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ERROR-CORRECTING-CODES IN CO•Fu"t-ER ARITHMETIC

Chao-kai Liu, Ph.D.
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Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1972

Arithmetic codes are useful for error-control in digital

S[computation as well as in data transmission. These codes are especially

suitable for checking or correcting errors in arithmetic processors due

jI to carry propagation.

Two known classes of arithmetic codes are the small-distance

high-rate perfect single-error correcting codes and the large-distance

low-rate Mandelbaum-Barrows codes. These codes are analogous to the

Hamming codes and the maximum-length sequence codes in parity-check

block codes respectively. Most other arithmetic codes known have been

Tobtained by computer-search. The discovery for a systematic way of

constructing arithmetic codes with intermediate-rate and intermediate-

distance has been the subject of research for many years.

Finding simpler decoding algorithms is another major unsolved

I problem in arithmetic codes. Decoding for arithmetic codes by matching

the orbits or permuting the residues associated with the codes is

straightforward but largely impractical. A particularly interesting

question is the possibility of decoding arithmetic codes by majority-

logic.

'I In this thesis, we have constructed a class of intermediate-

I rate intermediate-distance binary cyclic arithmetic codes. A majority-

logic decoding scheme is developed for the code constructed. This

I .



1 maJority-logic decoding scheme is also applicable to a large class of

cyclic AN-codes generated by the primitive cyclotomic factors. A new

I checking technique for the binary adders has been developed. This

separate checking technique uses less redundancy than that required for

a triplicated system, and the decoding procedure is simple. The

application of majority-logic decodable arithmetic codes to the error

control in high speed multiplier has been examined. Furthermore, some

theoretical results about the structure of arithmetic codes have been

obtained. By using the concepts of number theory, the upper and lower

bounds on any cyclic AN-code have been formulated.

-- In summary, the results presented in this thesis give a better

belief that the use of arithmetic coding for the error control in digital

computing systems is indeed promising.
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1. INTRODUCTION

1.1 Error Control in Digitai Computing Systems

The rapid growth in the size and speed of modern day digital comput-

ing systems has placed stringent reliability demands on the central processors, .

*•, 6specially those concerneci with space missions, and real timE computer

Sapplications. In a spaLC mission, the computers require high reliability

because of the long mib:1ion time during which manual repair of a failure is

~ impossible; , real time computer applications require high reliability

because of the s'ri,''s conscquences error might cause in terms of inconvenience

• Lor costly mistakes. Consequently, the error control techniques that can be

I iused to improve the reliability of a digital computing system are very

important.

"There are two major techniques to deal with the faults in a digital

system, one is the use of "software diagnosis," and the other is the design

of "hardware checking circuits." In the software fault diagnosis approach,

.. a specially organized checking algorith. Lis incorporated into the program

and the arithmetic results are verified at periodic intervals by means of

additional instructions which are redundant in a normally functioning

computer. Correction procedures in case of an error also must be programmed.

j. The cost of this approach consists of the additional programming effort, the

execution time and storage requirements for the instructions. The logic

design of the arithmetic processor remains unchanged. An alternative to the

j software fault diagnosis is the design of hardware checking circuits. In

this approach, the results and/or the operands of each arithmetic operation

I ~arc automatically tested for acceptability without programmed commands. The
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indication of an unacceptable result initiates the error correction.

The cost of the hardware checking approach consists of the additional

I "logic circuits and the increased execution time of the operations.

Most of the past emphasis to improve the reliability of digital

systems has been on making more careful designs and using more reliable

parts. People have realized that it is also possible to design the

system that it operates correctly even when some of its parts fail.

i 1 Such approaches invariably use redundancy. The above mentioned "soft-

ware diagnosis" and "hardware checking" techniques are both the approaches

that use redundancy. In general, by utilizing different types of redun-

Sdancy or inserting the redundancy in different parts of a system, we can.

"have different error control schemes to improve the reliability of digital

"computing systems.

The most commonly used scheme for hardware checking is the well-

known replication of processors. Triplication of the processor with

. majority output voting givc3 error correction; and duplication of the

processor with output comparison, followed by further diagnosis in the

"case of disagreement gives error detection. Both methods achieve

checking at the cost of complete replication of the processor. An

alternative to the replication of processors is the use of coding.

The encoding of the operands followed by the application of decoding

algorithm to the results requires only a fractional increase in cost,

but does not guarantee complete error control.

- The coding approach is quite different from the technique of repli-

t cation of processors. In a hardware replication scheme, we simply organize

a number of less reliable components to form a reliable computing device;!I
*1
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while in a coding scheme the computing device is fixed. We incorporate

redundancy into data themselves which are being processed; in otheri words the input data are encoded by some coding technique so that the

I computational errors in the output can lie detected and/or corrected.

For example, if we use an AN--code, the operand N is encoded by multi-

plication with a fixed integer A before being represented in the digital

computer. Thus, only a fraction I/A of the possible representations

are ever intentionally used in the computer, the resultant redundancy

can then be used for error correction and detection.

If coding technique is applied to improve the reliability of a

computing system, there is no need to supply any software diagnostic

routines, and the decoding circuits can detect and/or correct error

immediately after it occurs so that any unnecessary propagation of

errors can be avoided. Also, the verificatio-i of the acceptability of

input operands supplied by another processor provides an approach to

error-free operation of systems employing intercommunicating processors.

In fact, some of the computing systems designed for the purpose of

being used in spacecraft on long missions to the outer planets of the

: i solar system (e.g. the JPL Self-Testing-and-Repair Computer) have

employed the coding scheme to fulfill ultra-reliable demands.

I Since the appearance of Shannon's theory on data transmission, the

problem of how to design an efficient scheme by which the information can be

transmitted reliably across noisy channels has become a subject of continuing

I
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importance. The Invention of many intelligent codes by using some algebraicK Istructures has highlighted the practical aspects of the coding theory. How-

ever, the application of error-detecting and error-correcting codes to a
digital computing system is not as straightforward as it has been to a data

K 3  communication system such as space communication or long-distance telephone

transmission. Errors in a digital computing system are of different nature

l from the errors in a communication channel. Those codes which perform

powLrfully in data transmission cannot be used to control errors caused

oy logic faults in arithmetic operations. In general, there are two types

"of, errors that occur in a digital computing system, transmission errors

I •and arithmetic errors. Transmission errors usually occur in a large

digital system when many intercommunicating data processors are employed,

the data flow across different units may be affected by noise. These errorsT
are of the same nature as errors in a communication system. Arithmetic

errors occur in the operation of an arithmetic processor whenever its

actual behavior deviates from the expected behavior. Those errors are

caused by faults of logic circuits within the processor. The main difference

between transmission errors and arithmetic errors is that the latter may

cause carry or borrow propagations so that a single fault in logic may

I cause several output bits to be in error. Therefore, an efficient error-

detecting or error-correcting code used in a digital computing system

I must be able to deal with both types of errors. The codes that are

specially designed for the use of detecting and/or correcting errors in

I digital computation as well as data transmission are called arithmetic

codes. It is the purpose of this thesis to study the error control in

digital computing systems by using arithmetic coding.



The theory of arithmetic coding has drawn the attention of many

researchers since Diamond [20] first proposed his paper in 1955. Much

research has been done on detecting and correcting errors in arithmetic

operations. Most of this work has been concerned with the arithmetic AN-code,

(we shall make somewhat detailed discussion on the fundamental concepts and

definitions of arithmetic AN-codes in the following chapters.) Massey [36)

presented an excellent survey of the early work on these codes. The

popularity of these codes is due to the fact that they have a nice algebraic

structure and can be used in a computer with little or no change in the cir-

cuit design. Although many important results have been obtained in the theory

of arithmetic codes, there are still two major unsolved problems:

(1) The problem of how to find a systematic way to construct a lultiple

error-correcting arithmetic code. The existing codes are either of

high-rate, low error-correcting capability or of high error control

power but low information rate. The codes with intermediate rate

and error control capability are usually obtained by computer search.

Therefore, a systematic way of constructing good arithmetic AN-code

is much in need.

(2) A more important problem is the implementation (or decoding) of the

arithmetic codes. The practicality of using coding in a digital

system depends heavily on how complex the decoders are. Unfortunately,

the decoding problem of arithmetic codes is quite complex in general

because of the carry propagation caused by errors. The only known

decoding method is the "permutation of residues" C29,30], which is

basically a table-look-up approach and impractical. How to find a

II

43



decoding scheme that can be easily implemented is then a problem of

partiular significance. One approach is suggested by the following

consideration: since the majority-logic-decoding (MLD) scheme

I[6 is by far the easiest one that can be applied in a variety of

Sways to communication channels, it would certainly be of interest to

see if the decoding of arithmetic codes could also be handled by

using majority logic,

The solutions of these two problems will greatly increase the

feasibility and effectiveness of using arithmetic coding scheme in digital

computing systems. These are two of the topics that are investigated in

this thesis.

1.2 Scope of the Thesis

The main objectives of this thesis are to construct new arithmetic

codes with better performance, to devise decoding schemes for arithmetic

I codes that can be practically implemented, to develop efficient checking

T techniques and checking model for arithmetic operations in computer, and

to study the theoretical structures of the arithmetic codes.

S I Chapter 2 is a general review of the background, definitions and

concepts that are helpful to the discussion of the material presented in

later chapters. Concepts of error weight and code distance, used for

determining the codes' error correcting capability are discussed. The

cyclicity of the codes and the analogies between the AN-codes and parity-

check codes are briefly examined.

"Chapter 3 considers the construction of new arithmetic codes with

I multiple-error-correcting capability. A fast algorithm for finding the

I1
I
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binary representation forms of certain integers is derived. By using the

I number theoretical properties of these integets, a class of new codes is

£ constructed. The error control power of these codes c.(-; be determined

analytically. The root-distance relation of a class of cyclic AN-code

is investigated, the result is completely analogous to the BCH bound for

the cyclic parity-check codes. In addition, the bounds on the error-

I correcting capability of any cyclic AN-codes are determined.

Chapter 4 describes a majority-logic decoding scheme for some cyclic

AN-codes. This decoding scheme is completely different ftom the permutation

of residue approach, the implementation of the codes can be achieved by

using majority logic alone. The application of the majority-logic decoding

algorithm to the cyclic AN-codes constructed in Chapter 3 is examined, and

a multi-step majority decoding scheme that can be applied to larger classes

Sir of cyclic AN-codes is obtained.

-- Chapter 5 suggests a new spearate concurrent checking technique for
II

the arithmetic operations in a digital computer. The application of error-

, •correcting AN-codes shows the effectiveness of the separate checking tech-

nique. Finally, a study Af the error control in high speed arithmetic is

£ included.

Some conclusions on the results presented in this thesis and sugges-

tions on possible future work are also discassed in the last chapter.

I
!



S7 1 . . . . • • ' - - I . . . . . . . .- m l l II --.-. I I I V . . .. . . . ....

8

2. PRELIMINARIES AND BACKGROUND

2.1 The Arithmetic AN-Code

The arithmetic AN-code is specially designed for the use of correcting

and/or detecting errors in digital computation as well as data transmission.

The code is a set of integers of the form AN, where A is a fixed integer called

the generator of the code. Fcr each integer N from the information set

Z1 = 0,l,2*..., B-li, there is a corresponding code number AN, hence the integer
7 aU

N is "encoded" by multiplication with the fixed generator A before being repre-

sented in the computer arithmetic. Thus only a fraction 1/A of the possible

representations are actually used in the computer, the resultant redundancy

The AN-code possesses linear property, for

ANI + AN2 = (Nl+N2)

* so that the coded form for the sum of two information integers is the sum of

the coded integers. Therefore, two coded numbers can be added in an ordinary

. adder; if the sum is not a properly coded number error is checked.

As mentioned in the introductory chapter, the errors that occur in a

digital computing system are more complicated than the transmission type of

errors. Consequently, the identification of the likely modes of failure in a

7- computing system and the formulation of a convenient description of the resultant

errors in its output must be considered differently from that of a data trans-

mission system.Cj



The measure of the weight of an arithmetic error and the error-
correcting capability of an AN-code have been developed by several authors

[35,37], a brief summary of these results will be made in the following sections.

2.2 Arithmetic Weight and Distance of the AN-Code

Because of its dominating practical importance, only binary arithmetic

will be considered in this section. We should remark, however, that all the

results can be extended to an arbitrary radix system.

Any positive integer I can be expressed in :nary form or bAary

sequence as:
a_

I a2 n + 2n-i + + 2 +

n n-i 1 0 ~~ I0
= (an a 1 a 2  aaO)

where

.O a 0 or I

J The circuitry for adding two integers in radix-2 form can be con-

sidered as a sequence of elemental adding units. Suppose that two binary inte-

I gets II = (an anl*. .alaO) and 12 - (bnb.. .blbO) are added, then the i-th

elemental adding unit performs the addition of ai+l, bi+I and the carry bit

from the (i-l)-th unit. Each unit orms a sum bit and a carry bit to the next

unit. A "single failure" in the adder is then considered as an incorrect sum

formed by one adding unit or the generation of an incorrect-carry bit by one

adding unit; hence a single failure &c the i-th unit may cause an error of
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value + 2 (due to incorrect sum) or + 2i+ (due to incorrect carry). If the

erroneous sum differs from the correct sum by an amount E, it is then quite

natural to think of the weight of E, i.e. the number of errors, as the least

number of terms of the form + 2i or -2 whose sum is E. This measure of the

weight of an error is called "arithmetic weight" and can be formalized as

T follows:

positive, negative or zero), denoted W(E), is the minimum number of non-zero

coefficients in the modified binary form of E:

1 2 i
e10 + e 1 + e2 2 + ... +e 2 +...

where (2.2.1)eL = 0, 1, or -1

Although the modified binary form of an integer is not unique in

"general, there is a particular modified binary form introduced by Reitwiesner

[43] which is unique and which has been proved of much importance in the theory

of arithmetic code, called the non-adjacent-form (or NAF for short). A modi-

fied binary form is said to be a NAF if the coefficients e 's in (2.2.1) satisfy
i
e, i e i+I = 0 for i - 0, 1, 2, .. ,in other words if there are no two adjacent

non-zero coefficients in the form.

The most important property of the NAF of an integer I is that no

modified binary form of I has fewer non-zero coefficients than the. NAF of I [43].

Therefore, the arithmetic weight of any integer equals the number of non-zero

coefficients in its NAF.

,!

:1
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Definition 2.2.2: The arithmetic distance between the integers II and I2,

denoted D(11 ,1 2 ), is the arithmetic weight of their difference, i.e. D(l ,1 2 )

K •: W(I -I 2 ).

It can be shown [35] that the arithmetic distance satisfies the

following three properties:

11 ~D(11 12  D(12 11  (symmetry)

L iD(I #I ) k 0 with equaltiy iff I~ I1 (positive definite)

D(II ) 5 D(II,1 3 ) + D(I 3 ,I 2) (triangle Inequality)

Hence, any set of integers with arithmetic distance taken as the measure of

"distance" form a metric space.
- Definition 2.2.3: The minimum arithmetic distance, Dmin , of an arithmuetic

AN-code is the minimum of the arithmetic distances between all pairs of distinct

F- code words in the code.

Since the difference of two code words is another code word, the Dmin

of an arithmetic AN-code is equal to the minimum arithmetic weight, Win, of the

B-1 non-zero code words in the code.

The error-correcting capability of an AN-code is completely deter-

mined by the minimum distance of the code as Massey [35] has shown that an

AN-code with D = 2t + 1 can correct all arithmetic errors of weight t or
min

less, and an AN-code with Dmin = t + 1 can detect all arithmetic errors of

weight t or less. Therefore, the knowledge of minimum distance of a given

arithmetic AN-code has become a very important subject.

!
I
I
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2.3 Cyclic AN-Code and Modular Distance

Suppose that an integer I has a binary. n-tuple form (an.1 an-2 a1

8 0 ). We denote by P(I) the integer whose binary n-tuple form is the left cyclic

i shift of that for I, namely (an-2 an- 3 ... a0 an-l). If the largest code word

A(B-l) in an AN-code requires n bits for its radix-2 form, then we define:

Definition 2.3.1: An AN-code is cyclic if its set of codewords is closed

under cyclic shifting, i.e. if for every code word AN, the integer P(AN) is

another code word.

