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NOMENCLATURE

Span of the arch
Young's moduli

Shear modulus

Rise of the arch
Thickness of the arch
Arc length of the arch
Moment resultant
Stress resultant

Number of the grid point on the arch used in
numerical analysis

Uniformly distributed transverse load

Critical uniformly distributed transverse load
= q/k,

Nondimensional load = qL4/EXh4

- qLYE b

Radius of curvature of mir.dle surface

Force resultants contributing to the transverse
normal stress

Tangential displacement: compopent at an
arbitrary point

Bending strain energy
Membrane strain energy
Strain energy density
Strain energy of entive arch

Tangential component of displacement of the
middle surface

Change of slope of the normal to the middle surface

Radial displacement component at an arbitrary point
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Radial component of displacement at the middle surface
w at the mid-point of the arch

Elenents of power series expansion of W,
contribution to the transverse normal strain

Initial radial imperfection

Amplitude of initial radial imperfection
W,/h

; Woo/h

Coordinate extending from one end of the arch along the
middle surface

Coordinate of an arbitrary point measured along the
outward normal to the middie surface

= w/h

Angle of extension of the arch

= (L/h)-w'

= (L%/h)-w"

Central dif.erence operator
Components of direct strain
Component of shearing strain
Component of direct stress
Component of shearing stress
Poisson's ratios

= L2/Rh (Geometric arch parsmeter)
Potential energy due to external load
Total potential energy

(L/h%)-u

(L/h)-u’

da

dx
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CHAPTER I
INTRODUCTION

The shallow arch represents one of the simplest realistic structures
from which many of the features of elastic instability theory can be
illustrated. As a result of this simplicity the various existing theories
which have been proposed to describe the behavior of an arch, as well as
the methods of constructing such theories, have received considerable
attention for over fiTty years. More recently, due to the development of
new types of materials being considered for use in submersible ard space-
type structures, it has become desirable to include anisotropic material
properties in the theory.

The current investigation will be devoted primarily to the problen
of structural behavior of an elastic orthotropic shallow arch inciuding
transverse snear and transverse normal stress effects and underyoing
finite defiections. The effect of initial imperfactions is also considered
in order to investigate possible bifurcation of the arch.

The general theory derived here, vhich considers transverse shear and
transverse normal stress existing in an orthotropic arch is later specialized
to the case of an isotropic arch with a consideration of shear deformation
and is further specialized to the still simpler theory of the classical arch
which is then compared to a theory derived independently. For the case of
asymietric deformation the transition from the initial state to the buckled
state is shown to be connected with geometrical imperfections present in the
structures,

A suryey of the 1iterature on arches reveals that many papers have been
published pertinent to the classical theory of arches. A general discussion
and significant references up to 1955 covering buckling problems of circular

rings and arches is given by S. Timoshenko and J. M. Gere [1]. These authors
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show that in the case of very flat arches, buckling in which axial strain is
considered may occur at a smaller load than inextensional buckling. Timoshenko
assumed that the center line of the deflectec arch as well as the initial no-
load shape is & half wave of the sine curve and arrived at a very simple solu-
tior. A very complete investigation of structural behavior of a shallew arch
is attributed to Y. C. Fung and A. Kaplan [2]. These authors presented a
series solution for the case of an arch having a siausoidal configuration at
no-load. They also Tound that instability may be associated with a bifurcation
into an asymmetric buckling mode. The same approach was employed earlier by
C. Biezeno [3] but for the case of a circular arch loaded by a concentrated
normal force at the center. K. Federhofer solved the buckling probiem of a
parabolic arch in 1934 [4] and discussed +he dynamic problems of arches and
rings later [5]. K. 0. Friedrichs [6] and K. Marguerre [7] derived the
equations for a circular arch under uniformly distributed pressure by vari.-
tional principies. K. 0. Friedrichs pointed out that the uniform load corre-
sponding to unsymmeiric bucklirg could be much lower than that for symmetric
buckling #nd in addition advanced a criterion for the buckling load as "the
lowest Tcad at which a buckled state exists having the same energy level as
the unbuckled state at the same load." The so-cailed equal-energy criterion
due to A, Gjielsvick and S, R, Badner 721, although
a proper buckling criterion may lead to an "energy load" that represenis a
significant lower bound to the buckling joad. h. Schreyer and E. Masur [9]
gave the solutien for the structural behavior of a clamped circular, shallow
arch together with a detailed analysis of the various buckling criteria by
considering the buckling equations and using the change in potential energy
between the buckled and unbuckled states.

Notable contributions to the theories of higher oraers of accuracy which
include the effects of either or both transverse normal stress and shear

deformation are due to F. Hildebrand, £. Reissner and G. Thomas [10], A. E.




Green and ¥. Zerna [11], E. Reissnar [12], and by P. M. Haghdi [13]. In

reference [10], orthotropic shells are considered and the various theories

which are derived from different approximations in the assumptions are com-

pared and discussed. A. E. Green and W. Zerna concluded that the inclusion
of shearing forces is likely to be of importance mainly in the case of

edge effects. E. Reissner's work on obtaining stress-strain relations by
removing the first approximation of Love [14] results in some simplifications

as compared with those given in [10] and [11]. Later P. M. Naghdi included,

mel e

in addition to the transverse chear and transverse normal stress, the rota-
tory inertia in isotropic shell analysis. E. Reissner [15] in a separate
work discussed a problem concerning the torsion of a rectangular plate and
this work has become the standard of comparison in the linear bending theory

of elastic flat plates which includes transverse shear effects. In the large

Powsen) — L

deformation range, P. Wilson [16] investigated the elastic circular flat plate
With the transverse shear effect taken into account and R. R. Archer [17]
derived a nonlinear shear deformation theory for isotropic sheils. In the
present investigation, the initial imperfections are also introduced to
achieve better correspondence with the true structure. This leads to lower

buckling loads.

e |
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CHAPTER II
CLASSICAI, THEORY

II.1, Introduction
In this chapter the classical theory will be developed and the critical
loads corresponding to various values of the arch parameters, A , will be
determined, The von Kérman type nonlinear strain-displacement relations are
used. The arch considered here is circular, thin and shallow. In order to
obtain a theory for the arch which is similar to the Euler-Bernoulli beam
theorem, we make the following assumptions:*
(a) A normal to the undeformed arch middle surface is deformed without
change of length into a normal to the deformed middie surface.
The change in direction of the normal to the middle surface is
neglected, Thus the change in direction of the transverse load
is then neglected.
(b) The stress in direction of the normal to the middle surface is
small compared to the other stresses.
(c) The ratio of thickness h to the radius of curvature R, is negligibly
small compared to unity.
(d) The magnitude of transverse deflection is of the same order as the
thickness of the arch.

