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fbstract

The zero-cum, perfect information pursuvit-evasion dif-
ferential game is reviewed. The purpcse of this thesis
is to formulate a method for generating hear-optimal
closed-loop solutions to these problems. The method is
then applied to a number of example problems in order to
check its validity. This méthod deals with solutions in
the small and is based on updating the two-point boundary-
value problem by use of the neighboring extremal path con-
cept.

The two differential game problems examined are a
simple motion problem and a rocket problem. Two separate
cases vere studied for each problem. One was the fixed
final cime problem and the other was éhe free final time
with a terminal constraint.

Analysis of the results obtained, supports the feas-
ibility of this method to provide near-optimal closed-loop

solutions to differential game problems.
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A METHOD FOR GENERATING\CLOSED-LOOP
SOLUTIONS TO DIFFERENTIAI GAMES

I. Introduction

The original formulation of differential games 7 ~s
presentcd by Isaacs (Ref 1) less than o .../ -five ye rs
ago. It was developed from the theory of games and ceals
with games in which two opposing players are "confron e

with lengthy sequences--be they continuous or discrete--

of decisions which are knit together logirally so that a

perceptible and calculable pattern prevails throughocut™
(Ref 1:3). Thus it soon found applications in economics,
in the development of control systems and in analyzing war-
fare problems. The latter will be the area of considera-
tion in this thesis.

We will consider games inVolving two players, a pursuer
and an evader, each with conflicting interests and each with
complete information about his opponent's state and avail-
able strategies. Tdeally the evader wants to select his
strategy based on the present state of the game that will
maximize 2 certain quantity called.the "cost" or "payoff".
The cost may be any number of things such as the time to
capture, or the distance between players, or the fuel re-
quired by the pursuer, etc... . The pursuer at the same
time wants to sclect his strategy based on the present state

of the game that will minimize the cost. The strategies

supply instructions as to how to sct the controls for earh
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set of data mecasured. If the control variables are func-

R tions of the state variables and time, we have a closed-

loop soluticn to the problem. In this case, if either

ay

player plays non-optimally, the other player if playing

optimally wi.l immediately take advantage of this and gain 3

what the first player loses. This is known as the zero-sum ! ;“

feature of differential gaﬁesy

Although it is evident that the closed-loop solution is

the desired solution in all differential games, often there ¥

is no p-actical means of obtaining it. In most problems | 2N

the costate or adjoint differential equations which must pbe

integrated to provide the link between the controls and

state variables are nonlinear, nonhomogeneous eguations k&
(:) Ehat can not be solved other than numerically. Therefore
we are left with optimal control strategies which are func-

tions of time and the initial conditions cf the problenm.

These are called open-loop control laws. Basically we have

a two-point boundary-value problem (TPBVP) with the initial

states and final costates given. If solved, it provides

an optimal open-loop trajectory which for zero-sum games

I

is the same as the closed-loop trajectory if both players

play optimally. This is not true if ejther player deviates
from his optimal strategy.
The purpose of this thesis is to devise a method for
obtaining near optimal closed-loop solutions to differential

games and to apply the method to a number of problems to

demonstrate its validity. The method is developed and an
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algorithm presented in Chapter II. This methou is based

on the assumption that the TPBVP can be solved to provide

a needed reference optimal open-loop trajectory. Also,

the solutions considered in this thesis are solutions iIn the

small. That is, they refer to the smooth parts of the so-

lution found between the singular sur®aces that separate

the number of parts of the playing spuce.
Fixed final time problems are exumined in Chapters III
and IV, while free final time problems with terminal con-

straint are examined in Chapters V and VI.
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II. Statement of the Problem

Differential Game Problem

The zero-sum perfect information pursuit-evasion dif-

ferential game setup will be represenied by the following
dynamic system (Ref 2:277)

x = £(x,u,v,t),

x(to) = X0 (2-1)

where x is an n-dimensional state vector, u is an m-dimen-
sional decision (or control) vector for the pursuer, v is

a p-dimensional control vector for the evader and tgy repre-

sents the initial time. The controls may or may not be

subject to constraints depending on the problem being con-
gidered.

The terminal constraints (conditions which must

be satisfied when the game is over) are

vix(tg),tgl = 0 (2-2)

vhere ¢ is a q vector, and the performance criterion (cost
or payoff) is

tf
J = ¢fx(tg),tfl +[ L(x,u,v,t)dt (2-3)
to

The object is to find u* and v* such that

J{u*,v) < J(u*,v¥*) < J(u,v¥) (2-4)

If u* and v¥*¥ can be jound, the pair (u*,v*) is cailed a

saddlc point of the game and J(u*,v¥) is called the value

of the gamc.
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Necessary Conditions.

In order to apply the necessary
conditions Jor a saddle point solution in the small, the

Hamiltoniar (H) is defined as

H(t,x,3,u,v) = ALf + L (2-5)

where a is an an-dimensional costate vector. This scalar
function H must be minimized over the set of admissible u

and maximizec over the set of admissible v in order to

have a saddle point solution of the above differential
game, that is

o = Msx Man N = Min Max y (2-6) T

and the second-order necessary conditions are that

Hﬁu >0 s HE, < 0 (2-7)
As mentioned in Chapter I, singular arcs will not be

considered in this thesis. 1In some optimization problems,

extremal arcs (Hy = 0) occur on which the matrix Hy, is

singular., Such arcs are called singular arcs.

The costate differential equations are

A= aH/ax = -y

and the transversality conditions are given by

Hts) = -o¢(tp)s aT(EE) = oy (ty)

(2-9)

where ¢[x(tg),tg] s + vIy and v is a constant Lagrange
multiplier.
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Open Vs. Closed-Loop Controls. As previously stated,

the optimal solution to the differential game problem is
the pair of controls (u#*,v*) which provides a saddle point
of J. Attertion must be given to the ihterpretation of L*
and v* in Eq [2-4) as open-loop or clised-loop strategies.
If the pair (u*,v*) is a function of ime and the initial
conditions (i.e. u*(t,xo,t&) and v*(t,xq,ty)), one speaks
of an open-loop solution. If the controls are expressed
as functions of ... instantaneous state and time

u¥ ky(x,t)

(2-10)
vk = ky(x,t)

one has what is known as a feedback or closed-loecp control

law. The closed-loop control law is a much more strigent

type of optimality. It means that the evader must play
optimally against an opponent whose control is produced in
a feedback fashion; that is, the pursuer can irmediately
take advantage of any nonoptimal play made by the evader,,
If both players play their optimal strategy, the open-
loop and closed-loop solutions are the same for zero-sum
games. But if either player deviales from his optimal
play, the open-loop solution will differ from the actual
or closed-loop solution and this difference could result in
a complete change in the outcome of the game. Therefore
we would like to generate closed-lcop control laws. This
can be done 1f the solution to the two-point boundary-value

problem (TPBVP) can be continuou-~ly updated based on current
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states. In order to accomplish this, we must find the
effect on the costates duc to small changes in the states;
that is, we mvst find 8x(t) as a function of §x(t) which

can be obtained from a ncighboring extremal path approach.

