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Abstract

The zero-sum, perfect information pursuit-evasion dif-

ferential game is reviewed. The purpose of this thesis

is to formulate a method for generating near-optimal

closed-loop solutions to these problem-;. The method is

then applied to a numbor of example problems in order to

check its validity. This method deals with solutions in

the small and is based on updating the two-point boundary-

value problem by use of the neighboring extremal path con-

cept.

The two differential game problems examined are a

simple motion problem and a rocket problem. Two separate

cases viere studied for each problem. One was the fixed

C, final cime problem and the other was the free final time

with a terminal constraint.

Analysis of the results obtained, supports the feas-

ibility of this method to provide near-optimal closed-loop

solutions to differential game problems.

C)
vi
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A METHOD FOR GENERATING CLOSED-LOOP

0 SOLUTIONS TO DIFFERENTIAL GAMES

I. Introduction

The original formulation of differential game. ,is

presentcd by Isaacs (Ref 1) less than .-... -•rive ye. rs

ago. It was developed front the theory of games and ceals

with games in which two opposing players are "confron c0i

with lengthy sequences--be they continuous or discrete--

of decisions which are knit together logically so that a

perceptible and calculable pattern prevails throughout"

(Ref 1:3), Thus it soon found applications in economics,

in the development of control systems and in analyzing war-

fare problems. The latter will be the area of considera-

tion in this thesis.

We will consider games involving two players, a pursuer

and an evader, each with conflicting interests and each with

complete information about his opponent's state and avail-

able strategies. Ideally the evader wants to select his

strategy based on the present state of the game that will

maximize a certain quantity called.the "cost" or "payoff".

The cost may be any number of things such as the time to

capture, or the distance between players, or the fuel re-

quired by the pursuer, etc... . The pursuer at the same

time wants to select his strategy based on the present state

of the game that will minimize the cost. The strategies

-' supply instructions as to how to set the controls for earh
*1

unill~iiildmil il!l/Im nln
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set of data measured. If the control variables are func-

0 tions of the state variables and time, we have a closed-

loop solutien to the problem, In this case, if either

player playv. non-optimally, the other player if playing

optimally wi. 1 imnediatel7 take advantage of this and gain

what the first player loses. This is known as the zero-sum

feature of d.fferential games.,

Although it is evident that the closed-loop solution is

the desired solution in all differential games, often there

is no p:actical means of obtaining it. In most problems

the costate or adjoint differential equations which must he

integrated to provide the link between the controls and

state variables are nonlinear, nonhomogeneous equations

Sthat can not be solved other than numerically.: Therefore

we are left with optimal control strategies uhich are func-

tions of time and the initial conditions cf the problem.

These are called open-loop control laws. Basically we have

a two-point boundary-value problem (TPBVP) with the initial

states and final costates given. If solved, it provides

an optimal open-loop trajectory which for zero-sum games

is the same as the closed-loop trajectory if both players

play optimally., This is not true if either player deviates

from his optimal strategy.

The purpose of this thesis is to devise a method for

obtaining near optimal closed-loop solutions to diffcrential

games and to apply the method to a number of problems to

) demonstrate its validity. The method is developed and an

2
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algorithm presented in Chapter II. This methou is based

() on the assumption that the TPBVP can be solved to provide

a needed reference optimal open-loop trajectory. Also,

Mtre solutions considered in this thesis are solutions in the

small. That is, they refer to the sm-3oth parts of the so-

lution found between the singular sur~aces that separate

the number of parts of the-playing space.

Fixed final time problems are exatmined in Chapters III

ond IV, while free final time problems with terminal con-

straint are examined in Chapters V and VI.

3
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11. Statement of the Problem

Differential Came Problem

The zero-sum perfect information pursuit-evasion dif-

ferential game setup will. be represented by the following

dynamic system (Ref 2:277)

f(x,u,,v,t), x(to) = XO(2-1)

where x is an n-dimensional state vector, u is an m-dimen-

sional decision (or control) vector for the pursuer, v is

a p-dimensional control vector for the evader and to repre-

sents the initial time. The controls may or may not be

subject to constraints depending on the problem being con-

sidered. The terminal constraints (conditions which must

'U be satisfied when the game is over) are

?ý[X(tf),tf'= 0 (2-2)

where is a q vector, and the performance criterion (cost

or payoff) is

J = Ofx(tf),tf] +fL(x,u,v,t)dt C2-3)
fto

The object is to find u* and v* such that

Jt'u*,v) _1 J(ul',v5) <1 J(u,v*) (2-4)

If ti* and v* can be found, thle pair (u4,v*j is called a

saddle point of the game and J(ti*,vk) is called the value

of thle game.

4
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Necessary Conditions. In order to apply the necessary

G1 conditions 'or a saddle point solution in the small, the

Hamiltonian (H) is defined as

H(t,x,x,u,v) . ATf + L (2-5)

where A is an a-dimensional costate vector. This scalar

function H imnst be minimized over the set of admissible u

and maximized over the set of admissible v in ordt!r to

have a saddle point solution of the above differenti.l

game, that is

H* = Max Min H = Min Max H (2-6)
iv u v

and the second-order necessary conditions are that

(1u> 1* (2-7)

As mentioned in Chapter I, singular arcs will not be

considered in this thesis. In some optimization problems,

•- extremal arcs (Hu = 0) occur on which the matrix 11u is

Ssingular. Such arcs are called s•ingular arcs.

• The costate differential equations are

X t -all/ax -lix (2-8)

and the transversality conditions are given by

H(tf) = -,t(tf)" XT(tf) = x(tf) (2-9)

where ¢[x(tf),tf) = + JT, and vJ is a constant Lagrange

multiplier.
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Open Vs. Closed-Loop Controls. As previously stated,

the optimal solution to the differential game problem is

the pair of controls (u*,i,*) which provides a' saddle point

of J. Attention must be given to thE; interpretation Of L*

and v* in Eq (2-4) as open-loop or closed-loop strategies.

If the pair (u*,v*) is a function of ":ime and the initial

conditions (i.e. u*(t,xo,to) and v*(txo,to)), one speaks

of an open-loop solution. If the controls are expressed

as functions of L-,, instantaneous state and time

u* = ku(x,t)
(2-10)

v* = kv(x,t)

one has what is known as a feedback or closed-loop control

law. The closed-loop control law is a much more strigent

type of optimality. It means that the evader must play

optimally against an opponent whose control is produced in

a feedback fashion; that is, the pursuer can iwmediately

take advantage of any nonoptimal play made by the evader.