(e) The load is considered to be applied at the middle surface.

The theory is called classical in the sense that it is based on these assump-
tions which result in ignoring the effects of shear and the transverse
normal stress.

Based on these assumptions, the governing differential equations are

derived by the principle of minimum potential energy. A finite difference

* This assumption is similar to the Kirchhoff assumption of plate theory or
Love's first approximation of shell theory.

e o
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scheme together with Hewton's iteration technique is used to solve the equa-

tions. Initial imperfections are also considered.

I1.2. Strain-Displacement, Stress-Strain Relations

Let the origin of an x-z coordinate system be located at one end of the
arch with x being the -oordinate extending along the middle surface ¢f the
arch and z being the distance of an arbitrary point measured along the outward
ncrmal to the middle axis of the arch (see Fig. 1(a)). For strain-displace-
ment relations, let us employ the von Karman type approximation in which the
only non-linear terms retained are those corresponding to quadratic effects
in the transverse displacement and its derivatives. Thus the strain-displace-
ment relation is

W

W
) W,o1r o 2 1,M2 Y%
ex"U’x+R+§[ T, "?(ax) R (2.1)

where U,W are the dispiacement components at an arbitrary point in the arch in
the x,z directions respectively and W, is the initial imperfection in the radial
direction (see [18]).
The Euler-Bernoulli type theorem as stated in section 2.1.1eads to
U(x,z) = u(x) - z[w(a) + W (x)1s,

(2.2)
H(x) = w(x) + wo(x)

where u(x) and w(x) are the components of displacements at the middle surface.

By substituting (2.2) into (2.1), the strain-displacement relation

becomes
€ u,, + o + l-w,2 + W, W, =2 (W, *tW )
X X R 2 M 0,X ’X TXX 0,XX
o (2.3)
= +
€y ZKx
where =y, + 8y lw.z +W W, and K, = =W ~ W are the middle
X 'x R 27 0,X 'X X XX 0,%XX

surface strain and the change of curvature, respectively.
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The stress-strain relationship, assuming Hooke's law holds, is
Ux = Eex (204)
or conversely
g
= X
€y = T {2.5)
11.3. Derivation of Equilibrium Equations and Hatural Boundary Condiiions
The strain energy density U0 is a function of the strain component {191,
j.e.:
U0 = Uo(ex) (2.6)
If the displacement vector (u,w) receives variations (su, éw), the strain
tensor assumes a variation sex and the corresponding variation of Uo is
au
—]
GUO = aex Gsx.
It has been shown that the foljowing relation holds for a Hookean material in
the large deformation range [19],
)
% 3£x
Therefore
8U, = o8¢, (2.7)
Substituting (2.3) intc (2.7), one finds
= e laec® \
GUO cx\hex + ZGKX,.
Let the first variation of the strain energy of the entire arch be GUT. Then
sU, = fL %.GU dzdx
T h o
07
h
L7 0
. f I Z o (62 + 26K )dzdx (2.8)
o a——
2

A s T s e A - N
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=00
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8
or
sU. = y 2-E£°<s°+z(°5i< ¥ K. 6% + z2K. 6K ]dzdx
L PR B T S S TR S S X O0x
Upon integration with respect to z, one finds
L 3
- e O Eh
= 5U + aub
vihere 6Um = I Eh € oeg dx is the membrane strain energy and
0
L
GUb = [ g?? K, 6K dx is the bending strain energy.
10 A
The force and moment resti*ants, H and M (per unit width of arch)
sho=r in Fig. 1(b) take the form
{b_
=12, o
N = J_ﬁ_'xdz (2.10)
2
h
I Y
M= I-b.zexdz, (2.11)
2
which upon integration with respect to z become
- W 1
Nz Eh(uy, + 32+ Wy Wy + 3 mQ ey
(2.12)
M= -Eh3 W+ = Eh3 K
'T??( 0 'xx 12 X
Subszituting these force and moment resultants into the first variation of
the zotal strain erergy (2.9), we get
o=
6Uy = 0 -
T ‘o[N Se, + M6 K, ] dx (2.13)




(== R =T S W

DR S o

bt

RS GRs D60

it S~V B R, )

Now, substituting (2.3) into (2.13), we get
L 1
oy = [o (NES(us,) + 80+ 801 + Way 6(uy,)]
-MCG(w,xx)]} dx
The potential energy due to the external load q is
L
Q= = J q(w + wo) dx
0

and the total potential energy I is then

I = UT + Q.

By variation of 1, we get the equilibrium equations and the associated

natural boundary conditions. The equiiibrium equations are:

N,x =0
1 -
N(ﬁ" Wayx = wo,xx) - Moy -a=0

and the natural boundary conditions are:
N =20 oruprescribed at x =0 and L
Hw,x + M,x = 0 or w prescribed at x = 0 and L*

M=0or Wy prescribed at x = 0 and L

Substituting {2.12) into {2.16), ve get

Usyx ¥ R Wy ¥ Mg x Wagx ¥ Yo, xx Wox ¥ Wayg Wayy =0
—1—(Eh3w +w) +ER Uy, + R 4w, *dw,)
2'0 T XXX ’x R 0,X ’°x 2 "'

1 -
(R~ Vg, xx ~ Wagy) ~ 9= 0

I1.4. Solution to the Equations

Let us introduce the following nondimensional variables

* Nw,x + M.x corresponds to shear forces V in Fig. 1(b).

