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3 13" ABSTRACT

Arithmetic codes are useful for error-control in digital computation as well as in
data transmission. These codes are especially suitable for checking or correcting
errors in arithmetic processors due to carry propagation. ‘Jwo known classes of
3 arithmetic codes are the small-distance high-rate perfect single-error correcting
codes and the large-distance low-rate Mandz2lbaum-Barrows codes. These codes are
analogous to the Hamming codes and the maximum-length sequence codes in parity--check
3 block codes respectively., Most other arithmetic codes known have been obtained
by computer~search. The discovery for a systematic way of constructing arithmetic
codes with intermediate-rate and intermediate-distance has been the sub‘ect of 3
research for many years. Finding simpler decoding algorithms is another major
unsolved problem in arithmetic codes. Decoding for arithmetic codes by matching
3 the orbits or permuting the residues associated with the codes is straightforvard
3 but largely impractical. A particularly interesting question is the possibility of
decoding arithmetic codes by majority-logic. In this-thesis, we-have constructed 2
] clgss of intermediate~rate intermediate-~distance binary cyclic arithmetic ccies. A
3 majority-logic decoding scheme is developed for the code constructed. This majoricyr
logic decoding scheme is also applicable to a large class of cyclic AN-codes genexatec
by the primitive cyclotomic factors. A new checking technique for the binary adders
has been developed. This separate checking technique uses less redundancy than that
required for & triplicated system, and the decoding procedure is simplie. The appli-
cgtion of majority-logic decodable arithmetic codes to the error control in high
3 speed multiplier has been examined. By using the concepts of number theory, the upper
and lower boundes ~n_any cyclic AN-code have been formulated.
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ERROR-CORRECTING-CODES IN COMFUTER ARITHMETIC

Chao-kail Liu, Ph.D,
Coordinated Science Laboratory and
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1972

Arithmetic codes are useful for error-control in digital
computation as well as in data transmission. These codes are especially
suitable for checking or correcting errors in arithmetic processors due
to carry propagation.

Two known classes of arithmetic codes are the small-distance
high-rate perfect single-error correcting codes and the large-distance
low-rate Mandelbaum-Barrows codes. These codes are analogous to the
Hamming codes and the maximum-length sequence codes in parity-check
block codes respectively. Most other arithmetic codes known have been
obtained by computer-search. The discovery for a systematic way of
constructing arithmetic codes with intermediate-rate and intermediate-
distance has been the subject of research for many years.

Finding simpler decoding algorithms is another major unsolved
problem in arithmetic codes. Decoding for arithmetic codes by matching
the orbits or permuting the residues associated with the codes is
straightforward but largely impractical. A particularly interesting
question is the possibility of decoding arithmetic codes by majority-
logic.

In this thesis, we have constructed a class of intermediate-~
rate intermediate-distance binary cyclic arithmetic codes. A majority-

logic decoding scheme is developed for the code constructed. This
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majority-logic decoding scheme is also applicable to a large class of
cyclic AN-codes generated by the primitive cyclotomic factors. A new
checking technique for the binary adders has been developed. This
separate checking technique uses less redundancy than that required for
a triplicated system, and the decoding procedure is simple. The
application of majority-logic decodable arithmetic codes to the error
control in high speed multiplier has been examined. Furthermore, soma
theoretical results about the structure of arithmetic codes have been
obtained, By using the concepts of number theory, the upper and lower
bounds on any cyclic AN-code have been formulated.

In summary, the results presented in this thesis give a better
belief that the use of arithmetic coding for the error control in digital

computing systems 1s indeed promising.
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1. INTRODUCTION

1,1 Frror Control in Digitai Computing Systems

The rapid growth in the size and speed of modern day digital comput-

ing systems has placed stringent reliability demands on the central processors,

especially those concerne: with space missions, and real time computer
applications. In a spacc mission, the computers require high reliability
because of the long mis:ion time during which manual repair of a failure is

impossible; thwsz real time computer applications require high reliability

because of the sori‘ns consequences error might czuse in terms of inconvenience

or costly mistakes. Consequently, the error control techniques that can be
used to improve the reliability of a digital computing system are very
important.

There are two major techniques to deal with the faults in a digital
system, one is the use of "software diagnosis," and the other is the decign
of "hardware checking circuits." In the software faulc diagnosis approach,
a specially organized checking algorithm is incorporated into the program
and the arithmetic results are verified at periodic intervals by means of
additional instructions which are redundant in a normally functioning
computer., Correction procedures in case of an error also must be programmed.
The cost of this approach consists of the additional programming effort, the
execution time and storage requirements for the instructions. The logic
design of the arithmetic processor remains unchanged. An alternative to the
software fault diagnosis is the design of hardware checking circuits. 1In
this approach, the results and/or the operands of each arithmetic operation

ars. automatically tested for acceptability without programmed commands. The
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indication of an unacceptable result initiates the error correction.

The cost of the hardware checking approach consists of the additional
logic circuits and the increased execution time of the operations.

Most of the past emphasis to improve the reliability of digital

systems has been on making more careful designs and using more reliable

parts. People have realized that it is also possible to design the

system that it operates correctly even when some of its parts fail.

T T T

Such approaches invariasbly use redundancy., The above mentioned *'soft-
ware diagnosis" and "hardware checking" techniques are both the approaches

that use redundancy. In general, by utilizing different types of redun-

bt

dancy or inserting the redundancy in different parts of a system, we can.

[ JELEN
-

TR

have different error control schemes to improve the reliability of digital
computing systems.

The most commonly used scheme for hardware checking is the well-
'; known replication of processors. Triplication of the processor with

-. majority output voting gives error correction; and duplication of the

RS R TSN TR YA PRI SASEVIRL T RTLCL R Rt S

processor with output comparison, followed by further diagnosis in the
case of disagreement gives errorx detection. Both methods achieve

3 checking at the cost of complete replication of the processor. An
alternative to the replication of processors is the use of coding.

The encoding of the operands followed by the application of decoding

]
Y
€ et €Ak bk e sk SRR AR A 2 ham s P A Pl st

algorithm to the results requires only a fractional increase in cost,

but does not guarantee complete error control.

S g, e 3

The coding approach is quite different from the technique of repli-

cation of processors. 1In a hardware replication scheme, we simply organize

0= DO P

a number of less reliable components to form a reliable computing device;
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while in a coding scheme the computing device is fixed. We incorporate
redundancy into data themselves which are being processed; in other
words the input data are encoded by some coding technique sc that the
computational errors in the output can be detected and/or corrected.
For example, if we use an AN-code, the operand N is encoded by multi-
plication with a fixed:integer A before being represented in the digital
compﬁter. ‘Thus, only a fraction 1/A of the possible representations
are ever intentionally uéed in the computer, the resultant redundancy
can then be used for errur correction and detection.

1f coding techuique is applied to improve the reliability of a
computing system, there is no need to supply any software diagnostic
routines, and the decoding circuits can detect and/or correct error
immediately after it occurs so that any unnecessary propagation of
errors can be avoided. Also, the verification of the acceptability of
input operands supplied by another processor provides an approach to
error-free operation of systems employing intercommunicating processors.
In fact, some of the computing systems designed for the purpose of
being used in spacecraft on long missions to the outer planets of the
solar system (e.g. the JPL Self-Testing-and-Repair Computer) have
employed the coding scheme to fulfill ultra-reliable demands.

Since the appearance of Shannon's theory on data transmission, the
problem of how to design an efficient scheme by which the information can be

transmitted reliably across noisy channels kas become a subject of continuing

& etk dde
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importance. The invention of many intelligent codes by using some algebraic
structures has highlighted the practical aspects of the coding theory. How- /
ever, the application of error-detecting and error-correcting codes to a
digital computing system is not as straightforward as it has been to a data
communication system such as space communication or long-distance telephone
transmission. Errors in a digital computing system are of different nature
from the errors ir a communication channel. Those codes which perform
powerfully in data transmission cannot be used to control errors caused

oy logic faults in arithmetic operations. 1In general, there are two types

P
.

4 = =i e e w eu W 0

.of, exrors that occur in a digital computing system, transmission errors

and arithmetic errors. Transmission errors usually occur in a large

e
oot o A

digital system when many intercommunicating data processors are employed,

the data flow across different units may be affected by noise. These errors

-

are of the same nature as errors in a communication system, Arithmetic

errors occur in the operation of an arithmetic processor whenever its

Nidd acalil i Mal o

actual behavior deviates from the expected behavior. Those errors are

caused by faults of logic circuits within the processor. The main difference

e lau ik

between transmission errors and arithmetic errors is that the latter may

cause carry or borrow propagations so that a single fault in logic may

cause several output vits to be in error. Therefore, an efficient error-
detecting or error-correcting code used in a digital computing syctem
must be able to deal with both types of errors. The codes that are
specially designed for the use of detecting and/or correcting errors in
digital computation as well as data transmission are called arithmetic
codes., It is the purpose of this thesis to study the error control in

digital computing systems by using arithmetic coding,

4 TR D0 bml bed  Pod b S F-
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The theory of arithmetic coding has drawn the attention of many

researchers since Diamond [20] first proposed his paper in 1955. Much

research has been done on detecting and correcting errors in arithmetic

operations. Most of this work has been concerned with the arithmetic AN-code,

(we shall make somewhat detailed discussion on the fundamental concepts and

definitions of arithmetic AN-codes in the following chapters.) Massey [36]

presented an excellent survey of the early work on these codes. The

popularity of these codes 1s due to the fact that they have a nice algebraic
structure and can be used in a computer with little or no change in the cir-
cuit design. Although many important results have been obtained in the theory
of arithmetic codes, there are still two major unsolved problems:

(1) The problem of how to find a systematic way to construct a wultiple
error-correcting arithmetic code. The existing codes are either of
high-rate, low error-correcting capability or of high error control
power but low information rate. The codes with intermediate rate
and error control capability are usually obtained by computer search.
Therefore, a systematic way of constructing good arithmetic AN-code
is much in need.

(2) A more important problem is the implementation (or decoding) of the
arithmetic codes. The practicality of using coding in a digital
system depends heavily on how complex the decoders are. Unfortunately,
the decoding problem of arithmetic codes is quite complex in general
because of the carry propagat;on caused by errors. The only known
decoding method is the "permutation of residues" [29,30], which is

basically a table-~look-up approach and impractical. How to find a
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decoding scheme that can be easily implemented is then a problem of

particular significance. One approach is suggested by the following
consideration: since the majority-logic-decoding (MLD) scheme

[6] is by far the easiest one that can be applied in a variety of
ways to communication channels, it would certainly be of interest to

see if the decoding of arithmetic codes could also be handled by

using majority logic.

The solutions of these two problems will greatly increase the
feasibility and effectiveness of using arithmetic coding scheme in digital

computing systems. These are two of the topics that are investigated in

this thesis.

1.2 Scope of the Thesis

The main objectives of this thesis are to construct new arithmetic
codes with better performance, to devise decoding schemes for arithmetic
codes that can be practically implemented, to develop efficient checking
techniques and checking model for arithmetic operations in computer, and
to study the theoretical structures of the arithmetic codes.

Chapter 2 is a general review of the hackground, definitions and
concepts that are helpful to the discussion of the material presented in
later chapters. Concepts of error weight and code distance, used for
determining the codes' error correcting capability are discussed. The
cyclicity of the codes and the analogies between the AN-codes and parity-
ckeck codes are briefly examined.

Chapter 3 considers the construction of new arithmetic codes with

multiple-error-correcting capability. A fast algorithm for finding the
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7
binary representation forms of certain integers is derived. By using the
number theoretical properties of these integers, a class of new codes is
constructed., The error control power of these codes c... be determined
analytically, The root-distance relation of a class of cyclic AN-code
is investigated, the result is completely analogous to the BCH bound fer
the cyclic parity-check codes. In addition, the bounds on the error-
correcting capability of any cyclic AN-codes are determined.

Chapter 4 describes a majority-logic decoding scheme for some cyclic
AN-codes. This decoding scheme is completely different fiom the permutation
of residue approach, the implementation of the codes can be achieved by
using majority logic alone. The application of the majority-logic decoding
algorithm to the cyclic AN-condes constructed in Chapter 3 is examined, and
a multi-step majority decoding scheme that can be applied to larger classes
of cyclic AN-codes is obtained.

Chapter 5 suggests a new spearate concurrent checking technigque for
the arithmetic operations in a digital computer. The application of error-
correcting AN-codes shows the effectiveness of the separate checking tech-
nique. Finally, a study i the error control in high speed arithmetic is
included.

Some conclusions on the results presented in this thesis and sugges-

tions on possible future work are also discussed in the last chapter.
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2. PRELIMINARIES AND BACKGROUND

2.1 The Arithmetic AN-Code

The arithmetic AN-code is specially designed for the use of correcting
and/or detecting errors in digital computation as well as data transmission.
The code is a set of integers of the form AN, where A is a fixed integer called
the generator of the code. Fcr each integer N from the information set
ZI = {0,1,2,..,., B-1}, there is a corresponding code number AN, hence the integer
N is "encoded" by multiplication with the fixed generator A before being repre-
sented in the ccwputer arithmetic. Thus only a fraction 1/A of the possible
representations are actwally used in the computer, the resultant redundancy
can then be used for error detection and correction.

The AN-code possesses linear property, for

AN, + AN2 = A(N1+N

1 2)

so that the coded form for the sum of two information integers is the sum of
the coded integers. Therefore, two coded numbers can be added in an ordinary
adder; if the sum is not a properly coded number error is checked.

As mentioned in the introductory chapter, the errors that occur in a
digital computing system are mnre complicated than the transmission type of
errors. Consequent}y, the identification of the likely modes of failare in a
computing system and the formulation of a convenient description of the resultant

errors in its output must be considered differently from that of a data trans-

mission system.
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The measure of the weight of an arithmetic error and the error-
correcting capability cf an AN-code have been developed by several authors

(35,37], a brief summary of these results will be made in the following sections.

2.2 Arithmetic Weight and Distance of the AN-Code

Because of its dominating practiceal importance, only binary arithmetic
will be considered in this section. We should remark, however, that all the
results can be extended to an arbitrary radix system.

Any positive integer I can be expressed in . _nary form or binary

sequence as:

n n-1 1
I = nnz + .n_lz + .0 + 312 + '0

= (&

h %nel .n-z oo W2 )

where

.1 = 0 orl

The circuitry for adding two integers in radix-2 form can be con-

sidered as a sequence of elemental adding vnits. Suppose that two binary inte-

gers I1

elemental adding unit performs the addition of a

= (an an_l...alao) and 12 = (bnbn-l"'blbo) are added, then the i~th
141? bi+1 .and the carry bit
from the (i-1)-th unit. Each unit orms a sum bit and a& carry %it to the next
unit, A "single failure'" in the adder is then cousidered as an incorrect sum

formed by one adding unit or the generation of an incorrect-carry bit by one

adding unit; hence a single failure &¢c the i-th unit may cause an error of

D T
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value + 2i (due to incorrect sum) or + 2i+1 (due to incorrect carry). If the
erroneous sum differs from the correct sum by an amount E, it is then quite
natural to think of the weight of E, i.e. the number of errors, as the least

1 or -2i whose sum 18 E., This measure of the

number of terms of the form + 2
weight of an error is called "arithmetic weight'" and can be formalized as
follows:

Definition 2.2.1: The arithmetic weight of an integer E (which may be

positive, negative or zero), denoted W(E), is the minimum number of non-zero

coefficients in the modified binary form of E:

1 2 i
E = eo + e1 27 + e2 2" + ., .+ ei 27 + ...

where (2.2.1)
e = 0, 1, or -1
Although the modified binary form of an integer is not unique in
general, there is a particular modified binary form introduced by Reitwiesner
[43] which is unique and which has been proved of much importance in the theory
of arithretic code, called the non-adjacent-form (or NAF for short). A modi-

fied binary form is said to be a NAF if the cvefficients e,'s in (2.2.1) satisfy

i
€ &4 = 0 fori=0,1, 2, ... , in other words if there are no two adjacent
non-zero coefficients in the form.

The most important property of the NAF of an integer I is that no
modified binary form of I has fewer non-zero coefficients than the NAF of I [43].

Therefore, the arithmetic weight of any integer equals the number of non-zero

coefficients in its NAF.
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Definition 2.2.2: The arithmetic distance between the integers I1 and 12,

denoted D(Il’Iz)’ is the arithmetic weight of their difference, i.e. D(II’IZ)

1
1
i
I = W(I,-L,).
1
I
l
I

v~
Lslizalalsd St 2o

RSP NApw #tvs

It can be shown [35] that the arithmetic distance satisfies the

following three properties:

e ey ey

TERA LY VRNNLTS.