If both players play their optimal strategy, the open-
loop and closed-loop solutions are the same for zero-sum

games. But if either player deviates from his optimal

play, the open-loop solution will differ from the actual

or closed-loop solution and this difference could result in

a complete change in the outcome of the game. Therefore

we would like to generate closed-loop control laws. This

can be done if the solution to the two-point boundary-value

problem (TPBVP) can be continuou-ly updated based on current

6 __ I
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states. In order to accomplish this, we must find the

effect on the costates due to small changes in the states;

that is, wc must find SX(t) as a function of Sx(t) which

"can be obtained from a ncighboring extremal path approach.

Neiborg Extremal Paths

This will be an extension of Brysin and tie's develop-

ment (Ref 2:177) to differential games As was mentioned

before, if both players play their optimal strategy, the

open and closed-loop solutions are the same for zero-sum

games. Let us suppose that we have determined a reference

trajectory by solving the TPBVP in the small and have been

given the initial conditions for the states.

First, for problems in which the final time is speci-

Q fied, if we consider small perturbations from this reference

* extremal path produced by small perturbations in the initial

state sx(to) and in the terminal conditions 6ý, we expect

that such perturbations will give rise to pcrturbations

6x(t), 6X(t), 6u(t), dv governed by linearizing Iqs (2-1),

(2-2), (2-6), (2-8) and (2-9) around the extremal path. We

therefore can obtain the following equations-

6k = A(t)6x - B(t)6X, 6x(to) specified (2-13)

6A = -Ctt)6x - AT(t),ýA (2-12)

Dll/11u = 0, 3l1/,0v = 0 (2-13)

SX(tf) = [(xx+v' xx)Sx+qddv]t = tf (2-14)

64, = [o'6xlt = tf (2-15)

7
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where
ACt) & fx-fu Hu Hux

• •- :•B~t) = f, 11- Ju

C(t) = Ilxx'IIxu H-1 if

which are (nxn) matrices. These equations represent a

linear two-point boundary-value problen since the coeffic-

ients are evaluated on the extremal path.

By using the backward sweep methoi (Ref 1:179) for

determining the neighboring extremal path we arrive at the

following matrix differential equations

_ = -SA - ATS + SBS - C (2-16)

k= -(AT - SB)R (2-17)lb -= RTBR (2-18)

and boundary conditions

S(tf) = [ý +Txx]t = tf (2-19)
RCtf) = [•Tt = tf (2-20)

x~t tf(2-20)
Q(tf) = 0 (2-20)

where

6A(t) = S(t)6x(t) + R(t)dv (2-22)

64, = RT(t)6x(t) + Q(t)dv (2-23)

If these matrix differential equations are integrated back-

wards from t = tf, the relations (2-21) and (2-22) represent

boundary conditions equivalent to the terminal boundary

conditions (2-13) and (2-14) at ear]lir times; thus, we are

8
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"sweeping" the terminal boundary conditions backward to

earlier times. This allows us to eventually determine Sx

and 6X at thi, earlier time.

Now, if 4%e consider the case whete the final time is

unspecified, the nominol optimum solution must satisfy the

additional necessary condition

de (2-t))I ds
P(x 'Iv't) t tf dt- + L)t = 2-24)

where

v = (x,t)+vTO(x,t), do + ao (2-25)

This scalar equation determines the additional unknown

parameter, tf.

( Perturbation of the necessary coilditions (2-2), (2-9),

and (2-23) must take into account the perturbations in the

"final time, dtf. Finally this leads to

Ax(tf) x , IT 1 px(tf), (2-26)

d x 0 , L dv (2-27)] a ' , dt
/t tf [

where

df! an P~ M F, Lft+ a ,' dt t ax (2-29)

IlI9
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Equations (2-11) through (2-13) plus (2-26) through

(2-28) represent a linear two-point boundary-value problem

for a neighboring extremal with smaLll changes in initial

conditions, ax(to), and/or small changes in the terminal

conditions, dý,. These changes will, in general, produce

small changes 6x(tf), dv and dtf.

As in the previous case, where the final time was

fixed, we may extend the backward sweep method to solve the

unspecified final time problem. By using the substitution

F ~tl S~t) , R(t) , m(t)1 Fx(ti] (2-30)

d LmT(t) , nT(t) , a(t)j dtf (2-32)

fa znd after differentiating them and making use of the per-

turbation equations, we obtain the following differential

equations and boundary conditions

-SA-ATS+SBS-C ,S(tf) = 2 (2-33)
t tf

T
R - (AT-SB)R R(tf) a T (2-34))t= tf

Q RTBA ,Q(tf) 0 (2-35)

m -(AT-SB)m m(tf) = tf 1 (2-36)

RTBm n(tf) d (2-37)

T= mTBm , a(tf) = (t t 2-38)
tI t tr
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Equations (2-16) and (2-33) are identical and they

are known as the matrix Riccati equation, If equations

(2-33) through (2-38) are integrated backwards from tf to

tl, we zan use (2-31) and (2-32), evaluated at t = tl, to

determine dv and dtf in terms of 6x(t1) and dý, as follows

dv = [q-l(dP-RT x)]t . tf (2-39)

Sdtf = -[(mTL nW q-IT)6x + q-& (T0
. • •-a'-Uld¢t =tf

I where
- n n_- (2-41)

a T R - (2-42)

.C Since we have dv and dtf from (2-39) and (2-40), 6X(tl) can

be determined from (2-30):

6 )= [(S-R -I T)6x+R ý-I = tl (2-43)

where

S - MMT~2  (2-44)

Neighboring Extremal Algerithm

The method used to solve the above problem is depicted

in Fig 1, page 12, and explained below.

(a) Given the initial conditions, we assume we can

solve the TPBVP.ý If both players play their optimal strategy,

integrate the "reference" state and costate differential

equations forward fron to to tf and get the reference optimal

open-lonp trajectory., This is represented by the curve

11
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' I/I I
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I Figure 1, Neighboring Extremal Path
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between points 1 and 3. But if the evader plays a non-

optimal strategy, the "real" trajectory (from point I to

4) can be obtained by substituting Ihis strategy into the

state and costate equations and integr'ating forward from

to. Stop tha integration at tI after an elapsed time of

At.

(b) Having determined the final reference states at

tf, enforce the transversality conditions (Eq 2-9) and '1
boundary conditions (for fixed final time problems Eqs

2-19 through 2-21, for unspecified final time problems

Eqs 2-33 through 2-38) for the matrix Riccati equations.

(c) Using the boundary conditions from step (b),

integrate the matrix Riccat! differential equations back-

S C wards along the reference trajectory from tf to tl (point

2). This gives the values of S(tl), R(tl), Q(tl), .

which will be needed later to compute 6A(tl).

