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SUMMARY 

Technical Problem 

The Network Aiialysis Corporation contract with the Advanced 

Research Projects Agency incorporates the following objectives; 

To determine the most economical cCitfigurations for the ARPANET, 

to study the properties of store and forward networks and to de- 

velop procedures for analysis and design of reliable computer 

communication networks. 

General Methodology 

The heart of the research program has been a dual attack on 

basic network theoretical problems and the development of compu- 

tational techniques for the study of large networks. 

Technical Results 

Some of the results accomplished during the reporting period 

are: 

• A study of the tradeoffs between network size, network 

connectivity and component reliability was completed. 

This study indicates that reliability will be a major 

and perhaps dominant issue for large network design. 

3 



• A new method for reliability analysis which uses a 

recursive technique has been developed to handle a 

large class of networks composed of loops and trees. 

This method allows a wide variety of reliability 

criteria to be evaluated simultaneously at a small 

fraction of the c\>st of previously known methods, 

• New and improved computational techniques for finding 

"minimum spanning trees \ (a fundamental network 

problem) were derived.  This computation is a basic 

ingredient in many large scale network algorithms. 

Department of Defense Implications 

Communication networks for meeting Department of Defense 

requirements involve huge network structures that present tech- 

niques are inadequate to handle.  The results of the reporting 

period highlight the role that reliability will play in such 

networks, provide new techniques fCi. ehe analysis of large 

Defense Department networks and meet some of the computational 

requirene nts for xarge scale network cesign. 

Implications for Further Research 

This report shows that for very Jaxge  networks, cost/ 

reliability considerations rnus^ be given equal importance to 

cost/throughput considerations.  Thii* means that there will be 



a need to develop dramatically different network design procedures 

tc insure availability of resources in a large network.  The re- 

quirements of the new procedures, while not yet well defined, 

indicate that computation breakthroughs for a number of basic 

network problems will be necessary. 

t ■ 
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I. RELIABILITY AND LARGE COMPUTER NETWORKS 

1. Introduction and Summary 

The major considerations in the system design of a computer 

network such as the ARPANET are: 

1) Cc&t 

2) Throughput 

3) Delay and response time 

4) Network reliability 

While it is essential to consider each of these constraints, 

it often results that several are automatically satisfied for 

designs satisfying the remaining.  Initially, this was the 

case i.'or the ARPANET.  The delay and response t ime was ade- 

quately considered by slightly derating the line capacities 

of the 50 kilobit links and the reliability was adequate if 

there were at least two node disjoint paths between each pair 

of nodes.  Thus, the cost-throughput tradeoff was the over- 

riding consideration.  Given these conditions, it is possible 

to design very efficient networks in a reasonable amount of 

compucing time.  However, it is becoming evident that as the 

ARPANET increases in size, the reliability constraints are 

beginning to limit design choicef».  It may even become that 

the cost-reliability tradeoff may replace the cost-throughput 



tradeoff as the basic design consideration.  While for small 

versions of the ARPANET^ any design with at least two node 

disjoint paths between each node pair and sufficient through- 

put would necessarily be reliable enough, initial investigations 

indicate that for large networks sufficient reliability auto- 

matically implies sufficient throughput.  In any case, it is 

clear that reliability constraints will play an ever increas- 

ing role in the design process as the ARPANET becomes larger. 

Considering this, it is quite sobering to note that many 

large communication nutwo/ks are being designed 

with little consideration of network reliability (as distin- 

guished from component or element reliability). 

R3liability analysis of computer networks is concerned 

with the dependence of the reliability of the network on the » 

reliability or its nodes and links.  Element reliability is 

easily definid as, for example, the fraction of time tha 

element is operable, or as by the mean time between failures 

and expected repair time.  The proper measure of network re- 

liability is not as clear and simple.  Several possible 

measures are:  the number of elements which must be removed 

to disconnect the network, the probability that the network 

will be disconnected, the expected fraction of node pairs 

which can communicate through the network, and the expected 



throughput of the network subject to element failures.  The above 

measures are listed in order of their computational complexity. 

Many other measures can and have been suggested.  A whole other 

class of measures arise when the nodes are not of equal importance. 

as in centralized networks or hierarchai networks.  In a centralized 

network, one may be interested in the expected number of nodes which 

can communicate with a central node.  More general criteria arise 

when different node pairs are weighted by their importance.  For 

example, communication between ILLIAC IV and' certain other nodes 

will be of high priority in tne ARPANET.  Most of our analysis 

will deal with exepcted fraction of node pairs communicating al- 

though in many cases any of the other criteria mentioned could 

be used. 

Node failures can affect network reliability in two ways. 

First, if a node fails, clearly it cannot communicate with any 

other iiOde In the network.  Thus, if there are NN nodes in the 

network a d one fails, a minimum of NN-1 node pairs cannot com- 

municate independent of the network structure.  In the next 

section we establish a simple formula for measuring this effect. 

Changing the network ^onfiguratior. has no effect on this com- 

ponent of network reliability.  Another effect of node failures 

is that the failed   'es destroy some potential communication 

paths between other pairs of nodes.  Link failures also affect 

network reliability in the second way. 



In the next section, we survey the reliability situation 

for small versions of the ARPANET.  In Section 3 we enumerate 

several independent pieces of evidence which point out the in- 

creasing role of reliability considerations in larger ARPANETS. 

In the final section of the chapter, the implications of this 

trend are discussed. 

2. Reliability of Small to Medium Networks (NN^5Q) 

The initial design procedure for the ARPANET controlled 

reliability by im isting that there be at least two node dis- 

joint paths between evi\ry  pair of nodes.  Later computations 

proved that this implied almost perfect reliability in the fol- 

lowing sense.  Suppose node i in the network is inoperative a 

fraction p. of the tirut for i=l,..., NN.  Then a lower bound for 
i 

the expected number of noae pairs which cannot communicate is 

equal to the expected number of node pairs not communicating in a 

complete network where each node pair is joined by an invulnerable 

link.  No addition or redistribution of links can xeduc^ the ex- 

pected number of node pairs not communicating below this value. 

For small nets, the existence of two node disjoint paths between 

each pair of nodes invariably resulted in an expected number of 

node pairs not communicating very near the lower bound.  Thur# 

the addition of more links for reliability purpose? was not justi- 

fied.  The calculation of this important lower bourd is as .follows: 

5. 



Let each node i of a network with NN nodes have a probability 

Pj^ of failing.  Then, the expected number of node pairs in 

which one or both nodes have failed is 

X^-d-PiHl-Pj)) • 

If Pi = P for i=l#...# NN, i< j  then the expected number is 

NN(NN-l) |l-(l-p)2| = NN(NN-l) [2p(l-p)l 

and the expected fraction of node pairs with at least one node 

failed is [2p(l-p)].  Two important implications of this simple 

result deserve to be emphasized.  First, the expected fraction 

of non-communicating node pa\rs cannot be reduced below 

[2p(l-p)], and second this lower bound is invariant with 

respect to the size or the network. 

To fix these ideas and to give specif c examples Oic the ' 

reliability characteristics of small nets, we consider two 

versions of the ARPANET.  The first is a 23 node network that 

has been thoroughly analyzed as a jommon measuring point or 

standard for the various reliability analysis techniques. 

The second network is a medium size network of 33 nodes in 

which for the first time an additional link was considered 

mainly for reliability leasons.  Th6 13 node network is repre- 

sented in Figure 1.1.  This design had a yearly line cpet of 

$847,000 for its 28 lines and a throughput of 9.9 Kbits/node 

X- i(j 
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assuming uniform traffic between nodes.  We will assume a 

base element failure probability 0.02 which is a close 

approximation to currently measured values.  Then^ 2p(l-p) 

equals 0.0395 for p=.01 and hence the expected fraction of 

node pairs not communicating must be at least (.0396) (23) (22)/2 

equals 10.0188.  In Figure i.2 the expected fraction of node 

pairs not communicating as a function of element failure 

probability is shown. Also r.hown is the expected fraction 

of node pairs not communxcating when only links fail, when only 

nodes fail and finally when the curve 2p(l-p) is plotted. 

For p = .02, the expected fraction of node pairs not communi- 

cating is 0.04^. 

