
(M

00

Q

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deparlmenl of Commerce
Springfield VA 2215)

APPLIED DATA RESEARCH, INC,

^Ojfe

^-:

APPLIED DATA RESEARCH. INC
LAKES,DEoFF,CEPARK . WAK^ao.^CHUS.TTSCSSO . «.„^

I
I
I
I
T

FIFTH SEMI-ANNUAL TECHNICAL REPORT

(14 January 1972 - 13 July 1971)

FOR THE PROJECT

COMPILER DESIGN FOR THE ILLIAC IV

VOLUME II

Principal Investigator and Project Leader:

D Cv
r?r\\] r?r?

SEP w vsm

B

Robert E. Millstein

ARPA Order Number

Program Code Number
Contractor:

Contract No.:

Effective Date:

Amount:

Phone (617) 245-9540
ARPA 1554
0D30

Applied Data Research, Inc.

DAHC04 70 C 0023

13 January 1970

$916,712.50

Sponsored by

Advanced Research Projects Agency

ARPA Order No. 1554

Approved for public release; distribution unlimited.

*|Ä^^^^ il ^ ^cument are those of the
official policies, either exm^Zlr- "f0?***^ representing the
Projects Agency or the u!T Go^n^n'. f' 0f ^ AdvanCed Re^ch

I

igpmmR

■ ■i i 'O

I
i

bk
APPLIED DATA RESEARCH, INC
LAKESIDE OFFICE PARK • WAKEFIELD, MASSACHUSETTS 01880 • (617)245-9540

FIFTH SEMI-ANNUAL TECHNICAL REPORT

(14 January 1972 - 13 July 1972)

FOR THE PROJECT

COMPILER DESIGN FOR THE ILLIAC IV

VOLUME II

dADD-720B-1411

Principal Investigator and Project Leader:

Robert E. Millstein Phone (617) 245-9540

Approved tor public release; distribution unlimited.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U. S;. Government.

i a

TABLE OF CONTENTS

VOLUME II

IVTRAN Transcriber 1

Storage Allocator 22

Macro Expansion 87

Array Reference 87

Flow Analyzer 94

Macro Expansion - Phase B 104

Macro Expander and

Optimizer Support Package 117

Appendix I - Allocation Tables

I
»

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. IVTRAN TRANSCRIBER

General Information

The transcriber is a package of FORTRAN routines which looks at
the IVTRAN internal representation, called intermediate language or inter-

mediate language tables, of an IVTRAN program and outputs the corresponding

IVTRAN source program. The package consists of two main subroutines,

TRNSCR and TSPECP which output procedure and specification statements

respectively, and 17 auxiliary subroutines. However, one call to TRNSCR

will output an entire program. The total size of the package is about 6.2K
words.

The Transcriber is particularly useful in conjunction with the Para-
lyzer. After the Paralyzer has made its transformations on the original IVTRAN

program, the Transcriber can output the newly created program in standard

IVTRAN source format. The output file can then be edited and fed back to the
IVTRAN compiler.

The transcriber code is very closely linked to the structure of the

Intermediate Language. Knowledge of the Intermediate Language tables is
essential when the transcriber code is examined.

Subroutine Descriptions

In the descriptions that follow, there is often a list of files under

the heading of external references. These are files which contain global
information. They are inserted into the source language by INSERT prior to
compilation of the routines.

-1-

PROGRAM NAME: TRNSCR (SUBROUTINE)

PURPOSE: To output, in ASCII FORTRAN source form, a complete
IVTRAN program.

FUNCTION: It may call TDELIM to output delimiter lines. Then it

calls TSYMFX to fix generated symbols and TSPECP to output specification

statements. Finally it outputs all procedure statements.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, CTAB.DEF, CTAB.NIT, LTAB.DEF, LTAB.NIT,
STAB.DEF, CGLOB.DEF

FUNCTIONS - L

SUBROUTINES - TDELIM, TSYMFX, TSPECP, TINTPR, TCHOUT,
TDOUT, TINT, TKONPR, TCLPRT, TSYMPR, TLABFX

COMMON - TRNSC

SIZE: 1841 words

CALLING SEQUENCE: CALL TRNSCR (NAME)

NAME (Hollerith) the name which is used if the delimiter comment

lines are printed. These lines are printed only if the global variable, LTRNF,
is set to 1.

TECHNIQUES:

TRNSCR has a short loop which follows the STATOP chain and trans-
fers control to a separate piece of code for each type of STATOP.

The IO list processor can combine LABEL, DO, IODATA, and IOFIN

STATOPs into one IO list. It uses a stack to keep track of nested implied DO
loop«.

The LOGICAL IF processor is able to handle multiple statements

after the condition. Even though this isn't legal IVTRAN input, it can be

generated by the PARALYZER. So, if there is only one statement after the

condition, the standard LOGICAL IF is printed. If there are more statements.

the negative of the condition is printed and a GO TO statement, that transfers

control past the multiple statements, is printed as the last part of the

LOGICAL IF. Even though this modified form is printed, the internal structure

of the LOGICAL IF is not changed.

The debug processor must combine several different types of STATOPs

into one concatenated debug statement. However, since each of these STATOPs

has a simple linear structure, the procedure is not difficult.

To output expressions TRNSCR uses recursive code* to walk the

tree and output operands and operators as it encounters them. It uses stacks

to keep track of its position in the tree and other pertinent data. K is the

index into these stacks; it indicates the depth of the current position in the

tree. The stacks are:

IRET - return address stack

ICPT - pointer CTAB stack

IPRES - operator precedence stack
USPRN - IF expression parenthesized stack

IOPR - operator stack

* Recursive calls are implemented via the ASSIGN and assigned GO TO

statements.

-3-

I
I PROGRAM NAME: TSPECP (SUBROUTINE)

I PURPOSE: To output all specificaüon statements.

| FUNCTION: It outputs PROGRAM UNIT, IMPLICIT, TYPE, DIMENSION,

COMMON, OVERLAP, EQUIVALENCE, DEFINE, DATA, FORMAT, FREQUENCY,
EXTERNAL, and END statements.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, CGLOB.DEF, STAB.DEF, STAB.NIT, XCTAB.DEF,

XCTAB.NIT, OTAB.DEF, OTAB.NIT, QTAB.DEF, QTAB.NIT, DTAB.DEF,

DTAB^NIT, FTAB.DEF, FTAB.NIT, RTAB.DEF, RTAB.NIT, ETAB.DEF,
ETAB.NIT, LTAB.DEF, LTAB.NIT

FUNCTIONS - L, TFIELD

SUBROUTINES - TCLOUT, TINT, TDOUT, TCHOUT, TDIMEN, TCLPRT, TSYMPR,
TARRAY, TDIM, TINTPR, TKONPR

COMMON - TRNSC

, SIZE: 1210 words'

CALLING SEQUENCE: CALL TSPECP

TECHNIQUES:

The code is very straightforward, but descriptions of the various
tables are essential to understanding it.

I
I

-4-

PROGRAM NAME: TKONPR (SUBROUTINE)

PURPOSE: To output constants (from the constant table).

FUNCTION: It looks at the type and values of the constants to

generate the output characters. It uses TDPREC to output all double

precision values.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, KTAB.DEF, KTAB.NIT, ETAB.DEF, ETAB.NIT

FUNCTIONS - L, TFIELD

SUBROUTINES - TINTPR, TCHOUT, TINT, TDPREC, TDIM, TDIMEN

COMMON - TRNSC
FORTRAN SUPPORT - ENCODE for integer and real, FLOTA, EXP

SIZE: 631 words

CALLING SEQUENCE: CALL TKONPR (KTBPNT, NEGPRN)

KTBPNT (KTAB pointer, integer) pointer to the KTAB entry which

holds the specified constant
NEGPRN (integer) needed for integer, double integer, real, and

double precision constants. If it is 1, as opposed to 0, a negative value

will be enclosed in parentheses.

TECHNIQUES:
To output double integer constants TKONPR creates a double

Integer, power of ten table. Each entry in this table consists of two 24 bit

quantities (the same way the constant is stored). This table is then used

to generate the output digits one at a time.

-5-

:-^.?v^-"?r-?v^r^'-*-^'-'-^

PROGRAM NAME: TINT (SUBROUTINE)

PURPOSE: To output a group of characters, ignoring spaces or

asterisks, which must not be split between lines.

FUNCTION: The block of characters to be sent is in a common array.

TINT makes two passes through this array. The first pass counts the char-

acters. Then, if there isn't enough room or the current line, TINT forces a

continuation line to be created. The second pass sends the characters.
TINT also clears the input array.

EXTERNAL REFERENCES:

FUNCTIONS - TFIELD

SUBROUTINES - TCHOUT

COMMON - TRNSC

SEE: 129 words

CALLING SEQUENCE: CALL TINT- (IFSPAC)

IFSPAC (integer). If this variable is zero, spaces and null char-

acters will not be sent. If it is 1, asterisks and nulls will not be sent.

TECHNIQUE: None

-6-

,W;*s»*«'«»ww«w^^ lywwWBjjWjfcjsgai!

I
I
I
I
I
I

PROGRAM NAME: TCHOUT (SUBROUTINE)

PURPOSE: To append a character to the line buffer.

FUNCTION: It uses the character pointer to place the character in

the packed array (line buffer). If a continuation line is needed, it sends the

current line and starts the continuation line. TCHOUT also updates the
character pointer.

EXTERNAL REFERENCES:

SUBROUTINES - IVOUT, TSBYT

COMMON - TRNSC

SIZE; 68 words

CALLING SEQUENCE: CALL TCHOUT (CHAR)

CHAR (integer) the 7-bit ASCII character, right justified, which
is to be appended.

TECHNIQUE: None

1
-7-

-.wsem?«^^«^^-'11

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

It

PROGRAM NAME: TCLOUT (SUBROUTINE)

To clear the lit^e buffer.

« resets the character pointer and clears the line buffer.

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON - TRNSC

SIZE: 20 words

CALLING SEQUENCE: CALL TCLOUT

TECHNIQUE: None

-8-

PROGRAM NAME: TDOUT (SUBROUTINE)

PURPOSE: To output one line of characters which have been stored
in the line buffer.

FUNCTION: It sends the line to a compiler utility routine for output,
resets the character pointer, and clears the line buffer.

EXTERNAL REFERENCES:

SUBROUTINES - IVOUT

COMMON - TRNSC

SIZE: 30 words

CALLING SEQUENCE: CALL TDOUT

TECHNIQUE: None

-9-

PROGRAM NAME: TIABFX (SUBROUTINE)

To convert a generated label into a legal FORTRAN label,
PURPOSE:

FUNCTION: ' It takes generated labels, whose values start at 131072

and converts the. into generated labels, whose values start at 131072 + 90000,

These labels are later printed by the TRANSCRIBER with values starting at

90000. TLABFX makes sure it doesn't generate duplicate labels.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, LTAB.DEF, LTAB.NIT

FUNCTIONS - L

SUBROUTINES - S

SIZE: 67 words

CALLING SEQUENCE: CALL TLABFX (LTBPNT#NLAB)
LTBPNT (LTAB pointer, integer) points to label table entry which

contains the generated label
NLAB (integer) next available label value

TECHNIQUE: None

I
I
I
I
I
I
* -10-

PROGRAM NAME: TDPREC (SUBROUTINE)

PURPOSE: To output a double precision number.

FUNCTION: It outputs the double precision number.

EXTERNAL REFERENCES:

FUNCTIONS - TFIELD

SUBROUTINES - TCHOUT, TSBYT, TINT, TINTPR

FORTRAN SUPPORT - ENCODE for DOUBLE PRECISION, DOUBLE PRECISION

arithmetic

SIZE: 276 words

CALLING SEQUENCE: CALL TDPREC (EXP, HIGH, LOW, CHARCT, ICHAR)

EXP (integer) binary exponent of number

HIGH (integer) sign and 35 high-order bits of fraction in two's

complement form

LOW (integer) sign and 35 low-order bits of fraction in two's

complement form

CHARCT (integer) number of character positions left on line

ICHAR (integer array (10)) place to store output characters

TECHNIQUE:
Because ILLIAC-IV DOUBLE PRECISION numbers have a much larger

legal range than PDP-10 DP numbers, TDPREC converts the DP number into a

PDP-10 number between .1 and .999 ... or -.1 and -.999 ... and an integer

base ten exponent. These numbers are then encoded and sent to output

routines.

-11-

"HBnMnnMMMWMMWMHnMBMMinn^

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROGRAM NAME: TDELIM (SUBROUTINE)

PURPOSE: To output a delimiter between different PARALYZER

rewritings of the same program.

It outputs a three line delimiter which has the following FUNCTION:

form:

C

C I ! NAME

C

EXTERNAL REFERENCES:

FUNCTIONS - TFIELD

SUBROUTINES - TCLOUT, TCHOUT, TDOUT

SIZE: 60 words

CALLING SEQUENCE: CALL TDELIM (NAME)

NAME (program name, .Hollerith) this name becomes part of the
delimiter.

TECHNIQUES: None

-12-

■w ^■■^'^■■"V'r^;^:;-T>'^

I
j PROGRAM NAME: TSYMFX (SUBROUTINE)

I PURPOSE: To convert any compiler generated symbols into legal

FORTRAN symbols.

I
■ FUNCTION: It transforms all symbol names of the form %CCCCC into

■ the form TDDDDT, where the C's are any character or blank and the D's are

I decimal digits. It also sets the explicit type bit if T is not implicitly of the

same type of the symbol.

EXTERNAL REFERENCES:
I FILES - TCOM.DEF. STAB.DEF, STAB.NIT, XCTAB.DEF, XCTAB.NIT

FUNCTIONS - L, TFIELD
SUBROUTINES - S, TSBYT 1

I
I
I
I
I
I
I
I
1
I

SIZE: 227 words

CALLING SEQUENCE: CALL TSYMFX

TECHNIQUES: None

-13-

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROGRAM NAME: TCLPRT (SUBROUTINE)

PURPOSE: To output an entry name, a subroutine name, or a

function name with its associated dummy arguments.

FUNCTION: It outputs the name and follows pointers to the ETAB

and back to the STAB to get the dummy arguments.

EXTERNAL REFERENCES:
FILES - TCOM.DEF, STAB.DEF. STAB.NIT. ETAB.DEF, ETAB.NIT

FUNCTIONS - L

SUBROUTINES - TSYMPR, TCHOUT, TINT

COMMON - TRNSC

SIZE: 75 words

CALLING SEQUENCE: CALL TCLPRT (STBPNT)
STBPNT (STAB pointer, integer) pointer to the STAB entry which

contains the name of the entry point.

TECHNIQUES: None

-14-

... '"-^$!Kff5**^~'™*
—_,

.... »SfflSfSSW««»»»»!»«!«

PROGRAM NAME: TSYMPR (SUBROUTINE)

PURPOSE: TO
outPut a symbo1 "ame'

FUNCTIUW. , to TTMT in 7-bit ASCII form.
symbol name and passes it on to TINT in 7 bit A

EXTERNAL REFERENCES:
FILES - TCOM.DEF, STAB.DEF, STAB.NIT

FUNCTIONS - L. TFIELD

SUBROUTINES - TINT

COMMON - TRNSC

I
I
I
I

SIZE: 45 words

CALLING SEQUENCE: CALL TSYMPR (STBPNT)
OTHPUT (STAB pointer. integer) pointer to the STAB STBPNT (STAB pointer

contains the name

TECHNIQUES: None

I
1 -15-

PROGRAM NAME: TINTPR (SUBROUTINE)

PURPOSE: To output an Integer.

FUNCTION: It uses an ENCODE statement to get the ASCII

characters for the integer and calls TINT to send the characters.

EXTERNAL REFERENCES:

SUBROUTINES - TINT

COMMON - TRNSC

FORTRAN SUPPORT - ENCODE for INTEGER

SIZE: 26 words

CALLING SEQUENCE: CALL TINTPR (NUMBER)

NUMBER (integer) the integer to be output

TECHNIQUES: None

1
1
1
1
I
i
I
I

-16-

.

I
I
I
I
I

PROGRAM NAME: TDIMEN (SUBROUTINE)

PURPOSE:

FUNCTION:

To output the extent and allocation of an array.

It outputs the extent and allocation of an array.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, ETAB.DEF, ETAS.NIT

FUNCTIONS - L

SUBROUTINES - TDIM, TCHOUT, TINTPR

I
1

■■ ■

SIZE: 104 words

CALLING SEQUENCE: CALL TDIMEN (ETBPNT)

ETBPNT (ETAB pointer, integer) points to the ETAB entry which

contains the extent and allocation data.

TECHNIQUES: None

-17-

BMlMMi^^ "r iiiiiiiniiiiimiir ■' '

PROGRAM NAME: TDIM (SUBROUTINE)

PURPOSE: To output the extent of an array.

FUNCTION: It outputs the constants or symbolic names which

define the extent of an airay.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, ETAB.DEF, ETAB.NIT

FUNCTIONS - L

SUBROUTINES - TCHOUT, TINTPR, TSYMPR

SIZE: 65 words

CALLING SEQUENCE: CALL TDIM (ETBPNT)
LTBPNT (ETAB pointer, integer) points to the ETAB entry which

contains the extent data.

TECHNIQUES: None

^ -18-

,'i^^-:.:-': ..i .■,../f-.''

I
I
I

PROGRAM NAME: TARRAY (SUBROUTINE)

PURPOSE: To output some simple array macros for the DEFINE

and EQUIVALENCE specification statements.

FUNCTION: It calls various routines to output the array name and

subscripts. The only types of subscripts it recognizes are integer constant,

"*", $ constant, $ constant + constant, or $ constant-constant.

EXTERNAL REFERENCES:

FILES - TCOM.DEF, CTAB.DEF, CTAB.NIT

FUNCTIONS - L

SUBROUTINES - TSYMPR, TCHOUT, TKONPR, TINTPR

SIZE: 139 words

CALUNG SEQUENCE: CALL TARRAY (CTBPNT)

CTBPNT (CTAB pointer, integer) points to the CTAB entry which

None

contains the

1 TECHNIQUES:

i

I
-19-

"'"''VV'MKRKMMBHHHHHRHHHBMtoH'' ■■■■■■■•■■■•■:-•■ ■-— ■■ ■ i-....-...^--.

I
| PROGRAM NAME: TFIELD (INTEGER FUNCTION)

PURPOSE: To extract a specified bit field from a word.

FUNCTION: it extracts a specified bit field from a word and
returns it right justified.

