 1.00016 07534 1.00016 07534 <th< td=""><td>2000</td><td>1.01009</td><td>02617</td><td>1.00149</td><td>.06373</td><td>-,02763</td><td>1.00118</td><td>.35404</td></th<>	2000	1.01009	02617	1.00149	.06373	-,02763	1.00118	.35404
RFC 1.00514 07534 1.00051 0.65312 02773 1.00010 1.00011 .00737 .007317 .007317 .007317 .007317 .007317 4000 .00737 .00737 .00737 .007317 .007317 .007313 4000 .00717 .00737 .00737 .007317 .007313 .007313 4000 .00717 .00731 .00737 .007313 .007313 .007313 4000 .00717 .011941 .007314 .00731 .007313 .00731 4000 .007141 .007314 .007314 .007313 .00731 .007313 4000 .007134 .007314 .007314 .007633 .007413 .00731 4000 .007414 .007314 .007643 .007413 .007413 .007413 .007413 4000 .007414 .007223 .0016419 .007633 .007413 .007413 .007413 4000 .007414 .007231 .00	4000	1.09759	02637	1.00115	.06342	027R0	1.00090	.35928
0.000 1.0007 0.0776 0.0776 0.0001 0.000 0.0776 0.0776 0.0776 0.0776 0.000 0.0776 0.0776 0.0776 0.0776 0.000 0.0776 0.0776 0.0776 0.0994 0.001 0.0776 0.0771 0.0771 0.0994 0.001 0.0771 0.0771 0.0771 0.0994 0.001 0.0771 0.0771 0.0771 0.0994 0.001 0.0771 0.0771 0.0771 0.0994 0.001 0.0771 0.0771 0.0771 0.0771 0.001 0.0771 0.0771 0.0771 0.0771 0.0101 0.0771 0.0771 0.0771 0.0771 0.0101 0.0771 0.0771 0.0771 0.0771 0.0101 0.0771 0.0771 0.0771 0.0771 0.0101 0.0771 0.0771 0.0771 0.0771 0.0101 0.0771 0.0771 0.0771	500].00514	02634	1.00083	.06312	E1750.+	1+00052	
MAND MANDD	ROOD	1.00276	-+02607	1.00051	•06249	24/20**	1.00036	24465.
COND COND <thcond< th=""> COND COND <thc< td=""><td>00</td><td>1 • 00045</td><td>02555</td><td>1-00021</td><td>.06255</td><td>01420 · ·</td><td>01000•1</td><td>82702°</td></thc<></thcond<>	00	1 • 00045	02555	1-00021	.06255	01420 · ·	01000•1	82702°
Mon Mon <td>2000</td> <td>-22800 ·</td> <td></td> <td>16666</td> <td>16290.</td> <td></td> <td>CU444 •</td> <td></td>	2000	-22800 ·		16666	16290.		CU444 •	
0000 97700 00715				- 4444 - 000 -	76630	10220	10444 90938	14087
7000 99015				80000	012300	- 02221	.99916	.36149
7000 04875 -01878 06215 -0185 99857 0523 6000 08846 -01878 09736 06223 -0185 99857 0557 6000 08846 -01758 99744 06223 -0185 99857 0556 6000 08346 -01181 09775 -0187 99873 0556 6000 08347 05769 -05634 -00163 99775 056 6000 07757 -00138 99775 -00163 99775 056 6000 07757 -00138 09775 06347 -00163 99765 056 6000 0747 07611 06511 06763 99765 056 6000 0740 07648 06540 01195 06716 09723 7000 07476 01195 06541 06741 00165 09723 7000 07102 07641 06541 06741 07112 0712		91000	01941	.99883	.06217	02047	.99895	.36216
6000 97465 -01533 -01635 99857 -353 6000 98365 -01163 99794 06230 -01635 99857 -356 8000 98365 -01163 99794 06570 -01134 99823 -356 8000 98365 -00182 99774 06570 -01134 99823 -356 8000 98365 -00182 -99774 06570 -0134 99750 -356 8000 97784 -06719 -07574 -00574 -00573 -99751 -356 8000 97754 -00138 -99765 -00673 -99761 -367 -367 8000 97754 -00138 -09775 -00731 -99761 -367 -367 8000 97741 -01198 -07631 -07635 -99761 -371 8000 977418 -01134 -07647 -07647 -9712 -371 8000 977418 -01130 -07647 -07647 -9712 -371 8000 977418 -076419 <td>2000</td> <td>ARA36</td> <td>01750</td> <td>.99A59</td> <td>.06215</td> <td>-+01A51</td> <td>•99875</td> <td>.36298</td>	2000	ARA36	01750	.99A59	.06215	-+01A51	•99875	.36298
6000 -01305 -99814 -06230 -01398 -99839 -356 2000 -01141 -01141 -99839 -356 2000 -01141 -01141 -99839 -356 2000 -01141 -01141 -99730 -99790 -367 2000 -01134 -00738 -99751 -00573 -99770 -99770 2000 -07784 -00733 -99761 -00770 -99751 -367 2000 -07784 -007318 -00763 -99761 -367 2000 -07734 -076318 -00763 -99751 -367 2000 -07138 -07671 -06713 -0775 -367 2000 -07194 -01199 -07644 -07133 -99713 2000 -07194 -01131 -07131 -99713 -377 2000 -07194 -01131 -07131 -99713 -377 2000 -07144 -01131 -07131 -99713 -377 2000 -071451 -07131 -07131	4000	.9A465	-•01538	• 99836	• 06223	01635	.99857	.36363
R000 98745 -01163 99794 06250 -01141 999822 356 0000 98195 -000781 99774 06547 -00573 997805 366 0000 97765 -00138 99775 -00573 99781 -05647 -00573 99781 367 000 97757 -00138 99775 -99775 -00573 99761 367 000 97457 -00138 99775 -00573 99761 367 000 97457 -00138 99765 -00511 -00573 99761 367 000 97438 -01198 -01194 -05475 -06511 -00760 99723 377 000 97438 -01194 -07475 -07475 -07756 -97723 377 000 97438 -01194 -07475 -01905 -97723 377 000 97438 -07377 -07475 -07126 -97723 377 000 97498 -07475 -07130 -07126 -97679 377 <td>6000</td> <td>.9R50]</td> <td>-+01305</td> <td>•99R14</td> <td>.06230</td> <td>- 0139A</td> <td>. 99839</td> <td>.36443</td>	6000	.9R50]	-+01305	•99R14	.06230	- 0139A	. 99839	.36443