D(II’IZ) = D(IZ’II) (symmetry)

IO ST IO Y P YRR P}

D(Il;IZ) 2 0 with equaltiy iff I1 = I2 (positive definite)

i D(Il’12) < D(II,I3) + D(Is’IZ) (triangle inequality) ; |
2} Hence, any set of integers with arithmetic distance taken as the measure of
3 ; "digtance" form a metric space.
; § { 5
- Definition 2.2.3: The minimum arithmetic distance, Dmin’ of an arithnetic é
é. AN-code is the minimum of the arithmetic distances between all pairs of distinct 3 ?
;- code words in the code.
= Since the difference of two code words is another code word, the Dmin 1
é; of an arithmetic AN-code is equal to the minimum arithmetic weight, wﬁin’ of the _ %
: N B-1 non-zero code words in the code. 3 %
. 1. The error-correcting capability of an AN-code is completely deter- ‘
mined by the minimum distance of the code as Massey [35] has shown that an

AN-code with Dmin = 2t + 1 can correct all arithmetic errors of weight t or

less, and an AN-code with Dmin = t + 1 can detect all arithmetic errors cof

weight t or less. Therefore, the knowledge of minimum distance of a given

arithmetic AN-code has become a very important subject.
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2.3 Cyclic AN-Code and Modular Distance
Suppose that an integer I has a binary n-tuple form (an-_1 a .o a,

00). We denote by P(I) the integer whose binary n-tuple form is the left cyclic
shift of that for I, namely (.n-Z L ) ’n-l)‘ If the largest code word

A(B-1) in an AN-code requires n bits for its radix-2 form, then we define:

Definition 2.3.1: An AN-code is cyclic if its set of codewords is closed
under cyclic shifting, i.e. if for every code word AN, the integer P(AN) is
another code word.

It has been shown [11,36] that the generator A and the number of
codewords B in a cyclic AN-code satisfy AB = 2e(A) - 1, where e(A) denotes the
least positive integer such that A divides Ze(A) -1, and is called the exponent
of 2 modulo A [49]. Therefore, the block length of a cyclic AN-code g2nerated
by A is e(A). Mathematically, ='1 the codewords in & cyclic AN-code form &
principal ideal in the ring of integers modulo 22 .1, with A as the ideal
generator,

In a cyclic AN-code, the addition of codewords is the modulo Ze(A)-l
arithmetic, & negative integer -I is represented by its one's complement, i.e.
Ze(A)-l-I. The arithmetic weight of negative integers then is defined for
their one's complements. This leads naturally to a modified measure of the

weight of the integers in the ring of integers modulo 2"-1:

Definition 2.3.1: The "modular weight" of an integer F in the ring of
integers modulo 2.1 is the minimum of W(F) and W(Zn-l-F), and is denoted
Wm(?).




VYR WTY
F T e e wwsﬁrﬁm

24

=

~

gy

-

S rranaalib d i My SLEEN

13
Definition 2,3.2: The "modular distance'" between the integers I1 and 12
in the ring of integers modulo 2"-1 1s the modular weight of their difference
and is denoted Dm(Il’IZ)’ i.e. Wm(Il-Iz).
With the definitions of modular weight and modular distance, we can
show that the error correcting capability of a cyclic AN-code in modulo arith-
metic is completely determined by the modular minimum distance of the code, a

result which is analogous to the fundamental result stated in the previous

section.

2.4 Arithmetic Codes for Single Error

Single error detecting and single error correcting arithmetic AN-codes
have been thoroughly investigated by Brown [8] and Peterson [37]. Some well-

krown results will be summarized in the following theorems.

Theorem 2.4.1: An AN-code with generator A > 1 and odd can detect any

single erftor in radix-2 arithmetic.

Theorem 2 4.2: Let MZ(A,d) be the smallesc positive integer whose product
with A has arithmetic weight less than d, then the arithmetic AN-code with

0< N <M2(A,d), has Dm . d.

i

Theorem 2.4.3: Let A > 1 be an odd integer, e be the smallest integer that

satisfies 2% = 1 mod A, then M,(a,3) = (2%-1)/A. Similarly, if 2% = -1 mod A,
then M, (4,3) = (2%+1)/A.
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Theorem 2.4.4: If A is an odd prime and if 2 is a primitive root of A,
e

then Mi(A;é) = (22 +1)/A. Similarly, if -2 is the primitive root of A, then

e
,(4,3) = (22 -1)/A, where e = A-1.

The above results yield a way of constructing any single error-detect-
ing and single error-correcting arithmetic AN-codes. More importantly, the single
error-correcting codes mention=d above are perfect codes or sphere-packed codes,
i.e., any integer in the ring of integers modulo 2% -1 is at most distance-one

away from some code word. These codes are analogous to the well-known Hamming

codes in parity-check block codes.

2.5 Mandelbaum-Barrows Equidistant Codes

TRYY

The Mandelbaum-Barrows codes [5,32] are the first systematically con-

structed class of AN-codes with Dmin > 3. They are also the first AN-codes to

be recognized as cyclic. The structure of these codes is simple:

Theorem 2.5.1: Let B be:an odd prime with 2 as its primitive root, let the

generator A of the cyclic AN-code be:
a=@*® s @2y

Then the minimum distance of the code is [(B+1)/3], where /x| denotes the inte-

b
I
:
7
5
H
3
13
!
:
I3
i
3
H .
13
L)
H
4
L
<
i
H
»

gral part of .

For a properly chosen B, these codes can correct any multiple arith-

B e

metic errors. Moreover, these codes also possess an interesting property that

all the nonzero code words are some cyclic shifts of the generator A, hence they

T R LR e R

all have the same arithmetic weight [(B+1)/3]. These codes are analogous to the

i
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maximum-length sequence codes in parity-check block codes, they are of large-
distance but low-rate, and stand at the opposite end of the coding spectrum from

the perfect single-error-correcting codes of the previous section.

2.6 Analogy Between Arithmetic AN-Codes and Parity-Check Codes

We begin with a brief review of the theory of cyclic parity-check codes.

Extensive treatments of this subject can be found in Peterson [37] and Berlekamp

[6].

n-1

Wit a polynominal £(x) = £ f1 xi of degree less than n with coefficients
i=o0 )
in a field F, we associate the vector f = [fn-l’ fn-z’ cres fl’ f0] in the vector

space F'. A parity~check code is simply a set of such vectors which form =& sub-
space of the linear vector space F. The Hamming weight of a vector (or a code
word) is defined as the number of non-zero components in the vector, and the
Hamming distance of two vectors is the number of positions in which the two
vectors differ. Since the vectors are closed under addition, the minimum Hammiug
distance, dmin’ of such a code equals the minimum Hamming weight of the non-zero
vectors in the code.

A perity-check code is cyclic if the cyclic shift of every codeword is
also a code word. If we denote the cyclic shift of £ by £', then the correspond-
ing polynomial f'(x) of f' is obtained by multiplying f£(x) by x and take the
residue modulo xp-l. It can be shown [37] that the code words of a cyclic parity-
check code form & principal ideal in the polynomial ring module x-1 over some
field F. Therefore, each code word has a corresponding polynomial which is a
multiple of some fixed polynomial g(x), called the generator polynomial of the

ideal. In addition, g(x) is monic and divides -1, The polynomial

PRI 7
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h(x) = (x?-l)/g(x) is called the parity-check polynomial of the code, and n,"

the length of the code is chosen as the least positive integer such that g(xj

ac
o R s AL AL Mataaks,

divides *®-1.

In light of the above, the analogy of cyclic parity-check code. .th the

cyclic arithuetic AN-codes ir evident. The analogous quantities are:

Cyclic parity-check codes Cyclic arithmetic AN-codes ?
x 2 j

g(x) A

h(x) B

-1 2"-1
period of g(x) exponent of 2 mod A 3
dmin Dmin ;

The closeness of these analogies between cyclic parity-check codes and
cyclic Ali-codes strongly implies that there exist cyclic AN-codes analogous to
many important cyclic parity-check codes, in particular, the Bose-Chandhuri-
Hocquenghem codes and the majority-logic decodable geometry codes. Many investi-

gations have been made on this problem, but to date very little is known. :

2.7 Remarks 4

There are other important results and concepts in the theory of arith-

metic codes that have not been mentioned. It should be remarked that the pur-

pose of this chapter is to provide some of the terminology and concepts which will

be used with regard to the following discuosicn. The material presented here is
just a brief review of the arithmetic coding theory, more detailed treatments of

the related subjects can be found in [35,36,37] etc.
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3. CONSTRUCTION OF MULTIPLE-ERROR~CORRECTING
. ARITHMETIC AN-CODES

3.1. Introduction

The theory of arithmetic coding has been developed since

L-.mond [20] first proposed his paper in 1955. Single errzor-correcting

arithmetic codes have been investigated by Brown [ 8 ], Peterson [33],
and Bernstein [7 ]. Some results of multiple error-correcting arithmetic

codes have been reported by Barrows [5 ], Mandelbzum [ 32], Chang and :

Tsao-Wu [ 11], Chien, Hong and Preparata [ 13]. ' - 3

Since the error-ccrrecting capability of arithmetic codes is ‘i
directly related to the minimum distance of che codes, an analytical way !

of calculating the distance for arithmetic codes is important. Chien,

P, TN

o

bt e g {2

Hong and Preparata [ 18], Tsao-Wu and Chang [ 11] independently discovered

a computational algorithm for minimum distance of cyclic AN-codes. By

N Ca S Rk

using number theoretic coacepts, they divide the code words of a cyclic

AN-code into a number of disjoint sets, each set of code words is called
an orbft. The code words in the same orbit are the AN's such that .Z:
N = (k-Zj) mod B, for some fixed k, and i = 0,1,2,...,n, AB = 21, : i

Therefore, each k defines an orbit. It can be seen that the code words

in the same orbit are of equal weights, hence the minimum weight of the

code is the minimum of all the weights of different orbits.

PRTIR AN P LIV TE

Perhaps the most interesting property of this orbital theory

is the following theorem:

o aedaaZafoatAss

Theorem: The weight of a code word AN, represented in binary form

AN =

an-lan-zo L) oalao

%
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where a 4" ((N-Zi)mod B) mod 2, 1 < i < n, is given by the number of

residues N°2i mod BGMB; where MB’ the middle-third region of B is defined
My = {x|B < 3x < 2B}.

The result of this theorem enables us to calculate the arithmetic
weight of each orbit by counting the number of residues in MB. Computation=
ally, this orbital algorithm might still be difficult especially whea the
code contains a large number of orbits. An easier algorithm to find the
minimum distance, or perhaps some closed-form formula, is necessary. Further-
more, in practical use the dis:overy of systematic way of synthesizing a
code which corrects a specified number of errors is more important. The
problem that how to construct a code, rather than analyze a given code,
is therefore of both theoretical and practical significance.

In this chapter, we shall construct a class of cyclic AN-codes
whose generators are the products of cy:lotomic factors. The multiple
error-correcting capability of these codes can be determined exactly.

These codes fill in the gap between the single-error-correcting codes
and the Mandelbaum-Barrows codes as far as the distance and rate are
concerned. The construction of these codes is based on some interesting
properties possessed by the binary forms of certain integers which are
used as the generators cf the codes.

We shall first establish a fast algorithm for finding the binary
forms of certain integers, by using the complementary, symmetric properties
we shall construct a class of cyclic AN-codes. Also, the analogy between

cyclic AN-codes and cyclic polynomial codes will be studied, we shall

PIET S - Pv LV L S TP DY s
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demonstrate a root-distance relationship of a class of AN~codes which is
shown to be exactly the same as the well-krown BCH bound on the distance
of cyclic polynomial codes. Furthermore, by using number theoretic
concepts, the strict upper and lower bounds on the error-control capability
of any cyclic AN-codes are derived. In general, the results obtained in
this.chapter are all theoretical, the possible practical applications and

implementations of the codes constructed will be discussed in the following

chapters.

The representation of integers in binary form has been under
investigation for various applications. In particular, the binary
representation is of importance in fast computer arithmetics, number
systems, algebraic coding theory and arithmetic codes. In this section,

n

the binary representation of the integer A of the form (2“-1)/(2 1-1).

By

(2 ®~1), with nl-n2 = n and nl,n2 being two relatively prime integers,
is considered. Firstly, some interesting preoperties of the binary
representation form will be presented. It will be shown that the binary
form of A has 1's and 0's at certain fixed positions with complementary
symmetrical properties. Secondly, a simple and fast algorithm for finding
the binary form will be introduced. From this algorithm, the binary form
of a large integer can be easily obtained without any calculation.

Formulations and Notations

Let A be an integer of the form

n n
A= (2%1)/@ L 21
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where n, and n, are two relatively prime positive integers with n, >n,

and n = nlnz.

binary form

The integer A can be uniquely expressed in the following

n~l

A= a2l witha =0or1 for 0<i<n-l
1 i =*=
i=0
nen S n
Let B= (2 "~1)(2 “~1), then AB = 2 -1, The coefficients a; in the binary
representation form of A can be determined [12] by
n=i
a, = (2 mod B) mod 2 (3.2.1)

i

vhere (Zn-i mod B) is the residue of 2“"i modulo B. The above equation

states that a; = 0 if and only if (2n-1 mod B) is an even integer.
n

Consider the binary form of the integer A<2 1,

n
C=A-°2 1
n-1 1
= ¥ c,2 c, =0or 1l for 0<1i<n-l
120 i i -7 =

By (3.2.1),

n

e, =[2"" . 2" mod B) mod 2 (3.2.2)

Similarly, let

n

DmA - (2°

-1)
n-1 1
= 3§ d,2 d, =0orl for 0< i< n-l
i i - =
i=0

then,




n

d; = [2°(2 1) mod B] mod 2 (3.2.3)
Since
Dx (2P-1)/(2 2-1) = (1%
, 178 fa w22, (3.2.4)

dicl if i=tn2 forOgtgnl-l

=0 otherwise

Let us denote

n

[Zn-i . 2 1 nod B] = X

EZn-i mod B] = ¥4

n &
(212 e1) mod B] =z,

where 0 < Xgs Vo 24 < B. Note that ¢, = x

i = mod 2, a

1 1=y mod 2 and

di = zi mod 20
Properties
Property 1: Co = 0 and a = 1.
Proof: Since B divides 2“-1, 2n51 mod B and Yo = i. In additionm,

n,, " M o
since 272 "£2 * mod B, x, = 2 . Thus c, = 0 and a = 1,

Q.E.D.

Suppose that i > 0. Let n-i = k., By Euclidean division

algorithm we have k = qn 47, vwhere 0 < r < n. Notice ithat
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I'I.1 n2
B= (2 "«1)(2 “~1) implies:
n n n
2% 11)=2%%1 ma B
Thus
Jjn, n (j~1)n, n
2 22l =2 2 L1y
oy
=2 -1 mod B for j > 0 @3.2.5)

Now, equation (3.2.5) can be used successively to obtain

ken. n k-n
2n-i - 2k = 2 1(2 1_1) + 2 1
(ken,) mod n, n k«2n, n k-2n
=2 ! 22 el P
n (k-n,) mod n (k=2n.) mod n k=3n, n k=3n
=@zt 242 1 r2 lelue F
n (k-n,) mod n (k-=2n.) mod n (k=3n.) mod n
= @Llyz 1 2, 1 2, 1 27,
ke4n. n k-4n
2 lelays2 !
n (k-n,) mod n (k=2n,) mod n (k-qn.) mod n
= -z ! 2,02 1 2, . +2 B 2,
k-qn1
2 (mod B)

Let

ol haadad
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. [z(k-nl) mod n, . 2(k-2n1) mo? n, s 2(k-qn1) mod nz]
Then
e Ks @ l) 5425 mod B (3.2.6)
Similarly,
1.5 = 2 Loy 80" 4 (2n1-1)2k i I (5.2.7)

Notice that there are q terms in S, each term is a power of 2. In

addition, these terms are distinct, for otherwise,

kemn, = k-m'n, mod n, for gome 0 < m, m'<q<n,

2

This would imply m-m'=0 mod n Since (nl,nz)-l and 0 s.m,m'<:n2, the

2.
congruence is impossible unless m = m',

For 1 > 0, q < n,-l. Since all the q terms in S are distinct,
n, ; % n2-1 n?
q< n,, and 2 =1 = L2 4274, . .42 , we have S < 2 “-2. Also,

r n1
2" < 2 "=1; thus:

n n n n
2 1) 8427 < (2 2-1)(2 2-2) 4+ 2 L-1) = B

n
By (3.2.6), the residue of Zn'i modulo B is equal to (2 1-1) sy2t,

Thus we have

n
Property 2: Yy = (Zn.i mod B) = (2 1-1) S+2r, where i + 0

(k-nl) mod n

S =32 (k-2n1) mod n, (k-qnl) mod n,

2+2 +ooo+2

k = nei = @, + T, 0<r< n, (3.2.8)
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Similarly, the following property can be obtained:
n
Property 3: y, = 2 2-1) T + 2% , where i $ 0

§ e

(k-nz) mod n, (k-2n2) mod n

(k-pn,) mod n
T=2 + 2 2 1

1
ovetl

Iy

k=n-i=p-° n, + t, 0<t<n (3.2.9)

2

Theorem 3.2.1: x, <y, for 0<1ign,.

Proof: For 0<i<n,,n=-1i= nn, - i= (nz-l)nr+(n1-i), we have

1 2

q= n2-1, r = nl-i

n1 n1n2+n1-i n.n

Since Zn-i ¢ 2 "= 2 = 2 12, 2r = 2r mod B,

n-i .M r
X, = (2 + 2 "mod B) = 2 (3.2.10)

By (3.2.8), we have Yy > %
Q.E.D.

