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EVALUATION: FIAL• REPORT - "ADAPTIVE PROCESSING FOR ANTENNA ARRAYS"

T) 4 s is the final technical report of an in-depth comprehensive
theoretical investigation carried out for RADC by Radiation, Inc on
methods of adaptive array processing. (An adaptive receiving array
p-erforms an interference-suppression function, in an environment of

FN
spatially-distributed emitters, by adjusting the antenna pattern to
place relatively high gains in thcse directions which contain desired
signals, snd nulls on all other signal directions.) Some points of
significant inte .. st demonstrated during the course of this investiga-
tion:

1. The performance measures studied (mean-square-error, signal-

to-noise ratio, the likelihood function, and noise variance) are
essentially equivalent, the main difference being a scalar factor.
The important resalt of thi.s is that choice of performance measure
is mathematically immaterial--the choice will be determined by
system application and implementation considerations.

2. The steepest descent approach to an optimum performance
measure, coupled with stochastic approximation, :s the best available
optimization technique within the "presenx state-of-art.

3. The suppression process can be considered to be essentially
one of signal equalization--null depth is, roughly, in proportion to
signal power (thermal noise is also a controlling factor). The
implications of this may be important to TDMA applications, where
the mean power of the jammer is signif-.cantly higher than that of
any single access.

In general, study provided the fundamental technology on I
adaptive proces - i., from which those aspects and features applicable
to AF use may be ?',-acted. Although the contract emphasis was on '
TDMA waveforms (tiie CNI scenario, parameters, and candidate waveforms
were specified for the study), the findings and technical conclusions
are in large part very general in applicability, and relevant to other
system applications. j

PIEER N. EDRAOS
PROJECT ENGINEER
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1.0 INTRODUCTION

In this introductory chapter the basic problem being addressed, some
related background material, and the nature of the study being r-.ported on are presented.
The relationship of the adaptive null steering antenna array problem to other technology
areas is discussed, and the basic mechanisn, of the adaptive array is developed within
this historical context. This allows the nature of the study to be better defined and leads
to an understanding of the relationship between the results presented here and work
already accomp-ished.

1.1 The General Null Steering Antenna Array Problem

The null steering antenna array problem can be described in a general
"context in terms of the diagram in Figure 1-1. In an environment of spatially distr;buted
emitters (including isotropic and therral noise) it is desired to adjust the antenna pattern
of an array of sensors (antennas, hydrophones, seesmometers) so as to receive a desired
signal in some optimal manner (optimal being defined in terms of some appropriate per-
formance measure). Since the emitters are distributed in space, an array allows the
flexibility to perform both spatial and temporal filtering to enhance the desired signal.

This is accomplished by adjusting the antenna pattern to place relatively
high gains on those directions and frequencies which contain the desired signal and
relatively low gains (nulls) on all other signals. Since this processing is to be conducted
in a complicated environment involving emitters capable of relative mofion and changing
their signal structure (such as turning on and off), a very versatile processing scheme
must be used. This leads to the choice of an adaptive processing method for the process
controller. Such problems as these arise in sonar and seismic applications, as well as
the RF communications context of this study. As such, there is an extensive background
of relevant theory and practical devices which must be examined before choosing a spe-
cific processing method.

1.2 Background Material on Null Steering Antenna Arrays

1.2.1 Historical Perspectives

There has been a considerable amount of work over many years in tech-
nology areas related to the general null steering array problem. Some of the earliest
work has involved the processing of acoustic signals, both

1-2
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i Sonar Signal Processing

and

ii. Seismic Signal Processing for oil exploration
and nuclear test detection

Various properties of sonar arrays have received a Ireat deal of attention, from the early
work at the Harvard Acoustic Research Laboratory, 36) to the more recent interest of
Bryn, (15) Middleton, (57) and Van Trees.( 7 3) Much of this later work has involved the
design of optimum arrays, and as such represents an extension of basic Wiener filtering
theory to these multidimensional problems. Similar work has proceeded in the area of
seismic arrays, with early work being done by Burg, (16 ) M.I.T. Lincoln Lab, (48 , 4 9 )
and Texas Instruments.( 6 9' 7 0 ) Much of this acoustic work is detection theory oriented;
however, optimal detection design involves the optimal estimation problem of primary
concern in this report.( 7 3) Many of the results of this work in acoustic signal processing
apply directly to the problems associated with RF communications arrays. For RF arrays,
early background material is found in radarside lobe canceller work (discussed in the
next section) and the closely related areas of adaptive filtering and pattern recognition.

1.2.2 R.F Arrays - The Side Lobe Canceller

Early work in the area of RF arrayt for interference rejection was done at
M.I.T. Lincoln Lab( 2) on a nonadaptive interference canceller based on the idea of
steering a directional antenna at the interference, and subtracting this, with proper phas-
ing, from the main channel. Unlike the array processors being considered in this study,
this procedure requires that the noise be isolated through a separate high-gain antenna;
it is not adaptive in nature, and can handle only one jamming source at a time. More
recently, Applebaum and others at Syracuse Research Institute(6 ) have developed side
lobe cancellers which are more closely related to the adaptive arrays which are being
considered in this study. They are capable of handling both single and multiple jamming
sources and use adaptive control circuitry.

To understand the basic mechanismof side lobe cancellers, and thereby see
its relationship to the more general adaptive arrays under consideration in this study,
consider the simplified diagram of Figure 1-2. Theside lobe canceller can be described
in terms of adjusting weights to minimize correlation as follows. In Figure 1-2 only one
channel of processing is shown; for each channel desired signal, jammer signals
and thermal noise form the total ith channel signal, xi, which may go through an IF strip,
be weighted for phase and amplitude control, and is summed to form the output, Y. One
channel is assumed to be a high-gain antenna pointed at the desired signa[. It is
azsumed that the desired signal level at each element is very small compared to the
jamming, since if this were not so, the high-gain antenna would be able to adequately

1-4
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suppress the jammer with its side lobe. Figure 1-2 also shovs typical control circuitry for
the weights. As in almost all adaptive arays, the output signa' (or some error signal
derived from the output) is correlated with each ith channel waveform, xi, and filtered
to form the control signal for the ith channel weight.

A simplified explanation for jammer cancellation is that, if at some time
jamming still exists at the output, a correlation will occur with each ith channel input
waveform, xi, which contains the same jamming waveforms. The filtered correlation in
ti',e ith channel will change the ith weight, wi .. This change will continue until a mini-
mum correlation exists, which means a minimum in jamming signal at the output. Side
lobe canceller analysis and design has been greatly refined and generalized by
Applebaum( 5 ), but still assumes a priori knowledge of the signals direction-of-arrival
and the presence of a high-gain reflector or array antenna.

The adaptive arrays considered in this study differ from the side lobe can-
ceiler ideas as follows:

a. There are multiple desired signals which may arrive
simultaneously from almost any angle. Thus, one or
several "main beams" are not possible in general.

b. There are no well defined side lobes to cancel, due
both to the use of low gain (few elements) and to
multiple desired signals.

c. The Directions-Of-Arrival (DOA) of the signals are
probably not known. Thus, signal processing may not
be based on DOA, at least during signal acquisition.

d. If a low gain array is used in the simple side lobe
car .eller configuration of Figure 1-2, with DOA
unknown, a null will be steered on the signal.
Simply put, the reason is that the total correlation
can only be minimized b.' eliminating the signal
from the output, as well as the jamming.

The more general adaptive arrays to be discussed in the next section utilize various pro-
cedures for the elimination of the signal effects from the correlations which control the
weight circuits. In this manner they eliminate the interference as the side lobe canceller
does, but do not necessarily assume that signal direction of arrival is known and that a
high-gain antenna is pointed in that direction.

1-6



1.2.3 More General Adaptive Arrays

For the application of multiple communication signals with low gain arrays,
a more general adaptive array model should be used, ,uch as shown in Figure 1-1.
Figure 1-3 shows a different adaptive array type of general adaptive model. There are
two basic differences between this array model and Figure 1-2. in the first place, there

is no high-gain element; elements are often tpproximately equal in gain. Secondly,
there is formation of an "error" signal "1E'"by removing the desired signal from the total
output. If the desired signal is used to form the error, the error can then be minimized
by minimizing jamming and thermal noise alone. If signal is not removed, in general it
will be nulled as well as the jammer in order to m..inimize arror. Again, as before, if sub-
stcatiial correlation between xi and c exists, the correlation will change the weights, the
output and the error until a minimum correlation exists. The signal components in the
"input channels xi will not correlate with the error, thus signal will not ýe rainimized.
As will be demonstrated, the substantial difference between most of the lifferent types of
adaptive arrays is in what a priori information is assumed available aboLt the signals and

interference, and how it is used to remove the signal effects from the correlations whichSdrive the weights.A

Widrow et al .(76) presented the basic work on the general adaptive arrays
which seek to minimize the mean square error between the desired signal and the array
output. This work was an extension of Widrow's earlier work on adaptive filtering and
pattern recognition (75) and Wiener filtering. Widrow coils his procedure the LMS Algo-
rithm. Their model takes the form shown in Figure 1-3, wh~ere th~e subtraction of the

desired signal, as they hypothesize, is not a realistic procedure, since if the desired
signal were known there would be no need For further proc.essing. They also suggest an
alternative procedure for forming an error channel which requires thaf the direction-oF-
arrival of the desired signal is known, rather than the signal itseli. A CW reference
signal is inserted into each element with phase chosen to simulate an incomi Ing plane

t• wave from the direction of the desired signal. A two mode procedure is then imple-
mented where the array alternatively adapts to the environment with no signal subtracted
from the error channel, and then with the inserted reference signal subtracted. However,
this procedure does introduce biases into the calculated weights since signal still par-
tially contaminates the error channel. Griffiths (43) has presented a modification to
this algorithm which removes the signal effects in a different manner and requires that
the spectral density and the direction-of-arrival c ihe desired signal is known. From
these quantities the signal correlation terms in the correlator'-weight controi circ" can,
be calculated and subtracted out, so that they will not bias the weights. Actually,
Applebaum(5) used a similar procedure before this. This same algorithm was derived
using a modified stochastic approximation procedure by Chang and Tutuer( 2 1). These
lost procedures were based on the minimization of mean squared error, while other

S1-7
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woregers have presented similar procedures for maximizing signal-to-noise ratioO ,67)

maximizing the likelihood function, (41) and minimizing the output noise variance(52).

As will be demonstrated, in relatively narrowband problems the processors based on these

different performance measures are essentially identical.

All of the procedures cited in the last paragraph seek to optimize the per-

formance measure in question utilizing a steepest descent optimization technique, and

lead not only to similar final solutions, but also to essentially identical weight control

circuitry. However, none of them actually represent a total solution to practical RF

communications problems. That is, the basics of the procedures are presented, but ques-

tions such as how desired signal, spectral densities or directions-of-arrival are obtained

(if at all) must be answered in terms of reasonable assumptions about the specific problem

at hand. Initial work on the signal estimation problem was done by Compton and

Riegler(2 6 ), where they use the basic Widrow LMS Algorithm and demonstrate that only

the signal carrier (where the desired signal is assumed to consist of a signal carrier with

sidebands) need be known and subtracted from the array output to form the error channel.

This, of course, leads to signal biases from the sideband terms, but has been shown

experimentally to be an effective procedure. Huff (47) reports further sophistication

of this idea for use with spread spectrum waveforms, but h' asumes that the coded PN

sequence is synchronized at the receiver. More recently (27), Compton has been

developing the idea of signal equalization for acquisition, with extensions to this basic

idea being presented in this report.
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1.2.4 Null Steering Adaptive Array Classification Based Upon A Priori
Information

With all null steering arrays, it is desired to steer a null on interference,
but not on the desired signal; thus, there musi be some discrimination of desired signal
from interference. For example, with theside lobe canceller, the discrimination was
done with the high gain antenna pointed at the signal. With the general signal removal
array (Figure 1-3), subtraction or blocking of the desired signal eliminated it from the
error channel.

Notice that the interference, not the signal, must be isolated to control the
null stOGring circuitry, which is different and much simpler than the usual signal process-
ing problem of recovering the signal from interference. For example, out-of-band jam-
ming can be separated by simple band stop filtering and minimized to steer nulls on
jamming. The a priori know!edge available must govern which technique to use in isolat-
ing the interference.

Characteristics of signal and noise that are potentially useful in removing
the signal correlation terms from the weight control circuitry are:

Interference (Jammer or RFI) Characteristics

1. Dominant Jammer Power (often greater than the signals)

2. Separable Jammer Power, either by the spectrum (often wider than the
signals) or by the time waveform (often continuous if noise-like or
broken for look-thrcr, gh if a repeater)

3. Polarization (usually somewhat different from the signals)

Signal Characteristics

1. Known time waveform or spectrum (e.g., spread spectrum code or
known frequency channel).

2. Known direction-of-arrival of the signal (obtained a priori or• ~measured).

The most important differences between various adaptive array algorithms
stems from how these characteristics are utilized to remove signal effects, if at all.
Certain adaptive arrays that result from these differences can generally be c!assifiecd on
the basis of this a priori knowledge, such as:

1-10



1. Dominant Jammer Suppression Arrays

a. Unbiased

b. Controlled Bias

2. Separable Jammer Arrays

3. Known Signal Arrays

4. Known Signal DOA Arrays

In the dominant jammer technique, no signal effect removal is attempted (much like the
side lobe canceller devices. The operation of this type of array is based on the fact that
dominance of the jammer power in the control circuitry automatically steers nulls more
deeply on the dominant jammer than on a weak signal. Furthermore, the initial sup-
pression of the jammer is very rapid compared to the suppression of weak signals. In fact,
with purely integral control in the correlator, it can be shown that the jammer output is
suppressed below the signal reciprocally to its incoming ratio of lammer-to-signal. How-
ever, at a much iater time, signal is gradually nulled too, in order to minimize total
error.

In the "unbiased" case of dominant jammer suppression, it is intended to
receive the signal completely in the time before nulling, or to derive the signal for a
"Known-Signal" mode. With the Controlled Bias case, the iammer and signal can be
stopped short of reciprocal suppression in the steady state (possibly equalized, if desired)
without great signal loss. De ) nulls are not placed on the jammer, but also are not
placed on the signal. A matched filter can then discriminate the signal from uncoded
interference.

The Separable Jammer technique relies on separating out pure jammer
po-wer, for example out-of-band jamming, perhaps using a band stop filter as mentioned
above. The Known Signal and Known Signal DOA techniques are simply the basic LMS
adaptive array algorithms as presented by Widrow et a!., Griffiths, etc., described
above. In these methods, either the signal waveform is subtracted from the output to i
form the error channel, or signal DOA is used to generate signal correlation which is
subtracted after the correlator. These techniques, especially Known Signal, are poten-
tiaily useful after acquisition of the signal, but are not useful if jamming overwhelms the
signal processor that is trying to detect and acquire the signal. However, significant
implementation problems exist in the application of Known Signal techniques when
matched filters are used for spread spectrum signals.
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1.3 The Nature of the StudyIA
The first stages of this study have involved the examination of the relevant

mathematical techniques, and previously proposed adaptive algorithms (such as those
described in Paragraph 1.2.3), which are suitable for the design of null steering array
processors in an RF communications problem. This has involved the .nvestigation of the
mathematical basis for adaptive optimization techniques, and thk adaptive algorithms
which have been based on these method3. A major aim is to provide the background for
the comparison of available processors, and ailow the selection of a promising method for
a more detailed parameter analysis. Upon examination of these methods, it is obvious
that many of them lead to very similar processors, and that t!.ey do not represent viable
solutions to the practical problems at hand. Consequently, this background material has
been used to develop more practically useful processing algorithms. These methods are
based on Ohe fundamental adaptive control algorithm, utilizing steepest descent optimiza-
tion, common to most such processors, bwt involves more realistic, assumptions concerning
availabk- information on signal and environment structure. These newly developed tech-
niques are based on the dominant jammer suppression type of algorithm and have been
investigaied, both analytically, and through the use of digital computer simulation, to
determine the effect of various problem parameters (bandwidth, number of antennas, num-
ber of emitters, etc.) on their performance characteristics.

1.4 Outline of the Report

With the last several sections as background, the remaining chapters of the
report can be briefly described as follows:

CHAPTER II. GENERAL PROBLEM FORMULATION

In this chapter the basic structure of the problem being examired is defin,'d.
The geometrical configurations of the signals and interferences in the array environmeni
are presented, together with the antenra placements. Then the forms which the array
processor can take are discussed, from the most genetal transfer function models, to thei •tapped delay line models, and the narrow band models using in-phase and quadrature
channels. Certain results concerning the general transfer function model are of interest

here, bul the models most appropriate to the RF communications problems being addressed
"are seen to be the re!atively narrow band ones. These can be studied as complex weight
models, and the signal structure at the array can be represented in terms of complex
envelopes. in terms of this structure, the correlation functions and output definiticns
which will be used in the analysts that follows are then defined.
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CHAPTER III. PERFORMANCE MEASURES AND OPTIMAL SOLUTIONS

This chapter discLsses the various performance measures which can be used
for the choice of the optimum parameters of the complex weight urray processor model.
Then the associated optimal solutions are derived, where both wideband and narrow band
(using zero bandwidth approximations) are presented. In ihis latter form, various ingerest-
ing properties are more readily studied. The basic minimum mean square error solution

can be factored into a form which includes the other solutions being examined. As such,
it can be demonstrated that they all differ only by a scalar gain, and therefore lead to
the same output signal-to-noise ratios. A comparison of the maximum likelihood and
minimum mean square error solutions is also presented. These solutions are of interest,
since they are the forms to which convergent adaptive processors will converge.

CHAPTER IV. OPTIMIZATION TECHNIQUES

In this chapter, the optimization techniques which can be used for the
design of an adaptive processor are presented. These include simple search techniques,
gradient methods, and higher order methods. The search techniques and the higher order
methods do not lead to the easily implemented a!gorithms that the steepest descent-
gradient method gives. Also discussed is the constrained optimization technique - the
projection gradient method, and the method of stochastic approximation, which forms the
basis for simplifying the basic form of the adaptive algorithm. From .his discussion, it can
be seen that the most likely candidate for use in real-time RF communications problems
is the steepest descent method uti!.z;ng the stochastic approximation simplification.
Other computational methods are also briefly discussed.

CHAPTER V. BASIC ADAPTIVE ARRAY ALGORITHMS

In this chapter, adaptive array algorithms which have been presented in
the literature for the optimization of the various performance measures are discussed. It
is demonstrated that these algorithms do not represent practical solutions - just the basic
forms which must be adapted to the specific problem being solved. Also, it is shown
that all of the more practico; methods lead to essential similar algorithms, differing oniy
in how the signal effects are removed from the correlation-weight control circuits.

CHAPTER VI. BEHAVIOR OF ADAPTIVE ARRAYS USING THE LMS ALGORITHM

In this chapter, the equations describing the trajectory of the weights are
established with particular emiphosis placed on their steady state values. It is from
these values that steady st.ite behavior of the array can be evaluated. Descriptions of
the optimum aray behavior such as
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1, Gain

2. Signal-to-noise ratio

and 3. Antenna pattern

are established and compared to conventional arrays.

CHAPTER VII. ACQUISITION TECHNIQUES

I n this catrtwo similar, ytdifferent, adpiemodels aee studied 'T'OM

the point of view of their acquisition properties. In particu!-,r, for a two-emitter
environment, it is shown that a strong jammer in the presence of weak signal can be sup-
pressed much more than the signal with no additional a priori knowledge, thus permitting
desired signal acquisition.

CHAPTER VIII. PARAMETRIC STUDIES OF ADAPTIVE ARRAYS

This chapter includes detailed numerical studies of the effect of various
para•eters such as jammer and signal power, bias level, bandwidth, number of elements,
and geometry of jammers and signals. Many of the studies will be with only one dominan+
jammer and one signal, to enable the study of signal-jammer interaction in detail. Then
several jammers and signals are studied. This section is not specific to a TDMA signal,
but general for "continuous" signals over the time interval computed.

CHAPTER IX. AN ADAPTIVE ARRAY DESIGN FOR A SPECIFIC TDMA PROBLEM

In this chapter, a fonctionai adaptive array design for a specific TDMA
problem is considered. A three-mode approach to the signal acquisition prob!em is
explained, in which 1) a dominant jammer suppression mode is used to lower a very
powerful jammer to a level where synchronization can be performed, 2) a signal removal

mode is used to prevent nulling friendly signals, and 3) a signal maximization mode (LMS
algorithm) is possibly used to further improve output S/N. A block diagram of the func-
tional design is followed by a description and results of a computer program which
simulated the performance of the design with a particular input environment.

CHAPTER X. iMPLEMENTATIONS OF ADAPTIVE ARRAYS

This chapter considers possible implementations of functional adaptive
ai diagrams, including designs that have been implemented by others, and different
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designs that may be useful. Emphasized are processing at RF vs. IF, methods of achiev-
ing signal weighting, types of correlators, techniques of spread-spectrum signal removal,
convergence rate control, and bias control.

CHAPTER Xi BREADBOARD DESIGNS AND DESIRABLE EXPERIMENTS

This chapter shows more specific diagrams of the implementations in Chapter
X that appear most promising. The diagrams appear suitable to form a breadboard experi-
mental test bed that is sufficiently flexible to allow several different implementations of
weights and correlators to be tested, and later allow a working several element array to
be tested in some detail.

CHAPTER XII. CONCLUSIONS

fhis final chapter summarizes the more important esults of the study. Also,
suggestions for further work, based on the experience gained during this effort, arni'i presented.

Following these main sections, an extended reference list and appendices
describing the computer programs developed during the study are presented.
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CHAPTER 2

GENERAL PROBLEM FORMULATION
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2.0 GENERAL PROBLEM FORMULATION

This chapter establishes the basic structure of the adaptive array problem
required for the analysis in later chapters. The mathematical formulation of the signal
environment is defined, from which the signal structure at the array can be determined
in terms of the geometrical configuration of the array. Detailed consideration of the
array processor modeling problem is then given, where the use of a complex weight proc-
essor is justified. Finally, the correlation functions and output quantities for this proc-
essor are defined.

2.1 Environment Structure

The signal environment is assumed to be composed of both directional and
isotropic signal sources. The desired signal is represented by 4(t) which is assumed uncor-
related with the directional noise sources i (t), i = 2, 3, ... , p. The isotropic
background noise will be lumped with the thermal sensor noise " 0(t) at the front
end of the array and is assumed independent from ot antenna element to the next. The
structure of the desired signal source can include borb amplitude and phase modulation
of a carrier frequency coc of the form

•(t) = C' (t) cos [Cot + 'p1 (t) + l (2-1)

while the distinct noise sources are given by

a(t) -- cti(t) cos[ct + p)i(t) + gi]' i 2, 3, ... , p (2-2)

and the terms at each sensor k, due to combined isotropic and thermal noise are

ok = k(t)cos(wct+O ok)"k1'2 ... m

The modulations cti(t), /3k(t) and 0i(t) are sample functions of zero mean from independ-
ent, ergodic random processes, where the independent random variables Q, which are
uniformly distributed on [0, 2 aJ, are added to ensure stationarity. Also, since the noise
terms 'ok(t) are desired to be bandlimited white noise,/ 1 k is Rayleigh distributed. The
directional signals are assumed to propagate as plane waves in a medium which is linear
with its only effect on the signals being time delay.

2.2 Signal Structure at the Array

In terms of the environment defined above, the signal received by the kth

sensor can be written as
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P

xk(t) +-k)I i k)t +(2-4)
K~ 4(--k+~ (t - 14)

th th
where 'rik represents the delay of the i signal at the k sensor relative to the geometric
center of the array. If the direction of arrival of the ith signal with respect to the center
of the array is denoted by the unr vector a1 (see Figure 2-1), then 'Tik is given kxt

<ai, b4
"7' -(2-5)

where v is the velocity of the signal in the medium under consideration. Since the sig-
nals composing xkt) are represented as amplitude and phase modulation of a carrier fre-
quency, it is only necessary to consider their complex envelopes in the analysis.
Denoting the complex envelope by ' , xk/ (t) is written as

xk'(t) = - • t - rik) + "k(t) (2-6)

(For notational convenience the primes will be deleted, where the use of complex enve-
lopes is understood throughout the report.) Defining the m dimensional vectors s(t) and
n(t) as

s(t) (2-7)

i (t - I e1(JcT 'm

tWhere <a, b> denotes inner product.
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Figure 2-1. Geometrical Configuration of Sensors and Signals
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P • •+ 'oi(t)

n(t) =i + o2(t) (2-8)
i--2

S- ri e crim

then the m sensor signals can be collected in the m-dimensional vector x(t) as

x(t) = s(t) + n(t) (2-9)

If the signals are narrow band in the sense that time delays 7"ik encountered by them
between the sensor elements are insignificant relative to the slowly varying amplitude
and phase modulations, then these representations can be simplified by writing

s(t) = (t)v1  (2-10)

p
n(t) = j •'(t)vi + nt(t) (2-11)

i 2

where nt(t) represents the collection of thermal noise terms 4'k(t) and
to~t

e

i 1c "i 2

ev. =(2-12)

W c im
e
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In terms of these quantities

P
x(t) =s(t) + n(t)= •(t) v1 rE ;(t) v. + nt(t) (2-13)

i=2 ' t

2.3 Array Processor Models and Their Properties

In this section several models for the array processor will be considered.

The most general linear processor, consisting of transfer functions in each element of the
array, wiIf be discussed, together with some interesting results concerning the optimai
forn- of this model. This model is not appropriate to our purposes, since it is not adjust-
able for use in an adaptive procedure, but some observations in this general context will
be relevant. A discrete-time approximation to these general transfer functions can be
conItructed using tapped delay line filters, where the weights associated with each tap
can be adjusted using adaptive procedures. These two models are seen to be appropriate
for wideband array problems, whereas for the relatively narrowband problem considered
in this study, the tapped delay line reduces to a single time delay per channel, which can
be approximated by a complex weight in each channel. Finally, a model which utilizes
direction of arrival information to align the desired signal is presented.

S2.3.1 The General Transfer Function Model

In relatively wideband systems which do not require that the array control
be adaptive, the most general linear model for the array processor takes the form of a
transfer fur.ction in each channel as shown in Figure 2-2. In this form the input vector x
is related to the output signal Y by

frt hT
S(t) J= (t T ) X (r) d "r(2-14)

to

or in the frequency domainI T
Y/(co = H ((U)x (CO). (2-15)

Such arrays have been studied extensively for applications in seismic and sonar fields
(where the bandwidths are much larger and the constraint to operate in real time is not
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necessarily present) by many investigators, e.g., Van Trees( 73 ). Although much of this
work is slanted toward the detection problem, which we are not addressing, some forms of
the optimum detector can be shown to require the implementation of an optimal est'mator.
In Van Trees' work it is shown that the array processor produces a minimum mean square
error estimate of the signal and takes the form shown in Figure 2-3. (His analysis uses
the general transfer function model and the signal aligning concept discussed in a later
section.) In this form, an interesting factorization of the problem is seen where the
overall optimal processor factors into a "spatial" filtar and a "temporal" filter. The
spatial filter (which also includes temporal characteristics of the noise) is a linear matrix
filter dependent only on the noise statistics and signal propagation effects, and Nithin a
scalar factor N(w) gives a minimum noise, distortionless output; that is, for Gaussian sig-
nals it gives the maximum likelihood signal estimate given that there is no spectral infor-F' mation abouw the signal available. If the spectral density of the signal is known, then the
minimum mean square error signal can be found by the addition of a scalar Wiener filter.Cox( 29 ) has also observed this factorization, where he interprets the spatial filter as
performing a prewhitening operation (typical of the solution methods used for colored noise
filtering problems where the coloring here is due to the spatial distribution of the noise
sources) prior to the use of the standard Wiener filter for a MMSEt estimate.

The explicit design equations for the factored form of the processor shown
in Figure 2-3 can be obtained from the cited references. However, the general properties
of this solution are of primary interest since even though this is not the model to be used
for our problem, these general observations will be relevant to the more specific case
under consideration. Since the model incorporating general transfer functions does not
admit to real-time adjustment via adaptive algorithms, it cannot be directly used forproblems involving time varying statistics, i .e., problems where emitters may be moving,turning off and on, and changing their characteristics.

2.3.2 Tapped Delay Line Models

A tapped delay line approximation to the general transfer function can be
used in each channel of the array, where such a processor is illustrated in Figure 2-4.
As the number of taps becomes very large and the time delays become very small, this
approximation approaches the ideal of the general transfer function.

For this model we can represent the signals and the welghts at any time t
and for each of the tap points j as the real vectors,

tMMSE will be used throughout this report as an abbreviation for Minimum Mean Square
Error.
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Figure 2-3. Factored Form of Transfer Function Model
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Figure 2-4. Tapped Delay Line Model

2-10



- •' ------------ 7 -

/

"xl(t - W -W(t - lA)

"x2(t - j) w2(t- jA)

x(t- jA) - and w(t - j1) 1 . , =0, 1,..., k

xm(tiz)wm (t - A)

so that the output of the array becomes

Y = w T(t) x (t)+ w T(t-A) x (t-A)+. + w T(t-k•A' x (t-kA) (2-16)

(where the tap spacings are chosen equal for notational convenience, but can be vcrieble).

In terms of the augmented vectors W and X defined as

w(t) x(t) (2-17)
w(t-A) x(t-A)

W--= and X=

w(t-kA) x(t-kA)

the output becomes

T
y-<WX>=W X (2-18)

The exact number of taps and the size of ,he time delays must be chosen for any partic-
ular application. These choices will be determined by tradeoffs involving signal band-
width and overall system complexity. For the narrow band problems contemplated in
RF communications and radar systems, it is generally adequate to consider only one time
delay per channel and the array takes the form illustrated in Figure 2-5.

2.3.3 Narrowband Tapped Delay Line Processor: Compjex Weight

As mentioned above, for relatively narrowband problems the tapped delay
line array can be reduced to the mcdel in Figure 2-5 with a single time delay per channel.
SThis processor has the obvious advantage of simplicity over the multitap processor,
thereby reducing the complexity of the adaptive circuitry which is used to control the

f
array. The time delay for each tap is shown to be -r= -E, or 90 degrees phase shift at the

2-11



I

S-1 - •0

4fc

2m2
y =<W,X> -3

ji;

Figure 2-5. In-Phase and Quadrature Channel Model
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carrier frequency. Over the relatively narrow bandwidth addressed here, we will
assume that the time delay is in fact a broadband phase shifter providing a 900 phase
shift over the frequency band of interest.

The benefits of this type of phase shifter have a substantial impact on the
mathematical development of the phased array. By eliminating the signal diffusion
through the 900 phase shifter we are able to represent the weights as members of an
m-dimensional complex Euclidean space. Consider for example the signal processing
channel associated with the kth sensor element shown ir. Figure 2-6, with Yk representing

that portion of the total output due to th, kth channel.

kX (t)

n • Wk2

86588-40

Figure 2-6. Kth Element Processing

Let x k (t) be represented in the form

S-jW tS~c
xk(t)= Relxk' (t) e (2-19)

then the partial response of the array output can be written as

/yk(t) = wklxk(t) + wk2•'k(t) (2-20)

where -xk(t) is the response of the broadband -90° phase shifter to xk(t).

The functional form oflx(t) is easily determined by taking the Fourier transform of xk(t)

Xk()) = A(w)ei0j) (2-21)
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where A and qS represent the amglitude and phase of each frequency component. Since
the phase shifter provides a -90 phase shift at every frequency, the Fourier transform of
xk(t) is then obtained by

Xk(w) = A(w) [-ieio(CO)] = -iA(w)e-il(w)- -iXk(w). (2-22)

"Taking the inverse transform we arrive at

1i(t) = Re ix Me'JWct , (2-23)

thus

Y(t) Re wx-jwX '(t)et C (2-24)
- t

Re1(w iwk2)xk'( C

From this expression we recognize that we need only consider the complex envelopes of
"the signals as well as the obvious complex representation of the weights to determine the
array output. We can now represent the array output in the simplified form

y(t) Re f <w, x'> e 0 1 = Re <y'(t)e C (2-25)

where <w, x/> denotes the usual inner product in a complex Eucledian space. For the
remainder of our presentation we shall require only the envelope of the output and for
notational convenience we again drop the prime representation and denote the cotput by

y= <w,x> (2-26)

The complex weight model corresponding to this simplification is shown in Figure 2.7.

2.3.4 Aligned Arrays

For many array problems it can be assumed that the direction of arrival
of the desired signal is known or measured. In this case the time delays required to
align (or co-phase) the deshed signal terms in each channel can be computed and
inserted asa Spatial Correction Filter (SCF) as shown in Figure 2-8a. (Even if these
time delays are not known, it is often mathematically convenient to consider factoring
out SCF's from the general model weights).
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Figure 2-8b. Functional Representation
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Mathematically we will represent this operationas

x(t)= fy(t) (2-27)

where f is the vector valued function representing the spatial correctioi, filters wth a
transform function matrix given by 

(2-28)

"Exp[-jw(Tro-<a,, b >) 0 ... 0
0 V Exp[-i(J(To- <0alI b2>)] ... .. .0

V

SF(•)F

Nat

0 0 ... Exp, [ <( a- , <1b m>) ]
V -

where y s-l denotes the m-dirnensional signal and noise ve[tor at the input to the array.
In the absence of the spatial correction filters x(t) is exactly equal to y(t). In this formthe vector x always represents the input to the complex weights. The term 7- is a con-

stant delay whose addition is to ensure the physical reolizability of f, however, without
loss of generality we shall omit its use in the sequel.

ZAfter the SCF's the signal can again be represented as x vector, which
takes the simplified form

Se(I)= + ( 3(t) (2-29)

where I = [1,1,...,i] and .(t) represents the noise terms after the SCF's.

2.4 Array Correlation Functions and Output Relations

2.4. 1 General Representations

For the analysis of the models presented in the last several paragraphs, the
correlation matrices ossociated with the various signals will be required. The correlation
matrix of the received signal and noise vector will be defined as
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R E [x(OX (t)) (2-30)

*

where represents the adjoint matrix (i.e., the complex conjugate transpose). Since
the desired signal is assumed to be uncorrelated with the noise signals in the array, this
matrix can be decomposed into the sum of two positive matrices

R =R+R n(2-1)

where

R, E [n(t)n (t) (2-32)! n

and is assumed positive definite when thermal noise is present, and where

R = E [s(t)sL(t)].. (2-33)
s

The complex matrix R may also be decomposed into its real and imaginaryportsx

R = C+ jD (2-34)

x

and since R is self adioint we see from the following identity chain that
x

<x, (C+iD)x> = < x, Cx>+ j< x, Dx> < (C+jD)x, x > (2-35)

= < Cx, x>-i <Dx, x >.

Thus by equating the real and imaginary parts it is evident that

a. C is positive definite

b. D is skew symmetric

The cross-correlation vector between the desired signal ý(t) and the
received signal vector x(t) is given by

r x = E [(t)x(t)]. (2-36)

If spatial norrection filters are used, then the covariance matrices are
related by

R R4R + (2-37)y s n

2-18



I and after the SCF's

R = SIIT+R (2-38)

x -- n

where for narrow band signals

R.. F (fc) Rn F (f) (2-39)

2.4.2 Structure of the Signal and Noise Covariance Matrix

In this section we will focus our attention on the functional form of the
entries of the matrix Rx for an environment consisting of wide-band as well as narrow
band emitters. The approach used in this development is to formulate a more realistic
model of the low pass nature of each sensor channel relative to the complex signal
envelopes and its effects on these signals. Consider the functional diagram of the kth
channel shown in Figure 2-9, where H is an ideal low-pass filter. Let vk(t) be an arbitrary
complex signal contained in xk(t), where in terms of the geometrical center of the array

Vk(t) = V (t- " k)e fc k

where

< au bk>(2-41)
S"/=k - v

to,

which for a uniform linear array can be written as

cosO 
(2-42)

where P represents the spacing between antenna elements and 06, represents the angle
to the emitter relative to the axis of the array, The ij entry of the correlation matrix
due to this emitter is then easily seen to be (where - represents the signal after the
bandpass 'ilter H only in this section).

. -j27rfc (-r.i-) *
_r= E[•i(t)�. (t)] = e E[(t-.),7 (t.- (2-43)

= e cR -
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Figure 2-9. Functional Diagram of Kth
Channel in the Complex Weight Array
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However,

R-(r. -r.) = S'(f)e - df (2-44)

j0 i2rrf( -r''

, •/2 i~2r(" - i)

=f -r) = S (f)e df (2-45)Sinc H M iszrfo If J /

- B/2a

thus we write

-j27rfc(r. -T.) B/2 i2rrf(•- -,r

( r..=e f -M e d (2-45)
B2 B/2

duer to eac emte.fest S;,(f)e df. and-46e) 1 r

Since all the emitters are assumed uncorrelated the ij entry of R is the sum of the entries:" ~due to each emitter.

For an illustrative exam le let us evaluate r.q due toan emitter which has
a constant power spectral density of v over a bandwidth b (b<B) and a zero other

wise. Then it is easily seen that b

-j2Tf (-r -7.) Sin [7r (r. -7. )b]
1 i7r (7-i -7-1 b (2-47)

For very narrow bandwidths

Sin/r(-r. -0q b

L .1 (2-48)
7r-. -5r) b

which permits us to write the correlation matrix due to the signal V(t) as
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RV Nvvvvv • (2-49)

if the entire environment is narrow band with equal thermal noise power in each antenna
element then the structure of correlation matrices take on the simple form

R = Sv v (2-50)

P , a2

R Z N.v.v. + (2-51)
n i= 2  II

r Sv1  
(2-52)

where S = E [4(t4(t)], the desired signal power, and where N. E[ "i (t)O.i(t)],

the received power from the ith directional noise source. Note that for the signal
al~gned array v1 =1, t for wideband as well as narrow band signals.