0000 -001781 -99774 005294 -002673 -99790 -367 2000 -97784 -00138 -99776 -002673 -99790 -367 2000 -97784 -00138 -99775 -00753 -99776 -367 2000 -97784 -00138 -99775 -99776 -367 2000 -97757 -00138 -99775 -99776 -367 2000 -97757 -00138 -99775 -99776 -367 2000 -97767 -001673 -99766 -99776 -367 2000 -97767 -99651 -06671 -06767 -99712 -377 2000 -97792 -09737 -996519 -377 -99772 -377 2000 -97792 -07792 -09737 -997659 -377 2000 -97633 -07722 -99763 -377 -97659 -377 2000<	ROOD	-98345	01053	*6266*	.06250	1+110*-	.99822	• 36526
2000 000273 000273 00070 000775 00070 2000 07784 000138 09771 000763 097790 075 2000 07757 07477 07757 065376 065376 000263 997790 0557 2000 07757 07477 07775 07775 07775 0775 2000 07418 07194 09775 076376 076376 0775 0775 2000 07418 07419 076376 076476 076476 07723 09773 2000 074196 07130 076476 076476 07720 07723 07723 2000 07791 076476 076476 076476 07720 07723 07723 2000 07791 076410 076476 076476 07723 07723 07723 2000 07791 07702 076410 076311 079773 07723 07723 07723 2000 07701 07631 076311 076311 079773 07723 07723 07723<	0000	.98195	007R1	+179P.	.06269	- COR66	• 99805	.36612
4000 -77915 -001138 -09721 -06318 -00253 -99761 -368 7700 -97784 -01138 -99778 -06347 -00750 -99788 -368 7700 -97418 -01138 -99775 -06440 -01130 -99735 -377 770 -97418 -01198 -00750 -99735 -99735 -377 770 -97418 -01198 -00750 -99735 -377 770 -97418 -01130 -99735 -377 771 -97195 -06541 -00750 -99712 -377 771 -97195 -07641 -06541 -01511 -99712 -377 770 -97195 -07651 -06547 -06549 -0712 -377 771 -97195 -07545 -06549 -07165 -9775 -377 770 -07826 -06549 -06549 -07120 -377 771 -07826 -06549 -07650 -97659 -377 771 -07826 -06673	2000	•9A052	-+00492	. 99755	• 06294	E2500+-	06/66*	10/96.
6000 97757 000138 99761 00547 99761 99761 7000 97457 00831 997615 06546 99761 997723 7000 974136 01130 997619 06440 997723 97753 7000 974195 01191 99661 06440 997723 97723 7000 974195 01191 996461 06440 997723 9773 7000 97195 01196 996451 06440 997723 377 7000 97195 011965 06549 01511 997723 377 6000 97696 07540 06549 06549 97723 377 7000 97696 07630 07630 07726 99759 377 7000 95640 07630 07631 07726 99759 377 7000 95640 06630 06630 06630 07726 99759 377 7000 95640 06630 06631 06631 07726 99759 377	4000	- 97915	00145	• 99738	•06318	69200 *	51/66°	[7/05.
0100 97657 00477 99669 00794 99735 377 0100 97418 01198 99661 06476 01131 99735 377 0100 97105 01198 09661 06476 01511 99735 377 010 97106 97106 01198 09661 06511 09700 97733 377 010 97106 01969 09661 06511 01965 99700 377 010 97106 07785 01969 096545 01511 99712 377 010 97106 97107 07547 06549 07547 9712 377 010 9778 09659 076545 06673 02311 99659 377 010 97676 07631 076757 09659 97669 377 010 97676 99659 06673 074673 97669 377 010 97672 09659 07663 99659 377 97666 010 97675 99659 <td< td=""><td>6000</td><td>*8210 ·</td><td>• 00138</td><td>12/66*</td><td></td><td>500000</td><td>10144</td><td>56005 +</td></td<>	6000	*8210 ·	• 00138	12/66*		500000	10144	56005 +
20000 974535 001198 99661 001130 99723 377 4000 977091 97675 06440 01190 99723 377 4000 97707 01969 99661 06466 01190 99723 377 4000 977091 01969 01965 01965 01965 99723 377 4000 97091 01785 01965 01965 09700 97723 377 8000 996088 01276 09659 06511 01965 97723 377 8000 996088 07649 06511 01965 97679 377 8000 996088 06512 06630 02726 99659 377 8000 96679 066713 03150 99659 377 8000 96679 066713 03150 99659 377 8000 96679 06673 07084 09659 377 8000 96673 06673 07084 096659 377 8000 965455 07667	8000	.97657	00477 0000	50799	0/700.		00126	
6000 97701 97601 96601 96601 97701	0000	.97536	15400.	5×455•	000000°		50400 °	10100
0100 97194 01975 99644 06511 01905 99689 375 0100 97194 01375 99642 06541 06511 99689 375 0100 97795 07953 07636 07575 99669 375 0100 9578 07541 06530 02311 99689 375 0100 9578 07631 07726 99659 377 0100 95478 06530 02311 99659 377 0100 95478 06571 07673 023572 99659 377 0100 95679 05672 06673 02572 99659 377 0100 95677 06673 06673 03572 99659 377 0100 95677 06673 076842 06673 377 376 0100 95657 06673 076842 99656 377 0100 95657 076842 076842 99656 381 0100 9557 07786 99565 99656 <	0002	x14/6.			92490 ·		.00712	17258