Property 4: c, = 0, a; = l fc~r0<i<n

i ; and ¢, =1, a = 0.

1 1 1 3
Proof: By (3.2.10), X is even if 0 < i < n, and X, is odd.
1
Therefore, c; = 0 for 0 <1< n, and < =1, From theorem 3.2.1,
1

X =Y < 0. Note that zg = XYy mod B, we have

2, = B4 xy -y

Fron (3.2.4), we see that 2z, is even. Since B is odd, v = B + Xy =24

is odd iIf 0 < i< n,; and Yn is even. Hernce, a = 1 for 0 <1< n,
1




v ™ 7 o
- % : RN . ET
:
!
:

I

| 2 )
L 4

Theorem 3,2.2: X, >y forn>i>n

1.
k mod n,
Proof: Let S' = § 4 2
i
distinct terms in S'. It is easy to see that S' < 2 .2, and
n

2 1-1) 8' + 2 < B. Thus, by (3.2.8)

nl x
X, = (2 "-1)S' 4+ 2

n k mod n

-y, + 2L 2 2

and

X > Yy for n> 1> ;.

Q.E 'D.

Property 5: For 1 * o, a, = 0 if i is a multiple of n; or m,.

Proof: Case 1: i = sny for 0 < 8 g_nz-l. Since k = n-1i = (n

n, r= 0, Equation (3.2.8) can be written as:

n (k-n,) mod n
y, = @ Lnf2 ! 2

0.
+00.+2 ] + 20

Therefore, ¥y is even and a, = 0.

i
Case 2: 1= pn, for 0 < p 5.“1‘1- By (3.2.9),

n (k-n2) mod n

y, = @ 2-1)(2 1

0 0
Foeet2 ] 4 2

Thus, Yq is even and a, = 0.

i
Q‘E. D.

+ Then there are q + 1 <n, - 1

(3.2.11)

2
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Property 6: For i + 0, ci=1 and a,=0 if i is a multiple of n

i 2°
Proof: By theorem 3.2.2, we have Xg=¥y >0 if 1 is a multiple of
n,. Thus Zg = Xy = Yy
By equation (3.2.4) and property 5, z; is odd and vy is even.

Thevefore, x, is odd and c; = 1.

1
Q.E.D.

Property 7: If i is not a multiple of n,, then a, = ¢, for i > n..

i i 1
Proof: By theorem 3,2.2, we have Zg = X =¥y > 0. Since zg is

even if i 18 not a multiple of nz, Xy and vy must be either both even
or both odd. Thus a; = c..
Q.E.D.
Fast Algorithm forx the Binary Form of A
The results presented above enable us to devise a simple

algorithm for finding the binary representation form of A.

Let us denote the binary form of A by the n-tuple

A= (a

n-1 %-2 *°° 3 aO)
Then -1 T B2 T et R A4, -4l c.
172
RS
Notice that the binary form of C= 2 ~ * A 1s just the binary form of

A shifted n, places to the left, f.e. Cotn. = 34° Let us denote C by

1

Cm= (cn_1 Cau *+** €16)

By properties 1 and 4,

(an , a“l_l,..., a;, ao) = (0, 1, 1, vee, 1, 1)

1
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Thus (c2nl, °2nl~l’ ceny cnl+1, cnl) = (0, 1,1, ..., 1, 1) (3.2.12)

Now the values cf the nl-tuple (aznl, aan-l’ cees B +1) can be determined

1
from equation (3.2.12) and properties 6, 7. Next, the n-tuple
(°3nl’ c3n1-l’ ceey c2n1+1) can be set equal to (aan’ cees an1+1). Again, 1
the nl—tuple (a3n1, ceey aZni+l) can be Aetermined from (c3nl, c3“1f1,...’ 3
Con +1) and properties 6 and 7. This process can be repeated until all
1

the n~tuple (en-l’ 8 .9 e s ao) are determined. Therefore, we have
the following algorithm:

1. Set ag =1 for 0 <i<n.,-1, a

=0 and j = 0,
1 1 ]
2. If (3+1) ny < n~n,-n,, set 3
a. °i+n1 = a; for jni+1 <1 < (J+1) ny :

b. ai = (0 if n, divides 1

ai » ci if n2 does not divide i

for (3+1) ni+l_5 i< (3+2) n,

J = j+1 and repeat step 2.

3. If (3+1) nl_z n-n,-n,, set a

= 0 for n—nl—n2+1§ijp-l, Stop

The algorithm provides a fast way of finding the binary representation

. . I
2 L WELL A afen #ab s

form of A, even for very large integers. For example, let n1-4, n2-9,

A=(236~1)/(24-1)(29-1). Follow the above algorithm, the binary form of j
A is readily obtained as: 5
6 5 4 3 2 1
NN pudnin, prtm e PP PP
c 0100010001100110011101111

A 000000Q999Q129010001100110011}Qll}l
‘ 7 6 5 4 3 2 1

oA A S A S A
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The Complementary Symmetrical Property

We shall show that the binary form of A is complemcntary sym-
metrical. Specifically,

an-(ni+n2)-i+ai =1 for 0<i<n—(nl¢n2),

Let us consider the binary forms of A and D. Since,

n (n,-n, (,~2)n n
D = A(2 l—l)’z l 2+2 1 2+ cee +2 2+1
D=1000...010 ...010..,.0.0...0111.,..1
n, bits n, bits n,-n; n, (3.2.13)

vhere x denotes -x. Let D* be the integer obtained from D by reversing the
oxder of the sequences in (3.2.13), i.e.,

p¥=11,,, 1 10...01 00...01 0...01 0...01
e N e Nt

nl-l n,-n, n, n, (3.2.14)
Also let A* be the i..*eger whose binary form is the binary form of A in
n

reverse order. Then it is easy to check that D* = A% (1-2 l). Now, let

us consider the integer D-D*, By (3.2.13) and (3.2.14),

D-D* = 2 11...11 00...01 11...2 = 3 00...011 00...0 00...0
L R N N e Y
n, nl nl nz-—nl (nl-2)n2

= 3 000-.003 00.-0..00.0.0.0
[— J C -t

DY s
n; (nl- )nz-nl

(nl--l)n2 (nl-l)nz--nl )

-1)n
Thus, D-D* = 32 ~3+2

(n -n, n
3.2 L2 Ll

n, ny
Since D = A(2 "-1) and D* = A* /1-2 7}, we have

P P el
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n
A+A" = @)/ L1

n-n,-n

302 172

_ Zm.’“l'nz+1 (3.2.14)

Recall that

A=(1, a

ST

LI N ] 1
n-n -n,-1,. > B )

and

Rt il e
o gae %
v o e 18 A b L S

T TN

*
A = (1' a 9 oeecey a '- - ~1? 1)
1 n-n;-n, 1

Starting from the lower order bits, by (3.2.14) we have,

T

VAR

al + a + 1

nem. -n. -1 0 mod 2
172

or.in general

) 172

i e N

seen . A £ s S D

Therefore, ai is the binary complement of an-nl-nz-i, and we have:

Property 8: The binary form of A is complementary symmetrical, i.e.,

ai + an-nl-nz-i =1 for0<¢ic< n-nl-n2

Property 8 enables us to save half of the effort finding the binary

o v tekbes e le aa Y

form of A . The procedure for finding the binary form of A stops at the place

when ai, i= %(n-n1~n2) is found. The high order bits are then obtained by

reversing the order of the complement of the lower order bits. The comple-

o aFes . e

mentary symmetrical property can be seen from the binary form of A = (236-1)/

RPN WY

(24-1)(29-1) in the previous example.

1
]
1
1
1
l
l
l
I
] a+a ., +120 mod2 for 0<i<nmnn
1
I
]
l
1
1
I
i
!
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3.3 Construction of Multiple-Error~-Correcting AN-Codes

Let A be the generator of a bingry cyclic arithmetic (AN) code of
length n. Then A is a positive integer that éivides 2%-1, Let AB = Zn-l, for
each N, 0 < N< B-1, AN is 2 code word of the code. In this section, we shall
congider the class of cyclic AN-codes whose generator A is of the same form as

in Section 3.2:

n

A= 6"1)0 Ly e 21 (3.3.1)

where n,, n, are relatively prime integers and n = n;n,. In the following

discussion we shall assume that n2 > n,.

Any code word AN can be expressed in the following radix-2 or bina:y

form:

n-1 n-2 1
AN = an-l 2 + an_2 2 + oeot a; 27 + ao

(an-l’ B gs e s By ao) (3.3.2)

where a, = Oor 1 for 0< i< n-1. From the definition of arithmetic weight of

an integer, one can easily derive the following result.

Lemma 3.3.1: If the binary sequence of AN in (3.3.2) can be divided into.
d disjoint subsequences (each subsequence consists of a certain number of con-
secutive digits), such that each subsequence contains at least one 1 and one . .
then the arithmetic weight of AN is at least equal to d.

Given A and B such that AB = 2n—1, it can be shown [12] that the

coefficients ai's in (3.3.2) are given by
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a, = (N'Zn-i mod B) mod 2 " (3.3.3)

Thus, a, = 1 if N2""1 nod B is odd and a, = 0 1f N2"™" mod B is even.
n n
For the code considered in (3.3.1), B = (2 1--'1) (2 2--1). Thus,
n n n
2202 1) =2 -1 mod B

in2 n, ny . :
2 (2 "-1) = 2 "-1 mod B, for any positive integer i (3.3.4).
s )
Lerma 3.3.2: If N=& 2" mod (2 “-1) for )< N< B~i and 0 s < n,, then
the arithmetic weight of the code word AN generated by A in (3.3.1) is at least
equal to n,.

Proof: Let ai's be the binary coefficients of AN in (3.3.2). By (3.3.35

in.+n. ~-s

= 21
an-(in +n,-8) = (N 2 mod B) mod 2
271
and
in2-s
an-(inz-s) = (N-2 mod B) mogd 2

where 0< i =g nl-l, and the subscripts i of a, are taken to be i modulo n,

i
in2+n1-s inz-s
(N2 mod B) and y; = (N2
] ) s )
2 '-1) 2 %-1) and N = 2°% mod (2 “-1),

L
et X,

yi < B. Since B

mod B), then 0 < Xy s

in,#n,-s n
x, = N2 217 ed @ %-1)
n n
=2 ! mod (2 2-1)
n n
or _ 2 1
x =y, (221 +2

(ke ARG . 3 e 5 N i

,. ,
. .
b LT Mad ot
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1 in,-s n,
& Similarly y, & N2 mod (2 “-1)
3 n,
3 21 mod (2 °-1)
5 or
"2
R | Thus
< ) n2 nl
S X ny ’ n, n,
: §,~ . where 0 ¢ 934> 9oy <2 -1, for 0 < X5 ¥y < B= (2 "-1)(2 “-1). On the other
t/ i hand,
B ] in 4n_-s in, -8 in,-s n
L. M 2l w2 an 2@l
\i‘:} éi -s,,M1
v K = N2 (2 "-1) mod B by (3.3.4)
£y |
L2 =2 -1lmod B ;
Lo 1
B\ ;" 1‘
S Thus ;
¢ ¢ b
i X 2: nl 3
xi~yi=2—1modB 3
v i
: or i
~ "M ny
I X =y, =a2 7-1)(2 °-1) + (2 "-1); q = 0, or -1 (b) i
3 £y 1"
A &: nl nl ;
: “ From (a) and (b) we conclude tgat q(2 "-1) = 914 = 9p4° But [qli - quI <2 -1, i
; q must be 0. Thus X -y, = 2 1-1. This implies either X, = odd and y; = even j
, §
gr or x, = even and vy = odd. In other words, for each i, one and only one of the ;
3 ¢ :
£ pair of binary digits an-(in2+nl-s) and a _ (inz-s) is equal to 1 {or 0). i
: Now, the sequence of n digits of AN in (3.3.2) can be divided into n,
i
subsequences, each subsequence containe n, consecutive digits. Therefore; the 5
;
digits an-(in2+n1-s) and an-(inz-s) are in the same subsequence for a fixed 1.
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L3

Each subsequence, then, contains at least one 1 and one 0. By Lemma 1 the

Wi §
[

arithmetic weight of AN is at least n,.

St

Q.E.D.

PR
.

n
Lenma 3.3.3: If N= -2° mod (2 %-1) for < N< B-1 and 0< 5 < n,, the

[t
i. .

arithmetic weight of the code word AN generated by A in (3.3.1) is at least

equal to n

s M A

P
[

1
Proof: This lemma can be proved in a similar way as in Lemma 3.3.2.
% Q.E.D.

L. n n
Lemma 3.3.4: If N # 0 mod (2 2-1) and N # + 2% mod (¢ 2--1) for 0 < N< B-1,

g

i

e

3 g . the arithmetic weight of AN generated by A in (3.3.1) is at least equal to n, .

: n

3 i t Proof: Let V = AN, C = V(2 1-1) and W(x) denote the arithmetic weight of x.
oo Since the arithmetic weight of integers satisfies triangular inequality,

§

™ M
W) = W[v( "-1)] < W(V2 ) + W(V) = 2W(V)

% il Nas mm o ts SR

PR

= W(E) < W (V) i
(33

4 _ n, n (nl-l)n2 (n1~2)n2 ;
; Let Nl = Nmod (2 °-1), C1 = Cmod (2°-1). Then, C1 = N12 +N12 ;

L. n

[ + ...+ N12 2 + Nl' Thus the binary form of C1 consists of n; replicas of the {i

] ! i 1]
] binary form of Nl’ Since Nl is nonzero and N1 # + 28, the binary form of Nl :
i. 3

- contains at least two l's and two O's. Therefore, the modular weight [36] of % é

S i

L C;» W (C)) = 2n . Hence, | |
3 i

7 :

SR 2W(v) = W(C) 2 Wm(Cl) 2 2n1 .

EI h [ W(V) 2 n,

L

QoE.D-
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Theorem 3.3.1: The minimum arithmetic distance of the code generated by A

in (5.3.1) is equal ton, forn, < pn_.

1 1 2
be
Proof: Let us assume first that N= 0 mod (2 2-1), 0< N< B-1. Then

2 |
N=gq(2 1), 0<cq=s 2 -1, and

n.n
2 12
AN = === | ¢
'nl
2 "1
(n,-1)n (n,-2)n n
=q 2 2 1 +q 2 2 1 + ...+ g2 1 + q

By lemma 3.3.1, W(AN) 2 n, > n; .

For other nonzero values of N, lemmas 3.3.2, 3.3.3, and.3.3.4 assure

that the code word AN has an arithmetic weight of n, or greater. Therefore, the

arithmetic distance of the code is at least equal to n,. However, the weight of

n
the code word A(2 2-1) is exactly equal to n,. Thus the arithmetic distance of
the code is equal to n,.

Q.E.D.

The code we constructed above is a multiple-error-correcting cyclic

AN-code. The synthesis of this class of codes is straightforward, we merely

n.n
L2052 two proper relatively prime integers n, and n,, the integer (2 1 2--1)/
n n

{2 1--1)(2 2-1) generates a code with minimum distance n;.

3.4 Root-Distance Relation of pIpZ-Codes

If the block length n is a product of two distinct primes Py and Pys

then the code is called a plpz-code.

A plpz-code is an ideal in the ring of
P1Py

integers modulo 2 1.

e hedalonn e




B e B ot o e H ¥
e TG A VI RO T PR TR, 4K T N TN T :

P
T e T SRR TR F AT . 4

35

pP,P
Since the polynomial x 1 2-1 can be factored into cyclotomic polynomials

over the rational field as:

Ty

PiPy P
X

P p.P
-1=q e teae Zma L 2 (.4.1)

~—

PP P P p.P
2 V2.1 = ql2)q @) 2 F 2@) (3.4.2)

where Qd(2)'s are called the cyclotomic factors of 2"-1,

We define a "cyclotomic generator" of arithmetic codes as:

X L
e .
T S bt g
R e R D T S T S AR L PBE AR Ll

Definition 3.4.1: A cyclotomic generator of an arithmetic aode is a

I We can substitute 2 for x in (3.4.1) and get

product of some cyclotomic factors of 2"-1.

1 I By this definition, the generator of the codes considered in Section

3.3 is a cyclotomic generator.
The only possible cyclotomic generators of a plpz-code are:

P P P P P B,P
A =Q' @), 4, = '@, A =0 @), =0 @ F@ay = e ),

P o P1P; PPy PPy
A6 =Q “(2)Q ), A_7 = Q (2) and A8 = 2 -1, Both Al and A8 are tvivial

generators.

Py Py Py
Since Q “(2) = (2 "-1)/(2-1) = 2 "-1, the minimum distance of the

P
code generated by A2 = Q 1(2) is 2. Similarly, the minimum distance of the code

generated by A3 is also 2. These are the single error-detecting codes. For

P P
A= Aﬁ = (2 1--1)(2 2-1), the minimum distance of the code is given by the

following theorem:
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Theorem 3.4.1: The minimum distance of plpz-code generated by A4 is

(a) 3 1if PyP, = 63
(b) 4 if PP, # 6.