(2.14)

(2.16)

(2.17)
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X = Ls
2
< ho
U=t
w = ha
W
- _ "
Yo T W
2
= L
and A = R
The equations (2.17) then take the Torm:
Srgg t Aasg ﬁs,s %seg F ﬁb,ss Usg ¥ esg Ay = 0 (2.18a)
e +%) Pt =) (s, + Ax # T, _ ay +ay2) - Q= 0% (2.18b)
T2t 0’ ?ssss 0,55 ~ %1gs/ \¥ig 0,5 s © 2% .

where Q = qL4/Eh4

Let us next Tinearize these equaticns in order to obtain a system that
can be treated by Hewton's iteration scheme [20]. Regarding the displacement
components ¢ and « and their derivatives as independent variables, let us
expand the nonlinear terms of those variables into Taylor series using as a
starting point the no-load equilibrium configuration and retaining only the

nonlinear parts. Typical expansions of the terms are as follows:

Usg Gagg = Grg Pagg “’s(“’ss “’ss) “’ss(“’s “’s)
;] 3 : -] E . 4
S 0y, Qe + Oree X3 = a:s ‘oo
2 4 - t 1§ ] 2
= + -
Urgg rg = 20go G Gag U Byoo = 2050 Arg

where the double barred quantities are the estimates of the same unbarred

quantities. The linearized versions of the equations (2.18) are

+ + W + W + + =
Prgg T ABsg T My o Gage F W, g Bag T Bags Gag a0y Tl oo

(2.19¢)

1 -
17 ®rgsss T (A - aagg - Yo, Wy, ss) (dsg * da ¥ ” s Org F Gag Gyg)

* In [6], because of (2.16), (q,s + Aa ”o g Grg * %-a,g) was treated as constant.
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Py = 1=2 .. L 1,=2 =
gt lat g oy = -y Wo,s585 T 2 Mg - El’s Uags
(2.19b)
S A Gy = Gage Gag = T Hy o Bag = Wy o Bag age F 0

The quantities without bars in (2.19) are approximated by central differences.
If we select R internal grid points in the x direction, the grid increment is

then 1/M+1 and equation (2.19) becomes

2 .2 D 2 — 2 D — D=
D™ 85 &5 ¥ g Aga; + DT W, o 85 0y F oWy oo 8o as s 8¢ oy
- - = {2.20a)
+ D2 o, 62 . = a,,. Oy
s % 9 s *iss
D4

':’ss) (%55 ¢1’+A°1'+'[21;’. 6 °‘1‘+g':’s §s “i)

4 —
176 ot (A - ¥, 0,5 °s

3SS

- - ]m2, 2 1 = ] .=
“(oag t dat 7o) BT 80 oy = -y 0,555 T 2 A%
2
s

2 - ow

§ 7 Prg Hrgg

= = e 1-2

-Aﬂa,

where D = ﬁ +1
8 &1 % %441 7 941

5417 285 F 44

(=]]
n o N n
©-
-t
]

417 Sqep - M40 T4 - B4 0y

Equation (2.20) represents a system of 2 N simultaneous nonlinear algebraic
equations which are solved by Hewton's iteration scheme vsing 3 digital
computer. Ordinarily this has been done by input load increments as the
known quantity to solve for ¢ and «. However the procedure fails to give
any information on the load-deflection relations after the first peak lcad

is reached, since the slope is zero at this point and the computer yields
unstable solutions. For the present case involving a consideration of imper-
factions, the extension of the load-defiection curve past its peak becomes

desirable to be able to obtain the lower buckling load.
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IT deflection instead of load is employed as the input and load regarded
as the unknown quantity, the above-mentioned difficulty is avoided and the
load-deflection curve can be extended. But since the buckled mode shape of
the arch is yet to be determined, the input of deflections is not realistic.

As an alternate approach the summation of all radial displacements, i.e., the
change of area between the arch and its base 1line can be employed by introeduc-
ing an additional equation relating the ared to the radial deflections, namely:
ARER = —— rza .
N+l §=1
This equation together with the previous 20 equations forms a system which

has the right number of equations after the 1dditional unknown Q is added.

Let us write the system in matrix form

[A] [X] = [B]

where [A] is a coefficient matrix, [B] is a constant column matrix and [X]

the unknown column matrix. The Tloading term Q in (2.20b)is moved to the left
hand side of the equation and is included in the unknown matrix [X]. The
double barred quzrtities in [A] and [B] are assumed to be zero at the beginning
of the iteration or more precisely, the displacement components are assumed to

he zero at the beginning

©

f the iteration, T!

P
meter AREA in [B] i« qiven successive increments and the dispiacements

determined. If the :&lculation fer displacements converges, a further incre-
ment is employed.

If we neg'ect the imperfection terms in the equations, the solution
5r radial displacement u in general is symmetric with respect to the mid-
point of the arch, since the equations are expressed in central differences
and the boundary conditions are symmetric, However the symmetric characteris-

tics of the syscem are of course disturbed if we impose an antisymmetric mode
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of initial no-load imperfection. The resulting solution is then an asym-
metric one and instability occurs at a Jower load than in the case of
symmetric buckliry of an initially perfect arch.

For the hinged end arch, an antisymmetric sine curve is assumed to

represent the no-load configuration, viz:

W, = Yoo sin 2as

where WB is the amplitude and a numerical value of 0.04 is used for numeri-

0
cal analysis. For the clamped end arch a poiynomial correspending to

clamped end conditions and antisymmetric with respect to the mid-point of

5 4 3., Esz],

0
where A = 2,048910 x 10"8, B=-1.137778 x 107, C = 2.844444 x 102,

D= - 2.,275556 x 102, E =5.688889 x 10 and Woo = 0.04.

arch is used. The polynomial is w_ = Woo [As6 + Bs” 4+ Cs’ + Ds

2

I1.5, Discussion of Results

Typical load-deflection curves for hinged end and clamped end arches are
shown in Figs. 2 and 3 respectively. There, the asymmertic solution is
obtained b, imposing antisymmetric initial imperfections while the symmetric
solution is the one obtained by setting the amplitude Wbo equal to zero. To
determine the load-deflection relations shortly before point "C" of Fig. 2
nas been reached, the impe
form to appear) is taken to be zero and the return branch cb is found. The
bifurcation point "b" where the returning curve meets the symmetric curve is
about Z5 percent lower than the point "a" in this case.