In t>e case whore only nodes fail the e>.pect2d fraction 

is .0427 and for only links failing .0018.  Rem.r.herinr' that . 

2p(i-p) = ,03 96, we .see that 80% of the node pairs which cannot 

communicate can be ascribed to purely the fact that one of 

the nodes of the pair in question has failed.  Thus, the 

improvement in reliability to be gained by chenging the network 

configuration is miner.  Nevertheless, ?everöl strateg.es for 

improving reliability were examined.  The most vulnerable 

section of the 23 node network is the long string of nodes 

from node 6 xBBN) to node 15 (CASE) along the bottom of 

Figure 1.1. The firet idna wa«» to add a link from node 13 
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(BURROUGHTS) to node 14 (LINCOLN).  The second idea was to 

install hardware at the IMPs so that if an IMP failed, 

traffic could be routed around it in one direction connecting 

two of the incident links.  Any remaining links are effectively 

blocked.  Tne results of these analyses are shown in Figure 1.3. 

For p=.02 the improvement is negligible and does not justify 

the cost of implementation although for higher values of p 

the improvement becomes more significant.  The expected frac- 

tion of non-communicating node pairs is a purely topological 

reliability measure since it does not completely reflect the 

degradation of throughput due to element failures.  The most 

detailed level of analysis of reliability incorporates element 

failures, flow requirements, routing, acceptabla delays and 

other pertinent network characteristics.  In order to test 

the adequacy of the ARPANET under the most stringent of 

conditions, a reliability analysis treating these factors was 

performed.  The effect on throughput at average delay of 0,2 

seconds was examined by removing nvides and links from the 

network and applying the NAC routing and analysis algorithms 

to the remaining network.  The nominal throughput of the 23 

node network with all elements operable is 11.5 KEPS/node. 

When nodes and links are failing with pc.02,  the expected 

/ 
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ANALYSIS OF NETWORK RELIABILITY 
FIGURE 1.3 
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throughput is at least 9.0 KBPS/node.  These results again 

show that for small networks, reliability is not a dominant 

factor. 

Figures 1.4 and 1.5 depict a 33 nude network.  For the 

network shown in Figure 1.4 the difference between the ex- 

pected fraction of node pairs not communicating ~ ,058 and 

2p(l-p) = .040 is almost double the difference for the 23 

node network so that improving the reliability by changing 

the network configuration becomes marginally feasible.  An 

extra link from FT.BEL to ABER increased the cost by a little 

over 1% and increased the reliability by almost 10%.  The 

resulting network is shown xn Figure 1^5.  Thus, even for a 

network with only 33 nodes, it is becondng necessary to con- 

sider reliability in more detail than the Mtwo connectivity" , 

criteria.  For p>.02 it is even more important. 

3. Reliability Trends for Large Networks 

While for «Tialler networks and law element failure pro- 

babilities (p6-.02), it was found that designing the network 

with at least two node disjoint paths between each node pair 

for throughput in the range 8-15 kilobxts/second/node guaranteed 

sufficient reliability; aa networks become larger this simple 

approach fails.  Th3 first experiments which indicated this 

1G 
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started with low cost networks of 20,40,60,80,100 and 200 nodes 

with throughput approximately 8 KBPS/node designed by NAC's net- 

work design program with the reliability constraint of two node 

disjoint paths.  The results are shown in Figure 1.6 when nodes 

are perfectly reliable. TiS  measured by the fraction of node 

pairs not communicating, the reliability actually increased with 

the number of nodes up to 60 nodes at which point the reliability 

began to decrease.  As is evident, the decrease in reliability is 

dramatic even though nc^es have been assumed to be perfect. 

Figures 1.7 through 1.10 show the results of analysis of a 

family of two and three connected networks containing from 20 

nodes to 200 nodes.  The networks analyzed contain 20, 40, 60, 

80, 100 and 200 nodes.  However, a continuous line is drawr for 

visual convenience.  On the curve in Figure 1.8 for p=0.2, the 

simulation/analysis error is indicated by vertical bars with length 

equal to 4 times the standard deviation.  If the simulation results 

were normally distributed, thi? would corresponde to a 95% confi- 

dence interval.  It can be seen from Figures 1.7 to 1.10 that when 

there are 3 node disjoint paths between every pair of nodes, 

the unreliability is close to the ideal minimum which results 

from only the node failures within the sampling error except 

for p = .1 where the 'i node disjoint paths curve is just 

beginning to depart from the idea curve.  From these, 

19 
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we can conclude that requiring 3 node disjoint paths between 

eveiy pair of nodes is sufficient to essentially guarantee 

an optirral reliability with respect to link allocations for 

networks with less than 200 nodes and for element failure 

probabilities of lass than 0.1.  Whether the use of this 

criterion would result in expensive over-d^ ign should be 

further investigated.  In many cases, it is clear that this 

could occur so it is worthwhile to develop rapid reliability 

analysis methods which can be carried out repeatedly in the 

design process.  Untortunately, at present as fast as 

the current reliability analysis techniques have become, it 

is still infeasible to employ them in an iterative design 

process. 

4. Implications for Further Research 

Fast effective methods have been developed for analyzing 

the reliability of networks [ARPA Semi-Annual Reports 2, 3 

and 4] .  Recently, as wi 11 be described in the next chapter 

even more efficient analysis techniques have been devebped. 

Wnile these methods are effective for quite large networks, 

they are still too slow for use in an iterative design 

procedure.  Recursive methcis suitable for networks composed 

21. ^> 
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from loops and trees are orders of magnitade faster and offer 

hope for use in design.  These new methods are described in 

the next chapter.  These recursive methods can be used in a 

hybrid manner with simuli»cion using decomposition techniques. 

Networks which can be analyzed by recursion can also be used 

as control variates in simulation of general networks. 

Research is progress-'ng i~  these areas. 

The selective "haraening" of important nodes in a computer 

network is being studied quantitatively.  It is clear that thj 

only way to decrease the 2p(l-p) lower bound on the fraction 

of non-communicating node pairs is to increase the reliability 

of the nodes themselves.  One way of doing this is to put a 

backup IMP at each node.  Since this is usually prohibitively 

expensive, one can select a subset of nodes where backup can . 

be provided on the basis of a reliability-cost tradeoff. 

If-for very large networks the cost-reliability tradeoff 

is the dominant factor in network design^ replacing the cost- 

chroughput tradeoff, there v/ill obviously need to be dramatic 

changes in network design procedures.  The surface ha- been 

barely broken in this area. 

22. 
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II.  RECURSIVE ANALYSIS OF NETWORK RELIABILITY 

1. Introduction and Suirjnary 

The network structure of many common communication networks 

can be represented as a composite of simple loops and trees. 

Reliability analysis of such networks can be carried out very 

quickly and efficiently by a new recursion approach described 

in this chapter. Moreover, a wide variety of reliability 

measures can be obtained using the san«ä general method.  The 

measures studied here are: 

(i)  the expected number of nodes communicating with a 

central node called a "root", 

(ii)  the expected number of node pairs communicating, 

(iii)  the expected number of node pairs communicating by 

a path through the central node, 

(iv)  the probability that operating nodes can communicate 

through the root, 

(v)  the probability that operating nodes are connected. 

Many other measures are possible. 

In Figure 2.1 some of the many network structures that 

can be analyzed using recursion are illustrated.   In addition, 

even if a network does not have this precise structure, the 

^r. ^ i 



FIGURE 2.1 

COMPOSITE LOOP AND TREE STRUCTURES 
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reliability of the network can often be approximated by the 

reliability of such a network or a hybrid computation using 

recursion on the tree and loop paits of the network together 

with simulation for the other parts can be carried out. 

(This generalized approach is now under study).  These tech- 

niques then offer a very powerful tool in the analysis of 

network reliability. 

2. Tc ninoiocrv 

We will develop a very general class of recursive methods 

for a wid- variety of reliability criteria.  To do this it is 

very economical to employ a recursive characterization of 

1 
rooted trees [Knuth:1968, Section 2.3] . 