2.4.3 Basic Array Output Definitions

Throughout this report the basic parameters which are used in analyzing
the array behavior are quantities such as: output signal power, output signal to noise
power ratio, output gain and the array antenna pattern. These concepts ar- well known
as fundamental array descriptions and therefore, perhaps need no further discussion.
However, since a portion of the discussion centers around signals of finite bandwidth,

the generalization to this environment may not be too familar. T 'refore, these con-
cepts are presented in this section for arrays with and without spc .al correction filters.

For the array shown in Figure 2-7, the average power out of the array is
given by

2 2Output Power =P = E IYl = EI<w,x>2I E <w,x> <x,w>

= Ew*xx*w = w* R w = <w, R w>. (2-53)
x x

Since the signals are uncorrelated the output power is the sum of the powers due to each
source. Thus, we can write

tWhere 1 denotes (1, 1, ... 1,)T
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PO =Ps + Pn = <w, Rsw> + <w, Rnw > (2-54)

P

= <w, RsW> + p <w, R w> +Psni nt
1=2

(where Pnt is the power due to thermal and isotropic noise) for the narrowband environ-
ment this reduces to

P
P0 =S<w, VlV1 *W> + j2 Ni <w, vivi *w>+Pnt

<PI i2 > <w v. (2-55) (2-55)

The output signal-to-noise ratio is then simply the output power due to the desired sig-
nal divided by the output power due to all the noise. That is, by definition,

P <w,R w>
- w w>(2-56)

T_- <w,,R w>
n n

For an array incorporating spatial correction filters, if the signal and noise covariance
matrices of the signals at the output of the spatial correction filters are known, then
these can be used in place of R, and Rn in the above expressions. If on the other hand
it is desired to determine the output power explicitly in terms of the signals impinging
on the array, then it can be shown that

P S S<1,1> (2-57)

w,•n- (f) w>df = Jw,F(f) S(f) F*(f) w>df (2-58)

M, -0 - 00

where Sn(f) is the noise power spectral density matrix i.e.,

S (f) poe d(2-59)Sn(f) E [n(f)n*(f)]
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where n is the noise at the input to the spatial correction filters. For narrowband sig-
nals P reduces ton

P "w, F(f) R F*(fc) w> (2-60)

The concept of array gain as used in this report is the output signal-to-I!noise power ratio divoded by the signal-to-no*se power ratio per sensor. That is, the
G S/N at the array output 

(2-61)S/N per sensor

orr <w,R w> / <W,RnW>
or= (2-62)

S/( N. +o'2)

where a 2 is the power at each sensor (assumed equal) due to thermal noise. Arnother useful
concept is that of antenna pattern, which can be defined in terms of the covariance
matrix of a linear array with fixed weights. The antenna paftern O(ýOp) is defined as the
output power of the array due to an arbitrary emitter p of unity power with azimuth Op .
That is,

P= P (•5) = <w,R w > (2-63)

where Ru ()) it 'ihe covariance matrix of received signal vector due to emitter p. Thus,
the antenna pattern is not only a function of the angular location of the emitter p but
also its spect'ai content. For a broadband environment it is necessary to use a broad-
band emitter p consistent with the environment in order to obtain an accurate representa-
tion of the pattern.
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CHAPTER 3

THE OPTIMAL SOLUTIONS
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3.0 THE OPTIMAL SOLUTIONS

In this chapter, several solutions for the optimal weight vector for the
complex weight processor discussed in the last chapter will be derived and discussed. To I
define an optimal solution a performance criterion must be selected, and several appropri-
ate measures will be presented, each appropriate for certain specific types of problems 3
and objectives. For each of these performance measures the optimum weight vectors will i
be found. Several interesting. features about these solutions will be examined. For very %
narrowband signais it will be shown that the minimum mean square error processor will
factor in much the same way described for the general transfer function model. In this
form a linear matrix filter will compose the spatial filter, which will be shown to be
common to each of the optimal solutions. Moreover, each of these solutions will be seen
to differ only by a scalar factor, which leads to the result that they each have identical

signal-to-noise ratios at their outputs.

3.1 The Performance Measures

Four separate performance measures will be discussed: mean square error,
signal-to-noise ratio, the lilkelihood function, and the output noise variance. Within
the context of the more general wideband array problem each of these performance
measures would have a specific use. The minimum mean square error measure is utilized
when it is desired to reproduce the desired signal as accurately as possible. This measure
assumes that the signal is represented as a random process and requires knowledge of the
second order statistics of the signals and the noises. The signal-to-noise ratio criterion
seeks to maximize the signal power in the output while minimizing the noise power. This
form is not concerned with reproducing the signal accurately, and hence can lead to
signal distortion. (41) it also assumes the signal is modeled statistically and requires
knowledge of the second order statistics of the signal and noise. The maximum likelihood
measure is utilized when the signal is assumed to be an unknown deterministic signal. Its
use requires that the nois'. is assumed to be Gaussianly distributed with known second order
statistics; however, no signal characteristics need be known. Likewise, the minimum
variance performance measit,, ,issumes no statistical knowledge of the signal, and only
second order noise statistics. However, its use is restricted to the signal aligned arrays
where an undistorted estimate of the signal is desired. As will be demonstrated below,
for very narrowband signals many of these differences will manifest themselves only in the
form of a scalar factor at the output of a common linear matrix filter.

.1 .1 Mean Square Error

The mean square error at the output of the array is defined in terms of the
difference between the array output Y(t) and the desired received signal 4(t) in the form
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3.1.3 The Likelihood Function

Given that a particular vector x (t) has been received by the array, it is
desired to choose an estimate sA (t) of the signal as the most likely waveform. That is, we
choose 'sto maximize the conditional probability density function p [K/s], i.e.,

S = max p >Ix/s] (3-7)
S

which, when considered to be a function of s, is called the likelihood function. This
conditional density can be written as

p[s - px, s]px/s = P--[s]

and making a change of variables this becomes

ppY/s1 p[x, s] -ps = p[s] p[n] p [n] (3-8)

p Is] = [$ I pIs]

consequently, to maximize the likelihood function, s must be chosen to maximize

p [n] = Pn [x-s] = exp [- 1/2 (x-s)*Rn" (x-s)] (3-9)

(assuming the noise is Gaussianly distributed with covarimice Rn) which is maximized by
the minimization of the exponent, and gives

SJml = (x-s)*Rnl (x-s)

S< (x-s), R -1 (x-s)> (3-10)[ n

The obvious minimum value of this function is zero when the estimate is chosen as the
p received signal. This resul; is expected, since we have hypothesized very little knowlodge

of the signal, and the best we cnn do is to use the received vector for the estimate.

For this to be a well-posed problem we must insert some knowledge of
j signal structure. This can be accomplished for relatively wideband signals if direction of

arrival is known and spatial correction filters are used to align the desired signal. In this
case the signal vector s =(t) 1 and the likelihood function performance measure becomes

Sml = (x - l)*Rn" (x-41) = < (x-41), Rn- (x-41)>. (3-11)
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Far very narrowband signals where there is no dispersion across the array, the signals
need not be aligned and we can write s = 4v 1 . For this case Jml becomes

Jml = (x'f v)*R 1 (x-ýv)=< (X-vl)' Rnl (x-4vl)> " (3-12)

3.1.4 Output Noise Variance

This type of performance measure is appropriate only for those processors

which utilize direction of arrival information to align the desired signal components.
As shown, for such an array the received vector x (f) = • (t) 1 + n (t) and the utput

y (t) w*x (t)w* + w*n (t) . (3-13)
Wm.

In this equation w*l Z w* and if this summation is constrained to equal I , i.e.,

mUw*1 =Z w* I <w,]> (3-14)

then the output can be written as

, (t) 4(t) + w*n (t). (3-15)

In this form y (t) is seen to be an unbiased estimate of • (t), that is, for zero mean noise

E [Y (t)] = E11(t) + w*n (t)] = E [4(t)] = 4(t) (3-16)

and the noise variance in Y (t) is

Vary (t) w*R w (3-17)
n

Consequently, the minimum variance performance measure can be written as

J w*Rw <w, Rw> (3-18) l
mv n n

+Note that this implies Re(w.)=l andL im(w) = 0.
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subject to the constraint

m * =<w, 1>

i=l1

3.2 Derivation of the Optimal Solutions

In this section the complex weight vectors, which optimize the four per-
formance criteria discussed previously, will be determined. Various optimization tech-
niques could be used to obtain these solutions; however, the methods which appear best
suited to this task, particularly since w, desire to utilize a general representation with
compiex signals ard weights, are to place the problem in a Hilbert space format and
utilize the geometrical concept of orthogonality. The K filbert space in which we shal
formuilate our solutions is consistent with the implied space used in establishing the
performance measures, namely an m-dimensional complex Euclidean space which we
shall denote as H.

3.2.1 The Minimum Mean Square Error solution

The mean square error performance criteria has been presented in the
form

J;nse (w)= <w, R w> - 2Re <w, r > + S (3-19)

where we must Find wre, the complex weight vector which minimizes Jmse" The vecor

which minimizes J is equivalent to that which minimizes the quadratic form

SJ1 (w) = <w, R x -- -2Re <w, r x> (3-20)

since S is net a function of w.

Consid,.r the quadratic form given by

i w) = <w-Wo, Q(*1 o- .. ..

= <w, Qw> - 2Re <w, Qw> + <w, QW > (3-21)
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where Q is an arbitrary oositive definite matrix. The performance measure J 2 (w) takes
on its minimum value of zero anly when w = w, which also minimizes

J 3 (w) =w, Qw>- 2Re <w, Qw > (3-22)

Returning Io the original problem, we see that the minimnzation of J 1 (w) is equivalent

to the minimization of J3 (w) if we have:

(a) Qw° :r× (3-23)

(b) Q =R. (3-24)
X

Equations (a) and (1) give the explicit form of the weight vector which minimizes

Js (w) asmse

R w (3-25)
X = x4

and since R is positive definite, its inverse exists, and gives

x

w R r (3-26)Ii W~~mse x 4•R1(-6

3.2.2 V-_ Maximum S'gnal-to-Noise Ratio Solution

sThe performacice measure for the maximum signal-to-noise rc.io has been
S•. shown to be

Sw , Rw> (3-27)

To determine the weight w'tich optimizes this cost function we shalI ut~ilze the positive

square root :) k n so that

,, '•• " s(3-28)
S• •'i•" < R W, > w

n1 n

Making tHe stiautf;e

U RW (3-29)
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wy aar, rewi le the cove expression as
I 1

<u, R'2 R R 2 u>
J (U) (3-30)
s/n tu1

Thus, the problem reduces to finding the u cf norm one that maximizes the inner product

<u, R I R R"u> . We will now show that the maximum value of this inner product is
n s n I

X (the maximum eigenvalue of R 2R R•T), where u belongs to the eigenspace
max n s opt

associated with Xmax

Consider the following inequality chain with I u j= 1
1 ! ~ ~ li , j

<u, R"2 R R7 u>< IIR'2• R 114 u l V u 1 R7 R RTR ul1 (3-31)n sn n sn n sn

By the Buniakovskii inequality(5 5 ), the above inequality reduces to equality if and only

if u is colinear to R 2 R R"7 u. Thus, equality holds if and only if
n s n

- R"• Rs R1 u =X u, (3-32)

so that u is an elgenvector of R7! R R7 and ) is the associated eigenvalue. When u isSn s n

an eigenvector we have

<u, R2 RR u> = (u = X (3-33)
n s n

SThus, the inner product is maximized when X is the rmximum eigenvalue. The optimum

weight vector then takes the form

" Ws/n Rn iuopt(3U

where u is a vector of unity norm belonging to the eigenspace asscciated with X
and pt max

Ss/n (Ws/n) = max- (3-35)
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If the desired signal is narrowband or 'f spatial correction fi!ters are used
to cophase the desired signal in each channel, the optimum weight vector takes on a
much simpler form. If the desired signal is narrowband then the performance measure
can be written as

n .1 1
Js/n (u) =n v2  *u2112 2

We now decompose H into two disjoint subspaces Q1 and Q2 such that

H=Q I + Q2 (3-.37)

These spaces explicity consist of

Q = UlU ="R n 2 v, 0c an arbitrary scalar

' Q~~2 = l21< ul' '2> = O1 . 3-8

Given this orthogonal decomposition we can uniquely express any element of H as an

element frrm QI and Q2" Let u be such an element, then

U = u + U (3-39)1" 2

where u 1 Q and u2 e Then

J ( su•) u + u2, Rn1 v >2 sl< u, R '.> 2

s/n lu II2 + 11u211 2 jju,1l 2 +1 u2uA 2
S~2

2ull (3-40)

which takes on its maximum value when u2 i is zero. Thus

=~R~v (-41)i°n 1:• Uopt a Rs Rn V (3-1
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If the desired signal is narro-wband or if spatial correction filters are used
to cophase the desired signal in each channel, the optirmm weight vector takes on a
much simpler form. If the desired signal is narrowband then the performance measure
can be written as

J2 2
S<u, R i v1 v *Rn u> S <u, R' vI>1

J (u) = v (3-36)
s/n II2 Itull 2

We now decompose H into two disjoint subspaces Q1 and Q2 such that

H=Q, + Q 2 " (3-37)

Thee spaces explicity consist of

Q, u, I u, =01Rn2 V, C1 an arbitrary scalar

Q = tu2 < u=0u2 >O . (3-38)

Given this orthogonal decomposition we can uniquely express any element of H as an
element from Q1 and Q2 " Let u be such an element, then

u U 1 + u2  (3-39)

where u1 Q1 and u 2 ' Q 2  Then

J ( S!< u1 + u2 , Rn v]>12  Sk< U1, R71 v1 >j 2

S~ Js (u)-
s/n 2 2 luu 2 +l lu

4

which takes on its maximum value when i u2 fl is zero. Thus

u =t = R"-2 v (3-41)
OPn I
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which implies that the optimum weight vector is

W R1 v (3-42)
w/ R n

with a signal-to-noise rc..io of

2 -1 2
(wn '- S< v R v v 1 > (3-43)

vn opt) 2 < R 1 v , R R'n Vl> nI n 1 nf
For a wideband desired signal that is cophased in each channel, the optimum weights

are easily seen to be

ws/n =OR 1 (3-44)

when R is the covariance matrix of the noise vector after the spatial correction filters.n

3.2.3 The Maximum Likelihood Solution

For relatively wideband desired signals the likelihood function has been
derived as

: -1

Jm1 (• = Izx-4 , R (x- 1) > (3-45)

which may be written in the form

Jml (4) = u 1 (3-46)

where u = R 2 (x- 41). The problem now becomes that of finding the scalar 4 which
m*,.,imizes the norm of u. Let us decompose H into the direct sum of subspaces Q and
Q2 where

Q1 = ujuln _ 0 ,c an arbitrary scalar

Q = u2 1< u1  >2> 01. (3-47)
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In terms of these subspaces the vector Rn 2 x has the unique representation

R 2 x =1 R' 1 + u (3-48)
n In -2

where u2 EQ2 . Then u can be represented by

RU- 1 + (3-49)u =("1) n - 2"

Thus, u has minimum norm when • = C1' and • can be obtained by taking the inner

f" product of R 2 x with R 1

< R2 1 R"2 x> =4< R"7 I, Rn2 1.+< 1, u2 >. (3-50)Sn -'n n n - n - 2

Since the last term in this expression is zero, we have the maximum likelihood
signal as

< R-1 X>
S= r - (3-51)

S<I,R1 I>

* Since the output of the array is to be formed as

< <w, x > (3-52)

the optimum weight vector must take the form

In
w : ml <IR- 1> (3-53)

Sn

If the desired signal is narrowband, then we see from the performance measure given by
SEquation 3-12 a simple replacement of 1 with vI wilI yield the optimum weight vector.

3.2.4 The Unbiased Minimum Variance Solution

The performance measure for this solution was presented as

Jmv (w) <w, R w > (3-54)

3-11
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subject to the equality constraint < w, I > = 1. The solution of this problem follows
the same general pattern as the others. First, we define a vector u related to w by

u Rw (3-55)

and note that

Jmv (w) <w, RW > = u 2 (3-56)

Hence the problem reduces to finding the vector of minimum norm such that

(<Rn u, 1> 1. (3-57)

Intuitively we know that the solution of this problem is a vector u that is colinear to

R- 12 To show this is the case, we again decompose H into the direct sum of spaces
n -

Q and Q where
2J

Q = u u1 CURn J , c an arbitrary scalar

Q2= 1u 2 <u 1 , u2 > = 01 . (3-58)

If u is any element of H, then we may write u uniquely as

u = UI + u 2  (3-59)

where u1 E Q1 and u2 E Q 2 such that

1= <uI + u2 , R 1 = u RJ . (3-60)

Thus a is given by

C' i(3-61)

n3-1
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which yields u1 as

U 1 R-2 1 (3-62)
S~1 •' 1_2 n -

[ From the pe .ormance measure we can conclude that u2 is zero since1-1 2
11~u1U1 + 2 11 u1 2 112 2> 1 u 112 .(3_63)

mv() uI+u2+ u

Thus the optimum weight vector is
I 1 .

w R 1. (3-64)mv <1, R- i I > n-

Sn

3.3 Comparison of Solutions

3.3.1 Mean Square Error Solution Factorization

In this section the solutions obtained in the last section will be examined
under the assumption of very narrowband signals. First, the minimum mean square error
weights will be examined and it will be shown that these weights define a solution
which can be factored into much the same form as that described for the general transfer
function solution of Van Trees(7 3 ). By examining the other optimal solutions, it will
be seen that the S/N and the maximum likelihood solutions are part of this factorization
and, as a special case, also the unbiased, minimum variance solution. It is shown that
all these performance measures give weights whch differ only by a scalar factor and,
therefore, they all lead to identical signal-to-noise ratios.

w f d The complex weight vector for the minimum mean square error processor
S~was found to be

F emse R R r (3-65)

For very narrowband signals this can be written as

w = (Sv v* + R) Svl, (3-66)
mse 1 n
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=and using the matrix inversion lemma

-1 SR_ v v* Rwsn[R . n i
mse n i * -I1 + Sv1 Rn Vl

in 1

S -1R vl R R v(37)
1+v Rnl n mse n

where

6 =(3-68)
mse +Sv R

In this form the processor can be drawn as shown in Figure 3-1 where the linear matrix
filter ion - 1 vh can be interpreted as a "soatial" filter since it incorporates the spatial
correlate n of the noise and the propagation effects on the signal. Amse will be inter-

S~preted below.

The iioise power at the output of the spatial filter can be written as

-1 -1SP w*R w (R Vl*RR vn n n n n

R V (3-69)
I n 1i

and the signal power is

P w*R w Rn( v * R 1v• P~s = =s n Rs n V

V R -_ v Rn-1

"n n

=SP (3-70)n

-1
In these expressions we see that the weights are proportional to Rn vl, that is they are
inversely proportional to the input noise power (note that if v, = 1 then v* R -v, is
equal to the sum of the terms in the inverse noise correlation matrix). Consequently, the
output noise power decreases as the input noise increases. This could also be interpreted
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Figure 3-1. The MMSE Processor

3-15



from the point of view that the array is able to place deeper nulls on better defined noise
sources. Using these expressions for P and Ps' s can be written asn roPnse ;

s Pn S
Pmse *R-1 P "+S

I + Sv*R v1 P I ' +SP )
I n n n

S SP 2p
2 7- p (3-71

n P +SP n n s
n n

and the weights become

P -1 v Al(3-72)

Wmse P T + P n
n n s

3.3.2 Comparison with Other Solutions: Output S/N Ratio
|V

In terms of the quantities defined above, the other optimal weights can be
"rewritten in a form which illustrates their relationship to the mininium mean square error
solution. The optimal S/N weights were found as

-1
Ws/n = Rn v (3-73)

and hence, s/n = a, where a is an arbitrary constant. The maximum likelihood

weights were found as

Rn v1
w = R -1v (3-74),1 -1 ml n I

vy R v1

fl = I n

/•ml v1 R Rlv 1  Pn(37)

In terms of these quantities, the minimum mean square error processor of Figure 3-1 is
seen to factor into the form shown in Figure 3-2.
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SPATIAL FILTER R V

THE MAXIMUM S/N ESTIMATE

J THE MAXIMUM LIKELIHOOD ESTIMATE
(OR UNBIASED, MINIMUM VARIANCE ESTIMATE)

TEMPORAL 
FILTER 

(

T THE MINIMUM MEAN SQUARE ERROR ESTIMATE

V 86057-3

Figure 3-2. The Factored Processor
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If the desired signal terms were aligned in the array, either through the

use of spatial coI'ection filters in each channel, or because it happened to be broadside
to the array, then the signal propagation vector v1 would simply be the vector 1. In
this case, the maximum likelihood weights wi 1 are seen to reduce to the unbias-ed
minimum variance weights, a result previously established for the more general processor
models (23). That is,

R 1
w - - w (3-76)Wml 1 -1" mv

vn -n

Similarly, the other optimal weights for the signal aligned case can be found simply by
replacing v1 by 1 . Notice also that for the signal aligned array thi. results of this
section can be extended to relatively wideband problems since the correlation functions
Rs andrx can be factoredasRsR= S I*and rx = $1. This is due to the fact that
when the desired signal in broadside there is no dispersion along the array since it
arrives at each antenna simultaneously. For all the cases examined above, the optimal
complex weight vectors are seen to differ only by a scalar factor P. Consequently, all
the different processors have the same output signal-to-noise ratios given by

wP, Rn -1 n vR-

n w Rw P4 R I R PR _1vSn n

Sv1 Rn v1  (3-77)

3.3.3 Maximum Likelihood Versus Minimum Mean Square Error Solutions

As previously discussed in Paragiaph 3.1, the various performance criteria
are generally useful in different situations. For example, the maximum likelihood
criteria is used when the desired signal is modelled as a deterministic, but unknown

signal. In this case it is not necessary to assume any knowledge ," tie signal statistics,
but the noise must be Gaussian. On the other hand, the nmean square error criterion is
generally used when the desired signal is modelled us a random process. This requires
the second order statistics of both the signal and the noiso to be known or measured.
However, if the desired signal as statistics are not known or are difficult to measure,
then one could resort to the use of a maximum likelihood processor. This section will
examine the tradeoff between these two processors.
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To compare these two processors, the optimal weights associated with
each can be substituted back into the exprz:ssion for the mean iquare error given in
Equation 3-5:

J -•[<w, R w>-2Re<w, r > +S (3-78)

In thi5 m'nner Jse, ihe mean square error associated with the ,ninimum mean square
error weights, rmalized by letting signal power S equal unity, can be written (using
Equation 3-70) as

I (3-79)
mse

n

Also, the normalized mean square error associated with the maximum likelihoodt weights
can be found as

-- (3-80)
mse m Pn

Recalling from Equation 3-70 that the output noise power P is inversely proportional to
the input noise, N, we can write n

N (3-81)

and

" ~-N. (3-82)rnse

ml

From these expressions we see that the mean square error associated with each of these
processors becomes nearly ecrJal when N < < 1; that is, large input signal-to-noise
ratios, u result previously noted by Griffiths (41). Also, from Equation 3-81 it is
apparent that for large input noise power the norr.nilized mean square error associated
wi'h the minimum mean square error solution is relatively constant.
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4.0 OPTIMIZATION TECHNIQUES

This chapter examines cundidate optimization methods for the optimization
of a given array performance measure J (w). The methods to be examined can generally
be classified as either search tchniques, gradient (first order) methods, or the higher
order methods. The search techniques utfilize only information about the values of the
performance measure at neighboring weight settings to compute iuccessively better
weights. The gradient method. utilize knowiedge of the performance measure gradient
at a particular weight setting in order to change that setting to an improved value,
while the higher order techniques require knowledge of the higher order derivatives of
the performance meazure. From this examination it will be apparent that the gradient
technique known as steepest descent is the mcst practical method for the implemcniation
of adaptive null steering arrays - the other techniques do not lead to simple and effective
circuitry. Also, since the minimum noise variance performance criterion requires c con-
straint on the weights, a constrained gradient method, the projection gradient method,
will be presented. These optimization techniques are designed for the opt~mization of
the performance criteria as presented in the preceding chapters, which require the

evaluation of appropriate correlation matrices. It will be demonstrated through the
method of stochastic approximation, and intuitive arguments, that instantaneous error
quantities ccn be effectively used, avoiding the necessity to consider averaged quantities
cind resulting in much simpler implementations.

4.1 The Search Techniques

The search type techniques for optimization are essentially refined trial and
error methods. They proceed by evaluating the performance measure for several values
of the independent variable (the weights in the adaptive antenna problem) and from these
calculations an improved estimate of the weights is made. For example, consider the two
situations illustrated in 'igure 4-1 for the initial weight approximation w,. If the
optimum can be bounded by the interval ['•, ,8], then a smaller bounding region can be
established as follows. Let!< w1 < W 2<f, then for

.1)l) > J 2) w. Wopt C [W,1

i i) J (w 1) < J (w2" - wept C [a•, w 21.

The next trial is then compared to J (w2) for case i) or J (Wl) for case •i) and the processcontinues until the ccrrections become small.
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The method for choosing the next trial point.within the new interval
defines the algorithm, e.g., the golden section or the Fibonacci search. Extensions
of these ideas can be obtained for'multivariable problems (5i) such as the simplex
method which constructs successively smaller geometrical regions which contain the
octimum solution. These methods, however, have two distinct disadvantages which
disqualify them for use as computational procedures for finding the optimum array
processor weights, First, they require that the precise functional form of the perform-
once measure be known [to calculate the trial values J (wI)], which requires that the
correlation functions for our problem be known. And secondly, they generally require
a digital computer for implementation and do not lead to practical circuitry.

4.2 The Gradient Methods

P 4.2.1 General Description

To obtain better convergence properties and more implementable solutions,
the grodient type optimization tcchniques can be used. These methods utilize the slope
of the performance measure for j candidate weight setting to generate an improved
estimate of the weight. This genera! procedure is best illustrated geometrically.
Figure 4-2 shows the performance measure surface for one component of the weight
vector. From this figure we see that to the left of the minimum the slope or gradient
of the error curve (or generally, a surface) is negative, while to the right the gradient
is positive. This property suggests the following algorithm to update an initial
approximation w. (0)

w. (k+W) = wi(k) -CaV.J (4-1)

or w. (k)

or

w k+1) w(k) - a vJ , k =0, 1, 2, . . . (4-2)
w (k)

where a is a positive constant and VJ is the column vector -' -w . .. ?

It is apparent that the choice of the constant ce is critical to the success of this
algorithm. If a is too large, then the correction terms [rjv;JJ
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will be so large that the updated values will oscillate on each side of the -ninimum. On
the other hand, if a is too small, then the approximations will converge too slowly.
Also, it is apparent that the gradient becomes very small (approaches zero) as the mini-
mum is approached, and hence the convergence rate slows down, dictating an increase
in the magnitude of ce as the solution is approached. Another consideration is that
certain components of w may be mo, %ensitive to adjustment than others and it might
be appropriate to consider a matr7" constants A in the modified algorithm

w(k+l). =w(k) -AVJI k =0, 1, 2, " (4-3)

w(k)

The choice of the convergence factor must be made within the context of
the particular problem to be solved. In the section on stochastic approximation it will
be seen that a set of equations which this factor must satisfy will also be specified.
Also, in the section on higher order methods the matrix A discussed above will appear
as the inverse of the matrix of second partial derivatives of J with respect to w. While
this is too complex for practical solutions, it does give an indication of how A might be
chosen. The method of steepest descent, as presented here, is seen to require the
evaluation of the gradient of the performance measure, but not the performance measure
itself, at each value of the weight setting. As will be. demonstrated in Chapter V, the

method used to perform this evaluation will be one of the critical differences between the
various implementations of this method. As presented, the method of steepest descent
changes the weight (in the direction of the gradient) an amount dependent on the magni-
rude of the convergence factor. Other descent methods differ this in that they often
use different directions, e.g., the conjugate gradient mtihod "'). Also, some of these

t other methods do not chan,, he weiQht a fixed amount, but calculate the exact
minimum in the descent d,, ion (51). However, similar to the search techniques,
these methods are primarily suited for digital computer applications and do not lead to
readily implemented circuitry.

4.2.2 Steepest Descent Implementations

The algorithm in Equation 4-1 can be implemented directly in terms of
* discrete elements in the form of Figure 4-3a, or the equivalent analog representation of

Figure 4-3b can be used. This alternate form can be derY from the differential
equation

dw w (t = t (4-4)dt = J' Wo, 0t
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Figure 4-3b. Analog Implementation of Steepest Descent
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whose solution will approach the equilibrium point dw/dt = 0 at the minimizing value
of w where VJ is zero. The solution of this differential equation, represented in
Figure 4-3b, is

t

w(t) = w0 - a. VJds. (4-5)
t
0

Again, the choice of the gain factor of is seen t--" critical if proper balance between
stability and speed of response is to be maintaineu.

4.3 The Higher Order Methods

4.3.1 General Description - The Newton-Raphson Method

The higher order optimization techniques are characterized by their use of
higher order derivatives of the performance measure, rather than just the first derivative
as is required in the steepest descent method. An example of this type of method can be
derived by using the Newton-Raphson root finding technique. This procedures is primarily
designed for the determination of the roots of an algebraic equation. To utilize it for the
problem at hand we must apply it to finding the roots of the equations specified by the
necessary conditions. That is, we seek the root O of the equation

VJ(w) = 0 (4-6)

which defines ^W which optimizes the performance measure J. The method proceeds by
constructing a linear approximation to the function VJ (w) at some approximation w = w0
for the desired roct. That is, the nonlinear functional VJ (w) is replaced by a Taylor
series expansion truncated after the linear terms, giving the equation

VJ(w) = VJ%(W) + [H(w0)] (w-w 0)+ . . (4-7)

S2 J (w )
where H (w0) = M is the Hessian matrix of second partial derivatives. The zero)wi• Iv
of this approximation is solved for, giv'ng

A -I

w wo -H (WO)VJ w0  (4-8)
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which leads to the general sequence of approximations

w(k+]) = w(k) - H (w0 ) VJ w k=0, 1, 2, (4-9)
w(k)

These ideas are presented graphically for a simple scalar problem in Figure 4-4.

The algorithm of Equation 4-9 is a second order method for the optimization
of the performance measure J since it requires the use of second order partial derivatives
of J. Generally these procedures yield faster convergence rates; howevwr, not only must

these derivatives be evaluated, but the inverse must be computed. These tv'o operations
must be done at each stage of the algorithm, an obviously tedious process. Some
variations on this method can be used, which utilize the same matrix inverse for several

steps, but the algorithm is still too involved for practical implementation. As will be

demonstrated in the next paragraph, this method is essentially the evaluation of the
closed form solution for the minimum mean square error case, a procedure which has
already been discounted as computationally unattractive. Methods using even higher

order derivatives are conceivable (for higher order performance measures), but would
lead to even more complex calculations.

4.3.2 Application to Mean Square Error Performance Measure

It is interestirg to examine the application of the Newtcn-Raphson
algorithm to the computation of the optimal weights for the minimum mean square error
processor. For this case the performance measure was given in Equation 3-5 as

S(w) V[<w, R w> -2Re<w, rx +] (4-10)x xý

and the necessary condition for the optimum becomes

VJ =0 = Rw -r (4-11)
- x X

-1

the solution of which can be computed as w = Rx rxt. Alternatively, the Newton-Raphson
algorithm of Equation 4-9 can be applied to this problem in the form of finding the roots
(solution) to Equation 4-11.

Since the performance measure is quadratic in the weights w, the necessary
conditions of Equation 4-11 yield the solution which is a unique minimum. However,
since it is quadratic, the first partials in Equation 4-11 are linear and the linear approxi-
rvation defined by the Newton-Raphson method is seen to be exact. (This can also be
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thought of as the "approximation" of the original performance measure, which is
quadratic, with a quadratic function.) This means that the Newton-Raphson method
converges in one step - it is an exact procedure for this application. These facts car be
demonstrated by an examination of the equations required by the procedure. The matrix
of second partial derivatives in Equation 4-9 becomes H (w) = R and the algorithm is
written as

w(k+1) = w(k) -R' [Rx W(k) -rx3 = R rx. (4-12)x x X4 x

This is, of course, the exact solution of the set of linear equations given in Equation 4-11.
In other words, the application of the Newton-Raphson method to this problem is trivial;
however, it is interesting to obtain these equations because of their relationship to the
steepest descent equations and the implications they have on the choice of the conver-
gence factor.

4.4 The Projection Gradient Method

In the past several sections candidate optimization techniques have been
discussed and it is apparent that the method of steepest descent is most appropriate for
adaptive antenna problems. Since the minimum variance performance measure requires
that the weights be constrained, then a constrained optimization method must also be
presented. The projection gradient method is a steepest descent procedure for iteratively
(adaptively) computing the optimum of a constrained optimization problem. The proce-
dure is best described in terms of the geometric presentation of Figure 4-5. This figure
represents a two-dimensional optimization problem where the optimal w is required to lie
on the line (hyperplane)

2
w1 + w2 = 1,(L w. 1 <w, 1>). (4-13)

i=1

And since the performance measure J is convex, constant J surfaces are closed about the
origin. As shown there, the point on the line w1 + w2 = 1 which is on the smallest
constant J surface (i.e., the smallest value of performance measure) occurs where that
surFace is tangential to the constraint set and is characterized by the fact that the gradient
of the performance measure is orthogonal (perpendicular) to the constraint set. Thus, the
necessary condition for an unconstrained optimum, i.e., that the gradient is zero, is
replaced by the condition that the gradient be orthogonal to the constraint set - that is,
that the projection of the gradient onto the constraint set is zero.
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This illustration also indicates a procedure which could be used in an
iterative fashion, exactly analogous to the unconstrained method of steepest
descent. Looking at the gradient vector evaluated at the two points w1 and w2

shows that the negative of the projection (orthogonal) onto the constraint set always
points in the direction of the optimum, so rather than using the standard steepest descent
algorithm of Equation 4-2 we use the modified form

w (k+1) w (k) -P VJ (4-14)
w (k)

where P is a projection operator. It is interesting to note that the form of this projection

operator is quite simple (for this case it takes the form P = (- i-T/andthe resultingm/
algorithm can lead to as simple an implementation as the standard steepest descent
solution of using an unconstrained performance measure. The application of this r, oce-
dure to the minimum variance performance measure is presented in Chapter V.

4.5 The Method of Stocha.stic Approximation

The techniques develcped in this chapter are designed primarily to optimize
the performance measures in the forms presented in Chapter 3. In parlicular, the steepest
descent procedure, the obvious candidate for practical implementation, requires the
gradient of these performance measures. These gradient expressions require the a priori
knowledge or evaluation of the signal correlation functions. Generally, these correlations
are not known and their evaluation would require more complex implementations. How-
ever, the method of stochastic approximation avoids these problems. Using this procedure,
the instantaneous signals available at the anay can be used directly in the optimization
algorithm. This avoids tFe requirement to compute averaged quantities, thereby elim-
inating additional integrators from the circuitry.

For example, the gradient of the mean square error performance measure

takes the form:

VJ = R w x> (4-15)

where R and r are generally not known, buit can be evaluated as finite time averages.
That *-i: x

R f x(t) (t)dt = x(t)x*(t) (4-16)x T
T
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rnd

%t "*()x) dt =V(0) (4-17)
rx4 T Co

Denoting averaging ½y overbar, VJ becomes

xVa ( w(t) - xt. (4 -18)

Consequently, to obtain these correlations an additional integrator must be used in the
implementation shown in Figure 4-3b to obtain VJ. However, if the signal bandwidths
and the convergence factor a are chosen correctly, this additional integration can be
avoided. In this form the gradient of Z', the instantaneous error squared (rather :Nan J,
the mean square error) can be used and takes the form (dropping the overbar above-/:

v.1 = xtx*(t)w(t)*(t)x(t)
r•

= x(t)y*(t)- *(t)x(t)

= x(t) [,*(t)- I*()] (419)

This simplification can be justified using either stochastic approximation (33 )or

intuitive arguments, both of which are discussed briefly below. Also, these methods
will be illustrated in application to spP%:ific adaptive algorithms in Chapter 5.

4.5.1 Brief Description of Stochastic Approximation

Consider the problem of finding the extrema of

(X . •, xm w 1 w2 , . wm) = (x,w) (4-20)

where .1 is a function of the determinis;ic quantities w - the weights, and the siatistical
quantities x - the signals received by the array. Since T 'is a function )f variables which
are known only in a probabilist;. sense, then the extreraization of this funz"X.n implies
the extremnization of J which is te expected value of J1, that is,

J = E [.(x,w)] f •'(x,w) p (x) d.,. t; 1/7f f(x,w) dt. (4-21)
T

TUe extrema of this expression are spi:ified bv ;he zeros of the gradient vector
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Vi = 0 (4-22)

and the steepest descent type adaptation scheme would take the form of Equation 4-2

w (k+W) v (k) - cc VJ (4-23)
w (k)

Since the probability density function p(x) is generally not known, and its approximation
by c. time average is often tedious, J and VJ are often difficult to compute. However,
the stochastic approximation algorithm involving the gradient of the instantaneous function
J"is often utilized, and takes the form

w (k+]) = w (k) - a(k) d'' (4-24)

Iw (k)

In this form of algorithm, it might be expected that the relaxation of the
requirement to compute an averaged gradient term (requiring knowledij3 of the correlation
functions) might necessitate a more stringent set of requirements on the specification of
the convergence factor. These requirements generally take the following form:

1. a (k) = co which ensures that there is an unlimited amount of
k=1
correction effort if required; anid,
o0

2. f, Cc (k)2 <00 which ensures that the correction terms go to zero
i• • k=l
'• •:so that the process ccrnverges.