The variation of load-deflection relation with the geometric parameter
A is shown in Figs. 4 and 5. Figs. 6 and 7 show how the critical load
increases with A, From these figures the following conclusions* can be drawn:

(1) For the hinged end arch:

(aj For A £ 6, no buckling occurs;

* [igures are approximate values,

— - i vy
. — - -

oy
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(b) For 6 s x =10.8 (10.5 by Y. C. Fung and A. Kaplan [2]),

the buckling mode is symmetrical;

{c) For > 210.8, the asymmetric buckling criterion holds. The
asymmetric solution found here agrees very closely with Y. C.
Fung and A. Kaplan's solution [2] which is also plottad on
Fig. 6.

(2) For the clamped end arch:

(2) For A £10.0 (11.4 by H. Schreyer and E. Masur [9]), no
buckling occurs;

(b) For 10.0 s x = 25 (22.9 by H. Schreyer and E. Masur [9]),
the arch behavior is governed by the symmetric criterion;

(c) For a 2 25, the asymmetric buckling criterion holds.
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CHAPTER III
TRANSVERSE SHEAR DEFORMATION AND TRANSYERSE
NORMAL STRESS THEORY TOGETHER HiTH A
CONSIDERATION OF INITIAL IMPERFECTiONS

II1.1, Introduction

The Euler-Bernculli beam type theorem assumed in section II.1 which is
similar to the Kirchhoff assumption of plate theory or Love's first approxi-
mation of shell theory results in neglecting the transverse shear deformation
and transverse normal stress.

Due to recent duvelopiments of new types of material, the orthotropic
feature of many materials must be taken into account. The present investi-
gation is particularly concerned with materials in which the reinforcement
consists of glass fibers embedded in an epoxy mat:rix with every glass fiber
oriented toward the center of curvature of the structure, in this case an
arch. This radicl filament construction effers the advantage of the fiber
being loaded in transverse compression rather than in axial compression
which may lead to column-type instability. The resin is restrained from
extrusicn from between the glass fibers by shear coupling to the fibers,
thereby placing the filaments under axial tension. Thus the inclusien of
transverse normal stress and shear evfects may be of importance. With inclu-
sion of these effects, arn Euler-Bernoulli beam type assumption is inade-
quate. And a modification to Euler-Bernoulli type assumption (c) lias in
not completely neglecting the ratio z/R with respect to unity but instead
writing T3%7§': 1- §-+ (g)z ia the strain-displaceent relations.

The initial radizl imperfections of the middie surface are included in
the derivation to more nearly agree with reality. This leads to a lower
asymmetric buckling 1cad. Reissner's Variational Theorem [21] is used to

derive the equilibrium equations as well as the stress-strain relations.
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The numerical method outlined in the foregoing chapter is used to sofve the

equations

I1I.2. Strain-Displacement Relations
Let us use the coordinate system described in section I1.2, and also the
von Kdrman type non-linear strain-displacement relations. The transverse

normal strain ¢, and transverse shear strain Yyz together with €, NOW des-

2
¢ribe the state of strain, viz:
-1 1 1, 2
CX 1_:% ‘U’X R) t — (1+_) ( Nox + N’X wO,X)
CZ = w’z (3.])
1 1
Y = ——'w + '.;’_' - U
Xz 1+§= z R(H%)

where w, is the initial imperfection in the radial direction (see [18]). Let

us introduce the displacement approximations

U (x,2) = u (x) + z¢' (2) (3.2a)

W {xs2) =w (x) + zw' (%) + %—zz w' (x) (3.2b)

Substituting (3.2) into (3.1) and multiplying (3.1a) and 3.1c) by (1+§), we

get
2 - 0 22 ﬂ n 4 e 5 1V 6 v
(HR) ey = ey + 2K, + 5= K, 3, Ky E' Ky' + 57 Ky ET Ky
_ 0
€, = ¢, + ZKZ (3.3)
= .0 + 2 1
(1+3) Yyg = Yyp t 2Ky ¥ 5 Ky,
where
0 _ 1 1.2
ex = u,x + R W+ 2 W.x + W,x Wo'x (3¢3d)
LI I I ! ¢
Ry 5 Uy P RY = g Moy T oy Way T Woy Wy o = 1 Way Wy o (3.3e)
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l Coq a2 . 2 L6,
Ky = g W T Wy Wy Woy - Woy W’x"‘%’é""”x +;{2—"’x ¥o,.%
.; E 2C-| ' " (3‘Jf)
4 = R Yo,x ¥ox T ¥o,x Wix
! " '| ] " c“ l2 ] 1] . C ] C'I 3
F Ky = 60l Way Wy = gr¥ay = gE ¥y Woy & Eé'w’x Way # Ez"”o,x Yoy
l C] 1 (3'39)
" 7R Yo,x w’x)
| " ll2 C] ! " C] '2 C} " ] “) (3 3! 3
" 1 - =Wy, Wy + =5 Wy, + —5 Wy, Wy, + W W .3hj
i Kx = 24'(8 w’x 2 X 'X ZRZ ’X 2R2 X ’X E-Rf O’X ’X
. c c
iv _ . 1 n ....l. ] " ns
Fi 1 K, = 120 (- TR Yoy * po Wiy w,x) (3.37)
’ C, w2
KY = 720- (5w, ) (3.33)
‘ 8R
o_.' a
I €, = W (3.3k)
1"
I Kz =W (3.31)
o _ u, '
sz "R +u + w’X (3.3:'11)
¥ ]
Keg = Wy (3.3n)
] "
: and Kyy = Wiy (3.30)
The coefficient C] is introduced to distinguish the modification in this theory
S Trom the Culer-Bernouiii type theorem.
E‘ 111.3. Derivation of Stress Strain Relations and Equilibrium
Equations
3 If the force resultant N, the moment M and the transverse shear resultant
| V (all per unit length of middle surface) are defined in the conventicnal manner,
i viz:
' h h L
2 [2 2 '
N = hoxdz,V=Jhrxzdz,M'—‘ hcxxzdz. (3.4)
, ] "z ¥] 2




——

24
then we as.ume that (see [13])
N M 2z N, 12M
o mly M 2z B M, (3.5)
x BT 2ehZ h % .
_3Yy 2 2~ _ N, 425
ez - G T - h2] (3.6)

(148) o, = ¢, {32+ - (10 - (520 + 3 ISy - 351 (3.7)

Here the functions S and T are as yet undetermined; q is the valuz of the

load applied at the top surface of the arch,

H=1+D2
and CZ is introduced for the purpose of distinguishing between the contribu-
tions of transverse shear deformation and normal stress, (Cz = 0), otherwise,
it should be regarded as unity.