EXTERNAL REFERENCES: None

SIZE: 19 words

CALLING SEQUENCE: I = TFIELD (SWORD, SBIT, NBITS)

SWORD (source word, integer) word from which field is to be extracted
SBIT (start bit number, integer) bit number of the leftmost bit of
the field

NBITS (number of bits, integer) number of bits in the field

TECHNIQUES: Written in MACRO-10

<*

.
-20-

PROGRAM NAME: TSBYT (SUBROUTINE)

PURPOSE: To insert a specified bit field into a word.

FUNCTION: It inserts a value into a specified bit field of a word.

EXTERNAL REFERENCES: None

SIZE: 20 words

CALLING SEQUENCE: CALL TSBYT (DWORD, SBIT, NBITS, VALUE)

DWORD (destination word, integer) word into which field will be
inserted.

SBIT (start bit, integer) bit number of leftmost bit of field.

NBITS (number of bits, integer) number of bits in field.

VALUE (new field value, integer) right justified value of field
to be inserted.

TECHNIQUES: Written in • MACRO-10

-21-

2. STORAGE ALLOCATOR

2.1 Introduction

On most machines array allocation is trivial. Successive arrays are
merely mapped into contiguous one dimensional segments in core. On the

ILLIAC-IV, however, arrays are mapped into rectangles which must then be

allocated within ILLIAC-IV memory. Since storage is two dimensional, al-
location is not nearly as simple as on conventional machines. Indeed,

because of physical skewing the problem actually becomes one of packing

n-dimensional solids. The restrictions on how skewed objects can be packed
together makes it simplest to think of arrays as solids which can be packed

into solids and then mapped as a unit into ILLIAC memory. Mapping each

array into a two dimensional object and then trying to fit those objects to-

gether would be a very unmanageable task. Consequently, ILLIAC data

allocation is essentially an n-dimensional packing problem (where n is the

highest dimensionality of any array to be allocated). The object, of course,

is to pack all arrays into the smallest object possible. The only restriction
on the object is that one of the extents must be an exact multiple of the num-

ber of PE's in a row of ILLIAC-IV memory. While there are several devious

wayi of doing this, it is doubtful that an analytic solution or even an optimum
solution exists.

2.2 Overview

The description above implies that arrays are all packed into one

large array. Actually arrays are packed into several blocks of different sizes,
each block being an exact multiple of PE row width in one dimension. Arrays

are currently allocated in order of decreasing size (volume). As each new

array is encountered a list of available holes is checked to determine if there
is any place where the array will fit. If there is a place for the array then

the array is placed in the smallest available spot. If there is no hole which

will contain the array then the cost of expanding a hole to be large enough for

^
-22-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the array is examined. If the minimum cost is less than that of putting the

array in a new block then the hole is expanded and the array inserted. Other-

wise, the smallest possible block that will contain the array is created and

the array is placed in the new block.

Note that once an array is allocated its position is not substantially

changed. The greatest change that can occur is merely a translation in one

or more directions for the purpose of expanding holes. Each array is allocated

in such a way as to minimize the cost of adding the array, without consid-

eration of any further arrays to be allocated. This, of course, does not
necessarily produce an optimum allocation and statistics on distribution of

array sizes could be very useful in designing schemes for dealing with Inter-

actions between storage requirements. These statistics would be very easy

to gather while compiling user programs and some provision should be made

for obtaining them for later work. Backtracking could also be useful in many

situations and depending on how expensive allocation is for typical users

some backtracking to explore particularly hopeful allocations might be of value.

2.3 Conventions

1) Subroutine Naming

All routines which are part of allocation itseif begin with the letter

A. Auxiliary debugging or data gathering routines do not begin with A. No

other subroutine naming conventions exist.

2) Tables

Allocation makes use of five tables. Four of these are used to keep

in formation required by allocation and the fifth (TBLPNT) is used to keep

track of the location and sizes of the other four tables — TBLPNT is used

when the other tables must be expanded. The four main tables are:

ARRAYTBL — The array table, which contains the original

array sizes and orientations.

^1 -23-

BLOCKTBL ~ The block table, which contains descriptions of

each block resulting from allocation. The infor-
mation contained includes block extents and

orientation as well as a pointer to a list of arrays
contained in the block.

ALLTBL — The allocation table. This table contains a des-

cription of each array which has been allocated.

Array orientation and a pointer to the block con-

taining the array are kept as ;vell as a duplicate

of the array extent information. Each element in

this table is in a chain which has its root in
BLOCKTBL.

HOLETBL — The hole table. This table maintains information

on all available places ("holes") for putting arrays.

I
I
I
I
I
I

These four tables are all threaded lists with fixed size entries. Each
table actually has three parts associated with it:

I. The table header - which keeps information like the number

of entries in the table, the number of fields in an entry, the
size of an entry, etc.

II. Table byte pointers - these pointers define table fields by
standard IV-TRAN compiler conventions.

III. Working storage - where table entries are actually kept.

, Each table has two three letter prefixes, one for referring to elements
in the table header and one for referring to byte pointers. These prefixes,

along with a two or three letter suffix are used for naming all table parameters
and fields. The following suffixes are used:

-24-

■

I. Common to all table headers

CAP — CAPacity of the table, In maximum number of

entries the table can hold. While these variables

are defined they are not used by allocation.

NE — Number of Entries contained in the table. These

variables are kept updated but are not used by

allocation. They are kept only because they are

interesting statistics. Conventions on updating
this count dre somewhat confused. In some tables
the count is updated immediately after an entry

is removed from the free chain while in others it
is updated only when an entry is added to the
active chain.

ELS — ELement Size - the size of an entry in the table.

FRE — FREe - a pointer to the head of the table free entry
list.

BYT — Number of BYTe pointers - the number of byte

pointers associated with the table (i.e., the num-
ber of fields in the table).

INC — INCrement - the amount by which to expand the
table when more space is needed.

II. Uncommon header suffixes

HD — HeaD - this is an anachronism to the original

design. It was intended to point to the start of
the active chain in each table. However, entry

zero is now assumed to be a dummy entry at the

head of the active chain in each table except

-25-

MXN

ALLTBL (which is pointed to by BLOCKTBL

entries) and thus keeping a pointer to the head

of the chain is unnecessary. These variables
will probably eventually be deleted.

— Maximum Number - this is used only in the hole

table and records the maximum number of holes
occurring during the allocation.

III. Byte pointer suffixes for scalar fields

FST (in HOLETBL) - FirST - a byte pointer to the first word

of an entry. This field is redundant and appears

only in the hole table (ABLFST has a different

meaning). Normally NXT is used when a pointer
to the first word is desired (the NXT field always
comes in the first word of the entry).

USE

NXT

SZE

— This field indicates whether a table entry is In

use or not. This field is not used by allocation but

Is kept updated for convenience in debugging. This

flag is set to one when an entry is removed from the

free chain and is set to 0 when the entry is returned.

— NeXT - this is the chain field and points to the

next entry m the chain (each table has two chains,

the active chain and the free chain, with entry zero
containing a pointer to the first clement in the ac-

tive chain). A value of zero indicates the end of
the chain.

~ SIZE - this field exists in all but ALLTBL and is

used for recording the size of the array, block, or
hole as the case may be.

-26-

..

;;

DIM — DIMension - this also occurs in all but ALLTBL

and records the dimension of the structure in

question.

ORG — ORiGin - this occurs only in ARRAYTBL and points

back to the table (symbol table or overlap table)
which contained the original definition of the array.

OVL — OVerLap - this also occurs only in ARRAYTBL and
indicates whether the array occurred in an overlap

statement or not.

BLK — BLocK - this occurs only in HOLETBL and records

which block a particular hole belongs to.

ID -— IDentification - this occurs only in ALLTBL and

points to the array entry in ARRAYTBL so that more

information about the array can be extracted if

necessary.

RMN — ReMaiNing - used only in BLOCKTBL, this field

records the amount of space left in a block.

FST (in BLOCKTBL) — FirST - this field appears in this usage
only in BLOCKTBL, where it points to the chain

of arrays (in ALLTBL) which are allocated to that

particular block.

IV. Byte pointer suffixes for vector fields — these fields contain

one subfield for each dimension. Thus L(PNT, ALACRD (5)) would be the

fifth coordinate of an array in the allocation table.

1
r

-27-

M

I
I
!

I
I
I
I
I
I
I
1
1
I
I
I
I
I
I

EXT — EXTents - these contain the extents of the appropriate

structure (array, hole, or block). Extents are stored

in descending order by size and do not imply any
specific orientation.

PRM — PeRMutation - this describes the orientation of a

structure. For example L(PNT, ARAPRM (1) .« would
give the index of the extent associated with ;ht;
first dimension of array PNT. In order to get the

first extent of array PNT one vould execute:

IT= UPNT. ARAPRM (1))

EXTENT » L(PNT, ARAEXT (IT))

CRD — CooRDinates - this is used only in ALLTBL and

HOLETBL and gives the coordinates of point

(0, 0, ..., 0) of an array or hole. Coordinates
are relative to the beginning of the block in which

the structure is defined. Coordinates are not per-

muted so that the field CRD(I) contains the I'th
coordinate.

The prefixes for the different tables are:

ART — Array table header entries

ARA — Array table field pointers

AHT — Hole table header entries

AHL — Hole table field pointers

ALT — Allocation table header entries

AIA — Allocation table field pointers

ABT — Block table header entries

ABL — Block table field pointers

-28-

!WWWWWMBK^..WSW.S1WpSBB^

l
I
■ 3^ Instrumentation Conventions

I A11 routines in the ^location package begin with the statement

CALL IENTRD ('SUB NAME')

and exit with the statements

CALL IEXIT ('SUB NAME')
RETURN

where sub.name is padded with spaces to at least six and not more than 10

characters. This provides a convenient handle for writing trace and timing

routines. Currently there is a trace and a statistics package included with the

allocator which allows optional tracings of subroutine entries as well as fre-
quency counts and execution timing histograms.

4) Table Organization nnm/pnti^e

I
The four major tables, as mentioned above, are composed of chained

I entries. All tables except the allocation table contain two chains. an active
chain and a free chain. Both chains use the same entry field for chaining. The

. ocation of the beginning of the free chain is stored in the table header whereas

J the location of the first entry in the active chain is stored in the chain field of

I r7 0; fT Zer0 1S 0£herWiSe UnUSed (lndeed' a polnter to e™y ™o indicates
| the end of the chain). ALLTBL is somewhat different. The free chain Is still

pomted to by a header entry but ALLTBL can contain several active chains

j one for each block in the block table. Each block table untry points to the Legin-

ning of a unique active chain in ALLTBL and there are no active chain pointers
| stored in ALLTBL itself. Entry 0 is completely unused in ALLTBL.

I
I
I

-29-

WilHlllliMHHiliHUlM.l,

2.4 Table Expansion

These routines are concerned with expanding the four main tables when
more room is needed. There is one short routine for each of the four tables

(ARTEXP^LTEXP, ABTEXP, andAHTEXPfor ARRAYTBL, ALLTBL, BLOCKTBL,
and HOLETBL respectively) which does nothing but call ATBEXP with the

address of the appropriate table fields. ATBEXP calls AEXPND to get more

space immediately following the specified table. It then calls ACHAIN to
chain together the new entries and it finally updates the table's free chain
pointer and the table capacity.

-30-

I
I
I
I
I
I

■'•'vwmmmT mrimmma^mmmfimmmmm^mifUllinilKlfK

PROGRAM NAME:

PURPOSE;

FUNCTION:

CALLING SEQ.

TECHNIQUES:

ARTEXP

To expand the array table.

Calls ATBEXP with appropriate parameters to
expand ARRAYTBL.

EXTERNAL REFERENCES: ATBEXP

SIZE:

Call ARTEXP

None

-31-

' Wtmmmmm wjrmur nmmmm

I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

SIZE:

CALLING 3EQ.:

TECHNIQUES:

ALTEXP

To expand the allocation table.

Calls ATBEXP. with appropriate parameters to

expand ALLTBL.

ATBEXP

Call ALTEXP

None

I
i -32-

wmimmiiMj wmBwwtwipiiMi

I
I
1
1
■

1
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ABTEXP

To expand the block table.

Calls ATBEXP with appropriate parameters to

expand BLOCKTBL.

ATBEXP

Call ABTEXP

None

-33-

PROGRAM NAME:

PURPOSE:

FUNCTION:

AHTEXP

To expand the hole table.

Calls ATBEXP with appropriate parameters to

expand HOLETBL.

ETERNAL REFERENCES: ATBEXP

SIZE:

CALLING SEQ.: AHTEXP

TECHNIQUES: None

-34-

■WWWMWS««!^^

PROGRAM NAME:

PURPOSE:

FUNCTION:

I
I
I
I
I
I

EXTERNAL REFERENCES:

SIZE:

CALLING SEQ.:

ATBEXP

Allocation TaBle EXPansion

To expand a specified table.

ATBEXP is passed the table name as an ASCII

constant, a field pointer to the entry chain field,

and pointers to the table capacity, table entry

size, free chain pointer, and table increment in

the table header. ATBEXP calls AEXPND to expand

the table by the table increment. It then calls

ACHAIN to chain together the new free entries.

After returning from ACHAIN it checks to see if

entry 0 is in the new free chain and if it is the

free chain pointer is made to point te entry 1 rather

than entry 0, otherwise the free pointer is left

pointing to the first entry in the newly allocated

space. Finally, ATBEXP increments the table

capacity appropriately and returns.

AEXPND, ACHAIN, S

Call ATBEXT (TBLNAM, TBLCP. TBLENS, TBLFRE,
TBLINC, TBLCHN)

Args:

- 2 word ASCII constant containing the
table name

- table capacity in the table header

- table entry size entry in the table header

- free chain pointer in the table header

- table header entry giving the proper

amount by which to expand the table

TBLNAM

TBLCP

TBLENS

TBLFRE

TBLINC

-35-

TBLCHN - table chain Held pointer - used tor
establishing the new free chain.

TECHNIQUES:
B is assumed that If after expanding the table the
a,,» free entry Is entry zero then all table entries
are in the free chain. Consequently, TBLFRE is

made to point to entry one and the chain field of
entry 0 is set to 0 to indicate that the active chain

is empty.

9

1
I
i
I
I
I
1
1
I
I
I

-3 6-

PROGRAM NAME:

PURPOSE:

FUNCTION:

I
I
I

I

i
1
I
I
I
I

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

AEXPND

Allocation EXPaND

Expand working tables for the allocator.

AEXPND finds the table name in TBLPNT. If

it can't find the table it pauses and prints out

•BAD CALL TO AEXPND', if this happens there is

a definite bug in the allocator. Upon finding the

specified name AEXPND expands core by the

necessary amount, indicates the increase in size

in TBLPNT, moves any following tables down in

core to make the available space adjacent to the

appropriate table, updates the byte pointers for any

table moved (using TBLPNT to find the number and

location of the byte pointers for each table) and

finally zeros the newly appended table space.

XCORE, ?IX, M UP, CSETZ

TBLPNT (an array), XCESS, COREND

Call AEXPND (NAME, AMNT)

NAME - 2 word ASCII constant containing the

table name

AMNT - amount by which to expand the table.

-37-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ACHAIN

Allocation Table CHAINing

To chain together newly acquired table free space.

ACHAIN is given the first and last address

(relative to the beginning of the table) of a new

table area as well as the table entry size and a

field pointer to the table chain field. ACHAIN

merely chains together all the entries in the new
area.

Call ACHAIN (CHNFLD, FSTFRE, LSTFRE, ENTSZE)

CHNFLD

FSTFRE

LSTFRE

ENTSZE

- field pointer to the table chain field

- first location (relative to the beginning

of the table) of the area to be chained.

- last location of the area to be chained

- size of a table entry.

A variable (NXT) is set equal to

FSTFRE + I * ENTSZE

and deposited in the chain field of entry

FSTFRE + (I - 1) * ENTSZE

for all I such that

FSTFRE + I * ENTSZE < = LSTFRE.

v
-38-

I
I
I
i
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

SIZE:

CALLING SEQ.:

TECHNIQUES:

MVUP

To copy information from one area to another,

possibly destroying the first area but producing

a true copy even if the first area overlaps the
second.

MVUP calculates the end of the first area and the
end of the second and then copies the table from

the end. This allows the first area to overlap the
second area without producing garbage (it is

assumed that the first area starts below the second
area).

None

CALL MVUP (FROM, TO, STOP)

FROM - first word of first area
T0 - first word of second area
STOP - last word of second area.

None

-39-

2.5 Table Manipulation Routines

I
J
J

These routines provide a standard means of getting free table entries,
adding or deleting new entries for tables, etc. The routines for the different'

tables are not completely analogous since some tables need more manipulation
than others. The tables do have the following analagous routines:

AGTARY, AGTALL, AGTBL, AGTHOL - gets the next free block from

the free chain of the appropriate table, expanding the table

if necessary and in some tables setting the entry use bit and/
or incrementing the table entry count.

ARAADD, ADDARY, ADDBLK, ADHOLE -- adds a new entry to the

active chain of the appropriate table. In some tables this

routine sets the use flag or increments the entry count, rather
than the routine which first got the free block.

ADLBLK, ALLRL3, AHLRLS - release a table entry which is not cur-
rently in the table active chain. That is, put the entry back

on the free list, performing any necessary bookkeeping in the
process.

Other routines covered in this section are:

I
I
I
I
I
1

ADLTHL
ADLHL2
ARMHL

ANWHL

ACLRBL

ABLCPY

- deletes a hole entry from the hole table
- a subroutine of ADLTHL

- removes a hole from the active chain but does
not return it to the free chain

- creates a new hole to go with a new block

- deletes all holes belonging to a specified block
(clears the block of holes).

- copies an entire block, along with all the arrays
allocated to it and one (and only one) of the
holes associated with it.

-40-

mm!9t>>e!ifwm&*- MiMMiMHHHMMHlHNHB
r ::<<igiWKiiiipii!i|iijM;witi|iP»^^

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

AGTARY

Allocation - Get ARraY

To get a block from the ARRAYTBL free chain.

AGTARY makes sure the free chain is not empty

(it calls ARTEXP if the chain is empty). It then

removes the first block from the free chain, and

initializes it by setting all extent fields (ARAEXT)

to one, all permutation fields I to I

(I .TO. ARAPRM (1) for all 1< = I< = N where

N is the maximum number of dimensions). AGTARY

also sets the ARAUSE flag to one, ARASZE (tne

array size) to 1, and sets the array dimension

(ARADIM) to the maximum allowable dimension.