1 I It has been shown [11,36] that the generator A and the number of

codewords B in a cyclic AN-code satisfy AB - 2 e(A) - 1, where e(A) denotes the

3 least positive integer such that A divides 2 e(A) -1, and is called the exponent

* of 2 modulo A [49). Therefore, the block length of a cyclic AN-code generated

tt by A is e(A). Mathematically, !'Il the codewords in a cyclic AN-code form a

principal ideal in the ring of integers modulo 2 e(A)-l, with A as the ideal

generator.

In a cyclic AN-code, the addition of codewords is the modulo 2A1

arithmetic, a negative integer -I is represented by its one's complement, i.e.

2 1A--. The arithmetic weight of negative integers then is defined for

their one's complements. This leads naturally to a modified measure of the

weight of the integers in the ring of integers modulo 2n-1:

Definition 2.3.1: The "modular weight" of an integer F in the ring of

integers modulo 2n-I is the minimum of W(F) and W(2n-l1-F), and is denoted

Wn(F) •

I
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Definition 2.3.2: The "modular distance" between the integers I1 and 12

£ in the ring of integers modulo 2n- 1 is the modular weight of their difference

K ' Iand is denoted D (llI2), i.e. W(I -I2).

With the definitions of modular weight and modular distance, we can

show that the error correcting capability of a cyclic AN-code in modulo arith-

metic is completely determined by the modular minimum distance of the code, a

I •result which is analogous to the fundamental result stated in the previous

section.

ii 2.4 Arithmetic Codes for Single Error

Single error detecting and single error correcting arithmetic AN-codes

I have been thoroughly investigated by Brown [8] and Peterson [37]. Some well-

krown results will be summarized in the following theorems.I
Theorem 2.4.1: An AN-code with generator A > 1 and odd can detect any

single ertor in radix-2 arithmetic.

Theorem 2 4.2: Let M2 (A,d) be the smallesc positive integer whose product

with A has arithmetic weight less than d, then the arithmetic AN-code with

I0< N < M2 (A,d), has Dmin ; d.

Theorem 2.4.3: Let A > 1 be an odd integer, e be the smallest integer thatSemod eh e sals

satisfies 2e I mod A, then M2 (A,3) = (2 e-)/A. Similarly, if 2 e -1 mod A,

Sthen M2 (A,3) (2e+l)/A.

I

.1
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Theorem 2.4.4: If A is an odd prime and if 2 is a primitive root of A,

e
then Mý(A-3) - (2 +1)/A. Similarly, if -2 is the primitive root of A, then

M2(A,3) = (2' -1)/A, where e = A-i.

The above results yield a way of constructing any single error-detect-

ing and single error-correcting arithmetic AN-codes. More importantly, the single
error-correcting codes mentioned above are perfect codes or sphere-packed codes,

ike., any integer in the ring of integers modulo 2 e -I is at most distance-one

away from some code word. These codes are analogous to the well-known Hamming

codes in parity-check block codes.

II 2.5 Mandelbaum-Barrows Equidistant Codes

The Mandelbaum-Barrows codes [5,32] are the first systematically con-

structed class of AN-codes with Dmin > 3. They are also the first AN-codes to

be recognized as cyclic. The structure of these codes is simple:

I Theorem 2.5.1: Let B be.:an odd prime with 2 as its primitive root, let the

I generator A of the cyclic AN-code be:

( 2e (B) B (2 B-_)/B

Then the minimum distance of the code is F(B+I)/31, where .xl denotes the inte-

gral part of x.

I For a properly chosen B, these codes can correct any multiple arith-

metic errors. Moreover, these codes also possess an interesting property that

all the nonzero code words are some cyclic shifts of the generator A, hence they

all have the same arithmetic weight F(B+I)/3]. These codes are analogous to the
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maximum-length sequence codes in parity-check block codes, they are of large-

distance but low-rate, and stand at the opposite end of the coding spectrum from

the perfect single-error-correcting codes of the previous section.

2.6 Analogy Between Arithmetic AN-Codes and Parity-Check Codes

We begin with a brief review of the theory of cyclic parity-check codes.

Extensive treatments of this subject can be found in Peterson [37] and Berlekamp

[6].
n-i

With a polynominal f(x) = Z f x of degree less than n with coefficients
S~ice

in a field F, we associate the vector f = [fnl fn-2' "" f f 0 ] in the vector

space Fn. A parity-check code is simply a set of such vectors which form a sub-

space of the linear vector space Fn. The Hamming weight of a vector (or a code

S-- word) is defined as the number of non-zero components in the vector, and the

( Hamming distance of two vectors is the number of positions in which the two

vectors differ. Since the vectors are closed under addition, the minimum Hamm1ing

cdistance, di, of such a code equals the minimum Hamming weight of the non-zero

i•vvectors in the code.

A parity-check code is cyclic if the cyclic shift of every codeword is

also a code word. If we denote the cyclic shift of f by f', then the correspond-

ing polynomial f' (x) of f' is obtained by multiplying f(x) by x and take the

residue modulo xn-1. It can be shown [37] that the code words of a cyclic parity-

I check code form a principal ideal in the polynomial ring modul x over some

field F. Therefore, each code word has a corresponding polynomial which ismultiple of some fixed polynomial g(x), called the generator polynomial of the

ideal. In addition, g(x) is monic and divides xn_-l. The polynomial

I
....
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3 h(x) (xn-l)/g(x) is called the parity-check polynomial of the code, and n, '

the length of the code is chosen as the least positive integer such that g(x)

"" divides xn-l.

In light of the above, the analogy of cyclic parity-check code.. Lh the

cyclic arith.wetic AN-codes it. evident. The analogous quantities are:

3 Cyclic parity-check codes Cyclic ari.thmetic AN-codes

X 2

g(x) A

h(x) B

2 2nl

period of g(x) exponent of 2 mod A

dmin Dmin

The closeness of these analogies between cyclic parity-check codes and

I cyclic Al-codes strongly implies that there exist cyclic AN-codes analogous to

y many important cyclic parity-check codes, in particular, the Bose-Chandhuri-

Hocquenghem codes and the majority-logic decodable geometry codes. Many investi-

j gations have been made on this problem, but to date very little is known.

1 2.7 Remarks

There are other important results and concepts in the theory of arith-

I metic codes that have not been mentioned. It should be remarked that the pur-

pose of this chapter is to provide some of the terminology and concepts which will

I be used with regard to the following discu.sion. The material presented here is

I just a brief review of the arithmetic coding theory, more detailed treatments of

the related subjects can be found in [35,36,37] etc.
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3. CONSTRUCTION OF MULTIPLE-ERROR-CORRECTING

ARITHMETIC AN-CODES

S3.1. Introduction

The theory of arithmetic coding has been developed since

L-.Amoad [20] first proposed his paper in 1955. Single erior-correc.ting

arit'hmetic codes have been investigated by Brown [8 ], Peterson [38],

and Bernstein [7 ]. Some results of multiple error-correcting arithmetic

codes have been reported by Barrows [5 ], Mandelba-um [32], Chang and

Tsao-Wu [11], Chien, Hong and Preparata [18].

Since the error-ccrrecting capability of arithmetic codes is

directly related to the ,minimum distance of :he codes, an analytical way

of calculating the distance for arithmetic codes is important. Chien,

Hong and Preparata [s18, Tsao-Wu and Chang [Ii- independently discovered

a computational algorithm for minimum distance of cyclic AN-codes. By

using number theoretic coacepts, they divide the code words of a cyclic

AN-code into a number of disjoint sets, each set of code words is called

an orbit. The code words in the same orbit are the AN's such that

N = (k.2) mod B, for some fixed k, and i = 0,1,2,...,n, AB = 2 n -.1

Therefore, each k defines an orbit. It can be seen that the code words

I in the same orbit are of equal weights, hence the minimum weight of the

code is the minimum of all the weights of different orbits.

II Perhaps the most interesting property of this orbital theory

is the following theorem:

Theorem: The weight of a code word AN, represented in binary form

3 - AN= a ....a aa 0

n - 1
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where a n - ((N.2 )mod B) mod 2, 1 < i < n, is given by the number of

residues N.2 mod BEMB; where MB, the middle-third region of B is defined

3 M £xIB < 3x < 2B).

The result of this theorem enables us to calculate the arithmetic

weight of each orbit by counting the number of residues in MB. Computation-

ally, this orbital algorithm might still be difficult especially when the

I code contains a large number of orbits. An easier algorithm to find the

minimum distance, or perhaps some closed-form formula, is necessary. Further-

more, in practical use the diszovery of systematic way of synthesizing a

code which corrects a specified number of errors is more important. The

problem that how to construct a code, rather than analyze a given code,

is therefore of both theoretical and practical significance.

In this chapter, we shall construct a class of cyclic AN-codes

£ whose generators are the products of cy:lotomic factors. The multiple

error-correcting capability of these codes can be determined exactly.

These codes fill in the gap between the single-error-correcting codes

I and the Mandelbaum-Barrows codes as far as the distance and rate are

concerned. The construction of these codes is based on some interesting

properties possessed by the binary forms of certain integers which are

used as the generators cf the codes.

1 We shall first establish a fast algorithm for finding the binary

forms of certain integers, by using the complementary, symmetric properties

we shall construct a class of cyclic AN-codes. Also, the analogy between

cyclic AN-codes and cyclic polynomial codes will be studied, we shall

:,



!T,
CJ

19

demonstrate a root-distance relationship of a class of AN-codes which is

shown to be exactly the same as the well-known BCH bound on the distance

5 of cyclic polynomial codes. Furthermore, by using number theoretic

concepts, the strict upper and lower bounds on the error-control capability

of any cyclic AN-codes are derived. In general, the results obtained in

this chapter are all theoretical, the possible practical applications and

implementations of the codes constructed will be discussed in the following

chapters.

3,2. Bingry Representation Foxms rf Ceattn Integers .......

The representation of integers in binary form has been under

[ investigation for various applications. In particular, the binary

representation is of importance in fast computer arithmetics, number

systems, algebraic coding theory and arithmetic codes. In this section,

the binary representation of the integer A of the form (2 n-1)/(2 nl-l).
12 n an(2n-I), with nln = n and nn 2 being two relatively prime integers,

is considered. Firstly, some interesting properties of the binary

representation form will be presented. It will be shown that the binary

form of A has l's and O's at certain fixed positions with complementary

symmetrical properties. Secondly, a simple and fast algorithm for finding

the binary form will be introduced. From this algorithm, the binary formf. of a large integer can be easily obtained without any calculation.

Formulations and Notations

Let A be an integer of the form

n n
(2n_,)/( 2 i-1)(2 2_1)

I



NI

3 20

where nI and n2 are two relatively prime positive integers with n2 > nI

and n n n1n2 # The integer A can be uniquely expressed in the following

binary form

A Eai 2  with a 0 or I for 0 < i < n-1
i=O

n " ' n 2n

Let B- (2 1-1)(2 _-1), then AB - 2 n- 1 . The coefficients ai in th.? binary

representation form of A can be determined [12) by

ai = (2n-i mod B) mod 2 (3.2.1)

where (2n-i mod B) is the residue of 2n-i modulo B. The above equation

states that ai = 0 if and only if (2n-i mod B) is an even integer.
nnS~Consider the binary form of the integer A'2 ,

C=A 21

= E c 2 ci 0 or 1 for 0 < i < n-l
Ii0

By (3.2.1),

ci = [2n • 2n, mod B] mod 2 (3.2.2)

Similarly, let

D A • (2 -1)

I- d 2 d 0 or 1 for 0 < i < n-I

then,
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12 Sdi = [2 n'i(2 -1) mod B] mod 2 (3.2.3)

Since

n no (n -1)n"
D - (21-1)/(2 1) - 2 +

(n1-2)n '2n2
2 + ... + 2 2+1 (3.2.4)

d = 1 if i - tn2 for 0 < t < nl- 1

- 0 otherwise

[ Let us denote

I , ^n-i 1

L2 • 2 mod B) - xiIA [ 2 n-i mod B) - y

n-i n,1
[2 (2 -1) mod B] z

where 0 < xv, Yip z < B. Note that c - xi mod 2, ai =Y mod 2 and

i zmod 2.

Properties

Property 1: C 0 and a - 1.
0 0

Proof: Since B divides 2n1, 2 =1 mod B and y o L. In addition,
n n n1

since 2n42 1m2 mod B,x - 2 . Thus c 0 and a 1.

Suppose that i > 0. Let n-i - k. By Euclidean division

I algorithm we have k = qnl+r, where 0 < r < nI. Notice that

*1
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B - (2n1)(2 1) implies:

n 2n 1- n1
2 (2-1) 2n 1- mod B

Thus
jn 2 ~ (j-l)n 2 nI

(2 (2( 1

n I2n-l mod B for•j 0 (3.2.5)

Now, equation (3.2.5) can be used successively to obtain

n- k k-n 1n k-n1
2 2 , 2k2 (2n .1) + 2

2(k-nl) mod n2 n1  k-2n1 n1  k-2nI
nl (k-nl mod n2 (k-2n) mod n k-3nI nI k-3nI(2 (12)2 + 2 2 + 2 (2 1+2

n-_ 2 [(k-n rmod n (k-2n mod n (k-3nl) mod n

a(2: .i:k1)[ mo ~2 +k2i mo 2 +::~i~i
k-n k.4nI

II

24n(2nl-)+2

S'4

Be
1 (2n l1)[2(k-n l) mod n2  2 (k-2n l) mod n2  (k-qn l) mod n2

k-qn,
12 (mod B)

Let

I

I
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(k-nl) mod n2 (k-2n) rmod n2  (k-qnl) mod n25Sm [2 + 2 + +. +2

Then

2n-i . 2k= (2 n-1) S + 2r mod B (3.2.6)

SI Similarly,

n. n2 n( k mod n

2 n--. 2 1 = (2 _1) S+2r + (2 1-1)2 2 modB (B.2.7)

Notice that there are q terms in S, each term is a power of 2. In

addition, these terms are distinct, for otherwise,

k-mn,= k-mn 1 mod n2 for some 2 <m, m' <q< n2

This would imply m-m'=O mod n 2 . Since (nI,n 2 )=l and 0 < m,ml< n 2, the

congruence is impossible unless mm .

For i > 0, q < n -l. Since all the q terms in S are distinct,
n n-i n

S j q < n2 , and 2 2-i = 1+21+22+...+2 2 , we have S < 2 2. Also,
n

2 r <2 -1; thus:

n,_) n 1 n2 n I
(2 2 r < (2 l)(2 2-2) + (21 1) - B

By (3.2.6), the residue of 2n-i modulo B is equal to (2 I1) S+2 r.

Thus we have

n-in - rI Property 2: yi - (2 mod B) - (2 1) S+2 r, where i + 0

- (k-nl) mod n2 + (k2n mod n2  (k-qnl) mod n

k n-i qn + r, 0 < r < n (3.2.8)
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Similarly, the following property can be obtained:

Property 3: yi1 (2 T + , where i + 0

I T (k-n 2 ) mod n1 (k-2n 2 ) mod n1  (k-pn2 ) mod n1

k = n-i = p " n2 + 6, 0 < t < n 2  (3.2.9)

I Theorem 3.2.1: xi< yi for O < i <nl

Proof: Fo 0 < i < n1 , n -iff nl 2 - i = (n 2 -1)nl+(nl-i), we have

q - n2 -1, r n n1 -i

2n l nn 2+nl -i

Since 2n'i • 2 n 1 =2nln • 2 -2 r 2 rmod B,

xi= (2 2 mod B) 2 (3.2.10)

SI By (3.2.8), we have yi > xi.

Q.E.D.

Property 4: ci = 0, ai = I fc- 0 < i < n1 ; and cn-1, anl= 0.

Proof: By (3.2.10), xi is even if 0 < i < nI and x is odd.

Therefore, ci = 0 for 0 < i < n1 and cn =1. From theorem 3.2.1,

iX -i Yi < 0. Note that zi =xi-yi rood B, we have

-=B + x i- Y

From (3.2.4), we see that zi is even. Since B is odd, Yi = B + x-z

is odd if 0 < i < n1; and Yn is even. Hrnce, ai = I for 0 < i < nI1

I
U!
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I and an1=O.

Q.E.D.

Theorem 3.2.2: xl > Yi for n > i > n,.

k mod n2Proof: Let S' - S + 2 . Then there are q + 2 < n2

distinct terms in S'. It is easy to see that S' < 2 , and

(2 1) S' + 2r < B. Thus, by (3.2.8)

x i (2 n-1)S' + 2'

nI k modn2

an yi + (2 -1) *2 2 (3.2.11)

] and

x i > Y for n > i> n.