A convenient derivation of appropriate stress-strain relations, equili-

brium equations and natural boundary conditions can be carried out by means

of a variational theorem due to Reissner [21], viz:

2

e {[ff Dogept vyt 0,6, - 2] (1) dx dy dz

(3.8)
h 1 hz 11} c-‘
-ffaw+Zw +3 w) (1+ 5) dx dy} =0
where for an orihotropic material
3 E
_1 -2 Y2 2 x 2 ‘s
h = ?E; Loy *34x%2 7 8 Taz 2vy; 04 0,1 13.9)

Integrating {3.8) with respect to z, carrying out the variations and
integrating by parts, the stress-strain relations, the equilibrium 2quations
and associated boundary conditions are obtained.

The coefficients of Jw’ and 6w" give the expressions for S and T res-
pectively. A simplification is made by neglecting the nonlinear terms and

also the shear term V, since as the arch becomes thinner the effects of S and
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T, i.e. the effects of transverse normal stress, becomes negligible. Thus
the equation (3.5) in reference [13] is used:
5=.H4
> = R (3.]0)
H .
T=-%N+-3—g—q (3.11)

The coefficients of &l and 6M give the relations for M, N and displace-

ment components. They are

Cv
= CAA 2 xz . . ,
N=Eh (M) [1- g (1+ 5] + Eh - CAA - (BB)

3.12)
Cv Hq Cov (
__ZJ__[CAA (1+2xz)-3-CAA+h]

Eh

. C,v C,ov Cov
M=ca - 0+ -5XE () - £ - BB + 22 g 21+ 222 L33} (3.13)

where

Cov
CA = 1/[;7(1 o N URT A :Ti-]

CAA=CA-(1+ szxz)/R
2 4 o1 h6

=04 R h v
M=l + Jp K+ gl K+ 61-448 Kx
2 4

) A L
BB = Ky * 3020 K¢ * 51117 K

The coefficient of 6V gives

2
- 56h ; 0 h* ' \ _ 5Gh
V=== (sz + sz) "%

AN
v

- CC

o~
(78]
.
ot
e

~

where

2
2 h !
€=v,*zg Kz

Equations (3.10) through (3.14) are the stress resultant-displacement
relations.

The coefficients of su, Gu', 6w, &5 ana §T, in this case yield the five
equilibrium equations. These are

Hy, + %= (3.15)

X

My -V =0 (3.16)
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¥ : 2w bl ol ot
¢ N [- R Wox * ¥Wo,xx EZ'"’ TR W * 12Rz (w’xx * wo,xx) * IGORZH’XXJ
i I L L et
! F Ny sy Wyt o oy - ToR Wy ToR2 (y, + Wy ) 160R L
F !i ¢, oo, 3C]h2 ,
tH - (w’xx ¥ wo,xx) T ¥ayx < THOR Woxx Z&Tw’
Mo = 5 o # W, # ¥y = TR Moy + g Wayd
i +V, Q=0 (3.17)
i SR RS I /L S o \ PR L
E h 2 Xz 28R2"zx Exhz Rv,, 5 70'752 EE'xuzx ~ 35R
' 2 Hg + C (3.18)
) t — q + G *
: 20R° 2
3 _jL_E?“xzh (1, h y + M Covxz (- b ) - Covyz d_h
i Exh ZR‘,ZX 7 84R2 Exhz 5 ‘4R2\:zx' ZOEX\)ZX 6R
LR & (3.19)
+ P Het—55K. =0 3.19
i 188% 60 "z
5 From (3.16)
g V= H’X (3.16a)
{ g Substituting {3.16a) into (3.15), we get
f 1 _
| oy + 4 Hsy = 0 (3.152)
? or
g Mao = - 3 M (3.15b)
'X R "x *
Ei Substituting (3.15b) and (3.16a) into (3.17), we get

N [ g+ (CD),,] + #y + [(CE) - L (CO)T + M - [(CE),,J + M, +qH =0
(3.17a)

whete

]

2

CD = w,x + "o, 23 w. T—w,

2

12R2 (w,x +w, o)+

C]h4 "
— Y,
0,X"  ygope X
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oG . 3C]h2 oAt
CE = - & (w’x * wo,x) T Wsy - ToR Wex * 40R% 7 ¥y

Equations (3.15b), (3.16), (3.17a), (3.18) and (3.19) are the equili-

brium equations.

The natural boundary condition terms are

2
. heC
[Tou [N] + su' [M]+ ow [N + —3 N = M) (ay + g )
12R
N R T - h? c]h"
+ (M - TZ—R—N 'f'—O—RTM) Wiy + (—ZN T—.—M+WN) W, ]
2
2 3n°C 2 2 4
h 3 h 3h h
+ 6w [(M -—~N o 40R M) (w,x ) + ( N - M- B0% N) w,x
. ¢;h* . 3C]h4 o il 3c1=:2 ¢, )
+ M - M) w,.] + 6w N - M+ ——s N
40 160R 22452 28 40R 16082
C Wy g )t (Gg M- qeor N g M) ey g HWy T;‘ci—"sa M
) 224R
C.h 2
1 L ho
r Ll 1 I (3.20)

They are in the form of stress, displacement or mixed boundary conditions.
For example, we have for the first term, either u prescribed or H = e (constant]

prascribed at x = 0 and L.