It can be established thqt under these conditions the stochastic ipproxi-nation algorithm
converges both in mean square

lim E [w (k) w W 0
Sk-o--,- t - (4-25)

and with probability one.
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4.5.2 Application to Null Steering Adaptive Arrays: Intuitive Argument

The use of instantaneous quantities for performance criteria has been
applied to adaptive array design in the past and been justified both through the
explicit use of stochastic approximaticn and more directly through intuitive reasoning.!• This will be illustrated in the discussion of specific algorithms it, the next chapter,
but ,qenerally this re-isoning can be illus.rated as follows. Considering the control loop

of Figure 4-3b for the algorithm

dt = - J (w), w (t W (4-26)

the weights w are given by Equation 4-5 as

OAW W)=w -a r V J (w) ds (4-27)

0I ;cr fhe mean square error performance measure of Equation 3-5 V J (w) is given by

V J (w) = R w - r (4-28)

which r•quires that R and r be known or calculated from quantities availahle
x X4

at thc array. Alternatively we could use instantaneous quantities as 4

V5 (w) = - *x. (4-29)

In f'l-is form, Equaticn 4-26 becomes

dw
dt- =- (w) = - a [xx*w -, •*x] (4-30)

Notice from Equation 4-30 that if v is small 3nough, then w(t) will remain relatlivel[-
constant and w will be essentially independent of V ý (w) and xft). {This can also
be argued thc-t if ce is small enough, the loop bandwidth of the control loop is much
smaller than the bandwidth of t!.. re -aived signal x(t) and the weights will vary slowly
compared to theýe signals.) For this case, the equation for the average weights w
cornes directly from Equation 4-30 as 3
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WI
dw - c xx*w + O *x (4-31)

- e R w+ ofr -c V7J F)x x4

That is, force small, the average weights computed using instantaneous values are
governed by the steepestdescent equatior, fc,- +he averaged performance measure.

4.6 Alternative Computational Pro-..

In this chapter A'e mathematical optimization ?echniques required for the
design of adaptive null ;teering arrays have been presented. Thece procedures avoid the
necessity to know the correlation functions at fle arrhy and since they are continually
being updated they can be used in time varying environments. Alternatively, if the
correlation functions are known or mensured, then the solutions could be computed
directly and LIhe optimal filter could be constructed. However, these solutions require
the computation of a matrix inverse, often a tedious computational procedure, particu- I
larly if the array has many elements. For some of the solutions the matrix which must
be inverted is Toep!itz, a fact which can be used to construct more efficient inversion
ro.tines (77), However, if the statistics change due to a time varying environment,
such as moving emitters, jammers, and signals turning on and off, or changing signal
structure, then the solutions must all be recalculated and a new fiiter constructed.

Another class of iterative computation techniques for the optimal proc-
essors are the recursive methods. These procedures both measure and perform the
required inversions and matrix computations using etficient procedures which make use
of recursive estimation meihods to introduce the effects of new data and avoid the
requirement to re-invert the correlation matrix. Mantey and Griffiths(5 6 ) and
Baird(7) have presented such processor. which converge to the minimum mean square
error solutions, while Baird and Rickard(9 ) have developed a 3imilar procedire for the

unbiased, minimum variance solution. These procedures are suitable for proolems with
time varying statistics since the solutions are continually updated. Also, they have the
property that they are optimal at each stage of the iterative process, based on the data
used, whereas the steepest descent processors sre merely asymptotically optimal. These
are a promising class of processing methods; however, they require further development
before practical implementations competitive with the steepest descent methods can be
designed.
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5.0 BASIC ADAPTIVE ARRAY ALGORITHMS

In the past several chapters the mathematical techniques required for the
development of optimum adaptive array processors have been presented. The optimal
solutions have been discussed, together with the adaptive optimization methods which
can be used to efficiently calculate these solutions in a ,complex time-varying environ-
ment. As has beern demonstrated, ihe most appropriate optimization procedure is the
method of steepest descent, which coupled with stochastic approximation ideas allows
the simplification of using instantaneous performance measures, rather than averaged
measures.

In this chapter the adaptive aigorithms which have been presented in the
literature are described. The majority of these procedures utilize the basic steepest
descent-stochastic approximation solution. They differ according to which performance
measure they are designed to optimize, however, as was demonstrated in Chapter 3,
for narrow band systems these lead to identical steady state solutions. Furthermore, it
will be apparent that they will exhibit essentially similar transient behavior. The basic
algorithm takes the form dw-=- 7 ,wt

dt ,) w ( 5-1
i-0 0

A
where 3 is the performance measure based on instantaneous quantities and a general
block diagram is shown in Figure 5-1. In this diagram the array output, a priori

information, and array inputs are utilized to calculate the instantaneous performance
measure gradient, which is then used in the steepest descent optimization algorithm
of Equation 5-1 to find the optimum weights. The procedures discussed in this chapter
are primarily signal known or DOA known type methods, with little consideration as to
how accurate approximations for these quantities are acquired. In other words, these
algorithms represent basic solution methods, but do not qualify as practical solution
techniques since they do not solve the acquisition problem. This problem will be con-
sidered in detail in later chapters of this report.

5.1 Minimum Mean Square Error Algorithm

In this section basic algorithms which have been designed to minimize
mean square error will be presented. Two such procedures will be illustrated, a signal
known type and a signal DOA known method.

5.1.1 The LMS Algorithm

Widrow, at al (76), have presented an algorithm which minimizes the
mean square error at thc array output and is designed using the instantaneous error
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squared criterion. Considering the error between the array output and an approxi-
mation for the desired signal, this criterion is

2 ~12
J = es 1/ = ½<w, x>- 5-2

(where the 1
/ is introduced in the performance measures of this chapter to simplify

the gradient expressions). The gradient of this expression is

VJ = (< w, x > - *x = E* x 5-3
es

and the analog implementation (based on Figure 4-3b) becomes

dw
dw E *x, WO w 5-4
dt 0 0

This type of algorithm has been studied extensively since it was first suggested for
antenna array problems by Widrow, et al.( 76 ) (They also present an investigation
of the choice of ihe convergence factor ct.) Using the implementation detailed in
Figure 4.3b this algorithm can be constructed as shown in Fip--e 5-2, where the
integrator shown integrates both the real and complex components for the weight
w! = Wlr + JWl.

wIIre Iam.

In the form presented above, the LMS algorithm is seen to require precise
knowledge of the desired signal in order to construct the performance measure gradient.
This is, of course, an unrealistic assumption (since it would obviate the need for an
array), however, several fixes have been suggested. Compton and Riegler( 2 6 )
suggested that only partial knowledge of the desired signal is necessary here, and an
approximation " fore (such as the carrier frequency) can be us a, They have cIso
developed more sophisticated techniques for use with spread spectrum signals(47 ).
The construction of a useful approximation for this form of algorithm is also discussed
under the topic of acquisition in later sections of this report. Widrow, et a0.( 7 6 )

suggested a two-mode algorithm which requires direc-tion-of-arrival and alternatively
adapts to the environment and an inserted pilot signal constructed to appear as though
it came from the desired direction. In this form the array alternatively steers a beam
towards the desired signal, and then tries tr, steer nulls on all signals (including the
desired signal), leading to a compromise solution which does not approach the optimal
weights.
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5.1.2 The Modified LMS Algr'ithm

Another variation of the LMS algorithm has been developed by
Grif~ths a\ nd uses v mixed strategy of instantaneous and average quantities in the
grad;ent calculation. The gradient of the mean square error is given by

SV. = w - r 5-5
anise x4

and Griffiths suggests that if we; have estimates for the desired signals direction-of-
arrival and spectral density ;han we can c.,,cu.Ite -r an estimate for r . He

Sthen argues that instantaneous quantities can be used in place of Rx and writes
VJ asS~mse

VJ xx*w 'r 5-6i mse N

and constructs the algorithm (where y* = x*w)

dw t Y
d" " xy* - ), w t) =w 5-7

It can be shown that for sufficiently small constants ot that the average value of
the weights computed using this algorithm will converge to the optimal weights.

Chang and Tutuer (21) present an alternative, and perhaps more rigorous.
derivation of this modified LMS algorithm using a modified stochastic approximation

At.
argument. If the performance measure J is decomposed into two parts (where I is
formed using instantaneous quantities)

A
J(x, w) = J (x, w) + J" (X, w) 5-8

They demonstrate that under certain conri" "iAs the algorithm

dw + (kw) ~ 5-9
dt Vt(k[ VJ 1 + V ' w (to) Wo

(where overbar denotes averaging), converges both in probability and mean square.

To illustrate the use of this idea, again consiV the performance measure
of error squared in the form

S(X, w) 1/2 <w, x > - 2 5-10
es
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Since the received signals x are noisy, one would generally consider the minrmi-
zation of the mean squared error, however, a stochastic approximation type algorithm
is simpler to implement. Expanding this expression gives

J = <w, xx*w>+(1>I 12 - Re<w, •*x>) 5-11
eSI

where this can be decomposed into J and J as follows

1 2

Jas 1 J = J A <w, xx*w> + ( I2 -Re<w,J*x>)5-12

The required gradients for the modified algorithm become

VJ = x*w= xy* 5-13

where y' = x*w < x, is the complex conjugate of the array output and

vi; = _ =. r 5-14

where r is the signal correlation across the array. The algorithm then takes the form
xj

- dwdw =- (k) [xy* 1, w (t) =w 5-15
dt xn o 0

where -r is an estimate for r This algorithm is implemented as shown in

Figure 5-3 where only estimates for the signal correation (or spectral density) function
and direction-of-arrival need to be known, a reasonable assumptiorn in many practical
problems.

5.2 Signal-to-Noise Ratio Algorithms

5.2.1 Applebaum's S/N Algorithm
SApplbaum 5)

4Applebaum presents an algorithm which is an extension of his side lobe
canceller work and is designed to maximize the signal-to-noise ratio at the output of
an adaptive array. He does not explicitly utilize steepest descent, but develops his
control loop using side lobe canceller circuitry (to solve the set of algebraic equatiors
for the optimum weights), which leads to an essentially similar design. Also, he considers
that the desired signal components in the array signals are negligible compared to the
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noise terms (the side lobe canceller argumont), but this assumption is unnecessary. To
implement his algorithm, he assu-nes a low-pass filter (with time constant -r) and a high
gain amplifier (with gain G), are connected as shown in Figure 5-4. Before the amplifier
he adds the signal 7,x which corresponds to the signal cross-correlation, but he also

i4,
considers the use of other quantities here t, give particular antenna patterns in the absence
of directional noise. For this circuit, the kth weight is given by

k [ - xk <xw> + ] G 5-16

where overbar indicates averaging in the low-pass filter. Assuming the loop bandwidth
is small compared to the bandwidth of the complex envelope signal, this leads to the
vector equation (i.e. w varies relatively slowly)

w xx*w + 7 G
S- R w + G'r 5-17

x x I

or

R + w 5-18

Notice, that if G is large, then N!, reduces to the Wiener-Hopf Equation
(Equation 3-26], which gives the minimum mean square error weights. In Apple-baum's analysis, he assumes x : n (noise only) and his equation takes the form

R + IG w = x-19

however, as shown in Chapter 3.0, Equatior, 5-18 also gives the optimal signal-to-
noise ratio, that is, one need not make the assumption x ; n.

equation (5) The dynamics of this control circuitry is given by the differential

dw G[
+ [GR + w w (t)w 5-20
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Assuming I << GR this becomesx I
dtO

dw +2G Rw Gw ( w 5-21

which has the desired steady state solution dw )

w=R r 5-22
x X

This differential equation is essentially the same as that suggested by Griffiths and
Chang and Tutuer. If we consider the average value of the weights in their equation
(Equation 5-15), then we will obtain this same equation (see Section 5.5). Notice
then, that subtracting the signal correlation after a low-pass fiiter gives the same form
as subtracting it before an assumed perfect integrator. That is, Figures 5-3 and 5-4
lead to the same general form -,or the loop differential equation.

5.2.2 Other S/N Algorithms

Several other invesligators have proposed algorithms designed to maximize
signal-to-noise ratio. Shor (67) presents a standard steepest descent formulation, where
he proposes to measure the required gradients using correlation techniques. However,
these measurements require the separation, of signul and noise. His method of doing this
is to insert a strong pilot signal in the direction of the desired signal to measure signal
correlation, and to measire noise correlations when there is no target (a sonar problem)
present. This i: similar tc, Widrow's two-mode procedure, and as such does not offer a
practical solution in a cormsmunications context.

Adams (1) has also developed a S/N algorithm, where he suggests a more
practically oriented procedure. He measures the gradient of the S/N ratio by calcu-
lating S/N at incremental values of the weights, which is found using a S/N ratio
detector, illustrated with his contro! loop in Figure 5-5. Unfortunately, this procedure
is limited since the S/N detector is designrd only for use where a wideband signal is
operating against a narrow bond signal.

5.3 Maximum Likelihood Algcrithms

The maximum likelihood type algorithms which have been suggested have
not led to the practical circuitry which would be necessary for the problem being
addressed by this study. Griffiths(4 1) suggests such an algorithm, but it requires the

* injection of a pilot signal, and as such, offers no more than the two pilot signal type
solutions suggested by Widrow and Shor, and is more complicated to construct.

• 5-11
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5.4 The Minimum Noise Variance Algorithm

One final algorithm, which is based on the minimum noise variance
performance measure, is seen to lead to an interesting adaptive array processor. This
algorithm, suggested by Lacoss(52), is based on the projection gradient method dis-
cussed previously and takes the general form

S~dw
= - aPVJ , w(t )=w 5-23

dtmy o0 0

where the gradient of the noise variance is m = R w and the algorithm
becomes w n

•" dw
w -P R w w (t) w 5-24

dt n o 0

The projection operator P is designed to give the projection of the gradient onto the
constraint set <w, 1> = 1 and is derived below, it should be noted that the average

performance measure is used here, which requires an additional integration in the final
implementation, but can be elimeinated using stochastic approximation ideas under
appropriate bandwidth assumptions. Also, the difficulty of obtaining Rn in the

presence of signal is shown to be avoided by a unique property of the projection
operator.

5.4.1 Derivation of the Projection Operator

To derive the projection operator it is noted that the constraint set
< w,) > = 0 defines an rn-i dimensional hyperplane in the m dimensional complex
space of the array weights. Any vector in this space can be decomposed into a compo-
nent in a one-dimensional space W1 sponnpd by the vector 1 + j 0 and a component
in the m-i dimensional space W2 formed by all the vectors-which are orthogonal to
this vector. That is

W1 = xx x = 1 5-24

W,2 = x < x, =0 . 5-25

2We can write any vector w as w = w + al and we have

2S<w, _l> =<w + 4Y , _1 " 1 0 + 01< _1,I1> 5-26
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which gives
ii<w, 1_> <w, 1._>52

!!,•,(x =< = ,5-27I 1,> m
The projection operator PI, that gives the orthogonal projection of any vector w onto
W, gives

2 _ _P1 w = P1 (w + al ) = a 1 5-28

and in Euclidian space we can write,

I TS<w, > 1 11

w =1 w 5-29: m -- m

SThe orthogonal projection P onto W is equivalent to the projection on the hyperplane
defined by < w, I> = b , since it is merely a translate of W2. This projection can then

babe writxten as

: 1 T15-T
' Pw = (I - P) w = (I m w 5-30

fand the required progection operator is
S~T

,~ = 1 5-31

5.4.2 The Use of Signal Corrupted Coxrelations I
The algorithm as stated in Equation 5-24 is seen to require the noise

correlation matrix Rn which must be calculated from measured data. This data will
generally contain both signal and noise terms, however, if the inputs x do riot contain
signal terms, Rn can be approximated by•

Rn= x•"""Jx (s) x * (s) ds 5-32

for T sufficiently large. In this case, it can be shown that the projection operator
allows the use of signal contaminated x's . In general
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R =R + R 5-33

and for the •ignal aligned array (See Equation 2-50)

R =S 1 1 5-34

The expected value of the approximation based on the finite time average in
C. Equation 5-32 will be

E[ ] =R =R + s 1T 5-35
X n

If the projection operator is used

"E[P• ] =PR =PR + SP i 5-36
X x n --

where

-P [ii T] = [,-• - 1T 5-37

F1T - =0

then [ -

e [P• ] =?R = PR P[ 538Jo
x x n T x()x*()d]53

Consequently, we see that on the average the projection operator allows the estimation
of PR~ to be made from P]•x

thn

5.4.3 A Two-Dimensional Example

As derived above, the projection operator required for the implementation
of the projection gradient method is seen to be a constant matrix of simple form. Con-
seq,'ently, its use will be seen to lead to little complication of the standard gradient
algorithm. To demonstrate this, we can examine the circuitry required for the imple-
mentation of a simple two-dimensional example. This is, of course, a trivial case,

5-15



but the general form is the some for higher order arrays. In this case, we must choose
the complex weights w 1 and w2 to minimize

J = <w,R w>= R [w*, 2w R 5-39mv n 1 wl

subject to w1  w2 1. The projection operator as derivel above becomes

I , 5-402 [

Using the results of Section 5.4.2 the algorithm of Equation 5-24 can be written for
this example as

dw T
-t PR w 7 - - x (s) x (s) dsw(t),n T

0 5-41

w (t = w
0 0

Ii • Assuming that w varies slowly compared to the complex envelopes x , and notingJ
that x * (s)w = Y (s) this becomes

dw -al
= - x (s) Y* (s)ds, w (to) = w 5-42

•;f0

For the two-dimensional example this becomes

b} ~ ~~dw -C -lw = -
$ t] 2 2 x (s) Y* (s) ds, w(t W 5-43d '. T 1 0 0o

or

•dWl I T_ T xl (s)-x2 (s)dw = T 2 y (s)ds , w1 (to)=W 5-44
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and

,? ~dw2 ,. .T x .- x,. (s)

dY* (s)ds, w2 (t)=W2o -45
"-I0

which can be implemented using the circuitry illustrated in Figure 5-6.

5.4.4 The General Projection Gradient Algorithm

tt The simple two-dimensional example clearly indicates that the use of the
projection operator leads to easily implemented circuitry. To compare this method to
the others presented in this chapter we must place it in similar form. Using the sto-
chastic approximation arguments the use of the averaged noise variance can be replued
by instantaneous quantities which will eliminate one of the integrators in the algorithm
implementation. For the general m-dimensional problem the algorithm then becomes

dw
d " : " P x(t) x*(t) w

S11T

I X-- .(t)

in) Y* (t), w (t= w 5-46

For the first complex weight in the array we write

dw Ir 1m

dt = "t X (t)- 1 i W) y (t),Sm i=1I

W (to) = Wo 547
• m

which is illustrated in Figure 5-7. In this form the term 1 x. (t) can be
m i=1

* interpreted as an estimate •' for the desired signal. This gives

58
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Im m
= m x "m- Wl[ (t) + ni)

n1 (t) + n2 (t) +... + n (t)
mmWt + ,5-48

where the i (t) are all identical and add coherently f if r the array is pointed at the
desired signal, and the directional noise terms enter thcou. the side lobes.

5.5 Comparison of the Basic Adaptive Algorithms

5.5.1 The Removal of Signal Effects

Most of the algorithms presented in this chap;er have been developed as
applications of steepest descent-stochastic approximation principles. However, as
indicated in the descriptions of the fundamental behavior of side lobe cancellers and
general adaptive arrays in Chapter One, an alternative interpretation in terms of
correlaticn methods can also be used to describe their behavior. Examination of the
more prcmisdng r -.cessors presented here indicates that they are all basically performing
a correlation of the array inputs with the array output and driving the weights from this
correlator. That is, they are attempting to eliminate the noise terms in the array output
by correlating it with the array inputs and driving the appropriate weights. This proce-
dure is valid ff the noises ate not corcelated with the desired signal (generall, a valid
assumption) and if the siqnai correlations can be remov.A. so that they do not affect the
weights, The basic difference between most of the algorithms presented here can be
interpreted in 3rms of how they remove these signal effects.

Widrow's basic Signal Know Type .MS algorithm presen ad in Figure 5-1
avoi ds ,-he signal correlation terms by subtracting (or perhaps blocking) the desired
signal using a priori knowledge about the signal structire. Consequently, the output
of the multiplier (correlator) will not contain terms due to the signal, and the integrator
is driven by noise correlation terms until the weights are set such that these terms are
zero. That is, the noise terms are removed from the array output. For the modified
LMS algorithm, a DOA Known method, shown in Figure 5-2, the signal effects are seen
to be removed after the correlat;or has taken place,. The cross correlation between the
desired signal and the received signals areý computed from the signal's 00CA (and
spectrum if relatively wideband) and are removed by subtraction. Applebaum's proc-
assor also remove3 the desired signal offects after t•ie corr~lator (See Figure 5-3) with
somewhat different circuitry, but the procedure leads to an essentially identical
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algorithm, as is evident from comparing the differential equations associated with the
two approaches. Finully, the projection gradient algorithm (Figure 5-7) is also a DOA
known type method, where DOA information is used to align the desired signal terms,
from which an approximation fc." the desired signal is found (Equation 5-48) and sub-
tracted from the received signal. Thus, the desired signal effects can be removed at
any of three different points in the processor (as illustrated in Figure'5-8):

1. At the array output (basic LMS algorithm).

2. After the correlation (both the modified IMS aigorithm and Apple-

baum's S/N algorithm).

3. At the array inputs (projection gradient algorithm).

This interpretation of the adaptive array, in terms of a correlation device,
indicates that the various algorithms are indeed quite similar. Thus, not only do they
lead to the same S/N ratios at their outputs, as mentioned in Chapter Three, but they
are all performing basically the same correlation operation. This similarity will be
even more apparent in the next section where the differential equations associated with
the above processors are examined.

5.5.2 Basic Processor Differential Equations

An examination of the differential equations associated with the processors
discussed in the last section also indicates the similarity of these algorithms. For the
basic LMS algorithm the equation was given in Equation 5-4 as

-- - *x= - a(xx*w - x) 5-49
dt

Generally, these controi loops are designed (i.e., C is chosen) so that the weights
vary slowly compared to the complex envelopes of the s;gnals. In that case, the
expected value of the weights are governed by the equaticn

d ct - ]x 550
dt

or

dw +aR w =a7 5-51
dt x x
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For the modified LMS algorithm of Equation 5-15 the equction is

dw
- -a(xx*w - 5-52

and the expected value equation again becomes

.- e- R w =a 7 5-53':: dt x x•

Notice that this is the some form as Appleboum's control law of Equation 5-21 where

G G
7"

The differential equation for the generalized projection gradient algo-

rithm was given in Equation 5-46 as

dv [x(t) - 1* 55
dt mi= I -

--- a [ x(t) - '(t) ]y*(t)

Since )'* (t) = x *(t) w thisbecomes,

dw - axx w + e (t) l x* w
dt

Cc -xx w Mw *1+n55

L W

TI

Jsing the fact that the weights are constrained such that w T I - 1 this becomes

dw = T + +1 557
dt w a[-

I-23
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Since the desired signal is uncorrelated with the noise, the expected value of the weights
is governed by the ec'uation

dw aR " + a1 5-58
dt x -

where S 1 is the form for the desired signal cross correlation for the signal aligned
array. Thus, the differential equation again takes the form

dw a?' .5-59

dt + tRx x5

where 'r SI

For all of these procedures, the differential equation is seen to take the
same general form, indicating that not only are the steady state solutions identical
(with respect to outpu.t signal-to-noise ratio for relatively narrow band problems), but
the transient behavior is also the same. It is important to realize that the algorithms
presented here do not represent practica, solutions, but merely define the basic -orm
(the differential equation, Equation 5-59) of the processor. To implement them effec-
tively, good estimates for the desired signal or its direction-of-arrival must be
obtained, This problem is dealt with in Chapter Seven, while the behavior of the
basic array (described by the differential equation - Equation 5-59) is discussed in the
next chapter.
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6.0 BEHAVWOR OF ADAPTIVE ARRAYS USING THE IMS ALGORITHM

In this chapter we focus attention on fhe time behavior of an adaptive
array using the LMS algorithm and determine the transient as well as steady state response
using spectral techniques. The steady state results will then be used in evaluating the
array performance described by the output signal to noise power and gain.

6.1 Solution of Basic Differential Equations

6.1.1 Triansient Behavior

Recall from Equation (4-31) that the differential equation which describes
the trajectory of the m dimensional complex weight vector through the m+1 dimension-1

weight-time space is r'ven by

: dw
d + aRw =a r ; w(o) =w, (6-1)

where RX represents the correlation matrix of the vector valued input x and is assumed to
be positive definite, whereas r×• represents the m dimensional correlation vector between
the desired signal f(t) and x.

The approach we shall use in solving this differential equation is to utilize
finite-dimensional spectral theory so that the vector w can be e)-r-essed in terms of the
eigenvalues and eigenvectors and/or projection operators associated with the positive
definite matrix Rx. This technique, although perhaps not well known among practicing
enginieers, is very powerful and for our problems easily yields results for narrowband
en%,ironments with arbitrary array geometries. Let H denote the mr-dimensional complex
Euclidean spa, .. on which the matrix Rx is deFined, and let XI,'" X denote the dis-
tinct eigenvalues oi Rx with corresponding eigenspaces Q1, .-.. ,Q1. •If Ep represents
the orthogonal projection from H onto Qp, then we can write Rx as (44)

R - p , (6o-2)

where the projection operators have the properties:

Ei Ei - 0 i 3'i (6.-3)

Ei E i = i (6-4)
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and

(6-5)SE

with $•hs representation in hand, consider now the equFation describing the
unforced resronse of the antenna system, namely:

dw + +oRw - 0R ; w(o) Wo (6-6)

It is well known that the solution of this differential equation can be written as

-aR t
w(t) e x Wo (6-7)

-aRxt
where the expression e is defined as

-xt 2t 2  n n tne I I- ctRxt + (•Rx2.t r .. +-Rx) n--+... (6-8)

Substituting Equation (6-2) into Equation (6-8) and using Equations (6-3), (6-4), and

(6-5), we write e-LRxt in te ms of the eigenvalues and projection operators, namely:

- c'Rxt 0 -ta

e = e P E . (6-9)
p3ýl P

Thus the unforced response can be written as

w~) =r e Epwo .( -0
p=1

;t is evident that the unforced response is well behaved; in fact the origin is asymptot-
ically stabie since

!IW(tJJ<I ~ XP IfE Pwo 1 as t -~'J
p=1

where we have used the fact that all the eigenvalues are greater than zero.

6-3



5~

,te"

Focusing now on the forced response we first multiply Equation (6-1) by

SeRXRt and integrate, obtaining

.. • w~t) = e rx dr e E r e dr.

of of p Xl

Since the vector r is time invariant and since I is finite, we can write
t x I -ciXp(t-X)

w(t) d)r (6-11)
p=l 0 p x

which becomes

w(t)= (1-e ) E r (6-12)
p=l p

Thus the complete time response of the weight trajectory is obtained by adding Equation

(6-10) to Equation (6-12)

-CIXpt -•Xpt
1 p

w(t) e E-w + P (1-e ) pEr x (6-13)
= 1 p =I Xp =1

As t o o0 , the weight vector approaches the optimum value

-1
w-R r

which in terms of this development is clearly

w = Rx r1 p, E r (6-14)

To demonstrate the utility of this development we consider the following two examples:

Example i:

Consider a narrowband environment consisting of one emitter, the
desired emitter, and an arbitrary m element adaptive sensor system with narrowband
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white noise in each sensor channel which is uncorrelated from one sensor to the next

with equal variance a 2 in each channel. With reference to the nomenclature devel-
oped in Chapter 2, the covariance matrix becomes

Rx = 2 +SVlV (6-15)

with

r = Sv1

To determine the eigenvectors and eigenvalues corresponding to this matrix we proceed
as follows. Consider the vector

c1  cv . (6-16)

This vector is clearly an eigenvector since
RxV c -- or2 I+ SV Vl* (CetV of e(a. + Sm)v1 (6-17)

I4
2where we have recognized that v *V = m. Thus c1 is an eigenvector with a + Sm as R

its associated eigenvalue. The eigenspace Q is the linecr space spanned by c1 .
Consider, now any other eigenvector c belonging to the arbitrary eigenspace

Qp. Since cp is orthogonal to c1 it is also orthogonal to vl; hence,

R c ( + *)c = cr c (6-18)
xp p p

Thus, the eigenvalue corresponding to the remaining m-1 eigenvectors is a There-
fore, there are only two eigenspaces for this example, the first being QI, and the
second being that linear space spanned by the m-1 eigenvectors corresponding to the
eigenvalue o 2. The array response can then be written as

-CIX t -etx t I -OIXlt

w(t) =e E w +e 2 (I-E w + (I - e E Sv

X2 e )(I- E1)Sv 1  (6-19) 3V
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where

I2 A=a + Sm (6-20)

2 2(6-21)

Since E = v1 we can write Equation (6-19) as

-Cxa2 t -CE Smt
w(t) = eo (e -1) El w0 + w ]

k2

-cc((a + Sm)t
+ 1-e ]v1  (6-22)Sm+a2

Thus it is evilent that the larger the signal power the more quickly the weights converge
to their steady state value which is given by

S/a2
w- v (6-23)

1+ mS/a 2

The corresponding steady state output signal power and noise power are seen to be given
by

PS =El < w,s(t)> =<w, Rsw>=S < w,v 1 > 2  (6-24)

=S( m 22 (6-25)

l+mS/T
2

and
P E <. w,n(t) > 2= < w,Rn w > = 2 w 2 (6-26)

I 9" m ((627t

2 S/c 2
or M (6-27)

I +mnS/,O'

6-6
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respectively. The output signal to noise power ratio is then easily given by

P S =N(S =(- .(6-28)

Pnt

Thus we have established the well known result that the output signal to no~se power
ratio is equal to the number of antenna elements multiplied by the input signal to nvise
ratio at one sensor element.

Example 2:

I'ri this example we assume the same signal environment as in Example I
except that we now include a directional jamming source which is assumed uncorrelated
from the signal. Utilizing spectr,1 theory we now develop the weight trajectory governed
by Equation (6-1)for an arbitrary antenna array whose elements are symmetrical about the

A 4geometric center.

For this environment the correlation matrix becomes

R = 0 + SVIv* + Jv2v2* (6-29)

where J corresponds to the jamming power at one sensor element. Our first order of
business is to establish the eigenvclucs and corresponding eigenvectors of R . Consider-
ing the vector x

c= Ct lv + v2 (6-30)

as a candidate, then from the Following equality chain

Rx(•t v+V 2 )= (+SvIvI* + Jv2 v2 *) (al 1v + v2) (6-31)
= 2V2jm+ J <vV2>]v2

(6-32)

i. 1A 6 (6-33)
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f We see by equating the coefficients of vi and v2 tha?

2=o + JM+alJ<v (6-34)
2

a + Sm + S<viv 2 > (6-35)

Substituting Equation (6-35) into (6-34) and solving for 'k we obtain the quadratic
2

x2  [2a 2 +m(S+j)] • +040 2m(S+J)+SJm 2 (1 _<l )= 0 (6-36)

m2

wbose solutions are given by

2 m 1 -= 2+ + (S+J)+ E- (S-j)2+ SJ -vI v22 (6-37)
2

and
2

x 2 km+T (S+J) - [i-- (S-i)2 + S < v v2 ' 1]2 (6-38)

The eigenvectors corresponding to these eigenvalues are easily determined from Equations
(6-34) and (6-30) as

c1=f m(S-J) +[m2 (S-J)2 + 4SJ<v], v2> 2i-I V1 + v2  (6-39)2J< vlv2 >

2=1 m(S-J) -1m 2 (S-J)2 +21
c2 I2 + 4SJ<vlv 2 > 2  vI + v2 (6-40)

To solve for the remaining m-2 eigenvectors, we note that any vector which is orthogonal
to c I and c2 is also orthogonal to v1 and v2 (provided the emitters are distinct). If C3

is such a vector then
* * 2

R c (02 I + Sv 1v + Jv2v2 )c 3  c3  (6-41)
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Hence ý3 is an eigenvector with a as its eigenvalue. This process can be continued
until all the remaining m-3 eigenvectors associated with o 2 are found, however, we
shall find that explicit knowledge of these vectors is not necessary.

The eigenspaces corresponding to the three distinct eigenvalues for R

are now seen to be 
X

Q1 = oane dimensional subspace spanned by c,

Q 2 = one c•f•mensional subspace spanned by c21

Q 3 = m-2 dinians~onal subspace spanned by the
eigenvec•'ors associated with ar21

The term <l v1 2 v> represents the spatial factor of the array. For a

linear array with spacing p, <v, v2> can be shown to be

Sin 2p ( ,cosI cos6e 1

<v, v 2 > = (6-42)

2- scos 9OS

where 0. and X. represent the angle between the axis of the array and the ith emitter,

and the wavelength of the carrier respectively.

Returning now to Equation(6-13)rand using the identity

I =E + E + E (6-43)
1 2 3

we can write

1 (1eo.t + )ESv tw(t) e e-•ItE wo +: (I--C t E Sv1+ e'- •2tF.wo

St (i..t+ "- (1"ee."'2t)E2Sv +e - )w

X22 1 G tj 0

+ -6(I-e ) (I-E1 - 2 Sv1  (6-44)

6-9



which wz note is only a function of the orthogonal projection operators on Q, and Q2 "
Thus e•p•icit knowledge of the eigenvectors belonging to the subspace Q3 is not
necessary. To determine the components of w. in the --ubspa'es Q, and Q2 we
recognize that w can be uniquely written as the sum of vectors

w 11 0-t2c2 + c3 (6-45)

where al and a2ure scalars yet to determined and c3 is a ýfectcr belonging to the
subspace Q3' The components in Q and 0 2 being given by

II
I c,11 2>Ew <C '2- w0> (6-47)

02 c2 I O11

The components of v1 in each of these subspaces are computed correspondingly and will
not be explicitly presented. Substituting these results in Eqcuation (-44)we finally
arrive at

.Ca.2t 0at )< ,o>
w(t) =e w + (e- -- aaXt-G <e o 1

2 <c 2 ,wo>

1e (1X fe -010 t). 2 1 C (1e•2t) C'

C<

21-

+, C -. , ,., " ,,,2" "" +

C[t (12 f)~ 2 <1. C < 2, vI>

S I--cA t) - etc ) 11
2 c21

21
AV (6 ~-48)

ji 6-10



We point out that since the weighis are dependent on a2 , which is
normally much smaller than N1 or •2, they tuke a considerable time to converge to
their steo'iy state. However, the output power of the array du-, to the desired emitter
and jammer given by

, S(t) = S <w,v7> j2 (6-49)

P (t) = J <w,-, 2> >12  (6-50)

are independent of X3 and thus converge more quickly. This fact is readily apparent
since

E3v1 = E3v2 = 0; (6-51)

hence we may write

P= S I e I It C ' 1 12V>+ e 2 <C2'wI>

S2 t < CV>2V> 2 2
+ 0 (1-e 1) -I + - (I-e ) (6-52)

x eicl 12 X2'v 121>111 2

+a S (l < _c1 Xt , <c2 ,vl> U2 (6-53)

2 I +C2e1

6-11
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As an example, let us consider the simple case when the initial w:Hight vector is zero
with the signal power equal to the jamming power. From this example

we see that

S2  ' I < l V2> >
1=2 + M 1 + m +

<vvivv>>
<VlVIV>

c1 - v 1 + V2

1 2
<vi , v2>

c2 2- v1 +v2

<V IV

I<vI ,v 2 >

-<V1 ;- m +>
IC<viv 2 > I

Iv , v2v> I
i<VlIV 2 >

<c1'c1> = I , 12 2m (I + h

<C2' c2> 2 m m )

6-12
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The weight vectov for this example can then be written as

W(t) = 1 rI ( e-2Ea + (2 m t)2 \

(v1 72 m-_ _ _ _1____ ~ ,
<v1 1 V2 > v2) I V21 ,1 2

(v 2+-- 1

(v~7T~jV (6-54)

i with corresponding output powers of

Ps(t) S( S(- 2. + S I<V 1;,VI ) (2eI + '< 1v21l

2da s (I1+ <I,2ý)

+ mI -<1 v> e ai 2~ (1 m1~~)t~ (6-55)

P~)= 2 <v ,v:? +m<vi v2>/IýIv ,v~ ~[ms( 1 +I VA7 ji 1

20 P) =___ )Si- ( La<j rvv> 2 + f 7ii))
27) m S

+ v2n (Ie~ E' e- 2' - ml21) (6-56)
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At steady state, the ratio of PS to P is easily seen to be

+ ( <vl1v 2>2

PS a2) m2 (6-57)

J• <Vl, v2> /m

thus, the larger the powers the greater Ps/Pj becomes. From an antenna pattern point of
view the adaptive array is placing a null in the direction of the jammer while attempting
to maintain a large gain in the direction of the desired signal. This point will be
explored in further detail in the next chapter. However, before focusing on tke steady
state behavior we present the Figures 6-1 and 6-2 which illustrate the time L- avior of a
four element lirear array with half wavelength spacing at the carrier frequency using the

I LMS algorithm. The environment consists of two emitters, the des.ired signal at an angle
of 700 with respect to the array axis with S/o2 = 10 and a jammer at 600 with j/a 2 = 1000.
In Figure 6-1, both emitter and jammer are very narrowband, whereas, in Figure 6-2,
they both have constant power spectral densities over 10 percent of the currier frequency
and zero otherwise. The antenna pattern is initially omnidirectional, since wo is chosen
as [1, 0, 0, . . . , 01*, and then s~eers in such a manner as to attempt to place a maxi-

mum on the desired signal while placing a null in the direction of the jammer. It is evi-
dent that the wider bandwidth reduces the capability of the array to place a null in the
direction of the jammer since the jammer no longer appears as a point source to the array.

6.1.2 Steady State Behavior

The most important insight into the behavior of the adaptive array, for
many situations, is not obtained from the transient response but rather from its steady
state behavior. By taking the limit as t --* oo in Equation (6-13) we can analytically
examine many important characteristics of the array response for environments consisting
of relatively few emitters. For denser environments we must resort to a digital computer
simulations, however, the additional insight provided here is marginal at best for
narrow band environments. For wide band environments the problem is far too compli-
cated to be analyzed analytically except for one very interesting case which we shall
present shortly, and thus, we must resort to computer simulations in order to compare
the array performance in the wide band and narrowband environments.