Definition:  ä rooted tree is a finite set T of one or 

more nodes such that: 

(a) There is one specially viesignated node called the 

root of the tree, root (T); and 

(b) The remaining nodes (excluding the root) are parti- 

tioned into n^ 0 disjoint sets T^, 7' , T3, ..., T . and each 

of these sets in turn is a rooted tree.  The trees T^# ...# T_ 

are called subtrees of the root. 

The terminology of Knuth is somewhat different from ours. 

^ w 
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As Knuth points out there are several models other than 

the obvious one, a tree graph with a distinguished node, but 

we will confine ourselves to tree graphs.  To make this associ- 

ation more explicit we introduce some more terminology.  The 

root of a tree, J, is said to be the father of the root of 

each of the subtree- of J.  The root, I, of a subtree of J 

is said to be a son of J.  Figure 2.2 depicts such a rooted 

tree graph where links are shown between fathers and their sons. 

A link is a pair of nodes one of which is the father of the 

other^  Thus node 1 is the root of the entire tree.  Node 2 

is the root of tne only subtree of 1 and hence 2 is the son 

of 1 and 1 is the father of 2.  The corresponding subtree of 

1 is determined by the nodes {2,3,4,5,6,7,8,9,10;.  Node 2 has 

two subtrees on {3,4,5| and ^6,7,8,9,10] with roots 3 and 6 

respectively.  Nod3 3 has two subtrees ^4^ and -15^ .  Node 4 

has no subtrees. 

Since we will be dealing witn computer methods of solution, 

it is necessary to impose a linear ordering for storage purposes, 

This will be done by a father function.  Suppose we have a net- 

work on NN nodes, ^1,2,...,NN^, and for each node I except 1 we 

have a node F(I), the father of I, such that F(I)<I and (I,F(I)) 

is a link in the network.  Then F defines NA-NN-1 links and in 

26. 30 
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fact, the existence of a father function F is a necessary and 

sufficient condition for the network to be a rooted tree.  The 

special node 1 (which has no father) is of course the root of 

the tree (sometimes called the patriarch).  Associated with 

each node I is a rooted subtree consisting of nodes with 

greater numbers which are connected to I by a path passing 

through nodes with labels^ I.  In Table 2.1 the father function 

for the tree in Figure 2.2 is given. 

3 * Recursive Computations on Trees 

We now want to calculate the reliability of a tree network 

assuming the reliability of its elements, nodes and links, are 

known.  It is not immediately obvious what the "reliability of 

a tree" should mean; we will consider several meanings.  However4 

the general approach in each case will be the same.  Considering 

the tree to be a rooted tree in the sense of Knuth, we associate 

a state vector with the root of each of the subtrees.  We then 

defina a set of recursion relations which yield the state vector 

of a rooted tree given the state of its subtrees.  For subtrees 

consisting of single nodes the state is obvious.  We then join 

the rooted subtrees into larger and larger rooted subtrees 

using the recursion relations until the state of the entire 

network is obtained. 
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Deriving the recurrence relations is somewhat mechanical 

alcu.  It comes simply from considering the situation depicted 

in Figure 2.2. We have two subtrees one with root I and the 

other having as its root J=F(I). We assume the s'cate of I and 

J are known and we wish to compute the state of J relative to 

the tree obtained by joining I and J by the link (I,J). 

To illustrate the technique let us consider the first and 

easiest criterion.  Namely, we wish to know the expected number 

of nodes which can carimunicate with the root node 1.  We assume 

we have associated with each node I a probability of r.ode failure 

PNd) and a probability QN(I) = 1-PN (I) of the node being present. 

Similarly, for the link (I,F(I)) we have probabilities PL(I) 

and QL(I) of the link failing and being operative respectively. 

The state vector of a subtree with root I is, in this case, a 

scalar, S(I)  which is the expected number of nodes in the sub- 

tree which communicate with the root I, including I.  To derive 

the recurrence relatirn? we consider two subtrees with I and 

J=F(I) as roots, respectively.  We then want to derive the 

state of the new subtree obtained by joining I and J together 

by (I,J). Let S(I) and S(J) be the known states for the two 

subtrees and S(J)' the resulting state.  If the link (I,J) 

and the node J are operational S(J)'=3(I)+S(J); if not then 
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S(J),=S(J).  Putting the two together we have the recurrence 

relation:  S (J) ' =S (J)+S (I) QN(J) QL(I) ./here QN(J) is the proba- 

bility that node J is operative and QL(I) is the probability 

that the link (I#J) is operative.  Now all that remains is 

to put this in the form of an algorithm: 

Step 0:  (Initialization) Set S(I)=QN(I)  (the probability 

that noie I is working); 1=1,..., NN.  Set I=NN.  Go to Step 1. 

Step 1:  Let J=F(I), and set S(J) to S (J)+S (I) QN ;^ QL(I); 

go to Step 2.      S 

Step 2:  Set T to 1-1.  If 1=1, stop; otherwise, go to Step 1. 

When the algorithm stops S(1) is the expected number of 

nodes communicating with node 1 (counting node 1). 

For our next criterion we compute the expected number of 

node pairs communicating.  For this criterion we utilize a two 

dimensional state vector.  We will use, as before, S(I) to be 

the expected number of nodes in the subtree which communicate 

with I, and a new state component T(I) which is the expected 

number of node pairs communicating in the subtree.  The recur- 

sion relation for S(J) is as before S(J)'=S(J)+S(I)QN(J)QL(I). 

The recursion relation for T(J) is T(J)'=T(I)+T(J)+S(IjS(J)QL;l! 

since we have the same pöirs communicating as before and if the 

link (I,J) is operating S(I) nodes in one tree can communicate 

wich S (J) nodes of the other for S{I)S(J) additional node pairs 
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The resulting algorithm is: 

Step 0;  (Jnitialization) Set S{I)=QN(I), T(l)=0, 1=1,..., NN. 

Set I=NN.  Go to Step 1. 

Step 1;  Let ^ F (1} ; set T(J) to T (I)+T (J)-HS (I) S (J) CL (I) , and 

then set S (J) to S {J)+S (I)QN(J)QL(I).  Go to Step 2. 

Step 2; Set I to 1-1.  If 1=1, stop; otherwise, go to Stc^ 1. 

T(l) ends up with the desired result.  Note in St-p 1, 

T(J) must be updated before S (J). 

In many real systems node pairs can communicate only through 

the root.  So for our next criterion, we consider the expected 

number of node pairs which are connected by a path through the 

root.  To analyze this case we consider a state component R(I) 

in place of T(I), where R(I) is the expected number of node 

pairs (pairs including I are allowed) ho\.u  of which are con- 

nected to the root node I.  S(I) has the same meaning as before. 

The recurrence relation for S(I) also remains unchanged.  The 

recurrence relation for R(I) is R(J) ' =R(J)-f (S (I)S (J)-i-R(I) QX (J)>QL (I). 

The algorithm needs only to be modified by changing the recurrence 

relation for T(J) in Step 1 to the one for R(J).  The state com- 

ponents for this last criterion are illuminating.  For if one 

kn^ws the number of nodes connected to the root, say n, then 

the number of node pairs communicating through the root is 

*»»•« 
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n(n-l)/2.  This would seen to imply that either S(I) or R(I) 

could be eliminated and*a state vector with one component would 

be possible.  This is not the case because the expectation 

operation does not commute with squaring: that is, Exp[n(n-l)/2] 

ft   (Exp n) (Exp n -l)/2, in general, for n random. 

Vie  now turn to a class of reliability criteria related to 

whether the network is connected or not.  The first result is 

immediate:  the probability QC of the tree being connected is 

NN       NN 
(1) QC = TT QN(I) IT    QL(I). 

1       2 

If we don't insist that the entire network be connected but only 

the subnetwork involving operative nodes be connected we get a 

new probability QC.  The calculation is more interesting in this 

case.  Here we need a state vector for each subtree with 3 

components.  They are: 

N(I) - The probability that all nodes in the subtree are 

failed. 

C(I) - The probability that the ^non-null) set of operative 

nodes, including the root of the subtree, are connected. 

B(I) - The probability that the root of the subtree is 

failed and the set (non-null) of operative nodes in the subtree 

is connected. 