0000 97791 07372 99636 07491 99669 375 2000 96488 07785 996636 07630 99669 376 2000 96488 07785 996636 06549 02726 99669 377 2000 96488 0787 09612 06540 06540 976969 377 2000 96497 07671 07673 06630 03572 996699 377 4000 96409 04677 06673 06673 03572 99659 377 6000 96409 06757 06672 06679 97650 377 7000 96427 06673 06673 04672 99659 377 7000 96427 066742 066742 066742 377 7000 96425 070842 04672 99653 381 7000 96425 070842 07684 99653 381 7000 96550 07786 996669 381 381 7000 96550 07786			01010	10064		20610	00466	13676.
0100 95698 07785 996524 06597 02726 996579 575 2000 96679 03707 996512 06630 03150 996699 377 2000 96679 03577 996512 06630 03150 996699 377 2000 96679 03572 03572 095502 06630 03150 99659 377 2000 96679 03572 095677 095672 06630 0371 371 2000 96669 04677 095672 06642 04672 99659 371 2000 96678 095672 06842 06673 04469 99653 371 2000 96475 06842 06842 066942 99653 371 2000 96467 07084 07084 99652 381 2000 96550 07784 05851 996612 381 4000 96775 07784 99612 381 4000 96732 07784 99612 381 4000 96750 07732 90612 381 4000 97452 07452 90612 381 4000 97452 </td <td></td> <td>07001</td> <td>64260.</td> <td>75900</td> <td>.06549</td> <td>11620.</td> <td>.99689</td> <td>37442</td>		07001	64260.	75900	.06549	11620.	.99689	37442
2000 96630 03150 99669 376 6000 96679 03637 996692 06631 03582 99669 371 6000 96669 03672 096692 06673 066757 096699 371 6000 96669 03582 066757 06642 99659 371 8000 96669 04672 096629 371 8000 96678 06842 04672 99653 8000 966757 06842 04673 99633 371 8000 96435 09557 07084 99633 381 8000 96475 07084 07084 99619 381 8000 96475 07784 07784 99619 381 8000 96550 07732 06745 99619 381 8000 96499 06322 06419 99612 381		9698B	.027R5	49960.	.06387	.02726	.99679	. 37532
4600 96692 06673 06673 09592 06757 09659 371 4600 9669 04675 09592 06757 06757 04675 99650 371 10000 96607 04675 99582 06842 04675 99650 371 10000 96675 09582 06842 04675 99653 371 10000 96657 09573 06842 04675 99633 371 10000 96435 09555 07084 09533 371 10000 96475 09557 07084 05851 99619 16000 96574 07226 99619 381 16000 96570 07732 05851 99619 16000 96574 07322 99612 381 16000 99550 07452 06372 99612 16000 9550 07452 06745 99612	0002	96888	.03207	.99612	.06630	•03150	• 99669	.37620
\$600 .9669 .06757 .06757 .04072 .99650 .371 1800 .9660 .04672 .99582 .06842 .04669 .99642 .371 1000 .96672 .09582 .06842 .04669 .99642 .371 1000 .96621 .04672 .99567 .05842 .07684 .99633 .371 1000 .96435 .09557 .07084 .04973 .99633 .381 1200 .99557 .07084 .05312 .99619 .381 1600 .96198 .05310 .99550 .07322 .99612 .381 1600 .96198 .05370 .9752 .07322 .99612 .381 1600 .96198 .0550 .07452 .06370 .381 1600 .96550 .07329 .05612 .381 1600 .96550 .07452 .06672 .99612 .381	14000	.96792	.03637	-99602 •	.06673	• 035R2	• 99659	.37706
1800 .94468 .04452 .99582 .06842 .04469 .99642 .376 1000 .94671 .04953 .05953 .376 1000 .94673 .04973 .99633 .376 1000 .94671 .05435 .99553 .07084 .05334 .381 12000 .94635 .07084 .05364 .99656 .381 12000 .94557 .07084 .05364 .99619 .381 14000 .94574 .07206 .05851 .99619 .381 16000 .94574 .07226 .05851 .07329 .99612 .381 16000 .94574 .07329 .07329 .05851 .981 .381 16000 .97329 .07329 .05852 .07452 .381 16000 .97550 .07452 .06798 .99612 .381 16000 .97452 .07452 .06798 .99612 .381	15000	.96699	+04076	• 99592	.06757	-04052	.99650	.37789
0000 494521 004975 09573 06943 004973 094973 099633 37 2000 94436 05435 099555 007084 05384 099626 380 4000 94554 0590 09557 017206 05851 099619 380 6000 94575 06370 099550 017329 006322 099612 380 6000 94575 06844 099550 017329 006322 099612 380 607452 006798 996906 380 607452 006798 99560 380 607452 00575 006798 99560 380 607452 00575 006798 99560 380	8000	9460R	• 04522	.99582	.06842	.04469	. 99642	17876.
72000 096436 005435 099565 007084 002344 099551 034 24000 096354 05900 099557 007206 005851 099619 381 26000 096756 005370 00550 007329 006322 099612 381 26000 096198 09564 07452 005728 095606 386 28000 09569 07452 005798 095606 386	0000	.96521	.04975	•99573	.06963	E2640.	55966 •	04676.
14000 04354 05900 09557 07200 05951 07200 0522 099612 381 16000 94575 06370 09550 07329 06322 099612 381 16000 94198 06844 09554 07452 06798 096606 385 1700 94198 06606 385	00020	.9643A	• 05435	• 99565	•0708•	+HESD+	92466*	12086.
160/0 • 94575 • 06370 • 949590 • 97452 • 04952 • 974012 • 385 180.0 • 96199 • 06844 • 99544 • 07452 • 06798 • 385 • • • • • • • • • • • • • • • • • • •	4000	.96354	00050.	•99557	90220.	10400.	61966 61966	.30102
277 02011 11.000 21.0000 21.0000 21.000 21.000 21.000 21.000 21.000 21.000 21.0	0000	• 96275	•06370	06644.	53510. 53763	+ V03CC	21044 •	01070 1070
	ROOD	96196°	• • • • • • • • • • • • • • • • • • • •	99549 99544		101000 ·	00600	