I1T1.4. Non-dimensionalized Equations

l.et us introduce the following non-dimensiona® variables:

2 .
= = - ‘_n
X-LSQ U""L ¢; U"L‘_b
1 n
W = ha, W = %-B > W o= f?Y
Wo=hw s = L%/Rh
0 0

and (fén = p" where n is an integer.

Then the abbreviated constants and functions are
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E‘e%‘l= — (3.21)
h 4 2 Vxz
prea”e(1 + '—-—2——) (1 + Czuxz) - 12
2
) Ape(1 + Gy
O < SBA . L2 (3.22)
p*a2.(1 + 222 (14 Cv,,) - 12
= cZ 2
H=1+5=.2.p {(3.23)
- AA _ 1 2., - 1 .
m"?"‘f”c'”‘ A R L L e
+ B Yoo - 2C] A p.' LI B,S + C-l Az p a,§ + ZC] A2 . p2
— . T — 1.4 1 z G
Wo,s @1 = 207 = A - p wosB’s+""o,sY's)+@'p "l Ys m 7 A
1 C 2 ¢ ¢ 2
p B)SYas"il)\zp 'B:g"’z—.l'}ta p ussY:s'i'?ll
2 - c / 8
P " Wy 5 Yag) 35;4 X 7’5 (3.24)
== _ h-BB 1 ¢y 2 2
B:-—p—B—-:;’()’S'FA p a--é—-A p oy +p] a,sB,S'f'p-'
”~ c
— 2 - 3..3. /1 -1
Wo,s Bsg ~ Ly A p Wo,s 25 Y25 " P (2 Brg Yog =3 2
1 C 1
p ‘8,3-'2-1-1\ p 'a,sy,s+3-{x2 pz'a,sﬁ.s-l-c.li\e
2 - ¢ 1 - 3 5 c
©P 0,5 Prs =3 A - P wos‘””s)"'TTZ'p ("'8—“’5
c
R (3.25)
E-':: —:;%-z -pz Aot v+ G’S + 0 p2 y,s (3.26)
r:.c.[.).: Py + 2, -C].A.3 8 +c])‘2.4
5 ®rg TWo,s TP 0 Yeg - 17 P 's T T2 P
_ C
(a,s + wo.s) + 1%0 Az . p6 Ysg 13.27)
3C ’
== _ CE- 1 - .
E="*[;T-=P [-Ciap - (°"s+“’o,s)+5’s'lﬁl" P> - Yo
3C
4
‘*"d—ol).z P B’S] (3'28)




O %) D G20 BEE) Be twsl e

ool

&G R . ]

I S A . A ~ i

and the stress resultants are

=]
n

L3

v Cov
.._ZLZ_H'.m: cpe A (1 # szz)_3.m+1].ﬁi
X

DR - p?  WR+TAR - p? - BB -T6 - §

C,v
Mo_ ¢4 2 X2\ 7k _ nl . W g 2XZ

- =CA{p"+ar.(1+ 5 ) AR - BB + <3< H

X

2 2"
[p A (‘l + ZXZ) = 3] E }
0C-p? - A-TR-p2-BB-DE -3
2
1 2

%ﬁ%p [-p% - a0+ pta +i5y..]
oF p1 tC

S 2 =
F=-p *A-M

Exh

- 2 _ o
El..: - g.p e AN+ %-H q

X

Sov.

1-a - TAR - pP e (1+ 222

. C,v Cov,. _
{c .[pZ_l.“*_ ZZXZ)_3]+]} . 22XZH

2 2Vxz

_CK p LY (]+ 2)

. C, Cv

-T ,..2_‘2_’(1”.[;,2.).(1.}.2_2’(%)_3]
i I

Ey
56_

GEX

With these expressions, the non-dimensional equations are:

C,v
B Mt - TP 1+ LUK - - p

AT

29

n

(3.29)

{(3.30)

(3.31)
{(3.32)

{3.33)
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B ST
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S ,“H;m_ i

G - (mas+m' (m.s=0

whe.e

DG = DA+A-p2"I)'C'and'ﬁF‘.'=EHK-p2'A°EK
B - p -m,s-‘ﬁ-pz-(ﬁm,-ﬁf-”-

AA . [DR - (- A+CD,)+TJT:'

[ J— - 1 .6__
K 5 pR (,+3
PR = vya/Vax
— = e o 2
b5 - AR+ DT - BB-D0 - P

CE, ] + BB - (- PR 4 C—;s)

T+DT-DB

D8 + Dq - T - DR

30

{3.34)

(3.35)

(3.35)

(3.37}

(3.38)
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In deriving the last two equations (3.37) ana (3.38), we take €y = 1 (for
the last terms in both equations) in order that the equations are nonvanish-
ing (i.e. the coefficient matrix is nonsinguiar). This is for the case of
neglecting transve. ;e normal stress (C2 = 0) and the solutions 8 = 0 and

= 0 are obtained.

I11.5. Comparison of Three Theories

When we set C2 =g =1y=01in (3.34) through (3.38), the equations
are specialized into those of shiear deformation theory with the modification
in the Euler-Bernoulli type theorem. If we completely neglect z/R terms

(C] = 0) as well as imperfection terms (w0 = 0) the following shear theory

is obtained®

(2) ¢ ¥ 2o tan ey =0 (3.39)
4 2
Y *A . - Vs
(bj -7fl~“7f“—- (¢’ss tAea, o, a,ss) -7rjlljg-—- ss
p- - A°-12 p_- A"-12
-%%}.(.(-pz.xué-fg-l-a’s):o {3.40)
12 2 ,
) m (A= age) (4ag +a 2 @) Ta_jz - mags) vag
4.2
- a, (Qo +2° a, : ) + z — 7T
;.4 . )‘2_]2 S SS _]2
2, A 2
P Prss T EZ'F'IE:TE (Grggs # X " @rgy ¥ dag dagge + o)
]
S Ve TQ=0. (3.47)
) A2_]2 SSS

