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NOMENCLATURE

A Span of the arch

Ex(or E), Ez  Young's moduli

G Shear modulus

H Rise of the arch

h Thickness of the arch

L Arc length of the arch
J M Moment resultant

N Stress resultant

N Number of the grid point on the arch used in
numerical analysis

I q Uniformly distributed transverse load
q c CritIcal uniformly distributed transverse load
q q/Ex

Q Nondimensional load = qL4/Exh4

QC "" qcL4/EXh 4

R Radius of curvature of mi',dle surface

S, TForce resultants contributing to the transverse
normal stress

U Tangential displacement component at -n
arbitrary point

Ub Bending strain energy

Um  Membrane strain energy

U0  Strain energy density
j Ut Strain energy of entire arch

u Tangential component of displacement of themiddle surface

@u Change of slope of the normal to the middle surface1 14 Radial displacement component at an arbitrary point
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w Radial component of displacement at the middle surface

wc  w at the mid-point of the arch

W, Wi' Elements of power series expansion of W,

contribution to the transverse normal strain

wo 0Initial radial imperfection

woo Amplitude of initial radial imperfection
wo  = Wol/h
wOO = w 0/h

x Coordinate extending from one end of the arch along the
middle surface

Coordinate of an arbitrary point measured along the
outward normal to the middle surface

: w/h

at Angle of extension of the arch

a = (L/h).w'

y = (L2/h).w"

6s  Central dif,'erence operator

Sx, C z  Components of direct strain

-~xz Component of shearing strain

ax, yz  Component of direct stress

T xz Component of shearing stress

VxW Vzx Poisson's ratios

= L2/Rh (Geometric arch parameter)

Potential energy due to external load

II Total potential energy

* =(L/h2).u

= (L/h).u'

a~ d._dx



CHAPTER I

IiTRODUCTION

The shallow arch represents one of the simplest realistic structures

I from which many of the features of elastic instability theory can be

illustrated. As a result of this simplicity the various existing theories

which have been proposed to describe the behavior of an arch, as well as

T the methods of constructing such theories, have received considerable

attention for over fifty years. More recently, due to the development of

new types of materials being considered for use in submersible and space-

type structures, it has become desirable to include anisotropic material

properties in the theory.

The current investigation will be devoted primarily to the problem

of structural behavior of an elastic orthotropic shallow arch including

transverse shear and transverse normal stress effects and undergoing

finite deflections. The effect of initial irperfections is also considered

'in order to investigate possible bifurcation of the arch.

The general theory derived here, which considers transverse shear and

transverse normal stress existing in an orthotropic arch is later specialized

to the case of an isotropic arch with a consideration of shear deformiation

and is further specialized to the still simpler theory of the classical arch

which is then compared to a theory derived independently. For the case of

asymietric deformation the transition from the initial state to the buckled

state is shown to be connected with geometrical imperfections present in the

structures.

A survey of the literature on arches reveals that .any papers have been

published pertinent to the classical theory of arches. A general discussion

and significant references up to 1955 covering buckling problem of circular

rings and arches is given by S. Timoshenko and J. M. Gere [IJ. These authors
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show that in the case of very flat arches, buckling in which axial strain is

considered may occur at a smaller load than inextensional buckling. Timoshenko

assumed that the center line of the deflected arch as well as the initial no-

*load shaDe is a half wave of the sine curve and arrived at a very simple solu-

tiop. A very complete investigation of structural behavior of a shallow arch

is attributed to Y. C. Fung and A. Kaplan [2]. These authors presented a

series solution for the case of an arch having a siausoidal configuration at

no-load. They also found that instability may be associated with a bifurcat;on

into an asymmetric buckling mode. The same approach was employed earlier by

C. Biezeno [3] but for the case of a circular arch loaded by a concentrated

f normal force at the center. K. Federhofer solved the buckling problem of a

parabolic arch in 1934 [4] and discussed +he dynamic problems of arches and

Irings later [5]. K. 0. Friedrichs [6] and K. Marguerre [7] derived the

Iequations for a circular arch under uniformly distributed pressure by vari.-
tional principles. K. 0. Friedrichs pointed out that the uniform load corre-

j sponding to unsymmetric buckling could be much lower than that for symmetric

buckling and in addition advanced a criterion for the buckling load as "the

lowest load 5t which a buckled state exists having the same energy level as

the unbuckled state at the same load." The so-called equal-energy criterion

SAto fn A C .leivire anA 4 D Rodner rpl aiitin'i s, ,j^ not n -Oll, 2n+CA

a proper buckling criterion may lead to an "energy load" that represents a

significant lower bound to the buckling load. Ii. Schreyer and E. Masur [9]

I gave the solution for the structural behavior of a clamped circular, shallow

arch together with a detailed analysis of the various buckling criteria by

considering the buckling equations and using the change in potential energy

between the buckled and unbuckled states.

Notable contributions to the theories of higher oroers of accuracy which

4include the effects of either or both transverse normal stress and shear
deformation are due to F. Hildebrand, E. Reissner and G. Thomas [10], A. E.
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Green and W1. Zerna [Il], E. Reissner [12], and by P. M. 1laghdi [13]. In

reference [10], orthotropic shells are considered and the various theories

which are d'.rived from different approximations in the assumptions are com-

pared and discussed. A. E. Green and WI. Zerna concluded that the inclusion

of shearing forces is likely to be of importance mainly in the case of

I edge effects. E. Reissner's work on obtaining stress-strain relations by

removing t6he first approximation of Love [14] results in some simplifications

as compared with those given in [10) and [11). Later P. M. tflqhdi included,

in addition to the transverse Zhear and transverse normal stress, the rota-

tory inertia in isotropic shell analysis. E. Reissner [15] in a separate

J work discussed a problem concerning the torsion of a rectangular plate arn d

this work has become the standard of comparison in the linear bending theory

of elastic flat plates which includes transverse shear effects. In the large

deformation range, P. Wilson [16] investigated the elastic circular flat plate

with the transverse shear effect taken into account and R. R. Archer [17)

derived a nonlinear shear deformation theory for isotropic shells. In the

present investigation, the initial imperfections are also introduced to

I achieve better correspondence with the true structure. This leads to lower

buckling loads.