Q.E.D.

. Property 5: For i 0, ai = 0 if i is a multiple of n1 or n2.

Proof: Case 1: 1 snI for 0 < s < n-1. Since k = n-i - (n -s).

"I. n,, r - 0. Equation (3.2.8) can be written as:

(2 nl (k-nl) mod n2  022""" = ( l[2+...+20] +2

Therefore, yi is even and ai = 0.

Case 2: i = pn 2 for 0 < p < n1 -1. By (3.2.9),

"n (21 (k-n 2) mod n 1  0 02,y (2_1[ +...+20 +2

I Thus, y1 is even and a, -0.

Q.E.D.I
I
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I Property 6: For i + 0, c . and ai-0 if i is a multiple of n2.

Proof: By theorem 3.2.2, we have xi-yi>0ifiisa multiple of

n n2 Thus zi = xi - Yi"

By equation (3.2.4) and property 5, zi is odd and y, is even.

I Therefore, xi is odd and c i 1.

Q.E.D.

Property 7: If i is not a multiple of n 2, then ai = ci for i > n .

Proof: By theorem 3.2.2, we have z i " - Y > 0. Since zi is

even if i is not a multiple of n 2 , xi and y, must be either both even

[ or both odd. Thus ai = cI.
' IQ. E.D.

Fast Algorithm for the Binary Form of A

The results presented above enable us to devise a simple

algorithm for finding the bina-y representation form of A.

Let us denote the binary form of A by the n-tuple

A (a h1a n 2  -. a1 a0

nii>1 Then a -=a 2 • .... - a -. 0 .

Notice that the binary form of C - 2 " A is just the binary form of
shifted nI places to the left, i.e. c = a1 . Let us denote C by

C ' (cn- cn-2 .... clc0 )

'I By properties 1 and 4,

(a a it ,..., al ... , (O sI, 1)

I
, I*
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Thus (c 2 nl, c2na -1.., c n1+1 , c )n (0, 1, 1, ... , 1, 1) (3.2.12)

Now the values of the n 1 -tuple (a 2 na, a2n_1-, ... , a% +1) can be determined

from equation (3.2.12) and properties 6, 7. Next, the n-tuple

( c3  nl, . c2nl+l ) can be set equal to (a 2 n, 1 ... , an+l ). Again,

the nl-tuple (a3n , ... , a2nl+ ) can be determined from (c3n l C3n I ,.-I ,

c2  l +) and properties 6 and 7. This process can be repeated until all

the n-tuple (E -i' anU-23' ... a,, a0) are determined. Therefore, we have

I the following algorithm:

- 1. Set a( -I for 0 a i < dne-i, an .0 and jT f 0.

S2. If (J+l) nI1 < n-nl1-n 2' set

a* ci+n 1 ai for 2nl+l < i < (J+l) n1

b. ai 0 f n2 divides i

a i c i if n2 does not divide i

"for (J+1) nl+1 < i < (j+2) n1

SC. J - J+1 and repeat step 2.

3. If (j+l) nI n-n set ai S 0 for n-nl-n2+l<i<n-l, Stop1 122 So

The algorithm provides a fast way of finding the binary representation

form of A, even for very large integers. For example, let n1 -4, n2 -9,

I A-(2 361)/(24-l)(29-1). Follow the above algorithm, the binary form of

A is readily obtained as.
6 5 4 3 2 1

C 01000100011I001100111I01111

A0000000090 O100011001 I001111I
7 6 5 4 3 2 1
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The Complementary Symmetrical Property

We shall show that the binary form of A Is complemwntary sym-

metrical. Specifically,

a _(nl 2)_i+ai - 1 for o<'<n-(nfm2),

I Let us consider the binary forms of A and D. Since,

D A(2 n - 1)=2 (n -l)n+2 (ni- + ... +2n2 +

D - 1 000 ... 0 1 00 ... 0 1 0 ... 01 0 ... 0 1 - ... 1

n2 bits n2 bits n2-n1 n (3.2.13)

I where x denotes -x. Let D* be the integer obtained from D by reversing the

order of the sequences in (3.2.13), i.e.,

D* 1 ... 1 10...01 00...01 0...0 0 ... 01
nI-1 n 2-nI n2  n2  (3.2.14)

Also let A* be the iL eger whose binary form is the binary form of A inIT. nl

reverse order. Then it is easy to check that D* - A* (1-2 ). Now, let

us consider the integer D-D*. By (3.2.13) and (3.2.14),

ID-D* =2 11l... 11 00 ... 01 11... 2 - 3 90 .. Ol 00 ... 0 00 ... 0

n n n2 -n 1  (nf-2) n2

= 3 00.... 03 00 ............ O

n (n -1)n fl 2 l

(n 1-l)n 2  (n 1-1)n -nI (nl-l)n -nIn 1Thus, D-D*= 3"2 _3"-32 "- 3-2 " (2 "-1).

n n1Since D - A(2 n-1) and D* M A* '1-2nl, we have

I
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iflu

A + A (D-D )/(2 n-1)

'n'n 1-n 2
S3.2

2 n 'nl-n2+1 (3.2.14)

Recall that

"A (1, an.n n .1,.. al, 1)
1 .

, ~~~andannn2I1

A =(l, a1 ..... .. afl 1-nl2-V 1)

Starting from the lower order bits, by (3.2.14) we have,

Si a +a+ 1 - 0 mod 2

or, in general

a + a + I a 0 mod 2 for 0 < i < n-n-n
i n-n -nYi 1-2

Therefore, ai is the binary complement of an-n -ni, and we have:

Property 8: The binary form of A is complementary symmetrical, i.e.,

a ai + an-n-ni I for 0 < i < n-nl-n2

Property 8 enablcs us to save half of the effort finding the binary

I form of A . The procedure for finding the binary form of A stnis at the place

when ai, i = 2(n-nl-n 2 ) is found. The high order bits are then obtained by

I reversing the order of the complement of the lower order bits. The comple-

36_
mentary symmetrical property can be seen from the binary form of A = (2 -1)/

(2 -1)(29-1) in the previous example.

I
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3.3 Construction of Multiple-Error-Correcting AN-Codes

Let A be the generator of a binary cyclic arithmetic (AN) code of

length n. Then A is a positive integer that divides 2-l. Let AB = 2 -_, for

each N, 0:< N:5 B-i, AN is a code word of the code. In this section, we shall

consider the class of cyclic AN-codes whose generator A is of the same form as

in Section 3.2:
• n

A (.nln 1)/( 2 1-I)(2 2-1) (3.3.1)

L where nl, n 2 are relatively prime integers and n = n1 n2. In the following

discussion we shall assume that n2 > nI.

I Any code word AN can be expressed in the following radix-2 or binary

form:

n-l n-2 I

AN = an 2 + a n 2 + ... + a1 + a0

L= (an.1, an-2. alý a0) (3.3.2)
L where a, = 0 or I for 01 i < n-l. From the definition of arithmetic weight of

an integer, one can easily derive the following result.

Lemma 3.3.1: If the binary sequence of AN in (3.3.2) can be divided into

d disjoint subsequences (each subsequence consists of a certain number of con-

secutive digits), such that each subsequence contains at least one I and one ,

then the arithmetic weight of AN is at least equal to d.

Given A and B such that AB 2n_-l, it can be shown [12] that the

coefficients a 's in (3.3.2) are given byK
I
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ai (N'2n-i mod B) mod 2 (3.3.3)

n-i n-iThus, ai = 1 if N2 mod B is odd and ai = 0 if N2 mod B is even.

For the code considered in (3.3.1), B = (2 -)(2 -1). Thus-,

22(2nl) 2 2-i mod B

in n n
2 (2 1-1) g 2 1-1 mod B, for any positive integer i (3.3.4).

Lemma 3.3.2: If N E 2s mod (22-I) for 3<: N5< B-i and 0:< s < n2 , then

the arithmetic weight of the code word AN generated by A in (3.3.1) is at least

equal to n.

Proof: Let a.'s be the binary coefficients of AN in (3.3.2). By (3.3.3)

in +n -s
( 2 1 oBmdan-(in2 +n -s) (N 2 mod B) mod 2

and
in 2-s

an-(in2-s) (N'2 mod B) mod 2

where 0<: i<5 n-l1, and the subscripts i of a. are taken to be i modulo n. 7s

in +n -s in-s
Let xi = (N2 2 mod B) and yi = (N2 2 mod B), then 0 < x

n1  n2  n^
Y < B. Since B = (2 1-1) (2 2-1) and N M 2s mod (2 -1),

in 2+n I-s I,2x- N2 1 mod (2 1)

in 
n 22 mod (2 _-l)

or xi =qli (2 n2"I1) + 2n
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Similarly yi a N2 2 mod (2 n2-)

M1 rmod (22-1)

or
Yi = q2 1 (22"1) + 1

t" Thus

x- Y (qli - q2j) (2 -1) + (2 1-) (a)
nIn

where 0 < ql" q21 < 2 -1, for 0 < xi, Yi < B = (2 1-)(2 2-1). On the other

hand,
in+nl-s in-s in2-s

N2 N2 2 N2 2 (2 1- 1)

n
- N2- (2 1) mod B by (3.3.4)

IT, 2 1rood B

Thus
ni

x y 2 - mod B

or
n n n

xi Y q(2 i1)(2 -1) + (2 1-); q = 0, or -i (b)

~. n1
From (a) and (b) we conclude that q(2 -1) = qli But ql- q < 2 -1,

•.• nI

Sq must be 0. Thus xi - yi =2 -1. This implies either xi odd and y, = even

or x - even and yi = odd. In othei words, for each i, one and only one of the

pair of binary digits a and a is equal to I (or 0).n-(in +n -S) n-(in2-S)

Now, the sequence of n digits of AN in (3.3.2) can be divided into ni

subsequences, each subsequence contains n2 consecutive digits. Therefore; the

digits a and a are in the same subsequence for a fixed i.
n-(in+n S) n-(in2-S)2 1

I=
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"Each subsequence, then, contains at least one 1 and one 0. By Lemma 1 the

arithmetic weight of AN is at least nI.

~ in
Lemma 3.3.3: If N-m -2s mod (2n2-i) for 0• N< B-i and 0< s<n 2, the

Siarithmetic weight of the code word AN generated by A in (3.3.1) is at least

equal to nI.

Proof: This lemma can be proved in a similar way as in Lemma 3.3.2.

Q.E.D.
n n2

Lemma 3.3.4: If N 0 0 mod (22_1) and N 4 + 2s mod (2 -1) for 0 < N_5 B-1,

the arithmetic weight of AN generated by A in (3.3.1) is at least equal to nI
ni

Proof: Let V = AN, C = V(2 n-1) and W(x) denote the arithmetic weight of x.

"Since the arithmetic weight of integers satisfies triangular inequality,

n n
W(C) = W[V(2 1-1)] W(V2 ) + W(V) = 2W(V)

W(C)•5 2W(V)

S1 (n )n (n12)n
Let N1= N mod (2 21' C M C mod (2n-n). Then, C NI2

n 2  
o f t

" f + N o2 + N1 . the binary form of C consists of n replicas of the

binary form of N. Since N1 is nonzero and NI the binary form of N

contains at least two l's and two O's. Therefore, the modular weight [36] of A

S i.. Ci, Wm(CI) > 2n,. Hence,

• •, •..2W(V) k W(C) >a Wm(CI 2nI

W(V) n

IQ.E.D.
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Theorem 3.3.1: The minimum arithmetic distance of the code generated by A
in (0.3.1) is equal to n for n< n

Proof: Let us assume first that N E 0 mod (2 -1), 0.: N-Z B-I. Then

n n!!1

q (n2 "l)nl +q2 (n2 .2)n n

By lemma 3.3.1, W(AN) -n2 > nl.

For other nonzero values of N, lemmas 3.3.2, 3.3.3, and. 3.3.4 assure

I that the code word AN has an arithmetic weight of nI or greater. Therefore, thearithmetic distance of the code is at least equal to nI. However, the weight of
SVn2the code word A(2 -1) is exactly equal to n . Thus the arithmetic distance of

SI the code is equal to n 1.
Q.E.D.

The code we constructed above is a multiple-error-correcting cyclic
AN-code. The synthesis of this class of codes is straightforward, we merely

tnnLIhcoze two proper relatively prime integers nI and n2, the integer (2 1l2.1)/
(2 l1l) (2n 2_) generates a code with minimum distance nI.

3.4 Root-Distance Relation of plp 2 -Codes

If the block length n is a product of two distinct primes p1 and p
then the code is called a plp2 -code. I plp2 -code is an ideal in the ring of

integers modulo 2 -1.

1 '_ __
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IISince the polynomial x -l can be factored into cyclotomic polynomials

I • -over the rational field as:

x -l2_ = Q1 (x)Q P1(x)Q P2(x)Q (x)2 (3.4.1)

I We can substitute 2 for x in (3.4.1) and get

PIP2_1 p 1  pl()p2 (Qp 1P2 (342

2 -l=Q() 2Q(2)Q (2)(.42

where Q d(M 1 s are called the cyclotomic factors of 2 n_ 1.

�'� We define a "icyclotomic generator" of arithmetic codes as:

Definition 3.4.1: A cyclotomic generator of an arithmetic code is a

product of some cyclotomic factors of 2_1

By this definition, the generator of the codes considered in Section

3.3 is a cyclotomic generator.

The only possible cyclotomic generators of a plp2 -code are:

P P P PlP2p1  p1  p 1  21 12

PP
t Since Q Pi(2) =(2 I°I )/(2-1) = 2 °I', the minimum distance of the

code generated by Ao2  Q (2) is 2. Similarly, the minimum distance of the code

generated bypA3 is also 2. These are the single error-detecting codes. For

A A4 = (2 th-or)(2 -2 1), the minimum distance of the code is given by the

II following theorem:
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Theorem 3.4.1: The minimum distance of plP2 -code generated by A4 is

(a) 3 if pp 2 = 6;

(b) 4 if p P2 # 6.
Proof: With no loss of generality we may assume P2 > p1, hence P2 • 3.

Furthermore, plp2  6 if and only if p, = 2 and p2  3. it is obvious that AI
cannot divide 2i hence there are no codewords of weight 1. Codewords of weight
2 will be of the form 2 (2m + 1), where m < plp2 . For A4 N = 2k( 2m-1 ) we have

[ I (2Pl 1)1 (2 m'-), hence p, m. Similarly, P2 fm hence plP2 Jm. But plp2 is greater

than m, a contradiction. If A4N = 2 k( 2 m+l), then we may write m = qlpl + rl, rl<P1 ;cot w rn ti
(2P-1)1(2 +i) then implies 2 *-112 +1, an impossibility. Hence all nonzerocodewords of the code generated by A4 = 2 PjP-2 2-2 Pl1 are at least of weight 3.

2422 +2 + 1. Consequently A4 generates a code of minimum distance 3.
. For the case pip2 # 6, it follows that P2 k p1 + 2, hence A =

" 2 P1+P-2 P-2 P+1 is of weight 4. The codewords of weight 3 will take the form

2 k(2m± +22%1) where m2 < m-2 Writing:

m = q11Pl+rll where 0< r11 < P1
m, - qj 2 p2+r, 2  where 0:5 r 12 < P2

M 2" = q 2 1 P I+ r 2 1 w h e r e 0 :5 r 2 1  < Pm21

nm2 = q2 2 P2 +r22 where 0:< r 22 < P2

we may deduce that

2 2Pi 12mk1+ 2m2 + 1 implies 2P1 1 11 + 2r 2 1 1
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and 2 11r 1 2  2r2d2P2-12ml+ 2m2 + 1 implies 2 
± + + 1

The only possibilities are: A4N = 2 k( 2 l-22-1) where r r 0;

r 12 = rl = 1 and A4 N' = 2k( 2ml+ 2m2_1) where r 2 1 = rll = P 1-l; r 22 = r 12  P2 -I.

When AON = 2 k(2 I-2 2-1), we have:
kt~plP2 +l s p]lP2

A4N - 2k(2 -2 -1)I4

This is clearly impossible as s 2 1 and m 2< m -2 would imply t 2 2. When
2m

AN' = 2 k(2 1+2 2-1), we have:
k t~pp2 l s'plP2 -1

A4N' = 2k(2t 'plp2 "I + 2 -1)

I Again a a 1 and m2 :5 m1 -2 would imply t a 2, a contradiction. This completes

the proof of theorem 3.4.1.
Q.E.D.