(d) Compute the difference between the real (point 4)

and reference (point 2) states at tl.

Real Ref.(2-

(e) Using Eq (2-19) for the fixed time problem (or

Eq 2-30 for the unspecified final time problem) and the

* results of step (c), compute 6X(tl) and update the costates

at t1 by

X(tl)new (tl)old + SX(tl) (2-46)

13
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(f) Now at time tl, you have a "new" or updated TPBVP

with the initial conditions for the states being the real

values at point 4 and ttie initial coaiditions for the co-

states being the values computed in step (e).,

(g) Repeat steps. (a) through (f) until you reach tf

for the fixed final time problems or until the terminal con-

straint is satisfied for the unspecified final time prob-

lems. We are assuming that the linearized differential

equations of the problems are valid for small perturbations

from the optimal extremal path, If this were not a valid

assumption the solution would be expected to diverge. If

it does not diverge, the assumption should be valid.

14



GA/MC/72-4

III. Pursuit-Evasion Differential Game-Simple

Motion Problem, Fixed Fin-l Time

Statement of the Problem

This is a two-dimensional problem as depicted in Fig

2, page 16. The pursuer and evader have no restrictions on

their direction or motion, that is they can change direction

instantaneously over the complete 3600 circle around them,

There are no terminal constraints on the problem. We will

start at some time to and run until a fixed time which will

be called tf. The magnitude of the velocity of each player

is constant, but the pursuer has a speed advantage. The

cost or payoff will be one-half the square of the distance

between the players at tf. In other words, we want to

01 determine the saddle point of

J(tf) = (x2+y2 )'i= tf (3-1)

subject to the following differential equations of motion in

a relative coordinate system with the oyigin at the pursuer.

k Ve Cos v - V, PCos u (3-2)

=Ve sin v - Vp si.n u (3-3)

The subscripts p and e refer to the pursuer and the evader

respectively. The pursuer's control is u and the evader's

control is v, which is their respective direction of motion.

-is
15
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u 
E V

Figure 2. Simple Motion Two-Dimensional Problem

Necessary Conditions

Applying the necessary coaditions for a saddle point

solution, as explained in Chapter I1, the Hamiltonian H is

given by

H = Xx[VecOs V-VpCOs U] + Xy[IVesin v-Vpsin u] (3-4)

The Hamiltonian is to be minimized with respect to the

pursuer's control, and maximized with respect to the evader's

control. To do this, it is necessary that

aH aH (3-5)

and

a21>0 32110 (3-6)

16
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From Eq (3-4) we get

?IH/au = -Vp[-Xxsin u + Ay cos u] (3-7)

In order to satisfy the first-half of Eq (3-5) and at the

same time minimize H we must have

Cos u* -,/(X2+A2)1/2, sin u* y/()ga2)1/2 (3-8)

which gives

DH/au - -Vp I- Ax ,y/C,•2+ X2) /2

+ A AAX2 ,X2 ) 1/2 ) (3-9)

The first-half of Eq (3-6) becomes

* •32H/au 2 = +VP[Xxcos U* + xysi. ul *

• = 2+) 2 1/2+X2 2+X2 11 2]>0 (
=vp[XR/(•X XY) xy/(X X Y) (-o

In a similar manner it can be shown that in order to

maximize H with respect to the evader's control v we must

have

Cos V* = Ax/CA+x2)l/2; sin v* = Xy/(•2+A2)lI2 (3-31)

This will satisfy the second-half of Eqs (3-5) and (3-6) as

shown here

alH/ýv = Ve[-Axsin v* + A ycos v*]

-Xy = 0 (3-12)

17
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D211/nv2 
= Ve[-Axcos V* - Aysin v*]

2 1/2+A/A.,212 < 0 (3-13)

Also by %,sing the controls in Eqs (3-8) and (3-11) we see

that

Max M•n j = Mm Max H (3-14)

which must be satisfied. Thus Eqs (3-8) and (3-11) repre-

sent the optiiral open-loop control laws for this problem.

The costate equations are

X= -all/ax - 0 (3-15)

iy -alI/ay 0 (3-16)

The transversality conditions give

xX(tf) = X(tj) (3-17)

Ay(tf) = y(tf) (3-18)

Open-Loop Solution., Now, if we substitute the controls

(u*,v*) into the equation of motion, we get the rt,ference

differential equations for the open-loop solution -o the

problem., The state equation and boundary conditions are

S Ve-Vp)xx/(X2+x2)1/2, x(o) given (3-19)

(Ve-Vp 1y/ A,* / y , y(o) given (3-20)

and the costate equations and transversality conditions are

C-':-

k..is
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AX(tf) X(tf) (3-22)

XyCtf) = yCtf) (3-23)

By making use of the neighboring extremal path develop-

ment of Chapter II, we find that Eq (2-22) reduces to

6X(t) = S(t) 4x(t) (3-24)

with the matrix Riccati equation (2-16) becoming

S S B S, S(tf) = (3-25)0 1

where 2 AxxI

B -) (Vo-VpI(,+X)/FYy (3-26)

~ThL AY

Closed-Loop Solution. For this problem, the costate

differential equations can easily be integrated and the

closed-loop solution found, Equations (3-21) through (3-231

give

Xx = constant = x(tf) (3-27)

A) = constant = y(tf) (3-28)yI
which when substituted in Eqs (3-19) and (3-20) implies that

x(t)/y(t) = x(tfO/y(tf)

Therefore the optimal closed-loop control laws may be written

as

S. .. ... . . .. ... .. . a.. . ii -- i l ~ i "1 i 'V •' i i .. i i19•
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0 cos u* = cos v* = x(t)/Cx2(t)+y
2Ct))1/Z

sip u* = sin v* = y(t)/(x
2 (t)+y

2 (t))I/L (3-29)

Substituting (ý-29) into (3-2) and (3-3) gives the optimal

blosed-loop cifferential equations of motion. But if the

evader decided to play non-optimally while the pursuer

played his optimal strategy the closel-loop state equations

of motion would be

X = Ve cos v - Vpx/(X2+y 2 )1/2 (3-30)

= Ve sin v - Vpy/(x 2 +y2)l"2 (3-31)

These equations, when integrated forward from to to tf, gave

the actual trajectory which served as *a basis with which

to c--nare the results obtained from the proposed method

for generating the closed-loop solutiens for this problem.

