Unclassified AD	748270	k	
DOCUME	NT CONTROL DATA - R&D		
(Sea.:'ly elassification of title, body of abstract an	d indexing annotation must be entered t	when the everall report is classified)	
University of Dayton		REPORT SECURITY CLASSIFICATION	
Research Institute		Unclassified	
Davton Obio 45409			
3. REPORT TITLE			
RESEARCH ON RARE EARTH-CO	OBALT ALLOYS AND (COMPOUNDS	
I. DESCRIPTIVE NOTES (Type of report and inclusive de	(50) .		
5. AUTHOR(3) (Last name, Bret name, Initial)			
Jacques Schweizer			
S. REPORT DATE	74. TOTAL NO. OF PAGES	75. NO. OF REFS	
April 1972	- 59	26	
Se. CONTRACT OR GRANT NO.	SA ORIGINATOR'S REPORT	NUMBER(3)	
F33615-70-C-1625			
A PROJECT NO.	• UDRI-TR-72-2	27	
,7 371 • ,	SA. OTHER REPORT NO(3)	(Asy other numbers that may be sealgned	
Task No. 73103 d	AFML-TR-72	- 82	
10. A VAILABILITY/LIMITATION NOTICES			
Approvied for Public Release - I	Distribution Unlimited		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY Air Force Mate	ACTIVITY rials Laboratory	

13- ABSTRACT

This report contains a collection of six papers dealing with some magnetic properties of rare earth-cobalt alloys and the crystalline and magnetic structures of some rare earth-cobalt intermetallic phases.

The variation of coercivity as a function of the temperature of annealing or sintering is reported for compacts of a single-phase $PrCo_5$ powder and also for a mixture of $PrCo_5$ with an additive richer in praseodymium.

A previously unidentified thermal event observed in some praseodymium-cobalt alloys is shown to be the peritectic reaction temperature of a new phase, Pr_5Co_{19} . The structures of the two crystallographic modifications of Pr_5Co_{19} are given.

The crystal structures of two previously unreported phases, $Pr_2Co_{1,7}$ and $Nd_2Co_{1,7}$ are given. It is shown that the phase designated as La₂Co in earlier work is actually La₂Co_{1,7} and isostructural to the praseodymium and noedymium phases.

The magnetic structures of the compound $Pr_2Co_{1,7}$ and $Nd_2Co_{1,7}$ have been determined by neutron diffraction experiments conducted at room temperature and helium temperatures. Results of these experiments are presented.

Results of these experiments are presented. A relatively simple technique for determining the easy axis of magnetization in a material with a large magnetocrystalline anisotropy by means of x-ray diffraction is described. The easy magnetic axes of most of the known R₂Co₁₇ and R₂Fe₁₇ phases, utilizing this technique, are reported.

The crystal structure of $Ho_{12}Co_7$ is reported. It is shown that this phase corresponds to the phase labeled Ho_2Co in the Ho-Co phase diagram.

ia

DD 1508M. 1473

Unclassified Security Classification

Wright-Patterson AFB, Ohio 45433

NOTICES

When Government drawings, specifications, or other data are used for and purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

Unclassified

		LINK A		LINK B		LINK C	
14	KEY WORDS	ROLE	₩T	ROLE	WT	ROLE	WT
	rare earth alloys rare earth compounds magnetic properties crystal structures magnetic structures						
1	INSTRUCTIONS						

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

THE REAL OF A LOT A PARTY AND A REAL AND AND A PARTY AND A

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal withor is an absolute minimum requirement.

6. REPORT DATE. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7.a TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES. Fater the total number of references cited in the report.

8.d. CONTPACT OR GRANT NUMBER. If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 3c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(5)⁶ Enter the official report number by which the document will be ider'ified and controlled by the originating activity. This number must be unique to this report.

9b OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either b) the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY 'LIMITATION NOTICES: Enter any limstations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13 ABSTRACT. Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the in formation in the paragraph, represented as $(TS)_{-}(S)_{-}(C)_{-}$ or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional

1 8

Unclassified Security Classification

1.

فتقمع فلنقاذ والالقادي المندان والمتحافين والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ

and the second second and the second s

RESEARCH ON RARE EARTH-COBALT ALLOYS AND COMPOUNDS

Jacques Schweizer

University of Dayton Research Institute

Approved for public release; distribution unlimited.

X

FOREWORD

The following report was prepared by Dr. Jacques Schweizer, covering the work he accomplished in the year he spent in the United States as a Visiting Scientist. The report consists of a collection of papers, articles, and presentations which Dr. Schweizer initiated and participated in as principal investigator.

The work was performed under Air Force Contract No. F33615-71-C-1121 during the period 15 Oct 1970 to 1 November 1971. The contract was administered by the Physics Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio. Project engineer was Mr. Harold J. Garrett. The contract is a part of Project No. 7371, "Electronic and Magnetic Materials," Task No. 737103.

This technical report has been reviewed and is approved for publication.

ale EChu CHARLES E. EHRENFRIED

MAJOR, USAF Chief, Electromagnetic Materials Br. Materials Physics Division Air Force Materials Laboratory

ABSTRACT

This report contains a collection of six papers dealing with some magnetic properties of rare earth-cobalt alloys and the crystalline and magnetic structures of some rare earth-cobalt intermetallic phases.

The variation of coercivity as a function of the temperature of annealing or sintering is reported for compacts of a single-phase $PrCo_5$ powder and also for a mixture of $PrCo_5$ with an additive richer in praseodymium.

A previously unidentified thermal event observed in some praseodymium-cobalt alloys is shown to be the peritectic reaction temperature of a new phase, Pr_5Co_{19} . The structures of the two crystallographic modifications of Pr_5Co_{19} are given.

The crystal structures of two previously unreported phases, $Pr_2Co_{1.7}$ and $Nd_2Co_{1.7}$ are given. It is shown that the phase designated as La_xCo in earlier work is actually $La_2Co_{1.7}$ and isostructural to the praseodymium and neodymium phases.

The magnetic structures of the compound $Pr_2Co_{1.7}$ and $Nd_2Co_{1.7}$ have been determined by neutron diffraction experiments conducted at room temperature and helium temperatures. Results of these experiments are presented.

A relatively simple technique for determining the easy axis of magnetization in a material with a large magnetocrystalline anisotropy by means of x-ray diffraction is described. The easy magnetic axes of most of the known R_2Co_{17} and R_2Fe_{17} phases, utilizing this technique, are reported.

The crystal structure of $Ho_{12}Co_7$ is reported. It is shown that this phase corresponds to the phase labeled Ho_1Co_7 in the Ho-Co phase diagram.

TABLE OF CONTENTS

:

and the second

للمقاحة لأقلب كالمتقاط ليعيدنا حالتك مجمع مكسوي

Construction .

Section_	Title	Page
	INTRODUCTION	
I	COERCIVITY OF HEAT TREATED Pr-Co POWDER COMPACTS	
	Abstract Introduction Experiments and Results Discussion	1 - 1 1 - 2 1 - 2 1 - 4
II	EXISTENCE AND CRYSTAL STRUCTURE OF TWO NEW PHASES, Pr ₅ Co ₁₉	2-1
III	THE CRYSTAL STRUCTURE OF THE INTER- METALLIC COMPOUNDS Pr ₂ Co _{1.7} , Nd ₂ Co _{1.7} AND La ₂ Co _{1.7}	
	Abstract Introduction Results and Interpretation	3-1 3-2 3-3
IV	MAGNETIC STRUCTURES OF THE COMPOUNDS Pr ₂ ^{Co} _{1.7} and Nd ₂ ^{Co} _{1.7} Room Temperature Measurements Holium Temperature Measurements	4-1
v	DETERMINATION OF THE EASY AXIS OF MAGNETIZATION BY MEANS OF X-RAY DIFFRACTION	4-2
	Discussion of the Method Diffraction by a Powder Aligned in a Magnetic Field	5-1 5-2
	Conclusions	5-3
VI	CRYSTAL STRUCTURE OF THE COMPOUND	6-1
	APPENDIX	A-1

Preceding page blank

v

LIST OF ILLUSTRATIONS

Figure	Title	Page
	CHAPTER I	
1.	Variation of the intrinsic coercive force with the temperature of the heat treatment for PrCo ₅ powder compacts.	1-10
2.	Coercivity and energy product for liquid-phase sintered PrCo ₅ magnets.	1-11
	CHAPTER II	
1,	Differential thermal analysis of Pr ₂ Co ₇ , alloy AR-403, 22.2 at.% Pr-77.8 at.% Co, homogenized at 1100 ⁰ C for 6 hours.	2-6
2.	Differential thermal analysis of Sm ₂ Co ₇ , alloy AR-826, as cast.	2-7
3.	Crystal Structures of the hexagonal and rhombohedral forms of Pr ₅ Co ₁₉ .	2-8
4.	Lattice constants versus composition for the hexagonal or rhombohedral phases of $PrCo_3$, Pr_2Co_7 , Pr_5Co_{19} , and $PrCo_5$.	2-9
	CHAPTER III	
1.	Crystal structure of Pr ₂ Co _{1.7} and Nd ₂ Co _{1.7} .	3-7
	CHAPTER V	
1.	Rotating crystal method x-ray diffraction pattern of a crystalline powder without preferential orientation.	5-5
2.	Rotating crystal method x-ray diffraction pattern of a single crystal aligned around a major axis.	5-5
3.	Rotating crystal method x-ray diffraction pattern of a crystalline powder with a strong preferential orientation around a major axis.	5-5

LIST OF TABLES

いたいなたまし

というないのであると

STATE AND REAL PROPERTY.

and the second second second

Table	Title	Page
	CHAPTER II	
I	Hexagonal Pr ₅ Co ₁₉	2-10
11	Rhombohedral Pr ₅ Co ₁₉	2-11
III	Rhombohedral $\Pr_{5} Ce_{12}$: Reflections and Intensities	2-12
	CHAPTE: JI	
I	$Pr_2Co_{1.7}$: Observed and Calculated Intensities	3-8
	CHAPTER IV	
I	Observed and Calculated Nuclear Intensities (in Barns)	4-6
II	Observed and Calculated Magnetic Intensities (in Barns)	4-7
	CHAPTER V	
I	Crystal Anisotropy of R ₂ Co ₁₇ Compounds at Room Temperature	5-6
II	Crystal Anisotropy of R ₂ Fe ₁₇ Compounds at Room Temperature	5-7
	CHAPTER VI	
I	Final Least-Squares Parameters of Ho ₁₂ Co ₇	6-5
II	Ho ₁₂ Co ₇ : Observed and Calculated Structure Factors	6-6

vii

INTRODUCTION

This report summarizes the work I have done at the Research Institute of the University of Dayton during my one-year stay from October 1970 to October 1971. At first I performed a literature survey of the R_2Fe_{17} compounds, which had been requested. The results of this were reported in AFML-TR-71-36. Subsequently, I was rather free to investigate any aspect of the crystal structures or magnetic properties of the rare earth-cobalt compounds with a view toward a better understanding of the outstanding properties of some of these as permanent magnets.

First I was involved with Dr. Karl J. Strnat and Dr. James B. Y. Tsui, of the University of Dayton Electrical Engineering Department, in the sintering of PrCo₅ magnets with Pr-Co additive. Dr. Tsui had just obtained very exciting results on the sintering-temperature dependence of the magnet properties. I contributed to the discussions that led to the postulation of a shell model for the pinning sites. This work is reported in Chapter I and a paper on it was presented at the International Conference on Magnetics at Denver in April 1971.

In the meantime I tried to obtain further details by means of x-ray diffraction on the sintered magnets. Most of the patterns taken on magnets of good properties exhibited extra unknown lines, and this finding induced me to undertake a complete study of the alloys whose composition lies between Pr_2Co_7 and $PrCo_5$. On a number of samples, prepared by Mr. Robert E. Leasure, University of Dayton Research Institute (UDRI),

viii

in the arc furnace, I ran x-ray diffraction experiments while at the same time Mr. Adolf Biermann (UDRI) performed differential thermal analysis experiments. The constant interaction with him and frequent comparison of his results and mine was very fruitful. It allowed me to show the existence and to find the crystal structure of two new compounds of the composition Pr_5Co_{19} . These structures are reported in Chapter II. But the existence of these new phases does not solve the problem of the extra lines found on the sintered-magnet diffraction diagrams. Investigation of this problem must be continued.

Because the phase nature of the Pr-Co additive was unknown, Dr. Tsui and I undertook the study of the phases present in this alloy. It turned out that this alloy was almost single phase, but this phase was not one of the known ones. We first determined its exact composition, helped by metallographic pictures which were made by Mr. Andrew Kraus of UDRI, then selected single crystals and studied these crystals with the Weissenberg camera. Again the samples used were prepared by Robert Leasure in the arc furnace. We solved the structure of this compound which has the composition $Pr_2Co_{1.7}$, and the results of this effort are reported in Chapter III. A paper on this work was presented at the 9th Rare Earth Conference at Blacksburg, Virginia, in October 1971. Some of the very unusual crystallographic aspects of this structure were also reported at the American Crystallographic Association Meeting at Ames, Iowa, in August 1971. I must point out that I had very fruitful discussions with

ix

Dr. Karel Toman, Professo: of Crystallography at Wright State University about the unusual properties of that compound.

I then carried out neutron diffraction experiments on this compound and on the related compound $Nd_2Co_{1.7}$, at Oak Ridge National Laboratory (ORNL), to determine their magnetic structure. These experiments are explained in Chapter IV. I want to emphasize the fact that all the neutron facilities were generously put at my disposal during two weeks by the Neutron Diffraction Group and that Dr. Ray Child (ORNL) very kindly assisted me in the experimentation.

In another effort, also in collaboration with Dr. Tsui, I applied an x-ray method formerly used at Grenoble to determine the easy axis of magnetization of the R_2Co_{17} and R_2Fe_{17} compounds. The method and results are presented in Chapter V. This technique was subsequently used by Mr. Charles Shanley, a graduate student in Materials Science at the University of Dayton, to study the $R_2(Co_xFe_{1-x})_{17}$ compounds and has allowed him to find very interesting results.

Finally, in collaboration with Lt. Wade Adams of the Electromagnetic Materials Branch, Physics Division, Air Force Materials Laboratory, I studied the crystal structure of the compound reported as $Ho_x Co$ in the literature and which appeared to be $Ho_{12}Co_7$. The results of this structure study are reported in Chapter VI. In the course of this investigation, I was very efficiently helped by Miss Kathy King, a high school student who was assigned as an apprentice to the University of Dayton Magnetics Laboratory for the summer. The computer calculations were carried out

х

partly at the Wright Patterson Computer Center by Wade Adams and partly at the University of Dayton Computer Center with the programs and the help of Dr. Albert Fratini, Professor in the Chemistry Department.

2.2.2

ACCESSION AND A CONTRACT

ないためであるというないというないたちにないないないないないない

were ye

CHAPTER I

COERCIVITY OF HEAT TREATED Pr-Co POWDER COMPACTS

J. Schweizer, K. J. Strnat and J. B. Y. Tsui University of Dayton, Dayton, Ohio 45409

ABSTRACT

The variation of coercivity as a function of the temperature of annealing or sintering is reported for compacts of a single-phase $PrCo_5$ powder and also for a mixture of $PrCo_5$ with an additive richer in praseodymium. For single-phase $PrCo_5$, the intrinsic coercive force decreases steadily with increasing heat-treating temperature and shows a minor peak near $1000^{\circ}C$. For magnets made with the additive, the curve of $_{M}H_{c}$ vs. T has two peaks, one at about $1050^{\circ}C$ and another at $1120^{\circ}C$. This behavior can be correlated with thermal events in the Pr-Co phase diagram. It is interpreted in terms of a model which assumes that pinning sites for domain wells exist which are concentrated in shells forming on the surface of $PrCo_5$ grains during the sintering. These shells are thought to consist of Pr-Co compounds having lower melting points than $PrCo_5$ and to be epitaxial layers on or between the $PrCo_5$ grains into which walls can travel from the latter.

NOTE: This chapter was originally presented as Paper No. 7. 3 at the International Conference on Magnetics, Denver, Colorado, April 13-16, 1971. It then appeared in IEEE Trans. Magnetics Vol. MAG. 7, pg. 429 (1971). The research was supported in part by the Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio under Contract No. F 33615-71-C-1121, and by a grant of the Molybdenum Corporation of America.

INTRODUCTION

It was previously reported⁽¹⁾ that upon heating of $SmCo_5$ powder compacts their coercivity first decreases with increasing temperature but then goes through a pronounced and very high maximum near $1050^{\circ}C$. We conducted similar experiments with $PrCo_5$, hoping that an analogous effect could be found for this alloy. Its existence would be of vital importance for the successful production of magnets from $PrCo_5$, since the intrinsic coercive force of $PrCo_5$ powders prepared by grinding is only marginal⁽²⁾. The effect is also of great significance for the sintering of magnets since the coercive force maximum for $PrCo_5$ occurs in the temperature range where the compacts bond and densify well.