ARTEXP, S, L

ARTFRE, ARANXT, ARAEXT, ARAPRM, ARASZE,

ARAUSE, ARADIM, AMXDIM

SIZE:

CALLING SEQ,; GALL AGTARY (NWARY)

On returning NWARY points to the location of

the newly available block.

TECHNIQUES: None

-41-

PROGRAM NAME

PURPOSE:

FUNCTION:

EXTERNAL REFERI

COMMON:

AGTALL

Allocation - GeTALLocatlon block

To get the next block from the ALLTBL free
chain. *

AGTALL insures that the free chain is not empty
by calling ALTEXP if necessary. It then updates

the free chain pointer, sets the use bit (ALAUSE)
In the newly extracted block, and returns.

ALTEXP, S, L

ALTERE, ALAUSE

I SIZE:

i CALLING SEQ.

I
I TECHNIQUES:

1
1
1
1
1

CALL AGTALL (NWBLK)

Upon returning NWBLK points to the newly
extracted block.

None

I
-42-

»«•»^(»Kwajn

1
1 PROGRAM NAME: AGTBL

1 Allocation - GeTBLock

PURPOSE:

FUNCTION:

To get the next entry from the BLOCKTBL free
chain.

AGTBL insures that the block free chain is not

empty, calling ABTEXP if necessary. It then

extracts the first entry from the free chain, sets

ABLUSE, increments ABTNE (the table entry count),
and returns.

EXTERNAL REFERENCES: ABTEXP, S, L

COMMON: ABTFRE, ABTNE

SIZE:

CALLING SEQ,

TECHNIQUES:

CALL ABTBL (NWBLK)

On returning NWBLK points to the new entry
in the block table.

None

-43-

PROGRAM NAME: AGTHOL

Allocation - GeT HOLe

PURPOSE: To get the next entry from the HOLETBL free

chain.

FUNCTION: AGTHOL insures that the free chain is non-

empty — calling AHTEXP if necessary. It then

extracts the first entry from the free chain, incre-

ments the table entry count, updates AHTMXN,

if appropriate (AHTMXN is the maximum number

of holes — a variable kept only for information on

necessary HOLETBL size, the variable is unused

In the ALLOCATOR). AGTHOL also zeros out

the AHLEXT, AHLPRM, and AHLCRD fields.

EXTERNAL REFERENCES: AHTEXP, S, L, MAXO

COMMON: AHTFRE, AHLNXT, AHTNE, AHTMXN, AMXDIM,

AHLEXT, AHLPRM, AHLCRD

I
I
I

SIZE:

CALLING SEQ.:

TECHNIQUES:

CALL AGTHOL (NWHOLE)

On returning NWHOLE points to the newly

extracted and initialized entry block.

None

-44-

.. .,,
»imwiMiw

i

■mm

I
J
I

PROGRAM NAME: ARAADD

ArrAY ADDition

PURPOSE: Add an array entry to the active chain of the

ARRAYTBL.

FUNCTION:

I
1
1
1
1

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

Link the new block into the active chain be-

tween the entries zero and one and increment

the ARRAYTBL entry count.

S, L

ARANXT, ARTNE

CALL ARAADD (NWARY)

Where NWARY points to the array entry to be

added to the chain.

None

4t;

PROGRAM NAME: AD.DARY

ADD ARray

PURPOSE: To add an array to the ALLTBL active chain

associated with a specified block.

FUNCTION:

EXTERNAL REFERENCES:

The block pointer pointing to the chain in

ALLTBL is copied to the chain field of the new

entry and the BLOCKTBL pointer is then up-

dated to point to the new entry. ALTNE (number

of entries in ALLTBL) is incremented, the

ABLNAR (number of arrays allocated to the block)

field in the BLOCKTBL entry is incremented,

and the ABLRMN field (the amount of space

remaining in the block) is decremented by the

size of the new entry (currently the array size

is calculated but this is unnecessary as the

entry contains a pointer to ARRAYTBL, if the

efficiency of this routine becomes critical the

array size could be extracted from ARRAYTBL).

S, L

COMMON: ABLEST, ALANXT, ALTNE, ABLNAR, ABLDIM,

ALAEXT, ABLRMN

SIZE:

CALLING SEQ.: CALL ADDARY (NWARY, BLOCK)

Where NWARY is a pointer to the new entry in

the ALLTBL and BLOCK is a pointer to the

block in BLOCKTBL to which the array is being

allocated.

TECHNIQUES: None

-46-

"ir^:xfff!!^Yn,:,,;
MHMMMMM

I

|

|

l
l
l
l
l

j

l
l

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ADDBLK

ADD BLocK

To add a block to the BLOCKTBL active chain.

The new entry is merely put on the beginning of

the chain with the chain fields of the new block

and of entry 0 updated appropriately.

S, L

ABLNXT

CALL ADDBLK (BLKPNT)

BLKPNT should point to the entry being added.

None

PROGRAM NAME: ADHOLE

Add HOLE

PURPOSE: To add a new hole to the HOLETBL active chain

keeping the table sorted in ascending size and

insuring that no hole is contained in any other

hole.

FUNCTION: The HOLETBL active chain is searched to find

the first hole which is either larger (in volume),

or has the same size but a higher dimension.

When this spot is found its location is saved and

the remainde*- of the active chain is compared

against the new hole to make sure that the hole

is not contained in any others. If the hole is con-

tained ADHOLE returns immediately, otherwise

the new hole is added into the list at the spot

found earlier and the AHLUSE flag in the entry

is set.

EXTERNAL REFERENCES: L, 8, AFLDCM, ACNTAN

COMMON: AHLSZE, AHLDIM, AHLBLK, AHLNXT, AHLEXT,

AHLCRD,AHLUSE

SIZE:

CALLING SEQ.: CALL ADHOLE (HOLPNT)

Where HOLPNT points to the hole to be added

to the table.

TECHNIQUES: None

-48-

I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

ADLBLK

Allocation - DeLete BLocK

Delete a block from the active chain in BLOCKTBL.

ADLBLK clears all holes associated with the block

by calling ACLRBL, releases all arrays in ALLTBL

which were allocated to the block, and returns

the specified block to the BLOCKTBL free chain.

It is assumed that the specified block is not in

the active chain and no attempt is made to remove
it from the active chain.

ACLRBL, ALLRLS, L, S

ABLEST, ALANXT, ABLNXT

SIZE:

CALLING SEO.:

TECHNIQUES:

CALL ADLBLK (BLK)

BLK points to the block to be deleted from
BLOCKTBL.

None

-49-

wmmm

PROGRAM NAME:

PURPOSE:

ALLRLS

Allocation Block ReLeaSe

To return an allocation block to the ALLTBL
free chain.

FUNCTIONS:

EXTERNAL REFERENCES:

The specified block is merely linked back into

the beginning of the free chain and ALTFRE and

the entry chain field are updated accordingly.

The entry use flag ALAUSE, is also reset.

S, L

COMMON: ALTFRE, ALANXT, ALAUSE

SIZE:

CALLING SEQ.:

TECHNIQUES:

CALL ALLRLS (ARRAY)

Where ARRAY points to the allocation block
being released.

None

-50-

PROGRAM NAME:

PURPOSE:

FUNCTION:

AHLRLS

Allocation HOLe ReLeaSe

To return a hole to the HOLETBL free chain.

AHLRLS places the specified hole at the begin-

ning of the HOLETBL free chain, decrements

AHTNE, and resets the entry AHLUSE bit.

AHLRLS does not remove the hole from the active

chain and if this has not already been done an

error will result.

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ .:

AHLUSE, AHLNXT, AHTNE

CALL AHLRLS (HOLPNT)

Where HOLPNT points to the hole being released,

TECHNIQUES: None

-51-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

ADLTHL

Allocation DeLeTe HoLe

To remove an entry from the HOLETBL active

chain and place it on the free chain.

ADLTHL traces through the active chain to find

the hole preceding the specified hole and then

calls AOLHL2 to actually update the pointers

which transfer the hole to the free chain.

ADLHL2

AHLNXT

SEE:

CALLING SEQ.:

TECHNIQUES:

CALL ADLTHL (HOLPNT)

Where HOLPNT points to the hole to be deleted.

None

I

1

■52-

i
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

ADLHL2

Allocation DeLete HoLe 2

To actually transfer a hole from the HOLETBL

active chain to the free chain.

ADLHL2 changes the chain field of the hole pro-

ceeding the specified hole to point to the hole

following the specified hole. It then puts the old

hole back into the free chain by calling AHLRLS.

S, L, AHLRLS

AHLNXT

SIZE:

CALLING SEQ. :

TECHNIQUES:

CALL ADLHL2 (HOLE, PREV)

PREV

HOLE

None

- points to the hole preceding HOLE

in the active chain

- points to the hole being deleted.

-53-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ARMHL

Allocation ReMove HoLe

To remove a hole from the HOLETBL active

chain without returning it to the free chain.

ARMHL threads through the active chain until

it finds the hole preceding the specified hole.

It then updates the preceding hole's chain

field to remove the hole from the active chain.

S, L

AHLNXT

CALL ARMHL (HOLE)

HOLE points to the hole to be removed.

None

-54-

I
I
I

I
I

I

■■*.

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ARMHL

Allocation ReMove HoLe

To remove a hole from the HOLETBL active

chain without returning it to the free chain.

ARMHL threads through the active chain until

it finds the hole preceding the specified hole.

It then updates the preceding hole's chain

field to remove the hole from the active chain.

S, L

AHLNXT

CALL ARMHL (HOLE)

HOLE points to the hole to be removed.

None

■:.

t
-54-

I
I

HMnniHHMBnKMV'^Kv^MiW

i

PROGRAM NAME:

PURPOSE;

FUNCTION:

COMMON:

SIZE:

CALLING SEQ.;

TECHNIQUES:

ACLRBL

Allocation CLeaR BLock

To clear all the holes which belong
block. to a specified

ACLRBL threads through the active hole list and

cam ADLTHL on al! holes whose AHLBUC «eld
indxoates that they belong to the spectfled bloo*

EXTERNAL REFERENCES: ADLTHL, L

AHLNXT, AHLBLK

CALL ACLRBL (BLK)

Where BLK points to the block in BLOOCTBL
which is to be cleared.

None

-55-

"""■"■"■■«■•■■■■TO'isaHii ■wi^atiiwuiiMWiUBm^MiMi!^^^

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

ABLCPY

Allocation BLock CoPy

To copy an entire block along with all arrays

which are allocated to it and one of the holes.

ABLCPY is used for estimating the cost of expanding

a particular hole, and only this hole is copied.

Except for the other holes, however, the entire

block structure is copied. ABLCPY gets a new

block entry, copies the old block entry to the new,

threads through the old allocation chain and creates

a new chain with duplicate entries, adjusts the

new block entry to point to the new chain, and

finally creates a new hole, copies the old hole,

puts in a pointer to the new hole to the new block,

and adds the new hole to the hole chain.

AGTBL, AMVENT, AGTALL, S, L, AGTHOL, ADHOLE

ABLNXT, ABTELS, ABLEST, ALANXT, ALTELS, AHLNXT,
AHTELS, AHLBLK

SIZE:

CALLING SEQ.:

TECHNIQUES:

CALL ABLCPY (OBLK, NWBLK, OHOLE, NWHOLE)

Entry Values:

OBLK - the block in BLOCKTBL to be copied

OHOLE - the hole to be copied with the block.

Values Returned:

NWBLK - a pointer to the newly created block
copy

NWHOLE - a pointer to the new hole copy.

None

m

-56-

PROGRAM NAME:

PURPOSE:

FUNCTION:

ANWHL

Allocation - NeW HoLe

Create a new hole the same size as a new block.

ANWHL gets a new hole entry and copies the

block extents and permutation vectors as well as

the dimension, size, and block number. ANWHL

then calls ADHOLE and adds the new hole to the
active hole chain.

EXTERNAL REFERENCES: L, S, AGTHOL, ADDHOLE

COMMON:

SIZE:

CALLING SEQ.

ABLDIM, AHLCRD, ABLEXT, AHLPRM, ABLPRM,
AHLDIM, AHLSZE, AHLBLK

TECHNIQUES:

CALL ANWHL (BLK, HOLE)

Entry:

BLK - pointer to the block to be associated

with the new hole.

Exit:

HOLE - pointer to the newly created hole.

None

-57-

*mmm**»m*>^^
mmmmmmm

I
I
I
I
I
I
I
I
I
I
I

2.6 Logical Functions

There are four logical functions in the allocator and they are all con-
cerned with testing different conditions or degrees of overlap between holes

and holes, holes and arrays, or arrays and arrays. The functions, in more or

ess increasing strength, are: AFLDCM, ADVLP, ARAOLP, and ACNTAN. The
functions have the following use;

AFLDCM -

AOVLP

- tests to see if the extents of one structure are all less

than or equal to the corresponding extents of another

structure. This does not really test for any overlap con-

dition but is a necessary condition for one structure to
be entirely contained in another. Consequently, this

test, which is relatively fast, is often made to decide
whether or not to test for containment.

- this determines whether an array overlaps a hole. This

is used to decide which holes must be updated when a new
array is allocated.

ARAOLP —

ACNTAN —

determines whether one array overlaps another. This

condition only arises while holes are being expanded and
is used to determine which arrays must be moved.

tests to determine if one structure is totally contained
within another structure of the same type. Currently,

this is primarly used to determine if a new hole is a sub-

set of an already existing hole in order to avoid creating
duplicate holes.

-58-

m«

I
PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

I
I

TECHNIQUES:

AFLDCM

Allocation - FieLD CoMpare

Compares the extent of two arrays or holes to

determine if one could be totally contained in

the other.

Since extent fields are kept in order of decreasing

extents the test succeeds iff EXTENT 1 (I) < =

EXTENT 2 (I) for all K = DIM where DIM and

the extent field pointers are passed as arguments.

Since the field pointers are passed as arguments

holes may be compared to arrays.

None

RESULT = AFLDCM (PNT1, PNT2, DIM, EXTP1. EXTP2)

Args:

PNT1

PTN2

DIM

EXTP1

EXTP2

RESULT

< =

None

- pointer to first structure

- pointer to second structure

- number of dimensions to compare

- extent field vector for the table cor-

responding to PTN1

- extent field vector for the table cor-

responding to PNT2

IS .TRUE. IFF ALL EXTENTS OF PNT1 are

the corresponding extents of PNT2.

-59-

■■^ ■■■'■■ ■■■,- ■■.:.■■ :;. *wm$*wi^mv&mj#m
-•■>■.■■;/;•;;.,■ s^^R,*, ^.;;::tv,^^

PROGRAM NAME:

PURPOSE:

FUNCTION:

AOVLP

Allocation - OVerLaP

To determine if an array Intersects (or overlaps)
a hole.

The function is false if the array does not overlap

the hole in any one dimension. Effectively AOVLP

computes HLSTR (I), HLEND (I), ASTR (I), AEND (I)

where HLSTR (I) is the smallest coordinate in the

hole in the Ith dimension and IILEND (I) is the

highest and ASTR and AEND are similar for arrays.
AOVLP is false iff AEND (I) < = HLSTR (I) or

HLEND (I) < = ASTR (I) for some I.

EXTERNAL REFERENCES:

COMMON:

SEE:

CALLING SEQ.:

TECHNIQUES:

AHLDIM, AHLCRD, AHLPRM, AHLEXT, ALACRD,
ALAEXT, ALAPRM

RESULT = AOVLP (ARRAY, HOLE)

Args:

ARRAY

HOLE

RESULT

- pointer to an array in ALLTB

- pointer to a hole in HOLETBL.

- .TRUE. IFF the array overlaps the hole.

The permutation vector must be used for deter-

mining which extent is associated with the Ith
dimension.

-60-

PROGRAM NAME:

PURPOSE:

FUNCTION:

ACNTAN

Allocation CoNTAiN

To determine if one structure is totally contained
In another.

This is similar to AFLDCM except that:

1) All relevant fields are passed as arguments so

that two arbitrary structures of the same type

(holes and holes or arrays and arrays) may be
compared.

2) ACNTAN Is true iff

S2 (I)<=S1 (I)<=E1 (I)<=E2 (I)

where SI (1). El (I), S2 (I), E2 (I) are the

first and last locations of the two structures in

each dimension. In ACNTAN SI, S2, El, E2 are

not actually vectors but are computed and tested
for each dimension.

EXTERNAL REFERENCES:

COMMON: None

SEE:

CALLING SEQ.: RESULT = ACNTAN (PNT1, PNT2, DIM, COORD,

EXTNT, PERM)

Args:

PNT1

PNT2

DIM

COORD

- pointer to first entry

- pointer to second entry

- dimension of entries

- vector of coordinate field pointer

-61-

mi umuiuNHmmimnni mmmmmmsm.

i
i
i
i

i

TECHNIQUES:

EXTNT - vector of extent field pointers

PERM - vector of permutation field pointers.

RESULT is true iff PTN1 is contained in PNT2.

The PERM vector must be used to determine the
extent corresponding to dimension I.

"
-62-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE;

ARAOLP

ARrAy OverLaP

To determine if one array overlaps another.

This routine Is called after translating an array

which has already been allocated to determine

whether the translation has resulted in the array

overlapping any other array. This is used to

determine which arrays must be moved when ex-

panding a hole. The test for overlap is performed

in the same way as in AOVLP except that all

coordinates, extents, and permutations are ex-

tracted from the allocation table.

ALAPRM, ALACRD, ALAEXT

CALLING SEQ.;

TECHNIQUES:

RESULT = ARAOLP (AR1. AR2, DIM)

Args;

AR1

AR2

DIM

None

- pointer to the first array in ALLTBL

- pointer to the second array in ALLTBL

- dimension of the arrays.

RESULT - .TRUE. IFF the arrays overlap.

•63-

I
I 2.7 Block Structure Manipulation

These routines deal with adding new blocks, taking space out of
existing holes, adding arrays to an allocation for a particular block, etc

These functions involve somewhat more than mere tab.v .nanipulation and are
therefore treated here rather than with the table manipulation routines. The
routines covered here are:

ACRBLK — which creates an entirely new block along with
hole to match.

a new

ANWARY - which puts an array In the allocation of a specified block,

in the process taking the newly occupied space out of
any overlapping holes.

ASPLHL - which takes the space occupied by a newly allocated

array out of a specific hole, often creating several smaller
holes in the process.