N(I), C(I), and B(I) account for all tree networks whose 

operative nodes communicate. 

an 



The recurrence relations :.n this case are: 

(2a} C(J),=C(I)C(J)QL(I)+C(J)N(I) 

(2bj N(J) '«NCDNCJ) 

(2c) B(J) ,=--B(J)N(I)+B(I)N(J)+C(T)N(J) 

As we mentioned before, often in practical situations all 

comnrnniration has to tzke place through the root node.  So 

another interesting reliability condition is the probability, 

QR,   that all operating nodes can communicate with the root. 

As can be seen f^om the definition of C, QR=C (l)-rN(i) . 

An algorithm for obtaining both criteria is; 

Step 0:  (Initialization)  Set K(I)=PN(I), C'I)=QN(I)# 5(I)=0/ 

1=1, ..., NN.  Set I=NN.  Go to Step 1. 

Step 1:  Let J=F(I).  Using equations (2), recalculate B(J), 

C(J;, and N(J), in that order.  (Note that the order of calcu- 

lations is important as calculations should be done with the 

old values of B(J), C(J), and N(J).)  Go to Step 2. 

Step 2:  Set 1=1-1.  If 1=1, step; otherwise, go to S^ep J.. 

After the algorithm terminates, we obtain the probability 

of ail operating nodes communicating by CC=C(1)+B(1)TM 1) and 

the probability of all operating node-, conmrnieating with the 

root by QR=C(1)+N(1). 
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We summarize the various algorithms in Table 2.2.  The 

algorithms for finding the reliability measures discussed in 

this section were coded in FORTRAN IV and executed on a 

CI>C-6600.  The average running time for _a _5QQ node tree was 

1.5 seconds. 

4. Trees with W< iqhted Nodes 

In the previous section it was assumed that the nodes in 

the tree were all equal.  In :..any cases it is desirable to 

assign a weight, W(Ij# to each node, I.  As an example instead 

of wishing to jalculate the expected number of nodes communi- 

cating with the root suppose we desired the expected amount of 

traffic which could reach the root where each node, I, generates 

W(I) units of traffic.  To calculate this^ the state variable 

is S, just as before, the only difference being that ■ehe initial 

conditions S(I)- '7(J)QN(I) replaces the old initial conditions 

S(I)=QN(-I).  (W(I) could also represent the number of terminals 

at node I.) 

It is possible, by the use of a weighting function, tc 

extend the algorithms of the previous section to include the 

case where the "nodes" of the tree themselves represent trees, 

or indeed, more highly connected graphs.  In this case, m 

Step 0, we initialize the state vector of'each "node" of ehe 

network to the value of the state vector of the subnetwork v.'e 

40 
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are treating as aMnode.M  Thus, in the previous example/we 

initialize the value of S{I) to the expected nuir.ber of nodes 

communicating with node I in the subnetwork we are treating 

as a "node".  In general it may be possible to obtain these 

values analytically if the graphs are small, or it may bo 

necessary to obtain them by simulation or some other means. 

5• Extension 10 General Networks 

In network design it is common practice to reinforce the 

connections among a key set of central nodes, especially in the 

case where ail communication must take place through these nodes. 

An example of the simplest such configuration of this type 

where the central nodes are connected in a cycle is shown 

in Figure 2.4. 

The algorithms we have considered can be easily extended 

to handle such networks.  Note first that without any modifica- 

tion to the algorithms, the network shown in Figure 2.4 can be 

reduced to a comparatively simple network consisting of the 

central nodes only.  We would consider each central node as 

the root of a separate tree and analyze the tree using the 

algorithms of Section 3.  When the algorithm terminates, the 

state vector at that node would reflect the structure of the 

entire tree rooted at the node.  Analysis could then be carried 

30. '^ 
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out, cither analytically, or by simulation en the simplified 

network of central nodes. 

If the simplified network is a loop, we can use the 

algorithms of Section 3 to analyze it by making the following 

observation:  If any component in a loop fails the resulting 

network is a chain.  A chain is a special kind of tree and 

can be analyzed using the recursive method. 

Suppose we are given a cycle w, containing N elements 

(nodes and links) with ordering on the elements so that they 

arc numbered e^, e0, ..., e^ in a clockwise direction starting 

from some element, and that wc desire to evaluate a reliability 

1       2 
criterion, RL(CN)=RI^ on C^-.  Consider RL^ and RLN where: 

RlC=RIiv given e^ is opera tive ana 

2      .       .   . . , , 
RW-RL^ given e,- is tailed. 

Therefore RL^-RL^QE (N)-r-RLr?^ \^) where QE(N) is the probability 

chat the element, e^, works and PE(N; is the probabili-Lv it fails, 

2 ,       , . 
RL is easily evaluated by previous methods as the resulting 

network is a chain.  To evaluate RL.. ■ ^sider RLV nTl      1 >Tv ■ ^^s: aer i<^v„3_ ^»»^ iX,uX-] 

waere: 

RL,. .-ä\lA; given ^v_- is operative ana 

RLr,_,"RL^ given e^.i i^ failed. 

40. 
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Therefore RL^=RL^..1QE (X-1)4-RL?T-X-PE (^-D .  This procedv ce 

can be repeated to yield a sequence Rlj and RLJ which are 

defined on disjoint segments of the total probability space and 

can, therefore be suituned to yield the desired value, RLXT.  A'1 

of these values, with the exception of RL, can be evaluated in 

terrr.s of chains and can therefore be evaluated as before.  RL-, 

is defined on the cycle with all components operative, and 

is therefore easily evaluated.  For example, if the cycle if 

composed of N noaas with weights, W(I), and if RL ^s the ex- 

pected number of node pairs communicating then RL-, is simply 

^> t     ^j  W(I)W(J).  Note also that the calculations of the 
1=1  J^I-rl 

RL- can be simplified by the observation that: two adjacent 

operating elements e. and e- -, can be replaced by an equivalent 

element e* with: 

W(*)=QE(l)W(I)+QE(I+J)W(I+i) and 

QE(*)=QE(X)QE(I+1) . 

This procedure replaces the evaluation of RL on a cycle 

with X evaluations of RL on chains.  The order of cemputacion 

is chus increased by a factor of N.  The results can bo cxtondoa 

still further co networks containing more than one cycle, but 

the order of computation will ba increased in general by a factor 

of Nc (the number of elem^ ts in the cycle) for each cycle in 

41. YS 
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the network and will become excessive unless N or the number 

of cycles is small. 

The same procedure is effective in analyzing networks of 

the form shown in Figure 2.5.  It can be used first en each of 

the outer loops to obtain the expected number of node pairs 

communicating within the given loop, 1^, and the expected 

number of nodes in the loop which can communicate with e.- T . 

These can then be used as initial conditions for S(I) and T(I) 

in the analysis of the  central loop.  If there are n noces in 

the inner loop and K nodes in each of the outer loops, the 

2    > entire procedure can be carried out m K n+n steps. 

o. Point Evaluation Versus Functional SvaTuation 

The calculations in the algorithms can be carried out: in 

two ways.  In the first way link and node probabilities, PL(I), 

QLd), PX(I}, QNiT). can be considered as numbers and the re- 

liability criterion can be evaluated as a number.  The evalua- 

tion can also be functional; that is, the reliability of ehe 

subtrees can be represented as polynomial functions of the link 

and node probabilities.  This approach will of course require 

much more storage.  The storage rcquircmerts are considerably 

reduced if ail the node probabilities have the same value Pk-l-C- 

as 1 all the link probabilities h..ve the same value PI^-l-QL.  In 

■;2. 
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this case the various state components can ho  represented by 

the coefficients of power series in QN and QL. 

As an example we c^.rry out the calculations for the network 

in Figure 2.6 using as our criterion the expected number of 

node pairs communicating.  We assume all links are ornative 

with probability QL=p and all nodes operative with probability 

CX=q. 

Initialization:  S(I)=q/ T(1)=0, 1=1, 2,   3,   4, 5, 6. 