EXPERIMENTS AND RESULTS

Following Westendorp, $^{(1)}$ we first heat treated single-phase powders of $PrCo_5$. This $PrCo_5$ was prepared by arc melting and homogenized by annealing at $1050^{\circ}C$. The buttons were then crushed and powdered by hand grinding in a mortar. The powders were heat treated in evacuated quartz tubes at temperatures up to $1100^{\circ}C$ for 30 minutes. After cooling, the powders were mixed with epoxy cement and bonded while aligned in a magnetic field. Magnetization curves were measured on these samples. The coercive force dropped steadily with increasing temperature, then rose only slightly to a minor peak of 800 Oe near $1000^{\circ}C$.

It is well known now⁽³⁾ that there is another possibility for increasing the coercive force of RCo_5 powder compacts, namely, liquid phase sintering, which is in fact evolving as an important method of magnet production. In

this technique one mixes and presses RCo_5 powder with an additive powder of an alloy richer in rare earth which becomes liquid at the sintering temperature. Magnets prepared properly that way have high density, high coercive force and a high energy product.

We performed heat-treating experiments on P:Co₅ powder blended with powder of an alloy of 69 wt.% Pr and 29 wt.% Co ad the rare earth-rich additive and studied the influence of temperature on coercive force and energy product of the magnets. Details of the procedure used and the results of experiments to determine the optimum values of other parameters are presented in another paper. ⁽⁴⁾ The conditions used here were: 6 minutes grinding time in an attritor-type ball mill for the PrCo₅ and a proportion of 80 wt.% PrCo₅ to 20 wt.% Pr-Co additive. The nominal overall composition of the powder mixture was between the compositions of Pr_2Co_7 and $PrCo_5$. When the same sample was reused for experiments at different and increasing temperatures, the behavior of the coercive force as a function of temperature was roughly the same as for pure $PrCo_5$, but the peak at 1000°C became more pronounced, $_MH_c$ rising from 1000 Oe at 800°C to 1800 Oe at 1000°C and dropping to 250 Oe at 1120°C as can be seen in Figure 1 (dashed curve).

In the next experiment we prepared a new sample for each sintering temperature. A number of compacts were pressed from the same mixture of powders and annealed for 30 minutes at different temperatures. The variation of the coercive force is also shown in Figure 1 (solid line). The

formerly observed peak is now more pronounced and it is followed by a sharp second minimum at 1100 °C and by an equally sharp maximum of 6700 Oe at 1120 °C.

Finally, a last experiment showed that a heat treatment of 30 minutes at 1120° C brings the coercive force of a sample previously sintered at 1100° C up from 1200 Oe to 5700 Oe, and that a second heat treatment of 30 minutes at 1100° on the same sample brings it down again.

Physical density values of 7.5 to 8.0 g/cm³ are reached for sintering temperatures above 1100° C. Maximum energy products were computed and are reported in Figure 2, together with a replot of $_{M}H_{c}$. Magnets sintered between 1120° C and 1160° C have (BH)_{max} values higher than 15 MGOe. DISC USSION

The coercivity of RCo_5 particles, and more particularly of $SmCo_5$, have been discussed either in terms of domain nucleation or in terms of pinning of Bloch walls. In particular, Zijlstra⁽⁵⁾ proposed a model in which the pinning sites are concentrated in a magnetically hard shell close to the surface of each particle. The analysis of the temperature dependence of the coercive force of the sintered $PrCo_5$ magnets and a comparison with the Pr-Co phase diagram⁽⁶⁾ has lead us to adopt principally his model. In the following we shall discuss our observations qualitatively in these terms, extending Zijlstra's model and trying to develop some concepts about the possible physical nature of the shell. Actually, the two peaks seen in the variation of $_{M}H_{c}$ (Figures 1 and 2) are located at temperatures rather clearly identifiable in the phase diagram: the first at the peritectic

temperature of the intermetallic compound $PrCo_3$ (1063°C) and the second between the peritectic temperature of the compound Pr_2Co_7 (1128°C) and the transformation temperature of Pr_2Co_7 from the hexagonal to the rhombohedral crystal structure (1119°C), these two temperatures being very close to one another. During a sintering experiment the system tends to approach thermodynamic equilibrium rather rapidly when the temperature is that high. At the surface of the $PrCo_5$ grains, which are stable at the sintering temperatures (the peritectic temperature of $PrCo_5$ is 1232°C), an epitaxial shell of Pr_2Co_7 may grow below 1128°, or even one of $PrCo_3$ below 1063°C. These layers may contain a number of pinning sites either because of the existence of stacking faults or the presence of oxide particles.

It is known that the crystal structure of the compounds Pr_2Co_7 , both in its rhombohedral high and its hexagonal low temperature form, and that of $PrCo_3$ are very similar to each other and to the structure of $PrCo_5$. They differ merely by some atomic substitutions and by the way the different planes of atoms are stacked. Consequently, epitaxy among these different compounds is very common and is generally accompanied by numerous stacking faults. ⁽⁷⁾ All these compounds are also ferromagnetic at room temperature and have a strong uniaxial anisotropy. Stacking faults in them may be active as pinning sites. If the sintering temperature is below $1062^{\circ}C_{\circ}$, an epitaxial layer of $PrCo_3$ may occur but it would disappear on heating above the peritectic temperature of that compound. In the same way, a layer of epitaxial Pr_2Co_7 may grow below $1128^{\circ}C$ and will redissolve into the liquid phase upon heating above th's temperature. During rapid cooling

from such a high sintering temperature, only a very thin layer of epitaxial Pr_2Co_7 can grow that is likely to be rather imperfect because of the high rate of formation. On the other hand, any thicker and more perfect layer of Pr_2Co_7 grown during annealing between $1119^{\circ}C$ and $1128^{\circ}C$ has to change from the rhombohedral to the hexagonal form during the cooling, and this transformation would cause a large number of stacking faults. So the number of stacking faults has to be a maximum for a sintering temperature of around $1128^{\circ}C$. Similar arguments apply when the annealing is done around $1062^{\circ}C$, with an epitaxial $PrCo_3$ layer (over an intervening thin layer of Pr_2Co_7) playing the role which the Pr_2Co_7 plays at the upper $_{M}H_c$ peak.

Another possibility for creating pinning sites is the precipitation of small oxide particles. It was stated⁽⁸⁾ that an important function of the additive during the sintering process is to remove oxygen from the surface of the $PrCo_5$ grains. During the rapid heating of the powder compacts, the original $PrCo_5$ grains are surrounded by liquid alloy and this Pr-rich liquid phase will react with most of the adsorbed oxygen present on the surface of the $PrCo_5$ particles before the latter has a chance to diffuse into the $PrCo_5$. We presume that this oxygen is in solution in the liquid phase, but that the solubility of oxygen in the solid is rather small.

As a consequence, precipitation of small rare-earth oxide particles will take place in the rare earth-rich regions between the $PrCo_5$ grains when the material there solidifies. When the solidification occurs rapidly, as it did in our experiments, the oxide particles may be so small as to be very efficient pinning sites for domain walls. The precipitate effective for

the magnetic hardening of the magnets by this mechanism would be that present in the thin epitaxial layer of Pr_2Co_7 formed around the $PrCo_5$ grains. During additional sintering or annealing in the completely solid state below the peritectic temperature, these oxide precipitates may grow beyond a size where they are effective pinning sites so that the coercive force would decline. If for some reason the original oxide particle size was below the optimum for pinning, this process could be preceded by an increase of H_c on further annealing.

We have proposed two possibilities for explaining the nature of the pinning sites. Both processes may act together, or one may be dominant, or still another mechanism may exist. But the correspondence between the sintering temperatures at which the peaks in coercivity occur and the temperatures of the different events shown by the phase diagram suggests strongly that such a model has indeed some validity. The distinguishing feature of the model is the presence of an epitaxial shell of a lower-melting magnetic R-Co compound which surrounds the $PrCo_5$ grains, has a high concentration of pinning sites and is thus capable of trapping domain walls which travel into it from the $PrCo_5$ grains. The $PrCo_5$ grains themselves are thought to be become rather perfect crystals during the heat-treating process, so they have a low wall-motion coercivity and a very high critical field for internal domain nucleation.

Similar experiments were also carried out with a Sm-Co additive instead of Pr-Co. The results are qualitatively the same, the two peaks occurring at a slightly higher temperature. This is probably due to the

higher melting points of the corresponding samarium compounds. The model is assumed to be equally applicable in this case -- as indeed it may be to all R-Co alloy powder combinations liquid-phase sintered under similar circumstances.

REFERENCES

1.	F. F. Westendorp, Solid State Commun., 8:139, (1970).
2.	K. Strnat and J. Tsui, <u>Proceedings of the Eighth Rare Earth</u> <u>Research Conference, Reno, Nevada</u> , Vol. I, p. 3, 1970.
3.	M. G. Benz and D. L. Martin, <u>Appl. Phys. Lett.</u> , 17:176, (1970).
4.	J. Tsui and K. Strnat, IEEE Trans. Magnet., MAG-7:427, (1970).
5.	H. Zijlstra, <u>J. Appl. Phys.</u> , 41:4881, (1970).
6.	A. E. Ray and G. I. Hoffer, <u>Proceedings of the Eighth Rare Earth</u> <u>Research Conference</u> , <u>Reno</u> , <u>Nevada</u> , Vol. II, p. 524, 1970.
7.	E. F. Bertaut, R. Lemaire, and J. Schweizer, <u>Bull. Soc. Franc.</u> <u>Miner. Crist.</u> , 88:580, (1965).
8.	R. E. Cech, <u>J. Appl. Phys.</u> , 41:5247, (1970).

1-9

وللارجع فالدقاق

م. مسلمات الماري المصرف المارية المارية الم

Figure 1. Variation of the intrinsic coercive force with the temperature of the heat treatment for PrCo₅ powder compacts.

Harry V.

Figure 2. Coercivity and energy product for liquid-phase sintered PrCo₅ magnets.

CHAPTER II

EXISTENCE AND CRYSTAL STRUCTURE OF THE TWO NEW PHASES

Pr5Co19

It was known⁽¹⁾ that between the compounds $PrCo_5$ and $PrCo_2$ two other compounds existed: Pr_2Co_7 and $PrCo_3$. In the interpretation of Differential Thermal Analysis (DTA) experiments, two thermal arrests were associated with the Pr_2Co_7 phase (Figure 1): the higher one was attributed to the peritectic reaction and the lower one to a solid state transformation in Pr_2Co_7 . Actually two crystal structures exist for $Pr_2Co_7^{(2)}$: one is hexagonal (a = 5.060 Å, c = 24.42 Å) and the other rhombohedral (a = 5.060 Å, c = 36.63 Å). In quenched samples one can only get a mixture of the two phases, and by annealing the hexagonal phase is stabilized.

In order to check the correctness of this explanation of the two thermal events, Mr. Adolf Biermann of UDRI made a DTA experiment on a Sm_2Co_7 alloy which also exhibits the two crystal structures, the rhombohedral and the hexagonal⁽²⁾. No thermal event corresponding to a solid state transformation was found (Figure 2). This led to the conclusion that the hexagonal-rhombohedral transformation has indeed too low a latent heat to be seen in our DTA experiments, and that therefore the explanation for the two thermal events in Pr_2Co_7 must be found elsewhere.

To pursue this question further, I requested a number of alloys of compositions between Pr_2Co_7 and $PrCo_5$ and analyzed them by x-ray diffraction. The as-cast samples revealed a mixture of $PrCo_5$ and Pr_2Co_7

(mostly hexagonal, but there was also some of the rhomgohedral form present). On the x-ray powder patterns of the samples annealed between $1050^{\circ}C$ and $1075^{\circ}C$ new lines appeared that belonged neither to Pr_2Co_7 nor to $PrCo_5$. This was evidence of the existence of a new phase. The composition of this new phase seemed to be close to 21 at.% Pr, the composition for which the x-ray patterns showed a minimum of Pr_2Co_7 and $PrCo_5$ impurity lines.

At that point of the study, a single crystal analysis of the new phase would have been needed, but several attempts to isolate a single crystal were unsuccessful. The only x-ray analysis available was on powders, and as the cell of that new phase was expected to be fairly large, the only possibility was to make some theoretical assumptions about the crystal structure of the new compound and check them against the powder x-ray diffraction results. So I assumed that the composition might be Pr_5Co_{19} and imagined what could be the possible crystal structure for such a compound. The reason for this choice is that it has been shown⁽³⁾ that the compounds RCo_2 , RCo_3 and R_2Co_7 can be deduced from RCo_5 by ordered substitutions of atoms; one rare earth atom is substituted for a cobalt atom in every n cells of RCo_5

n = 1
n = 2
n = 3
RCo₅ + R - Co
$$\Rightarrow$$
 2RCo₂
RCo₅ + R - Co \Rightarrow 3RCo₃
RCo₅ + R - Co \Rightarrow 2RCo₃
RCo₅ + R - Co \Rightarrow 2RCo₃

In each case the stacking of the n cells of RCo_5 may be either of the type ABAB.., which gives an hexagonal structure (P6₃/mmc), or of the

type ABCABC..., which leads to a rhombohedral structure $(R\overline{3}m)$. So, when looking for a new compound it is tempting to go one step further and to write:

$$n = 4 \qquad 4 \Pr Co_{g} + \Pr - Co \neq \Pr_{g} Co_{19}$$

with two possible crystal structures: hexagonal and rhombohedral. These modifications are re_{t} resented in Figure 3, with atom positions given in Tables I and II. These compounds would have a composition of 20.8 at.% Pr, in fairly good agreement with the observations, and the following lattice constants:

a
$$\approx$$
 a of $PrCo_5$
c_{hex} $\approx 8. c$ of $PrCo_5$
c_{rhomb} $\approx 12. c$ of $PrCo_5$

I ran a calculation to determine the diffraction angles of the x-rays diffracted by these two crystal structures and the expected intensities of the reflections. Compairson with the observed reflections (Table III) showed that both compounds exist and are present in the observed samples. The rhombohedral compound predominates in all the samples studied, but the presence of the hexagonal compound is shown by the existence of the strongest of its superstructure reflections, $(1 \ 0 \ 9)$. This line is quite sharp in a sample of 21.1 at.% Pr annealed at 1050° C but strongly broadened in the three other samples: 21.2 at.% Pr annealed at 1075° C, 20.8 at.% Pr annealed at 1050° C, and 20.5 at.% Pr annealed at 1050° C. The rhombohedral lines are sharp in all four samples. This may be interpreted either in terms of a small coherence dimension for the

2-3

てきてきないというというないのないないのでいいのできるときないない

hexagonal compound or as the presence of many stacking faults occurring in this crystal structure. No refinement of the structures has been carried out; this explains the rather poor agreement between calculated and observed intensities for the large indices.

The measured lattice constants of the two compounds are:

$$a_{hex} = 5.053 \text{ Å}$$
 $c_{hex} = 32.47 \text{ Å}$
 $a_{rhomb} = 5.053 \text{ Å}$ $c_{rhomb} = 48.71 \text{ Å}$

These lattice parameters fit nicely with those of $PrCo_3$, Pr_2Co_7 and $PrCo_5$ when plotted versus composition (Figure 4).

We are now able to understand the two events observed on the DTA experiments: The lower one corresponds to the peritectic transformation of Pr_2Co_7 ; the upper is at the peritectic temperature of Pr_5Co_{19} . None of the solid state transformations in Pr_2Co_7 or in Pr_5Co_{19} were observed by DTA.

The shell model explanation of the origin of the intrinsic magnetic coercive force given in Chapter I is still applicable with this new interpretation of the DTA events. I would even suggest that the peak in coercivity at 1120 °C observed in sintered SmCo_5 magnets by $\text{Das}^{(4)}$, that does not correspond to a peritectic transformation in the way we proposed in the shell-model interpretation for PrCo_5 magnets, corresponds to the rhombohedral-to-hexagonal transformation of Sm_2Co_7 . This point cannot be checked by DTA but only by high temperature x-ray diffraction. Such a verification would be very interesting for the understanding of magnet sintering.

REFERENCES

1.	A. E. Ray and G. I. Hoffer	, Proceedings of the Eighth Ra	re Earth
	Research Conference, Reno	o, Nevada, Vol. I, p. 524, 1970	0.

- 2. J. Schweizer, Ph. D. Thesis, University of Grenoble, p. 39 1968.
- 3. E. F. Bertaut, R. Lemaire, and J. Schweizer. <u>Bull. Soc. Franc.</u> <u>Miner. Crist.</u>, 88:580, 1965.
- 4. D. Das, <u>IEEE Trans. Magnet.</u>, MAG-7:432 (1971).