Pl PlP2
For A = A5 = Q (2)Q (2), we have:

A5 = (2P lP21)/QP 2(2) = (2pl 2-1)/(2 P2-1)

I (Pl-I)P2 2(P2)P2 +P2
43 nteer f he orm(2 1)(2+-)is ..Threfre th+pi -cd

As indicated by Erosh [23], the minimum distance of a code generated by an
Sinteger of the form (2kl21)/(2kl-) is k 2' Therefore, the plP2- code

generated by A5 is of distance pl. Similarly, the code generated by A6 is of

I distance P2.

"I. . -
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I For A = A7 = Q (2) = (2 -1)/(2 -1)(2 -1), the code is a

special case of the code mentioned in Section 3.3. Since (plP 2 ) = 1 and

IP < P by theorem 3.3.1, the minimum distance is pI.

From the above results, some interesting properties about the root-

distance relation of arithmetic codes can be brought to light.

Let us consider the polynomial xn-i over the rational field. If u

is a primitive n-th root of unity [48], then all roots of xn-i are powers Of u

n n n
n

and we have x -I = TT (x-u ). Also, x -1 can be factorized into cyclotomic

polynominals over the rational field as:

x ! n-1 = Tr Qd (X) (3.4.3)

d/n

Hence, the roots contained in each Q d(x) are powers of u. Due to the property

6 of cyclotomic polynomials [6], the roots in Q d(x) are the uis where i's satisfy:

I 
(n,i) = n/d.

Substituting 2 for x in eq. (3.4.3), we get 2 - yy Qd(2). Let A
d/n

be a cyclotomic generator, then A equals a product of some cyclotomic factors:

say:
say d d^ d^ d

A = Q 1(2)Q 2(2) 3(2) .... Q (2)

II
We define the corresponding polynomial of the generator A as:

d d dI1 2 sA(x) = Q (x)Q (x) .... Q (x)

SI Then the roots of the integral generator A can be defined as follows:

I p.
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Definition 3.4.2: The roots of a cyclotomic generator A are defined as the

roots of its corresponding polynomial A(x).

This definition of the roots of A was first proposed by Chien and

Hong [15]. Since all the roots of A are powers of u, the number of consecutive

I roots in A is defined as the largest number of consecutive powers of u contained

n For the plp2-code, the root-distance relation can be easily obtained.

[The cyclotomic factors of 212-1 are QI(2), QP(2), QP2 (2) and Q1 2 (2). If u

is a plp2 -th root of unity, then with a little calculation, we can summarize the

I root-distance relation as follows:

Generator No. of consecutive roots Minimum distance
P1

A2 =Q (2) 1 2

I P2
A3 =Q (2) 1 2

p1P 2

A4 -Q (2)Q (2)

S*if Pl = 2, p2 0 3 3 4

il are od: 2 4

r*if plp 2 6S*if plP2 = 6 3 3

SP 1  PiP2A5 =Q P1(2)Qp' (2) Pi-i p1r5K 2 p IP2A6 = Q (2)Q (2) P2-
1  P2

SA7 =Q (2) P1-I P1

From the above tabulated results, we see that for all possible

cyclotomic generators of a plP2 -code (except the case plP2 = 6), the minimumI
I!
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5 distance of the code is at least one greater than the number of consecutive roots

contained in the generator--the same root-distance relations as the BCH theorem

1 for polynomial codes. As for the case of plP2 = 6, we have the following argument.

Since 26_1 = Q1(2)Q2(2)Q3(2)Q6(2), where Q (2) = 1, Q 2(2) = 3, Q3 (2) = 7

and Q 6(2) = 3, the generator A4 is 21. The code generated by A4 is of distance

3, which equals the number of consecutive roots contained in Q (x)Q 3x). How-

ever, the generator A4 = 3.7 can also be considered as the product of Q 3(2) and

Q 6(2) since Q 6(2) = Q2 (2) = 3. The number of consecutive roots in Q 3(x)Q 6(x) is

only 2, which is indeed one less than the minimum distance of the code. The situa-

tion that a cyclotomic generator can be expressed as different products of cyclo-

tomic factors can only happen when plP2 = 6, since Dickson [21] has shown that

Q (2) 0 QJ( 2 ) for all i 0 j, except i = 2 and j = 6.

The analogies between cyclic parity-check codes and cyclic AN-codes

have been investigated by many authors. The root-distance relationship discussed

above indicates another analogy. It is our hope that the closeness of all these

analogies would lead us to the discovery of a class of cyclic AN-codes which is

analogous to the large and powerful Bose-Chaudhuri-Hocquenghem codes. Then, for

r all practical purposes, the synthesia of multiple-error-correcting code can be

achieved through the root conditions of the code generator.lH
3.5 Bounds on Error Control Capability of Cyclic AN-Codes

Since the generator A of cyclic AN-code of length n is a proper divisor
of 2 n-1 , we can write 2 n 1 = AB, with B > 1. As briefly mentioned in the intro-

ductory section of this chapter, the well-known "middle-third" region of B is

defined as the set of consecutive integers x, with B.- 3 x < 2 B. If we denote

I



3 41

the "middle-third" region of B by MB, then there are F(B+I)/31 integers in MB,

where rx1 denotes the largest integral value of x.

ra It has been shown [12,17] that the arithmetic weight of any codeword is

related to the integers in the region MB. This result can be briefly summarized

in the following:

Theorem: The arithmetic weight of a codeword AN is given by the number

of residues X* MB, where, X, = (N.2i) mod B, for i = 0,1,2,..., n-l.

From the above theorem, it is seen that the minimum distance of a code£ can be evaluated by counting the number of residues Xi in the region MB

To calculate the distance, we first divide the codewords into several

disjoint orbits [17], for each orbit we count the number of residues in MB, and

get the arithmetic weight of each orbit. Then the distance equals the minimum

weight. Clearly, this evaluation will be quite complex for large, and composite

B's. Also, since we do not have a closed-form formula for the distance of a code,

the above result does not suggest a synthesis procedure for fin1ing any multiple-

error correcting arithmetic codes, we can only calculate, through a computer-

programed procedure, the error-correcting capability of a given code. There-

fore, the result is a theoretical analysis of the structure of the arithmetic

codes rather than a practical formulation.

In this section, we shall apply some number theoretic concepts to ob-

tain the upper bound and the lower bound on the error-control capability of any

cyclic AN-codes. These bounds suggest the criteria for us to choose proper

parameters in constructing an AN-code.

I!
'I
!
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3.5.1 Lower Bound on the Distance

Let the B integers [0, 1, 2, *.., B-i] be divided into three regions

3 LB" MB and UB' where:

1 LB = "lower third" region = fxIO S x < rA1

MB = "middle third" region = [XI rt < x < ri

Ii #'= upper third" region = (xl Fýj~B : x < B)

Let us define the following:

Definition 3.5.1: For any integer N, 0 < N < B, the smallest, non-negative

I integer i such that (2 .N) mod B e MB is defined as the index of N, and the inte-

ger N is said to have index i.

Suppose that AN is a codeword, then 0:• N < B. ý ;MB' then the

smallest power of 2 that yields 2iN mod BCMB is clearly zero, hence N has index

0. For NCLB or NeUB, the index is certainly not zero. Let us firsc consider the

integers in L Except the integer 0, such integer in LB has a nonzero index.

Denoting the index of xCLB by i , we have the following:

1 Lemma 3.5.1: The index iI Flog 2 B1.
" il. i 1 ll

Proof: Since 2 1 mod BCMB and 2 1 mod BCLB, we have:

iIi
1 B1

i,2 < F5I<2
3

or:

thus:

Bi= Flog2 -1 Q.E.D.

.I
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Lemma 3.5.2: For x;yeL B 'X 'y if 2 4 > y x. Furthermo:e, if y 2 2 x.y
then i > i

U Proof: Since x;yeLB, by the definition of index, the integers 2 x'x and
2 Y.y are less than B, thus we have:

i i
2 .xMB and 2 Y "y'MB

Also, by the definitions of LB, MB and UB, we have:

F-'B S 2 X = 2 x (2x) <- "] (3.5.1)

3 13

4B1 < 2 y "y F2B1 (3.5.2)

Hence, if 2 x > y > x, we have:

i i i-l i -l
2 .y> 2 x-x = 2 X (2x) > 2 x "Y (3.5.3)

From (3.5.1), (3,5.2) and (3.5.3), it is seen that the integer 2ix 'y is either
in LB or in MB.

i -x i -lIf 2 X C theni i-1; while if 2 Yel, then

2 Y CM and ix ii hence i a i •Y' xC y 
_

If y k 2x, then we have: +

i_ i+l

hence either 2 Y'xeMB or 2 Y"XLBSi+1 
i +1

If 2 y -xeMB then i +i while if2 xLB then iY+2 i;hence i • i y..E 

DI
I..D
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3 Lemma 3.5.3: The residue 2 n-I mod B is in MB, if B 0 1.

Proof: Let 2n' 1a k (mod B), then

I n-l = m • B + k for some m.

Since

I 2 n- 1 = AB, both A and B are odd, and

I 2n = AB + I (3.5.4)

hence,

"2 n-i AB+i2

-± 3+. (A-i)B -1
2+2 2 (B+i) mod B (3.5.5)

ButII+
S-B I [3B+3-2B] 1 [ B+3],

and

-2 B+I - [4B-3B-3] [B-3]
3 2 6

Hence, for B k 3, 2n-l mod B = !(B+l) eM
Q.E.D.

Since the integers in U are congruent to the negatives of the integers
B

inLB, we can use the same argument as in lemmas 3.5.1 and 3.5.2 to obtain:B
Lemma 3.5.4: For XeUB, the index ix equals to index iBx, where B-xgLB.

L Therefore, in the range ro, B-il , the integers 1 and B-I have the
R-

largest index g2  With the above lemmas, we now derive a lower bound on

the minimum distance of the cyclic AN-codes.
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L u Let us consider an orbit of n residues:

(N mod B),(2N mod B), (22 N mod B), ...... , (2-1N mod B) (3.5.b)

Suppose that the residue (2 N mod B)rI%. By lemma 3.5.1, there exists,

3 another residue (2k+N mod B)M with l<m<il+1, where il- Iog2- 3

The rest of the residues are:

( 2k+m+ rood' B),(2k4m*2Nrood B),...,(2n-N mod B),(N mod B),
(2o - mod B) (3.5.7)

By lemmas 3.5.2 and 3.5.3, we see that there exists at least one residue

3which is in M for every il+l consecutive residues in the set (3.5.7).

Since the arithmetic weight of the code word AN equals the number of resi

dues of the orbit (3.5.6) which are in MB, we have proved the following

theorem:

STheorem 3.5.1: The minimum distance, D , of a cyclic AN-code of

length n is at least as large as

D_ r a--(il+) + 2 (3.5.8)

The tightness of the bound in theorem 3.5.1 can be improved if

I we consider the following:

If B=3, then i =0. In this case there are only two codewords ia

the code, the minimum distance of the code is trivially seen to be n/2. In

the following, we consider the case tihat B#3:

Lemma 3.5.4: Let the exponent of 2 modulo B be denoted by e(B). If

e(B)-n, and if 1 and B-I are not contained in the same residue set

i{2 mod B; 0<i<n}, then
n-il-2

1>_ 1

D A
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Proof: Since 1 and B-i are in distinct residue sets, for every 1

consecutive residues in the residue set (2) there must exist at least one

residue in MB.

Lemma 3.5.5: If e(B)=n and 2k=-I mod B for some O<k<n, then n-2k.

Proof: We have

2n12e(B) - (mod B)
2 -i (mod B)

2 2k -1 (mod B)

By definition of e(B), n is a divisor of 2k, If n is odd, then n1k; this

is impossible since k<n. If n-is even, then (n/2)fk or k=t.(n/2) for

some integer t. Since O<k<n, t=l. Therefore, ni2k.

Lemma 3.5.5 states that if 1 and E-i are contained in the same

residue set {2 mod B; O<i<nl, the length of the code must be even. Any

ii: residue set {N,2 mod B; O<i<n} can then be divided into two subsets,
S= N mod B, N-2 mod B ........... , N.2(n/2)- mud B)

S2 = {N.2 (n/2) mod B ............... , N.2 n-mod B)

The elements in S av- the additive inverses ia the ring of integers modulo
2

B of the elements in SI. These two sets have the same number of residues

that are in the region M. Therefore, we have

Lemma 3.5.6: If e(B)fn=even, and 2 (n/2)-- 1 mod B, then

m- (n/2) -i 1-2 1x

It should be mentioned that (n/2'-i i-2 is always non-negative as long as

the codes have error correcting capability. This is true because that

(n/2)-il,_l and the equality hold.i only when the code is of distance 2.
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If the exponent of 2 modulo B is not equal to n, then e(B) is

•, a factor of n,i,e., n-e(B).q. In this case any residue set (N.2 rod B,

O<i<nl can be divided into q identical subsets.
Lemma 3.5.7: If n-e(B)-q, 1 and B-1 are not contained in the same

residue set {2i mod B, O<i<e(B)}, then

e (B)-i 1-2 If e(B)-i hn i
b I(a) D > This i e tha amng t e

m -2

sd Nm(b) D BBq for e(B)-ioly,

Proof:

(a) Since e(B)-i l>l , we have e(B)-il1-2>_-1. If e(B)-i I>1, then e(B)-il1-2>_0.
S• IFrom lemma 3.5.4 and the fact that any residue set contains q identical

"• i Isubsets, part (a) of the lemma follows clearly.

(b) If e(B)-il=1, then e(B)-il-2=-1. This implies that among the e(b)

S•Iresidues 2N mod B, 2 2N mod B,,.., 2 e(B) -l mod B, there is only one residue,

namely, 2 eB)-lN mod B, which is in MB. The NAF of the generator A is seen

to he

e(B) bits e(B) bits e(B) bits

00. ... 1,00. 1.01 ............ O. . •.01

' and the minimum distance of the code is q. Q.E.D.

If n=e(B).q, and if 1, B-I are ooth contained in the same resi-

due set {2~ tod B, O<i<e-(B)}, ti-en by a similar argument as in l~emmas 3.5.5

t arkd 3.5.6 we have:

Lemma 3.5.8: If n-e(B).q and 2e(B)/2•- 1 mod B, then
S~e(B)12_-i_2

i ~D > [ " +2 1 .2-q
m--iU Again, by using rhe same argument as in lemma 3.5.7, we have

-.--.
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Lemma 3.5.9: If na-e(B).q, 2e(B)/2- 1 mod B and e(B)/2-i 1 *l, then

D m 2q

In light of the above lemmas, the determination of the lower

H I bound on the mir.imum distance of any cyclic AN-code can be summarized as

follows:

Theorem 3.5.2: For a cyclic AN-code of length n,

I (a) n~e(B)

aD > {[fn/2)-i -2)/il] +2}.2

I if n-even and 2 (n/2) m- 1ood B

m > [(n-i-2)/il +2

I otherwise

(b) B-3r~1 D -n/2

(c) n-e(B).q

K DM > { [(e(B)/2-il-2)/i +21-2q
S~~~~~~~~~~~~;if e(Bl-even and 2e()/---1 mod* m=2 i ()ee,2(2-irod B,

e(B/
!k* D 2q ;if e(B)useven, 2 =_-1o B,

"• I and e(g)/2-11 .1
S D > { [(e (B)-il-2) /ill +21.q

! ! I ;if 2e(B)/2-l dB*;i 2 1-/21 mod B

i q ;if 2e(B)/2A- 1 mod B and e(B)-il'=l

For any given cyclic AN-code, the above theorem can be used to

determine the lower bound on the error correcting capability of the code.