Proof: With no loss of generality we may assume Py > Pys hence P, e 3,

Furthermore, PPy = 6 if and only if Py = 2 and Py = 3. It is obvious that A4

cannot divide 21 hence there are no codewords of weight 1. Codewords of weight

2 will be of the form 2k(2m + 1), where m < PyP,- For A4N = zk(z“‘-l) we have

|4
(2 1-1), (Zm-l), hence pllm. Similarly, pzlm hence plpzlm. But PPy is greater

than m, a contradiction. If A4N = Zk(2m+1), then we may write m = qup; + Ty T3P

Py n Py T
(2 -1)‘(2 +1) then implies 2 '-1]2 +1, an impossibility,
Py*Py Py Py
=2 "-2 "+1 are at least of weight 3.

Hence all nonzero

codewords of the code generated by A4 =2
- _ - _ 55 .3 .2
For the case plp2 = 6, P, = 2 and P, = 3. Hence A4 = 27.27.2" 4+ 1

= 24-4-22 + 1. Consequently A4 generates a code of minimum distance 3.

For the case PP, # 6, it follows that P, z P, + 2, hence A, =

P1*Py Py Py *
2 =2 7=2 41 is of weight 4. The codewords of weight 3 will take the form
kT m, -
z (2 42 +1), where m,, < m1-2. Writing:
m, = q11p1+r11 where 0 < Ty < P,
m, = q12p2+r12 where 0 < r12 < P,
My = q21p1+r21 where 0< r_ . < p
21 1
m2 = q22p2+z‘22 where 0 < r22 < p2

we may deduce that

P- m p r r
2112 %2241 tmplics 2 Laja My o2,

L dagi Lz ek L

PRV P P P L.

et AT e s
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P m m P r T
221j2 % 2241 impltes 2 2-1]2 242 % 41
k,.m1 "2
The only possibilities are: AﬁN = 2 (2 "-2 ©~1) where Ty) = Tyy = 0;
r,, = r,, =1 and AN' = 2k(2m1+2m2-1) where r,, = r,, = p,~1l; r,, = L, = p,-1l.
12511 4 21 TT11 T P17 T T 12 T P2
m m
When AN = 2% 1.2 2.1), we have:
tep,p,+1 8°'p.,pP
AN = e Vo L2 o)

This is clearly impossible as s 2 1 and mz:s m1-2 would imply t 2 2. When

m, n
A&N' = 2k(2 1+2 2—-1), we have:

t.-p,p,~1
AN =28@ 12 4

s°p1p2-1
4 -

2 1)

Again 32 1 and n, < m1-2 would imply t 2 2, a contradiction. This completes

the proof of theorem 3.4.1.
Q.E.D,

Py . P1P2
For A = AS =Q “(2)Q (2), we have:

PP p P.P P
ag= @ VDR i@ = @ PR/ by

\PI'I)P2+ (Pl'z)Pz +

p
=2 2 .42 2

+1

As indicated by Erosh [23], the minimum distance of a code generated by an
k.k k
172

integer of the form (2 -1)/(2 1-1) is kz. Therefore, the plpz—code

generated by AS is of distance Py Similarly, the code generated by A6 is of

distance Py-
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PP p,p p p
200y = (2 V2.1)/¢2 Y1) (2 2-1), the code is a

For A=A, =Q
spacial case of the code mentioned in Section 3.3. Since (pl,pz) = 1 and
P < Pys by theorem 3.3.1, the minimum distance is Py-

From the above results, some interesting properties about the root-

distance relation of arithmetic codes can be brought to light.

Let us consider the polynomial x"-1 over the rational field. If u

is a primitive n-th root of unity [48), then all roots of x"-1 are powers df u

n
and we have x"-1 = 121(x‘“i)° Also, x-1 can be factorized into cyclotomic

polynominals over the rational field as:

-1 =7 Q4w (3.4.3)
d/n

Hence, the roots contained in each Qd(x) are powers of u. Due to the property

of cyclotomic polynomials [6], the roots in Qd(x) are the ui's where i's satisfy:
(n,i) = n/d.
Substituting 2 for x in eq. (3.4.3), we get 2.1 = n Qd(z). Let A ;

d/n 3y 4
be a cyclotomic generator, then A equals a product of some cyclotomic factors,

say:
d d, d d 3
1 2 3
A=Q Q%@ @....¢ > :
]
We define the corresponding polynomial of the generator A as: ;
a, d ]

AG) =Q 1Q 2(x)....Q 3(x)

Bed mmataiae e

. PRz e
T R
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Then the roots of the integral generator A can be defined as follows:

2230
;10
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Definition 3.4.2: The roots of a cyclotomic generator A are defined as the

roots of its corresponding polynomial A(x).

This definition of the roots of A was first proposed by Chien and
Hong [15]. Since all the roots of A are powers of u, the number of consecutive

roots in A is defined as the largest number of consecutive powers of u contajned

in A(x).

For the plpz-code, the root-distance relation can be easily obtained.

PiPy 1 Py Py P1Py
The cyclotomic factors of 2 -1 are Q°(2), Q "(2), Q “(2) and Q (2). Ifu

is a plpz-th root of unity, then with a little calculation, we can summarize the

root-distance relation as follows:

Generator No. of consecutive roots Minimum distance
Py
A2 =Q ~(2) 1 2
Py
A3 =Q “(2) 1 2

p P
a, = Q L) 22

*if P = 2, Py #3 3 4
*if P,»P, are od4 2 4
*if pip, = 6 3 3
Py PP
A= Q F@)Q T2 p-t P
P P.P
02 1¥2 )
P+P
172
A7 Q (2) Pl"l pl

From the above tabulated results, we see that for all possible

cyclotomic generators of a plpz-code (except the case PPy = 6), the minimum
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distance of the code is at least one greater than the number of consecutive roots
contained in the generator--the same root-distance relations as the BCH theorem
for polynomial codes. As for the case of PPy = 6, we have the following argument.

6

since 25-1 = Q1 (2)Q2(2)03(2)Q%(2), where Q1(2) = 1, Q%(2) = 3, Q°(2) = 7

and Q6(2) = 3, the generator A4 is 21. The code generated by A4 is of distance
3, which equals the number of consecutive roots contained in Qz(x)Q3(x). How-
ever, the generator A4 = 3.7 can also be considered as the product of Q3(2) and
Q6(2) since Q6(2) = Q2(2) = 3. The number of consecutive roots in Q3(x)Q6(x) is
only 2, which is indeed one less than the minimum distance of the code. The situa-
tion that a cyclotomic generator can be expressed as different products of cyclo-
tomic factors can only happen when PPy = 6, since Dickson [21] has shown that
Qi(Z) # Qj(z) for all 1 # j, except 1 = 2 and j = 6.

The analogies between cyclic parity-check codes and cyclic AN-codes
have been investigated by many authors. The root-distance relationship discussed
above indicates another analogy. It is our hope that the closeness of all these
analogies would lead us to the discovery of a class of cyclic AN-codes which is
analogous to the large and powerful Bose-Chaudhuri-Hocquenghem codes. Then, for
all practical purposes, the synthesis of multiple-error-correcting code can be

achieved through the root conditions of the code generator.

3.5 Bounds on Error Control Capability of Cyclic AN-Codes

Since the generator A of cyclic AN-code of length n is a proper divisor
of 2"-1, we can write 2"-1 = AB, with B> 1. As briefly mentioned in the intro-
ductory section of this chapter, the well-known "middle-third" region of B is

defined as the set of censecutive integers x, with BS 3 x < 2 B, If we denote

" s
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the "middle-third" region of B by M, then there are [(B+1)/3] integers in M,
vhere [X] denotes the largest integral value of x.
It has been shown [12,17] that the arithmetic weight of any codeword is

related to the integers in the region MB' This result can be briefly summarized

in the following:

Theorem: The arithmetic weight of a codeword AN is given by the number

of residues x1 ¢ Mh, where, Xi = (N-Zi) mod B, for i = 0,1,2,..., n-1.

From the above theovem, it is seen that the minimum distance of a code

can be evaluated by counting the number of residues X, in the region MB.

i
To calculate the distance, we first divide the codewords into several

disjoint orbits [17], for each orbit we count the number of residues in Mh, and

L |
E l get the arithmetic weight of each orbit. Then the distance equals the minimum

weight, Clearly, this evaluation will be quite complex for large, and composite

X YRR

B's. Also, since we do not have a closed-form formula for the distance of a code,

NETFIPARLACY

I the above result does not suggest a synthesis procedure for finding any multiple-

error correcting arithmetic codes, we can only calculate, through a computer-

- rater

programmed procedure, the error-correcting capability of a given code. There~
fore, the result is a theoretical analysis of the structure of the arithmetic

codes rather than a practical formulation.

In this section, we shall apply some number theoretic concepts to ob-

tain the upper bound and the lower bound on the error-control capability of any

parameters in constructing an AN-code.

S S e

l cyclic AN-codes. These bounds suggest the criteria for us to choose proper
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3.5.1 Lower Bound on the Distance

Let the B integers {0, 1, 2, ..., B-1} be divided into three regions

LB, MB’ and UB’ where:

Ly = "lower third" region = {x|]os x < r-gl}

"y

Uy = "upper third" region = {xlﬁ%ﬂ < x < B}

"middle third" region = {x| rg] <x < r.g_}i]}

Let us define the following:

Definition 3.5.1: For any integer N, 0 < N < B, the smallest, non-negative
integer i such that (Zi-N) mod B ¢ MB is defined as the index of N, and the inte-
ger N is said to have index i.

Suppose that AN is a codeword, then 0 < N < B. f: R@HB, then the
smallest power of 2 that yields ZiN mod BeMB is clearly zero, hence N has index
0. For NeLB or NeUB, the index is certainly not zero. Let us firsc consider the
integers in LB. Except the integer 0, such integer in LB has a nonzero index.
Denoting the index of ¥€Lg by ix’ we have the following:

Lemma 3.5.1: The index i, = I-log2 Bq.

3

. i i -1
Proof: Since 2 1-1 mod BeMB and 2 1 *1 mod BeLB, we have:

i -1 i

2 1 <r§1521
or:

i.-1 < log I-B'_l<i

1 2 3~ 71
thus:

B
11 = rlog2 3 1

Rarrm AR il e S5heat
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Lemma 3.5.2: For X;YeLB, ;x 2 iy if2x>y>x, Furthermore, if y 2 2 x,
then i > { ,

x Ty
Proof: Since X37elys by the definition of index, the integers 2 X-x and
i

2 y-y are less than B, thus we have:

i i
2 ¥ ~XeM and 2 y ‘e, .

Also, by the definitions of LB’ MB and UB, we have:

i i-1 .
BBls2%x=2% e <7 @.5.1)
1 i 2
FB1<s27 vy 581 (3.5.2)
Hence, 1f 2 x> y > X, we have:
i i i-1 i-1
2%y>2%x=2% @) >2% . (3.5.3)

i-1
From (3.5.1), (3.5.2) and (3.5.3), it is seen that the integer 2 * 'y is either

in L_ or in .
B MBix-l -1
. If 2 'y ‘MB’ then iy = ix-l; while if 2 °yeLB, then
x 3
2 yeMB and ix = iy’ hence ix 2 iy.

If y 2 2%, then we have:

i i +1
) y-y 2279 °X

i41 i +1
hence either 2 y'xeMB or 27 '-xeLB

iy+1 iy+1
if 2 ‘xeMB, then iy+1 = ix’ while if 2 °xeLB then iy+2;s ix;

hence ix > iy.

Q.E.D,




Lemma 3.5.3: The residue 2% mod B is in My, if B # 1,

Proof: Let 2% ' = k (mod B), then

n-1

2 =m-+*B+k for some m.
Since
2".1 = AR, both A and B are odd, and
2™ =AB+ 1 (3.5.4)
hence,
n-1l  AB+l
2 T2
_BL L (ADB _ L
But b
B4l B 1 1 :
" 3% [3B+3-28] = 5 [B+3],
and
k
23 B+l 1 _an.27 = £l 3
3-2-6[43333]-6[331 :

Hence, for B 2 3, Zn-l mod B = %(B+l) eMB'

Q.E.D. 4

Since the integers in UB

inlLB, we can use the same argument as in lemmas 3.5.1 and 3.5.2 to obtain: 3

are congruent to the negatives of the integers

Lemma 3.5.4: For erB, the index ix equals to index iB-x’ where B—xeLB.

Therefore, in the range [0, B-I], the integers 1 and B-1 have the
largest index rlog2 g']. With the above lemmas, we now derive a lower bound on

the minimum distance of the cyclic AN-codes.
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Let us consider an orbit of n residues:

(N mod B), (2N mod B), (22N mod B),eevvve, (2 1N mod B) (3.5.06)

Suppose that the residue (ZkN mod B)aMB. By lemma 3.5.1, there exists-

another residue (2k+mN mod B)eMB, with 1<m§;1+1, where il= (_ogz-~§] .
The rest of the residues are:
@™y mod 8), (2™ mod B),...,(2" N mod B),(N mod B),
(2% N mod B) (3.5.7)
By lemmas 3.5.2 and 3.5.3, we see that there exists at least one residue

which is in MB for every ii+l consecutive residues in the set (3.5.7).

Since the arithmetic weight of the code word AN equals the number of resi-
dues of the orbit (3.5.6) which are in Mﬁ, we have proved the following

theorem:

Theorem 3.5.1: The minimum distance, Dm’ of a cyclic AN-cocde of

length n is at least as large as

1.1
n=-1-("1+7)
p > T 1 +2 (3.5.8)

PSSP P T

The tightness of the bound in theorem 3.5.1 can be improved if

we consider the following:

ek £

If B=3, then il=0. In this case there are only two codewords ia

the code, the minimum distance of the code is trivially seen to be n/z. In

g

3

the following, we consider the case tiiat B¥73: 5
4

Lemma 3.5.4: Let the exponent of 2 modulo B be denoted by e(B). If g
e(B)=n, and if 1 and B~1 are not contained in the same residue set %
{2i mod B; 0<i<n}, then %
]

n-1.-2
1
> [ T, 1+2

'
}
Laaaw,s AR RIS T LS
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Proof: Since 1 and B-1 are in distinct residue sets, for every il
consecutive residues in the residue set (2) there must exist at least ome

residue in Mh.

Lemma 3.5.5: If e(B)=n and st—l mod B for some O<k<n, then n=2k,

Proof: We have

2%=22®) =1 (mod B) :

2= (mod B) i

2%k < (mod B) d

By definition of e(B), n is a divisor of 2k. If n is odd, then nlk; this |

1s impogsible since k<n., If n.is even, then (n/2)|k or k=t.(n/2) for

some integer t. Since O<k<n, t=1l. Therefore, n=2k.

Lemma 3.5.5 states that if 1 and E-1 are contained in the szme

yud

residue set {2i mod B; 0<i<n}, the length of the code must be even. Any

i
At o

iy

residue set {N'2i mod R; 0<i<n} can then be divided into two subsets,

" Sl {N md B, N'2 md B, ~s0nrsrocenry N'z(n/Z)-l md B}

v r R
Sy

\ -
5, = .22 poa B tevenennennaeney No2% 1 noa B}

The elements in S2 ars the additive inverses in the ring of integers modulo

Ay
i

B of the elements in ¢ These two sets have the same number of residues ‘%

P Ay T e

that are in the region MB. Therefore, we have

Lemma 3.5.6: If e{B)=n=even, and 2(n/2)5_1 mod B, then

T e

(n/2)-1,-2
D > [—F-5—+2]
1

[ SOPRR PR R R

Ao et £ o

Lt shonuld be mentioned that (n/2}~il—2 is always non-negative as long as

NIEPEPTCYT LI

the codes have error correcting capability. This is true because that

Cadtat €

- VI

(n/2)—113} and the equality hold.: only when the code is of distance 2.

. ; e ki T st prarath S, - 12 at L o
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If the exponent of 2 modulo B is not equal to n, then e(B) is

a factor of n,i,e., n=e(B)*q. In this case any residue set {N-Zi mod B,
0<i<n} can be divided into q identical subsets.

Lemma 3.5.7: If n=e(B)-q, 1 and B-1 are not contained in the same

residue set {2i mod B, O0<i<e(B)}, then

e(B)-1i.,-2

(a) Dm 2 ["“'Izl—— +2] Xq for e(B)-il>l
i (b) D =gq for e(B)-ilﬂl

Proof:

(a) Since e(B)—ilzi, we have e(B)-il—erl. If e(B)-il>1, then e(B)-11-23p.

From lemma 3.5.4 and the fact that any residue set contains q identical
subsets, part (a) of the lemma follows clearly.