' È , U

2-6

Pr ATOMO Co ATOM

۰.

Hexagonal Structure

Rhombohedral Structuro

Pr₅Co₁₉

and Burners of

and the second second

وألفانا فراقت المعاقد معا فاقتلاها المالين

a contraction of the second of the second of the

a an is a that is an individual and the second of the s

TABLE	Ι
-------	---

HEXAGONAL Pr₅Co₁₉ Space Group P6₃/mmc

a =	5.053	Ă,	c =	32.	47 X	Ĺ
-----	-------	----	-----	-----	------	---

Atom	Position	x	У	Z
PrI	4f			0.125
Pr _{II}	4f			0.021
Pr III	2c			
Col	2a .			
CoII	4e			0.125
CoIII	4f			0.875
Co _{IV}	12k	0.833		0.187
°°v	12k	0.833		0.064
^{Co} VI	2d		ī	
Co _{VII}	2Ъ			

こうちゅうちょう ちょうちょうしょう

2a: (0,0,0); (0,0,1/2).

2b: (0,0,1/4); (0,0,3/4).

2c: (1/3, 2/3, 1/4); (2/3, 1/3, 3/4).

2d: (1/2, 2/3, 3/4); (2/3, 1/3, 1/4).

4f: $(1/3, 2/3, z); (2/3, 1/3, \overline{z}); (2/3, 1/3, 1/2 + z); (1/3, 2/3, 1/2 - z).$

12k: \pm (x, 2x, z); (2x, x, z); (x, x, z); (x, 2x, 1/2-z); (2x, x, 1/2-z); (x, x, 1/2-z).

TABLE II

こうちょう こうちょう ちょうちょう ちょうちょう

2

RHOMBOHEDRAL Pr5Co19

Space Group R3m

Hexagonal Indexation: $a = 5.053 \text{\AA}$, $c = 48.71 \text{\AA}$

Atom	Position	x	у	Z
PrI	6c [,]			0.082
PrII	6c			0.153
$\mathbf{Pr}_{\mathbf{III}}$	3a			
CoI	3ъ			
CoII	6c			0.251
Co _{III}	6c			0.415
Co _{IV}	18h	0.500		0.041
Cov	18h	0.500		0.124
CoVI	6c			0.333

(0, 0, 0); (1/3, 2/3, 2/3); (2/3, 1/3, 1/3) +

3a:	(0,0,0).
3b:	(0,0,1/2).
6c:	<u>+</u> (0,0,z)
18h:	\pm (x, \bar{x} , z); (x, 2x, z); (2 \bar{x} , \bar{x} , z).

а. .

ĉ

TABLE III

RHOMBOHEDRAL Pr₅Co₁₅: REFLECTIONS AND INTENSITIES

= 2.2909 Å

h k l	20 cal	2 O _{obs}	pF ² cal	I obs
003	8.09		0	
006	16.22		о	
009	24.44		0	
101	30.47		2	
-1 0 2	30.84		0	
104	32. 30		2	
0 0 12	32.78		6	
-105	33. 35		0	
 107	36.02		1	
-1 0 8	37.61		0	
1 0 10	41.20		0	
0015	41.31		2	
-1 0 11	43.18		14	
1013	47.46	47.45	117	M ⁽¹⁾
$1 0 9(hex)^{(3)}$	48.60 ⁽³⁾	48.67 ⁽³⁾		w ⁽³⁾
-1014	49.74	49.80	71	w
0018	50.08		2	
110	53.92	54.00 [€]	194	S
1016	54.56		14	
113	54.62		1	
116	56.69		1	
-1 0 17	57.09		35	
0 0 21	59 . 18		1	
119	60.05		1	
1019	62. 37		5	
1	1 1			(
TABLE III (Continued)

•••

語という

, `,·

فتقافله فكالمكافئة فالمسافعات المتكريم بالمكرم مستحكا فطالعان متركلا متروعين

イントレイスをういていたちとなったいろうち インクロンドレントのないないないないであったい

h k L	2 O cal	2 O _{obs}	pF ² cal	Iobs
-201	63.20	63.35	194	S
202	63.42		45	
-204	64.27		23	
1 1 1 2	64.55	64.70	673	vs
205	64.90		14	
-1 0 20	65.13		29	
-207	66.57		18	
208	67.60		18	
0 0 24	68.72	68.	145	М
-2 0 10	70.04		26	
1 1 15	70.12		17	
1 0 22	70.87		1	
-2011	71.45	71.60	67	w
-1 0 23	73.86		23	
2013	74.63		8	
-2014	76.40		0	
1 1 18	76.67		14	
0 0 27	78.83	79.00	21	vw
1 0 25	80.11		1	
-2016	80.28		0	
1124	92.76	92.80	68	w
2113	98.40	98.80	1 36	w
-2114	100.14	100.00	84	vw
300	103.49		116	
		103.45	253	S
-2025	103.85		1 37	
2026	107.20	107.15	118	vw
L		1 1	1	

h k l	2 O _{cal}	2 O _{obs}	pF ² cal	I obs
3012	113.11	113.10	398	S
220	130.12	1 30. 00	381	s
1 1 36	147.61	147.45	116	S
3024	150.50	150.45	402	М

TABLE III (Concluded)

(1)	Intensity:	VS	Very Strong
		S	Strong
		М	Medium
		w	Weak
		vw	Very Weak

- (2) All the reflections have been listed till $2\theta = 80^{\circ}$; then only the strongest ones.
- (3) Beside the reflection (1 0 9) all the observed lines of Pr_5Co_{19} hexagonal are structure reflections and coincide with those of Pr_5Co_{19} rhombohedral.

CHAPTER III

THE CRYSTAL STRUCTURE OF THE INTERMETALLIC

COMPOUNDS Pr2Co1.7, Nd2Co1.7 and La2Co1.7

J. Schweizer, K. J. Strnat and J. B. Y. Tsui University of Dayton, Dayton, Ohio 45409

ABSTRACT

A crystal structure is reported for the two previously unknown intermetallic compounds of the approximate compositions $Pr_2Co_{1.7}$ and Nd_2Co_1 . The compounds crystallize in a very simple hexagonal cell with parameters a = 4.81 Å, c = 4.09 Å, and a = 4.79 Å, c = 4.07 Å, respectively. This cell contains two rare earth atoms in the positions (2/3, 1/3, 1/4) and 1/3, 2/3, 3/4. These are the positions corresponding to a hexagonal packing ABAB. The cobalt atoms are located in x = y = 0and form columns parallel to the c-axis along which the Co atoms are in contact with each other. These columns fit into cylindrical interstices between the rare earth atoms. The c-parameter of the cell is too small for two cobalt atoms to be present in both the (0, 0, 0) and (0, 0, 1/2)positions, but the shortest distance between rare earth atoms in the basal plane is large enough to permit formation of a continuous row of Co atoms in the z-direction at distances of 2.37 Å, with a stacking period independent of that of the rare earth. The correlation between the Co columns is weak. This gives rise to diffuse planes in reciprocal space perpendicular to the c-axis.

NOTE: This Chapter was originally presented as a paper at the Ninth Rare Earth Research Conference, Blacksburg, Virginia, October 10-14, 1971.

CHAPTER III

THE CRYSTAL STRUCTURE OF THE INTERMETALLIC

COMPOUNDS Pr2Co1.7, Nd2Co1.7 and La2Co1.7

J. Schweizer, K. J. Strnat and J. B. Y. Tsui University of Dayton, Dayton, Chio 45409

ABSTRACT

A crystal structure is reported for the two previously unknown intermetallic compounds of the approximate compositions $Pr_2Co_{1,7}$ and with parameters a = 4.81 Å, c = 4.09 Å, and a = 4.79 Å, c = 4.07 Å, respectively. This cell contains two rare earth atoms in the positions (2/3, 1/3, 1/4) and 1/3, 2/3, 3/4). These are the positions corresponding to a hexagonal packing ABAB. The cobalt atoms are located in x = y = 0and form columns parallel to the c-axis along which the Co atoms are in contact with each other. These columns fit into cylindrical interstices between the rare earth atoms. The c-parameter of the cell is too small for two cobalt atoms to be present in both the (0, 0, 0) and (0, 0, 1/2)positions, but the shortest distance between rare earth atoms in the basal plane is large enough to permit formation of a continuous row of Co atoms in the z-direction at distances of 2.37 Å, with a stacking period independent of that of the rare earth. The correlation between the Co columns is weak. This gives rise to diffuse planes in reciprocal space perpendicular to the c-axis.

NOTE: This Chapter was originally presented as a paper at the Ninth Rare Earth Research Conference, Blacksburg, Virginia, October 10-14, 1971.

INTRODUCTION

The phase diagrams of cobalt with any of the rare earth metals are characterized by a great number of intermetallic compounds, each of them existing over a very narrow homogeneity range only. This alloying behavior is attributable to the large difference in the atomic radii of the two component metals. An intermediate phase of a given stoichiometric composition usually exists with all or most of the rare earth elements, thus forming a family of isostructural compounds. However, some exceptions from this rule occur, and they are primarily found in the rare earth-rich portions of the phase diagrams and with the light rare earths. As a case in point, the compound R_4Co_3 has been reported to exist with the elements from gadolinium through thulium $\frac{1}{1}$. This crystal structure does not appear to be stable with the lighter rare earth metals though, and in fact no compound near the equiatomic composition was found in investigations of the ceriun;-cobalt 2 and the samarium-cobalt 4 phase diagrams. The published diagrams for praseodymium and neodymium with cobalt as the partner' show an unexplained thermal arrest in the composition range near 50 at.%.

Studies of the liquid-phase sintering of PrCo₅-based permanent magnets using a praseodymium-rich Pr-Co alloy as the sintering additive caused us to investigate more closely the alloys near the equiatomic composition in the Pr-Co system. This work resulted in the identification of a previously unreported compound which also exists with neodymium. The

structure of this compound has been studied and is reported here. RESULTS AND INTERPRETATION

Alloys samples of various compositions were prepared by both arc and crucible melting of the component metals. The arcmelted buttons were studied in the as-cast condition and after annealing in vacuum at 500°C. The samples containing 74 wt.% showed almost -single-phase structures in either condition. This single-phase composition corresponds to 54 at.% praseodymium and 46 at.%.

X-ray powder patterns were indexed in a hexagonal cell. The o olattice constants are a = 4.81 Å and c = 4.09 Å. At first glance, the very small dimensions of the unit cell seem irreconcilable with the composition, since the number of atoms per cell cannot exceed four and mutual substitutions between praseodymium and cobalt are not expected.

the second se

Rotating-crystal diffraction patterns, generated by rotating the sample around the a-axis and the c-axis, showed that the reflections (hkl) were absent when $2h \neq k = 3$ n and l was odd. A very striking feature was noticed in the patterns that were produced by rotating the crystal around the c-axis: Besides the regular layers of reflections corresponding to c = 4.09 Å, weak diffuse layers exist which are also perpendicular to the c-axis and correspond to a distance in the direct lattice of 2.37 Å. Incommensurable with the c value, these diffuse planes are the diffraction pattern of one-dimensional crystals extending parallel to the c-axis. Such an arrangement was first observed by Huml⁷. These linear crystals consist of cobalt ator s which are atranged in regular chains parallel to the c-axis

with x = y = 0, and the distance between the nearest neighbors along the o chain is 2.37 A. There is no correlation with respect to z from one chain to the other, and no correlation exists between the z-values of these cobalt atoms and the z-values of the praseodymium atoms which are located in the positions (1/3, 2/3, 2/3; 2/3, 1/3, 1/4) and form the skeleton of the described cell. (See Figure 1.) The observed x-ray intensities fit well with this model as shown in Table I. For the (hk0) reflections, both the praseodymium and the cobalt atoms contribute to the structure factor because it is independent of the z values; for the (hkl) reflections with $l \neq 0$, only the praseodymium atoms contribute to the structure factor because of the lack of correlation between the z coordinates of the cobalt atoms. The composition and cell content deduced from these crystallographic data is $Pr_2Co_{1.7}$. This is in good agreement with the composition for which single-phase microstructures were obtained.

A closer examination of the diffuse layers shows the existence of weak reflections indicating some correlation between the z values of the different rows of cobalt. This is probably due to some small shift of the praseodymium atoms away from their theoretical positions.

The praseodymium positions are the same as those of the atoms i: a simple hexagonal compact structure. But because of the presence of the rows of cobalt, the praseodymium stacking in our case is indeed not compact, and the c/a-ratio has the low value of c/a = 0.85. The distance of closest approach between two praseodymium atoms is 3.45 Å, the

distance between a Pr and a Co atom can vary between 2.78 A and 3.02 A.

Nd₂Co_{1.7} has the same crystal structure as $Pr_2Co_{1.7}$, but with o o the parameters a = 4.79 A and c = 4.07 A.

In the discussion of the hexagonal R_4Co_3 compounds which exist with the heavy rare earths¹, the observed intensities were also explained by assuming that the cobalt atoms located in x = y = 0 were not well correlated in z with the other atoms of the cell. Because of the large number of atoms in that cell, however, the actual observation of diffused planes was impossible there. (The cell dimensions are $a \approx 11.4$ A and $c \approx 4.0$ A.)

 $La_2Co_{1.7}$ exists also and has the same crystal structure as $Pr_2Co_{1.7}$. It corresponds to the compound La_xCo reported by Buschow and Velge³ and Singh and Raman⁸ and misindexed as cubic. Its lattice constants are a = 4.89 and c = 4.31.

REFERENCES

- 1. R. Lemaire, J. Schweizer, and J. Yakinthos, <u>Acta Cryst.</u>, B 25: 710 (1969).
- F. H. Ellinger, C. C. Land, K. A. Johnson, and V. O. Struebing, Trans. Met. Soc. AIME, 236: 1577 (1966).
- K. H. J. Buschow and W. A. J. J. Velge, <u>J. Less-Common Metals</u>, 13: 11 (1967).
- 4. K. H. J. Buschow and A. S. VanDerGoot, J.Less-Common Metals, 14: 323 (1968).
- 5. A. E. Ray and G. I. Hoffer, <u>Proceedings of the Eighth Rare Earth</u> <u>Research Conference</u>, <u>Reno, Nevada</u>, Vol. II, p. 524, (1970).
- 6. J. Tsui and K. Strnat, Appl. Phys., 18: 107 (1970).
- 7. K. Huml, Acta Cryst. 22: 29 (1967).
- 8. P. O. Singh and A. Raman, Mater. Res. Bull., 3: 843 (1968).

Pr ₂ Co ₂ : OB	SERVED AND C	ALCULATED	INTENSITIES
2 1.7	•		

h k l	F ² e ^{-2w} obs	F ² e ^{-2w} cal	hkl	F ² e-2w Fobs	F ² e ^{-2w} cal
100	90	101	101	6467	6385
110	14578	14054	111	N. O.	0
200	100	87	201	4821	4219
210	89	72	211	2602	30 30
300	6462	6901	301	N. O.	0
220	4308	5213	221	N. O.	o
410	2742	2505	311	1525	1758
330	1 368	1 38 3	401	1404	1 391
600	738	881	321	1057	1092
520	753	682	411	N. O.	0
440	320	416			

N.O. = Not Observed

CHAPTER IV

MAGNETIC STRUCTURES OF THE COMPOUNDS Pr2Co1.7 and Nd2Co1.7

Neutron experiments were carried out at the Oak Ridge Research Reactor on powders of $Pr_2Co_{1.7}$ and $Nd_2Co_{1.7}$. Patterns were taken both at room temperature, where the samples are in the paramagnetic state, and at helium temperature where "Ley are magnetically ordered. A measurement of the intensities diffracted by a nickel powder placed in the same container and the measurement of the absorption cross section of the samples permitted putting all the measured intensities on an absolute scale. The experimental absorption cross section, per formula unit are: $Pr_2Co_{1.7} = 73.4$ barn and $Nd_2Co_{1.7} = 132.1$ barn.

ROOM TEMPERATURE MEASUREMENTS

At this temperature the compounds are magnetically disordered and the diffracted intensities are of nuclear origin only:

$$I_{hk\ell} = pF_N^2 e^{-2w}$$

with

$$F_{N} = b_{j} \exp 2\pi i (hx_{j} + ky_{j} + \ell z_{j})$$

$$p = multiplicity factor of the form (hk\ell)$$

$$w = B \sin^{2} 2$$

$$B = temperature factor$$

$$b_{j} = Fermi length of the atom j .$$

Under such conditions, the neutron experiment should confirm the crystal structure found in Chapter III. The comparison between observed and

calculated intensities is reported in Table I. For that calculation the following values were used:

$$b_{Pr} = 0.44 \ 10^{-12} \text{ cm}$$

 $b_{Nd} = 0.72 \ 10^{-12} \text{ cm}$
 $b_{Co} = 0.25 \ 10^{-12} \text{ cm}$
B = 1.5 Å² as found by x-ray diffraction.

