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ﬁion-steepest gradient algorithm is best suited for real-time arrays. Within the
context of this background, the adaptive algorithms which have been presented
previously are discussed and compared. From this analysis it is obvious that the
most promising algorithms are essentially equivalent. The behavior of the basic IMS
type algoritlm is anslyzed, primarily by the solution of the associated differential
equations.

The basic adaptive algorithms examined do not represent complete solutions to many
communications problems, because a priori knowledge of signal structure or direction
of arrival is assumed. This acquisition problem is studied and techniques to improve
the signal-to-noise ratio, in the presence of strong jamming, are presented. These
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including the simulation for a specific TDMA scenario. Finally, implementation
problems are discussed and breadboard experiments are suggested.
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EVALUATION: FINAL REPORT - "ADAPTIVE PROCESSING FOR ANTENN® ARRAYS"

This is the final technical report of en in-depth comprehensive
theoretical investigation carried out for RADC by Radistion, Inc on
methods of adaptive array processing. (An adaptive receiving array
performs an interference-suppression function, in an envircrment of
spatially-distributed emitters, by adjusting the antenna pattern to
place relatively high gains in these directions which contain desired
signals, snd nulls on all other signal directions.) Some voints of
significant intevsst demonstrated during the course of this investiga-
tion:

1. The performance measures studied (mean-square-error, signal-
to-noise ratio, the likelihood function, and noise variance) are
essentially equivalent, the main difference being a scalar factor.
The important result of this is that choice of performance measure
is mathematically immaterisl--the choice will be determined by
system application and implementation considerations.

2. The steepest descent epproach to an optimum performance
measure, coupled with stochastic approximation, is the best available
optimization technique within the »resenv state-of-art.

3. The suppression process can be considered to be essentially
one of signal equalization-~-mall depth is, roughly, in proportion to
signal power (thermal noise is also & controlling faector). The
implications of this may be important to TDMA applications, where
the mean power of the jJammer is signifcantly higher than that of
any sinrgle access,

In general, .. study provided the fundamental technology on
adaptive proces: g, from which those aspects and features applicable
to AF use may be ori~acted. Although the contract emphasis was on
TDMA waveforms (iue CNI scenario, parameters, and candidate waveforms
vere specified for the study), the findings and technical conclusions
are in large part very general in applicability, and relevant to other
system applications.

L W Sl
PETER N. EDRAOS
PROJECT ENGINEER
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1.0 INTRODUCTION

In this introductory chapter the basic problem being addressed, some
related background material, and the nature of the study being reported on are presented.
The relationship of the adaptive null steering antenna array problem to other technology
areas is discussed, and the basic mechanisn, of the adaptive array is developed within
this historical context. This allows the nature of the study to be better defined and leads
to an understanding of the relationship between the results presented here and work
already accemplished.

1.1 The General Null Steering Antenna Array Problem

The null steering antenna array problem can be described in a general
context in terms of the diagram in Figure 1-1. In an environment of spatially distributed
emitters (including isotropic and therr al noise) it is desired to adjust the antenna pattern
of an array of sensors (antennas, hydrophones, seismometers) o as to receive a desired
signal i some optimal manner (optimal being defined in terms of some approgriate per~
formance measure). Since the emitters are disiributed in space, an array allows the
flexibility to perform both spatial and temporal filtering to enhance the desired signal .

This is accomplished by adjusting the antenna pattern to place relatively
high gains on those directions and frequencies which contain the desired signal and
relatively low gains {nulls) on all other signals. Since this processing is to be canducted
in a complicated environment involving emitters capable of relative moiion and chonging
their signal structure (such as tuming on and off), a very versatile processing scheme
must be used. This leads to the choice of an cdaptive processing method for the process
controller. Such problems as these arise in sonar and seismic applications, as well as
the RF communicaiions context of this study. As such, there is an extensive background
of relevant theory and practical devices which must be examined before choosing a spe-
cific processing method.

1.2 Background Material on Null Steering Antenna Arrays

1.2.1 Historical Perspectives

There has been a considerable amount of work over many years in tech-
nology areas related to the general null steering array problem. Some of the earliest
work has involved the processing of acoustic signals, both

C b g o y -
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i. Sonor Signol Processing

and

ii. Seismic Signal Frocessing for oil exploration
and nuclear test detection

Various properties of sonar arrays have received a %reat deali of attention, from the early
work at the Harvard Acoustic Research Laboratory, 36) to the more recent interest of
Bryn, (15) Middleton, 57) and Van Trees.{73) Much of this later work hes involved the
design of optimum arrays, and as such represents an extension of basic Wiener filtering
theory to these multidimensional probiems. Similar work has proceeded in the area of
seismic arrcys, with earlg work being done by Burg,(lé) M.L.T. Lincoln Lab,(48149)

and Texas Iastruments.(©7770) Much of this acoustic work is detection theory oriented;
howevsr, optimal detecrion design involves the optimal estimation problem of primary
concern in this report (73) Many of the results of this work in acoustic signal processing
apply directly to the problems associated with RF communications arrays. For RF arrays,
early background material is found in radarside lobe canceller work (discussed in the
next section) and the closely related areas of adaptive filtering and patrern recognition.

1.2.2 RF Arrays - The Side Lobe Canceller

Early work in the area of RF arrays for interference rejection was done at
M.1.T. Lincoln Lab(2) on a nonadaptive interference canceller based on the idea of
steering a directional antenna at the interference, and subtracting this, with proper phas-
ing, from the main channel. Unlike the array processors being considered in this study,
this procedure requires that the noise be isolated through a seporate high=gain antenna;
it is not adaptive in nature, and can handle only one jomming source at a time. More
recently, Applebaum and others at Syracuse Research Institute(é) have developed side
lobe cancellers which are more closely related to the adaptive arrays which are being
considered in this study . They are capable of handling both cingle and muitiple jamming
sources and use adaptive control circuitry.

To understand the basic mechanismof side lobe cancellers, and thereby see
its relationship to the more general adaptive arrays under consideration in this study,
consider the simplified diagram of Figure 1-2. Theside lobe canceller can be described
in terms of adjusting weights to minimize correlation as follows. In Figure 1-2 only one
channel of processing is shown; for each channel desired signal, jammer signals
and thermal roise form the total ith channel signal, x;, which may go through an IF strip,
be weighted for phase and emplitude control, and is summed to form the output, ¥. One
channel is assumed to be a high~gain antenna pointed at the desired signai. It is

ssumed that the desired signal level at each element is very small compared to the
jomming, since if this were not so, the high~gain antenna would be able to adequately

Faandads g " e L ‘ o .
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: % Figure 1-2. The Side Lobe Canceller
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suppress the jammer with its side lobe. Figure 1-2 also shows typical control circuitry for
the weights. As in almost all adaptive ariays, the output signa’ (or some error signal
derived from the output) is correlated with each ith channel waveform, x;, and filtered
to form the contro! signal for the ith channel weight.

A simpliified explanation for {ammer canceilation is that, if of some time
iamming still exists a? the output, o corretation will occur with each ith channel input
waveform, xj, which contains the same jamming waveforms. The filtered correlation in
the ith channel will change the ith weight, w;. This change will continue until a mini=-
mum correlation exists, which means a minimum in jamming signal at the output. Side
lobe cancelier analysis and design has been greatly refined and generalized by
Applebaum(3), but still assumes a priori knowledge of the signals direction=of=arrival
and the presence of a high-gain refiector or array antenna.

The adaptive arrays considered in this study differ from the side lobe can-
ceiler ideas as follows:

a. There are multiple desired signals which may arrive
simultaneously from almost any angle. Thus, one or
several "main beams” are not possible in general .

b. There are no well defined side lobes to cancel, due
both to the use of low gain (few elements) and to
multiple desired signals.

c. The Directions=Of-Arrival (DOA) of the signals are
probably not known. Thus, signal processing may not
be based on DOA, at least during signal acquisition.

d. |If a low gain array is used in the simple side lobe
car .eller configuration of Figure 1-2, with DOA
unknown, a null will be steered on the signal .
Simply put, the reason is that the total correlation
can only be minimized by eliminating the signal
from the output, as well as the jamming.

The more general adaptive arrays to be discussed in the next section utilize various pro-
cedures for the elimination of the signal effects from the correlations which control the
weight circuits. In this manner they eliminate the interference as the side lobe canceller
does, but do not necessarily assume that signal direction of arrival is known and that a
high-gain antenna is pointed in that direction.
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1.2.3 More General Adaptive Arrays

For the application of multipie communication signals with low gain arrays,
a more general adaptive array mode! should be used, zuch as shown in Figure 1-1,
Figure 1-3 shows a different adaptive array type of general edaptive model. There are
two basic differences between this orray model and Figure 1~2. in the first place, there
is no high-gain element; elemenis are cften zyproximately equal in gain. Secondly,
there is formation of an "error" signal " € " by removing the desired signal from the total
output. If the desired signal is used to form the error, the error can then be minimized
by minimizing jamming and thermal noise alone . If signal is not removed, in general it
will be nulled as well as the jammer in order to minimize arror. Again, os before, if sub-
stantial correlation between x; and € exists, the correlation will change the weights, the
output and the error until a minimum correlation exists. The signal components in the
input channels x; will not correlate with the error, thus signal will not %e minimized.
As will be demonstrated, the substantial difference between most of the lifferent types of
adaptive arrays is in what a priori information is assumed available abot the signals and
interference, and how it is used to remove the signal effacts from the correlations which
drive the weights.
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Widrow et al.{76) presented the basic work on the general adaptive arrays
which seek to minimize the mean square error between the desired signal and the array
output. This work was an extension of Widrow's earlier work on adaptive filtering and
pattern recognition (75) and Wiener filtering. Widrow cails his procedure the LMS Algo-
rithm. Their model takes the form shown in Figure 1=3, where the subtraction of the
desired signal, as they hypothesize, is not a realistic procedure, since if the desired
signal were known there would be no need for further processing. They also suggest an
alternative procedure for forming an error channel which requires thaf the direction-of-
;4 arrival of the desired signal is known, rather than the signal itself. A CW reference
signal is inserted into each element with phase chosen to simulate an incoming plane
wave from the direction of the desired signal. A two mode procedure is then imple~
mented where the array alternatively adapts to the environment with no signal subtracted
from the error channel, and then with the inserted reference signal subtracted. However,
this procedure does introduce biases into the calculcted weights since signal still par-
tially contaminates the error channel. Griffiths (43) has presented a modification to
this algorithm which removes the signal effects in a different manner and requires that
the spectral density and the direction-of-arrival ¢ rhe desired signal is knrown. From
these quantities the signal correlation terms in the correlator-weight controi circui’s con
be calculated and subtracted out, so that they will not bias the weights. Actually,
Applebaum(s) used a similar procedure before this. This same algorithm was derived
using a modified stochastic approximation procedure by Chang and Tutuer(21). These
last procedures were based on the minimization of mean squared error, while other
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workers have presented similar procedures for maximizing signal-to-noise ratio(1+67)
maximizing the likelihood function, (41) and minimizing the output noise variance(92),
As will be demonstrated, in relatively narrowband problems the processors based on.these
different performance measures are essentially identical .

All of the procedures cited in the last paragraph seek to optimize the per-
formance meosure in question utilizing a steepest descent optimization fechnique, and
lead not only to similar final solutions, but clso to essentially identical weight control
circuitry. However, none of them actually represent a total solution fo practical RF
communications problems. That is, the basics of the procedures are presented, but ques-
tions such as how desired signal, spectral densities or directions=of-arrival are obtained
(if ot all) must be answered in terms of reasonable assumptions about the specific problem
at hand. Initial work on the signal estimation problem was done by Compton and
Riegler(26), where they use the basic Widrow LMS Algorithm and demonstrate that only
the signal carrier (where the desired signal is assumed to consist of a signal carrier with
sidebands) need be known and subtracted from the array output to form the error channel.
This, of course, leads to signal biases from the sideband terms, but has been shown
experimentally to be an effective procedure. Huff reports further sophistication
of this idea for use with spread spectrum waveforms, but he ajsumes that the coded PN
sequence is synchronized at the receiver. More recently , Compton has been
developing the idea of signal equalization for acquisition, with extensions to this basic
idea being presented in this report.
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1.2.4 Null Steering Adaptive Array Classification Based Upon A Priori
fnformation
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With all null steering arrays, it is desired to steer a null on interference,

= but not on the desired signal; thus, there musi be some discrimination of desired signal 3
3 from interference. For example, with theside lobe canceller, the discrimination was 3
; done with the high gain antenna pointed at the signal. With the general signal removal 3
3 array (Figure 1=3), subtraction or blocking of the desired signal eliminated it from the

error channel.
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Notice that the interference, not the signal, must be isolated to control the
null staering circuitry, which is different and much simpler than the usual signal process-
ing problem of recovering the signal from interference. For example, out-of-band jam-

y ming can be separated by simple band stop filtering and minimized to steer nulls on
jamming. The a priori knowledge availabie must govern which technique to use in isolat-
ing the interference.

Characteristics of signal and noise that are potentially useful in removing
the signal correlation terms from the weight control circuiiry are:

Interference (Jammer or RF1) Characteristics

1. Dominant Jammer Power (often greater than the signais)

YRR ERANREAIAT) SUMGTSRT SOV MR ANUGD Rd

4
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3
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2. Separable Jammer Power, either by the spectrum (often wider than the
signals) or by the time waveform (often continuous if noise~like or
broken for look-thrcugh if a repeater) i
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3. Polarization (usually somewhat different from the signals)

Signal Characteristics
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; 1. Known time waveform or spectrum (e.g., spread spectrum code or
known frequency channel).

kb
Xt b D

2. Known direction-of-arrival of the signal (obtained a priori or

measured). :

{

The most important differences between various adaptive array algorithms

stems from how these characteristics are utilized to remove signal efizcts, if at all, ;

Certain adaptive arrays that result from these differences can generally be classified on
the basis of this a priori knowledge, such as:
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1. Dominant Jammer Suppression Arrays

a. Unbiased

b. Controlled Bias

2. Separable Jammer Arrays 3

3. Known Signal Arrays
4. Known Signal DOA Arrays 3

In the dominant jammer technique, no signal effect removal is attempted (much like the
side lobe canceller devices. The operaticn of this type of array is based on the fact that
dominance of the jammer power in the control circuitry automatically steers nulls more
deeply on the dominant jammer rhan on a weadk signal. Furthermore, the initial sup-
pression of the jammar is very rapid compared to the suppression of weak signals. In fact, g

B B I P e S S SR AT

with purely integral control in the correlator, it can be shown that the jammer output is :
suppressed below the signal reciprocally to its incoming ratio of jammer~to-signal. How- 3
ever, at a much iater time, signal is gradually nulled too, in order to minimize totol
error.

3 3 in the "unbiased" case of dominant jammer suppression, it is intended to
7 receive the signal completely in the time before nulling, or to derive the signal for a ;
2 "Known-Signal" mode. With the Controlled Bias case, the jammer and signal can be 3
I stopped short of reciprocal suppression in the steady state (possibly equalized, if desired)

without great signal loss. De > nulls are not placed on the jammer, but also are not
placed on the signal. A matched filter zan then discriminate the signal from uncoded
interference .

The Separabie Jammer technique relies on separating out pure jammar
posser, for example out-of-band jamming, perhaps using a band stop filter as mentioned
akove. The Known Signal and Known Signal DOA techniques are simply the basic LMS
adaptive array algerithms as presented by Widrow et al., Griffiths, etc., described
above. In these methods, either the signal waveform is subtracted from the ouiput to
form the error channel, or signal DOA is used to generate signal correlation which is

e
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subtracted after the correlator. These techniques, especially Known Signal, are poten- %
tiaily useful after acquisition of the signal, but are not useful if jamming overwhelms the 3

signal processor that is trying to detect and acquire the signal. However, significant 3
implementation problems exist in the upplication of Known Sigral techniques when
matched filters are used for spread spectrum signais.
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1.3 The Nature of the Study

The first stages of this study have invoived the examination of the relevant
mathematical techniques, and previously proposed adaptive algorithms (such as those
described in Paragraph 1.2.3), which are suitcble for the design of null steering airay
processors in an RF communications problem. This has involved the investigation of the
mathematical basis for adaptive optimization techniques, and the adoptive algorithms
which have been based on these methods. A major aim is to provice the background for
the comparison of available processors, and ailow the selection of ¢ promising method for
a more detailed parameter analysis. Upon examination of these methods, it is obvious
that many of them lead to very similar processors, and that t!.ey do not represent viabie
solutions to the practical problems at hand. Consequently, this background material has
been used to develop more practicaily useful processing algorithms. These methods ore
based on the fundamental adaptive controi aigorithm, utilizing steepest descent optimiza~
tior:, common to most such processors, but involvas more realistic assumptions concerning
availabit information on signal and environment structure. These newly developed tech-
niques are based on the dominant jammer suppression type of algorithm and have been
investigaied, both analytically, and through the use of digital computer simulation, to
determine the effect of various problem parameters (bandwidth, number of antennas, num=
ber of emitters, etc.) on their performance characteristics.

1.4 Outline of the Report

With the last several sections as background, the remaining chupters of the
report can be briefly described as follows:

CHAPTER 1l. GENERAL PROBLEM FORMULATION

In thic chapter the basic structure of the problem being examired is defind.
The geometrical configurations of the signals and interferences in the array environmeni
are presented, together with the antenria placements. Then the forms which the array
processor can take are discussed, from the most geneval transfer function modeis, to the
tapped delay line models, and the narrow band models using in-phase and quadrature
channels. Certain results concerning the general transfar function model are of inferest
here, bu* the models most appropriate to the RF communications protlems being addressad
are seen to be the relatively narrow band ones. These can be studied as complex weight
models, and the signal structure at the array can be represented in terms of complex
envelopes. in terms of this structure, the correlation functions and output definiticns
which will be used in the analysis that follows are then defined.
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CHAPTER 1lI. PERFORMANCE MEASURES AND OPTIMAL SOLUTIONS

This chapter discusses the varisus performance measures which can be used
for the choice of the optimum parameters of the complex weight array processor modef .
Then the associated optimal solutions are derived, where both wideband and narrow band
(using zero bandwidth approximations) are presented. In this latter form, various iniarest-
ing properties are more readily studied. The basic minimum mean square errcr solution
can be factored into a form which includes the other solutions being examired. As such,
it can be demonstrated that they all differ only by a scalar gein, and therefore lead to
the same output signal=to~noise ratios. A comparison of the maximum likelihood and
minimum mean square error solutions is also presented. These solutions are of interest,
since they are the forms to which convergent adaptive processors will converge.

" CHAPTER IV. OPTIMIZATION TECHNIQUES

In this chapter, the optimization techniques which can be used for the
design of an adaptive processor are presented. These include simple search techniques,
gradient methods, and higher order methods. The search techniques and the higher order
methods do not lead to the easily implemented algorithms that the steepest descent-
gradient method gives. Also discussed is the constrained optimization technique - the
projection gradient method, and the method of stochastic approximation, which forms the
basis for simplifying the basic form of the adaptive algorithm. From this discussion, it can
be seen that the most likely candidate for use in real~time RF communicatiens problems
is the steepest descent method utilizing the stochastic approximation simplification.
Other computatienal methods are also briefly discussed.

CHAPTER V. BASIC ADAPTIVE ARRAY ALGORITEMS

In this chapter, adaptive array clgorithms which have been presented in
the literature for the optimization of the various performance measures are discussed. It
is demonstrated that these algorithms do not represent practical solutions - just the basic
forms which must be adapted tc the specific problem being solved. Also, it is shown
that all of the more practicai methods lead to essential similar algorithms, differing oniy
in how the signal effecis are removed from the correlation-weight control circuits.

CHAPTER Vi. BEHAVIOR OF ADAPTIVE ARRAYS USING THE LMS ALGORITEM

In this chapter, the equations describing the trajectory of the weights are
established with purticular emphasis placed on their steady state values. It is from
these values that steady state behavior of the array can be evaluated. Descriptions of
the optimum aivay behavior such as

1-13
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are established and compared to conventional arrays.

CHAPTER Vil. ACQUISITION TECHNIQUES

in this chapter two similar, yet different, adeptive models are studied trom
the point of view of their acquisition properties. In particui-r, for a two-emitter
environment, it is shown that a strong jammer in the presence of weak signal can be sup-
pressed much more than the signal with no additional a priori knowledge, thus permitting
desired signal acquisition.

CHAPTER Vill., PARAMETRIC STUDIES OF ACAPTIVE ARRAYS

This chapter includes detailed numerical studies of the effect of various
parameters such as jammer and signal power, bias levei, bandwidth, number of elements,
and geometry of jammers and signals. Many of the studies will be with only one dominant
jammer and one signal, to enable the study of signal-jommer interaction in deteil., Then
several jammers and signals are studied. This section is not specific to a TDMA cignal,
but general for “continuous" signals over the time interval computed.

CHAPTER IX. AN ADAPTIVE ARRAY DESIGN FOR A SPECIFIC TDMA PROBLEM

in this chapter, a functionai adaptive array design for a specific TDMA
problem is considered. A three-mode approach to the sigral acquisition probiem is
explained, in which 1) a dominant jammer suppression mode is used to lower a very
powerful jammer to a level where synchronization can be performed, 2) a signal removal
mode is used to prevent nulling friendly signals, and 3) a signal maximization mode (LMS
algorithm) is possibly used to further improve output S/N. A block diagram of the furc~
tional design is followed by a description and results of a computer program which
simulated the performance of the design with a particular input environment.

CHAPTER X. iMPLEMENTATIONS OF ADAPTIVE ARRAYS

This chapter considers possible implementations of functional adaptive
at: = diagrams, including designs that have been implemented by others, and different
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designs that may be useful. Emphasized are processing at RF vs. IF, methods of achiev-
ing signal weighting, types of correlators, techniques of spread-spectrum signal removal,
convergence rate control, and bios control .

CHAPTER Xt BREADBOARD DESIGNS AND DESIRABLE EXPERIMENTS

This chapter shows more specific diagrams of the implementations in Chapter
X that appear most promising. The diagrams appear suitable to form a breadboard experi-
mental test bed that is sufficiently flexible to allow several different implementations of
weights and correlators to be tested, and later allow a working severa! element array to
be tested in some detail,

CHAPTER XIt, CONCLUSIONS
this final chapter summarizes the more important esults of the study. Also,
suggestions for further work, based on the experience gained during this effort, are

presented .

Following these main sections, an extended reference list and appendices
describing the computer programs develcped during the study are presented.
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2.0 GENERAL PROBLEM FORMULATION

This chapter establishes the basic structure of the adaptive array problem
required for the analysis in later chapters. The mathematical formulation of the signal
environment is defined, from which the signal structure at the array can be determined
in terms of the geometrical configuration of the array . Detoiled consideration of the
array processor modzling problem is then given, where the use of a complex weight proc-
essor is justified. Finally, the correlation functions and output quantities for this proc~
essor are defined.

i Anknts ¥ AT st S S

2.1 Environment Structure

The signal environment is assumed to be composed of both directional and
isotropic signal sources. The desired signal is represented by & (1) which is assumed uncor-
ralated with the directional noise sources ¢i t),i=2,3, ..., p. The isotropic
background noise wiil be lumped with ¢the thermcl sensor noise ¢ O(t) at the front
end of the array and is assumed independent from o¢  anfenna element to the next. The
structure of the desired signal source con include borh amplitude and phase modulation
of a carrier frequency w . of the form

(1) = oy (1) cos [wci‘ + oy () +e]] (2-1)

while the distinct noise sources are given by
OERRG cos[wcf+ ?.(1) + 9:]' i=2,3, ...,p (2-2)

and the terms ot each sensor k, due to combined isotropic and thermal noise are

Cok = BilD °°S(“’cf + gok)’ k=1,2,...,m (2-3)

The modulations ar; (1), B(t) and ¢ ;(t) are sample functions of zero mean from independ-
ent, ergodic random processes, where the independent random variables 8;, which are
uniformly distributed on [0, 27], are added to ensure stationarity . Also, since the noise
terms { 4 () are desired to be bandlimited white noise, By is Rayleigh distributed. The
directional signals are assumed to propogate os plane waves in a medium which is linear
with its only effect on the signals being time delay.

2.2 Signal Structure ot the Array

In terms of the envircninent defined above, the signal received by the kfh
sensor can be written as

s b e o i re 3 - w
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| % = 5(*‘le> * 2241<* ‘Tzk> * Lok (2-4
. th th
) where T ;) represenfs the delay of the i signal af the k' sensor relative to the geometric
2| center of the array . 1f the direction of arrival of the i™ signal with respect to the center
| of the array is denoted by the unii vector o; (see Figure 2-1), then T ;| is given uv
f <a,, by
3 H = ___.___.___‘ -
o Tik v (2-5)
2
E where v is the velocity of the signal in the medium under consideration. Since the sig-

nals composing x|{t) are represented as amplitude and phase modulation of a carrier fre~
quency, it is only necessary to consider their complex envelopes in the analysis.

Denoting the complex envelope by *, x/ (1) is written as

p
Xk’ ) = &’(f - le) + Y ;’i (f - Tik> + ./;;k(f) (2-6)
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(For notational convenience the primes will be deleted, where the use of complex enve-
lopes is understood throughout the report.) Defining the m dimensional vectors s(t) and

n(t) as
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Figure 2-1. Geometrical Configuration of Sensors and Signals
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P = . . .
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it T “elim | tom(fz
then the m sensor signals can be coliected in the m~dimensional vector x(t} as
x(f) = s(B + n(D (2-9)

If the signals are narrow band in the sense that time delays T ik encountered by them
between the sensor elements are insignificant relative to the slowly varying amplitude
and phase modulations, then these representations can be simplified by writing

s(t) = ¢(t)v, (2-10)
p

n() =D Zi(ﬂvi + nf(f) (2-11)
i=2

where nf(f) represents the collection of thermal noise terms tok(f) and

-— - —

-jw r.
0.7 4

25
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In terms of these quantities

P
x(f)=s(t) +n(f) = &) vy « 2 LD vita( : (2-13)
i=2

2.3 Array Processor Models and Their Properties

In this section several models for the array processor will be considered.
The most general linear processor, consisting of transfer functions in each element of the
array, will be discussed, together with some inferesting results concerning the optimai
forn~ of this model. This model is not appropriate to our purposes, since it is not adjust-
able for use in an adaptive procedure, but some observations in this general context will
be relevant. A discrete~-time approximation to these general transfer functions can be
consiructed using tapped delay line filters, where the weights associated with each top
can be adjusted using adaptive procedures. These two medels are seen to be appropriate
for wideband array problems, whereas for the relatively narrowband problem considered
in this study, the tapped delay line reduces to a single time delay per channel, which can
be opproximated by a complex weight in each channel. Finally, a model which utilizes
direction of arrival information to align the desired signal is presented.

2.3.1 The General Transfer Function Model

In relatively wideband systems which do not require that the array control
be adaptive, the most general linear model for the array processor takes the form of a
transfer fur.ction in each channel as shown in Figure 2-2. In this form the input vector x
is related to the output signal ¥ by

‘f
v =f W (t-7)x (T)dT (2-14)

to

or in the frequency domain
Y (@ =H' (@) (). (2-15)

Such arrays have been studied extensively for applications in seismic and sonar fields
(where the bandwidths are much larger and the constraint to operate in real time is not
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necessarily present) by many investigators, e.g., Van Trees(73) . Although much of this
work is slanted toward the detection problem, which we are not addressing, some forms of
the optimum detector can be shown fo require the implementation of an optimal est:mator.
In Van Trees' work it is shown that the array processor produces a minimum mean square
error estimate of the signal and takes the form shown in Figure 2-3. (His analysis uses
the general transfer function model and the signal aligning concept discussed in a later
section.) In this form, an interesting factorization of the problem is seen where the
overall optimal processor factors into a "spatial* filtar and a "temporal " filter. The
spatial filter (which also includes temporal characteristics of the noise) is a linear matrix
filter dependent only on the noise statistics and signal propagation effects, and within a
3 scalar factor A(w) gives a minimum noise, distortionless output; that is, for Gaussian sig=
¢ nals it gives the maximum likelihood signal estimate given that there is no spectral infor-
E mation about the signal available. If the spectral density of the signal is known, then the
; minimum mean square error signal can be found by the addition of a scalar Wiener filter.
§ Cox{29) has also observed this factorization, where he interprets the spatial filter as
- g performing a prewhitening operation (typical of the solution methods used for colored noise
é

e e Ly
. R T T T ey
D TN R bt St PO St e S 3 2

FOFNLRY

cerwdarel

filtering problems where the coloring here is due to the spatial distribution of the noise
sources) prior to the use of the standard Wiener filter for a MMSE estimate.

The explicit design equations for the factored form of the processor shown
in Figure 2-3 can be obtained from the cited references. However, the general properties
of this solution are of primary interest since even though this is not the mode! to be used
for our problem, these general observations will be relevant to the more specific case
under consideration. Since the model incorporating general transfer functions does not
admit to real-time adjustment via adaptive algorithms, it cannot be directly used for
problems involving time varying statistics, i.e., problems where emitters may be moving,
turning off and on, and changing their characteristics.

2L

Pl S

2.3.2 Tapped Delay Line Models

LR AR

I

A tapped delay line approximation to the general transfer function can be
used in each channel of the array, where such a processor is illustrated in Figure 2-4.
As the number of taps becomes very large and the time delays become very small, this
approximation approaches the ideal of the general transfer function.

For this model we can represent the signals and the weights at any time t
and for each of the tap points | as the recl vectors,

TMMSE will be used throughout this report as an ubbreviation for Minimum Mean Square
Error.
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x2(f =i\ 'w2(t - iA)

x(t - j4) = and w(t - jA) =

Xy (¢ - {4) Wy (=7 8)

so that the output of the array becomes
y= wT(f) x (t) + wT(f-A) x (t=A)+. ..+ wT(f-k A x t-kA)  (2-16)
(where the tap spacings are chosen equal for notational convenience; but can be vericble).

In terms of the augmented vectors W and X defined as

Cwt) ] )| (2-17)
w(t-4) x(t-A)
W= and X = :
A w(t-kA)_ I x(f'-k./\)_
the output becomes
¥ = <W,X>=W' X (2-18)

The exact number of taps and the size of the time delays must be chosen for any partic-
ular application. These choices will be determined by tradeoffs involving signai band-
width ond overall system complexity. For the narrow band problems contemplated in

RF comrmunications and radar systems, it is generally adequate to consider only one iimz
delay per channel and the array takes the form illustrated in Figure 2-5.

2.3.2 Narrowband Tapped Daiay Line Processor: Complex Weight

As mentioned above, for relatively narrowband problems the tapped delay
fine urray can be reduced to the medel in Figure 25 with ¢ single time delay per channel.
Tiis processor has the obvious advantage of simplicity over the multitap processor,
thereby reducing the complexity of the adaptive circui;ry which is used to control the

array. The time delay for each tap is shown to be 7= —f-, or 90 degrees phase shift ot the
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Figure 2-5. In-Phase and Quadrature Channel Model
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carrier frequency. Over the relatively narrow bandwidth addressed here, we wull
assume that the time delay is in fact a broadband phase shifter providing a 90° phase
shift over the frequency band of interest.

e e I e s

o

The benefits of this type of phase shifter have a substantial impact on the
mathematical developmenf of the phased array. By eliminating the signal diffusion
through the 90° phase shifter we are able to represent the weights as members of an
m~dimensional complex Euclidean space. Consider for example the signal processing
channel associated with the kth sensor efement shown ir. Figure 2-6, with Yi representing
that portion of the total output due to the kth channel.

I EA0) M Z — Tk

Wi2

SLPTAPRCRIN S 2.3 - Ko7 IS R W IR I T NNOND S A SNEE T VR F IR Ty e

86588-40

Figure 2-6, Kth Element Processing

Let xk(t) be represented in the form

—iwcr
k(t Re{x t)e } (2-19)

then the partial response of the array output can be written as

yk(f) = wklxk(f) + wkz?k(t) (2-20) %
3

where ’)?k(t) is the response of the broadband ~90° phase shifter to xk(t).
The functional form of X{t) is easily determined by taking the Fourier transform of xk(f) %
1

X () = _A(w)ei"’(“’) (2-21)
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where A and ¢ represent the amplitude and phase of each frequency component, Since
the phase shifter provides a =90  phase shift at every frequency, the Fourier transform of
?k (t) is then obtained by

R (@)= Aw) B @)= iawe Ok ). 2

Taking the inverse transform we arrive at

) = Re f-ix, /(N 1°c"}, (2-23)
thus
“iw “iwt
)’k(t) = Ref Wi %1 “(t)e -iwkzx|< ‘(t)e } (2-24)
“jw !

= Re{(wkl -jw I<2)xk’(f)e © }.

From this expression we recognize that we need only consider the complex envelopes of
the signals as well as the obvious complex representation of the weights to determine the
array output. We can now represent the array output in the simplified form

~jwt “jw t
y(t)=Re{<w,x'> e “} =Ref<y’(Ne c} (2-25)

where <w, x’> denotes the usual inner product in a complex Eucledian space. For the
remainder of our presentation we shall require only the envelope of the output and for
notational convenience we again drop the prime representation and denote the cutput by

Y=<W, x> (2-28)

The complex weight model ccrresponding to this simplification is shown in Figure 2.7.

2.3.4 Aligned Arrays

For many array problems it can be assumed that the direction of arrival
of the desired signal is known or measured. {n this case the time drlays required to
align (or co~phase) the desiied signal terms ir each channel can be computed and
inserted asa Spatial Correction Filter (SCF) as shown in Figure 2~8a. (Even if these
time delays are not known, it is often mathematically convenient to consider factoring
out SCF's from the general model weights).
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Mathematically we will represent this operation as

T x(t)= fy(t) (2-27)
where f is the vector valued function representing the spatial correctio filters with a
2 R0 1 t H 1
B ransform function matrix given by (2-28)
Exp[ -iw('ro-<al,b]>)] n cee 0
i %ji 0 Exp[-lw(To" <0],b2>)]. ¢ s 0 0 o 0
; v
3 % M
3 g{t F (b)) =
= B
. B
.
g 0 0 “as Exp [ -jw(T -<a,,b >)]
o V'm
g =t V P
gv where y =sin denotes the m-dimensicnal signal and noise vestor at the input fo the array. 1
§ In the absance of the spatial correction filters x(t) is exactly equal to y(t}. In this form
iy the vector x always represents the input to the complex weights. The term T is a con-
& .y . s . ote . o .
% stant delay whose addition is tc ensure the physical realizability of ¥, however, without
loss of generality we shall omit its use in the sequel.
i
Ef After the SCF's the signal can again be represented as x vector, which
§£ takes the simplified form
f’;’-
¢ xft) = ¢ (1) 1 +7t) (2-29)
{
. 5 T _ .
E where 1= [1,1,...,1] * and A(t) represents the noise terms after the SCF's. 1
%?
2.4 Array Correlation Functions and Output Relations
2.4.1 General Representations

Fer the analysis of the models presented in the last several paragraphs, the
correlation matrices associated with the various signals will be required. The correlation
matrix of the received signal and noise vector will be defined as
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R, = E [x()x (1)] (2-30)

*
where represents the adjoint matrix (i.e., the complex conjugate transpose). Since
the desired signal is assumed to be uncorrelated with the noise signals in the array, this
matrix can be decomposed into the sum of two positive matrices

Rx = Rs_+ Rn (2-31)
where
*
Rn= E [n(th ()] (2-32)
and is assumed positive definite when thermal noise is present, and where
*
Rs =E [s{tys )] . (2-33)

The complex matrix Rx may also be decomposed into its real and imaginary
parts

Rx =C+ D (2-34)
and since Rx is self adjoint we see from the foliowing identity chain that
<x, (C+HD)x>= < x,Cx>+ j< x,Dx> = < (CGH{D)x, x> (2-35)
= <Cx, x>-i <Dx, x>.
Thus by equating the real and imaginary parts it is evident that
a. Cis positive definite
b. D is skew symmetric

The cross-correlation vector between the desired signal £(t) and the
received signel vector x(t) is given by

*
e E[¢ (x(D)]. ' (2-36)
If spatial rorrection filters are used, then the covariance matrices are
related by
R =R +R (2-37)
Yy s 'n
2-18
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and after the SCF's
I

R=S11 +R_. (2-38)
X - h
where for narrow band signals
Rﬁ= F (Fc) Rn F (Fc) (2-39)
2.4.2 Structure of the Signal and Noise Covariance Matrix

In this section we will focus our attention on the functional form of the

3 * entries of the matrix Ry for an environment consisting of wide~band os well as narrow
B band emitters. The approach used in this development is to formulate a more realistic
: ?ﬁi model of the low pass nature of each sensor channel relative to the complex signai

envelopes and its effects on these signals. Consider the functional diagram of the kth
channel shown in Figure 2-9, where H is an ideal low-pass filter. Let v (t) be anarbitrary
complex signal contained in xk(f), where in terms of the geometrical center of the array

-j2 nfc'rk (2-40)

vk(t) =v(-T k)e

=
t é where
E <a ,b >
: 5 = ..__.1/_&__ -
: 3 Tk v | (2-41)
which for a uniform linear array can be written as
1 _ ] P
= - k) — cosf (2-42)

Gl

where p represents the spacing between antenna elements and 6, represents the angle
to the emitter relative to the axis of the array. The ij entry of the correlation matrix
due to this emitter is then easily seen to be (where — represents the signal after the
bandpass filter H only in this section).

~i2nf (1.-T,)

b e b e § gk SN L g
S R T T SR R e AT e o vz

W ETOT e © ¢ VB[R 0r)] 0D
-527:'f¢('ri -T.)
=e ! R;;('Ti-'ri).
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However,

b df (2-44)

B/2 i2 7rf(-ri -T.)
Ry (. = 7,) = 5,(fe df (2-45)
- B/2
thus we write
-|27rf ('r -7-) B/2 j2rf(r, - 1.)
= e f S.(fle b T, (2-46)
- B/2

Since all the emitters are assumed uncorrelated the ij entry of R is the sum of the entries
due to each emitter.

For an illustrative example let us evaluate r;: due to'an emitter which has
a constant power spectral density of u over a bandwidth' b (b<B) and a zero other-

wise. Then it is easily seen that

-i2nf (7, -'ri) Sin[m (‘ri - )b]
ve T (-ri -7 )b . (2-47)

For very narrow bandwidths

Sin7r('ri -Ti) b

=~ 1 (2-48)
7r('ri -Ti) b

which permits us to write the correlation matrix due to the signal j(t) as
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*

Ry = Nyvyvy . (2-49)

if the entire environment is narrow band with equal thermal noise power in each antenna
element then the structure of correlation matrices take on the simple form

Rs = Sv] v]* (2-50)
P * 2

2 SN el (2-51)

= (2-52

rxf Sv] )

where S = E [5(650)], the desired signal power, and where Ni = E[‘:i (t).{‘i*(f) 1

the received power from the ith directional noise source. Noie that for the signal
aligned array v =1, T for wideband as well as narrow band signals.

2.4.3 Basic Array Output Definitions

Throughout this report the basic parameters which cre used in analyzing
the array behavior are quantities such as: output signal power, output signal to noise
power ratio, output gain and the array antenna pattern. These concepts ar. well known
as fundamental array descriptions and therefore, perhaps need no further discussion.
However, since a portion of the discussion centers around signals of finite bandwidth,
the generalization to this environment may not be too familar. T -refore, these con-
cepts are presented in this section for arrays with and without spc .al ccrrection filters.

For the array shown in Figure 2-7, the average power out of the array is
given by

2
Output Power = PO E |)’| = E|<w,x>|2'= E <w, x> <x,w>

Ew*xx*w = w* Rxw = <w, Rxw >. (2-53)

Since the signals are uncorrelated the output power is the sum of the powers due to each
source. Thus, we can write

T Where 1denotes (1, 1, ... 'l,)T.
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P°=Ps+Pn <w, Row> + <w, Ryw> (2-54)

p
w> +
<w, R T o<w, R"i w> +P
i=2
(where P, is the power due to thermal and isotropic noise) for the narrowband environ-
ment this reduces fo

p
Po =S<w,v]v] *ws + i£2 N; <w, viv; *w>+Pnt

P \
= Sl <W,V >| 2+2 N.| <w, v, >lz+ Pn . (2-55) (2-55)
1 i = 2 I 1 t

The output signal-to-noise ratio is then simply the output power due to the desired sig-
nal divided by the output power due to all the noise. That is, by definition,
Ps A <Y st >

P = <w,R w> (2-56)
n n

For an array incorporating spatial correction filters, if the signal and noise covariance
matrices of the signals at the output of the spatial correction filters are known, then
these can be used in place of R, and R, in the above expressions. If on the other hand
it is desired to determine the output power explicitly in terms of the signals impinging
on the array, then it can be shown that

Ps = S<l,_l_> @2-57)
o 0

Fo = fonn SO wodt= o F0 5,0 P wodt (2-58)
— 0 ~"00

A}

where Sn(f) is the noise power spectral density matrix i.e.,

S,() =€ [n(f)n*()] (2-59)
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where n is the noise at the input to the spatial correction filters, For narrowband sig-
nals P reduces to

P, =<w, F(E)R F*(f)w> (2-60)

The concept of array gain as used in this report is the output signal-to-
noise power ratic divided by the signal-to-noise power ratio per sensor. That is, the
gain G is

-

_S/N at the array cutput g

G = S/N per sensor (2-61)

or
<w,Rw>/ <w,R w
g - AL R (2-62)
S/(Z N, +07)
i

where ¢ 2 is the power at each sensor (assumed equal) due to thermal noise. Another useful

concept is that of antennc pattern, which can be defined in terms of the covariance
matrix of a linear array with fixed weights. The antenna paftern (@) is defined as the
output power of the array due to an arbitrary emitter u of unity power with azimuth ép .
That is, .