We begin our discussion by considering an environment containing two
very narrow band emitters, a desired emitter and one interference soul'ce. The antenna
array is assumed to consist of m antenna eleme.nts arbitrarily placed but symmetric with
respect to t.e geometric center of the array. We will also assume that thermal noise is
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present in each antenna element and is uncorreiated from one antenna to the next with
equal variance. Given this format we now proceed to develop the power out of the
array due to the jammer, desired signal and thermal noise and evaluate the antenna
gain, signal-to-noise power ratio and antenn,: patterns. We wi II then compare these
results for wide band signals.

Recall that the steady state output signal powers of the array are obtained
by taking the limit as t -. co in Equations (6-52) and (6-53). By taking this limit we
arrive at

2.•j <Vl Iv2 >

a + a7 + 2 2

= S(S,2 Im1 2  (-0

PS2

[ + m2 + ML +(._- J) C;(2 5<v8V2>2• "2 a2 C72 02 m2 ' (6-8

S~and

j S )2 <Vl'IV2 >

PJ = F 2 <V'2
1. + . + + + ( (, v122 (6-59)

The output thermal noise power can be computed in a similar manner since

= .2 21

Sl(l76-60

By taking the limit as t -- o- oo in Equation 6-13 and substituting into the above equation

we see that

C+ m)-a-T) (2 +-- 1 . )0
[m +) 2 ( a.y) T M2,2.

= a2 0r--

Pt +J m s m <Vl, IV2>2
[l~m mS (-• (¢-•)(1N]2 (6..61)

a-.,-+ (- - ,I2.!
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It is of interest to evaluate these expressions as a function of the power
of the interference source and ascertain their general behavior. From Figures 6-3, 6-4,
and 6-5 we note that as the jamming power increases the output signal power and
thermal noise power approach a nonzero constant whereas Pj approaches zero.
Moreover, the smaller the level of thermal noise the less Pj becomes. In the limit as-.2 0 the output power due to the jammer becomes identically zero. Thus, a perfect

spatial null is placed in the direction of the jammer. This is generally true even in a
dense emitter environment as we demonstrate in the following example.

Example 3

Consider a narrow band environment containing p emitters p <m, a
desired emitter and p-1 jammers. If v1 is not a linear combination of v2 , . . . , v
then the jammer power out of an arbitrary m element array is zero. P

To show this is the case, we recall that w satisfies the equation

R w = Sv (6-62)

or
! P

(Sv 1v, +E J.v.v.*) w Sv1 (6-63)
i=2 '.1

Since the dimension of the space spanned by vi, i=2, . . , p is at most p-1, any
weight vector w belonging to the null spoice of Rn, which is at least of dimension
m-p+1, such that

<v1,w> = 1 (6-64)

will do.

It is also of interest to note that the output power due to the jammer is
normally much smaller than the output thermal noise power provided that the relative
angular displacement betweer, the jammer and desired emitter is sufficiently large. If
we take the ratio of Equations (6-59) and (6-61) we find that P /P takes on its maximum
value when n t

J 1

< v? 2
m2 (6-65)
m
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and is given by

P I <Vl'V >2/m2

J 2 L (6-66)

nt max <v1•v 2 <V1-2>

m m

This ratio is always less than one provided that< vv 2 > 2/m 2 <8/9. (For a four element
linear array with half wavelength spacing with a desired emitter at 900 relative to the
array axis, these equations imply that if the jammer is displaced by more than 7.50 from

Pithe desired signal then -- <I .) This behavior is shown in Figure 6-6.

n
t max

Returning to Figures 6-3 and 6-4, we see that since P. goes to zero as J
becomes larger the output signal-to-noise power ratio approaches a constant value while
the output gain, which is the ratio of the output signal-to-noise power ratio to the input
signal-to-noise power ratio per sensor, increases as J increases. Explicit relationships
for the output signal-to-noise ratio and optimum gain are easily obtained since

S = S <vIR -1v > (6-67)

-1
<Vln "I>Rnll

G = S <v=1R v J V 1 j . (6-68)
J+02

To evaluate these equations we see that for the two emitter environment the noise
covariance matrix reduces to

R = O'2 I+ Jv 2 v2* (6-69)n

which has an inverse of
J 0-4v2v2

R n a -2 - 22 (6-70)
I+mJ6 2
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Performing the indicated innorproduct we see ihat

<lVI V 22

S _ m S \ r M
__ •-• ((6-71)

N 0 +J~
ar2

and
ki+J•• <V,2 2

Or>2G m 01, (6-74)

As the relative angular separaton of the desired signal and jammer becomes small

< SI' mS >VO

21 resulting in a degradation in array performance as expected.

m

6.2 Conventional- Array Comparison

Irn order to obtqin a meaningful understanding of the magnitude of this
degradation it is convenient to compare the response of the optimum array with an array
which cannot adopt to a changing noise environment. An array which would provide a
very desirable comparitive base would be one using a Dolph-Tchebyscheff weighting
yielding low side lobes. However, the Dolph-Tchebyscheff weighting provides about the
same performance as a "conventional array" as the relative angular displacement of
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jammer and the desired emitter becomes small. Since the conventional array, which
denotes an array which cophases the desired signal in each sensor element and
coherently adds these signals to yield the array output, is more simoly evaluated
analytically we shall use it as our comparison base. A functional representation of these
arrays are shown in Figure 6-7. With the presence of the spatial correctional rilters,
the signal-to -noise power ratio for the optimum arrny and conventional array become*

S<_, R -I > (6-75)
N
0

s .4

s _ = L > ! _ m (6-76)
c 1 1,R,1" <1, Ril

m

which in terms of the input noise covariance matrix becomes

S = S <1, (FR F*)1 I>=S <F*I, R 1F.I>. (6-77)
N- - - n -

0

S A2S = S (6-78)

c <F* 1, R F* 1>
-- n -

where we have made use of the fact that F is unitary. Recognizing that

Se'J27rf1, 11

e c Im

F* 1 = e'i 2 7fffc1 2  =v 1

[-J1 2 •r~ fcrl iJ (6-79) '

*The subscripts o and c refer to the optimal and conventional arr•ys, respective y.
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we can reduce the above equation set to
•*S S-1J*RI (6-80)

N S n vI>

Sv m2S (6-81)

Sc <Vl,' Rn v >

The gain advantage of the optimum processor relative to the conventional processor is
now easily computed since

G S/N <VI, R v > <V n, R-1S/NV n <> < (A'min) (max)
r c S/N -2.

c (6-82)

Where Xmin and 'max represent the maximum and minimum eigenvalues of Rn respectively.
We note that this ratio becomes unity when the noise field is temporally and spatially
white. Thus, the two processors have the same gain m in every direction.

With the completion of this development we now return to the two emitter
environment and compare the performance of the conventional array in the two emitter
environment considered previously. The signal-to-noise power ratio as well as gain is
now easily seen to be

mS/o'2

' m2 
(6-83)

and

m (1 + J/62)
G =

c + mJ) <v1,v 2>2

'2 m2- (6-84)
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A comparison of the behavior of the conventional array and the optimal can be performed
by comparing Equations 6-71 and 6-72 with Equations 6-83 and 6-84. F'gures 6-8 and
6-9 illustrate this comparison. From these figures and equations we make the following
observations:

"a. For J=O, G =G =m
So c

b. As J -o oo, G monotonically increases or decreases to• C
m2 mT2

depending on whether is larger' <Vl ,v>2 <v1 ,v2
<V'2 2

or smaller than m.

c. As J -i oo, Go asymptotically approaches the line

+ mJ 1 2)
02 2 ( 2

It d. For allJ, G > G

e. For J=O, - M N S-

N N U"0 C
S

f. As J - --oo* - monotonically approaches zero while
NC

Sc m ronotonically approaches
No["2 [ m1- ---• < 11v2> 2 ]. Moreover, for

mJ S ,iS 1

-o 2 mI , - s equalto -L (1 - < 2).

That is, the signal-to-noise power ratio has dropped to
50 percent of its asymptotic value.

g. As the relative angular separation between the desired
signal and jammer becomes small, both gains and signal-
to-noise power ratios become equally poor.

Thus, for very narrowband environments a very desirable signal-to-noise
ratio and gain are obtainable from the adaptive array regardless of jammer power
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provided sufficient angular separation exists. In wideband environments diffusion of the

signals across the array deteriorates the performance. The diffusion has the effect of
decorrelating signals between widely spaced antenna elements due to each emitter. As
the bandwidth increases the signals arriving at different antenna elements due to each
emitter become nearly uncorrelated resulting in each emitter behaving as though it were
isotropic noise. Thus, with increased bandwidth the emitters evolve from point sources
to distributed sources. The corresponding covariance matrix then approaches a diagonal
matrix. Intuitively, we can see that if the desired signal is wideband and the jammers
are also wideband, then placing antenna pattern nulls in the direction of the jammers
will not completely negate their power from the array output since they are effectively
distributed sources.

desred Lemitersidera simple wideband case of a linear or planer array with the

desired emitter broadside to the array and one jammer. We shall approximate the
covariance matrix for this example as

R = (2 j) I + S 11*. (6-85)

The output signal-to-noise power ratio and gain for this example then becomes

S_ m._S (6-86)
SN 0 o.2+ j

SG = m. (-7
0

Thus, as the jammer power increases the output signal-to-noise ratio goe; to zero with
the gain remaining constant at m. From this simple example we can expect that the
amount of jammer suppression obtainable for finite bandwidth signa!s will certainly be
less than that given in the equations developed in this chapter.

An extensive study of the effects of bandwidth will be presented in
Chapter VIII, however, we present Figures 6-10 and 6-11 to demonstrate the effects of
bandwidth on the performance of a four element linear array with half wavelength
spacing of the carrier frequency. The desired signal and jammer have azimuths of 700
and 60D respectively as measured from the axis of the array. Both emitters have a
constant power spectral density over a 10 percent bandwidth about the carrier with
S/c 2 = 10 and J/l 2 = 1000. Hero we see the effects of dispersion of the jammer in
the array. As the jamming power increases, an increasing amount of the jamming power
appears at the array output reducing the signal-to-noise ratio and gain relative to thevery narrowband case. This performance degradation can also be seen in the antenna

patierns which we now present.
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6.3 Optimal Antenna Patterns

In the previous section we addressed the influence of a jammer on an
adaptive array in a narrowband environment by examining the two descriptors: signal-
to-noise power ratio and gain. In this section we shall derive the expression for the
antenna pattern for the two emitter environment considered previously and show how

the antenna pattern can be decomposed into two partial patterns; one in the direction of
the desired signal and one in the direction of the jammer. We will then see how these
two patterns result in a null in the direction of the jammer.

Recall from Chapter 2 that the antenna pattern for an arbitrary array A
was defined as

S= <w, R w> (6-88)

where R is the covariance matrix of a ficticious source of unity power. In our narrow-
band environment R can be written as

R vv* (6-89)

whih together with the fact that w S R 1v enables us to write the pattern as

For the environment consisting of a desired emitter and one jammer, the pattern takes the
form

(•..2)21~ ~ ~ < >1 mJ) >- >•2 VV> :

__2 =,2 <)l_ < v v> t_ 2 ' v2 2'v ,2

I+mJ mS (-s- (mJ)[ I• <Vl 22]12

(6-90)

The terms <v,,v > and <v,,v > represent the antenna beams in the directicn of theI2
desired emitter ajd lammer respPectively. In fact, it can be shown that for p emitters
(p < in); the antenna will form p individual beams, one on each emitter. J9
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Figure 6-12 illustrates this decomposition for a four element linear
arrayjwith half wavelength spacing. In this figure the jammer is located at broadside

with - = 1000 where as the desired signal makes an ungle of 860 With respect to the

axis of2the array with S/ 2= 10.

The gains in the direction of the jammer and desired signal are easily
computed by letting vP approach v2 and v, rnspect;vely. In particular

S2 < l v 2>-

( 2 2 2 m (6-91)S m
S mJ mS' + a)mJ~, 1 2 2

+ -+-

whereas

4 ()• ".2<V v2> (6-92)

T f+!!+ -J(S( ).<v'v> 2)j•v)= mS mJ mS /J•. 2 1 2 )12

A sequence of antenna patterns for the linear four element array is given
in Figures 6-13 for narrowband emitters and 6-14 for wideband emitters with 10 percent
bandwidth. Again we note the predominant effect of bandwidth, namely that the array
is no longer capable of reducing the output jammer power to the same degree as for the
very narrowband environment.
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CHAPTER 7

ACQUISITION TECHNIQUES
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7.0 ACQUISITION TECHNIQUES

In this chapter we shall address the difficult problem of acquiring a weak
desired signal in the presence of strong jamming or interference by use of adaptive arrays.
The intent is to develop a technique using adaptive arrays which will protect coded
communication systems from strong jamming during the prelockup phase before code tim-
ing has been established.

One of the most notable researchers in adaptive null steering arrays is
R. T. Compton, Jr., of Ohio State University . He formulated the initial concept of a
power equalization technique for adaptive arrays which was based on proportional feed-
back control. He has shown that for a two-element array with two correlated CW signals
and no thermal noise, the desired signal power and jamming power can be equalized, thus
permitting matched filter acquisition of the desired signal of the array output. One of
the most interesting features about this technique is that it requires no knowledge of the
signal structures.

Although the signal and array model utilized by Dr. Compton was rather
rcstrictive it at least demonstrated that it was possible to provide a favorable signal-to-
jammer power ratio so that acquisition could be obte-ined. We have also addressed thisproblem and have analyzed and simulated different techniques which suppress dominant

jammers to a point where acquisition of a weak desired signal is possible. This study was
performed for arbitrary antenna arrays with wideband as well as narrowband signals in the
presence of thermal noise.

Two models evolved during our study denoted by S1 and 52, and are shown in
functional form in Figures 7-1 and 7-2 respectively. Initially, our investigation centered
about the model Si shown in Figure 7-1 with the absence of the bias signal 77 and the
steering command vector z. It was with this model that we demonstrated that in a
narrowband environment strong emitters were suppressed below weak emitters at the array
output which thus provided antijam protection for weak sources. In fact we shall show
that the signal-to-jammer power ratio out of the array is proportional to the jammer-to-
signal power ratio in one sensor. That is,

PS
-F- = (-3-) (7-1)

J
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where/3 is a functiun of the number of antenna elements and the spatial factor of the array.
The major drawback with this technique is that eventually PS and P2 become zero which
requires that the adaptive array must be reinitialized iF acquisition is not obtained. Once
acquisition is obtained, the demodulated coded carrier is used as the referene signal •t)
in the array which then steers the array in the direction of the desired emitter while plac-
ing spatial nulls on the interfering sources.

7.1 Mathematical Analysis of Model I

We now focus attention on the development of equation 1. Consider an
arbitrary m element array in a narrowband environment consisting of a weak desired
emitter and a strong interfe.ence source whose complex envelopes are denoted by ý(t) and

f(t) respertively. If x(t) denotes the m dimensional vector of signals entering the sensor
elements then as developed in Chapter 2 we may write

x(t) = s(t) + n(t)

where

s(t) =0)./

n(t) = V(t)v 2+ nr(t)

given that nt(t) represents the vector valued thermal noise c,? the array input. Inr terms of
these signals the complex envelope of the array output can be written as

!t) [m(wIk W JW2k)Xkl t)k=1

or in the usual Euclidian inner product notation as

v(t) =<w,x>.

The error signal e (t) formed by subtracting the reference signai •(t) from y (t)
is fed back into the system input. The integral control thus steers the array until l1e(t)I is
minimized. In the absence of thermal no;se 6(t) will become zero provided the reference
signal exactly correlates with the desired signal. That is, perfect spatial nulls are placed
on the unwanted interference, sour.ces.
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* Referring again to Figure 7-1 we see that the kth input signal sk is multi-
plied by wk and the result summed wlith the other weighted envelopes. The reference
signal is now subtracted from this resultant forming the error e. In the absence of the
reference signal as well as -land z, the complex weigh+ wk is govemedby the differ-
ential equation

dwk

dtx = > k1(7-2)

or in vector nctation as

d-T" + axx*w =O; w(O) W. (7-3)
dt•€

By controlling the weights in this fashion, the ,nstantaneoub magnitude of t•,e squared
error is minimized at every time t. This was accomplished by selecting -P to be equal
to -Vie(t)12 as developed in Chapter 4. That is, the weights move along the path or
steepest descent. Normally, the bandwidth of the control circuitry is much s,-maller than
the bandwidth of the complex envelopes. In this ca*e the trajectory of the weights is
sufficiently filtered so that w(t) is approximately equal to the average value of w(t)
denoted by W(t). The average weights are then governed by equation (7-3) by taking the
expectation over all the random variables resulting in

d7"
+ aRx = 0 W1;O)= w (7-4)

dt x 0

where R is the covariance matrix defined by
X

Rx = E(R) . (7-5)

Henceforth, we shall drop the r notation recognizing that we shall always be using
average quantities.
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If the initial weight vector w is now selected so that the antenna pattern

is .nitially omnidirectional, then the correlator output channel is dominated by the

strcng emitters. Intuitively speaking, the adaptive weights then initially move in a

direction to reduce these strong emitters, the weaker signals being reduced later. Thus,

there should be some point in time, say t1 , in which the array output consists primarily

of the weakest signal. If it is known that the desired signal is weaker than the surround-

ing jamming sources, then there should be a significant time interval in which the signal-

to-jamming power ratio is sufficient for acquisition.

Let us now focus attention on the solution of the vector differential equation
7-4 with

0

0 ; 0

which describes the average array behavior. The approach used for this analysis is given

in example 2 of Chapter 6 and we shall so draw from tHis examp!e for this presentation.

From equations (6-48), (6-52), and (6-53) we see that the weight trajectory,

output signal power and output jammer are given by

-ct.lt <Cl'W >o -° <C2 <2w°>

w(t) =6 c + 2 c2
II C1 1 II c2 112  

2

-xtf 0-~w ______

+ 2 I[WO c 2 cI 2 (7-6)
7-12

Pt)=S-c.t <Cl'Wc ><c1' v >+ O-c -2 <c 21'Mo 0<c 2r v, 2~(77

P () c' 1 11 2 +l 2 12 77

and
2

jF -a•tx t cI w ° <C'v > •-a x <c2 ' "" > < 2 ' v2 "? , (7-8)

Pj(t)= lc1i 2 llC2 112
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7.2 Large Jammer-to-Signal Power Approximation

The equations developed so far, although they are exact for our model, pro-
vide little insight into the problem we have been addressing. The desired goal is to
obtain analytical expressions for PS and Pj in terms of the signal power, jamming power,
and relative angular displacements that are simple enough to permit an accurate interpre-
taiion of the behavior of the array without resorting to a detailed computer study. This is
the problem we now address, the only assumptions being that S << J and that the array is
symmetrical about its geometric center. This last assumption is not necessary, but simpli-
fies procedures since<vl,v 2> is now real.

Under these assumptions X1,>> X2>3 and can be approximated by

2 [ <vl'v2 >2

X 1  +mJ + (7-9)
L m2

<v 1v2 > 2 <v1,v2> 2
7T"0. mS[1 m 2m2 7 1  7-0

+= ms2 (7-11)