I

.I
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CHAPTER II

CLASSICA. THEORY

II.1. Introduction

In this chapter the classical theory will be developed and the critical

loads corresponding to various values of the arch parameters, A , will be

determined. The von, Karman type nonlinear strain-displacement relations are

j used. The arch considered here is circular, thin and shallow. In order to

obtain a theory for the arch which is similar to the Euler-Bernoulli beam

theorem, we make the following assumptions:*

(a) A normal to the undeformed arch middle surface is deformed without

change of length into a normal to the deformed middle surface.

The change in direction of the normal to the middle surface is

neglected. Thus the change in direction of the transverse load

is then neglected.

(b) The stress in direction of the normal to the middle surface is

small compared to the other stresses.

(c) The ratio of thickness h to the radius of curvature R, is negligibly

small compared to unity.

(d) The magnitude of transverse deflection is of the same order as the

thickness of the arch.

(e) The load is considered to be applied at the middle surface.

The theory is called classical in the sense that it is based on these asslmp-

tions which result in ignoring the effects of shear and the transverse

normal stress.

Based on these assumptions, the governing differential equations are

derived by the principle of minimum potential energy. A finite difference

* This assumption is similar to the Kirchhoff assumption of plate theory or
Love's first approximation of shell theory.
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scheme together with Newton's iteration technique is used to solve the equa-

tions. Initial imperfections are also considered.

11.2. Strain-Displacement, Stress-Strain Relations

Let the origin of an x-z coordinate system be located at one end of the

arch with x being the :oordinate extending along the middle surface cf the

arch and z being the distance of an arbitrary point measured along tha outward

normal to the middle axis of the arch (see Fig. l(a)). For strain-displace-

ment relations, let us employ the von Karman type approximation in which the

only non-linear tErms retained are those corresponding to quadratic effects

in the transverse displacement and its derivatives. Thus the strain-displace-

j ment relation is

Cx = U'x + H+ I - -w 2 x  I(2.ol)W
Lx ~ 12 )2 (2.1)

where U,W are the displacement components at an arbitrary point in the arch in

the x,z directions respectively and w0 is the initial imperfection in the radial

direction (see [18]).

The Euler-Bernoulli type theorem as stated in section 2.lleads to

U(x~z) = U(x) - zrw() + w (x)), (2.2)

=1x =w(x) + w x)
where u(x) and w(x) are the components of displacements at the middle surface.

By substituting (2.2) into (2.1), the strain-displacement relation

becomes

C U1, R K +.1w2+ Wo wo -z(w, +w ')
°Ux"xx oo~xx

(2.3)

X + zKx

where c0 U, +W 1 2 x and K=w2x - wo  are the middle
x x *a x  0 x  x

surface strain and the change of curvature, respectively.
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I' The stress-strain relationship, assuming Hooke's law holds, is

I ax  Eex (2.4)

or conversely

x (2.5)

1 11.3. Derivation of Equilibrium Equations and Naturai Boundary Condilions

The strain energy density U0 is a function of the strain component C19],

i.e.:

U0 - Uo(c x) (2.6)

j If the displacement vector (u,w) receives variations (6u, 6w), the strain

tensor assumes a variation 6cx and the corresponding variation of U0 is

I 6U - a= 0 6x

IIt has been shown that the following relation holds for a Hookean material in
the large deformation range [19],

auo

Therefore

Substituting (2.3) into (2.7), one finds

sUo  Gxe x + z6KxI

0
Let the first variation of the strain energy of the entire arch be 6UT . Then

h

6 1= L  6U dzdx
SUT= )o h_ 0

= L hJ f x( a6c + z6KX)dzdx (2.8)
o 2
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or
h

6U, E[.0 6.0 + z(.0 6K~ + K~ 6e 0) + Z2 K SK Idzdx

Upon integration with respect to z, one finds

6U, = (Eh o 6.0  Eh3  (2.9)6 UT= x x+ 1K26Kx)dx

= 6Um + 6Ub
L

fWhere 6U Eh co 6c dx is the membrane strain energy and

L~h

6Ub= Eh -- K 6K dx is the bending strain energy.
#0

The force and moment resultants, 11 and M (per unit width of arch)

shewn in Fig. 1(b) take the form

h =_ -×z(2.10)

h

M=2
M za dz, (2.11 )

which upon integration with respect to z become

1l= Eh(u, + +W w + I WS 2  Eh c'
x OIX c x x

3 (2.12)
= EhM z *'4o + 'xx 7 2- K x

Substituting these force and moment resultants into the first variation of

the :otal strain energy (2.9), we get

oUT [n 6c° + M6Kx] dx (2.13)
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Now, substituting (2.3) into (2.13), we get

SSUT =o {0IN6(ux) + 6 6w + wo,x 6 (w,) + W'x 6(w'x)J

-M*6(w, xx)] dx (2.14)

The potential energy due to the external load q is
L

: L q(w + w0) dx
0J

and the total potential energy I is then

]=UT+n-

By variation of ji, we get the equilibrium equations and the associated

natural boundary conditions. The equilibrium equations are:

N,x = 0 (2.16)

N x- -wM q = 0
R 'xx o' xx

and the natural boundary conditions are:

N = 0 or u prescribed at x = 0 and L

*lw, x + M,x = 0 or w prescribed at x = 0 and L*

M =0 or w,x prescribed at x = 0 and L
-uu 1 ju, L 2.6% we get

usX + .1W x + W W + Ww =o 0
~xx + + OX W xx WOxx + +W, WIXX

Eh 3  + Eh(U +L+w W 12
H2 (wo w)xxxx x R o'x 2~ x ~

R 1 o'x wxx)-q= 0  (2.17)

II.4. Solution to the Equations

Let us introduce the following nondimensional variables

* Nw,x + M,x corresponds to shear forces V in Fig. l(b).
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I x =Ls
u h2 0-

LZ
I w =ha

w0

and A L
R~I~

I The equations (2.17) then take the form:

0, + =0s+ +; (2.18a)

Sa + + (A- , - ss) Was + Aa +  , + 1' 2 _ Q 0* (2.18b)

I where Q = qL4/Eh4

Let us next linearize these equations in order to obtain a system that

can be treated by Newton's iteration scheme [20]. Regarding the displacement

i components * and a and their derivatives as independent variables, let us

expand the nonlinear terms of those variables Into Taylor series using as a

I starting point the no-load equilibrium configuration and retaining only the

nonlinear parts. Typical expansions of the terms are as follows:

a's a"ss ;I "s a"ss + 7"s (ass - 7"ss ) + 7'ss(a's -(as

,,, a... + as,~ as, - cie aset.