Y= Pp(¢p) = <w,Rp(¢)w> (2-63)

where R (@) is ine covariance matrix of received signal vector due to emitter . Thus,
the antenna pattern is not only a function of the angular location of the emitter u but
also its spectai content. For a broadband environment it is necessary to use a broad-~
band emitter p consistent with the environment in order to obtain an accurate representa-
tion of the pattern.
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3.0 THE OPTIMAL SOLUTIONS

In this chapter, several solutions for the optimal weight vector for the J ;
complex weight processor discussed in the last chapter will be derived and discussed. To %
define an optimal solution a performance criterion must be selected, and several appropri- 3
ate measures will be presented, each appropriate for certain specific types of problems A
and objectives. For each of these performance measures the optimum weight vectors will 3

be found. Several interesting features about these solutions will be examined. For very
narrowband signais it will be shown that the minimum mean square error processor will 2
factor in much the same way described for the general transfer function model. In this 5
form a linear matrix filter will compose the spatial filter, which will be shown to be :
common to each of the optimal solutions. Moreover, each of these solutions will be seen i
to differ only by a scalar factor, which leads to the result that they each have identical 4
3
X
%

signal=fo-noise ratios at their outputs.

3 3.1 The Performance Measures

Four separate performance measures will be discussed: mean square error,
signal=to=noise ratio, the likelihood function, and the output noise variance. Within
the context of the more general wideband array problem each of these performance
measures would have a specific use. The minimum mean square error measure is utilized
when it is desired to reproduce the desired signal as accurately as possible, This measure
assumes that the signal is represented as a random process and requires knowledge of the
second order statistics of the signals and the noises. The signal-to-noise ratio criterion
seeks to maximize the signal power in the output while minimizing the noise power. This
form is not concemned with reproducing the signal accurately, and hence can lead to
signal distortion. @1) it also assumes the signal is modeled statistically and requires
knowiedge of the second order statistics of the signal and noise. The maximum likelihood
measure is utilized when the signal is assumed to be an unknown deterministic signal. Its
use requires that the noist: is assumed to be Gaussianly distributed with known second order
statistics; however, no signal characteristics need be known. Likewise, the minimum
variance performance meas.' s assumes no statistical knowledge of the signal, and only
second order noise statistics, However, its use is restricted to the signal aligned arrays
where an undistorted estimate of the signal is desired. As will be demonstrated below,
for very narrowband signals many of these differences will manifest themselves only in the
form of a scalar factor at the output of a common linear mairix filter,

SO UV RIS SIS TIPS o o TS VT SR IO S WL RNV ICE DL S 2L

2.0 Mean Square Error

The mean square error at the output of the array is defined in terms of the
difference between the array output ¥(t) and the desired received signal £ (t) in the form

3-2
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3.1.3 The Likelihood Function

Given that a parhcular vector x (t) has been received by the array, it is
desired fo choose an estimate % (1) of the signal as the most likely waveform. That is, we
choose ' to maximize the conditional probability density function p [¥/5), i.e.,

5= max p [x/s] (3=7)

which, when considered to be a function of s, is called the likelithood function. This
conditional density can be written as

p[x/s]) = ___[_]__p[x, d

and making a change of variables this becomes

= _ pls, n] _ [s] [n) - -
o] = Bl < Benl - el gl - g 3-9)

consequently, to maximize the likelihood function, s must be chosen to maximize
. v =1
p[n] = P, [x=s] = exp [ = 1/2 (x=s) Rn (x=s)] (3-9)

(assuming the noise is Gaussianly distributed with covariance R ) which is maximized by
the minimization of the exponent, and gives

J

Il

nl (x-s)*Rn- (x=s)

< (x=s), Rn-] (x~s)> (3-10)

The obvious minimum value of this function is zero when the estimate is chosen as the
received signal. This resul: is expected, since we have hypothesized very little knowlcdge
of the signal, and the best we con do is to use the received vector for the estimate.

For this to be a well-posed problem we must insert some knowledge of
signal structure. This can be accomplished for relatively wideband signals if direction of
arrival is known and spatial correction filters are used to align the desired signal. In this
case the signal vector s = £ (t) 1 and the likelihood function performance measure becomes

Jo= =R (xed) = < (o), R 7T (e 1) @=11)

ml
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For very narrowband signals where there is no dispersion across the array, the signals
need not be aligned and we can write s = §vy. For this case Jy) becomes

I = Gk eebv) =< ebvy) R Gebv)> o (312

3.1.4 Qutput Noise Variance

This type of performance measure is appropriate only for those processors
which utilize direction of arrival information to align the desired signal components.
As shown, for such an array the received vector x (t) = &(t) 1 + n (t) and the cutput
y (1) becomns -

LD SRR Lt A A LA s

y () = w*x = £(t) w*l + wn ® . (3=13)

m
In this equation w*1.= £ w* and if this summation is constrained to equal it i.e.,

i=1 1
. )
wil =2 w* =1 = <w,]1> (3=14)
=1

then the output can be written as

y ) =&(t) +w*n (1) . (3=15)

O e - AU TNYEE Ly e

In this form ¥ () is seen to be an unbiased estimate of £ (), that is, for zero mean noise
E[y®] = E[0) + wn 0] = E[E)] = £@) (3-16)

and the noise variance in ¥ {t) is

Var 7 () = w*Rnw . - (3-17)

Consequently, the minimum variance performance measure can be written as

s 0 sl U A e L et 2, B S

J =wRw= <w,Rw> (3-1¢)
mv n n

+Note that this implies I Re(w)=1and X im (w.) = 0.
! 1 i ]
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subject to the constraint
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%‘%&?ﬁw‘nﬁh J

s

3.2 Derivation of the Optimal Solutions

LR R i P A

In this section the complex weight vectors, which optimize the four per~
formance criteria discussed previously, will be determined. Various optimization tech=
niques could be used to obtain these solutions; however, the methods which appear best
suited to this task, particlarly since we desire to utilize a general representation with
compiex signals ard weights, are to place the problem in a Hilbert space format and
utilize the geometrical concept of orthogonality. The Hilbert space in which we shall
formulate our solutions is consistent with the implied space used in establishing the
performance measuses, namely an m~dimensional corplex Euclidean space which we

shall denote as H.

%

SRS

Chure M &S SO

b BLe A A BB R e n T W e )

LR TR N e

3.2.1 The Minimum Mean Square Error Solution

¥ The mean square error peiformance criteria has been presented in the

& form

Eq

= - +

: J:nse (w) = <w, Rxw> 2Re <w, rxe> S (3-19)

L

where we must find Wise! the complex weight vector which minimizes Imse The vector

PPN

which minimizes J___ is equivalent to that which minimizes the quadratic form

Ji W = <w, Rx“'> -2Re <w, rx€> (3-20)

vl o e,

since S is not a function of w.

AR X - e

Consider the quadratic form given by

e

PN
¥

Jz w) =

|

A

£

3
o*l

£

.

§

s

i

<w, Gw» = 2Re <w, Qwo> + W, QWO> (3=21)

[E———

3=6

. A .
i e i AR st s om R
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where Q is an arbitrary nositive definite matrix. The performance measure J2 (w) takes
on its minimum value of zero enly when w = W, which also minimizes

Js (w) = <w, Qw> ~ 2Re <w; Qw°> . (3-22)

Refurning o the original problem, we see that the minimization of J] (w) is equivalent
to the minimization of J3 (w) if we have:

) Qw<> = rxe

(3-23)

® Q@ =R. (3-24)

X

Equations (a) and (b) give the explicit form of the weight vector which minimizes
J  Was
mse

Rw=r (3-25)

w =R " r ¢ " (3~26)

3.2.2 The Maximum Signal=to~Moise Ratio Solution

The performance measure for the maximum signal=to-noise rctio has been

shown to be

<w, Rw>
-3

Js/n b} = <w, knw; : (3-27)

To determine the weight which aptimizes this cost function we shall utilize the positive
square roof Y37/ of Kn so that

- I - Y
Lyws © Ve > <w, R W >

J (w} R 12 e env—— (3-28)
/n o ] 2
¥ <tby, REw>  IRT w i

i i n

Moking the swbstifutien

d f
P fnm'-v.-«nrﬂm:f*ss(hrrw.w;ﬁfrf*‘mﬁﬁqu?'mwﬁw WIS

3-7

AP, WA S R,

Bl AR 0 s i e s W B e D B s s oA el T I It RS 7 R S s e g

o N \
1 £ ue DA T i bR RS i 2 b e

&
A
4
=
3
H
H
3

A

+
N
El
€
3

BRSPS




,
N S S Lt )

R A e Tt o Ty Sq it & e e e L

we car rewi te the clove expression a5

-1 -l
<y, an Rsan u>
J, W)= .
o/ ol

(3-30)

Thus, tl;e probllem reduces to finding the u of norm one that maximizes the inner product

<y, R;7 Rs R:Tu> . We will now sho;v thct]fhe maximum value of this inner product is
. 03 -'—2- —'T 3

A max (the maximum eigenvalue of Rn Rs Rn ), where Uopi' helongs to the eigenspace

associated withA .
max
Consider the following inequality chain with || uii =1

<o, RZRRZ v < NRTRRZGN Mo ll= NRT g g7y (3-31)
n n s n n s n

n 5

By the Buniakowskii i?equali]ty(ss), the dbove inequality reduces to equality if and only

if u is colinear to R;’f RSR:" v. Thus, equality holds if and only if

! i
RZRRZu= Ay, (3-32)
n s n
-1
so that u is an eigenvector of an Rs R,.,2 and A is the associated eigenvalue. When u is

an eigenvector we have
<y, RZRR 2u> =Allyll®" =A, (3-33)
n s n

Thus, the inner product is maximized when A is the moximum eigenvalue. The optimum
weight vector then takes the form

|
W = RZu (3-34)

where u___ is a vector of unity norm belonging to the eigenspace asscciated with )‘mox

and opt

max

Jg/r\ (ws/n) =A . (3-35)
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If the desired signal is narrowband or if spatial correction fiiters are used
to cophase the desired signal in each channel, the optimum weight vector takes on a
much simpler form. If the desired signal is narrowband then the performance measure
can be written os

o e i D S A5, BT

H } )
- — - - 2
S<u, Rn2 Vi v]*Rn2 u> 5 |<u, an v]>l

J, )= = . {3-3%)
o/ o o i

We now decompose H inte two disjoint subspoces Q) and Q5 such that

R 4 4 e TP
5
5 5“%. %

- % H= Q] tQ, . (3-37)
ié These spaces explicity consist of
a = ] : -
E é‘i Q‘ { U]y =GR 2val, o an arbitrary scalar

X :
i Q, = {u,l<u,, uy> =0}. (3-38)
§ 2 21 Y17 Y2

&

& Given this orthogonal decomposition we can uniquely express any element of H as an

¥ element fiom Q; and Q,,. Let u be such an element, then

f\‘

‘ u = u] + u2 (3=39)

"

where u, ¢ Q, andu,, € Q,,. Then
1 ] py 2

, " S‘( Uy + Uo: R;] V.l>l2 S|< Ury R;] V]>‘2
U - —
; AR T a1 % [ eall®
4
: =(§_2)H°1” ’ (3~40)
AT Z o]

which takez an its maximum value when H Uy H is zero. Thus

1

Ucpt = o Rn2 Vi
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If the desired signal is narrowband or if spatial correction filters are used
te cophase the desired signal in each channel, the optimum weight vector takes on a
much simpler form, [f the desired signal is namowband then the performance measure
can be written as

] 1
S<u, RZ vy v*RZu> S|y, R? v]>|2
3 /) = L = . (3-36)

2 2
ol ol

We now decompose H into two disjoint subspaces Q; and Qg such that

H= Q} + Q2 . (3-37)
Thece spaces explicity consist of
1
Q] = { Yy | u = Rnfv,},a an arbitrary scalar
Q, = '{UZ]< Uy Up> = o} . {3-38)

Given this orthogonal decomposition we can uniquely express any element of H as an
element from Q] and Q2. Let u be such an element, then

u =y + uy (3=39)

where uje Q] ond u, € QZ' Then

o Seu e el sew, Bl
J, W) = =
v Ien 2 [, 1] ? H”]H . +”“2\\2
s\alt’ ot
= 3
(2?>nu];l2 w1

which takes on its maximum value when || uy || is zero. Thus

1

Uopt = Rn2 i
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s/n n
with a signal-to~-noise rc.io of

2 -] 2
J, w )= = S<v,, R v.>. 3-43
s/n * opt a2<R;] v],RnR;‘v]> 1 'n 1

For a wideband desired signal that is cophased in each channel, the optimum weights
are easily seen to be

= aRr M : . (3-44)

Ye/n n -

when Rn is the covariance matrix of the noise vector after the spatial correction filters.

3.2.3 The Maximum Likelihood Solution

For relatively wideband desired signals the likelihood function has been
derived as

_ -1
o (§) = <x-§1, R (x=§1) > (3-45)
which may be written in the form

3@ =1 |l? (346)

ml

1
where v = Rn2 (x=£1). The problem now becomes that of finding the scalar & which
mi.imizes the norm of u. Let us decompose H into the direct sum of subspaces Q] ond

Q2 where

1
Q = {u‘lu] =aR;§l},aanmbihawsmiw

5 = fuz‘< u],u2>=0}. (3-47)
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In terms of these subspaces the vector R, 2 x haos the unique representation

}

]
RZ x =, R°2 1 +y (3-48)
n 1 n = 2
where Uy € Q2. Then v can be represented by
1
U= (Eual)Rn2 1+ Uy (3-49)

Thus, u has minimum norm when & = ., and £ can be obtained by taking the inner
product of R;7 x with R; 1

L - -4 -1 L
<R 2 1,R 2 x> =tc< Rn’i 1, Rnfl,+<.<n2 1,up>. (3-50)
Since the last term in this expression is zero, we have the maximum likelihood
signal as
<R™ 1, x>
¢ = 1 (3~51)
<t, R;' 1>

Since the output of the array is to be formed as

E = <w, x> (3-52)

B e R i - o o o S i Dl B p s S

the optimum weight vector must take the form

“.MM
]
-

(3-53)

N
W]=
m <1,R

If the desired signal is narrowband, then we see from the performance measure given by
Equation 3-12 a simple replacement of 1 with v will yield the optimum weight vector.

L IR M

E 3.2.4 The Unbiased Minimum Variance Solution
The performance mecsure for this solution was presented as
J v W) = <w, Rnyv> (3=54)

m
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subject to the equality constraint <w, 1 > =1, The solution of this problem follows
the same general pattern as the others, First, we define a vector u related to w by

v = Rn"fw (3-55)
and note that
_ 2 _
3w = <w Rws =] u|] %, (3-56)

Hence the problem reduces to finding the vector of minimum norm such that

|
<R;-2.u, l> =1, (3-57)

Intuitively we know that the solution of this problem is a vector u that is colinear to

!
R;? 1. To show this is the case, we again decompose H into the direct sum of spaces
Q] and Q2 where

i

Q u =@ R;? 1}, aon arbitrary scaler

1 {y,

Q, = {u,

<Up,up> = o} . (3=58)

If u is any element of H, then we may write u uniquely as

u =y tu, (3=59)

where uy € Qi and Uy € Q2 such that

N

L e

1 =<y

]=<U1+U2'Rn ' 'n n
Thus o is given by
i
a = ”——-T—-—Z (3-61)
=h
n —
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which yields vy as

. ! R°Z 1, - 362
TR =

From the pei ‘ormance measure we can conclude that uy is zero since
va @) = H Uy T Y H2 = “Ul“ 2 H 02”2 Z” % “2 - 3-63)

Thus the optimum weight vector is

W= e——— R 1. (3-64)
mv <, R 1> n
—— n —
3.3 Comparison of Solutions
3.3.1 Mean Square Error Solution Factorization

In this section the solutions obtained in the last section will be examined
under the asssmption of very narrowband signals. First, the minimum mean square error
weights will be examined and it will be shown that these weights define a solution
which can be factored into much the same form as that described for the general transfer
function solution of Van Trees(/3), By examining the other optimai solutions, it will
be seen that the S/N and the maximum likelihcod solutions are part of this factorization
and, as a special case, also the unbiased, minimum variance solution. It is shown that
all these performance measures give weights which differ only by a scalar factor and,
therefore, they all lead to identical signal-to-noise ratios.

The complex weight vector for the minimum mean square error processor
was found to be

w =R 'r . (3~65)

For very narrowband signals this can be written as

(3=66)

-1
w = (Sviv] * 4 Rn) Sv

mse 1

3-13
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and using the matrix inversion lemmo

4 Kl e
wmse =3 |:Rn - * - ]v]
'|+Sv] R i
S -1 -1 '
= R v, =B Ry (3-67)
1 +Sv* R -'lv n 1 mse n 1
1 n 1
where
B = 2 (3-68)
mse 1+Sv Ry,

In this form the processor can be drawn as shown in Figure 3=1 where the linear matrix
filter R_=1 v, can be interpreted as a "soatial" filter since it incorporates the spatial

correlation of the noise and the propagation effects on the signal. Bmse will be inter=-
preted below.

The noise power at the output of the spatial filter can be writtea as

* -1 -1

= — V&
Pn—anw—(Rn vy RR vy
= v} R " v (3-69)

ond the signal power is

P = wRw=@® W) RR"
s v sw-(n v]) sn V1

=S Pn (3=70)

In these expressions we see that the weighfs are proportional to -]VI s that is l'hey are
inversely proportional to the mpuf noise power (note that if v. = 1 thenv Rn

equal to the sum of the terms in the inverse noise correlation matrix). Consequently, fhe
output noise power decreases as the input noise increases. This could also be interpreted

3-14
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1 from the point of view that the array is able to place deeper nulls on better defined noise
: sources. Using these expressions for P and P, B can be written as
s n s’ “mse k;
- i '
:, 2 i g
3 ! P
= _ S Pn ( S ) "é
: = —5" 3
F R P% 1+5P 3
S 1 1 n n 4
!
é ' SPn2 1 Ps ]
= 5 ) = 5 ( ) (3-71) g
3 Pe P +sp 2 Pa Pt P
; n n 3
2 and the weights become a,
W o= o T—Ps R 7Ty (3-72) :
mse P +P n 1 4
n n s ;
3.3.2 Comparison with Other Solutions: Qutput S/N Ratio %
: 3
In terms of the quantities defined above, the other optimal weights can be g

- rewritien in a form which illustrates their relationship to the minimum mean square error

k solution. The optimal S/N weights were found as

w, =aR -]v (3=73) }
1 s/n n 1 3
and hence, ﬁs/n = o, where o is an aibitrary constant, The maximum likelihood ;
weights were found as 2'
; %,y -1
LR = pa A LS 8-74) :
vi R v ]
1'n 1 3
= | - ;

By = o = (3-7%)

v, R v n
IT'n 1

In terms of these quantities, the minimum mean square error processor of Figure 3=1 is
seen to factor into the form shown in Figure 3-2,

3-16
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If the desired signai terms were aligned in the array, either through the
use of spatial correction filters in each channe!, or because it happened to be broadside
to the array, then the signcl propagation vector vi would simply be the vector 1. In
this case, the maximum likelihood weights w1 are seen to reduce to the unbiased
minimum variance weights, a result previously established for the more general processor
models (23), That is,

n = (3-76)

Similarly, the other optimal weights for the signal aligned case can be found simply by
replacing vy by 1 . Notice also that for the signal aligned array th results of this
section con be extended to relatively wudebqnd problems since the correlation functions
Rs and r,x can be factored s Rg= §1 1% and Py S1. Thisisdue to the fact that
when the’desired signal in brocdslde there is no dnspersuon qlong the array since it
arrives at each antenna simultaneously. For all the cases examined above, the optimal
complex weight vectors are seen to differ only by a scalar factor 8. Consequently, all
the different processors have the same output signal =to=noise ratios given by

w*R;w Bv ; Sv. BR

P/,

*
w Rnw ﬁv] R ™ Rn ﬂRn v]
* o =]
= Sv] Rn Vi (3-77)
3.3.3 Maximum Likelihood Versus Minimum Mean Square Error Solutions

As previously discussed in Paragiaph 3.1, the various performance criteria
are generally useful in different situations. For example, the maximum likelihood
criteria is used when the desired signal is modelled as a deterministic, but unknown
signal, In this case it is not necessary to assume any knowledge + 7 the signal statistics,
but the noise must be Gaussian. On the other hand, the nean square error criterion is
generally used when the desired signal is modelled us a random process. This requires
tne second order statistics of both the signal and the noisc to be known or mecsured.
However, if the desired signal's statistics are not known or are difficult to measure,
then one could resort to the use of a maximum likelihood processor. This section wili
examine the tradeoff between these two processors.
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To compare these two processors, the optimal weights associated with

each can be substituted back into the exprossion for the mean square error given in
Equation 3~5:

J = 3<w, Rw>=2Re<w, r > +5] (3-78)

mse ” xg

In this manner J __, the mean square error associated with the minimum mean square

error weights, normalized by letting signal power S equal unity, can be written (us.ng
Equation 3-70) as

me 1 + P (3-79)

Also, the normalized mean square error associated with the maximum likelihood weights
con be found as

- _ 1 _
Jmse l = f,:- (3-80)
l ml

Recalling from Equation 3~70 that the oul'puf noise power P_is inversely proportional to
the input noise, N, we can write

e (3-81)

and

i
2
z

mse . (3-82)
| ml

From these expressions we see that the mean square error associated with each of these
processors becomes nearly equal when N < <1; that is, large input signal-to-noise
ratios, u result previously noted by Griffiths @41), Also, from Equation 3-81 it is
apparent that for large input noise power the norrulized mean square eror associated
with the minimum mean square error soluiion is relatively constant.
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4.0 OPTIMIZATION TECHMIQUES

This chapter examines cundidate optimization methads for the optimization
of a given array performance measure J (w). The methods to be examined can generally
be classitied as either search tuchniques, gradient (first order) methods, or the higher
order methods. The search techniques utilize only information about the values of the
performance measure at neighbcring weight settings to compute successively better
weights, The gradient method: utilize knowiedge of the performance measure gradient
at a particular weight setting in order to change that setting to un improved value,
while the higher order techniques require knowledge of the higher order derivatives of
the performance measure. From this examination it wiil be apparent that the gradient
technique known as steepest descent is the mest practical method for the implemeniation
of adaptive null steering arrays = the other technigues do not lead to simple ond effective
circuitry, Also, since the minimum noise varionce performance criterion requires ¢ con=
straint on the weights, a constrained gradient method, the projection gradient mefhod,
will be presented. These optimization techniques are designed for the optimization of
the performance criteria as presented in the preceding chapters, which require the
evaluation of appropriate correlation matrices, It will be demonstrated through the
method of stochastic approximation, and intuitive arguments, that instantaneous error
quantities can be effectively used; avoiding the necessity to consider averaged quantities
and resulting in muzh simpler implementations.

4.1 The Search Techniques

The search type techniques for optimization are essentially refined trial and
error methods. They proceed by evaluating the performance measure for several values
of the independent variable (the weigh's in the adaptive antenna problem) and from these
calculations an improved estimate of the weights is made. For example, consider the two
situations illustrated in Tigure 4=1 for the initial weight approximation wy. If the
optimum can be bounded by the interval [, 8], then a smaller bounding r.egic.n can be
established as follows. leta< wy < wz< B, then for

HoJlw) > Jlwy) oot € [w, £l

i) J(w]) < J(wz) - W e [a, wz].

opt

The next trial is then compared to J (w2) forcase i) or J (w]) for case i) and the process
continues until the ccrrections become small.

42
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Figure 4-2. Geometrical lilustration of Steepest Descent Procedure
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The method for choosing the next trial point within the new interval
defines the algorithm, e.g., the golden section or the Fibonacci search. Extensions
of these ideas can be obtained for multivariable problems (51) such os the simplex
method which constructs successively smaller geometrical regions which contain the
octimum sclution. These methods, however, have two distinct disadvantages which
disqualify them for use as cemputafional procedures for finding the optimum array
processcr weights, First, they require thot the precise functional form of the perform=-
ance measure be known [to calculate the trial values J (w;)], which requires that the
correlation functions for our problem be known. And secondly, they generally require
a digital computer for implementation and do not lead to practical circuitry.

4,2 The Gradient Methods

4,2.1 General Description

To obtain ketter convergence properties and more implementable solutions,
the gradient type optimization techniques can be used, These methods utilize the slope
of the performance measure for o candidate weight setting to generate an improved
estimate of the weight. This genera! procedure is best illustrated geometrically.

Figure 4=2 shows the performance measure surface for one component of the weight
vector. From this figure we see that to the left of the minimum the slope or gradient
of the error curve (or generally, a surface) is negative, while to the right the gradient

is positive. This property suggests the following algorithm to update an initial
approximation w, )

w, k+1) = w.k) ~aV.J (4=1)
i ] ]
w, (k)
or
wktl) = wk) -aVJ , k=0,1,2,... (4-2)
w (k)
where ot is a positive constant and VJ is the column vector aJ o oJ )T

-5-- BW" ..,aw

It is apparent that the choice of the constant o is critical to the success of this
algorithm. If o is too large, then the correction terms [aV;J]

4=5
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will be so large that the updated values will oscillate on each side of the winimum. On
the other hand, if ot is too small, then the approximations will converge too slowly.
Also, it is apparent that the gradient becomes very small (approaches zero) as the mini=-
mum is approached, and hence the convergence rate slows down, dictating an increase
in the magnitude of o as the solution is approached. Another consideration is that
certain components of w may be mo+ - sensitive to adjustment than others and it might

be appropriate to consider a matr:*  constants A in the modified algorithm

Dt b eCTad

Lo

IR

PRy

wk+1). = wk) - AVJ , k=0,1,2, ... (4-3)
w (k)

L TN

PRI PYY I Py

The choice of the convergence factor must be made withit: the context of
the particular problem to be solved. In the section on stochastic approximation it will
be seen that a set of equations which this factor must satisfy will also be specified.

Also, in the section on higher order methods the matrix A discussed above will appear

as the inverse of the matrix of second partial derivatives of J with respect to w. While
this is too complex for practical solutions, it does give an indication of how A might be
chosen. The method of steepest descent, as presented here, is seen to require the
evaluation of the gradient of the performance measure, but not the performance measure
itself, at each value of the weight setting. As will be demonstrated in Chapter V, the
method used to perform this evaluation will be one of the critical differences between the
various implementations of this method, As presented, the method of steepest descent
changes the weight (in the direction of the gradient) an amount dependent on the magni-
tude of the convergence factor. Other descent methods differ {535“ this in that they often
use different directions, e.g., the conjugate gradient method Also, some of these
other methods do not chan~ he weight a fixed amount, but calculate the exact
minimum in the descent di  ion (5]%. However, similar to the search techniques,

these methods are primarily suited for digital computer applications and do not lead to
readily implemented circuitry,
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4.2,2 Steepest Descent Implementations

753

< it e g < P A & W Eapdit ) A S LA LI N ST Ay PE SRl da o Ol R
ORI AN
X AN g < .y, % o -, o R RIS el 8 R A AN T T RN, O L 4]
T 2 P TG L T R RO YA SRR U N

: The algorithm in Equation 4=1 can be implemented directly in terms of

- discrete elements in the form of Figure 4-3a, or the equivalent analog representation of
Figure 4-3b can be used. This alternate form can be derived &om the differential
equation

G

-— = -aVJ,w(fo) =w.,t > to ' (4-4)
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whose solution will approach the equilibrium point dw/dt = 0 ot the minimizing value

of w where VJ is zero. The solution of this differential equation, represented in
Figure 4-3b, is

t

w() = W - @ f Vids. (4=5)

0

Again, the choice of the gain factor o is seen t~ " ~ critical if proper balance between
stability and speed of response is to be maintaineu.

4.3 The Higher Order Methods

4.3.1 General Description = The Newton=Raphson Method

The higher order optimization techniques are characterized by their use of
higher order derivatives of the performance measure, rather than just the first derivative
as is required in the steepest descent method. An example of this type of method can be
derived by using the Newton-Raphson root finding technique. This procedures is primarily
designed for the determination of the roots of an algebraic equation. To utilize it for the
problem at hand we must apply it to finding the roots of the equations specified by the
necessary conditions. That is, we seek the root W of the equation

Viw) = 0 (4-6)

which defines % which optimizes the perfermance measure J. The method proceeds by
constructing a linear approximation to the function VJ(w) at some approximation w = w
for the desired roct, That is, the nonlinear functional VJ (w) is replaced by a Taylor
series expansion truncated after the linear terms, giving the equation

viw) = Vitwg) + [Hlwg)] w-wp)+. .. (4-7)

2
J

where H(wo) = [-%T&—a(gﬂ)] is the Hessian matrix of second partial derivatives. The zero
i

1

of this approximation is solved for, giv'ng

=i
-H (wo) vJ w (4-8)

w
0 0

4-8
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which leads to the general sequence of approximations

1

wk+) = wk) = H (w.) VJ ,k=0,1,2 ... (4=9)

)
0 wik)

These ideas are presented graphically for a simple scalar problem in Figure 4-4.

The algorithm of Equation 4=9 is a second order method for the optimization
of the performance measure J since it requires the use of second order partial derivatives
of J. Generally these procedures yield faster convergence rates; howev.r, not only must
these derivatives be evaluated, but the inverse must be computed. These tvio operations
must be done at each stage of the algorithm, an obviously tedious process. Some
variations on this method can be used, which utilize the same matrix inverse for several
steps, but the algorithm is still too involved for practical implementation. As will be
demonstrated in the next paragraph, this method is essentially the evaluation of the
closed form solution for the minimum mecn square error case, a procedure which has
already been discounted as computationally unattractive. Methods using even higher
order derivatives are conceivable (for higher order performance measures), kut would
lead to even more complex calculations.

4.3.2 Application to Mean Square Error Performance Measure

It is interesting to examine the application of the Newtcn-Raphson
algorithm to the computation of the optimal weights for the minimum mean square error
processor. For this case the performance measure was given in Equation 3<5 as

Jw =x5lcw, Rw> - Re<w, r >+ 5] (4-10)

and the necessary condition for the optimum becomes

=0 =Rw -, (4-11)

the solution of which can be computed as w = Rx'lrx . Alternatively, the Newton-Raphson
algorithm of Equation 4=9 can be applied to this problem in the form of finding the roots
(solution) to Equation 4-11.

Since the performance measure is quadratic in the weights w, the necessary
conditions of Equation 4=11 yield the solution which is a unique minimum. However,
since it is quadratic, the first partials in Equation 4-11 are linear and the linear approxi-
m ation defined by the Newton=Raphson method is seen to be exact. (This can also be
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thought of as the "agproximation" of the original performance measure, which is
quadratic, with a quadratic function,) This means that the Newton~Raphson method
converges in one step - it is an exact procedure for this application. These facts car be
demonstrated by an examination of the equations required by the procedure. The matrix
of second partial derivatives in Equation 4-9 becomes H (w) = R, and the algorithm is
written as

wkt) = wik) -Rx" [R v - rxs] =R (4-12)

This is, of course, the exact solution of the set of linear equaticns given in Equation 4~11.
In other words, the application of the Newton-Raphson method to this problem is trivial;
however, it is interesting to dotain these equations because of their relationship to the
steepest descent equations and the implications they have on the cheice of the conver=
gence factor,

4.4 The Projection Gradient Method

In the past several sections candidaie optimization techniques have been
discussed and it is apparent that the method of steepest descent is most appropriate for
adaptive antenna problems, Since the minimum variance performance measure requires
that the weights be constrained, then a constrained optimization method must also be
presented. The projection gradient method is a steepest descent procedure for iteratively
(adaptively) computing the optimum of a constrained optimization problem. The proce-
dure is best described in terms of the geometric presentation of Figure 4-5, This figure ;
represents a two-dimensional optimization problem where the optimal w is required to lie ; 1
on the line (hyperplane) ]

2
Wyt w, = 1,(Z W,

i=1

1= <w, 1>). (4-13)

PRRLr

And sinice the performance measure J is convex, constant J surfaces are closed about the
origin. As shown there, the point or the line wy + wn = 1 which is on the smallest
constant J surface (i.e., the smallest value of performance measure) occurs where that
surface is tangential to the constraint set end is characterized by the fact that the gradient
of the performance measure is orthogonal (perpendicular) to the constraint set. Thus, the
necessary condition for an unconstrained optimum, i.e., that the gradient is zero, is
replaced by the condition that the gradient be orthogonal to the constraint set - that is,
that the projection of the gradient onto the constraint set is zero.
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Figure 4~5. Geometric Interpretation of Projection Gradient Method
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This illustration also indicates a procedure which could be used in an
iterative fashion, exactly analogous to the unconstrained method of steepest
descent. Looking at the gradient vector evaluated at the two points wl and w2
shows thet the negative of the projection (orthogonal) onto the constraint set always
points in the direction of the optimum, so rather than using the standard steepest descent
algorithm of Equation 4+2 we use the modified form

RPN e T

e Al

[EOpY

R

vemt

(4-14)

w(k+l) = wk) -aPVJ

. w (k)

= where P is a projection operator. It is interesting o note that the form of this projection
5 T

3 operator is quite simple (for this case it takes the form P = || - == , and the resulting

. algorithm can lead to as simple an implementation s the standard steepest descent
: solution of using an unconstrained performance measure. The application of this r.ioce-
dure to the minimum variance performance measure is presented in Chapter V.

4.5 The Method of Stochastic Approximation

The techniques develcped in this chapter are designed primarily to optimize

: the performance measures in the forms presented in Chapter 3. In particular, the steepest

1 descent procedure, the obvious candidate for practical implementation, requires the

L gradient of these performance measures. These gradient expressions require the a priori

: knowledge or evaluation of the signal correlation functions. Generally, these correlations
: are not known and their evaluation would require more complex implementations. How-
- ever, the method of stechastic approximation avoids these problems. Using this procedure,
3 the instantaneous signals available ct the anay can be used directly in the optimization
algorithm. This avoids the requirement to compute averaged quantities, thereby elim=
inating additional integrators from the circuitry,

For example, the gradient of the mean square emor performance measure
takes the form: ]

§

where R_and r__ are generally not known, but can be evaluated as finite time averages.

aﬂ

Vi=Rwa (4-15) g
XX :
That §=: * %€ §

=i}

Rx ~ ] f x(H* ()dt = x{Hx ) (4-16)
T
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& jﬁ* (Dxfe) dt = £ (0 - (4-17)
I

X

Denoting averaging by overbar, ¥J becomes

V) = x(Bx*(Ow) - §*()x(t) . (4-18)

Consequently, to obtain these correlations an additional integrator must be used in the
implementation shown in Figure 4=3b to obiain ¥J. However, if the signal bondwidths
and the convergence factor a are chosen correctly, this additional integration can be
avoided. In this form the gradient of J, the instantaneous error squared (rather an J,
the mean square error) can be used and takes the form (dropping the overbar abo2):

V) = x(t)x*(t)w(t)=&*{t)x(t)

x(t)y (1) = £*(t)x(t)
x() [y*(t)- §*(1)] (4-19)

This simplification can be justified using either stochastic approximation (33) or
intuitive arguments, botk of which are discussed briefly below. Also, these methods
will be illustrated in application to specific adeptive algorithms in Chapter 5.

4.5.1 Brief Description of Stochastic Approximation

Consider the problem of finding the extrema of

N

J(x},-x?_, Ce e X WE W ey, wm) = ./J\(x, w) (4-20)

where J'is a function of the determinisiic quantities w ~ the weights, and the siatistical
quantities x = the signals received by the array. Since J'is a function »f variables which

are known only in a probabilistic sense, then the extrerization of this funs*ion implies
the extremization of J which is the expected value of J, that is,

3= E[Tx,w)] = S Tx,w)p () d = 1/T Tfj‘(x, w dt. (4-71)
The extrema of this exgression are spezified bv the zercs of the gradient vector
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V=0 : (4-22)

and the steepest descent type adaptation scheme would take the form of Equation 4=2

whkt)=wk) - o V)3 (4-23)

w (k)

A

Since the probakility density function p(x) is generally not known, and its approximation
by « time average is often tedious, J and VJ are often difficult to compute. However,
gbe stochastic approximation algorithm involving the gradient of the instantaneous function
J is often utilized, and takes the form

w k) = wk)~ ol V3| (4-24)
w (k)

In this form of algorithm, it might be expected that the relaxation of the
requirement to compute an averaged gradient term {requiring knowledge of ihe correlation
functions) might necessitat2 a more stringent set of raquirements on the specification of
the convergence factor. These requirements generaily take the following form:

AR i, aats

o,

R S A R G A S R RN e %
o3 A KM

)
1. Lo (k) = o0 which ensures that there is an unlimited amount of
k=1
correction effort if required; and, 3
g 3
2, Z [a ()1” <00 which ensures that the correction terms go to zero 3 ﬂ
k=1 ;
so that the process cunverges. ; g
i
It can be established that under these conditions the stochastic approximation algorithm %
coniverges both in mean square H
. *2 .?
fim  Efwk -w Jo=0
k-0 op - (4-25) 2 3
and with probability one. % ,5
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4.5.2 Application to Null Steering Adaptive Arrays: Intuitive Argument

The use of instanraneous quantities for performance criteria has been
applied to adaptive array design in the past and heen justified both through the
explicit use of stochastic approximaticn and more directly through intuitive reasoning.
This will be illustrated in the discussion of specific algorithms ir the next chapter,

but nenerally this rensoning can be itlusirated as follows. Considering the control loop
of Figure 4-3b for the algorithm

dw _
= -ov) w), w (ro) =W, (4-26)
the weights w are given by Eguation 4=5 as
t
wit) = w_ - o [ V Jw)ds (4-27)
o

fer the mean square error performance measure of Equation 3=5 ¥ J (w) is given by
VJw) = Rxw - rxe (4-28)

which raquires that Rx and e be known or calculated from quantities availakle

at the array, Alternatively we could use instantaneous quantities as

v iw) = wckw - Exx. (4-29)
in tric form, Equation 4-26 becomes

dv A
T =-avIiw =~ aotw - £ {4-30)

Notice from Equation 4-30 that if & is small 2nough, then w(t) will remain relatively
constant and w will be essentially independent of ¥ J (w) and x{t). This can also
be argued thet if ¢ is smoll enough, the foop bandwidth of the control foop is much
smaller than the bandwidth of th.2 re -zived signal x{t) and the weights will vary slowly

compared to these signals.) For this case, the equation for the average weights w
comes directly from Equation 4-30 as
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T T exx*w o oa kxx (4-31)

1

R w +ar =-aVlw)
X X

That is, for ot small, the average weights computed using instantaneous values are
governed by the steepest descent equation fo the averaged performance measure.

4.6 Alternative Computational Proz. ., -

(AN

In this chapter *“e mathematical optimization rechniques required for the
design of adaptive null steering arrays have been presented. The<e procedures avoid the
necessity to know the correlation functions at the array and since they are continually
being updated they can be used in time varying environments. Altarnatively, if the
correlation functions are known or measured, then the solutions could be computed
directly and *he optimal filter could be constructed. However, these solutions require
the computation of a matrix inverse, often a tedious computational procedure, particu-
larly if the array has many elements. For some of the solutions the matrix which must
be inverted is Toeplitz, a fact which can be used to construct more efficient inversion
rovtines 7). However, if the statistics change due to a time varying environment,
such as moving emitters, jammers, and signals turning on and off, or changing signal
structure, then the soluticns must all be recalculated and a new fiiter constructed.