1^6;  J^F(G)=3 

T(3):=T(3)+T(6)+S(6)S(3)p 

-O-rO-rqqp 

2 -q p 

S(3) :=S(3)+S(6)qp 

=q+cqp 

=q+qiip 

J=F(5)=3 

T(3) :=T(3)+T(5)+S{5)S(3)p 

=q/1p+0-rq (q-rq p)p 

=2q2p+q3p2 

S(3) :=S (3)+S(5)qp 

=q+q p+qqp '»^ 

=q+2q2p 
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1^4:     J-F(4)=2 

T(2):=T(2)+T(4)+S(4)p 

2 

(2) :=S (2)+s (4j 

:=q-fq2P 

qp 

1=3:      J=F(3)=1 

T(l):=T(l)+T(3)+S(3)S(l)p 

= (2q2p^q3p2)+(q+2q2p)qp 

=jq2p+3q3p2 

S(l):=S{l)+S(3)qp 

-q+(q+2q2p)qp 

1=2:      J=F(2)=i 

T{l):=T(i)+T(2)-S-(2)S(l)p 

= (3q  P+3qV)+qV(q+q2p) (q.-q2p+2q3p2)| 
2 -    2 yj     -j 

=5q  p+Sq^p +3q
4y+2q5p4 

S(l) :=S(1)+S(3)qp 

I p 

^^ p/qp 

=q+2cÄ'p'^3q3p2 

Note chat the highest order polynomia*!, qJP*% corresponds 

to the longest path between two nodes (4 and 5).  Xctc also 

that all terras in S{1) and T^l) arc of the Jor~ q* "''p • 

Thus, vc could have simplified the jalculat^ons by coi^sid 

.)ü 
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an equivalent tree with in\ ilnerabJ  links and nodes with 

probability cf operation r=pq/ except for the root, which 

still has probability of operation q. 

:>i 
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III.  A NEW ALGORITHM FOR MINIMUM SPANNING TREE CALCULATIC:: 

1.  Intröduct2.on and Summary 

A minimum spanning troe (also known as a shortest 

zrec)   is  a troe in a networks whose total sum of link 

lengths (or costs) is as small as possible.  Finding a 

minimum spanning tree is one of the roost common and most 

important calculations in network analysis.  Minimum span- 

ning trees have been shown to be useful in reliability analysis 

(a new application), least cost electrical wiring, minimum 

cost connecting communication and transportation networks, 

minimum stress networks, clustering and numerical taxonomy, 

travelling salesman problems, muJtiterminal network flows, 

and Telpak routing. 

Currently the most favored algorithm for finding 

minimum spanning trees is one due to Prim (1957] and 

Di3ksLra ll9'*9j    .  This algorithm takes on the crd^r of n^ 

computations where n is the number zC  nodes.  It is simple 

to code, conservative of computer storage and is the faseesr 

rU.own method for co:.^ly- t-o n^u-vcrKs.  liowovor, it i'.aj z..c 

untortunatc charocteru JCIC whu.: the number of operations is 

not suostanttally reuuceo v/ncn t-i'.e network is sparet,, tnat is 

wr.. .. the ratio 01 links to no^^s is small as is uho «.^ase m 

most practical networks such as ARPANET,  Moreover, it is 



too irfici-jbic for use in network reliability apol' jac^ons. 

This xod KAC  to re-examine an earlier solution approach 

duo 4
J  Krushal.  By judicious use of list procassing techniques 

and modern sorting techniques, the computation for this method 

became of the order m log m  where m is the number of links. 

For complete networks m = n{n-l)/2 and Prim's algorithm 

is faster.  However, in many applications in particular 

in the reliability analysis of the AR?A network m^2n in 

which case KAC's version of Kruskal's Algorithm [3ra and 

4th Semi—annual reports] is much more efficient.  Moreover, 

NAC's version of Kruskal's algorithm is much more flexible 

although at the cost of increased complexity of the algorithm. 

Here we report on a dramatic improvement of Kruskal's 

algorithm which makes it competative with Prim's for complete 

networks also.  Thus XAC's version of Prim's algorithm is 

competi'tive in computation time for nearly complete networks, 

is much superior for sparse networks and is mach more flexible, 

The only remaining advame^e for Prim's algorithm is that in 

certain situations, tne storage requirements lor neariy com- 

plete networks  is less for Piim's algorithm than for the 

Krushal algorithm. 

To be more specific we consider a network with nodes 

N = 'l,...,nj and a set of m links A.  Furthermore, each 
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link, (i#j)€.A qoing from i to ^, has a length A. . associated 

wi-Ln it. We then ask what is the spanning tree of shortest 

total length for N. A generalization we will also consider 

is to find the shortest spanning forest with a fixed number, 

k, of components. 

These very simple problems in graph theory have many 

practical applications.  The most obvious application of 

minimum length spanning trees (MSTs) is to minimum connecting 

networks.  Thu-, if one wanes to connect n points using the 

shortest network the solution is a MST (assuming there is no 

cycle or links with negative length).  This fact has been 

used in transportation problems, communication design problems, 

and problems of wiring points together using minimum wiring 

in electronic wiring problems [Loberman and Weinberger: 1957]. 

Kalaba  [1964] considered the following type of reliability 

probleifi on a network.  Suppose with each link (i,j) there- 

is associated a stress s,..  The oroblem is to find a minimum 
-^ J 

stress path connecting the two given nodes; taat is, a path 

connecting the two nodes such tnat the maximum stress for a 

link on the chain is minimized over all chains connecting 

the two given nodes.  It turns our that tne path ^otwecn 

two nodes determined by a MST ^s a minimum stress path. 

ä0-  ' 5-1 



An application in which iv.iniinuin spanning forests are of 

interest is in clustering anai^is under the nair.e of single 

linkage cii st  analysis [Gov/er and Ross: 1969] [Za.u-i; 1971]. 

Suppose ive ha -e a set of points, S, and a function ^(i#j) 

which is a irteasure of the similarity of the points i and j. 

A family of subsets i C^, of S form a o  family of clusters if 

for each cluster C and each pair of nodes i and j in C^ / 

there is a sequence 1=1,,.,.,  ^v^J Wlt^ ^H'H+l^" ^ ^or 

k=l#..., K-l and for every pair of nodes i and j in different 

clusters /^(i,j)> I  .  For a given S  the 5 family is unique 

and corresponds co the componencs of a minimal spanning 

forest over all spanning forests with he same number of 

components. 

A final application which motivated our interest is Monte 

Carlo simulation of network reliability.  Suppose we ha^e 

a .etwork in which the links have a probability p of fail- 

in or q^-'l-p of not failing. Wo wish -co investigate the 

probability of the network  "failing."  The network "fails" 

if it becomes disconnected.  In any but the simplest cases, 

exact analysis is prohibitively difficult.  Monte Carlo 

simulation then becomes attractive [Van Slyke and Frank: 197^] 

The straightforward approach is to generate a ranacm number 

r; ^  for each link (1,3)' i- ^"^ random number r. - is 

greater than q the link is removed; otherwise it stays ^.n. 

jtr. :i:i 
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The resulting subnetwork is than examined to see if it is 

connected.  The procedure is then repeated and an estimate 

is generated in the obvious way. 

However, in most practical situations the probability 

of the network being disconnected is desired for a range of 

values for q.  Suppose we want to find the probability the 

network is disconnected, h(q), for all q between 0 and 1 by 

Xonte Carlo simulation. A possible method is to take the 

link with the smallest r• .  then the link with the next 

smallest r-j A    and so on, until a connected graph is obtained, 

Let the last link have r. . = qü.  Then for q^tf  the net 

is disconnected for this one sample and for q i q^ the 

network is connected.  Thus we get one sample for every 

value of q.  We then generate a new set of random numbers 

for the links and obtain a second sample for each value of 

q and continue until the variance of the estimate is suf- 

ficiently small. We then use the fraction of the times the 

network was not connected as an estimate for h(q}.  It turns 

out that q^ can be efficiently determined by finding a 

minimum spanning tree us Jig r^ ^ as the length of link (i,j). 

MST's have also been applied to multiterminal network 

flow analysis [Gomory and Hu: 1961] and to the solution 
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of traveling salesman problems [Held and Karp: 1970], 

[Held and Karp: 1971]. 