3

with a signal power and noise power given by

r IVl'V2>2 ] 2C1X'2 t

- ~~~cos(O _0 2) vj 2  -Xto 2<Vv) + a
's- V 2m (7-12)

+2<V 1' '2> <VlF 2> + <v1, vý2(X I2 •t

+2 m tcos(0 1 ) - - Ie-''l 2 )t + -,2 e

m
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<Vl 2> 2 2v,
PJ= s : <V I2> - <V 'vc<s(."1'2 le +x2

mM.

<Vl'V2> <•l'V2 > S <VlV 2 >2

+2 1 - T( +1)1
m

iI- S v~l~2>2  2 vv>

2 2  -2 at

,.<v1,v2 -2 (XI+ X2)t

• + m~2 -1cos (0•-•)

.J IT2

] +<V, vv2 > v>2 -22t; +2 1[ S <Vl'2V2> o(l•)e(-3
+ -m J [I m

SWhen S/i <( 1 terms involving e and e c2~ decay very
-c 2X 2 t

rapidly compared with the term containing e . Thus, after a short period of time

say t1, the signal power exceeds the jamming power, the expressions being given byI

J 22

<Vv 2 +12> -22t (7-14)

•s : sl•- '<v <v2 t Vo?€•,•)

m

2 22

wher OiT < 1 2 ai 1 >v 1 2 i21,2.

2 mv 1 1 2.c( 1 -) 21~

m m (7-15)

These equations illustrate that the jamming power is suppressed relative
to the signal power by the ratio

P ( 2 (7-16

Sm
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Thus over the time Interval in which t> t1 not only is the jammer suppressed below the
signal by at least the same amount it exceeded the signal before adaptation of the array,
jut it is also reduced by the square of the normalized spatial factor. The processing gain
obtained in this fashion cannot be achieved for all angular displacements between the

jammer and desired emitter since it is limited by the basic resolution of the array. That
is, as the emitter and jammer become closer with respect to the array, the term

2

1--2 KVlv 2 > cos(41 _•2) + (7-17)

reflects the degradation of P. due to proximity of the jammer, whereas

__Vl'V2 2 <•Vl'V 2~
2 It 1 - 1,v2> cos(0 1 - ) ÷ 2 (7-18)

m m

reflects the degradation of Pj due to the proximity of the desired signal. For a four ele-
ment array with half wavelength spacing as shown in Figure 7-3, we have plotted the
two expressions given by (7-17) and (7-18) in Figures 7-4 and 7-5 in order to place proper
perspective on the influence of the azimuth of the Iwo emitters on PS and Pj.

It is also of interest to note that P5(t) and Pj(t) are even functions of the
difference in the angles of arrival of the two signals and therefore exchanging location
of the weak emitter with the strong jammer has no effect on Ps(t) and P.1(t).

For the purposes of illustrating the time behavior of an adaptive array, we
will again focus attention on a four element linear array with half wavelength spacing
between sensors. We shall examine the case when the desired signal makes an angle of
01 = 70' with S/oa2 = 10 whereas the jammer has an angle 02 = 600 with J/002 = 1000.
Figure 7-6 illustrates the timo response of the array in terms of Ps(t)/O 2 and Pj(t)/Or2 .
We note that the desired signal power relative to the noise variance dominates the array
output after tz3/at X1 and remains about 27 dB above the jammer power over the useful
time which terminates when PS drives below thermal noise at t.400/CX 1 . We paint out
that for linear adaptive arrays this desired performance that has been exhibited in this
example deteriorates as 01 and 02approach zero. This is because the array places a muchwider null on jammer when it is close to endfire and thus greatly reduces the gain in the•

direction of the desired emitter. Finally, Figure 7-7 illustrates the time history of the
antenna pattern. Significant from this figure is the formation of the deep null in the
direction of the strong emitter.
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7.3 Analysis of Two Acquisition Models

The obvious undesirable feature of the adaptive circuitry just analyzed is
that the weights tend towards zero. Thus, if acquisition is not obtained shortly, the
array must be reinitialized and the process repeated.

To eliminate this undesirable characteristic two similar but different

approaches were evaluated. These approaches center around models S1 and 52 with the
absence of the bias signal r7 wiich shall be discussed shortly. In reference to model S1
a steering command z was applied to the adaptive circuitry which I-as the form

Z =

where 6 is an arbitrary gain, whereas in model S2 one of the weights was fixed to one.
Thus at steady state neither model turns off, and in the absence of direct'onal sources the
two models are equivalent in the sense that they both have omnidirectional antenna
patterns.

The differential equations describing the average behavior of the weights
for the two models are rather similar and are given by

dw0
$1: - +cRW= z ; w(0) = (7-19)

L6J

S2: dw +t R' w = r ; (0 ] (7-20)
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whreth (-')xm-1)maRi ' &id the rn-1 dimensional vactor r are given respec-
~ t x

Rxn E (7-21)

H2

r E Li (7-22)

7.3.1 Anacdysis of Model SI

To ascertain the trajectory of the weights and in fact the behavior of the
array in a narrowband environment we will again consider the effect of one strong jammer
and a weak desired sigr.-il and compare the responses of the arrays. We first focus on
Model SI. The weight trajec;ory for this model can be computed from equation (7-19) and
is given by

w-t) = [e E T + 6 ( e 'X lt)]E, w0  +[e- ax 2t +~A (IljaXx t~

+(e 3+ -A3 (I - a 35] Epw (7-23)

with the resulting output Fignal power, jamrnir~g power and thermnl noise given by

2
s SjI<wt Vi >1 (7-24)

Pj i~ 2< ' 7-25)4

and

Pn t Y211w2 (7-26)
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I Since X1 >> X2 and since E3 v ! E3 v2  0, we can easioy see that after a short
period of time the output powers are given ly

PS = S <E1 wo, v1> + [e + (1-e )<E2wov>

(7-27)

5 c(A 2 -c 2t 2
Pi J <E w v2 >+[e +-• (I-e 2

X1x 2 2 2>1

(7-28)

Thus, the signal and jamming power approach steady state at a rate dependent primarily
on A2 which is primarily proportional to the desired signal power. Thus, the stronger
the jammer the less effect it has on the rate at which the output powers reach steady state.
As t-'oo the model reaches steady state which for this system is given by

= S 6I--< E, w.v,>+ -~L<E w ,v >1 (7-29)

= J6 < E WO v2 > + "< E2w' v2> (7-30)

Upon substitution of the eigenvalues and evaluation of the innerproducts, we arrive at

•JJ mMm \
PS a...... c2 I) 2

(m4<l.V><Vl'v>~l v2> <v, 2)jJ I

I+m \[ <Vl'V2>+ MS 2[1V? (7 31a2 or2-m 2

( )2 1+m2( S [1 +2 m +/m'1 / <V+ " 2>v r

J 2 2
1+ , + 2 (1 v1- v (7-32)

It is interesting to note from these two equations that if J14y2 and S/ 2 are large, then
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PS

That is, at stead/ state the output signal-to-lammer power ratio is inversely proportonal
to signal -to-jammer power at one antenna element. Hence, under this assumption, we
will have certainly achieved our goal of providing a favorable condition for matched filter
detection provided that PS is not buried below the output thermal noise. However, under
this given assumption

_ __0i m c__ _ _1 + (7-33)
2 2

+ mS 1 <vI1 v2 >_]m2

02 m 2

which approaches the value

2
" 2-2 <vI m 2S (7-34) -

Im 2 2• :• 1- 2 >

as s/A becomes large, Thus, the larger the desired signal the smaller the output signal A
power. The same is true, of course, for the jammer. Hence, it appears that unless the 4
output thermal noise is becoming small PS may well be below Pnt at steady state. To
ascettain whether or not this is the case we shail now obtain an approximate solution for
Pnt at steady state under the assumption that S/J is much less than one,

Consider the foliowing chain of equalities

~ 7 lwl2 (7-35)
2? -2 - 2 -2

(2•2 < R wR >=o <w, R w > (7-36)
x 0 W0o X 0

22<wI -W + - E2 w + E3 wo> (7-37)

S7 -2
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.th
where E. again represents the orthogonal projection on the i elgenspace. Simplifying
this equation we arrive ar

2 2) 2

in 21

(1 2 m co[(4)1-€ 2 )+ 2 + m 1 "V (7-38)
m m

m2 L m2 ')+ a7 M2 ]

As the signal power increases it is easily seen that nt approaches the nonzero value

_ • 2 Z[1 <v]0v 2> °("2)

pn 2 2][1- cos 02)] (7-39)
n m

mn(1 <Vl'm >2

Thus, it is evident that for a desired signal input power, which is much larger than the
input sensor noise, the output signal-to-thermal-noise power may be very small. One
approach to overcome this difficulty would clearly be to decrease the depth of the nulls
on both the desired signal as well as the iammer in order to raise P and Pj above output
thermal noise at steady state. That is, we shall rectify this bad situation by forcing the
antenna pattern to be more omnidirectional. This is precisely the purpose of the bias
signal 77. By inserting the bias signal into each adaptive loop we are essentially increas-
ing the effective thermal noise. Mathematically, this can be seen by evaluating the
differential equations with the presence of bias. Consider for example the kth loop, the
equation describing its behavior is given by

:•dwk ,d kcxk <x,w>- COwk +•zl ; k=l,...,m . (7-40)dt kdk

In vector form these equations become
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dw
d (R+ 77)w+az (7-41) Sdt '

hence, an effective covariance matrix can be written as

Rff = R + 771(a + 17)1+ Sv v1 + Jv 2 v2  • (7-42)

If ?7 is made very large then Reff is essentially diagonal which then yields a steady state
antenna pattern which is omnidirectional. Thus, by varying 17 we can vary the depth
of the spatial nulls placed on both emitters %i.th slight effect on the output thermal noise,
as well as vary the convergence time of the array.

2 2
The'effeet of the bias can be seen by replacing o with c + 77 in

equations (7-31) and (7-32), and evaluating •he resulting output signal power and jamming
power. If S/J is much less than one and S/c is large compared to one, then the output
power ratio can be varied from

PS _J for 17=0 (7-43)
PJ S

to

PS S
- for )7= . (7-44)

Thus! the price we pay for improving the ratio of P Pnt is the reduction of PS/Pj. How-
ever, even if Ps/Pj were somewhat less than one, LrerwouId normally be an adequatc-
amount of processing gain in the matched filter to provide acquisition.

With these concepts in hand let us consider a ituation where 17 is chosen

so that S /(o +77) is now much less than one whereas J/(a + 77) is still much greater
than one. Again by replacing 02 with 02 + 17 in equations (7-31) and (7-32) and making
the obvious approximations we arrive at

2o<Vl, v-2)> <VV, v2 > 2
)S2 6 [1 2 + 2 (7-45)PS=s a2+ 17"/cs~ 02 m 2

m
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- r -

2

m2

whereas the output thermal noise can be shown to be

P ()2 (1 - 1/m) (7-47)
nt 2

Thus, it is evident that the output signal-to-jammer power ratio can be wrriten as

P mS <Vlv 2> Vl, 2

p- - J)(4- )[1-2 m cos( 1 - m2  ](7-48)

with a signal-to-thermal-noise power ratio of

<Vl'V 2 > <V1 ,V2 >2

1 - 2 cos(O1 - + . (7-49)P S S m Iq2+<Vm2

n 2 t- /

From equations (7-48) and (7-49) we can conclude that if J/S >> 1 then a bias signal
bounded by

S << 17 mb/S"i" (7-50)

will ensure that

PS > P1J 1- 2 m cOs(•l -02) + m2 ] (7-51)

Thus, if the bias signal is chosen to be somewhat larger than the desired
signal power entering a sensor, then regardless of how large the jammer, a very favorable
power ratio exists for acquisition both in terms of PC/P I and P This is of course
provided that the two emitters are separated far enough so that

<VlV 2 > -2 v 1,v 2 >21

cosW>1  + m 0 (7-52)
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is not close to zero. Recall that Figure 7-6 illustrates the effect of this term for a four

element linear array with half wavelength spacing. From Figure 7-8 we see the response
of the array with the addition of the steering vector with = 1 and no bias whereas

Figure 7-9 illustrates the array response with 100 and a bias signal of n/= 100.a2

7.3.2 Analysis of Model S2

In this section we will focus our tttention on Model S2 and determine the
transient and steady state performance for the two emitter enwironments considered
previously and compare the results obtained for Model Si. If we initially make 77 zero,Sthen recalling the differential equation for this modiel is given by

dw + ct R' w = ot r w w(0) 0 (7-53)
d t xU

we can easily write down the solution as

w(t) 1- e Er+ ) 1 c 2tEr+-i-e- )E3 r (7-54)

I I 2

where r is given by equation (7-22).

To simplify our discussion we shall select as our reference point the geomet-
rical center of the .a-1 antenna elements with unconstrained weights and assume that these
antennas are symmetrical about this point. In this case r is given by

..bV 1 12
•*r =e 'Sv1 e Jv(7-55)

where

~12 22

v e
v1 = • ; 2=

22m

Se i m ei.e-23
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2 ii

where 4• - -b >, and where the eigenvalues and eiganvectors can be

obtained from equations (7-37) through (7-40) with m replaced with m-1. The correspond-
ing tine response of this system is very similar to model Si when only the steering vector
with I = is applied, as is evident from Figuri 7-10. The steady state powers are

very nearly the same also. To demonstrate this cAnalyticaliy we recall that
2t

+11

PS Si<w,v >-e = l<-LE '+ E + -L yv2>-e (7•-56)
=1 1 2x n Er~i~+~

Sjwi1>e [<Ei+1 - 2 3

2 2
21~ 1 + 02

Pi = <w, 2 > -e jI<_x-E r+ I -F r+ -- E r v > -e 11 (7-57)
1 "2 A3J

atn

PerForming the indicated innerproducts we obtain
2

[I. [ <VV2> ]<VV <1,V2>

M <v 1 v 2  /M 2 2>

S [+2• m __cs(1-2) + 1-2 o(1-2) T )

J ~ ~ M 01+ 2--" m cs 1-421) 702-2 ' mT-;cas(*1-621_'- 2d' /2

P[m'S m'+/m'S/m'J ,I<v 1v 2 2>

I+ 77W) Jl+mS/ (7-60)

and for the large jammer-to-signal power ratios the output thermal noise is

S7-26
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l+22

2 2?/2
M +7• 2V'2 <v 2) M /ml S(-< v'2>•.vZ/m)e

a \23

1V >V 2>2

"" (7-61)
m M

where ml donotes m-1. Comparing equaiions (7-59) and (7-60) with equations (7-31) and
(7-32) we note that they huve exactly the same form and thus model S2 behaves in almost
exactly the same way as model S1 at steady state. Thus model S2 has a similar acquisi-
t tion performance with the addition of the bias signal as does SI. Figure 7-11 illustrates
the behavior of model S2 with a bias signal in the two emitter environments. It is ofinterest to compare this result with that of model S1 gven in Figure 7-8 and note how1
similar they are.

Throughout all of our analysis in this section we have focused on signals
whose complex envelopes are very narrow band. The reason for this restriction was the
fact that the covariance matrices had a very unique structure which was utilized to our
fullest advantages. As the bandwidth increases the signals diffuse across the array, the
matrix becomes more sparse, making an analytical approach very difficult if not impos-
sible for an arbitrarily large array. It was hoped that the analysis presented here would
lend some insight into envirc,nments consisting of wider band emitters. Although a
detailed arnalysis of the behavior of adaptive arrays in wideband environments w5l be
presented in the next chapter we now present the time behavior of model S2 in an
environment of two wideband emitters. These emitters have a constant power spectral
density over a relative bandwidth of 10 percent, with resp, ect to the carrier. The total
power relative to thermal noise per sensor for the jammer is 1000 whereas that of the
dc.sired signal is 10. Figure 7-12 shows the time response for model S2 with a bias of
100 with Figure 7-13 illustrating the time behavior of the antenna pattern. We see
that even For this case acquisition is still possible even though the effects of the wider
bandwidth relatively deteriorated the model's performance.
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PARAMETRIC STUDIES OF ADAPTIVE ARRAYS
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8.0 PARAMETRIC STUDIES OF ADAPTIVE ARRAYS

io the preceding chapters, the theoretical basis for w•'.1tfve null-steering
arrays was covered, and some numerical examples were given. It ie Pu'rpose of
this chapter to show mo-e dotailed and numerous numerical studies ,'• ' cts of the
various parameters of an adaptive null-steering array. In particular •/- i parameters
will be emphasized.

a. Bandwidth

b. Jamming power

c. Signal power whr present "

d. Angle(s) of arrival

e. Multiplecity of jimmers

f. Number of array e!aments

g.Bias level

The case of a single jammer will be emphasized because- this simple (but very important)
c"se will illustrate the basic response of an adaptive cwray; the multiple jammer studies
shown bear out that jiammer null depth is not seriously affected by multiple jammers.

Also, for simplicity, one weight constraint was used almost exclusively
in this study, that of the left weight fixed at one value (-1). Chapter 7 has covered
the relation between this fi:,ed weight constraint and other possible constraints or forc-
ing functions used to keep the waighrs from going to zero. Also, the initial conditior,
is always wo = (-1 .0, 0.0, 0.0), unless otherwise stated.

As a final simplification, most of this chapter will concentrate on the
Biased Jammer Suppression Techn.,ue for suppressing a dominant jammer before a signal
is arquired. The reasor.5 for this emphasis are:

a. The acquisition period is the most difficult time to make use of the
null steerer.

b. The "Known-Signal" algorithms (such as the LMS array) have already
been investigated to sorrA extent, whereas the Jammer Suppression
concept is new.

8-2
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c. Control of nulls on jammers is much simpler and more straightforward
when the jammer can be isolated, such as in the error signal of an
LMS algorithm; in the Jammer Suppression technique, the tradeoff
between signal and jammer loss is more critictil.

d. There are time delay problems with implementing LMS algorithms,

especially for many coded signal sources, while the biased suppression
technique appears much simpler to implement.

Several significant simplifications in the parametric studies can be made.
It has beer. shown theoretically and numerically that if a jammer is much larger than a
desired signal (i .e., "dominant jamming power") and angularly separated from the signal,
then the iransient and steady state behavior of the output jamming power is essentially
unaffected by the small signal level. Thus, for the jammer suppression technique, a
jammer may be studied withcut the signal present and, most important, without catego-
rizing signal parameters. This is not true for the Widrow algorithm, which must maxi-
mize the signal. It also does not apply when the number of unremoved signals exceeds
the number of array elements.

The following paragraphs will cover:

8.1 Transient Behavior of the Biased Jammer Suppression Technique

8.2 Steady State Jammer Null De in the Biased Jammer Suppression
Technique

8.3 Steady State Output Signal and Signal-to-Noise Improvement with
the Biased Suppression Technique

8.4 Known-Signal (LMS Algorithm) Adaptive Array Behavior

8.5 Overspecified Arrays (Numerous Unremoved Signals)

8.6 Polarization Considerjtions

The calculations done in this chapter werp done with programs developed
on internal research and not part of this contract, although result- of these programs are
being mode availaole herein. The basic transient computation is a numericcd
eigenvalue calculation and the steady state values are from numerical calculations of
the Wiener-Hopf equation. The numerical solutions were required because the
analytical solution approach of Chapters 6 and 7 cannoa be used for finite bandwidth
or numbers of emitters cireater than 2-3.
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8.1 Transient Behavior Biased Jammer Suppression

Although most of the results in this chapter deal with steady state per-
formance, it is important to begin with several examples of transient performance in
addition to those provided in Chapter 7.

8.1.1 Typical Results Using Eigenvalue Solutions (vs Angle, Bandwidth and Bias)

An example of the effect of angle-of-arrival on transient performance of
an adaptive array using the Jammer Suppression Technique is shown in Figure 8-1.
This plot is similar to those in Chapter 7. Relative output power vs relative time is
shown for both the signal and jammer. The powers are relative to out•u thermal noise, Pnt,
which is plotted at 0 dB. Note that some plots in Chapter 7 and a7 67 in this section
are relative to inpuO thermal noise, a 2 . The time is relative to the fastest (smallest)

time constant in the eigenvrlue solution, '" = This time will be related to0'1,

absolute time later in this section. Time is plotted linearly to 10 units, then logarithmic-
LZ• ally to 104 units. In this example, signal is plotted starting at 10 dB while jamming

S Jstarts at 30 dB. These starting values represent the input values, '-'- - at each

omnidirectional element, with the initial condition of only one element "ON" (one non-
zero weight). Two cases of jammer angle are plotted in Figure 8- 1, G- = 450 and 600.
For both cases, as shown, the number of elernentsm = 3*, the signal angle 0s = 700, the
bandwidth BW = .12. In both, the jammer is quickly suppressed to about the signal
level. The signal behavior dependz upon the jammer-signal separation angle and initial
signal-to-noise ratio, as discussed in the very narrow band case in Chapter 7. For the
jammer at 600, the sign,.ul is quickly suppressed 5 dB along with the jammer; for the 450
jammer, signal actually rises slightly for thL. first ten time constants.

However, neither the signal nor jammer output is close to the steady state
values at 10-100 time constants, as shown in the right-hand portion of Figure 8-1.
Both signal and jammer experience : 15 dB further loss to below thermal noise with
N ry slow time constants being controlled by the very small eigenvalues which are
related to thermal noise.

In sumrrmary, three significant points are to be noted from Figure 8-1:

a. The dominant jammer is rapidly suppressed to the desired signal
level in this and most other cases. Thus, after a short time, signal
acquisition using matched filter gain becomes more feasible.

* Throughout this section the number of elements is denoted by either m or M
interchangeably.
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b. After several hundred time constants, both signal and jammer are
suppressed below thermal noise. Thus, simply calculating signal-
to-jammer ratios in the steady state is not indicative of whether the
signal can be acquired. Thermal noise must be included in the
calculation.

c. If the signal and jammer are close together, the signal will be sup-
pressed more rapidly and further than if it were widely separated
from the jammer. This is because the signal is in the null being
formed on the jammer.

The same kind of plot is used in the next six figures. Figure 8-2 shows
the effect upon biased suppression of bandwidth changes. In this case, nine elements
were used and a jrmrmer 40 dB above thermal noise was assumed. The bias level was
made approximately equal to the signal level to prevent deep signal nulling in the steady
state. The bias level probably makes little difference on the first part of the transient
behavior; however, a bandwidth change from 1 percent to 12 percent with nine elements
drastically changes the initial behavior of the jammer suppression. With a 1 percent
bandwidth, the jammer is suppressed rapidly to the signal level, as in most cases studied.
W~th a 12 percent bandwidth, the jammer is suppressed only 10 dB until 100 time units. 3
An explanation for this may be clearer later when a frequency response plot of a null is
shown; simply put, the null is not wideband enough to prevent some dispersed jammir,.
energy from entering the array. This dispersed energy appears to act like thermal nosse,
without a direction of arrival; just as high thermal noise causes jamming to level off at
a high value, the jamming in this case levels off initially at a very high level.

The effect of transient performance upon bias level changes is shown in
Figure 8- 3, for the case of m = 9, Gs = 700 , gi = 450, and BW = .01. Bias level, Y,,2S
relative to thermal noise, is in the three cases 0, 9o.2 and 99o"2 , so that2+ 10 dB,

0 dB, and -10 dB, respectively.

The three cases show essentially the same performance, except in the
steady state, where signal is much-greater with respect to jamming and thermal noise
as bias is increased.

B-6
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8.1.2 Typical Simulation Results

The previous exampies were the result of numerically computed elgenvalue
solutions. Complete results for very long averaging times are possible. However,
another way of computing adaptive array performance is with digital simulations of both
signal waveforms and adaptive array processing. Such a simulation is described in
Chapter 9 to characterize a null steerer in a TDMA environment. Results of several such
simulations are shown in Figure 8-4. Bandwidth is .001 and there are three elements.
In the top figure, the signai is a broadside (0s = 900); in the bottom figure, at endfire
(Gs = 00). The input jammer level is J/ox2 = 30 dB, and the signal is at 10 dB in one
case and 20 dB in the other case. The jammer angle is set at 700, 800, and 850. For
all cases of jammer angle, the jammer is suppressed rapidly as predicted by the eigen-
value solutions. The signal is not suppressed much at 0- = 700 but is increasingly at
800 and 850, since the signal is falling into the jammer's null. Nevertheless, in most
cases, output S/N is improved over the initial -20 dB input S/N. In the bottom figure,
the signal at endfire is seen to be much more sensitive to even relatively large jammer-
signal separation angles. The endfire signal location is obviously a poor arrangement for
adaptive arrays, as it is for ordinary phased arrays. The endfire case is not emphasized
because it would not be used operationally. Circular arrays or some form of elements
with near "broadside" capabilities in all operational directions is clearly advisable.
The linear array here is used only as an initial, simply analyzed array for investigation.

These simulations demonstrate that the expected value equations give the
same results as the actual circuitry, in which only instantaneous quantities (not averaged)
are multiplied and supplied to the integrator. The simulations are expensive to run, and
do not show the steady state values predicted by the expucted value equations with the
few iterations and the rather large convergence constants (large loop bandwidths) used.
An important corollary is that analog circuits with significant loop bandwidths may
not achieve these steady state values either.

An analysis of the effect of large loop bandwidth is shown by Brennen,
et al. (13) who calculate the total output variance (noise) of an adaptive array as the
sum of the noise and jammer variance used in the calculations of this report, plus an
additional output variance due to the variance of the weights caused by the finite loop
bandwidth. Even though deep suppressions are predicted in the noise and jamming
variance output, the weight variance can cause significant reductions in the steady stat
null depth predicted by the expected value differential equation solutions plotted in 8- 1.
In other words, the steady state null depths predicted in 8-1 are only approached with
very narrow control loop bandwidths.

8-8



•:30 1; 0 9Os 0

JA.4ER POWER (BROADSIDE)

\' \X*O PEUTR

70 ' ýrJ2 30 db
a 0 SIGNAL POWER

"'\•,,OUTPUT, S&2 20 dB

CL10' 1 7 80

I--

,,,° iTH -..!MAL NOISE
0- OUTPUT - RANGE OF

S| USUAL VALUES
. SIGNAL R
," OUTPUT, S' 2 -006B0 "

" ~~~~~~-20 I 1 i I I
0 1 2 3 4 5 6 7 8 9 10

ITERATIONS ( A t '/BW)
30 %,

JAMMER POWER 0
-OUTPUT (ENDFIRE)

50- 2~0d SIGNAL POWER
ZOUTPUT, S/-.2 20 dB
w
3t 40_
a. 10

I-- sz.

o 20. THERMAL NOISE
0- OUTPU T -RANGE OF

USUAL VALUES

SIGNAL POWER "

OUTPUT. S. 2 =103B

-0 0 '2 13 '4 5 6 1 0

ITERATIONS ( At-1/BW) 86588-27

Figure 8-4. Computer Simulations of Acqui.it;on Behavior -
Interference Suppression (Linear Array, Fixed Center Weight

Constraint, Unb;ased, BW .001)

8-9



8.1.3 Absolute Time

Throughout this report, time is normalized to the time constant of the
largest genvalue (r=--.), or to a iteration count. Just how fast such loops"

can operate in real time is not given, although the relative timing of the initial jammer

suppression to later suppression is correct.

Actualiy, the equation can give little clue to how fast such loops can

operate, since they only describe a system of first order differential equations which is
unccnditionaliy stable for any c (integrator gain); thus -r can be made arbitrarily •mal

in the expected value equations.

The actual limitations in maximum speed of the loop are:

0 . Mathematical; the expected value equations hold only when the
loop bandwidth of the control circuit is small compared to the input j
bandwidth, so that many independent values of the instantaneous

Ssignal and jammer multiplications nre averaged to control a vari-
ation in the weight, thus allowing the cr.ss correlation matrix to

t describe the system. As loop bandwidth is widened, weight jitter
becomes unacceptable. Thus, for a 0 tAHz input bandwidth, a
maximum loop bandwidth of W0-100 kH7 is expected. A simulation
to be shown, with only one jammer -resent, demonsfrates that much
wider loop bandwidths can be used in some cases; the expected
va!ue equations, of course, do rot apply.

b. Circuit limitations, such as tho gains that can be practically
achieved without second order effects causing oscillations, and
other degradations.

In one simulation used at Radiation, a time waveform is generated (sod
sampled. Real time is used throughout. Although there can be stabilV problems in
this sampled feedback loop due to the digital nature of the simulation, such simulations
can shaw minimum speeds attainable. Figures 8-5 and -6 show relative powers of jam-
mer and signal vs. time in milliseconds and microseconds, In Figure 8-5, the broad-
side signal case is shown. Gains have been used that are close to Ote stability limit, thus
the nonsmooth time history curve. The endfire signal case of Figure 8-6 is known to

be a poor geometry in that the signal is suppressed even for fairly large jammer-signal
separation angles. Acquisition does occur within 30-60 ps, or 60-120 inverse input
bandwidths for this 2 MHz input bandwidth case.
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Finally, in the case of one completely dominant jammer, a null can be
placed on the jammer as fast as its relative phase shift between elements can be estimated.
Theoretically, this could occur in one RF cycle or less if enough jan-.'-er energy is
present. A simulation was run of this case, as shown in Figure 8-7. Initial jammer
suppression is seen to take place within 6-10 ns, where the RF frequency is 1 GHz,
corresponding to 1 ns RF period. The input jammer-,'o-thermal noise ratio was assumed

to be only 30 dB; however, the processing bandwidths being simulated are on the order

of .1-1 GHz for these speeds, so that the equivalent jammer-to-thermal noise within a

10 MHz signal processing bandwidth would have to be at least on the order of 40-50

dB.
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Figure b-7. Fast Initial Jammer Suppression (FM Signal Simuiation;
Initial Condition w. = (0.0, 1.0, 0.0))
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8.2 Steady-State Jammer Null Depth for the Jammer Suppression Technique

Having shown several exampies of the transient behavior of null steering
arrays, it will be convenient to plot only steady state values of the output powers of the
signal and jammer, or the array null depth on these sources. Null depth or array gain

has been chosen as the major dependent variable, defined as:

Pj/Pn P 1
ND t G

iJ/ 2  J fW2 i

a PS/'P t PS G
NDs Sl/o2 - S •f 2 Gs

Iwil

where

NDj, NDs= Null depths on jammer and signal, respectively
(Note, null depth < 1 or negative dB, like gain)

PJ, PS = Power output of the jammer and signal, respectively
J,S =Power input of the jammer and signal, respectively
o-2 = Equivalent thermal noise variance input at each element

= Thermal noise output = o-2 Ti, where w' is the

ith weight

Gj,GS = =Absolute gains, with respect to isotropic., toward
the jammer and signal, respectively

Since the definiti9n of absolute antenna gain in a given direction is the
signal-to-noise improvement ovbr the isotropic case, null deptk = absolute gain.
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8.2.1 Effect of Bandwidth

The major factor limiting jammer null depth is array dispersion, the effect
of the jamming bandwidth. Whe.i the jammer i! off axis,rhe time delay of the jammer
received in successive elements causes the modulation envelope in successive channels
to be slightly out of alignment, so that perfect cancellation between channels is not
possible. Described in the frequency domain, dispersion causes the phase to not be the
same function of frequency in each element, so that the sum channel has a nonlinear
phase vs frequency curve; i .e., the envelope delay is not constant. Thus, the array,
viewed as a filter function, is dispersive. Array bandwidth is a well knovwn. pheiomenon
of course, but a null is a much more sensitive function of bandwidth than the peak of a
main beam, where array bandwidth has usually been considered. Cancellations of 40-50
dB calls for very exacting alignment of signals in each channel.

The examples to follow usually use the jammer angle of 450, almost a
worst-case for dispersion. Figure 8-7 shows the effect of bandwidth u on the null
depth toward a single jammer, of strength J/oGz= 30 dB, angle t9. = 45 . The jammer
suppression technique is used in this example and throughout this section. The curves
are plotted for the number of elements m = 3, 4, 7, and 9. It can be seen that

a. bandwidth must be less than .001 (. 1%) in order to
achieve deep nulls of-50 dB or more

b. the curves are not a strong function of the number of
elements

c. at narrow bandwidths (.001 - .01) the null still decreases
as the number of elements increases, due to the increased
dispersion over many elements. For extremely narrow
bandwidths (<10-4), this relationship reverses, as discussed
in Chapter 7, so that jammer null depth then increases with
the number of elements.

Details of a null versus small frequency deviations are shown in Figure
8-8. In all curves, the array weights are optimized to reject a wideband (BW = .12)
jammer, pictured as the bar at the top of figure. The narrow-band frequency response
(i .e., filter response) of the array is then plotted, for the optimum weight cases where
the number of elements m = 2, 3, 4, and 9. For m = 2, a very narrow null is seen. For
m = 4, a much flatter bandpass response is noted. For m = 9, a ripple bandpass function
is formed. Evidently, the increased dispersion of !arger arrays is being compensated for
by the increased number of degrees of freedom that are available to form a better band-
pass function.
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8.2.2 Effect of Input Jammer Power

The jammer null depth is a very strong function of the input jammer power,
normalized to thermal noise, J/0. 2. Chapter 7 discusses the very narrow-band case, in
which the null depth is inversely proportional to the square of the input jamming power,
so that as input jamming power is increased, output jammer power decreases. For moder-
ate and wideband cases (BW = .01 and .12) null depth is plotted vs input jamming power
in Figure 8-9. In this case, the jammer power is normalized with respect to the sum of
thermal noise and dc bias signal, (0a2 + T7 ), because both noise and bias have the same
effect on null depth (see Chapter 7). If biast/= 0, then the line on the top right repre-
sents the jammer null depth that would give output jamming Pj equal to output thermal
noise, P The null depth, are always below this level

nt
If the null depth is multiplied by the normalized input jammer power,

J/oa2 , then the normalized output jamming power, PJ/Pnt is obtained and plotted in
Figure 8-10 versus input jamming power (BW = .01). For zero bias the output power
rises to 10 dB below thermal noise before a good null is formed. As the null becomes
deeper, the jamming power decreases. If the bandwidth were zero, the jamming power
would then go to zero. For any finite bandwidth, it has been shown, and is discussed
briefly in Chapter 7, that the jammer power eventually increases again. Once the null
is well formed, the finite jammer power "leaks through" t e null prqyIortional to the
input jammer power. For bias greater than zero, e.g. 90o and 990 , so that Ajr-i7i= 10

and 100 respectively, the ratio--T---- becomes smaller for a given J, and thus the null
i' ( r + 1 l

depth is less, as shown in Figure 8-9. As a result, more jamming appears at the output,
igiving the higher curves shown in Figure 8-10.
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8.2.3 Effect of Jammer Angle

All of the preceding curves have been for the jammer at 450 from the
array axis, to emphasize any dispersive effects. If the jammer is at 900 (from the array
axis), or noimal to the array, there are no dispersive effects because there are no differ-
ential time delays between elements. The effect of jammer angle vs null depth is shown
in Figure 8-11 for the number of elements in = 3 and 5, and Figure 8-12 for m = 7 and
9. In each set of curves, the solid lines are for BW = .12 and the dashed lines for
BW = .01. The peirometer on each curve iTthe, normalized jammer power / 2. For all
curves where J/o.2>0 dB, the jammer null depth dips sharply as the jammer approaches
900, as expected, and is deeper for narrower bandwidths, also as expected. Since dis-
persion is less for narrower bandwidths, the null depth curve is less sharp for smaller
bandwidths. Finally, an unexpected phenom-non occurred which has not been explained.
For m = 5, and especially m = 7 and 9, the null depth decreases near 85° before the null
at goo.

If nulling a wideband jammer becomes a problem off axis, these figures

indicate that considerable improvement in null depth could be obtained by turning the
array to within 50 from normal to the jammer, to reduce dispersion. This may be possible
in a higher frequency, high-gain array in a radome. Another solution is the general
tapped delay line wideband array mentioned in Chapter 2. Obviously rather fine delay
increments would be required to approximate nondispersive delay to within a few mech-
anical degrees.
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8.2.4 Effect of Multiple Jammers

It was stated at the beginring of this section that single jammers would be
considered, but multiple jammer cases were very similar. -Several multiple j1r nrer cases
are shown in Figure 8-13 for wide bandwidth (BW = .12), with m = 9 (part a) and 5
elemnants (part b). In these figures the null depth is plotted versus the number of jammers.
As the graph is read from the left, jammers are added, J, (8 = 45"), J 2 (0 = 1350),
etc. Nuli depth on each jammer is shown. Also, a desired signal was included in the
calculations. The input JiA = 30 dB. The bias was set 10 dB-above the signal

S( 2+ -= 10 dB) so that very little signal would be lost. In Figure B-13a, for

n = 9, the jammer null depth continued at -25 dB or better until the number of jamrmers

exceeded 5. In this case, the simple rule that the number of nulls = the number of ele-
ments less one ;-, not true. Signal loss is only a few dB or less; remember that all these
curves are for the biased jammer suppression case In which some signal Ioss can be
expected. In Figure 8-13b, for m = 5, stme bandwidth as In part a, the number of
emitters exceeded the number of elements, with no .lgnificant degradation. It must be
that some special angles are involved that allow the array to perform these nulls.

Figure 8-14 shows two more cases, one with BW = .01, m = 5 and another
with BW = .12, m = 3. In the first case, Figure 8-14o, the null depth is degraded
somewhat with 4 jammers but is still better than 25 dB at 6 jammers. Little signal loss
is recorded. With m = 3, some degradation is seen with the number of jammers equal to
3, in Figure 8-14b.

In summr.ary, the multiple jammer cases compare very well with the single
jammer cases as long as the number of jammers is considerably less than the number of
elements, although in some cases, even more jammers may be nulled.
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8.3 Steady State Output Signal and S/N Improvement-Jammer Suppression
STechnique

In the Biased Dominant Jammer Suppression technique, the signal is sup-
pressed to some extent, as well as the jammer. This (or the loss in jammer null depth
that can be traded off) is the price paid for not having to estimate and iemove the signal

from the error channel.

8.3.1 Null Depth on Signal with Biased Suppression

Figures 8-15 through -18 show the signal null depth (absolute gain on the
S

signal) versus normalized signal power, 2 where S is the input signal power toS•2

an isotropic element, a 2 is thermal noise input to each element, and 77 is the dc bias. It

is very important to normalize the signal to bias + noise because it will be seen, as dis-
cussed in Chapter 7, that bias can prevent signal loss. Figure 8-15 shows the signal null
depth vs. input signal power for m = 3 elements, jammer angle gj = 450, bandwidthsIV - -J
BW = .12 (Figure a) and .01 (Figure b), for various normalized jammer powers, J=-0"2 +-

2-2 dB

ond signal angles, gs. Figure a (BW = .12) shows less than -2dB signal null depth if

bias + noise is 10 dB greater than the signal (,U2 S < -10 dB) in those cases where

s > 800 (9 > 350). For 9s > 700, null depths less than -6 dB are obtainable with the

same bias + noise. As the signal approaches the jammer to within 5-150 (Gs = 50P,
600), the nulls on the signal increase drastically because the signal is in the jammer
null. The null for this wide bandwidth and jammer angle is quite wide (,90). Alteough
jammer power, ., is a significant parameter for large •, it has little effect on signal null
depth as S decreases below -10 dB. Figure 8-15, for a narrower bandwidth (BW = .01),

shows much less signal loss for gs = 500, 600, and 700, and a sharper fall off of signal
output (null depth and gain) as input signal increases. The null is narrower in the narrow
bandwidth case, causing less signal loss in nearby signals.

Figure 8-16 shows the same plots for m = 5 elements with BW = .12 (Figure
a) and .01 (Figure b). A sharper falloff of signal output withsignal input is to be noted,
compared to the previous case in which m = 3. Still, when S <-10 dB and gs> 700,
signal loss is very small, less than 3 dB. Again, when Gs = 500, signal suppression is much
greater than with the narrower bandwidth, because of the wider null in the wideband case.
Figure 8-17 is for the 9-element case, and again shows sharper signal dropoff, with
increased signal level, than with fewer elements, and less than 5 dB loss for large bias
+ noise.
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To further investigate the effect on a signal close to a jammer, Figure
8-18 shows several cases oF signal null depth vs. signal angle. Figure 18a shows a

jammer at either 450 or 850, with strength 30 dB. For the 85° jammer,

J = 30 dB and 10 dB), the signal must be 50 away to lose less than 2 dA3 with .12

bandwidth. For the 450 jammer, the wideband can cause 20 dB loss at 50 separation,
BW = .12; 10 dB for .01 bandwidth. Figure 8-18b, with null depth plotted vs. input
signal klvel, for several signal angles near the jammer angle, shows 10 dB loss for 50
separation. Note that angular sensitivities are proportional to the total size of the array;
a larger array could discriminate between signal and jammer at smaller separation angles.
In larger arrays, separations are often normalized to the beamwidth of the array.
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8.3.2 Signal-to-Jammer Ratio-Biased Su~pression

In Sections 8.2 and 8.3.1 the null depths on the jammer and the signal
were treated separately. It was evident from the curves that each was relatively inde-
pendent of the other. The effect of bias + noise was very evident on the null depth of
the signal; bias + noise had to be at least 10 dB higher than the signvl for minimum sig-