Another class of iterative coniputation techniques for the optimal oroc-
essors are the recursive methods. These procedures both measure and perform the
required inversions and matrix computations using etficient procedures which make use
of recursive estimation meihods to introduce the effects of new data and avoid the
requirement to re~invert the correlation matrix, Mantey and Griffiths(36) and
Baird’} have presented such processors which converga fo the minimum mean sguare
error solutions, while Baird and Rickard(?) have developed a similar procedire for the
unbiased, minimum variance solution. Thase procedures are suitable for proolems with
time varying statistics since the solutions are continually updated. Also, they have the
propecty that they are optimal at each stage of the iterative process, based on the data
used, whereas the steepest descent processors are merely asymptotically optimal. These
are u promising class of processing methods; however, they require further development
before practical implementations competitive with the steepest descent methods can be
designed.
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5.0 BASIC ADAPTIVE ARRAY ALGORITHMS

In the past several chapters the mathematical techniques required for the
development of optimum adaptive array processors have been presented. The optimal
solutions have been discussed, together with the adaptive optimization methods which
can be used to efficiently calculate these solutions in a complex time-varying environ-
- ment. As has beer. demonstrated, the most appropriate optimization procedure is the
3 method of steepest descent, which coupled with stochastic approximation ideas allows
the simplification of using instantaneous performance measures, rather than averaged

meqQsures.

In this chapter the adaptive aigorithms which have been presented in the
literature are described. The majority of these procedures utilize the basic steepest
descent=stochastic approximation solution. They differ according to which performance Q
meuasure they are designed to optimize, however, as was demonstrated in Chapter 3, i
for narrow band systems these lead to identical steady state solutions. Furthermore, it
will be apparent that they will exhibit essentially similar transient behavior. The basic 2
olgorithm takes the form

dw
dt
where 1 is the performance measure based on instantaneous quantities and a general
; block diagram is shown ir Figure 5-1, In this diagram the array output, a priori
3 information, and array inputs are utilized to calculate the instantaneous performance
measure gradient, which is then used in the steepest descent optimization algorithm :
of Equation 5-1 to find the optimum weights. The procedures discussed in this chapter
are primarily signal known or DOA known type methods, with little consideration as to
how accurate approximations for these quantities are acquired. In cther words, these
algorithms represent basic solution metheds, but do not qualify as practical solution

Ry

=-apfd ,wi)=w 5-1

R

"1 s PR RTINS, panhe

E techniques since they do not solve the acquisition problem. This problem will be con-
- sidered in detail in later chapters of this reoort.
5.1 Minimum Mean Square Error Algorithm
3 § In this section basic algorithms which have been designed to minimize
E § mean square error will be presented. Two such procedures will be illustrated, a signal
5 known type and a signal DOA known method.
¥ 5.1.1 The LMS Algorithm
g . Widrow, et al .(76), have presented an algorithm which minimizes the
¢t mean square error at the array output and is designed using the instantaneous error
, 5-2
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Figure 5-1. Generai Adaptive Null Steering System
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squared criterion. Considering the error between the array output and an approxi-
mation E for the desired signal, this criterion is

JGS =%

€

2. '/zl<w, x>=F lz 5-2

(where the % is introduced in the performance measures of this chapter to simplify
the gradient expressions). The gradient of this expression is

VJes = (< w,x>-§')*x=e*x 5-3

and the analog implementation (based on Figure 4-3b) becomes

g%«_: - o €*x, w(to) =w 5-4

This type of algorithm has been studied extensively since it was first suggested for

antenna array problems by Widrow, et al. (They also present an investigation

of the choice of the convergence factor a.) Using the implementation detailed ir

Figure 4.3b this algorithm can be constructed as shown in Fig--e 5-2, where the

integrator shown integrates both the real and complex components for the weight

Wy =Wy + jw,.
re Yim.

In the form presented above, the LMS algorithm is seen to require precise
knowledge of the desired signal in order to construct the performance measure gradient,
This is, of course, an unrealistic assumption (since it would obviate the need for an
array), however, several fixes have been suggested. Compton and Riegler( 6)
suggested that only partial knowledge of the desired signal is necessary here, and an
approximation for £ (such as the carrier frequency) can be us ', They have cslso
developed more sophisticated techniques for use with spread spectrum signals(47 .

The construction of a useful approximation for this form of algorithm is also discussed
under the topic of acquisitionin later sections of this report. Widrow, et al (76
suggested a two-mode algorithm which requires direction-of-arrival and alternatively
adapts to the environment and an inserted pilot signal constructed to appear as though
it came from the desired direction. In this form the array alternatively steers a beam
towards the desired signal, and then iries t~ steer nulls on all signals (inciuding the
desired signal), leading to a compromise solution which does not approach the optimal
weights.




5.1.2 The Modified LMS Algcrithm

; 43) Another variation of the LMS algorithm has been developed by
: Griifiths and uses ¢ mixed strategy of instantaneous and average quantities in the :
L grodient calculation. The gradient of the mean square error s given by ‘
L ;
] Vsl =Rw-r 5-5
: mse X x¢ :
':i
and Griffiths suggests that il we: have estimates for the desired signals direction-of- :
arrival and spectral density then we can calcilate T, » an estimate for rxé . He 4
- then argues that instantaneous quantities can be usad i place of R, and writes ff
: vJ as ; 3
i mse : k|
- vJ = xx*w = F 5-6
L} mse x€ 4
and constructs the algorithm (where y* =x*w) 4
g'vi="a(x)’*-? ) wit)=w 5-7

dt xg'! o o

It can be shown (43) that for sufficiently small constants a that the average value of
2N the weights computed using this algorithm will converge to the optimal weights. ‘

Chang and Tutuer(m) resent an alternative, and perhaps more rigorous .
P P
derivation of this modified LMS algorithm using a modified stochastic approximation

argument. If the performance measure J' is decomposed into two parts (where 5is J
formed using instantaneous quantities) :

A i AL AT

: j\(x,w) = J.l (x,w) + J2 (x, w) 5-8
They demonstrate that under certain con: "'i_ns the algorithm

4 dw T = -
3 a———-a(k)[VJ]+VJ2], w(to)—wo 5-9

(where overbar denotes averaging), converges both in probability and mean square.

To illustrate the use of this idea, again consi”” - the performance measure
of errcr squared in the form

.12
Jes(x,w)= % l <w, x> = ¢ 5-10

TR T

5«6
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Since the received signals x are noisy, ore would generally consider the minimi~
zation of the mean squared error, however, a stochastic approximation type algorithm
is simpler to implement. Expanding this expression gives

s = ‘A<W,XX*W>+(’A'€|2 - Re<w, £*x>) 5-11

-

where this can be decomposed into J] and J? os follows

p 2 .
Jes = J] + J2 = % o<w, xx*w> + (% , § | - Re <w,&*x>) 5-i2
The required gradients for the modified algorithm become

VJ] = xx*w = xy* 5-13

where ¥ = x*w = <x,w . is the complex conjugate of the array output and

V_ I N - - -
b £*x rx€ 5-14

where rxe is the signal correlation across the array, The algorithm then takes the form

X g [xyt =TT W) =w 5-15

x¢ < o
where 'F'x is an estimate for F This algorithm is implemented as shown in

Figure 5-3 where only estimates for the signal correiation (or spectral density) function

and direction=of-arrival need to be known, a reasonable assumption in many practical
problems.

5.2 Signal-to-Noise Ratio Algorithms
5.2.1 Applebaum’s S/N Algorithm
d)

Applebaum ™’ prezents an algorithm which is an extension of his side lobe
canceller work and is designed to maximize the signal~to=noise ratio at the output of
an adaptive array. He does not explicitly utilize steapest descent, but develops his
control loop using side lobe canceller circuitry (to solve the set of algebraic equations
for the optimum weights), which leads to an essentially similar design. Also, he considers
that the desired signal components in the array signals are negligible compared to the
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noise terms (the side lobe canceller argumont), but this assumption is unnecessary. To
implement his algorithm, he assumes a low=pass filter (with time constant ) and a high

gain amplifier (with gain ), are connected as shown in Figure 54, Before the amplifier

he adds the signal 7, , , which corresponds to the signal cross-correlation, but he also

considers the use of other quantities here to give particular artenna patterns in the absence

of directional noise. For this circuit, the kth weight is given by
wk=[-xk <x,w>+rx€]G 5=16

where overbar indicates averaging in the low-pass filter. Assuming the loop bandwidth
is small compared to the bandwidth of the complex envelope signal, this leads to the
vector equation {i.e. w varies relatively slowly)

w=[--xW+?' ] G

*§

~=- GRw + GT 5-17
X X
or
a o i
[Rx+—G—]w-—rx€ 5-18

Notice, that if G is large, then ' reduces to the Wiener-Hopf Equation
[Equetion 3-26], which gives the minimum mean square error weights. In Apple-
baum's analysis, he assumes x x~ n (noise only) and his equation takes the form

[®, + ] w=v 5-19
n G x¢

however, as shown in Chapter 3.0, Equation 5-18 also gives the optimal signal-to-

noise ratio, that is, one need not make the assumption x x~ n.

~

The dynamics of this control circuitry is given by the differential
equation )

dw ] _G~ - -
Gt ORI W= F R wh) =, 520
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Assuming | « GRx this becomes

gﬂ+—G-Rw=§-?’ , wt)=w 5-21
t T X T xe o] ¢

which has the desired steady state solution (%‘-:-

]
=

-1

w = R r
x x ¢

5-22

This differential equation is essentially the same as that suggested by Griffiths and
Chang and Tutuer. [f we consider the average value of the weights in their equation
(Equation 5~15), then we will obtain this same equation (see Section 5.5). Notice
then, that subtracting the signal correlation after a low-pass fiiter gives the same form
as subtracting it before an assumed perfect integrator. That is, Figures 5-3 and 5-4
lead to the same general form for the loop differential equation.

5.2.2 Other S/N Algorithms

Several othur invesiigators have proposed algorithms designed to maximize
signal~to-noise ratio. Shor (67 presents a standard steepest descent formulation, where
ke proposes to measure the required gradients using correlation techniques. However,
these measurements require the separation of signul and noise. His method of doing this
is to insert a strong pilot signal in the direction of the desired signal to measure signol
correlation, and to meosire noise corralations when there is no target {a senar problem)
present. This is similar ¢ Widrow's two-mode procedure, and as such dces not offer a
practical solution in a corimunications context.

Adams (1) has ciso developed a S/N algorithm, where he suggests a more
practically oriented procedure. He measures the gradient of the S/N ratio by calcu-
lating S/N at incremental values of the weights, which is found using a S/N ratio
detector, illustrated with his confro! loop in Figure 5<5. Unfortunately, this procedure
is limited since the S/N detector is designed only for use where a wideband signal is
operating against a narrow band signal.

5.3 Maximum Likelihood A!gurithms

The maximum iikelihoad type algorithms which have been suggested have
not led to the practical circuitry which wouid be necessary for the problem being
addressed by this study. Griffiths41) suggests such an algorithm, but it requires the
injection of a pilot signal, and os such, offers no more than the two pilot signal type
solutions suggested by Widrow and Shor, and is more complicated to construct.
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5.4 The Minimum Noise Variance Algorifhm

One final algorithm, which is based on the minimum noise variance
performance measure, is seen to lead to an interesting adaptive array processor. This
algorithm , suggested by Lacoss (52), is based on the projection gradient method dis=
cussed previously and takes the general form

4 R A
L e TR S YR

5. dw - ‘l -
a - -ePvd .y wit) =, 5-23

1 3J

] where the gradient of the noise variance is ———~ = R w and the algorithm

S becomes 3w

e 3

. dw _ _ - -

i aPf Rnw . w (ro) =w, 5-24

The projection operator P is designed to give the projection of the gradient onto the
constraint set <w, 1> = 1 and is derived below. It should be noted that the average
performance measure is used here, which requires an additional integration in the final
impiementation, but can be eliminated using stochastic approximation ideas under
appropriate bandwidth assumptions. Also, the difficulty of abtaining R, in the

. qwmimwﬂngx RtV

: presence of signal is showr to be avoided by a unique property of the projection
F operator,
[i : 5.4.1 Derivation of the Projection Operator

To derive the projection operator it is noted that the constraint set
<w,] > = 0 defines an m-1 dimensional hyperplane in the m dimensional complex
\ space “of the array weights. Any vector in this space can be decomposed into a compo-
= nent in a one~-dimensional space W, sponned by the vector 1 + j 0 and a component

in the m~1 dimensional space Wy formed by all the vectors “which are orthogonal to
this vector. That is

W, = qxix =all 5-24
W, = Ixj<x, 1> =01} 5-25

.

2
We can write any vector w as w = w~ + o1 and we have

<w, 1> =<cw + al,

s
v
it

(o)

acl, 1> 5-26
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which gives

>

The projection operator Py, that gives the orthogonal projection of any vector w onto
W1 gives

2 <w, l>
P‘W=P] (w +al)=al=—;—-—_’|_ 5~28
and in Euclidian space we can write,
<w, 1> 1
P]w=—-—--—l=—-——-—-—-w. 5-29
m - m

The orthogonal projection P onto W, is equivalent to the projection on the hyperplane
defined by <w, 1> = 1, since it is merely a translate of Wo. This projection can then
be written as

1]
Pw=(!-P])w=(|- ) w 5-30
and the required projection operator is
1’
P =1 - o, 5-31
m
5.4.2 The Use of Signal Corrupted Correlations

The algorithm as stated in Equation 5-24 is seen to require the noise
correlation matrix R, which must be calculated from measured dota. This data wiil
generally contain both signal and noise terms, however, if the inputs x do not contain
signal terms, R, can be approximated by

T
- !
R =R =~ Tfox(s)x*(s)ds 5-32

for T sufficiently large. In this case, it can be shown that the projection operator
allows the use of signal contaminated x’s . In general

5-14
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R =R +R
X n s

and for the sighal aligned array (See Equation 2-50)
R =511 5-34

The expected value of the approximation based on the finite time average in
Equation 5-32 will be

E[R] =R =R +511’ 5-35
X X n -
If the projection operator is used
E[PR ] =Pk =PR +SP1il 5-36
X X n i
where
T LR
Pl )=01-==]11 5-37
T m_l_lT
=11 - == =0
- m
then
] e
= = ~ — * -
e[PR ] =pR =PR ~P[ r.ll; x ) x * (s) ds] 5-38

Consequently, we see that on the average the projection operator allows the estimation
of PR to be made from PR .

5.4.3 A Two-Dimensional Examole

As derived above, the projection operator required for the implementation
of the projection gradient method is seen to be a constant matrix of simple form. Con-
seqently, its use will be seen to lead to little complication of the standard gradient
algorithm. To demonstrate this, we can examine the circuitry required for the imple~
mentation of a simple two-dimensional example. This is, of course, a trivial case,
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but the general form is the same for higher order arrays. In this case, we must choose
the complex weights W and w, to minimize

w
- = 1 . L
va = <w,Rn w>= 3 [w‘*,wz*] Rn[wz:l] 5-39

subject to w, + w, = 1. The projection operator as derive] above kecomes

1 2

5-40

roj— N~

I
2
2 -i
2

Using the results of Section 5.4.2 the algorithm of Equation 5-24 can be written for
this example as

T
dw - ~ = 9__ *
a_f-_ aPRnW~ T PfX(S)X (S)dSW(f),

0 5-41

w (to) =W,

Assuming that w varies slowly compared to the complex envelopes x , and notinyg
that x * (s)w = 7* (s) this becomes

dw -0 T
—— T ee— * —3 -
T T Pfo x (s) ¥* () ds, wit)=w, 5-42
For the two-dimensional example this becomes
11q T ,
%\:_v_ = :%!-[f i]fx(s) P* (s)ds, w(to) =W, 5-43
i ...2_ .2._ o
or
dw] T X1 (s)-xz(s)
—_—= - * - -
ar T Jg 2 YrEds,  wp ) =w, 544
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dw T x,(s)=x., (s)
2 _ a 1V 72 - s
dt T_/(; 2 Y+ 6)ds, "2 (fo)OWZO 3-45

which can be implemented using the circuitry illustrated in Figure 5-6.

5.4.4 The General Projection Gradient Algorithm

The simple two-dimensional example clearly indicates that the use of the
projection operator leads to easily implemented circuitry. To compare this method to
the others presented in this chapter we must place it in similar form. Using the sto-
chastic approximation arguments the use of the averaged noise variance can be repluced
by instantaneous quantities which will eliminate one of the integrators in the algorithm
implementation. For the general m-dimensionai problem the algorithm then becomes

d
d_:v_ = - P x(t) x*(t) w

117
=-a[l— = ]xmr* s

m

=-d[x {t) - :7‘ i2=:l X, (r)_l_] y* (), w (to) =W, 5-46

For the first complex weight in the array we write

dwl 1 m
rr _--m[xl (t)--"—‘i}il x. () ]7*(*),
g (ro) "~ Yo 5-47

m
which is illustrated in Figure 5-7, In this form the term .!".' p x, (t) can be
i=1

interpreted as an estimate £ for the desired signal. This gives
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‘: ~ 1.7 L ]
=gt WO =TT [0 400 |
i n, (t) +n, (t) +... +n (t;

; =t v — 2 m 5-48

m

where the £. (t) are all identical and add coherently <it na the array is pointed at the !
desired sugnal and the directional noise terms enter throu. ° the side lobes. !

TR A

= 5.5 Comparison of the Basic Adaptive Algorithms

5.5.1 The Remcval of Signal Effects

Most of the algorithms presented in this chupier have been deveioped as
applications of steepest descent=-stochastic approximation principies. However, as
indicated in the descriptions of the fundamental behavior of side lobe cancellers and
general adaptive arrays in Chapter One, an alternative interpretation in terms of . \
correlaticn methods can also be used ‘o describe their behavior. Examination of the
more promising ; acessors presented here indicates that they are all basically performing
a corralation of the array inputs with the array output and driving the weights from this
correlator, That is, they are attempting to eliminate the noise terms in the array output
by correlating it with the array inputs and driving the appropriate weights. This proce-~
dure is valid if the noises ate not correlated with the desired signal (generally a valid
assumption) and if the signai correlations can be remov.u so that they do not affect the
wseights, The basic difference between most of the algorithms presented here can be
interpreted in 2rms of how they remove these signal effects,

Widrow's basic Signal Know Type LIS algoritnm presen <d in Figure 5~1
avoids the signal correlation terms by subtracting {or perhaps blocking) the desired
signal using a priori knowledge about the signal structure. Consequently, the output
of the multiplier (correlator) will not contain terms due to the signal, and the integrator
is driven by noise correlation terms untii the weights are set such that these terms are
zero, That is, the noise terms are removed from the array output, For the medified
LMS algorithm, a DOA Krown method, shown in Figure 5-2, the signal effecis are seen
to be removed after the correlation has taken place. The cross correlation between the
desired signal and the received signals are computed from the signal’s BCA (and
spectrum if relatively wideband) and are removed by subtraction. Applebaum's proce
assor aiso removes the desired signal cffects after the correlator (See Figure 5-3) with :
somewhat ditferent circuitry, but the procedure leads te an essentially identical

5~20
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algorithm, as is evident from comparing the differential equations associated with the
two approaches. Finally, the projection gradient algorithm (Figure 5-7) is also a DOA
known type method, where DOA information is used to align the desired signal terms,
from which an approximation fov the desired signal is found (Equation 5-48) and sub-
tracted from the received signal. Thus, the desired signal effects can be removed at
any of three different points in the processor (as illustrated in Figure'5=8):

1. At the array output (basic LMS algorithm).

2. After the correlation (both the modified LMS aigorithm and Apple-
baum's S/N algorithm).

3. At the array inputs (projection gradient algorithm).

This interpretation of the adaptive array, in terms of a correlation device,
indicates that the various algorithms are indeed quite similar. Thus, not only do they
lead to the same S/N ratios at their outputs, as mentioned in Chapter Three, but they
are all performing basically the same correlation operation. This similarity will be

even more apparent in the next section where the differential equations associated with
the above processors are examined.

5.5.2 Basic Processor Differential Equations

An examination of the differential equations associated with the processors
discussed in the last section also indicates the similarity of these algorithms. For the
basic LMS algorithm the equation was given in Equation 5-4 as

*
a-r=-a€*x=-a(xx*w—gx) 5-49

Generally, these controi loops are designed (i.e., 0 is chosen) so that the weights
vary slowly compared to the complex envelopes of the signals. In that case, the
expected value of the weights are governed by the equaticn

£=~a[;;*:ﬁ;-?*x] 5 50
dt

or

=21
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For the modified LMS algorithm of Equation 5-15 the equction is

%’:’L= -~ a(xx*w -?"f) 5-52

and the expected value aquation again becomes

5’-‘-"-—+NRT=O¢?’ 5-53
dt X x &

Notice that this is the same form as Applebaum's control law of Zquatien 5-21 where

a~—§—. 5-54
T

The differential equation for the generalized projection gradient algo-
rithm was given in Equation 5-46 as

dw y- Ly 019" (1) 5-55
re - o[ x(t - = o xi( _]y

]

- alx(t) - FM 150
Since ¥* (t) = x *(t) w this becomes

gTw = - axx*w + ag(t)lx*w

g
=-axx*w-:—ag(f) w (6"l+2*) 5-56
wy
Jsing the fact that the weights are constrained such that le = 1 this becomes
dw . Sawy . oo T
g7 = T axx wt+ o[ EE*] + Ew n*l] 5-57
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Since the desired signal is uncorrelated with the noise, the expected value of the weights
- is governed by the ecuation
5 dw —
: T7 = “@R W+ oSt 5-58
t X ~
: where S 1 is the form for the desired signal cross correlation for the signal aligned
: array. Thus, the differential equation again takes the form
-d-w-+aR.\;=a?‘ . 5-59
dt X x ¢
where T = S1.,
X —

For all of these procedures, the differential equation is seen to take the

same general form, indicating that not only are the steady stute solutions identicai

‘ (with respect to output signal-to~noise ratio for relatively narrow band problems), but

K the transient behavior is also the same. It is important to realize that the algorithms
presented here do not represent practica: solutions, but merely define the basic form
(the differential equation, Equation 5-59) of the processor. To implement them effec-
tively, gnod estimates Z for the desired signal or its direction-of-arrival must be
obtained., This problem’is dealt with in Chapter Seven, while the behavior of the
basic array (described by the differential equation = Equation 5-59) is discussed in the
next chapter.

5~24
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. 6.0 BEHAV!OR OF ADAPTIVE ARRAYS USING THE LMS ALGORITHM ‘
- 3
: In this chapter we focus attention on the time behavior of an adaptive J
array using the LMS algorithm and determine the transient as well as steady state response ;

using spectral techniques. The steady state results will then be used in evaluating the
array performance described by the output signal to noise power and gain.

Y TN

6.1 Solution of Basic Differential Equations ;

T E TR T UV

6.1.1 Trunsient Behavior !

Recall from Equation (4-31) that the differential equation which describes j
the trajectory of the m dimensional complex weight vector through the m+1 dimension~!
weight-time space is ¢ "ven by .

TR

DA S

: dw
£ — +aRxw=ozr

dt ) (6" ])

xg ; w) = w
where R, represents the correlation matrix of the vector valued input x and is assumed to

: be positive definite, whereas r, g Tepresents the m dimensional correlation vector between
1 the desired signal &{t) and x.

o

LY NIV IR)Y AL RIEL RGPy

R TPp—

The appreach we shall use in solving this differential equatior is to utilize X
finite-dimensional spectral theory so that the vector w can be eycressed in terms of the
eigenvalues and eigenvectors end/or projection opesators associmed with the positive ;
definite matrix Rx. This techrique, although perhaps not well known among practicing
engineers, is very powerful and for our problems easily yields results for narrowband
environments with arbitrary array geometries. Let H denote the m~dimensional complex
Euciidean spa. = on which the matrix R, is defined, and let Ay, ...\, denote the dis-
tinct eigenvalues of Ry with corresponding eigenspaces Qy,...,Q . If Ep represents
the orthogonal projection from H onto Qp, then we can write R, a5

] 2
= ¥ -
Ro= 5 Ay (6-2) g

sl Aatotios il dy

IR VP SV X% S PTRC

where the projection operators have the properties:

B B = 0 i A (6=3)
Ei Ei = Eg i = i ‘6'4) '
£-2
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and

ié] E = L. (6-5)
p:

With this representation in hand, consider now the equation describing the
unforced resonse of the antenna system, namely:

dw -
?'F + O in-l =0 ; W(O) = wo . (6-6)

it is well known that the solurion of this differential ecuaticn can be written as

wit)=e -ath Wo 6-7)

=0t
where the expression e " is defined as

~oRyt 2 12 n nt"
e =l-aRet+ @R)" 57 .cc +(-1) @R) o +... (6-8)

Substituting Equation (6-2) into Equation (6-8) and using Equations (6-3), (6-4), and
(6-5), we write o Rt in te ms of the eigenvalues and projection operators, namely:

~ORyt g -OA ¢

e = 2 e P E . (6-9)
p=1 P
Thus the unforced response can be written as
/ -a)»Pf
wit) =% e Epwo . (6-10)

p=1

it is evident that the unforced response is well behaved; in fact the origin is asymptot-
ically stabie since

ol < £ e[| —0er—m
p=1

where we have used the fact that all the eigenvalues are greater than zero.

6-3
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Focusing now on the forced response we first multiply Equation (6~1) by

-0R, t . . .
e * and integrate, obtaining

t -oR (t-1) -ah,(t-T)
w(f)=afe X r d‘r=af* /) e P Er dT.
x¢ > p x£
o o p=l
Since the vector F is time invariant and since £ is finite, we can write
¢
S
£ ¢ maR(t-A)
wih=a Z (f e d\) E r (6-11)
— P x¢
p=1 %
which becomes
L -othpt
w(f)=2->\—-- (1-e ) E rx,,: . (6-12)
p=1"p P x:

Thus the complete time response of the weight trajectory is obtained by adding Equation
(6-10) to Equation (6~12)

-a)\pt / i -a)\pt
wH=% e Bw +L = (i-e T)Er. . (6~13)
p=1 P2 p=12p P

As t - oo , the weight vector approaches the optimum value

-1
r

w=Rx xE

which in terms of this development is clearly

-1 L
w=R r"inf_—l X E e (6-14)

To demonstrate the utility of this development we consider the following two exomples:

Example i:

Consider a narrowband environment consisting of one emitter, the
desired emitter, and an arbitrary m element adaptive sensor system with narrowband
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white noise in each sensor channel which is uncorrelated from one sensor to the next

with equal variance 02 in each channel. With reference to the nomenclature devel-
oped in Chapter 2, the covariance meirix becomes

= g2 -
Rx-ol+5v]v]* (6-15)

with

To determine the eigenvectors and eigenvalues corresponding to this mairix we proceed
as follows. Consider the vector

cy=avy . (6~16)

This vector is clearly un eigenvector since

R avy = (214 Svyvy®) (ovy)= T Smiv, (6-17)

where we have recognized thot v‘*v] =m. Thus < is an eigenvector with 0'2 + Sm as

its associated eigenvalue. The eigenspace Q, is the linecr space spanned by c. .
Consider, now any other eigenvector cp belonging to the arbifrary eigenspace

%. Since cp is orthogonal to < it is also orthogonal to vyi hence,

2 2
Rxcp-(d i+Sv]v] *)cp-— c cp. (6-18)

Thus, the eigenvalue corresponding to the remaining m=1 eigenvectors is 0‘2. There-
fore, there are only two eigenspaces for this example, the first being Q,, and the
second being thct linear space spanned by the m-1 eigenvectors corresponding to the
eigenvalue 62, The array response can then be written as

-a}\]f -a)\zf 1 -ax,t
wit)=e El w ote (I-E])wo+)\] (1~e )E] Sv]
1 -C!)\zf
+ X; (1-e )(I-E])Svl (6-19)
6=5
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where

A, = 02 + Sm (6-20)

(6-21)

>
n
Q

N R v

Since E]v] = v, we can write Equation (6-19) as

-aazf -a Smt

; wit)=e [(e ~1) E]wo + wo] a
S -a(02 + Sm)t %
g +—>— [1-e |2 (6-22) :
: Sm+02 g
! Thus it is evident that the larger the signal power the more quickly the weights converge 3

to their steady state value which is given by

TR
"

2
; we 5o v, (6-23) 3
: 1 +mS/o2
/ The corresponding steady state output signal power and noise power are seen to be given :
4 by |
§ P.=El < w,s(t)> 2=<w Rew>=5§| < w,v, > 2 (6-24) %
: 3 ' "S ;. %‘
mS/02 2 g
N ) (6-25) i
l+mS/c:!2 ]
1 and %
, _ 2_ - o2 2 ;
Pnt =E l < w,n(f) >| =< w,Rnw >=0 I ‘W“ (6"26) z%
: ;
(2 (6-27) 3
14mS/o2 %

et

Eednntin

6-6
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respectively . The output signal to noise power ratio is then easily given by

p S
S = . -
m(;?—) (6 28)
P
N

Thus we have established the well known result that the output signal to noise power
ratio is equal to the number of antenna elements multiplied by the input signal to noise
ratio at one sensor element.

Example 2 :

In this example we assume the same signal environment as in Example 1
except that we now include a directional jamming source which is assumed uncorrelated
from the signal. Utilizing spectru] theory we now develop the weight trajectory governed
by Equation (6=1)for an arbitrary antenna arrcy whose elements are symmetrical about the
geomefric center.

For this environment the correlation matrix becomes

2 . .
Rx = 0 1+ Sv]v1* + Jv2v2 (6-29)

where J corresponds to the jamming power at one sensor element. Our first order of

business is to establish the eigenvclues and corresponding eigenvectors of Rx' Consider=
ing the vector

C,= O, v, +V

17 AVt Yy (6-30)

as a candidate, then from the following equality chain
2 .
Rx(d]v:+v2) = (o I+Sv]v‘* + Jv2v2 ) (a]v] +Vy) (6=31)
= [O! 02+a Sm+S<v,,v >]v +[¢72+Jm+a J<evy,va>lv
1 1 1772 1 ] 177272
(6-32)

=A(alv,_+v2 ) (6-33)

6=7
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We see by equating the coefficients of 2 and vy that

A =dz + Jm+a.|J< ¥yrVg > (6-34)

2 .
a’h-a]a +dlSm+S<v],v2> (6-35)

Substituting Equation (6=35) into (6-34) and solving for A we obtain the quadratic

2
A2 [2a2+m(S+J)] )\+o4+02m(S+J)+SJm2(1 -fl’_l.'_%i__ )=0 (6-36)

m
whose solutions are given by
2 -
A =0t (s+d) + [ T (S-J)2+SJ<v RY >2}Jf (6-37)
' 2 4 1”2
and
: 2
2. m _Im e W2 271 -
Ay= 0%+ (5H)) [z—(s D+ 53<v vy ]2 (6-38)

The eigenvectors corresponding to these eigenvalues are easily determined from Equations
(6=34) and (6-30) as

c ___! m(S~J) +[m2(S-J)2 +45J<vy, V2>?j"f|
1 2
J< v?,v2 >

vy + Vo (6-39)

1
_m(s=J) -[m(s-0)% + 45 J<v v >2 12
¢ _{ 172

7 ' Vy+ Vg - (6~40)

2J<v] Vo>
To solve for the remaining m-2 eigenvectors, we note that any vector which is orthogonal

to ¢, and <y is also orthogonal to 2 and vy (provided the emitters are distinct). If ¢3
is such a vector then

a 2 * * 02
Rxc3 =(0 |+ Svlv‘ + Jv2v2 )c3 =0'¢c, (6-~41)

6=8

|

E-S
o
&=

78
b =4
t.':\,-
S




2
Hence ., is an eigenvector with ¢ “os its eigenvalue. This process can be continued
uatif ali"the remaining m=3 eigenvectors associated with 02are fourd, however, we
shall find that explicit knowledge of these vectors is not necessary.

The eigenspaces corresponding to the three distinct eigenvalues for R
are ncw seen to be

Q] = | one dimensional subspace spanned by ¢ }
Q2 = lone dimensional subspace spanned by CZ}
Q3 = {m~2 dimensional subspace spanned by the

eigenveciors associated with o l .

The term <v,, Vo> represents the spatial factor of the array. For a
linear array with spacing p, <Vy, Vo> can be shown to be

Sin [ E;:r—p(coso.‘ - c0502)]

Cc

<V V> = (6=42)
Sin { -7}-\[8 (cosel - cos92)]

c

where 6, and A represent the angle between the uxis of the array and the ith emitter,
and the ‘wavelength of the carrier respectively.

Retuming now to Equationf6-=13)and using the identity

| = E] + E2 + E3 (6-43)
we can write

_ =0t -aAt RN
wit)=e i E!w ’\] (1-e 1 )E S 2 F'Zwo

b e (1 X 2N v, v g ey

)\2 1T Z 70
2
+ -'7(l~e (l-E - 52) Sv4 (6-44)
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which w2 note is only a function of the orthogonal projection operators on Q] and Qg.
Thus explicit knowledge of the eigenvectors belonging to the subspace Qg is not
necessary. Yo dztermine the componerts of w,, in the subspazes Q, and Q we
recognize that w_ can be uniguely written as the sum of vectors

= ¢ey + 2Ch * ¢y (6-45)

where o) and @ure scalars yet to determined and ¢, is a vectcr belonging to the
subspace Q3. The compenents in Q} and Q,, being given by

<CyW >
E]wo = C-',ic' “c]H (6-46)
. <c2,w > 647)
My = .

The components of vy in each of these subspaces are computed correspondingly and will
not be explicitly presented. Substituting these results in Equation é~44)we finally
arrive at

LI P oy ®

- _ <Cq W >
wit) = aot -a)ﬁt aozf 1'

H 1“

2 <C2,w >

TS

7
1 Y cacdt . <SSV

+ 3[7\_]- A LY B L MTL-% c;
i 1

L2

~eht ety 4 < S V1>

Sl (-2 - 07 ] 2
c

-0021‘ v

) (6-48)

4

S
+ = {]
02
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We point out that since the weighis are dependent on 02, which is
normally much smaller than A, or A,, they tuke a considercble time to converge to

their stea'ly state. However, the output power of the airay du to the desired emitter
and jammer given by

PS(") S ‘ <w,v!> '2 (6=49)

Py = J| <w,vp>|2 (6-50)

are independent of }\3 and thus converge more quickly. This fact is readily apparent
since

Esv] = E3v2 =0; (6=51)
hence we may write

<Cq W > <C,p W >
1" "0 =0l t 2’7o
—-—.—T (c],v]>+ e 2 —-——2<C2,V‘>

”°1“ H°2”

P. =S [ e-a)\lt

2

£ e — e (1=e" A2 iﬁl}f (6-52)
<] e, ]
P, = 3 le-a}\]t <CpW> —aht  <S¥

3 <CG,vy> te 2 g <CyyVp>
”°1“ H‘z“

Py T 12 S
1]
S quamOhh <217 2
+ ——— -

”czﬁ
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As an example, let us consider the simple case when the initial w2ight vector is zero
with the signal power equai to the jamming nower, From this example

2
3
5
3
!
! 5
K4
|
3
3
4
4
t

we see that
<V, Vo> ,
A o= om0 ) {
{
<Vy Vo>
A = 02 _l 1'7°2 3
2 + mS(l —|) :
<Vqy,Va>
c = .—_]-,—2- v +V
1 5 1 2
[<vyv97|
&V 3, VaD>
1772
é'; <V],V2>|
:j;
<Yy Vo> A
<C]'V] D S cm—— m + <v],v2> X
| <viv9> |
e
<y, Vo> g
<CouVp> =o— m+ <vivy> ;
vy vy | ‘
<V:,Vo> 1
<€y = 'l c]H2 = 2m(l +l 1”2 I)
AV, VA> ;
<Cgr Cy> = 2m (1 -I 12 ‘) .
H
i
6<12
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The weight vector for this example can then be written as

<V V>
‘ 2]+."_1§.(]+'._!..'.-..g—') t\.
ot} = __§_§ 1 L a0 3 m /}
V.,V
26 ]+ﬁ(‘+'<l 2>l)
02 m
<V, V
<V, Vo> d21+ms(l-!——]-:-—2j)to
L/ B | o [ 152 05
|<Vyr Vol 2 ] ms (]-KV], v2>|)
cl m
<VarVod
1772
(vy = =———v,) (6-54)
i I<Vys Vo3 2
with corresponding output powers of
<V Vo
p(t)_s(sz m+l<v],v2>' ] -aaz[]*'l 'lm2:|t
sV 2) <V eV e
20 | S (a+ "1 l)
02 m
2
M= |<V, Y 2 mS Nl
1V 2l -aa[]+—-(l--—-————)t
+ l-e 02 m (6"55)
pams o <2 (
02 m )
. 3 S '(V],Vﬂ]
s 2f VR MV VR, Y 1+22 1+
Pit) = 5 () e AR U S o 4 (l-e-adz[+0'2( ey
20 178 0, I“’l"’fl) \ ;
pva m

o

RY
\ <Yy =m <v],v2>/|<vl,v2>'\ (‘-e_ao2 [] +E—g (- E_vlm 2>|)]> s
Vi,V \ ‘

( <1 ,2>|) /

mS .
]+;7(]- =

6-13




At steady state, the ratio of PS to PJ is easily seen to be

2
<Vq,Va>
1+ (2. LX)
P o m? (6-57)
] <vyvy>/m '

thus, the larger the powers the greater Pg/Pj becomes. From an antenna pattern point of
view the adaptive array is placing a null in the direction of the jammer while attempting
to maintain a large gain in the direction of the desired signal. This point will be
explored in further detail in the next chapter. However, before focusing on the steady
state behavior we present the Figures 6-1 and 6-2 which illustrate the time b avior of a
four element lirear array with half wavelength spacing at the carrier frequency using the
LMS algorithm. The environment consists of two emitters, the desired signal at an angle
of 70° with respect to the array axis with S/s2=10and a jammer at 60° with J/r2 =1000.
In Figure 6~1, both emitter and jammer are very narrowband, whereas, in Figure 6-2,
they both have constant power spectral densities over 10 percent of the carrier frequency
and zero otherwise. The antenna pattern is initially omnidirectional, since w,, is chosen
as [1, 0,0, ..., 0]* and then steers in such a manner as to attempt to place a maxi-
mum on the desired signal while placing a null in the direction of the jammer. It is evi-
dent that the wider bandwidth reduces the capability of the array to place a null in the
direction of the jammer since the jammer no longer appears as a point source to the array.

5.1.2 Steady State Behavior

The most important insight into the behavior of the adaptive array, for
many situations, is not obtained from the transient response but rather from its steady
state behavior. By taking the limit as t — o0 in Equation (6=13) we can analytically
examine many important characteristics of the array response for environments consisting
of relatively few emitters. For denser environments we must resort to a digital computer
simulations, however, the additional insight provided here is marginal at best for
narrow band environments. For wide band environments the problem is far too compli=
cated te be analyzed analytically except for one very interesting case which we shall
present shortly, and thus, we must resort to computer simulations in order to compare
the array performance in the wide band and narrowband environments,

We begin our discussion by considering an environment containing two
very narrow band emitters, a desired emitter and one interference source. The antenna
array is assumed to consist of m antenna elements arbitrorily placed but symmetric with
respect to the geometric center of the amay. We will also assume that thermal noise is

5-14
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present in each antenna element and is uncorreiated from one antenna to the next with
equal variance. Given this format we now proceed to develop the power cut of the
array due to the jammer, desired signal and thermal noise and evaluate the antenna
gain, signal=to-noise power ratio and antenn: pottems., We wiil then compare these
results for wide band signals, '

Recall that the steady state output signal powers of the array are obtained
by taking the limit as t — o0 in Equations (6-52) and (6-53). By taking this limit we
arrive at

2
[ 2J <V vp> ]
1+.'1'_2.(1-—T—-)
S \2 m L
Pe = S (~3)
’ _;f 1 mS K mJ mJ, mS <V]’\’2>2
1o 22, 0y B L L2 (6-58)
L 02 62 02 02( m )‘
and
- 12
<Vy ,Vn?
P o= J (S )24 . 1772 |
J 62 <V, va>2
e Do s Boh (@) @50 - —2)| 6-59)
. o o g o m J

The output thermal noise power can be computed in a similar manner since

o = VL (0

By taking the limit as t —> o0 in Equation 6~13 and substituting into the above equation
we see that '

mS vy \'2>2

mJ mJ
{ 2 1 -
[m(-70 )"+ (——-2-0 )(—-2-0 )\--70 ) +-Ta ) ( — )]

<V ,v2>2

[] + mJ mS mS, ,mJ )]2 (6-61)

2t gt @ ——

6-17
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It is of interest to evaluate these expressions as a furiction of the power
of the interference source and ascertain their general behavior. From Figures 6=3, 6~4,
and 6=5 we note that as the jamming power increases the output signal power and
thermal noise power approach a nonzero constant whereas P approaches zero.
Moreover, the smaller the level of thermal noise the less Py becomes. In the limit as
02 — 0 the output power due to the jammer becomes identically zero. Thus, a perfect
spatial null is placed in the direction of the jammer. This is generally true even in a
dense emitter environment as we demonstrate in the following example.