Program Algorithm

Based on the above development of the open-loop solu-

tion, a computer program was written using the neighboring

extremal path approach in an effort to arrive at the closed-

loop solution for this problem. The program followed the

algorithm outlined in Chapter II and depicted in Fig 1. All

integrations vere done using a variable step fourth order

Runge-Kutta method.,

(1) To carry out step (a) of the neighboring

extremal algorithm, the initial conditions and input data

for this problem were

20
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)- x(to) 10. .- stdnt - 2.

y(to) C0. constant - 1.

to 0. tf " S.

If both players play their optimal strategy, the reference

open-loop solution to the "ITPIB gives

x(tf) -x (S.) - S.

y(tf) y,) a 0.

which according to liqs (3-21) through (3-23) gives the

following costates

... (t) - constant - x(tf) - 5.

A>.(t) - constant y )(tf) - 0.
0

'n our aim or- deterriiig control laws based on the

current state and time, we will assume that the evader

decides to play a non-optimal constant strategy of v - 90*

as opposed to the optimal strategy which for this problem

is v* 00 accordiing to l1q (3-11). Therefore the "real"

equations of motion are determined from l'qs (3-2) and (3-3)

to be

p(3-32)

Integrating these equations rorward from to to t] givcs the

curve from point I to 4 in F:ig 1t 2
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(2) Now follow the procedures laid out in steps

0• (b) through (g) of Chapter II. Thus we generate a closed-

loop traje tory for a continuously updated TPBVP. The

smaller the size of the sampling interval and integration

step the closer ie should be to the actual closed-loop

trajectory,

Results and U.lysis

The results from this problem are presented in Table

I, page 24, and Fig 3, page 25. Two runs were made using

the actual closed-loop solution with different integration

step sizes. The resulting costs were the same for both

runs. It is approximately 6% lower than the costs obtained

from the near-optimal solution for the same sampling step

size of 0.5.

From the data, we see that for a specific sampling

step size there is no change in the final cost as a result

of different integration step sizes being used for the

reference, matrix Riccati and real differential equations.

This indicates that one can decrease the integration time

by selecting a relatively coarse step size of .01 and yet

not change the cost.

The slope of the curve for the near-optimal solution

seems to indicate that as the sampling step size approaches

zero, a limiting minimum cost is approached. This is in

agreement with one's intuition regarding the sampling inter-

val and cost.

22
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These runs were made without enforcing the transvers-
ality conditions. It would be intere)sting to compare this
data with that obtained by enforcing the transversality
conditions, This feature was e~amined'quite extensively

in Chapter IV.

23
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IV. Pursuit-Evasion Differential

- ( Game-Rocket Problem, Fixed Fnal Time

Statement of the Problem

The formulation of this problem is similar to that of

Isaacs (Ref 1 105). But in order to Iave a slightly more

non-linear problem, the drag will vary as a function of the

velocity squa:ed, whereas Isaacs represents it as a linear

function of the velocity. The pursuer is driven by a fixed

thrust magnitude F, but the direction is controlled by 0.

The evader has simple motion with fixed speed, W. The

action takes place in a plane and the payoff is one-half

the square of the distance between the players at the end

of a fixed final time.

C The pursuer will be burdened with a friction drag

_ _proportional to the negative of his velocity squared.

Without the drag there is no bound on the pursuer's speed.

If the friction force is -k times the speed squared, there

is a natuial limit to the latter equal to F/k. It is the

square of the speed the pursuer would come to asymptotically

if his thrust propelled him along a straight line.

We will use a moving relative coordinate system centered

on the pursuer; see Fig 4, page 34 . The object is to find

a saddle point of

J(tf) = 1/2'(x 2 +y 2 )It= tf (4-1)
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subject to

X ep = WV slf4 -u (4-2)

e, =yep = W cose V (4-3)
u = F sine - ku 2  (4-4)

= F coso - kv 2  (4-5)

where u and v are the respective x and y components of the

pursuer's velocity. In this problem, as in the one in

Chapter III, there are no terminal constraints or control

constraints. The pursuer's control is € and the evader's

control is e.

Necessary Conditions

Applying the necessary conditions for a saddle point

solution, the Hamiltonian H is given by

H = Wx[ sine-u] + Xy[W cose-v]

+ Au[F sin-ku2 ] + Xv[F cos¢-kv2 ] (4-6)

The Hamiltonian must be minimized with respect to the pur-

suer's control € and maximized with respect to the evader's

control 0. Therefore it is necessary that -

,H/a= 0 , DH/aG = 0 (4-7)

;211/302 > 0 ,a 2 t/aO2 _ 0 (4-8)

Applying these conditions we get

iH/a P = F[XU cos. - Xv sinfl (4-9)
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In order to satisfy (4-7) and at the same time minimize H

we must therefore have

sino* : Au/(,%2,X) 1/2, coso* = -AV/(X2+X2)1/2 (40""u/" v- u (4-10)

This also satLsfies the first-half of Eq (4-8).

In a similar manner it can be shcwn that in order to

maximize H wi,:h respect to *the evader's control 0 we must

have

sinO* = Ax/C•+,) 1 / 2 , COSO* x y.y/(2+A2)1/ 2  (4-11)

This will satisfy the second-half of Eqs (4-7) Rand (A-8).

These optimal open-loop control laws (Eqs (4-10) and (4-11))

also satisfy Eq (2-6),

The costate equations are

ix = - = Ax = constant (4-12)

iY= -aH/ay = 0 Xy = constant (4-13)

iu = -- /au Ax + 2kxuU (4-14)

iv = -aH/av = Ay + 2kxvv (4-15)

The transversality conditions give

Ax(tf) = x(tf) (4-16)

Ay(tf) = y(tf) (4-17)

Au(tf) = v(tf) 0 (4-18)

Substituting the controls (ý*,e*) into the equations of

motion (4-2 through 4-5), we get the following reference dif-

ferential equations and boundary conditions for the open-loop
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solution to the problem.