Neighboring Lxtremal Paths

This will be an extension of Bryscn and llo's develop-
ment (Ref 2:177) to differen}ial games As was mentioned
before, if both players play their optimal strategy, the
open and closed-loop solutions are the same for zero-sum

games. Let us suppose that we have determined a reference

-y Ay e Y TR e s vy e

trajectory by solving the TPBVP in the small and have been
given the injtial conditions for the states.

First, for problems in which the final time is speci-
fied, if we coasider small pcrturbatioﬁs from this reference
extremal path produced by small perturbations in the initial
state §x(ty) and in the terminal conditions §y, we expect
that such perturbations will give rise to pcrturbations
sx(t), &x(t), su(t), dv governed by lincarizing Kqs (2-1),
(2-2), (2-6), (2-8) and (2-9) around the cxtremal path. We

therefore can obtain the following ecquations?y

8% = A(t)éx - B(t)sr, &x(ty) specified
8% = -C(t)sx - AT(t)&n
all/au = 0, alifav = 0

§a(tg) = [Coaxtv! xdox+eldvle = ¢

8¢ = [vdx]t = tf
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-1
A(t) = £.-£, Hyy Hyy
B(t) = £y Hyh £1

C(t) = Hyx Hyy H Hyy

which are (nxn) matrices. These equations represent a

linear two-point boundary-vglue problen since the coeffic-
ients are evaluated on the extremal path.
By using the backward sweep methoil (Ref 1:179) for
determining the neighboring extremal path we arrive at the

following matrix differential equations

§=-5A-ATs + SBS - C (2-16)
R = -(aT - sB)r (2-17)
’ q = RTBR . (2-18)

and boundary conditions

S(tf) = [¢xx +VTWXx]t = tf (2'19)
R(tg) = [4X1g = ¢, (2-20)
Qts) = 0 (2-20)

§a(t) S(t)sx(t) + R(t)dv (2-22)

RT(t)sx(t) + Q(t)dv (2-23)

1]

sy

I{ these matrix differential equations are integrated back-
wards from t = tg, the relatjons (2-21) and (2-22) represent
boundary conditions equivalent to the terminal boundary

conditions (2-13) and (2-14) at carlicr times; thus, we are

o oot o
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"sweeping" the terminal boundary conditions backward to
earlier times. This allows us to eventually determine éx
and 86X at this earlier time.

Now, if we consider the case where the final time is

unspecified, the nominzl optimum solution must satisfy the

additional necessary condition

(x,v,v,t) I

. de
t=te @* V..

te

= T de _ 3¢ . 3% . _
p(x,t)+v ¢(x,t), 53 + 3% X (2-25)

This scalar equation determines the additional unknown

parameter, tg.
Perturbation of the necessary corditions (2-2), (2-9),

and (2-23) must take into account the perturbations in the

final time, dtgy. Finally this leads to

sa(ty)

where
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Equations (2-11) through (2-13) plus (2-26) through
(2-28) represent a linear two-point boundary-value problem
for a neighboring extremal with smail changes in initial

conditions, &x(tg), and/or small changes in the terminal
conditions, dy. These changes will, in general, produce
small changes éx(tg), dv and dtg.

As in the previous case, where the final time was

fixed, we may extend the backward sweep method to solve the
unspecified final time problem. By using the substitution
sA(t) s{t) , R(t) , m(t) sx(t) (2-30)
dy = [RT(t) , Qt) , n(®)| [dv (2-31)
dae

nt(t) , nT(e) , a(t)| |dtg (2-32)
and after differentiating them and making use of the per-

turbation equations, we obtain the following differential

equations and boundary conditions

T a2y
§ = -SA-A'S+5BS-C , S(tf) = —
2

R = -(aT-sB)IR , R(tg) =( 2

q = R'BA , Q(ts)
» m(tf)
, n(te) =(

, altp) = (

10
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Equations (2-16) and (2-33) are identical and they
are known as the matrix Riccati equation. If equations
(2-33) through (2-38) are integrated backwards from tg¢ to
ty, we can usc (2-31) and (2-32), evaluated at t = t3, to

determine dv and dtg in terms of §x(t;) and dy, as follows

av [q 2 as-Rsx1, tg (2-39)

remt onT st nf =1,
dtf [(&-— u—- Q R’ )°X + = Q dv’]t - tf (2"40)
q=0q- E%E (2-41)

R=pr-20_ (2-42)
o
Since we have dv and dtg from (2-39) and (2-40), &2(t1) can

be determined from (2-30):

sty = [G-R W swR Thavl, |

where

Neighboring Extremal Algorithm

The mcthod used to solve the above problem is depicted
in Fig 1, page 12, and explained below.

(a) Given the initial conditions, we assumc we can
solve the TPBVP. If both players play their optimal strategy,
integrate the "reference' state and costate differential
equations forward from ty te tg and get the refercnce optimal

open-lcop trajectory. This is represented by the curve

11
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Reference Fath

O HCwB e WP

Figure 1. Neighboring Extremal Path
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between points 1 and 3. But if the evader plays a non-
€:> optimal strategy, the "real" trajectory (from point 1 to

4) can be obtained by substituting this strategy into the

‘ state and costate equations and integrating forward from ‘515
ty. Stop the: integration at tj after an elapsed time of f,‘ﬂ
at. e

(b) Hav'.ng determined the final reference states at
tf, enforce the transversality conditions (Eq 2-9) and
boundary conditions (for fixed final time problems Ens -

2-19 through 2-21; for unspecified final time problems

Eqs 2-33 through 2-38) for the matrix Riccati equations.
(c) Using the boundary conditions from step (b),
integrate the matrix Riccati differential equations back-
(:\ wards along the reference trajectory from 1g to t1 (point a
2). This gives the values of S(t3), R(%t1), Q(ti’, -.. E {
which will be needed later to compute sa(ty). '
(d) Compute the difference between the recal (point 4) .

and reference (point 2) states at tj.

sxew = JEp - D o e

s

(e) Using Eq (2-19) for the fixed time problem (or

v st e

Eq 2-30 for the unspecified final time problem) and the

results of step (c), compute §A(tj) and update the costates v L

- at tj by

d e o

¢ A(ty) A(tl)old + 8 (ty) {2-46)

new

TR
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() Now at time t;, you have a “new" or updated TPBVP
with the initial conditione for the states being the real
values at point 4 and the initial coaditions for the co-

states being the values computed in step (e).