Example 3
Consider a nairow band environment containing p emitters p <m, a
desired emitter and p=1 jammers. If v, is not a linear combination of Vor e ey V

then the jammer power out of en arbitrary m element array is zero. P

To show this is the case, we recall that w satisfies the equation

R w = Sy (6-62)

X 1

or

p
(Svyvy* +3. J.vv.*) w = Sv., (6-63)
11 o i 1

Since the dimension of the space spanned by v;, =2, . . ., pisat most p=1, any
weight vector w belonging to the null spoce of Rn’ which is at least of dimension
m=p+1, such that

<V w> = 1 (6~64)

will do.

It is also of interest to note that the output power due to the jammer is
normally much smaller than the output thermal noise power provided that the relative
angulor displacement betweer, the jammer and desired emitter is sufficiently large. If
we take the ratio of Equations (6-59) and (6~61) we find that PJ/P takes on its maximum
value when Nt

1

J -
a2 <y v2> 2
m\/1 - T (6-65)

m
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and is given by

PJ | <v],v2>2/m2
5 = . (6-66)
n >2 >2
t max <v‘,v2 \/7 <v],v2
z[1- VT ]
m m

This ratio is always less than one provuded that <vy,v.>2/m? <8/9. (For a four element

linear array with half wavelength spacing with a desired emitter at 90° relative to_ the

array axis, these equations imply that if the jammer is displaced by more than 7. 5° from
P :

the desired signal then ?,-'L <1.) This behavior is shown in Figure 6-6.

n
t 1 max

Returning to Figures 6-3 and 6-4, we see that since P, goes to zero as J
becomes larger the output signal-to-noise power ratio approaches a”consiant value while
the output gain, which is the ratio of the output signal-to-noise power ratio to the input
signal-to-noise power ratio per sensor, increases as J increases. Explicit relationships
for the output signal~to-noise ratio and optimum gain are easily obtained since

S _ -1 S
N—; S<v‘,Rn vy (6-67)
.y
S <v.|,Rn 'v]> ) -1
Go = S = (J+o )<v],Rn v]> . (6-68)
J+a2

To evaluate these equations we see that for the two emitter environment the noise
covariance matrix reduces to

R = 021+ Jvovo* (6~69)
which has an inverse of
-4
Jo v.v
R =02 2_§ : (6-70)
l+mlo
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Performing the indicated innerproduct we see that

3 2
(52) (122 (y - "V"ff_>]
S al m2
x 5 6-71)
No 1+ mJ
52
and
J
U"'-—z') . <v],v2>2
G =m — 1+ - =), (6-72)
° ('H-"%—) ¢ m
g

Thus for large J, the signal=to-noise power ratio end optimum gain become

2
<VysVa?
2 % (M- —2) (6-73)
m
and
<Vq,V >2
G — 1+ "’J (- ..__‘___23__.), (6-74)
° m

As the relative angular separation of the desired signal and jammer bacomes small
<V ,v2>

5 — 1 resulting in a degradation in array performance as expected.
m

6.2 Conveniional Array Comparison

In order to obtain a meaningful understanding of the magnitude of this
degradation it is convenient to compare the response of the cptimum array with an array
which caninot adapt to a changing noise environment. An array which would provide a
very desirable comparitive base would be one using a Dolph=Tchebyscheff weighting
yielding low side lobes. However, the Dolph~Tchebyscheff weighting provides dbout the
same performance as a "conventional array" as the relative angular displacement of
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jammer and the desired emitter becomes small. Since the conventional array, which
denotes an array which cophases the desired signal in each sensor element and
coherently adds these signals to yield the array output, is more simoly evaluated
analytically e shall use it as our comparison base. A functional representation of these
arrays are shown in Figure 6-7, With the presence of the spatial correctional rilters,
the signal-tc -noise power ratio for the optimum array and conventional array become™

S _ -1 _
T = S<b Ry 1> (6-75)
o
S
§r&'= m =~ = M3 (6-76)
¢ _17 <1, Rql> <1, Ro1>
m
which in terms of the input noise covariance matrix becomes
S = s<l, FR FH) TN 1> =5 <R, R TV R (6-77)
No LAY n - -7 n -
2
> = mS (6-78)
c <F1, Rn F* 1>
where we have made use of the fact that F is unitary. Recognizing that
e-izﬂch”
F*l_ = e-'znchl2 =V
* ~
i e-;21rfc'rl o | (6-79)

*The subscripts o and c refer to the optimal and conventional arrays, respectively.
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we can reduce the above equation set to

=S <Vys Rn-"vl>' (6-80)

Z|v

1]

TR TS F O TTS, M T T
£
43

which we see is equivalent to the S/N ratio without the spatial connection filters, and

T TS

2 .
- mes (6-81)
c <Vq, R v,> .
7 "'n'l

zZ|v

The gain advantage of the optimum processor relative to the conventional processor is
now easily computed since

y
9
F
)
&
F
E
Y

¢

-1
' - = < (A" "min) A max)
3 G, S/N m?

Msg‘:&:w ol

-1 ]
G S/No <vp RO ve> <y, R vy

(6-82) ;

ek L Rt

Where A .- and A ox fepresent the maximum and minimum eigenvalues of R respectively.
We note that this ratio becomes unity when the noise field is temporally and spatially
white. Thus, the two processors have the same gainm in every direction.

With the completion of this development we now return to the two emitter
environment and compare the performance of the conventional array in the two emitter

: environment considered previously. The signal-to-noise power ratio as we!l as gain is
: now easily seen to ke

MR A ARSI A A M BTt sk a B L IS Bl Y

S mS/a2
N T 2
[+ &CVq Va2
J 172
1T+ (&) (6-83)
o2 2
and
m (1+ J/,2)
G = .
¢ Vg, VA
J V2
1+ (& 6-84
) —— (6-84)
6=27
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A comparison of the behavior of the conventional array and the optimai can be performed
by comparing Equations 6-71 and 6-72 with Equations 6-83 and 6~84. Figures 6~8 and
6-9 illustrate this comparison. From these figures and equations we make the following

observations:

ORI TR
T N Ay s -

a. ForJ=0, G =G =m
o c

HY

R T

i b. AsJ-— 0, G_monotonically increases or decreases to
: 2
{ m depending on whether —-—T-——-—z—- is larger
: Vyvy Vyvg?
E or smaller than m.
E , c. Asl —300, G]o asymptotically approaches the line
: m
" + — - \ 2
E 3‘ 2 (1 3 <VyrYy>4)
Ei } d. ForalllJ, G_>G
;. § ¢ c
- 0 S .S _ms
e. ForJ—O,-'\T— —N—-——(-I—i-
) c
) f. AsJ—oo, I\Sl monotonically approaches zero while §
] S . g
—— monotonically approaches &

] N
3 [+

-"%— [1- -li ST 2]. Moreover, for
g m

mJ S . md 1 2
— = 1, = isequal to — (1 ~ —5 <v,,v.>%).
2 N G2 o7 12

T
a0 FR R

deka ol e
Y

That is, the signal-to-noise power ratio has dropped to
50 percent of its asymptotic value. }

A g. As the relative angular separction between the desired ;
: signal and jammer becomes small, both gains and signal- ;
3 to-noise power ratios become equally poor.

Thus, for very narrowband erivironments a very desirable signal=to-noise
ratio and gain are obtainable from the adaptive array regardless of jammer power

6-28

G AR AR MR R MG D

PR = X sakis _




\

© RPN ATTIRA

oAy

-

mS
; o7
e
% mS
?3? 0

SIGNAL-TO-NOIZE

POWER
RATIO
'y

|
|

e e oo e e e e e ———— e e

———— OPTIMUM ARRAY

mS
o
1+ ] ! CONVENTIONAL ARRAY
<V v2) { S —
2 | 1 7 Y S Tt i ___D
m 1 2 3 4
mJ
(14 8651524

Figure 6-8. Optimal and Cenventional Signal-To-Noise Ratio

6-29

¢ ek e




S A AR A AL

uIpg) Apuy |PuoliuaAUOY) pup pwid *4-9 by

251598 2
—-E
A L ot 6 8 YA 9 S 14 € Z L
A 1 1 t 1 I 1 [l [l 1 1 { £
AN
mA .vl 7
v w P
- S A
\\
AVESY TYNOILNIANOD ™ —

T,
NAN> L>v

AVEIY WAWILIO

RN S LR YN SR

NIVO

6=30

oy

s

e s e S




y
e e
7 R ¢ ,:”"F'.e CF Ada B BV AR ity o -

i

FETHIE

e

Sl AN WA L A RO o A i i 4] TP
Y N SR VIR R T

.

AL B LB B g o

Crhk i t e Py H
[lite €62 Lo T N

provided sufficient angular separation exists. In wideband environments diffusion of the
signals acrass the array deteriorates the performence. The diffusion has the effect of
decorrelating signals between widely spaced antenna elements due to each emitter. As
the bandwidth increases the signals arriving at different antenna elements due to each
emitter become nearly uncorrelated resulting in each emitter behaving as though it were
isotropic noise. Thus, with increased bandwidth the emitters evolve from point sources
to distributed sources. The corresponding covariance matrix then approaches a diagonal
matrix. Intuitively, we can see that if the desired signal is widebend and the jammers
are also wideband, then placing antenna pattern nulls in the direction of the jommers
will not completely negate their power from the array output since they are effectively
distributed sources.

Let'sconsidera simple wideband case of a linear or planer array with the
desired emitter broadside to the array and one jammer. We shall approximate the
covariance matrix for this example as

R, = (02 + D) 1+5 1% (6-85)

The output signai=to=noise pewer ratio and gain for this exaniple then becomes

%T = ;_"5 (6-86)
o o+
G = m (6-87)

Thus, as the jammer power increases the output signal-to-noise ratio goe; to zero with
the gain remaining constant at m. From this simple example we can expect that the
amount of jammer suppression obtainable for finite bandwidth signals will certainly be
less than that given in the equations developed in this chapter.

An extensive study of the effects of bandwidth will be presented in

Chapter V11, however, we present Figures 6-10 and 6-11 to demonstrate the effects of
bandwidth on the performance of a four element linear array with half wavelength

. . . . . . O
spacing of the carrier frequency. The desired signal and jammer have azimuths of 70
and 60° respactively as measured from the axis of the array. Both emitters have a
constant power spectral density over a 10 percent bandwidth about the carrier with
S/02 = 10 and J/o2 = 1000. Hero we see the effects of dispersion of the jammer in
the array. As the jamming power increases, an increasing amount of the jamming power
appears at the array output reducing the signal-to-noise ratio and gain relative to the
very narrowband case. This performance dagradation can also be seen in the antenna
patierns which we now present.
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6.3 Optimal Antenna Patterns

In the previous section we addressed the influence of a jammer on an
adaptive array in a narrowband environment by examining the two descriptors: signal-
to-noise power ratio and gain. In this section we shall derive the expression for the
antenna pattern for the two emitter environment considered previously and show how
the antenna pattern can be decomposed into two partial patterns; one in the direction of
the desired signal and one in the direction of the jammer. We will then see how these
two patterns result in a null in the direction of the jammer.

Recall from Chapter 2 that the antenra pattem for an arbitrary array
was defined as

¥ = <w, R“w> (6-88)

where R is the covariance matrix of a ficticious source of unity power. In our narrow~
band enbironment Rp can be written as

R =vv?* (6~89)
TR
which together with the fact thatw = § Rx_]v], enables us to write the pattern as

=3

.

Y= <w, vv *w>=|<w,v > <R -]v V.2
B M x 1'p

For the environment consisting of a desired emitter and cne jammer, the pattern takes the
form

S 2 mJ J 2
(——0-2—) I (1 +—;§—) V> - (—;2—) VeV <v2,vp>!

Yv) =

mJ  mS mS \ md . _ 1 2712
|1+ 3t G ) U <oy ]|
(6-90)
The terms <v,,v > and <v,,v > represent the antenna beams in the directicn of the

desired emitter ahd jammer respectively. In fact, it can be shown that for p emitters
(p < m), the antenna will form p individual beams, one on each emitter.
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Figure 6-12 illustrates this decomposmon for a four element linear
array w with half wavelength spacing. In this figure the jammer is Ioccnted at broadside
with = = 1000 where as the desired signal makes an angle of 86° with respect to the

axis of the array with S/a = 10,

The gains in the direction of the jammer and desired signal are easily
computed by letting vy approach v, and vy raspectively. In particular

2 <V A\ >2
S J V2
¢(V1)=ES_= ([3‘-2)' “3?’- (1- m2 >| i (6-91)
5 J .mS . /mS\ /mJ 2,2
l”f‘+§§+(:2)((:-‘f)("";%<"1"’2>)‘
whereas
S \2 2
P (;§> <V V2> (6-92)
w(V2)='T=

T :

1
= (1 = =——<v.,v.>
a2 o2 ‘o2 dz)( m2 12 )|
A sequence of antenna patterns for the linear four element array is given
in Figures 6~13 for narrowband emitters and 6~14 for wideband emitters with 10 percent
bandwidth. Again we note the predominant effect of bandwidth, namely that the array

is no longer capable of reducing the cutput jammer power to the same degree as for the
very narrowband environment.
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7.0

ACQUISITION TECHNIQUES

In this chapter we shali address the difficult problem of acquiring a weak
desired signal in the presence of strong jamming or interference by use of adaptive arrays.
The intent is to develop a technique using adaptive arrays which will protect coded
communication systems from strong jamming during the prelockup phase before code tim=~
ing has been established.

One of the most notable researchers in adaptive null steering arrays is
R. T. Compton, Jr., of Ohio State University . He formulated the initial concept of a
power equalization technique for adaptive arrays which was based on proportional feed-
back control. He has shown that for a two-element array with two correlated CW signals
and no thermal noise, the desired signal power and jomming power can be equalized, thus
permitting matched filter acquisition of the desired signal of the array output. One of
the most interesting features about this technique is that it requires no knowledge of the
signal structures.

Although the signal and array model utilized by Dr. Compton was rather
restrictive it at least demonstrated that it was possible to provide a favorable signal-to-
jommer power ratio so that acquisition could be obtrined. We have also addressed this
problem and have analyzed and simulated diffzrerit techniques which suppress dominant
jammers to a point where acquisition of a weak desirec signal is possible. This study was
performed for arbitrary antenna arrays with wideband as well as narrowband signals in the
presence of thermal noise.

Two models evolved during our study denoted by S1 and $2, and are shown in
functional form in Figures 7-1 and 7-2 respectively. Initially, our investigation centered
about the model S1 shown in Figure 7-1 with the absence of the bias signal 7 and the
steering command vector z. It was with this medel that we demonstrated that in a
narrowband environment strong emitters were suppressed below weak emitters at the array
output which thus provided antijam protection for weak sources. In fact we shall show
that the signal-to-jammer power ratio out of the array is proportional to the jammer-to-
signal power ratio in one sensor. That is,

PS J
—PTJ— = B(#;) (7-1)

7<2
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where Bis o functiun of the number of antenna elements and the spatial factor of the array.

The major drawback with this technique is that evertually P ond P 1 become zero which
requires that the cdoptive array must be reiniticlized if acquisition is not obtained. Once
acquisition is obtained, the demodulated coded carrier is used as the reference signal &(t)

in the array which then stzers the array in the direction of the desired emitter while plac-
ing spatial nulls on the interfering sources.

7.1 Mathematical Analysis of Model 1

We now focus attention on the development of equatior 1. Consider an
arbitrary m element arroy in a narrowband environment consisting of a weak desired
emitter and a strong interference source whose complex envelopes are denoted by () and

L(t) respectively. If x(t) denotes the m dimensional vector of signals entering the sensor
elements then as deve.oped in Chapter 2 we may write

x@#) = s{t) +n(t)

where

L
-
—

il

C(f)"‘

= Lty n ()

)

=

g
|

given that ny(t) represents the vector valued thermal noise ct the array input. Ir terms of
these signals the complex envelope of the array output can be written as

m
vey = [ k)il(w,k - iw2k)xk](t)

or in the usual Euclidian inner product notation as
Y =L w,x>.

The error signal €(t) formed by subtracting the reference signai E ) fromy (1)
is fed back into the system input. The integral control thus steers the array until je 2(?); is
minimized. In the absence of thermal noise ¢(t) will become zero provided the reference

signal exacily correlates with the desired signal. That is, perfect spatial nulls are placed
on the unwanted intesference . sources.
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. Referring again to Figure 7~1 we see that the kth input signial s) is mulfi-
plied by w_and the result summed with the othar weighted anvelopes. The reference
signal is now subtracted from this resulant forming the error €. In the cbsence of the
reference signal as well as and z, the complex weight wy_is govemed by the differ-
ential equation

dwk
— .dé*xk = ~ax, xowSik=1,0..,m {7-2)

or in vector netation as

dw *
a— = 1} - T
Frai Oxx w=; w(0) W, (7-3)

By controlling the weights in this fashion, the instantanecus magnitude of the squared
error is minimized ar every time t. This was accomplished by selecting -g” to be equal
to -Vis(t)iz as developed in Chapter 4, That is, the weighis move along the path of
steepest descent, MNormally, the bandwidth of the control circuitry is much smeller than
the bandwidth of the complex envelcpes. In this case the trajectory of the weights is
sufficiently filtered so that w(t) is approximately equal to the average valve of w(t)
denoted by W{t). The average weights are then governed by equation (7~2) by taking the
expectation over all the random varichles resulting in

dw —_— _ . _ .
T RW = 0;W0) = w (7-4)

whare Rx is the covariance mairix defined by

R = ER). (7-5)

Henceforth, we shall drop the =™ notation recognizing that we shall eclways be using
average quantities.
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if the initial weight vector w_ is now salected so that the antenna pattem
is .nitially omnidirectional, then the correlator output channel is dominated by the
strong emitters. Intuitively speaking, the adaptive weights then initially move in a
direction to reduce these strong emiiters, the weaker signals being reduced later. Thus,
there should be some point in time, say t, in which the amay output consists primarily
of the weakest signal . If it is known that the desired signal is weaker than the surround-
ing jamming sources, then there should be a significant time interval in which the signal-
to-jamming power ratio is sufficient for acquisifion.
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Let us now focus attention on the solution of the vactor differential equation

7-4 with
1 (1]
¢ 0
] w =10
;\ o
» 0 .
i which describes the averoge array behavior. The approach used for this analysis is given :
i in example 2 of Chapter 6 and we shall so draw from this example for this presentatior. 3
3
From equations (6-48), (6-52), and (6=53) we sze that the weight trajectory, %
output signal power and output jammer are given by 2
4 —al.t SCpW > okt <CoW > 2
wii) =€ 1 1 02 c]+€ a 2f Z o <y .
e it I e, it ~‘
-t <cpw> <cpw3 i
: , He 12 It e 112 3
— 1 2 ;
8
2 £
ek b SCpEW_ ><CL V> <Chy'N_ DLCo V> ;
pot = spe oMt Thle TSV oy T2 00 T -7 :
el Il e, it 2 3
and A8
Y *<c],wo><c],v2> Y <LCor™ > <c2,v2.>‘ (7-8) 35
PJ(f)=Jle Ve ve 2 ;
lic, 112 le, 112 :
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7.2 Large Jammer-to-Signal Power Approximation

The equations developed so far, although they are exact for our model, pro-
vide little insight into the problem we have been addressing. The desired goal is to
obtain analytical expressions for Pg and Pj in terms of the signal power, jamming power,
and relgtive angular displacements that are simple enough to permit an accurate interpre-
tation of the behavior of the array without resorting to a detailed computer study. This is
thz problem we now address, the only assumptions being that S << J and that the array is
symmetrical obout its geometric center. This last assumption is not necessary, but simpli-
fies procedures since < v, vp> is now real.

Under these assumptions A;>> \o> Az ond can be approximated by

2
2 [ <V],V2>
Mmoo wm) [ 1432 (7-9)
L m
2 - NATA L <v],v2> S
Ap o tms|1- - 5 ] (7-10)
L m2 m J
_ 2
)\3—- c (7-11)
with a signal power and noise power given by
roo, <V V> 200
:"S?- s l_l - <V],v2> cos(¢]-¢2) + 3 ]e
m (7-12)
Vs> > ~2atA, t
V-2 <v],v2 _a()\_*_)\ ' <v],v 1
+2 - [cos(¢|-¢ 2 - T-]e 1 2) + m2 e }
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PJgS(—J-) ] |l-—<v],v >cos (P~ ¢2)+ ‘1 2 |e 2
<V~‘,V2> <V],V2> S <V]lV2>2
+2S * [l ( — - + I)]
m T m2
<V],V2>2 '20()\]'*')\2)"

+ (g_jS_ m2 1) cos(@ -%)

2
N {[] _ S_<v]'v2>22+ <VIve> (TSJ")Z
T3 2
+2[) -*_rn_i_] S il Z ol ) e (7-13)

where ¢; =%< o, by > i=1,2,

'a()“:+}‘2)f -a2)\]t
When S/J ( 1 terms involving e and e decay very
~a2)\
rapidly compared with the term containing e . Thus, after a shert period of time
say ty/ the signal power exceeds the jamming power, the expressions being given by

2
VIV petan (7-14)
7} e 2
m

Pg = {1 -r§<v],v2> cos(@) -¢,) +

2
S <V, VA
J) 122 {l-—-<v],v2>cos(¢] d>z)+ e
m

P, = S( W2t 2!
)=

m

(7-15)

These equations illustrate that the jamming power is suppressed relative
to the signal power by the ratio

'Sy _n’ (7-16)
PJ S <v],v2>2

7=9
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Thus over the time *nterval in which t> t not enly is the jammer suppressed below the
signal by at least the same amount it exceeded the signal before adaptation of the array,
Jut it is also reduced by the square of the normalized spatiol factor. The processing gain
obtained in this fashion cannot be achieved for all angular displacements between the
jommer and desired emitter since it is limited by the basic resolution of the array. That
is, as the emitter and jammer become closer with respect to the array, the term

1 - -m—<V]/V2> cos(¢] -éz) + T (7-17)

reflects the degradation of R due to proximity of the jammer, whereas

<V § <VyrV ;
. __.li_g__.{ ] --r%—<v],v2> cos(¢] ..¢2) + ——]—21—_} (7-]8)
m . m

reflects the degradation of P ) due to the proximity of the desired signal. For a four ele~
ment array with kalf wavelength spacing as shown in Figure 7-3, we have plotted the

two expressions given by (7-17) and {7-18) in Figures 7-4 and 7-5 in order to place proper
perspective on the influence of the azimuth of the {vo emitters on PS and P it

It is also of interest to note that P.(t) and Pj(t) are even functions of the
difference in the angles of arrival of the two signals and therefore exchanging location
of the weak emitter with the strong jommer has no effect on Ps(t) and P '(f).

For the purposes of illustrating the time behavior of an adaptive array, we
will again focus attention on a four element linear array with half wavelength spacing
between sensors. We shall examine the case when the desired signal makes an angle of
61 = 70° with S/02 = 10 whereas the jommer has an angle 09 = 60° wufh J/e? = 1000.
Figure 7-6 illustrates the timo response of the array in terms of Pg( t)/a and PJ(I')/U .
We note that the desired signal power relative to the noise variance dominates the array
output after t=3/ctA | and remains about 27 dB above the jammer power over the useful
time which terminates when Pg drives below thermal noise of t=400/c:Ay. We point out
that for linear adaptive arrays this desired performance that has been exhibited in this
example deteriorates as 61 and 85 approach zero. This is because the array places a much
wider null on jammer when it is close to endfire ard thus greatly reduces the gain in the
direction of the desired emitter. Finally, Figure 7-7 illustrates the time history of the
antenna pattern. Significant from this figure is the formation of the deep null in the
direction of the strong emitter.
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7.3 Analysis of Two Acquisition Models

The obvious undesirable feature of the adaptive circuitry just analyzed is
that the weights tend towards zero. Thus, if acquisition is not obtained shortly, the
array must be reiniticlized and the process repeated.

To eliminate this undesirable characteristic two similar but different
approaches were evaluated. These approaches center around models S1 and $2 with the
absence of the bias signal  which shall be discussed shortly. In reference to model S1
a steering command z was applied to the adaptive circuitry which has the form

]
0

z = *

0

where § is an arbitrary gain, whereas in model S2 one of the weights was fixed to one,
Thus at steady state neither model turns off, ard in the absence of directional sources the
two models are equivalent in the sense that they both have omnidirectional artenna
patterns.

The differential equations describing the average behavior of the weights
for the two models are rather similar and are given by

0

dw 0
S1: e +aRXW=o¢Z ; w0) =1 (7-19)

0

d 0

w 7

e +aRxw =or; w0 =|0 (7-20)
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where the (m=1)x(m~1) motrix ‘2 and the m~1 dimensional vacter r ore given respec~

tively oy
'2"! [xz*,..,,xm"] )
Ro=E| | J (7-21)
i Xm
'x?]
ro= E{x1* . } (7-22)
o)
m
7.3.1 Analvsis of Model S}

Te ascertain the trajectory of the weights and in fact the behavior of the
array in a narrowband environment we will again consider the effect of one strong jammer
ond a weak desired sigral and compare the responses of the arrays. We first focus on

Mode! S1. The weight trajeciory for this model can be computed from equation (7-19) and
is given by

wit) = fe akl'-r é a)\ t)]& +[e ~aA27+ ] “‘)‘2)]5
}\! )\2

+[e “"3*+-- (1-e~ %R 3h] Ew (7-23)

with the resulting output signal power, jamwmirg power and thermal naise given by

2
PS = Slew, vp!

(7-24)
Fy= J’<w, v2>i 2 ’ {7-25)

and
” w ”2 (7-2¢)
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Since Ay >> A2 andsince E3 vy = Eq v;b = 0, we can easiiy see that after a short
period of time the output powers are given by

~alat -Cin t
8 anzt s 2 2
P = S —— <E W,V > + e +-—-—(]—e )](E W V'|>
S I M 1 Yor V1 [ Ao 2%or
(7-27)
~0AnY 7 98 ;
- 2 3 - 2 ) 2
PJ-.J l—i—]-< Elwo' v2>+[e +-X-;(l e )]<E2w°,\2>|
(7-28)

Thus, the signal and jamming power approach steady state at a rate dependent primarily
on Ap which is primarily proportional to the desired signal power. Thus, the stronger

the jammer the less effect it has on the rate at which the output powers reach steady state.
As t— o0 the model reaches steady state which for this system is given by

_ 211 i 2
PS =S4 l—AT< E‘ WG' V.E>+ 7\-5<E2w°, V]> (7-29)
2
PJ =J§ l—;—]—< E} W v2>+ -{; ~E2wo, Vo> 2 {(7-30)

Upon substitution of the eigenvalues and evaluation of the innerprodusts, we arrive at

2 PRI 20 <vy Vo2 vy, v,
J 1772 v}, /ml 1772 172
(g1 A - ool -y o3 1+ L 2 e o)

P.= g g J g } m
S 2 _2 )
S J S\/mJ <VIIV2—\ (7"‘3‘)
1 25 )
2
2 ZVys Vo> 2t <V, VST <y, V>
() !+2(";52)[1- ALSN <¢2-¢,)]+{";52)[1+ ,,322 2oL 2co:<¢,-¢2>n
PJ: mS$ , mJ . /mS\ mly <v],v2>2}2
{noz +02+(62/<02;(1- — }J (7-32)

It is interesting to note from these two equations that if J/i;':2 ang S/az are large, then
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That is, af steady state the output signal~to-jammer power ratio is inversely proportional
to signal -to-jammer power at one antenna element. Henzce, under this assumgtion, we
will have certainly achieved our goal of providing a favorablé condition for matched filter

detection provided that Pg is not buried below the output thermal noise. However, under
this given assumption

2
<V 4, Var <V, Vad
5(62)[]'2 :n 2 cos(d)~py) + 122 ]
Pon o m (7-33)
ST <Viy,sV >2 2
m$S 1v°2
[+ (-]
m

which approaches the value

2 r <V, VD> <v ,v2>2]

d [ (7-34)
.- - (—%-—) L1-2 cos (&, =) + - J
J
<V},-V2>2)2
(1-—5—

as 5/02 becomes large, Thus, the larger the desired signal the smaller the output signal
power. The same is true, of course, for the jammer. Hence, it appears thai unless the
output thermal noise is becoming small Pg may well be below Py, at steady state. To
ascertain whether or not this is the case we shail now obtain an approximate solution for
Pn, at steady state under the ussumption that S/ is much less than oné.

Consider the foliowing chain of equalities
= 2.l 2 .
Py = O lIwli (7-35)

2.2

a“g” <R-g
X

]

-1 2 -2
W Rx W ST SW Rx w > (7-36)

22 IR a7
= a6 <w ’}?El“o+}\'§' E2~c+—-}-\? Eyw > (7-37)
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where E; again represents the orthogonal projection on the ith eigenspace. Simplifying
this equation we arrive ar

J J \2
;2 i 02) tom (02)
i ‘]-{ J oy, (md 2 ]—
' (o) (T3)
2
f <v] Vo> <v],v2>[ s ~$_2 ) VyV> 2] -
(1-2 cox (1) + = )2(02>+m(02>(1 N ) (7-38)
<vl,v2>2 <v],v2> mS 2 <v],v2>2 24

(1___.?____)[”2.».1(52)(1— ) (=z) (]T)J

m m

As the signal power increases it is easily seen that P"t approaches the nonzero value

<V Vo>

-_—-2 l] ) 2 [] ""-"-"—"—"m C03(¢] -¢2)] ! . (7_39)

Thus, it is evident that for a desired signa! input power, which is much larger than the
inpuf sensor noise, the output signal-to-thermal-noise power may be very small. One
approach to overcome this difficulty would cleorly be to decrease the depth of the nulls
on both the desired signal as well as the jammer in order to raise P and P, above output
thermal noise at steady state. That is, we shall rectify this bad snuahon{)y forcing the
antenna pattern to be more omnidirectional.  This is precisely the purpose of the bias
signal 17, By inserting the bias signal into each adaptive loop we are essentially increas-
ing the effective thermal noise. Mathematically, this can be seen by evaluating the
differential equations with the presence of bias. Consider for example the Kth loop, the
equation describing its behavior is given by

dwk

dt o

k*<x,w>— Unwk +c:zk s k=l,..., m . (7-40)

In vector form these equations become
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S5 = -aR + Mwraz , (7-41)

hence, an effective covariance matrix can be written as

*

_ 2 - |
RefF = Rx+ =@+ n) 1+ Svl vi+ Jv2 Vo (7-42)

If 17 is made very large then R (¢ is essentially diagonal which then yields a steady state
antenna pattern which is omnidirectional. Thus, by varying 1 we can vary the depth
of the spatial nulls placed on both emitters with slight effect on the output thermal noise,
as well as vary the convergence time of the array.

The effect of the bias can be seen by replacing 02 with o2 + N in
equations (7-31) and (7-32), and evaluating Ehe resulting output signal power and jamming

power. If S/J is much less than one and S/o “ is large compared to one, then the output
power ratio can be varied from

P
_S_ = .J_ for n=0 (7"43)
PJ S

to
P
S -3 for =0 . (7-44)
?J J

Thus, the price we pay for improving the ratio of P /Pnt is the reduction of PS/ Pj. How=
ever, even if PS/PJ were somewhat less than one, a\ere would normally be an’adequate

amount of processing gain in the matched filter to provide acquisition.

With these concepts in hand let us consider a situation where 7 is chosen
so that $/(g°+ ") is now much less than one whereas J/(¢“+ 1) is still much greater
than one. Again by reolacing g2 with 0%+ 1] in equations (7-31) and (7-32) and making
the obvious approximations we arrive at

2
2 <Vy,Va> <V, Va>
~ ) - 172 - V72 _
Ps=S(i) (12— ex@yd)r —5—1 -4
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~ 6 -,
P, = ——2-:—' (7-46)
m
3 whereas the output thermal noise can be shown to be
5 2
3 P, = ‘f‘ (1-1/m) (7-47)

o +7N

Thus, it is evident that the output signal-to~jammer pewer ratio can be wrriten as

2
P m$S mJ <V Vo> <V Vo>
? S M _ vt
—P_J-N<77)( )12 gy - ) = 108 r
: with a signal-to-thermal=noise power ratio of

.
TH Vi AR R AIANT ol b A 0 A A LS S 1 ¢ 108 TR b VI T ) Wk § P VbR WA s SRS i W a8

2
i <V, Vo> <V Y¥a>
; [1-2 22 cog-d) + __'__.2._] . (7-49) ,
P 1 72 2 3
S _ S m
L Pny o2 1 - 1/-

From equations (7-48) and (7-49) we can conclude that if J/S>> 1 then a bias signal
bounded by

S«<n< mySJ (7-50)

will ensure that

<Vy;Va> <v],v2>2]

cos(@, ~$,) + —— (7-51)

P >P, [1-2

Thus, if the bias signal is chosen to be somewhat larger than the desired
signal power entering a sensor, then regardless of how large the jammer, a very favorable
power ratio exists for acquisition both in terms of P/?y and P/ P, This is of course
provided that the two emitters are separated far enough so that

. 2 :
12 2 o gy v A ] (7-52)
m CO\P T 2 : \

7=22




£ HEder e e b S iy ) £ L bk Ll D o ke
e e e gk by L7 o
P— 5 A -
e, i ok s ) SOy SRR
ISR Lo L Ce SUEHE, ¥

u
ERTRR

" = o S LT T
B V03 11 ey S ooy S

I A

is not close to zero. Recall that Figure 7-6 illustrates the effect of this term for a four
element linear array with half wavelength spacing. From Figure 7-8 we see the response
of the array with the addition of the steering vector with S5 = 1 and no bias whereas

g

Figure 7-9 illustrates the array response with -62— = 100 and a bias signal of 7 = 100.
G

7.3.2 Analysis of Model 52

In this section we will focus our uttention on Model S2 and determine the
transient and steady state performance for the two emitter environments considered
previously and compare the results obtained for Mode! S1. |f we initially make n zero,
then recalling the differential equation for this model is given by

-O'I
0
I Gk W= ar 5 w0) = (7-53)
dt X ! .
0
we can easily write down the solution as
_ 1 oAt 1 ~aAot ] -aA3t
w(t) = -X—{(l -e )E]r+ _):_;g_(]-e JEor 4 T3{l-—e JE3r (7-54)

where r is given by equation (7-22).

To simplify our discussion we shall select as our reference point the geomet-
rical center of the :a=1 antenna elements with unconstrained weights and assume that these
antennas are symmetrical about this poinf. In this case r is given by

i®11 %o
r= e ]'Sv] + e(pz‘Jv2 (7-55)
_ - r -
where
-i¢ i
12 l4,22
e e
M PV Tl
-ip -id
e 1Im e 2m
e &
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where ¢i = i <da, bi>, and where the eigenvalues and eiganvectors can be
[od

obtained from equations (7-37) fhraugh (7-40) with m replaced with m-=1. The correspond-
. ‘ ing time response of this system is very similar to model S1 when only the steering vector
1 with —2- = 1is applied, as is evident from Figure 7~10. The steady state powers are

: : very neurly the same also. To demonstrate this analytically we recall that
1 : 2 .
+

) #n 7 ] ! %y
S!<w,v >~e ’ S[<-}—\-]-E t+ = }\2- E2r+ -1—;E3r,v]>—e ! (7-56)
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and

= .02 (1+ “w” 2) . (7-58)
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Performing the indicated innerproducts we obtain
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and for the large jammer-to-signal power ratios the output thermal noise is
2
2 <V1rvo>
Al (3] -
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where m' denotes m-1. Comparing equations (7-59) and (7-60) with equations (7-31) and
(7-32) we note that they huve exactly the same form and thus model $2 behaves in almost
exactly the same way as model S1 at steady state. Thus model S2 has a similar acquisi-
tion performance with the addition of the bias signal as does S1. Figure 7-11 illustrates
the behavior of model 52 with a bias signal in the two emitter environments. It is of
interest to compare this result with that of model S1 given in Figure 7-8 and note how
similor they are.

Throughout all of our analysis in this section we have focused on signals
whese complex envelopes are very narrow band. The reason for this restriction was the
fact that the covariance matrices had a very unique structure which was utilized to our
fullest advantages. As the bandwidth increases the signals diffuse across the array, the
matrix becomes more sparse, making an analytical approach very difficult if not impos=
sible for an arbitrarily large array. It was hoped that the analysis presented here would
lend some insight into environments consisting of wider band emitters. Although a
detailed analysis of the behovior of adaptive arrays in wideband environments wiil be
presented in the next chapter we now present the time behavior of model $2 in an
environment of two wideband emitters. These emitters have a constant power spectral
density over a relative bandwidth of 10 percent, with respect to the carrier. The total
power relative to thermal nuise per sensor for the jammer is 1000 whereas that of the
dsired signal is 10, Figure 7-12 shows the time response for model $2 with a bias of
100 with Figure 7-13 illustrating the time behavior of the antenna pattern. We see
that even for this case acquisition is still possible even though the effects of the wider
bandwidth relatively deteriorated the model's performance.

7-27

B 8 s e s A A e A N A B A AT A

e KA d IS A L it LN ted it DAL SL MR £ e 1B AR A APV TH




|

- - o e S i 2o i e L S
1 :
A
e
0 = U yi1m sjpubig pupqmoridp K19 A 104 ZS |9POW J0 asuodsay juzisubil *Qf-z 310614 M
os-tsn INIVANION 1SIDUVT 4O SWHIL NI WL
‘vo  'vo lyp o lyo o vo v 'vo 'vo  lvp o o o 'vo
%501 006 008 Ll 009 005 00¥ 00% 002 or ol g 9 Y F3 o
_ -
2 4 oz-
ﬁ//‘/’ &
' // [o0) :
| N of 4 ol- N
] 4 !
&
_ i . AN g
) i S S ¢ 2
—t— ——r ) N
i “ ///T 2 “ 3
£ o
L 1 009 = % T 2 4
b : _lgh— — 4 ; 'S \ o 3 :
s ; OQN = . o/7d kY s 9
o ' )
W. Py, 0/ 4
s rere = oS
mm w9z =, o/ 4] " . o .
m wegs- = ,0/% ]
/ 3IV1S AQYILS 1Y )
, ;
B _ " o¢
b
] |
W‘M &
3 k
ks

R or e e I S S A S

s ot ot 2 nd T e e ST b e




SIETET Wy, T T R SR T T T T T T TS BRI T A AT T T

8, = 60°

w30 S ph Tt AR

10 == Y /

NORMALIZED POWER dB
\\v
=~
Q

S
Fo
S
2
-

,,
-
&

0 2 4 s B 10 i
= X @Ay aky ad; an Xy

. TIME IN TERMS OF LARGEST EIGENVALUE 658851

: Figure 7-11. Transient Behavior of Model S2 for Very Narrowband Signals with n=100

2
“

3

YRR

R

o

< - ﬂz%&"“*""‘“‘;s""’"“"““

7=29

K e P ey e

K9

>

: )
¢ N

P
~




30 ' : 8- 70°
_ ~ 6= 60°
o . ,
1\ -
“;-' 20 - v
s N\ |
o P /02
(o) S P 2
g 144
5 J/
g (1) I—
Py
2 Pn'/a
W . . — "
o 2~ . 4 & & 10
TIME IN TERMS OF THE LARGEST EIGENVALUE . 86588-52

Figure 7-12. Transient Behavior of Model S2 for Signals of 10% Bandwidth with 7= 100

7-30



o~y R SR LY TR

T P TS T S Twy g e e —
A e pian

MR A e Lo i Dy R

Figure 7-13. Antenra Pattern Time Behavior for 10% Bandwidth Signals

7-31

R e e oy L e S

- A 1 TRt AT i,

)

¢ wanend




e IOR
¢

- u;crl
I AR e+ i i

e A & R ‘s S O T Y o
ot R L8 L) R N S MY AL PRI Ny G 1 BE w1 b
s 3 Y2ey) (TR &

CHAPTER 8
PARAMETRIC STUDIES OF ADAPTIVE ARRAYS




8.0 PASAMETRIC STUDIES OF ADAPTIVE ARRAYS

in the preceding chapters, the theoretical basis for a:'.ptive null-steering
arrays was coverad, and some nunierical examples were given. It .\e murpose of
this chapter to show more detailed and numerous numerical studies ¥ | “acts of the
various parameters of an adaptive null=steering array. In particular . ¢ 1 parameters
will be emphasized.