2-2 - -
CE sas 2 a, 5  ass ass5  a,5sa s as

where the double barred quantities are the estimates of the same unbarred

I quantities. The linearized versions of the equations (2.18) are

9 + W aIS + a, +a7, ass +asC
SS U S OS'SS +s IWOSC's s S$S s " S = aS'SS

(2.19)
+(X - +OS + -, S a ss

2 ssss + 'ss - w+ 0  " ,')

In [6], because of (2.16), (9's 0  a 2) was treated as constant.0s tetda osat
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41,S + - +WjSS as+I -S S73
s A 2 's~ 'ss 12 T lss 20 ~ +W 's 's css

(2.19b)
2 _ 1- 2 -s ;92"~ 7, =;ss" - "ss 's= f _ OS s t' S 79 WOS 79S SS +

I The quantities without bars in (2.19) are approximated by central differences.

If we select N internal grid points in the x direction, the grid increment is

then l/N+l and equation (2.19) becomes
D2 +2 sa 02 62 ai + R W o'ss 6 a, + k 7ss6sa

2 2 - 2 D-.0a

s i + D Xsw +6o a -w- a + - ,6s a.

+ D2cz's 62i = ' a 5 ss (2.20a)

D 4 a ) - s S D i + Xi + D o 6 oi + s 6 i)iTF- 6s -i+( 7,ss s Wo'sssS

-(' a 2 sJ96 s C TF o,ssss + I Xs - Is 'ss

-a ct, 5  - ass a T Wooss s o s a2 - 29ss + (2.20b)

where D = N +

I 0s Oi =  i+l 20i + i- l
6 i =€i+2 i ++¢i-I

4 s '0i =  1+2 - 4€i+1 +6€i 40i-I + i "

Equation (2.20) represents a system of 2 N simultarous nonlinear algebraic

I equations which are solved by Newton's iteration scheme osing a digital

computer. Ordinarily this has been done by input load increments as the

known quantity to solve for and a. However the procedure fails to give

I any itiformation on the load-deflection relations after the first peak load

is reached, since the slope is zero at this point and the computer yields

I unstable solutions. For the present case involving a consideration of imper-

factions, the extension of the load-deflection curve past its peak becomes

desirable to be able to obtain the lower buckling load.
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I If deflection instead of load is employed as the input and load regarded

as the unknown quantity, the above-mentioned difficulty is avoided and the

j load-deflection curve can be extended. But since the buckled mode shape of

the arch is yet to be determined, the input of deflections is not realistic.

As an alternate approach the summation of all radial displacements, i.e., the

I change of area between the arch and its base line can be employed by introduc-

ing an additional equation relating the ared to the radial deflections, namely:

AREA = iN+l i~l

This equation together with the previous 2h equations forms a system which

I has the right number of equations after the idditional unknown Q is added.

Let us write the system in matrix form

I[A] [X] = [B]

I where [A] is a coefficient matrix, [B] is a constant column matrix and [X]

I the unknown column matrix. The loading term Q in (2.20b)is moved to the left

hand side of the equation and is included in the unkriown matrix [X]. The

I double barred qu~rtities In [A] and [B] are assumed to be zero at the beginning

of the iteration or more precisely, the displacement components are assumed to

. .be zero at the be..... .f .. ier..tio'. '"enthe TdePEr"dE"" area para-

I meter AREA in [B] is given successive increments and the displacements

determined. If the alculation for displacements converges, a further incre-

_ ment is employed.

If we neg'pct the imperfection Terms in the equations, the solution

I .r radial displacement u in general is syimetric with respect to the mid-

point of the arch, since the equations are expressed in central differences

and the boundary conditions are symmetric, However the symmetric characteris-

.W tics of the syseem are of course disturbed if we impose an antisymmetric mode
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of initial no-load imperfection. The resulting solution is then an asym-

metric one and instability occurs at a lower load than in the case of

symmetric bucklirj of an initially perfect arch.

For the hinged end arch, an antisymmetric sine curve is assumed to

represent the no-load configuration, viz:

wo = Woo sin Z.us

where woo is the amplitude and a numerical value of 0.04 is used for numeri-

cal analysis. For the clamped end arch a polynomial corresponding to

j clamped end conditions and antisymmetric with respect to the mid-point of

arch is used. The polynomial is wo = woo [As
6 + Bs5 + Cs4 + Ds3 + Es 2

where A = 2.048910 x 108, B = - 1.137778 x 102, C = 2.844444 x 102,

J D = - 2.275556 x 102, E = 5.688889 x 10 and woo = 0.04.

11.5. Discussion of Results

Typical load-deflection curves for h4nged end and clamped end arches are

Jshown in Figs. 2 and 3 respectively. There, the asymmertic solution is

obtained bj imposing antisymmetric initial imperfections while the symmetric

I solution is the one obtained by setting the amplitude Woo equal to zero. To

determine the load-deflection relations shortly before point "C" of Fig. 2

,,as ueen reached, the Imperfection woo %introduced to force the asy.etric

J form to appear) is taken to be zero and the return branch cb is found. The

bifurcation point "b" where the .-eturning curve meets the symmetric curve is

i about 25 percent lower than the point "a" in this case.

The variation of load-deflection relation with the geometric parameter

X is shown in Figs. 4 and 5. Figs. 6 and 7 show how the critical load

increases with A. From these figures the following conclusions* can be drawn:

(1) For the hinged end arch:

(a) For X 5 6, no buckling occurs;

* rigures are approximate values.