(b) 1f e(B)—il=l, then e(B)—il—2=-l. This implies that among the e(B) {

2 ., . . e i ot o e
A . by
s e Sy TR RALY THHRY & RN Gy
. yoary RRCRSRN -3 4 A5 S A LI " TR T

residues 2N mod B, 22N mod Byeoos 22 B)-1y 1oa B, there is only one residue,

namely, Ze(B)-lN mod B, which is in Mh. The NAF of the generator A is seen

R e L e e AT LIRS

tr he
e(B) bits e{B) bits e(B) bits \
o~ ———n N\ :
GO....01’00.‘.01’!@‘."’..0..’000..01 5
and the minimum distance of the code is q. Q.E.D. ;

I1f n=e(B):g, and if 1, B-1 are noth contained in the same resi-

¥y o o, e

2 R R i e e

due set {2i nod B, 0<i<e(B)}, tien by a similar argument as in lemmas 3.5.5

and 3.5.6 we have:

Lemma 3.5.8: [f n=e(B)+g and 2e<B)/25-1 wod B, then

E(B)!Z-il-z
Dm > [—'——-_ri—-—— +2]'2'q

Again, by using the same argument as in lemmz 3.5.7, we have
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Lemma 3.5.9: If n=e(B).q, Ze(n)/zs-l mod B and e(B)/Z—ilfl, then
Dm = 2q
In light of the above lemmas, the determination of the lower

bound on the minimum distance of any cyclic AN-code can be summarized as

follows:
Theorem 3.5.2: For a cyclic AN~-code of length n,
(a) n=e(B)

D 2 {[(n/2)-1,-2) /1, ] +2}-2

if n=even and Z(nlz)s-l mod B
D > [(n-il-2)/11'| +2

otherwise

(b) B=3
Dm = n/2

(c) n=e(B)-q
D, 2 { [(e(B)/2-1,-2) /1,1 +2}-2q
;1f e(BY=even and Ze(B)/zs—l mod B

k% Dm = 2q ;1f e(B)=even, Ze(B)/ZE—l mod B,
and e(B)/Z-il-l

D > {[(e(B)-1,-2)/1,7 +2}-q

(1f 2e(B)/2

#-1 mod B
D =g s1£ 22221 wod B and e(B)-1,=1
For any given cyclic AN-code, the above theorem can be used to
determine the lower bound on the error correcting capability of the code.

The calculation is very simpie. We present in the following the lower

bounds (calculated by the CDC 1604 computer) of all possible cyclic AN-codes

of length up to 36:

T T




n(code length) B e(B) il Dm(lower bound) Dm(actual)
8 3 2 0 4 4
8 5 4 1 4 4 N
9 7 3 2 3 3 g
10 11 10 2 4 4 3
10 3 2 0 5 5 5
12 7-13 12 5 3 3 f
12 3.3.13 12 6 3 3
12 3¢3-5 12 4 3 3
12 5.7 12 4 3 4 ]
12 13 12 3 4 4 '
12 3.3 6 2 4 4
14 43 14 4 4 & g .
14 3 2 0 7 7 :
15 731 15 7 3 3
15 151 15 6 3 3
15 7 3 2 5 5
16 5+17 8 5 4 & 1
16 51 8 5 4 4 ;
16 345 4 3 4 4 i
16 5 4 1 8 8 5
16 3 2 0 8 8 j
18 3:3.7 6 5 3 3 ;
18 3373 18 8 3 4
18 7 3 2 6 6
18 3.3 6 2 6 6
18 7+3:19 18 8 3 4
18 73 9 5 4 4
20 3411541 20 12 3 3
20 3+31.5.41 20 14 3 3
20 5¢3.31 20 8 3 4
20 5+3.11 20 6 4 4
20 5+11.31 20 10 3 4
20 11 10 2 8 8
20 3.5 4 3 5 5
20 5-11 20 5 4 4 ’
20 5 4 1 10 10
20 3 2 c 10 10
21 7.127 21 9 3 3 3
21 7337 21 10 3 4 ]
21 7 3 2 7 7 ;
22 683 22 8 4 4 %
22 3 2 0 11 11 :
24 303:507.17 26 11 3 3 j
24 3434547741 24 15 3 3 ;
24 5.7-31.241 26 16 3 3 |
24 3+3-5-13.241 24 12 3 3 3
24 3.3.13.7.17 24 12 3 4 3
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n(code length)

24
24
24
24
24
24
24
24
24
24
24
24
25
26
27
27
28
28
28
28
28
28
28
28
28
30
30
30
30
30
30
30
30
30
30
30
30
3
30
30
30
30
30
30
32
32
32
32

343+5.7
3+345-13
3+313-17
7413.17
5.7-17
33.13
3-3-5
5.7
13
9
5
3
31
2731
73
7
3:5+43
3.5.127
329-113
3.127.29.113
3+43-29-113
3-29.113
3¢5
5
3
3-3.11-7-31
7-151.11.331
9.31.151-331
9.11.31.151
7-11.31.331
7+9.31.331
7.9.11.151
9.31.331
9.31.:51
9-11
9.7-11
74931
9.31
9.11
7411.31
3.3
11
7
3
3.5.17
3.5.257
3.17.257
5+17-257

30
30
30
30
30
30
30
30
30
30

10

16
16
16

i

ol
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Dm(lower bound)
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Dn}(actual)
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n(code length)

32
32
32
32
32
33
33
33
34
34
35
35
35
35
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

B

3+5
3.17
5.17
3
5
7+23.89
599479
7
43691
3
714122921
127
31
31-127
5¢7+3-3.13.73
9¢7+5¢73+37.109
3¢727.19.37.109
5+7.27-19-13
9¢7+73.13.109.37
3:3¢7:5.73
9+5.7-37.109
9+7+13-37-109
9¢713.73
3:5:7+13.73.19
3+3¢3.5.7

e(B)

SN oo

33
33

34
35

35
36
36
36
36
36
36
36
36
36
36
36
36
36
12
12
36
36
36
36
12
12
18

18
12

-
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bt B BEHOEBNNRNON N
ld|d‘ﬁ\°-q(D.b\o‘O.b(D\Ot»~J\JU‘G\\lkl¢~c\h>Chh

[
or—twnw:.\oommu:c\mooo

qm(lower bound)

8
8
8
6
6

e

=
NP WWw

[
\ocsooasm\otommbbmomwwpuwwwwwwwuwwumw

12

18
18

51

Dm(actual)
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From the above tabulated results, it is scen that the lower
bound developed in this section is very tight. This lower bound also

suggests a criteria for one to choose proper B's in comstructing any cyclic

AN-code. Suppose that we want to construct a cyclic AN-code with a speci- .

fied error correcting capability. First we let the lower bound on the
code distance to be Dl’ if the code length n is odd and the code is so

constructed that e(B)=n, (other cases can be considered in a similar man-

ner), then by theorem 3.5.2, we have

n-i,~2
1 n-2
D, = [ 2 =721 +1
1 il ] il
Dl—l = (n—2)/il-u where 0<u<l

Dl~1 _<__(n~2)/il
il jb(n-Z)/(Dl-l)
1 2 [(@-2)/(0,-1)]
logZ(B/B)—u' < [(n~2)/(Dl~1)] where O<u'<l
the smallest integer that is greater than or equal to logZ(B/3) is thus,
log,(8/3) < [(n-2)/(D,-1)] +1
hence,
B/3 < 2 [(@=2/(D-1) +1
or,

B < 3.2 [(0-2)/(@1-D] +1 & B,

From the above expression, we see that for a fixed code length n, the
number of code words should be smaller than Bl so that the code constructed

guarantees to possess a minimum distance at least as great as Dl‘ Let us

consider the following example:

T2 L 3730 S AT A tnr it m e o

da %) Lis- 2

99 2y



Suppose that we want to construct a single error correcting
cyclic AN-code of length 15. The code must have distance at least 3, and

Bl can be calculated as

= 3.2/

= 384
We choose B to be smaller than 384, (e.g., B=31°7=217) and e(B)=15, the
code is of minimum distance at least 3,

By using the lower bound on the minimum distance derived in

theorem 3.5.2, we can synthesize any cyclic AN-code for the correction of

a specified number of errors.

The following codes are obtained:

n = length nf the code

B = number of code words

k = number of information bits

Dml = lower bound of the minimum distance

Dma = actual minimum distance

r= rate of the code
n B k Dml Dma b <
42 5419 13 6 6 0.31
42 16257 14 6 6 0.33
44 10565 14 6 6 0.32
48 24929 15 6 6 0.314
50 8283 14 8 10 0.28
50 44561 16 8 8 0.32
52 85489 17 8 8 0.33
52 253241 18 5 6 0.346
52 1266205 21 6 6 0.404
54 784899 20 6 8 0.37
54 87211 17 6 6 0.315
54 261633 18 8 8 0.33
58 3033169 22 5 6 0.38
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n B
60 429325
60 3520465
6N 162565
€) 402905
60 812825
60 270805
64 6700417
66 1397419
66 4192257
66 411849
66 62571
66 45761
68 652805
68 130561
68 3505429
68 25080101
70 12083
70 36249
70 398739
70 3705353
70 11116059
72 16773121
72 1774001
72 9335617
72 104323
74 25781083
74 77343249

A fogmeret L ew

k

19
22
18
19
20
19
23
21
22
19
16
16
20
17
22
25
14
16
19
22
24
2/
21
24
17
25
27
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3.5.2 Upper Bound on the Distance

SEIVINTR i s A iR S o
NN T TSRO R W T SR VN TN Y Y, N

= P o
5:c\a>:;c>u:c>oxa\c\o\asc\c~a>c\0\ B

e
Do

[
VOO

0.315
0.365
0.30

0.317
0.33

0.317
0.36

0.318
0.33

0.288
0.244
0.244
0.295
0.25

0.325
0.368
0.20

0.228
0.271
0.315
0.342
0.33

0.292
0.33

0.237
0.338
0.365

54

To find an upper hound on the distance of a cyclic AN-code,

we first consider the congruence:

ZiN =X

mod B

LI ON PP SOy
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where 0 £ i < n-1 is given, and x is any integer. We want to solve for the

integer N.

Since B is an odd integer, 2i is relatively prime with respect to B

]
for all 1 s. By Euclidean lemma, we have:

3-2i + t*B=1 for some integers s and t (3.5.10)

NN

S T at L e ot iy YT
e B et A c 2t s T x

Hence, for any integer x, the above congreuence has a unique residue class

“+

5/

e

solution for N modulo B. If the value of N is restricted to be: 0 < N< B-l, then

ot B

the solution of (3.5.9) is the actual value of N.

-
MR TN

For a code word AN, 0 < N< B-1, the residue 21N mod B indicates the

nonzero terms in its NAF. If we take a fixed integer i, and set x to be an

integer in MB, then the solution of N in the above congruence says that the code

3 word AN has a nonzero term in its NAF at the positicn 2“-1. Algo, for a fixed i,
s

the solution N of the congruence (3.5.9) are all distinct for different x's in MB;
this is because

ZiNl x mod B

m

i
2 N2

1]

y mod B

would imply that x = y mod B and 0 < X,y < B-1 then implies x = y.
These set of N's obtained by choosing a fixed i and setting x to be all

the integers in MB are simply the codewords that have nonzero term in their NAF's

at the position 2n-i. As mentioned above, the congruence (3.5.9) always has

unique solutions. That means we are always able to find the code words with

nonzero terms at the position Zn-i, for i = 0,1,2,..., n-1,

sk D Saiiehl A bk
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17

There are EE%— integers in the region MB’ for each integer in Mb we
can solve an N with respect to a fixed i. In other words, in the NAF of all the
(B+1 1

3

code words, there are exact code words with nonzero terms at the position

2n-i. This argument holds true for all i, 0 < i < n-1, hence there are totally

ne. ngl-] nonzero. terms which are distributed among the NAF's of all the nonzero

codewords.
The number of the nonzero codewords is B-1, hence if the minimum
distance of the code is Dmin’ we have the following theorem:

Theorem 3.5.2: The minimum distance, Dmin’ of a cyclic AN-code of length

n is at most as large as:

MB+1 7
Din @ B-1)S 5= .n (3.5.11)

where B is the number of code words.

It is quite interesting to note that for large B's, this bound is
approximately equal to %, that means the distance of the code can not exceed

one third of the length of the code!
If we fix the length n of the code, then for increasing values of B,
the upper bound decreases. This is because the re&“z of the code increases as the

number of code words increases, while the error-c. _ecting capability of the code

decrecases as the rate gets higher.

D
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4, TIMPLEMENTATION OF ARITHMETIC CODES BY USING MAJORITY LOGIC

4.1 Introduction

One of the major unsolved problems in the theory of arithmetic codes
is the inplementation of decoding circuitry. Because the decoders must be used
frequently in systems using coding redundancy, the practicality of coding re-
dundancy depends on how complex the decoders are. Also, unlike the usual situa-
tion in a data transmission system, the delay introduced in the decoding circuit
is always important to a digital computing system. Consequently, a practical
decoder should have simple logic circuitry and the decoding procedure should be
fast.

The decoding of arithmetic codes for multiple error correctiorn has
been shown to be difficult. Since the operation of the codes is an integer or
modulo arithmetic, the only information that decorder receives is one equation
( or one congruent relatioa) in several integral unknowns. In terms of number
theory, the decoding equation is usually a Diophaentine equation, which is extremely
difficult to be solved. The only known decoding scheame for multiple error correc-
tion arithetic codes is the "permutation of residue" technique, obtained by
Laste and Tsao-Wu [30] and Heng [29]. In the following, we shrall briefly discuss
the permutation of residue technique, to see how difficult this approach is.

The first step of the "permutation Of residue" decoding scheme is to
calculate the decoding index k, which is defined as the smallest positive integer
such that k A >

"X e where E is the error and E  is some cyclic shift of

E min|;
i

E. The syndrome S = E mod A is then computed; calculate Si 2 27 S mod A for each

~ o ATy b Ul aabra £ d ast 2L
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left shift of S mod- A, For each i, the arithmetic weight of Si is computed, to
see if W(Si) is within the error correcting capability of the code. If none of
the Si's satisfy W(Si) < t, where t is the error-correcting capability of the

code, the S; = A - §, = 2" (A-S) mod A are calculated one by one; for each i the

arithmetic weight W(Si) is counted to see if W(Si):s t. The same procedure

goes through all S, + jA and Si + jA for all 0< j< k-1, 0< i < n, where n is

i

the length of the code, until for some i the inequalities W(Si + jdA):S t
d

~th cyclic shift of the error

d’ jd’

or W(Si + jdA):s t are satis®ied, we obtain the 1
d
pattern E.

d

It is easy to see that the essence of this approach is a table lnok-up
attempt, Although the amount of search is reduced from that required by a brute
force approach, the '"permutation of residue" scheme still involves a great deal
of searching. Also, a great deal of complicated calculations must be done by the
decoder, and the decoding delay would be ;onsiderable due to the large number of
shifting cycles.

If the "permutation of residue" decoding schems was implemented in a
digital computing system, it would be natural for one to ask "can this decoder
be used to provide as good or better use of redundant parts than do other
techniques?" Therefeore, how to find decoding algorithms that can be easily
implemented is a problem of both theoretical importance and practical signifi-
cance,

Since the majority-logic decoding (MLD) scheme is by far the easiest
one that can be applied to many data communication channels, it would certainly

be very interesting if the decoding of arithmetic codes in a digital computing
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system can also be done by using majority logic. This is not clear, however,
due to the propagation of arithmetic errors as a result of carry or borrow
failure.

In this chapter, we are able to divise a majority-logic deccding
scheme for some arithmetic AN-codes. We will show that the cyclic AN-codes
constructed in the previous chapter are all majority-logic decodable. Further-
more, this majority-logic decoding scheme can be generalized to & multi-step
majority-logic decoding algorithm, the number of steps required for decoding
is related to the number of prime factors contained in the length of the code.
With this majority-logic decoding scheme, the implementation of the cyclic AN-

code in a real digital computing system would be much simpler.

4.2 Errors in Modular Arithmetic

The arithmetic in most digital computers is arithmetic modulo m where
either m = 2%-1 (one’s complewent arithmetic) or m = 2" (two's complement arith-
metic). In an arithmetic modulo m, the integers under consideration are the set

of integers {0, 1, 2, ... , m-1}, and the additive operation is defined as:
Il + 12 = Rm (Il+12) “4.2.1)

where 0 < Il’ ]'.2 < m-1, and Rm(x) denotes the residue of x modulo m. Similarly

the multiplicative operation is defined as,
I - I2 = Rm (11‘12) (4.2.2)

The set of integers {0, 1, 2, ..., m-1} under the above two operations forms a
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ring, called the ring of integers modulo m. For'any;integer I # 0 in the ring,
its negative (or the additive inverse) is the integer m-I.

In an arithmetic unit whichkperforms arithmetic modulo m, we shall b
~always assume that the result of any operation ié repfesented by some integer R '
such that 0 < R < m. If the arithmetic is modulo 2n-1, we have an n-stage one's
complement adder. A cyclic AN-code of length n, where AB = Zn-l, can be used
for error-detection or correction in this adder. When two code words gNlaahd

AN2 are added, the sum .has the form:

: . n
Sum of (AN1+AN2) Rm(AN1+AN where m‘- 2°-1

2)

A'RB .(N1+N2) '(4.2;3)

Since 0 < RB(N ) < B, it follows that the modulo sum of any two code words is
another code word in the cyclic AN-code. Hence,. a cyclic AN-code is linear under
modulo arithmetic.