T L L e by g e ok,

= a. Bandwidth
3 b. Jamming power
c. Signal power whe present

d. Angle(s) of arrival
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e. Multiplicity of jammers
e f.  Number of array elaments
g. Bias level

The case of a single jammer will be empbasized because this simpie (but very important)
cuse will iliustrate the basic response of an adaptive array; the multiple jammer studies
shown bear out that jammer null depth is not seriously affected by multiple jammers.

Aiso, for simplicity, one weight constraint was used almost exclusively
in this study, that of the left weight fixed at one value (~1). Chapter 7 has covered
the relation betweer: this fized weight constraint and other possible constraints or forc~
ing functions used to keep the waighrs from going to zere. Also, the initial condition
is always wo = {~1.0, 0.0, 0.0), uniess otherwise stated.

As a final simplification, most of this chapter will corcenirate on the
hiosed Jammer Suppression Techm ue for suppressing a dominant jammer befors a signal
is acquired, The raasors for this emphesis are:

kel AR 1/ d S a i et
AT . .

a. The acquisition period is the most difficult time to make use of the
null steerer.

b. The "Known-Signal" algorithms (such as the LMS array) have aiready
been investigated to soma extent, wherens the Jammer Suppression
concept is new.

_ . S -
i ik _ P = ~ AT 2 RIR __“mmwﬂ




¢. Control of nulls on jammers is much simpler and more straightforward
when the jammer can be isolated, such as in the error signal of an
LMS algorithm; in the Jammer Suppression technique, the tradeoff
between signal and jammer loss is more criticul,

teoskd

d. There are time delay problems with implementing LMS algorithms,
especially for many coded signal sources, while the biased suppression
technique appears much simpler to implement.

SIS g&w »"R‘ X

220

Several significant simplifications in the parametric studies can be made.
it has beer. shown theoretically and numerically that if a jammer is much larger than a
desired signa! (i.e., "dominant jamming power") and angularly separated from the signal,
then the iransient and steady state behavior of the output jamming power is essentially
unaffected by the small signal level. Thus, for the jammer suppression technique, a
jammer may be studied withcut the signal present and, most important, without catego~
rizing signal parameters. This is not true for the Widrow algorithm, which must maxi-
mize the signal. It also does not apply when the number of unremoved signals exceeds

the number of array elemenis.

o T T A i i ST

wfre ande o

The following paragraphs will cover:

8.1 Transient Behavior of the Biased Jammer Suppression Technique

PEETETTTN

8.2 Steady State Jammer Null De ~ in the Biased Jammer Suppression
Technique

8.3 Steady State Qutput Signal and Signal-to-Noise Improvement with
the Biased Suppression Technique

8.4 Known=Signal (LMS Algorithm) Adaptive Array Behavior
8.5 Overspecified Arrays (Numerous Unremoved Signals)

8.6 Polarization Considerutions

The calculaticns done in this chaptar wera done with programs developed
on internal research and not part of this contract, although result« of these programs are
being made availaole herein. The basic transient computation is a numerical
eigenvalue caiculation and ths steady state values are from numerical calculations of
the Wiener~Hopf equation. The numerical solutions were required because the
analytical solution approach of Chapters 6 and 7 cannot be used for finite bandwidth
or numbers of emitters areater than 2-3.

i 3Bk
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8.1 Transient Behavior Biased Jammer Suppression

Although most of the results in this chapter deal with steady state per-
formance, it is important to begin with several examples of transient performance in
addition to those provided in Chapter 7.

8.1.1 Typical Results Using Eigenvalue Solutions (vs Angle, Bandwidth and Bias)

An example of the sffect of angle~of-arrival on transient performance of
an adaptive array using the Jammer Suppression Technique is shown in Figure 8-1.
This plot is similar to those in Chapter 7. Relative output power vs relative time is
shown for both the signal and jammer. The powers are relative to output thermal noise, Fn,,
which is plotted at 0 dB. Note that some plots in Chapter 7 and a few in this section
are relative to input thermal noise, g2. The time is relative to the fastest (smallest)

time constant in the eigenvelue solution, 7= &')\l"' . This time will be related to

absolute time later in this section, Time is piotted linearly to 10 units, then logarithmic-
ally to 104 units. In this example, signal is plotted starting at 10 dB while jamming

“

at each

. . S
starts at 30 dB. These starting values represent the input values, ——,
o

omnidirectional element, with the initial condition of only one element "ON" (one non-
zero weight). Two cases of jammer angle are plotted in Figure 8-1, 6 = 45° and 60°.
For both cases, as shown, the number of elementsm = 3*, the signal angle §; = 70°, the
bandwidth BW = .12, In both, the jammer is quickly suppressed to about the signal
level. The signal behavior depends upon the jammer=signal separation angle and initial
signal~to-noise ratio, as discussed in the very narrow band cuse in Chapter 7. For the
iammer at 60°, the signul is quickly suppressed 5 dB along with the jammer; for the 4
jammer, signal actually rises slightly for the first ten time constants.

However, neither rhe signal nor jammer output is close to the steady state
values at 10-100 time constants, as shown in the right-hand portion of Figure 8-1.
Both signal and jammer experience = 15 dB further loss to below thermal noise with
v “ry slow time constants being controlled by the very small eigenvalues which are
related to thermal noise.

in summary, three significant points are to be noted from Figure 8-1:

a. The dominant jammer is rapidly suppressed to the desired signal
level in this and most other cases. Thus, after a short time, signai
acguisition using matched filter gain becomes more feasible.

* Throughout this section the number of elements is denoted by either m or M
interchangeably .
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b.  After several hundred time constants, both signal and jommer are
suppressed below thermal noise. Thus, simply calculating signal-
to-jammer ratios in the steady state is not indicative of whether the
signal can be acquired. Thermal noise must be included in the
calculation.

c.  |f the signal and jommer are close together, the signal will be sup~
pressed more rapidly and further than if it were widely separated
from the jammer. This is because the signal is in the null being
formed on the jammer.

The same kind of plot is used in the next six figures. Figure 8-2 shows
the effect upon biased suppression of bandwidth changes. In this case, nine elements
were used and a jemmer 40 dB above thermal noise was assumed. The bias level was
made approximaiely equal to the signal level to prevent deep signal nulling in the steady
state. The bias level probably makes little difference on the first part of the transient
behavior; however, a bandwidth change from 1 percent to 12 percent with nine elements
drastically changes the initial behavior of the jammer suppression. With a 1 percent
bandwidth, the jammer is suppressed rapidly to the signal level, as in most cases studied.
With a 12 percent bandwidth, the jammer is suppressed only 10 ¢B until 100 time units.
An explanation for this may be clearer later when a frequency response plet of a null is
shown; simply put, the null is not wideband enough to prevent some dispersed jammir~
energy from entering the array. This dispersed energy appears to act like thermal nouse,
without a direction of arrival; just as high thermal noise causes jamming to level off at
a high value, the jamming in this case levels off ixitially at a very high level,

The effect of transient performance upon bias level changes is shown in
Figure 8-3, for the case of m=9, ;= 70°, Gi = 45°, and BW = .01. Bias level, n,

= 10 dB,

relative to thermal noise, is in the three cases 0, 962, and 9902, so that 5
0 dB, and =10 dB, respectively. o +0

The three cases show essentially the same performance, except in the
steady state, where signal is much-greater with respect to jamming and thermal noise
as bias is increased.
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8.1.2 Typical Simulation Results

The previous exampies were the result of numerically computed eigenvalue
solutions. Complete results for very long averaging times are possible. However,
another way of computing adaptive array performance is with digital simulations of both
signal waveforms and adaptive array processing. Such a simulation is described in
Chapter 9 to characterize a null steerer in a TDMA environment. Results of several such
simulations are shown in Figure 8-4. Bandwidth is .001 and there are three elements.

In the top figure, the signai is a broadside (85 = 90°); in the bottom figure, ot endfire

(85 = 0°). The input jammer level is J /. 2= 30dB, and the signal is at 10 dB in one

case and 20 dB in the other case. The jammer angle is set at 70°, 80°, and 85°, For

* all cases of jammer angle, the jammer is suppressed rapidly as predicted by the eigen-

] value solutions. The signal is not suppressed much at 8; = 70°, but is increasingly at :
80° and 85°, since the signal is falling into the jammer's null. Nevertheless, in most
cases, output S/N is improved over the initial -20 dB input S/N. In the bottom figure,
the signal at endfire is seen to be much more sensitive to even reiatively large jammer~
signal separation angles. The endfire signal location is obviously a poor arrangement for

¢ adaptive arrays, as it is for ordinary phased arrays. The endfire case is not emphasized

; because it would not be used operationally. Circular arrays or some form of elements

with near "broadside” capabilities in all operational directions is clearly advisable.

The linear array here is used only as an initial, simply analyzed array for investigation.

JR O . L ac o C T

These simulations demonstrate that the expected value equations give the

s same results as the actual circuitry, in which only instantaneous quantities (not averaged)
are multiplied and supplied to the integrator. The simulations are expensive to run, and
do not show the steady state values predicted by the expected value equations with the
few iterations and the rather large convergence constants (large loop bandwidths) used.
An important corollary is that analog circuits with significant loop bandwidths may

not achieve these steady state values either. !

L WY EAN AL e b SIS I I S

4 An analysis of the effect of large loop bandwidth is shown by Brennen,

’ et al. (13) who calculate the total output variance (noise) of an adaptive array as ihe

] sum of the noise and jammer variance used in the calculations of this report, plus an
additional output variance due to the variance of the weights caused by the finite loop
bandwidth. Even though deep suppressions are predicted in the noise and jamming
variance output, the weight variance can cause significant reductions in the steady stat
null depth predicted by the expected value differential equation solutions plotted in 8- 1.
In other words, the steady state null depths predicted in 8~1 are only approached with
very narrow control loop bandwidths.
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Figure 8-4. Computer Simulations of Acquisition Behavior -
Interference Suppression (Linear Array, Fixed Center Weight
Corstraint, Unbiased, BW = ,001)
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8.1.3 Absolute Time

Throughout, this report, time is normalized to the time constant of the
largest eigenvalue (T=€YX)’ or fo q iteration count, Just how fost such loops
can operate in real time is not given, although the relative timing of the initial jammer
suppression to later suppression is correct.

Actualiy, the equation can give little clue to how fast such loops can
operate, since they only deicribe a system of first order differential equations which is
uncerditionaliy stable for any o (integrator gain); thus T can be made arbitrarily smail
in the expected value equations.

The actual limitations in maximum speed of the loop are:

d. Mathematical; the expected value equations kold only when the
loop bandwidth of the control circuit is small compared to the input
bandwidth, so that many independent values of the instantaneous
signal and jammer multiplications are averagzd to control a vari~
ation in the weight, thus allowing the crass correlation matrix to
describe the system. As loop bandwidth is widened, weight jitter
becomes unacceptable. Thus, for a 10 MHz input bandwidth, a
maximum loop bandwidth of 10-100 kHz is expacted. A simulation
to be shown, with only one jommer cresent, demonstrates that much
wider loop bandwidths can be used in some cases; the expected
value equations, of course, do rot apply.

b.  Circuit limitations, such as the gzins that can be practically
achieved without second order effects causing oscillations, and
other degradations.

in one simulation used ot Radiation, a time waveform is generated and
sonpled. Real time is used throughoui. Althcugh there can be stabiiity problems in
this sampled feedback loop due to the digital nature of the simulatior,, such simulations
can show minimum speeds attaincble. Figures 8-5 and -6 show relative powers of jam-
mer and signa! vs. time in milliseconds and microseconds. In Figure 8-5, the broad-
side signal case is shown. Gains have been used that ore close to the stability limit, thus
the nonsmooth time history curve. The endfire signal case of Figure 8-6 is known to
be « poor geometry in that the signal is suppressed even for fairly large jommer-signal
seporation angles. Acquisition does occur within 30-60 ps, or 60-120 inverse input
bandwidths for this 2 MHz input bandwidth case .
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Finally, in the case of one completely dominant jammer, a null can be
placed on the jammer as fast as its relative phuse shift between elements can be estimated. !
Theoretically, this could occur in one RF cycle or less if enough jamimer energy is
present. A simulation was run of this case, as shown in Figure 8-7. Initial jammer
suppression is seen to take place within 6-10 ns, where the RF frequency is 1 GHz,
corresponding to 1 ns RF period. The input jammer-to~thermal noice ratio was assumed
to be only 30 dB; however, the processing bandwidths being simulated are on the order
of .1~1 Gz for these speeds, so that the equivalent jammer=~to~thezmal noise within a ‘
10 MHz signal processing bandwidth would have to be at least on the order of 40-50 .

] dB. :
:
3 30 T T T T T .
3 ‘ BROADSIDE SIGNAL 6 = 90° ;
4 [y S
3 % = -06 ' N
3 S/ir2= 20 dB BW = 2 MHz, f, =1 GHz Iy
! —ei = 50, 70° M = 4 ELEMENTS :
3 £
= R~ 50° "\ i
k) S :
2 —_— :
: = 7 | ‘
ed - ——allliretedosecnee dececcesdssocsendossse 3
% - iy bl oo
- L ] .—:>a- -_.._‘_-~“_Z:.‘:_:-—-5o°
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Z N
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& 4
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Figure 6-7. Fast Initial Jammer Suppression (FM Signal Simuiation;
Initial Conditior wg = (0.0, 1.0, 0.0))
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8.2 Steady-State Jammer Null Depth for the Jammer Suppression Technique

Having shown several exampies of the transient behavior of null steering
arrays, it will be convenient to plot only steady state values of the outpyt powers of the
signal and jammer, or the array null depth on these sources. Null depth or array gain
has been chosen as the major dependent variable, defined as:

s Py/fn, Py ]
NDJ = __..__——2 = y ® 5 =GJ
Yo 2w,
s Ps/Fay Ps ] _
NDS= V) = =3 ® ) —GS
S/o ‘;lw.l

where

ND,, NDg= Null depths on jammer and signal, respectively
(Note, null depth <1 or negative dB, like gain)

Py, Pg  =Power output of the jammer and signal, respectively
J,S =Power input of the jammer and signal, respectively
o2 = Equivalent thermal noise variance input af each element
Pn = Thermal noise output =0 ;}w,|.2, where w. is the
ith weight bt '

€] J'GS = Absolute gains, with respect to isotropic, toward
the jammer and signal, respectively

Since the definitign of absolute antenna gain in a given direction is the
signal=to=noise improvement ovér the isotropic case, null depth = absolute gain.
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8.2.1 Efﬁect of Bandwidth

The major facter limiting jommer null depth is array dispersion, the effect
of the jamming bandwidth. When the jammer is off axis,rthe time delay of the jammer
received in successive elements causes the madulation envelope in successive channels
to be slightly out of alignment, so thut perfect cancellation betveen channels is not
possible. Described in the frequency domain, dispersion causes the phase to not be the
same function of frequency in each eiement, so that the sum channel has a nonlinear
phase vs frequency curve; i.e., the envelope delay is not constant. Thus, the array,
viewed as a filter function, is dispersive. Array bandwidth is a well knovni pheiomenon
of course, but a null is a much more sensitive function of bandwidth thun the peak of a
main beam, where array bandwidth has usually been considered. Cancellations of 40-50
dB calls for very exacting alignment of signals in each channel .

The examples to follow usually use the jammer angle of 45°, almost a
worst-case for dispersion. Figure 8-7 shows the effect of bandwidth upon the null
depth toward a single jammer, of strength J/o-2= 30 dB, angle g; =45". The jammer
suppression technique is used in this example and throughout this section. The curves
are plotted for the number of elements m= 3,4, 7, and 9. It can be seen that

a. bandwidth must be less than .001 (.1%) in order to
achieve deep nulls of =50 dB or more

b. the curves are not a strong function of the number of
elements

c. at narrow bandwidths (.007 -~ .01) the null still decreases
as the number of elements increases, due to the increased
dispersion over many elements. For extremely narrow
bandwidths (<1077), this relationship reverses, as discussed
in Chapter 7, so that jammer null depth then increases with
the number of elements.

Details of a null versus small frequency deviations are shown in Figure

8-8. Inall curves, the array weights are optimized to reject a wideband (BW = .12)
jammer, pictured as the bar at the top of figure. The narrow-band frequency response
(i.e., filter response) of the array is then plotted, for the optimum weight cases where
the number of elements m=2,3, 4, and 9. For m = 2, a very narrow null is seen. For
m = 4, a much flatter bandpass response is noted. For m= 9, a ripple bandpass function
is formed. Evidently, the increased dispersion of larger arrays is being compensated for
by the increased number of dzgrees of freedom that are available to form a better band-
pass function.
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8.2.2 Effect of Input Jommer Power

The jammer null depth is a very strong function of the input jammer power,
normalized to thermal noise, J/g 2 Chapter 7 discusses the very narrow-band case, in
which the null depth is inversely proportional to the square of the input jamming power,
so that as input jamming power is increased, output jammer power decreases. For moder~
ate and wideband cases (BW = .01 and .12) null depth is plotted vs input jamming power
in Figure 8-9. In this case, the jammer power is normalized with respect to the sum of
thermal noise and dc bias signal, (g“+ 1 ), because both noise and bias have the same
effect on null depth (see Chapter 7).  If biasp = 0, then the line on the top right repre-
sents the jammer null depth that would give output jamming PJ equal to output thermal
noise, Pn . The null depths are always below this level .

t

If the nuil depth is multiplied by the normalized input jammer power,
J/az, then the normalized output jamming power, PJ/PM is obtained and plotted in
Figure 8-10 versus input jamming power {(BW = .01). For zero bias the output power
rises to 10 dB below thermal noise before a good null is formed. As the null becomes
deeper, the jamming power decreases. [f the bandwidth were zero, the jaomming power
would then go to zero. For any finite bandwidth, it has been shown, and is discussed
briefly in Chapter 7, that the jammer power eventually increases again. Once the null
is well formed, the finite jammer power "leaks through" tjz'ne null prq;ortional to_the
input jammer power. For bias greater than zero, e.g. 90“ and 990 <, so that 0%77= 10

J
and 100 respectively, the ratio becomes smaller for a given J, and thus the null
P y r"‘i";—"n g v

depth is less, as shown in Figure 8-9. As aresult, more jamming appears at the output,
giving the higher curves shown in Figure 8-10.

————
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8.2.3 Effect of Jammer Angle

~

All of the preceding curves have been for the |ammer at 45° from the
array axis, to emphasize any dispersive effects. If the jommer is at 90° (from the array
axis), or noimal to the array, there are no dispersive effects because there are no differ-
ential time delays between elements. The effect of jammer angle vs nuil depth is shown
in Figure 8-11 for the number of elements tn = 3 and 5, and Figure 8-12 for m = 7 and
9. In each set of curves, the solid lines are for BW = .12 and the dashed Imes for
BW = .01. The pnromet»r on each curve i¥ thesnormelized jammer power Yo 2. Forall
curves where J/a >0 dB, the jammer null depth dlps sharply as the jammer approaches
90°, as expected, and is deeper for narrower bandwidths, also as expected. Since dis-
persion is less for narrower bandwidths, the null depth curve is less sharp for smaller

bandwidths. Finally, an unexpected phenom.non occurred which has not been explained.

For m = 5, and especially m= 7 and 9, the null depth decreases near 85° before the null
at 90°.

If nulling a wideband jammer becomes a problem off axis, these figures
indicafe that consnderable improvement in null depth could be obtained by turning the
array to within 5° from normal to the j jammer, to reduce dispersion. This may be possible
in a higher frequency, high-gain array in a radome. Another solution is the general
tapped delay line wideband array mentioned in Chapter 2. Obviously rather fine delay
increments would be required to approximate nendispersive delay to within a few mech-
anical degrees.
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8.2.4 Effect of Multiple Jommers

It was stated at the beginning of this section that single jammers would be
considered, but multiple jommer cases were very similar. -Several multiple jommer cases
are shown in Figure 8-13 for wide bandwidth (BW = .12), with m =9 (part a) and 5
elemeants (part b). In these figures the null depth is plotted versus the number of jammers.
As the graph is read from the left, jammers are added, J; (0 = 45°), Jy (8= 1350),
etc. Nuii deph on each jommer is shown. Also, a desired signal was included in the
calculations. The input J/5 =30 dB. The bias was set 10 dB-above the signal

P +Sw = 10 dB) so that very little signal would be lost. In Figure 8-13a, - for

Y] .
m =9, the jammer null depth continued at =25 dB or better until the number of jommers
exceeded 5. In this case, the simple rule that the number of nulls = the number of ele~
ments less one is not true. Signal loss is only a few dB or less; remember that all these
curves are for the biased jommer suppression case in which some signal loss can be
expected. In Figure 8-13b, form =5, same bandwidth as in part o, the number of
emitters exceeded the number of elements, with no significant degradation. |t must be
that some special anglas are involved that allow the array to perform these nulls.

Figure 8-14 shows two more cases, one with BW = .01, m = 5 and another
with BW = .12, m= 3. In the first case, Figure 8-14g, the null depth is degraded
somewhat with 4 jommers but is still better than 25 dB ot 6 jammers. Little signal loss
is recorded. With m = 3, some degradation is seen with the number of jammers equal to

3, in Figure 8-14b.
In summary, the multiple jommer cases compare very well with the single

jammer cases as long os the number of jommers is considerably less than the number of
elements, although in some cases, even more jammers may be nulled.
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8.3 Steady State Qutput Signal and S/N Improvement-Jammer Suppression
Technique

In the Biased Dominant Jammer Suppression technique, the signal is sup-
pressed to some extent, as well as the jammer. This (or the loss in jammer null depth
that can be traded off) is the price paid for not having to estimate and 1emove the signal
from the error channel.

8.3.1 Null Depth on Signal with Biased Suppression
Figures 8-15 through -18 show the signal null depth (absolute gain on the
v
signal) versus normalized signal power, S 4 5 > , where S is the input signal power to
c” 4+ 1

an isctropic element, o2 is thermal noise input to each element, and 7 is the dc bios. It
is very important to normahze the signal to bias + noise because it will be seen, as dis-
cussed in Chapter 7, that bias can prevent signai loss. Figure 8~15 shows the signal null

depth vs. input signal power for m = 3 elements, jammer angle 9 = 45°, bandwidths

BW = .12 (Figure a) and .01 (Figure b), for various normalized jammer powers, .\.',— 2J

o° +m
and signal angles, 85. Figure a (BW = .12) shows less than -2 dB signal null depth if

bias + noise is 10 dB greater than the signal 5 > < =10 dB} in those cases where

g~ +7
8, > 80° (9 - 0. > 35%. For 8, > 70°, null depths less than =6 dB are obtainable with the
same bias £ noise. As the sagrol approaches the jammer to within 5-15° (6, = 50°,
60°), the nulls on the signal increase drastically because the signal is in the jammer
null. The null for this wide bandwidth and jammer angle is quite wide 9°). Altliough
jammer power, ¥, is a significant parameter for large %, it has little effect on signal null
depth s § decreases below ~10 dB. Figure 8~15, for a narrower bandwidth (BW = .01),
shows much less signel loss for 8 = 50°, 60°, and 70°, and a sharper fall off of signal
output (null depth and yain) as inpuf signul increases. The null is narrower in the narrow
bandwidth case, causing less signal loss in nearby signals.

Figure 8-16 shows the same plots for m = 5 elements with BW = .12 (Figure
a) and .01 (Figure b). A sharper falloff of signal output with signal input is to be noted,
compared to the previous case in which m = 3. Still, when § <-10dB and 9, > 70°,
signal loss is very small, less than 3 dB. Again, when 8 = 50°, signal suppression is much
greater than with the narrower bandwidth, because of the wider null in the wideband case.
Figure 8-17 is for the 9-element case, and again shows sharper signal dropoff, with
increased signal fevel, than with fewer elements, and less than 5 dB loss for large bias
+ noise.
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To further investigate the effect on a signal close to a jammer, Figure
8-18 shows several cases of signal null depth vs. signal angle. Figure 18a shows a

jommer at either 45° or 859, with strength 1 - 30 dB. For the 85° jommer,
' oc+ 1)

( J =30 dB and 10 dB), the signal must be 5° away to lose iess than 2 dB with .12

02,7
bandwidth. For the 45° jammer, the wideband can cause 20 dB loss at 52 separation,

BW = .12; 10 dB for .01 bandwidth. Figure 8-18b, with null depth plotted vs. input
signal level, for several signal angles near the jommer angle, shows 10 dB loss for 5°
separation . Note that angular sensitivities are proportional to the total size of the array;
a larger array could discriminate between signal and jammer ot smaller separation angles.
In larger orrays, seporations are often normalized to the beamwidth of the array .
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8.3.2 Signal-to-Jammer Ratio-Biased Supprassion

In Sections 8.2 and 8.3.1 the null depths on the jommer and the signal
were tredted separately. It was evident from the curves thot each was relatively inde-
pendent of the other. The effect of bias + noise was very evident on the null depth of
the signal; bias + noise had to be at least 10 dB higher than the signs! for minimum sig-
nal loss; for less bias + noise, the signal loss was approximately inversely propertional
to bias + noise. The effect of bias + noise on the jammer was also impertant; the jamming
loss was approximately inversely proportional to bias + noise for bandwidths BW = .01 to
.12, Since both signal and jamming were found to be inversely proportional to bias +
noise for this range of bandwidths, one would expect the output signal-to-jummer ratio
to be approximately constant, which is approximately the case for a narrow range of
bias + noise =S,

Figure 8-19 shows the output signal=~to~jammer ratio as a function of bias +
noise~to-signal ratio (called bias-to-signal in the diogram to emphasize that bias is
expected to be much higher than noise in biased suppression).

Figure 8~19a plots the case m =5, BW = .12, In the range -1G tc 10 dB
of the abscissa, the output signal-to-jamming ratio is approximately constant, -1 to -2 dB,
for a wide range of the parameter, jomming~-to-signal ratio, J/S. Two exceptions were
for J/S = 10 dB and 30 dB where the output PS/P rises above 0 dB for the bias level equal
to the signal . There is no clear explanation why the case for J/S = 20 dB does not more
closely resemble the values for J/5 = 10 dB and 30 dB; however, the jommer aull depth
curves have many changes in slope, particularly for the widebond case BW = .12,

in Figure 8-19b, for m = 9 and BW = .12, a very simiiai behavior of
signal~to-jamming ratio occurs, but with no output values above 0 dB. Finally, Figure
8~19c, for m = 9 and BW = .01, a greater range of Pg/P values is noted, most above
0 dB, with the notable exception where the parameter J/S = 30 dB. ™'o explanafion for
the variations is obvious, other than the variation in jommer null dep.h already seen. It
must be kept in mind that once dispersion end fairly large bandwidths are taken into
account, the curves become rather complex, singe the adaptive array is adepting o the
changing conditions as best as it can.

Reciprocal suppression, discussed in Chapter 7 for zero bondwidth, does
not occur for these relatively large bandwidths; at least not for significant bias levels.
Suppresssion of the jommer to approximately the signal level is abcut the most that can
be done. If the curves had been continued to the left for very small bias and large J/S,
they might rise considerably more towards reciprocal suppression, at least for BW < .G1.
However, if one desires to minimize signal loss,in order to keep the signal above thermal
noise in the steady state, bias must be at about the signal level, so that reciprocal sup-~
pression is not very useful .
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8.3.3 Signal -to~Total Noise Ratio-Biased Suppression

The most important measure of the performance of the Biased Suppression
Technique is, of course, the signal-to-total noise ratio output, Ps/Ppj. Some curves of
this measure vs. bias + noise~to=signal ratio are plotted in Figure 8-20, for varicus input
J/S ratios. Again, os in most previous figures, the widest bandwidth, BW = .12, and
jommer angle of 9] = 45° cause almost worst-case output.

Keep in mind that both the narrowband performance in Chapter 7 and the
transient performance (before deep nulls are formed on the signal) yield less signal
loss and better signal-to-total noise ratios. Figure 8-20a, for 5 elements and 12 percent
bandwidth, shows that the output signal-to-~total noise ratio rises to a broad maximum of
approximately zero dB (before processing and front end filtering) for essentially all input
J/S ratios. The bias level for maximization is from 0-10 dB above the signal . For higher
bias levels, the jomming null becomes less, causing output signal-to-total noise to go
down. For very small bias, the null formed on the signal reduces the output signal-to-
total noise. Similar results for m = 9 and BW = .12 are shown in Figure 8-20b, except
thai output Pg/PN never rises above -5 dB. Tne added elements actually hurt the per-
formance, apparently due to the increased dispersion for this wide bandwidth. For a
narrower bandwidth, BW = .06 and m = 9, Figure 8-20c again shows increased Ps/PN
up to the 0 dB, except for J/S 240 ¢B. Remember that the input signal-to-noise ratio
for this case is <=40 dB.

In conclusion, for the case where the number of emitters is less than the
number of elements, biased suppression can be used to greatly improve very small signal-
to~jamming ratios, from extremely small values up to approximately O to -10 dB. Signal
processing must then be used to raise this array output signal-to-noise value to a level

where detection can occur. Rather modest signal processing values like 6 to 20 dB will
clearly suffice.

Although spread spectrum signal processing may immediately come to mind
as a means for signal improvement, the more mundane multichannel receiver is also appli=-
cable. If the array steers nulls based on the whole input bandwidth of the receiver, the
output signal-to-noise ratio of the array, which is the input signal-to~noise ratio at the
receiver over the whole baxdwidth, can be made opproximately zero dB for the cases
considered so far where the number of emitters is less than the number of array elements.
The channelized reczivers then can improve the signal-to-noise since the channel band-
width is smaller than the input bandwidth. If the bias is adjusted so that jammer is sup-
pressed well below the thermal noise, the signal processing gain is the ratio of input
bandwidth to channel bandwidth; if the jomming is heavily concentrated in one channel's
bandwidth, this signal processing gain cannot be achieved because as thermal noise is
reduced by the bandwidth ratio, the jamming will not be reduced. Such a jemmer, of

course, leaves the other channels in the clear, so that this form of jamming appears
unlikely.
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Another common signal processing improvement is via duty cycles. The adaptive
arcay results for output S/N are for average signal power. For a low duty cycle signal,
the peak §/N ratio is increased by this factor, if the interference is confinuous.

For communication purposes, given continyous white noise interference, the aver-
age signal powar=to-noise ratio determines the communication rate, since the bit error
rates can be calculated from Ep/Ny, the energy per bit divided by the spectral density

of the noise.
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£.4 Seve-al LMS Array Results {Having Signal Removal)

The LMS:array has been rather thoroughly covered in Chapter 6, in the
literature,, and in work at Radiation by Butchei (17, 18) that will not be covered in this
report. One set of curves, shown in Figure 8-21, relates jammer null depth and signal
gain to jammer power input, for 4 elements and several bandwidths. For rather narrow
bandwidths, such as BW = .001 (and even .01) greater than =40 dB jammer null depths
(gains toward the jammer) are shown. However, for wide bandwidths (BW = .12), null
depths of aoproximately 27 dB are shown, due to the dispersions. Signal gains shown in
the dashed lines at the top, and read on the right-hand scale, are approximately 4-6 dB.
For 4 eiements, 6 dB is the maximum gain; thus, little gain has been lost; only 1-2 dB
at the widest bandwidth.

8.5 Overspecified Arrays (The Numerous Signal Case)

Ore area of importance that was omitted in this study was the case where
there are many more weak signals than elements in the array, but only a few jammers (the
case of more jammers than elements has been covered). From several recent cases exam=
ined, it appeurs that the signals are not suppressed in a jammer suppression mode, even
though they are 10 dB or more over thermal noise. This is, of course, because the array
is overspecified; it simply cannot nuli all the sources. It appears (on the basis of only a
small amount of data) that each signal source is not nulled more than 5 dB, but the aver-
age jamming power is reciprocally suppressed below the averege total signal power. That
is, at least for one jommer,

Ps .
P )t Pnf .'3: 5

One of the conclusions of this chapter (that signal null depth is criticc: and
must be controlled with bias) is based on the assumption that the number of signals is less
than the number of elements. When the number of signals is greater than the number of
elements, nulls cannct form on all the signals. It does appear that output signal-to-total
noise (jamming + thermal noise) is still in the =10 to +10 dB range, as is shown in Figure
8-20, but thermal noise is no longer a major foctor.

8.6 Polarization Considerations

There is another parameter that is a potentially very powerful discriminant
between signal and jamming, namely polarization. 1t is well known that different
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. T patterns exist for different polarizations; usually the two orthorgonal polarizations are
plotted sepuiately, either horizontal and vertical or lefi and right circular polarization.
However, in null steering, plots of nulls in a given directior have usually been drawn ;
without regard to polarization. {n particular, when a null exists in the jammer direction, 3
v it has often been assumed that a colocated signal could not be received.

The jammer pola . ation cun ke described at any given time by a specific
elliptical polarization; the sigral can be decomposed into this elliptical polarization and
the orthogonal polarization. A general null steerer that uses elements with orthogonal
polarizations would steer a null on the jammer with exactly rhe jommer polarization; the
antenna pattern with the other polarization need not have a null toward the jommer or

AR AT
Sy

o,
P

Y

Y signal. Thus, a colocated signal could be received with the power of the signal that was 3
/3 in the elliptical polarization orthogonal to the jammer (in general a significant amount). ¥ 3
1) 3 ‘ 3 @
o In a general LMS algorithm which maximizes the signal, the polarization 43
/ E orthogonal to the jommer will be maximized, since this clearly provides the optimum z ]
%

© signal~to=-noise ratio output. On the other hand, for a Biased Jammer Suppress”on mode,
' it is not as clear what the orthogonal polarization's gain toward the signal woul be.

Polarization has not been adequately treated in this study, but must be .
considered carefully in any application.
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CHAPTER 9
A UNIFIED TDMA COMMUNICATION - NULL STEERING SYSTEM
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9.0 A UNIFIED TDMA COMMUNICATION ~ NULL STEERING SY STEM

9.1 Introduction

This Chapter describes a null steering system designed for use with a TDMA
communication network. In order to help clarify the description, specific message length,
amount of PN coding, message preamble length, maximum range bet en users, etc.,
have been assumed. It is emphasized that these values are not critic . to the system
design and may be adjusted over wide ranges.

Organization of this Zhapter is as follows: Section 2 is a description of the
assumed system configuration. Assumed message formats, gecmetric distributicn of
emitters, and basic system properties are discussed. Section 3 covers properties of the
adaptive null steering array to be used with the system. This array has been designed
with three operational modes, suppression, synchronization and reception; these modes
are discussed in the light of system details. Finally, Section 4 contains a block diagram
and descriptions of the adaptive array error formation circuit, a critical part of the
communication-null steering system. The description of a computer program designed to
simulate the system is presented in Appendix B.

9.2 System Model

9.2.1 Geometric Configuration

It is assumed that the electromagnetic environment consists of friendly
emitters, hostile emitters and thermal noise. The ussumed geometric configuration is
illustrated in Figure 9-1. The emitters are more or less isotrupically distributed, and only
a few hostile emitters are present (or significant). Due to the physical separation of the
emitters, non-negligible and more or less unpredictable time delays exist in propagation
time between two arbitrary emitters. The maximum time delay is set by the maximum
possible range of communication.

9.2.2 Mode of Transmission

Friendly emitters transmit and receive signals from one another on o
cooperative basis whereby each friendly emitter has an assigned transmit slot in a TDMA
system. Each friendly emitter listens to all other emitters. Emitter "i" divects a communi-
cation to emitter """ by transmitting i's address in a preamble to the message. Information
is transmitted at 10 Mb/s for this example.
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9.2.3 Recognition of Friendlies

Due to the fact that hostile emitters exist, it is necessary that the friend-
lies be able to discriminate one arother's emission from that of a hostile. Therefore,
each preamble contains an exactly known a priori coded message. For this example, it
has been assumed that an exactly known 127 bit code is used. Thus, a matched filter
capable of compressing this code into one hit will provide a friendly to hostile recogni-
tion advantage of 21 dB.

Due to the possibility that a hostile emitter might repeat this preamble and
thus be erroneously identified as a friendly, it is probably necessary that a time variable
code be used. This problem involves both synchronization and matched filter design
areas. Although solutions appear to be available, they represent a complexity that is
additional to ard detracts from the adaptive array aspects and so will not be considered
at this time .

9.2.4 Message Coding

A 10 dB PN coding of message details is provided for intermodulation and
multipath protection as well as for some protection against jamming. Synchronization to
this code is discuszed later.

9.2.5 Message Format

The assumed message format is shown in Figure 9-2. The 127 bit preamble
is followed by a 10 dB PN coded message block. A very long code is assumed. The
first 70 bits of this block are decoded into 7 "address" bits which uniquely identify one
of the 127 friendly emitters. (The one for whom the message is intended.) The remain-
ing message is slightly less than 20 ms duration. Given a 100 user system, about 2 sec~
onds elapse between transmissions of a given user.

9.2.6 Jammer Characteristics

A hostile emiiter (jammer) is assumed to use any appealing strategy except
repetition (as discussed earlier). Since a given emitter uses only one TDMA slot and it
is almost certainly the case that a jammer cannot ascertain which individual friendly he
is jamming, then the most effective strategy would be cont:nuous jamming. Noise modu~
lation is a strong candidate. The subject of jammer strategies is discussed in greater
detail in Section 9.3.3. The jammer is assumed to exceed signal strength by ot least
the coding gain, otherwise coding gein alone is sufficient for signal reception.
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9.2.7 System Synchronization

Continual user resynchronization is necessary due to unknown friendly
locations, hence, propagation times. This synchronization is provided by the same com~
pletely known 127 bit preamble that is used for friendly identification. If a friendly to
hostile power ratio sufficiently large exists, then a detectable pulse of about 1 bit dura-
tion will issue from the matched filter. This pulse is used to advance or retard the user's
PN code generator to what we refer to as as a "flag point" (or message sync point). Flag
points are illustrated in Figure 9=3.

If a meximum communication range of 300 miles is assumed, then a 1.5 ms
maximum timing error could exist due to propagation. By prearrangement, the very long
completely known PN code has been flagged at (approximately) 20 ms intervals. The
flag points are used sequentially one per 20 ms interval . Receipt of a 127 bit preamble
compressed to 1 bit (called a pointer) directs ¢ user to move immediately to the nearesr
flag point (@ move £ 1.5 ms). Pointers missed for any reason do not affect the PN code
timing. If the local clock is sufficiently accurate that an 18.5 ms drift does not occur
before the next pointer is received, then continual synchronization is assured. (A crys-
tal clock should be quite adequate.)

Since the 1 bit duration poinfer locates a flag point to within 1 bit, then
no searching is necessary in synchronization of the PN clock.

(Due to the relatively long time between uses of the 127 bit matched filter

and the ease of maintaining expected flag point times within 18.5 ms, it appears simple
to pseudorandom program the mctched filter so as to combat repetition jamming.}

9.3 Desired Adaptive Array Properties

Briefly stated, the array is to minimize the system noise (thermal and hos-
tile), maximize response to a desired friendly and do nothing to undesired friendlies.
Different operational modes are used depending upon friendly to hostile power ratios at
the array's output.
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9.3.1 Modes of Operation

Three principal modes of operation are envisioned. These modes will be

discussed in detail later. They are:

1.

Suppression mode. This mode is used whenever S/N ¢ =10 dB.*
In this mode, the array seeks to suppress received energy from
the various powerful hostile emitters, thus improving S/N. The
object of this mode is to provide sufficient S/N improvement
for initiation of the sync mode > .

Synchronization mode. The sync mode is used when

-10dB < S/N < 0dB. Intelligent decoding of friendly
messages is not possible in this S/N rclngé\A but since sync

(and friendly signal recognition) can be provided by the
preamble, a null steering mode whereby only" hostile

emissions are reduced is possible. The sync mode is used

to improve S/N until intelligent decoding of friendly

messages is possible .

Receive mode. Intelligent reception becomes possible
if S/N>O0 dB. Two different receive functions are
planned: Friendiy reception and desired friendly
reception. Desired friendly reception entails minimi-
zation of interference and maximization of the desired
signal. Friendly reception entails only minimization
of interference.

Although reference is made to selection of modes based on S/N, this

"selection” is an implicit property of the chosen circuits. If one assumes that the system
is operating, and that no mechanical faults have occurred, then failure of the matched
filter to clearly produce "pointer" outputs is indicative of $/N*<=10 dB (assuming that a
10 dB margin is necessary for pointer identification). If S/N 2 ~10 dB mode switching

occurs automatically when the pointer synchronizes the PN code generator.

9.3.2 Suppression Mode

if S/N < =10 dB then reception of the desired signal cannot occur until
null steering has imprcved the S/N ratio. Since synchronization has not occurred, one

cannct relv upon any a priori knowledge of the signal.