ARMSPC - removes the space occupied by new array from all holes
In the block which intersect the new array.

ASREXT —

ASTPRM —

a utility routine which sorts the extents of a newly

created structure (usually a hole), into descending order.

a utility routine whose primary purpose is to find the in-
verse of a permutation vector.

-64-

ilUMIIMIMWIWWiWWWi

PROGRAM NAME:

PURPOSE:

ACRBLK

Allocation - CReate BLocK

To create a new block and hole for allocating

arrays.

FUNCTION:

EXTERNAL REFERENCES:

ACRBLK is given an array which must fit in the

new block. ACRBLK calculates which extent may

most efficiently .be expanded to an even rowsize

and then creates a block with the same extents

except for the one expanded dimension. It is un-

necessary to sort the block extents as the extents

are still in descending order even after expanding

the preferred index. After it has been decided

which extent (say J) is to be the preferred index,

the block permutation vector is filled in with

PERM (I) = I FOR ALL I<> 1, J

PERM (1) = J

PERM (J) = 1.

After filling in all necessary fields for the new

block ANWHL is called to create a hole with the

same extents as the new block (since no arrays

have been taken from the new block all of its space

is available) and both the hole and the block are

added to the appropriate tables.

AGTBL, S, L, ANWHL, ADDBLK

COMMON: Block table field definitions

SIZE:

-65-

BHMHRBWÜ^^f*1!*

CALLING SEQ. CALL ACRBLK (DIM, ARAPNT, EXTFLD, HOLPNT)

Args:

DIM

ARAPNT

- dimension of the block to be created

- table pointer to array to be fit by

.the block

EXTFLD - field pointer vector for the extent

fields of the specified array.

Results:

HOLPNT - points to the location of the newly

created hole.

TECHNIQUES: None

-66-

I
J
I
I

I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.

TECHNIQUES:

ANWARY

Allocation NEW ARray

To put an array m the space occupied by
ticularhole.

a par-

ANWARY is given pointers to an array and a hole

as arguments. ANWARY determines an orientation
of the array which allows it to fit in the hole It

then puts the array in the allocation table and adds

It to the allocation list for the appropriate block

Finally, ANWARY calls ASPLHL to remove the
newly allocated ppace from the hole.

AGTALL, ASTPRM, S, L, ADDARY, ASPLHL

ALLTBL,and ARRAYTBL field pointers, INVPRM,

CALL ANWARY (ARAPNT, HOLPNT)

Args:

ARAPNT

HOLPNT

- Points to the array (in ARRAYTBL) to
be allocated

- points to the hole into which the
array is placed.

An attempt is made to leave the largest possible

hole after allocating the new array. This is done

by Placing the largest array dimension in the

smallest possible hole dimension, the next largest

array dimension in the smallest hole dimension

^

-67-

***BmmmKmmmKaBKHm i^m^HHHiiin

I
I still available, etc. Thus, If an array which

was 16x5x4 was taken out of a hole which

was 32 x 16 x 5 then the array would be oriented

as c 4x16x5 array before being taken out of
the hole, thus leaving one hole 28 x 16 x 5

whereas if the array were allocated as a 16x5x4

array 3 holes would result (16 x 5 x 4, 32 x 16 x 1,

32 x 11 x 5) but none of the holes would be as

large. It is hoped that trying to produce the largest
possible holes will in general produce better

allocations, although there are obviously instances
in which it won't. Some sort of look ahead for

deciding the proper orientation might eventually
be useful.

-68-

I
I
I
1
I
i
J
J
I
I
I
i
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

ASPLHL

Allocation - SPLit HoLe

To remove space from a hole, breaking the hole
up Into several smaller holes.

ASPLHL is given a pointer to an array in ALLTBL

and a hole in HOLETBL. ASPLHL first calls

AOVLP to insure that the array overlaps the hole.
If the array does not overlap ASPLHL merely

returns. If the array does overlap ASPLHL pro-
ceeds by calling ARMHL to remove the hole

from the active chain without adding it to the free

chain. This is done so that subsets of the specified

hole may be added to HOLETBL. The hole is not
yet added to the free chain since the entry can not

be reused until the hole has been completely split
up. At this point ASPLHL checks the endpoints
of the array against the endpoints of the hole in

each dimension. ASPLHL creates one new hole for
each pair of endpoints which do not correspond.
Thus, ASPLHL could possibly produce 2 * N new

holes (where N is the dimensionality of the array).
As an example, assume that the hole starts at

(5. 10, 12) and has extents (7, 20, 4) and that

the array starts at (6, 10, 12) and has extents
(3,9,4) then the following holes would be pro-
duced:

Coordinates

(5, 10, 12)

(9, 10, 12)
(5, 19, 12)

Extents

(1, 20, 4)
(3, 20, 4)
(7, 11, 4)

After all new holes are produced the original hole is
released (added into the free chain) and ASPLHL
returns.

-69-

■

EXTERNAL REFERENCES:

COMMON:

AOVLP, ARMHL, AGTHOL, AM VENT, S. L,

ASREXT, ADHOLE, AHLRLS

HOLETBL and ALLTBL field pointers.

CALLING SEQ.:

r
i
i

i
i
i
i
i
i
i
i
i

TECHNIQUES:

CALL ASPLHL (ARRAY, HOLE)

Args:

ARRAY - pointer to array in ALLTBL

HOLE - pointer to the hole in HOLETBL.

None

■70-

. i

•■'"■J^-Wti

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

ARMSPC

Allocation - ReMove SPaCe

To remove space from all holes which a newly

allocated array overlaps.

ARMSPC is given an array pointer to an array

in ALLTBL and a block pointer. ARMSPC merely

threads through the hole chain, checking to see

if any holes in the specified block overlap the

specified array. If they do ASPLHL is called
to break up the hole.

L, AOVLP, ASPLHL

AHLNXT, AHLBLK

SIZE:

CALLING SEQ.: CALL ARMSPC (ARRAY, BLK)

Args:

ARRAY

BLK

- points to an array in ALLTBL

- pointer to the block to which the

array is allocated.

TECHNIQUES: None

-71-

m*****mmmmmmmmmmm mmmmmmmm mmmmmmmm

I
1

I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

ASREXT
Allocation - SoRt EXTents

To get extent fields in descending order.

ASREXT calls ASTPRM to get the inverse of the

permutation vector. It then sorts the EXTENT

field using an interchange sort, updating the

inverse permutation vector along with the extent

fields. After the sort is completed ASREXT

effectively takes the inverse of the modified in-

verse permutation vector in order to get the new

permutation vector.

ASTPRM

INVPRM

CALL ASREXT (PNT, PERM, EXT. DIM)

Args:

PNT

PERM

EXT

DIM

- points to the entry to be sorted

- the vector of permutation field

pointers for the table containing the

desired entry
- the vector of extent field pointers

- the dimension of the structure.

Since all required field pointers are given as

arguments ASREXT may be used to sort the ex-

tents of any structure (hole, array, orblock).

-72-
__

PROGRAM NAME:

PURPOSE:

FUNCTION:

ASTPRM

To take the inverse of the permutation vector and

to set the WRK array to .FALSE.

ASTPRM sets all entries in WRK to .FALSE.

(This array is used in ANWARY to keep track of

when an extent has been allocated) and establishes

the inverse of the permutation vector in INVPRM.

This is done by setting INVPRM (PERM (I)) = I

for all I.

EXTERNAL REFERENCES:

COMMON: WRK, INVPRM

SIZE:

CALLING SEQ.: CALL ASTPRM (ENTPNT, PERM, DIM)

Args:
ENTPNT - pointer to the entry containing the

permutation vector

PERM - field pointer for the permutation

vector

DIM - dimension of the vector.

TECHNIQUES: None

-73-

"*MMl

2.8
Hole Expansion

Two routines, AINPT Q

^ahd... Amu r"j:r
d
sl:r

u'providetheme^"^^ex-

U d0eS not »"T 'he hole table,. ^ "^ Struc'^ of holes

I
I
I
I

-74-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.;

TECHNIQUES:

AINFL8

Allocation - INFLate

To expand or inflate a hole.

AINFL8 determines how much the specified hole

must be expanded in each direction to fit the

desired array. It then calls AINFL1 for each

direction to move arrays out of the way and ex-

pand the block. After moving all necessary

arrays it deletes all holes associated with the

block and creates one new hole the size of the

entire new block. It then calls ARMSPC for

each array in the block in order to construct the

correct list of holes.

L, S, ASTPRM, AINFL1, ACLRBL, ARMSPC

All table field definitions, INVPRM

CALL AINFL8 (ARY, HOLE)

Args:

ARY - the array to be fit

HOLE - the hole to be expanded to fit

the array.

None

-75-

PROGRAM NAME: AINFL1

Allocation - INFLate in 1 dimension

PURPOSE:

FUNCTION:

To expand a hole in one dimension,

AINFL1 creates a dummy allocated array expanded

appropriately and then checks to see if the array

overlaps any other arrays. If so, the offending

arrays are translated and AINFL1REC (the recur-

sive part of AINFL1) is called to move any arrays

which overlap. When no more arrays overlap

then AINFL1REC either pops back up a level or

returns to the caller if it is already at level 0.

When AINFL1 returns, all necessary arrays have

been translated and the highest coordinate en-

countered is recorded for use by AINFL8.

I
I
I
I
I

EXTERNAL REFERENCES:

COMMON:

SIZE:

CALLING SEQ.:

TECHNIQUES:

AINFL1REC, L, S, AGTALL, AILRLS

ALLTBL and HOLETBL field definitions.

CALL AINFL1 (HOLE, DIR, AMNT, MAXCRD)

Args:

HOLE

DIR

AMNT

Results:

MAXCRD

None

- the hole to be expanded

- the direction for expansion

- the amount to expand.

- the highest coordinate occupied

by any array moved.

-76-

I
i PROGRAM N

1
1

PURPOSE:

1 FUNCTION:

1
1

A COST
Allocation COST

I
I
I
I
I
I
I
I
I
I
I

To estimate the cost of putting an array into an

existing hole.
■

Expanding a hole will, in general, expand the
block which contains the hole. It is the increase

in the volume of the block which determines the

cost of expanding a given hole. If the hole is
expanded along a direction in which the hole is

not "internal" to the block, then the block must

expand by the same amount as the hole (a hole is

considered internal in a given direction if the
right boundary of the hole occurs before the right
boundary of the block in that direction, if the two

boundaries coincide then the hole is not con-
sidered to be internal). If a hole is internal then

the block may be expanded less than the hole.

If a block is expanded in a preferred direction

then the block must be expanded by a multiple of

ROWSZE (the number of PE's in a row).

ACOST compares each array extent with the cor-

responding row extent (largest array extent com-

pared to largest hole extent, etc.). If the hole
must be expanded in some direction then the volume

of the block must be multiplied by (new extent) /
(old extent) (note that volume/(old extent) is al-

ways an integer), if the hole is internal then the
volume is additionally multiplied by IFACT/100

(IFACT currently is 95) — this merely means that

of two holes which are nearly the same size, pref-

erence is given to putting a new array into an

-78-

I
I

EXTERNAL REFERENCES:

COMMON:

Internal hole. If the preferred direction must be

expanded (which implies a quantum jump in block

size) then ARLCST is called (if the hole is

internal), to determine the exact cost, since it

may turn out to be possible to expand the hole for

free. If no expansion in the prsferred direction

is necessary, then the estimated cost is merely

the increase in volume resulting from expanding

each array the necessary amount multiplied once

by IFACT/100 for each expansion along an inter-

nal direction (multiplication by IFACT is done

before the increase in volume is measured).

ASTPRM, L, ARLCST

INVPRM, BLOCKTP^. field definitions, HOLETBL
field definitions.

SIZE:

CALLING SEQ.;

TECHNIQUES:

CALL ACOST (ARAPNT, HLEPNT, COST)

Args :

ARAPNT - points to an array in ARRAYTBL

HLEPNT - points to a hole in HOLETBL.

Results:

COST

None

- estimated cost of putting the array

in the hole.

*
-79-

I

I
J
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

ARLCST

Allocation - ReaL CoST

To determine the exact cost of putting a specified
array into a specific hole.

ARLCST makes a copy of the block containing

the specified hole, all of the arrays allocated to

the block, and the specified hole itself, it then

calls AINFL8 to put the array into the hole in the
copy and records the increase in size (if the in-
crease is 0 ARLCST sets the cost to 1 since a

cost of 0 is assumed to mean the array fits into the
hole without hole expansion). Before returning

ARLCST deletes the duplicate blocks, arrays,
and holes.

There are several improvements which could be

made to ARLCST. First, AINFL8 automatically
recreates all the holes in a block after expanding

a particular hole. This could be suppressed for
ARLCST since the newly created holes are im-

mediately deleted. Secondly, and of more interest
to the allocation, ARLCST could determine the

maximum amount the hole could be expanded in the
preferred direction without increasing the block

size. It could then determine if any of the extents
of the array would fit in the hole as so expanded.

If so, the largest possible extent would be placed

in the preferred direction. The remaining extents
would still have to be placed. This could be done

by determining MAXEX (I) (the maximum that a hole
could be expanded to in direction I without expanding
the block, once the hole is expanded this much

-80-

".^m^mm^^
■ ■ ■ -

I
I

i
I
I

EXTERNAL REFERENCES:

COMMON:

Increasing the hole size by one would increase

the block size by one also. MAXEX could be

determined by expanding the hole by a very large

amount and then determining how much the block

expanded). After determining the MAXEX the

array extents'should then be oriented so as to

minimize the product, over all I for which the hole

was expanded, of the factors (EXTENT (I) - MAXEX (I)) /
BLKEX (I) where.only I's for which

EXTENT (I) - MAXEX (I) > 0 are considered and

where EXTENT (I) is the extent of the array to be

put in the Ith direction and BLKEX (I) is the block

extent in the Ith direction. If this change were made

the optimum orientation would have to be communi-
cated to the calling program.

ABLCPY, AINFL8, L, ADLBLK

BLOCKTBL and HOLETBL field definitions

SEE:

CALLING SEQ.: CALL ARLCST (ARAPNT, HLEPNT, COST)

Arg:

ARAPNT - pointer to array in ARRAYTBL

HLEPNT - pointer to hole.

Results:

COST - cost of putting array in hole.

-81-

2.10 Allocation
i

ABOUT IT HERE. ™>cwnGKh, LITTLE WILL BE SAID

I
i
I
I

-82-

' '-'•;■

PROGRAM NAME:

PURPOSE:

FUNCTION:

AL2

Allocation Number 2

To perform an allocation.

For each array AL2 calls ACOST to determine

the cost of putting an array in each of the existing

holes. If the estimated cost for a hole is zero it

is assumed that.the array fits and AL2 calls

AFLDCM to verify this. If the array does fit

ANWARY is called to put the array in the hole.

If the array does not fit in any hole, then AL2

determines whether or not It is cheaper to create a

new block (and hole) or to expand an existing

one. If AL2 expands a hole it then goes back

and searches for a hole which will fit the array

again. .Since there now exists a sufficiently large

hole the array will be placed and AL2 will go on

to consider the next array. If AL2 creates a new

hole it immediately takes the array out of the new

hole. Note that AL2 could be made more efficient

when expanding holes if it knew where the newly

expanded hole was in the table. This information

is difficult to obtain, nevertheless, AL2 could

still be improved by avoiding the call to ACOST

(which occassionally makes very expensive calls

to ARLCST) and just searching for the hole which
contains the array.

EXTERNAL REFERENCES: ACOST, L, AFLDCM, ANWARY, AINFL8, ACRBLK

COMMON:

SIZE:

HOLETBL and ARRAYTBL field definitions.

CALLING SEQ.; CALL AL2

TECHNIQUES: None

-83-

2.11 Auxiliary Routines

These routines (ASORT, ASIZE, ADDR, AMVENT) all are obvious rou-
tines to do straightforward but necessary functions:

ASORT - sorts ARRAYTBL into descending size so that the

largest arrays will be allocated first.

ASIZE — computes the size of a structure by multiplying the
extent fields.

ADDR returns the address of a word so that word pointers may
be created in FORTRAN.

AMVENT — copies an entry from one spot in a table to another spot.

-84-

W3»sggJi»Bag«»»illlWPWffW*W^88»

2.11 Initialization

ALLINT sets up tables necessary for allocation.

-85-

PROGRAM NAME:

PURPOSE:

FUNCTION:

ALLINT

ALLocation INiTialization

Initialize the allocation.

Zeros all tables, obtains some initial core for

tables, initializes byte pointers and table

headers. Initializes TBLPNT.

EXTERNAL REFERENCES: SETFF, XCORE, CSETZ, PFIX, ADDR

COMMON:

CALLING SEQ.:

TECHNIQUES:

Table definitions, TBLPNT, ALLOTS, COREND,
XCES size.

CALL ALLINT

None

-86-

„^^^^^^^^^^ <*mmmmmmmmm«

3. MACRO EyPAMRTnM

A. Array Refp.r&nn*

th. m. ThiS Se0tlOn dlS0USSeS the may a0Cess tormulauons required by
the macro expansion and optimization phases of oode ..!.« ^

The skewed storage teohnlque desoribed in the first semi-annual
report provides the basis for this discussion.. For reference
presented were: the results

An element, A (i ,1 <) of an arr £ J j
located by the two parameters i (PE numh.A * t 1 "l'h"''V is

dnerers &1 (PE number) and £2 (PEM displacement).

Let: p a number of PE's

Q - x (i - i)
J=i j

Define: R
m2 _ m2

1 J^m, J '

mir1 m, - 2
R-1 =1; R1- =Q m.

M = f>l R n-1
(block modulus)

Then: ^2 = Q mod P

Ao = L^JR»-») mod M

II

-87-

I
I This allocation formula implies that the first array element resides

in PE O at displacement O, and that the nth index is ^.he preferred index.