(g) Repcat steps (a) through (f) until you reach tg
for the fixed final time problems or until the terminal con-

straint is satisfied for the unspecified final time prob-

iems. We are assuming that the linearized differential

equations of the problems are valid for small perturbations
from the optimal extremal path. If this were not a valid

assumption the solution would be expected te dJdiverge., If

it does not diverge, the assumption should be valid,
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III. Pursuit-Evasion Differential Game-Simple

Motion Problem, Fixed Fincl Time

Statement of the Problem

This is a two-dimensional problem as depicted in Fig
2, page 16. The pursuer and evader have no restrictions on
their direction or motion,_that is they can change direction
instantaneously over the complete 360° circle around them,
There are no terminal constraints on the problem. We will
start at some time ty and run until a fixed time which will
be called tgy. The magnitude of the veleccity of each piayer
is constant, but the pursuer has a speed advantage. The
cost or payoff will be one-half the square of the distance
between the players at tg. In other words, we want to

determine the saddle point of

Iee) = 2Pyl L, (3-1)

£

subject to the following differential equations of motion in

a relative coordinate system with the origin at the pursuer,

X =Vgcos v - Vyp cos u (3-2)

y=Vasinv - Vp sin u (3-3}

: The subscripts p and e refer to the pursuer and the evader
R respectively. The pursuer's control is u and the evader's

control is v, which is their respective direction of motion.
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Ve
E,/’<5'
10 15

Figure 2. Simple Motion Two-Dimensional Problem

Necessary Conditions

Applying the necessary conditions for a saddle point
solution, as explained in Chapter II, the Hamiltonian H is

given by
H = 2, [Vecos v»Vpcos u] + Ay[Vesin v-Vpsin u} (3-4)

The Hamiltonian is to be minimized with respect to the
pursuer's control, and maximized with respect to the evader's
control. To do this, it is nccessary that

3H
u
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From Eq (3-4) we get

8H/8u.= ~Vpl-2xsin u + Ay cos u]

3-7)

In order to satisfy the first-half of Eq (53-5) and at the

same time minimize d we must have

cos ut = ax/FnD Y2, sinur =2y 03 DY (5-9)

vhich gives

8H/5u = -Vp[-AxAy/(A,Z(ﬂ)%) 1/2

 apy oo/ = o

The first-half of Eq (3-6) becomes

n

32H/ 3u? +VP[Axcos u¥ + jysin u*]

Vp D3/ 002y V2l 0202y 1/ 250 (3-10)

In a similar manner it can be shown that in order to

maxinize H with respect to the evader's control v we must
have

cos v¥ = /002125 sin va = oy 0d0h 2 (311

This will satisfy the second-half of Eqs (3-5) and (3-6) as
shown here

3H/ 5v

Vol[-2xsin v* + Aycos v¥]

= Vel-rery/ 0309 1 200y 0303 1/2] = 0 (3-12)
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a2m/av?

Ve[-Axcos v* - Aysin v¥]

Ve 030DV 202/030 0 <0 (3-13)

Also by wusing the controls in Eqs (3-8) and (3-11) we sce

i that
g
n it = Max Min g o Nin Max y (3-14)
L
‘ ; which nmust be satisfied., Thus Eqs (3-8) and (3-11) repre-
:
. sent the optiral open-loop control laws for this problem.
1 i The costate equations are
)
| :
1 ; ix = -3ll/3x = 0 (3-15)
» Ay = -ol/ay = 0 (3-16)

PR

The transversality conditions give

Ax(tf)
/\y(tf)

= x(tg) (3-17)

y(tg) (3-18)

n

Open-Loop Soiution. Now, if we substitute the controls

(u®*,v*) into the equation of motion, we get the reference

differential equations for the cpen-loop solution o the

problem.

The state equation and boundary conditions are

= (Ve-Vp)ax/ (&0 YZ, x(o) given (3-19)

¥ = (Ve-Vp)iy/GEN2) 2, y(0) given (3-20)

and the costatce couations and transversality conditions are
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(3-21)
Ac(tr) = x(tg) (3-22)
Ay (tg) = yitg) (3-23)

By making use of the neighboring extremal path develop-

ment of Chapter II, we find that Eq (2-22) reduces to

8A(t) = S(t) 8x(t) (3-24)

with the matrix Riccati equation (2-16)} becoming

) 1 0
S=SBS,S(tf)=[ ]
0 1

where

2 gy
B(t) = -(Ve-Vp/(:2nH1/2 | Y
l:)\x)xy )\;%

Closed-Loop Solution. For this problem, the costate

differential equations can casily be integrated and the
closed-loop solution found. Equations {3-21) through (3-23)

give

Ax = constant = x(tg) (3-27)

Ay constant = y(tg) (3-28)
which when substituted in Eqs (3-19) and (3-20) implies that
x(t)/y(t) = x(tgi/y(tg)

Therefore the optimal closed-ioop control laws may be written

as
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cos u* = cos v* =

= x(t)/ (x2(t)+y2())}/2
R (3-29)

sip u* = sin v¥ = y(t)/(x2(t)+y2(t)) /2

Substituting (3-29) into (3-2) and (3-3) gives the optimal

~losed-loop cifferential equations of motion. But if tie

evader decided tc play non-optimally while the pursuer

played his optimal strateg} the closel-loop state equations
of motion would be

X = Ve COS V - Vpx/(xz‘fszl/2 (3-30)
y = Ve sin v - Vpy/(x2+y?)1/2 (3-31)

These equations, when integrated forward {rom tg to tg, gave
the actual trajectory which served as .a basis with which

to c~—mare the results obtained from the proposed method

for generating the closed-loop soluticns for this problen.

Program Algorithm

Based on the above development of the open-loop solu-
tion, a computer program was written using the neighboring

extremal path zpproach in an effort to arrive at the closed-

loop solution for this problem. The program followed the

algorithm outlined in Chapter II and depicted in Fig 1. All

integrations were done using a variablec step fourth order
Runge-Kutta method.

1

To carry out step (a) of the neighboring
extremal algorithm, the initial conditions and input data
for this problem werce
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Al

x(ty) = 10. vp B oConstant = 2,
y(ty) = 0. Vo ®» constant = 1,
ty, = 0. ty = 5.