*“Tn this section the symbol S/N will mean the usual output signal-to-noise ratio.
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The suppression mode capitalizes upon an inherent property of adaptive
arrays to reduce stronger interferences more rapidly than weak ones. Since the desired
signal is unrecognized, it, as well as jamming, is treated as interference by the array.
(In order that interference is not minimized by simply setting all weights to zero, it
is necessary to constrain the array weights. A method of doing this uses one unity
weighted antenna input.) As the array proceeds to reduce the stronger interference

(jamming) more rapidly than the weaker signal, the 3/N ratio improves. The sync mode
begins whenever §/N2-10 dB.

Meanwhile, questions arise as to whether one can reasonably expect to
reach S/N = =10 dB in the-uppression mode. Guarantee of this conditior requires one

to examine all possible jommer strategies. As o reasonable compromise, one of the worst
cases is discussed in the next section.

First there are two important points to be made regarding array size and
configuration. The array should have about the number of degrees of freedom (weights)
necessary to accommodate jammer nulling; too much flexibility can result in undesired
friendly signal nulling. Secondly, waveform dispersion resulting from widely spaced
elements or end elements in a multi-element array has the effect of reducing those ele-
ment's effectiveness in either beam forming or nulling. From economic standpoi ts, the
margina! benefits of additional elements becomes even less due to their additional cost.
As a rough guide, then, a minimal element closely spaced array is suggested.

9.3.3 Jammer Strategies

If the hostile emitters wish to deny one or more particular users from
receiving information, then jamming must be applied with a unity duty cycle; otherwise
information from any one user destined for any other user could be relayed through a
third unjammed user (since transmit slots are fixed). Clearly, this is at a penalty of
reduced overall data rates and may be a mode not planned for this system, but even then
it seems to present an unacceptable risk of failure to the hostile emitters. While it is
conceivable that an effective unity duty cycle could be obtained from numerous pulsed
and possibly synchronized hostile emitters, a more effective strategy would use the same
number of emitters transmitting continuously. Thus, it seems reasonable to postulate
continuously transmitting jammers. Finally, we assume that a jammer exceeds the sig-

nal in power at least as much as the coding gain. If it does not, coding gain alone is
sufficient protection.

9.3.3.1 A Possible Worst-Case

The null steerer equalization mode is designed to minimize the energy
received from spatially discrete emitters. Thus, a werst<case configuration with regard

9=9
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at a given weighting circuit:

3 b=
r fg to S/N occurs if all desired signals appear to emanate from the same direction, euch & "’;
¢ jammer is in a different direction from the array, and equal power is available from all i ]
29 emitters. (This situation is equivalent to a continuous signal emission.) % 3
E B ]
& It is well established that the adaptive array is dominantly influenced by ig T

. the most powerful emitters. Thus, the initial array response is to reduce the powerful A
- emitters. The array produces more or less the following result due to correlation products k. ?

(9-1)
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where (Pjn); is the element input po;over and (Poyt); is the array output power due to the
ot . . e pe .

i'" emitter. (The above equation should be modified to account for lack of input-output
correlation when wideband signals are considered.) This relationship appears to hold to

about the number of terms as there are weights and with the significant terms being
selected by power,

T
R R

Contrary to biased suppression results which have been applied mostly to
the "more elements than emitters" case, the weaker, or signal emitter(s), are not neces-
sarily reduced to or below themal noise. If the array has only enough flexibility to
suppress the powerful jammers, then the signal output power is about equal to input
; power and the input~output product about equal to that of the jammers. Of course, if E:
signal and a jammer are too close in angle (and polarization), then as far as the array is
3 concerned, only one emitter seems to be present - the jammer; both signal and jammer

will be suppressed.
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\ Applying these arguments to a three element, two jammer, one signal case
’ where signal-to~thermal noise is 20 dB and jammer-to-thermal noise 30 dB gives

<Poui)i ~ <Pouf>i ~ ]o<Pouf>sig (9-2)

2

S AAL ot

Signal-to-noise ratio is then about 7 dB. Actual signal output power is pattern dependent
(established by jammer nulls) but about 20 dB is expected.
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An example of these effects is given in Table 9~1 where steady state
results are given for two jammers held fixed in azimuth with the signal azimuth varied.
A three element linear array with half wavelength spacing and 10 percent bandwidths is
: ) considered. Signal power is 20 dB relative to thermal noise and jamming 30 dB. A relo-

ST

o L

. L. tively large signal power is chosen to simulatethe "worst-case” mentioned earlier for all
] K signals in one direction. It is found that as long as the signal is not close in azimuth to
3 > a jommer, Equation 9~2 and S/N=7 dB holds true. Signal out is about 20-25 dB and
thermal noise about 3 dB.
Table 9-1
3
SIGNAL AZIMUTH 45° 60° 80° 90°
SIGNAL OQUTPUT POWER, dB 19 25 24 20
o JAMMER, OUTPUT POWER, dB 15 16 15 14
:"s}
f;’ JAMMER , OUTPUT POWER, dB 3 10 14 10
S/N 3 7 7 4

JAMMER AZIMUTH = 30°, JAMMER, AZIMUTH = 100°

At low azimuth angles, reduced correlations due to dispersion upset the
simple relationships as do close signal-jammer approaches in azimuth.

In one final note for this case, a transient analysis indicates that steady
stute is reached extremely rapidly due to jammer correlations rather than signal or .her-

i
mal noise controlling the smallest eigenvalue. For the 90 degree signa! azimuth case, §
the two eigenvalues are: i

{
i
Ay = 2221
i
Ay = 1982 :

In a signal or thermal noise controlled case, much smaller second eigenvalues are found.
Eigenvalues are discussed in Section 6-1. These particular eigenvalues are obtained.
numerically as mentioned in Section 8.0.

9.3.3.2 An Expected Case

\ Under the more expected conditions the desired emitters are isotropically
distributed and equal power is not received from each jammer. lsotropic distribution of