The calculation is very simple. We present in the following the lower

bounds (calculated by the CDC 1604 computer) of all possible cyclic AN-codes

of length up to 36:,1I
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' n(code length) B e(B) i1 Din(lower bound) D m(actual)

8 3 2 0 4 48 5 4 1 4 4
9 7 3 2 3 3

10 11 10 2 4 4
10 3 2 0 5 512 7.13 12 5 3 3I12 3.3.13 12 6 3 312 3"3"5 12 4 3 3
12 5.7 12 4 3 4
1.2 13 12 3 4 4
12 3.3 6 2 4 4
14 43 14 4 4 414 3 2 0 7 7
15 7"31 15 7 3 3
15 151 15 6 3 315 7 3 2 5 5
16 5"17 8 5 4 4
16 51 8 5 4 4
16 3.5 4 3 4 4
16 5 4 1 8 8
16 3 2 0 8 8
18 3"3.7 6 5 3 3
18 3"3"73 18 8 3 41 18 7 3 2 6 6
18 3.3 6 2 6 618 7.3.19 18 8 3 4
18 73 9 5 4 4
20 3.11.5-41 20 12 3 3
20 3.31.5.41 20 14 3 3
20 5.3.31 20 8 3 4
20 5.3.11 20 6 4 4
20 5-1.i31 20 10 3 420 11 10 2 8 8
20 3.5 4 3 5 5
20 5.11 20 5 4 4
20 5 4 1 10 10
20 3 2 r 10 10
21 7.127 21 9 3 3
21 7-337 21 10 3 421 7 3 2 7 7
22 683 22 8 4 4
22 3 2 0 11 1124 3.3.5.7-17 24 11 3 3
24 3.3.5.7-'"41 Z4 15 3 3
24 5-7.31.241 24 16 3 3
24 3.3.5-13.241 24 12 3 3
24 3•3.13.7.17 24 12 3 4II
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n(code length) B e(B) 11 D m(lower bound) D m(actual)
24 3.3.5.7 12 7 4 4
24 3.3.5-13 12 8 4 4

24 3.3.13.17 24 10 3 4S24 7.13.17 24 9 3 5
24 5.7.17 24 8 3 424 3.3.13 12 6 4 4
24 3.3.5 12

245712 4 6 8S24
24 13 12 3 8 8
24 9 6 2 8 8
24 5 4 1 12 12
24 3 2 0 12 12
25 31 5 4 5 5
26 2731 26 10 4 4
27 73 9 5 6 6
27 7 3 2 9 9
28 3.5.43 28 8 3 328351728 10 4 4
28 3.29-113 28 12 3 4
28 3.127.29.113 28 18 3 3
28 3.43-29.113 28 17 3 328 3- 29.113 28 12 3 4
28 3.5 4 3 7 7
28 5 4 1 14 14
28 3 2 0 14 14
30 3-3"11.7.31 30 13 3 3
30 7.151-11.331 30 21 3 3
30 9o31.151.331 30 22 3 3
30 9.11.31.151 30 18 3 330 7-11"31.331 30 19 3 4
30 7.9.31.331 30 18 3 430 7.9.11.151 30 14 4 430 9"31"331 30 12 3 4
30 9.31.51 30 14 3 430 9.11 30 6 6 6
30 9.7.11 30 8 4 5
30 7.9.31 30 10 4 5
30 9.31 30 7 5 630 9.11 30 6 6 6
30 7.11.31 30 10 4 5
30 3-3 6 2 10 10

"" 30 11 10 2 12 1230 7 3 2 10 10
30 3 2 0 15 15
32 3.5.17 8 7 4 432 3.5.257 16 11 4 4
32 3.17.257 16 13 4 4
32 5.17-257 16 13 4 4
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I n(code length) B e(B) 1 D (lower bound) D (actual)

32 3.5 4 3 8 832 3.17 8 5 832 5.17 8 5 8 832 3 2 0 16 1632 5 4 1 16 1633 7.23.89 33 13 3 333 599479 33 18 3 333 7 3 2 11 1134 43691 34 14 4 434 3 2 0 17 1735 71.122921 35 22 3 435 127 7 6 3 435 31 5 4 7 7
35 31.127 35 11 5 5
36 5"7"3-3.13.73 36 17 3 3
36 9"7"5"73-37.109 36 26 3 336 5.7"27"19.37.109 36 25 3 336 5"7"27.19.13 36 17 3 336 9.7.73"13.109.37 36 27 3 336 3.3.7.5.73 36 13 3 4S36 9.5.7"37,109 36 19 3 436 9"7"13.37.109 36 20 3 436 9.7"13.73 36 14 3 436 3"5"7.13.73.19 36 19 3 436 3"3.3.5.7 36 9 4 4
36 9*7-19*13 36 14 3 436 9-5-13-19-73 36 20 3 436 3.3.5.7 12 7 6 636 3.3•7•13 12 9 6 636 5"9.13.73 36 15 6 6
36 3,7.13.19 36 ii 4 536 3•3.5-73 36 11 4 836 3.3.73 18 8 6 836 3.5.7.19 36 10 6 8

A 36 7.13 12 5 9 936 9•13 12 6 9 9
36 3.3.7 6 5 6 636 9.73 18 8 636 73

3673 9 5 88
36 3•7"19 18 8 6 836 5-3"3 12 4 9 936 13 12 3 12 1236 3"3 6 2 12 1236 7 3 2 12 12
36 5 4 1 18 1836 3 2 0 18 18

I
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From the above tabulated results, it is seen that the lower.

I 5bound developed in this section is very tight. This lower bound also

suggests a criteria for one to choose proper B's in constructing any cyclic

I *AN-code. Suppose that we want to construct a cyclic AN-code with a speci-

fied error correcting capability. First we let the lower bound on the

code distance to be Dl, if the code length n is odd and the code is so3• constructed that e(B)-n, (other cases can be considered in a similar man-

ner), then by theorem 3.5.2, we have

n-i 1 -2 n-2

D r-g-r1 2 ,-r .1 r1

D I = (n-2)/i -u where O<u<l

DI-1 < (n-21/i

• 1 (n-2) /(Dl-1)

S I il <-[(n-2) / (Df-1)1

log2 (B/3)-u' < r(n-2)/(D 1-l)1 where O<u'<l

I the smallest integer that is greater than or equal to log2 (B/3) is thus,

log2 (B/3) < r(n-2)/(D-71)1 +1

• I hence,

7 IB/3 < 2 r(n-2)/(DI-1 +1

or, SB , 3-2 [(n-2)/(Dl-)11 +1 A B

From the above expression, we see that for a fixed code length n, the

number of code words should be smaller than B1 so that the code constructed

SI guarantees to possess a minimum distance at least as great as DI. Let us

consider the following example:

I- -
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:1 Suppose that we want to construct a single error correcting

3 cyclic AN-code of length 15. The code must have distance at least 3, and

B can be calculated as

B . 3.2 f(n-2)/(Dl-l)1 +1

= 3.2 [(15-2)/(3-1)1 +1

I - 3"27 -384

d We choose B to be smaller than 384, (e.g., B-3107-217) and e(B)-15, the

code is of minimum distance at least 3.K ' By using the lower bound on the minimum distance derived in

theorem 3.5.2, we can synthesize any cyclic AN-code for the correction ofU ' a specified number of errors. The following codes are obtained:

n = length of the code

B - number of code words

k = number of information bits

Dml = lower bound of the minimum distance

D = actual minimum distancema

K r = rate of the code

n B k DmlD r
42 5419 13 6 6 0.31
42 16257 14 6 6 0.33

44 10565 14 6 6 0.32S48 24929 15 6 6 0.314
50 8283 14 8 10 0.28
50 44561 16 8 8 0.32A 52 85489 17 8 8 0.33
52 253241 18 5 6 0.346
52 1266205 21 6 6 0.404
54 784899 20 6 8 0.37
54 87211 17 6 6 0.315
54 261633 18 8 8 0.33
58 3033169 22 5 6 0.38
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n B kt D rma
60 429325 19 6 6 0.31560 35260465 22 6 6 0.366)162565 18 8 8 0.30
6 402905 19 6 6 0.31760 812825 20 6 6 0360 270805 19 680.317364 6700417 23 6 6 0.36U66 1397419 21 6 603166 4192257 22 6 6 0.33
66 411849 19 6 6 0.28866 62571 16 8 10 0.24466 45761 16 10 12 0.244S68 652805 20 8 10 0.29568 130561 17 10 12 0.2568 3505429 22 8 8 0.3257 25080101 25 5 6 0.3687012083 14 12 14 0.2070 36249 16 8 10 0.22870 398739 19 10 12 0.271'3 70 3705353 22 6 8 0.31570 11116059 24 5 6 0.34272 16773121 24 6 8 0.3372 1774001 21 6 8 0.29272 9335617 24 6 6 0.33

72 104323 17 10 14 0.237
74 25781083 25 6 8 0.338

74 77343249 27 6 8 0.365

3.5.2 Upper Bound on the Distance

To find an upper bound on the distance of a cyclic AN-code,

we first consider the congruence:

a2• x mod B (3.5.9)

I

'I
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3 where 0 - i < n-1 is given, and x is any integer. We want to solve for the

integer N.

Since B is an odd integer, 2 is relatively prime with respect to B

for all i s. By Euclidean lemma, we have:Ii
s'2i + t'B = I for some integers s and t (3.5.10)

Hence, for any integer x, the above congreuence has a unique residue class

solution for N modulo B. If the value of N is restricted to be: 0:< N:5 B-i, then

the solution of (3.5.9) is the actual value of N.

For a code word AN, 0:5 N_< B-i, the residue 2iN mod B indicates the

nonzero terms in its NAF. If we take a fired integer i, and set x to be an

integer in MB, then the solution of N in the above congruence says that the code

I word AN has a nonzero term in its NAF at the position 2-. Also, for a fixed i,

the solution N of the congruence (3.5.9) are all distinct for different x's in MB;

Ithis is because

i 2iNl 1 x rmod B

S2iN 2 -y mod B

would imply that x a y mod B and 0- x,y< B-i then implies x = y.

These set of N's obtained by choosing a fixed i and setting x to be all

the integers in MB are simply the codewords that have nonzero term in their NAF's

at the position 2 . As mentioned above, the congruence (3.5.9) always has

unique solutions. That means we are always able to find the code words with

nonzero terms at the position 2 n-i, for i = 0,1,2,..., n-l.

!
U,
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There are integers in the region MB, for each integer in B we1 B -MB

can solve an N with respect to a fixed i. In other words, in the NAF of all the

UB+1 lcode words, there are exact code words with nonzero terms at the position

33

2n. This argument holds true for all 1, 0: 1:5 n-1, hence there are totally

n. -hu•- nonzero, terms which are distributed among the NAF's of all the nonzero

l codewords.

The number of the nonzero codewords is B-1, hence if the minimum

distance of the code is Dmin, we have the following theorem:

Theorem 3.5.2: The minimum distance, Dmin, of a cyclic AN-code of length

n is at most as large as:

Di (B-l) <B+I_ n (3.5.11)

mi 3

where B is the number of code words.

It is quite interesting to note that for large B's, this bound is

approximately equal to R, that means the distance of the code can not exceed

onie third of the length of the code!

If we fix the length n of the code, then for increasing values of B,

the upper bound decreases. This is because the rste of the code increases as the

number of code words increases, while the error-c. i-ecting capability of the code

decreases as the rate gets higher.

I
I
I
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4. IMPLEMENTATION OF ARITHMETIC CODES BY USING MAJORITY LOGIC

4.1 Introduction

One of the major unsolved problems in the theory of arithmetic codes

is the iriplementation of decoding circuitry. Because the decoders must be used

frequently in systems using coding redundancy, the practicality of coding re-

SI dundancy depends on how complex the decoders are. Also, unlike the usual situa-

tion in a data transmission system, the delay introduced in the decoding circuit

V is always important to a digital computing system. Consequently, a practical

'I decoder should have simple logic circuitry and the decoding procedure should be

fast.

The decoding of arithmetic codes for multiple error correction has

been shown to be difficult. Since the operation of the codes is an integer or

modulo arithmetic, the only information that decorder receives is one equation

I ( or one congruent relation) in several integral unknowns. In terms of number

theory, the decoding equation is usually a Diophantine equation, which is extremely

difficult to be solved. The only known decoding schLne for multiple error correc-

tion arithmetic codes is the "permutation of residue" technique, obtained by

Laste and Tsao-Wu [30] and Hcng [29]. In the following, we shall briefly discuss

the permutation of residue technique, to see how difficult this approach is.

The first step of the "permutation of residue" decoding scheme is to

calculate the decoding index k, which is defined as the smallest positive integer

such that k A > maxE Eil; where E is the error and Ei is some cyclic shift of

E. The syndrome S S E mod A is then computed; calculate S a 2 S mod A for each

!i

I
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left shift of S modA. For each i, the arithmetic weight of S is computed, to

eae if W(Si) is within the error correcting capability of the code. If none of

the Si's satisfy W(Si) )< t, where t is the error-correcting capability of the

code, the 1' = A - S. = 2 (A-S) mod A are calculated one by one; for each i the

arithmetic weight W(S!) is counted to see if W(S') t. The same procedure

goes through all Si + jA and S1 + JA for all 0_ j:5 k-l, 0• i < n, where n is

the length of the code, until for some id, 1d' the inequalities W(Si + jdA) S t

' 3 or W(SId + jdA) _ t are satisfied, we obtain the id-th cyclic shift of the error

pattern E.

It is easy to see that the essence of this approach is a table liok-up

attempt. Although the amount of search is reduced from that required by a brute

force approach, the "permutation of residue" scheme still involves a great deal

I of searching. Also, a great deal of complicated calculations must be done by the

decoder, and the decoding delay would be considerable due to the large number of

1shifting cycles.

i If the "permutation of residue" decoding scheme was implemented in a

digital computing system, it would be natural for one to ask "can this decoder

be used to provide as good or better use of redundant parts than do other

techniques?" Therefore, how to find decoding algorithms that can be easily

implemented is a problem of both theoretical importance and practical signifi-

cance.

Since the majority-logic decoding (NLD) scheme is by far the easiest

one that can be applied to many data communication channels, it would certainly

be very interesting if the decoding of arithmetic codes in a digital computing

I
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system car. also be done by using majority logic. This is not clear, however,

due to the propagation of arithmetic errors as a result of carry or borrow

failure.

In this chapter, we are able to divise a majority-logic decoding

I , scheme for some arithmetic AN-codes. We will show that the cyclic AN-codes

constructed in the previous chapter are all majority-logic decodable. Further-

more, this majority-logic decoding scheme can be generalized to a multi-step

majority-logic decoding algorithm, the number of steps required for decoding

is related to the number of prime factors contained in the length of the code.

With this majority-logic decoding scheme, the implementation of the cyclic AN-

code in a real digital computing system would be much simpler.

4.2 Errors in Modular Arithmetic

•i I The arithmetic in most digital computers is arithmetic modulo m where

n_ neither m = 2 -1 (one's complement arithmetic) or m = 2 (two's complement arith-

metic). In an arithmetic modulo m, the integers under consideration are the set

I ~of integers [0, 1, 2, .. ,M-1), and the additive operation is defined as:

I + 12 = R (Ui+12) (4.2.1)

where 0< Ii, 12 m-1, and R (x) denotes the residue of x modulo m. Similarly1 2 m

the multiplicative operation is defined as,

1I 2 m (Ii12) (4.2.2)

I The :set of integers [0, 1, 2, ... , m-l under the above two operations forms a

' F
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ring, called the ring of integers modulo m. For any integer I # 0 in the ring,

its negative (or the additive inverse) is the integer m-I.

In an arithmetic unit which performs arithmetic modulo m, we shall

always assume that the result of any operation is represented by some integer R

such that 0 < R < m. If the arithmetic is modulo 2n-l, we have an n-stage one's

complement adder. A cyclic AN-code of length n, where AB = 2 nl, can be used

for error-detection or correction in this adder. When 'two code words AN and

AN2 are added, the sum.has the form:

Sum of (AN +AN2 R m(ANI1-'N2) where)m 2 2n-

A-RB (N1+N2) (4.2.3)

Since 0•5 RB(N1+N 2 ) < B, it follows that the modulo sum of any two code words is

another code word in the cyclic AN-code. Hence,.a cyclic AN-code is linear under

modulo arithmetic.