1€ both players play their optimal strategy, the reference

opcn-loop solution to the TPBVP gives

x(tg) = x(5.) = 5;
y(tg) = y(5.) = 0.

vhich according to Lqs (3-21) through (3-23) gives the

following costates

- ax(t) = constant = x(tg) = S,

. xy(t) a constant = y(tg) = 0.

In our aim of dctormining.control laws bascd on the
current state and time, we will assume that the evader
decides to play a non-optimal constant strategy of v = ap°
as opposcd to the optimal strategy which for this problem
is v* = 0° according to kg (3-11). Thercfore the “real"
cquations of motion are determined from Eqs (3-2) and (3-3)

to be

o= o-vy A/ (AEnd) /2
. P 5 1/9 (3-32)

¥ Ve - Vpa/(\§Ra /2
Integrating these cquations forward from ty to t] gives the

curve from point 1 te 4 in Vip 1.
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(2) Now follow the procedures laid out in steps

(b) through (g) of Chapter II. Thus we generate a closed-

loop traje«tory for a continuously updated TPBVP, The
smaller the size of the sampling interval and integration

step the closer we should be to the actual closed-loop
trajectory.

Results and \aalysis

The restlts from this problem are presented in Table

I, page 24, and Fig 3, page 25. Two runs were made using

the actual closed-loop solution with different integration

step sizes. The resulting custs were the same for both

runs. It is approximately 6% lcwer than the costs obtained
from the near-optimal solution for the same sampling step
size of 0.5.

From the data, we sec that for a specific sampling
step size there is no change in the final cost as a result
of different integration step sizes being used for the
reference, matrix Riccati and real differential equations.
This indicates that one can decrease the integration time
by selecting a relatively coarse step size of .01 and yet
not change the cost.

The slope of the curve for the near-optimal solution
seems to indicate that as the sampling step size approaches
zero, a limiting minimum cost is approached. This is in
agreement with one's intuition regarding the sampling inter-
val and cost.
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These runs were made without enforcing the transvers-
ality conditions. It would be interssting to compare this

data with that obtained by enforcing the transversality

conditions. This feature was eaamined quite extensively

in Chapter IV,




2881
19¢89°1
L2£89°1

R,

L2£89°1
L2889°'1
LTI€89°1

S086S5°T
S0865°1

S086S°1 Hmswumo-gmoz
9808s°1 Teazoy
980851 Tenjyoy

uorinyog 7, (P32 3nduy) -¢. 1y uoTINngNg
Tenyoy cuy :waéw\ﬁuatﬁ 9z1g dojg doo7-posory
Xoxuayg 150D Teury u:wHQEmm

et et

udTqoxyg auyy TRUTY paxtg ‘uoq

GA/MC/72-4

I 21qry

T VN




2z1g dsils SBurydwes *spA 350D ‘wdTqoXd uUOTIOW OTdWIg SWIL TeUTId POXIJ *¢ 2Inldyyg

3y ‘sztg dozg Buridueg
S 0°'1
1

‘T
1
T 1

" po2I0JUd 30U
suoT3TPUOod AIITeSISASURI] W
uotinios dooT-poasord TeNidY o

-r
+
o~
~
~
2
=
S~
<
9D

O .

A T R




GA/MC/72-4

IV. Pursuit-Evasion Differential

Game-Rocket Problem, Fixed Final Time

Statement of the Preblem

The formulation of this problem isqsimilar to that of
Isaacs (Ref 1 105). But in order to tave a slightly more
non-linear problem, the dr{g will vary as a function of the
velocity squared, whereas Isaacs represents it as a linear
function of the velocity. The pursuer is driven by a fixed
thrust magnitude F, but the direction is controlled by 4.
The evader has simple motion with fixed speced, W. The
action takes place in a plane and the payoff is one-half
the square of the distance between the players at the end
of a fixed final time. B

The pursuer will be burdened with'a friction drag
proportional to the negative of his velocity squared.
Without the drag there is no bound on the pursuer's speed.
If the friction force is -k times the speed squared, there
is a natural limit to the latter equal to F/k. It is the
square of the speed the pursuer would come to asymptotically
if his thrust propelied him along a straight line.

We will use a moving relative coordinate system centered
on the pursuery sec Fig ,, page 34. The object is to find

a saddle point of

I(eg) = 1/2(x3yH |

tf
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subject to

= ie-ip = W sing - u (4-2)

= Ye-yp = W coso - v (4-3)
F sine - ku? ' (4-4)
F cos¢ - kv2 (4-5)

where u and v are the respective x and y components of the
pursuer's velocity. In this problem, as in the one in
Chapter III, there are no terminal constraints or control
constraints. The pursuer's control is ¢ and the evader's

control is e,

Necessary Conditions

Applying the necessary conditions for a saddle point

solution, the Hamiltonian H is given by

H = Ax[W sing-u] + ry[W cose-v]

+ Ay[F sing-ku?] + Ay[F coso-kv?] (4-6)

The Hamiltonian must be minimized with respect to the pur-
suer's control ¢ and maximized with respect to the evader's

control 8. Therefore it is necessary that

3H/3¢ = 0 , oH/26 = 0
32H/262 > 0 ,3%H/502 < 0

Applying these conditions we get

8H/39 = F[iy cos¢ - Ay sing]
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In order to satisfy (4-7) and at the same time minimize H

we must therefore have

sing* = ~ay/ (30212, coser = /(03D Y2 (4-10)

This also satis{ies the first-half of Eq (4-8).
In a similar manner it can be shcwn that in order to

maximize H with respect to "the evader's control ¢ we must

have
sing* = Ax/(A§+A§)1/2, cosot = Ay/(A§+A§)1/2 (4-11)

This will satisfy the second-half of Eqs (4-7) and (4-8),
These optimal open-loop control laws (Eqs (4-10) and (4-11))
also satisfy Eq (2-6).

The costate cquations are

-3H/0x = 0 Ay = constant
-3H/3y = 0 Ay = constant
-3H/3u = Ax + Zki,u

-OH/v = Ay 4+ 2kAyv
The transversality conditions give

Ax(tg) = x(tg) (4-16)
Ay (tg) = y(tg) (4-17)
Aultg) = Ay(tg) = 0 (4-18)

Substituting the controls ($%,6%) into the equations of
motion (4-2 through 4-5), we get the following reference dif-

ferential cquations and boundary conditions for the open-loop

28
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solution to the problem.