These equations are to be compared to the equations for the shear deformation

which if derived independently are

2
(a) ¢'SS + Aass + a’S a’SS + "ilz' p oA ‘l”ss =0

2 2
(b) %p ~w.ss~§6—(-p "Aretyta,)=0
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(€) = (h=ang) (bog + A" et dal) =qrp2 s A" ang * ¥ag

1
Y17 Vrsss -

Q=20
The underlined terms are the differences in these two sets of
equations. However the underlined terms all contain powers of h/L,

i.e., pz, p4

s etc. Thus the differences between the two sets becomes
smaller as the arch becomes thinner. Further simplification of the
equations as h/L approaches zero, 1eads to the classical equations

for the arch, viz:

ay.. =0 (3.42)

(a) ¢’SS + A a, sS

+ o,

S S

(b) o+ arg = 0 (3.43)

{c) (oo tra+ ;-a,§> (A - a) - T]fn"z,sss -Q=0 (3.44)

With the initial imperfections neg’ -~ted, the first equation is identical to

(2.18a) while combination of the last two equations is identical to (2.18b).

I1i.6. Method of Solution

Let us employ the same method of linearization of the nonlinear
equations as in the previous chapter. For boundary condition, the clamped
endcase of 6 =y =a=8=y=0ats =9 and 1 are considered, since these
displacement components can be rather easily specified. Because third order
derivatives 2.,e involved in the third equation, forward and backward diffe-
rences are used in order to avoid the values at nodal points outside the

boundary, viz:

3
3 . D
AS Q,i = "2‘ ("' 3a,i_-l + ]oai - ]2&,i+] + 631_'_2 - c‘.i+3)
and
3

= D .
v a., = 2(0,"03 he 631_2 + ]2“ 1--] ]Oa_i + 3&1_}_])
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where A is the forward difference and Vs is the backward difference.

As in the last chapcer, the equations are written in finite difference
form. Deflection input in the computer program will be used to extend the
load-deflection curve beyond the first peak. Therefore the additional equa-
tion ~

1 N
AREA = — X a
N+ 9=

is used.

The newly formed equation represents a system of (5N + 1) simultaneous
nonlinear algebraic equations which are solved by Newton's iteration scheme.
The polynomial in section II.4. is also used as for the antisymmetric initial
imperfection.

The orthotropic elastic constants are taken from reference [22] as

6

T
[}

4,20 x 10 psi

=X
6 .
19.20 x 10” psi

6

e,

G

2.7 x 107 psi

Vg = 0.11

Voy = 0.26

where the relation Ex”zx = Ez“xz is approximately saticsfied.

I11.7. Discussion of Results

Theories of varying dejrees of accuracy may be obtained as special
cases of the general theory which considers transverse normal stress and shear
deformation. For the limiting point "a" as well as the bifurcation point "b"
(Fig. 8), the more accurate the theory, the lower the critical joad is found
to be. The load-central deflection curves for ) = 56,7 are shown in Fig. 8
and their enlarged upper portions are shown in Fig. 9. The discrepancy in

critical load for the classical theory developed in the last chapter and the
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one obtained as a special case from the general theory is about 1.3 percent
of the latter. This discrepancy is a result of a different network of grid
points involved in the finite difference formulation of the fourth order
derivative in equation (2.18) and the combination of first aud third order
derivatives in (3.43) and (3.44) respectively. For comparative purposes,
all theories will be compared to the classical type theery obtained as a
special case from the general theory which includes transverse shear as well
as transverse rnormal stress effects. For h/L = 1/6G, the asymmetric critical
load corresponding to classical theory is about 4.3 percent higher than that
found when the transverse normal stress and shear deformation theory is
employed. Also the load found from modified shear deformation theory

(C2 =g =+ =0) is only 0.7 percent greater than the general theory. The
shear deformation theory (C] = C2 =g =y = 0) runs 1 percent higher than
the modified shear Jdetcrmation theory. Similar results are obtained for

A = 35.0 as shown in Fig. 10.

The shear effects become very significant when the arch is moderately
thick. For X =13, h/L = 1/13.3 as shown in Fig. 11, the critical load found
from classical theory is 16 percent greater than that found when normal stress
and shear are considered. However .ne difference between results obtained
from the modified shear theory and the normal stress and chaar theory is
usually less than 2 percent. In this case the shear deformation theory (with
C1 = C2 = g = y = 0) is not adequate to describe the behavior of the arch
since the critical load is about 8 percent higher than that found from the
modified shear deformation theory (C] #0).

The comparison of Lhe critical loads found from the classical as well as
the shear and normal stress theories is shown in Fig. 12. The percentage

difference between results obtained from the former and the latter theories

is noted.
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FIG. 10 UPPER PORTION OF LOAD-DEFLECTION CURVES—\=35
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FIG. 11 LOAD DEFLECTION CURVES FOR MODERATELY THICK ARCH
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CHAPTER IV
EXPERIMENTS ON RADIALLY REINFORCED ARCHES

IV.1. Introduction
txpariments were carried out on arches composed ¢~ resin matrices in

which were embedded small diameter glass fibers each oriented toward the
center of curvature of the arch. This type of construction was first pro-
duced for laboratory purposes by Uniroyal, Inc. [23]. The nature of this
composite material makes it well-suited to withstand loadings normal to
its convex surface. Such loadings would occur in deep submergence pressure
hulls. Evidently during hydrostatic loading both the resin matrix as well
as the glass fibers are acting in compression and the resin is restrained
from extrusion from between the glass rods by shear coupling, thus placing
the glass filamen*s in a state of axial tension. It hes been demonstrated
that spherical shells constructed of such radially oriented reinforcement
nave extremely desirable weight/displacement relations [24].

The objective of the present experiments is to investigate validity of

the various theories developed earlier in the present investigation.