One can see that the agreement is not very good. Particularly, with both compounds, the reflection (002) is observed with an intensity which is too high by a factor 2 (contribution of (200) is negligible). This suggests that a strong preferential orientation took place in the powders of both samples. Actually the grains have the shape of needles, and these needles tend to remain horizontal in the container. We have checked this point by an additional neutron experiment at room temperature on a $Pr_2Co_{1.7}$ powder consisting of coarser grains; the discrepancy for the (002) reflection was much stronger, which proved the role of preferential orientation. HELIUM TEMPERATURE MEASUREMENTS

At 4.2° K, the temperature of boiling helium, both $Pr_2Co_{1.7}$ and $Nu_2Co_{1.7}$ are magnetically ordered. As the neutrons used in that experiment were not polarized, the diffracted intensities are the sum of two contributions, one of nuclear and one of magnetic origin:

$$I_{hkl} = p (F_N^2 + g^2 F_M^2 e^{-2w})$$

$$F_M = 0.27 f_j m_j \exp 2\pi i (hx_j + ky_j + lz_j)$$

$$m_j = magnetic moment of the atom j (in u_R)$$

 f_j = magnetic form factor of the atom j g^2_{hkl} = geometrical factor characteristic _____e direction of the moments in a collinear magnetic structure.

The neutron diffraction pacterns obtained at that temperature, compared to room temperature patterns, show a strong magnetic contribution. Particularly, the strong increase of the (002) reflection suggests in both cases that the easy axis of the structure is not parallel to the c axis, a configuration which would imply $g^2_{(002)} = 0$. To minimize the errors due to the preferential orientation, we have deduced the magnetic intensities observed at room temperature, corrected with their temperature factor. These intensities fit well with a model of ferromagnetic arrangement of the moments where the easy axis is perpendicular to the c axis of the hexagonal structure. The best agreement is obtained for the following values of the moments:

$$\frac{Pr}{2} \frac{Co}{1.7} \qquad \frac{Nd}{2} \frac{Co}{1.7}$$

$$M_{Pr} = 2.65 \mu_{B} \qquad M_{Nd} = 2.50 \mu_{B}$$

$$M_{Co} = 0.70 \mu_{B} \qquad M_{Co} = 0.70 \mu_{B}$$

This agreement between observed and calculated magnetic intensities is shown in Table II. Here again, the values observed for the (002) reflections are roughly two times too high, which was expected from the preferential orientation. For this calculation, the form factors used for the rare-earth moments are the theoretical ones calculated by Blume et $al^{(1)}$, those used for cobalt were the ones measured by Moon⁽²⁾.

The results obtained are surprising when compared to the results reported for $PrCo_2^{(3)}$ and $NdCo_2^{(4)}$. The rare-earth moments are equivalent for the same kind of atom, but the cobalt moments are not. They were found to be 0.50 μ_B in $PrCo_2$ and 0.80 μ_B in $NdCo_2$. This variation may be explained by the crystal structure of the $R_2Co_{1.7}$ compounds where the Co-Co interactions, due to the short distance of 2.37 Å, should be much stronger than in RCo₂ compounds.

REFERENCES

स्तन्त्रज्ञाः ६ पूर

nw. L.

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

四連

- 1. M. Blume, A. J. Freeman, and R. E. Watson, <u>J. Chem. Phys.</u>, 37:1245 (1962).
- 2. R. M. Moon, Phys. Rev., 136 A:195 (1964).

- - - -

- J. Schweizer, Phys. Lett., 24:739 (1967).
- 4. P. M. Moon, W. C. Koehler, and J. Farrell, <u>J. Appl. Phys.</u>, 36:978 (1965).

	Pr ₂ Co	1.7	Nd ₂ C	°1.7
h k l	$pF_N^2 e^{-2w} obs$	$pF_N^2 e^{-2w} cal$	$pF_N^2 e^{-2w}obs$	$pF_N^2 e^{-2w} cal$
100	N. O.	0.001	0.57 ± 0.06	0.50
101	7.45 ± 0.21	6. 39	20.51 ± 0.28	17.07
110	9.37 ± 0.67	8.98	18.84 ± 0.43	18.34
200+002	2.97 ± 0.70	1.29	7.60 ± 0.55	3.90
201+102	7.73 ± 0.40	7.48	22.15 ± 0.62	20.00
210+112	7.73 ± 0.55	6,82	22.31 ± 0.79	19.02
		,		,

OBSERVED AND CALCULATED NUCLEAR INTENSITIES

TABLE I

(IN BARNS)

C. Barris

ملقا والماطين المعاطية المسالية والمسالية والمسال

and the state of the second of the second of the second second and the second second second second second second

N. O. = Not Observed

TABLE II

OESERVED AND CALCULATED MAGNETIC INTENSITIES (IN BARNS)

	Pr ₂ Co _{1.7}		Nd ₂ Co ₁ .	7
hkł	pF _M ² obs	pF _M ² cal	pF _M ² obs	pF _M ² cal
110	0.36 ±0.09	0.38 11.43	0. 32 ± 0.13 10. 63 ± 0.44	0. 32 11. 01
110	5.71 ±1.2	6.84	6.81 ±1.8	6.78
2 0 0 0 0 2	6.05 ±1.5	3.18 { 0.39 2.79	5.13 ±1.8	3. 19 2. 81
201	12.31 ±1.0	$10.52 \begin{cases} 7.05 \\ 3.47 \end{cases}$	11.04 ±3.0	10.78 { 7.23 3.55
210	11.25 ±2.5	11. 27 10. 50	15.17 ±5.0	11.64 10.80

4-7

CHAPTER V

DETERMINATION OF THE EASY AXIS OF MAGNETIZATION

BY MEANS OF X-RAY DIFFRACTION

DISCUSSION OF THE METHOD

The determination of the easy axis of magnetization of a ferromagnetic or ferrimagnetic compound generally requires either magnetic measurements on an oriented single crystal or the use of neutron diffraction. When the magnetic anisotropy of the substance is high, however, a simpler method may be employed. This method involves x-ray diffraction measurements on powders pre-aligned in a magnetic field. The crystallographic direction of the easy axis is deduced from the study of the orientation texture of the diffraction pattern. Strong anomalies are observed in diffraction patterns of pre-aligned powders obtained by the rotating crystal method as well as the Debye-Scherrer method. We shall briefly discuss these as an aid to a better understanding of the method used here.

If the sample is a powder without preferential orientation, the Bragg x-ray maxima are diffracted in cones, whose angles are at discrete values of $2\theta_{hki}$. The recorded x-ray diffraction patterns have the general appearance of Figure 1.

If the sample is a single crystal rotating around an axis [u, v, w], the points (hkl) of the reciprocal lattice lie in a set of planes that are perpendicular to the vector [u, v, w]. As a consequence, during the rotation of the crystal, these planes cut the Ewald sphere along a discrete number of circles and the rotating crystal diffraction patterns

appear as shown in Figure 2. The Bragg reflections are located on discrete horizontal lines. In particular, a reflection (hkl), lies on the nth line, where uh + vk + wl = n.

DIFFRACTION BY A POWDER ALIGNED IN A MAGNETIC FIELD

The sample is a needle formed from a powder of the ferromagnetic compound consisting, ideally, of single-crystal particles which have been aligned and bonded with a cement in a magnetic field. The sample is mounted on the goniometer of a rotating crystal camera with the long axis of the needle parallel to the rotation axis. Each grain is now supposed to be oriented with its easy axis of magnetization parallel to the axis of the needle and therefore parallel to the axis of rotation. If the orientation were perfect, the x-ray pattern obtained would be equivalent to that of a single crystal rotating around its easy axis of magnetization. This is not exactly the case; the magnetic alignment is not perfect and the x-ray pattern is intermediate between a powder pattern and a rotating crystal pattern. Debye-Scherrer lines are present, but they are very inhomogeneous with strong intensity maxima occurring where the reflections would be if the sample were a single crystal rotating around the same axis, as illustrated in Figure 3. The stronger the magnetic anisotropy and the stronger the magnetic field applied during the alignment process, the stronger is the orientation texture of these lines. The analysis of the texture indicates which crystalline axis of the grains is aligned on the average with the long axis of the needle, which is the easy axis of

magnetization at the temperature at which the needle has been bonded. CONCLUSIONS

A Construction of the second second

a. This method is very convenient for determining the easy axis of magnetization at room temperature.

b. The magnetic field must be large enough to saturate the sample, i.e., to remove all magnetic domains except one in each grain. An insufficient field may align even single-crystal grains parallel to an axis different from the easy axis if two or more easy directions exist in the crystal. Even in a single-crystal grain with a unique easy axis, however, to which the total magnetic moment can only be parallel, the orienting mechanical torque moment exerted by the field may be too small unless the grain is nearly saturated.

c. This method works well only for materials with a strong magnetic crystal anisotropy. If the crystal anisotropy is not high, the shape anisotropy of the grains will also play a role in the alignment and may lead to wrong conclusions. The method is therefore very suitable for studying rare earth-cobalt-iron compounds because they are in general quite strongly anisotropic.

EXPERIMENTAL PROCEDUPES

Freshly powdered, -200 mesh (<78 μ m), R₂Co₁₇ and R₂Fe₁₇ were premagnetized in a field of 26 kOe, mixed with an epoxy to form a thick paste and placed in a 6 kOe field to grow thin needles of oriented alloy particles. After the epoxy cured, needles were placed in a Weissenberg

camera and rotating crystal diffraction patterns were obtained. Vanadium-filtered CrK_a radiation was employed. The direction of easy magnetization was determined by qualitative evaluation of the texture exhibited in the diffraction patterns. And the second s