0 w x/O 2xý2) 1/2 - u x(o) given (4-19)

!= WVy/(X2,+)1/ 2 
- v , yo). given (4-20)

U = -FXu/cx 2+A2)1/ 2 - ku 2 
, i,(o) given (4-21)

= -Fxv/(u2+X2)1/2 - kv 2 
, (O) given (4-22)

From the neighboring extremal path developments of

Chapter II, we find that the matrix Riccati equation for

this problem is

S= -SA - ATS + SBS - C (4-23)

CR = -(AT - SB)R (4-24)

Q = RTBR (4-25)

the boundary conditions determined from Eqs (2-19) through

(2-21) give

1 0 0 0'

0 1 0 0 (-6

S(tf) = o (4-26)

R(tf) = {01 (4-27)

since there are no terminal constraints on the problem, and

SQ(tf) = {01 (4-28)
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The last two boundary cond -ions force Eqs (4-24) and (4-25)

to be equal to zero, therefore R(t) and Q(t) are constants,

and equal to zero at all times. The (4x4) coefficient

"matrices in Eq (4-23) are from the general linearized sta~e

and costate equations (2-11) and (2-12).: For this problem

0 0 -1 0

0 0 0 -1
A(t) = 0 2ku 0 (4-29)

0 0 0 -2kv

IV;+,2 32 IVAX• x]

B-t) = - -'F)Y2 F~u)v (4-30)

"00 (A,+ X2)3/2 7U2+w 00

_2 0Z3/ 32/ (x2+A2) 3/2

0 00

C(t) = - (4-31)
0 2kXu j

0 0 2k0v

Equation (2-22) reduces to

6x(t) = S(t) 6x(t) (4-32)
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which reflects the effect on the costates due to changes

in the staie variables.

Program Algorithm

Just a:" in the Simple-Motion problem of Chapter ITI,

we want to start with the given initial conditions. Then

solve the TP3VP to obtain.a reference trajectory, The

"availability of this reference trajectory is a necessary

feature of tlis method for generating a closed-loop solu-

tion to differential games,, However, this algorithm by-

passed solving the TPBVP and instead used a backward inte-

gration as a means of generating an optimal open-loop solu-

tion,,

-- (1) As before, a fixed final time of tf 5.0

was assumed along with the following input data

x(tf) = I. W = 1.

y(tf) = 2. F - 2,,

u(tf) - 2. k = .1

v(tf) = 4. tc = 0.,

Basically we are starting the program from, step (b) of the

algorithm in Chapter II, Therefore, the trailsversality

conditions Eqs (4-16) to (4-18) may be wiitten a-

Ax(tf) = 1. Xu(tf) = o.

xy(tf) = 2. Av(tf) = 0,

Having both Au(tf) and Av(tf) equal to zero presents

a problem i,hcn evaluating u(tf) and v(tf) from Eqs (4-21)
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and (4-22). To avoid dividing by zero, we apply L'Hospital's

J rule to the terms that would have zero in the denominator

and we obtair the folloing expressions for Xu and Xv as

functions of x and Xy•

Xu = Xxtl

vX = Xt6d

"where at tf - tf

Therefore

,/(X• 2)1 = 2 / x/(X x2+ ,)l/
2

and
;•/;2,X•2)1/2 X 2,X/•÷2)1/2

(2) Now integrate the reference state, costate

and matrix Riccati equations backwards from tf to to. This

gives us the reference cpen-loop trajectory represented in

Fig 1 by the curve fron point 3 to 1. We also have the

reference values of the states and S(t) at the sampling time

t1 which will be needed later to compute Sx(t 1 ).

(3) With the initial conditions for the problem

now specified, compufe the "real" trajectory (from point 1

to 4) by substituting the actual strategies of the players

,nto the differential equations of motion (Eqs 4-2 through

4-5) and integrate forvard froir t, to t, t1te sa-'pling time.

For this problem ue assumed the pursuer played his optimal

strategy (lq 4-J0) i.hile the e-vade. played the constant
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non-optiral control of 8 = 0'. Using (4*,O) we get the

following "real" equations of motion

S= -u (4-33)

= W-v (4-34)

Ui = -FXu/CX2+X2)1/ 2 - ku 2  (4-35)

T= -Fxv/(x2+x2) 1 / 2 
- kv2  (4-36)

(4) low follow the same procedures laid out in

steps (d) through (g) of Chapter II. The only thing that

is different is the number of differential equations in-

volved. In this problem there are twenty-four differential

equations (4 state, 4 costate, and 16 matrix Riccati) which

are integrated backwards in step 2 as opposed to four for

0 the Simple-Motion problem.

Results and Analysis

Based on the input data, if both players played optimally,

the cost J(tf) would be equal to 2.5. But, we assumed the

evader did not play optimally. Therefore for a zero-sum

differential game the pursuer should gain what the evader

loses. We would expect the cost at tf to be less than 2.5.

The results, as shown in Table II, page 37, and Fig 5, page

*• 38, do not completely bear this out. We see that for values

of At less than .2 the cost shoots up instead of approaching

some ninimum optimal cost.- This is due to the fact that

,C both players are actually playing inonoptimally. The algorithm

C' Lprovides the pursucr with a "near" optival strategy as opposed
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0E

• .1

()Figure 4. Two-Dimensional Rocket Problem

to the optimal strategy, In other runs it was found that

integration step sizes equal to or greater than .01 pro-

vided too coarse of an integr~ tion to produce useful results.

In runs number nine and ten, the results obtained by

using a simple predict-correct integration method were

compared with that from the variable step fourth order Runge-c

Kutta method. It was felt that the resulting costs were

close enough to justify using the method which was easiest

to program althou~gh it provided a much finer integration

than was necessary and caused thc program to take longer

to run. Therefore, the Rungge-Kutta integration method was

used for all subsequent runs,
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A set of runs was used to study the effect of enforcing

(•) the transversality conditions. The first runs were made

without enfoicing the transversality conditions. They are

* the runs in Table II with no asterisk attached to the final

cost. For these runs, the final values of the costates

obtained from the forward integration in step a were used

in the next cycle as startihg values in step c.

For the next set of runs (those with a single asterisk

on the final cost in Table I1) the transversality conditions

were enforced. That is in step b

Ax(tf) = x(tf)

"Ay(tf) = y(tf)

t -., For the final set of runs, the following substitution:

were made in step b to obtain a modified enforced trans-

versality condition which would be used in step c of the

next cycle.

Ax(tf) = I/2[x(tf)+Xx(tf)]

)Ly(tf) = i/2[y(tf[)-Xy~tr)]

As shown in lable II and Fig 5, the results from all

three sets of runs were very close.- For tbis problem,

enforcing the transversality conditions appears to have had

negligible influence on the final cost, This may htcr bean

due to the relatively small value of tf. Had it been as-

sumed to be much greater than 5.0, a difference in the costs

may have been detected,
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According to Fig 5, there is a relatively large range

of sampling step size which provides a final cost very

near the minimum cost. Therefore, by choosing a sampling

step size At in the range of 1.0 w:e can get a very near

optimal closed-loop solution.
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Table II

- J ©Results of Rocket, Fixed Final "ime Problem

Sampling Final Cosi
Run Step Size Integration J(tf) = l/2(x1+y2) tf
No. At Step Size = 2.5 (Input Data)

1 .OE .001 2.8370
2 .OE .001 2.6732**
3 .1 .001 2.2752
4 .1 .001 2.2336**
5 .2 ,0005 1.9933
6 .2 .001 2.0796
7 .2 .001 2.0663*
8 .2 .001 2.0681*-
9 a .5 .0005 1.9459

10 .5 .0005 1.9621
11 .5 .001 1.9958
12 .5 .001 1.9917*
13 .5 .001 1.9944**
14 1.0 .0005 1.9748
15 1.0 .001 1.9940
16 1.0 .001 2.0025*
17 1.0 .001 2.0023**
18 1.25 .001 2.0057
19 1.25S .001 2.0257*
20 1.25 .001 2.0193**
21 2.5 .001 2.1463

a: For this run a simple predict-correct integration
scheme was used. All other runs used a fourth
order Runge-Kutta integration method.