Tk =W/ (B2 -, x(0) given (4-19)

y = wy/(gn31/2 - v, y{or given (4-20)

i ; ‘ ﬁ u = -FAu/(A3+A3)1/2 - ku? , "1{0) given (4-21)
\ v = -Pay/(0212)1/2 - xv2 | v (o) given (4-22)

From the neighboring extremal path developments of

Chapter II, we find that the matrix Riccati equation for

A : this problem is
3 =-3A-ATs + 8BS - C (4-23)
and
O ’ R = -aT - sB)R (4-24)
Q = RTBR (4-25)

the boundary conditions determined from Eqs (2-19) through
(2-21) give

1 0 0
! : . o 1 0 o
! 3 S(tg) = (4-26)
3 0 ¢ 0 o
3
] 0o 0 0 0
: R(tg) = {0} (4-27)

since there are no terminal constraints on the problem, and

Q(tg) = {0} (4-28)

ROEHRDR TR e v o
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The last two boundary cond .ions force Eqs (4-24) and (4-25)

to be equal to zero, therefore R(t) and Q(t)j are constants,

and equal to zero at all times. The (4x4) coefficient

matrices in Eq (4-23) are from the general linearized sta.e 3

and costate equations (2-11) and (2-12). For this problem

0 0 -1 0
0 0 0 -1
A(t) = (4-29)
0 0 -2ku 0
0 0 0 -2kv
- WA} Wixly -
2y 2 2442 0 0
(;\x+xy) 3/2 (Ax'”‘y) 3/2 5
-Waxdy wag
. 2,52
(332 agnd 32
B(t) = - ) (4‘30) 1
-Exy Fiuiv
0 0 32432 2.12v3/2 ]
GEnd3iz aindhs/
Faghy -FAg )
0 0 (aZnd)3/e (1 2e22)3/2
o o o o
6o 0 0 o ,
c(t) = - (4-31)
0 0 2k, O
0 0 0 2k
Equation (2-22) reduces to
SA(t) = S(t) 6x(t) (4-32)
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which reflects the effect on the costates due to changes
in the staie variables.

Program Algorithm

Just ar in the Simple-Motion problem of Chapter ITI,

we want to start with the given initial conditions.

Then

The
availability of this reference trajectory is a necessary

solve the TP3VP to obtain.a reference trajectory.

feature of tlis method for generating a closed-loop solu-
tion to differential games.

However, this algorithm by-
passed solving the TPBVP and instead used a backward inte-

gration as a means of generating an optimal open-loop solu-
tion.

(1) As before; a fixed final time of tg = 5.0

was assumed along with the following input data

x(tg)
y(te)
u(tg)
v(tf)

]
-

W

i}
—

i
N

F=2.;
k

n
=]
.

\L‘b = 0,

Basically we are starting the program from step (b) of the
algorithm in Chapter II.

Therefore, the transversality
conditions Eqs (4-16)

to (4-18) may be wiitten as

Ax(tg) =
Ay(tf)

Aplts)

Ay (tg)

n

0.

i
~
.

i

0.

Having both 3,(tg) and iy(tg) cqual to zero presents

a problem ichen evaluating ﬁ(tf) and ;(tf) from Lqs (4-21)

31
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and (4-22). To avoid dividing by zero, we apply L'Hospital's
yule to the terms that would have zero in the denominator
and we obtair the following expressions for Ay and Ay as

functions of ‘x and 2y,

where
Therefore

a/ OZnH 2 = s/ 0Fap /2

o v e ve g B S g

aw/ OEnBH /2 = o (0End) 172

(2) Now integrate the reference state, costate
and matrix Riccati equations backwards from tg to to. This
gives us the reference cpen-loop trajectory represented in
Fig 1 by the curve fron point 3 to 1. We also have the
reference values of the states and S(t) at the sampling time
t; which will be needed later to compute §A(t1).

(3) With the initial conditions for the problem
now specified, compute the 'real” trajectory (from point 1
to 4) by substituting the actual strategies of the players
.nto the differential equations of motion (Eas 4-2 through
4-5) and integrate forvard from tg to v, the sa~pling time.
For this problem we assumed the jursuer played his optimal

strategy (lq 4-30) while the cvader played the constant
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non-optimzl control of 8 = 0°, Using (¢*,0) we get the

following "rezl" equations of motion

-u (4-33)
W-v (4-34)
-Fay/ (A g8 /2 - kul (4-35)

“Fay/ (G812 L gyl (4-36)

(4) Now follow the same procedures laid out in
steps (d) through (g) of Chapter II. The only thing that
is different is the number of differential equations in-
volved. 1In this problem there are twenty-four differential
equations (4 state, 4 costate, and 16 matrix Riccati) which
are integrated backwards in step 2 as opposed to four for

the Simple-Motion problem.

Results and Analysis

Based on the input data, if both players played optimally,
the cost J(tf) would be equal to 2,5. But, we assumed the
evader did not play optimally. Therefore for a zero-sum
differential game the pursuer should gain what the evader
loses. We would expect the cost at tf to be less than 2.5.

The results, as shown in Table 1I, page 37, and Fig 5, page
38, do not completely bear this out. We see that for values
of At less than .2 the cost shoots up instead of approaching
some minimunm optimal cost. This is due to the fact that

both players are actually playing nonoptimally. The algorithm

provides the pursucr with a "near" optimal strategy as opposed
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Figure 4, Two-Dimensional Rocket Problem

to the optimal strategy. In other runs it was found that
integration step sizes equal to or greater than .01 pro-
vided too coarse of an integr. tion to produce useful results.
In runs number nine and ten, the results obtained by
using a simple predict-correct integration method were
compared with that from the variable step fourth order Runge-
Kutta method. It was felt that the resulting costs were
close enough to justify using the method which was easiest

to program although it provided a wmuch finer integration

than was necessary and caused the program to take longer

to run. Therefore, the Runge-Kutta integration mcthod was

used for all subsequent runs.




GA/MC/72-4

A set of runs was used to study the effect of enforcing

the transversality conditions. The first runs were made

w thout enfoircing the transversality conditions. They are

the runs in Table II with no asterisk attached to the final
cost: For these runs, the final values of the costates
obtained from the forward integration in step a were used
in the next cycle as starting values in step c.

For the next set of runs (those with a single asterisk
on the final cost in Table II) the traasversality conditions

were enforced. That is in step b .