If an error has occurred during the additive operation, we first note

that the absolute value of thé error is 1ess than 2" -1, for the error is caused

by adding logic failure and there are only n adding units in the adder. An error
may change the correct sum (which is a code word) into an integer which is greater
than 2n-1, in that case the actual result from the output of the adder is the

modulo sum of the correct code word and the error pattern:
R = actual sum = R [A R (N ) + E ] (4.2.4)

The syndrome S associated with the possibly erroneous result R is de-

fined to be the residue of R modulo A, f.e. § = R,(R). Since 2"-1 = m = AB,
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we have:

§ = RA(R) = RA[RAB(A-RB(N1+N2)) + E]

Therefure, the syndrome S is uniquely determined by the residue of E
moduio A, There are B distinct error patterns, namely, E, E+ A, E + 24, ... ,
E + (B~1) A which have the same syndrome S, they form a coset expansion of the
principal ideal {AN[0< N< B-1} in the ring of integers modulo 2"-1. The coset
leader is the pattern that has a minimum arithmetic weight; it is the error

pattern that is most likely to occur. The d « .der then attempts to identify

this most likely occurred error pattern from the syndrome by some intellegent

scheme.

4.3 Majority Logic Decoding Scheme for Arithmetic Codes

Let us consider & cyclic AN-code with a composite block length

n
n=nn,. Since nlln implies (2 1-1)](2n-1), we may choose the generator

A as:
o

_ 4D )
@1/ "-1)

g
|

ny

+ ...+2 " +1 4.3.1)

n, (n,-1) n, (n,-2)
P S B

In this AON-code, 2ll codewords are of the form AoN with N =0, 1, 2, .

n

2 1-2. If we divide the n bits of a codeword into n, blocks, then each block
n

is of length n,. Eince N is less than 2 1-1, we have enough positions to

e
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4 express N in its binary form at each block. Therefore, the binary form of any
3 l codeword AON consicsts of n, replicas of the binary form of N. It has been
‘ l indicated by Erosh [23] that the minimum distance of this code is equal to n,,
R

3 i hence this code can correct all arithmetic errors of weight up to r(n2~1)/i].

. i Suppose that two coded numbers AoNI’ A°N2 are added in an adder which

: performs modulo 21 arithmetic, and an error E ocecurs, then the incorrect sum

i

R from the output of the adder is:

T
PP TR R
- ‘
ol

= n
R= AO(N1+N2) +E mud 2-1 (4.3.2)

 wad]

Since R is an integer in the ring of integers modulo 2n-1,

0< R« 2“-1; we have:

T St et uld Y
can g Y 40 20 AR IHIPSERTIO N
z ————d

_ R= A Ny +E mod 2°-1 (4.3.3)
{
L.
. where
: i Ny = Ry (NN
by -
E i We assume that E is a correctable error pattern, then W(E) < r(nz'l)/fl.
: ) To decode, the decoder wants to recover the correct sum AON3 from the res ::. R.
\ Y We now prove the following lemma and theorems which yield the majority decoding
; scheme: ,
N
' Lemma 4.3.1: The actual sum A°N3 is a zero word if and only if the modular
. weight of the result R is less than or equal to [(nz-l)/2].
{
3 Proof: Suppose that A°N3 = 0, the (4.3.3) can be written as:
{
! ! n
& R=E mod 2 -1 (4.3.4)

e
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which implies that R=E for E®» 0 or R = (2n_1) + E for E < 0. Hence, Wm(R)
=W (B) < [(1.2-1)/2].
On the other hand, if Wm(R):S [(n2-1)/2], we have:
Wm(AoN3) = Wm(R-E)
< Wm(R) + Wm(E) (by triangle inequality)
< [(ny-1)2] + [ (n,-1)/2]

< n2-1 (4.3.5)

which implies that A0N3 = 0 since all nonzero code words are of weight at

least nz.

Q.E.D‘

Lemma 4.3.1: determines the actual sum to be zero or not, For Wﬁ(R} >
[(nz-l)/Z], we have the following arguments.

We first consider how the binary bits of @& correct sum AON3 are
affected by a single arithmetic error. A single arithmetic error may cause
several bits to be in error because of the influecne of carry or borrow propa-
gation, Sometimes an error may cause a carrry process which changes the code
word into an integer greater than 2"-1. 1In a modulo 2"-1 adder (i.e., one's
complement arithmetic), there are only n positions for the binary representation

of the result R. Hence, the carry propegation may go beyond the bit with position

2n-1 1

and then change cyclically the bits with positions 20, 2, 22 ... and so on,

However, any carry propagation will stop whenever a zero bit is reached.
Similarly, any borrow propagation will stop whenever a bit 1 is ceached. Since

the generator A) of the code is of the form as shown in (4.3.1), any nonzero
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code word can have at most nl-l consecutive 0's or 1's in 1ts.binary_formt(we
note that the bits with positions 2n'1-and Zo‘are considered to be consecutive).
Starting at the erroneous bit, any carry or borrow propagation caused by a single

arithmetic error cannot propagate more than n, consecutive positions. In other

words, the carry or borrow propagation caused by a single arithmetic error can

change at most n, consecutive bits of  a nonzero code word in the AON-code. Thus,

1

we have proved the following theorem:

Theorem 4.3.1: A single arithmetic error at any bit of a nonzero code word
in the AON-code can change at most n, consecutive bits of this code word.

Next, we consider a multiple, but correctable error pattern E. Ex-

pressing the error E in its NAF as:

. 1

4
2 t
+ ...+ e, 2

~ - L;‘
E e1 2 + e2.2

where e; = 1; t<[(n,-1)/2] | (4.3.6)

We partition the n binary bits of R into n, disjoint sets, each set

K n1+k 2n1+k (nz-l)n1+k
contains n, bits with positions 2, 2 s 2 s vee 2 for a fixed k,

where 0 S kS nl-l. For any fixed k, these n, bits are n, + 1 positions apart

from one another, therefore, by theorem 4.3.1, no two bits of the same set can

be changed by a single arithmetic error. Since the arithmetic weight of E is
K nr+k 2n1+k (n2-1)n1+k
t, at most t of the n, bits with positions 2, 2 y 2 sy see 2

can be altered by E, the rest remain unchanged as in the binary form of the

correct sum AON But E is a correctable error, t is less than or equal to

3.
[(nz-l)/Z], thus we have proved the following theorem:
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Theorem 4.3.2: If the error is of weight less than or equal to [(nz“l)/ZJs

then in the binary form of R, the majority of the bits with positions:

n,+k 2n.+k (n,-1)n_+k
2k, 2 1 , 2 1 y eee 3 2 2 1

where

0 k< nl-l

remain the same as in the binary form of the correct code word.

From the lemma and theorems, we now summarize the decoding algorithm

n
for the AON-code generated by Ao = (Zn-l)/(Z 1-l) as follows:

(1) 1f Wm(R) < [(nz-l)/2], decode A0N3 = 0,
2) 1f Wm(R) > [(nz-l)/2], work on the n, sets of bits in the binary
K n1+k 2n1+k (n2-1)n1+k
form of R with positions 2, 2 y 2 y seey 2 for

k=0,1, 2, ..., nl-l. For each set take the majority value of

the bits, then form a block of ny bits with the n, majority value

1
obtained.

It is straightforward to see that the above majority logic decoding

n
scheme is also applicable to the A'N-code generated by Aé = (2“—1)/(2 2-1). The
(%]

decoding procedure is exactly the same except we divide the n bits of R into n,

blocks, with each block of length T, .

Since there is no restriction on the parameters n, and n2, the majority-

logic decoding scheme can be applied quite generally to any AON or A;N-codes of

composite length, When n, and n, are primes, it should be mentioned that the

AON-code is the plpz-code generated by A_. and the AéN-code is the plpz-code

5
generated by A6’ as discussed in Chapter 3.
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4.4 2-Step Majority-Logic Decoding Scheme

It has been shown in the previous section that the cyclic AON-code is

majority-logic decodable. To decode, we only need one level of majority logic.
It is patural to t...x that by using more than one level of majority logic other
cyclic AN-codes might also be decoded easily. In this section, we will derive

a 2-step majority-logic decoding scheme which can be applied to the class of
multiple error-correcting AN-code described in Chapter 3.

We recall that the codes described in Section 3.3: are generated by the
n

n .
cyclotomic generator A = (2“-1)/(2 1-1)(2 2-1), where (nl,nz) =1 and n = nn,.

If n, and n, are primes, then the codes are the plpz-codes generated by A7 in

1 and n2

so that n, 2 2n1-1, then the majority-logic deccding can be done as follows:

Section 3.4. If we impose one additional condition on the parameters n

From theorem 3.3.1, we know thet the minimum distance of fhe cyclic

n n
AN-code generated by A = (2“-1)/(2 1--1)(2 2-1) is ny provided that (nl,nz) =1

and n1 < n2. Therefore, a correctable error pattern E is of weight W(E) <
[(nl-l)/Z].

Suppose that two coded numbers AN1 and AN, are added in an adder which

2
performs modulo 2“-1 arithmetic and a. correctable error E occurs, then the in-

ccrrect sum R from the output of the adder is:

R = AN3 + E mod Zn-l,

where

Ny = Ry(N;4N,)

W(E) < [(n1~1)/2] (4.4.1)

M. M et vt et S mae e - -
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For simplicity, we denote 2.1 by m in the following discussion.
n
Multiplying both sides of (4.4.1) by (2 2--1), we have:

n n n
R(Z 2-1) = AQ2 2-1) - Ny + EQ 2_1)
n n n
= {2 -1 c @ 21y N, + E@ 2-1)
n1 n2 3
(2 "-1)(2 °-1)
n2 n
= AN, + E(2 “-1) mod 2 -1 (4.4.2)

n
where Ao = (2“-1)/(2 1-1). Denoting the residue of any integer I modulo 2"-1

by R (1), then R [A N,] is a code word in the A N-code discussed in previous
m m- o 3 n o n.n

sections. Expressing E(2 2-1) in NAF and substituting 1 for 2 1 2, we can
n

reduce E(2 2--1) to an integer E with the property that the absolute value of

)
Er’ i.e. ,Erl, is less than 2 -1
n n

same as Rm(E(Z 2--1))::zj.nce Rm(E(Z 2--1)) is always prositive while Er may be

. We note that E. is not necessarily the

negative.

Equation (4.4.2) can now be rewritten as:

n
R [R(2 2-1)] = R [R (AN) +E_] (4.4.3)

n
The integer Rm[R(Z 2-1)] can be considered as a corrupted code word

of the code generated by Ao. Since the cyclic AON-code is of distance n,, and:

WE) s [ (n)-1)/2]

n, 2 2n1-1




VT A AT AT A

R Sl

68

n

W(E) < W(EQ 2.1
< 2W(E) (by triangle inequality)

< n)-1= [(a,-1)/2]

the error pattern Er is within the error-correcting capability of the cyclic

n
AON-code. Therefore by div ..:~ the n bits of Rm[R(Z 2-1)] into n, blocks the

majority-logic decoding scheme for the AON-code will correctly yield the code

word Rm(AoN3)'

L
v

Sy

To obtain the actual error pattern E, we need the second step. Denoting
n

{Rm[R(Z 2--1)] - Rm(AoNé)} by E', it can be seen from equations (4.4.2) and (4.4.3)

- IR

Fuid P} Davp Sud Gmit W 8 O8N O P an

that:

Ty T T

n
E' s EQ2 2-1) mod 2°-1 ‘/ (4.4.4)

hence,
n

n
E'/(2 %2-1) = E mod (2°-1)/(2 2-1) (4.4.5)

n
Recalling that (Zn-l)/(Z 2--1) Aé, we have:

»,. ‘

)
R [E'/(2 °-1)]

RmﬁRm(Aé * k) + E ] for some k (4.4.6) p

S~
°

n :
From (4.4.6), the integer RmFE'/(Z 2-1)] can be considered as a 3§

3

[T
L 4

corrupted code word of the cyclic AN-code generated by Aé. Since the cyclic

AéN-code I8 of minimum distance n, and since W(E) < [(nl-l)/Z], the actual

[ et
e

erior pattern E can be decoded by the majority-logic scheme for the cyclic

b

A'N-code.
o

=p-ut

AR e Py
e




S T IRAR P A

69

The 2-gtep majority-logic decoding scheme derived above can now be

summarized as follows:

(1) IfWR) < [(nl-l)/2], decode AN, = 0.

(2) 1If W(R) > [(nl-l)/Z}, get E' by applying the majority-logic decoding

n
scheme for AON-code to RmLR(Z 2-1)]. (first step)

(3) Obtain the actual error pattern E by applying the majority-logic

n
decoding scheme for A;N-code to RmFE'/(Z 2-1)]. (second step)

It should be remarked that whilg the condition n, 2 2n1-1 imposed on
nln2 n
2

fa
the codes generated by A = ( -1)/(2 1-1)(2 2-1) guarantees the corection of

oy Gy

errors up to minimum distance, the condition is not necessary for the 2-step
majority~logic decoding scheme to work. In general the majority-logic decoding
scheme will correct up to error patterns of arithmetic weight the smaller of

[ (n;-1)/2] and 3 [ (m,-1)/2].
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Let us consider the following example:

By

Example: Suppose that the block length of the code n = 5.9 = 45, and the

H
b
i
|
4
:
l.
g

generator A = (245-1)/(29-1)(25-1). Then the code is of minimum distance 5,

$ed

T

; capable of correcting any double arithmetic errors. We have,

[ PR |
”

= + 2

45
A= 952 -;) _ 31,26 22 21 .17 L6 .13 ,12 L1l
(2°-1)27-1)

I n
+28 427 ¢ 28 42t it 24

aNbalh S fOME T
[TOX] 8
.

(000000000000010000100011000110011100111011111)

3

. If two coded numbers 37A and 27A are added in & 45-stage one's comple~
P é: ment adder, and a double error E ='238 + 28 occurs, then the incorrect sum R from
;' . the output of the adder is, R = A(37+27) + E = 64A + E. To decode, we first
o
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calculate the residue of R(29-1) modulo 245-1 as:

00010, 01010, 00010, 00010, 00010, 00110, 0COH1, 11001, 11110

We divide the above binary form into 9 blocks and check that,

digits with positons

majority value
25k+4

,0<k<8 0,0,0,0,00,0,1,1 0
>3 9<x<8 0,1,0,0,0,0, 0,1, 1 0
2”2 o<k<s8 0,0,0,0,01,0,0,1 0
2%l o<ck<s  1,1,1,1,1,1,00,1 1
270 o<k<s8 0,0,0,0, 0,0 1,1, 0 0

Hence the majority decision on Rm(R(Zg-l)) yeidls a code word:
Rm(AoN) = 00010, 00010, OOOlC, QOOl0, CNO1l0, 00010, 00010, 00010, 00010

The error at this state is E' = Rm(R(Zg-l)) - Rm(AON), which has the

binary form:

00000, 01000, 00000, 000CO, 00000, 001GO, 000(-1)1, 110(-1)1, 11100
P 45
The actual error pattern F is congruent to E'/(2°-1) modulo 2 -1,

E2%-1) = Bt = 238 4 217 |28 L 0% g 2%

E=222 4220 4 o1l 108 4 02 poa@®-1y/2°%-1)

which has the binary form:

000000000, 000000100, 000000120, 000000100, 100000100 (4.4.7)
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Again, the majority-logic scheme on (4.4.7) yields a block 000000100.
Repeating this block five times, we have:
000000100, 000000100, 000000100, 000000100, 000000100  (4.4.8)
The binary integer (4.4.8) is a code word generated by Aé = (245-1)/(29-1).
Subtracting (4.4.8) from (4.4.7), we get the actual error pattern E:
000000(~1)00, 000000000, 000000000, 000000000, 100000000

Hence, the error pattern E is decoded as -23&+28.

4.5 1-Step Majority-Logic Decoding Scheme for Arithmetic Codes

In the previous section we have shotn that the cyclic AN-code
niny ny na
generated by A = (2 -1)/(2 "=1)(2 “~1) is 2~-step majority-logic decod-

able provided that n, 3_2n1-1. If n, and n, are two prime integers, then

Y o
m

the code is the plpz—code generated by A7. The reason that the decoding
needs 2-step of majority logic is that the denominator of the gemerator A
contains two factors of the form 2%-1. We must multiply the form genera-

tor A by a factor 22-1 so that the modified generator of the code has a 1

4
& form the same as A.o or Aé, then the majority-logic decoding scheme can be

1
I
1
i
i
i
:

applied. After the first step of majority-logic decision, we divide the

i N S bt AN

result by the factor Za—l, the generator of the code at this stage is

(Zn—l)/(Za-l), which has the same form as Ao or A;. hence the second

step of majority logic is applied.

It is not difficult for one to realize that the number of factors of

the form 2%-1 contained in the denominator of the generator is related to the
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number of steps required for majority-logic decoding. As a matter of fact, the ?f'
2-step majority-logic decoding scheme developed in the previous section can be ?{;
generalized in a straightforward manner to the following theorem: %,g
¥,
Theorem 4.5.1: Let Nys Doy eees Iy be L pairwise relatively prime integers B E

w?th the condition that n

L
of length n =1 n, generated by:
i=1
n L ny
A=(2-1)/ = (27-1)
i=1

can be majority logically decoded in exactly L stops.