We must extend it to include arbitrary index preferences and initial locations.
But first, examining term I observe that

11-1 n-i n-1 * .
E (i, - 1) Rn ^ < E (i. - 1) R11"1

k=l K k+1 k=l K k+1

n-1 n-1 ,n-l s R""1 - s
k=l K k=l k+l

Rj"1 - R^-
1
 = Rj"1 -1

now *2= I + II- [I+ri/M J M

KMJ-I'/M^VMJ-I'/M^^^J but II+"A

I '"/n-l' I0/ I' -

M ■^%,lJ
since /D11"! < i

III

therefore Ä2 = I

1 +

thus the formula Ä2 reduces to

+ii"[N/fl%lJ
(|Q/PJ - [LQ/d/fVp]

M

) M

n-1
A, = S (1. - 1)

z k=l K k+1
R""1 + (lQ/Pj mod [%]) * R;-]

the modulus in this expression being much easier to calculate in certain

situations.

c -88-

JJWWWi—i

I

Let us assume that the allocation program produces a permutation
of the indices which orders the preferred index last. This permutation, T,
will have n members as follows:

Tj = least preferred index (in usual terms, the index which
varies least rapidly)

Tn » preferred index

It is necessary to assume that multi-indices have been transformed
into the appropriate single index. We can now write a more general allocation
formula:

A (1i' ^ y of the array A ^v V ••• yis located by ^e
parameters i and JL .

Let: Q0 = PE number of first element of A

Lo " PEM displacement of first element of A

P = number of PE's

Define:

T be the index ordering

m 1

m9

j=ml
i ,ml - l
j ' "ml = 1 Rm} " 2 = o ml

n
0 - 0 - n + 2 I.

0 J^l i

M
I P I T,

-89-

Then: ll- Q mod P

n-1

+ I (1.-1) R1"-! +RT
J=l TJ TJ+X Tl

mod m)

I
I
i
I
1
I
1
1
i
I
!

I
I

This formula can also describe FORTRAN standard allocation and

aligned indices by dropping appropriate forms. The macro expander and

optimizer are designed around the existence of an allocation program which

assigns values to L , Q , M and the R skew factors for each array. The
macro expander uses these constants to replace all references to array ele-

ments with the arithmetic expressions required in order to calculate ILLIAC

addresses, and the optimizer then optimizes the resultant expressions.
We expect that the optimization of these calculations will be among the most

fruitful for all our optimizations.

The macro expander deals with two cases — array element refer-

ences occurring in sequential code, and references within DO FOR ALL scopes

— the latter being the crucial case:

1. References in sequential code:

...in) The macro expander turns each reference of the form A (i,

into A (Q, O, where Q and £2 are the expanded forms of the given
formulas. These are transformed by the optimizer by moving invariant calcula-

tions, reducing operator strength, etc. The technique is ftraightforward and

comparable to that used by typical FORTRAN compilers.

2. References in DO FOR ALL scopes:

The problem which immediately confronts us is that we must use a

technique which makes the simultaneous calculations made by all enabled
PE's explicit in a single formula. A PE-dependent function and certain trans-

formations of IVTRAN programs (in intermediate language) gives the necessary

formulations.

1
-90-

»ÜB«

I
I Macro Expander creates a DO statement immediately before each

DO FOR All statement, using the same index variable, deriving the range of

I the DO statement from the control set of the DO FOR ALL, and using an
1 increment of 64. By convention, the DO statement expresses the use ofthe

index variable for address calculation and also is the required DO statement

if the range of the DO FOR ALL ' 64. The DO FOR AU statement provides

PE control information and defines the scope of parallel operation.

With this done, we may pass on to. the array references within the

scope of a DO FOR AIL. Each reference defines a slice of the array made up
to F members, one In each PE. We wish to express the calculation In each

PE of the PEM displacement of its member of the slice. Note *»» "oh'^
has what may be called a base member - the a.ay element for which the value
o£Q is minimum. This value, Q', is calculated from the DO index variables.

If the DO FOR ALL scope is controlled by a DO statement of the form:

DO label lm = V e2' 64

where e, and e, are the minimum and maximum values of the DO FOR ALL

index im derived from the DO FOR ALL statement Itself: then
n

O' =Q - n + £ it

where im has the current value of the DO index variable and the other i, are

defined outside the loop.

Calculation of the constants appearing in the access formula is

handled by the Allocator, and placed in an XL table (YTAB).

-91-

The contents of each entry (one per array) in YTAB will include:

I
I
I

I
I
I

Constant Definition

m preferred index number (Tn)

Rk, k = o. . .n
lk+ 1

w number of rows to hold preferred index

Qx PE fudge factor, usually Qf = Q - n
Allocator techniques may introduce further
constant factors

J=n

Lf PEM fudge factor: usually Lf = L -\ R.

j=l

but some allocation technicques may introduce

further constant factors.
(Note: the L above will probably be the relative

i displacement in a block of the array, and the

. loader will supply the block address.)

The expansion of array references in the intermediate language takes
the following form:

1. Replace all multi-indices with the correct single index

2. For each array reference in sequential code:

I a. generate the following IVTRAN statement preceding the
statement containing the reference

j

Q = Qf + ^ 1.

-92-

mmgggmm

2. b. Replace the reference A (ij ... ln) with A^j l^i

where £, and X- are the above expressions.

Note: iy and ji9 may be combined into a single CU

address. This is as yet unresolved.

3. For each array reference in parallel code:
a. Generate two IVTRAN statements preceding the statement

containing the reference, as follows:

j

Q = Qf + £ i,

DQ «= NPMOD (Q)
b. Replace the reference Adj...^) with AC^),

where

''2 = Lf
+1 ^ Rj+ DQ * R

DFA
+ Ro (Irnrt mod Vf\ J

note: NPMOD may be defined as:
NPMOD « Q mod P - PENO
IF (NPMOD.LT.O) NPMOD = NPMOD + P

-93-

B. Flow Analyzer

Introduction

The Flow Analyzer is a package of FORTRAN routines which performs

flow analysis of IVTRAN programs. The Flow Analyzer separates the IVTRAN
program in flow blocks and regions, and builds up the flow block and region
connectivity matrix. The entire package is designed so that it can be called
at any point of the compilation process.

Flow blocks are contiguous sets of statements with a single entry

point and a single exit point. Regions are contiguous sets of flow blocks
with single entry and exit points.

Flow blocks and regions are recorded in a table (VTAB) one block per

entry. The connectivity matrix is stored in the IL table MATAB, it is a bit

matrix: C(I# J) = 1 If control can transfer from block I to block J,

C(I, J) = 0 otherwise. Support routines exist to make inquiries in the con-
nectivity matrix.

-94-

PROGRAM NAME:

PURPOSE:

FUNCTION:

MXPHP

To perform flow analysis of an IVTRAN program.

Drives program to separate the IVTRAN program

in flow blocks, program to separate IVTRAN

program in regions, and program to build the

connectivity matrices.

EXTERNAL REFERENCES: MXFLOW, MXREGN, MXCOMA

COMMON REQUIREMENTS: TCOM.DEF, TABL .EQU, CGLOB.DEF

SIZE:

CALLING SEQUENCE: CALL MXPHP

TECHNIQUES: None

-95-

S«PB«9S!«n i'iiiw i'n—m——■!> i

PROGRAM NAME: MXFLOW

PURPOSE:

FUNCTION:

To separate IVTRAN program in flow blocks.

Builds flow block entries in VTAB, one entry

per flow block. Records flow block number in

statement level CTAB entries.

EXTERNAL REFERENCES: CSETZ, L, S, MXVOPN, MXVCLS. UCLNST

COMMON REQUIREMENTS: TCOM.DEF, CTAB.DEF, VTAB.DEF, LTAB.DEF

SIZE:

CALLING SEQUENCE:

TECHNIQUES:

CALL MXFLOW

MXFLOW traces through CTAB at the statement

level. If statement starts a new flow block, the

current entry in VTAB is closed and a new one

is initialized. If a statement ends a flow block,

the current VTAB entry is closed and FLAG is

set, indicating that the successive statement

begins a new flow block.

-96-

PROGRAM NAME: MXCOMA

I
I
I
J
I
I
I
I
i
I
I

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

To build flow block connectivity matrix.

Builds a bit matrix in MATAB such that

0(1, J) = 1 if control transfers from flow block I

to flow block J, 0(1, J) = 0 otherwise.

CSETZ, EXTEND, L, MXMSET

COMMON REQUIREMENTS: TCOM.DEF, TABL.EOU, VTAB.DEF, MATAB.DEF

SEE:

CALLING SEQUENCE:

TECHNIQUES:

CALL MXCOMA

MXCOMA looks at each flow block entry in

VTAB. For each flow block, the last statement

of the flow block is used to determine which flow

blocks can be reached from the current one.

-97-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

MXVOPN

To open a flow block VTAB entry.

Stores flow block number and pointer to first

statement In flow block in a new VTAB entry.

S, EXTENT

COMMON REQUIREMENTS: TCOM.DEF, VTAB.DEF, TABL.EQU

SIZE:

CALLING SEQUENCE:

TECHNIQUES:

CALL MXVOPN (CNEK)

CNDX - CTAB pointer to first statement in

flow block.

None

-98-

■'-:y'-\:-- ■

i
I
I
1
I
1
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

MXVCLS

To close a flow block VTAB entry.

Stores CTAB pointer to last statement in flow

block, and last statement's class in current

VTAB entry.

EXTERNAL REFERENCES:

COMMON REQUIREMENTS: TCOM.DEF, VTAB.DEF

SIZE:

CALLING SEQUENCE:

TECHNIQUES:

CALL MXVCLS (CNDX, CLASS)

CNDX - CTAB pointer to last statement

in flow block

CLASS - statement class of last statement

in flow block.

CLASS = 1 : GOTO, AGOTO, CGOTO

AIF, LIF2, LIF

CLASS = 2 : RETURN, END, STOP

CLASS = 3 : CALL

CLASS « 4 : terminal statement of DO (DFA)

range

None

1 -99-

£ '■'■:iW^W}fll&:iWWW^$0ilSi&!lll£&!!&&

PROGRAM NAME:

PURPOSE:

MXMSET

To set to one 0(1, J) , where 0 Is the

connectivity matrix.

FUNCTION: Sets a bit in MATAB.

EXTERNAL REFERENOES: MXMTST, L, S

COMMON REQUIREMENTS: TCOM.DEF, MATAB.DEF, VTAB.DEF

SIZE:

CALLING SEQUENCE: CALL MXMSET (BF , BT)

BF

BT

- block number control may transfer

from

- block number control may transfer

to

TECHNIQUES: None

-1D0-

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

MXMTST

To test whether control may flow from one flow

block to another. The value of the function is

.TRUE, if the test succeeds. .FALSE, if the

test fails.

Tests a list in the connectivity matrix.

EXTERNAL REFERENCES: L

COMMON REQUIREMENTS: TCOM.DEF, MATAB.DEF, VTAB.DEF

SIZE:

I CALLING SEQI

I
1
I

TECHNIQUES:

i
1
i

MXMTST (BF, BT)

BF - flow block number control is to

transfer from

BT - flow block number control is to

flow to.

None

1
1

-101-

■•f'-^-- ■ , « '•.--,.,-..,.■■«,,-..■■,■/-...■._^ ••.:

PROGRAM NAME

PURPOSE:

FUNCTION:

EXTERNAL REFER

MXMTO

To extract from the flow block connectivity

matrix all the numbers of the flow blocks which

may transfer control to a specified flow block

(i.e. - all I'S such that 0(1, J) =1 for a

given J).

Stores flow block numbers in an array passed

in the calling sequence.

COMMON REQUIREMENTS: TCOM.DEF, MATAB.DEF, VTAB.DEF

.■.#!,■,

l

SIZE:

CALLING SEQUENCE:

TECHNIQUES:

CALL MXMTO (BT, ARRAY)

BT ■ flow block number transferred to

ARRAY - array used to store all flow block

numbers which can transfer con-

trol to BT. A -1 is stored in

ARRAY following the last block

number.

None

-102-

PROGRAM NAME: MXMFRM

PURPOSE: To extract from the flow block connectivity

matrix all the numbers of the flow blocks which

can be reached from a specified flow block

(i.e. -all J's suchthat C(I, J) = 1 for a

given I).

FUNCTIONS: Stores flow block numbers in an array passed

in the calling sequence.

EXTERNAL REFERENCES:

COMMON REQUIREMENTS: TCOM.DEF, MATAB.DEF, VTAB.DEF

SIZE:

CALLING SEQUENCE: CALL MXMFRM (BF, ARRAY)

BF - flow block number to transfer from

ARRAY - array used to store all flow block

numbers which can be transferred

to from flow block BF. A -1 is

stored in ARRAY following the last

flow block number.

TECHNIQUES: None

-103-

C. Macro Expansion - Phase B

Macro Expansion - Phase B (MXPHB) has been completed and de-

bugged. MXPHB has served as a test-bed for the debugging of the Macro

Expansion support package documented elsewhere.

MXPHB transforms all implied loops in the IVTRAN program into

explicit loops. An implied loop exists whenever an array reference appears

(witK dn asterisk appearing in one or more index positions) or when an array

name appears without an index expression, implying an asterisk in every

index position.

MXPHB locates all array references in the program by using the LINK

chain associated with each array name. When an array reference is found in

which one or more asterisks appear, MXPHB locates all other matching array

references in that statement, then creates a DO FOR ALL statement with the

1 original IVTRAN statement as its scope, and replaces one asterisk in each

reference with the DO FOR ALL index. If asterisks still exist, the DO FOR ALL

I - IVTRAN statement pair is nested in a DO loop with the DO index replacing

another asterisk. This process continues until all asterisks are replaced.

I
1
1
1
1
I
I
I
*

MXPHB copies all LINK chains in a work area (WTABLE). It then

examines each array reference in CTABLE, and if the entry contains no
asterisks, the LINK copy in WTA3 is deleted. When an asterisk is found,
explicit loops are created as abov«?, and then the appropriate LINK copies are

deleted. When all entries in WTAB become zero, MXPHB is done.

When an array reference has more than one asterisk, the first one

encountered is replaced by the DO FOR ALL index. This naive approach will
be replaced in MXPHB veision 2. Creation of multi-indices will be considered

at the same time.

-104-

The root program for Macro Expansion (MX) and Macro Expansion

Phase B (MXPHB), with attendant sub-programs, are documented below. The

naming convention for the programs is:

1st letter
2nd letter

3rd letter
4th - 6th letter -

M
phase letter, or U if used by more than one phase

action taken (e.g., L - locale)
rough mnemonic for operand (s)

!

■*.'w-:-'/' "

1

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

MBISEX (LOGICAL FUNCTION)

Is this an explicit array reference?

CNDX must be an OPRAND pointing to an ARRAY

element in STAB. If CNDX is the first OPRAND

of an ARRAY EXOP, and if none of the other

OPRAND's in the EXOP are asterisks

(CTABL.EQ.ASTER) then MBISEX ♦-.TRUE., else

MBISEX«- .FALSE. Error trap on improper

argument.

INSERTS: TCOM.DEF, CTAB.DEF, STAB.DEF,

TABL.EQU, NOYES.EQU

ROUTINES: L, UEHALT, UCLCNH

TCOM, CTABLE, STABLE

MBISEX (CNDX)

-106-

PROGRAM NAME:

PURPOSE:

FUNCTION:

MBISRF (LOGICAL FUNCTION)

Is this an array reference?

If CTABLE element CNDX occurs in an ARRAY i'XOP,

MBISRF«- .TRUE., else MBISRF «- .FALSE.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L, UCLCNH

TCOM, CTABLE

MBISRK (CNDX)

-107-

^iß0sffm,"':''- -•■ '■■

I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

GALLING SEQUENCE:

TECHNIQUES:

MBLNAS (INTEGER FUNCTION)

Locate next asterisk.

CNDX must be an ARRAY EXOP with at least one

asterisk in its index list. MBLNAS is set to the

index value of the first OPRAND in the list for

which CTABL.EQ.ASTER. Error trap on improper

argument or no asterisk.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU,

NOYES.EQU

ROUTINES: L.UEHALT

TCOM, CTABLE

MBLNAS (CNDX)

...i., ■.-■V.::V.,^..,,^1 -.,„■.,

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALUNG SEQUENCE:

MBMARF (SUBROUTINE)

Make array reference.

CNDX. is an OPRAND pointing to an ARRAY element

in STAB, but CNDX does not appear in an

ARRAY EXOP. Replace this OPRAND with an

ARRAY EXOP whose first OPRAND points to the

same STAB elements, and whose entire index

list is asterisks.

INSERTS: TCOM.DEF, CTAB.DEF, STAB.DEF,

TABL.EQU, NOYES.EQU

ROUTINES: L, S, UCMSKE, UCMCPY, USDLNK,

UCBOPR, USUWCY

TCOM, CTABLE, STABLE

CALL MBMARF (CNDX)

TECHNIQUES:

-109-

iHHn^n

PROGRAM NAME:

PURPOSE:

FUNCTION:

MBRPAS (SUBROUTINE)

Replace asterisk with scalar.

WNDX is the index in WTAB of a list of array

references in CTAB. Replace the first asterisk

in each of these with a reference to the INT

SCALAR at SNDX in STAB.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, WTAB.DEF, TABL.EQU

COMMON:

ROUTINES: L, MBLNAS, UCBOPR

CALLING SEQUENCE: CALL MBRPAS (WNDX, SNDX)

TECHNIQUES:

-110-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERE

COMMON:

MBRXTN (INTEGER FUNCTION

Return extent of asterisk index.

CNDX is an array EXOP with at least one asterisk

in its index list. Locate the first asterisk and

find the extent of the index - available in the

ETAB element associated with the STAB entry for

this array. Errop trap on improper argument, no

asterisk or adjustable extent.

INSERTS: TCOM.DEF, CTAB.DEF, STAB.DEF,

ETAB.DEF, TABL.EQU

ROUTINES: L, UEHALT

TCOM, CTABLE, STABLE, ETABLE

CALLING SEQUENCE: MBRXTN (CNDX)

„

I
I

TECHNIQUES:

-HI-

trcmm*** AB«

I
I
I
1

PROGRAM NAME:

PUR POSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

MULRFS (SUBROUTINE)

Locate array references In statement.

Locate ail the ARRAY EXOP's containing asterisks

in the IVTRAN* statement containing CNDX. Make

a list of these EXOP's in WTAB, and set WNDX to

the index of the list. Error trap on bad program
structure or stack overflow.

INSERTS: TCOM.DEF, CTAB.DEF. WTAB.DEF
NOYES.EQU

ROUTINES: L, S# UEHALT, UCLTST, UCLSTO

UGZSTK, UGPUSH, UGPOP, MBISEX, UWDLNK
UGTELM

TCOM, CTABLE, WTABLE

CALL MULRFS (CNDX, WNDX)

-112-

i

I
I
I
I
I
I
I
I
I
J
I
J
I
I
I
I
I
r

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

MUMDFA (SUBROUTINE)

Make DÜ FOR ALL statement.