Ax(tg) = x(tg)
Ay (tf) = y(tf)

For the final set of runs, the {ollowing substitution:
were made in step b to obtain a modified enforced trans-
versality condition which would be used in step c of the

next cycle.

a(tg) = 1/2[x(tg)+ax(tg) ]
Ay (tg) = 1/2[y(tg)~ry(te)]

As shown in Table II1 and Fig 5, the results from all
three scts of runs were very close. For this problem,
enforcing the transversality conditions appears to have had
negligible influence on the final cost. This may have beon
due to the relatively small value of ty. Had it been as-
sumed to be much greater than 5.0, a differcnce in the costs

may have been detected.
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According to Fig 5, there is a relatively large range

of sampling step size which provides a final cost very

near the minimum cost. Thercfore, by choosing a sampling

step size At in thec range of 1.0 ve can get a very near

optimal closed-loop solution.
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Table II

Results of Rocket, Fixed Final Time Problem

Sampling
Step Size
At

Integration
Step Size

Final Cos
J(tg) = 1/2(x*+y2)
= 2.5 (Input Data)

tren

0
0
.1
1
2
.2
2
2
5
.5
5
.5
5
0
0
0
0

BN b bt b e

.001
001
.001
.001
»0005
.001
.001
.001
.0005
.0005
.001
.001
.001
.0005
.001
.001
.001
.001
.001
.001
.001

2.8370
2.6732%%
2.2752
2.2336%*
1.9933
2.0796
2.0663*
2.0681%%
1.9459
1.9621
1.9958
1.9917%
1.9944*%*
1.9748
1.9940
2.0025%
2.0023%%
2.0057
2.0257*
2.0193%%
2.1463

For this run a simple predict-correct integration

scheme was used.

All other runs used a fourth

order Runge-Kutta integration method.

Transversality conditions enforced.
Modified transversality conditions enforced.
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V. Pursuit-Evasion Differential Game-Simple Motion

;C?) Problem, Free Final Time with Terminal Constraint

i . Statement of the Problem

i ‘ The basic problem is the same as that of Chapter III,
the pursuer and evader have constant velocity, unrestricted
simple plainer motion, with the pursuer having the speed

advantage. The game will be over not at a fixed final time

but when the terminal constraint is satisfied. That is

when

vIx(te)] = 1/2[x2(tg) + y2(tg31-1/2 = 0 (5-1)

% This may be pictured as a capture circle with the center at
% : the pursuer's position. The terminal constraint y will be 3
! <?\ satisfied if the evader is forced inside this unit circle. E
. The object of the game for the, pursuer is to accomplish this B
; 3 in the minimum time possible. The evader, when playing his ?
E ‘ optimal strategy, aims to prevent capture or at least delay
it as long as possible. In other words, we want to determine ,
i- § the saddle point of ¥
g te
& J(tg) =] dt = tg = t, (5-2)
! o
E

which means we have the minimum time to capture. The game

is subject to thc same relative differential equations of

motion

= Ve cos v - V cos u

Ve sin v - Vp sin u

39
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Necessary Conditions

Applying the necessary conditions for a saddle point

solution, the Hamiltonian H may be written from Eq (2-6) as

H = 1+1:[Ve cos v-Vp cos ul+iy[Ve sin v-Vp sin u} (5-5)

It can.be seen, that as far as the controls (u,v) are con-

cerned, H for this problem“is the same as Eq (3-4), there-

fore the same (u*,v*) will provide a saddle point solution

for both prublems. These controls are

sin u# Ay/(A§+A%)1/2, cos u* = Ax/(li*lg)l/z

sin v*

Ml 0ERY2, cos vr = ay/ (1212
The costate equations are

iy = -3H/3ax = 0

Ay = -3H/3y = 0

and the transversality conditions (from Eq 2-9) give

Ax(tg) = vx(tf)
Ay(tf) = vy(tg)

where v is a constant Lagrange multiplier.

(5-6)

(5-7

(5-8)
(5-9)

(5-10)
(5-11)

Now substituting (u*,v*} in Eqs (5-3) and (5-4) we get

the reference differential equations for the open-loop solu-

tion to the problem.

e
1

= (VerVp)ry/ (2?2
= (VG'VPJ )‘)’/()‘)2(+A)%) 1/2

)
[

40

(5-12)
(5-13)
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We see from the extremal path development in Chapter
II, that for the case of unspecified final time the changes

in the costates §i(t) are a function of éx(t), dv and dtg.
Equation (2-3Q) applies here

§2(x) = S(t) 6x(t) + R(t) dv *+ m(t)dtg (5-14)

The addition:z1l necessary condition of Eq (2-24) must also
be satisfied.

For this problem we sec that

<0 = v[1/2(x2+y%)-1/2]

(5-15)

dejar = 32+ B i+ By = vixk + oy (5-16)

this gives

O At = v eVl AN e 1= 0

(5-17)

Substitute Eqs (5-10) and (5-11) into (5-17) and we get the

value of the arbitrary constant

v = ((VpVe) [xE(tg) - y2cep 1M/

(5-18)

We will now determine the terms in Eqgs (ZiZG) to (2-28).
From Eq (5-15) we get

{
LIRS [ N
) 3 X9
% [22¢/0x2], = . L (5-19)
; £ Ja2o a2 0
o PX3Y yZ t = tg
z
. Using Eq (5-17) we got

R e
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= v(Ve-Yp) / i) /2 (5-20)

t=tg

1
dasdt = aa/st + [aq/dx,30/8y] [' ]= “(Ve'Vp)zlt=§§‘21)
Y

Equation (5-1) gives

-
B g _
. t = tg

and %
Qu/dtleg = av/at + [3u/3x,2u/3y] [y‘]

=gV v e alen)l/? (5-23)
N Using the above development and substituting into Egs

(2-33) to (2-38) we get the following differential equations

and boundary conditions for this problem.

1 0
§ = 8BS , S(tg) =[ ]
0 1
x(tf)
R = SBR , R(tf) =
y(tg)

RTBR, Q(t{) = 0

RPN i oy ey e
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22

y Ty
B(t) = ~(Ve-Vp)/ (iin ) 1/2 ) (5-30)
~Axdy Al

Problem Algorithm

As mentioned in previous chapters;, all real problems

start with some given initial conditions. The TPBVP must

then be solved to provide the needed reference open-loop

trajectory to be used in this method for generating closed-
loop solutions.

However, as in Chapter III, rather than

solve the TPBVP given specific initial conditions, this

algorithm uses a backward integration as a means of gen-

erating a reference optimal open-loop solution.

<i} - (1) To terminate the game at some minimum time

: tf, the terminal constraint must be satisfied.

Therefore

.

we will assume the following input data.

te 5.0
x(tg)

y(tf)

to"'

1.0 Ve = 1.0

0 Vp = 2.0

o e iy m aue

This allows us to solve for the terminal conditions . [ the

costate, matrix Riccati and auxiliary differential equations.