If an error has occurred during the additive operation, we first note

nthat the absolute vi-lue of the error is less than 2 -1, for the error is caused

by adding logic failure and there are only n adding units in the adder. An error

may change the correct sum (which is a code word) into an integer which is greater

than 2 n- 1 , in that case the actual result from the output of the adder is the

modulo sum of the correct code word and the error pattern:

R = actual sum = Rm[A.RB(NI+N2) + E ] (4.2.4)

The syndrome S associated with the possibly erroneous result R is de-

fined to be the residue of R modulo A, i.e. S = RA(R). Since 2n 1 = m - AB,
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we havez

S =1 A(R) = RA[RAB(A.R(NI+N2)) + EJ

= RA (E) (4.2.5)

Therefvre, the syndrome S is uniquely determined by the residue of E

modulo A. There are B distinct error patterns, namely, E, E + A, E + 2A, ,

E + (B-i) A which have the same syndrome S, they form a coset expansion of the

I principal ideal (AN(O • N:5 B-1] in the ring of integers modulo 2n-l. The coset

leader is the pattern that has a minimum arithmetic weight; it is the error

pattern that is most likely to occur. The d .der then attempts to identify

this most likely occurred error pattern from the syndrome by some intellegent

scheme.

4.3 Majority Logic Decoding Scheme for Arithmetic Codes

Let us consider a cyclic AN-code with a composite block length
n n

n =nI'n2. Since nln implies (2n-1)1(2nl), we may choose the generator

A as:
0

"A = (2n..)/(2n-1)
0

nl(n2 -1) nl(n2 °2) nI
= 2 + 2 + ... + 2 + 1 (4.3.1)

I In this AoN-code, all codewords are of the form AoN with N = 0, 1, 2, ...

nI
2 -2. If we divide the n bits of a codeword into n2 blocks, then each block

is of length nI. Since N is less than 2 - we have enough positions to

I
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express N in its binary form at each block. Therefore, the binary form of any

codeword A N consists of n 2 replicas of the binary form of N. It has been

: indicated by Erosh [23] that the minimum distance of this code is equal to n2,

hence this code can correct all arithmetic errors of weight up to F(n 2 -1)/21

Suppose that two coded numbers AoNI, AoN2 are added in an adder which

performs modulo 2n-I arithmetic, and an error E occurs, then the incorrect sum

R from the output of the adder is:

R M A 1(N +N2 ) + E mud 2 -1 (4.3.2)

nSince R is an integer in the ring of integers modulo 2n-1,

0: R < 2n-l; we have:

RaA N + E mod 2n-i (4.3.3)

whereK [3 %RB (N+N 2 )

We assume that E is a correctable error pattern, then W(E) _< F(n,-1)/21 .

To decode, the decoder wants to recover the correct sum A N from the re. :L R.o3

We now prove the following lemma and theorems which yield the majority decoding

scheme:
; ,

Lemma 4.3.1: The actual sum A N is a zero word if and only if the modular
0 3

"weight of the result R is less than or equal to [(n 2 -1)/2].

Proof: Suppose that A0N3 = 0, the (4.3.3) can be written as:

R =E mod 2n-1 (4.3.4)

ii5,

k • "
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which implies that R =E for E > 0 or R= (2 nl) + E for E < 0. Hence,W (R)

=Wm E M 5 1t2-)/2].

On the other hand, if Wm(R) 5 [(n 2 -1)/2], we have:

W m(A N) = W m(R-E)

:< W m(R) + W m(E) (by triangle inequality)

5 [(n2-1)2] + [(n2-1)/2]

H< n-i (4.3.5)

which implies that Ao N = 0 since all nonzero code words are of weight at

least n 2. Q.E.D.

Lemma 4.3.1: determines the actual sum to be zero or not. For W m(R) >

[(n 2 -i)/2], we have the following arguments.

"T We first consider how the binary bits of a correct sum AoN3 are

affected by a single arithmetic error. A single arithmetic error may cause

several bits to be in error because of the influecne of carry or borrow propa-

gation. Sometimes an error may cause a carrry process which changes the code

word into an integer greater than 2 n- 1 . In a modulo 2n_1 adder (i.e., one's

complement arithmetic), there are only n positions for the binary representation

of the result R. Hence, the carry propegation may go beyond the bit with position

and then change cyclically the bits with positions 2 , 2 , 2 ... and so on.

However, any carry propagation will stop whenever a zero bit is reached.

1i • Similarly, any borrow propagation will stop whcnever a bit 1 is :eached. Since

the generator A of the code is of the form as shown in (4.3.1), any nonzero

I; -.+ 7,
I - ., ++: - + i+ ' - -, -+ ]+ ,+ , - .. .• '++•••+" T
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code word can have at most n -I consecutive O's or l's in its. binary, form' (we

n-1 20
note that the bits with positions 2  and 2 are considered to be consecutive).

Starting at the erroneous bit, any carry or borrow propagation caused by a single

arithmetic error cannot propagate more than n1 consecutive positions. In other

words, the carry or borrow propagation caused by a single arithmetic error can

change at most n1 consecutive bits of-a nonzero code word-in the A N-code. Thus,

we have proved the following theorem:

Theorem 4.3.1: A single arithmetic error at any bit of a nonzero codeword

in the A N-code can change at most n1 consecutive bits of this code word.o

Next, we consider a multiple, but correctable error pattern E. Ex-

pressing the error E in its NAP as:

AEl _ 2 ' t
-E is 1I 2 -+-I e 2' 2 + ... + et 2i

where e - + 1; t•5 [(n 2 -1)/2] (4.3.6)
j2

We partition the n binary bits of R into n1 disjoint sets, each set2n+k 2nl+k (n2-1)nl+k

contains n2 bits with positions 2k, , 2 , ... 2 for a fixed.k,

where 0:< k < n1 -l. For any fixed k, these a2 bits are n1 + 1 positions apart

from one another, therefore, by theorem 4.3.1, no two bits of the same set can

be changed by a single arithmetic error. Since the arithmetic weight of E is

t, at most t of the n 2 bits with positions 2k, 2nl+k, 22nI+k, ... 2(n2" )n1+k

can be altered by E, the rest remain unchanged as in the binary form of the

correct sum AoN3. But E is a correctable error, t is less than or equal to

[(n 2-1)/2], thus we have proved the following theorem:
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3 Theorem 4.3.2: If the error is of weight less than or equal to [(n2".i)/2],

then in the binary form of R, the majority of the bits with positions:

k 2nl+k 2n1+k (n2 -1)nl+k2,2 , 2 ,..,2

I where

0 < k:5 nI-I

remain the same as in the binary form of the correct code word.

From the lemma and theorems, we now summarize the decoding algorithmI n
for the AoN-code generated by AO = ( 2n- 1)/( 2 nl- 1 ) as follows:

- (1) If Wm(R) 5 [(n 2 -I)/2], decode A N = 0.
m 2 o 3

(2) If W (R) > [(n 2-l)/2, work on the n sets of bits in the binary

k n1+k 2 I2n+k (n2-l)n+k
form of R with positions 2 , 2 , 2 , ... ,2 for

k = 0, 1, 2, ... , n 1-l. For each set take the majority value of

the bits, then form a block of n bits with the n majority value

obtained.

It is straightforward to see that the above majority logic decoding
n

scheme is also applicable to the AIN-code generated by A' = (2 -1)/(2 2-1). The
-. IV 0

decoding procedure is exactly the same except we divide the n bits of R into nI

blocks, with each block of length n 2 .

Since there is no restriction on the parameters n, and n2, the majority-

logic decoding scheme can be applied quite generally to any A N or A'N-codes of

composite length1 When n and n are primes, it should be mentioned that the
€.A N-code is the plP2- code generated by A5 and the AIN-code is the pl2code

4. generated by A6 , as discussed in Chapter 3.

I 1'
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4.4 2-Step Majority-Logic Decoding Scheme

It has been shown in the previous section that the cyclic A N-code is05 majority-logic decodable. To decode, we only need one level of majority logic.

It is natural to c.*._.. that by using more than one level of majority logic other

11 cyclic AN-codes might also be decoded easily. In this section, we will derive

a 2-step majority-logic decoding scheme which can be applied to the class of

multiple error-correcting AN-code described in Chapter 3.

We recall that the codes described in Section 3.3. are generated by the
n n.

cyclotomic generator A = ( 2n- 1)/( 2 1i-)(2 -1), where (nl,n2 ) = I and n = nn 2 .

If nI and n2 are primes, then the codes are the plP2 -codes generated by A7 in

Section 3.4. If we impose one additional condition on the parameters nI and n2

so that n2 > 2n1 -1, then the majority-logic decoding can be done as follows:

From theorem 3.3.1, we know that the minimum distance of the cyclic
AN-od by n 2_l

AN-code generated by A = (2 -1)/(2 -l)(2 -1) ".s n, provided that (n!,n 2 ) = 1

t T and nI < n2 . Therefore, a correctable error pattern E is of weight W(E) <
[ (l-l)/2].

Suppose that two coded numbers AN and AN are added in an adder which
1 2

performs modulo 2n- 1 arithmetic and a. correctable error E occurs, then the in-

ccrrect sum R from the output of the adder is:

R AN3 + E mod 2-I,

- twhere
N3 = RB(Nl+N2 )

W' i' (E) < [ (nl-l)/2] (4.4.1)

I



For simplicity, we denote 2n-I by m in the following discussion.
Multiplying both sides of (4.4.1) by (2 2_-1), we have:

Sn n n

R2 -1) A(2 -1) S N3 + E(2 -1)

( 2 n_ 1 )_ (22_1) N + E(2n 2_1)
n I n'2 3(2 -1)(2 _-)

A°N + E(2 -1) mod 2 -1 (4.4.2)
oN3+

we n n
where A° (2 -i)/Z 1-1). Denoting the residue of any integer I modulo 2 -1

0

by R (1), then R [AoN31 is a code word in the A N-code discussed in previous
n2 nln2

sections. Expressing E(2 -i) in NAF and substituting I for 2 , we can
n

reduce E(2 21) to an integer E with the property that the absolute value of

"iEr .e. E, is less than 2 2 2 -I. We note that Er is not necessarily the
"'~n21 n21

same as R (E(2 .)) since R m(E(2 l)) is always prositive while Er may be

negative.
Equation (4.4.2) can now be rewritten as:

n
Rm[R(2 1)] = R MRm (AON3) + E] (4.4.3)

The integer R [R(2 -1)] can be considered as a corrupted code word
m

of the code generated by A ° Since the cyclic A N-code is of distance n2 , and:

W(E) -- [ (nl-l)/2]

n 2 k 2nI- I

:I.
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n2

W(Er) < W(E(2 -1))

< 2W(E) (by triangle inequality)

I ~:5 n -t_1 2-)2

5 the erroi pattern Er is within the error-correcting capability of the cyclicn
by d1 i h nbisoRR2 2-) non

A N-code. Therefore by di' the n bits of R[R(2 _ 1)] into n blocks the
0 2

majority-logic decoding scheme for the AN-codewill correctly yield the code

word R (A N3)
m 0o3

To obtain the actual error pattern E, we need the second step. Denoting
n

[Rm[R(2 2-)] - Rm(AoN 3 )] by E', it can be seen from equations (4.4.2) and (4.4.3)

that:

E' B E(2n 2-1) mod 2n-i (4.4.4)

I hence,
E'/(2 -1) = E mod (2 n- 1 )/( 2 2-1) 

(4.4.5)

In
Recalling that (2-n_)/(2n2-1) = A', we have:

""R [E'/(2n2-1)] = R [R (A' - k) + E ] for some k (4.4.6)m m m o

From (4.4.6), the integer Rm[E'/(2 -1)] can be considered as a

"corrupted code word of the cyclic AN-code generated by A'. Since the cyclic
lb 0

AIN-code Is of minimum distance n,, and since W(E) S [(nl-l)/2], the actual

I. err.or pattern E can be decoded by the majority-logic scheme for the cyclic

A'IN-code.

1 0
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.3 The 2-step majority-logic decoding scheme derived above can now be

summarized as fbllows:

: (1) If W(R)_< [ (n 1-l)/2], decode AN3 = 0.

(2) If W(R) > [(n 1 -l)/2), get E' by applying the majority-logic decoding
n 2

scheme for A N-code to R [R(2 2 -1)]. (first step)

3 (3) Obtain the actual error pattern E by applying the majority-logic
n2

decoding scheme for A'N-code to R [E'/(2 2 -)]. (second step)
o m

It should be remarked that whilq the condition n2 ; 2n 1- imposed on2nln2 n (n2

the codes generated by A = (2 1 2 _l)/( 2 1-i)(2 n2 _1) guarantees the corection of

errors up to minimum distance, the condition is not necessary for the 2-step1 k majority-logic decoding scheme to work. In general the majority-logic decoding

scheme will correct up to error patterns of arithmetic weight the smaller of

I [(n 1-l)/2] and - [(n 2 "I)/2].

Let us consider the following example:

Example: Suppose that the block length of the code n = 5.9 =45, and the

generator A = (245-I)/(29-1)(25-i). Then the code is of minimum distance 5,

capable of correcting any double arithmetic errors. We have,

(245 1) 31 26 22 21 1. 7 16 13 12 11
A 2 + + 2+ + + 2 + 2 + 2 +2

(2 -1)(2 +1) 28+7+ 6
+28 + 27 + 26 + 2". + + 2 + I

= (000000000000010000100011000110011100111011 Ii)

If two coded numbers 37A and 27A are added in a 45-stage one's comple-

Sm38 8
ment adder, and a double error E =-2  + 2 occurs, then the incorrect sum R from

the output of the adder is, R = A(37+27) + E = 64A + E. To decode, we first

4,'

Sii
'I • Y'i'
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calculate the residue o~f R(2 9-1) mnodulo 2 45-1 as:

00010, 01010, 00010, 00010, 00010, 00110, 00001, 11001, 11110

We divide the above binary form into 9 blocks and check that,

digits with po~itons majority valueJ 2 5k+4 O k<5 8 0, 0, 0, 0, 0, 0, 0, 1, 1 0

205k+3, 0_5 k0 8 0, 1, 0, 0, 0, 0, 0, 1, 1 0

5k+2S2 0:5 k5 8 0, 0, 0, 0, 1, 0, , ,1 0

2
5 k+l O< kg 8 1, 1, , 1, 1 , 1 , 1 , 0, 1

25k+O 0_ k 8 0, 0, 0, 0$ 0, 0, 1, 1, 0 0

Hence the majority decision on R (R(2 9-1)) yeidls a code word:

R (AoN) = 00010, 00010, 00010, 00010, 0,0010, 00010, 00010, 00010, 00010

The error at this state is E' = R (R(2 -1)) - R (A N), which has the

binary form:

00000, 01000, 00000, 00000, 00000, 00100, 000(-1)1, 110(-1)1, 11100

1.9 45The actual error pattern E is congruent to E'/(2 -1) modulo 2 -1,

E(2 1)E 217 2 28 - 22 mod 2 45-1

29 20 11 8 2 45 9
,E - 2 + 20 +2 +2 +2 mod(2 -1)/(2-1)

"which has the binary form:

000000000, 000000100, 000000100, 000000100, 100000100 (4.4.7)
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Again, the majority-logic scheme on (4.4.7) yields a block 000000100.

Repeating this block five times, we have:

000000100, 000000100, 000000100, 000000100, 000000100 (4.4.8)

The binary integer (4.4.8) is a code word generated by A' - (245-1)/(29-1).
0

Subtracting (4.4.8) from (4.4.7), we get the actual error pattern E:

000000(-1)00, 000000000, 000000000, 000000000, 100000000

"Hence, the error pattern E is decoded as -2 38+28.

4.5 L-Step Majority-Logic Decoding Scheme Zor Arithmetic Codes

In the previous section we have sho' n that the cyclic AN-code

generated by A - (2 nln2-1)/(2nl-1)(2n2-1) is 2-step majority-logic decod-

able provided that n 2 > 2nl-l. If n, and n2 are two prime integers, then

I' ] the code is the plp2 -code generated by A7 - The reason that the decoding

needs 2-step of majority logic is that the denominator of the generator A

contains two factors of the form 2a-l. We must multiply the form genera-

tor A by a factor 2 a- so that the modified generator of the code has a

form the same as A or A', then the majority-logic decoding scheme can be
0 0

applied. After the first step of majority-logic decision, we divide the

result by the factor 2a -1, the generator of the code at this stage is

(2n-l)/(2 -1), which has the same form as A or A', hence the second

step of majority logic is applied.

It is not difficult for one to realize that the number of factors of

' the form 2a-1 contained in the denominator of the generator is related to the' :1
I , 4
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number of steps required for majority-logic decoding. As a matter of fact, the

2-step majority-logic decoding scheme developed in the previous section can be

generalized in a straightforward manner to the following theorem:

Theorem 4.5.1: Let nl, n2 , ... , nL be L pairwise relatively prime integers

Ew w4 th the condition that ni+I 2n for i = 1,2,..., L-l; then the cyclic AN-code
L +

of length n = T ni generated by:+ ~il

L n,A = (2n-1)/ r (2 (4.5.1)
t . {i=l

L can be majority logically decoded in exactly L stops.