,

re warden der	9 11 17 10 10 10 10 10 10 10 10 10 10 10 10 10							
TEST CASE	ps.]CnS(p]*X)	A=11.5.R=.64	V AND P COUP	LING 1174=.04		5755BU	12 HOURS	
		102 = 501	c		TIME =	3 . 988461		
	×	۵	n	۲	3	đŊ	41	RHOP
	0.0000	.92413	0.00000	40066°	034U9	000000	.98970	.32643
	00020*	924.37	0140	9008	+2+20*	0105	+7989.	.32624
	.0400	.07512	002A	02066.	•03439	-+00211	•98985	*3264B
	• 06000	. 92K3K	01423	.99037	.034Rh	01500.	£0066 *	.32705
	.0800	.97807	00546	• 9062	EESE0 *	00429	. 99027	.32787
	.1000	43u54	00708	26000.	.03410	14500	.99057	• 32A88
	• 12000	.937R3	00A4R	85199.	.03687	00654	£6066*	• 33006
	. 14000	PACRA	009PR	02166*	e6760.	-•00767	• 99134	•33139 •2004
	• 16000	12060.	0]]24	• 91216 9027	00660.		02166	
	.18000	8H246.	#5%[0*#	44244 .0000		01096	10264 00285	
	. 22000		78710	24600.		01195	C4866	33779
	24000	. 95535	01586	46466	.04518	01283	10466.	19666.
	.26000	.95980	01670	E0400.	.04707	01361	-9465°	.34148
	.28090	.96437	0173A	.99554	.04895	+2410	• 99525	19696.
	.3000	, 96899	017AR	46494	.05103	-+01472	.99587	.34537
	.32000	19570.	01818	4444 ·	.05311	01503	• 99650	• 34736
	.34000	67823	01826	45799.	.05535	- 01514	F1/66.	.34938
	.36000	6/ Cab.		57792.	00/CO.	00c10=-	• 777.4	
	000045 •			16464	04450. 52230.		.00802	. 35555
	42000	1114		09666	.06477	-01353	.99951	.35761
6.	04044.	1.00021	01537	1.00012	.06722	01259	1.00006	.35967
-1	.4600	1.0428	-•0]4]3	1.00062	.06971	01145	1.00059	.36172
1	.4A000	1.00021	01268	1.00110	.07221	-01010	1.00110	.36376
	•50000	1.01200	01102	1.00157	.07471	00854	1+00159	.36577
	.52000	1.01565	00917	1.00201	.07722	-•006R0	1.00205	• 307/7
	-54000	91610.1		1.00202	00000	0.400 · 1	10200-1	67400 ·
		05350 F	57400		012000			49575.
	10000 -	1.02874	-0001	1.00356	.08656	.00196	1.00371	.37555
	.6200)	1.03162	02200.	1.00390	.08896	• 00455	1.00407	.37743
	.6400	1.03435	• 00564	1-00421	.09105	• 0072A	1 • 00 4 4]	.37929
	• • • • • •	1.03690	-00A52	1.00451	.09313 00100	•01015	1+00472	.38112
	• 68000	1.0792A	-01162		02520.	+1010+		142050
	• 10000	04140+1 1-0424	C.4 () 4	1.00526	50000	01948	1.00553	38637
	- 74000	1 • 0 4 5 4 1	49120.	1.00547	.10042	.02282	1.00575	. JARD3
	. 7600	1.04709	.07519	1.00566	.10258	.02425	1.00596	*368E*
	. 78000	1.04860	ERACO.	1.00593	.10417	• 02977	1.00614	• 39120
	• R000	5041+[• 03256	1.00598	.10576	•03339	1.00630	1226.
	, A2000	1.05106	.03677	1.00611	.10722	•0370A	1.00644	.39415
	. R4000).05200 .05200	-04027 -04433	1 - 00621	. 1000 L	62040 02770	1.00000 1.00006	
			C12401	1.00638	1112	.04861	1-00674	11996.
	- 9000	1.05369	.05236	1.00643	.11225	.0525A	1.00680	.39930
	.92000	1.05385	• 05652	1.00645	.11323	• 05460	1.00684	40045
	.94060	1.05380	• 04072	1.00646	•11392	•06067	1.00685	+0144
	.96000	1.05355	• 06498	1.00645	.11462	.06479	1+00684	• 40245
	•98000 	1.0530A	• 0 6 9 2 8	1.00641	00411.	C4990 .	1.00001	690900 60000
	1 • 00000	1.55000	• U I 37C	459UV+1	100110	> + 7 - > •	7 - > > > • •	~ 4 + 7 + 0