-----------------------------------
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20I (b) For 6 5 x 5 10.8 (10.5 by y. C. Fung and A. Kaplan [2]),

the buckling mode is symetrical;

(c) For x _ 10.8, the asymmetric buckling criterion holds. The
asymetric solution found here agrees very closely with Y. C.

Fung and A. Kaplan's solution [2) which is also plotted on

i Fig. 6.

(2) For the clamped end arch:
j (a) For A 5 10.0 (11.4 by H. Schreyer and E. Masur [9]), no

buckling occurs;

(b) For l0.0 s x S 25 (22.96 by H. Schreyer and E. Masur [9)),I the arch behavior is governed by the symetric criterion;

(c) For x z 25, the asynnetric buckling criterion holds.

I
I

I

I
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CHAPTER III

O TRANSVERSE SHEAR DEFORMATION AND TRANSVERSE

NOrML STRESS THEORY TOGETEER WITH A

I CONSIDERATION OF INITIAL IMPERFECTiONS

iil.l. Introduction

The Euler-Bernoulli beam type theorem assumed in section 11.1 which is

I similar to the Kirchhoff assumption of plate theory or Love's first approxi-

mation of shell theory results in neglecting the transverse shear deformation

I and transverse normal stress.

Due to recent duvelopments of new types of material, the orthotropic

feature of many materials must be taken into account. The present investi-

I gation is particularly concerned with materials in which the reinforcement

consists of glass fibers embedded in an epoxy mat-ix with every glass fiber

Ioriented toward the center of curvature of the structure, in this case an
arch. This radial filament construction offers the advantage of the fiber

being loaded in transverse compression rather than in axial compression

which may lead to column-type instability. The resin is restrained from

extrusion from between the glass fibers by shear coupling to the fibers,

thereby placing the filaments under axial tension. Thus the inclusion of

transverse normal stress and shear effects may be of importance. With inclu-

sion of these effects, an Euler-Bernoulli beam type assumption is inade-

quate. And a modification to Euler-Bernoulli type assumption (c) lies in

not completely neglecting the ratio z/R with respect to unity but instead

writing R - )+ 4 in the strain-displace-ent relations.

The initial radial imperfections of the middle surface are included in

the derivation to more nearly agree with reality. This leads to a lower

asynmetric buckling load. Reissner's Variational Theorem [211 is used to

derive the equilibrium equations as well as the stress-strain relations.



22

The numerical method outlined in the foregoing chapter is used to solve the

equations

111.2. Strain-Displacement Relations

I Let us use the coordinate ystem described in section 11.2. and also the

von K~rman type non-linear strain-displacement relations. The transverse

normal strain sz and transverse shear strain yxz together with cx now des-

j cribe the state of strain, viz:

I (IJ, + W2(W+= z I (I W,2x+ W9 x

cz =W,z (3.1)

I~ ~ W + WU,"l

I
where w0 is the initial imperfection in the radial direction (see [18]). Let

us introduce the displacement approximations

I U (xz) = u x) + zu' (z) (3.2a)

2Susittn (.2) int W3! Wn +utpyn (31a Wn + 21z) y ( 32b),w

Substituting (3.2) into (3.1) and multiplying (3.1a) andk3.lc) by (l~,we

get
z ,,+z 3 , + "' +

+-R-) x zr e- +C A:V - K K - K"' + Kiv+1Kx + + 3! x 4! x 5! x 6! x

C = C-0 + zKz  (3.3)
z z 2

(l+Z)Y = y0  + zKz +ZK'

R xz xz 2 xz

where

eo= + + 1 2 + ,xw (3.3d)
'1' C1  2 ' C1

Kx = u, + W - W,2 + WIX w x + W9x WO0 - W w O x (3.3e)
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K 1,2 "1 2C1  * Cl 2 2Cl
x rfW Px wxWx + WI OI

S2C 1  t (3 sf)

R wox W'x +  Otx W'x

K-,, , C1  ,2 1 " C1  C1

X -,, , Ro X ,O

C1  ,, (3.3g)| - ot ,x W'x)

,,, ,,2 Cl  I, , Cl  ,2 C1  ,, Cl  ,,|x 4- w,- , - -2 W, x,+ W, + w ,x ,+ -- o'x x,)c ,
e x 2 2 2R O, X

VC " C It"
K× = 120(- T + w,') (3.3i)

0o=WI 8 (3.3k)

z

Y0 = ' (3.3m)

Kx =W (3.3n)

and Kxz = wX. (3.3o)

The coefficient C1 is introduced to distinguish the modification in this theory
fuat rnuu; tp theorem.

fr teEue'-Ber 'u ~ type erm

111.3. Derivation of Stress Strain Relations and Equilibrium

Equations

If the force resultant N, the moment M and the transverse shear resultant

V (all per unit length of middle surface) are defined in the conventional manner,

viz:
h h h

N Ja- dz -V h dz M 14 J x zdz. (3.4)

2 2Y 2
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I then we az ume that (see [13])

OX L_ + - z =. L + z (3.5)
h h 2/6 h/2  h h(3.5)

T g) 32V [1 - ,2  (3.6)

I xz h/ 2h- 2 v , -12 1.3
(1 ) z= C .i+I (+ (r-,h2] + qH (3.7)

Here the functions S and T are as yet undetermined; q is the value of the

load applied at the top surface of the arch.

'I f i+ h (I

Jand C2 is introduced for the purpose of distinguishing between the contribu-

tions of transverse shear deformation and normal stress, (C2 = 01, otherwise,

j it should be regarded as unity.