A History of Hinirnum Spanning Tree Calculations 

The first irajor contribuuion to the theory of XST's 

was by Kruskal [Kruskal: 1956] plth^ugh Choquet in 1933 

and^ according to Kruskal, Boruvka in 1926 did sorr.e 

some earlier work.  Kruskal's major contribution 

was to show that a "greedy" algorithm [Edroonds: 1971] 

could be used to find minimum spanning trees.  Specifically, 

he showed chat an MST may be obtained by repeating the 

following step: 

Take the shortest link which has not been 

chosen or discarded.  If it does not form 

a cycle with some of the previously chosen 

links, add it to the chosen links; other- 

wise discard it. 

This algorithm is deceptively simple.  The means of 

implementation on a computer is not obvious.  The first 

attempts [Obruca: 1964] were of the following form:  giver* 

an nxn matrix (i, ..) of link lerjths, find the smallest 
11 j 

entry.  Do a labeling procedure to find if ehe link forms 



a cyclc with rhü previously chosen link; if it does not, 

save the link^otherwise discard it.  In either case, make 

the length of the link plus infinity and repeat the process. 

Searching the matrix and examining for loops involves on the 

order of n2 comparisons which must be done on the order 

of n times so the running time for the algorithm in this 

form is cubic in n. 

Shortly thereafter P.rim  [1957] and Dijkstra 

[1959]  proposed an algorithm which takes on the 

order of n2 operations.  It is ßased on the following 

theorem: a tree is an KST if and only if for every ScN 

there is in the tree a link of shortest length among all 

those connecting a noue in S to a node in N-S [Rosenstiehl: 

1967] . At every step of the algorithm we ..-ive a subset of 

the nodes S and a minimum spanning tree on S. We then find 

a shortest link (i/j) w^h iCS and JeN-S and add j to S 

and repeat.  Slightly more formally the algorithm is; 

Prim's Alccrithm: 

Szop  0 (Initialization) :  Set S,= {XJi   k^j., d1=0t  S*jt d_= v(-/j) 

if (l,j)€A, d-^«5 otherwise. Set fj_=0 ,   fjsl if (l,j)CA, a::^ 

f-=0 otherwise.Go to Step 1. 
J 

Step 1 (Enlarge Sy by one node;);  Let ds*=xin ^ d.: i.::.-s^; . 



If d. = -v go to Stop 3; otherwise set Sv+i^S^Üjj*^ ani go 

to Step 2. 

Stop 2 (Update distances across cut) ;  For j ^ N~^]c+i 

set cL = Min|dj# 1*+   .1 and set f. = j* if dj= i-^ .- 

Set k=k+l.  If k=n stop.  Otherwise go to Step 1. 

Step 3 (Network not connected, start new component);  Let j 

be any node in N-S^.  Set f-=0 and go to Step 2. 

The total number of operations in both Step 1 and Step 2 are 

quadratic in n.  Moreover, since the number of links in a complete 

graph, n(n-l)/2, is also quadratic in n and since in general all 

links must be examined, the order of computation cannot be re- 

duced to a lower order than quadratic for complete graphs. 

Unfortunately, even if the graph is not complete, the order of 

calculation is still quadratic since the minimization in Step 1 

cannot be simplified in an easy way to take advantage of a net- 

work which is spa.rse, i.e., with m/n small. 

The next stage of dcte
relop.Tient was to realize that if the 

link lengths in Kruskal's Algorithm were presorted, efficient 

sort algorithms could be utilized.  Conceptually then Kruskal's 

Algorithm wonld take place in two passes.  First, the links are 



sorted with respect to length.  This takes on the order of rolo^ro 

operations.  Then the links are introduced in order of length 

until a spanning tree is obtained^  It turns out that the order 

of computation of the second pass is dominated by the computations 

involved in the first pass. Thus, if the networks are sparse 

and, say, the number of links, m, grows linearly with n rather 

than quadratically, Kruskal's Algorithm becomes faster than Prim's; 

on the other hand, for complete graphs mlog2m looks like . n ^C '— 

log2 [£-^2—LL] which grows faster than the order of computation n2 

required in Prim's Algorithm. 

Treesort [Floyd:1962][Floyd:1964][Williams:1964] is parti- 

cularly useful for use with Kruskal's Algorithm.  An informal 

description of Treesort along with some of its properties are 

given in Appendix A.  In the next section we turn to a problem 

even simpler than the MST problem: namely, that of finding out 

whether a network is connected or not.  The solution to this 

problem furnishes an efficient procedure for the second pass 

in the improved Kruskal Algorithm. 

3 . Finding Ccmpor.cnts of a Graph and Spanning Forests 

Finding out whether an undirected graph is connected or 

not in an efficient manner is not without interest in itself. 

In the Monte Carlo simulation of network reliability for a single 

,^. bO 



value of q, for oxaiuplo, determining the connectivity of a graph 

musu be carried out thousands of times so it is worthwhile to 

find fast algorithms.  Given the graph in node" adjacency form, 

a very efficient method of determining the components is the 

following: 

Algorithm A: 

Step ö (Initialization):  Set i=l, j=l/ S=0.  Label node i=l with 

component label j=l. 

Step 1 (Lock at new lir.k) :  Find the next node i' adjacent to i; 

if there are none, go to Step 3.  If uode  i' is not alrea  in 

a component, go to Step 2.     If node i' ij? already labeled with 

a component number, repeat Step 1. 

Step 2 (Add a node to current component): Label the node i' with 

the current component label j and add the index of the labeled 

node to the stack S.  Return wO Step 1. 

Step 3 (Scan a new node):  Remove a node index i" from S and set 

i equal to i".  Go to Step 1.  If S is empty go to Step 4. 

Step 4 (Current comcononu con.plotic—-start a new one);  Set k 

to k-t-1.  If k>l, we're done; otherwise, if node k is unlabeled, 

scz  i to equal k and set j to j + 1.  Go to S-cep 1.  If node k is 

labeled, repeat Step 4. 



This algorithm terminates with each component having a 

different label.  If the links (1,1') oceurring in Step 2 arc 

saved, one also obtains a spanning forest.  The order of compu- 

tation is linear in n and m although if the graph is nearly 

complete^ the number of links m is quadratic in n.  If one is 

only interested in determining if the graph is connecced or not, 

the algorithm can be terminated the first time Step 4 is encountered. 

Tiiis algorithm is probably close to being optimally efficient if 

the links are given in node adjacency form.  üshakov[1967] has 

proposed a similar algorithm which makes extensive use of logical 

operators on vectors which for many computers would allow savings 

in storage and computation time.  However, he uses a node ad- 

jacency representation in matrix form which requires n2 storage 

locations which may largely be wasted if the graph is sparse- 

Moreover, for each node ho has to search an n-vector to find 

the first non-^cro eicmenu.  Tnis could lead to a number of 

operations en the order of nz if ^here is no special machine 

instruction for rapidly carrying out th-.s operation,  logically, 

the two algorithms arc equivalent. 

Algorithm A also has the disadvantage that the links inci- 

dent to a node must all be scanned before links incident to 

other nodes can be worked on.  Vhis is necessary in order to 

6Z 
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avoid relabeling nodes.  Per exar.vple, this restriction prevents 

one frort adding in a simple way links to a graph already analyzed, 

A slightly slower but much more flexible algorithm [Van Slyke, 

and H.Frank:1972] is: 

Alcorithn- E; 

Step ö {Initializaticn );  3tart with A =$ and assign each node 

a separate component label.  Set k=:C and go to Step 1. 

Sf-ep 1 (new link):  Add a link au-(ij^ j^) to Aj^ to form A^i 

(if there are no remaining links; i.e., A^=A stop).  Examine the 

component labels of i- and j-.; if they are the same, repeat 

Step 1 with k set to k-rl.  If not# go to Step 2. 

Step 2 (Join compenentis) ;  Change all the node labels which 

are the same as the label of i^ (including i^'s label) to the 

label of j, .  Set k to k-rl and go to Step 1. 

The order of computation is dominated by the relabeling 

in Step 2 which occurs n-c times where c is tho  number of 

components.  Using a straightforward implementation [Berge: 

196 2] [Berge, Ghouila - ^louri :i^65j  [Scppanen :197C1 

each time through Step 2.the labels on all n nodes have to be 

2 
checked in order to relabel.  Thus, on the order of n operations 

ai. "* involved with relabeling. 