(2)

The progiram then integrates the reference

states, costates, matrix Riccati and auxiliary differential
equations backwards from tf to ti, at which time the refer-

ence states x(t1), S(t1). R(t1), Q(t1}, m{t1), n(t;) and



GA/MC/72-4

a(ty) are stored. The backward int?gration is then con-
tinued to tg in order to determine fhe initial state and
costate values.

(3) With this accomplished, integrate the "real"
equations of motion forward from ty to ty. In this prob-
lem we assume the same real equations c¢f motion as used in

Chapter IIT7, that is =
~Vprx/ (15022172 (5-31)
-y =Ve - Vpxy/(l§+1§)1/z (5-32)

(4} Now compute the difference between the '"real"

and "reference'" states at tj.

8x(t1) = Xpaaq(t1) - Xpeg, (t1) (5-33)

8y (t1) = YRea1(t1) - YRef.(t1) (5-34)

(5) There is now enough information to use Egs
(2-39) and (2-40) to compute dv and dtg, which then allows
us to solve for &ir(ty) using (2-43)

(6) Next, compute the new costates and tf by using
Mty pew = *(t1do1a * <S}‘(.tl) (5-35)
tg = tggg * dtf (5-36)

(7} In this step, integrate the reference state
and costate equations forward to determine the states at

sonme ncw final time. Here we have a choice between two
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approaches. We could stop the forward integration at the
computed tg, or we could stop vhenever the terminal con-
straint is

satisfied. that is whenever ¢ = 0. The latter

approach was used for this problem.

(8) Now having determined the new final states,

enforce the iransversality conditions by recomputing the
terminal concitions on the costate, matrix Riccati and
auxiliary difference equatious.

Then go back to step 2
and rereat the cycle.

Results and Analycis

"“he results of this problem are presented in Table III,
rage 47, and Fig 6, page 48. The terminal constraint for

this free final time problem was assumed to be a circle

around the pursuer of radius

equal to one. This was suf-

ficient for capture to occur in all cases. It has not been

determined just how small this circle could be and still

assure capture. This would be good to know in a dogfight

situation, where the minimun radius of capture may iepre-

sent the minimum firing range for the weapons the vursuer

has on the aircraft. T> close inside this minimum range

would be a mistake.
From the data we see that there is a broad range of
integration step sizes for a specific sampling interval

which will provide a fairly uniform final cost. Therefore

we could use the larger step size 0.1 to decrease integration

time and the cost would change by less than 5% of the average
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value for the case wheve the sampliag interval is equal to

0.5.

Three rurs were made to determine the effect of en-

forcing the transversality conditions. Figure 5 shows that

for sampling step sizes of 0.2 and 0.5 there appears to te

very little effect. But for a sampling interval of 1.0

there is definitely a reduction in final cost due to en-

‘ forcing the transversality cenditions,
3 Here agaii, as in Chapter III, the slope of the curve
4 4 seems to indicate that as the sampling step size approaches
. 3
_ ‘ % zero, a2 limiting minimum cost is approached.
3
3
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Table IiX

Run l
Ho. |

Sampling

Step Size Intcgraticn
at

Computed Final Time
Cost, J(tf;
Step Size = 5. (Input Data)

.001 3.1590

091 3.1880%

0G5 3.1650

.01
.1

3.1700

3.390
3.3370
3.3490%*
3.3400
3.3500
3.5000
3.7580

3.5940%
1.0

3.7600

1.0 3.7700

1.0 3.9000

y—————r TR G

Transversality concitions eniorced.
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V1. Pursuit-Evasion Differential Game-Rocket Probiem,

3 LA
9 ‘l ﬁ:) Free Final Time with Terminal Constraint
.
E . . Statement of the Problen
f:‘ f¢: The problem is basically the same as that of Chapter
] oy
’(,' : IV, except that the game will terminate not at a fixed
Fo final time but when the terminal constiaint, y(tg) is sat-
. 3
A isfied. The terminal constraint will oe
A 3
o
. Vix(te)] = 1/2[x2(tg) + y2(t)] - 1/2 =0 (6-1)
. ¢ E
) ; This 1epresents a unit circle, centered on the pursuer, in :
) EE a relative coordinate system. Therefore, the game will be f
. E over wnen the evader is forced inside this unit circle or %
1
.. E o, in other words whken capture occurs. The object will be tc t
] Faa R
¥ ¢ (o capture in minimum time, which means we must determine the
% ‘ saddle point solution of .
poe g ; tf
, E J(tg) il. dt = tg - to (6-2)
: to
subject to
X = Wsing - u (6-3)
- y = W cose - v (6-4)
U = F sing - ku? (6-5)
. ¥ = F coss - kvl (6-6)

where, as in Chapter IV, u and v are the respective x and

y components of the pursuer's velocity and ¢ and ¢ are the

respective pursuer's and evader's controls.
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Necessary Conditions

A

From Eq (2-6) the Hamiltonian may be written as

H = 142y [W sind ~u] + Ay[W cosé -v]

+ Ax[F sing - ku?] + Ay[F cosg - kv2} (6-7)

It can be seen, that as far_ as the con:rols (¢,8) are con-
cerned, H for this problem is the same as Eq (4-6), there-
fore the same (¢%,6%) will provide a saddle point solution

for both problems. These controls are
sineg* -Au/(xﬁu‘z,)l/z , cosgr = Ay /(G2 (6-8)
: 24,2 2,,241/2
sing* Ax/(xxﬂy)l/z , COS@* Ayl (A5*A5) / (6-9)
The costate equations are the same as for Chapter 1V,

-3H/ox = 0 (6-10)
-3H/3y = 0 (6-11)
-aH/3u = Ay + 2kAgu (6-12)
-oH/3v = Ay + 2khyy (6-13)

and using Eq (Z-9), the transversality conditions are

Ax(tg) = vx(ts)
Ay(tg) = vy(tf)
aalte) = ay(tg) = 0

where v is a constant Lagrange multiplier.




e

GA/MC/72-4

Using the optimal controls (¢*,6*) in the equations
A
of motion, we get the same reference differential equations

for the open-loop solution as in Chapter IV.

wzx/(x§+x§)1/2 -u 6-17)

wxy/(x§+z§)1/2 -v (6-18)

“Fay/ (&5 1/2 - 12 (6-19)

Vo= -Fay/(0262)1/2 - ky2 (6-20)
Making use of the neighboring extremal path develop-
ment of Chapter II, we see that for the case of unspecified
final time, the changes in the costates 6A(t) are given

by Eq (2-30) as a function of 8x(t), dv and dtge

82(t) = S(t) &x(t) + R(t)dv + m(t)dtg (6-21)

In order to satisfy the additional necessary condition

(Eq 2-24) which must be satisfied, we find that
o = v[1/2(x2+y2)-1/2] (6-22)

de/dt = 3e/3t+(36/3x)x*(30/0y)y+(e/au)u+(2e/ov)Vv
= [xx + yy] ) (6-23)
This gives

a(tg) = v{x[WAx/(A§+A§)1/2 - u]

+ Y[ny/(A§+A§)1/Z - v]} +1=0 (6-24)

t=tg

Substitute Eqs (6-14) and (6-15) into (6-24) and we get the

value of the arbitrary constant
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vs - W2y )2 - (uxevy) )t (6-25)
t = tg

We will now determine the terms in Eqs (2-26) to (2-28).