A convenient derivation of appropriate stress-strain relations, equili-

brium equations and natural boundary conditions can be carried out by means

of a variational theorem due to Reissner [21], viz:

Cl z
{Iff ox Cx + Txy Yxy + z z- AJ(0 !R+ dx dy dz

+ hl wt),1 Clh
- f' q(w~h + h w' ) (+ -) dx dy} =0

-2 "lxZ 2+ -2vxz x  (3.9)

Integrating (3.8) with respect to z, carrying out the variations and

integrating by parts, the stress-strain relations, the equilibrium equations

and associated boundary conditions are obtained.
I nI

The coefficients of iw and 6w give the expressions for S and T res-

pectively. A simplification is made by neglecting the nonlinear terms and

I also the shear term V, since as the arch becomes thinner the effects of S and
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T, i.e. the effects of transverse normal stress, becomes negligible. Thus
the equation (3.5) in reference [13] is used:

S:"(3.10)

T 5h H (3.11)2R 2

The coefficients of 611 and 6M give the relations for M, N and displace-
3 ment components. They are

N = Exh (AA) El -A (I + 2 x h A B-C vHq h C 2V xC ( (3.12)
S- CAA -(3I CAA + h]

.~2 2:. C^ xz  h C 2vxz.M CA x (I. -x) (AA) - E h - BB + Hq [ (1 + - -3]1 (3.13)R (1 

2
where

CA= 1/[{1 I + -2)(1+ C2ve.) 1-]R^ h

SCAA = CA- (1 + C2-xz)/R

0 h 2  ' +4  h6  v
,AA =i + Kx+ KOI

x M~x 1-2 4!-80 x 6 !448  x
3h2  " 3h4  ivBB = Kx +  w#- K + -_  Kx

The coefficient of 6V gives

V - h (.yo+ K CC ! K GS AL. tU AZ 60 
iv. ,

I where
*i h2

CC xz 4"0 Kxz

Equations (3.10) through (3.14) are the stress resultant-displacement

relations.

IThe coefficients of 6u, 6u , 6w, 6S and 6T, in this case yield the five
equilibrium equations. These are

NIX +v = 0 (3.15)

MIX - V = 0 (3.16)
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h h2  ,, 2 Cl , Cl h 

2  C h  ,,

h ,, lh2 C C12  ChS+ wx + W + +  (W ,x
o - xx oxW' xx -1R x + 2P. (W' +wxx12R X4,X 160R.

2N w,+ C.1h2  C h2  
__h_ i

x x ox 2 - 2R 'W'x 1-2R 2 ,)+7O2W

[ - c1 ( , + W + W , W ,1 3C1 h2 x O ~ xx R 2 x 040R 2160RC 1  , 3C1h2  3C1h2

+ M' I- L- (wx +  x) + vx - -- R W, + W,x]

Wo R o-TIO - 40R2

S+ V x + qH =0 (3.17)

(- C2vzh 2 C V6hC

h___2__ 6 3h) 2 hC1
x 28Rh zz X 7- R x'

+2Cl.. q + e 0 j (3.18)
20R2  2

N C2 xh 1 h + M C2 xz h2  2 x 4 h

EEh12h 5 14 2  2 Exvzx 6Rh2  C h

1-R Hq- z = 0 (3.19)

From (3.16)

V = M x  (3.16a)

ISubstituting (3.16a) into (3.15), we get

N R + I = 0 (3.15a)

X ,,~~x R ., al

or

RI MI (3.15b)

Substituting (3.15b) and (3.16a) into (3.17), we get

N.[-l (CD),x] +MIX. [(CE) - (CD)] + M E(CE),x+M,) +qH=OR(3.17a)

whete

h2  , h2Cl , Clh2  CIh 4  ,,
CD w~x + Wo,x + 'x - W + 12R (Wx + Wox) + 160R



C 1  
' 3C h 2  " 3Chh2 27

CE- R +w + - + _ _ wx(R ' Wo x W' R ' 40ez

i Equations (3.15b), (3.16), (3.17a), (3.18) and (3.19) are the equili-

brium equations.

I The natural boundary condition terms are

I[[u [N] + ,u [ J] + 6w U(N +- 1  - . ,M) (w, o+ )
U 12R2  RX + wo'X

Ch 2  3Ch 2  3Ch 2  Clh 4C lh 3 I h 2IIh

1 + - M) w,x + QTN - 46, + --- N) wtx40R M 2+ 0 16CR -
2  3h2Cw h2  3h2  4

+ 2  
_-40R2 x +Wo, x + - N) w,x

3h2 M Ch 4  3C1h4  " " h2  3C1h2  Cih 4

+ M - -N + -M) w, + 6w [(-T N- -M+ I60 +N)
42 60 24R 2 R 1 60R2

(I M CIh4 3Ch4 4 3Ch 4

(wC,~ + W +(M) w'x +L h w
o,x )' 40 160R 2x320 N w x - 48

IClh 6  ,, hL

+ 3584RN) w + V] L (3.20)

I They are in the form of stress, displacement 3r mixed boundary conditions.

For example, we have for the first term, either u prescribed or N = (constant)

prescribed at x = 0 and L.

III.4. Non-dimensionalized Equations

Let us introduce the following non-dimensional variables:

h2  ' h
x= Ls, u= , u =

w = ha, h a W h

_L 2

wo = h = /Rh

and ( )n = pn where n is en integer.

Then the abbreviated constants and functions are
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4A 1 (3.21)
'- a (l + - '.) (1 + C2uxz) -12

h(+c 2  z) (3.22)
( + C2vxz) - 12

+ (2 p2

i H - * + *- . A. (3.23)
AA. 1 2+ 2,+}4 22

A 7 *s + + a , + - , Os as +•p (Xy +a s

a, s " " s 2Ia +  C1 X2  p 2 a 2 + 2C 2 p2I S •~*

s s I -s 1 4 1 2Swos a 's - 2C I X p w , +w, Ys) + ff ( - jA

1 C1 2 2  2 + .2 .2+C2 2 p2 C l  o"LP •Bs Yas~ A -2" • 's F A p ' czs ~+rA"

p2 - C1 " . 8 2023 W~ Ys 35"84 pz Yas (3.24)

-BB p l * p2 2c + l pl

-- F A s s sw-0 "- ' ' C+ A " " s 6 27 • k • y~ ,s +

w-A p *,s y 5 + C1 .).p -. 31Clo. . Wos s +3 . p3 . Y's 1
pl 2  C 1 p1fl X2 .2p a' X, -2" p a, " s Y's + 1  P p2 a, (s $Is + CI X

2- C1 - 35 12P "Wos 's - 'X• p • W ,s ) + 3(58-Ys

+ - " 0S' Y'S)  (3.25)