RESULTS

The results of the magnetic easy axis determination are presented in Table I for the R_2Co_{17} compounds and in Table II for R_2Fe_{17} compounds.


~~~~<u>77</u>

\$1. 142. MALENCE

. W. C. 3 Mar

Figure 1. Rotating crystal method x-ray diffraction pattern of a crystalline powder without preferential orientation.



Figure 2. Rotating crystal method x-ray diffraction pattern of a single crystal aligned around a major axis.



Figure 3. Rotating crystal method x-ray diffraction pattern of a crystalline powder with a strong preferential orientation around a major axis.

#### TABLE I

## CRYSTAL ANISOTROPY OF $R_2 Co_{17}$

### COMPOUNDS AT ROOM TEMPERATURE

| Compound                         | Crystal type  | Easy direction |
|----------------------------------|---------------|----------------|
| Ce <sub>2</sub> Co <sub>17</sub> | (*)           |                |
| Pr <sub>2</sub> Co <sub>17</sub> | rhomb.        | in Basal Plane |
| Nd <sub>2</sub> Co <sub>17</sub> | rhomb.        |                |
| Sm <sub>2</sub> Co <sub>17</sub> | rhomb. (of 2) | c-axis         |
| Gd <sub>2</sub> Co <sub>17</sub> | rhomb. (of 2) |                |
| Tb <sub>2</sub> Co <sub>17</sub> | rhomb. (of 2) | in Basal Plane |
| Dy <sub>2</sub> Co <sub>17</sub> | mixture       |                |
| Ho <sub>2</sub> Co <sub>17</sub> | hexag.        |                |
| Er <sub>2</sub> Co <sub>17</sub> | hexag.        | c-axis         |
| Tm <sub>2</sub> Co <sub>17</sub> | hexag.        | c-axis         |
| Lu2Co17                          | hexag.        | in Basal Plane |
| Y <sub>2</sub> Co <sub>17</sub>  | rhomb. (of 2) | in Basal Plane |

(\*) Poor sample; contained  $CeCo_5$ 

State Stat

## TABLE II

## CRYSTAL ANISOTROPY OF R<sub>2</sub>Fe<sub>17</sub>

## COMPOUNDS AT ROOM TEMPERATURE

| Compound                                                             | Crystal Type     | Easy Direction |
|----------------------------------------------------------------------|------------------|----------------|
| Pr <sub>2</sub> Fe <sub>17</sub><br>Nd <sub>2</sub> Fe <sub>17</sub> | rhomb.<br>rhomb. |                |
| Sm <sub>2</sub> Fe <sub>17</sub>                                     | rhomb.           | all in         |
| Gd <sub>2</sub> Fe <sub>17</sub>                                     | rhomb. (of 2)    | Basal Plane    |
| <sup>Tb</sup> 2 <sup>Fe</sup> 17                                     | misture          |                |
| Dy <sub>2</sub> Fe <sub>17</sub>                                     | hexag.           |                |
| Ho2Fe17                                                              | hexag.           |                |
| Er2 <sup>Fe</sup> 17                                                 | hexag.           |                |
| <sup>Tm</sup> 2 <sup>Fe</sup> 17                                     | hexag.           |                |
| Y <sub>2</sub> Fe <sub>17</sub>                                      | mixture          | in Basal Plane |

#### CHAPTER VI

いいいないないないとう

## CRYSTAL STRUCTURE OF THE COMPOUND Ho12Co7

In the phase dia gram holmium-cobalt published by Buschow et al<sup>(1)</sup> only one of the compounds reported to exist was not yet described with regard to exact composition and crystal structure. It was labeled Ho<sub>x</sub>Co by Buschow and corresponds to a composition of 37 at.% cobalt and 63 at.% holmium, with congruent melting behavior.

To undertake the study of the crystal structure of this compound we prepared, by arc melting, an alloy corresponding to the above composition and annealed it for 7 days at  $750^{\circ}$ C. After crushing the button, I was able to isolate a pseudo-cylindrical single crystal with a long axis of 0.157 mm and a diameter varying between 0.067 mm and 0.095 mm. An x-ray diffraction study was done on this crystal. The long axis appeared to be roughly the a axis of a monoclinic cell with the following lattice constants:

| a = 9.30  Å | = 90 <sup>°</sup>  |
|-------------|--------------------|
| b = 13.85 Å | = 90 <sup>°</sup>  |
| c = 11.16 Å | = 144 <sup>0</sup> |

A pycnometric density evaluation was performed on a large piece of the compound, a value of 9.51 was found. The comparison between this density, the volume of the cell, and the composition led to the formula  $\text{Ho}_{24}\text{Co}_{14}$  for one monoclinic cell.

We recorded on a Weissenberg camera 7 layers of x-ray reflections: 0kl, 1kl, 2kl, 3kl, 4kl, 5kl, and 6kl. We used molybdenum characteristic

radiation, filtered by a zirconium foil, to bring the absorption to its lowest possible level. We estimated the intensities by comparison with a standard. The cylinder absorption correction has been performed with a calculated uR of 2.3, corresponding to an average diameter of 0.081 mm. To take into account the varying diameter of the cylinder we applied an empirical correction based on the comparison of several equivalent reflections in the plane 0kf.

Systematic extinctions appeared for the reflections (hk0) where k = 2n + 1 and (001) for l = 2n + 1. These extinctions are characteristic of the space group P2<sub>1</sub>/b which has 4 equivalent positions for each site. From the composition Ho<sub>24</sub>Co<sub>12</sub> one can deduce that there should be 6 sites for holmium and 3 sites for cobalt in general positions and one site for cobalt in a special position.

The measured intensities were treated with the usual procedure to obtain a sharpened Patterson function. To determine the location of the 6 holmium atoms of the asymmetrical unit, I took advantage of the Harker section of the Patterson function: 2 atoms deduced from each other by the operator  $2_1$  give an interaction in the plane w = 1/2. An implication of that Harker section<sup>(2)</sup> indicates the possible locations in the cell for the heavy atoms and I was left with the removal of the ambiguities. This removal was performed with the Patterson function by looking at the interaction of two possible atoms. After having located the 6 holmium atoms, the unknown cobalt atoms were revealed by inspection of a Fourier map based on the measured intensities together with the phases

due to the contribution of the holmium atoms only. Four atoms were found: 3 in general positions and one in the special position (1/2, 1/2, 0). A final least-squares refinement adjusted all the positions and the temperature coefficients; these values are given in Table I. Observed and calculated structure factors are reported in Table II. The agreement is very good and provides a confidence factor R = 8.1%.

il.

- . . .

いいたちんといいないでもしていたちかんだいたちのないたいたい

くためないないないないないないないないないないないないです。これです

#### REFERFNCES

- 1. K. H. J. Buschow and A. S. Van Der Goot, J. Less-Common Metals, 19:153 (1969).
- 2. M. J. Buerger, Vector Space, Jchn Wiley, New York,

| TUDDIT | CABLE 1 | [ |
|--------|---------|---|
|--------|---------|---|

|       |     | <u> </u>   |            |            |                    |
|-------|-----|------------|------------|------------|--------------------|
| Atom  | set | x          | у          | z          | B(Å <sup>2</sup> ) |
| Ho    | e   | 0.1200(7)  | 0.4231 (4) | 0.0704 (3) | 1.50 (7)           |
| HoII  | е   | 0.4018(7)  | 0.0747 (4) | 0.7027 (3) | 1.44 (7)           |
| Ho    | е   | 0.0551(7)  | 0.1414 (4) | 0.0719 (3) | 1.54 (7)           |
| HoIV  | e   | 0. 3121(7) | 0.2725 (4) | 0.7957 (3) | 1.63 (7)           |
| Hov   | е   | 0.1787(7)  | 0.3390 (4) | 0.3400 (3) | 1.50 (7)           |
| Hovi  | е   | 0.4435(7)  | 0.2907 (4) | 0.5050 (3) | 1.59 (7)           |
| CoI   | d   | 0.5        | 0.5        | 0.0        | 2. 27(29)          |
| Co    | e   | 0.2131(24) | 0.0615(24) | 0.1943(11) | 2.76(24)           |
| CoIII | e   | 0.3220(20) | 0.4164(12) | 0.5896 (9) | 1.60(18)           |
| CoIN  | е   | 0.0240(25) | 0.0536(16) | 0.3365(13) | 3. 09(25)          |
|       |     | 1          | 1          |            | 1                  |

FINAL LEAST-SQUARES PARAMETERS OF Ho12 Co7

N. C. States and the second

4e:  $(x, y, z); (\overline{x}, \overline{y}, \overline{z}); \overline{x}, 1/2-y, 1/2+z); (x, 1/2+y, 1/2-z).$ 

2d: (1/2, 1/2, 0), (1/2, 0, 1/2).

| h | k      | L      | Fobs       | F <sub>cal</sub> | h | k  | L | Fobs      | Fcal                  | h   | k      | £  | Fobs | Fcal      |
|---|--------|--------|------------|------------------|---|----|---|-----------|-----------------------|-----|--------|----|------|-----------|
| 0 | 2      | 0      | 90         | 74               | 0 | 9  | 4 | 74        | 89                    | 0   | 4      | 9  | 178  | 202       |
| 0 | 4      | 0      | 160        | 141              | 0 | 10 | 4 | 92        | 99                    | 0   | 5      | 9  | -    | 4         |
| Ō | 6      | Õ      | 237        | 225              | 0 | 1  | 5 | 144       | 152                   | 0   | 6      | 9  | 70   | 63        |
| Ō | 8      | 0      | 162        | 174              | 0 | 2  | 5 | 154       | 158                   | ) 0 | 7      | 9  | 171  | 179       |
| 0 | 10     | 0      | 95         | 65               | 0 | 3  | 5 | -         | 38                    | 0   | 8      | 9  | 79   | 80        |
| Ō | 2      | 1      | 118        | 120              | 0 | 4  | 5 | 330       | 359                   | 0   | 10     | 9  | 106  | 103       |
| Ó | 3      | 1      | 554        | 483              | 0 | 5  | 5 | 119       | 120                   | 0   | 0      | 10 | 205  | 244       |
| 0 | 4      | 1      | 108        | 108              | 0 | 6  | 5 | 124       | 127                   | 0   | 1      | 10 | 70   | 76        |
| 0 | 5      | 1      | 192        | 183              | 0 | 7  | 5 | -         | 17                    | 0   | 2      | 10 | 66   | 61        |
| 0 | 6      | 1      | 96         | 82               | 0 | 8  | 5 | 150       | 146                   | 0   | 3      | 10 | 127  | 135       |
| 0 | 7      | 1      | 163        | 157              | 0 | 9  | 5 | -         | 30                    | 0   | 4      | 10 | 146  | 168       |
| 0 | 8      | 1      | 77         | 60               | 0 | 0  | 6 | 143       | 148                   | 0   | 5      | 10 | -    | 23        |
| 0 | 9      | 1      | -          | 16               | 0 | 1  | 6 | 90        | 85                    | 0   | 6      | 10 | 188  | 196       |
| 0 | 10     | 1      | -          | 199              | 0 | 2  | 6 | 202       | 209                   | 0   | 7      | 10 | 79   | 75        |
| 0 | 11     | 1      | 79         | 76               | 0 | 3  | 6 | 403       | 409                   | 0   | 1      | 11 | -    | 42        |
| 0 | 1      | 2      | 37         | 34               | 0 | 4  | 6 | 203       | 217                   | 0   | 2      | 11 | -    | 35        |
| 0 | 2      | 2      | 45         | 45               | 0 | 5  | 6 | -         | 8                     | 0   | 3      | 11 | 160  | 100       |
| 0 | 3      | 2      | 544        | 473              | 0 | 6  | 6 | 133       | 140                   | 0   | 4      | 11 | 121  | 112       |
| 0 | 4      | 2      | 70         | 73               | 0 | 7  | 6 | 68        | 61                    | 0   | 5      | 11 | 63   | 43        |
| 0 | 5      | 2      | 112        | 112              | 0 | 8  | 6 | 55        | 62                    | 0   | 6      | 11 | 113  | 106       |
| 0 | 6      | 2      | 124        | 117              | O | 9  | 6 | 79        | 87                    | 0   | 0      | 12 | 138  | 153       |
| 0 | 7      | 2      | 117        | 108              | 0 | 1  | 7 | 146       | 164                   | 0   | 1      | 12 | -    | 11        |
| 0 | 8      | 2      | -          | 31               | n | 2  | 7 | 102       | 114                   | 0   | 2      | 12 | -    | 24        |
| 0 | 9      | 2      | 117        | 112              | 0 | 3  | 7 | 130       | 136                   | 0   | 3      | 12 | -    | 26        |
| 0 | 10     | 2      | 73         | 88               | 0 | 4  | 7 | -         | 18                    | 0   | 4      | 12 | 111  | 103       |
| 0 | 1      | 3      | 66         | 59               | 0 | 5  | 7 | 80        | 92                    | 0   | 5      | 12 | -    | 14        |
| 0 | 2      | 3      | 126        | 134              | 0 | 6  | 7 | 93        | 88                    | 0   | 6      | 12 | 126  | 126       |
| 0 | 3      | 3      | 43         | 43               | 0 | 7  | 7 | 325       | 339                   | 0   | 2      | 13 | •    | 38        |
| 0 | 4      | 3      | -          | 28               | 0 | 8  | 7 | -         | 49                    | 0   | 3      | 13 | 204  | 204       |
| 0 | 5      | 3      | 94         | 92               | 0 | 0  | 8 | 353       | 395                   | 0   | 4      | 13 | 157  | 150       |
| 0 | 6      | 3      | 173        | 171              | 0 | 1  | 8 | 130       | 146                   |     | 0      | 14 | 260  | 285       |
| 0 | 7      | 3      | 306        | 308              | 0 | 2  | 8 | 120       | 146                   | 0   | 1      | 14 | -    | (         |
| 0 | 8      | 3      | 117        | 103              | 0 | 3  | 8 | 355       | 376                   | 0   | 2      | 14 | -    | 44        |
| 0 | 9      | 3      | 156        | 156              | U | 4  | 8 | 176       | 190                   |     | 3      | 14 | 137  | 127       |
| 0 | 0      | 4      | 107        | 107              | U | 5  | 8 | 83        | 80                    |     | 1      | 15 | 85   | 89        |
| 0 | 1      | 4      | 555        | 540              | U | 0  | 8 | 149       | 104                   |     | -10    | 0  | 233  | 208       |
| 0 | 4      | 4      | 1((        | 1/4              |   | 1  | ð | 20        | 1U<br>25              |     | -ö     | 0  | 260  | 100       |
| 0 | 3      | 4      | -          | 21               |   | 0  | 0 | 40        | 35                    |     | -4     | 0  | 100  | 166       |
| 0 | 4<br>5 | 4      | 676<br>130 | 613<br>125       |   | 7  | 0 | -         | 3 <del>7</del><br>103 |     | 4      | 0  | 350  | 570       |
| 0 | 5<br>4 | 4      | 104        | 160              |   | 10 | 0 | 77<br>104 | 105                   |     | ₩<br>∠ | 0  | 4/1  | 222       |
| 0 | 07     | 4      | 100        | 103              |   | 21 | 0 | 100       | 30                    |     | 0      | 0  | 669  | 233<br>22 |
| 0 | 0      | 4<br>1 | 47<br>20   | 17               |   | 2  | 7 | 43<br>QA  | J7<br>117             |     | 0      |    | -    | 66<br>115 |
| v | 0      | Ŧ      | 30         |                  |   | 5  | 7 | 70        | ***                   | } * | 10     |    | 107  | 115       |
|   |        |        |            |                  |   |    |   |           |                       |     |        |    |      |           |

## TABLE II

,如此有关的有关的,也是有关的是一些有关的。 化化合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合金 化合物合金

بميدوهكككانه المعاقبة مراقاتهما والا

こうちょう しょうしょうかい しまたい ちょうない

and and a second and

Ho12Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

62.5

## Ho12Co7: OBSERVED AND CALCULATED STRUCTURE FACTOPS

| h k (      | Fobs | F <sub>cal</sub> | h k į   | Fobs | Fcal | h k <sup>f</sup> F <sub>obs</sub> F <sub>cal</sub> |
|------------|------|------------------|---------|------|------|----------------------------------------------------|
| 1 -10 1    | -    | 36               | 1 2 3   | 139  | 118  | 1 -10 6 129 122                                    |
| 1 -9 1     | -    | 30               | 1 3 3   | 47   | 40   | 1-9 6 - 30                                         |
| 1 -8 1     | 95   | 78               | 1 4 3   | 269  | 260  | 1 -8 6 157 150                                     |
| 1 -7 1     | 313  | 294              | 1 5 3   | 102  | 92   | 1 -7 6 153 127                                     |
| 1 -6 1     | 304  | 279              | 1 6 3   | 188  | 183  | 1-6 6 87 84                                        |
| 1 -5 1     | -    | 29               | 173     | 128  | 103  | 1 -5 5 92 83                                       |
| 1 -4 1     | 454  | 482              | 183     | 127  | 102  | 1 -4 6 371 384                                     |
| 1 1 1      | 50   | 28               | 1 -11 4 | 134  | 115  | 1 - 3 6 - 47                                       |
| 1 1        | 217  | 284              | 1 -10 4 | 205  | 149  | 1 - 2 6 - 50                                       |
| 1 3 1      | 145  | 120              | 1-94    | 72   | 68   | 1 -1 6 - 34                                        |
| 1 4 1      | -    | 20               | 1-8 4   | 167  | 145  | 1 0 6 287 324                                      |
| 1 5 1      | 136  | 113              | 1 -7 4  | 303  | 254  | 1 1 6 185 177                                      |
| 1 6 1      | 177  | 173              | 1-6 4   | 117  | 88   |                                                    |
| 1 7 1      | 305  | 302              | 1-5 4   | 126  | 107  | 1 4 6 269 272                                      |
| 1 -11 2    | 103  | 88               | 1-4 4   | 61   | 45   | 1 1 5 6 - 44                                       |
| 1 -10 2    | -    | 35               | 1 - 3 4 | 357  | 370  |                                                    |
| 1 -9 2     | 143  | 117              | 1 - 2 4 | 276  | 258  |                                                    |
| 1 -8 2     | 136  | 112              | 1 - 1 4 | 563  | 652  |                                                    |
| 1 -7 2     | 212  | 189              | 104     | 411  | 471  |                                                    |
| 1 -6 2     | 270  | 257              | 1 1 4   | 137  | 120  |                                                    |
| 1 -5 2     | 295  | 247              | 1 2 4   |      | 10   |                                                    |
| 1 -4 2     | 557  | 0/3              | 154     | 380  | 436  |                                                    |
|            | 202  | 235              | 1 4 4   | 1.74 | 9    |                                                    |
| 1 - 2 2    | 39   | 45               | 164     | - 61 | 56   | 1 -2 7 - 28                                        |
| 1 1 2      | 165  | 143              | 174     | 210  | 216  |                                                    |
| 1 2 2      | 249  | 240              | 1-115   | 133  | 131  |                                                    |
| 1 4 2      | 113  | 88               | 1,10,5  | -    | 7    | 1 1 7 231 204                                      |
| 1 5 2      | 87   | 57               | 1 -9 5  | -    | 1    | 1 2 7 64 65                                        |
| 162        | 77   | 75               | 1 -8 5  | 135  | 137  | 1 3 7 72 87                                        |
| 1 7 2      | -    | 17               | 1 -7 5  | 222  | 212  | 1 4 7 48 49                                        |
| 1 8 2      | -    | 59               | 1 -6 5  | -    | 40   | 1 -7 8 159 149                                     |
| 1 2        | -    | 16               | 1 -5 5  | 84   | 79   | 1 -6 8 60 61                                       |