[ o 9-11




TVE ST AT BT N FC LA TUEY

PR

~~~~ IO T T T L R T TRV T A TR e

the friendlies coupled within their time multiplexed emissions is much like irreducible
isotropic thermal noise to the array if the amray's adaptation time (in the suppression mode;
is long compared to emission slot time. Due to the duty cycle (1/M, where M is the
number of friendly users) and Equation {9-1), we expect an S/N improvement equal to M
over the continuous emission case. If there are 100 time slots, then M = 100 and a 20 dB
advantage is gained. This advantage strictly applies when the number of weighted array
elements, N, satisfies N = K +1 where K is the number of powerful jammers. Again, it

is noted that the antenna pattern is principally controlled by the jammers; if desired sig~
nals are too near,they will fail into the jammer null.

Table 9~2 is a summary of power outputs for a three element, eight signal,
and one jammer example . It is notable that the pattern is essentially established by the
jommer and that signals are not suppressed even though relatively large average signal
powers are assumed (all 10 dB relative to thermal noise in the first two columns, 0 dB in
the third). Jammer power is 30 dB relative to therma! noise and 10 percent bandwidth is
assumed . If we assume a 20 dB peak to average signal power, it is clear that no signal
reception problems exist for this case.

Table 9-2, Summary of Power Qutputs

JAMMER AZIMUTH -30°  90° 70°(0. d3 Signals)
JAMMER POWER 11.0 1.0 3.27
SIGNAL, (40°) 2.0 125 2.2
SIGNAL , (80°) 13.7 8.5 -2.0
SIGNAL , (120%) 13.4  14.2 3.7
SIGNAL, (160°) 7.5 7.7 1.0
SIGNAL , (200%) 75 7.7 1.0
SIGNAL, (240°) 13.4  14.2 37 .
SIGNAL, (280°) 13.7 8.5 -2.0
SIGNAL, (320°%) 25 12.3 2.2
QUTPUT THERMAL NOISE 1.8 1.8 2.0

9-12
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Expected adaptation waveforms for the arrcy are illustrated in Figure 9-4.
Power from a strong jammer is reduced more quickly than power from the weadker friend-
lies as the array is seeking to suppress powerful directionally received energy. Reference
to Figure 9~4 when the remaining modes are discussed will be helpful .

The equalization mode is terminated at S/N ~ -10 dB at which point the
sync mode is instituted. In the sync mode, the friendly emissions are no longer mini-
miz.d and a desired friendly is maximized. Considerations relating to this mode are the
subject of the next section,

i 9.3.4 Sync Mode

e

The sync mode function is to improve the array's output S/N from =10 dB
to 0 dB. This mode is entered automatically at the time $/N output of the matched filter
following preamble reception is sufficiently great to locate a PN sequence flag point to
within one bit. It is important to note that a desired friendly is treated the same as a
friendly in the sync mode. This is because a desired friendly cannot be identified unless
the first 70 message bits can be decoded, and intelligent decoding of message bits
requires a larger S/N than the =10 dB available when the sync mode is entered.

reaptrnen

Qi ezt

PRUSN
i,

Attainment of synchronization means that the bandspread message can be
despread into a much narrower band of frequencies by mixing with the PN code. Since
the jamming is not coherent with the PN code, it will not be despread. A narrowband
reject filter centered about the despread signal is used to remove friendly signal energy
from the error channe!. However, most of the frequency sprecd energy from the jammer
passes. In order to reestablish the jammer amplitude, frequency, and phase cnaracteris-
tics present before the signal despreading operation, the energy resultant from the filter~
ing operation is respread by a second mixing with the PN code. This gives an array
error output which has essentially no signal terms but essentially all of the jomming.

(If serious time delays result, despreading at each element rather than respreading the
output may be required, or compensating time delays might be used.) The array mini-
mizes this error output which means that nulls are steered toward the jammers and friend-
lies are disregarded. Accordingly, S/N will improve for two reasons, (1) jamming con~
tinues to be reduced and (2) since friendlies are disregarded, partial nulls previously
placed on them will be released and used for jammer rejection, improving signal response .

[P —
¥

P

PN

9.3.5 Receive Mode

The receive mode is attained automatically when S/N > 0 dB and consists
of two functions depending upon whether a friendly or a desired friendly is calling. The
strategy is for one to do nothing (do not maximize or minimize array response) to a
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friendly (whose signal is not desired) and to maximize a desired friendly. The array
achieves this first function by blocking friendly signals from the error channel exactly
as done in the sync mode and will not receive additional attention here. The second
function is realized by subtracting a desired response from the error channel in the con-
ventional "Widrow" manner. Desired signal maximization requires formation of a
"desired response, " d(t), and a subtractive error forming circuit rather than the simple

signal blocking used in the other modes. This mode is useful only when S/N is relatively
high, due to difficulty in forming d(t).

When S/N 20 dB, intelligent message decoding becomes possible, thus, a
desired signal can be identified. Additionally, a desired response can be derived by
decoding the desired signal, making hard decisions as to one or zero message bits, and
producing a "clean" constant power waveform from these bits. Although errors will be
made in estimating d(t), it neveriheless will be mostly derived from the desired signal.
This derived d(t) is subtracted from the instantanecus array output in the conventional
manner, giving @ (t)-d(tkjamming] in the error output and leading to maximization of

§ (t) and minimrzation of jamming? Note that the estimated d(t) improves as the array
adapts.

9.4 Circuit Description

The adaptive array circuit designed to produce the responses just described
is illustrated in Figure 9=5. An array with the usual elements and weights (except per-

haps for nne input with a constant weight) is used. The major difference and the one
itlustrated is in the error formation circuits.

Conventional arrays obtain the error output €(t), by subtracting a desired
response, {(t), from the sum of weighted inputs,¥ (t). The circuit illustrated functions
in the equalization mode if d(t) = 0, in the friendly receive mode if d(t) = 0 and ¢ (f)

is blocked from ¥ (t), and in the desired friendly receive mode when d(t) = constant
power function of §(t).

9.4.1 Suppressior Mode

Assume that S/N <~10 dB. With reference to Figuve 9-5, the array output

Y{t) is app'ied to a matched filter svitable for preamble detection and to a mixer (mul-
tiplier). Due to the poor S/N a “pointer® output will not be obtained from the matched
filter. Therefore, the PN code generator continues to operate on the interna! clock with
no change in timing. Application of the PN code, referied to as c(t), *o the previously
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Figure 9-5. Block Diagram of Error Formation, TDMA
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mentioned mixer causes a frequency spreading of all waveforms in ¥ {t). This spread
waveform, ¥ (t), is applied to three channels.

The left most channel illustrated contains a narrowband pass filter (NBPF)
which blocks all but a smoll part of the waveforms. |f the code generator were synchro-
nized, this filter would pass signal terms and block jamming. However, in this case
both jomming and signol are spread, thus the filter output is essentially meaningless.
Regardless, even if by chance the PN code gunerator ware synchronized, the 10 dB S/N
improvement provided by the NBPF would be insufficient to allow intelligent decoding
of the signal. Consequently, a user call number cannot be ascertained and output from
the left most and middle channels is blocked by normally open gates (NO).

Only signals in the right most of the three illustrated channels are allowed
to pass (through the normally ciosed (NC) gate). The narrowband reject filter (NBRF)
in this channel is designed to reject the same signal terms passed by the NBPF if syn-
chronization existed. However, in this case both signal and jamming are passed.

This frequency spread and sligi.tly filtered version of the array output is
routed to a summing combiner and then a differencing combiner, but each of the other
combiner inputs are zero (due to the NO gates).  The waveform is applied to a second
mixer which again is driven by c(t). Thus we get approximately c? (1) ¥ (t). A property
of the PN code we will select is that ¢? (t) = 1 (this is obtained if c(t) is composed of
(+) and (=) bits). Thus, the error output,e (t), is equal essentially foy(t).

Minimizaricn of ¢(t), as discussed previously, leads to improvement in
the S/N ratio. Eventuaily, S/N has improved such that a clearly detectable pulse is
obtained from the matched filte; whenever a friendly's 127 bit preamble is obtained.
This pulse synchronizes the PN code generator . As before, c(t) is multiplied with¥(t),
but due to synchronization having been obtained, the array automatically enters the sync
mode .

9.4.2 Sync Mode

Due to the stili poor /N, call number identification is not vet possible
and the various gate positions are unchanged.
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With regard to the incoming waveforms, it is instructive to examine the
c(t)p(t) despreading mixer output. Let &(t) = c(t)m(t), where m(t) is the information-
containing uncoded modulation. Then we get

c(H)P(t) = c(t) [g @) + iamming] = mt) + c(t) (jamming) (9-3)

Recall that c2 (t) = 1. Since we have assumed a 10 dB coding, m(t) is despread into a
frequency band 10 times less than the original band. The NBPF improves S/N by 10 dB
but at the switchover to receive mode, this improved S/N=0 dB.

The NBRF rejects m(t) and a small part of the: spread jomming. As before

the error cutput, €(t) is formed but due to synchronization and the signal blocking filter,
we get

€(t) = c? (t) (jomming) = (jamming) (9-~4)

Note that the PN code generator should he frequency stable enough that sync is approxi=-
mately maintained without bit sync correction during the 20 ms message period. Since

the error output contains essentially jamming, the array output S/N will improve with
time.

9.4.3 . Receive Mades

The two different receive mode functions are determined, as discussed
previously, by S/N and secondarily by detection of a particular user call number.

When S/N20 dB, the filtered output in the left most channel illustrated
in Figure 9-5 will be sufficient to enable acceptably noise free reception of a friendly
transmission. If the particular call number is not received, gate positions do not change,
but a third mixer forms the product m? (t). The squaring result is like that of 2 cas? (t),
yielding a unity term and a second harmonic. The second harmonic of m? (t} is used to

help maintain bit sync in the PN code generator. (This corrective sync may be
unnecessary .)

The desired friendly reception mode occurs whenever the user call number
is received. The call number identifier enables a monostable multivibrator (one shot) to
turn on. This one shot's period is set to be that of the message duration, 20 ms. The
gates NO are closed and the gate NC is opened. As can be seen from the figure,
the despread array output is passed directly via the center channel to the summer which

again has only one non zero input. However, the difference combiner negative input,
d(t), is row non zeio.

9-18




The term d(t) is formed from the NBPF output which is nearly m(t). A sig-
nal shaper and AGC produce a "clean" and constant power waveform giving a second
mixer input of c(t)[é (t) + jomming -d(t)] . Thus, for the error output we get

€(t) = £ () - d(t) + jamming (9-5) :

This expression is the form required for maximization of S/N.

Finally, the signal shaper output is also routed to the user, providing a
decoded desired signal .

MR

{.‘ s . —
n e TR AT YT

Important Response Times

. Several important response times are inherent to this approach. If neces-

sary they can be changed with acceptance of performance penalties or by system

modification. ™ N

~
\\

9.4.4.1 Null Fofming Time
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In order to iake advantage of possible friendly emitter isotropy (or at least
3 non~-colinear formations), it is necessary to avercge emissions for a time greater than

: one emission slot time. If one accepts that nulling within a 20 ms emission is not neces~-
: sary, then one might null form for a second or so. (Since a given desired friendly trans-
mits only once per 2 seconds.)

T SRR

In order to accommodate more than one desired friendly per frame, one
would want to reduce the null forming time. Depending upon this and other system con-
siderations one may vish to null form in 40 to 100 ms.

TR

9.4.4.2 Beam Forming Time

N
Once relatively good nulls have been formed, it is desirable to quickly
form a beam in the direction of the desired friendly. The speed in which this occurs
raay easily be regulated by properly setting the amplitude of d(t). However, if the con-
stant power d(t) amplitude is set too large, excessive vaiiance in weights will result.

In a final comment about response time, it is notable that the array can be
expected to assume different response times us different power friendlies are received as .
a function of slot times The array may be in a suppression mode during one slot,
desired friendly receive mode the next, etc. Consideration needs to be given to whether
a jammer might advantageously use this "conditions variable" feature of the array.
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CHAPTER 10
10-1

IMPLEMENTATIONS OF ADAPTIVE ARRAYS
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10.0 IMPLEMENTATIONS OF ADAPTIVE ARRAYS

In the previous chapters only idealized complex weights, idealized perfect
multipliers, and antennas have been shown in the array discussions. Of course, these
examples are meant to portray only simplified systems that con be readily onalyzed. In
practice, we are faced with a receiver design type of problem plus many additional pro-
blems. In particular, the following areas must be carefully considered in designing an
actual null-steering array:

a, RF vs IF weighting (whether or not IF strips are going to be used behind
each element).

b. Types of Weights (including tapped delay line or different omplitude —
phase types)

c. Types of Correiation

d. Weight Control

e. Weight Constraints

f. Amplitude and Convergence Rafe Control

g. - Signal Removal ~ (especially spreod spectrum signc:»I removal)
h. Unavoidable Time Delays and Phase Shifts

i. Antenna Element Type and Location

10.1 RF Versus JF Processig_

One of the first design choices that must be made is whether the weighting
will be done at RF or IF, as shown in Figure 10-1.

10.1.1 RF Weighting

The main advantage of RF weighting (Figure 10-1a) is that no modification
of an existing single-antenna receiver is necessary; multiple IF strips are avoided. All
antenna signals are combined into one RF channel connected to the receiver. For this
reason, most conventional command-steered phased arrays use RF phase shifters as weights.
The disadvantages of RF weighting for adaptive arrays are:
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a. The amplitudes of weights using most conventional controls have a
large dynamic range, depending upon the particular geometry and
signal levels entering the array. Without prior amplification, serious x
losses in signal-to-thermal noise ratio would be encountered, due to s
the adaptive weight attenuations, as well as inherent resistive losses. :

a7 N S N i MY SR

b. RF weighting usually requires RF correlation, which appears more
difficult and expensive than IF correlation with presently available

hardware.

10.1.2 IF Weighfing

The need for amplification and filtering in much of the control circuitry, i
especially before and after correlation and matched filtering, makes the use of some IF {
processing almost essential. Although this does not preclude RF weighting, it makes
all-IF-processing and weighting potentially useful, and possibly cheaper than RF
weighting, especially if RF amplification is required to compensate for RF weighting :
losses. Figure 10-1b shows RF weighting; the local oscillator and RF amplifier are the
IF strip of a receiver, and must be repeated for each element unless some time shared
use is made of one processor. Since jamming can be expected to be much larger than the
thermal noise, the noise figure quality of the receiver IF strips need not be as good as
conventional receivers; other characteristics, however, suchas dynamic range may have
to be as good or better than conventional receivers.

Many microwave integrated circuit arrays, such as Texas Instruments MERA
and RASSR, have these separate IF strips for each element of the array. At very high
microwave frequencies, such as X~band or high power L-S band, such arrays are very
expensive. At the lower VHF-UHF frequencies, where only a few elements are involved,
the expense may not be great.

§ N et sy

10.2 Types of Weights

Many possible weight types are shown in Figure 10-2. Since both amplitude
and phase of a signal must be controlled, one can either control the amplitude of two
quadrature phase components of the signal, or use a phase shifter to control the phase with
one amplitude control. The first part of Figure 10-2 shows quadrature amplitude control
with either double balanced mixers (four quadrant multipliers), variable gain amplifiers,
or variable attenuators. The second section of Figure 10-2 shows amplitude and phase
control with phase control from either phase shifters or mixers (employing a phase - shifted
local - oscillator frequency).
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10.3 Types of Correlation

The correlation shown in Figure 10-1a is usually batween an RF frequency
(the channel signal, x, ) and an IF frequency (the error) to yield a correlation signal At
another "local oscillator” frequency. The ou:put correlation would contain both ampli-
tude and phase on the local oscillator carrier frequency. If the error was fed back at the
RF frequency and at a high power level relative to the channe! signal, leakage and
oscillation would be difficult to prevent. With IF weighting, using IF amplification
first, two high power level signals x; and € are available for correlation; thus correlation
can be performed with both signals at the same frequency, and output of dc. Since a
dc signal cannot carry both amplitude and phase, correlations with dc output must be
performed for both quadrature components of a narrow band signal .
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10.4 Weight Control

The weight control circuitry and the amplification of the weights may be
performed in many different ways; three basic ways are shown in Figure 10~3. In the
first two ways shown, correlation output at dc is assumed, which requires correlation
of the error with two quadrature components of the signal or vice versa. The correlation
output at dc is integrated (low pass filtered) to form the voltages that control the two
quadrature weights. In Figure 10-3a, the quadrature weights are applied to the signal
channel directly. Compton (61,26} yses this method. In Figure 10-3b, they are applied
to the low-level local oscillator, which in turn applies amplitude and phase weighting
to the signal. Finally, Figure 10-3c shows a correlator output at some local oscillator
frequency being narrowband filtered and mixed directly with the signal to apply ampli-
tude and phase weighting. Applebaum (3) uses this technique in some of his sidelobe
canceliers, The narrowband filter is not integral control, but much smoothing is available
‘ with a very narrowband filter. One serious problem with this technique is alignment of
, many very narrowband filters, if much smoothing (integration time) is required. Tracking
. filters, such as VCQO's, may be used to alleviate alignment of passive narrowband
filters, although additional complexity and expense results.
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10.5 Weight Constraints

In order to understand the various adaptive arrays being discussed, it is
important to list the possible weight constraints,

10,5.1 Before Signal Acquisition

For the acquisition case neither signal nor signal DOA may be known.

With the "Strong Jammer Suppression" acquisition algorithm, the weights may be con~
strained os follows:

a. Unconstrained - The weights, in this case, 5o to a steady state value
of zero (shut-off), but at a sufficiently slow rate so that signal acquisi=
tion can take place after the jammer is nulled. The report by Zahm
and the simulation program TSM2 uses this unconstrained case.

One Weight Fixed - In this case, the weights cannot go to zero since
one weight is fixed, Thus, shut-off of the array is prevented, although,
in the steady state, both jammer and signal are often well below ther-

mal noise. Most examples in Chapter 8 use this constraint. Analytical
solutions have also been obtained for this case.

c. Constant Norm of Weights, Sum of the Weights, Power Input, to the
Processor or Qutput - Automatic Gain Confrol or a similar mefhod
could be used to keep the power input to the processor or output equal
to a constant or to keep the sum of the squares of the weights or the
sum of the weights fixed. It is probable that a fixed input power is a
preferred one, because the eigenvalues and time constants of the sys-

. tem are proportional to input power.

|3
d. Additive Forcing Function - The ‘use.of a forcing function, such as
that discussed in Chapter 7, is similar in resolts, to fixing one weight,

10-8
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: 10.5.2 After Signal Acquisition

After signal ccquisition no explicit weight constraints are reguired, because
" the operations to optimize the signal implicitly constrcin the weights:

a. Signal subtraction, for the "Known-Signal" algorithm, in which the
signal is maximized and the weights are automatically constrained by

forcing the output signal to be equal to the reference signal, see
Widrow (76),

b. Signal Correlation subtraction for the "Known Signal~ DOA" algorithm,
in which the signal is again maximized and the weights constrained by

forcing the output signal correlation to be equal to the subtracted corre-
lation; see A;splebaum(s), Griffiths43),

Sum of Weights = Constani ~ This is the weight constraint used in the
“projection gradient” algorithm. It is a "DOA~Known" algorithm in

\
which signal correlation is derived and removed via a main beam pointed
at the signal.

In addition, explicit weight constraints may be used, such as AGC, but only
with care if the optimum solution is to be preserved.

10.6 Amplitide and Cor:vergence Rate Control

It has been shown . Chap*er 7 that the initial convergence rate of t.ells
on a dominant jammer was derendent upon the largest eiganvalue, Ay. Most plots were
nomalized to the time constunt 7= . It is known that this eigenvalue is closeiy

approximaied by twice the total input power. Although the total input power is not knewn
in an operational situation, the power in each charnel is known,

_ 2
Pxi = X; .

Controlling these powers will control the convergence rote.
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! It is desired to control the convergence rate. Since the input power may
have a very large dynamic range (due mainly to the varying range to emitters) some form
of amplitude control is required. In addition, the limited dynamic range in correlators
and weights make amplitude control necessary. Three controls are commonly used for
amplitude control:

ot K

a. Automatic Gain Control (AGC)

TS AR TRy

o

b. Limiting

c.  Logarithmic Amplification (Log-Amp) -

A simplified figure showing such controls is shown in Figure 10-4,

Ef
g

Automatic gain control will clearly regulate the power entering the array
processing. If this total power is held constant, then the integrator or filter gain o
can be chosen for a desired initial convergence rate. Several disadvantages of AGC
are the finite settling time and the suppression of very weak signals if instantaneous dyna-
3 mic range is limited. For these and other antijamming reasons, AGC control is not used
] as much as it used to be in many applications; either limiting or log~amplification is
' preferred.

; Limiting or clipping is also potentially very useful for amplitude control.
It would not have the disadvantage inherent in AGC, such as settling time and limited
dynamic range. The main question is how well a correlator would perform using signals

g that had been limited. i appears a5 it the effects of limiting innuli steering is not yet
] clearly understood. The resuiting correlaticn weuld be equivaient te phase detection.
] Thus, amplitude would he lost. The phase information would permit the crucial phase

shift weighting in each channel, which would allow some nuiling of the jamming. If very
, hard limiting were not employed, then the correlation could go inio a linear range when
3 niost of the jomming was removed frem the error channel. Initiat experimentation has

i veritied that such soft limiting cun be usad successiully in o null steerer, but that
convergence was, in one realization, very siow during the time that limiting occurred,
possibly due to the loss of amplitude error information.®

Yhe use of logarithmic amp!ifiers is alsc possiple, but has nat been explored
or reported on fo our knowledge. Of caurse, antilog operation would also be necessary
before array summation because u linear combination of array charnels is required to
carcel jamming. Ctherwise, non~linearities, different in 2ach chanuel, would change
the signals differently in each channel, making canceliation impossicle.

Ty

Thore detail of limiting is found in Technolegy Services Corp. "Adaptar, Space-Time
Precessing in Airborne Radars,” Feb, 7%, ADBB1452 (L)),
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10.7 Signal Removal of Spread Spectrum Signals 2
It was discussed in Chapter 8 that signal removal from the error chonne! may \

not always be required, but is generally desirable to prevent signal degradation or to
provide antenna gain toward a signal. For some situations, especially those in which
only a few signals are present having long acquisition and transmission times, partial signal 1 :
removal after initial signal acquisition is relatively simple. However, in the case of many y
simultaneous spread spectrum signals, considerable difficulties arise in removing the sig-
nals from error channel. A serious problem is time delay through the matched filters (or
correlator systems). Since the signal cannot be known a priori, the signal must be
detected via matched filters at the receiver output, which make correlution with the
input signal x; more difficult., These matched filters must have a delay of approximately
the information bit in order to make a decision on any spread spectrum sequence of
"chips." For a spread spectrum signal of 10 MHz and assuming a surface wave matched
fitter with roughly 10 ps length is the maximum available (as is presently the case),
approximately 20 dB of spread spectrum processing improvement is available; however,
delay of =~ 10 ps are encountered in the matched filter. In order for correlation over

10 MHz bandwidth with the ith input channel signal, x;, it too must be delayed 10 ps
(note, in each channel). Such delays could be expensive and lossy. If larger processing
gains, such as 40-50 dB, are used with a 10 MHz bandwidth, delays of 1-10 msec are
needed which are extremely difficult to achieve 11 Digital sampling, processing, and
storage techniques might be required, or other techniques such as biased suppression or
"DOA-Known" tirpes could be used that do not require signal estimation.
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Two possible techniques of spread~spectrum=-signal removal using matched
filters are shown in Figure 10-5. In part (a) of the figure, identical banks of matched i
filters are used in both the error and ith signa' channel, one filter in each bank for each
signal sequence to be detected. Since the signal energy in the output of each matched
filter is concentrared with a high peak pulse, this signal energy may be parily removed
by clipping the signal ot about the detection threshold. Noncoder jamming a'id noise
will be spread in time and unclipped. Thus, correlaiion will be done mainly on jamming,
transformed by the mciched filter almost identically in the two channels. As in all
"Separable Jamming ¥ techniques, signal i. not maximized by this array processing.

e WAk s 1

aa,

1’]‘Lutesi‘ information available indicates that delays on the order cf up to 100 psec are
now available.
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Figure 10-5. Spread Spectrum Signal Removal Techniques Using Matched Filters
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by clipping the signal at about the detection threshold. Noncoded jamminyg and noise -
will be spread in time and unclipped. Thus, correlation will be done mainly on jamming,
transformed by the matched filter almost identically in the two channels. As in all
"Separable Jamming" techniques, signal is not maximized by this array processing.

v
et b o i e E55%, o Rt A N S

A e

The outstanding difficulty with this signal removal technique is that the
: matched filter band must be repeated for each chennel. For two matched filters (for a 0
: and 1), this is not too difficult. However, if a different matched filter is used for each
‘ sensor, or for a group of sensors in order to allow simultaneous communication with many
sensors, then the technique probably requires too many matched filters to be practical.

Another signal removal technique, shown in Figure 10~5h shows a technique
of signal subtraction, whéch will maximize signals, since it is a "Known-Signal" thresh-
technique tike Widrow's 76} nmode 1" array. In this technique, the output of the
old detector that follows each output matched filter wiil trigger an identical matched
filter to regenerate each coded signal. The composite coded signal is then subtracted
from the output to form the error channel as in the "Known=Signal" adaptive array . -
Single time delays, instead of banks of duplicate matched filters, are now required in the
output before signal subtraction, and in the ith signal channel.

e A M-

correlate and despread the spread spectrum signals, then similar techniques for spread
spectrum signal removal have been developed and are shown in Figure 10-6. In
Figure 10-6a, the synchronizedreference sequence is correlated with the input signal to

If, instead of matched filters, synchronized reference sequences cre used to §
§

] produce a narrowband signal, but uncoded jamming remains spread over the spectrum.

: Before narrowband fiitering (which would eliminate most of the jamming that must control ;

i the adaptive array), the usual adaptive array is used, with the addition of a narrowband :
reject filter in the error channel for signal removal. This technique is a more sophisti- :
cated, spread-spectrum version of the simple "Separable Jammer" technique of filtering ‘

and separating out-of-band jamming for yse in null-steering. The delay and distortion 4
of the narrowband reject filter is probably minimal and can be compensated for, but the
disadvantage of different codes for each different sensor remains; a different coded,
synchronized reference signa! is needed for each signal. The synchronization problem
itself appears very difficult, even for a conventional single channel signal
processing system.

A similar scheme, due to Compton, for signal removal is shown in Figure
3 10~6b. A PSK signal is assumed after despreading. Squaring this signal results in a double
¢ frequency carrier which may be removed in a very narrowband reject filter in the error X
channel. Thus, a "carrier" portion of the signal has been removed, which may prevent ;
nulling of the signal.
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Figure 10-6. Spread Spectrum Signal Removal Using Correlation With a Reference
10-15

' ¢ Tt i
4

e

" aty g




A third technique, also due to Compton and others, filters out the despread
signa! through the narrowband filter in the signa! channel, then regenerates the coded
signal by spreading it with the reference sequence. This forms a'signal estimate, delayed
by the narrowband filter. With compensating delays, a "Known=Signal" adaptive array
technique can be used. There is still difficulty in signal distortion through the narrow-
band filter causing an error in the correlation of the error with the channel signal, X; .
Compton has recently reported, in private communication, that he was iimited to a 4:1
spread spectrum bandwidth reduction which is believed due to the delay and distortion in
the narrowband filter; although he recognizes the need for a delay, it is believed that he

did not use a compensating delc in the above experiment.
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BREADBOARD DESIGNS AND DESIRABLE EXPERIMENTS
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11.0 BREADBOARD DESIGNS AND DESIRABLE EXPERIMENTS

The preceding chapter discussed possible implementations of the general
functions (correlation, weighting, etc.) that are needed in adaptive arrays. The "hest"
implementation is not known, but designs for adaptive circuits and even adaptive arrays,
have been implemented in the past. Several designs do look most promising .

In this chapber, designs that presently look most desirable will be presented
along with experiments that must be run to determine the best design for communication
purposes, especially with spread spectrum signals and many users.

There are two objectives in these experiments: (a) finding the best imple-
mentation(s) via ¢ flexible breadboard, which is emphasized herein, and (b) applications
experiments with the best implementation(s) .

1A Preferred Implementations

There are two preferred basic designs based on studying the apparent com-
plexity of the various implementaifons in Chapter 10 and on what past experience has
been published in this area. These basic designs utilize the following weighting
techniques:

a. Quadrature Channel Weights
b. Complex Weighting

as shown in Figure 11-1. Figure 11~la shows dc correlation and integrator control of
quadrature weight channels. There are several weight types that need to be evaluated
with this basic implementation, namely diode double balanced mixers, variable attenuators
(such as PIN diode attenuators), and transistor multipliers (double balanced mixers)

such as Compton uses.

Figure 11-1b shows a basic IF correlation scheme with narrowband pass
filtering replacing the integration. The weight will probably be a double balanced
mixer, run at a level fow enough to give both amplitude and phase weighting, such as
done for diversity combining by Raytheon 89), and for sidelobe cancellers®]. Another
possibility is using the mixer only for phase shifting, and amplitude weighting with an
amplifier or variable attenuator.

There are, of course, other designs that may be important, such as one that
would control RF phase shifters directly. However, the above two basic designs, with
variations due to different weighting schemes, are ones that there is some experience to
base confidence upon, uand that can be evaluated with the same basic test bed to

be described.
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5

5 11.2 Breadboard Experiments
N
TR . . . .
4 g Given the basic preferred designs, there are then a host of design problems

& that must be answered. The construction of a very flexible breadboard or test bed would

allow one to measure and compare the performance of several different designs, especiaily
S using different weight types. It is felt that there are three basic steps in building such a
S breadboard: ’
: a.  Abasic two-channel test bed, which would have one variable weight %
1 channe! and one fixed weight channel, in order to test the weight i3

type as cheaply and quickly, as possible. It would steer one null on :

E one jammer. f‘ g
f? 7]
; b. A 3-5 element asray using several, or at least the best, weighting ; :
3 technique decided upon during the two channel experiments above. 1
3 c. Asignal removal breadboard to test the various techniques for remov- g
] ing spread spectrum signal effects from the null-steering control. The ;

most promising technique should then be tried in the two-channel test 3
bed, and then the 3-5 element array. Because of the strong potential %4
of using biased jommer suppression without removing the spread 3

YL F

3
spectrum signal, it is felt that this experiment can be run separately, 3
and not seriously affect the basic null-steering breadboard. g

GACRR L Aot bit Rinkidd

Note that the two channel test bed is not being called an array, although
it can null one jammer and is potentially quite useful. The two channel testbed is to test
the correlator, control circuitry, weight, dynamic range problems of amplifiers, and a
host of otker circuit component problems associated with controlling the array.

For each of the two basic designs in Figure 11-1, a more detailed design
will be given to show the potential cost and complexity of the experiment. It should be
clear that the equipment is relatively inexpensive and straightforward to build. By using
coax throughout at 60~70 MHz IF, a very flexible test bed cculd be built.

17.2.1 Quadrature Channel Experiments

Figure 11=2 shows the bosic three-element array that will be constructed.
One fixed weight (straight-through connection) is used, both as a praciical weight con-
straint to prevent weight shut-off, and to conserve on parts while allowing three elements.
The weighted channel on the left consists of an antenna, mixer, bandpass filter and
amplifier; i.e., an IF strip. The power is then split into quadrature channels (0°, 90°)
to provide amplitude control alone in each channel and vary both amplitude and phase of
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the entire channel's signal. Considering only the 0° channel, this is then split into a
signal going to the correlator and one going to the mixer weight. The correlator drives
an integiator, whose output voltage is the control voltage on a double-balanced mixer
attenuation weight. The amplitude of the output of the mixer is proportional to the con=
trol voltage applied, thus multiplying the IF signal by the weight. Both quadrature
channels are thus weighted and added together then added again to the signal from the
right hand channel. These two channels are the only two weighted channels, and since
the attenuation of the mixer operated in its multiplying range is rather large (=25 dR),
amplification and amplitude trimming is provided before addition to the unweighted
channel. Finally, the sum of the three channelsis ampiified again, and split into an out-
put signal (7) and a signal to pe fed back to form error. A local oscillator signal gen~
erator is split into four channels for use as shown in tk2 diagram. A signal generator,
which will k2 the source of the incoming desired signal, is mixed with th2-fcurth channel
of the local oscillator to form a "desired signal estimate" ot the output IF, and
is subtracted from the feedback output signal to form an error signal. The error signa. is
split into four parts for the correlators in the weight control circuitry. This diagram then
forms a simple realization of the basic Widrow ("mode 1") LMS algorithm. One of the
advantages of double-balanced mixers is that the dc voltage multiplying the signal may
be either plus or minus. The minus automatically reverses the phase (180°) in the signal
channel. With 0 toeo attenuators, phase reversal must be performed another way. The
amplifiers shown are required to bring the low input signal levels up to values needed in
the correlator (~ =25 dBm). In addition, other amplifiers are needed after the mixers to
make up for the natural loss in multiplying two low=level sigrals. The correlators will

also be double-balanced mixers, because of their wids bendwidth and good rejection of
unbalanced signals from each individual channel.

Both transistorized and diode double~balanced mixers should be tried.
Recent work by Compton(28),  shows good success with transistorized multipliers (mixers),
as shown in Figure 11-3a. Good isolation is an advantage of active circuits. Figure
11-3b shows a quadrature attenuator weighting scheme that is also planned for testing. It
can be inserted in place of the halanced mixer weights. The attenuators will be PIN
diode attenuators commonly used in microwave and IF equipment. Drivers will be
required for each PIN diode, and of course two different attenuators in 0° and 180° lines

of a hybrid will be required for both in-phase and quadrcture components of the signal in
each chennel.

In addition to the antenna inpuis, it is planned to have a iaboral :+ bench
power splitter ond delay metiod to provide test signals that simulate a signal and jammer

arriving from different directions. A block diagram of this equipment is shown in
Figure 11-4,

So far the design is detailed enough to get an appreximate part count for
a two channel fest bed or a three element array. This circuitry should steer nulis if
proper amplitude levels are set at the input so that the dynamic range of the components
is not exceeded. The mixers, used both as weights and correlators in Figure 11=2, have
a very good dynamic range; some are advertised as having over 50 dB. However, the
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amplitude and convergence constant controls discussed in Chapter 10 are not included in
the basic design. Either AGC amplifiers or limiter-aniplifiers were good possibifities for
this control . At least fwe amplifiers of each type should be obtained for a two channel
test bed to measure the impact of these important real components upon null steering
capability . Initially, it would be passible to put a limiter after the input amplifier to

, obtain limiting action. For the AGC amplifier, it could be adequately simulated by

] manually setting the approximate total input power level .

L i S S Nl Y

e

e

PP

: As discussed at the heginning of this chapter, the signal processing that
] might be used fo obtain a Widrow algorithm ic considered as a separate experiment, and
is thus not included in the basic breadboard design.

11.2.2 Complex Weight With IF Correlation ' i

' A more detailed design of the basic "complex weighting" scheme of Figure :
11-1b is shown in Figure 11-5. This figure is considered an addition to the basic bread- ;
board, Figure 11-2; local osciilator distribution, etc. is assumed the same. The left
channel, as in Figure 11-2, begins with an IF strip, and then splits to a correlator and to ;
o weight. However, this time the weight will be "complex, " that is, both an amplitude 3
and a phase weight combinad, without quadrature channels. This complex weight is i
formed by the correlation, through the double-balanced mixer shown, of the error signal 3
at 70 MHz and the channel signal, x ¥ 100 MHz. The narrowband filter at 30 MHz R
passes the difference frequence only, which carries both the phase difference between 7
xq and the error £ and the amplitude of the correlation. This 30 MHz signal then multi- :
plies the x channel signal through the double-balanced mixer weight. The 30 MHz
weighting signal acts as a 2nd local oscillator, but is not allowed to hard=switch the
mixer. The signals from the left and right channels are then added, amplified, added to
the unweighted channel, amplified again, and split between the output signal and the

g signa! used to form the error. All of this is similar to Figure 11~2, and can use essen~

4 tially the same equipment, except for the 100 MHz first IF . If necessaiy, the first IF
could be left at 70 MHz, and the second IF could be lowered to 60 MHz or less. The
frequencies shown are not firm, and depend on exactly what the implementation of the

narrowband filter will pe.

R Pn sk drg e !

The narrowband filter is the crux of this design. It could be a crystal filter,
if two or more exactly .natching crystals can be found or tuned for the various channels.
Although this is a simple implementation, the smoothing time of the filtar is {imited
(milliseconds) by the narrowbandwidth obtainoble .

R O LR

A more flexible filtering scheme is the so-called "tracking=filter” shown in
Figure 11-6. It is a normal phase-locked loop. whose feedback filter bandwidth may be
made very small, resulting in long smoothing times. The vco itself generates the output

SR IR £V 0 W Frmeton Srg e
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weighting signal, with a phase equal to the input phase. Usually, however, the output
is limited or saturated, so that amplitude information is lost. Amplitude information
(modulation) can be obtained by an in-phase detection of the output with the input, as
shown. This amplitude can then be used to "weight" the vco outout before it weights
the signal channel. In the figure, however, an alternate scheme is shown that allows
the veo to "switch" the mixer, thus applying only a phase sh™™* to the signal. Ampli-
tude weighting is applied separately with a PIN diode attenuator or variable gain

amplifiers.

11.3 Spread Spectrum Signal Removal Experiments

The spreud spectrum signal removal experiments should be considered a
separate experiment, because:

a. Biased suppression techniques do not require signal
removal .

b. It may be very difficult, and much too expensive,
to remove spread spectrum signals, because of the
time delay problems encountered in matched filters.
This should not be.allowed to hold up the null-steering
experiments.

Because of the simplicity, a coded reference decorrelation method of spread
spectrum demodulation was chosen rather than a matched filter, although if such are
available, they should also be tested. Figure 11-7 shows a basic breadboard for sug-
gested experiments. The UHF signal generator, upper left, is modulated (rerhaps at
the signal generator), then spread spectrum modulated with a simple PN sequence
derived from a shift register. This signal is added to a modulated "jamming" source to
form the transmitter output. Synchronization is assumed perfect in this experiment; the
PN signal is hard-wired to the array to modulate the local oscillator, which in turn mixes
the received signals. Therest of the array is the basic breadboard array except for band-
stop filters in both channels leading to each correlator. These filters block the narrow=
band demodulated desired signal while passing most of the jamming.

Other techniques of signal removal should be tried as well; however, some
would require substanrially more equipment, and might raise the price of the effort con-
siderably. Nevertheless, it may be essential to find an adequate method of signal effect
removal, if the nulls obtained by biased suppression are not satisfactory.
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12,1 Summary of Results

PN S

At the outset of this study the work was  .-eived of as a two phase effort.
The first phase involved the compilation and critical exan...«ation of those adaptive null=-
steering techniques which appeared applicable to RF communications problems, particu-
larly the multiple user TDMA type system. This involved the comparative analysis of a
large amount of existing technology. The second phase was to perform a more detailed
analysis of at least one of the more promising procedures studied during the first phase
effort. The work has essentially proceeded along these original lines, with the excep-
tion that the second phase effort has become more involved. Due to the inadequacy of
the previously developed methods examined in the first phase, particularly in application
to practical communication problems, the second phase effort has entailed the expanded
task of both the development of practical acquisition technicties and their more detailed

analysis.

RESEES Sl S e g e
Ao

S In the first phase of the study the many technology areas and mathematical
3 methods applicable to the RF null steering problems were examined. Major areas of
! interest were '

y 1. The choice of an appropriate mathematical model for the general
: problem formulation and the adaptive array processor.

2. The selection of appropriate performance measures to define the
optimal weights,

2 s B s

LAt

3. Derivation and comparison of the of 'imal weights for the various
performance mecsures.

4, Compilation and critical examination of iterative~adaptive optimi-
zation methods to determine the best procedure for use in real~time
computation for RF communication arrays.

5. Compilation and critical examination of those adaptive algorithms
which have been previously suggested.

: Some of the results of the first phase effort are:

1. The choice of a complex weight model for the relatively narrow band
problem under study.
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2. ldentification of four appropriate performance measures; mean square
error, signal-to-noise ratio, the likelihood function, and output
noise variance.

3. Derivation of optimal complex weights for the four criteria.

4. Demonstration that for narrow band problems the minimum mean square
error solution factors into a linear matrix filter, which is common to
all four solutions, followed by scalar processing gains which contain
all the other optimal solutions.

5. As aresuit of 4., it is shown that each optimal solution takes the
form

Wopt =BR " » (12-1)

where g is a scalar gain, and hence, for the narrow band case, all
solutions yield identical output signal ~to=-noise ratios.

6. Selection of the steepest descent optimization method as the obvious
choice for practical computation of the optimal solutions.

7. Demonstration, through both stochastic approximation ideas and
intuitive relative bandwidth arguments, that the performance measure
gradients needed in the steepest descent algorithm can be computed
using instantancous quantities readily available at the :rray.

8. Demonstration that the more practical algorithms sugy2st~. previously
differ primarily in how desired signal effects are remc ¢ 4 from the con-
trol circuitry Tonsequently, using stochastic appre.c. ~vior. arguments,
they all obey the same general form of differential equation, nomely,

dw —
a%”- t+ aR w= oz’r\xs (12-2)

From this work it is apparent that not only are the steady state optimal
solutions essentially identical, but that the algorithms developed to construct these
solutions wi'l exhibii the same general transient behavior. This, of course, also depends
on how the desired signal approximation or direction of arrival estimates are acquired.
Herein lie the basic differences and difficulties associated with these methods. They do
not represent practical solutions, since they do not deal with the acquisition problem,

however, they do dictate the basic control loop form, contingent on how the acquisition
is obtained.
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The first phase effort has placed the large, and therefore perhaps confus-
3 ing, background of applicable techniques and algorithms in the adaptive array area

3 within the context of the RF communication problem. It has been shown that many of
the separately presented past results lead to equivalent aigorithms for our problem, and
that they do not actually represent practical solutions. Consequently, the second phase
effort has become not only a detailed analysis, but aiso a development of practical
acquisition techniques. This effort has proceeded primarily in the following areas:

1. Andlysis of basic differential equations (Equation 12-2) using spectral
decomposition techniques.

2. Adetailed study of the "Dominant Jammer Reciprocal Suppression"
technique for signal acquisition, in the face of very powerful jamming
or interference, including:{a! analytical transient solutions for the

: zero-bandwidth, one-jammer case and (b) computer simulations and
: analysis for arbitrary parameters.
i 3. Adetailed study of the "Biased Dominant Jammer Suppression" tech-

nique (a generalization of the "Equalization” phenomenon that
Compton noted).

e R i o B L b s B2 e A A b S T 05 ¥ S oy ity H e G St
< B i e P ey R s e

: 4, A less detailed analysis of the LMS algorithm, including analytical i
[ and some general computer results. %
- 3

3 5. Studies of techniques for discrimination of signal and jamming in K
realistic scenarios. Since the techniaves vary with a priori knowledge, i

the classification of different adaptive processing techniques by the i

a priori knowledge was done.

6. Studies of the various implementations of adaptive arrays, with some

analysis of the hardware problems that might result,

7. Decisions for a basic breadboard design, including the several most 3

promising implementations of weights, correlator controls, amplitude

constraints and signal estimation methods that should be tested on the §

breadboard. 3

8. Statement of the recommended general approach {o the breadboard %

tests. 3

B

Specific results have been obtained from the first four study areas cited 3

above. Although it is difficult to summarize these results in a few lines, the major X

conclusions appear to be: =

%
124




The LMS algerithm can produce at least 41 dB gain (null depth) on

| percent bandwidth jammers, and at least 27 dBgain (null depth)on 12
percent bandwidth jammers, while losing essentially none of the full
array gain on the signal in the first case, and only 2 dB in the second.
Very narrow band interference or jamming can be nulled much more:
over 60 dB for .1 percent bandwidth.

An important adaptive array property called "Dominant Jammer
Reciprocal Suppression” was discovered. This property suppresses a
dominant jammer very quickly; compared to a weak desired signal,
without the signal being suppressed significantly. The output signal-
to-jamming ratio is the reciprocal of the input signal-to-jamming ratio.
Two important cases exist:

a. Number of signuls > number of elements > number of jammers.
In this case, this Reciprocal Suppression result is approximately
true in the steady state, at least for bandwidth < 10 percent.

b. Number of emitters < number of elements. In this case, the
reciprocal effect is true after the first transient period, at least
for very narrow band; however, after this transient, the signal
can be suppressed we!l below thermal noise. The transient period
for signal acquisition was usually found to be several hundred
times as long as the initial jammer suppression period. There is a
very real possibility of signal acquisiton during this transient
period. The reciprocal suppression result can be obtained before
signal processing improvement.

An important signal acquisition and communication technique called
"Biased Jammer Suppression" or "Equalization " allows the potential

of suppressing powerful interference down to the signal level, or below
it, in the steady state. The resulting output signal-to-total noise ratios
approach 0 dB (for the case where the number of emitters < number of
elements)just from spatial processing before signal processing. No a
priori information is required about the interference sources or the
signal. Note that,

a. This technique, which dces not maximize the signal or provide
gain toward it, can be used for initiai signal acquisition.

The LMS algorithm, which requires signal estimation or signal
DOA estimation, can be used laier.

b. In addition, this technique could be used for signal communication
with large numbers of signal sources without signal maximization,

12-5
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if approximately isottopic gair. foward the signal iz acceptable
and some signal processing (perhaps 6~10 dB) is available.

4, Multiple jammer and multiple signal cases show little degradation over
the single jammer and signal cases that form the bulk of this report.

5. In implementation study results, the three basic methods that appear
most promising emphasize three different weighting techniques:

a. Quadrature channel amplitude weighting.

b. "Complex" weighting by using a mixer for both phase and ampli-