TC CC = _p2 + lI +p' L 2
-T A * " € + + Y's (3.26)

= D= a's + o~ " +' 1-2 1" X •p3 .l 2~ +P4
p I (a s o s 2 p Y's - 3.27) T2+- !12 C C

--0-C = [- a P (3 .28) -

3C A2 p4 BsJ (3.28)
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and the stress resultants are

E P C xz+C z cu w
- Z • + 2 v(*++ - x+

3 2 L5 2 2 E ti

.p2 + M+ p . _ D (3,29)

M= M = --'p4 •(I + " B - + 2x-ff
14 ~{4 'A. 2vxz -A 2

x2
A.p, (1 +2.z -

= *-. p2 . V- -. p2 . _- q (3.30)

V 5G p I p2

T= =_p .r (3.32)
S 2

E=- X h )L (3.32)

T 5 2 + (3.33"Eh 2 (333

where

A= I -X • - p2. ( + '2xz)

Scx22 z _ (1 + -7 =) - 3 2 1

2 C.

- q_
q E X

6E

With these expressions, the non-dimensional equations are:
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( r DG" - ) +  DW' B-- s  0 3.34)

whe.,e

DG" =D'-+ p2  .U and = -p 2  
* x • Cg

i (ii) i . p2. (IMT, s _ A p2 . (B--), _'- C : 0 (3.35)

Ss c (CCT 2 i~)~, .) . [D- (- X+ CDs) + DC - Es] + B-B" • + iDs)

22 . -essB~

a . trls, + ,s •C E (-- F • 2."L)-7'
•r (- - •p 2 --D + V, ss • -, ss + c--H [ B
.p2. x_ + * D', S) -' p2 .TB--, s]  0 =0 (3.35)

where Q

(iv) D-" W+ DM •BB + DN Q+ B = 0 (3.37)

whe -e

DL = .DA + D- D-C) p1

DR= (Ti W - ' *-A) - p1

-C2x2  pRyN U- B- •l bx - j . E)p 3

+ =R c 2 A 4) . p

22 2 1 2 4 4

pR =vxz/vzx

uv u •I - ou -- •p Q + y = 0 (3.38)

where
2 5 5 4 2D p-= C2 pR. p (T5+ p A)

4

= 12C 2  vxz (I - 2 )

3C2 2 8 A 2 x2 4
oR pR - i + p -

TSD-S = D'- - A + Q .TA

16"-" = UF - 'B + Q- - ffE - U R
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In deriving the last two equations (3.37) ano (3.38), we take C2 = I (for

the last terms in both equations) in order that the equations are nonvanish-

ing (i.e. the coeff4cient matrix is nonsingular). This is for the case of

neglecting transve. ;e normal stress (C2 = 0) and the solutions s = 0 and

y = 0 are obtained.

111.5. Comparison of Three Theories

I When we set C2 = 8 = y = 0 in (3.34) through (3.38), the equations

are specialized into those of shear deformation theory with the modification

in the Euler-Bernoulli type theorem. If we completely neglect z/R terms

J(C 1 = 0) as well as imperfection terms (wo = 0) the following shear theory

is obtained!

(a) ,ss +X-a, +a, a, =0 (3.39)

aP2 Q5SS

p 4 2_12 -s 4 -l 2

5 G ( - 2 A + * + a,) =0 (3.40)

M 12 (1 - a, b. + A "  +I 2 1.p2-(a,) (4 +A a ,)- 2 (- 'i= 's

p • N2 - 12 p • T2-12

4 2 2...4.ft."..(.'SS +) a,•  " a,5  SS5 ) +---.

p . X2_12 s s s.x_-12

(As ;Pss +  +- a.,• +,s

5 S P X2_12 (d'sss + + a.+ a's 'Isss+N

-4 1 2 ss s + Q = O. (3.41):] p • x2_12

These equations are to be compared to the equations for the shear deformation

which if derived independently are

(a) +, +a, -L P + 2 A0
ss s + a's a'ss +  1~2 S 0
i_ G p2

(b)- P' G - (- p 2 + + 's, =°
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(c)a, A' a+ 1 a 2 1 p 2 ass* sss

(c) -s(-"ts) 2 +s ' T+ ,2)-. l " "'s2-

j + g$9 - =01-2 'sss- 0

The underlined terms are the differences in these two sets of

equations. However the underlined terms all contain powers of h/L,

i.e., p2, p4, etc. Thus the differences between the two sets becomes

smaller as the arch becomes thinner. Further simplification of the

equations as h/L approaches zero, leads to the classical equations

for the arch, viz:

(a) 'ss + X a, s + as 'sss =0 (3.42)

(b) i + a, = 0 (3.43)

(c , 21 as 2 -Q=0 (3.44)

With the initial imperfections neg1 -ted, the first equation is identical to

(2.18a) while combination of the last two equations is identical to (2.18b).

111.6. Method of Solution

4Let us employ the same method of linearization of the nionlinear

equations as in the previous chapter. For boundary condition, the clamped

end case of = = = a = y = 0 at s = 0 and 1 are considered, since these

displacement components can be rather easily specified. Because third order

derivatives aPe involved in the third equation, forward and backward diffe-

rences are used in order to avoid the values at nodal points outside the

boundary, viz:
i (" i-I lOci .D3

s  2a L _- +a - 12ai+l + 6 ai+2 - ai+3 )

and
3 _

V3 2i = -c s1 2 + 12a i - I0 i + 3ai+ I )
Vs T " 1( -3 1 --
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where As is the forward difference and Vs is the backward difference,Ii
As in the last chapter, the equations are written in finite difference

form. Deflection input in the computer program will be used to extend the

load-deflection curve beyond the first peak. Therefore the additional equa-

tion

AREA =-- a.
N+l i=l

is used.

The newly formed equation represents a system of (SN + 1) simultaneous

nonlinear algebraic equations which are solved by Newton's iteration scheme.

The polynomial in section 11.4. is also used as for the antisymmetric initial

imperfection.