| 2          | 158  | 150              | 1 -4 5  | 249  | 224  | 1 -5 8 118 107                                     |
| . २        | 99   | 120              | 1 -3 5  | -    | 21   | 1 -4 8 - 42                                        |
| , <b>,</b> | -    | 38               | 1 -2 5  | 66   | 60   | 1 -3 8 106 120                                     |
| 1 5 3      | 173  | 168              | 1 -1 5  | 164  | 170  | 1 -2 8 - 47                                        |
| 1          | 335  | 351              | 1 0 5   | 95   | 92   | 1 -1 8 203 195                                     |
| 16 -3      | 55   | 51               | 1 1 5   | 177  | 160  | 1 0 8 285 274                                      |
| 1 -5 3     | 302  | 327              | 125     | 152  | 162  | 1 1 8 117 109                                      |
| 1 -4 3     | 3?4  | 320              | 1 3 5   | 356  | 345  | 1 2 8 80 69                                        |
| 1 -3 3     | 546  | 566              | 1 4 5   | 181  | 162  | 1 3 8 - 12                                         |
| 1 -1 3     | 141  | 138              | 1 5 5   | 241  | 239  | 1 4 8 62 51                                        |
| 1 0 3      | 297  | 332              | 1 6 5   | 244  | 214  | 1 -8 9 91 73                                       |
| 1 1 3      | 141  | 128              | 1 -11 6 | 76   | 59   | 1 -7 9 - 40                                        |

and the second of the second

25.950

Ho12Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

AND STATE OF STREET, D

 See Street Sec. 70

and the state of the state

| h  | k       | 1  | Fobs | F <sub>cal</sub> | h | k (   | H   | obs | F <sub>cal</sub> | h  | k       | l | Fobs | Fcal      |
|----|---------|----|------|------------------|---|-------|-----|-----|------------------|----|---------|---|------|-----------|
| 1  | -7      | 9  | -    | 40               | 1 | -2 12 | -   |     | 65               | 2  | 2       | 2 | 341  | 387       |
| 1  | -6      | 9  | 103  | 96               | 1 | -1 12 | 1   | 48  | 128              | 2  | 3       | 2 | 203  | 230       |
| 1  | -5      | 9  | 244  | 219              | 1 | 0 12  | 1   | 55  | 139              | 2  | 4       | 2 | 131  | 132       |
| 1  | -4      | 9  | -    | 14               | 1 | 1 12  | 7   | 4   | 52               | 2  | 5       | 2 | -    | 51        |
| 1  | -3      | 9  | 85   | 105              | 1 | 2.2   | 1   | 89  | 178              | 2  | 6       | 2 | -    | 62        |
| 1  | -2      | 9  | -    | 22               | 1 | -1 13 | 1   | 52  | 126              | 2  | 7       | 2 | 192  | 182       |
| 1  | -1      | 9  | 85   | 90               | 1 | -7 13 | 1   | 85  | 171              | 2. | -11     | 3 | -    | 21        |
| 1  | 0       | 9  | 85   | 97               | 1 | -7 14 | 1   | 50  | 132              | 2. | -10     | 3 | •-4  | 96        |
| 1  | 1       | 9  | -    | 2                | 2 | -10 0 | 4   | 60  | 429              | 2  | -9      | 3 | .1   | 80        |
| 1  | 2       | 9  | 192  | 196              | 2 | -8 0  | 8   | 1   | 69               | 2  | -8      | 3 | 54   | 55        |
| 1  | 3       | 9  | 282  | 299              | 2 | -6 0  | 1   | 85  | 160              | 2. | -7      | 3 | -    | 12        |
| 1  | 4       | 9  | 106  | 84               | 2 | -4 0  | 5   | 02  | 477              | 2. | -6      | 3 | -    | 29        |
| 1  | -10     | 10 | 144  | 138              | 2 | 00    | 1   | 45  | 117              | 2  | - 5     | 3 | 149  | 124       |
| 1  | -9      | 10 | -    | 22               | 2 | 20    | 2   | 12  | 203              | 2  | -4      | 3 | 175  | 155       |
| 1  | -8      | 10 | 171  | 180              | 2 | 4 0   | 1   | 73  | 210              | 2  | -3      | 3 | 487  | 489       |
| 1  | -7      | 10 | 151  | 163              | 2 | 60    | -   |     | 3                | 2  | -2      | 3 | 117  | 107       |
| 1  | -6      | 10 | -    | 10               | 2 | -11 1 | 2   | .03 | 150              | 2  | -1      | 3 | 554  | 594       |
| 1  | -5      | 10 | 96   | 98               | 2 | -10 1 | -   |     | 64               | 2  | 0       | 3 | 176  | 179       |
| 1  | -4      | 10 | 58   | 79               | 2 | -9 1  | -   |     | 37               | 2  | 1       | 3 | 96   | 88        |
| 1  | - 3     | 10 | 187  | 194              | Z | -8 1  | 4   | 48  | 398              | 2  | 2       | 3 | 261  | 239       |
| 1  | -2      | 10 | 128  | 131              | 2 | -7 1  | 1   | 23  | 95               | 2  | 3       | 3 | 48   | 57        |
| 1  | -1      | 10 | 134  | 143              | 2 | -0 1  | 7   | 1   | 49               |    | 4.,     | 3 | 207  | 223       |
| 1  | 0       | 10 | 370  | 358              | 2 | ~5 1  | د   | 58  | 312              | 2  | -11     | 4 | 100  | 130       |
| 1  | 2       | 10 | -    | 36               | 2 | -4 1  | -   |     | 22               | 2  | -10     | 4 | 100  | 137       |
| 1  | 3       | 10 | -    | 2                | 2 | -1 1  | 2   | .04 | 199              | 2  | -9      | 4 | /1   | 54        |
| 1  | 4       | 10 | 120  | 92               | 2 | 0 1   | 1   | 15  | 708              |    | ~8      | 4 | 100  | 90<br>122 |
| 1  | -10     | 11 | 204  | 182              | 2 | 2 1   | 2   | .85 | 210              |    | - (     | 4 | 134  | 122       |
| 1  | -9      | 11 | -    | 2                | 2 | 21    | -   | 46  | 20               |    | -0<br>z | 4 | 100  | 201<br>06 |
| 1  | -8      | 11 | 19   | 105              | 2 |       |     | 10  | 159              | 2  | - 5     |   | 230  | 70        |
| 1  | - (     | 11 | 124  | 20               | 2 | 5 I   |     | -10 | 100              | 2  |         |   | 220  | 230       |
| 1  | -0<br>_ | 11 | -    | 62               | 2 | 6 1   | -   | 03  | 10               |    | - 3     | 4 | -    | 2         |
| 1  | - 7     | 11 | -    | 126              | 2 | .11.2 | 2   | .05 | 174              | 2  | -2      | 4 | 120  | 117       |
| 1, | -4      | 11 | 134  | 50               | 2 | -10 2 | -   |     | 17               | 2  | -1      | 4 | 155  | 160       |
| 1  | - 2     | 11 | -    | 40               | 2 | -9 2  | - 1 | 85  | 171              | 2  | ĩ       | 4 | _    | 24        |
| 1  | -2      | 11 | -    | 40               | 2 | -8 2  |     | 42  | 124              | 2  | 2       | 4 | 125  | 116       |
| 1  | -1      | 11 | -    | 332              | 2 | -7 2  |     | 108 | 375              | 2  | 2       | 4 | 98   | 74        |
| 1  | ň       | 11 | 550  | 27               | 2 | -6 2  | 7   | 5   | 55               | 2  | 4       | 4 | 168  | 167       |
| 1  | 2       | 1) | -    | 112              | 2 | -5 2  | 4   | มัก | 367              | 2  | 5       | 4 | 71   | 50        |
| 1  | 2       | 11 | **7  | 31               | 2 | -4 2  |     |     | 2                | 2  | -9      | 5 | 72   | 66        |
| 1  | ر<br>4  | 11 | 176  | 175              | 2 | -3 2  | 1   | 64  | 156              | 2  | -8      | 5 | -    | 4         |
| 1  | -7      | 12 | 128  | 110              | 2 | -2 2  |     | 9   | 100              | 2  | -7      | Ś | 158  | 154       |
| 1  | -6      | 12 | -    | 48               | 2 | -1 2  | ;   | .79 | 317              | 2  | -6      | 5 | 147  | 133       |
| 1  | -5      | 12 | -    | 35               | 2 | 0 2   |     | 105 | 414              | 2  | -5      | 5 | 295  | 287       |
| 3  | -4      | 12 | 177  | 181              | 2 | 1 2   | 1   | 80  | 172              | 2  | -4      | 5 | -    | 9         |
| 1  | -3      | 12 | 170  | 166              | - |       |     |     |                  | }  | _       | - |      |           |

Ho12Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

| h      | <br>k | ł      | F <sub>obs</sub> | F <sub>cal</sub> | h | k   | l   | F   | F         | h   | k   | l | Febs | F<br>cal |
|--------|-------|--------|------------------|------------------|---|-----|-----|-----|-----------|-----|-----|---|------|----------|
| ·      | - 3   | 5      | 100              | 89               | 2 | -5  | 8   | 152 | 149       | 3   | -12 | 0 | 2.01 | 205      |
| 2      | -2    | 5      | 123              | 130              | 2 | -4  | 8   | 332 | 361       | 3   | -10 | 0 | -    | 41       |
| 2      | - 1   | 5      | 223              | 237              | 2 | - 3 | 8   | 111 | 112       | 3   | -2  | Ō | 142  | 124      |
| 2      | 0     | 5      | 145              | 137              | 2 | -2  | 8   | -   | 5         | 3   | 0   | 0 | -    | 22       |
| 2      | 1     | 5      | -                | 35               | 2 | -1  | 8   | 164 | 144       | 3   | 2   | 0 | 159  | 151      |
| 2      | 2     | 5      | -                | 48               | 2 | 0   | 8   | 87  | 89        | j 3 | -4  | 1 | 255  | 260      |
| 2      | 3     | 5      | 83               | 83               | Z | 1   | 8   | 108 | 95        | 3   | - 3 | 1 | 463  | 453      |
| 2      | 4     | 5      | -                | 38               | 2 | 2   | 8   | 200 | 202       | 3   | -2  | 1 | 488  | 446      |
| 2      | 5     | 5      | 94               | 63               | 2 | 3   | 8   | -   | 63        | 3   | -1  | 1 | 108  | 84       |
| 2      | 0     | 5      | 168              | 153              | 2 | 4   | 8   | -   | 29        | 3   | 0   | 1 | -    | 25       |
| 2      | 10    | 2      | 201              | 150              | 2 | 5   | 8   | ~   | 36        | 3   | 1   | 1 | 104  | 92       |
| 2      | -10   | 6      | 201              | 109              | 2 | 0   | 8   | 98  | 93        | 1 3 | 2   | 1 | 107  | 87       |
| 2      | -9    | 6      | 336              | 2<br>320         | 2 | ~0  | 9   | 193 | 182       | 3   | 3   | 1 | 97   | 90       |
| 2      | -7    | 6      | 287              | 320              | 2 | - 1 | 7   | -   | 21        | , J | 4 7 | 1 | 82   | 78       |
| 2      | -6    | 6      | 88               | 82               | 2 | -5  | ģ   | 93  | 90        | 2   | -1  | 2 | 04   | 75       |
| 2      | -5    | 6      | -                | 9                | 2 | -4  | ý.  | -   | 19        | 1 3 | -0  | 2 | 380  | 351      |
| 2      | -4    | 6      | 351              | 365              | 2 | -3  | 9   | 146 | 142       | 3   | -4  | 2 | 353  | 378      |
| 2      | - 3   | 6      | 74               | 69               | 2 | -3  | 9   | 169 | 162       | 3   | -3  | 2 | 153  | 163      |
| 2      | -2    | 6      | -                | 31               | 2 | - 1 | 9   | 72  | 84        | 3   | -2  | 2 | 123  | 109      |
| 2      | -1    | 6      | 337              | 367              | 2 | 0   | 9   | 292 | 304       | 3   | -1  | 2 | 89   | 74       |
| 2      | 0     | 6      | -                | 18               | 2 | 1   | 9   | -   | 38        | 3   | 0   | 2 | 218  | 196      |
| 2      | i     | 6      | -                | 20               | 2 | 2   | Ģ   | -   | 23        | 3   | 1   | 2 | 69   | 67       |
| 2      | 2     | 6      | 86               | 97               | 2 | 3   | 9   | -   | 52        | 3   | 2   | 2 | 196  | 196      |
| 2      | 3     | 6      | -                | 43               | 2 | 6   | 9   | 216 | 220       | 3   | 3   | 2 | -    | 7        |
| 2      | 4     | 6<br>4 | -                | 64<br>202        | 2 | -10 | 10  | 110 | 103       | 3   | 4   | 2 | 110  | 111      |
| 2      | 0     | 07     | 21(              | 202              | 2 | -9  | 10  | 97  | 94        | 3   | 5   | 2 | 187  | 194      |
| 2      | -11   | 7      | -                | 305              | 2 | -0  | 10  | 32  | 80<br>120 | 3   | 6   | 2 | 223  | 228      |
| 2      | _9    | 7      | - 88             | 96               | 2 | -6  | 10  | 190 | 120       | 2   | -13 | 2 | 157  | 155      |
| ž      | -8    | 7      | 126              | 117              | 2 | -5  | 10  | 202 | 204       | 2   | -12 | 2 | 124  | 145      |
| 2      | -7    | 7      | 228              | 254              | 2 | -4  | 10  | 197 | 214       | 3   | -10 | 2 | 199  | 210      |
| 2      | -6    | 7      | -                | 11               | 2 | -3  | 10  | 150 | 157       | 3   | _9  | 3 | 161  | 154      |
| 2      | -5    | 7      | -                | 8                | 2 | -2  | 10  | -   | 48        | 3   | -8  | 3 | 149  | 146      |
| Z      | -4    | 7      | -                | 44               | 2 | -1  | 10  | -   | 31        | 3   | -7  | 3 | 59   | 54       |
| 2      | - 3   | 7      | 408              | 426              | 2 | 0   | 10  | -   | 32        | 3   | -6  | 3 | -    | 40       |
| 2      | -2    | 7      | 98               | 103              | 2 | -6  | 11  | 153 | 139       | 3   | -5  | 3 | 245  | 229      |
| 2      | -1    | 7      | 154              | 163              | 2 | -5  | 11  | 110 | 108       | 3   | -4  | 3 | 524  | 554      |
| 2      | 0     | 7      | 210              | 205              | 2 | -4  | 11  | 137 | 143       | 3   | - 3 | 3 | 232  | 232      |
| 2      | 1     | 7      | -                | 52               | 2 | -3  | 11  | 68  | 62        | 3   | -2  | 3 | 81   | 73       |
| 2      | 2     | 7      | -                | 5                | 2 | -2  | 11  | 141 | 142       | 3   | -1  | 3 | 281  | 261      |
| 2      | 5     | 1      | 438              | 405              | 2 | -5  | 12  | 127 | 111       | 3   | 0   | 3 | 363  | 336      |
| ٽ<br>ح | -0    | 0<br>Q | 100              | 180              | 2 | -4  | 12  | 105 | 103       |     | 1   | 3 | 252  | 218      |
| 2      | -1    | 0<br>8 | 100              | 84               | 2 |     | 14  | 161 | 146       | 5   | 2   | 5 | 320  | 323      |
| 4      | -0    | U      | 107              | 70               | 6 | 1   | 1.4 | 101 | 200       | 5   | د   | 5 | 266  | 251      |

6-)

|   |     |          | Ho <sub>12</sub> Co. | COBSERVE | D AND  | CAI      | LCU | LATED STR | UCTURE           | FACTO | ORS    |    |      |           |
|---|-----|----------|----------------------|----------|--------|----------|-----|-----------|------------------|-------|--------|----|------|-----------|
| h | k   | 2        | Fobs                 | Fcal     | ĥ      | k        | l   | Fobs      | F <sub>cal</sub> | h     | k      | ł  | Fobs | Fcal      |
| 3 | -11 | 4        | 242                  | 280      | 3      | -9       | 7   | 135       | 136              | 3     | -5     | 11 | 113  | 114       |
| 3 | -10 | 4        | 186                  | 190      | 3      | -8       | 7   | -         | 10               | 3     | -4     | 11 | 168  | 181       |
| 3 | -9  | 4        | 92                   | 87       | 3      | -7       | 7   | 73        | 74               | 3     | -3     | 11 | 71   | 90        |
| 3 | -8  | 4        | -                    | 16       | 3      | -6       | 7   | -         | 26               | 3     | -2     | 11 | 90   | 86        |
| 3 | -7  | 4        | 461                  | 443      | 3      | -5       | 7   | 197       | 209              | 3     | -1     | 11 | -    | 31        |
| 3 | -6  | 4        | -                    | 45       | 3      | -4       | 7   | 181       | 180              | 3     | 0      | 11 | 22   | 208       |
| 3 | -5  | 4        | -                    | 27       | 3      | -3       | 7   | 201       | 181              | 3     | 1      | 11 | 74   | 68        |
| 3 | -4  | 4        | 144                  | 146      | 3      | -2       | 7   | 73        | 89               | 3     | 2      | 11 | 221  | 235       |
| 3 | -3  | 4        | -                    | 57       | 3      | -1       | 7   | 263       | 283              | 3     | -8     | 12 | 179  | 188       |
| 3 | -2  | 4        | 175                  | 168      | 3      | -12      | 8   | 117       | 132              | 3     | -7     | 12 | -    | 49        |
| 3 | -1  | 4        | 142                  | 141      | 3      | -11      | 8   | -         | 59               | 3     | -6     | 12 | 145  | 147       |
| 3 | 0   | 4        | -                    | 6        | 3      | -10      | 8   | 108       | 116              | 3     | -5     | 12 | 149  | 156       |
| 3 | 1   | 4        | -                    | 12       | 3      | -9       | 8   | -         | 3                | 3     | -4     | 12 | 121  | 109       |
| 3 | 2   | 4        | -                    | 7        | 3      | -6       | 8   | 77        | 67               | 3     | - 3    | 12 | -    | 2         |
| 3 | 3   | 4        | 223                  | 211      | 3      | -5       | 8   | 95        | 107              | 3     | 0      | 12 | 166  | 151       |
| 3 | 4   | 4        | 162                  | 144      | 3      | -4       | 8   | 56        | 81               | 3     | - 3    | 13 | 217  | 219       |
| 3 | 5   | 4        | 137                  | 134      | 3      | - 3      | 8   | 174       | 193              | 4     | -14    | 0  | 195  | 155       |
| 3 | -11 | 5        | 153                  | 163      | 3      | -2       | 8   | -         | 8                | 4     | -12    | 0  | 249  | 194       |
| 3 | -10 | 5        | 120                  | 108      | 3      | -1       | 8   | 203       | 222              | 4     | -10    | 0  | -    | 55        |
| 3 | -9  | 5        | 132                  | 142      | 3      | 0        | 8   | 85        | 123              | 4     | -6     | 0  | 134  | 110       |
| 3 | -8  | 5        | 166                  | 178      | 3      | 1        | 8   | -         | 19               | 4     | -4     | 0  | 354  | 325       |
| 3 | -7  | 5        | 375                  | 343      | 3      | 2        | 8   | 199       | 209              | 4     | -2     | 0  | 100  | 76        |
| 3 | -6  | 5        | -                    | 38       | 3      | -8       | 9   | 191       | 220              | 4     | 0      | 6  | 178  | 164       |
| 3 | -5  | 5        | 255                  | 243      | 3      | -7       | 9   | 172       | 176              | 4     | 2      | 0  | 217  | 195       |
| 3 | -4  | 5        | 336                  | 333      | 3      | -6       | 9   | -         | 32               | 4     | 4      | 0  | 267  | 270       |
| 3 | -3  | 5        | -                    | 31       | 3      | -5       | 9   | -         | 18               | 4     | 6      | 0  | 166  | 149       |
| 3 | -2  | 5        | -                    | 29       | 3      | -4       | 9   | -         | 15               | 4     | -6     | 1  | 217  | 167       |
| 3 | -1  | 5        | 661                  | 634      | 3      | -3       | 9   | -         | 24               | 4     | -5     | 1  | 356  | 373       |
| 3 | ,   | 5        | 157                  | 187      | 3      | -2       | 9   | 180       | 196              | 4     | -4     | 1  | 443  | 405       |
| 2 | 1   | 2        | 106                  | 100      | 3      | -1       | 9   | 199       | 208              | 4     | - 3    | 1  | 157  | 169       |
| 2 | 2   | 5        | -                    | 3        | 3      | 0        | 9   | 72        | 90               | 4     | -2     | 1  | -    | 9         |
| 2 | 2   | 2        | 124                  | 228      | 5      | 1        | 9   | 169       | 193              | 4     | -1     | 1  | 481  | 484       |