tude weighting.

c. Control of RF phase shifters, probably digitally.

6. The recommended breadboard design can test the quadrature and
complex weighting techniques above with several different methods
of amplitude weighting suggested: dc mixers or variable gain ampli-
fiers or attenuators. The third technique, control of RF phase shifters,
is very appealing for modifying an existing array, especially where
an existing computer is available, but these assumptions, plus being
totally different from the first two techniques, have eliminated it from
the breadboard recommendations.

12,2 Reccmmendations for Future Work

The recommendations stem primarily from two sources. First, during the
course of this study certain topics, not directly related to this effort, could only be
touched upon briefly. Secondly, much of the work which has been conducted could be
very profitably extended. This section presents some of these ideas.

12,2,1 Additional Computer Simulation

Additional computer simulations could be conducted, not only continued
performance of the parameter studies already conducted, plus the consideration of addi-
tional parameters, but equally important, the development of more realistic simulations.
For instance, the control loop transient behavior has been simulated using solutioas to
the differential equations goveraing the idealized control loop. This assumes perfect

12-6

LN

i L

i 20, T Y eLrd

PIWCY .

PRI ]

P
o M $ 20

PUAPTIRRVSVEREEIN. T PRL SPITS W ERE. L5 5, RN £

oats batn




pr—wrr=—
ve - W T PRI T T AN s - ey o S s Mg 2 b G a3 Y r"ﬂ"ﬁmuﬂ. 3
v e T WA S E P S A A TR VIR ST Rt R L DO RS AL ARG UAC L e, G

10 and 11 of this report.

e e

12.2.3 Alternative Algorithm Investigations

The present effort has been confined to the study of algorithms based on

3 standard iterative-adaptive optimization techniques, particularly those using steepest

3 descent gradient methods. Recently, a new class of adaptive algorithms, bas~d on
recursive estimation methods, and applicable to the control of null=steering arrays, has
been introduced. These were discussed in Secticn 4.5 and offer several potentially
important advantages over the standard adaptive methods studied here. It is importunt
to develop these new methods to the point whers reasonable comparative analysis with

5 :
é g‘f‘ . g
3 & integrators, summers, multipliers, etc., and does not account for even tlie most obvious 3
3 g? circuit nonlinearities. Other aspects of the computer simulations could also benefit from E
3 ?‘g* more realistic hardware assumptions. Another area of interest would be more detailed >
. g analysis of convergence behavior and convergence control. The use of AGC or nonlinear
§ amplifiors at the input channel, to control power and thus convergence rate, could 3
b 2 benefit from computer analysis. Also, the use of controlled bias insertion requires addi- 3
3 §; tional simulation. For a given problem situation the use of the standard Widrow=-Grirtiths ;
5 LMS algorithm would require detailed simulation study, particularly the techniques used ]
S to form effective signal or DOA estimates. ‘5
: 12,2.2 Breadboard Tests i

3

At this point in the development of RF commurication adaptive array tech- :

3 nology, the design and construction of preiiminary breadboard implementations is not 3]
g only an obvious extension of the theoretical and computer analysis, but is a necessary 3 9
g step towards the further development of this important technology. This encompasses the j; 5
i construction of both specific breadbocrd circuitry for particular applications and the ; }
development of more general test bed configurations useful in a wide variety experimental i

programs. A discussion of some of the details of such programs is included in Chapters i

3

:

§

e Tl
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3 the standard adaptive algorithms is feasible, thereby providing the rationale for the mak~ 1
ing of trade~offs between the two methods in a given problem application. Development :
{ of this new algorithm is presently being conducted at Radiation Systems Division. :
E- !
12,2,4 Studies for Specific Applications

FTUIREY YN

Many specific applications need to be investigated for the application of
adaptive arrays, for example:

a. More specific work on TDMA system-

ol e e Y S

b. Simple RF interference of UHF-VHF communications, especially at
aircraft and satellite platforms.

12-7
;

G e bt Nate ol R T T e
pbsie R se




MR ITPREEERY PRSI ST YNNI AW VR AT, S A RO AL D TR N R L SEN Tl AT T BT Ty

c. Multi-path elimination, for VHF-UHF between high platforms.

3 d. Sensor, sonobuoy and other applications where very large numbers of

1 signal scurces exist.

b

] .

: 2. Near - Far problem elimination in PN - spread-spectrum as well as

1 mu!tichannel applications.

3
3
]




TR T WA

Gar s i e

T

T T

o

E

et

e e RS FRTY T LT

APPENDIX A

CESCRIPTION OF COMPUTER SIMULATION ROUTINES
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APPENDIX A

This Appendix serves to give a block diagram represeritation and dJescription
for three computer programs being submitted in this report.

Program 1: Equalization mode for an udaptive array with one weight
initiedizad to one in ihie jommer suppression mode.

In this program, we submit Figure A-1 as the fiow diogram with the follow-
ing t.5te ziving equivalence reiation between the symbols used as input parameters of

the pregram und the report .

Program Input Symbols Report Symbols
St S
‘ 52 J
T1 83
T2 8
D p
N
GAM A
B n

The remaining inpui parameters not listed here are well defined in the program. The pro-
gram first compiles the electrical argics of arrival and the spatial factor given by sup-

pression mode.

Tl = 27D Cos (TN (1)
T22= 27D Cos (T2) (2)
<V1,V9> = Q= (Sin (N/2 (T11-T22)))/Sin (1/2(T11-T22)) (3)

These parameters are then used to compute the weight vector

A2

Mt Sl

,.,, et - : .
TG 5 3 R0 Wi AT N P s e e W

ERR T S Qe UL

i (204 Al

L-@M..h,hum.u..-u-\‘uau}m“..skz..wu:u‘um-.mbummhsw > SR RAD



YO

L e

T

e Wy RO AR

YT

INPUT PARAMETERS
s1, 52, T, T2, D,
DFLT, N1, N, GAM, B

- o0

y

COMPUTE
m™m, 722, Q
(EQUATIONS 1, 23 3)

v

COMPUTE
A,8,C,D,E
(EQUATIONS — _)

y

COMPUTE
(EQUATION 13

v

COMPUTE
PJ (EQUATION 14)

v

2
Ps/ 4

COMPUTE
NORM OF WEIGHTS
P /a2 (EQUATION 15)

t
PRINT
A,B8,C, D,E

p p, P
TIME,_‘? 2, M

02 02’ 32

1

v

MORE DATA?

YES

Figure A=1,
With One Weight Initialized to One in the Jammer Suppres

NO

lSTOP

A=3

86588-89

Flow Diagram for the Program Equalization Mode for an Adaptive Array

sion Mode
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t= DELT , (10)
(s BN ]
1
m(S"J) + [mz(S-J)z +45) <v 1 v2 >2]3
B] = .}j<v]l V2> (]])
1
m(S~J) - [mz(S‘J)2 +4S5J< vl ,v2>2]‘2"
B2 = (12)

2) <v],v2>

From these equations, the power due to the weak desired signal, the jammer and thermal
noise are determined for an m (m> 2) element linear array given by

P = sl< w,v]>|2 =<(_52_>{[A(f) +D() Jm +[B() + EN)] <vv,>

-3 o

c

sl <w_pvp>]? (13)

p .
;§=JI< w,v2>I2=(0i2)] (a0 +ip ]<vir vp>+[8 () + iEC]

!

m+CH <w_, v2>\2 (14

P

n

t 2
—_ (15)
g2

l[A(f)+iD 0] 1+ B +iE®] vy +co w°,

A printout of the p~_yram is shown in Figure . A~2 witha sample run in
Figure A-3.
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100

PRINT, "EQUAL IZATION MODE FOR AN ADAPTIVE ARRAY WITH

110& ONE WEIGHT INITIALIZED TO*

120 PRINT,"™3NE, IN THE™ JAMMER“SUPPRESSIBN HGDE.”

130 1 PRINT 12

140 12 FORMAT(™0", “RELATIVE DESIRED SIGNAL POHERz")

150 INPUT, St

160 PRINT, "RELATIVE JAMMING PGHER:"

170 INPUT,S2

180 PRINT,*DIRECTION OF ARRIVAL OF DESIRED SIGNAL(DEGREES)="
190 INPUT, T

200 PRINT,"DIRECTION OF ARRIVAL oF JAHMER(DEGREES)W“

210 INPUT, T2

220 PRINT.,"ANTENNA SPACING IN UAVELENGTHS*"

230 INPUT,D

240 PRINT, "SAMPLE TIME IN TERMS OF SMALLEST TIME CGNSTANT-“
250 INPUT,DELT

260 PRINT, *NUMBER GF TIME SAMPLES DESIRED="*

270 INPUT,N1

280 PRINT, "NUMBER OF ANTENNA ELEMENTS=*

290 INPUT, N

300 PRINT,"RELATIVE MAGNITUDE 6F FBRC!NG FURCTIGN Z="

310 INPUT, GAM

320 PQINT.“BIAS SIGNAL ETA="

330 INPUT,B _

340 P1=3.1416

350 T1=P1#T1/7180.

360 T2=PI*T2/180.

370 T11=2.%P1%D*COS¢T1)

380 T22=2+.%P1%D*COAS(T2)

390 IFC(T11-T22)2,3,2 o

400 Q=(CSINCN/2:%CT11=-T2233)/7(SINC1/2:%(T11-T22)))

410 GO TO 4 ° :

420 3 0=N

430 A1=N%(S1-5S2)/7(2.%52%Q) _

440 A2=C1e¢/7C2:%S2%Q)IXSORTINZNR(S1=S2 %22+ 4. %S 1%S52%Q%Q)

450 B1zA1+A2

460 B2=A1-A2

470 B3=B1%B1*N+2.%B1%Q+N

480 B84=B2%B2%N+2. %*B22Q+N
- 490 C1=COSCPI*D®(N=-1)*COSCT1))

500 C2=SINCPI*D*(N-1)%*C2S(T1))

510 C3=COSC(PI*D*(N-1)%C0OS(T2))

520 CA=SINCPI#Dx(N=1)%COS(T2))

S30 ALl-l.¢B+N*<31+52)12.+59RT(.25#h#Nt(Sl saa**z+51
540&%S2%0%Q)

S50 AL2= 1 o +B4N%(S]1+52)/2:=SORTC+ 252NENR(S1=S2)%%2+S51 %S2%Q%Q)
560 PRINT 10

570 10 FGRMAT("O";SX;"TIME"olSX.”THERMAL“»12Xo"SIGNAL":llXa“JAMMBR“)
580 PRINT 11

590 11 FORMAT(" “;2lx."NOISE(DB)".9x.“Pavzkcoa)“,9X."PBHER(DB)”)

Figure A-2. Equalization Mode for an Adaptive Array with One Weight Initialized

to One in the Jommer Suppression Mode Program
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600 D8 S Isi,N1

610 T=(1~1)%DELT

620 DI=(EXPC=-T))*(1.-GAM/AL])+GAM/AL1

630 Da=(FXP(-Tt(l.+B)IALI))t(lo-GAMI(lo‘B))+GAMI(1o*B)
640 D3=(EXP(=T*AL2/AL1))%(1.-GAM/AL2)+GAM/AL2

650 RWi=(D1~- DZ)#(BI‘CI*C3)*81/B3+(D3-02)$(82#Cl*03)
660&%xB2/BA

670 RW2=(D1- DZ)#(BI*C!003)/830(03-D2)*(82*Cl+C3)/BA

680 . RW3=D2

690 AIHl'°(DI—Da)ttaltCZoCd)#B!IBS-(03002)t(82*02¢04)#82184
700 AIW2==(D1-D2)*(B1%C2+C4)/B3~(DI~-D2)%¢B24C2+C4A)/BA

710 PN=N%(RW] #%2+AIW1%%2) +2. #Qx (RWISRW24AIN 1 xATIW2) +2.%(C1

T20&%CRWI*RW3I)~C2%RWISAIWL ) +NSCRW2x%2+AIW242%2) 42, X (CI % (RW2
730&%RW3)=CAXRWIXAIW2I+D2%%2 '

740 PS=S1%CC(Di*C(CN*B1+0)/83)%(B1%*C1+C3)+D3*(B2*%C1+C3)
T750&*(N#B2+Q)/BA)%x%x24+(D1%(B1%C2+CA4)*(N*B1+Q)/B3+D3%x(B2xC2+CA)*
T60L(N¥B2+4Q)/34)%%x2)

770 - PJ=S2%((D1#(B1*C1+C3)*(B1%Q+N)/BI+DI*(B2#C1+C3)*(B2%0
T802+NY/BA) %24 (D1 % (B12C2+CA)*(B1+Q+N)/BI3+D3%(B2*%C2+C4)% (B2
790&%7+NY/BA)**%2)

800 PN1=10«*%ALOGI0OCPN)

810. PS1=10.xAL.AGI10(PS)

820 PJ1=10.%ALBG10(PJ)

g30 PRIMNT 8§»,T,PN1,PSt,PJ}

840 PRINT 7,RW1»,RW2,RW3,AIWI]

850 S PRINT 8,AIW2

860 7 FORMAT("™ ", A=",E12e5,2%s"B="E125,2X,"C="»E12¢5,2X
8708*D=""5E12¢5)

1232 to R FARMATC(® ", "E=",E12.5)

890 6 FORMATC 0> F11:2,10X2F8¢35,10XsF8¢3510X,F8.3)
900 GO TO 1 .
910 STaP

920 END

Figure A-2. Equcﬂnzohm Mode for an Adcphve Array with One We:ght Initialized
to One in the Jammer Suppression Mode Program (Continued)
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EQUALIZATIGN MODE. ?OR AN ADAPTIVE ARRAY HITH ONE HEIGHT INITIAL
IZED TO ONE,IN THE ‘JAMMER SUPPRESSION MGDE.

RELATIVE DESIRED SIGNAL POWER=?10

RELATIVE JAMMING POWER=?1000

DIRECTI@N OF ARRIVAL ©F DESIRED SIGNAL¢(DEGREES)=290

DIRECTIGN oF ARRIVAL oF JAMMER(DEGREES)-?BA

ANTENNA SPACING IN HAVELENGTHS=?.S

SAMPLE TIME IN TERMS OF SMALLEST TIME CONSTANT=?71

NUMBER OF TIME SAMPLES DESIRED=211

NUMBER OF ANTENNA ELEMEN1s:?4’

RELATIVE MAGNITUDE OF FORCING FUNCTION 2=2100

BIAS SIGNAL ETA"IOO

TIME

O
A=z Q. -
E= 0.

1.00

A=~0.16781E~-02
E= 0.72616E-01

2.00
A=-0¢25479E~02
E= 0.99907E-01

3.00
A==0+31139E~-02
E= 0.11051E+00

4.00
A==0e35619E-02
E= 0+11496E+00

THERMAL
NBISE(LB)

0e
B= 0o

-1.049

B=-0.13451E+00

'10229
B==-0.18372E+00

°102‘5
B==0.201S7E+00

~1277
°0 20788E+00

C=

SIGNAL
PBWER(DB)

10.000

0.10000E401 D= O.

4.962

3574

30393

3.378

Figure A-3. Sample Computer Run

A-8

JAMMER
POWER(DB)

30.000

21.675

0.99976E+00 D=-0.37642E-03

13.902

0. 99953E*00 DB~O.11497E-02

T«306

0.99930E+00 D=-0.20527E=02

2.615

0.99908E+00 D=~C.29876E-02



5.00
A=~-0.39603F.-02

E= 0+11712E400
6400

=0« 43345E~02

= 0.11844E+00

"

F.)D

7.00
A==-0e¢ 469 40E~-02
= 0«11943E+00

8.00
-0+50425E~02
0.12029E+00

™
nou

9.00
==0+53813E~02
0+12109E+00

7

fi

10.00
A=-~0457112E-02
E= 0.12185E+00

B e RGN IR R, W N, RS Sl AL BN A e e eI

. ~1+286
B==0.20995E+00

~1.294
==0+21047E+00

'10301
B=-0.21"43E+400

~14308
B==-0.21018E+00

-14315
B=-0+.20987E+00

‘1032‘
B==0.20953E+00

C=

A=9

3374
0.99886E+00

34366
0¢9586SE+00

3.357
0.99844E+400

3347
0:99824E+00

3.337
0+99805E+00

3.2327
0.99785E+00

~0.029
D=-0+39189E-02

-1.242
D=-0.48338E-02

’10734
D=z=-0.57281E=02

'10923
D==0+66005E~02

-1.993
D=~-0.74510E-02

: -2.020
D=-~0.82799E-02

Figure A-3. Sample Zomputer Run (Continued)
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Program 2: Antenn. Pattem Routine = This program utilizes the parameters
A, B, C, D, and E generated in program 1 to determine the antenna pattem of an
m (m>2) element linear array. A flow diagram of this program is given in Figure A-4.

The program computes the output power of the array given by a unity power
source as described by equation

!1/=|<w, VA'>‘2 =‘ [A t) +iD (f)]( Vi vp>+[B t) +'iD (t)](vz, Vi> +

2
CH<w v, >

where
<v], V> =;Sin{;?2n0 Cos (T1 -T3)J} /Sin-]é-‘[Zﬂ D Cos[T1 -T3]]

where T3 is the angle of arrival of :.. unity power source. A listing of the program is
shown in Figure A=5 with ¢ sample run in Figure A-6.

Program 3: Optimal Antenna Patiems - This program computes the optimal
antenna pattern for an m element lineor array with an electronic environment consisting
of a desired emitter with known dire~tion of arrival and two jommers. The block diagram
represer:taticn of this program is shown in Figure A=7. This program is basically the same
as program 2 except that the weights are computed from

SR "'v]
w o o=—1 ]
Pt 1 is<v., RV >
1" "'n 1
where
Rn=0‘2l+Jv v *+J VAV ’
17272 2°2°2
The antenna pattem can then be written as
S 2 i
2 - 2
w='<W, Vu>l = 1+ S<V], R ..]v}> ‘<Rn V.I,V“>|
n

A program listing is shown in Figure A=8 with a sample run in Figure A=9, The input
parameters are well defined in the program and can be seen in Figure A-8.
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TR LT

{ ikl o e iAo L e St e 5 tu R M ST TR A WY >
i
3

I AT T RN T A YISTRAR BT -

YES

i T I s S N a0 ATt 9 W P AR k2 DR A

s

INPUT PARAMETERS
A,8,C,D,E,T1,72,D,N

‘

COMPUTE  ¢=|<w, vp>|2

A i e ok T e b KSR b AR BTN,

!

PRINT
iy

I

Figure A-4, Flow Diagram for "Antenna Pattern Routine”

MORE DATA

NO

8658888

A-11

i T _ e e 0 L 0 bl e, arifaie ragirAf -




3
i

100 PRINT,""ANTENNA PATTERN ROUTINE® 3
110 1 PRINT 12 .
120 12 FORMAT("0", "4=")

3
g
B
3
4
Kl
7
il
~
v

TR, ST

130 IANPUT, RWI 3

140 PRINT,"B=" B
1 150 INPUT,RW2 a4
3 160 PRINT,C=" q -
3 170 INPIIT, RW3 .
: 180 PRINT, "*D=" 3
( 190 INPUT,ATWI E

200 PRINT,"“E=z" §
,; 210 INPUT, ATW2 4
; 220 PRINT,"ANGLE OF ARRIVAL OF DESIRED SIGNAL(DEGREES)=" 3 .
! 230 INPUT, T1 L

240 PRINT,"“ANGLE OF ARRIVAL OF JAMMER(DEGREES)=" 1

250 INPUT, T2 g

260 PPINT, "ANTENNA SPACING IN WAVELENGTHS=* Y

270 INPUTLD .

280 PRINT,"NUMBER @F ANTENNA ELEMENTS=" ]
1 290 INPUT,N i
3 300 P1=3.1416 3}
E 310 T1=PI#T1/180. ¥
; 320 T2=PI#T2/180. ¢
3 330 T11=2.%PI1%D*COS(T1) T

340 T22=2. %P1 #D#COS(T2)
i 350 PRINT 11
3 360 11 FORMATC"0', 1Xs "DEGRE> S 12X, "GAINCDS)I ")

370 DO 8 1=1,91

380 A3=C1-1)%2,

390 T3=PI*A3/180.

4an0 PH=2.%P1*xD*COS(T3)

410 IFCT1I1-PHY2,3:2

420 2 QI=CSINCN/Z+%CTL1-PH) )/ C(SINC1e/2.%(T11~ PH)))

430 GO T9 4

440 3 Qi=N

450 4 IF(T22-PH)S»6,°
4 460 S Q2=C(SIN(N/Z.x(T22=PH))2/(SINC1+/2.%(T22=PH?))
1 470 GO TO 7
1 480 6 02=N
] 49n 7 X1=RK1%x01+RW2%Q2+RW3I*COS(PI#Dx(N~1)*COS(T3))

500 X2=AIWI*01+ATV2%02-RWI*SINCPI#D*{N-1)%CAS(T3))

510 PSI=X1%%24X2%%2

520 APSI=10.%ALOGI10CPSI)

530 8 PRINT 9,A3,APS!

5S40 9 FORMAT(F8.2,10XsF9.3)

550 G8 T9 1

560 STOP

570 END

Figure A-5. Antenna Pattern Routine Program
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o TR

e ki

TR

YT

AMTENNA “ATTERN ROUTINE
A=?2-0.57112E~-02
3=2-~0.20953E+00
C=?.99785E+00
D=?-0.ﬂ2799E~d2
£=20+12185E+00

ANGLE @F ARRIVAL 9F DESIRED SIGNAL (DEGREES)>=?90
ANGLE OF ARRIVAL 3F JAMMER(DEGREES)=?84

ANTENNA SPACING IN WAVELENGTHS=?.%

NIIMBER 9F ANTENNA ELEMENTS=74

N

DEGREES GAIN(DB) LE
0. ‘0.616 X
2400 ~0.622 g
4+00 ~0+641 3
6000 -0.672 k
R+ 00 0717 3
10.00 «0.777

1200 -0.853

14-00 ’Oa946

1600 ~1.057 -
18.00 -1.187

20.00 -1.337

22.00 ~1.505 :
24.00 ~1.688 !
26.00 ~-i.882

28.CO ~2.078 "

3000 ~2.264

32.00 ~2.424

34000 ’2-538

36000 "20584

IR« 00 -2+545

4fie NO -2+ 407

42.00 ‘2-]7?

4400 -,ef 0l

4600 ~14467

48+ GO ~1.048

50000 “00624

520(9 ’0-22!

S4:.00 0.137

Figure A-6. Sample Computer Run
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{ el =y
O e T T R T O O A S TN O LS ST RV 7 7
%é
§
S56.00 De 431 ';,«é }
5800 0642 3 §
60400 0+756 3 ’
: 62.00 0+758 i i
5 64.00 0.632 i
: 66.00 0.360 i
68.00 -0+081 ;
4 70.00 -0.720 ;
3 72.00 -1.601 3
f 74.00 -2.739 : 3
: 7600 =4,392 z
3 18.00 -60613 ; 5
E 80.00 -9.895% ; 3
£ 82.00 -15.61¢ : i
+ 24400 ~32.019 : i
3! 86400 ~164031 !
: R8¢ 00 ' ~10.061 !
1 99.00 64673 §
E} 92,00 -44390
; 94,00 '20745
3 96.00 -1.53t
i 98.00 -0.637
-k 100400 00001 3
3 10200 0. 427 ‘
10400 04669 :
106.00 0.748 i
108.00 0.681 ]
110400 0.485 ]
112.00 0.176 ‘ ]
114400 =0.227 :
116.00 =0+697 i
118.00 -1.200 :
120400 ~1.690 ;
122.00 -2.113 i
124000 ~-2.418
126000 “2:566 i
128.00 -2.551 3
130400 -2.393 i
132.00 -2.134 ;
134.00 ~1.820 3
13600 -1.492
138.00 ~1.176 i
140.00 -0.892 3
142300 ‘0-649 }
144400 ~0.452 i
146400 -0.299 {
148,00 ~0+189 ‘ j
15000 -0.118 5
152400 -0.08i : :
154400 -0.073 ' 1

Figure A-6. Sample Computer Run (Continued)
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TR T T T

-

15%4.00C
158.00
160.00
162.00
16400
i66-00
16800
172,00
17400
17600
178.00
18G.00

-0.089
~0.124
-0.172
~0.230C
-Ne292
~()e 356
~0.417
0474
~0.523
-0.563
~06592
=0.610
~0.616

Figure A-6. Sample Computer Run (Continued)
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1
:
g
] .
:
5 START g
: P
>
] b
: INPUT PARAMETERS
: PS, PJ1, PJ2, THS, THJI, THJ2, D, N P
COMPUTE ¥
3

PRINY ¢
| v
] MORE DATA
86588.-87 ‘
Figure A-7. Optimal Antenna Patterns
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100
110
120
130
140
150
160
170
180
190
200
210
220
230
249
250
260
270
280
290
300
3310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
580
590
600

FRINT, "OPTIMAL ANTENNA PATTERNS"

PRINT 12

FORMAT("0", *"RELATIVE DESIRED SIGNAL POWER=")
INPUT,PS

PRINT,"FIRST RELATIVE JAMMER POWER="

INPUT,PJI

PRINT,*SECOND RELATIVE JAMMER POWER="

INPUT, PJ2

PRINT, “DIRECTION OF ARRIVAL OF DESIRED SIGNAL (DEGREFS)=*
INPUT,» THS

PRINT, “DIRECTION OF ARRIVAL OF FIRST JAMMER(DEGREES)="
INPUT, THJ1

PRINT, "DIRECTIBN OF ARRIVAL @F SECOND JAMMER(DEGREES)=*
INPUT, THJ2

PRINT, "ANTENNA SPACING IN WAVELENGTHS="

INPUT,D

PRINT, *NUMBER OF ANTENNA ELEMENTS='"

INPUT,LN

PI=3.1416

THJ12THJ1*P1/180.

THJ2=THJ2%F1/!80.

THS=THS*P1/180.

PHS1=2.%PI*D*C3S(THS)

PHJ1=2.%P1xD*COS(THJ1)

PHJ2=2. %P I%D%COS(THJI2)
Bl=1e+N*PJ1%C1e~(1e/N4PATC(PHS1sPHJI1,N) I%%2) +N*PJ2% (1
&=C1+/N*PAT(PHS1,PHJ2,N) ) %%2)
B2=N+N4PJ1¥PJ2%(1e~ (1 /N*¥PAT(PHJ1,PHJI2,N) I *%2= (1 4/ Nk
&PATC(PHS1,PHJ1sN) I%%¥2=(1 e /N*¥PATCPHS 1, PHJI2,N) )#%24 (2.7
&CN%23)I*PAT(PHST,PHJI1,NI*PAT(PHJ1,PHJZ2, NI*PATC(PHJ2, P
4HS1,N)Y)
DEN=1¢+N*PJ1+N%PIJ2+NENAXPJ1 %P J2% (1o~ ( 1+ /N*PAT (PHJ1,PHJ
&2,N) I%%2)

B3=(P5/(1++N*xPS*(B1+B2)/DEN) ) *%x2
BA=(1+/(N*(B1+B2)/'DEN) )%**2

B33=10.*ALOG10(B3)

BA44=10.%ALOG10(B4)
GO=10.%ALBG10C(PJ1+PJ2+1+)%N%x(B1+BZ3/DEN)
GC=10.*ALAGIOCNANR (1« +PJ1+PJ2)/ (N+PJ1 % (PAT (PHS1,PHJI
Lo N) I x%24PJ2% (PAT(PHS 1, PHJI2,N) ) %%2))
C1=(=PJ1%(1++N*xPJ2)*PATC(PHI1,PHS1,N) +PJ1*PJ2*%PAT(PHJI
&> PHJ2, N)*PAT (PHJ2,PHS1,N))/DEN

C2=(=PJ2% (1. +N*PJ1)*PAT(PHJ2,PHS1,N)+PJ1*PJ2%PAT (PHJ1
&> PRJ2,N)*%PAT(PHJ1,PHS1,N))/DEN
C3=N%x(1.+C1*C1+C2%C2)+2. %C1*PAT(PHJIL,PHS1,N) +2.%PAT(
&PHJZ2,PHS1,N)*C2424%C12C2*PAT(PHJ1,PHJI2,N)
C33=10.*ALBG10(C1./C3)

86=C33-B44

B5=B33-844
SNO=GO~10+*ALBGI0CPJI+PJ2+1+)+10.%ALBG10(CPS)

Figure A-8. Optimal Antenna Patterns Program
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610
620
630
640
850
660
670

680&AY(DBI=""FT7.2)

690
700

SNC=GC~-10+%ALOGLOCPJIIoPIR4+1+)+18.2ALOGI10(CPS)
PRINT 13,G3

13 FORMAT('"™ ", GAIN 2F OPTIUM ARRAY(DB)='",F7.2)
PRINT 14,GC

14 FORMAT(" *-“'GAIN 97 CONVENTIONAL ARRAY(DB)=*",F7.,2)
PRINT 15, SNG

15 FORMAT(*™ *,*SIGNAL Te NOISE RATIO 3F OPTIUM ARR

PRINT 16,SNC
16 FORMATC®™ ","SIGNAL TO NIISE RATI9 OF CONVENTIONMNAL ARRA

Ti0&Y(DB)Y="3FT7.2)

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
910
920
930
240
950
960
970
980
990
1000
1019
1020
1030
1040

PRINT 18
18 FORMAT(® 0", 1X,"DEGREES", 12X, "PATTERN GAIN{(DB?»*")
P2 5 Mi=1,91
PHS=2. %P I*D%COS(2.%k(M1~-§)8%P1/180.)
AN§=:2e%(M1~1)
Al=PAT(PHS, PHS1,N)
A2=-PJ12PAT(PHS1,PHJ1NIZPAT(PHJI L, PHSAN)
AJz<PJ2%PAT(PKS1,PRJ2,NIZPAT(PRI2, PHS,N)
A4=PAT(PHS1,PHI1 s NIEPAT(PHJ1,FHS,N?
AS=PATC(PHS1,PHIZ2,NIXFATI{PHJ2: PHSsN3
A6==1/N*PAT(PHS1,PHJ1,NI®PAT(PHJI1,PHI2, NISPAT(PHJ2, PHS
&sN)
AT==1+/02PAT(PHS 1, PHJI2, NI SPAT(PH.J2, PHJ1 s NI XPAT(PHJ1,P
&HS,N)
AG=A2/DEN
A9=A3/DEN
AjO==(N*PJ1 %P J2% (A4+AS5+A6+A7} I/ DEN
PSI=CA1+A8+A9+A10)%%2
PS514210.*ALBG10CFSI)Y+B33
5 PRINT 6,AN1,P314
6 FORMAT(FZ3¢2,15X5sF93)
GO TO 1
STOP
END
FUNCTION PAT(PH1,PH2,L)
IFCPH1-PH2)2, 3,2
2 PAT=C(SINCL/2.#{PHI-PK2)))/7(SINC1.72.%(PH1=PH2)))
GO TO 4
3 PATsL
4 RETURN
END

Figure A-8. Optimal Antenna Parterns Program (Continued)
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OPTIMAL ANTENNA PATTERNS

RELATIVE DESIRED SIGNAL POWER=?10

FIRST RELATIVE JAMMER POWER=2100

SECOND RELATIVE JAMMER POWER=?1000

DIRECTION OF ARRIVAL OF DESIRED SIGNALCDEGREES)=?90C
DIRECTION OF ARRIVAL OF FiIRST JAMMER(DEGREES)=?9%
DIRECTION @F ARRIVAL OF SECOND JAMMER(DEGREES)z?80
ANTENNA SPACING IN WAVELENGTHS=?.5

NUM3ER OF ANTENNA ELEMENTS=?4

GAIN OF OPTIUM ARRAV(DBY= 15.29

GAIN G@F CONVENT(ONAL ARRAY(DB)= 156

SIGNAL T@ NOISE RATI? OF OPTIUM ARRAY(DB)= =5.13
SIGNAL TO NOISE RATIO OF CONVENTIONAL ARRAY(DB)= ~18.86

DEGREES PATTCRN GAINCD3)
O ~11.871
2.030 -11.708
4,09 -11.237
6.00 -10.506
8.00 =9+579

1000 ‘80523
1200 =7393
1400 ~$.234
16.00 -5.078
18+00 ~3.948

20.00 -2.859

22.00 ~1.821

24.00 ~0.840

26400 0.080 .

28.00 0936

30.00 1726

32.00 24448

34.00 3.102

36.00 3.684

38.00 4.195

40.00 40631

42.00 4.989

44.00 S.268

46.00 : S. 463

4800 5.569

50.00 5.582

Figure A-9. Sample Computer Run
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52.00
54.00
56.00
58.00
60.00
6200
24.00
66.00
68-00
70.00
72.00
T4.00
76.00
7800
80.00
82,06
84.00
86.00
88400
90.00
92.00
94+00
96+00
98.00
100.00
102.00
104.00
106.00
108.00
110.00
112.00
114.00
116.00
118.C0
12000
122.00
124.00
126.00
128.00
i30.00
132.00
13400
136.00
13800
140.00
142.00
144.00
146.00

S5¢495
50301
4.990
40551
3970
3.228
2301
1155
-0.257
-2.008
-4,218
7104
-11153
=17.908
~50.882
«~19,252
"40538
~12.552
~11.979
~12.579
-14.618
19,513
'5‘0780
~17.349
-10774
-6:776
-3.908
~1.706
0.042
1.452
2.594
3515
4.247
4.814
S.233
5.518
5+.679
S.72S
S.661
5.492
5,221
4.850
4.381
3.811
3-140
2362
10471
0.458

Figure A-9. Sample Computer Run (Continued)
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148.00
150.00
152,00
154.00
156.00
158.00
160:00
162.00
164.00
166.90C
168.00
£170.00
172.00
174.00
176.G60
178400
180.00

~0.492
=1999
-3¢ 49:
-5.220
‘70254
-9.722
-12.872
~17.302
-25,243
-35.018
~21.867
-17.461
~15.014
«13.496
~124555
-~12.036
«-1187C

Figure A-9. Sample Computer Run (Continued)
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APPENDIX B
SIMULATION PROGRAM TDNS
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1.0 INTRODUCTION

This Appendix is a users tuide to and descripti... of the computer program
"TDNS" which simulates the TDMA -~ Null Steering system described in Chapter 9. The
presentation is organized into three parts; the first part is a brief description of the
program including special assumptions made. The second part is a presentation and explan-
explanation of the program flow diagram combined with accompaning explanations of the
various printouts and requesis for data as they are encountered during a run. The fast
part of the presentation is 2 aissussion of a variety of considerations reiating to the

program.

2.0 PRCGAM DESCRIPTION

43P AT e L BN B o SO, S 8 o Rt 4 2R b rsar O bon s BV, R M it 0l S

The progi.+ model has been designed to be as much like the system model
as possible without requiring excessive computation time or program complexity. The
program model was also designz to be suitable for an interactive computing system as
oppesed to batch processing.

SO Ay a2l D

Consider the assumed system geometry show:: in Chapter 9, Figure 1. The
program geometry maodel is very similar to this with th« exception that individual emitters
in the figure are regarded as flights of aircraft in the program model, each flight being
composed of an arbitrary number of individual friendly signals. Given any significant
range between flights cnd identical aircraft parameters within a flight, all signals within
a flight may be regarded as having equal transmitter power and equal azimuths, This
approximation is used in the program model. Rather than specify range and transmitter
power, the program model asks the program user to specify relative signal power at the
receiving null steering array. The program assumes the geometry to be unchanging.

AL 4\4,,:_8\:&,:"2' g

o
FEX Y TP NPT Y. ¥
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PP

The program assumes that one emitter wishes to communicate with the null
steering array site (the program user) as in the cystem described in Chapter ¥. Transmis~
sion from the user =" not a progrem parameter (it can be approximately accomodated by
assuming that the null steerer and rcceiver are gated off during transmission). Program
selection of the desired signo! is accomplished by specifying a desired flight wumber;
account is taken within the program so as to produce only one desired signal per frame
even though signal emissions equal in number to the number of aircraft per flight oceur
from each flight per frame.

Each desired emitter is assumed to have a pulse like transmission. The
transmission may be broken into an arbitrary number of pulses at the program user's dis-
creiion, depending upon whether interest is directed principally to detailed array response
to a single emitter or to overall array response on a frame basis, User compromise is
required here - that assignment of ar, excessively large number of pulses per transmission
would require excessively long computotion times per frame.
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Messoge PN coding and preamble detection by matched filter is incorpo-
rated into the program through use of user specified processing gains and error rate
assumptions based on the array output S/N. Specifically, if array output /N after
applying the PN coding gain exceeds 10 dB, then zero error rate is assumed, otherwise
100 percent rate applies. Users of the TDMA system obtain synchronism through use
of matched filter dstection of a message preamble. In the program, perfact synchroni-
zation is assumed if the S/N after application of the matched filter gain exceeds 10 dB,
otherwisa the preamble is not recognized and syachronization is not obtained.

Zero percent bandwidths are assumed. Modification of the pregram for
the finite bandwidth case is feasible.

A nine isotropic element cruciform array geometry has been selected.
Elements are equally spaced, but spacing is a program variable, and the user selects
which of the nine elements will be used in a particular problem. Any one of the selected
elements may be used as an initial condition isotropic element (unity weight on the
selected element, all other weights zero). This weight can be specified as fixed or it
can be allowed to respond to algorithm adjustment.

The clgorithm used is based on the desired system response discussed in
Chapter 9. In effect, « differential equation using the expected value differential
equation discussed in Chapter 7 is solved iteratively. One could have used closed form
solutions rather than the iterative ones but quite a large number of different solutions
used piecewise in time would have been required to accomodate the switching nature of
the system.

3.0 PROGRAM FLOW DIAGRAM AND USER'S GUIDE

A simplified Program Flow Chart is presented in Figure 1. Some program
flow detcils are not discussed in order to expedite the users familiarization. A listing of
the Program is given in Figure 3; reference to this listing is useful in understanding the
program flow. The first cight major blocks, approximately the first quarter of the program,
indicate establishment of initial conditions and datc read in steps. Roughly the next
quarter of the program deals with calculation of correlation products used in the differ-
ential equation solution while the third quarter is a "logic” section specifying how these
correlation terms will be used. The remaining quarter of the flow diagram deals with
loop control logic, printing control logic, and logic for user control of the program.

The program begins by asking
feL, #s/FL, 43 7

where the symbols hava the following meaning:
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READ NFt, NSF, NJ

READ RELATIVE SIGNAL
POWERS, PE, AZiMUTH
ANGLE OF ARtivey, TE,
FOR EACH FLIGHT
AND EACH JAMMER

1._____

READ PPR, D, AK BAS,GPH GMC
READ ACTIVE ARRAY LENMENTS

READ  1IDENTIFY WHIGHT SE)
INfTIALLY TO §.C

4

CACULATE VOLTAGES AY EACH ARRAY
ELEMENT OUTPUT CUE TO EACH EMITTER

SET STATUS OF FRIENOUMS « O

¢

CALCULATE UPPER MAXIMUM
FORUARGEST EIGENVAL' M,
AAXIMUM GAIN CONSTANT, Ax
AK ® (RELATIVE GAIN)/ MAXIMUM
POSSINE IN"UT POWERL

GTATEMENT 12))

Figure 1. Program "TDNS® Flow Diagram

PARAME TER READ IN,
INILAVIZE, AND LT
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COMPUTATION
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READ N, Mi
SN v NUMBEL OF LINES MINTED
NP e PRINTCODE

CALCULATE PRINT CONIROL PARAMITERS

INVIAL
LLOMPUTATION
?

15 HCE >

NPile nit) « )
(COUNT EMITTER asEs:

4

€ ALCULATE ARRAY QUTPUT POWER
SJETC CURRENT (KTHI RIGHT

£

CALCULATE ARRAY QUTPUT POAER
DUt 1O ALL JAMMERS AND NOISE

4

GO0 124

CALCUATE FRENDLY SIGNAL 1IC
NOISE PLI™ INTFLFLRENCE RATIO (A)
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SETISIS =0

OIPS/N SIATUS

OF FLIGHT CHANGE

SINCE LAST CAL-

CULALION
?

SEISTATUS @ 2
SEEsIse )

01D $/N STATUS OF
FLIGHT CHANGE SINCE
LAMT CALCULATION?,

15 NCL @ NED?
INED 15 THE DESIRED
EMITIEP IN A
FLIGHT)

SEVSTATUS » |
SELTISYS e

r
Xo x4y Xe0

CALCULATE
NEW VEIGHTS

NCoNCe ¢

PRINT QuIPUT POWERS
1F NC SATISFIES PRINT
CONITROL PARAMETERS

AENTER
COMPUTATION

(CONTINUE ITERATION,
REPEAT PRINT PATIERN)

(OESIRED EMITTER IS
NOW IN FUGHT 1) T~

(REQUESTED NUMBER OF
PRINTS ACCOMALISHEDY

&.»m\“‘

NO

NO

Ll AN L

15 NPE) <NPES

(READY FOR NEXT FRIENDLY
IRANSMISSION (DATA B1OCKN

15 ¥ < HIGHEST

1DENTIFYING NUMBER
FOR FLIGHTS?

Yts| READY IO RECYCLE

FLIGHTS

i 4
READ IN INTEGER I

Program "TDNS" Flow Diagram (Continued)
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#FL - Number of flights (max = 8).
. #S/FL - Number of signals (aircraft) per flight.
#) ~  Number of Jammers (max = 3).

The number of flights plus the number of jainmers is arbitrarily limited to 11 by dimension
statements. The suggested maximums above are imposed by output formats, and minor
program modification will permit more flexible mixes. A possible user response to the

above request might be
6,5,2

(Computer and user responses are illustrated in Figure 2 for this program checkout
example). As indicated on the flow diagram, Figure 1, and seen in the example run,
Figure 2, the program requests the user for details about the emitters.

PJI, TI ?

This request has the following meaning:

PJ1 - Normalized power in watts/watt received by an isotropic
antenna element at the users location due to jammer number 1
relative to thermal noise. (T hermal noise is always assumed to

have a value of unity.)

Ti - Azimuth angle theta of Jammer 1 expressed in degrees and
measured from a line passing through antenna elements 1, 2,3,

4, ond 5.

In the example run, the user response 1000, 90 is made, indicating that received |ammer
number 1 power is 30 dB above thermal noise and ai an azimuth angle of 90°. Since ¥J
is greater than 1, the program requests data for the second jammer by printing "PJ2,
T2". in this example, the reply 500,60 was given. Now that jammer parameters have

been specified, the program asks,
PSt, TV ?

These terms have meanings essentially the same as those just discussed, except now signal
parameters are requested. in the example, fhe response "20, 5" was made indicating a
S/N (thermal) = 20=13 dB at an azimuth of 5°, (Incidentally, these relative received
signal and jammer powers could have resulted from a close weak jommer and a distant
strong signal or in any number of other ways. When the user specifies these powers, it
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FFLs#S/FL»#J26,55,2

PJ1,
PJ2,
PSt,
PS2,
PS3,
PS4,
PSS,
PS6,

T121000,90
T2?7500, 60
T122055
T2220,15
T3?100,50
T4210,85
TS?10,~-5S0
T6?205-55

PPS»DsAK, BIAS,GPNyGMF 725 055 ¢5,0,10,20

ACTIVE ARRAY ELEMENTS, L~R(5),T-B(4)?01010,1000

FL# DESIRED, INIT W#» +FIX,«FfLBAT21,-6

NsNP (N PRINTSe PRINT PER P-1,FL-25CY-3,FR-4)?16,1

WNO=O-

4

5
6
7
8

PN PJ1 pJ2

Oe 30.0 2
«1e3 2603 2
2«1 22.5 2

T+0
4.5
2.1

=245 1847 19.9
STATUS FL 2 IS 1
=248 14¢5 17.8
STATUS FL. 3 IS

=29 10.1 1
‘300 502 ‘
«3.0 ~0.8 1
=3«1 9.1 1

STATUS FL S IS 1

9

*Qﬁi =305

Figure 2. Example Progrem Run

5.9
442
265
0.9

95

PFi= 13.0
PFi= 13.2
PFi= 13.3
PF2= 10.7

PF2= (0.5
PF3= 11.8
PF3= 10.8
PF42~13.9
PF4z~12.5

PFS=  Te9
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10 =31 ~13.6 8e1
STATUS FL 6 1S 2

ti =3¢1 <«9.8 67

12 +=3¢1 +~8.4 S¢4
STATUS FL ! IS 2

13 =3¢l =80 4.2

14 ~3.1 ~8e1 3.0
STATUS FL. 2 1S 2

15 «3+1 =85S 1.8

16 =31 <91 (1 1Y)

FL# DESIRED (=0 M8RE,

NoN2 (Y PRINTS. PRINT

T PN
STATUS FL
STATUS FL
STATUS FL

60 =32
120 =3.2
180 32
£40 3.1
300 ~-3.1
360 ~3.1
420 <31
480 ~3»1
540 3.1
600 ~3.1
660 =3.1%
720 =3.1
780 =3.0
840 =30
900 «3«0
$60 <=3.0

P PJe

318 2

4 1S i

5 1S 2

‘5509 '4809
879 =799
«-88¢0 ~80.0
-88+.0 =800
-88+.1 =80.0
=-88¢0 ~80.0
88«0 -B0«0
-88+.0 =-80.0
-88e¢1 =BO»t
=>88e1 =801
=88e¢1 ~B80e1i
-88+1 ~80.1
=88¢1 =80.+1
-88s1 ~80.1
-88s1 ~8C-:
«88¢1 =80.1

FL.# DESIRED (=0 MORE,

PFSs

PFéa
PFé=

pri=
PF1s

PF2s
PF2s=

Te9

10.8
10.8

12-9
1209

9.9
9¢9

=31 NEW CASE, ~2 WEIGHTS)?2

PER P=1,FL=2,CY=3,FR~43716,4

PF1

1265
1245
125
1245
12,5
126
12.6
12.6
1246
12448
1246
126
1246
1246
127
12.7

=1 NEW CASE, -2 WEIGHTS)?

PF2

9.8
9.8
9.8
9.8

PF3

4.2
4.2
402
402
4.2
4.2
4.2
43
4.3
4.3
4.3
4¢3
4.3
4¢3
A3
Ae3

PFA

«30
=50
=950
“5.0
«9+0
9.0
=89
«8a49
8.9
89
~Be9
8¢9
8e9
08.9
-89
“8.8

Figure 2. Example Program Run (Continued)
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PFS

Be3
€+3
§.3
B.3
83
83
8.3
83
Be 2
€.4
8.4
Be 4
8.4
Be4
Be &
8¢4
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PF6

Tlel
11e1
11.1
1te}

ted
11e1
11.2
112
il.2
11.2
11.2
11.2
11.2
itle2
11.2
11.2
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is presumed that he has is. mind specific signal and jammer ERP's and ranges.) As can be

seen in the example, program requests are enswered by the user until all signals are
described by received power and azimuth.

5 A gk LSRR e "

As noted on tha flow=chart, the computer now raquests,

PPS, D, AK, BIAS, GPN, GMF

where we have:

PPS - Pulses per signol. This number is not limited by the program,
but excessively large numbers will greatly tengthen comput-
ation time. (Large PPS values permit microscopic examination

of array response to a given signal; small values emphasize the
macroscopic array response. )

% S e A TS Tl ALY

D - Array element spacing measured in wavelengths.
AK « Reictive algorithm gain constant. AK=1 will cause the algo-
rithm to converge as rapidly as possible without instability.

R e e T R DI S U

Usually, a value of 0.5 or 0.1 is selected. (Actually, a choice
of AK slightly greater than 1.0 is sometimes possible. Refer to
the following discussion regarding maximum eigenvalue
approximation.)

., . s » 2
& PPN AIPL I o

oty

BIAS =~ Bias. Asdiscussed in Chapter 7, array acquisition behavior
may sometimes be enhanced by lessening the relative strength
of signal and jammer correlation terms. Normally, these terms
are referenced to thermal noise power. In this algorithm, the
correlation terms are referenced to BIAS + thermal noise.

GPN - Gain of the Pseudo Noise Code in dB.

GMP = Gain of the preamble detacting matched filter in dB.

In the example run, the user response was "2,.5,.5,0, 10, 20",

Specification of the array configuration and active array elements is next
in the program flow. The program asks:

ACTIVE ARRAY ELEMENTS, L-R(5), T-B(4) ?

Request is being made for the user to specify which of the 9 array elements will be used
in this problem. This printout reminds that five elements are numbered ieft to right, and

B=9
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the remaining four from top to bottom. The elements are assumed to be numbered as
follows:

©

®
OICICICIC.

®

©

The user response identifies which of these elements are to be usad. Let us assume that
the following array configuration is desired:

®

——t
.
[ JEN
b

i

@ o-l.ox-.®

For this, the user types "01010, 1000". This input specifies that elements 2,4, and 6 will
be used and that 1,3,5,7,8, and 9 are inactive. Note that a comma (or any other separ-
ator) is required between the horizontal and vertical element specifiers. Often, a desired
array configuration may be obtained in numerous different ways=-with different D values
and with different active elements. For example, a 3 elemant horizontal array may be

specified as *11100,0000, " "011100, €000, " “00113, 0000, * or 10101, 0000,
After this specification, the program types:
FL¥ Desired, INiT W, + FIX, -FLOAT ?

The user is asked to specify two integers: the flight number within which the desired
signal is located (NSD) and secondly, which array element will have an initial weight
of unity when computation commences. (All other weights cre set to zero. This initial
weight specification ensures that all emitter signals will be initially received by the
array and none will initially fali within an array fecior null.) If the identifying number
of an inactive element is chosen, all weights will ba initially zero. If the element
identifying number is positive, the weight identified is not adjusted by the algorithm=~it
remains fixed at 1.0, However, a negative identifying number allows the algorithm to
adjust this weight as well as the others. The example user's response was "1, -6" thus
the desired signal is an aircraft located in flight number 1 and element 6, the upper
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element in the previous diagram, is initially weighted unity while elements 1 and 5 are
weighted zero. As time progresses, all three weights will be adjusted by the algorithm,

As indicated on the flow diagram, prepatory calculations are carried out -
at this time. An array of numbers representing the normalized phase voltage at the
outpui of each element due to each signal and each jammer is calculated. (Element
output due to thermal noise is 1.0 and is not calculated.) Voltages for elements in a
horizontal line are expressed as

VEM(1, k) = e 127D Cos (T() * 2 7/180%)

where VEM is the name of the array storing the phase voltages, =1 for storage of the
real part of the expression or £= 2 for storage of the imaginary part. (This notatior is
used throughout the program. Ordinarily, automatic complex arithmetic would be used,
but allowance is made here for limited ccuputer compiler capacity.) The parameter "1"
identifies the emitter while "k" specifies the eiement number. Similar expressions are
obtained for vertically aligned elements except that Sin rather than Cos is used as an
arrangement for the exponential. Note that the center element (3) is used as reference
and has a unity normalized voltage.

Before the inirialization phase of the program is ended, the "Status" of ali
flights is set equal to zero. The term "Status” is used to denote the relative received
strength of a "friendly" signal. The following definitions are made:

Status Condition
0 Friendly is not receivable (Suppression mode refered to in
Chapter 9).
] Friendly's preamble is received error free by the matched

filter and the local PN code generator is synchronized, buf
reception of message data is not possible, (Sync mode refered
to in Chapter 9).

2 Friendly's message can be received error free (Receive mode
of Chapter 9).

Calculation of the unncmalized algorithm gain constant can be realized by
approximating the maximum eigenvalue of R, by the sum of all incident power at each
element times the number of active elements (bics is a psuedo power and must be included
in this sum). We have

AK {unncrmalized) = AN (normalized to maximum)/largest eiganvaive

Since the array differential equations are known to have solytions of the form
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a normalized time, 7, is defined for convenience. We require
T= HAK) (A)

For this program, the iteration number, refered to here as T, is printed rather than .
The parameter T can be obtained by the user through the expression

= T(AK normalized)

Lastly, as indicated on the program flow diagram, the parameters NCE
and NC are initialized, NCE has no external meaning - it is used in the program to
ensure only one desired friendly emission per frame. The term NC is the iteration count
and is printed under the identifier "T" just mentioned. An initial value of -1 is used to
acé&omodate the time=zero condition. Other statements within the mostly arithmitic
sections also provide special computation for this first time through situation but are not
shown on the fiow diagram.

At this point the program request print control parameters N and NP, The
example shows the following print:

N, NP (N PRINTS, PRINT PER P-1, FL-2, CY-3, FR-4)?

The first parameter, N, specifies how many lines of array output data will be printed.
The second parameter, NP, establishes at what points within the computation printout
witl occur,

NF

1 (P) Array output power in dB is printed for every pulse of a friendly
signal. (Every iteration)

2 (FL) Array output power is printed at the end of iterations for a
friendly signal. This is the same as the end of transmissions for a
flight (FL). 1f PPS=1, then the effect of NP=1 is the same as NP=2,

3 (CY) This program simulation of the TDMA system is based upon
friendly signals emanting successively from flights in sequence. One
cycle (CY) is a complate set of emissions, one from each flight.

NP =3 will cause array output power to be printed once per cycle.
Note that a cycle is not a frame unless the parameter #S/FL=1.
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4, (FR) Array Power output printout occurs once Der frame (FR) for
NP=4.

In the example run, "16, 1" was the user response, thus 16 output deta lines are to be

printed, cne for every signal pulse (algorithm iteration). Ail output power is expressed
in dB.

The major part of computation begins soon after this peint in the program
flow (statement number 123), but first print control parameters are calcuiated and head~
ings are printed. A decision is made at statement 127 as t» whether computetion on a
previous problem is being continued or whether this is a new case. If calculations are
being continued, coniroi is transferred to statement 124 where cocmputation begins again
where it was left off, If this is a new case, a major program locp is entered at statement
122, where the parameter NCE is incremented. if NCE exceads the number of signals
per flight, NCE is reset to 1; this occurs once per time frame completion,

The parameter K identifies friendly emitter storage locations. Since ail
emitters are stored sequentially with jammers first, the first K is the number of jammers
plus one; the last is equal to the total number of emitters, NE. A second major loop is
entered at statement 108 where computation for sucessive emitters (K) is entered. The
final major lcop is preceeded with NPEI=0, This loop counts emitter pulses. All iter~
ative computation for weiﬁhts occurs within this loop; correlations for all iammers,
thermal noise, and the K™ friendly signals are calculatad for use in the algorithm.

Normalized array output for the kth signal is calculoied first, We ute
“X" for this term and get

X=X W) *YEM(K,L)
L

The actual expressions dare slightly more complicated than the abovr expression indicates
due to use of XR= Real part of X and Xl = imiginary part of X in lieu of curomatic
complex arithmetic. It is recalled that the firct parameter of VEM is either 1 or 2 respec-
tively for rea! and imaginary parts. Emitter output power, PEO(K), is also caiculate!

(in dB). Note that X is normalized to unity input power.

Calculations for jammer and thermal noise output are similarly performed
with normalized complex jammer output being stored in the array JO and jammer power
output in PEO(M).

Ne::t, the Kth signal (flight) to noise plus jamming ratic is calculated and
eventually stored in variable "A" (between statements 110 and 118), An internall% used
flag, 15TS, is set to zero, and then tests are begun to establish the status of the K
flignt. It is assumed that 10 dB $/N is required for adequate detection. If A+GPN
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3 check for /N meeting status 1 requirements is made (Preamble receivable with matched

Py

Lo nasincs

L e

exceeds 10 dB, then the dﬁspreod signal can be detected error free (by assumption). In
this case, check of the KM flight status is made to see whether or nct a change has
occured and if so, the flag ISTS is set and the new status appropriately noted.

Now, if calculations are presently being made for the desired friendly
emitter (correct flight and correct signal within the flight), the aigorithm described in
Chupter 9 specifies that a Widrow Type array is to be used and the term X-d(t) is formed.

s‘é Due t2 an inability to adequately estimate d(t) if the S/N is too low, this computation
for X is made only if the dssired signal has a status of 2. [t is assumed that the desired
] % magnitude of the signal in the array output is é dB akove that at an element (twice the g
g voltage) and that d(t) is in phase with the output. Thus, we replace X with the following %
3
P X = X -2 * (X/Magnitude (X)) ,%;
? e
) (X is expressed above as a normalized complex quantity). %
a ) :
; If the calculations are not being made for the desired zmitter, the algorithm % .
i discussed in Chapter 9 requires that we simply remove all signal from the array output to ] é
- prevent array nulling action. This is accomplished by setting X = 0, : j

Earlier the test of /N was made for Status = 2; if this test was failed. a

P
£
A
4
P4
n

filter). If this test is passed, the current status is recorded and any status change noted.
The term X is set to zero whether or not this calculation is made for the desired signal
since adequate /N for X-d(t) formation is not available.

If S/N is too low for Status 1, no signal recognition is possibie and X is
retained "as is" in *'ie array output. Although it is not indicated or the flow diagram,
status changes downward are also noted and recorded. [f iSTS was set to 1 indicceting
a change, the new status of the present emitter is noted in a printout.

e M€ N I € 6 Bl

New weight calculations are undertaken nexi. The following expression
for the normalized weight change is used:

DW(J) ={ PE(K) *X* VEM(K, J)} +Z { PE(M) »JO(M)*VEM(M, )} +{ BIAS*W(J)}
M

S N A A I oo S L e

The first brace is due to friendly signais, the second due to jammers and the third due to
thermal noise and the psuedo noise, "bias" (note: the term BIAS is the sum of the BIAS
value read in and the element expected noise value, 1.0). Finally, new weights are
ccleulated according to the expression

3
3
3
3
3
E

Wy = W) = AK«DW()

B=-14
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The program now enters a 'bookkesping” phase which controls looping and
printout. The iteration counter NC is advanced and printout tests are made. A count
is made of the number of lines printed, NPR. [f the reauested number of lires has not
been printed, tests are made as to completion of the three major iteration lcops. |If on
the other hand, the requested amount of computation has been finished, the program
requests the user for new ditections:

FL¥ DESIRED ( = O MORE, -1 NEW CASE, -2 WEIGHTS)

User response is to type in an integer. The following conditions apply:

0 Continue computation. The flight number within which the desired
signal is Incoted remains unchanged as do N and NP,

>0 Continue computation for the present case. The flight number of
the desired signal is now the number typed in. The program requests
new values for N and NP, If the user wishes to change N and NP
without changing the flight number desired, he should type in the
present flight number.

-2  Present values of the weights are printed out with the redl part first
and the imaginary part second. The program then repeats its request

for .1ew direction.

- 1 No more data is sought for the present case. Control is transferred
to statement 100 where the program begins reiniticlization.

Reinitialization proceeds almost the same as the initialization phase
described earlier. The difference is that the user has the option of retaining the same
signals and jammers. without re-~reading them in: the computer asks:

s Ay e I A e e Lot ni ae, oy o
£l DAASD L B Ly RS A RN NN LA Sl it O S A S R A

NeV SIGS, 1

If retention of the previous data is dusired, zeio shoula be ke input,
atherwise type in 1. ;

in the example run, the user fyped in 2 for the flight number desired (it
was previously 1), Next N ana N° were changed 1o 15, 4 und © printout formet change :
is reflected in the new value of NP,

g LoF) 8 @2 i
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4.0 CONSIDERATIONS

Three important considcrations are touched on here, the difficulty ir
reaching sready state with the program, the possibility of instability due to the beam
forming algorithm, and the fact that the user modifications of the program may inadvert-
ently affact preoer program flow.

As has been menticned previously, steady state is virtually unachievable
with iterative computation even though output parameters may appear o be quite
unchrngitig. An example of this is seen in the example run, Figure 2. Note that affer
the iritial transient is over, several hundred more iterations were necessary to cause a
0.1 dB change in the desired signal output (Flight 1). Howaver, there is a very interest-
ing case where steady state is achievable iteratively - the “overspecified” case dis-
cussed in 9.3 wherein only enough elements as necessary for forming jommer nulls are
used. As ientioned in Chapter 9, the eigenvalues are large and determined almost
entirely by the jammers.

The possibility of computation instability exists under certain beam forming
calculations. It is due to the fact that ¢(#) influences the maximum eigenvolues as well
as array inpui power, yet account is not taken of this effect in normalizing AK. Part of
the difficully is that the program does not know in advance which signal will be desired.
If instobility occurs, selection of a smaller AK will solve the problem.

Finally, it is realized that user modification of the program will probably
be desiruble, and that this could create inadvertent errors. Additionally, programs often
ren differantly on different machines. It is suggested that checkout of the program be
made using known results such as the exampie run and/or data from the numerous transient
curves presented earlier in this report.
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100
110
120
120
140
150
160
170
18C
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
376
380
396G
400
410
420
436
440
4539
460
479
480
490
500
510
520
30
540
550
566
570

£100

129

301

302

1¢2
161

DIMENSION PEC11)>TECII3,PEOLI), IELCD), ISTS(E?
&rH(2,93,VEMC2:11,9)2DV(2,9),AJ0(259)

GOTG129

PRINT,"NEW S1GS»1"

INPUT, I

IF(E.LT:-1)G9TO201
PRINT»*"#FL, #S5/FL, #J"
INPUT» NS, NSF,NJ

NEaNS+NJ

Xif=D o

LG21021=1,NE

Jal«NJ
IFCI«GT«MNJIPRINTIOZ2,J5J
FORMATLY&PJI"5 115" T"»11)
IFCILENJIPRINT3015151
FORMATC(Y&PS™, 110" T"» 113
INPUT,PECI Y, TECID
XK=XK+PE(1)
TECI?=TECI)*.017453293
CONTINUE

CONTINUE

PRINT, “PPS,D»AKs BLAS, GPN, GMF ™
INPUT,NPE»Ds AK» BIAS, GPN, GMF

BIAS=BIAS+1.
D=D%6.2831853

PRINT»"ACTIVE ARRAY FLEMENTS, L-R{S5)>T-B(4)™

INFUT20%, CIECI)» 121, 9)
FGRMAT(SCI1),»1X24CI1))

PRINT, "FIL# DESIRED, INIT W#, +FIX,~FLOAT"

INPUT s NEDs NWF
D21041=1,NE
VEMC12,1»30=1.
VEMC25153)=0.
Ci=D%xCESC(TEC1)}
CR=CO5¢CY)

Ci=~-SINCCI)
VEMC1,1s4)=CR
VEM(251,4)=Cl1
VEMC1,1,2)=CR
VEMC2,1,2)==Cl
VEM(151s5)=CR*CR~CI~CI
VEM(251557x2.%CR»C1
VEMC1,1,1)=2VEM(Ls1s)b)
VEMC2,1513=~VEM{2,1,5)
Gl=DxSINCTECI))
CR=COS(CI?

CI=sSINCCI)
VEMCI»1»70=CR

Figure 3. Listing of Progrom "TDNS"
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580
S9G
600
810
620
63"
62
650
660
670
€80
690
700
710
720
730
74C
750
760
7170
780
790
800

104

105

121
123

VEM(2,1»TH=C1
VEM{1,1.8)2CR
VEM(2+1,322-~C1
VEMC1,1,6)=CR+*CR-CI%CI
VEM(2,126)2.%CR*CJ
VEM(1,1,9)=VEMC1,1,62
VEM(2,156)=~YEM(2,1,6)
CONTINUE

L=0

pG1051=1,9

L=L+IECD)

WCloX3=0e

H4¢(2:1)=0-

AK=EK/ (L*{XK+BIAS))
J=IABS(NWF)

WCtaJd=1e

W2, J3=0.

NC=~-1

DB121L=1,NS
PEGCL#NJ)=0.
ISTSCLY=O

NCE=9

CONTINUE

PRINT,"NsNP (N PRINTS. PRINT PER P-1,FL~2,CY¥=-3,FR-4)"

INPUT» NP NPP
IFCMP.LT«0)5TOP
IFC(NPP+EQ« 1INCP=1
IF{NPP.EQ+2)NCP=NPE
IFC(NPP.EQ«3)NCPaNPE#NS
IF (NPP+EG+ AINCP=NPE*NSANSF
PRINT304
FORMAT("& T PN'")
D61161=1sNJ
PRINT305,1
FORMAT (& PJ"» 11D
IF(NPP.LT.3568T0127
D61171=1,NS
PRINTJ306,1
FORMAT("& PF",13%)
IF(NC.GT.0:GRTO124
NPR=0
CONT INUE
NCE=NCE+}
IFCNCE«GT«NSFINCE=1
K=NJ
K=K+1
NPES=NPE
IFCNC+LT+GINPES=NPES+1

Figure 3. Listing of Program "TDNS" (Centinved)

B~18

e R
.
-

kATt

SRS “‘M"‘ ‘VM M Mesty
N A e ot e A a e ek

aatce,

R s A R L Pren AR M S O s e T
-
- 3

PROL A T o

LRSTAT ¢ s b iAo

T,

v,

5 Sk

it 2 i St athubaned hdedrtaadina

s

%,

S e S S
PRI I 15 Lt L JIETTT U S e N

L




Ll p R e Ay

I

G LA )

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

114

109

11t

118

128

NPEI=Q

NPEI=NPEI+}

PEOCK)=0.

XR=0.

XI=0.

DO109L=1,9

IFCIECL)+LT.1)GBTO109
XR=XR+WCisLIRVEM(1,KoLI=WC2,L)SVEM(2,KoL?
XI=XI+W(2,LIXVEM(1,KoLI+WC1,LISVEM(2, KoL)
CONTINUE

PEA(K)=4+3429%ALOGCREAL (PE(KI®(XR*XR+XI*X1)))
PN=0.

P=0e.

DB110M=1,NJ

AJBC12M)=0.

AJOC2,M)=0.

YR=0.

Yi=0.

DO111L=1,9

IFCIECL)Y LT« 1)GOTA111}
YREYR+WCIoLIAVEM{LI o MaLi-W{2:LIXVEM(2, MsL)
YI=YI+W(2,LIXVEMCIaMaLI+WCL,LIZVEM(2,MaL)
IFCMeEQe 1 IPN=PNeW(1,LI%WCT1,LI+WC2,LI%WC2,L)
CONTINUE

AJOC1,MI=YR

AJO(2,MI)=Y]

AZPECM)® (YRAYR+YI*Y1)

P=P+A

PEOC(M)I=4.3429%ALBGCA)

CONTINUE

P=4.3429%ALAG(P+PN)

PN=4.3429%AL2GC(PN)

ISF=0

A=PEG(K)~P

L=K=NJ

IFCCA+GPNYLT.10)GOTO118

IFCISTSCL) «NE2Y1SF=1

ISTSCL)Y=2
IFC(NCE«GTe1)+ORe (L NEJNED)IGOTO128
CR=1¢=2+./(SAQRT(XREXR+XI*X1))

XR=XR#*CR

X1=X1*CR

GoTe120

IFCCA+GMFILT«10+)GOTA119
IFCISTSCL)YNE«1)ISF=1

ISTSCL) =1

XR=0.

XI=0.

Figure 3. Listing of Program "TDNS" (Continued)
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3
3 1540 GOTa120 ;
4 1550 119 IFCISTSCL).NE.D)ISF=1 .
] 1560 ISTSCL)=0 ;
1570 120 CONTINUE ]
] 1580 IFCISF«GT«0)PRINT307,L, ISTSCL) §
3 1590 307 FORMAT(* STATUS FL ", 11," IS "»11)
’ 1600 DI112J=1,9 3
1610 IFCIECJY.LT.1)60TA112 4
1620 IFCJ.EQ.NWF)GATA112 :
1630 DWCL5J)=CVEMC1,Ks JIRXRHVEMC2, Ko J)SXIIAPECKI+W (1, J)*B1AS
1640 DWC25,J)=CVEMC1, K> J) 2XT=VEMC2,Ks JIXXRIXPECKI+W (2, JI*BIAS
1650 D33 13M=1,NJ :
1660 DWC1,J)=DVC1,J)+CVEMCI, Mo JIRAIBCT 2 MI+VEM(2, M) JIXAIBC2,M) g
; 1670 &) *PEC(M) P
3 1680 DWC2, J)=DW (25 J)+C(VEMC1,Ms J)RAJBC2, M) =VEM (2, Mo JIXAJBC1,M) b
3 1090 &)*PE(M) L
1 1700 113 CONTINUE i
A 1710 WCl,JI=WC1,J)=AKEDW (1, J) i
1720 W2, J)=W(2, J)=AKEDW (2. ;
_ 1730 112 CONTINUE ]
. 1740 NC=NC+1 ;
- 1750 J=(NC/NCP)*NCP 3 ;
A 1760 IFCNPP+GT+2)GOTA125 : ]
1 1770 IFCCJINESNC) « ANDs (NC+GT+0))GOTO124 :
1780 PRINT303,NC»PNs CPEGCI)» J=1,NJ) g3
3 1790 PRINT310,L,PEACK) :
1800 G2TO106 i
1810 310 FORMAT(™&PF",11,"=",F5.1) i
3 1820 125 IF(JNE.NC)GOTO124 ;o
] 1830 PRINT303,NC, PN, CPEG(CJ),» J=1,NE) !
1 1840 303 FORMATC1X513,11C1XsF51)) :
1850 308 FORMATC1Xs13,% PF"»1151XsF5.1) :
: 1860 106 CONTINUE I
; 1870 NPR=NPR+1 §
: 1880 IFC(NPR.GT.NP)GOTO126 c
. 1890 124 IF(NPEI.LT.NPES)GOTO114 Cod
1900 IFCK.LT.NEYGOTO108 P
: 1910 GOTO122 i
: 1920 126 PRINT,“FL# DESIRED (=0 MBRE, -1 NEW CASE, =2 WEIGHTS)" .
3 1930 INPUT,L .
3 1940 IF(L.EQ.~1)G0T2100 o
3 1950 IF(L.LT.~1)GOT@130 y
] 1960 NPR=1 o
1970 IFCL.EQ.0IGOTOI24 C
1980 NED=L i %
1990 GoTo123 P
2000 130 PRINT311,C1,WC1,1),WC2,1)2521,9) : ; 3
2010 GOTQ126 : !
2020 31) FORMATCICIXs™N",11:G31¢451X5G110457)) )
2030 END

Figure 3. Listing of Program "TDNS" (Continued)
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