nal loss; for less bias + noise, the signal loss was approximately inversely prcportional
to bias + noise. The effect of bias + noise on the jammer was also important; the jamming
loss was approximately inversely proportional to bias + noise for bandwidths BI = .01 to A

.12. Since both signal and jamming were found to be inversely proportional to bias +
noise for this range of bandwidths, one would expect the output signal-to-jammer ratio
to be approximately constant, which is approximately the case for a narrw range of
bias + noise ;z S.

Figure 8-19 shows the output signal-to-jammer ratio as a function of bias +
noise-to-signal ratio (called bias-to-signal in the diagram to emphasize that bias is
expected to be much higher than noise in biased suppression).

Figure 8-19a plots the case m = 5, BW = .12. In the range -10 to 10 dB
of the abscissa, the output signal-to-jamming ratio is approximately constant, -1 to -2 dB,
for a wide range of the parameter, jamming-to-signal ratio, J/S. Two exceptions were I
for J/S = 10 dB and 30 dB where the output Ps/Pj rises above 0 dB for the bias level equal
to the signal. There is no clear explanation why the case for J/S = 20 dB does not more
closely resemble the values for J/S = 10 dB and 30 dB; however, the jammer null depth
curves have many changes in slope, particularly for the wideband case BW = .12

In Figure 8-19b, for m = 9 and BW = .12, a very similar behavior of

signal-to-jamming ratio occurs, but with no output values above 0 dB. Finally, Figure

8-19c, for m = 9 and BW = .01, a greater range of Ps/Pj values is noted, most above
0 dB, with the notable exception where the parameter J/S = 30 dB. "bo explanati-on- or
the variations is obvious, other than the variation in jammer null dep.h already seen. It
must be kept in mind that once dispersion and fairly large bandwidths are taken into
account, the curves become rather complex, singe. the adaptive array is adapting to the
changing conditions as best as it can.

Reciprocal suppression, discussed in Chapter 7 for zero bandwidth, does
not occur for these relatively large bandwidths; at least not for significant bias levels.
Suppresssion of the jammer to approximately the signal level is abcut the most that can
be done. If the curves had been continued to the left for very small bias and large J/S,
they might rise considerably more towards reciprocal suppression, at least for BW < .01.
However, if one desires to minimize signal loss,in order to keep the signal above thermal
noise in the steady state, bias must be at about the signal level, so that reciprocal sup-

pression is not very useful.
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8.3.3 Signal-to-Total Noise Ratio-Biased Suppression

The most important measure of the performance of the Biased Suppression
Technique is, of course, the signal-to-total noise ratio output, PS/PN. Some curves of
this measure vs. bias + noise-to-signal ratio are plotted in Figure 8-20, for various input
J/S ratios. Again, as in most previous figures, the widest bandwidth, BW = .12, and a
jammer angle ofg- = 450 cause almost worst-case output.

Keep in mind that both the narrowband performance in Chapter 7 and the
transient performance (before deep nulls are formed on the signal) yield less signal
loss and better signal-to-total noise ratios. Figure 8-20a, for 5 elements and 12 percent
bandwidth, shows that the output signal-to-total noise ratio rises to a broad maximum of
approximately zero dB (before processing and front end filtering) for essentially all input
J/S ratios. The bias level for maximization is from 0-10 dB above the signal. For higher
bias levels, the jamming null becomes less, causing output signal-to-total noise to go
down. For very small bias, the null formed on the signal reduces the output signal-to-
total noise. Similar results for m = 9 and BW = .12 are shown in Figure 8-20b, except
thai output Ps/PN never rises above -5 dB. The added elements actually hurt the per-
formance, apparently due to the increased dispersion for this wide bandwidth. For a *1narrower bandwidth, BW = .06 and m = 9, Figure 8-20c again shows increased PS/PN

up to the 0 dB, except for J/S >_40 dB. Remember that the input signal-to-noise ratio
for this case is <-40 dB.

In conclusion, for the cae where the number of emitters is less than the
number of elements, biased suppression can be used to greatly improve very small signal-
to-jamming ratios, from extremely small values up to approximately 0 to -10 JB. Signal
processing must then be used to raise this array output signal-to-noise value to a level \
where detection can occur. Rather modest signal processing values like 6 to 20 dB will
clearly suffice.

Although spread spectrum signal processing may immediately come to mind
as a means for signal improvement, the more mundane multichannel receiver is also appli-
cable. If the array steers rulls based on the whole input bandwidth of the receiver, the
output signal-to-noise ratio of the array, which is the input signal-to-noise ratio at the
receiver over the whole ba.)dwidth, can be made approximately zero dB for the cases
considered so far where the number of emitters is less than the number of array elements.
The channelized recaivers then can improve the signal-to-noise since the channel band-
width is smaller than the input bandwidth. If the bias is adjusted so that jammer is sup-
pressed well below the thermil noise, the signal piocessing gain is the ratio of input
bandwidth to channel bandwidth; if the jamming is heavily concentrated in one channel's
bandwidth, this signal processing gain cannot be achieved because as thermal noise is
reduced by the bandwidth ratio, the jamming will not be reduced. Such a jammer, of
course, leaves the other channels in the clear, so that this form of jamming appears
unlikely.
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Another common signal processing improvement is via duty cycles. The adaptive

array results for output S/N are for average signal power. For a low duty cycle signal,

the peak S/N ratio is increased by this factor, if the interference is continuous.

For communication purposes, given continuous white noise interference, the over-

age signal power-to-noise ratio determines the communication rate, since the bit error

rates can be calculated from Eb/No, the energy per bit divided by the spectral density

of the noise.
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8.4 Seve-al LMS Array Results (Having Signal Removal)

The LMS array has been rather thoroughly covered in Chapter 6, in the
literature, and in work at Radiation by Butchei (17, 18) that will not be covered in this
report. One set of curves, shown in Figure 8-21, relates jammer null depth and signal
gain to jammer power input, for 4 elements and several bandwidths. For rather narrow
bandwidths, such as BW = .001 (and even .01) greater than -40 dB jammer null depths
(gains toward the jammer) are shown. However, for wide bandwidths (BW = .12), null
depths of approximately 27 dB are shown, due to the dispersions. Signal gains shown in
the dashed lines at the top, and read on the right-hand scale, are approximately 4-6 dB.
For 4 elements, 6 dB is the maximum gain; thus, little gain has been lost; only 1-2 dB
at the widest bandwidth.

8.5 Overspecified Arrays (The Numerous Signal Case)

One area of importance that was omitted in this study was the case where
there are many more weak signals than elements in the array, but only a few jammers (the
case of more jammers than elements has been covered). From several recent cases exam-
ined, it appears that the signals are not suppressed in a iammer suppression mode, even
though they are 10 dB or more over th-ermal noise. This is, of course, because the array
is overspecified; it simply cannot null all the sources. It appears (on the basis of only a
small amount of data) that each signal source is not nulled more than 5 dB, but the aver-
age jamming power is reciprocally suppressed below the average total signal power. That
is, at least for one jammer,

PS J
Pj + Pn t -£Si

One of the conclusions of this chapter (that signal null depth is critice. and
must be controlled with bias) is based on the ossumption that the number of signals is less
than the number of elements. When the number of signals is greater than the number of
elements, nulls cannot form on all the signals. It does appear that output signal-to-total
noise (jamming + thermal noise) is still in the -10 to +10 dB range, as is shown in Figure
8-20, but thermal noise is no longer a major factor.

8.6 Polarization Considerations

There is another pariameter that is a potentially very powerful discriminant

between signal and jamming, namely polarization. It is well known that different
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patterns exist for different polrizations; usually the two orthorgonal polarizations are
plotted sepa;ately, either horizontal and vertical or left and right circular polarization.
However, in null steering, plots of nulls in a given directiorn have usually been drawn
without regard to polarization. In particular, when a null exists in the jammer direction,
it has often been assumed that a colocated signal could not be received.

The jammer polo .ition ccon be described at any given time by a specific
elliptical polarization; the signtal can be decomposed into this elliptical polarization and
the orthogonal polarization. A general null steerer that uses elements with orthogonal
polarizations would steer a null on the jammer witl, exactly The jammer polarization; the
antenna pattern with the other polarization need not have a null toward the jammer or
signal. Thus, a colocated signal could be received with the power of the signal that was
in the elliptical polarization orthogonal to the jammer (in general a significant amount).

In a general LMS algorithm which maximizes the signal, the polarization
orthogonal to the jammer will be maximized, since this clearly provides the optimum
signal-to-noise ratio output. On the other hand, for a Biased Jammer Suppres.'on mode,
it is not as clear what the orthogonal polarization's gain toward the signal woul be.

Polarization has not been adequately treated in this study, but must be
considered carefully in any application.

--- i
41
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9.0 A UNIFIED TDMA COMMUNICATION - NULL STEERING SYSTEM

9.1 Introduction

This Chapter describes a null steering system designed for use with a TDMA
communication network. In order to help clarify the description, specific message length,
amount of PN coding, message preamble length, maximum range bet en users, etc.,
have been assumed. It is emphasized that these values are not critic . to the system
design and may be adjusted over wide ranges.

Organization of this Chapter is as follows: Section 2 is a description of the
assumed system configuration. Assumed message formats, geometric distributicn of
emitters, and basic 3ystem properties are discussed. Section 3 covers properties of the
adaptive null steering array to be used with the system. This array has been designed
with three operational modes, suppression, synchronization and reception; these modes
are discussed in the light of system details. Finally, Section 4 contains a block diagram
and descriptions of the adaptive array error formation circuit, a critical part of the
communication-null steering system. The description of a computer program designed to
simulate the system is presented in Appendix B.

9.2 System Model

9.2.1 Geometric Configuration

It is assumed that the electromagnetic environment consists of friendly
emitters, hostile emitters and thermal noise. The assumed geometric configuration is
illustrated in Figure 9-1. The emitters are more or less isotr.:-pically distributed, and only
a few hostile emitters are present (or significant). Due to the physical separation of the
emitters, non-negligible and more or less unpredictable time delays exist in propagation
time between two arbitrary emitters. The maximum time deloy is set by the maxirnum
possible range of communication.

9.2.2 Mode of Transmission

Friendly emitters transmit and receive signals from one another on a
cooperative basis whereby each friendly emitter has an assigned transmit slot in a TDMA
system. Each friendly emitter listens to all other emitters. Emitter "i" directs a communi-
cation to emitter "j" by transmitting i's address in a preamble to the message. Information
is transmitted at 10 Mb/s for this example.

9;
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9.2.3 Recognition of Friendlies

Due to the fact that hostile emitters exist, it is necessary that 'he friend-
lies be able to discriminate one another's emission from that of a hostile. Therefore,
each preamble contains an exactly known a priori coded message. For this example, it
has been assumed that an exactly known 127 bit code is used. Thus, a matched filter
capable of compressing this code into one bit will provide a friendly to hostile recogni-
tion advantage of 21 dB.

Due to the possibility that a hostile emitter might repeat this preamble and
thus be erroneously identified as a friendly, it is probably necessary that a time variable
code be used. This problem involves both synchronization and matched filter design
areas. Although solutions appear to be available, they represent a complexity that is
additional to and detracts from the adaptive array aspects and so will not be considered
at this time.

9.2.4 Message Coding

A 10 dB PN coding of message details is provided for intermodulation and
multipath protectlon as well as for some protection against jamming. Synchronization to
this code is discus:ed later.

9.2.5 Message Format

The assumed message format is shown in Figure 9-2. The 127 bit preamble
is followed by a 10 dB PN coded message block. A very long code is assumed. The
first 70 bits of this block are decoded into 7 "address" bits which uniquely identify one
of the 127 friendly emitters. (The one for whom the message is intended.) The remain-
ing message is slightly less than 20 ms duration. Given a 100 user system, about 2 sec-
onds elapse between transmissions of a given user.

9.2.6 Jammer Characteristics

A hostile emitter (jammer) is assumed to use any appealing strategy except
repetition (as discussed earlier). Since a given emitter uses only one TDMA slot and it
is almost certainly the case that a jammer cannot ascertain which individual friendly he
is jamming, then the most effective strategy would be cont.nuous jamming. Noise modu-
ia.ion is a strong candidate. The subject of jammer strategies is discussed in greater
detail in Section 9.3.3. The jammer is assumed to exceed signal strength by at least
the coding gain, otherwise coding gain alone is sufficient for signal reception.
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9.2.7 System Synchronization

Continual user resynchronization is necessary due to unknown friendly
locations, hence, propagation times. This synchronization is provided by the same com-
pletely known 127 bit preamble that is used for friendly identification. If a friendly to
hostile power ratio sufficiently large exists, then a detectable pulse of about 1 bit dura-
tion will issue from the matched filter. This pulse is used to advance or retard the user's
PN code generator to what we refer to as as a "flag point" (or message sync point). Flag
po.nts are illustrated ir, Figure 9-3.

If a maximum communication range of 300 miles is assumed, then a 1.5 ms
maximum timing error could exist due to propagation. By prearrangement, the very !Ong
completely known PN code has been flagged at (approximately) 20 ms intervals. The
flag points are used sequentially one per 20 ms interval. Receipt of a 127 biý preamble
compressed to 1 bit (called a pointer) directs a user to move immediately to the nearest 3

flag point (a move •1.5 ms). Pointers missed for any reason do not affect the PN code J ,

timing. If the local clock is sufficiently accurate that an 18.5 ms drift does not occur
before the next pointer is received, then continual synchronization is assured. (A crys-
tal clock should be quite adequate.)

Since the 1 bit duration pointer locates a flag point to within 1 bit, then
no searching is necessary in synchronization of the PN clock.

(Due to the relatively long time between uses of the 127 bit matched filter
and the ease of maintaining expected flag point times within 18.5 ms, it appears simple
to pseudorandom program the matched filter so as to combat repetition jamming.)

9.3 Desired Adaptive Array Properties

Briefly stated, the array is to minimize the system noise (thermal and hos-
tile), maximize response to a desired friendly and do nothing to undesired friendlies.

Different operational modes are used depending upon friendly to hostile power ratios at
the array's output.
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9.3.1 Modes of Operation

Three principal modes of operation are envisioned. These modes will be
discussed in detail later. They are: a

1. Suppression mode. This mode is used whenever S/N < -10 dB.*
In this mode, the array seeks to suppress received energy from
the various powerful hostile emitters, thus improving S/N. The
object of this mode is to provide sufficient S/N improvement
for initiation of the sync mode .

2. Synchronization mode. The sync mo'e is used when
-10 dB _< S/N _< 0 dB. Intelligent decoading of friendly
messages is not possible in this S/N range,\ butsince sync
(and friendly signal recognition) can be pr0yided by the
preamble, a null steering mode whereby only\,hostile
emissions are reduced is possible. The sync mode is used
to improve S/N until intelligent decoding of friendly
messages is possible.

3. Receive mode. Intelligent reception becomes possible
if S/N >0 dB. Two different receive functions are
planned: Friendly reception and desired friendly
reception. Desired friendly reception entails minimi-
zation of interference and maximization of the desired
signal. Friendly reception entails only minimization
of interference.

Although reference is made to selection of modes based on S/N, this
"selection" is an implicit property of the chosen circuits. If one assumes that the system
is operating, and that no mechanical faults have occurred, then failure of the matched
filter to clearly produce "pointer" outputs is indicative of S/N<-10 dB (assuming that a
10 dB margin is necessary for pointer identification). If S/N 2: -10 dB mode switching
occurs automatically when the pointer synchronizes the PN code generator.

9.3.2 Suppression Mode

if S/N < -10 dB then reception of the desired signal cannot occur until
null steering has imprcved the S/N ratio. Since synchronization has not occurred, one
cannot rely upon any a priori knowledge of the signal.

*-In this section the symbol S/N will mean the usual output signal-to-noise ratio.
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The suppression mode capitalizes upon an inherent property of adaptive
arrays to reduce stronger interferences more rapidly than weak ones. Since the desired
signal is unrecognized, it, as well as jamming, is treated as interference by the array.
(in order that interference is not minimized by simply setting all weights to zero, it
is necessary to constrain the array weights. A method of doing this uses one unity
weighted antenna input.) As the array proceeds to reduce the stronger interference
(jamming) more rapidly than the weaker signal, the S/N ratio improves. The sync mode
begins whenever S/N -10 dB.

Meanwhile, questions arise as to whether one can reasonably expect to
reach S/N = -10 dB in the-tuppression mode. Guarantee of this condition requires one
to examine all possible jammer strategies. As a reasonable compromise, one of the worst
cases is discussed in the next section.

First there are two important points to be made regarding array size and
configuration. The array should have about the number of degrees of freedom (weights)
necessary to accommodate jammer nulling; too much flexibility can result in undesired
friendly signal nulling. Secondly, waveform dispersion resulting from widely spaced
elements or end elements in a multi-element array has the effect of reducing those ele-
"ment's effectiveness in either beam forming or nulling. From economic standpoi ts, the
marginal benefits of additional elements becomes even less due to their additional cast.
As a rough guide, then, a minimal element closely spaced array is suggested.

9.3.3 Jammer Strategies

If the hostile emitters wish to deny one or more particular users from
receiving information, then jamming must be applied with a unity duty cycle; otherwise
information from any one user destined for any other user could be relayed through a
third unjammed user (since transmit slots are fixed). Clearly, this is at a penalty of
"reduced overall data rates and may be a mode not planned for this system, but even then
it seems to present an unacceptable risk of failure to the hostile emitters. While it is
conceivable that an effective unity duty cycle could be obtained from numerous pulsed
and possibly synchronized hostile emitters, a more effective strategy would use the same
number of emitters transmitting continuously. Thus, it seems reasonable to postulate
continuously transmitting jammers. Finally, we assume that a jammer exceeds the sig-
rnal in power at least as much as the coding gain. If it does not, coding gain alone is
sufficient protection.

9.3.3.1 A Possible Worst-Case

The null steerer equalization mode is designed to minimize the energy
received from spatially discrete emitters. Thus, a worst-case configuration with regard
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Ir
to S/N occurs if all desired signals appear to emanate from the same direction, euch
jammer is in a different direction from the array, and equal power is available from all
emitters. (This situation is equivalent to a continuous signal emission.)

tIt is well established that the adaptive array is dominant!y influenced by

" the most powerful emitters. Thus, the initial array response is to reduce the powerful
emitters. The array produces more or less the following result due to correlation products
at a given weighting circuit:

(Pin ou) (Pin Pout)k (9-1)

where (Pin); is the element input power and (Pout); is the array output power due to thc
jth emitter. (The above equation should be modified to account for lack of input-output )
correlation when widebund signals are considered.) This relationship appears to hold to
about the number of terms as there are weights and with the significant terms being
selected by power.

Contrary to biased suppression results which have been applied mostly to
the "more elements than emitters" case, the weaker, or signal emitter(s), are not neces-
sarily reduced to or below thermal noise. If the array has only enough flexibility to
suppress the powerful jammers, then the signal output power is about equal to input
power and the input-output product about equal to that of the jammers. Of course, if
signal and a jammer are too close in angle (and polarization), then as far as the array is
concerned, only one emitter seems to be present - the jammer; both signal and jammer
will be suppressed.

Applying these arguments to a three element, two jammer, one signal case
where signal-to-thermal noise is 20 dB and jammer-to-thermal noise 30 dB gives

ou (ou) outg (9-2)

Signal-to-noise ratio is then about 7 dB. Actual signal output power is pattern dependent
(established by jammer nulls) but about 20 dB is expected.
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An example of these effects is given in Table 9-1 where steady state
results are given for two jammers held fixed in azimuth with the signal azimuth varied.
A three element linear array with half wavelength spacing and 10 percent bandwidths is
considered. Signal power is 20 dB relative to thermal noise and jamming 30 dB. A rela-
tively large signal power is chosen to simulate the "worst-case" mentioned earlier for all
signals in one direction. It is found that as long as the signal is not close in azimuth to
a jammer, Equation 9-2 and S/N-z 7 dB holds true. Signal out is about 20-25 dB and
thermal noise about 3 dB.

Table 9-1

SIGNAL AZIMUTH 450 600 800 900

SIGNAL OUTPUT POWER, dB 19 25 24 20

JAMMER, OUTPUT POWER, dB 15 16 15 14

JAMMER2 L OUTPUT POWER, dB 3 10 14 10

S/N 3 7 7 4

JAMMER, AZIMUTH = 300, JAMMER.* AZIMUTH= 100°

At low azimuth angles, reduced correlations due to dispersion upset the
simple relationships as do close signal-jammer approaches in azimuth.

In one final note for this case, a transient analysis indicates that steady
state is reached extremely rapidly due to jammer correlations rather than signal or ,her-
mal noise controlling the smallest eigenvalue. For the 90 degree signal azimuth case,
the two eigenvalues are:

X =2221

X2 "- 1982

In a signal or thermal noise controlled case, much smaller second eigenvalues are found.
Eigenvalues are discussed in Section 6-1. These particular eigenvalues are obtained.
numerically as mentioned in Section 8.0.

9.3.3.2 An Expected Case

Under the more expected conditions the desired emitters are isotropically
distributed and equal power is not received from each jammer. Isotropic distribution of
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the friendlies coupled within their time multiplexed emissions is much like irreducible
isotropic thermal noise to the array if the a-ray's adaptation time (in the suppression mode)
is long compared to emission slot time. Due to the duty cycle (1/M, where M is the
number of friendly users) and Equation (9-1), we expect an S/N improvement equal to M
over the continuous emission case. If there are 100 time slots, 1wien M = 100 and a 20 dB
advantage is gained. This advantage strictly applies when the number of weighted array
elements, N, satisfies N = K +1 where K ;s the number of powerful jammers. Again, it
is noted that the antenna pattern ;s principally controlled by the jammers; if desired sig-
nals are too near,they will fail into the jammer null.

Table 9-2 is a summary of power outputs for a three element, eight signal,
and one jammer example. It is notable that rhe pattern is essentially established by the
jammer and that signals are not suppressed even though relatively large average signal
powers are assumed (all 10 dB relative to thermal noise in the first two columns, 0 dB in
the third). Jammer power is 30 dB relative to thermal noise and 10 percent bandwidth is
assumed. If we assume a 20 dB peak to average signal power, it is clear that no signal
reception problems exist for this case.

Table 9-2. Summary of Power Outputs

JAMMER AZIMUTH -30 900 70 (0, dB Signals)

JAMMER POWER 11.0 1.0 3.27

SIGNAL, (409) 2.0 12.5 2.2

SIGNAL 2 (800) 13.7 8.5 -2.0

SIGNAL (120) 13.4 14.2 3.7

SIGNAL, (160 ) 7.5 7.7 1.0

SIGNAL s (2000) 7.5 7.7 2 1.0

SIGNAL, (2400) 13.4 14.2 3.7

SIGNAL, (2800) 13.7 8.5 -2.0

SIGNAL. (320°) 2.5 12.3 2.2

OUTPUT THERMAL NOISE 1.8 1.8 2.0
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Expected adaptation waveforms for the array are illustrated in Figure 9-4.
Power from a strong jammer is reduced more quickly than power from the weaker friend-
lies as the array is seeking to suppress powerful directionally received energy. Reference
to Figure 9-4 when the remaining modes are discussed will be helpful.

The equalization mode is terminated at S/N - -10 dB at which point the
sync mode is instituted. In the sync mode, the friendly emissions are no longer mini-
miz-d and a desired friendly is maximized. Considerations relating to this mode are theV subject of the next section.

9.3.4 Sync Mode

The sync mode function is to improve the array's output S/N from -10 dB
to 0 dB. This mode is entered automatically at the time S/N output of the matched filter
following preamble reception is sufficiently great to locate a PN sequence flag point to
within one bit. It is important to note that a desired friendly is treated the same as a
friendly in the sync mode. This is because a desired friendly cannot be identified unless
the first 70 message bits can be decoded, and intelligent decoding of message bits
requires a larger S/N than the -10 dB available when the sync mode is entered.

Attainment of synchronization means that the bandspread message can be
despread into a much narrower band of frequencies by mixing with the PN code. Since
the jamming is not coherent with the PN code, it will not be despread. A narrowband
reject filter centered about the despread signal is used to remove friendly signal energy
from the error channel. However, most of the frequency sprpo3]energy from the jammer
passes. In order to reestablish the jammer amplitude, frequency, and phase cnaracteris-
tics present before the signal despreading operation, the energy resultant From the filter-
ing operation is respread by a second mixing with the PN code. This gives an array
error oLutput which has essentially no signa I terms but essentially all of the jcmming.
(If serious time delays result, despreading at each element rather than respreading the
output may be required, or compensating time delays might be used.) The array mini-
mizes this error output which means that nulls are steered toward the jammers and friend-
lies are disregarded. Accordingly, S/N will improve for two reasons, (1) jamming con-
tinues to be reduced and (2) since friendlies are disregarded, partial nulls previously
placed on them will be released and used for jammer rejection, improving signal response.

9.3.5 Receive Mode

The receive mode is attained automatically when S/N . 0 dB and consists
of two functions depending upon whether a friendly or a desired friendly is calling. The
strategy is for one to do nothing (do not maximize or minimize array response) to a
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friendly (whose signal is not desired) and to maximize a desired friendly. The array
achieves this first function by blocking friendly signals from the error channel exactly
as done in the sync mode and will not receive additional attention here. The second
function is realized by subtracting a desired response from the error channel in the con-
ventional "Widrow" manner. Desired signal maximization requires formation of a
"desired response, " d(t), and a subtractive error forming circuit rather than the simple
signal blocking used in the other modes. This mode is useful only when S/N is relatively
high, due to difficulty in forming d(t).

When S/N ýr 0 dB, intelligent message decoding becomes possible, thus, a
desired signal can be identified. Additionally, a desired response can be derived by
decoding the desired signal, making hard decisions as to one or zero message bits, and
producing a "clean" constant power waveform from these bits. Although errors will be
made in estimating d(t), it neveriheless will be mostly derived from the desired signal. .
This derived d(t) is subtracted from the instantaneous array output in the conventional
manner, givingr[ (t)-d(t)+jamming] in the error output and leading to maximization of
S(t) and minimization of jamming. Note that the estimated d(t) improves as the array

adapts.

9.4 Circuit Description

The adaptive array circuit designed to produce the responses just described
is illustrated in Figure 9-5. An array with the usual elements and weights (except per-
haps for one input with a constant weight) is used. The major difference and the one
illustrated is in the error formation circuits.

Conventional arrays obtain the error outpute(t), by subt.'acting a desired
response, i(t), from the sum of weighted inputs,y(t). The circuit illustrated functions
in the equalizat:on mode if d(t) = 0, in the friendly receive mode if d(t) = 0 and " (t)
is blocked from Y (t), and in the desired friendly receive mode when d(t) = constant
power function of 4(t).

9.4.1 buppressior Mode

Aisume that S/N <-10 dB. With reference to Figure 9-5, the array output
Y(t) is app'ied to a matched filter suitable for preamble detection and to a mixer (mul-

tiplier). Due to the poor S/N a "pointer" output will not be obtained from the matched
filter. Therefore, the PN code generator continues to operate on the interna! clock with
no change in timing. Application of the PN code, refered to as c(t), fo the previously

9
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mentioned mixer causes a frequency spreading of all waveforms in y(t). This spread
waveform, y(t), is applied to three channels.

The left most channel illustrated contains a narrowband pass filter (NBPF)
which blocks all but a small part of the waveforms. If the code generator were syrnchro-
nized', this filter would pass signal terms and block jamming. However, in this case
both jamming and signal are spread, thus the filter output is essentially meaningless.
Regardless, evert if by chance the PN code gt.ýnerator w-Bre synchronized, the 10 dB S/N
improvement provided by the NBPF would be insufficient to allow intelligent decoding
of the signal. Consequently, a user call number cannot be ascertained and output from
the left most and middle channels is blocked by normally open gates (NO).

Only signals in the right most of the three illustrated channels are allowed
to pass (through the normally' closed (NC) gate). The narrowband reject filter (NBRF)
in this channel is designe! to reject the same signal terms passed by the NBPF if syn-
chronization existed. However, in this case both signal and jamming are passed.

This frequency spread and slig;.tly filtered version of the array output is
routed to a summing combiner and then a differencing combiner, but each of the other

"combiner inputs are zero (due to the NO gates). The waveform is applied to a second
mixer which again is driven by c(t). Thus we get approximately c2 (t) y (t). A property
of the PN code we will select is that c' (t) = 1 (this is obtained if c(t) is composed of
(+) and (-) bits). Thus, the error output,e (t), is equal essentially toy(t).

Minimig.coricn of e(t), as discussed previously, leads to improvement in
the S/N ratio,. Eventuaily, S/N has improved such that a clearly detectable pulse is
obtained from the matched filtei whenever a friendly's 127 bit preamble is obtained.
Th;s pulse synchronizes the PN code generator . As before, c(t) is multiplied withy(t),
but due to synchronization having been obtained, the array automatically enters the sync
mode.

9.4.2 Sync Mode

Due to the still poor S/N, call number identification is not yet possible
and the various gate positions are unchanged.
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With regard to the incoming waveforms, it is instructive to examine the
c(t)y(t) despreading mixer output. Let ý (t) = c(t)m(t), where m(t) is the information-
containing uncoded modulation. Then we get

c(t)y(t) = c(t) [ (w) + jamming] = m(t) + c(t) (jamming) (9-3)

Recall that c2 (t) = 1. Since we have assumed a 10 dB coding, m(t) is despread into a
frequency band 10 times less than the original band. The NBPF improves S/N by 10 dB
but at the switchover to receive mode, this improved S/Nc 0 dB.

The NBRF rejects m(t) and a small part of the* spread jamming. As before
the error output, e(t) is formed but due to synchronization and the signal blocking filter,
we get

C(t) c2 (t) (jamming) = (jamming) (9-4)

Note that the PN code generator should be frequency stable enough that sync is approxi-
mately maintained without bit sync correction during the 20 ms message period. Since
the error output contains essentially jamming, the array output S/N will improve with
time.

9.4.3 Receive Modes

The two different receive mode functions are determined, as discussed
previously, by S/N and secondarily by detection of a particular user call number.

When S/N>0 dB, the filtered output in the left most channel illustrated
in Figure 9-5 will be sufficient to enable acceptably noise free reception of a friendly
transmission. If the particular call number is not received, gate positions do not change,
but a third mixer forms the product ml (t). The squaring result is like that of 2 cc,;" (t),
yielding a unity term and a second harmonic. The second harmonic of m2 (t) is used to
help maintain bit sync in the PN code generator. (This corrective sync may be
unnecessary.)

The desired friendly reception mode occurs whenever the user call number
is received. The call number identifier enables a monostable multivibrator (one shot) to

turn on. This one shot's period is set to be that of the message duration, 20 ms. The
gates NO are closed and the gate NC is opened. As can be seen from the figure,
the despread array output is passed directly via the center channel to the summer which
again has only one non zero input. However, the difference combiner negative input,
d(t), is now non zero.
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The term d(t) is formed from the NBPF output which is nearly m(t). A sig-
nal shaper and AGC produce a "clean" and constant power waveform giving a second

mixer input of c(t)[ (t) + jamming -d(t)] . Thus, for the error output we get

e (t) = • (t) - d(t) + jamming (9-5)

This expression is the form required for maximization of S/N.

Finally, the signal shaper output is also routed to the user, providing a
decoded desired signal.

9 .4 Important Response Times

SSeveral important response times are inherent to this approach. If neces-
Ssary hey can be changed with acceptance of performance penalties or by system
modification .".

9.4.4.1 Null Forming Time

In order to take advantage of possible friendly emitter isotropy (or at least
non-colinear formations), it is necessary to average emissions for a time greater than
one emission slot time. If one accepts that nulling within a 20 ms emission is not neces-
sary, then one might null form for a second or so. (Since a given desired friendly trans-
mits only once per 2 seconds.)

In order to accommodate more than one desired friendly per frame, one

would want to reduce the null forming time. Depending upon this and other system con-
siderations one may wish to null form in 40 to 100 ms.

9.4.4.2 Beam Forming Time

Once relatively good nulls have been formed, it is desirable to quickly
form a beam in the direction of the desired friendly. The speed in which this occurs
may easily be regulated by properly setting the amplitude of d(t). However, if the con-
stant power d(t) amplitude is set too large, excessive vaiiance in weights will result.

In a final comment about response time, it is notable that the array con be
expected to assume different response times as different power friendlies are received as.
a function of slot times The array may be in a suppression mode during one slot,
desired friendly receive mode the next, etc. Consideration needs to be given to whether
a jammer might advantageously use this "conditions variable" feature of the array.
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10.0 IMPLEMENTATIONS OF ADAPTIVE ARRAYS

In the previous chapters only idealized complex weights, idealized perfect
multipliers, and antennas have been shown in the array discussions. Of course, these
examples are meant to portray only simplified systems that can be readily analyzed. In
practice, we are faced with a receiver design type of problem plus many additional pro-
blems. In particular, the following areas must be carefully considered in designing an
actual null-steering array:

a RF vs IF weighting (whether or not IF strips are going to be used behind
each element).

b. Types of Weights (including tapped delay line or different amplitude-
phase types)

c. Types of Correlation

d. Weight Control

e. Weight Constraints I
f. Amplitude and Convergence Rate Control I

g. Signal Removal - (especially spread spectrum signal removal)

h. Unavoidable Time Delays and Phase Shifts I

i. Antenna Element Type and Location

10.1 RF Versus IF Processing

One of the first design choices that must be made is whether the weighting
will be done at RF or IF, as shown in Figure 10-1.

10.1.1 RF Weightin

The main advantage of RF weighting (Figure 10-1a) is that no modification
of an existing single-antenna receiver is necessary; multiple IF strips are avoided. All
antenna signals are combined into one RF channel connected to the receiver. For this
reason, most conventional command-steered phased arrays use RF phase shifters as weights.
The disadvantages of RF weighting for adaptive arrays are:
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a. The amplitudes of weights using most conventional controls have a
large dynamic range, depending upon the particular geometry and
signal levels entering the array. Without prior amplification, serious
losses in signal-to-thermal noise ratio would be encountered, due to
the adaptive weight attenuations, as well as inherent resistive losses.

b. RF weighting usually requires RF correlation, which appears more
difficult and expensive than IF correlation with presently available
hardware.

10.1.2 IF Weightin.

The need for amplification and filtering in much of the control circuitry,
especially before and after correlation and matched filtering, makes the use of some IF
processing almost essential. Although this does not preclude RF weighting, it makes
all-IF-processing and weighting potentially useful, and possibly cheaper than RF
weighting, especially if RF amplification is required to compensate for RF weighting
losses. Figure 10-lb shows RF weighting; the local oscillator and RF amplifier are the
IF strip of a receiver, and must be repeated for each element unless some time shared
use is made of one processor. Since jamming can be expected to be much larger than the
thermal noise, the noise figure quality of the receiver IF strips need not be as good as
conventional receivers; other characteristics, however, such as dynamic range may have
to be as good or better than conventional receivers.

Many microwave integrated circuit arrays, such as Texas Instruments MEPA
and RASSR, have these separate IF strips for each element of the array. At very high
microwave frequencies, such as X-band or high power L-S band, such arrays are very
expensive. At the lower VHF-UHF frequencies, where only a few elements are involved,
the expense may not be great.

10.2 Types of Weights

Many possible weight types are shown in Figure 10-2. Since both amplitude
and phase of a signal must be controlled, one can either control the amplitude of two
quadrature phase components of the signal, or use a phase shifter to control the phase with
one amplitude control. The first part of Figure 10-2 shows quadrature amplitude control
with either double balanced mixers (four quadrant multipliers), variable gain amplifiers,
or variable attenuators. The second section of Figure 10-2 shows amplitude and phase
control with phase control from either phase shifters or mixers (employing a phase - shifted
local - oscillator frequency).
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10.3 Types of Correlation

The correlation shown in Figure 10-1a is usually between an RF frequency
(the channel signal, x.) and an IF frequency (the error) to yield a correlation signal ,it
another "local oscillatidor" frequency. Thve ou,,put correlation would contain both ampli-
tude and phase on the local oscillator carrier frequency. If the error was fed back at the
RF frequency and at a high power level relative to the channcl signal, leakage and
oscillation would be difficult to prevent. With IF weighting, using IF amplification
first, two high power level signals xi and f are available for correlation; thus correlation
can be performed with both signals at the same frequency, and output at dc. Since a
dc signal cannot carry both amplitude and phase, correlations with dc output must be
performed for both quadrature components of a narrow band signal.

10.4 Weight Control

The weight control circuitry and the amplification of the weights may be
performed in many different ways; three basic ways are shown in Figure 10-3. In the
first two ways shown, correlation output at dc is assumed, which requires correlation
of the error with two quadrature components of the signal or vice versa. The correlation
output at dc is integrated (low pass filtered) to form the voltages that control the two
quadrature weights. In Figure 10-3a, the quadrature weights are applied to the signal