| 2 | -10 | 6        | 94                   | 141      | د<br>د | -10      | 10  | 139       | 142              | 4     | 0      | 1  | 142  | 131       |
| 2 | - 7 | 6        | 6 <del>1</del><br>41 | 95       | 2      | -(       | 10  | 104       | 111              |       | 1      | 1  | 173  | 182       |
| 2 | -0  | 6        | 01                   | 22       |        | -0       | 10  | 15        | (4               | 4     | 2      | 1  | 299  | 301       |
| 2 | -6  | 6        | - 241                | 253      | 2      | ~ 7      | 10  | 209       | 217              | 4     | -8     | 2  | 248  | 221       |
| 2 | -0  | 6        | 241                  | 233      | 2      | -4       | 10  | 129       | 133              | 4     | -7     | 2  | 76   | 59        |
| 2 | -4  | 6        | - 367                | 375      | 2      | - 5      | 10  | -         | 30               |       | -6     | 2  | 346  | 369       |
| 2 |     | 6        | 117                  | 125      | 2      | -1       | 10  | 124       | 121              |       | -5     | 2  | 356  | 300       |
| 2 | -2  | 6        | 82                   | 98       | 2      | _10      | 11  | 147       | 120              | 4     | -4     | 4  | 1.00 | 131       |
| 3 | -1  | 6        | 209                  | 238      | 2      | -10      | 11  | 109       | 120              |       | - 5    | 2  | 180  | 178       |
| 3 | 0   | 6        | 199                  | 198      | 2      | ⊷7<br>_2 | 11  | -         | 40<br>212        | 4     | -2     | 2  | 195  | 1/4       |
| ž | ĩ   | 6        | - / /                | 74       | 2      | -0       | 11  | 443       | 12               | 4     | -1     | 2  | 80   | 64        |
| 3 | 2   | 6        | -                    | 137      | 2      | -1       | 11  | -         | 43               |       | U<br>1 | 4  | -    | 54<br>143 |
|   |     | <u> </u> | ~ ~ J                |          |        | -0       |     | -         | 05               | 4     | T      | 4  | 131  | 141       |

ş

ļ

TABLE II (Cont)

\*\*\*\*

ala in musikadit

## Ho 12 Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

15. - San Inventional Entrate Apr

Ē

| ••         |         |   | the management of the second |           |            |     |   |      |                  | • ···· |        |         |         |                  |                  |
|------------|---------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----|---|------|------------------|--------|--------|---------|---------|------------------|------------------|
| h          | k       | ! | Fobs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $F_{cal}$ | h          | k   | 1 | Fobs | F <sub>cal</sub> | !      | h      | k       | £       | F <sub>obs</sub> | F <sub>cal</sub> |
| 4          | 2       | 2 | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 149       | 4          | -6  | 6 | 43   | 47               |        | 5      | 0       | 1       |                  | 32               |
| 4          | 3       | 2 | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135       | 4          | -5  | 6 | 261  | 291              |        | 5      | ĩ       | î       | 71               | 76               |
| 4          | -13     | 3 | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171       | 4          | -4  | 6 | 88   | 79               |        | 5      | 2       | 1       | 144              | 110              |
| 4          | -12     | 3 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88        | 4          | -3  | 6 | -    | 43               |        | 5      | -8      | 2       | 460              | 409              |
| 4          | -11     | 3 | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171       | 4          | -2  | 6 | 182  | 211              |        | 5      | -7      | 2       | 184              | 110              |
| 4          | -10     | 3 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95        | 4          |     | 6 | -    | 41               |        | 5      | -6      | 2       | 187              | 207              |
| 4          | -9      | 3 | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115       | 4          | ō   | 6 | 104  | 115              |        | 5      | -5      | 2       | 351              | 365              |
| 4          | -8      | 3 | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 207       | 4          | 3   | 6 | 196  | 182              |        | 5      | -4      | 2       | 389              | 405              |
| 4          | -7      | 3 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66        | 4          | -10 | 7 | 148  | 161              |        | 5      | -3      | 2       | 143              | 137              |
| 4          | -6      | 3 | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117       | 4          | -9  | 7 | -    | 30               |        | 5      | -2      | 2       | 307              | 271              |
| 4          | -5      | 3 | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153       | 4          | ~8  | 7 | -    | 40               |        | 5      | -1      | 2       | 132              | 127              |
| 4          | -4      | 3 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19        | 4          | -7  | 7 | 286  | 317              |        | 5      | 0       | 2       | 149              | 151              |
| 4          | - 3     | 3 | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104       | 4          | -6  | 7 | 170  | 173              |        | 5      | 1       | 2       | -                | 31               |
| 4          | -2      | 3 | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 253       | 4          | -5  | 7 | 99   | 105              |        | 5      | 2       | 2       | 154              | 161              |
| 4          | -1      | 3 | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110       | 4          | -4  | 7 | 92   | 87               | ,<br>1 | 5      | -11     | 3       | 99               | 101              |
| 4          | 0       | 3 | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144       | 4          | -3  | 7 | 117  | 121              |        | 5      | -10     | 3       | -                | 27               |
| 4          | 1       | 3 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33        | 4          | -2  | 7 | -    | 4                |        | 5      | -9      | 3       | 134              | 132              |
| 4          | -12     | 4 | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115       | 4          | -1  | 7 | 230  | 263              | 1      | 5      | -8      | 3       | 364              | 371              |
| 4          | -11     | 4 | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58        | 4          | 0   | 7 | -    | 40               | ł      | 5      | -7      | 3       | 273              | 264              |
| 4          | -10     | 4 | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105       | 4          | 1   | 7 | 179  | 159              |        | 5      | -6      | 3       | -                | 9                |
| 4          | -9      | 4 | 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 376       | 4          | 2   | 7 | 129  | 124              | 1      | 5      | -5      | 3       | 111              | 108              |
| 4          | -8      | 4 | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 179       | 4          | -11 | 8 | 205  | 199              | :      | 5      | -4      | 3       | 254              | 278              |
| 4          | -7      | 4 | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 236       | 4          | -10 | 8 | 54   | 68               | •      | 5      | - 3     | 3       | 235              | 251              |
| 4          | -6      | 4 | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195       | 4          | -9  | 8 | 117  | 131              | t      | 5      | -2      | 3       | 128              | 114              |
| 4          | - 5     | 4 | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91        | 4          | -8  | 8 | 446  | 404              |        | 5      | 0       | 3       | -                | 20               |
| 4          | -4      | 4 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         | 4          | -7  | 8 | 126  | 149              |        | 5      | 1       | 3       | 153              | 149              |
| 4          | - 3     | 4 | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129       | 4          | -6  | 8 | 145  | 155              | -      | 5      | -15     | 4       | 118              | 127              |
| 4          | -2      | 4 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97        | 4          | -5  | 8 | 165  | 177              |        | 5      | -14     | 4       | -                | 49               |
| 4          | 0       | 4 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33        | 4          | -4  | 8 | -    | 8                | i      | 5      | -13     | 3       | 86               | 93               |
| 4          | 1       | 4 | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :44       | 4          | -3  | 8 | 117  | 94               | 1      | 5      | -12     | 4       | -                | 31               |
| 4          | -9      | 5 | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 237       | , 4        | -9  | 9 | 144  | 161              | ļ      | 5      | -11     | 4       | 232              | 230              |
| 4          | -8      | 5 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135       | 4          | -8  | 9 | 95   | 85               |        | 5      | -10     | 4       | 85               | 74               |
| 4          | -1      | 5 | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 198       | , 4        | -7  | 9 | 11   | 68               | 1      | 5      | -9      | 4       | 324              | 316              |
| 4          | -0      | 5 | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240       | 4          | -0  | 9 | 96   | 95               | :      | 5      | -8      | 4       | 54               | 62               |
| 4          | ~ 5     | 2 | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210       | 4          | -5  | 7 | 305  | 298              | I      | 5      | -7      | 4       | 146              | 139              |
| 4          | -4      | 2 | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 311       | 4          | -4  | 9 | 340  | 309              | ;      | 5      | -6      | 4       | 245              | 276              |
| 4          | ~ )     | 2 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 197       | + <u>+</u> | ~ ) | 7 | 100  | 171              |        | 5      | - 5     | 4       | 264              | 298              |
| 4          | -2      | 5 | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274       | ; D        | -4  | 0 | -    | 14               | i      | 5      | -4      | 4       | 75               | 66               |
| 4          | -1      | 5 | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200       | 1 5        | -2  | 0 | 440  | 15               | !      | 2      | -3      | 4       | -                | 2                |
| ч<br>Л     | 1       | 5 | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200       | 5          | 2   | 0 | -    | 127              |        | 2      | - 4     | 4       | 87               | 88<br>222        |
| ч<br>л     | _11     | 6 | 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205       | , J<br>, S | -5  | ĩ | 224  | 226              | i      | 2<br>2 | ~1      | 4       | 340              | 556              |
| ч<br>Л     | -11     | 6 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48        | 5          | -4  | î | 80   | 78               | !      | 2      | 1       | ч<br>Л  | -                | 15               |
| 4          | - 10    | 6 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19        | 5          | -3  | ī | 90   | 75               | I      | 5      | 2       | 77<br>Л | -                | 10               |
| т<br>Л     | _/<br>Q | 6 | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200       | . 5        | -2  | - | 163  | 165              |        | 5      | 2       | т<br>Л  | 101              | 172              |
| ч<br>л     | -0      | 6 | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12        |            | -2  | i | 100  | 38               |        | 5      | د<br>۱۶ | 5       | 161              | 172              |
| <b>'</b> 1 | - 1     | U |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1          |     | - |      | 20               | 1      | 2      | - 10    | -       | A.U I            |                  |
## TABLE II (Cont)

Ho12 Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

| h<br> | k   | ! | Fobs | F <sub>cal</sub> | h   | k   | 1  | F<br>obs | F <sub>cal</sub> | h | k   | l | Fobs | $F_{cal}$ |
|-------|-----|---|------|------------------|-----|-----|----|----------|------------------|---|-----|---|------|-----------|
| 5     | -13 | 5 | 135  | 134              | 5   | -9  | 8  | 132      | 141              | 6 | -9  | 2 | 94   | 106       |
| 5     | -12 | 5 | -    | 33               | 5   | -8  | 8  | 137      | <b>.</b> 25      | 6 | -8  | 2 | 65   | 58        |
| 5     | -11 | 5 | 282  | 274              | 5   | -7  | 8  | -        | 20               | 6 | -7  | 2 | 81   | 90        |
| 5     | -10 | 5 | -    | 2                | 5   | -6  | 8  | 143      | 136              | 6 | -6  | 2 | 123  | 154       |
| 5     | -9  | 5 | 151  | 168              | 5   | -5  | 8  | 62       | 62               | 6 | -5  | 2 | 210  | 221       |
| 5     | -8  | 5 | 89   | 90               | 5   | -4  | 8  | 114      | 103              | 6 | -4  | 2 | 180  | 163       |
| 5     | -7  | 5 | 102  | 107              | 5   | -2  | 8  | 296      | 306              | 6 | -3  | 2 | -    | 47        |
| 5     | -6  | 5 | 225  | 249              | 5   | 1   | 8  | 188      | 177              | 6 | -2  | 2 | 279  | 301       |
| 5     | -5  | 5 | 234  | 253              | 5   | -12 | 9  | 95       | 103              | 6 | -1  | 2 | 312  | 317       |
| 4     | -4  | 5 | 79   | 100              | 5   | -11 | 9  | 142      | 147              | 6 | 0   | 2 | 102  | 78        |
| 5     | - 3 | 5 | -    | 4                | 5   | -10 | 9  | -        | 1                | 6 | 1   | 2 | -    | 6         |
| 5     | -2  | 5 | 158  | 181              | 5   | -9  | 9  | 114      | 101              | 6 | -14 | 3 | -    | 40        |
| 5     | -1  | 5 | 206  | 217              | 5   | -8  | 9  | -        | 59               | 6 | -13 | 3 | 192  | 198       |
| 5     | 0   | 5 | 105  | 66               | 5   | -7  | 9  | -        | 41               | 6 | -12 | 3 | 212  | 206       |
| 5     | 1   | 5 | 116  | 90               | 5   | -6  | 9  | 147      | 130              | 6 | -11 | 3 | 106  | 96        |
| 5     | -16 | 6 | 194  | 173              | 5   | -5  | 9  | 238      | 239              | 6 | -10 | 3 | -    | Ó         |
| 5     | -15 | 6 | -    | 16               | 5   | -4  | 9  | -        | 37               | 6 | -9  | 3 | 109  | 110       |
| 5     | -14 | 6 | 12.3 | 121              | 5   | -3  | 9  | 149      | 141              | 6 | -8  | 3 | 116  | 137       |
| 5     | -13 | 6 |      | 64               | 5   | -2  | 9  | -        | 43               | 6 | -7  | 3 | -    | 15        |
| 5     | -12 | 6 | 142  | 180              | 5   | -1  | 9  | 229      | 217              | 6 | -6  | 3 | 183  | 215       |
| 5     | -11 | 6 | 97   | 112              | 5   | -11 | 10 | 140      | 146              | 6 | -5  | 3 | -    | 0         |
| 5     | -10 | 6 | 162  | 165              | 5   | -8  | 10 | 140      | 151              | 6 | -4  | 3 | 198  | 199       |
| 5     | -9  | 6 | 57   | 62               | 5   | -6  | 10 | 146      | 158              | 6 | -3  | 3 | -    | 17        |
| 5     | -8  | 6 | -    | 27               | 5   | -8  | 11 | 283      | 283              | 6 | -2  | 3 | -    | 55        |
| 5     | -7  | 6 | 111  | 124              | 5   | -4  | 11 | 205      | 190              | 6 | 0   | 3 | -    | 4         |
| 5     | -6  | 6 | 82   | 110              | 5   | -8  | 12 | 199      | 209              | 6 | 1   | 3 | 192  | 220       |
| 5     | -5  | 6 | 251  | 273              | 6   | -6  | 0  | 501      | 396              | 6 | -13 | 4 | 49   | 67        |
| 5     | -4  | 6 | 94   | 121              | 5   | -4  | 0  | 225      | 212              | 6 | -12 | 4 | -    | 60        |
| 5     | -2  | 6 | -    | 22               | 6   | -2  | 0  | 245      | 231              | 6 | -11 | 4 | -    | 35        |
| 5     | -2  | 6 | 96   | 101              | 6   | 0   | 0  | -        | 5                | 6 | -10 | 4 | 63   | 72        |
| 5     | -1  | 6 | 81   | 85               | 6   | 2   | 0  | 201      | 219              | 6 | -9  | 4 | 229  | 228       |
| 5     | 0   | 6 | 191  | 211              | 6   | -8  | 1  | 462      | 426              | 6 | -8  | 4 | 73   | 46        |
| 5     | 1   | 6 | 181  | 161              | 6   | -7  | 1  | -        | 6                | 6 | -7  | 4 | 95   | 76        |
| 5     | -13 | 7 | 161  | 157              | 6   | -6  | 1  | 89       | 82               | 6 | -6  | 4 | 133  | 155       |
| 5     | -12 | 7 | 87   | 94               | 6   | -5  | 1  | 324      | 315              | 6 | -5  | 4 | 150  | 164       |
| 5     | -11 | 7 | -    | 27               | 6   | -4  | 1  | 148      | 153              | 6 | -4  | 4 | -    | 75        |
| 5     | -10 | 7 | -    | 27               | 6   | -3  | 1  | 124      | 101              | 6 | - 3 | 4 | 127  | 124       |
| 5     | -9  | 7 | 176  | 164              | 6   | -2  | 1  | 147      | 147              | 6 | -1  | 4 | -    | 31        |
| 5     | -8  | 7 | -    | 23               | 6   | -1  | 1  | 67       | 78               | 6 | 0   | 4 | 95   | 90        |
| 5     | -7  | 7 | 120  | 128              | 6   | 0   | 1  | 88       | 82               | 6 | 1   | 4 | 136  | 146       |
| 5     | -6  | 7 | -    | 56               | 6   | 1   | 1  | -        | 27               | 6 | -14 | 5 | 86   | 101       |
| 5     | -5  | 7 | 70   | 64               | ) 6 | -16 | 2  | 187      | 215              | 6 | -13 | 5 | -    | 16        |
| 5     | -4  | 7 | -    | 28               | 6   | -15 | 2  | 132      | 172              | 6 | -12 | 5 | 129  | 125       |
| 5     | -11 | 8 | 118  | 111              | 6   | -11 | 2  | 116      | 115              | 6 | -11 | 5 | 168  | 174       |
| 5     | -10 | 8 | -    | 14               | 6   | -10 | 2  | 81       | 61               | 6 | -10 | 5 | 112  | 118       |
|       |     |   |      |                  | .   |     | _  |          |                  |   |     |   |      |           |

6-12

| h      | k        | 1      | Fobs | Fcal | h      | k       | £  | Fobs | F<br>cal |    |
|--------|----------|--------|------|------|--------|---------|----|------|----------|----|
| 6      | -9       | 5      | 376  | 401  | 6      | -7      | 8  | 165  | 140      |    |
| 6      | -8       | 5      | 149  | 149  | 6      | -6      | 8  | -    | 34       |    |