R. A.

and the second second

......

;

÷

÷

No. of the local diversion of the local diver

S. Market T.

1

2

and the second second

.33796 .33845 .33845 .33893 .33942 .33992 .33992 .35461 .36698 .36939 .33551 .33596 .33645 .33645 34223 34364 34534 34534 34534 34731 34731 35618 35121 35574 355139 355139 35518 35518 35716 35716 .40149 40039 747EE. 10146. .39919 .40336 **AUNP** 1.00913 1.00935 1.00935 99404 99425 99455 99485 99554 99595 99639 999688 99741 99799 99960 99993 .00419 .00654 +00874 1.00943 99266 99272 99278 99286 99285 99306 99318 99332 99367 99364 993854 .00702 99253 99258 99258 •00135 .00209 .00280 .00545 •00784 .00A19 •00849 •00A96 +0000+ .00602 •00351 4 12 HOURS 01865 02775 02775 03657 03657 .04916 .05315 .05701 .08510 .08580 .08680 .08620 .08594 .08542 .08261 .08153 .08045 07512 07475 07447 07425 07425 .07396 .07386 .07378 .07378 .06429 .06766 .070A1 .0737A .07883 .08090 .08470 .08363 .07761 .07584 •04506 • 06073 .07645 •07364 0.0000.0 .0093R •01403 +05264 .04405 •07944 .07A4R .07617 07560 .00470 5 5.982674 082372 . 09096 09165 09234 01260. 19491 19491 .09398 .09351 .09220 .09089 .07981 07981 .07299 .07298 .07269 .08153 .08293 .07294 .09422 .03904 •09495 64770. .07603 .08635 .0AA38 .08933 .09015 • 09299 .09392 64460* .09476 .09513 •08669 .07278 .07450 .07745 **•07894** .08023 .08404 •0A525 .08744 .09343 .09446 .08444 .07274 .07264 .07362 .07287 .09471 TIMF 3 V AND P COUPLING UTH=.04 .99663 .99699 .99759 .99823 99469 99466 99502 04260 91260 11260 99267 99283 99345 99370 995**45** 99592 1.00331 1.00825 1.00858 46166 66166 99198 24500 •0100· .00649 .00910 99188 80100 .00035 .0025A -00402 •00469 •00594 • 00700 .007AA • 00886 •00959 • 00972 69769 .99969 •001R4 .00534 -00746 16600• •00947 • 00967 14000. .0750 .05252 .06335 .08159 .08242 +670. •07404 •07369 •07342 •07375 •07326 •07335 •07348 •07360 •07374 .0A114 .01850 +E<10. .08293 •0A253 59180. •07747 01319 00000000 .00466 01930 FnE50. 03622 .04044 .04458 14861 06658 04940. .97482 .07701 **07887** 04040 09290 10690. 07440. 075A0 .0751] .07452 07316 .01391 .05991 .0A031 2 LCYC = 300 A=11.5.R=.64 94395 94451 94454 94495 .94851 .94958 .95080 .95270 .95720 .95759 .95988 .96533 .96855 .97213 .97407 .94038 -02425 .0548] .05876 .05876 .07795 96245 94757 .01940 .07290 947649 94367 94378 94605 99506 -900F 99539 +6000· .00667 .04081 .0504R .06836 .07462 .07597 .0769R 94675 95557 .03551 .06553 .07082 12510. ۵ Ps.lCnS(Pfex) • 10000 • 12000 • 14000 .54000 .92000 .94000 .96000 .98000 26000 26000 28000 •30000 .36000 .36000 .38000 • 60000 79000
 72000
 75000
 75000
 78000
 90000 .82000 .84000 .15000 .18000 • A8000 90000 0.000.00 • 02000 •04000 .06000 .08000 20003 22000 12000 .50000 52000 58000 .64000 • 66000 .68000 . 86000 × TEST CASE

•07789

• 00000

:

V AND P COUPLING UTH=.04 A#11.5.R#.64 Ps.lCnS(PI+X) TCST CASE

LCYC = 374

082372

13 HOURS

The first

7.457553 .

TIME

⊨

=

۵

×

1.01072 1.01055 1.01035 1.01011

011140

.04831 .04601 44E40.

.12000 .14000 .16000

.01103

•00335 •00503

.00670

46590.

.06000

.10000

.09517

19197.

82000.

.00836 .00999

-01105 .01106 .01096 +010R6

0.00000 +00168

·09575 .09564

0.0000.0 .0200 04000 1.00919

+00953

.00839

e0100.