From Eq (6-22) we get

32s/0x2 =

Using Eq (6-24) we get

(e 2,,231
Wax/ (15+23) /2

wly/(\§+1§)1/2
T

foa/sx]. . = v
te “Ay /v

-\y/v

ao/at], . = v([ka/(l§+l;)1/2 - w1ty /0Enh)1/2 - 2

+ x(Bay/ 030D Y2+ kil B/ 0§02 i)
’ (6-28)

Equation (6-1) gives

JT7ae1Y = -1
[dy /dtJtf v
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and
dv/at| g, = v-l[W(x§+A§)1/2-(u\x+vxy)]|t=tf (6-30)

Using these equations along with Eqs (2-33) to (2-38)
we get the following matrix Riccati and auxiliary differ-

enitial equations for this problem.

§=-5A-ATs +s85 - C ,

[~ - -
O O e O
o O o o
o o o o

S(tg) = v (6-31)
tf
Ax
. Ay
R = -(AT-SB)R, R(tg) = v-1 (6-32)
: 0
' 0
te
Q = RTBR, Q(tf) = {0} (6-33)
. T_ , _ T
m = -(AT-SB)m, m{tf) = (30/3X)¢, (6-34)
i = R7Bm, n(te) = (dp/dt)e, (6-35)
& = nTBm, o(tf) = (do/dt)ee (6-36)
The coefficient matrices of Eqs (2-11} and (2-12) are
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W -Whxhy
04832 Ggnd)3/e

“Waxh w2
l..2 5 3
(st 32 Gznd ¥/

-1d Faghy
(Aa+13)3/2 (A3+A3)3/2
Fiydy -FAZ
()‘%4-)\‘2,) 3/2 (A%+)\‘2,) 3/2_4

0 0
0 0
2k y 0

072k v

(6-39)

Problem Algorithm

The computer program for this unspeciried final time
Rocket problem folluws the same steps outlined in Chapter V.
The program isput data was

tg = 5.0 x(tg) = 1.0

W=1.C y(t}) = 0.0

F= 2.0 u(te) = 4.0

k= 1 v(tg) = 0.0
and the "real" equitions of motion were assumed to be the
same as those used in Chapter IV for the fixed final time

Rocket problem. They were assumed to be

AN S sy e s
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X = -u 8 (G-40)

¥ = W-v (6-41)

0= ~Fr,/(020a2)1/2 - xul (6-42)
v u *v

Vo= sFay/ (0§32 - kel (5-43)

Results and Analysis -

The results from this free final time problem are pre-
sented in Table IV, page 56, and Fig 7, page 57. For this
data, the capture circle radius R equals vZ. It was found
that capture would not occur if R = 1, Therefore the
minimum radius that assures capture is someplace between
the two values but it was not specifically de.evmined.

i The computed final time tf is the sum of tg the actual
final time from the previous iteracion and the computed
value of dtf at the final sampling time. The actual capture
(or final) time is determined by integrating the "real"
equations of motion forward from the last sampling time
until the terminal constraint is satisfied (¢ -~ 0). Except
for the cases vhere the sampling step size equals 0.2, the
computed final time appears to provide an optimistic final
cost as compared tc the actual final cost. Thic is another

example of the computational errors introduced by the larger

sampling step sizes. We see that as the sampling step size
decreases the resulting final cost ualso decreases.
From Fig 7, we can see that by enfurcing the trans-

versality conditions we achieve a delipite reduction in

55
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Table IV

A

Results of Rocket, Free Final Tima Problem

Sampling Computed Actual
Run | Step Size | Integration Final Time | Final Time
No. At Step Si-e te = terdty (v =0)

1 .2 .001 A1.6934 4.0830
1* .2 001 4.1118 4.1110

2 .5 .001 4.1898 4.2020

Z* -5 .001 4.1683 4,1750
3 1.0 001 4.2575 4.5430

3% 1.0 .001 4.2074 4,2%40 R

*: Transiersality conditioas enforced S

final cost, especially fcr the larger sampling step sizes.
We are in essence starting with ah updated two-point ]
bourdary-valite prchlem each tine we enforce the transvers-

a2lity conditions.
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ViI.

Conclusions and Recommendations

There are many questions left unanswered by this brief

attempt at applying the proposed method of generating near-

optimal closed-loop solutions to a few example differential

game problems, But some general observations can be made.

There are a number of factors that influence the final cost
in differential games.

Among them are the sampling step

size, the size of the capture circle in the unspecified

i
3
g ©
final time problems and enforcing tiie transversality con- 5
ditions.

It was found that generally the final cost varied

directly with the sampling step size and inversely with the

size of the capture circle.

Enforcing the transversality
conditions resulted in decreased finzl cost.

In some prob-
lems it appears as though the integration step sizes from

0.1 to 0.001 had very iittle effect ou the final cost.

It appears as though one can use a coarse integration and

yet not affect the final cost significantly.

Therefore it »
may be possible by using a hybrid computer to approach

"real time'" closed-loop solutions.

The analog computer
would provide the coarse but rapid integration of the dif-
ferential equations.

In any practical application of this

method, we would want to update the TPBVP as often as pos-
sible.

But the minimum sampling step size At is limited by

the time required to perform the numerical calculations

needed to update the solution,

During the updating interval,
the players must base their strategies on the “best"
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available information (the state of the game at the be-
ginning of the last updated interval) as opposed to the
perfect or complete information based on present states.
This should still be adequate provided the states of the
game do not change too rapidly.

Although this method for generating near-optimal
closed-loop solutions js most applicable to differential

game problems, it would also be applicable in many optimal

control problens. One cof the main limitations of the

V’u

method is that we must have the solution to the TPBVP. At

times, solving the TPBVP could be quite an accomplishment

1 itself. Also all previous discussion was limited to

solutions in the small,

examine the many preblems available through various possi-

Even then, we did not begin to

ble combinations of final time, control constraints and

terninal constrairnts. Teo say ‘the least, the. is a lot more

work to be done in this area.

&N
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