In the version of the algorithm used by Van Slyke ^nd Frank 

[1972] a list structure was maintained so that only nodes for 
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which the labels arc changed uro  considered.  Further, the 

number of nodes in each component was maintainod so that it was 

possible to change the labels or. the smaller of the two components 

joined in Step 2.  This reduces the maximum order of comp^ation 

to nlog2n plus a terra linear in m«  This increase in speed by 

using list struct v.s does incur an expense in storage requirements, 

Knuth[lS68] and Read[1969] have proposed iiiaintaining component 

membership using .tree data structures rather than the explicit 

relabeling used in Step 2 of Algorithm B. However, in this ap- 

prrach determining whether a candidate link connects two nodes 

in the same or in different components takes several steps com- 

pared to the one comparison required by Algorithm 3 aud is there- 

fore less efficient. 

4. Xcw Devc'^omonrs in MST Calculation 

Until recently, the most efficienu methods for calculating 

minimum spanning trees or forests was wO use Prim's algorithm 

for nearly complete graphs which involves on the or^er of n^ 

calculation? or using ehe Xruskal Algorithm with Treescre and 

AlgoritrjTi 3.  The sorting p^ss takes on the order of mlog.m cal- 

culations while the second pass involves nlcg^n dependence on 

the number of nodes n and depones linearly on the number of links« 

Thu^, for sparse graphs where mlc^1^ is small compared ^   n". 



the modified Kruskal algorithm will be faster.  Important con- 

siderations other than speed of computation will be discussed 

in Section 6; here we report on effort- to develop MST algorithms 

which are uniformly fast over the full range of sparseness. 

The first approach is to notice that the main expense in 

the modified Kruskal Algorithm is in the sorting which takes in 

general mlog^m operations and to notice that most of the links 

are not considered because they make cycles with shorter links. 

In Treesort (Appendix A) applied to the list of link lengths, 

the list is first arranged into a binary tree which is a "heap"; 

that is, each link length is no longer than its descendants in 

the tree .  This takes about m interchanges and 2m comparisons 

at the worst.  Then the top link corresponding to the top of the 

heap is considered via Step 1 of Algorithm B for the MST.  Then 

the link length is deleted from the heap and a new link length 

corresponding to link (i,j), say, is taken from the bottom to 

the top and the heap restored by a sift-up.  The sift-up takes 

at most 21og2m-l interchanges and at most 2 log2m-2 comparisons 

to restore the heap.  Often ehe sift-up can be saved by comparing 

the component labels of i and j in Algorithm B.  If they are the 

same, the link forms a cycle with shorter link and can :e dis- 

carded immediately.  Using this approach, the sorting cost is 

^ - - — 



on cho order of 2m+k log0m whore k is uhe number of links cx- 

aiäined in Algorithm B before a spanning tree is  obtained since 

only the l"nks actually considered for the KST  are sorted.  In 

general, one may have to examine all m branches but for nearly 

complete graphs this is unlikely.  Experimental verification of 

this is found in Section 5.  There it is shown that using ^his 

further modification to Xruskal's Algorithm^it becomes nearly 

as efficient as Prim's Algorithm for complete graphs ^.      is still 

much better than Prim's Algorithm for sparse graphs. 

However, Prim's method can be improved also.  Mere we follow 

the approach due to 2o   Johnson [1972] who applied the idea« re 

Dijkstra's shortosr tjath algorithm. We use Treesort -co determine 

d^-Mind^ in Step 1 of Prim's Algorithm.  We assume ehe d^ form 

a "heap" (see Appendix A) ,  'rhe  top of i:he heap is d^^ which 
J 

is then removed from the heap.  Therein Step 2 of Prim's Algorithm 

some of t:he d^ become smaller and are modified.  Next, a d^ fi m 
J '   J 

-he bottom of uhe heap is moved co  the top.  Finally, "Lhc heap 

is restored.  Aw the worse, each restoration of the heap takes 

a numoer or operations linear in n ana usually considerably -.ess 

is needed especially if the network is sparse.  Even if it is 

not sparse/ many of the a. dD noe change; furehermore, all bat 
j 

one of the d. which change decrease in value so that the 
3 

** 
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'"sift-up procoduro" of Treosort tt.kcs or* a particularly simple 

form (See Appendix A). In the next section we present the re- 

sults of numerical .xperimenta on these clgorithms. 

5 . Numerical Experir::cni:3 

Numerical experiments were carried out on randomly generated 

networks.  For given n and m random graphs of m links and n nodes 

were generated.  Then a random length between 0 and I were generated 

for each link. The distribution of lengths is of no importance 

since as Rosenstiehl [1976] pointed out, any equivalent pre-:ordering 
I» 

would give the same results; thus/any method which generates 

random permutations of the 2inks will suffice.  Three series, 

four networks each, were used.  These are given in 'abj.e 3.1. 

Scries (n,r.l  

1 m=n-l (10,9) (50,49,(100,90) (500,^99) 

2 m=3n (10,3,0) v50,150} (100,300) (200,600) 

3 m=n(n-l)/2 (5,10) (10,45) (20,190) (40,7£.0) 

. wV^o  >>. _.     *\et.v/orx bones   v^sea 

One hundred samples of each oJ trie 12 network siiies were 

an^i^yzev» ^y eacn or roar a^.gcrrtnms: Prim s »•.oa^zaca »xrasria*.. 

Prim s with serving,   »'*carr^ad  .\rus*>ial s witi  p^rtia« iJO*. w. -..> 

. G7 



Each Cilgorith^ wao presented with exactly the seme networks, 

For eacli of the algorithms e/.d each of the network sizcsy the 

analysis time for each of a hundred trials was obtained.  The 

maximum over 100 trials, ehe averag over the 10'. trials and 

ehe standard deviation over the hundi .1 trials w^s recorded. 

The computer clock gives results in milliseconds and the clock 

routine itself takes less than one half millisecond.  The results 

are presented in tabular form in Table 3.2 and in graphic-l 

form in Figure 3.1.  As is suggested by theory. Prim's works best 

for the complete graphs ana Kruskal's works better for sparse 

grapns.  *ne two aj-goritrm.s using sophisticated versions ot 

Treet jt yield good results ever a wide: range of sparsity.  The 

itoainea Krusxca^. AXcforitnni witn partia-. sorting is apoarer."Cxv 

»»ne nes u ii soeec* over a wia^ rancre or soar sen ess is tr. _• cntenor 

^u **Ö ^o.S 
4\J 190 51.6 
-tKj 780 263 . i/_. 

10 9 2.29 
J Ü 49 a.4, j 2 
CO 99 32,28 

4yy 

0'/ ,72 

195.33 

16.07 
So .^3 

o. -t . 

O ^ . .. '^ 

^ ^ v- .  , C 

200 

▲ n m 

206,22 

;00,   m=499    net cemputtd  fcr   '}.:..: 
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6 • Sunroar^ anr; Conclusion 

Speed is not the only measure in  choosing an algorithm for 

MST calculations.  Other important considerations are:  storage 

requirements, form of input, availability of algorithm and diffi- 

culty of implementation, the particular application, and the 

number of problemo Lu be solved. 

Prim's algorithm is superior in many of these respects.  It 

is very fasa for large nearly complete networks;- the algorithm is 

easy to implement? the storage requirements are quite small es- 

pecially if the network is complete and the link lengths are a 

simple function of the end nodes, say Euclidean distance, • Then 

the link lengths need not be stored at all but are generated once 

as needed in Step 2.  With the addition of Treesort in Stop 1 

of the algorithir^ ^rim's Algorithm becomes much more useful for 

sparse graphs; however, the algorithm becomes considerably more 

complex and some speed is lost in analyzing complete graphs. 

Prim's Algoriahm also has oaher disadvantages.  It requires 

the link information to re p/oseneed in node incidence format 

and it cannot be used for determining minimum spanning forests 

with various numbers of components.  This latrer problem makes 

Prim's Algorithm somewhat unsuitable for single lin!: .v0 cluster 

analyses, rena—ixity anaiysu c J nctwor.cs, anc* muXtiLtwrminaii 

network flow analysis. »-vo 



The modified version of Kruskal's Algorithm is very good 

for determining KST or minimum spanning forests on sparse net- 

works and it accepts the links in any form.  When it is used 

with partial sorting, it gives the best results over the com- 

plete range of sparsity. Moreover, changing to partial sorting 

can be done very easily.  Both versions of Kruskal's Algorithm 

require a relatively large amount of storage because of the list 

structures required by Algorithm 3 and in all cases require the 

storage of the complete list of link lengths. 