.02149

LAE CO.

.05496

34000 32000

.05199

92020.

.01765

01900

.07389

26000

.08055 AC770.

20000

.67012

•0440.

.28000

.02453

02595 02656

.04115

.04672 15260.

.36000 . 3A000 40000 .42000

1.00285

.02720

02740

16750.

.00187

92498

F1020.

.01599 Enenn. 99452

44000

RHOP	. 38344	.3R413	• 38451	.38463	• 38457	• 38436	20445.		.34767	.38205	. 38135	.38056	94676.	•3777¢	37663	1537	37404	.37260	.37105	.36943	. 36775	.36601	.36421	.36734	.35043	.35849		9040F "			34755	.34602	.34467	.34341	.34226	134164			.33909	50199 ·	OPHER *	14/55.		40/57°	33778	33802	.33636	
41	1.01100	1:01099	1.01096	1.01090	1.01079	1.01066	1.01049	1.01004	1.00976	1.00945	1.06910	1.00971	1.00829	1.00782	1.00678	1-00619	1.00556	1.00489	1.00418	1.00342	1.00263	1.00179	1.00092	1.00002	60666	.99815	61/66*	47474 47474	42C44	57500 ·	969261	62166.	-99102	. 99030	.98965	40685.	98899	00446.	•98756	01/96*	-98682 -266	10089.	00000		98574	-98564	.98557	
٩Ŋ	0.0000	.00150	• 00300	.00451	• 00601	•00750	.00A97	240104	01321	01454	.015A0	• 01700	.01812	21910. 01010	05020	02140	02220	.0226R	.02284	.02306	.02316	61E20°	•0220 •	.02277	.02248	• 02215	•02184	65120 .	141204	00200	.02251	•02334	.02447	• 025R9	.02765	• 02975	+12E0*	2H4E0	.03776	55000 0		04794 Acity		10000 12030	.06388	.06814	.07244	
3	.09722	.09712	50790.	.09470	•09638	.09596	•09534	- 04400	02260	.09051	.09822	.09594	•0A351	.08108 	• 0 7 5 0 G	07358	.c7108	.06859	.06611	.06370	.06130	005300	.05670	.05457	.05243	•05056	.04868	.04701		- 05 - 04	04121	86660	.03897	19797	.03717	.03637	•03577	ISE0.	•03483	84450.	.03496	.03545 0110	C2/50*	906E0.	94326	.04559	.04791	

1.00117 00027 99935 99935 99944 99944 99955 99955

+02712

02685 02456 02628 02409

97950

55000 55000 55000 55000 55000 53000

97196

96449 95719 99176 99093 99015 98944 98817 98817

562E0.

91525

90709 7Enn9,

A0000

90350 91091

.84000

. R6000 ARONO. .90000

82000

02897

97690 93083 92518

74000

76000 78000

.02602 .02692 .02778

94331

.64000

, 68000 70000

+42000

6000A

10750.

. 98598 . 98598 . 98569

04591 04932 05293

. 89515 . 89702

. R9759

04040

.98545 .98512 .98512 .98502

06460 06870 07283

.89120 .89920 .88841 .88743

95000 95000 95000 95000

.98713 .98669

.03698

03451

,04270

and the second

1.1

ないで

11 mar - X म्रथ्य

062372 V AND P COUPLING UTHE. 04 TFST CASE weilCnS(plex) Aellis,44

ST CASE	(Xeld)SuDl*er	A=11.5.4=.64	V AND P COUPLING	UTH# . 04	0.62 372	1 MOURS	
				1000°u=x			
1	lluf	Δ	Minul	3	FMWV	[ma]	[NHH3
1	00000000	. 1 0.000	0.00000	0000000	0.00000	0.000000	0.00000
~	447656.	* 094944	.030754	000000.0	0.00000	.03075A	0.00000
• •	.119407	515200°		0.00000	0.000000	112250°	
n no	. 150754	.08590.	.044719	0.00000	0.00000	086719	0.00000
¢	.1001.	YOL LUU"	.101009	0.00000	0.0000.0	.101009	0.00000.0
•	.239nn]	.076151	-113325	0.00000.0	0.00000	.113325	0.00000
e c 0	,774055 ,218830	.07024 8	,123553 ,,,,,,,,	0-00000	0.00000	•123553 •121573	0.00000
-	. 168775	.056818	2727F1.	0.00000		922261.	
	F4747.	049458	140577	0.00000	000000	.140577	0.00000
12	6578F4.	577140.	. 141415	0.00000	0.00000	.141415	0.00000.0
5	.478733	ESHELU.	074661.	0.00000.0	0.00000.0	041951.	000000000
41	•5]8706	.075791	.135623	0.00000	0000000	• 135623	0.000000
ν. •	-558552 -50857	017710°	[4056].	0.000000.0		[4462].	
-	.639474	-001-75	. 10859	0.00000	0000000	10465	0.00000
	678353	91427B	.095505	0.00000	000000.0	.095505	0.00000
0	Eldell.	579E10	• CP7] 46	0.00000.0	0.00.00.0	•080146	0 • 000000
	.758058	072[20"-	• • • • • • • •	00000000	0.000.00	•062959	000000
	014767 .	- 075740 - 035240	151440°	0.0000000000000000000000000000000000000	0000000000	.054613]	
	.47757		012310 012310			.002379	
	165710.	047706	160020-	0.00000	0.00000	020497	000000000
22	.957136	FU5520	046640	0.00000	0.00000	043320	0.00000
۲. م	196966	-, nca455	047041	0.00000.00	0.00000	057041	0.00000
-	1.036747			0.00000	0.000000	091004	0.000000
	0			000000000			
	1.154261		17545 • • •	0.000000			
	1.196035	076235	SEPERI-		0.00000	SE9EA1 -	0.00000
dE	1.235881	000770	205053	000000000	00000000	205053	00000000
8 6	1.275740	n74875	224767	0.00000.0	0.000000	224767	0.00000
4	213215.1	- , NTRGEN		0.000000.00	0.00000	-,247794	0.00000.0
36	1.355500		- 258856	0.00000	0.00000000	258856	0+00000
	50446; • [7		0.00000	0.000000	7//// - 202000	0.00000
	1.475758				0.00000	- 292559	
66	1.515712	046106	29A124	0.00000	0.00000	29A124	0.00000.0
40	1.5541#3	040595	3nn475	0.00000.0	0.000000	300475	0.0000.0
4	1.595171	054104	- 204025	0.00000	0.000000	299426	0.00000
	1.475108			0,000000		- 286567	
	1.715220		276606			- 274604	
1	1.755712		- 258957	0.00000	000000	258957	000000000
4	1.745177	140000-	407055	0.00000	0.00000	239704	0-00000
47	1.835115	• 0001 k9	266912 -	0.00000	0.000600	216992	0.00000
	1.475029	.010246	191032	0.00000.0	0.00000.00	-,191032	0.00000
	144410-1	101020.		0.00000			000000
	CF14CF.		216u,1°-	0.000000		214NC14-	
- 0	2034501	17540°		000000000000000000000000000000000000000			
	2-076330	.053854	023700		0.00000	- 023700	
1 4	2.114157	040311	40440	000000	0.00000	-014494	0100000
5	2.153979	.065848	.053233	0.00000	0.00000	.053233	000000000
÷	2.191799	.070438	.092057	00000040	0.000000	.092047	0 • 000000