| 6      | -7       | 5      | 187  | 214  | 6      | -5      | 8  | -    | 34       |    |
| 6      | -6       | 5      | 114  | 100  | 6      | -4      | 8  | 239  | 260      |    |
| 6      | - 5      | 5      | 115  | 102  | 6      | -3      | 8  | -    | 49       |    |
| 6      | -3       | 5      | -    | 15   | 6      | -2      | 8  | -    | 22       |    |
| 6      | -2       | 5      | 132  | 134  | 6      | -14     | 9  | 90   | 101      |    |
| 6      | -1       | 5      | -    | 9    | 6      | -13     | 9  | -    | 48       |    |
| 6      | 0        | 5      | 56   | 38   | 6      | -12     | 9  | -    | 23       |    |
| 6      | 1        | 5      | 71   | 49   | 6      | -11     | 9  | -    | 14       |    |
| 6      | -15      | 6      | 185  | 203  | 6      | -10     | 9  | -    | 1        |    |
| 6      | -14      | 6      | 115  | 106  | 6      | -9      | 9  | 177  | 170      |    |
| 6      | -13      | 6      | -    | 24   | 6      | -8      | 9  | 303  | 280      |    |
| 6      | -12      | 6      | 175  | 167  | 6      | -7      | 9  | 61   | 54       |    |
| 6      | -11      | 6      | -    | 4    | 6      | -6      | 9  | -    | 27       |    |
| 6      | -10      | 6      | 44   | 51   | 6      | -5      | 9  | 82   | 89       |    |
| 6      | -9       | 6      | 211  | 217  | 6      | -4      | 9  | -    | 29       |    |
| 6      | -8       | 6      | 44   | 62   | 6      | -2      | 9  | 121  | 149      |    |
| 6      | -7       | 6      | 118  | 144  | 6      | -13     | 10 | 93   | 114      |    |
| 6      | -6       | 6      | 397  | 396  | 6      | -12     | 10 | 91   | 105      |    |
| 6      | -5       | 6      | -    | 8    | 6      | -11     | 1J | 82   | 79       |    |
| 6      | -4       | 6      | 156  | 153  | 6      | -9      | 10 | -    | 18       |    |
| 6      | -3       | 6      | -    | 62   | 6      | -9      | 10 | -    | 17       |    |
| 6      | -2       | 6      | 128  | 123  | 6      | -7      | 10 | 92   | 69       |    |
| 6      | -1       | 6      | 200  | 195  | 6      | -6      | 10 | 132  | 99       |    |
| 6      | -12      | 7      | -    | 4    | 6      | -5      | 10 | 170  | 173      |    |
| 6      | -11      | 7      | 128  | 112  | 6      | -4      | 10 | -    | 7        |    |
| 6      | -10      | 7      | 99   | 90   | 6      | -3      | 10 | -    | 2.6      | t. |
| 6      | -9       | 7      | 292  | 296  | 6      | -2      | 10 | -    | 60       | i  |
| 0      | -8       | 7      | 79   | 74   | 6      | -1      | 10 | 89   | 112      |    |
| 0      | -1       | 7      | 150  | 134  | 6      | -12     | 11 | 104  | 112      | !  |
| 0      | -0       | -      | -    | 20   | 6      | -11     | 11 | -    | 84       | i  |
| 0<br>4 | -5       | (      | 370  | 351  | b d    | -10     | 11 | 112  | 123      | i  |
| 0      | -4       | (      | -    | 30   | 6      | -7      | 11 | -    | 4        | !  |
| 0      | -2       | 7      | 160  | 170  | 6      | -0      | 11 | 148  | 131      | İ  |
| 2      | -4       | 0      | 00   | 20   | 0      | - 5     | 11 | -    | 64       | 1  |
| 4      | -12      | 0      | 96   | 99   | 0      | -4      | 11 | 163  | 153      |    |
| 6      | ~14      | 0      | -    | 10   | 0      | -12     | 12 | 125  | 141      | -  |
| 6      | -13      | 0      | -    | *(   | ٥<br>۷ | -11     | 12 | -    | 52       | ţ  |
| 6      | -12      | Q<br>Q | 661  | 60   | 0<br>2 | -10     | 12 | -    | 21       | 1  |
| 6      | -10      | 0<br>8 | -    | 56   | 0<br>4 | -7      | 12 | -    | 20<br>40 | i  |
| 6      | -10      | 8      | -    | 101  | 6      | - 1     | 12 | -    | 04<br>4  | 1  |
| 6      | -7<br>_0 | o<br>o | -    | 6    | U<br>2 | -0<br>P | 12 | -    | 120      |    |
| U U    | -0       | 0      | -    | 0    | U      | -0      | 10 | 136  | 120      |    |

## TABLE II (concluded)

## Ho12Co7: OBSERVED AND CALCULATED STRUCTURE FACTORS

Add at a come

¢,

## APPENDIX

During the contract period, January 1, 1971 through December 31, 1971, the following listed alloys were prepared by the University of Dayton Research Institute. The list gives the name of the person who ordered the alloy, the date ordered, the alloy number, the composition of the alloy, the heat treatment, and the amount prepared.

| Name of<br>Requestor | Date<br>Ordered | Alloy (AR)<br>Number | Composition                       | Heat<br>Treatment<br>(hrs/ <sup>o</sup> C) | Amount<br>Prepared<br>(Grams) |
|----------------------|-----------------|----------------------|-----------------------------------|--------------------------------------------|-------------------------------|
| Schweizer            | 1-21-71         | 7 39                 | 40 a/o Y -<br>60 a/o Co           | None                                       | 20                            |
| Evans                | 1-26-71         | 741                  | PrCo <sub>5</sub>                 | None                                       | 30                            |
| Evans                | 1-26-71         | 742                  | PrCo <sub>4</sub> Cu <sub>1</sub> | None                                       | 30                            |
| Evans                | 1-26-71         | 743                  | $PrCo_{3,5}Cu_{1,5}$              | None                                       | 30                            |
| Evans                | 1-26-71         | 744                  | PrCo <sub>3</sub> Cu <sub>2</sub> | None                                       | 30                            |
| Evans                | 1-27-71         | 745                  | PrCu <sub>5</sub>                 | None                                       | 30                            |
| Evans                | 1-27-71         | 746                  | PrCo <sub>3</sub> Mn <sub>2</sub> | None                                       | 30                            |
| Evans                | 1-28-71         | 747                  | SmCo <sub>3</sub> Cu <sub>2</sub> | None                                       | 30                            |
| Evans                | 1-28-71         | 748                  | $SmCo_{3.5}Cu_{1.5}$              | None                                       | 30                            |
| Evans                | 1-28-71         | 749                  | SmCu <sub>5</sub>                 | None                                       | 30                            |
| Schweizer            | 2-01-71         | 751                  | 74 w/o Pr-<br>26 w/o Co           | None                                       | 10                            |
| Schweizer            | 2-01-71         | 752                  | 76 w/o Pr-<br>24 w/o Co           | None                                       | 10                            |
| Schweizer            | 2-01-71         |                      | Er.18 <sup>Ni</sup> .82           | 48 hrs<br>at 100 <sup>0</sup>              | 10                            |
| Schweizer            | 2-01-71         |                      | Er.21 <sup>Ni</sup> .79           | 48 hrs<br>at 100 <sup>0</sup>              | 10                            |
|                      |                 |                      |                                   |                                            |                               |

A-l

| Name of<br>Requestor | Date<br>Ordered | Alloy (AR)<br>Number | Composition                                                        | Heat<br>Treatment<br>(hrs/ <sup>0</sup> C) | Amount<br>Prepared<br>(Grams) |
|----------------------|-----------------|----------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------|
| Schweizer            | 3-02-71         | 781                  | 75. 2 w/o Sm-<br>24. 8 w/o Co                                      | None                                       | 15                            |
| Schweizer            | 3-02-71         | 782                  | 73.8 w/o S<br>26.2 a/o Co                                          | None                                       | 15                            |
| Schweizer            | 3-02-71         | 783                  | 74.4 w/o Sm-<br>25.6 w/o Co                                        | None                                       | 10                            |
| Schweizer            | 3-09-71         | 790                  | Pr <sub>2</sub> Co <sub>7</sub>                                    | None                                       | 10                            |
| Schweizer            | 3-09-71         | 791                  | PrCo <sub>4</sub>                                                  | None                                       | 10                            |
| Schweizer            | 3-09-71         | 792                  | PrCo5                                                              | None                                       | 10                            |
| Evans                | 3-10-71         | 793                  | PrCo5                                                              | None                                       | 25                            |
| Evans                | 3-10-71         | 794                  | PrCo <sub>4</sub> Cu <sub>1</sub>                                  | None                                       | 25                            |
| Evans                | 3-10-71         | 795                  | $PrCo_{3,5}Cu_{1,5}$                                               | None                                       | 25                            |
| Evans                | 3-10-71         | 796                  | PrCo <sub>3</sub> Cu <sub>2</sub>                                  | None                                       | 25                            |
| Evans                | 3-10-71         | 797                  | SmCo <sub>3.5</sub> Cu <sub>1.5</sub>                              | None                                       | 25                            |
| Evans                | 3-10-71         | 798                  | SmCo <sub>3</sub> Cu <sub>2</sub>                                  | None                                       | 25                            |
| Evans                | 3-12-71         | 799                  | PrCo <sub>3</sub> Mn <sub>2</sub>                                  | None                                       | 25                            |
| Schweizer            | 5-11-71         | 862                  | 18.1 a/o Pr-<br>81.9 a/o Co                                        | None                                       | 20                            |
| Schweizer            | 5-12-71         | 863                  | 19.8 a/o Pr-<br>80.2 a/o Co                                        | None                                       | 20                            |
| Schweizer            | 5-12-71         | 864                  | 21.2 a/o Pr-<br>78.8 a/o Co                                        | None                                       | 20                            |
| Evans                | 5-13-71         | 865                  | Nb <sub>8</sub> (Al <sub>75</sub> Ge <sub>25</sub> ) <sub>20</sub> | None                                       | 10                            |
| Schweizer            | 5-21-71         | 879                  | 69. 2 a/o Sm-<br>30. 8 a/o Co                                      | 60 hrs<br>at 550 <b>°</b>                  | 50                            |
| Schweizer            | 5-21-71         | 880                  | 75 a/o Sm-<br>25 a/o Co                                            | 60 hrs<br>at 550 <sup>0</sup>              | 50                            |
| Evans                | 5-24-71         | 881                  | $Nb_{8}(A1_{75}Ge_{25})_{20}$                                      | None                                       | 10                            |
| Schweizer            | 5-27-71         | 884                  | 74. 4 w/o Nd-<br>25. 6 w/o Co                                      | 80 hrs<br>at 500 <sup>0</sup>              | 30                            |
| Schweizer            | 5-27-71         | 885                  | 74 w/o Pr-<br>26 w/o Co                                            | 80 hrs<br>at 500 <sup>0</sup>              | 40                            |

| Name of<br>Requestor | ame of Date<br>equestor Ordered |             | Composition                                           | Heat<br>Treatment<br>(hrs/ <sup>0</sup> C) | Amount<br>Prepared<br>(Grams) |
|----------------------|---------------------------------|-------------|-------------------------------------------------------|--------------------------------------------|-------------------------------|
| Garrett              | 5-28-71                         | 886         | 19.4 a/o Y-<br>80.6 a/o Co                            | None                                       | 250                           |
| Schweizer            | 6-16-71                         | 891         | Pr <sub>2</sub> (Co <sub>8</sub> Fe <sub>2</sub> )1.7 | 48 hrs<br>at 5000                          | 30                            |
| Garrett              | 7-28-71                         | 919         | NdC0 <sub>4</sub> .85 <sup>Fe</sup> .15<br>Fe-57      | None                                       | 25                            |
| Garrett              | 8-06-71                         | 921         | V A/3                                                 | None                                       | .7                            |
| Garrett              | 8-10-71                         | 924         | Nd <sub>9</sub> Gd <sub>1</sub> Co <sub>5</sub>       | 24 hrs<br>at 1100 <sup>0</sup>             | 25                            |
| Garrett              | 8-10-71                         | 925         | Nd <sub>7</sub> Gd <sub>3</sub> Co <sub>5</sub>       | 24 hrs<br>at 1100 <sup>0</sup>             | 25                            |
| Garrett              | 8-10-71                         | 926         | Nd <sub>5</sub> Gd <sub>5</sub> Co <sub>5</sub>       | 24 hrs<br>at 1100 <sup>0</sup>             | 25                            |
| Schweizer            | 8-24-71                         | 929         | La2 <sup>Co</sup> 1.7                                 | 60 hrs<br>at 530 <sup>0</sup>              | 25                            |
| Schweizer            | 8-26-71                         | 934         | Ce <sub>24</sub> Co <sub>11</sub>                     | None                                       | 20                            |
| Schweizer            | 8-26-71                         | 935         | Ce <sub>7</sub> Ni <sub>3</sub>                       | None                                       | 20                            |
| Schweizer            | 9-10-71                         | 938         | Gd <sub>24</sub> Co <sub>14</sub>                     | None                                       | 5                             |
| Schweizer            | 9-10-71                         | 939         | Y <sub>24</sub> Co <sub>14</sub>                      | None                                       | 5                             |
| Schweizer            | 9-10-71                         | 940         | Dy <sub>24</sub> Co <sub>14</sub>                     | None                                       | 5                             |
| Schweizer            | 9-10-71                         | y <b>41</b> | Er <sub>24</sub> Co <sub>14</sub>                     | None                                       | 5                             |
| Schweizer            | 9-10-71                         | 942         | <sup>Tb</sup> 24 <sup>Co</sup> 14                     | None                                       | 5                             |
| Garrett              | 9-14-71                         | 943         | PrCo <sub>5</sub>                                     | None                                       | 25                            |
| Garrett              | 9-14-71                         | 944         | NdCo <sub>5</sub>                                     | Ncne                                       | 25                            |
| Garrett              | 9-14-71                         | 945         | YCo5                                                  | None                                       | 25                            |
| Garrett              | 9-14-71                         | 946         | SmC 05                                                | None                                       | 25                            |
| Evans                | 12-07-71                        | 986         | PrCo <sub>35</sub> Cu <sub>1.5</sub>                  | None                                       | 40                            |
| Evans                | 12-07-71                        | 987         | SmCo <sub>3.5</sub> Cu <sub>1.5</sub>                 | None                                       | 27                            |
| VonRichter           | 1-18-72                         | 1002        | Nd <sub>8</sub> Gd <sub>2</sub> Co <sub>5</sub>       | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |

State State States

A-3

| Name of<br>Requestor | Date<br>Ordered | Alloy (AR)<br>Number | Composition                             | Heat<br>Treatment<br>(hrs/ <sup>0</sup> C) | Amount<br>Prepared<br>(Grams) |
|----------------------|-----------------|----------------------|-----------------------------------------|--------------------------------------------|-------------------------------|
| VonRichter           | 1-18-72         | 1003                 | Nd. 6 <sup>Gd</sup> . 4 <sup>Co</sup> 5 | 96 hrs<br>at 12400                         | 25                            |
| VonRichter           | 1-18-72         | 1004                 | Nd. 4 <sup>Gd</sup> . 6 <sup>Co</sup> 5 | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |
| VonRichter           | 1-18-72         | 1005                 | Nd.9 <sup>Y</sup> .1 <sup>Co</sup> 5    | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |
| VonRichter           | 1-18-72         | 1006                 | Nd. 8 <sup>Y</sup> . 2 <sup>C</sup> °5  | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |
| VonRichter           | 1-18-72         | 1007                 | Nd. 7 <sup>Y</sup> . 3 <sup>Co</sup> 5  | 96 hrs<br>at 12400                         | 25                            |
| VonRichter           | 1-18-72         | 1008                 | Nd. 6 <sup>Y</sup> . 4 <sup>Co</sup> 5  | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |
| VonRichter           | 1-18-72         | 1009                 | Nd. 5 <sup>Y</sup> . 5 <sup>Co</sup> 5  | 96 hrs<br>at 1240 <sup>0</sup>             | 25                            |
|                      |                 | l                    |                                         | L                                          |                               |

a for the second s

. .

المراغة ومستعلم حشق

Silver Antibio and a second

E Ling

نى.