channel directly. Compton (61,26) uses this method. In Figure 10-3b, they are applied
to the low-level local oscillator, which in turn applies amplitude and phase weighting
to the signal. Finally, Figure 10-3c shows a correlator output at some local oscillator
frequency being narrowband filtered and mixed directly with the signal to apply ampli-
tude and phase weighting. Applebaum (5) uses this technique in some of his sidelobe
cancellers. The narrowband filter is not integral control, but much smoothing is available
with a very narrowband filter. One serious problem with this technique is alignment of
many very narrowband filters, if much smoothing (integration time) is required. Tracking
filters, such as VCO's, may be used to alleviate alignment of passive narrowband
filters, although additional complexity and expense results.
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10.5 Weight Constraints

In order to understand the various adaptive arrays being discussed, it is
important to list the possible weight constraints.

10.5.1 Before Signal Acquisition

For the acquisition case neither signal nor signal DOA may be known.
With the "Strong Jammer Suppression" acquisition algorithm, the weights may be con-
strained as follows:

a. Unconstrained - The weights, in this case, 5o to a steady state value
of-zero (shut-off), but at a sufficiently slow rate so that signal acquisi-
tion can take place after the jammer is nulled. The report by Zahni 7 9 )
and the simulation program TSM2 uses this unconstrained case.

• •b. One Weight Fixed - In this case, the weights cannot go to zero since
one weight is fixed. Thus, shut-off of the array is prevented, although,
in the steady state, both jammer and signal are often well below ther-• mal noise. Most examples in Chapter 8 use this constraint. Analytical

solutions have also been obtained for this case.

c. Co)nstant Norm of Weights, Sum of the Weights, Power Input, to theProcessor or Output -'Autromatic: Gain Control or a similar method
could be used to keep the power input to the processor or output equal
to a constant or to keep the sum of the squares of the weights or thesum of the weights fixed. It is probable that a fixed input power is a
preferred one, because the eigenvalues and time constants of the sys-
tem are proportional to input power.

d. Additive Forcing Function - Ti~e 'use. of a Forcing function, such as

that discussed in Chapter 7, is similar in" resolss; to fixingone weight.
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10.5.2 After Signal Acquisition

After signal acquisition no explicit weight constraints are required, because
the operations to optimize the signal imp-icitiy constrain the weights:

a. Signal subtraction, for the "Known-Signal" algorithm, in which the
signal is maximized and the weights are automatically constrained by
forcing the output signal to be equal to the reference signal, see
Widrow( 76 ).

b. Signal Correlation subtraction for the "Known Signal- DOA" algorithm,
in which the signal is again maximized and the weights constrained by
forcing the output signal correlation to be equal to the subtracted corre-
lation; see Applebaum(5 ), Griffiths( 4 3).

c. Sum of Weights = Constant - Th'is is the weight constraint used in the
"projection gradient" algorithm. It is a "DOA-Known" algorithm in
which signal correlation is derived and removed via a main beam pointed

at the signal.

In addition, explicit weight constraints may be used, such :s AGC, but only
with care if the optimum solution is to be preserved.

10.6 Amplitude and Convergence Rate Control

It has been shown .,, Chapler 7 that the initial converdence rate of 1.ulls
or, a dominant jammer was dependent upon the largest eigenvalue, X I. Most plots were
normalized to the time conskrnt -r= I . It is known that this eigenvalue is ciose'y

ctA1
approximated by twice the total input power. Although the total input power is not known
in an operational situation, the power in each channel is known,

Pxi = xI

Controlling these powers will control the convergence rate.
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It is desired to control the convergence rate. Since the input power may
have a very large dynamic range (due mainly to the varying range to emitters) some form
of amplitude control is required. In addition, the limited dynamic range in correlators
and weights make amplitude control necessary. Three controls are commonly used for
amplitude control:

a. Automatic Gain Control (AGC)

b. Limiting

c. Logarithmic Amplification (Log-Amp):

A simplified figure showing such controls is shown in Figure 10-4.

Automatic gain control will clearly regulate the power entering the array
processing. If this total power is held constant, then the integrator or filter gain (I
can be chosen for a desired initial convergence rate. Several disadvantages of AGC
are the finite settling time and the suppression of very weak signals if instantaneous dyna-

mic range is limited. For these and other antijamming reasons, AGC control is not used
as much as it used to be in many applications; either limiting or log-amplification is
preferred.

Limiting or clipping is also potentially very useful for amplitude control.
It would not have the disadvantage inherent in AGC, such as settling time and limited
dynamic range. The main question is how well a corre!ator would perform using signals
that had been limited, Ii appears as it the effects of limiting in nuli steering is not yet
clearly under.-tood. The resulting cor-ekation wculd be equivaient to phase detection.
Thus,, amplitude would he lost. The phase information would permit the crucial phase
shift w.1-ighting in each channel, which would allow some nilling of the jamming. If very
hard limiting were not employed, then the correlation could go into a linear range when
most of the jimming was removed from the error channe!. Initial experimentation has
verified fltat such soft limiting can be used successFully in c, null steerer, but that
convergence was, in one realization, very slow during the time that limiting occurred,
possibly due to the loss of amplitude error information.t

The use of loe.a.rithmic amp.iFiers is dlso possible, but has not been explored
or reported on to our knowledge. Of course, antilog operation would also be necessary
before array summotion beccause a linear combination of array channels is required to
cancel jamming. e e non-lincarities, different in each chanitel, would change
the signals differently in each channel, making cancellation impossitle.

tMore detai! of limiting is found in Tech-nology Services Corp. "Adaptor, Space-Time

Prccessin ;nr Airborne Radars," Feb. 7•, AD881462 (U).
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10.7 Signal Removal of Spread Spectrum Signals

It was discussed in Chapter 8 that signal removal from the error channel may

not always be required, but is generally desirable to prevent signal degradation or to
provide antenna gain toward a signal. For some situations, especially those in which
only a few signals are present having long acquisition and transmission times, partial signal

removal after initial signal acquisition is relatively simple. However, in the case of many
simultaneous spread spectrum signals, considerable difficulties arise in removing the sig-
nals from error channel. A serious problem is time delay through the matched filters (or
correlator systems). Since the signal cannot be known a priori, the signal must be
detected via matched filters at the receiver output, which make correlution with the
input signal xi more difficult. These matched filters must have a delay of approximate!y
the information bit in order to make a decision on any spread spectrum sequence of
"chips." For a spread spectrum signal of 10 MHz and assuming a surface wave matched
fiWter with roughly 10 ps length is the maximum available (as is presently the case),
approximately 20 dB of spread spectrum processing improvement is available; however,
delay of : 10 ps are encountered in the matched filter. In order for correlation over
10 MHz bandwidth with the ith input channel signal, xi, it too must be delayed 10 ps
(note, in each channel). Such delays could be expensive and lossy. if larger processing
gains, such as 40-50 dB, ore used with a 10 MHz bandwidth, delays of 1-10 msec are
needed which are extremely difficult to achieve." Digital sampling; processing, and
storage techniques might be required, or other techniques such as biased suppression or
"DOA-Known" t,,pes could be used that do not require signal estimation.

Two possible techniques of spread-spectrum-signal removal usinq mhatched
filters are shown in Figure 10-5. In part (a) of the figure, identical banks of matched
filters are used in both the error and ith signa' channel, one filter in each bank for each
signal sequence to be detected. Since the signal energy in the output of each matched
filter is concentrated with a high peak pulse, this signal energy may be partly removed
by clipping the signal at about the detection threshold. Noncode- jamming a'id noise
will be spread in time and unclipped. Thus, correlation will be done mainly on jamming,
transformed by the mcfched filter almost identically in the two channels. As in all
"Senarable Jamminr,' techniques, signal I. not maximized by this array processing.

ttLatest information available indicates that delays on the order of up to 100 Pisec are

now available.
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by clipping the signal at about the detection threshold. Noncoded jammirnj and noise3
will be spread in time and unclipped. Thus, correlation will be done mainly on jamming,
transformed by the matched filter almost identically in the two channels. As in all
"Separable Jamming" techniques, signal is not maximized by this array processing.

The outstanding difficulty with this signal removal technique is that the
matched filter band must be repeated for each channel. For two matched filters (for a 0
and 1), this is not too difficult. However, if a different matched filter is used for each
sensor, or for a group of sensors in order to allow simultaneous communication with many
sensors, then the technique probably requires too many matched filters to be practical.

Another signal removal technique, shown in Figure 10-5b shows a technique
of signal subtraction, which will maximize signals, since it is a "Known-Signal" thr.sh-
technique like Widrow's \76) "mode 1" array. In this technique, the output of the
old detector that follows each output matched filter wiil trigger an identical matched
filter to regenerate each coded signal. The composite coded signal is then subtracted
from the output to form the error channel as in the "Known-Signal" adaptive array.
Single time delays, instead of banks of duplicate matched filters, are now required in the
output before signal subtraction, and in the ith signal channel.

If, instead of matched filters, synchronized reference sequences are used to

correlate and despread the spread spectrum signals, then similar techniques for spread
spectrum signal removal have been developed and are shown in Figure 10-6. In
Figure 10-6a, the synchronized reference sequence is correlated with the input signal to
produce a narrowband signal, but uncoded jamming remains spread over the spectrum.
Before narrowband filtering (which would eliminate most of the jamming that must control
the adaptive array), the usual adaptive array is used, with the addition of a narrowband
reject filter in the error channel for signal removal. This technique is a more sophisti-
cated, spread-spectrum version of the simple "Separable Jammer" technique of filtering
and separating out-of-band jamming for vse in null-steering. The delay and distortion
of the norrowband reject filter is probably minimal and can be compensated for, but the
disadvantage of different codes for each different sensor remains; a different coded,
synchronized reference signal is needed for each signal. The synchronization problem
itself appears very difficult, even for a conventional single channel signal
processing system.

A similar scheme, due to'Compton, for signal removal is shown in Figure
10-6b. A PSK signal is assumed after despreading. Squaring this signal results in a double
frequency carrier which may be removed in a very narrowband reject filter in the error
channel. Thus, a "carrier" portion of the signal has been removed, which may prevent
nulling of the signal.
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A third technique, also due to Compton and others, filters out the despread
signal through the narrowband filter in the signal channel, then regenerates the coded
signal by spreading it with the reference sequence. This forms a-signal estimate, delayed
by the narrowband filter. With compensating delays, a "Known-Signal' adaptive array
technique can be used. There is still difficulty in signal distortion through the narrow-
band fil ter causing an error in the correlation cf the error with the channel signal, xi.
Compton has recently reported, in pr'vate communication, that he was l imited to a 4:1
spread spectrum bandwidth reduction which is believed due to the delay and distortion in
the narrowband filter; although he recognizes the need for a delay, it is believed that he
did not use a compensating delc:' in the above experiment.
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11.0 BREADBOARD DESIGNS AND DESIRABLE EXPERIMENTS

The preceding chapter discussed possible implementations of the general
functions (c-orrelotion, weighting, etc.) that are needed in adaptive arrays. The "best"
implementation is not kn'own, but designs for adaptive circuits and even adaptive arrays,
have been implemented in the past. Several designs do look most promising.

In this chapter, designs that presently look most desirable will be presented
along with experiments that must be run to determine the best design for communication
purposes, especially with spread spectrum signals und many users.

There are two objectives in these experiments: (a) finding the best imple-
mentation(s) via a flexible breadboard, which is emphasized herein, and (b) applications
experiments with the best implementation(s).

11.1 Preferred Implementations

There are. two preferred basic designs based on studying the apparent com-
plexity of the various implementaions in Chapter 10 and on what past experience has
been published in this area. These basic designs utilize the following weighting
techniques:

a. Quadrature Channel Weights

b. Complex Weighting

as shown in Figure 11-1. Figure 11-1a shows dc correlation and integrator control of
quadrature weight channels. There are several weight types that need to be evaluated
with this basic implementation, namely diode double balanced mixers, variable attenuators
(such as PIN diode attenuators), and transistor multipliers (double balanced mixers)
such as Compton uses.

Figure 1 1-lb shows a basic IF correlation scheme with narrowband pass
filtering replacing the integration. The weight will probably be a double balanced
mixer, run at a level low enough to give both amplitude and phase weightin , such as
done for diversity combining by Raytheon (80), and for sidelobe cancellers(6y. Another
possibility is using the mixer only for phase shifting, and amplitude weighting with an
amplifier or variable attenuator.

There are, of course, other designs that may be important, such as one that
would control RF phase shifters directly. However, the above two basic designs, with
variations due to different weighting schemes, are ones that there is some experience to

base confidence upon, and that can be evaluated with the same basic test bed to

be described.
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11.2 Breadboard Experiments

Given the basic preferred designs, there are then a host of design problems
that must be answered. The construction of a very flexible breadboard or test bed would
allow one to measure and compare the performance of several different designs, especially
using different weight types. It is felt that there are three basic steps in building such a
breadboard:

a. A basic two-channel test bed, which would have one variable weight
channel and one fxed weight channel, in order to'test the weight
type as cheaply and quickly, as possible. It would steer one null on
one jammer.

b. A 3-5 element array using several, or at least the best, weighting
technique decided upon during the two channel experiments above.

c. A signal removal breadboard to test the various techniques for remov-
ing spread spectrum signal effects from the null-steering control. The
most promising technique should then be tried in the two-channel test
bed, and then the 3-5 element array. Because of the strong potential
of using biased jammer suppression without removing the spread
spectrum sign it i3 felt that this experiment can be run separately,
and not seriously affect the basic null-steering breadboard.

Note that the two channel test bed is not being called an array, although
it can null one jammer and is potentially quite useful . The two channel testbed is to test

the corre!ator, control circuitry, weight, dynamic range problems of amplifiers, and a
host of other circuit component problems associated with controlling the array.

For each of the two basic designs in Figure 11-1, a more detailed design
will be given to show the potential cost and complexity of the experiment. It should be
clear that the equipment is relatively inexpensive and straightforward to build. By using

coax throughout at 60-70 MHz IF, a very flexible test bed cculd be built.

1 1.2.1 Quadrature Channel Experiments

Figure 11-2 shows the basic three-element array that will be constructed.
One Fixed weight (straight-through connection) is used, both as a practical weight con-
straint to prevent weight shut-off, and to conserve on parts while allowing three elements.
The weighted channel on the left consists of an antenna, mixer, bandpass filter and
amplifier; i.e., an IF strip. The power is then split into quadrature channels (00, 900)
to provide amplitude control alone in each channel and vary both amplitude and phase of
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the entire channel's signal. Considering only the 0° channel, this is then split into a
signal going to the correlator and one going to the mixer wveight. The correlator drives
an integrator, whose output voltage is the control voltage on a double-balanced mixer
attenuation weight. The amplitude of the output of the mixer is proportional to the con-
trol voltage applied, thus multiplying the IF signal by the weight. Both quadrature
channels are thus weighted and added together then added again to the signal from the
right hand channel. These two channels are the only two weig d channels, and since
the atfonuation of the mixer operated in its multiplying range is rather large (-15 de),
amplification and amplitude trimming is provided before addition to the unweighted
channel. Finally, the sum of the three channels is amplified again, and split into an out-
put signal (Y) and a signal to be fed back to form error. A local oscillator signal gen-
erator is split into four channels for use as shown in tI- diagram. A signal generator,
which will La the source of the incoming desired signal, is mixed with the fcurth channel
of the local oscillator to form a "desired signal estimate" at the output IF, and
is subtracted from the feedback output signal to form an error signal. The error s,:jna: is
split into four parts for the correlators in the weight control circuitry. This diagram then
forms a simple realization of the basic Widrow ("mode 1") LMS algorithm. One of the
advantages of double-balanced mixers is that the dc voltage multiplying the signal may
be either plus or minus. The minus automatically reverses the phase (1800) in the signnl
channel. With 0 tooo attenuators, phase reversal must be performed another way. The 1
amplifiers shown are required to bring the low input signal levels up to values needed in
the correlator (- -25 dBm). In addition, other amplifiers are needed after the mixers to
make up for the natural loss in multiplying two low-level signals. The correlators will
also be double-balanced mixers, because of !heir wide bondwidth and good rejection of
unbalanced signals from each individual channel.

Both transistorized and diode double-balanced mixers should be tried.
Recent work by Compton( 2 8 ), shows good success with transistorized multipliers (m"xers).
as shown in Figure 11- 3 a. Good isolation is an advantage of active circuits. Figure
11-3b shows a quadrature attenuator weighting scheme that i5 also planned for testing. It
can be inserted in place of the balanced mixer weights. The attenuators will be PIN
diode attenuators commonly used in microwave and IF equipment. Drivers will be
required for each PIN diode, and of course two different attenuators in Qc° and 1800 lines
of a hybrid will be required for both in-phase and quadrcture components of the signal in
each channel.

In addition to the antenna inputs, it is planned to have a ;abora: ;, bench
power splitter and delay method to provide test signals that simulate a signal and jammer
arriving from different directions. A block diagram of this equipment is shown in
Figure 11-4.

So far the design is detailed enough to get an approximate part count for
a two channel test bed or a three element array. This circuitry should steer nulls if
proper amplitude levels are set at the input so that the dynamic range of the components
is not exceeded. The mixers, used both as weights and correlators in Figure 11-2, have
a very good dynamic range; some are advertised as having over 50 dB. However, the
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amplitude and convergence constant controls discussed in Chapter 10 are not included in
the basic design. Either AGC amplifiers or limiter-anip!ifiers were good possibilities for
this control. At least two amplifiers of each type should be obtained for a two channel
test bed to measure the impact o. these important real components upon null steering
capability. Initially, it would be possible to put a limiter after the input amplifier to
obtain limiting action. For the AGC amplifier, it could be adequately simulated by
manually setting the approximate total input power level.

As discussed at the beginning of this chapter, the signal processing that
might be used to obtain a Widrow algorithm is considered as a separate experiment, and
is thus not included in the basic breadboard design.

11.2.2 Complex Weight With IF Correlktion

A more detailed design of the basic "complex weighting" scheme of Figure

11-1b is shown in Figure 11-5. This figure is considered an addition to the basic bread-
board, Figure 11-2; local oscillator distribution, etc. is assumed the same. The left
channel, as in Figure 11-2, begins with an IF strip, and then splits to a correlator and to
a weight. However, this time the weight will be "complex," that is, both an amplitude
and a phase weight combined, without quadrature channels. This complex weight is
formed by the correlation, through the double-balanced mixer shown, of the error signal
at 70 MHz and the channel signal, x 1, 100 MHz. fhe narrowband filter at 30 MHz
passes the difference frequence only, which carries both the phase difference between
x, and the error E1 and the amplitude of the correlation. This 30 MHz signal then multi-
plies the x1 channel signal through the double-balanced mixer weight. The 30 MHz
weighting signal acts as a 2nd local oscillator, but is not allowed to hard-switch the
mixer. The signals from the left and right channels are then added, amplified, added to
the unweighted channel, amplified again, and split between the output signal and the
signal used to form the error. All of this is similar to Figure 11-2, and can use essen-
tially the same equipment, except for the 100 MHz first IF. If necessa,-y, the first IF
could be left at 70 MHz, and the second IF could be lowered to 60 MHz or less. The
frequencies shown are not firm, and depend on exactly what the implementation of the
narrowbond filter will 'De.

The narrowbond filter is the crux of this design. It could be a crystal filter,
if two or more exactly .matching crystals can be found or tuned for the various channels.
Although thbs is a simple implementation, the smoothing time of the filt'•r is limited
(milliseconds) by the narrowbandwidth obtainable.

A more flexible filtering scheme is the so-called "tracking-filter" shown in
Figure 11-6. It is a normal phase-locked loop. whose feedback filter bandwidth may be
made very small, resulting in long smoothing times. The vco itself generates the output
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weighting signal, with a phase equal to the input phase. Usually, however, the output
is limited or saturated, so that amplitude information is lost. Amplitude information
(modulation) can be obtained by an in-phase detection of the output with the input, as
shown. This amplitude can then be used to "weight" the vco outout before it weights
the signal channel. In the figure, however, an alternate scheme is shown that allows
the vco to "switch" the mixer, thus applying only a phase sh" to the signal. Ampli-
tude weighting is applied separately with a PIN diode attenuator or variable gain
ampl ifiers.

11.3 Spread Spectrum Signal Removal Experiments

The spread spectrum signal removal experiments should be considered a
separate experiment, because:

a. Biased suppression techniques do not require signal
removal.

b. It may be very difficult, and much too expensive,
to remove spread spectrum signals, because of the
time delay problems encountered in matched filters.
This should not be-allowed to hold up the null-steering
experiments.

Because of the simplicity, a coded reference decorrelation method of spread
spectrum demodulation was chosen rather than a matched filter, although if such are
available, they should also be tested. Figure 11-7 shows a basic breadboard for sug-
gested experiments. The UHF signal generator, upper left, is modulated (perhaps at
the signal generator), then spread spectrum modulated with a simple PN sequence
derived from a shift register. This signal is added to a modulated "jamming" source to
form the transmitter output. Synchronization is assumed perfect in this experiment; the
PN signal is hard-wired to the array to modulate the local oscillator, which in turn mixes
the received signals. Therest of the array is the basic breadboard array except for band-
stop filters in both channels leading to each corielator. These filters block the narrow-
band demodulated desired signal while passing most of the jamming.

Other techniques of signal removal should be tried as well; however, some
would require substanrially more equipment, and might raise the price of the effort con-
siderably. Nevertheless, it may be essential to find an adequate method of signal effect
removal, if the nulls obtained by biased suppression are not satisfactory.
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12.0 CONCLUSIONS

12.1 Summary of Results

At the outset of this study the work was -eived of as a two phase effort.
The first phase involved the compilation and critical exan,..,ation of those adaptive null-
steering techniques which appeared applicable to RF communications problems, particu-
larly the multiple user TDMA type system. This involved the comparative analysis of a
large amount of existing technology. The second phase was to perform a more detailed
analysis of at least one of the more promising procedures studied during the first phase
effort. The work has essentially proceeded along these original lines, with the excep-
tion that the second phase effort has become more involved. Due to the inadequacy of
the previously developed methods examined in the first phase, particularly in application
to practical communication problems, the second phase effort has entailed the expanded
task of both the development of practical acquisition technicy.,es and their more detailed
analysis.

In the first phase of the study the many technology areas and mathematical
methods applicable to the RF null steering problems were examined. Major areas of
interest were

1. The choice of an appropriate mathematical model for the general
problem formulation and the adaptive array processor.

2. The selection of appropriate performance measures to define the
optimal weights.

3. Derivation and comparison of the or.imal weights for the various
performance mecsures.

4. Compilation and critical examination of iterative-adaptive optimi-
zation methods to determine the best procedure for use in real-time
computation for RF communication arrays.

5. Compilation and critical examination of those adaptive algorithms
which have been previously suggested.

Some of the result: of the first phase effort are:

1. The choice of a complex weight model for the relatively narrow band
problem under study.
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2. Identification of four appropriate performance measures; mean square
error, signal-to-noise ratio, the likelihood function, and output
noise variance.

3. Derivation of optimal complex weights for the four criteria.

4. Demonstration that for narrow band problems the minimum mean square
error solution factors into a linear matrix filter, which is common to
all four solutions, followed by scalar processing gains which contain
all the other optimal solutions.

5. As a resuit of 4., it is shown that each optimal solution takes the
form

Wopt =,Rn1 rx(2

where,8 is a scalar gain, and hence, for the narrow band case, all
solutions yield identical output signal-to-noise ratios.

6. Selection of the steepest descent optimization method as the obvious
choice for practical computation of the optimal solutions.

7. Demonstration, through both stochastic approximation ideas and
intuitive relative bandwidth arguments, that the performance measure
gradients needed in the steepest descent algorithm can be computed
using inst-antaneous quantities readily available at the :.ray.

8. Demonstration that the more practical algorithms sufessr. previously
differ primarily in how desired signal effects are rrmk I iror.n. the con-
trol circuitry Consequently, using stochastic appr,,.r , o-, Aorguments,
they all obey the same general form of differential equalon, namely,

S+ (12-2)

From this work it is apparent that not only are the steady state optimal
solutions essentially identical, but that the algorithms developed to construct these
solutions w!l exhibii the same general transient behavior. This, of course, also depends
on how the desired signal approximation or direction of arrival estimates are acquired.
Herein lie the basic differences and difficulties associated with these methods. They do
not represent practical solutions, since they do not deal with the acquisition problem,
however, they do dictate the basic control loop form, contingent on how the acquisition
is obtained.

12-3 i



MUM",

The first phase effort has placed the large, and therefore perhaps confus-
ing, background of applicable techniques and algorithms in the adaptive array area
within the context of the RF communication problem. It has been shown that many of
the separately presented past results lead to equivalent algorithms for our problem, and
that they do not actually represent practical solutions. Consequently, the second phase
effort has become not only a detailed analysis, but aiso a development of practical
acquisition techniques. This effort has proceeded primarily in the following areas:

1. Analysis of basic differential equations (Equation 12-2) using spectral
decomposition techniques.

2. A detailed study of the "Dominant Jammer Reciprocal Suppression"
technique for signal acquisition, in the face of very powerful jamming
or interference, including:(cal analytical transient solutions for the
zero-bandwidth, one-jammer case and (b) computer simulations and
analysis for arbitrary parameters.

3. A detailed study of the "Biased Dominant Jammer Suppression" tech-
nique (a generalization of the "Equalization" phenomenon that 4
Compton noted).

4. A less detailed analysis of the LMS algorithm, including analytical
and some general computer results.

5. Studies of techniques for discrimination of signal and jamming in
realistic scenarios. Since the techniques vary with a priori knowledge,
the classification of different adaptive processing techniques by the
a priori knowledge was done.

6. Studies of the various implementations of adaptive arrays, with some
analysis of the hardware problems that might result.

7. Decisions for a basic breadboard design, including the several most
promising implementations of weights, correlator controls, amplitude
constraints and signal estimation methods that should be tested on the
breadboard.

8. Statement of the recommended general approach Io the breadboard
tests.

Specific results have been obtained from the first four study areas cited
above. Although it is difficult to summarize these results in a few lines, the major
conclusions appear to be:
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1. The LMS algorithm can produce at least -41 dB gain (null depth) on
1 percent bandwidth jammers, and at least -27 dB gain (null depth)on 12
percent bandwidth jammers, while losing essentially none of the full
array gain on the signal in the first case, and only 2 dB in the second.
Very narrow band interference or jamming can be nulled much more:
over 60 dB for . I percent bandwidth.

2. Aii important adaptive array property called "Dominant Jammer
Reciprocal Suppression" was discovered. This property suppresses a
dominant jammer very quickly; compared to a weak desired signal,
without the signal being suppressed significantly. The output signal-
to-jamming ratio is the reci~procal of the input signal-to-jamming ratio.
Two important cases exist:

a. Number of signuls > number of elements > number of jamrr:E-rs.
In this case, this Reciprocal Suppression result is approximately
true in the steady state, at least for bandwidth < 10 percent.

b. Number of emitters < number of elements. In this case, the
reciprocal effect is true after the first transient period, at least
for very narrow band; however, after this transient, the signal
can be suppressed well below thermal noise. The transient period
for signal acquisition was usually found to be several hundred
times as long as the initial jammer suppression period. There is a
very real possibility of signal acquisiton during this transient
period. The reciprocal suppression result can be obtained before
signal processing improvement.

3. An important signal acquisition and communication technique called - /
"Biased Jammer Suppression" or "Equalization " allows the potential
of suppressing powerful interference down to the signal level, or below 3
it, in the steady state. The resulting output signal-to-total noise ratios
approach 0 dB (for the case where the number of emitters < number of
elements)just from spatial processing before signal processing. No a
priori information is required about the interference sources or the
signal. Note that,

a. This technique, which does not maximize the signal or provide
gain toward it, can be used for initiai signal acquisition.
The LMS algorithm, which requires signal estimation or signal
DOA estimation, can be used later.

b. In addition, this technique could be used for signal communication
with large numbers of signal sources without signal maximization,
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if approximately isotiopic gaii; toward the signal is acceptable
and some signal processing (perhaps 6-10 dB) is available.

4. Multiple jammer and multiple signal cases show little degradation over
the single jammer and signal cases that form the bulk of this report.

5. In implementation study results, the three basic methods that appear
most promising emphasize three different weighting techniques:

a. Quadrature channel amplitude weighting. j
b. "Complex" weighting by using a mixer for both phase and ampli-

tude weighting.

c. Control of RF phase shifters, probably digitally.

6. The recommended breadboard design can test the quadrature and
complex weighting techniques above with several different methods
of amplitude weighting suggested: dc mixers or variable gain ampli-
"fiers or attenuators. The third technique, control of RF phase shifters,
is very appealing for modifying an existing array, especially where
an existing computer ;s available, but these assumptions, plus being I
totally different from the first two techniques, have eliminated it from
the breadboard recommendations.

12.2 Recommendations for Future Work

The recommendations stem primarily from two sources. First, during the
course of this study certain topics, not directly related to this effort, could only be
touched upon briefly. Secondly, much of the work which has been conducted could be
very profitably extended. This section presents some of these ideas.

12.2.1 Additional Computer Simulation

Additional computer simulations could be conducted, not only continued
performance of the parameter studies already conducted, plus the consideration of addi-
tional parameters, but equally important, the development of more realistic simulations.
For instance, the control loop transient behavior has been simulated using solutions to
the differential equations governing the idealized control loop. This assumes perfect
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integrators, summers, multipliers, etc., and does not account for even tie most obvious
circuit nonlinearities. Other aspects of the computer simulations could also benefit from
more realistic hardware assumptions. Another area of interest would be more detailed
analysis of convergence behavior and convergence control. The use of AGC or nonlinear
amplifiers at the input channel, to control power and thus convergence rate, could
benefit from computer analysis. Also, the use of controlled bias insertion requires addi-
tional simulation. For a given problem situation the use of the standard Widrow-Grirtiths
LMS algorithm would require detailed simulation study, particularly the techniques used
to form effective signal or DOA estimates.

12.2.2 Breadboard Tests

At this po*nt in the development of RF communication adaptive array tech-
nology, the design and construction of preiiminary breadboard implementations is not
only an obvious extension of the theoretical and computer analysis, but is a necessary
step towards the further development of this important technology. This encompasses the
construction of both specific breadbocrd circuitry for particular applications and the
development of more general test bed configurations useful in a wide variety experimental
programs. A discussion of some of the details of such programs is included in Chapters
10 and 11 of this report.

12.2.3 Alternative Algorithm Investigations

The present effort has been confined to the study of algorithms based on
standard iterative-adaptive optimization techniques, particularly those using steepest
descent gradient methods. Recently, a new class of adaptive algorithms, bas-.d on
recursive estimation methods, and applicable to the control of null-steering arrays, has
been introduced. These were discussed in Section 4.6 and offer several potentially
important advantages over the standard adaptive methods studied here. It is importunt
to develop these new methods to the point where reasonable comparative analysis with
the standard adaptive algorithms is feasible, thereby providing the rationale for the mak-
ing of trade-offs between the two methods in a given problem application. Development
of this new algorithm is presently being conducted at Radiation Systems Division.

12.2.4 Studies for Specific Applications

Many specific applications need to be investigated for the application of
adaptive arrays, for example:

a. More specific work on TDMA systero

b. Simple RF interference of UHF-VHF communications, especially at

aircraft and satellite platforms.
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c. Mu!ti-path elimination, for VHF-UHF between high platforms.

d. Sensor, sonobuoy and other applications where very large numbers of
signal scurces exist.

e. Near - Far problem elimination in PN - spread-spectrum as well as
iu! tichannel applications.

12.
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APPENDIX A

DESCRIPTION OF COMPUTER SIMULATION ROUTINES
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APPENDIX A

This Appendix serves to give a block diagram representation and de.crippion
for three computer programs being submitted in this report.

Program 1: Equalization mode for an adaptive array with one weight
init.liz-d to one in the jammer suppression mode.

In this program, we submit Figure A-I as the flow diagram with the follow-
ing ;L:& •;ving equivalence relation between the symbols used as input parameters of
the pro.ciram and the report.

Program Input Symbols Report Symbols

S1 S

S22S$2 J

TI el

T2 92

4D p

N m

GAM

B

The remaining inpul parameters not listed here are well defined in the program. The pro-
gram first compiles the electrical arg;4s ct vrriva! and the bFatial factor given by sup-
pression mode.

Tll= 27rDCos (TI) (1)

T22= 27r D Cos (T2) (2)

"02> = Q = (Sin (N/2 (T1I-T22)))/Sin (1/2(TiI-T22)) (3)

These parameters are then used to compute the weight vector
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- '_ ... ..

w(t) = [A(t) + jD(t)] vI + [B(t) + iE(t)]v2 + c(t)wo (4) V

•where221
2 0t

w eeA(t) Re [ _ A te -1 a2 -e + 4 (- Ae t) . 2  (1-e -a 2

SIp CXt -e t I ( I -e 1-

SA) -2 
+Re A2 2

-JI

8(t) B1 Re$[ -e (1-e 0'2 (!-+2t <ce Wo> a
"2-e- +2"o B2= Re(A(t) (5)

.112

I c 2

2 t - -c O 2tl[ ctx t et a c• t'klt

B(t) Re e -e + (1-e - (-e
7 22

..Cl, WI to>e - A tt - cO t ,) . .1

_ itCl112, +Re Je-e + 1"L"(1-e 2"0,

2

Ct e- Of o t2t 
(7)

C(t) = e c 
7

D(t) = IrnA(t) (8)

E(t) = ImB(t) (9)
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t DELT (10)

m2(S_j)2 2m(S-J) (- + 4SJ <v 1 v2 > ]2

B1 = . 2J<vl, v2 > (>1

2 2 21
B2 = m(S-J) -(m (S-J) +4SJ<v 1 ,v 2 > - (12)2J<

From these equations, the power due to the weak desired signal, the jammer and thermal
noise are determined for an m (mi> 2) element linear array given by

sp S1< wv >2 ((S[A(t) + D(t) ]m +[B (t) + jE(t)) <V1 ,V2 >

+ C(t)<w ov, l>12  (13)

=Jl< w, Wv2>12 =( [A) (t) +" >D (t+v,

m + C(t)<wo, v2>12 (14)

P

= I[A(t)+it '1+ [B(t)+iE(t)] v2 +C(t) w 2 (15)

A printout of the :-,,dam is shown in Figure.A-2 with a sample run in
Figure A-3.
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100 PRINT*"EGUALIZAT ION MODE FOR AN ADAPTIVE ARRAY WITH
110A ONE WEIGHT INITIALIZED TO"
120 PRINTs"ONE. IN TAE--JAMMER-SUPPRESSION MODE*`
130 1 PRINT 12
140 12 FORMATC"0"o"RELATIVE DESIRED SIGNAL POWER=")
150 INPUT#S1
160 PRINT* "IRELATIVE JAMMING POWER=$*
170 INPUT*S2
I80 PRINTs"DIRECTISN OF ARRIVAL OF DESIRED SIGNALCDEGREES)="
190 INP'JT*TI
200 PRINITa"DIRECTION-OF ARRIVAL OF JAMMER(DEGftEES),,16
210 1INPUJTPT2
220 PRINT.,"AI4TENNA SPACING IN WAVELENGTHS80"
230 INPIJT*D
240 PRINT#"SAMPLE TIME IN TERMS OF SMALLEST TIME CONSTANTn"
250 INPUT, DELT
*260 PRINT."NUMBER OF TIME SAMPLES DESIREDus
270 INPUT*N1
280 PRINT*"NUMBER OF ANTENNA~ ELEMENTS'"
290 INPUT&N
300 PRINT*"RELATIVE MAGNITUDE OF FORCING FUOCTION Z=1
310 INPIJT.GAM
320 PRINTs"BIAS SIGNAL ETA=9
330 INPUT*B
340 PI=301416
350 TI=PI*T/I/0*
360 T2=P1*T2/I80*
370 TI 1=2*PI*D*COSCTI3
380 T22=2e*PI*D*COS(T2)
390 IF(TlI-T22)2#3*2
400 2 Q=(SIN(N/2.*CTII1-T22)))/CSINCI./2.*CTI1-T22)))
410 GO TO A
A20 3 0N
430 4 AIcN*(S1-S2)/C2.*S2*Q)
440 A2C1.*/C2.*S2*O))*SQRTCN*Ný*CSI-S2)**244.A*SI*S2*Q*Q)
450 Bl=A1+A2
460 B2vAl-A2
470 B3=BI*Bl*N+2.**8*Q+N _

480 84wB2*B2*N+2 *82-*Q4N
490 CI=COSCPI*D*(N-1)*COSCtl))
500 C2=SINCPI*D*CN-t)*C'3SCT1))
510 C3=COSCPI*D*CN-1)*CGS(T2))
520 C4=SINCPI*D*CN-.1-)*COSCT2)).
530 ALI=1 ..84N*CSIS2)/2.i-SGRTC*25S*t;*N*CSI.S2)**2+Sl

550 AL221 ..B.N*CS1.S2)/2e-SORTC.2S*N*N*(SI-S2)**2.S1*S2*Q*Q)
560 PRINT 10
570 10 FORMAT C"0".9 5X*"TIME"# 13X* "THERMAL"j, 12X.,"SIGNAL"o I IJX,"JAMMER")
580 PRINTC 1I
590 11 FORMATC" ".21X.,"NSISE(DB)".*9X."PO&WERCDB)"*' 9Xv"POWERCDB)")

Figure A-2. Equalization Mode for an Adopkive Array with One Weight Initialized