ŧ 1 ,

;

÷ 1.11.11.11

> ; ž

5 ¥	959577°2	. N747AR	-17051. 71791.	000000*1	0.000000 0.000000	1,40515 17012	0.00000
- 0 - 1		.078470	905902.	0.00000	0.00000	204596	0.0000
ę,	201525.5	07445Q	PAFOFS.	0.00000.0	0.00000	49r965.	0.00000
I.S	Frest.4	. 19851	11440	0.00000	0.0000.0	511474.	00000-0
25	97775 8 .5	402020°	. 107600	0.000000	0.000000	004705°	
	2.512500	.076151	1955.	0.00000	0.00000	355121	0000000
÷5	2.552378	147570.	. 176665	0.00000	0.00000	. 374665	0.00000
4 I 4	2.592269	.07050	. 394756	000000000	0.000000	.394756	000000
	2,417173	, 167777 , 10720, 10	1616UV'	000000000000000000000000000000000000000		- 854614"	
1 0 1 0	2.17175	058595	• • • • • • • • • • • • • • • • • • • •	0.00000	0.00000		0.0000
5	2.141973	0045-00.	20204.	0.00000	0.00000	\$29292	0.0000
7	7. 70197R	.048KK7	+27974	0.00000	0.00000	427974	0000000
22	2.83191A	.043233	.422600	0.00000	0.00000	.422600	
51	2.471915	017750.	461614°	000000000		46[5]4°	
2;		0/u/+u*	014446 a			0147764	
22		10-570	144146.			361661	
2	PIRIED.F	010010	121155		0.00000	.337155	0.0000
78	3.071727	.0.6401	9469ne.	00000000	0.0000.0	.309324	0.0000
2	3.111617	E40000.	IPERTS.	0.000000	0.00000	195875.	0 • 00000
C.L	3.151481	-,005422	594593	0.00000	0.00000	.244593	0.0000
l	1.191373	-,n120K7	.2n82n6	00000000	0.00000	•204206	00000.0
č	3.231174	019257	. 149524.	000000	0.000000	. 169524	0.00000
E.	3.271005	-,A25567	.128857	0.006.00	0.000.00	.129957	0.00000
2	3.110429	11742	• 0 P A 5 3 P	0.00000	00000000	.086532 	000000000000000000000000000000000000000
5	3.350650	E[H]F0	LOHAC.	000000000			
C I K (74400E.E	6.148.90°-	/ / / / / / / / /			11100 - A4636	
		- 056726	002375				00000
	2.50034		C101010-			-137683	000000
	3.540752	209790 -		00000000	0,00000	-182473	0.000
5	3.549544	111640-	226363	0.0000.0	0.00000	226363	0.0000
20	1.629424	073ngn	268972	0.00000	0.00000	+.26A972	0 • 00000
.	3.669271	076570	+10000	0.00000	0~00000	309914	00000.0
4	HC1007.5	174971		00000000			
5	200914/ °E	457180°-		0000000			
	3. 122744	***********			0,00000		0-00000
	7.868667	63457-	476307	000000	0.00000	476307	0.0000
6	3.908584	082793		0.00000	0.00000	49977	0.00000
100	3.948515	17977R	517940	0.0000	0.00000	517940	00000-0
101	3.988461		531941	0.000000	0.00000	146[EC	
201	4.02R472	070412					
	4°048304				0.000000		00000-0
	4.148401		535013	000000	0.00000	535013	0.00000
105	4.] 4419	103560-	571415	0.0000.0	0.00000	571415	0.000.0
107	4.22R4n3	024158	501944	0.00000	0.00000	501944	000000000000000000000000000000000000000
10B	4.248354	012253	-++++	0.00000	0.00000		000000000
100	4.304275			0.00000	0.000000	020044	
0[]	1/1445.4	+ . + 1 10 ·	641114°-			249640-	
		1/02/00	C-904-04-			29042E -	
		01//5 / 0 •	27664	0.00000	0-00000	276644	0.0000
4	4.507571	02020		0.00000	0.00000	-,2257AB	0 • 0 0 0 0 0
511	4.547393	. NSR44K	E01111-	0.00000.0	0.000000	171493	00000
116	4.547210	.044495	115840	0.0000.0	0.000000	115A60	000000
117	4.627022	676973	054946	0.00000.0	0.00000	- 058986	00000000
119	4.446R33	10440.	244100	0.00000	0.000000	-+001462	00000000
611	4.704644	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5519500	0000000			
		6 C+ 1 HO .					
	4 - 746373	- 487440	.16021A	0.00000	0000000	169318	0-0000