*: Transversality conditions enforced.
**: Modified transversality conditions enforced.
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V. Pursuit-Evasion Differential Game-Simple Motion

C) Problem, Free Final Time with Terminal Constraint

Statement of the Problem

The basic problem is the same as that of Chapter III,

the pursuer and evader have constant velocity, unrestricted

simple plainer motion, with the pursuer having the speed

advantage. The game will be over not at a fixed final time

but when the terminal constraint is satisfied. That is

when

Op[x(tf)] = 1/2[x 2 (tf) + y 2 (tf)]-l/2 0 C5-1)

This may be pictured as a capture circle with the center at

the pursuer's position., The terminal constraint ý will be

satisfied if the evader is forced inside this unit circle.
The object of the game for the.pursuer is to accomplish this
in the minimum time possible. The evader, when playing his

optimal strategy, aims to prevent capture or at least delay

it as long as possible. In other words, we want to determine

the saddle point of

J(tf) -ft dt = tf 4 to (5-2)

which means we have the minimum time to capture. The game

is subject to the same relative differential equations of

motion

=V cos v - cp Cos u (5-3)

- y =Ve sin v - Vp sin u (5-4)
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Necessary Conditions

0 Applying the necessary conditions for a saddle point

solution, tbe Hamiltonian H may be written from Eq (2-6) as

H = l+A-.[Ve cos V-Vp Cos U]+y[Ve sin v-Vp sin u] (5-S)

It can-be seen, that as far as the controls (u,v) are con-

cerned, H for this problem is the same as Eq (3-4), there-

fore the same (u*,v*) will provide a saddle point solution

for both problems, These controls are

i sin u* -- )/(A+A2)l/2 cos u* = XxI(x2+x2) 1/2  c-6)

sin V* = X)/C)L+x2)1/2, cos v* =x/0,+A)1/2 (57)

The costate equations are

ix= -aH/ax 0 (5-8)

A= -yi/ay = 0 (5-9)

and the transversality conditions (from Eq 2-9) give

-xCtf) = vx(tf) (5-10)

AY(tf) = vy(tf) (5-11)

where v is a constant Lagrange multiplier.

Now substituting (u*,v*) in Eqs (5-3) and (5-4) we get

the reference differential equations for the open-loop solu-

tion to the problem.

(Ve-Vp)Xx/(X2+X2)X /2 (5-12)

"" = (VeoVp)x /(02+2 I/2' y (5-13)

1~' 40
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We see from the extremal path development in Chapter

II, that foi the case of unspecified final time the changes

in the costates 6X(t) are a function of 6x(t), dv and dtf.

Equation (2-50) applies here

SA 5(t;) - S~t) 6x(t) + R(t) dv + m~t)dtf (5-14)

The additionzl necessary condition of Eq (2-24) must also

be satisfied. For this problem we set! that

I _ = v[l/2(x
2 +y 2)-l/2] (5-15)

dt/dt +4' +.±k + 2± = v(xk + M~ 5-6at ax ay

this gives

cii~ 0(ntf)= v(Ve-Vp.)Lcxx+Yxy)/(x+2x 1 0 {5-17)

Substitute Eqs (5-10) and (5-11) into (5-17) and we get the

value of the arbitrary constant
{{pV)[2(tf) -y2(tf)jll21-I (5-18) /

From Wi:: (Vp-Ve) fxtf tf lo
tie will now determine the terms in Eqs (2-26) to (2-28).,

From Eq (5-15) we get

S• {Txy -ay• t =tf

Using Eq (5-17) we get
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r l a .2,.%2,1/2 (-2)

IIxJtf = v(Ve'1p)l,^x Y) I

and

dl/dt = aD/at + [aRlax,aflay] J V(Ve-Vp) 2 Jt=15- 2 1)

Equation (5-1) gives

i-ai i = xj - (5-22)
.axjtf .y =(

a•-I L m aJt tf

and

d1'/dtItf at/at + [ai/axais/ay] L
::=_•I =(CVCV)iv[X2(tf)+X212(f /2, y

S(5-23)
Using the above development and substituting into Eqs

(2-33) to (2-38) we get the following differential equations

"and boundary conditions for this Froblem.

= SBS , S(tf) = 0 (5-24)

S1,=SBR , R(tf) = X(tf) IP "(5-25)i i ! Ly(tf)J

, { =RTBR, Q(tf) = 0 (S-26)

A= SBm , m(tf) =11)S (5-27)y= _tf

SRTBm n(tf) =( )tf

2 (5-28)

.F• = TBm, aCLtf) -=(ad(S-29
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where

B(t) - (Ve-Vp)/(x 2 +A)/2 [ 3

Problem Algorithm

As mentioned in previous chapter;, all real problems

start with some given initial conditions.: The TPBVP must

then be solved to provide the needed reference open-loop

trajectory to be used in this method for generating closed-

loop solutions. However, as in Chapter III, rather than

solve the TPBVP given specific initial conditions, this

algorithm uses a backward integration as a means of gen-

erating a reference optimal open-loop solution.

-" (1) To terminate the game at some minimum time

tf, the terminal constraint must be satisfied. Therefore

we will assume the following input data.

tf = 5.0 to = 0.

x(tf) = 1.0 V0 = 1.0

y(tf) = 0 Vp 2.0

This allows us to solve for the terninal conditions f the

costate, matrix Riccati and auxiliary differential equations.i

(2) The program then integrates the reference

states, costates, matrix Riccati and auxiliary differential

equations backwards from tf to ti, at which time the refer-

ence states x(tl), S(tl).. R(tl), Q(tl), mztl), n(tl) and
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M(t1 ) are stored. The backward integration is then con-

C) tinued to to in order to determine the initial state and

costate values.