Proof: The proof of this theorem is essentially the same as the proof of

2-step majority-logic decoding scheme. We stert with the decoding equation:

R = AN + E (4.5.2)

L n.+ Multiplying both sides of (4.5.2) by It (2 1-1), we have:

i=2

L n. L n L n.SR "r (1 i-1) =[A- Ty (2 ] 1 N + E •TT (2 ll

i=2 i=2 i=2

L Dil
=AI N + E • Tr (2

i=2
where

nn

AI (ni)/(2 (2nl-) (4.5.3)

Taking the residue of both sides of (4.5.3) modulo 2 -1. we have:

L 
ni

RCR. [R r (2il)] = R[R (A1 N) + Erl (4.5.4)
i=2

I..

.1.
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L ni

Where Erl is obtained by substituting I for 2n in the RZ' of E" y. (2 -l)

We assume that the error pattern E is of weight less than or equal to

r L-w
Tr n i where 1I denotes the integeral part of x, then we have:

i=l

L nii - - L-1
W(Fl) X 5 W[E - IT ( 2L1)]W(E) _<. 2LWE ni~l)/2 (4.5.5%

i=2 i=l

The e ni+I k 2ni for i= 1, 2, ... , L-1 (4.5.6)

Therefore,

L-1 L-1 L
2 "i n 1 - ., T n (4.5.7)

i=l ~=2

W(E) r F1 ( T n -])/2I (4.5.8)
i=2

Since the integer A1 is of the same form as A in section 4.3, it

generate a cyclic A1N-code of minimum distance T ni : Also, Rm(A:N) is a
i=2 i

SL n.
".code word in the AN-code, and the integer R m[R- (2 1-1)] can be consideredi=2

as a corrupted code word in the AiN-code, the error E is within the error

correcting capability of the A IN-code. Therefore, the majority-logic decoding
"" L n.scheme can be applied to Rm[R" (2 11)], we get R (AIN) correctly.

i=2
L n

Defining E1 by the difference of R [R" T (2 1)] and R (A N) we have:
i=2

L n
E1 E- yr (2 1-l) mod 2n-1

i=2

lI

| I

I. . ._ . . •. ,<d
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n L n3 I El/(2n21) E" (2 i 1 ) mod (2 -l)/(2 -1) (4.5. 9)

i=3

' U Rm[E1/(2 -)m[R + E for some t (4.5.10)ml 2-11=RCRA 2 *t\+ fr.
! n

where A= (,n_,)/(2 2_1) and E. is obtained by substituting I for 2n in the2 (2i.i2
NAF of E. ni2-).

i=3

The intege" Rm[E,/(2 m-I)] can be considered as z corrupted code word
L

of the cyclic AN-code generated by A2 , which is of minimum distance nl* =3 nh.
I Since,

L n<wrL-2L nL- 2. L-I
(Er2 (2-)] W(E)] 2'S 2( n 1)/22i=3 i=l ( .

2L2 L-1 L-1 L2 nL-22~ TT n 2 T n <n, TT nn (4.5.11)

i.= i=2 2.=3

r L
W (Er2 - ((nI l ni)-l)/2 (4.5.12)

i=3

the error E is a correctable pattern with respect to the AN-code generated by
d 2r2'A [El n2n2-A Using majority-logic decodiug scheme on R [) we can determine

S, Rm(A 2 t) correctly. Defining E2 bN the difference of RmCEu/(2n 2 _1)] and R (A-t),

f " we have:

L n.
E2  ( E 3 1) mcd 2 n-1 (4.5.13)

i=3

t •,

' I• 4% I II• I •
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which has the same form as the congruence (4.5.8). The same majority decoding

method can be applied and we get another congruence of the same form. So in

general, at the h-th stage we have:

L ni l
EhI E iT (2 mod 2 n- (4.5.14)i=h

"/, h L nil

Eh / 2 nh 1 ) E Lr (2 rood Ah (4.5.15)

i=-Iil
n

where Ah = (2h-1)/(2 '-).

Therefore, at the L-th stage,

n
E E • (2 L-1) mod 2-l
L-1

•o nL
ELI/( 2 L-) -= E mod AL

F L.I
We see that W(E) • (( T ni)-±)/21 and the cyclic AN-code generated by

i=l
" ~L-1

AL is of minimum distance Tr ni, hence the majority logic decoding shceme onnL i=l

.. EL_1/( 2 n-4) will correctly yield the actual error pattern E.
Q.E.D.

In the proof of the above theorem, we have assumed that the weight of

r L-1
E is less than or equal to (( T n,)-l)/2 ; the fact that the L-step majority-

i=l

logic decoding cn correct errors up to this weight gives the lower bound on the

minimum distani , .. the code, hence we hav3 the following:

i'I
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Corollary 4,5.1: The cyclic AN-code as stated in the theorem 4.5.1 is of
L-1

distance at least as great as ni•
i=l

The result of the above theorem is a straightforward generalization of

the 2-step majority-logic decoding scheme. The code constructed has rather h~gh

redundancy. To improve the efficiency of the code, we want to reduce some un-

r factors contained in A. In the following, we shall construct another

class of codes which is also Lrstep majority-logic decodable. This code is

generated by a cyclotomic generator, it has better efficie-'cy and a very general j
structure. Although the decoding for this new code is similar to that of the

code in theorem 4.5.1, we shall Zo through the discussion in detail oecause some

T important remarks must be made.

Definition 4.5.1: Any positive integer n can be e):pressed as a product of

powers of prime factors, i.e. n = .Pi This product of prime powers form
i

- is unique for any n and is called the canonicUl form of n.

'" Theorem 4.5.2: Let the canonical form of a positive integer n be
L s.

n =r p.i * If the distinct prime factors pi's satisfy the condition that:• 
i = l

""pi Z 2i-I (p-lI) + I for i = 2, 3, ... , L; then the cyclic AN-code of block

length n generated by Qfn (2), the primitive cyclotomic factor, can be majority-

logic decoded in exactly L steps.

Proof: First, let us consider the minimum distance of the code. Since
n/p,

A = Qn(2), the integer (2 n-1)/(2 1-) is a multiple of A, hence it is a code
"n n/p I

word. The arithmctic weight of (2 -!)/(2 -1) is pI, hence the minimum dis-

tance of the code is at most p1V If E is a correctable error pattern, then

.V W(E) • (pl-1)/2. We start with the decoding equation:I
.V;
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.,= AN + E (4.5.16)

L-1 n/pt
Multiplying both sides of (4.5.16) b'y yy (2 1-),

i=l

L-1 n/pl L-l (n/Pi L-1 n/pi"
,R "IT (2 = A "T (2 -1) .N + E r (2 -1 ) (4.5.17)

i; =1 i=l l

Let A Ak = (2 n_1)/(2 1-!, then B = (2 -1)/A = k"(2 -1) and the code

generated by A is of minimum distance PL. Since,

Q Qn(2) (2n_) Qd (2) (4.5.18)
n/d

' the cyclotomic factors contained in B are all the Qd( 2 )'s with d a proper
dL n/pi

divisor of a. Clearly, these Q d(2)'s are also contained in T (2 1), henceS~i=l

"'L-1 n/pi
'•" L " n/PiL-

B divides TT (2 -1); which implies that k divides TT (2
i=l i=1

Therefore, (4.5.17) can be rewritten as:

L-1 n/p 1  L-1 n/P.
TR (2 1) (A'k).M + E. - (2 for some M

i=l i=l

L-1 n/p.
AIM + E - (2 1) (4.5.19)

1• i=l

I Taking the residues of both sides of (4.5.19) modulo 2 n- 1 , we have:

L-1 n/pi

Rm[R Tr (2 1" RERm(AIM) + E (4.5.20)M i=l m 1  l

I

I 
I
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where R is obtained by substituting I for 2n in the NAP of E. • (2n/P ).

riinteN oE T(
In addition, 

i=1

I L-1I2PL : 2 (P-l") + 1

W(0E) (pl-l)/2

L-1 n/pi L-1
W(Eg) rs WC. 17 (2 -1)] a2 W (E)

i=l
:5 2 L P-1 ) ( 1/ (4.5.21)

word of the A IN-code, then the majority-logic decoding scheme for AliN-code can

(pi 

LPn/PL-l)]
be applied to R AlR s R( 1)3 and the code word Rm(AeM) can be determined

-l - /p.

i 
LL-1 

n/Pn/pbE E T (2 2i-rol od 2Rn[i (4.5.22)

ii=l

El n/PL. L-2 n/pi n/Pn/21 E (2 -1 mo 2L1- 45.2

E 1 /-I) E 1 (2 1-i) mod (2_-)/(2
"i•l (4.5.23)

n/pL
R [E /(2 -_ -1)] =R [:R (A*t+ESmII =2 " + Er2] for some t (4.5.24)

where A 2 =(2n-L!)/(2 n/PL.l_l) and Er2 is obtained by substituting 1 for 2n inL-2 n/pi i)
the NAF of E.- T (2 1). Since,

I
I
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W(E 2 ) W(E •T2 -1)) _< W(E)

_< 2 L-2(pl-l)12_< (PI0/2
• P.()1 (4.5.25)

and the code generated by A2 is of distance PL1 l, E r is a correctable error.

Applying majority-logic decoding scheme to Rm[EE/( 2 nPL-I)], we can determini
thecoeorn/PL-d'
the code word Rm(A 2 t) correctly. Defining E2 by the difference of E1 /(2

andm -R(A2t), we have:

I L-2 n/p.
E - E " T (2 1/ l) mod 2n-l (4.5.26)SI2 i=1

"which has the same form as the congruence (4.5.22). The same majority decoding

method can be applied to (4.5.26) and we obtain another congruence of the same

Tform. So in general, at the h-th stage we have:

L-h+l n/pn

n/pL-+1L-h 2n/Pi i)

"E Ehi/(2nl (- (2 -1) mod Ah

wher A• = (2 n-)/(2 L-h+l-).

Therefore, at the L-th stage we have:

EL_1 E • (2 n/P-1) mod 2n-i (4.5.27)

EL-I/( 2  -1) a E mod AL (4.5.28)
nip,

Rm[E__i/(2 -)] R = R[Rm(AL'u) + E] for some u (4.5.29)

!
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where AL = (2 -1)/(2n/Pl-1). Since the code generated by AL is of minimum dis-

tance p1 and W(E) _ (pl-l)/2, the majority-logic decoding shceme on

R[L/( 2  -1)] will correctly yield the actual error pattern E.
Q.E.D.

As mentioned previously, the code generated by Qn( 2 ) is of minimum

distance at most p,. But from the above theorem, it"has been shown that the

code can correct all arithmetic errors of weight up to (P 1-l)/2, hence we have

the following:

L s.
Corollary 4.5.2: If the code length n = i and Pi 2 (pl3-) + I

i=l 

d s a cfor i = 2, 3, ... L, s. Ž 0 for all i 1. 2, ... , L, then the minimum distance
L

of the cyclic AN-code generated by Qn( 2 ) is exactly equal to p1.

Again, it should be mentioned that while the conditions P a 2 i-I
pl

(Pl-l) + I for i = 2, 3, ... L, imposed on the code guarantee the correction

of errors up to minimum distance, the conditions are not necessary for the

L-step majority-logic decoding scheme to work.

SThe majority-logic decoding scheme developed in this chapter is a com-

pletely different approach as compared with the permutation of residues technique,
no search is required at all. Those majoriy-logic decodable AN-codes can then

be iLaplemented easily. It is our hope that the majority-logic decoding scheme

Spresented here will be applicable to other classes of AN-codes and will lead

to other practical decoding implementations.

I
!i

I
I



3 81

5. APPLICATIONS OF CYCLIC AN-CODES TO COMPUTER ARITfHMETIC

5.1 Concurrent Checking in Computer Arithmetic

IA logic fault occurs in a digital computing system when a defective

component or external interference causes a deviation of a logic component from

its prescribed value. In general, there are two approaches which can be employed

to check the presence of errors. In periodic checking, ordinary operation is

S~periodically iaterrupted and a checking program is carried out which detects the

presence of an error and indicates its location. In concurrent checking, special

logic circuits are used to detect the presence of errors in computer words con-

currently with ordinary operation of the computer. Both the well-known repli-

cation of processors with outpuc voting and the arithmetic encoding of the

operands followed by the application of decoding algorithm to the results are

the methods of concurrent checking in digital computing systems.

In the triplication of process•,• method, the majority vote-taker gives

the correct result only when two or three of the identical processors operate

normally. If more than one processor had errors, the majority voting scheme

would not work. In other words, the application of the triplication of processor

is based on the assumption that all the logic faults are restricted to only one I
"of the three identical processors. This model is c stionable sometimes,

especially when multiple error iatterns occur in a complicated processor.

On th,;. other hand, when the arithmetic coding method is used, the

redundancy is incorporated into the operands themselves which are being pro-

"cessed. A multiple error-correcting code is necessary for some processors when

single error protection is not reliable enough. As pointed out in the previous

A
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3 chapters, the decoding of multiple errors is much more difficult than the decoding,

of single error, the reliability of the complicated decoder circuitry can not be

1 I overlooked. The assumption that decoders are error-free then is not reasonable.

In this chapter, a new concurrent checking technique, called the

"I"separate checking" is studied. This separate checking technique possesses theK advantages of both the coding approach and the replication of processors. It

combines the ideas of coding and rt-plication of processors properly so that the

£ error model is more realistic and the checking procedure is much simpler.

Furthermore, since only single error-correcting codes are used in this techni-

que, the decoding is simple and thus reliable.

The application of cyclic AN-codes to the high speed multiplier is

also investigated in this chapter. It will 10 shown that the majority-logic

decodable cyclic AN-codes constructed in the previous chapters can be applied

practically. All these applications render the evidence that the arithmetic

coding is a promising approach to the study of digital computing systems diag-

nosis and reliability.

5.2 Separate Concurrent Checking Techniques

Suppose that two integers NI (al, a 2 , ... , a, ) and

N9 = bi(bn1  b.-2' ... , b1 2 bo) are added in a n-stage one's complement binary

adder. If an error E occurs, then the result from the output of the adder is

R = Res[Res(N 1+N2 ) + E] (5.2.1)

I where Res(`) denotes the residue of x. modulo 2n-.

I

l U....... .
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I Since the operands N1 and N2 are not coded, it is not possible

for one to correct the error from the erroneous sum R. Instead of putting-

redundancy into N1 and N2 , we use several separate checkers to execute the

fault-tolerant operation as follows:

Let us call the n-stage one's complement adder the "main adder."

We use several independent checkers, each of these checkers is also an

ni
adder, performing modulo 2 -i arithmetic, where ni is less than n. In

other words, each checker is just an ni-bit long one's complement arithmetic

unit. If the ni's are small, we assume that only a small number of errors

6ccur in the shorter adding units.

Suppose we assume that only single error occurs in each short

adding unit, then instead of encoding the integers N1 and N9 in the main

"adder, we encode them by different single-error-correcting cyclic AN-codes

and add them in the independent checkers. Let us assume that k independent

checkers are used, each of length ni, l<i<k; the single error correcting
ni•,cyclic AN-code used in the i-th checker is generated by A, where AiBiL=2 -1.

Since each checker performs modulo 2 1- arithmeti.c, the possible

erroneous sum from the i-th checker is

ri = R [R (A (NI+N))+E] (5.2.2)

Ibni nj
where Ri(x) denotes the residue of x modulo 2 -A. Since AiBi=2 -1,

(5.2.2) can be rewritten as

ri Ri [AiRB (N1+N2 )+Ei] (5.2.3)
IT
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!

where Ri(x) denotes the residue of x modulo Bi.
Sg r1

Since Ai generates a single error correcting code, the single error
15a s1

pattern Ei can be easily corrected and the residue RB (Ni+N2 ) can be obtained

from the output of the decoder. The same argument holds for all tbh independent

checkers, hence we can determine all the residue, Ti(N.+N2) for i , 2, ... ,k.