CNDX is an IVTRAN statement. Build a DO FOR

ALL skeleton around it consisting of a preceding

FORALL statement and a following labelled CONTIN

statement. Set DNDX to the index of the FORALL

statement.

INSERTS: TCOM.DEF, CTAB.DEF, LTAB.DEF,

TABL.EQU, NOYES.EQU, TYPE.EQU

ROUTINES: L, S, UCMLBL, UCMSKS, UCCSTA,

UCASTA, UCLPST, UCBOPR

TCOM, CTABLE, LTABLE

CALL MUMDFA (CNDX, DNDX)

i

-113-

r-, t ,. ,

PROGRAM NAME;

PURPOSE;

FUNCTION;

EXTERNAL REFERENCES:

COMMON;

CALLING SEQUENCE:

TECHNIQUES;

MUMDO (SUBROUTINE)

Make DO statement.

DFNDX is a FORALL/DO statement. Create a

DO statement*preceding it with the same range.

If MAKING.EQ.TRUE, create an OPRAND for an

increment value. Set DONDX to the index of the

new DO statement.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQTI,

TYPE.EQU, NOYES.EQU

ROUTINES: L, UCMSKS, UCMCPY, UCLPST,
UCASTA

TCOM, CTABLE

CALL MUMDO (DFNDX, DONDX, MAKING)

-114-

«SÜÄWf«

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

MX (SUBROUTINE)

Macro Expansion root program.

MX creates a STATOP back chain in CB.AKOP

then calls the subroutines which are the Macro

Expansion phases.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, S

COMMON: TCOM, CTABLE

CALLING SEQUENCE: CALL MX

TECHNIQUES:

I
I
1
1
J
I
I

-115-

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

MXPHB (SUBROUTINE)

Macro L cpansion Phase B main program

MXPHB proceeds In the following steps:

0. Initialization; zero WTAB, chain all SARRAY

element in STAB. Cbpy all LINK chains into

WTAB.
1. Eliminate each LINK copy in WTAB for which

no asterisks appear; if an SARRAY reference

is found not in an ARRAY EXOP. create an

ARRAY EXOP with all asterisks.

2. Pass through all copies in WTAB again. For

each non-zero link copy:

a. Locate all ARRAY EXOPS in that statement

with asterisks, then delete the LINK

copies from WTAB

b. Write a FORALL statement around the

given statement, replacing one asterisk

with a generated integer scalar

c. If asterisks remain, write DO statements

around the existing group until all

asterisks are replaced.

INSERTS: TCOM.DEF, CTAB.DEF. STAB.DEF,

WTAB.DEF, TABL,EQU, TYPE.EQU, NOYES.EQU

ROUTINES: L, S, CSETZ, USCHAN, USCLNK,

MBISEX, MBISRF, MBMARF, MULRFS, UCLTST,

MBRXTN, USMSCA, UKMISC, MBRPAS, MUMDFA,

UCLNCN, UCBOPR, MUMDO, UKMINT

TCOM, CTABLE, STABLE, WTABLE

CALL MXPHB

-116-

»«II M'mmmmmmmmm mmmmmmmmmmM

D. Macro Expander and Optimizer Support Package

The Macro Expander and Optimizer phases of the IVTRAN compiler
share a support package of approximately 90 routines. This package is
85 per cent complete and debugged as of this writing.

The purpose of the support package is to allow dealing with the
Intermediate Language representation of an IVTRAN program at a higher level

than its basic block and table structure; resulting in more rapid coding and

debugging of the Macro Expander and Optimizer, and making these programs

more insensitive to changes in the Intermediate Language. The routines in
the support package fall into the following categories.

1. Adding or deleting table elements and constructs.

2. Maintaining or modifying program structure.

3. Locating specific program units or structures.

4. Performing symbolic arithmetic on IVTRAN expressions.

Naming Conventions

All routines in the support package are named according to the
following conventions:

1st letter

2nd letter

3rd letter

4th-6th letters

U

table prefix letter (C, K, S, L, W), or G for general

routines, or A for algebraic routines

action (e.g., D - delete or decrement, A - add or append,
L - locate

roughly mnemonic for the routine's operand(s).

The routines are grouped by function below.

-117-

■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Vv:^^-^'Ji',V*

CN chain routines;

The following routines perform various manipulations of the CN

chains attached to EXOP' s and STATOP' s in the CTABLE.

.

-118-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCAOCN (SUBROUTINE)

Add OPRAND to ON chain

Add the OPRAND at CNDX2 to a ON chain

immediately following the element at CNDX1.

CNDX1 may be STATOP/EXOP/OPRAND. Error

trap on improper argument.

INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

ROUTINES: UEHALT, L, S

TCOM, CTABL

CALL UCAOCN (CNDX1, CNDX2)

-119-

I

I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFEREI

COMMON:

CALLING SEQUENC

TECHNIQUES:

I
I
I
I
I
I
I

UCAOCT (SUBROUTINE)

Add OPRAND to end of ON chain.

Add the OPRAND at CNDX2 to the end of the CN

chain containing CNDX1. CNDX1 may be

STATOP/EXOP/OPRAND. Error trap on improper
argument.

INSERTS: TCOM.DEF, CTAB.DCL. NOYES.EQU

ROUTINES: USHALT, L, S, UCLTCN

TCOM, CTABLE

CALL UCAOCT (CNDXI, CNDX2)

-120-

PROGRAM NAME: UCLCNH (INTEGER FUNCTION)

I
I
1
|

1
I

i
I
1
1
I
I
I

PURPOSE:

FUNCTION:

Locate head of ON chain

Locate the EXOP/STATOP which begins the CN

chain containing the OPRAND at CNDX. Error

call on improper argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

ROUTINES: L, UEHALT

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCLCNH (CNDX)

-121-

■ ■■■

msm«®

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCLNCN (INTEGER FUNCTION)

Locate n'th OPRAND

Set UCLNCN to the index of the N'th OPRAND

on the ON chain containing CNDX, with CNDX
counting as I.

KTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

I
J

1

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L

TCOM, CTABLE

UCLNCN (CNDX, N)

i

I
I
I
I

-12?-

1
1 PROGRAM NAME:

1 PURPOSE:

g FUNCTION:

UCLPOP (INTEGER FUNCTION)

Locate previous element in ON chain.

Locate the element in the CN chain which pre-

cedes the OPRAND at CNDX by following the

chain around the ring. Error trap on improper
argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UEHALT

COMMON: TCOM, CTABLE

CALLING SEQUENCE: UCLPOP (CNDX)

TECHNIQUES:

-123-

f- - -I I ■'

I

I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCLTCN (INTEGER FUNCTION)

Locate tail of ON chain.

Locate the OPRAND in the ON chain containing

the element at CNDX for which CLARG.EQ.YES.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTA:-.DCL, NOYES.EQU

ROUTINES: L

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

UCLTCN (CNDX)

-124-

VW

PROGRAM NAME: UCNOCN (INTEGER FUNCTION)

Count OPRANDS In ON chain.

Set UCNOCN to the number of OPRANDS in the

ON chain which begins at the element at CNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

PURPOSE:

FUNCTION:

I
I
I

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L

TCOM, CTABLE

UCNOCN (CNDX)

-125-

mmBKHBmTr' wp

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

UCUOCN (SUBROUTINE)

Unlink OPRAND from ON chain

Remove the OPRAND at CNDXfrom its ON chain,

and update the chain. Error trap on improper

argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L, S, UEHALT, UCLPOP

TCOM, CTABLE

CALL UCUOCN (CNDX)

%
-126-

LINK chain routines

The following routines maintain the LINK chains which begin at
elements in CTABLE, STABLE, KTABLE and LTABLE and use the CLINK field

in CTABLE to locate all references to a given element. Also included are

routines which create and maintain copies of these chains in the work
area table.

:;

I
-127-

I
I

I
I
I
I
I
I
I
i
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCALNK (SUBROUTINE)

Add element to CLINK chain.

Add the CTAB element at CNDX to the CLINK

chain which begins at CLINK (CNDX).

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, S# UGALNK

TCOM# CTABLE

CALL UCALNK (NDX, CNDX)

-128-

mmm

UCDLNK (SUBROUTINE)

Delete element from CLINK chain

Remove the element NDX from the CLINK chain

which begins'at CLINK (CNDX). Error trap if

CLINK (CMDX) = 0.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

PROGRAM NAME:

PURPOSE:

FUNCTION:

ROUTINES: L, S, UEHALT, UGDLNK

I
I
I
I
I
I
I
I
I
I
I
1

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

CALL UCDLNK (NDX, CNDX)

-129-

n MMMMnniHIHnMMHHHHMMMHi

PROGRAM NAME:

PURPOSE:

FUNCTION:

UGALNK (SUBROUTINE)

Add link to chain with non-zero head.

Add VAL to the chain whose (non-zero) head is

HD and whose field definition is FLD. Error

trap if HD is zero.

EXTERNAL REFERENCES: INSERTS: none

I
I
I
i

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: UEHALT, UGLEND, S

None

CALL UGALNK (HD, FLD, VAL)

1
1
I
I
I

-130-

I
,.„,„ ,,r .,,.,,-., .,_■,,._., ,, ,.v:,?rT.,,.^,,, .tvi,r^ .y^^l,.^.-.;..j:v^r?„...r^r^,,^.>:i.r,-r'--i^,?.^,^-Z :?■-'■*■:; J'-^ V. ■/.^-■i'. ./T-J^.^; .^

^B'
PROGRAM NAME

PURPOSE:

FUNCTION:

EXTERNAL REFER]

COMMON:

1

UGAPND (SUBROUTINE)

Add element to chain and set head.

Add VAL to the chain whose head is HD and

whose field definition is FLD. If HD. EQ. 0,

HD «- VAL.

CALLING SEQUENCE:

ROUTINES: UGLEND, S

None

CALL UGAPND (HD, FLD, VAL)

TECHNIQUES:

..

i
1
I
I
i

-131-

PROGRAM NAME: UGDLNK (SUBROUTINE)

PURPOSE: Delete link from chain.

FUNCTION: Remove VAL from the chain whose head is HD

and whose field definition is FLD. Error trap

if HD.EQ.VAL.

EXTERNAL REFERENCES: INSERTS: None

TECHNIQUES:

ROUTINES: L, S, UEHALT

COMMON: None

CALLING SEQUENCE: CALL UGDLNK (HD, FLD, VAL)

-132-

J
I
J
I
J
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UGLEND (INTEGER FUNCTION)

Locate end of chain.

Set UGLEND to the Index of the last element

of the chain whose head is HD and whose field

definition is FLD.

EXTERNAL REFERENCES: INSERTS: None

ROUTINES: L

None

UGLEND (HD, FLD)

-133-

«HM

PROGRAM NAME:

PURPOSE:

FUNCTION:

UGNLNK (INTEGER FUNCTION)

Count links in chain.

Set UGNLNK to the number of links in the chain

whose head is HD and whose field definition

is FLD.

t.
EXTERNAL REFERENCES: INSERTS: None

,.

■

,.

TECHNIQUES:

ROUTINES: L

COMMON: None

CALLING SEQUENCE: UGNLNK (HD, FLD)

i
1
I

-134-

I
I
I
I
I
I
1
1
I

PROGRAM KÄME:

PURPOSE:

FUNCTION:

UKALNK (SUBROUTINE)

Add element to KLINK chain

Add the CTAB element at CNDX to the KLINK
chain beginning at KLINKO (KNDX)

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, KTAB.DEF

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L, S, UGALNK

TCOM, CTABLE, KTABLE

CALL UKALNK (KNDX, CNDX)

;.

i

i
v

-135-

PROGRAM NAME: UKDLNK (SUBROUTINE)

PURPOSE: Delete element from KLINK chain.

FUNCTION: Delete the CTAB element at CNDX from the

KLINK chain beginning at KLINKO (KNDX).

Error trap if chain empty.

EXTERNAL REFERENCES: INSERTS: TOOM.DEF, CTAB.DCL, KTAB.DEF

ROUTINES: L, S, UEHALT, UGDLNK

COMMON: TCOM, CTABLE, KTABLE

CALLING SEQUENCE: CALL UKDLNK (KNDX, CNDX)

TECHNIQUES:

-136-

PROGRAM NAME: ULALNK (SUBROUTINE)

PURPOSE: Add element to LLINK chain.

FUNCTION: Add the CTAB element at CNDX to the LLINK

chain which begins at LLINKO (LNDX).

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, LTAB.DEF

ROUTINES: L, S, UGALNK

COMMON: TCOM, CTABLE, LIABLE

J
i
1
I
J
i
I
J
1
1

CALLING SEQUENCE:

TECHNIQUES:

CALL ULALNK (LNDX, CNDX)

-137-

PROGRAM NAME: ULDLNK (SUBROUTINE)

PURPOSE: Delete element from LLINK chain.

FUNCTION: Remove the CTAB element at CNDX from the

LLINK chain beginning at LLINKO (LNDX).

Error trap if chain empty.

I
I
J

I
J

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, LTAB.DEF

ROUTINES: L, S, UEHALT, UGDLNK

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE, LTABLE

CALL ULDLNK (LNDX, CNDX)

i

J
I
I
I

-138-

tm

I
I
I
I
I
I
I
I
I
I
1
1
i
i

PROGRAM NAME:

PURPOSE:

FUNCTION:

USALNK (SUBROUTINE)

Add element to SLINK chain

Add the CTAB element at CNDX to the SLINK

chain which begins at SUNKO (SNDX).

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, STAB.DCL, CTAB.DCL

ROUTINES: L, S, UGALNK

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE, STABLE

CALL USALNK (SNDX, CNDX)

1
-139-

PROGRAM NAME:

PURPOSE:

FUNCTION:

USCHAN (SUBROUTINE)

Chain all STAB elements of .Uke SKIND

Chain all STAB elements for which SKIND.EQ.

KIND using HD as the chain head and field

definition ELD for the link field.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, STAB.DCL

ROUTINES: L, S

COMMON: TCOM, STABLE

I
1
I
J
1
I
I
I
I
I

CALLING SEQUENCE:

TECHNIQUES:

CALL USCHAN (KIND, HD, FLD)

-140-

PROGRAM NAME: USCLNK (SUBROUTINE)

PURPOSE: Copy SLINK chain to work aree

FUNCTION: Copy the SLINK chain for the STAB element at

SNDX into WTAB. Set WNDX to the index of

the copy element in WTAB.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, STAB.DCL, CTAB.DCL,

WTAB.DEF

ROUTINES: L, S, UGNLNK, UGAPND

COMMON: TCOM, STABLE, CTABLE, WTABLE

CALLING SEQUENCE: CALL USCLNK (SNDX, WNDX)

TECHNIQUES:

-141-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

USDLNK (SUBROUTINE)

Delete element from SLINK chain.

Remove the CTAB element at CNDX from the

SLINK chain which begins at SLINKO (SNDX).

Error trap if chain empty.

INSERTS: TCOM.DEF. CTAB.DCL, STAC.DCL

ROUTINES: L, S, UEHALT, UGDLNK

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE, STABLE

CALL USDLNK (SNDX, CNDX)

-142-

WiMIPilil^^

PROGRAM NAME: UWDLNK (SUBROUTINE)

PURPOSE:

FUNCTION:

Delete link copy from work area.

CNDX is an ARRAY EXOP whose CLINK field

appears in a 'SLINK chain copy in WTAB. Locate

the copy element via the cross-reference pointer

in STAB (SLINK), then locate the link copy and

delete. Error trap on improper argument or copy

not found.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF, STAB.DCL,

WTAB.DEF

ROUTINES: L, S, UEHALT

COMMON

CALLING SEQUENCE:

TCOM, CTABLE, STABLE, STABLE

CALL UWDLNK (CNDX)

TECHNIQUES:

-143-

mmmmmmmmmmim 9mwimmHmmmmmmmm^imimmmmHii>mm.'m.

PROGRAM NAME:

PURPOSE:

FUNCTION:

UWUCPY (SUBROUTINE)

Update link copy in work area.

WNDX is the index of a link chain copy element

in WTAB in which CNDX1 should appear. Replace

CNDX1 with CNDX2. Error trap if improper

argument or copy not found.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, WTAB.DEF

ROUTINES: L, S. UEHALT

COMMON:

TECHNIQUES:

TCOM, WTABLE

CALLING SEQUENCE: CALL UWUCPY (WNDX. CNDX1, CNDX2)

-144-

BiKaByawwwwiBaatitH^w mmmmmnmmmmmm-

REF counter routines

The following routines manipulate the CREF, KREF and LREF

fields in CTABLE, KTABLE and LIABLE.

-14&-

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCDREF (SUBROUTINE)

Decrement CREF and flag if zero.

Decrement the CREF field of the CTAB element

at CNDX. ZRO«-.TRUE. if CREF becomes
zero, else ZRO«- .FALSE.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, S

L

COMMON: TCOM, CTABLE

li
D
i

i

0
i

CALLING SEQUENCE:

TECHNIQUES:

CALL UCDREF (CNDX, ZRO)

-146-

■,^-r-^.r,-.,-:---.-:.-,-...--,^- v-:-^-.,..- r'v'^':*--'*?*1!!^^

I
I
I
I
I
I
J
i
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCIREF (SUBROUTINE)

Increment ORE?

Add one to the CREF field of the CTAB element

at CNDX-

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, S

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

CALL UCIREF (CNDX)

1

i

I
I
I
I

-147-

y'-r; **i%!-rfirB'?f>'.%t -.v-.^-i^vVwt;.^;,*.-^;^,:; ;-;. . nwawjwa» immmmmmBmm*.

I
I
I
I
I
I
I
I
I
I
I
I
I
!

I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UKDREF (SUBROUTINE)

Decrement KREF

Decrement the KREF field of the KTAB element

at KNDX. ZRO «- .TRUE. If KREF goes to zero,

else ZRO «-.FALSE.

INSERTS: TCOM.DEF, KTAB.DEF

ROUTINES: L, S

TCOM, KTABLE

CALL UKDREF (KNDX, ZRO)

-148-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UKIREF (SUBROUTINE)

Increment KREF

Add one to the KREF field of the KTAB element

at KNDX.

INSERTS: TCOM.DEF, KTAB.DEF

ROUTINES: L, S

TCOM, KTABLE

CALL UKIREF (KNDX)

I
I
I
I
I
I
I
I
I

-149-

■ ■ .