Proof:

2-step majority-logic decoding scheme.

R=AN+E (4.5.2) 3

b,

L n, k

Multiplying both sides of (4.5.2) by n (2 1-1), we have: :
i=2 ;

L n, L n, L n, 3

R np - =[Aqg @Q*1)])N+E - ¢ 2 *-1) i

i=2 i=2 i=2 3 g

1

L ni j

=A1N+E° o (2 -1 B

i=2 3

where 4
n 3

n . 1 i

A1 = (27-1)/(@ -1 (4.5.3) j

3

Taking the residue of both sides of (4.5.3) modulo 2"-1. we have: }
1

L ni %

Rm[R- 122(2 -1)] = R,m[Rm(AlN) +E ] (4.5.4) 1

{+1 b3 2ni for i = 1,2,..., L-1; then the cyclic AN-code

The proof of this theorem is essentially the same as the proof of

We stert with the decoding eguation:

(4.5.1)

A
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\k n L ng
g Where Erl is obtained by substituting 1 for 2 in the Ni¥ of E* ¢ (2 “-1).
g ' i=2
We assume that the error pattern E is of weight less than or equal to
E i r Ll ]
.ﬁ, ( inlni -1)/2", where [x] denotes the integeral part of x, then we have:
>3 ll L - L-1
,‘:‘,;' n - - -
B WE ) < WE- €2 1< 2"t um s 22 T o172 4.5.5)
& rl : i
1 i=2 i=1
1L '
1 = ) -
l n 2 2ni for 1 =1, 2, ..., L-1 (4.5.6)
! §
3 & Therefore, ﬁ%
& L.y Ll L i
31 i 27"« @ on < nmon, (4.5.7) 1§
i=1 1=2 ' ;
1B r, x d
3 WE )< {( nn) -1}/2 (4.5.8)
¥ . rl i
R 5 i=2
&
;ﬁ Since the integer A1 is of the same form as Ao in section 4.3, it i
2 L ;
& gE generates a cyclic AlN-code of minimum distance x n, . Also, Rm(AlN) is a
f b i=2 -
. & 3
g . L ng
iL code word in the AiN-code, and the integer Rm[R' n (2 "-1)] can be considered i
i=2
;’ as a corrupted code word in the AlN-code, the error Erl is within the error ?
“n B
correcting capability of the AlN-code. Therefore, the majority-logic decoding 2
3 L o .
§ scheme can be applied to R [R* 11 (2 1-1)], we get R (A.N) correctly.
. m =2 m> 1 5
§ Defining E, by the difference of Rm[R' m (2 -1)] and R_(A,N) we have:

i=2

L n, n
E1 =E g (2 *-1) mod 2 -1
i=2

$
{
1
3
hY
%
{
5
N
¥
3
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n L n n
E/@2-1) =B n 2 1-1) mod (2"-1)/(2 1) %.5.9)
i=3
)
I RN - .
R [E,/(2 °-1)] = K [R (A t) + E.,] for some t (4.5.10)

n
where A2 = (zn-1)/(2 2-1) and EfZ is obtained by substituting 1 for 2" in the
L n
NAF of E* 1 (2 1-1).
i=3
n
The intege- Rm[EI/(Z ©-1)] can be considered as : corrupted code word

L
of the cyclic AN-code generated by A2, which is of minimum distance n;e won.
i=3
Since,
L n, L-1
- g T
WE ) <WE o @ D) 22 u@ s 2b? (g a1/
2 _ . {
i=3 i=1
L-1 L-1 L
2L 2, mon, =n - 2l-2 m 0. <nocoq n, (4.5.11)
i=1 i=2 1 i=3
, r L )
WE )< (- 7 on)-1)/2 (4.5.12)
r2 1 iz3 b

the error Er2 is a correctable pattern with respect to the AN-code generated by

n
AZ' Using majority-logic decoding scheme on Rm[EI/TZ 2-1)] we can determine

n
Rm(A2~t) correctly. Defining E2 by the difference of Rm[EI/(2 2--1)] and Rm(A-t),

we have:

L n

E,=E - n @*

-1)  med 2%-1 (4.5.13)
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which has the same form as the congruence (4.5.8). The same majority decoding
method can be applied and we get another congruence of the same form. So in

general, at the h-th stage we have:

L ni n
E,1SE- 7 (2 "-1) mod 2°-1 (4.5.1%)
i=h
nh L ni
Eh 1/(2 -1)sE* 7 (2 7-1) mod Ah (4.5.15)
- i=u+l

oy
where A= @"-1/@ "-1).

Therefore, at the L-th stage,

nL n
EL_1 s=E - (2 7-1) mod 2 -1

L
EL-l/(2 ~1) = E  mod A

L-1
We see that W(E) < (( 1 ni)—x)/£] and the cyclic AN-code generated by
i=1
L-1
AL is of minimum distaace ¢ n,, hence the majority logic decoding shceme on

n i=1
EL_]/(Z L-1) will correctly yield the actual error pattern E.

Q.E.D.

In the proof of the sbove theorem, we have assumed that the weight of
L-1

E is less than or equal to r(( T n,)-l)/il; the fact that the L-step majority-
i=1 *

logic decoding c~n correct errors up to this weight gives the lower bound on the

minimum distance - . the code, hence we hava the following:
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Corollary 4.,5.1: The cyclic AN-code as stated in the theorem 4.5.1 is cof

L-1
distance at least as great as g n

i=1

i

The result of the above theorem is a straightforward generalization of

the 2-step majority-logic decoding scheme. The code constructed has rather high

redundancy. To improve the efficiency of the code, we want to reduce some un-

necessary factors contained in A. Irn the following, we shall construct another

class of codes which is also L-step majority-logic decodable. This code is

generated by a cyclotomic generator, it has better efficiecy and a very general

o structure. Although the decoding for this new code is similar to that of the
% T
Lt > code in theorem 4.5.1, we shall -o through the discussion in detail because some
%f E‘ important remarks must be made.
J ]
] - Definition 4.5.1: Any positive integer n can be expressed as a product of
;é é, powers of prime factors, i.e. n = n pii . This product of prime powers form
-- is unique for any n and is called t;e canonicul form of n,
e Theorem 4.5.2: Let the canonical form of & positive integer n be
F | ;' n = lﬁlpisi. If the distinct prime factors pi’s satisfy the condition that:
.. Py 2 21"1 (pl-l) + 1 for i = 2, 3, ..., L; then the cyclic AN-code of block
LN

-

length n generated by Qn(2), the primitive cyclotomic factor, can be majority-

logic decoded in exactly L steps.

Proof: Tirst, let us consider the minimum distance of the code.

Since
n/p

A= Qn(2), the integer (2“-1)/(2 -1) is a multiple of A, hence it is a code

n/p
woxrd, The avithmctic weight of (2n-1)/(2

-1) is P;» hence the minimum dis-
tance of the code is at most 2% If E is a correctable error pattern, then

W(E) < (pl-l)/z. We start with the decoding equation:
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R=AN+E (4.5.16)
L-1 n/pi
Multiplying both sides of (4.5.16) by n (2 -1),
1=1
L-1 n/pi L-1 n/pi L-1 n/Pi
R n (2 1) =A"° n (2 -1) .N+E- 1 (2 -1) (4.5.17)
i=1 i=1 i=1

n v, n n/pL
Let A1 = Ak = (2°-1)/(2 *~~i;, then B = (2 -1)/A = k- (2 -1) and the code

generated by A1 is of minimum distance Py - Since,

B Q2 = @%1) = n @) %.5.18)
n/d

the cyclotomic factors contained in B are all the Qd(Z)'s with d a proper

L n/p
divisor of n. Clearly, these Qd(Z)'s are also contained in p (2 i-1), hence
i=1
L~ n/pi L-1 n/pi
B divides ¢ (2 -1); which implies that k divides 1 (2 -1).
i=1 i=1
Therefore, (4.5.17) can be rewritten as:
L-1 n/p, L-1 n/p,
R* ¢ (2 *-1) = (A'k)'M+E. m (2 *-1) for some M
i=1 i=1
L-1 n/pi
= AlM +E° n (2 -1) (4.5.19)
i=1

Taking the residues of both sides of (4.5.19) modulo 2“-1, we have:

L-1 n/p.

ngn-izl(z ) = R[R (AM) +E_ ] (4.5.20)

oY
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n L-1 n/p1
where Erl is obtained by substituting 1 for 2° in the NAF of E- m (2 -1).
i=1
In addition,
L-1
Py, 22 (pl-l) + 1
W(E) < (pl-l)/Z
L-1 n/pi L-1
WE )< WE n @ D)< 2 W(E)
rl
i=1
=2 s (oy-1)/2 (4.5.21)
Hence, Er1 is a correctable error pattern with respect to the cyclic AN-code
L-1 n/p
generated by Al' Also, RmfRa T 2 -1)] can be considered as a corrupted code
i=1
word of the AlN-code, then the majority-logic decoding scheme for AlN-code can
L-1 n/p
be applied to Rm[R- n (2 i-1)] and the code word Rm(AlM) can be determined
i=1 L-1 a/p,
correctly. Defining El by the difference of Ro[R. 7 (2 1~1)] and R (A M),
i=1 m*1
we have:
L-1 n/p, n
E/SE: 7 (2 1) mod 2"-1 (6.5.22)
i=]1
n/p L-2 n/p, n/p
-1 -
E/C "R sm n @ i) mea @hnye L Ly
i=1 (4.5.23)
e
Rm[El/(2 -1)] = Rm[Rm(Az-t) + ErZJ for some t (4.5.24)

n/p
where A, = (2"-1)/(2 ©

L-2 n/Pi
the NAF of E- ¢ (2 -1). Since,

i=1

“1-1) and Er2 is obtained by substituting 1 for 2" in

i, ik
AV-dhdhdn e atenhl ", A
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L-2 n/pi
WEDSWE - ¢ -1)) <
¥z i=1

b2 W(E)

< 2L-2(p1_1)/2$ (1’1,.1":')/2 (4.5.25)

and the code generated by A, is of distance Py’ Er is a correctable error.

2
n7p, _
Applying majority-logic decoding scheme to Rm[EI/(Z L 1--1)], we can determineg
n/p,
-1,

the code word Rm(AZt) correctly., Defining E, by the difference of El/(2

2
and Rm(Az't), we have:
L-2 n/p.

E- T (2 *-1) mod 2%-1 (4.5.26)
i=1

E)

which has the same form as the congruence (4.5.22). The same majority decoding
method can be applied to (4.5.26) and we obtain another congruence of the same

form. So in general, at the h-th stage we have:

L-h+l n/pi n
Eh-l = E- igl 2 ~1) mod 2 -1
n/p L-h  n/p,
L-h+1 _ i
E, /@2 -1) = E 151 ¢ -1) mod A
n/p
wher A = ™1/ Ty,

Therefore, at the L-th stage we have:

n/p

E, =E- (2 '-1) mod 2"-1 (4.5.27)
n/p;
E, /@2 -1) = E mod A (4.5.28)
njp,
RmiEL_l/(Z -1)] = Rm[Rm(AL°u) + E] for some u (4.5.29)

[
S miiaad N AL 3 = aria)

et
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/P]_

n
where AL = (2n-1)/(2 -1). Since the code generated by AL is of minimum dis-

tance Py and W(E) < (pl-l)/z, the majority-logic decoding shceme on
n/p
R [E. ./(2 l-1)] will correctly yield the actual error pattern E.
m- L-1 Q.E.D

As mentioned previously, the code generated by Qn(2) is of minimum
distance at most Pqy- But from the above theorem, it has been shown that the

code can correct all arithmetic errors of weight up to (pl-l)/2, hence we have

the following:

L s,
Corollary 4.5.2: 1If the code length n = u p *

1
for i = 2,3, ... L, s, 20 for all i =1, 2, ..., L, then the minimum distance

, s andp = zl'l(pl-l) +1

of the cyclic AN-code generated by Qn(Z) is exactly equal to Py-

Again, it should be mentioned that while the conditions P; 2 21-1

Sud S d S B O BB =0 B8

(pl-l) + 1 fori=2, 3, ... L, imposed on the code guarantee the correction
of errors up to minimum distance, the conditions are not necessary for the i
L-step majority-logic decoding scheme to work. é
i

The majority-logic decoding scheme developed in this chapter is a com- 5

pletely different approach as compared with the permutation of residues technique,

no search is required at all. Those majoriy-logic decodable AN-codes can then '

T oL RPN

be iuplemented easily. It is our hope that the majority-logic decoding scheme

Y i G e

3 presented here will be applicable to other classes of AN-codes and will lead

to other practical decoding implementations.

B Om bu by b
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5. APPLICATIONS OF CYCLIC AN-CODES TO COMPUTER ARITHMETIC

5.1 Concurrent Checking in Computer Arithmetic

‘A logic fault occurs in & digital computing system when a defective
component or external interference causes a deviation of a logic component from

its prescribed value. In general, there are two approaches which can be employed

to check the presence of errors. In periodic checking, ordinary operation is

periodically isterrupted and a checking program is carried out which detects the

presence of an error and indicates its location. In concurrent checking, special

logic circuits are used to detect the presence of errors in computer words con-

currently with ordinary operation of the computer. Both the well-known repli-

cation of processors with outpuc voting and the arithmetic encoding of the
operands followed by the application of decoding algorithm to the results are
the methods of concurrent checking in digita' computing systems.

In the triplication of processus mechod, the majority vote-taker gives

the correct result only when two or three of the identical processors operate

normally. If more than one processor had errors, the majority voting scheme

would not work. ZIn other words, the application of the triplication of prucessor

is based on the assumption that all the logic faults are restricted to only one

of the three identical procestors. This model is ¢ stionable sometimes,

especially when multiple error patterns occur in a complicated processor.
On the other hand, when the arithmetic coding method is used, the

redundancy is incorporated into the operands themselves which are being pro-

cessed. A multiple error-correcting code is necessary for some processors when

single error protection is not reliable enough. As pointed out in the previous
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chapters, the decoding of multiple errors is much more difficult than the decodin,
of single error, the reliability of the complicated decoder circuitry can not be

overlooked. The assumption that decoders are error-free then is not reasonable.

In this chapter, a new concurrent checking technique, called the

FYAREE

"separate checking' is studied. This separate checking technique possesses the

advantages of both the coding approach and the replication of processors. It

combines the ideas of coding and replication of processors properly so that the

R \gﬂlvﬁg\ﬁ«:’*@e ‘»:“

S e LA it e

error model is more realistic and the checking procedure is much simpler.

foprel

Furthermore, since only single error-correcting codes are used in this techni-
que, the decoding is simple and thus reliable.

The application of cyclic AN-codes to the high speed multiplier is

7 T
B e e L A

also investigated in this chapter. It will Lc shown that the majority-logic

practically. All tnese applications render the evidence that the arithmetic
coding is a promising approach to the study of digital computing systems diag- :

nosis and reliability.

5.2 Separate Concurrent Checking Techniques

Suppose that two integers N1 = (an-l’ 8 g3 cees 85 ao) and

N, = (bnwl’ br-2’ veey bl’ bO) are added in a n-stage one's complement binary

adder. If an error E occurs, then the result from the output of the adder is

R = Res[Res(N1+N2) + E] (5.2.1)

where Rest*") denotes the residue of » modulo 2",

: I decodable cyclic AN-codes constructed in the previous chapters can be applied )
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Since the operands Nl and N2 are not coded, it is not possible
for one to correct the error from the erroneous sum R. Instead of putting-
redundancy into Nl and N2, we use seversal separate checkers to execute the
fault-tolerant operation as follows:

Let us call the n-stage one's complement adder the "main adder."
We use several independent checkers, each of these checkers is also an
adder, performing modulo Zni—l arithmetic, where n, is less than n. In
other words, each checker is just an ni-bit long one's complement arithmetic
unit. If the ni's are small, we agssume that only a small number of errors
occur in the shorter adding units.