278	.085405 .084704	97776 .	000000°0	0.0000000000000000000000000000000000000	.373250	000000000000000000000000000000000000000
	017690.	EAPA14.	0.0000000	0.00000.0	6 1 4 D 4 3	000000.0
c	PHALAC.	.451 722	0.00000.0	0000000	.456722	0-00000
c (. 17448	44244 40244	0.00000	0.000000	44464*	00000000
		55 45 / S				
- 19	320020	1000L3		0000000	.572296	
•	.045994	544973	000000	0.00000	588973	0.00000
	.04]572 562404	. 404407	0.00000	0.000000	.600407 .406498	
	051400	. 407185		000000	.607185	0.00000
	.045950	.402446	0.00000	0.00000	.602446	0.00000
	.040104	Ant 50%.	0.0000.0	00000000	806592°	0.00000
	4	576871 51225	000000	0.000000	576871 EE4241	0000000
	***/20*				107000.0	
• •	1/1/1/0.				092005°	0.000000
	007516	.45283	0.0000	0.00000	465283	0.00000
_	000-13	426954	0.0000	0,0000.0	424054	0.00000
	-,016594	19898.	0.00000	0.0000.0	,392861	00000000
_	013766	9E07F6 .	0.0000.0	0.0000.0	.336039	0.00000
.	020976	.285954	000000000	0.00000.0	, 2R5954	0.00000
_	028191	200454°	0.000000	0.0000000	29222	00000000
_	4/F5F0°-	14571.		0.00000.0		
		• 1/0/1 • ·			1010210	
		1008000			1008000	
	062985	16992	0.00000	0.00000	- 059932	0.000000
	0491A4	120923	0.00000.0	0.00000	120923	0.000000
		-, 1A1592	0+000000	0.000000	-,181592	0.00000
	Ubi [80°-	74145-				
					356692	0.00000
		E10114	0.000000	0.000000	ELU114	0.000000
_	** 098545	- 442605	0.00000.0	0.000000		0.00000
	100407	510749	0.00000	0.000000	510769 - 556030	0000000000
		504842			54845-	
	-10048	- 429654		0.00000	- 629654	0.00000
	097146	65R907	0.0000	0.00000	658907	0.00000
	F.A100	KAPA46	0.0000.0	0.00000	-,682046	0.00000
_	NR4502	• . 698535	0.00000	0.00000	++698535	0.000000
_			0,000,00			
	596960			0.000000	690113	000000
	661.220 -	468755	0.00000	0.00000	66R756	0.00000
-	-,00RK14	440956	0.00000	0.00000	640056	000000*0
	00400°		0.00000	0.000000		0.00000
	1457 10 ·	<u>'</u> ''''''''''''''''''''''''''''''''''	0,00000		115765.0	0000000000
		C()				
	821070 ·	099909-				0.000000
_	. 157605	343497	0.0000	0.00000	343497	0.00000
_	.045044	•• 279173	0.00000	0.00000	279173	0 • 0 0 0 0 0 0
	175120.	212339	0.00000.0	0.000000	212339	0+02000
	•077206		0+000000	0.000000	559541 555555	
	1602au .	H/1670		0.00000	8/17/0°-	
	400040°	75500°			765600 -	
		8759E1-		0000000	136548	0.00000
	906260.	204793	0.000000	0*00000	204793	0.00000
-	.095147	.271096	0.0000	0.000000	271096	0.00000

.

....

عمامه بعكمانك وعماده ماعيدها وساكا متكمامون فكأر محافكة خامو وجون ومحمد فلخا بعمانا كتراري فالاخار ومخارف معرار فعلو

•

ł

•

10.00 4 GND P CAUPLING UTH=.04 9-00 00-0 2.00 NONTINENSITANAL TIME P=.1C05(P1=X) H=11.5.8=.64 3.00 2.00 TEST CHSE 8 h 8 h 8 h 8 h 8 h 1.00 09.0-0 09-0 01-1000 38025389 - 1839 3188 05-0 00-0 05-0-01.0- 03.0-01.0- 03.0-02-0

ومقاو بوافيا كالكافان والمناز والمؤافية بمركاتكم والانتقاع الكماري ومعاملتهم ومتاريك والمراجع والمراجع تساوين

Star Sta

Search and the property of the second state of the second state of the second state of the second state of the

A REPART AND A PARTY

1000