to One in the Jammer Suppression Mode Program
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600 Do 5 IIN
610 Tz(1-1)*DELT

640 D3=CEXPC-T*AL2/AL: ))*CI .-GAH/AL2)iGAM/AL2
650 RWl=(DI-D2)*CB1.CI.C3)*81/83.CD3-02)*CB2*ClI+C3)
660&*BViB4
670 RW2=(Dl-,D2)*cB1*Cl.C3)B#3.(D3-D2)*cB2*Cj.C3)/BA
680 RW3xD2
690 AIWim-CDI-D2)*CB1.C2.C4)*Bl/83-CD3-D2)*CB2*C2.C4)*82/84
700 AIW2=-CDI-D2)*CBI*C2+C4)/B3-CD3-D2)*CB2*.C2,C4)/B4
710 PN=N*CRW l**2iAIWI**2),2.*Q*CRWI*RW2,AIW1 *AIW2).2.*(CI
720&*CRWI*RW3)-C2*RW3*AtWl)*t4*CRW2**2.A1W2**2).2.*(C3*(RW2
730&*RW3 )-C4*RW3*AJ W2) *D2**2
740 pS=SI*ccDI*CCN*81,Q)/683)*CBI*CI.C1ý3).D3*CB2*Cl+C3)

760&CN*B92+Q )/'34)**93
770 PJ=S2*(CDI*CBI*CI+C3)*CBI*G+N)t83+D3*CB2*CI+C3)*CB2*0
780&+N)/B4) **2*CDI *CBI *C2*CA)*CBI *Q*N)/83.D3*CB2*C2.+C4)*CB2
790&*O+2N)/84)**2).
goo PNiIto.*ALOGGICPN1
910 PSI=lO.*ALOGGICPS)
g920 Pjt=io.*ALOGIOCPJ)
930 PR!IAT 6DTvPNl.PSI*PJI
840 PRINT 7,9RlWtRW2*RW3*AIWI
850 5 PRINT S*A1W2
860 7 FORMATC11" ,$=*~~52X"=*E25,2*C"E25

S80 8 FORM4TV" "*"E="*E12*5)
1990 6 FORMATQ*'0**F11.2sl0X,78.3,10XF8.3,10X.F8.3)
900 GO TOI
910 STOP
920 END

Figure A-2. Equalization Mode for an Adaptive Array with One Weight Initialized
to One in the Jam'mer Suppression Mode Program (Continued)
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EQUALIZATION MOCE .FR AN ADAPTIVE ARRAY WITH ONE WEIGHT INITIAL
IZED TO ONE. IN THE. JANMER SUPPRESSION MODE.

RELATIVE DESIRED SIGNAL POWER=?10

RELATIVE JAMMING POWER=?1000

DIRECTION OF ARRIVAL OF DESIRED SIGNAL(DEGREES)U?90

DIRECTION OF ARRIVAL OF JAMMERCDEGREES)=?84

ANTENNA SPACING.IN WAVeLENGTHS=?.5

SAMPLE TIME IN TERMS OF SMALLEST TIME CONSTANT=?!

NUMBER OF TIME SAMPLES DESIREDz?11

NUMBER SF ANTENNA ELEMENIS?4

RELATIVE MAGNITUDE OF FORCING FUNCTION Z=?100

BIAS SIGNAL ETA=?100

TIME THERMAL SIGNAL JAMMER

NOISE(CB) POWERCDB) POWERCDB)

0. 0. 10.000 30.000
A= 0. B= e - C= 0.10000E+01 D= 0.
E= 0,

1.00 -1o049 4-962., 21,675
A=-0.16781E-02 S-0.13451E+00 Cc 0*99976E*00 D=-0-37642E03
E: 0.72616E-01

2.00 -1.229 3.574 13.902
A=-O.25479E-02 B=-0.18372E+00 Cc 0.99953E*00 Dz-011497E-02
E 0.99907E-01

3.00 -1.265 3.393 7.306
A=-O.31139E-02 B=-0.201S7E0O Cc 0.99930E.00 D=-0.20527E02
E= O.II051E+00

4.00 "1.277 3.378 2.615
A=-O.35619E-02 B=-0.20788E+00 C= 0.99908E+00 Ds-Oo29876E-02
E= 0@11496E+00

Figure A-3. Sample Computer Run
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5.00 -1.286 3.374 -00029
A=-0.39603F.-02 8=-Oo20995E.00 C= 0999886E+00 D=-0.39169E-02
E= 0.11712E+00

6.00 -1.294 3.366 -1.242
A=-0.43345E-02 B=-0.21047E+0O C= 0*95865E.O0 D=-0.4833SE-02
E= 0.11844E+0O

7.00 -1.301 3-357 -1.734
A=-Oe46940E-02 B=-0.21CP43E.00 C= 0-99844E+00 D:-0*57281E-02
E= 0.11943E+00

8.00 -1.308 3-347 -1.923
A=-C.50425E-02 8=-0.21018E+00 C= 0e99824E+00 D=-0*66005E-02
E= 0.12029E+00

9.00 -1.315 3-337 -1.993
A=-0.53813E-02 8=-0*20987E+00 C= 0999905E+00 D=-0974510E-02
E= .0*12109E+00

10.00 1-1321 3.327 -2.020
A=-0*57112E-02 B=-0.20953E+00 C= 0999785E+00 D=-0*62799E-02
E= 0*12185E.00

Figure A-3. Sample Computer Run (Continued)
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Program 2: Antennj Pattern Routine - This program utilizes the parameters
A, B, C, D, and E generated in program I to determine the antenna pattern of an
m (m > 2) element linear array. A flow diagram of this program ;s given in Figure A-4.

The program computes the output power of the array given by a unity power
source as described by equation

jw, v,,>F- [A (t) + iD (t)]< v, v,> +[B (t)*ip.D (t +

C (t)<w , v> 2

where

<Vo > rSi n faereit"hD Cos (Tari T3 Sin L-"[2 i" D CosT1 - T3]]

where T3 is the angle of arrival of t.. unity power source. A listing of the program is
shown in Figure A-5 with c sample run in Figure A-6.

Program 3: Optimal Antenna Patlems - This program computes the optimal
antenna pattern for an m element linear array with an electronic environment consisting
of a desired emitter with known dire,-tion of arrival and two jammers. The block diagram
represer:taticn of this program is shown in Figure A-7. This program is basically the same

as program 2 except that the weights are computed from
S R -1 vn 1

opt 1 + S<v 1, RV 1>

where

2**
Rn= or+J 1 v2 v2 + J2 v2 v2

The antenna pattern can then be written as
2

v=w, 2 + Sv = R2 ] Rn Irvl v/>I2qJ•lWtI + S<V, Rn-lvl> n

A program listing is shown in Figure A-8 with a sample run in Figure ,4-9. The input
parameters are well defined in the program and can be seen in Figure A-8.
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_____START

A,B,CD,E,T1,T2,D,N

• II

COMPUTE PARAW, VME

PRlINT

YE MORE DATA

86588-88

Figure A-4. Flow Diagram for "Antenna Pattern Routine"
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100 PRINTo"ANTENNA PATTERN ROUTINE"
1t0 I PRINT 12
120 12 FORMAT("O"p '9=09)
13n IlJPlJT# RW I

140 PRINT* 'B=11
150 INPUTPRW2

160 PRINT., VC1
170 INPIJT*RW3
180 PR IN To"D="
190 INPUTPAIWI
2.00 PRINT,9"E="
210 INPIJT.ý,A IWq

9 PRINTv"ANGLE OF ARRIVAL OF DESIRED SIGNAL(DEGREES)=*3
2-30 INPUTsTI
240 PRINTo"ANGLE OF ARRIVAL OF JAMMER(DEGREES)="
950) INPIJToT2I260 Pý7INT,*"ANTENNA SPACING IN WAVELENGTHS="
270 1-4P UTo DI2890 PRINTP"NUMBER OF ANTENNA ELEMENTS=of
290 INP'JT,N
300 P1=3.1416
310 TI=PI*TI/180.
320 T2=PI*T2/180*
330 fl1=2.*PI*D*COSCT1)
340 T22=2.*PI*D*COSCT2)
350 PRINT It
360 11 FORMAT ( "0n, 1 Xx "DEGR'Z- 3". 1 2X, "GAIN (DfO)"
370 DO 8 1=!*91
380 A3=(I-1)*2.
390 T3=P!*A3/180.
400 PH=2.*PI*D*COS(T3)
410 IFCTII-PH)2*3*2
420 2 Q1=(SIN(N/2.*(T11-PH),)/(SIN(1 ./2.*(Ti 1-PH)))
430 GOTO 4
440 3 Q01N
450) 4 IF(T22-PH)5a6&5
460 5 2(VN/.(2-.')/SN( /.(2-H)
47n GO TO 7
480 6 02=N
49n 7 X1='tW1*Ql+RW2*Q2+RW3*COS(P1*D*CN-1 )*CGS(T3))
500 X2=AIWI*01+AIW2*02-RW3*SINCPI*D*(N-1)*COS(T3))
510 PSI=Xl**2+X2**2
520 APSI4ý10e*AL0G1O(PSI)
530 8 PRINT 9pA3#APSI
540 9 F0RMATCF8.2pIOX#F9.3)
550 GOTI
560 STOP
570 EN D

Figure A-5. Antenna Pattern Routine Program
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d ANTENNA ,-'ATTERN ROUTINE

A=?-0.57112E-02

q=?-0o20953E+00

C=? 99785K+00

D=:?-0. P2799E-02

E=?0. 121R5E+00

ANGLE 0F ARRIVAL OF DESIRED SIGNAL(DEGREES)=?90

ANGLE OF' ARRIVAL OF JAMMER(DEGREES)=?84

ANTENNA SPACING IN WAVELENGTHS=?.5

NJMBER OF ANTENNA ELEMENTS=?4

DEGREES GAIN(DB)
O. -00616
2.00 -0.622
4.n0 -0.641
6.00 -0.672

8.00 -0.717
10.00 -0.777
!20-10O-0.853
14.00 -0-946
16.00 -1#057
18.00 -1l 1817

20.00 -1.337
22.00 -1.505
24. 00 -1.688
26.00 -1.882
2.-C0 -2.,078
30-00 -2.264
32-00 -2. 424

34.00 -2.538
36.00 -2.584
3R. 00 -9.545
4r.no -2.407
42.* 00 -2.17?
44e00
46.00 -1•467
49.0O0 1.04$
50-00 -G0624
52.Co -0.221
54c00 0.137

Figurp A-6. Sample Computer Run
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56.00 0.431
58.00 0.642
60.00 0.756
62.00 0.758
64.00 0.632
66.00 0.360
68.00 -0.081
70.00 -0.720
72.00 -1.601
74.00 -2.739
76.00 -4,392
78.00 -6.613

90.00 -9.895
-15.61!

94.00 -32.019

86.00 -16.031ii00 -10.061
9n.00 -6.673
92.00 -4-390
9,.000 -2.745
96.00 -1.531
98.00 -0.637

100.00 0o001
102-00 0*427

I04.00 0.669
106.00 0.748

108.00 0.681

110.00 0.485
112.00 0.176

114.00 -0.227

116.00 -0.697

118.00 -1,200
120.00 -1.690
122.00 -2.113
124.00 -2.418
126.00 -2.566
128.00 -2.551

130.00 -2.393

132.00 -2.134
134.00 -1.820
136-00 -1.492

139*00 -1.176
140.00 -0,B92
142,00 -0.649
144-.00 -0.452
146-00 -0-299

148.00 -0.189
150.00 -0.118
152.00 -0.081
154.00 -0.073

figure A-6. Sample Computer Run (Continued)
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156.00 -0.089
15R.O0 -0.124
160.00 -0.172
162.00 -0.230
164.00 -0.292
166.00 -0.356
1 613 -00 -0@417
'170,00 -0- 474
172o.00 -0&523
17400 "-0.563

176-00 -0.592
178.00 -0.610

18G.013 -0.616

Figure A-6. Sample Computer Run (Continued)
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I:

L 41

STRT

ii
IN PUT PARAMETERSPS, PJ J, P.12, THS, THJl, THJ12, D,

AJ

COMPUTE

PRINT"

MORE DATA

86588.-87

Figure A-7. Optimal Antenna Patterns
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to0 rRINTD'0PTIMAL ANTENNA PATTERNS"
110 I PRINT 12
120 12 FORMATC"0"*',*RELATIVE DESIRED SIGNAL POWERs")
130 INPUTPPS I
140 PRNT*"FIRST RELATIVE JAMMER POWER="
IS0 INPUT#PJI : RIA FDSRDSGACER~

160 PRINT#'*SECOND RELATIVE JAMMER POWER="

170 INPUTTHS2
200 PRINTs"DIRECTION OARILOFDEIRST SGALDCEP)c
190 INPUTPTHJI
220 PRINTs'DIRECTION OF ARRIVAL OF SFIRNT JAMMEft(DEGREES)z"[
230 INPUT, THJ2

*220 PRINTs"A?4ETIONN SPACRING IN SAECONDGTHS=(DGRES=I

250 INPUT, D
260 PRINTs"NUMBER OF ANTENNA ELEI4ENTS=01
270 INPJT.-N
280 PI13.1416L
290 THJ1=THJI*PI/180*
300 THJ2=THJ2*P1/?80.
3090 THSzTHS*PI/180&
320 PHSI=2.*PI*D*COScTHS)
330 PHJI=2**PI*D*COS(THJI) '
340 PHJ2:=2**PI*D*COSSTHJ2)
350 BI=1.eN*PJI*Cl..C1./N*PAT(PHS1,PHJI.N))**2),N*PJ2*(1.
360 &-(*.$N*PATCPHSI*PHJ2*N))**2)

380 &PAT(PHS1,PHJ1,N))**2-(1./N*PAT(PHSIPHJ2,N))**2,(2.,
390 &CN**3) )*PAT(PHSIPHJI.N)*PATCPHJIPHJ2DN)*PATCPHJ2DP
400 &HSIN))
410 DEN=1 .+N*PJI.N*PJ2,N*N*PJI*PJ2*Ct.-C1 ./N*PATCPHJIPHJ
420 &2pN))**2)
430 93=(PS/Ct.+N*PS*CB1l*B2)/DEN))**2
440 B4=C1./CN*CBt4B2)4'DEN))**2
450 833=10**ALSGIO(B3)
460 944=10.*ALOG1OCB4)
470 G0=10o*ALO5Gl0CCPJ1.PJ2,1.)*N*(B,.82),DEN)
480 GC=10e*AL6G10CN*N*(1..PJI+PJ2)/crq+PJ)*(PAT(PH3j*PMJI
490 &,N))**2+PJ2*CPAT(PHSIPHJ2,N))**2,)
500 CI=(-PJI*C I +N*PJ2)*PAT(PHJIPHS1,N).PJI*PJ2*PAT(PHJI
510 &,PHJ2,PN)*PATCPI4J2.PHSI.N))/DEN
520 C2=(-PJ2*U..+N*PJa )*PAT(PHJ2,pHS1,N).PJI*PJ2*PAT(PHJI
530 &.PHJ2,N)*PATCPHJI.PHSI&N))/DEN
540 C3=N*C I +CI*CI+C2*C2),2.*C1*PAT(PHJt&PHS1,N),2.*PATC
550 &PHJ2.PHSI.N)*C24-2.*CI*C2*PATCPHJ1.PHJ2.N)
560 C33=I0.*AL0610c1./C3)
580 B6=C33-B44
590 B5=B33-B44
600 SNS:GS-10e*ALSGIO(PJI+PJ2.1.),10.*AL.6,.(PS)

Figure A-8. Optimal Antenna Patterns Program
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610 SNC=GC-10.*ALBGIO(PJIOPJ2.1.),l@..ALOGIOCPS)
620 PRINT 13PGO
630 13 FORMAT(" "*"GAIN OF OPTIUM ARRAYCDB)x`0#F792)

640 PRINT 14*GC
650 14 FORM4AT(" "o"'GAIN OF' CONVENTIONAL ARRAYCDB)".F7&2)
660 PRINT 1SSNO
670 15 FOR~MAT(" 's "D"'GNAt. TO NOISE RATIO OF OPTIUM ARR
680&AYCD3W9"77.2)
690 PRINT 16*SMC
700 16 FORL4ATC" "*"SIGNAL TO NOISE RATIO0 OF CONVENTIONAL ARRA
7;0&Y(OB)="*F7*2)
740 PRIXNT 18
750 18 FORMAT("0', 1XD"DEGREES", IeX,"PATTERN GAINCDB)")
760 DO 5 Mi=1*91
710 PHS=2.*PI*D*COSC2.*CMl-1)*P/180.)
780 AN1::2e*CNI-1)
790 AI=PATCPHS*P14SIPN)
go0 A2s-PJI*PATCPHSI.PHJ1,N)*PAT(PHJIjPHS;N)

80 A6=-1./N*PATCPHSIPHJ2,N)*PATCPHJ2,PHJ2.N)*PTPJ,

860. A7=-1./N*PAT(PHSlPHJ2,N)*PAT(PHJ2.PHJIN)*PA1'CPHJ1,P
870 &HS#N)
880 ABSA2/DEN
890 A9=A3/DEN
900 Al 0- CN*PJI *?J2*(A44A5,A6+A7 ý),DEN
910 PSI=CAI+A8+A9.AIO)**2
920 PS14=10.*ALOGI0CPSI)+933
930 5 PRINT 6,-AN1aPS14
940 6 F0RMATCF8*2P15X*F9*3)
950 GO TOI
960 STOP
970 END
980 FUNCTION PATCPHIPPH2PL)
990 IFCPH1-PH2)2o3v2
1000 2 PAT=CSINCL/2.**PHI-PH2)))/CSINCE.,2.*(PHI-PH2)))
1010 GO TO 4
1020 3 PATxL
1030 4 RETURN
1040 END

Figure A-8. Optimal Antenna Patterns Program (Continued)
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OPTIMAL ANTENNA PATTERNS

RELATIVE DESIRED SIGNAL POWER=?1O

FIRST RELATIVE JAMMER POWER=?1O0

SECOND RELATIVE JAMMER POWER=?1000

DIRECTION OF ARRIVAL OF DESIRED SIGNALCDEGRECS)=?90

DIRECTION OF ARRIVAL OF FIRST JAMMERCDEGREES)=?9S

DIRECTION OF ARRIVAL OF SECOND JAMMER(DEGREES)=?80

ANTENNA SPACING IN WAVELENGTHS=?.5

NUMBER OF ANTENNA ELEMENTS=?4

GAIN OF OPTIUM ARRA-CDB)= 15c29
GAIN OF CONVENTAONAL ARRAYCDB)= 1556
SIGNAL TO NOISE RATIO OF OPT!UM ARRAY(DO)= -5.13
SIGNAL TO NOISE RATIO OF CONVENTIONAL ARRAY(DB)= -18.86

DEGREES PATTERN GAIN(DO)
0. -11.871
2.00 -11.708
A400 -11.237
6.00 -19.506
8.00 -9.579

10.00 -8.523
12.00 -7.393
14.00 "-6-234
16.00 -5.078
19,00 -3.948
20.00 -2.859
22.00 -1.821
24.00 -0.840
26.00 0.080
28.00 0.936
30.00 1.726
32.00 2-448
34.00 3.102
36°00 3°684
38.00 4e195
40.00 4.631
42.00 4*989
44.00 5.268
46.00 - 5.463
48.00 5.569
50.60 5.582

Figure A-9. Sample Computer Run
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52.00 5.495
54.00 5.301 A
56.00 4.990
58.00 4.551
60.00 3.970
62.00 3.228
64.00 2.301
66.00 1.155
68-00 -0.257
70.00 -2.008
72.00 -4.218
74.00 -7.104

76.00 -110153
78.00 -17.908
80.00 -50.882
82,00 -19.252
84.00 -14538
86.O0 -12*552

18.00 -11.979
90.00 -12.579
92.00 014e18
94000 19.513
96.00 3515780
91.00 17.349

100.00 10.774
1020.00 -62776
124.00 -3.908
106.00 -1.706
108.00 0.042
110.00 1.452
132.00 2.594
114.00 3.515
136.00 4.241
38.*00 4.814

120.00 5233.
122.00 5.518
124.00 5.679
126.00 5.425
128.00 5.661
130*00 5.492
132.00 59221
1 34.00 4,850 ' ,
136.00 4#381
&38-00 3*811
140.00 3-140•
142.00 2.362
144,00 1*471
146.00 0.458

Figure A-9. Sample Computer Run (Ccntinued)
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148.00 -00692
150.00 -1.999
152,00 -3s 49Zý
154.00 -5.220
156.00 -79254
158.00 -9*722
160o00 -12.872
162.00 -17.302
164.00 -25.243
166.00 -35.018
168.00 -2t.867
170.00 -17.461
172.00 -150143
174.00 -13.496
176.00 -12.555
178.00 -12.036
180.00 -11-870

Figure A-9. Sample Computer Run (Continued)

A-21



3

i. 1

I ~,I

APPENDiX B

SIMULATION PROGRAM TDNS I

ii
4

B-11



+z

1.0 INTRODUCTION

This Appendix is a users tuide to and descriptii..-. of the computer program

"TDNS" which simulates the TDMA - Null Steering system described in Chapter 9. The

presentation is organized into three parts; the first part is a brief description of the
program including special assumptions made. The second part is a presentation and explan-
explanation of the program flow diagram combined with accompaning explanations of the
various printouts and reque,'Is for data as they are encountered during a run. The last
part of the presentation is a aisussion of a variety of considerations relating to the
program.

2.0 PRGGTAM DESCRIPTION

The progst,,i, ,odel has been designed to be as much like the system model
as possible without requiring excessive computation time or program complexity. The
program model was also designz• to be suitable for an interactive computing system as
opposed to batch processing.

Consider the assumed system geometry shown: .n Chapter 9, Figure 1. The
program geometry model is very similar to this with the exception that individual emitters
in the figure are regarded as flights of aircraft in the program model, each flight being
composed of an arbitrary number of individual friendly signals. Given any significant
range between flights vnd identical aircraft parameters within a flight, all signals within 4
a flight may be regarded ca having equal transmitter power and equal azimuths. This
approxim,3tion is used in the program model. Rather than specify range and transmitter
power, the program model asks the program user to specify relative signal power at the
receiving null steering array. The program assumes the geometry to be unchanging.

The program assumes that one emitter wishes to communicate with the null
steering array site (the program user) as in the -ystem described in Chapter 9. Transmis-
sion from the user ` not a progrcm parameter (it can be approximately accomodated by
assuming that the null steerer and rLceiver are gated off during transmission). Program -

selection of the desired signal is accom plished by specifying a desired flight iumber;
account is taken within the program so as to produce only one desired signal per frame
evt-n though signal emissions equal in iiumber to the number of aircraft per flight occur
from each flight per frame.

Each desired emiter is assumed to have a pulse like transmission. The
transmission may be broken into an arbitrary number of pulses at the program user's dis-
creion, depending upon whether interest is directed principally to detailed arrayresponse
to a single emitter or to overall array response on a frame b,>sis. User compromise is
required here "- that assignment of cm excessively large number of pulses per transmission
would require excessively long computation times per frame.
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Message PN coding and preamble detection by matched filter is incorpo-
rated into the program through use of user specified processing gains and error rate
assumptions based on the array output S/N. Specifically, if array output S/N after
applying the PN coding gain exceeds 10 dB, then zero error rate is assumed, otherwise
c 100 percent rate applies. Users of the TDMA system obtain synchronism through use
of matched filter detection of a message preamble. In the program, perfect synchroni-
zation is assumed if the S/N after application of the matched filter gain exceeds 10 dB,
otherwise the preamble is not recognized and sy.nchronization is not obtained.

Zero percent bandwidths are assumed. Modification of the prcgram for
the finite bandwidth case is feasible.

A nine isotropkc element cruciform array geometry has been selected.
Elements are equally spaced, but spacing is a program variable, and the user selects
which of the nine elements will be used in a particular problem. Any one of the selected
elements may be used as an initial condition isotropic element (unity weight on the
selected element, all other weights zero). This weight can be specified as fixed or it
can be allowed to respond to algorithm adjustment.

The algorithm used is based on the desired system response discussed in
Chapter 9. In effect, a differential equation using the expected value differential
equation discussed in Chapter 7 is solved iteratively. One could have used closed form
solutions rather than the iterative ones but quite a large number of different solutions
used piecewise in time would have been required to accomodate the switching nature ofS~the system,.i

3.0 PROGRAM FLOW DIAGRAM AND USER'S GUIDE

A simplified Program Flow Chart is presented in Figure 1. Some program
flow details are not discussed in order to expedite the users familiarization. A listing of
the Program Is given in Figure 3; reference to this listing is useful in understanding the
program flow. The first eight major blocks, approximately the first quarter of the program,
indicate establishment of initial conditions and data read in steps. Roughly the next
quarter of the program deals with calculation of correlation products used in the differ-
ential equation solution while the third quarter is a "logic" section specifying how these
correlation terms will be used. The remaining quarter of the flow diagram deals with
loop control logic, printing control logic, and logic for user control of the program.

The program begins by asking

#FL, #S/FL, #J ?

where the symbols hcave the following meaning:
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GIND

[READ N,~E ON; ESPIN
N *FEINT' Coop

CALCULATE PRINT CON111OT PARAMETERS

e ý 1AlIG'N GO010 124

I NC(- -CE I
RED NFL, N NJ

REJAO Rt~tAtNSSINAL
POWERS. Pt Az~mulR
ANGLE Of AT VL' TI. I
FOR EACh FLIG.IISM 'S
AND EACH JARTAAE IS N II

El IAU.5 RIE AD IN,
I INIIAtIZL. ANID StI

UiýFOR C
COMPUATIONNOCI

READS 
"It, 1S,AK.0,A5.GFNOREAD ACTIVE ARRAY (Lit r.I.

READ IDE NEYMtIGNIsI- V 4.

NITiLL TO I.,

CALCULATEV V.TAGIS AlEA.CH AIEAV
ELEMENT CINTU OWE to EACH WITTER

7SET STATUS OF FEANIIEDS -'0 J
CAtCLAATE UPPIA MAXIMUM
FORtTA#GEST EIGENVAL'~.

T.AXIIAUM GAIN CONSTANT. AI, TPIN,'I.A.RATE G~NIAIU O N otEJT AE

AKML(II ~N)M LICOU'fNT

NCLATE AREA' jfu OT

N PC. -I
'O LCA1tit AARAYOUTPUT POTTCOWUUTE W!T ALL JWMAdS AND NOISE

SECTION
A (STATEMIENT 123,

Figure 1. Program "TONS"' Flow Diagram
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#FL - Number of flights (max = 8).

#S/FL - Number of signals (aircraft) per flight.

Hj -Number of Jammers (max =3).

The number of flights plus the number of jaonmers is arbitrarily limited to !! by dimension
statements. The suggested maximums above are imposed by output formats, and minor
program modification will permit more flexible mixes. A possible user response to the
above request might be

6,5,2

(Computer and user responses are illustrated in Figure 2 for this program checkout
example). As indicated on the flow diagram, Figure 1, and seen in the example run,Figure 2, the program requests the user for details about the emitters.

PJ1, T1 ?

This request has the following meaning:

PJi Normalized power in watts/watt received by an isotropic
antenna element at the users location due to jammer number 1
relative to thermal noise. (Thermal noise is always assumed to
have a value of unity.)

Ti - Azimuth angle theta of Jammer 1 expressed in degrees and

measured from a line passing through antenna elements 1,2,3,
4, and 5.

In the example run, the user response 1000,90 is mode, indicating that received jammer
number 1 power is 30 dB above thermal noise and at an azimuth angle of 900. Since 1J
is greater than 1, the program requests data for the •econd jammer by printing "PJ2,
T2". In this example, the reply 500,60 was given. Now that jammer parameters have
been specified, the program asks,

PSI, T1 ?

These terms have meanings essentially the same as those just discussed, except now signal 4
parameters are requested. In the example, the response "20,5" was made indicating a
S/N (thermal) = 20=13 dB at an azimuth of 50. (Incidentally, these relative received
signal and jammer powers could have resulted from a close weak jammer and a distant
strong signal or in any number of other ways. When the user specifies these powers, it
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OFL. IS/FL, 9J?6. 5.v2
PJ1, TI?10O0j90
PJ2. T2?500#60
PSI* T1?20,5
PS2# T2?20*15[PS3s T3?100#50
PS4* T4?I0.,85
PS5P T5?10.-SO
PS6s T6?20*-55

PPSPDPAK,9BIAS* GPN*Gt4F?2,99Sp ,5jo, 0,,020

FL# DESIRMDINIT WI. *FIX*-FLOA-T?1,-6

NsNP (H PRINTS* PRINT PER P-1.FL-2sCY-3#FR-4)?16*1

T PN P.11 pie
0 0. 30.0 27.0 PFIS 13.0
1 -143 26.3 24.5 PFIx 13.2
2-2.1 22.5 22.1 PIxF~ 13.3r3 -2.5 18.7 19.9 PF2= 10.7

STATUS FL 2 IS I
4 -2.8 14.5 17.8 PF22 1605

STATUS FL 3 IS I
5 -2.9 10.1 15.9 PF3= 11.8
6 -3.0 5.2 14.2 PF3= 10.8
7 -3.0 -0.8 12.5 PFAS-1399
8 -3.1 -9.1 10.9 PF4s-12*5

STATUS FL 5 IS1
9 -3.1 -30.5 9.5 PPSM 7.9

Figure 21. Example Program Run
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10 -3.1 -13.6 8.1 PF5s 7.9
STATUS FL. 6 IS 2

11 -3.1 -9.8 6.7 PF6= 10.8
12 -3.! -8.4 5.4 PF6u 10.8

STATUS FL I IS 2
13 -3.1 -8.0 4t2 PF1= 12.9
14 -3.1 -8.1 3.0 PFI& 12.9

STATUS FL 2 IS 2
15 -3.1 -8.5 1.8 PF2s 9.9
16 -3.1 9o.1 0.6 PF2s 9.9

FLO DESIRED (=0 MORE* -1 NEW CASED -2 WEIGHTS)?2

N.NP (M PRINTS. PRINT PER P-1DFL-2oCY-3oFR-4)?16D4
T PN PJi PJ2 PFI PF2 PF3 PF4 PF5 PF6

STATUS FL 3 IS 2
STATUS FL 4 IS I
STAFUS FL 5 IS 2

60 -3.2 -56.9 -48.9 12*5 9.7 4.2 -9.0 8.3 11.1S120 -3,2 -87.9 -79.9 12-5 9.7 4-2 -9.0 8.3 11*1

180 -3.2 -88.0 -80.0 12o5 9.7 4.2 -9s0 8.3 11.1
340 -3.1 -88.0 -80.0 12-5 9.7 4.2 -9.0 8.3 !161
300 -3.1 -88.1 -80.0 12.5 9.7 4.2 -9.0 8.3 1'.l
360 -391 -88-0 -80.0 12.6 9.7 4.2 -9.0 8.3 11.1
420 -3.1 -88-0 -80.0 12-6 9.7 4.2 -8.9 8.3 11.2
480 -3.1 -8.-0 -80.0 12.6 9.7 4.3 -8.9 8.3 11.2
540 -3.1 -88.1 -80.1 12.6 9.7 4.3 -8.9 8.4 11.2
600 -3.1 -88.1 -80.1 12.6 9.8 4.3 -8.9 8.4 11.2
660 -3.! -88.1 -80.1 12.6 9.8 4.3 -5.9 8.4 11.2
720 -3.1 -88.1 -80.1 12-6 908 4-3 -8.9 8.4 11.2
780 -3.0 -88.1 -80.1 12.6 9.8 4.3 -8.9 8.4 11.2
t40 -3-0 -88.1 -80.1 12.6 9.8 4.3 -8.9 8.4 11.2 f
900 -3.0 -88.1 -8Cm 12.7 9.8 4.3 -8.9 8.4 11.2
960 -3.0 -88.1 -80.1 12-7 9.8 4.3 -8-8 8.4 11.2
FLO DESIRED C(O MORE* -1 NEW CASE* -2 WEIGHTS)?

Figure 2. Example Program Run (Continued)
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is presumed that he has it. mind soecific signal and jammer ERP's and ranges.) As can be
seen in the example, program reque;ts are answered by the user until all signals are
described by received power and azimuth.

As noted on the flow-chart, the computer now r3quests,

PPS, D, AK, BIAS, GPN, GMF

where we have:

PPS Pulses per signal. This number is not limited by theprogram,
but excessively large numbers will greatly lengthen comput-
ation time. (Large PPS values permit microscopic examination
of array response to a given signal; small values emphasize the
macroscopic array response.)

D - Array element spacing measured in wavelengths.

AK Reictive algorithm gain constant. AK= 1 will cause the algo-
rithm to converge as rapidly as possible without instability.
U•ually, a value of 0.5 or 0.1 is selected. (Actually, a choice
of AK slightly greater than 1.0 is sometimes possible. Refer to
the following discussion regarding maximum eigenvalue
approximation.)

BIAS Bias. As discussed in Chapter 7, array acquisition behavior
may sometimis be enhanced by lessening the relative strength
of signal and jammer correlation terms. Normally, these terms
are referenced to thermal noise power. In this algorithm, the
correlation terms a're referenced to BIAS + thermal noise.

GPN - Gain of the Pseudo Noise Code in dB.

GMP - Gain of the preamble detecting matched filter in dB.

In the example run, the user response was "2, .5, .5,0,10,20".

Specification of the array configuration and active array elements is next
in the program flow. The program asks:

ACTIVE ARRAY ELEMENTS, L-R(5), T-B(4) ?i.5
Request is being made for the user to specify which of the 9 array elements will be used
in this problem. This printout reminds that five elements are numbered left to right, and
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I
the remaining four from top to bottom. The elements are assumed to be numbered as
fol I ows:

The user response identifi es which of these elements are to be used. Let us assume that
the following array cotifiguration is desired:

1.0,

For this, the user types e01010, 1000". This input specifies that elements 2,4, and 6 awillsmt

be used and that 1, 3, 5, 7, 8, and 9 are inactive. Note that a comma (or any other separ-
ator) is required between the horizontal and vertical element specifiers. Often, a desired
array configuration may be obtained in numerous different ways-w:th different D values

and with different active elements. For example, a 3 eleme.nt horizontal array mcy be
specified as "I11100, 0000, " "011100, 0000, " "0011!1, 0000," or "10101, 0000."

After this specification, the program types:

FL# Desired, IMil W#. + FIX, -FLOAT ?

The user is asked to specify two integers: the flight number within which the desired
signal is located (NSD) and secondly, which array element will have an initial weight
of unity when computation commences. (AllI other weights cre set to zero. This initial
weight specification ensures that all emitter signals will be initially received by the
array and none will initially fall within an array factor null.) If the identifying number
of on inactive element is chosen, all weights will ba initilily zero. If the element
idenf;fying number is positive, the weight identified is not adjusted by the algorithm-it
remains fixed at 1.0. However, a negative identifying number allows the algorithm to
adjust this weight as well as the others. The example user's response was "], --6" thus
the desired signal is an aircraft located in flight number I and element 6, the upper
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element in the previous diagram, is initially weighted unity while elements 1 and 5 are
weighted zero. As time progresses, all three weights will be adjusted by the algorithm.

SAs indicated on the flow d*,agram, prepatory calculations are carried outat this time. An array of numbers representing the normalized phase voltage at the

output of each element due to each signal and each jammer is calculated. (Element
output due to thermal noise is 1 .0 and is not calculated.) Voltages for elements in a
horizontal line are expressed as

VEM(•,I, k) = e1i2 7rD Cos (T(l) * 2 7T/180v)

where VEM is the name of the array storing the phase voltages, e= 1 for storage of the
real part of the expression orI= 2 for storage of the imaginary part. (This notation is
used throughout the program. Ordinarily, automatic complex arithmetic would be used,
but allowance is made here for limited ca.iiputer compiler capacity.) The parameter "I"
identifies the emitter while "k" specifies the eiement number. Similar expressions are
obtained for vertically aligned elements except that Sin rather than Cos is used as an
arrangement for the exponential. Note that the center element (3) is used as referenceand has a uniity normalized voltage.

Before the initialization phase of the program is ended, the "Status" of all
flights is set equal to zero. The term "Status" is used to denote the relative received
strength of a "friendly" signal. The following definitions are made:

Status Condition

0 Friendly is not receivable (Suppression mode refered to in
Chapter 9).

Friendly's preamble is received error free by the matched
filter and the local PN code generator is synchronized, but
reception of message data is not possible, (Sync mode refered
to in Chapter 9).

2 Friendly's message can be received error free (Receive mbde
of Chapter 9).

Calculation of the unnormalized algorithm gain constant can be realized by
approximating the maximum eigenvalue of Rx by the sum of all incident power at each
element times the number of active elements (bias is a psuedo power and must be included
in this sum), We have

AK (unnormalized) = AN (normalized to maximum)/largest eigenvalue

Since the array differential equations are known to have solutions of tie form
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a normalized time, -, is defined for convenience. We require

S"= t(AK)(X)

For this program, the iteration number, refered to here as T, is printed rather than r-.
rhe parameter 7"can be obtained by the user through the expression

-" = T(AK normalized)

Lastly, as indicated on the program flow diagram, the patameters NCE
and NC are initialized. NCE has no external meaning - it is used in the program to
ensure only one desired friendly emission per frame. The term NC is the iteration count
and is printed under the identifier "T" just mentioned. An initial value of -1 is used to

c acc-'6odate the time= zero condition. Other statements within the mostly arithmitic
sections also provide special computation for this first time through situation but are not
shown on the flow diagram.

At this point the program request print control parameters N and NP. The
example shows the following print:

N, NP (N PRINTS. PRINT PER P-1, FI.-2, CY-3, FR-4)?

The first parameter, N, specifies how many lines of array output data will be printed.
The second parameter, NP, establishes at what points within the computation printout
will occur.

NP

1 (P) Array output power in dB is printed for every pulse of a friendly
signal. (Every iteration)

2 (FL) Array output power is printed at the end of iterations for a
friendly signal. This is the same as the end of transmissions for a
flight (FL). If PPS= 1, then the effect of NP= I is the same as NP= 2.

3 (CY) This program simulation of the TDMA system is based upon
friendly signals emanting successively from flights in sequence. One
cycle (CY) is a complete set of emissions, one from each flight.
N P =3 wilIl cause array output power to be printed once per cycle.

Note that a cycle is not a frame unless the parameter IS/FL= 1.
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4. (FR) Array Power output printout occurs once per frame (FR) for
NP=4.

In the example run, "16, 1" was the user response, thus 16 output deta lines are tto be
printed, cne for every signal pulse (algorithm iteration). Al output power is expressed
indB.

The major part of computation begins soon after this point in the program
flow (statement number 123), but first print control parameters are calculated cnd head-
ings are printed. A decision is made at statement 127 as to whether computation on a
previous problem is being continued or whether this is a new case. If calculations are
being continued, control is transferred to statement 124 where computation begins again
where it was left off. If this is a new case, a major program loop.is entered at statement
122, where the parameter NCE is incremented. If NCE exceeds the' number of signals
per flight, NCE is reset to 1; this occurs once per time frame completion.

The parameter K identifies friendly emitter storage locations. Since all
emitters are stored sequentially with jammers first, the first K is the number of jammers I
plus one; the last is equal to the total number of emitters, NE. A second major loop is
entered at statement 108 where computation For sucessive emiters (K) is entered. The
final major loop is preceeded with NPEI=O. This loop counts emitter pulses. All iter-
ativa computation for weights occurs within this loop; correlations for all iammers,
thermal noise, and the Ktn friendly signals are calculated for use in the algorithm.

Normalized array output for the K signal is calculated first. We use
"X" for this term and get

X - W(L) * VEM(K,L)
L

The actual expressions are slightly more complicated than the abovw expression indicates
due to use of XR = Real pa,'t of X and XI = imiginary part of X in lieu of automatic
complex arithmetic. It is recalled that the first parameter of VEM is either 1 or 2 respec-
tively for real and imaginary parts. Emitter output power, PEO(K), is also calculate,
(in dB). Note that X is normalized to unity input power.

Calculations for jammer and thermal noise outpu.t are similarly performed
with normalized complex jammer output being stored in the array JO and jammer power
output in PEO(M).

Ne.t, the Kth signal (flight) to noise plus jamming ratio is calcblated and
eventually stored in variable "A" (between statements 110 and 118). An internili used
flag; ISTS, is set to zero, and then tests are begun to establish the status of the K
flight. It is assumed that 10 dB VN is required for adequate detection, If A+GPN
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exceeds 10 dB, then the d1spread signal can be detected error free (by assumption). In
this case, check of the Kt flight status is made to see whether or not a change has
occured and if so, ihe flag ISTS is set and the new status appropriately noted.

Now, if calculations are presently being a-nde for the desired friendly
emitter (correct flight and correct signal within the flight), the algorithm described in
Chapter 9 specifies that a Widrow Type array is to be used and the term X-d(t) is formed.
Due t.- an inability to adequately estimate d(t) if the S/N is 1-00 low, this computation
for X is made only if the dssired signal has a status of 2. It is assumed that the desired

voltage) and that d(t) is in phase with the output. Thus, we replace X with the following

mX X -2 s (X/Magnitude (X)t

(X is expressed above as a normalized complex quantity).

pea !f the culculations are not being made for the desired emitter, the algorithm
I- discussed in Chapter 9 requires that we simply remove all signal from the array output to

Sprevent array nullirig action. This is accomplished by setting X 0.

Earierthetes ofS/N was made for Status= 2; if this test was fai lcd-. a
check for S/N meeting status 1 requirements is made (Preamble receivable with matchbd
filter). If this test is passed, the current status is recorded and any status change noted.
The term X is set to zero whether or not this calculation is made for the desired signal
since adequate S/N for X-d(t) formation is not available.

rtie"aIf S/N is too low for Status 1, no signal recognition is possible and X is
retained "as is" in "he array output. Although it is not indicated or the flow diagram,
status changes downward are also noted and recorded. If ISTS was set to I indicating
a change, the new status of the present emitter is noted in a printout.

New weight calculations are undertaken ner.. The following expression
for the normalized weight change is used:

DW(J) PE(K) *X* VEM(K, J). +Z I PE(M) *JO(M)*VEM(M, J)ý1 +j BIAS*W(J)I.
M

The first brace is due to friendly signals, the second due to jammers and the third due to
thermal noise and the psuedo noise, "bias" (note: the term BIAS is .fhe sum of the BIAS
value read in and the element expected noise value, 1.0). Finally, new weights are
calculated according to the expression

W(J)t+1 W(J)t - AK*DW(J)
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The program now enters a bookkeeping" phase which controls looping and
printout. The iteration counter NC is advanced and printout tests are made. A count
is made of ihe number of lines printed, NPR. If the requested number of lires hos not
been printed, tests are toade as to completion of the three major iteration ioop3. If on
the other hand, the requested amount of computation has been finished, the programn
requests the user for new ditections:

FL# DESIRED ( = 0 MORE, -1 NEW CASE, -2 WEIGHTS)

User response i. to type in an integer. The following conditions apply:

0 Continue computation. The flight number within which the desired
signal is located remains unchanged as do N and NP.

>0 Continue computation for the present case. The flight number of
the desired signal is now the number typed in. The program requests
new values for N and NP. If the user wishes to change N and NP
without changing the flight number desired, he should type in the
present flight number.

- 2 Present values of the weights are printed out with the reul part first
orid the imaginary part second. The program then repeats its request
foo .new direction.

- 1 No more data is sought for the present case. Control is transferred
to statement 100 where the program begins reinitialization.

Reinrtializoaion proceeds almost the same as the initialization phase
described earlier. The difference i• that the user has the option of retaining the same
signals and jammerr without re-reading them in: the computer asks:

NtW SIGS, 1

If reiention of the previous data is dvsirod, zeio shoula be &,e input,
oiherwise type in 1.

In the example run, the user typed in 2 for the flivht nu,rber desired (it
was pre'tiously !). Next N and NP we.e ,hanged to :6, 4 .nd , printout .ormcý change
is reflected in thu new value of NP,
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4.0 CONSIDERATIONS

Thrce important considcrations are touched on here, the difficuly it,
reaching sready state with the program, the possibilily of instability due to the beam
forming algorithm, and the fact rhat the user modifications of the program may inadvert-
ently aff.ct prcatrr program flow.

As has been menticned previously, steady state is virtually unachievab!e
with iterative computation even though output parameters may appear to be quite

unchrsnoing. An example of this is seen in the example run, Figure 2. Note that after

the iritial transient is over, several hundred more iterations were necessary to cause a

0.1 dB change in the desired signal output (Flight 1). However, there is a very interest-
ing case where stecady state is achievab!e iteratively - the "overspecified" case dis-

cussed in 9.3 wherein only enough elements as necessary for forming jammer nulls are

used. As i.4entioned in Chapter 9, the eigenvalues are large and determined almost

entirely by the jammers.

The possibility of computation instability e~ists under certain beam forming
calculations. It is due to the fact that e(t) influences the maximum elgenvalues as well

as array input power, yet account is not taken of this effect in normalizing AK. Part of

the difficuly is that the program does not know in advance which signal will be desired.

If instobility occurs, selection of a smaller AK will solve the problem.

Finally, it is realized that user modification of the program will probably

be desirable, and that this could create inadvertent errors. Additionally, programs often

run diffe:ently on different machines. It is suggested that checkout of the program be
made using known results such as the exampie run and/or data from the numerous transient
curves presented earlier in this report.
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too DIM4ENSION PECII),TVEC11lPE0C1l).IE(9).,ISTSC8?I
110 &.WC2,9).VE#H(2.11,9).DWC2.9).AJO(2,t9)
120 GOT0129
130 100 PRItNTs"NEW SIGS*3"
140 INPVT* I
IS0 IFCI*LT*1)GOTGI01
160 129 PR INT, "OFLI#S/P'L* Jt
170 INPUT*?IS* NSF* NJ
I8O I4E*NS+NJ
190 XIKsen.
200 B02IO=,NE

f.210 Jul-NJ
220 IPFCI*GT7fJ)PRINT332*JaJ
230 301 F9HflATC"&PJ"*TIp"* T"*I1)
240 IFCI*LE@NJ)PHtINT3O1I*I*
250 302 FBRM.AT(w&PS"&I1.w. T"&I1)
260 INPUT*PE(!)*TECI)
270 XK*XK+PECI)
280 TECJ)=TEC!)**017453293

W 290 102 CONTINUE
300 101 CONTINUE
310 PRINT. PPSvD DAK. BIAS. GPN. GMF"
320 INPUT*NPE, D.AK. BIAS. 6PMGMF
330 BIAS=8IAS41.
340 D=D*6,2831853
350 PRINT#"ACTIVE ARRAY ELEMENTSP L-Rf5)*T-9C4)"
360 INPUT2OI*CIE(I).P!*1.9)
370 201 FGRMATC5CI1)#1X*4CII))

f380 PRINTP"FLO DESIRED*INIT Wto .rIX*-FLOAT"
390 IMP!JTj44ED*NWF
400 D01041=1,NE

420 VEt4(2* 1*3)=0
430 Ci=D*CCSCTECI)l
440 CRw.COS(CI)
450 C1=-SIN~cC)
460 VEMC1,I&A)-CR
470 VEMC201*4)=Cl
480 VEMC1I&.2)=CR
490 VEM(2pl.2)=-CI
510 VEM(2,I.5)a2.*CR-C*CI
500 VE#4C2a!.5)xCR*CR~C*CI

530 VEMC2&II. )-VEH(2,p!:5)
540 CI=D*SINCTECI))
550 CRxCOS(CI)
560 CIUSIN(CI)
570 Etl7uR

Figure 3. Listing of Program, 'TDNS"
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580 YEM(R I* 7)%CI
590 VEM (1I aIs8) =CR
600 VEM(2,I38)*-C!
610 VEM(!,1.6)zC-R*CR-CI*CI
620 VEtMC2*1*6)=2.*CR*CI

6 3,' VEM ( I #Ip9)z-.VEM C Is ,L6)

650) 104 CONTINUE
660 LOO
670 Do010511,9
680 LzL+IEC1)
690 WC1..K)=O*
700 105 Wi(2*1)uO-
710 AKQAX/CL*CXX+BtAS))
720 JwIABSCNWF)
730 W~llpJ)=l
74C WC2*JW=Oo
750 NC=-1

770 PE0CL*NJ)10&

780 121 ISTS(L)n0
790 NCE=O
80 123 CONTINUE '

810 PRINT#"NPNP (M PRINTS* PRINT PER P1.,FLin2*CY-3,7R4
820 INPUT*NP*NPP

840 IF(NPP*Egel)NCPJl

850 IFCNPP*EG*2)NCP9-NPE
860 IFCNPPoEQ*3)NCPXNPE*NS
870 IFCNPP*EQ. 4)NCPaNPE*NS*NSF
880 PRINT304
890 304 7ORMATC'& T PNI11)
900 !30116I1zsNJ
910 116 PIRINT305*1
920 305 FORMAT("& PJ"*I1)
930 IF(NPP*LTv3)G9TO127
940 DO011711,NS
950 117 PRINT306#I
960 306 FORMATV'& PF"*I')
970 127 IF(NC.GT*O)GOT0124
960 NPRw0
990 122 CONTINUE
1000 NCEvNCE+1
1010 IF(NCE*GT*NSFThCE1l
1020 KvNJ
1030 108 K=K+1
1040 NPESsNPE
1050 IFCNC.LT*G)NPESBNPES*1

Figure 3. Listing of Program "DNS" (Continued)
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1060 NPEIwO
1070 114 NPEI=NPEI.1
1080 PEO(K)=0*
1090 XR=0&
1100 XI=O.
1110 DO0O9Lx1D9
1120 IF(IE(L)*LT. 1)GOTOIO9
&130 XRzXR+W(1*L)*VEMC1.K.L)-WC2.L)*VEMC2#~KL)
1140 XI=XI*WC2,L)*VEMCI.KDL)*WCIDL)*VEMC2,K.L)
1150 109 CONTINUE
1!60 PEe(K)=4.3429*AL0G(REAL(PECK)*(XRXXR.XI*Xl)))
1170 PNO.0
1180 Pro*
1190 DOIIOM=IPNJ
1200 AJOC1.M)=0.
1210 AJ0C2*M)=0*
1220 YRsO.
1230 Y10O.
1240 DOIIIL=1*9
1250 kV~(IEL).LT-1)GOT0111
1260 YRuYR+W(1.L)*VEMC1.M.L)-*w"%2:,L)*VEM(2DM.L)
1270 YI=YJ+WC2,L)*VEMC1.MDL)*WC1.L)*VEMC2,14.L'
1280 IF(M.Eg.1)PNmPN4WCIL)*WCIL)*W(2,L)*WC2.L)
1290 111 CONTINUE
1300 AJ0C1.M)=YR
1310 AJOC2*M)nY!
1320 AsPECM)*CYR*YR+Y!*Yl)
1330 P=P'A
1340 PE0CM)=493429*ALOGCA)
1350 110 CONTINUE
1360 P=4.3429*AL0GCP.PN)
1370 PN=4.3429*AL0GCPN)
1380 ISF=0
1390 A=PEOCK)-P
1400 L=K-NJ
1410 IF(CA+GPN)*LT*10)G0T0118
1420 IFCISTS(L)9NEe2)ISF=I
1430 ISTSCL)=2
1440 IF((NCE.GT.1).0R.(L.NE.NED))GT0T128
1450 CR=1.-2*/CSQRTCXR*XR+X!*X!))
1460 XR=XR*CR
1470 XI=XI*CR
1480 GOT0120
1490 118 IF((A+GMF).LT.10o)GOT0119
1500 IFCISTSCL)*NE*1)ISFlt
1510 ISTS(L)1l
1520 128 XRO.9
1530 X10.o

Figure 3. Listing of Program "TDNS" (Continued)
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*1540 6076 120
1550 119 IF(lSTSCL)*NE*0)ISFxl

1560 ISTS(L)=0
1570 120 CONTINUJE
1580 IFCISFeGToO)PRINT3O7,LjISTSC'ýl-)
1590 307 FORMATV* STATUS FL "olls" IS "*Il)
1600 D0112J=1*9
161n IFCIE(J)oLT.1)GOT0112
1620 IFCJ*EQ*NWF)GOT0112
1630 DW(IJ)=(VEMC1,KJ)*XR+VEM(2,KJ)*XI)*PECK)+WC1,J)*BIAS
1640 DWC2.J)=CVEMClKJ)*XI-VEt4C2,PKJ)*XR)*PECK),WC2,J)*BIAS
1650 D0113M=1,NJ
1660 DWC1,J)=DW( 1,J)+CVEM(1.MJ)*AJ0C1.M).VEMC2,M.J)*AJ0C2,N)
1670 &)*PECM)
1680 DWC2,J)=DWC2,J).(VEMC1.MJ)*AJSC2,M)-VEMC2,MJ)*AJ0C1,M)
1090 &)*PECM)
1700 113 CONTINUE
1710 WCI.J)rWCIJ)-AK*DW`(1.J)
1720 WC2*J)=WC2pJ)-AK*DWC2j,.'
1730 112 CONTINUE
1740 NC=NC+l
1750 J=(NC/NCP)*NCP
1760 IFCNPP*GT*2)60T0125
1770 IFCCJ.NE.NC).AND.(4C.GT.0))G0T0124
1780 PRINT3O3, NC, PN, PEO(J)*J=INJ)
1790 PRINT310PLoPEOCK)
1800 GOT0106
1810 310 FORMAT C"&PF"o I1I*"="'aF5* 1)
1820 125 IFCJ.NE.NC)G0T0124
1830 PRINT3O3#NC*PNp (PEOCJ)#Jzl#NE)
1840 303 F0RMATC1XaI3*l1ClX*F5*l))
1850 30E FORMAT(1X*13*" PF"vI1~1X#F5e1)
1860 106 CONTINUE
1870 NPR=NPR.1
1880 IFCNPR.GT.NP)GOT0126
1890 124 IFCNPEI*LT.NPES)60TOI14
1900 IFCK*LT.NE)G0T0108
1910 60TOI92
1920 126 PRINT*'FLO DESIRED C=0 MORE* -1 NEW CASE, -2 WEIGHTS)"
1930 INPIJT*L
1940 IFCL9EQ*-1)G0TBOO0
1950 IFCL9LTo-1)GOT013O
1960 NPR=1
1970 IF(LoEQ*0)GOTO124
1980 NED=L
1990 GOT0123

2000 130 PRINT31IC!,WCII).WC2.I),X=1.9)F2010 GOT0126
2020 311 FORMATC9CIX."W".1.G)1.4.IXGI1.4S1))
2030 END

Figure 3. Listing of Program "TDNS" (Continued)
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