(3) With this accomplished, integrate the "real"

equations of motion forward from to to tI. In this prob-

lem we assume the same real equations of motion as used in

Chapter II, that is

S= -Vp~x/(X2+x)l/2 (s-31)

= Ve - Vpxy/(A+x)y/ (5-32)

(4) Now compute the difference between the "real"

and "reference" states at t 1 .

"ax(tl) = XReal(tl) - XRef'(tl) (5-33)

""y(tl) = YReal(tl) - YRef.(tl) (5-34)

"(5) There is now enough information to use Eqs

(2-39) and (2-40) to compute dv and dtf, which then allows

us to solve for SX(t 1 ) using (2-43)

(6) Next, compute the new costates and tf by using

'(tl)new = X(tl)old + SX(tl) (5-35)

tf = tf old + dtf (5-36)

(7) In this step, integrate the reference state

and costate equations forward to determine the states at

some now final time. Here we have a choice between two

:4)
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approaches. We could stop the forward integration at the

0 computed tf, or we could stop whenever the terminal con-

straint is ;atisfied. that is whenever • 0. The latter

i approach wa5 used for this problem.

(8) Now having determined the new final states,

enforce the iransversality conditions by recomputing the

terminal concitions on the costate, matrix Riccati and

auxiliary difference equations. Then go back to step 2

and repeat the cycle.

Results and Analysis

,he results of this problem are presented in Table III,

page 47, and Fig 6, page 48. The terminal constraint for

this free final time problem was assumed to be a c5 rcle

around the pursuer of radius equal to one., This was suf-

, ~ficient for capture to occur in all cases,.- It has not been

determined just how small this circle could be and still

assure capture. This would be good to know in a dogfight

situation, where the minimum radius of capture may lepre-

sent the minimum firing range for the weanons the oursuer

has on the aircraft. T) close inside this minimum range

would be a mistake.

From the data we see that there is a broad range of

integration step sizes for a specific sampling interval

which will provfde a fairly uniform final cost. Therefore

wc could use the larger step size 0.1 to decrease integration

tire and tle cost i.ould channe by less than 5. of the average

45
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value for the case where the sampling interval is equal to

QOS.
Three ruts were made to determine the effect of en-

forcing tVe tiansversality' conditions. Figure 5 shows that

for sampling step size, of 0.2 and 0.5 there appears to be

very little vfeect. But for a sampling interval of 1.0

there is definLtely a reduct-ion in final cost due to en-

forcing the transversality conditions.

Here agail, as in Chapter III, the slope of the curve

seems to indicate that as the sampling step size approaches

zero, a limiting minimum cost is approache3.

.24
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Table M~

Results of Simple Motion, F:.-ee Fimal Time Problem

'Sarnp]ing Computed Final Time
Run Step Size Intcgratior. Cost, J(tfj
No. At Stap Size 5. (Input Data)

1 .2 :001 3.1590

'.2 .001 3.1880*

2 .2 .OGS 3.1650

3 .2 .01 3,1700

4 .2 .1 3.300

5 .5 .001 3.3370

5* .5 .001 3.3490*

, 6 .5 .005 3.3400

7 5 .01 3.3500

8 .s ,1 3.5000

9 1.0 .001 3.7580

9* 2.0 .00i 3.5940*

10 1.0 ,.005 3.7600

11 1.0 .01 3.7700

12 1.0 .1 3.9000

*: Transversality conditions eniorced.
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VI. Pursuit-Evasion Differential Game-Rocket Problem,

O •0 Free Final Time with Terminal Constraint

STatement of the Probler

The problem is basically the same as that of Chapter

IV, except that the game ,'ill terminate not at a fixed

final time but when the terminal constraint, *(tf) is sat-

isfied. The terminal constraint will oe

.ý)x(tf)] = l/2[x2 (tf) + y 2 (tf)] - 1/2 = 0 (6-1)

This iepresents a unit circle, centered on the pursuer, in

a relative coordinate system. Therefore, the game will be
over when the evader is forced inside this unit circle or

tn other words when capture occurs. The object will be to

capture in minimum time, which means we must determine the

saddle point solution of

J(tf) -fdt = tf - to (6-2)
0to

subject to

i = W sinO - u (6-3)

I V W cose - v (6-4)

= F sine - ku 2  (6-5)

= F cos€ - kv 2  (6-6)

* where, as in Chapter IV, u and v are the respective x and

y components of the pursuer's velocity and € and 0 are the

"respective pursuer's and evader's controls.

19
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Necessary Conditions

i From Eq (2-6) the Hamiltonian may be written as

H = l+A,-[W sine -u] + Xy[[W cosO -V]

+ Xx[F sinf - ku 2 ] + ),V[F co:;€ - kv 2 ] (6-7)

It can be seen, that as far as the con:rols (ý,e) are con-

cerned, H for this problem is the same as Eq (4-6), there-

fore the same (ý*,e*) will provide a saddle point solution

for both problems. These controls are

- sin(* = -A fu(2+x2 ) 1 / 2  cosý* = -• v/2+X2) 1 / 2  (6-8)

• = • /r2+x2)1/2 cs*= Xy/(x2+x2) 1/2 . i
'k sine* = cose* = y (6-9)

"The costate equations are the same as for Chapter IV,

= -aH/Ix = 0 (6-10)

Xý. = -aH/ay = 0 (6-11)

=X = -RH/Du = Ax + 2kXuu (6-12)

.3 = -aH/av = xy + 2kXvv (6-13)

and using Eq (2-9), the transversality conditions are

Xx(tf) = vx(tf) (6-14)

Xy(tf) = Vy(tf) (6-15)

Xu(tf) = Xv(tf) = 0 (6-16)

where v is a constant Lagrange multiplier.

so
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Using the optimal controls (*,O*) in the equations

of motion, we get the same reference d3fferential equations

for the open-loop solution as in Chapter IV.

= Wlx/(AX+A )1/ 2 
- u (6-17)

x= Wy/(Ax2+IX2)1/2 _ v (6-18)

x y0 =-Fxu/(x2+x2)1 /2 - ku2  C-9

4= -FLv/(lx2+x2)1/2 - kv 2  
C6-20)

Making use of the neighboring extremal path develop-

ment of Chapter II, we see that for the case of unspecified

final time, the changes in the costates 6A(t) are given

by Eq (2-30) as a function of 6x(t), dv and dtf.