Suppose we assume that only single error occurs in each short
adding unit, then instead of encoding the irtegers Nl and N2 in the main
adder, we encode them by different single-error-correcting cyclic AN-codes

and add tbem in the independent checkers. Let us assume that k independent

checkers are used, each of length n,, 1<i<k; the single error correcting

n
cyclic AN-code used in the i-th chacker is generated by Ai’ where AiBi=2 i--1.

n
Since each checker performs modulo 2 i-1 arithmetlc, the possible

erroneous sum from the i-th checker is
ri = Ri[Ri(Ai(Nl+N2))+Ei] (5.2.2)

n n
where Ri(x) denotes the residue of x modulo 2 i-—1. Since AiBi=2 i—l,

(5.2.2) can be rewritten as

r, = Ri [AiRBi (N1+N2)+Ei]
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Since Ai generates a single error correcting code, the single error

where RB (x) denotes the recidue of x modulo B
i

pattern Ei can be easily corrected and the residue RB (N1+N2) can he obtained
i
from the output of the decoder. The same argument holds for all th: independent

checkers, hence we can determine all the residuez EB (N1+N2) fori=1, 2, ...,k.
i
Suppose that the lengths of the checkers are properly chosen so tha*

all the Bi's are pairwise rel-tively prime, i.e.,

e ko

(Bi,Bj) =1 fori# j; 1<1i, j<k (5.2.4)

where (a,b) denotes the greatest common divisor (or g.c.d.) of the integers

a and b, Writing

2
+
=2
I

= RBi(N1+N2) mod B1

=2
+
=2
i

1 9 = RBZ(N1+N2) mod 32

=
+
=
1]

1 9 RBk(N1+N2) mod Bk (5.2.5)

L7 (5.2.4) and the well-known Chinese Remainder theorem [49], we can solve the

simultaneous congruence (5.2.5) and uniquely determine the residue N1 + N2
k

modulo g Bi'
i=1

We have

k
N1 + N2 =N+t * ¢ Bi , for some t (5.2.6)

k
where N = [(N1+N2) mod 12 Bi]'

1
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Let us assume the cyclic AN-code generated by Ai is of rate (rt)i, and
the independent checkers are so chosen that the product

k

M2 5, > R (5.2.7)
i=1
Since 0< Ny, N, < 2%.1, we have
05N1+N2<2a?4) (5.2.8)

Combining (5.2.6), (5.2.7) and (5.2.8), we have t = 0 and
+ N, =N (5.2.9)

Therefore, the output of the decoder gives the correct sum of Nl and NZ‘ In

other words, instead of using the longer n-stage adder, tk: addition of N1 and

N2 can be executeu by the k independent shorter checking adders; we use iglni
elemental adding units to perform the n-bit binary addition, the redundant
iglni - n adding units are incorporated for error corre;tion.

Suppose that the Bi's are chosen to be Bi s 2 i, then the rate of the

code is
(rt); = log, B,/n, 2 b./n, (5.2.10)

On the other hand, in order to have (5.2.7), the bi's satisfy

s o

b, 2n+1 (5.2.11)
1 i

i
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I From (5.2.i0) and (5.2.11) it is seen that ;
h
- B k k 3
% . § (ni) p-3 § bi/ (rt)i 2 (n+l)/<rt)max ;3
: -'%. i=1 i=1 '
& ]
& n ‘
i S ey (5.2.12.8)
- zZ n S
z l {1=1 i !
5 !
| |
é and ’ 3
|
b f k k 1
| XORE Y i;
3 i=1 i=1 ¥
: l k ! ;
3 < b
! 5(151 longi)/(rt)min_ @H2)/(xe)_, .
L o
l n+2
—— > t 5.2.12.b
( K ) in ( ) |
Zn
l i=1 * ¥
"
.
= max _ min ; q
1 where (rt)max ="y (rt:)i and (rt:)m]._n = (rt:)i. .
I :
3 The expression n/ 2 (ni) is the efficiency of this separate checking technique.
i=l i
l From (5.2.12.a) and (5.2.12.b), the efficiency is bounded by the maximum and K
& “!
3 ; minimum rates of the independent cyclic AN-codes. To increase the efficiency ‘
? l we should choose the best single-error-correcting AN-code for each independent t 1
checker. The single-error-correcting An-codes discovered by Perterson are all
§ . perfect, they should be used whenever it is possible. One question is that some

B e L~ ]
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k
perfect codes are constructed with arithmetic modulo 2 + 1, while the above
discussion assumes that the checkers perform one's complement arithmetic. How-

ever, it is easy to see that all the above discuss’on also holds true when some

n .
of the checkers perform arithmetic modulo 2 i +1 ; this broadens the possibility

of using perfect codes for the checkers. Let us consider the fotlowins example:
Example 5.2,1: Suppose that a 34-stage main adder is checked b separate

checking technique. We use six independent checkers. The first five checkers

perform one's complement arithmetic, with lengths 9-bit, 10-bit, ll-bit, 12-bit

and 15-bit respectively., The cyclic AN-codes used for chese five checkers are:

i By A By Din

; 9 73 7 3

2 10 3.31 11 4

3 11 23 89 3

4 12 5.7 3:3.13 3 v
5 15 7.31 151 3 ?3

For the last checker, we use & l4-bit adder which performs arithmetic modulo
k.
214 + 1, The AN-code for this checker it a perfect single~error-correcting

code (but not cyclic) with generator A, = 29 and B, = 5-113 = 565, ]

6 6

It can be seen that all the Bi’s are pairwise relatively prime. Also,

7+11-89-3-3-13-151°565

1l o
~]
#

68, 405, 652, 315 > 239 = 934+l
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and the efficiency of the overall checked adding system is

: 'I 88
iR
5
; 3 Therefore, the 34-stage main adder can be replaced by the six iadependent
; ' adders.
i
H The number of redundant adding units is
]
6
L n,-n = (9+10+11+12+14+15)-34 = 37
]; =1
1 6
3 a/f L o) = 34/71 = 0.48
; - i=1
ig wnich ig greater than one third,

T TSIy
g 10

The efficiency of the over-all checked system is better than

the system checked by the tripiication method; alsc, not like the tripli-

;. cated system that all errors are assumed to occur in one of the three g
- identical processors, in separate checking approcach we allow errors to 1
3 e occur in any independent checking unit. The assumption that only single :

error occurs in each independent checker is reasonable wher the length

-
)
htan

of the checker is chosen to be short. In addition, the decoding proce-~ 4

2 dure 18 done separately. For each checker, the decoding is just a single

error correction, which is much simpler and much more reliable when com-

pared with the approach of using arn over-all multiple-error-correcting

AN-code for the main adder.

R P oy
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5.3 Mult:iple Iterative Error-Correcting Codes for High Speed Multiplier

In & high speed arithmetic unit, the multiplier is divided into
a number of blocks with two (or more) bvits each. Each block is then multiplied
with the multiplicand to form partial sums. The partial sums are eppropriately
shifted and added in a multi-input adder wiih winimum carry provisions. 1If a
faulty circuit occurs in the muitiplier, tne error patterns have the following
properties:

a. Since the partia’ sums are shifted by multiples of the length of a
block, the erronecus bits in each partial sum will be equally spaced
when the result is obtained, usually they span a fixed number of
blocks in the binary represeatation of the result. This error is
said to be iterative in nature.

b. Since a stuck-at-l or O type of logic fault causes either a carry or
a borrrs error but nct both, all the erroneous bits of a single
iterative error are of the same polarity. Utilizing these specific
properties of the iterative error patterns, Chien and Hong {15] have
found a large class of arithmetic AN-codes which can correct any
iterative error caused by single component failure. These codes are
good since they possess high efficiency and can be implemented quite
easily.
1f more than on component of a high speed multipler fail, the errors

from the output can be recognized as several groups of single-iterstive-errors.
We call this type of errors the multiple-iterative-errors. Following the in-

vestigation of Chien and Hong's work, however, it is difficult to generalize
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their single-iterative-error-correcting code. In this section, we apply the

majority-logic decodable AN-codes constructed in the previous chapter to the
error-correction in high speed multipler. Instead of making correction at the
end of multiplication, we correct errors contained in sach partisal sum; it can
be shown in the following that the majority-logic decodable codes are suitable
for this purpose, and can correct any multiple iterative-errors.

Pirst, let us consider that the multiplier is divided into r blocks
and each block contains m bits, then the multiplier is of length rm. Usually,
the multiplicand requires the same number of bits in its binary representation
as the multiplier, hence the product requires at most 2rm binary bits. A single

iterative error pattern E can be expressed as

w2l
E=+2" T ei2 ; where 0< k<m eond e, = 0,1 (5.3.1)

1=0 i

It is easy to sce that a multiple, say, t-iterative-error Et can be

expressed as

k, 2r-1 k, 2r-1 k 2r-l
Et -+ 2 1 5 ey 2m1 2 2 P ey, zmi + +2 t g e, zmi
1=0 i=0 i=0

(£.3.2)

' . 1 = '
where 0 < Ky kz, ceey kc < m; kj s are distinct and eji 0, 1 for all j's

and 1's,

The error patterns (5.3.1) or (5.3.2) are preseuted in the final

result at the output of & high speed multiplier. If we consider the partial

error, which is the error contsined in each partial sum, we have the following

form
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partial error at the i-th partial sum

k1+m1 k_ +mi kt+mi
= eu 2 + e 2 + ... +e ., 2 (5.3.3)

where eji =0, lor -1, 05 kl’ eee kt < m and all the kj's are distinct. There-
fore, each partial erroxr of & t-iterstive error pattern can be considered as a
raadom error of arithmetic weight t or less. This suggests a possible way of
correcting any t-iterative-errors.

We encode the multiplicand by a t-random-error-correcting AN-code.
Instead of making correction of the final product we use the t-error-correcting
code to correct the partial errors contained in the partial sum. Certainly, the
decoding of the t-error code must be very easy, otherwise the approach is highly
impractical. The majority-logic decodable AN-codes constructed in Chapters 3 and

4 immediately render the potential of being the t-random-error-correcting codes.

Design of the Codes

Suppose that both the multiplier and the multiplicand require rm bits
in their binary representations, then the product needs 2rm binary bits. We
want to design an arithmetic AN-code of length 2rm, with the generator A a pro-
per divisor of erm-l, then the code is cyclic and aill the code words AN form a

principal ideeal in the ring of integers modulo erm-l.

Let 8 be a divisor of rm, ther rm = d-s, for some d. The integer

Z(d.l)8 + Z(d.z)s + .... 4+ 2% 4+ 1 can be chosen as the generator of the code.

x __mqﬁ
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First, we see that

A=2W@Dls @D

[

L+ 27
= 25%-1)/2%-1) (5.3.4)

Sinca A,(Ztm~1), the integer 2"™.1 is a code word of weight 2 and the code
generated by A is of minimum distance only 2. It seems that the code Las no
error correcting capability, yet it can correct all t-iterative-errors if
2t + 1< d.

Let the multiplicand be encoded as a code word AM, and let the
multiplier be N. In a high speed multiplier the binary form of N is divided

into r blocks, each block contains m bits; hence N can be exidressed as

r-1
N= £n 2™, uhere 0= n s 271 (5.3.5)
1=0
Denoting Si as the i-th partial sum, we have
S, =AM n | fori=1,2, .., r (5.3.6)
Since 0< AM < 2°"-1 and 05 n,_, < 2™1,
0s s, < 2 (F+m (5.3.7)

If there exist some faulty circuits in the multiplier, the partial sum is

corrupted with the partial error,

Yi = si + Epi = AMni_1 + Epi (5.3.8)

i Y i mala
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where Yi is the erroneous result at the i-th stage of multiplication. Denoting |
I the residue of x modulo 2 "-1 by er(x), (5.3.8) can be written as
I Rop(¥y) =R [R_(AMn, ) + E ] (5.3.9) |
I If t or less iterative errors occur in the multiplication, then from (5.3.3)
the weight of Epi is less than or equal to t. Since A = (2rm-l)/(28-1) = Z(d'l)s
T
_L + ... +2° +1 and ds = rm, the residue of the integer AMni_1 modulo Zrm-l,

]

i.e. er(AHni-l) contains d indentical blocks in its binary representation form,
- with each block of length s. From (3.3.9), it is seen that 0% 'Epil < 2""-1,
W(Bpi):s t; hence the majority-logic decoding scheme developed in Chapter 4 is

appliceble to the residue er(Yi)' A majority decision on the binary bits of

-2 aki s e i St
bl

[ 3

L 4

er(Yi) can correctly vield the partial error pattern Ep1 provided that
. d2 2t + 1. The same majority-logic decoding scheme can be applied to all

. E

f - erCYi) for 1 =1, 2, ..., r, and all the partial errors Epl’ EpZ’ e B

can be determined.

The design of the above code is based on the assumption that both
the multiplicand and the multiplier have rm bits in their binary forms. As
a matter of fact, this result can be easily generalized to any case when the
. multiplicand and the multiplier are of different length, say, r,m bits for the
multiplicand and r,m bits for the multiplier. In these cases, the generator

of the code should be modified as

A" = 2818 | ,(d-2)s e, + 2% 41

where ds = r,m, and the length of the code is (r1+r2)m. The generator A' may
(r,+r.)m
not be a divisor of 2 172 ~1 and the code may not be cyclic. Nevertheless,
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the error correcting procedure of the code is still the same.

Also, it should be remarked that the code devised above can correct
iterative errors caused by any possible iogic faults (not only the stuck-at
type of fault) in che circuitry of a high speed muitiplier. The erroneous bits

of a correctable iterative error pattern are not restricted to have the same

polarity.

Rate of Code

The information rate (or the efficiency) of an arithmetic code is

defined as
Rate = 1 - [ (aumber of bits in the binary form of A)/length of code]
(5.3.10)

For the code of length 2rm, generated by A = (Zrm-l)/(zs-l), where ds = rm,

the rate can be readily calculated as

Rate (t-iterative-error-correcting code)

.. fe=Ds

2rm

- Im + (rm-ds+s)

2rm
1 ]
2t 2 (5.3.11)

It is interesting to see that the rate of any t-iterative error
correcting cole is greater than 0.5. For t = 1 (single-iterative-error), we

take d = 2t + 1 = 3, Then 38 = rm and the rate is

H b s an ar
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' n =2,
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Rate (single-iterative-ervor-correcting code!

4

+ m—

2

n
N =
N
N -

R
+ 3

win

Therefore, the rate of any t-iterative-error-correcting code of length 2rm lies

‘ l in the range

< rate (t-iterative-error code) < 2 (5.3.12)

1
2t 3

1
™
For different-length multiplicand and multiplier, there may exist some
t-iterative-error-correcting codes with efficiency even better than 2/3.
From the above discussion, we see that the construction of the code

is simple, the efficiency of the code is satisflctqry and more importantly, the

e
g
b4

dacoding can be achieved by using simple one-level majority logic. On the other
hand, since the error correcting is done at each stage of the multiplication
when & partial sum is obtained, there is definitely a time delay in the speed

of multiplication.
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6. CONCLUSIONS

6.1 Conclusions

The goals of this thesis have been to investigate the two unsolved
problems in the theory of arithmetic coding mentipmed in the introductory
chapter, to develop new checking techniques for computer arithmetic and. to
examine the theoretical structure of the arithmetic codes. For the code con-
struction prohblem, several new classes of multiple-error-correcting arithmetic
codes are found. By using some interesting properties of the binari,repreﬁenta-
tion forms of certain integers tﬁe error control capability of the codes can
be determined analytically. The syntbesis of_thgse classes of cddes are
simple, in fact, for anfhtwo relatively prime integers ny and nz; the generator

nn, n
of the code is chosen to be (2 -1)/(

1-1)(2n2-1). The fact that plbz-code,
which is a subclass of the codes constructed, possesses a root-distance relqtion-
ship similar to that of the BCH bound indicates additional analogy between srith-
metic AN-codes and cyclic parity-check codes.

For thLe decoding implementation prgblem, the majority-logic decoding
scheme for arithmetic codes is devised. This is a completely different approach
from the attempts made by using various search techniques [29,30], the impler
mentation of the codes can bé—achieved by using majority logic alone. It has
been shown that the arithmetic AN-codes constructed systematically in this thesis
are majority-logic decodable. The majority-logic decoding scheme is applied to
other classes of AN-codes and a generalized multi-step decoding algorithm is

obtained. The number of steps of majority-logic decision required in a multi-

step decoding can be shown to equal the number of distinct prime factoks
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conatained in the block length of the code. It has also been noticed that the
minimum distance of these majority-logic decodable codes can all be determined
exactly.

A new checking technique for the binary adders has been developed.

This separate checking technique provides a more reliable arithmetic error

checking model, the redundent circuits used are less than that required for a
triplicated system. Since the arichmctic coding scheme is used separately for
each shorter adding unit. the single-usrror assumption is made and the decoding
is much simpler. Furthermore, the application of majority-logic decodable
arithmetic AN-codes tc the error ~.rrection in high speed multiplier has been
examined.

Some theoretical results about the structure of arithmetic AN-codes
have been obtained. By using the concepts of number theory, the upper and lower
bounds on any cyclic AN-code have been formulated; also, a fast algorithm for
finding the binary representation forms of certain integers has been derived.
In gsummary, the results presented in this thesis gives a better belief that the
use of arithmetic coding for the exror control in digital computing systems is

indeed very promising.

6.2 Suggestion for Future Wev"

It seems that the next major advance in arithmetic coding from the
theoretical viewpoint will be the complete formulation of the class of cyclic
AN-codes analgous to the Bose-Chaudhuri-Hocquenghem parity-check codes. When

this problem is solved, the computer designer interested in incorporating

<M iR ‘,
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coding for arithmetic error control will have an easy way of constructing codes.

From practical point of view, the separate checking technique discussed in this

thesis will find its way into actual computer hacrdware designed to operate
reliably either faster or for a longer time than non-coded equipment. How to
systemactically choose the various length of the independent checking unit
so that the redundancy is minimized would be a problem which requires further
examination,

The implementation of decoder by using majority-logic increases the
possibility of widespread application of arithmetic coding. Future work will

be the discovery of other more efficient majority-logic decodable arithmetic

AN-codes and other practical decoding methods based on the concepts of

majority-logic decision.
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