The orthotropic elastic constants are taken from reference [22] as

E = 4.20 x lO6 psi

Ez = 10.20 x 106 psi

G = 2.7 x 106 psi

V xz =0.11

= 0.26

where the relation Ex vzx = Ezvxz is approximately satisfied.

111.7. Discussion of Results

Theories of varying degrees of accuracy may be obtained as special

cases of the general theory which considers transverse normal stress and shear

deformation. For the limiting point "a" as well as the bifurcation point "b"

(Fig. 8), the more accurate the theory, the lower the critical load is found

to be. The load-central deflection curves for x = 56.7 are shown in Fig. 8

and their enlarged upper portions are shown in Fig. 9. The discrepancy in

critical load for the classical theory developed in the last chapter and the
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one obtained as a special case from the general theory is about 1.3 percent

of the latter. This discrepancy is a result of a different network of gridI
points involved in the finite difference formulation of the fourth order

derivative in equation (2.18b) and the combination of first aaid third order

derivatives in (3.43) and (3.44) respectively. For comparative purposes,

all theories will be compared to the classical type theory obtained as a

special case from the general theory which includes transverse shear as well

as transverse normal stress effects. For h/L = 1/60, the asymmetric critical

load corresponding to classical theory is about 4.3 percent higher than that

found when the transverse normal stress and shear deformation theory is

employed. Also the load found fro .i modified shear deformation theory

(C2 = a = y = 0) is only 0.7 percent greater than the general theory. The

shear deformation theory (C1 = C2 = a = Y = 0) runs 1 percent higher than

the modified shear ,et-rmation theory. Similar results are obtained for

= 35.0 as shown in Fig. 10.

The shear effects become very significant when the arch is moderately

thick. For x = 13, h/L = 1/13.3 as shown in Fig. 11, the critical load found

from classical theory is 16 percent greater than that found when normal stress

and shear are considered. However ne difference between results obtained

from the modified shear theory and the normal stres and shear thenry is

usually less than 2 percent. In this case the shear deformation theory (with

C1 = C2 = a = y = 0) is not adequate to describe the behavior of the arch

since the critical load is about 8 percent higher than that found from the

modified shear deformation theory (C1 ' 0).

The comparison of the critical loads found from the classical as well as

the shear and normal stress theories is shown in Fig. 12. The percentage

difference betWeen results obtained from the former and the latter theories

is noted.
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I CHAPTER IV

EXPERIMENTS ON RADIALLY REINFORCED ARCHES

IV.l. Introduction

Experiments were carried out on arches composed o- resin matrices in

: jwhich were embedded small diameter glass fibers each oriented toward the

center of curvature of the arch. This type of construction was first pro-

duced for laboratory purposes by Uniroyal, Inc. [23). The nature of this

composite material makes it well-suited to withstand loadings normal to

its convex surface. Such loadings would occur in deep submergence pressure

j hulls. Evidently during hydrostatic loading both the resin matrix as well

as the glass fibers are acting in compression and the resin is restrained

I from extrusion from between the glass rods by shear coupling, thus placing

the glass filaments in a state of axial tension. It has been demonstrated

that spherical shells constructed of such radially oriented reinforcement

have extremely desirable weight/displacement relations [24].

The objective of the present experiments is to investigate validity of

I the various theories developed earlier in the present investigation.

I IV.2. Fabrication ef the Material

Fabrication of the radially ;einforced arches was carried out in

accordance iith the following procedure:

(a) Material: The material utilized high strength S glass roving

embedded in an epoxy resin which is marketed through Miriesota

Mining and Manufacturing Co. under the designation of 1009-26-S

which is a glass impregnated tape one irch wide and 500 feet in

I length. The glass fibers are of course oriented in the 500 foot

direction. The tape is cut into short lengths each corresponding

to the desired thickness of the arch, in this case 0.25 inches.
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(b) Curing: To build srIl mosaic-type curved blocks, the 0.25 inch

I lengths of tape were stacked into a curved mold having a 16 inch

radius of curvature. A spring force in the direction of the arcn

middle-surface was applied so as to develop a pressure of

1 2000 lb/in 2 to compact the short lengths of tape. Holes were

provided in the mold to permit escape of excess resin. The mold

I was then placed in a small oven and the mosaic block cured at

temperatures of 300OF to 325°F for 30 minutes. The cured block

contained about 80 percent glass.

I (c) Post-curing: The cured mosaic-type blocks were joined to one

another by an epoxy ef minimum thickness so as not to influence

I the resin content of the resulting arch. The entire assembly

g was tnen placed in a larger mold and cured again at 350OF to

375 0F for four hours.

In addition to arches constructed by the above technique, additional

specimens were provided by Uniroyal, Inc. The physical properties of the

resulting composite are described in [22] and Fig. 13(a) illustrates the

nature of the material.

IV.3. Description of Test Apparatus

The test apparatus consists of a loading fixture which includes end

supports for the arch as well as a system to provide lateral pressure on

the convex surface of the arch. Also, a system of transducers for measuring

displacements was developed.

(a) Support conditions: The ends of the arch were clamped by means of

Utwo metal blocks tightened around the arch by means of two bolts.

One of these bolts went through the end of the arch. It was

believed that this corresponds reasonably well to a clamped end

condition, as illustrated in Fig. 13(a), A slot corresponding to

the curvature of the arch was milled into the blocks so as to

provide good clamping. This technique for simulating a clamped
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end was first tested for a straight cantilever beam and found

to lead to deflections in good agreement with simple beam theory.

On this basis it was considered a good representation of a clamped

end condition.

(b) Deformation measurement system: Radial displacements were moni-

tored by use of three Schaevitz Linear Variable differential trans-

formers, Type 300-SSLT, henceforth designated LVOT. These units

each has a range of t 0.3 inches with a linearity larger than t 1

percent of the full range output. Each LVDT consists of a three

winding transformer together with a remov3ble core as illustrated

in Fig. 14(a). When the core is centered with respect to the two

secondary windings the induced voltages V1 and V2 are equal. As

the core is displaced toward either secondary winding that induced

voltage increases whereas that from the other secondary winding

decreases. When the core is attached to the arch the radial dis-

placement of the arch can be monitored. With the aid of some

additional circuitry the interpretation of resu'ting data can be

made easier. The circuit corresponding to this is shown ir Fig.