6X(t) = S(t) 6x(t) + R(t)dv + m(t)dtf (6-21)

In order to satisfy the additional necessary condition

(Eq 2-24) which must be satisfied, we find that

= v[1/2(x 2 +y2 )-l/2] (6-22)

d4'/dt =(/t(ý/xx(oayy((/uu(oa~

=[x~k + y$' (6-23)

This gives

SP(tf) = v{x[jW),x/(A2+X 2)1/2 - u]
y =

+ yIfxy/(X2+X2)1/ 2 - v]J + 1 = 0 (6-24)

Substitute Eqs (6-14) and (6-15) into (6-24) and we get the

--\ value of the arbitrary constant
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v = fW(x2+y2)~1 2 - ux+vy)11} (6-2S)
t tf

We will now determine the terms int Eqs (2-26) to (2-28).

From Eq (6-22) we get

[a O/x (6-26)

Using Eq (6-24) we get

WVAxI(xPx ")1 -u
W?.yI(\'+ Y)l -v

T
\-, a~/Xtf=v (6-27)

and

dP)/dtltf = vf[Wx,/(2+,)2)l/2 - u+[Wxy/(x 2+x2/2 _ v]

+ x[FXu/(A3x2,%)
1/2 . ku2]+y[Fxv/CX2+ý2)l 2 

+k
2 1

U x + k2]11t~tf

( 6-28)

Equation (6-1) gives x

[d~,ý/dtj' T [-Ay1  (6-29)

0 t =ttI:
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and

di/dtltf = v'l[w(•2+A)l/z-(ukx+VXyf]Itt (6-30)

Using these equations along with Fqs (2-33) to (2-38)

we get the following matrix Riccati anc auxiliary differ-

ential equations for this problem.

= -SA- ATS + SBS - C

0 0 01

S(tf) =v (6-31)
0 0 0 0 :

o 0 0 0 tf

Xx

e = -(AT-SB)R, R(tf) v-1 (6-32)

tf

S= RTBR, Q(tf) = 10} (6-33)

= -(AT-SB)m, mrtf) = (n /ax)Tf (6-34)

= RIBn, n(tf) = (dý/dt).tf (6-35)

mTBm, a(tf) = (dR?/dt)tf (6-36)

The coefficient matrices of Eqs (2-11) and (2-12) are

(I)
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0 0 -1 0

0" ACt) 0 1(6-37)

0 a -2ku 0

0 L a 0 -kv.j

F WXj -WXXXY
-xA7))3/2 (xl+x 2 )3 / 2  

0=-- y x y.

(X 2+x233/ (6-38)

B(t) --
-Fx2 FXuXv

0 0 (A,2+xZ)3I2 (x 2 +x 2)3/2

0 0 0

b. c(t) = - 1 (6-39)0 0 2k

0 0 0;

Problem Algorithm

The computer program fo- this unspecified final time

Rocket problem follows the same steps outlined in Chapter V.

The program input data was

tf = 5.0 X(tf) 1.0

Vw = 1.0 y(tf) = 0.0

F = 2.0 u(tf) = 4.0

* k = 1 v(tf) = 0.0

"and the "real" equ:t~tons of motion were assumed to be the

same as thocse used in Chapter IV for the fixed final time

Rocket problem. They were assumed to be
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- x'= -u (6-40)
__ = W-v (6-41)

= .•I(%2+ý2)112 - ku2  (6-42)
"u v

it = -FXv/(X2+X2)1/2 - k,2 (6-43)

Results and Analysis

The results from this free final time problem are pre-

sented in Table IV, page 56, and Fig 7, page 57. Fox this

data, the capture circle radius R equals /7. It was found

that capture would not occur if R = 1. Therefore the

minimum radius that assures capture is someplace between

the two values but it was not specifically deLe'mined.

The computed final tine tf is the sum of tf the actual

final time from the previous iteration and the computed

value of dtf at the final sampling time. The actual capture

(or final) time is determined by integrating the "real"

equations of motion forward from the last sampling time

until the terminal constraint is satisfied (p -- 0). Except

for the cases ihere the sampling step size equals 0.2, the

computed final time appears to provide an optimistic final

cost as compared to the actual final cost. This is another

example of the computational errors introduced by the larger

sampling step sizes, We see that as the sampling step size

decreases the resulting final cost also decreases.-

From Fig 7, we can see that by enfUrcing the trans-

versality conditions we achieve a deiixite reduction in

............................................... . =
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Table IV

Results of Rocket, Free Final Tim_ Problem

Sampling Computed A~ctual
Run Step Size Integration Final Time Final Time
No. At Step Si'e tf = tffdtf (*/, = 0)

1 .2 .001 4.0934 4.0830

1* .2 .001 4.1118 4.1110

2 .q .001 4.1898 4.2020

-* " .5 .001 4.1683 4,1750

3 1.0 .001 4.2575 4.5430

3* 1.0 .001 4.2074 4.2940

*: Translersality conditions enforced

final cost, especially fcr the larger sampling step sizes.

We are in essence starting with ah updated two-point

bourdary-vaiue prcblem eazh tin'e we enforce the transverr-

ality conditions.
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VII. Conclusions and Recommendations

There are many questions left unanswered by this brief

attempt at applying the proposed method of generating near-

optimal closed-loop solutions to a few example differential

game problems. But some general observations can be made.

There are a number of factors that influence the final cost

in differential gares. Among them are the sampling step

size, the size of the capture circle in the unspecified

final time problems and enforcing the transversality con-

ditions. It was found that generally the final cost varied

directly with the sampling step size and inversely with the

size of the capture circle. Enforcing the transversality

conditions resulted in decreased final cost. In some prob-

0 lems it appears as though the intpgration step sizes from

0.1 to 0.001 had very little effect on the final cost.

It appears as though one can use a coarse integration and

yet not affect the final cost significantly. Therefore it

may be possible by using a hybrid computer to approach

"real time" closed-loop solutions. The analog computer

would provide the coarse but rapid integration of the dif-

ferential equations. In any practical application of this

method, we would want to update the TPBVP as often as pos-

sible, But the minimum sampling step size At is limited by

j the time required to perform the numerical calculations

needed to update the solution, During the updating interval,

the players must base their strategies on the "best"
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available information (the state of the game at the be-

ginning of the last updated interval) as opposed to the

perfect or complete information based on present states.,

This should still be adequate provided the states of the

game do not change too rapidly.

Although this method for generating near-optimal

closed-loop solutions is most applicable to differential

game problems, it would also be applicable in many optimal

control problems. One cf the main limitations of the

method is that we must Lave the solution to the TPBVP. At

times, solving the TPBVP could be quite an accomplishment

in itself. Also all previous discussion was limited to

solutions in the small. Even then, we did not begin to

examine the many problems available through various possi-

ble combinations of final time, control constraints and

teruinal constrair.ts. To say the least, the, is a lot more

work to b- donie in this area,
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