■■■'"■, '"':■ ■ ■■'■■■■■■. . '■; :'■; ■ ' _' '

PROGRAM NAME:

PURPOSE:

FUNCTION:

ULDREF (SUBROUTINE)

Decrement LREF

Decrement the LREF field of the LTAB element

at LNDX. ZRO ^-.TRUE. if LREF goes to zero,

else ZRO ♦-.FALSE.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, LTAB.DEF

ROUTINES: L, S

1 COMMON: TCOM, LTABLE

CALLING SEQUENCE: CALL ULDREF (LNDX, ZRO)

TECHNIQUES:

:

i

'i

!

i

-150-

UKHHOKammmmmmmum

I
I
I
I
I
I

I
:

i

PROGRAM NAME:

PURPOSE:

FUNCTION:

ULIREF (SUBROUTINE)

Increment LREF

Add one to the LREF field of the LTAB element

at LNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, LTAB.DEF

ROUTINES: L, S

COMMON.

CALLING SEQUENCE:

TECHNIQUES:

TCOM, LTABLE

CALL ULIREF (LNDX)

i*

i
1
I

-151-

,..„„..,-

I
I
I
i
I
I

TyTRAN statement routines..

The following statements allow the programmer to manipulate the

program in units of IVTRAN statements. An IVTRAN statement is defined as
a sequence of STATOPS which may contain a SEQNO STATOP. a LABEL STATOP,

and exactly one executable STATOP (COPR.GT.LABEL), unless COPR.EQ.LIF,

in which case there are two executable STATOPS. When MX is initialized,

it creates a back chain of STATOPS in the CBAKOP loop field which makes

program manipulation far more efficient.

mm

..

1
I

-isa-

..;..,...- ■:'■„■■- il'-'nn ■ ■

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERE]

f COMMON:

UCAPST (SUBROUTINE)

Add IVTRAN statement preceding given statement.

Add the IVTRAN statement at CNDX1 to the pro-

gram immediately preceding the statement at

CNDX2. by modifying the CNOPR and CBAKOP

chains. Error trap on Improper arguments.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UCLSTT, UCCSTA, UEHALT

TCOM, CTABLE

CALLING SEQUENCE: CALL UCAPST (CNDXI, CNDX2)

..

i
1
1
I

TECHNIQUES:

-153-

iW^lf^^««!«ri-v. • ■4^^^mm>mmmmifilvi^.,><Km

PROGRAM NAME: UCASTA (SUBROUTINE)

PURPOSE:

FUNCTION:

Add IVTRAN statement following given statement,

Add the IVTRAN statement at CNDX1 to the pro-

gram immediately following the statement at

CNDX2 by modifying the CNOPR and CBAKOP

chains. Error trap on improper arguments.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

TECHNIQUES:

ROUTINES: L, UEHALT, UCLSTT, UCLNST,

UCCSTA

COMMON:

CALUNG SEQUENCE:

TCOM, CTABLE

CALL UCASTA (CNDX1, CNDX2)

-154-

I
I
I
I
I
1

i.

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCCSTA (SUBROUTINE)

Chain STATOP' s

CNOPR (CNDX1)«-CNDX2/ CBAKOP(CNDX2)
CNDX1

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: S

TCOM, CTABLE

CALL UCCSTA (CNDX1, CNDX2)

-155-

I
PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL RE FERE

COMMON:

1
CALLING SEQUENCE:

UCLNST (INTEGER FUNCTION)

Locate next IVTRAN statement

Locate the first STATOP in the IVTRAN statement

following the STATOP at CNDX. Error trap if

improper argument.

INSERTS: TCOM.DEF, CTAB.DEF

ROUTINES: L. UEHALT

TCOM, CTABLE

UCLNST (CNDX)

,.

,.

i.

:

TECHNIQUES:

1

-156-

PROGRAM NAME

PURPOSE:

FUNCTION:

EXTERNAL REFERE

i COMMON:

UCLPST (INTEGER FUNCTION)

Locate previous IVTRAN statement

Locate the STATOP which begins the IVTRAN

statement preceding the statement containing the

STATOP at CNDX. Error trap on improper
argument.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L. UEHALT, UCLTST

CALLING SEQUENCE: UCLPST (CNDX)

TECHNIQUES:

-157-

Jp&pMMaMHHMHBi

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCLSTO (INTEGER FUNCTION)

Locate executable STATOP of IVTRAN statement.

Locate the first executable (COPR.GT.LABEL)

STATOP in the IVTRAN statement containing the

element at CNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF

ROUTINES: L, UCLTST

COMMON:

CALLING SEQUENCE:

TCOM, CTABLE

UCLSTO (CNDX)

TECHNIQUES:

-158-

,;." 1%-^ . -.-WTZ. t=*W .-V^.- .

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCLSTT (INTEGER FUNCTION)

Locate tail STATOP of IVTRAN statement.

Locate the last STATOP in the IVTRAN statement

containing the element at CNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF

ROUTINES: L

COMMON: TCOM, CTABLE

CALLING SEQUENCE: UCLSTT (CNDX)

TECHNIQUES:

.n;Q-

I
I
I
I
I
1
i

i.
1.

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCLTST (INTEGER FUNCTION)

Locate head of IVTRAN statement

Locate the STATOP which begins the IVTRAN

statement containing the element at CNDX.

Error trap on bad program structure.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF, NOYES.EQU

ROUTINES: L, UEHALT, UCLCNH

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

UCLTST

-160-

PROGRAM NAME:
UCRSTO (INTEGER FUNCTION)

PURPOSE:
Return value of executable STATOP.

FUNCTION:
UCRSTO is set to the value of the COPR field

of the first executable STATOP of the IVTRAN

statement containing CNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UCLSTO

COMMON: TCOM, CTABLE

CALLING SEQUENCE: UCRSTO (CNDX)

TECHNIQUES:

■ .

-161-

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCUSTE (SUBROUTINE)

Unlink STATOP from chains.

Remove the STATOP at CNDX from ihe CNOPR

and CBAKOP chains, and update the chains.

Error trap on Improper argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, S, UEHALT

COMI. TCOM, CTABLE

CALLING SEQUENCE: CALL UCUSTE (CNDX)

TECHNIQUES:

-162-

I
I
i

:

Routines for creating table elements and structure, including routines for

locating KTAB elements.

The following routines create individual elements in CTABLE, KTABLE,

LTABLE, STABLE and ETABLE, and also create structures in CTABLE. All the

basic routines use a single general routine' to acquire table elements.

Definitions:

A skeleton in the CTABLE is a STATOP or EXOP with a CN chain of

OPRAND's. The COPR value of the STATOP/EXOP is set. None of the OPRAND's

are bound to table elements.

Binding an OPRAND to an element in CTABLE, STABLE, KTABLE, or

LTABLE involves setting the CLINE, CTABLE and CTYPE fields of the OPRAND,

adding to the table elements LINK chain, and incrementing the element's REP

counter if defined. Copying and unbinding OPRAND's involve operations on

the same fields.

■ -163-

■■■■■«■■wwnw—ii——w—— mmmmmmmmmmmmmm.

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCBOPR (SUBROUTINE)

■ i

Bind OPRAND to table element.

Binds the OPRAND at CNDX to the element in

table TABNO at index value NDX. CLINE *-NDXt

CTABL«-TABNO, and the REF counters and LINK

chains for each table entry are updated.

CTYPE «-UCRTYP(NDX). Tables recognized are

CTAB, STAB# KTAB and LTAB. Error trap on

Improper arguments.

INSERTS: TCOM.DEF, CTAB.DCL, STAB.DCL,

KTAB.DEF, LTAB.DEF, TABL.EQU

ROUTINES: L, S, UEHALT, UCIREF, UCALNK,

USALNK, UKIREF, UKALNK, ULIREF, ULALNK

TCOM, CTABLE, STABLE, KTABLE, LTABLE

CALL UCBOPR (CNDX, TABNO, NDX)

-164-

I
I
I
I
I
I
1

..

i.

J.

a.

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCMCPY (SUBROUTINE)

Make copy of OPRAND

Copy all the fields from the OPRAND at OPNDX1

Into the OPRAND at OPNDX2 except ON, CLINK

and CLARG. Update the CLINK field and other

table LINK fields appropriately. Error trap on

improper arguments.

INSERTS: TCOM.DEF, CTAB.DCL, TABL.EQU

ROUTINES: L, S, UEHALT, UCALNK, UCIREF,

USALNK, UKALNK, UKIREF, ULALNK, ULIREF

TCOM, CTABLE

CALL UCMCPY (OPNDX1, OPNDX2)

„. -165-

«,1;.'W:-S!0--CT-^W

l

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCMEXE (SUBROUTINE)

Make EXOP

Create a CTAB element with CK1ND <-EXOP and

COPR «-OP. Set CNDX to the index of the new

element.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: UGTELM, S

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

CALL UCMEXE (OP, CNDX)

1
1
I
1
I
1
I
r -166-

I
ipiwmwwisi

I
I
I
I
I
I
J
I
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCMLBL (SUBROUTINE)

Create LABEL STATOP and associated LTAB
element.

Create a LABEL STATOP with one OPRAND.

Generate a new element in LTAB using LGEN

and bind the OPRAND to it. Set CNDX to the
^ndex of the LABEL STATOP, and set LNDX to

the index of the new LTAB element.

INSERTS: TCOM.DEF, CTAB.DEF, LTAB.DEF
TABL.EQU

ROUTINES: L, S, ULMELM, UCMSKS, UCBOPR

TCOM, CTABLE, LTABLE

»JALL UCMLBL (CNDX, LNDX)

-167-

I
.,.,.,„..„. „,,,, -wmmmm^^f^mmmmmiimwnfiifgimifnHn

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERE

•

COMMON:

UCMOPR (SUBROUTINE)

Make OPRAND element.

Create a new CTAB element with CKIND ♦-OPRAND,

Set CNDX to the index of the new element.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: S, UGTELM

TCOM, CTABLE

4»
CALLING SEQUENCE: CALL UCMOPR (CNDX)

0

1
I

TECHNIQUES:

-168-

I
I
I
I
I
1
1

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCMSKE (SUBROUTINE)

Make EXOP skeleton.

Make an EXOP element with COPR^-OP, then

make up a ON chain with NARG OPRANDS. Set

CNDX to the index of the EXOP element.

INSERTS: TCOM.DEF, CTAB.DEF

ROUTINES: UEHALT, UCMEXE, UCMSKO

TCOM, CTABLE

CALL UCMSKE (OP, NARG, CNDX)

V

r

I
I
I
I
I
I

-169-

. .

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERE

IP

COMMON:

UCMSKO (SUBROUTINE)

Make skeleton ON chain.

Make NARG OPRANDS and link them into a CN

chain. CN (CNDX) «-index of first OPRAND in

chain CN (Last OPRAND) «-CNüX, and CLARG

(last OPRAND) f-YES.

ROUTINES: UCMOPR, S

TCOM, CTABLE

CALLING SEQUENCE: CALL UCMSKO (CNDX, NARG)

TECHNIQUES:

1
1
I
I

-170-

I

!

I
I
I
I
I
I
1
1
J
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCMSKS (SUBROUTINE)

Make STATOP skeleton.

Make a STATOP element with COPR ♦-OP, then

make a ON cHain with NARG OPRANDS and link

it to the STATOP. Set CNDX to the index of the

STATOP element.

INSERTS: TCOM.DEF, CTAB.DEF

ROUTINES: S, UEHALT, UCMSTE, UCMSKO

TCOM, CTABLE

CALL UCMSKS (OP, NARG, CNDX)

-171-

■ ■ '.. ■ , ■ ...■ -. iv: '^■■■^'m^^tmmmt^m

I
I
I
I
I
I
I
1
I
I
I
I
1
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCMSTE (SUBROUTINE)

Make a STATOP element.

Create a CTAB element with CKIND «-STATOP

and COPR «-OK Set CNDX to the index of the

new element.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: S, UGTELM

TCOM, CTABLE

CALL UCMSTE (OP, CNDX)

-172-

'^i^SSS9VBMBFMHSBHP(1Vn^!ww^,^i,!R?>lwntReint^

PROGRAM NAME:

PURPOSE:

FUNCTION:

UCRTYP (INTEGER FUNCTION)

Return type of structure.

UCRTYP is set to the value of the first valid

CTYPE field encountered in the program

structure beginning at CNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L

COMMON: TCOM, CTABLE

CALLING SEQUENCE: UCRTYP (CNDX)

TECHNIQUES:

-173-

;-»,;.,:,:.-

PROGRAM NAME: UGTELM (SUBROUTINE)

PURPOSE: Get table element.

FUNCTION: Acquire a new element in table TABNO of size

SIZE and set NDX to its index. Take the new

element from a free list if possible. Extend

table if necessary. Element is set to all zeroes.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, STAB.DCL,

KTAB.DEF, LTAB.DEF, ETAB.DEF, VTAB.DEF,

WTAB.DEF, PTAB.DEF, TABL.EQU

TECHNIQUES:

ROUTINES: L, UGZELM, EXTEND

COMMON: TCOM, CTABLE, STABLE, KTABLE, LTABLE,

ETABLE, VTABLE, WTABLE, PTABLE

CALLING SEQUENCE: CALL UGTELM (TABNO, SIZE, NDX)

-174-

I
I
I
I
I
i

ac

• •

I

PROGRAM NAME:

PURPOSE:

FUNCTION:

UKUNT (INTEGER FUNCTION)

Locate INT constant.

If a KTAB element exists with KTYPE.EQ.INT

and KVAL.EQ'.VAL, set UKLINT to its index,

else UKLINT «-0.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, KTAB.DEF, TYPE.EQU

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L

TCOM, KTAB

UKLINT (VAL)

I
1
I

-176-

1
1 PROGRAM NAME;

I PURPOSE:

I FUNCTION:

J
EXTERNAL REFERENCES:

UKLISC (INTEGER FUNCTION)

Locate iterated set constant.

If a KTAB element exist with KTYPE.EQ.SET,

whose initial value and increment are one, and

whose extent is XTNT. then UKLISC is set to

its index value, else UKLISC f-0.

INSERTS: TCOM.DEF, KTAB.DEF, ETAB.DEF
TYPE.EQU, NOYES.EQU

ROUTINES: L

'OMMON:
TCOM, KTABLE, ETABLE

CALLING SEQUENCE: UKLISC (XTNT)

TECHNIQUES:

-177-

' ■-„;.• ,.-.-.■

■■■■■■■iBHHHHH

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

UKMINT (SUBROUTINE)

Make INT constant.

If a KTAB element exists with KTYPE.EQ.INT

and KVAL.EQ.VAL, set KNDX to its index, else

create a KTAB element with KTYPE «-INT and

KVAL«-VAL and set KNDX to its index.

INSERTS: TCOM.DEF, KTAB.DEF, TYPE.EQU

ROUTINES: S, UKLINT, UGTELM, UGAPND

TCOM, KTABLE

CALL UKMINT (VAL.KNDX)

1
I
I

TECHNIQUES:

-178-

MBWWB

I
I
I
I
I
I
!

I
1
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

UKMISC (SUBROUTINE)

Make iterated set constant.

If UKLISC fails, create a KTAB element with

KTYPE+-SET, 'initial value and increment one,

final value t-XTNT, and an associated ETAB

element with extent OCTNT. Set KNDX to the

new KTAB element index.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, KTAB.DEF, ETAB.DEF,

TABL.EQU, TYPE.EQU, NOYES.EQU

ROUTINES: S, UKLISC, UGTELM, UGAPND

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, KTABLE, ETABLE

CALL USMISC (XTNT, KNDX)

| -179-

.. ,.„.,.
■

I
I
I
I
I
I
I
J
T
1
I
1
I
I
I
I
I
I
v...

PROGRAM NAME:

PURPOSE:

FUNCTION:

ULMELM (3UBOUTINE)

Make LTAB element.

Create a new LTAB element: LVAL«- next value

of LGEN, LISDF*-YES.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, LTAB.DEF, NOYES.EQU

ROUTINES: S, UGTELM

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, LTABLE

CALL ULMELM (LNDX)

-180-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

1
COMMON:

CALLING SEQ

TECHNIQUES

r

■

USGENM (SUBROUTINE)

Generate variable name.

Generates the next available 6-character

SIXBIT name from the value stored in SGEN.

INSERTS: TCOM.DEF, STAB.DEF, CGLOB.DEF,

XCNAM.EQU

ROUTINES: None

TCOM, STABLE, CGLOB

CALL USGENM (SN)

I
-181-

I
I
I
I
I
I
I
I
1
i
I
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

USMSCA (SUBROUTINE)

Make scalar element.

Create an STAB element with SNAME sat to the

next available generated name, SKIND «-SCALAR,

STYPE «-TYP. Set SNDX to the index of the

element.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, STAB.DEF

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: S, UGTELM, USGENM, UGAPND

TCOM, STABLE

CALL USMSCA (TYP, SNDX)

-182-

Routines for deleting CT/iBLE elements and structures

The following routines are used to delete elements and structure

in CTABLE. The basic routine is UCDOPR, which may involve extensive

deletion of structure through following CLINE pointers.

I
I
J

I

-183-

■

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

UCDEXE (SUBROUTINE)

Decrement and delete EXOP.

Decrement the CREF counter of the EXOP at

CNDX, and if the count goes to 2ero, delete

the EXOP and its OPRAND chain. Error trap on
improper argument.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UEHALT, UCDREF, UCDOCN
UGFELM

COMMON:
TCOM, CTABLE

CALLING SEQUENCE:

TECHNIQUES:

CALL UCDEXE (CNDX)

-184-

PROGRAM NAME;

PURPOSE:

FUNCTION:

EXTERNAL REFERE1

COMMON:

UCDOCN (SUBROUTINE)

Delete OPRAND chain.

Delete all the OPRANDS in the ON chain

beginning at CNDX with successive calls to

UCDOPR. Error trap on improper argument.

INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

ROUTINES: L, UEHALT, UCDOPR

TCOM, CTABLE

CALLING SEQUENCE: CALL UCDOCN (CNDX)

TECHNIQUES:

-185-

.

I
PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFEREI

COMMON:

I
CALLING SEQUENCE:

TECHNIQUES:

UCDOCN (SUBROUTINE)

Delete OPRAND chain.

Delete all the OPRANDS in the ON chain

beginning at CNDX with successive calls to

UCDOPR. Error trap on improper argument.

INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU

ROUTINES: L, UEHALT, UCDOPR

TCOM, CTABLE

CALL UCDOCN (CNDX)

-185-

■■■■■■■■■■■■■■■■■■■HMHBWV' '*': ■^■■HBi ■ ■ ■;' ■ '

PROGRAM NAME;

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCDOPR (SUBROUTINE)

Delete OPRAND and its substructure.