We close by analyzing two specific applications.  These 

are Monte Carj-O network r«--xrajr—rey an^.i-ysrs ana. single ixnkage 

cluster analysis. Most practical pipelin., transportation, or 

communication networks are sparse and of reasonable size.  More- 

over, for simluation of reliability many hundreds or thousands 

of trials must be computed,  Finally, if expected fraction of 

node pairs communleading is u-ed as a criterion of reliability 

[Van Slyke and Frank: 1972] ra-her r.han probability or being 

connected, it turns oui: that minimum spanning forests are required, 

Thus, the algorithm must be fast for sparse graphs, ana it :..ast 

be capable of derermining minimum spanning for^sr-s.  Moreover, 

saoragc is usually not a problem.  Th~s modified Xruskw.! is 

xc*ew»<b *.or w^i^s appjLXca W^OA« • 

ro 



  

Sincj^ l^nkac;c clubtcr anaiyaitj orcscn'Co a siiCjDtiy niore 

difficult cabo. Hora in general the aetwoik is complete since 

cvv^ry pair of points is  related, which v/ould seem to indicaca 

Prim's Algorithm; however, the main rssults required arc minimum 

spanning forests with various numbers of components (in order 

to get the i  clusters) which is not rvailable from Prim's Algorithm. 

The east compromise until now was suggested by Gower and Ross [1969] 

which was to do Prim's Algorithm and toss out all links not in 

the KST.     This leaves only n~l linKs.  Then a form of Kruskal's 

Algorithm is applied to find the minimum spanning forests with 

various numbers of cx>mponents.  This approach is still desirable 

when storage is a problem and link length is a simple function 

of the end nodes so that the link list need not be stored.  If 

there is sufficient storage, the modified Kruskal Algorithm wirh 

partial sorting s^ou^e .ee mucn ^«^Swer« 

■■\T5 v?- 

A list of m=2;s'-l numoers n-, •••/ n-x-x can be icenwiziw«, 

with a rcov.ed binarv tree with k levels where n- is at the root, 

n-. ana n- are at the next icve- ana, m cenera- n->-; ana n-^-j.- at 

lev^-l A-TI ari- connected to n^ at lev^l ,2,  In Figure 3.2 this 

iiappmc is i^.xustratea i;or x—-«. 
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Ir={n1# ..., nj) of Icngchjc, 

fJl;o list 1^ (n., ..., n5 -D'cr equivalently the binary tree 

cs^ociated with it is calicä a heap if n^= n0^ and n^i n^.-.i« 

The first observation is that if L is a heap then n^ß n^ for 

i=l, ..., 2K-1-  If for a given lis 

/ / 2K-1  for scnie k,  we choose the smallest k such that 2'<-l^X 

and fill the unused slots with + eo.  Th^ number n- is called the 

father of r^^  and n^^+i  and i"^ and n^j_^2. arc called the sons of 

n.- . An element n^ determines a unique subtree consisting of its 

sons, i.ts son's sons, and so on.  In Figure 2,   n^ determines the 

trees ma. . up of n-, n^, n-,, nX2f ni3' ni'' ari^ ni5* ^ funda- 

mental operation in Treescru is taking an element n^ for which 

the subtrees determined by n.- s two sons n^-^ and n0,._^ are neaps 

and by permuting elements forming a heap which is a subtree 

deeermined by n^ .  This is CU.11VJJ ^ sift—up of n-, although 

tho way we drew Figure 3*2 ra should more properly be called a 

sifw-aown.  An even more .as:'c operation is an excrange-test. 

at n. •  rnas a«> Ctirraea Ow*^ r.i a»vv. ijueps»  i'irs»«., ^o« anQ **'>-•■.*.* 
i £1. i.lfa 

are compared; then the smaller of the two is compared with n^ . 

If n- ^s larger n^ is interchanged wrtn ü ^maxier ana n^-   ana 

*'2i-rl* 

caange• 

This  involves two coT.'oansons ipossioxy/   one 



A sift-up of n:   at level X  is accomplished by pc^iorriing 

an exchango-tcst at n- . If there is ur.  interchange, an exchange- 

rest is performed at the new position of n^ which is necessarily 

aw level A^l.  The procedure is continued until there is no inter- 

change or until level k is reached [London: 1970].  If the subtree 

determined by n^ has k levels then sift-up takes at mest k-i 

exchange-tests for a total of 2k-2 comparisons and k-1 j.nterchangcs. 

The first part of Treescrt consists of establishing a 'neap. 

This is done recursively using sift-up.  The subtrees determined 

by the elements at level k-1 can be made into heaps in one ex- 

change-test each; Then the elements at level k-2 are made into 

heaps using sift-ups.  One works up the tree until finally the 

subtree determined by n, , Which is the entire tree, is made into 

a heap.  An element a level Ä  determines a subtree with (k-JL +1) 

levels hence a sift-up could take k-Jl interchanges and 2k-2A 

comparisons.  Since there are 2A "  elements at level in the 

worst case 
/»—.i. 

A-i 

interchanges and twice that many comparisons would be needw.^. 

Since the length m of the list is 2 * we have what k-log^n 

-nd the order of c^lculr :ion in ehe wcrce case is m-ler-, m inter- 

cnanges and 2m—^ i.cg^m coxparxsons« 

v: '        77 



S^nco wo havo a ho^p, the ccp ^lc::.Qnz  is the sniallcSw clc- 

n;cnt of ^ho list. Wc now enter ^he second phase cJ Treesort. 

The to'o  element is removed fro^ the heap and saved.  The iasc 

Jinite element of the tree is then puü at the top and sift-up 

i^ earricd our until it finas irs proper level.  The newest 

.ecp element (uhe second smallest element of the original list) 

is removed and uhe lasu fin^ce u^e:.;ent is brought to the top. 

The number of interchanges in whe worse case is X-l if whe eree 

has k   levels regaining  In general, there are 2 "^ sift-upö 

carried out on X  level erees.  Thus there are approximately 

X" 
(X-D 2  »2+ (}c-2)2 

& 

rntercn^nges ana wWice wnae ar.".oun'c or cciv.parrsons i,n üne wors^"- 

for zha  second oass.  This Li on the order of n;log,^.  If 

on-.y the sr^allesu r elements ^.re recuirea rauher than a complete 

ort tnen une commutation in tne secona mare as or tne oraer 

£ ■*''**j p*... 

.nus removed from ehe top of the heap can be suorea in re- 

verse oraur in ^ne ixnuscci   .i~om V-* ^-    W »vj   . «^_ » 

l^irure j.w 

elements  of une 

... C U *» w.. w    - ■ 

f - 

'. a \ n a  tv.'O  s m a -. ^. e, 

* /,   .. ^,   *. 
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^o a iririwii aspocc o- xrecsort wo exaniino uhc cucücio^ of 

rc-esc^blishing a noap whan L.OV:^  of i*is ßlcrüents arc changed« 

^"»ö -n sstablishing an initicl heap in Treci>6rt the rcmakiag of 

a aaap will involve sift-ups bua aot as n\any.  The elements 

are sceancd starting froru the next to ehe bottom level as in 

who first part of Treesort excepa ahaa a sift-up is done on an 

elencnt if ana only if aha element itself is bigger than ia w^s 

in the heap or if one of its sons is smaller than it originell/ 

was«  If only decreases in value were made, as in the case in 

one of the algorithms for XST's one can proceed by immediately 

iwer/cing tne r—tner or aea e^eieenas aecreasea«  Do a s-.-_e—up on 

tne xast v—ov/e^u m neap) element mar^ced^ n. •  xt tnere are any 

mwCrcn^nges, mar*c tne rac*»ar o.*- n_- • KSJf.CLOfä      U ne mark on n.- 

W«C« '- ■rl- go to  tne mar^eu e-emena  lowest  rn ane neap ana ccne^nue. 

en  regere  J«**  tnes  procesis  es   j Lustrated« 
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