Suppose that the lengths of the checkers are properly chosen so that

<I all the B.'s are pairwise relrtively prime, i.e.,

A,(BiB) 1 for i j; 1:5-i, j -5k (5.2.4)

where (a,b) denotes the greatest common divisor (or g.c.d.) of the integers

a and b. Writing

N +N =1RB (NI+N 2 ) mod B11 N +NN2

1 2 R (NI+N2 ) mod B2

1 1 + N2 a RB (NI+N2 ) mod Bk (5.2.5)
k

LI (5.2.4) and the well-known Chinese Remainder theorem [49], we can solve the

simultaneous congruence (5.2.5) and uniquely determine the residue N + N
k1 2k

modulo TT Bi. We havcIi i= 1

k
N + N = N + t TT B. , for some t (5.2.6)
1 2 i=

k

where N = [(N 1+N2) mod iBi

I .]

I
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Let us assume the cyclic AN-code generated by A is of rate (rt)i, and

the independent checkers are so chosen that the product

n+2 k n+l (5.2.7)2n2 > IT B >2

Since 0:5 N2 < 2-, we have

.I 1 N1 + N2 < 2(2 -1) (5.2.8)

Combining (5.2.6), (5.2.7) and (5.2.8), we have t = 0 and

N I + N2 = N (5.2.9)

I Therefore, the output of the decoder gives the correct sum of Ni and N2' In

other words, instead of using the longer n-stage adder, th, addition of NI and

N2 can be executeu by the k independent shorter checking adaers; we use k ni=l

j elemental adding units to perform the n-bit binary addition, the redundant
S~k

Z n. - n adding units are incorporated for error correction.
i=l bi

Suppose that the B 's are chosen to be B. Z 2 , then the rate of the
code is

(rt)i = log2 B/ni bi/ni (5.2.10)l g l s s atis f

On the other hand, in orde.r to have (5.2.7), the b Is satisfy

ki

I ! k b n + I (5.2.11)
I i~il

I
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From (5.2.10) and (5.2.11) it is seen that

k k

i~l max

S(5.2.12. a)
• - - ( r t ) m a1

and

< l 1 g ,/(rt )min :_ (n+2)/( t ii=1 i=1

n+2 (rt) (5.2.12.b)
/k min

l ~ max min 
,'

where (rt) (rt) and (rt) (rt)

k
The expression n/ E (hn) is the efficiency of this separate checking technique.

From (5.2.12.a) and (5.2.12.b), the efficiency is bounded by the maximum and

minimum rates of the independent cyclic AN-codes. To increase the efficiency

- we should choose the best single-error-correcting AN-code for each independent

checker. The single-error-correcting An-codes discovered by Perterson are all

U ?erfect, they should be used whenever It is possible. One question is that some

,SI
U ,i
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perfect codes are constructed with arithmetic modulo 2k + 1, while the above

discussion assumes that the checkers perform one's complement arithmetic. How-

ever, it is easy to see that all the above discuss-on also holds true when somen i

of the checkers perform arithmetic modulo 2 +1 ; this broadens the possibility

of using perfect codes for the checkers. Let us consider the foLlowinc, example:

Example 5.2.1: Suppose that a 34-stage main adder is checked b, separate

checking technique. We use six independent checkers. The first five checkers

perform one's complement arithmetic, with lengths 9-bit, 10-bit, 11-bit, 12-bit

and 15-bit respectively. The cyclic AN-codes used for these five checkers are:

in. Ai B. D.

2. mnaz

9 73 7 3

2 10 3.31 11 4

3 11 23 89 3

4 12 5.7 3-3-13 3

5 15 7.31 151 3

11 For the last checker, we use a 14-bit adder which performs arithmetic modulo

S214 + 1. The AN-code for this checker is a perfect single-error-correcting

code (but not cyclic) with generator A6 = 29 and B6 = 5"113 = 565.

It can be seen that all the B.Is are pairwise relatively prime. Also,

6
n B 7"11-893"3 13"151565

i=1 i

68, 405, 652, 315 > 235 2 34+1

, I
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Therefore, the 34-stage main adder can be replaced by the six iadependent

H I adders.

The number of redundant adding units is

6
E n i-n - (9+10+11+12+14+1.5)-34 - 37

i-n

and the efficiency of the overall checked adding system is

n in a 34/71 - 0.48

* which is greater than one third.

The efficiency of the over-all checked system is better than

the system checked by the triplication method; also, not like the tripli-

cated system that all errors are assumed to occur in one of the three

identical processors, in separate checking approach we allow errors to

occur in any independent checking unit. The assumption that only single

error occurs in each independent checker is reasonable when the length

of the checker is chosen to be short. In addition, the decoding proce-

dure is done separately. For each checker, the decoding is Just a single

error correction, which is much simpler and much more reliable when com-

pared with the approach of using an over-all multiple-error-correcting

AN-code for the main adder.

I_ • *. | | IIHJ l I '1 I / • l a
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5.3 Multiple Iterative Error-Correcting Codes for High.Speed Multiplier

In a high speed arithmetic unit, the multiplier is divided into

a number of blocks with two (or more) bits each. Each block is then multiplied

with the multiplicand to form partial Rums. The partial sums are eppropriately

shifted and added in a multi-input adder with minimum carry provisions. If a

fsulty circuit occurs in the multiplier, toe error patterns have the following

properties:

7 a. Since the partia; sums are shifted by multiples of the length of a
U.

block, the erroneous bits in each partial sum will be equally spaced

f when the result is obtained, usually they span a fixed number of

blocks in the binary representation of the result. This error is

"said to be iterative in nature.

b. Since a stuck-at-I or 0 type of logic fault causes either a carry or

a borr'-.i error but not both, all the erroneous bits of a single

iterative error are of the same polarity. Utilizing these specific

properties of the iterative error patterns, Chien and Hong [16] have

found a large class of arithmetic AN-codes which can correct any

iterative error caused by single component failure. These codes are

good since they possess high efficiency and can be implemented quite

easily.

If more than on component of a high speed multipler fail, the errors

1. from the output can be recognized as several groups of single-iterative-errors.

"We call this type of errors the multiple-iterative-errors. Following the in-

vestigation of Chien and Hong's work, however, it is difficult to generalize

I.
I 1
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their single-iterative-error-correcting code. In this section, we apply the

majority-logic decodable AN-codes constructed in the previous chapter to the

If error-correction in high speed multipler. Instead of making correction at the

end of multiplication, we correct errors contained in each partial sum; it can

be shown in the following that the majority-logic decodable codes are suitable

T for this purpose, and can correct any multiple iterative-errors.

First, let us consider that the multiplier is divided into r blocks

and each block contains m bits, then the multiplier is of length rm. Usually,
U.

the multiplicand requires the same number of bits in its binary representation

as the multiplier, hence the product requires at most 2rm binary bits. A single

iterative error pattern E can be expressed as
I.

k 2r-I mi
E = + 2 E e 2  ; where 0:< k < m and ei = 0,1 (5.3.1)

i=O

It is easy to see that a multiple, say, t-iterative-error Et can be

expressed as

k 2r- kmi k 2r-1 Mi k 2r-1 mi
Et 2 Z e 1 2 +2 z e2 i + ... + 2 rt ti 2

-- iO - i=O - - iO

(5.3.2)

where 0< ki, k2 , ... , kt < m; kits are distinct and eji 0 0, 1 for all J's

and i's.

The error patterns (5.3.1) or (5.3.2) are preseated in the final

resu.t at the output of a high speed multiplier. If we consider the partial

error, which is the error contained in each partial sum, we have the following

form
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partial error at the i-th partial sum

*1i
k•+12i kt+mi kt+mi

e 21 + e2  22 + + eti 2 (5.3.3)

where e - 0, 1 or -1. 0: k ... k < m and all the k.'s are distinct. There-eji 1' t 3
"fore, each partial error of a t-iterative error pattern can be considered as a

random error of arithmetic weight t or less. This suggests a possible way of

"correcting any t-iterative-errors.

We encode the multiplicand by a t-random-error-correcting AN-code.

Instead of making correction of the final product we use the t-error-correcting

. code to correct the partial errors contained in the partial sum. Certainly, the

decoding of the t-error code must be very easy, otherwise the approach is highly

impractical. The majority-logic decodable AN-codes constructed in Chapters 3 and

* 4 immediately render the potential of being the t-random-error-correcting codes.

Design of the Codes

Suppose that both the multiplier and the multiplicand require rm bits

in their binary representations, then the product needs 2rm binary bits. We

want to design an arithmetic AN-code of length 2rm, with the generator A a pro-

per divisor of 2 rm-1, then the code is cyclic and all the code words AN form a

-. principal ideal in the ring of integers modulo 2 2rm-1.

Let s be a divisor of rm, then rm - d.s, for some d. The integer

" 2 (d-l)s + 2 (d-2)s + .... + 2s + I can be chosen as the 6 enerator of the code.

.1;
*1
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"First, we see that

A 2 (d-l)s (d-2)s s
A + 2 +...+2 +1

= (2 rm- 1)/( 2S-1) (5.3.4)

L Since AI(2rm-l), the integer 2rm-i is a code word of weight 2 and the code

I generated by A is of minimum distance only 2. It seems that the code has no

error correcting capability, yet it can correct all t-iterative-errors ifT
.• 2t + 1 : d.

""t ~dLet the multiplicand be encoded as a code word AM, and let the
i.i multiplier be N. In a high speed multiplier the binary form of N is divided

into r blocks, each block contains m bits; hence N can be eKacressed as

N ni2mi , where 0O5 n _5 2m-i (5.3.5)
i=O

Denoting Si as the i-th partial sum, we have

Si = AM. ni-l for i = 1, 2, ... , r (5.3.6)

Since O AM < 2r-1 and O:5 n i. 2 m-1,

O Si < 2(r+l)m- (5.3.7)

If there exist some faulty circuits in the multiplier, the partial sum is

corrupted with the partial error,

Yi = S + Epi =AMn + E (5.3.8)i i i-l pi

I
I
I
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where Yi is the erroneous result at the i-th stage of multiplication. Denoting
I vrmthe residue of x modulo 2 -1 by Rrm(x), (5.3.8) can be written as

R rm(Yi) Rrm[R rm(AMnir) + Eprl (5.3.9)

T It t or less iterative errors occur J.n the multiplication, then from (5.3.3)
the weight of E is less than or equal to t. Since A - (2 rm-1)/(2"-l) = 2(d-l)s

T pi4,+ + 2 + 1 and ds = rm, the residue of the integer ANni_1 modulo 2r1,

Si.e. Rrm(AMni-1) contains d indentical blocks in its binary representation form,
with each block df length s. From (4.3.9), it is seen that 0S lEpil < 2r_1,

W(Epi) 5 t; hence the majority-logic decoding scheme developed in Chapter 4 is

applicable to the residue R(Y). A majority decision on the binary bits of

R '(Y)can correctly yield the partial error pattern Epi provided that
d 2 2t + 1. The same majority-logic decoding scheme can be applied to all

"R rm (Yi) for i = 1, 2, ... , r, and all the partial errors Ep 1 , Ep2, Epr

can be determined.

The design of the above code is based on the assumption that both
the multiplicand and the multiplier have rm bits in their binary forms. As

a matter of fact, this result can be easily generalized to any case when the

multiplicand and the multiplier are of different length, say, r1m bits for the

"multiplicand and r 2m bits for the multiplier. In these cases, the generator

of the code should be modified as

"A' - 2(d-l)s + 2 (d-2)s + .... + 23 + 1

low where ds - r 1m, and the length of the code is (r 1+r 2 )m. The generator A' may
(rl+r2 )m

Snot be a divisor of 2 -1 and the code may not be cyclic. Nevertheless,

SI
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the error correcting procedure of the code is still the same.

Also, it should be remarked that the code devised above can correct

iterative errors caused by any possible logic faults (not only the stuck-at

type of fault) in the circuitry of a high speed muitiplier. The erroneous bits

of a correctable iterative error pattern are not restricted to have the same

polarity.

Rate of Code

: iThe information rate (or the efficiency) of an arithmetic code is

defined as

"Rate 1 - [C(umber of bits in the binary form of A)/length of code]

Fog(5.3.10)

For the code of length 2rm, generated by A = ( 2 rm- 1 )/( 2S-l), where ds rm,

the rate can be readily calculated as

I Rate (t-iterative-error-correcting code)

0=1- c)sI 2rm

= rm + (rm-ds+s)
2rm

T 2rm (5.3.11)

SI It is interesting to see that the rate of any t-iterative error

correcting cole is greater than 0.5. For t - I (single-iterative-error), we

take d 2t + 1 3. Then 3s a rm and the rate is

I
'I
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Rate (single-iterative-error-correcting codel

a . 111I 2 I.
"7 + 2" 2 3 3I

Therefore, the rate of any t-iterative-error-correcting code of length 2rm lies

J in the range

-+ •-- rate (t-iterative-error code) :5 (5.3.12)
2 rm 3

1 For different-length multiplicand and multiplier, there may exist some

t-iterative-error-correcting codes with efficiency even better than 2/3.

From the above discussion, we see that the construction of the code

is simple, the efficiency of the code is satisfaictqry and more importantly, the

"decoding can be achieved by using simple one-level majority logic. On the other

hand, since the error correcting is done at each stage of the multiplication

when a partial sum is obtained, there is definitely a time delay in the speed

of multiplication.

C.

I
I
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6. CONCLUSIONS

6.1 Conclusions

The goals of this thesis have been to investigate the two unsolved

problems in the theory of arithmetic coding mentioned in the introductory

chapter,. to develop new checking techniques for computer arithmetic and to

examine the theoretical structure of the arithmetic codes. For the code con-

struction problem, several new classes of multiple-error-correcting arithmetic

codes are found. By using some-interesting properties of the binary representa-

tion forms of certain integers the error control capability of the codes can

be determined analytically. The synthesis of these classes of codes are

simple, in fact, for any two relatively prime integers nI and n2, the generator

of the code is chosen to be (2nln2_1)/(2nl-l)(2n2_1). The fact that pI 2-code,

which is a subclass of the codes constructed, possesses a root-distance relation-

ship similar to that of the BCH bound indicates additional analogy between srith-

metic AN-codes and cyclic parity-check codes.

For tle decoding implementation problem, the majority-logic decoding

scheme for arithmetic codes is devised. This is a completely different-approach

from the attempts made by using various search techniques [29,301, the implel-

mentation of the codes can be achieved by using majority logic alone. It has

been shown that the arithmetic AN-codes constructed systematically in this thesis

are majority-logic decodable. The majority-logic decoding scheme is applied to

other classes of AN-codes and a generalized multi-step decoding algorithm is

obtained. The number of steps of majority-logic decision required in a multi-

step decoding can be shown to equal the number of distinct prime factoks
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conatained in the block length of the code. It has also been noticed that the

minimum distance of these majority-logic decodable codes can all be determined

H ~exactly.

A new checking technique for the binary adders has been developed.

This separate checking technique provides a more reliable arithmetic error

checking model, the redundant circuitb used are less than that required for a

triplicated system. Since the arinhmctic coding scheme is used separately for

I each shorter adding unit. the single-arror assumption is made and the decoding

is much simpler. Furthermore, the application of majority-logic decodable

arithmetic AN-codes tc the erroz -,.rection in high speed multiplier has been

examined.

Some theoretical results about the structure of arithmetic AN-codes

have been obtained. By using the concepts of number theory, the upper and lower

bounds on any cyclic AN-code have been formulated; also, a fast algorithm for

I.finding the binary representation forms of certain integers has been derived.

'I'I In summary, the results presented in this thesis gives a better belief that the

use of arithmetic coding for the error control in digital computing systems is

i indeed very promising.

6.2 Suggestion for Future Wo-1'

It seems that the next major advance in arithmetic coding from the

theoretical viewpoint will be the complete formulation of the class of cyclic

AN-codes analgous to the Bose-Chaudhuri-Hocquenghem parity-check codes. When

SI this problem is solved, the computer designer interested in incorporating
, .
!I
I
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coding for arithmetic error control will have an easy way of constructing codes.

From practical point of view, the separate checking technique discussed in this

thesis will find its way into actual computer hardware designed to operate

reliably either faster or for a longer time than non-coded equipment. How to

I systemactically choose the various length of the independent checking unit

so that the redundancy is minimized would be a problem which requires further

examination.

" I The implementation of decoder by using majority-logic increases the

possibility of widespread application of arithmetic coding. Future work will

" 1be the discovery of other more efficient majority-logic decodable arithmetic

* _AN-codes and other practical decoding methods based on the concepts of

"rmajority-logic decision.

40
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