14(b). With the core in the central position the output voltage

%4S CqU.1l 1- ZeroG anid as t"E core oe MPUES PO-t~iy tile VUii9P
1 0  IS ..1 . . .. . . UII .. ,. p s l

increases positively and vice versa. Fcr full core displacement

of t 0.3 inches the output voltage changes by approximately t 3

volts for a 6.3 volt excitation of the primary.

The arch displacements treated were of the order of magnitude

of the arch thickness, i.e. 0.25 inches. It was anticipated that

the maximum radial displazement would be no more than 0.5 inches.

Because of this the core was attached to the arch after a positive

displacement of 0.25 inches of the core had been imposed. This

leads to a useful dis-lacement range of 0.50 inches whicn is within
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t2 linear range of action of the LVDT.

The output voltage v0 was monitored by a Honeywell Visicorder,

Type 2106 which displayed voltage changes on a six inch wide strip

chart. The signal conditioning amplifiers were adjusted io that

a core displacement of 0.5 inches (measured from the pre-set 0.25

inch position) gave a full five inch displacement or, the chart

paper. Thus, 0.1 inch of deflection on the chart corresponds to

0.01 inches of arch deflection.

(c) Pressure loading system: The pressure system consists of an oil

jack, a pressure chamber, and a pressure gage.

(1) Pressure chamber: This was formed on the convex side of the

arch by bounding that side by a concave shaped piece of hard

wood together with two 0.5 inch thick plexiglass sheets, one

J on either side of the arch. The plexiglass sheets were bolted

together through the hard wood as well as through the arch

supports. A bicycle-type inner tube was placed in the space

between the arch and the hard wood and connected to the oil

jack. Uniform hydrostatic pressure was then applied to the

convex side of the arch by pumping oil into the extremely

flexible inner tube.

(2) Pressure gage: A gage manufactured by the U.S. Gage Co. and

capable of monitoring pressures up to 200 lb/in 2 was connected

between the inner tube and the oil jack. The gage was of

jcourse calibrated prior to testing the arches.

(3) Oil jack: A Hein-Werner Pushmaster Hydraulic Pump Unit Model

FP-4 was employed. It was found that ordinary jack oil rather

quickly damages the rubber in the inner tube so paraffin oil

was employed.
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I IV.4. Test Procedure

The cured arch was clamped in the metal blocks and this assembly

I |surrounded by the plexiglass plates and hard wood backing for the inner

tube. The core of each LVDT was epoxied to the concave surface of the arch.

One transducer was located at each quarter point of the arch and one at the

I mid-point. Figs. 13(b) and (c) illustrate the test apparatus.

The output sides of the LVDT's were connected to the input side of the

Honeywell Accudata 117 DC Amplifier and the LVDT's energized by means of a

transformer operating from the 115 volt AC source. The amplifier was acti-

-U vated and the ultraviolet light beam centered on the chart paper. The gain

was adjusted so as to keep the trace on the chart. With the aid of a micro-

meter the LVDT was displaced in the direction of the convex side of the arch

I by 0.25 inches and the LVDT locked in position.

Oil pressure was slowly applied while the Visicorder chart paper was

driven at 0.5 inches/sec. LVDT readings were taken at 10 lb/in 2 increments

until arch collapse occurred.

IV.5. Test Results

Eleven arches were tested and the results are indicated in Table 1
and plotted as lnad-deflection r i F T4n p t . .. -I-.. . .. . ..... . . -.. . $ n F .tj 9% , oi 5 a ilI tb,,,, "Co-IIpari-

son between the various theoretical results obtained earlier in this study

I and experimental evience.

Specimens 3, 9, and 10 possessed some slight imperfections in bonding

of the various mosaic-type '-locks into the arch configuration arid accordingly

exhibited lower strength characteristics than did better constructed speci-

mens. Specimens 1, 2, 4, 5, 6, 7, and 11 collapsed into a nonsymetric

configuration upon buckling. For all of these specimens, collapse occurred

in the neighborhood of 135 lb/in 2 or slightly more, which is in good agree-

ment with theoretical predictions based upon an asymmetric buckling mode.

A somewhat greater collapse pressure was found for Specimen 8. This a-ch
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Ideflected symmetrically up to approximately 130 lb/in 2 but finally buckled

into an unsymmetric configuration. Figs. 13(c) and (d) illustrate this

I arch as progressively greater pressures were applied.

IThe experimentally obtained arch displacements were usually somewhat'

greater than predicted by theory. This is attributed to (i) too great

a resin content in the mosaic blocks, (ii) nonhomogeneities in the

blocks, and (iii) a fully clamped condition was not achieved at the

I supports.

An overall characteristic of the arches was a slight brittleness.

This is not necessarily an inherent property of such a composite material

U but is believed to be due to impurities or possible dislocations in the

specimens.|

I

I
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ICHAPTER V

j CONCLUSIONS

I The analytical results obtained from the classical-type theory lead

to higher buckling loads : if transverse shear effects are included.

Inclusion of transverse normal stress effects in addition to transverse

shear still further decreases the predicted buckling loads. The predic-

tions of these three types of theories are in closer agreement as the thick-

j ness of the arch decreases.

The transverse normal stress effect on a thin or even a moderately

thick arch is small and can usually be reglected. However the effect of

transverse shear is quite significant even in the case of a thin arch.

I For the theory incorporating shear deformation effects the modification in

strain-displacement relations achieved by not completely neglecting terms

of the form z/R leads to predictions in better agreement with experiments

than if these terms are completely neglected.

It was found analytically that the dimensionless parameter x can be

used to characterize regions of symmetric and asymmetric buckling. The

value of 10.8 for this parameter separates these types of hacrlelng for a

hinged end arch and a value of 25 for a clamped end arch.

j Predictiors of the general theory developed in this study, which

includes transverse shear as well as transverse normal stress effects are

in satisfactory agreement with experimental evidence and permit reasonabl,

accurate predictions of load-deflection relations of a uniformly loaded

arch fabricated of radially reinforced composite material.
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