Delete the OPRAND at CNDX. Update the REF

counter and LINK chain for the table element

CNDX points to. If CNDX points down to mere

structure in the CTAB, decrement all REF counts

and continue deletion if zero. Error trap on

improper argument or program structure error.

INSERTS: TCOM.DEF, CTAB.DCL, STAB.DCL,

KTAB.DEF, LTAB.DEF, TABL.EQU, NOYES.EQU

ROUTINES: L, UEHALT, UGZSTK, UCDLNK,

UCDREF, UGPUSH, UGPOP, UGELFM, USDLNK,

UKDREF, UKDLNK, ULDREF, ULDLNK

TCOM, CTABLE, STABLE, KTABLE, LTABLE

CALL UCDOPR (CNDX)

A stack is used to trace the program structure.

-186-

I
I
I
I
I
I
I
i
i
I
1
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UCDSTA (SUBROUTINE)

Delete IVTRAN statement.

Delete the IVTRAN statement containing CNDX

from the program, by successive calls to UCPSTE

on all the STATOP's in the statement.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: UCLTST, UCLNST, L, UCUSTE

TCOM, CTABLE

CALL UCDSTA (CNDX)

-187-

WWH-

I
I
I
I
I
I
J
J
I
I
I
I

PROGRAM NAME;

PURPOSE:

FUNCTION:

UCDSTE (SUBROUTINE)

Delete STATOP

Delete the STATOP at CNDX and its CN chain

from the program. Update the CNOPR and

CBAKOP chains. Error call if improper argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UEHALT, UCUSTE, UCDOCN,
UGFELM

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

CALL UCDSTE (CNDX)

-188-

r..:v-.,^ir5

I
I
I
r
I
I
I
I
I
*

I
I

PROGRAM NAME;

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UGFELM (SUBROUTINE)

Place element on free list

Zero out the element in table TABNO at Index

NDX, and place it on the table's free list.

Error trap if table has no free list.

INSERTS: TCOM.DEF, CTAB.DEF, STAB.DEF,
TABL.EQU

ROUTINES: S, UEHALT, UGZELM

TCOM, CTABLE, STABLE

CALL UGFELM (TABNO, NDX)

]

I
J

I
-189-

I
I STACK routines

I The following routines implement stacks and the usual PUSH and
POP operations on stacks. Stacks are used for tracing program structure.

I
I
I
I
I
J
I

1
1
J
I
J
I
1
I
I -190-

PROGRAM NAME:

PURPOSE:

FUNCTION:

UGPOP (SUBROUTINE)

Pop value from stack.

Set VAL to the next value in STACK and reset

the stack pointer. NONE*-.TRUE, if no values

remain, else NONE *-.FALSE. Error trap if stack

underflow.

EXTERNAL REFERENCES: INSERTS: None

ROUTINES: UEHALT

COMMON: None

CALLING SEQUENCE:

TECHNIQUES:

CALL UGPOP (STACK, VAL, NONE)

-191-

I
I
I
I
I

..

D

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UGPUSH (SUBROUTINE)

Push value onto stack.

Reset the stack pointer in STACK and push VAL

onto it. Error trap if stack overflow.

INSERTS: None

ROUTINES: UEHALT

None

CALL UGPUSH (STACK, VAL)

.

-192-

PROGRAM NAME:

PURPOSE:

UGZSTK (SUBROUTINE)

Zero stack.

FUNCTION: Zero out STACK and its stack pointer.

EXTERNAL REFERENCES: INSERTS: None

ROUTINES: None

COMMON: None

CALLING SEQUENCE: CALL UGZSTK (STACK)

TECHNIQUES:

f 1

-193-

I
Algebraic routines

The following routines allow limited symbolic algebraic manipula-
tion of arithmetic expressions in the CTABLE. They form the necessary basis

for some phases of Macro Expansion and most of Optimization. This package
is approximately 50 per cent complete as of this writing.

Definitions:

A standard PLUS, is a single PLUS EXOP with one or more OPRANDS
each pointing to one term of the plus. Negative terms are indicated by unary'

minus (MINUS EXOP with one OPRAND). This form is more convenient for
sub-expression analysis than the free form containing both PLUS and MINUl
as binary EXOP's.

rs

An analytic structure is an algebraic construct which is recognized
as a candidate for combination with other analytic structures. Currently,
analytic structures are defined to be INT constants, INT scalars, TIMES of
an INT constant and an INT scalar, or unary minus of any of the above

PROGRAM NAME: UAAASS (SUBROUTINE)

PURPOSE: Add two occurrences of scalar and/or analytic

TIMES.

FUNCTION: CNDX1 and CNDX2 must point to OPRANDS with

SCALAR contents, or to analytic TIMES, or unary

minus of these. The SCALAR's must be identical.

Perform symbolic addition of the two elements,

and set RES to the result. Error trap on improper

argument.

EXTERNAL REFERENCES: INSERTS; TCOM.DEF, CTAB.DEF, TABL.EQU

TECHNIQUES:

ROUTINES: UALSAS, UAISOE, UEHALT, UAISUM,

UAKRVL, UAAISS, UALIAT, U CM SKI, S, L,

UKMINT, UCBOPR, UCMCPY, UAMUMN,

UCMOPR

COMMON: TCOM, CTABLE

CALLING SEQUENCE: CALL UAAASS (CNDX1, CNDX2 , RES)

-195-

I
PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFER]

COMMON:

CALLING SEQUE

TECHNIQUES:

I
1
I
I

UAAII (SUBROUTINE)

Add two integer constants

INDX1 and INDX2 must be OPRANDS pointing to

INT elements'in KTAB, or unary minus of same.

Add the values of the two constants, create a

KTAB element with that value, bind an OPRAND

to it, and set RES to the OPRAND. Error trap on

improper arguments.

INSERTS: TCOM.DEF, TABL.EQU

ROUTINES: UAISIK, UEHALT, UALOUM,

UAKRVL, UKMINT, UCMOPR, UCBOPR

TCOM

CALL UAAII (INDXl, INDX2, RES)

Uses PDP-10 arithmetic.

-196-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAAISS (SUBROUTINE)

Add two occurrences of a scalar.

SNDX1 and SNDX2 must be OPRANDS pointing

to the same INT SCALAR in STAB, or unary minus

of same. Add the two symbolically, and point

RES to the result. Error trap on improper argument.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU,

TYPE.EQU

ROUTINES: UAISIS, UEHALT, UALOUM, UAISOE,

UCMSKE, L, S, UKMINT, UCSOPR, UCMCPY,

UAMUMN

TCOM, CTABLE

CALL UAAISS (SNDX1, SNDX2, RES)

-197-

«?
■HiaHiHMHn

I
I
I
I
I
I
I
r
i
i
i
i

PROGRAM NAME:

PURPOSE:

FUNCTION:

UAATPS (SUBROUTINE)

Append term to standard PLUS.

PNDX must point to a standard PLUS, or be zero.

TNDX may be any expression except non-standard

PLUS or MINUS. If PNDX is zero, a new standard

PLUS macro is formed, and PNDX is set to it.

TNDX is then added to the PLUS. If TNDX is an

analytic structure, UAATPS attempts to combine

it with like occurrences already present in PNDX.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

ROUTINES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM# CTABLE

CALL UAATPS (PNDX, TNDX)

-198-

PROGRAM NAME:

PURPOSE:

FUNCTION:

I
1
I
1
I
I
I
I
I
I
I
I

■

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAISAS (LOGICAL FUNCTION)

Is this an analytic structure?

If CNDX is an analytic strucutre — i.e., an

OPRAND pointing to an integer scalar or constant,

or TIMES of an integer scalar and a constant,

or unary minus of any these — then

UAISAS ♦- .TRUE., else UAISAS 4-. FALSE.

INSERTS: None

ROUTINES: UAISPR, UAISIK, UAISIS, UAISAT

None

UAISAS (CNDX)

-199-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

UAISAT (LOGICAL FUNCTION)

Is this an analytic TIMES?

If CNDX points to an analytic TIMES — TIMES

of an integer scalar and an integer constant —

or unary minus of this — then UAISAT ♦-.TRUE.,

else UAISAT «-.FALSE. Error trap on bad

program structure.

INSERTS: TCOM.DEF, CTAB.DEF# TABL.EQU

ROUTINES: UAISPR, UALOUM, L, UEHALT,

UCNOCN, UAISIK, UAISIS

TCOM, CTABLE

UAISAT (CNDX)

TECHNIQUES:

-200-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

UAISIK (LOGICAL FUNCTION)

Is this an integer constant?

If CNDX is an OPRAND pointing to an INT element

in KTAB, or unary minus of one, then

UAISIK «-.TRUE., else UAISIK ♦-. FALSE. Error

trap if CNDX not OPRAND.

INSERTS: TCOM.DEF, CTAB.DCL, KTAB.DEF,

TABL.EQU, TYPE.EQU

ROUTINES: L, UEHALT, UALOUM

COMMON: OTABLE, KTABLE, TCOM

CALLING SEQUENCE: UAISIK (CNDX)

TECHNIQUES:

-201-

■ ■ ■ .

warn

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

UAISIS (LOGICAL FUNCTION)

Is this an Integer scalar?

If CNDX i& an OPRAND pointing to an INT

SCALAR element in STAB, or unary minus of one,

then UAISIS *- .TRUE., else UMSIS «- .FALSE.

Error trap if CNDX is not OPRAND.

INSERTS: TCOM.DEF, CTAB.DCL, STAB.DEF,

TABL.EQU, TYPE.EQU

ROUTINES: UEHALT, L, UALOUM

TCOM, CTABLE, STABLE

UAISIS (CNDX)

TECHNIQUES:

-202-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAISOE (LOGICAL FUNCTION)

Are these OPRAND'S equal?

If CNDX1 and CNDX2 are OPRANDS whose CTABL

and CLINE fields are equal, UAISOE <-.TRUE.,

else UAISOE <- .FALSE. Error trap if CNDX1 and

CNDX2 are not OPRANDS.

INSERTS: TCOM.DEF, CTAB.DCL

ROUTINES: L, UEHALT

TCOM, CTABLE

UAISCE (CNDX1, CNDX2)

-203-

«S, I ' •' i

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

UAISPM (LOGICAL FUNCTION)

Is this old PLUS or MINUS?

If CNDX is a PLUS EXOP with CTABL { STPLUS,

or binary MINUS, or an OPRAND pointing to

either, UAISPM«-.TRUE., else UAISPM «-.FALSE.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

COMMON:

CALLING SEQUENCE-

TECHNIQUES:

ROUTINES: UAISPR, L, UAISUM

TCOM, CTABLE

UAISPM (CNDX)

-204-

■.. . -■ - ■■ ■■■■■■. ;■.;■■>■..■

PROGRAM NAME:

PURPOSE:

FUNCTION:

UAISPK (LOGICAL FUNCTION)

Is this parenthesized?

If CNDX is an EXOP with CPAR = YES, or an

OPRAND pointing to one, then UAISPR = .TRUE.,

else UAISPR = .FALSE.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, NOYES.EQU,

TABL.EQU

ROUTINES: L

COMMON: TCOM, CTABLE

CALLING SEQUENCE: UAISPR (CNDX)

TECHNIQUES:

-205-

I
PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAISSP (LOGICAL FUNCTION)

Is this standard I'LUS?

If CNDX is a PLUS EXOP with CTABL = STPLUS,

or an OPRAND pointing to one, then

UAISSP <- .TRUE., else UAISSP-.FALSE.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

ROUTINES: L

TCOM, CTABLE

UAISSP (CNDX)

-206-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAISUM (LOGICAL FUNCTION)

Is this a unary minus?

If CNDX is a MINUS EXOP with one OPRAND, or

an OPRAND pointing down to one,

UAISUM ♦-.TRUE., else UAISUM ♦-.FALSE.

INSERTS: TCOM.DEF, CTAB.DEF, NOYES.EQU,
TABL.EQU

ROUTINES: L

TCOM, CTABLE

UAISUM (CNDX)

-207-

PROGRAM NAME: UAKRVL (INTEGER VALUE)

PURPOSE: Return value of integer constant.

FUNCTION: CNDX must be an OPRAND pointing to an

element in KTAB. UAKRVL «-contents of KVAL

field. Error trap on improper argument.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, KTAB.DEF,

TABL.EQU

ROUTINES: L, UEHALT

COMMON: TCOM, CTABLE, KTABLE

CALLING SEQUENCE: UAKRVL (CNDX)

TECHNIQUES:

-208-

■ 'Ml

UALIAT (INTEGER FUNCTION)

Locate integer term of TIMES.

CNDX must point to an analytic TIMES.

UALIAT is set to the index value of the OPRAND

pointing to the integer element of the TIMES.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

PROGRAM NAME:

PURPOSE:

FUNCTION:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L, UCNOCN, UAISIK

TCOM, CTABLE

UALIAT (CNDX)

-209-

I
I
I
]

I
I

»•

PROGRAM NAME:

PURPOSE:

FUNCTION:

UALOUM (INTEGER FUNCTION)

Locate operand of unary minus.

If CNDX is a unary MINUS or an OPRAND

pointing to one, set UALOUM to the index

value of its OPRAND, else set UALOUM to

zero.

EXTERNAL REFERENCES: INSERTS: TCOM.DEF, CTAB.DCL, TABL.EQU

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

ROUTINES: L, UAISUM

TCOM, CTABLE

UALOUM (CNDX)

..

1

hi

-210-

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UALSAS (INTEGER FUNCTION)

Locate scalar in analytic structure.

If CNDX is an analytic structure other than

an integer constant, set UALSAS to the index

value of the OPRAND pointing to tis STAB

SCALAR, else set UALSAS to ZERO.

INSERTS: None

ROUTINES: UAISIK, UAISIS, UAISAT, UALSAT,
UALOUM

TCOM, CTABLE

UALSAS (CNDX)

-211-

I
I PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

UALSAT (INTEGER FUNCTION)

Locate scalar in analytic TIMES.

CNDX be an analytic TIMES. UALSAT is set

to the index value of the OPRAND pointing to

the STAB SCALAR element. Error trap if

imprope- argument.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

ROUTINES: L, UEHALT, UAISIS, UAISIK,
UALOUM

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

TCOM, CTABLE

UALSAT (CNDX)

I
I
I

-212-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UAMUMN (SUBROUTINE)

Form unary minus.

CNDX may be any expression. A unary MINUS

macro is formed, its OPRAND is bound to CNDX,

and RES is pointed to the MJNUS EXOP. If

CNDX is a unary minus, then RES is pointed to

its OPRAND. Error'trap on improper argument.

INSERTS: TCOM.DEF, CTAB.DEF, TABL.EQU

ROUTINES: UCRTYP, UAISUM, UCMSKE, L, S,

UEHALT, UCMCPY, UCBOPR, UCMOPR, UCMCPY

TCOM, CTABLE

CALL UAMUMN (CNDX, RES)

-213-

I
I
I
I
I
I
1

PROGRAM NAME:

PURPOSE:

FUNCTION:

EXTERNAL REFERENCES:

COMMON:

CALLING SEQUENCE:

TECHNIQUES:

UATPLS (SUBROUTINE)

Transform PLUS or MINUS.

CNDX must be non-standard PLUS or binary

MINUS. A standard n-ary PLUS is formed from

CNDX, and PNDX is pointed to it. Error trap

on improper arguments.

INSERTS: TCOM.DEF, CTAB.DEF, NOYES.EQU

ROUTINES: UAISPM, UEHALT, UGZSTK, L,

UGPUSH, UCNOCN, UCLTCN, UCLPOP, UAATPS,

UAMUMN, UGPOP

TCOM, CTABLE

CALL UATPLS (CNDX, PNDX)

Tree-walk with riyht-most elements being

stacked first.

..

ii

...

T -214-

APPENDIX I

ALLOCATION TABLES

-MS

?

v^ew^mmwi

I
I
I
I
I
I
I
I
I
I
I

I
J
■■•■■

Array Table Entry Format

A! B! ARADIM! ! ARANXT!

ARASZE! ARAORG!

Cl! C2! C3! C4! C5 ! C6! C7! !

ARAEXT(l)! ARAEXT(2)! ARAEXT(3)! ARAEXT(4)!

ARAEXT(5)! ARAEXT(6)! ARAEXT(7)! !

A — ARAUSE

B — ARAOVL

Cl — ARAPRM(I)

Hole Table Entry Format

:._..iL AHLBLK! AHLNXT!

1 AHLDIM! AHLSZE!

! Bl! B2! B3! B4! B5! B6! B7! !

j ! AHLEXT(l)! AHLEXT(2)! AHLEXT(3)! AHLEXT(4)!

! AHLEXT(5)! AHLEXT(6)! AHLEXT(7)! !

! AHLCRD(l)! AHLCRD(2)! AHLCRD(3)!

! AHLCRD(4)! AHLCRD(5)! AHLCRD(6)!

! AHLCRD(7)! I

A — AHLUSE

BI — AHLPRM(I)

Allocation Table Entry Format

tiii i i i i i / r

! A! ! ALANXT!

! El! 82! 83! 84! 85! 86! 87! !

! ALAEXT(l)! ALAEXT(2)! ALAEXT(3)! ALAEXT(4)!

! ALAEXT(5)! ALAEXT(6)! ALAEXT(7)! !

! ALACRD(l)! ALACRD(2)! ALACRD(3)!

! A1ACRD(4)! ALACRD(5)! ALACRD(6)!

! ALACRD(7)! !

A — AIAUSE

BI ~ ALAPRM(I)

Block Table Entry Format

1 i i > / < • i •

! A! A8LDIM! ABLNAR! ABLNXT!

ABLRMN! ABLEST!

! 81! 82! 83! 84! 85! 86! 87! !

A8LEXT(1)! ABLEXT(2)! ABLEXT(3)! A8LEXT(4)!

ABLEXT(5)! ABLEXT(6)! ABLEXT(7)!

A — ABLUSE

81 — ABLPRMd)

^Ä'7-

m

I
TBLPNT Entry Format

TBLSTR!

NFLDS!

NMFLD1!

NMFLD2 !

BYTSTR!

TBLSZE!

TBLSTR

NFLDS

NMFLD1

NMFLD2

BYTSZE

TBLSZE

the start of table
number of fields contained in an entry in table 1

first five ASCII characters of table name 1

second five ASCII characters of table name

start of byte pointers for table 1

size of table 1

-a/f-