IV.2. Fabrication ef the Material
Fabrication of the radially reinforced arches was carried out in
accordance #ith the following prscedure:
(a) Material: The material utilized high strength S glass roving
embedded in an epoxy resin which is marketed through Mirnesota
Mining and Manufacturing Co. under the designation of 1009-26-S
which is a glass impregnated tape one irch wide and 500 feet in
length. The glass fibers are of course oriented in the 500 foot
direction. The tape is cut into short lengths each corresponding

to the desired thickness of the arch, in this case 0.25 inches.
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(b) Curing: To build si~11 mosaic-type curved blocks, the 0.25 inch
lengths of tape were stacked into a curved mold having a 16 inch
radius of curvature. A spring force in the direction of the arcn
middle-surface was applied so as to develop a pressure of
2000 1b/1‘n2 to compact the short lengths of tape. Holes were
provided in the meld to permit escape of excess resin. The mold
was then placed in a small oven and the mosaic block cured at
temperatures of 300°F to 325°F for 30 minutes. The cured block
contained about 80 percent glass.

(c) Post-curing: The cured mosaic-type blocks were joined to one
another by an epoxy cf minimum thickness so as not to influence
the resin content of the resulting arch. The entire assembly
was tnen placed in a larger mold and cured again at 350°F to
375°F for four hours.

In addition to arches constructed by the above technique, additional

spacimens were provided by Uniroyal, Inc. The physical properties of the
resulting composite are described in [22] and Fig. 13(a) illustrates the

nature of the material.

1V.3. Description of Test Apparatus
The test apparatus consists of a loading fixture which includes end
supports for the arch as well as a system to provide lateral pressure on
the convex surface of the arch. Also, a system of transducers for measuring
displacements was developed.
(a) Support conditions: The ends of the arch were clamped by means of
two metal blocks tightened arounid the arch by means of two bolts.
One of these bolts went through the end of the arch. It was
believed that this corresponds reasonably well to a clamped end
condition, as illustrated in Fig. 13(a). A slot corresponding to
the curvature of the arch was milled into the blocks so as to

provide good clamping. This technique for simulating a clamped
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end was first tested for a straight cantilever beam and found

to lead to deflecticns in good agreement with simple beam theovy.
On this basis it was considered a goocd representation of & clamped
end condition.

Deformatien measurement system: Radial displacements were moni-
tored by use of three Schaevitz Linear Variable differential trans-
formers, Type 300-SSLT, henceforth designated LVDT. These units
each has a range of ¥ 0.3 inches with a linearity larger than % 1
percent of the full range output. Each LVDT consists of a three
winding transformer together with a removable core as illustrated
in Fig. 14(a). When the core is centered with respect to the two
secondary windings the induced vcltages V] and V2 are equal. As
the core is displaced toward either secondary winding that induced
voltage increasas whereas that from the other secondary winding
decreases. When the core is attached to the arch the radiail dis-
placement of the arch can be monitored. %#ith the aid of some
additional circuitry the interpretation of resuiting data can be
made easier. The circuit corresponding to this is shown in Fig.
14(b). With the core in the central position the output voltage

.
\1] 1T

At 2l b wasA A
vo 19 CYudt v $

A Aan L
LTIV A ad ]

~ mmean 1
Lic wwrc el

y the voitage
increases positively and vice versa. Fer full core displacement
of ¥ 0.3 inches the output voltage changes by approximately t 3
volts for a 6.3 volt excitation of the primary.

The arch displacements treated were of the order of magnitude
of the arch thickness, i.e. 0.25 inches. It was anticipated that
the maximum radial displacement would be no more than 0.5 inches.
Because of this the core was attacked to the arch after a positive

displacement of G.25 inches of the core had been imposed. This

leads to a usefu’ dis-lacement range of 0,50 inches whicn is within
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the linear range of action of the LVDT.

The output voltage v, was monitored by a Honeywell Visicorder,
Type 2106 which displayed voltage changes on a six inch wide strip
chart. The signal conditioning amplifiers were adjusted 0 that
a core displacement of 0.5 inches {measured from the pre-set 0.25
inch position) gave a full five inch displacement on the chart
paper. Thus, 0.1 inch of deflection on the chart corresponds to
0.01 inches of arch deflection.

Pressure loading system: The pressure system consists of an oil

Jjack, a pressure chamber, and a pressure gagde.

(1) Pressure chamber: This was formed on the convex side of the
arch by bounding that side by a concave shaped piece of hard
wood together with two 0.5 inch thick plexiglass sheets, one
on either side of the arch. The plexiglass sheets were bolted
tcgether through the hard wood as well as through the arch
supports. A bicvcle-type inner tube was placed in the space
vetween the arch and the hard wood and connected to the oii
Jack. Uniform hydrostatic pressure was then applied to the
convex side of the arch by pumping 0il intc the extremely
flexible inner tube.

{2) Pressure gage: A gage manufactured by the U.S. Gage Co. and
capable of monftoring pressures up to 200 1b/1‘n2 was connected
between the inner tube and the oil jack. The gage was of
course calibrated prior to testing the arches.

(3) 041 jack: A Hein-Werner Pushmaster Hydraulic Pump Unit Model
FP-4 was employed. It was found that ordinary jack oii rather
quickly damages the rubber in the inner tube so paraffin oil

was employed.
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IV.4, Test Procedure

The cured arch was clamped in the metal blocks and this assembly
surrounded by the plexiglass plates and hard wood backing for the inner
tube. The core of each LVYDT was epoxied to the concave surface of the arch.
One transducer was located at each quarter point of the arch and one at the
mid-point. Figs. 13(b) and (c¢) illustrate the test apparatus.

The output sides of the LVDT's were connected to the input side of the
Honeywell Accudata 117 DC Amplifier and the LVDT's energized by means of a
transformer operating from the 115 volt AC source. The amplifier was acti-
vated and the ultraviolet 1ight beam centered on the chart paper. The gain
was adjusted so as to keep the trace on the chart. With the aid of a micro-
meter the LYVDT was displaced in the direction of the convex side of the arch
by 0.25 inches and the LVDT locked in position.

011 pressure was siowly applied while the Visicorder chart paper was
driven at 0.5 inches/sec. LVDT readings were taken at 10 lb/in2 increments

until arch collapse occurred.

IV.5, Test Results

Eleven arches were tested and the results are indicated in Table 1

and plotted as load-deflection diagrams i

3

* - o - P4 P ) »
Fig. 15. This peEImiI LS ‘Coipari-

son between the various theoretical results obtained earlier in this study
and experimental evidence.

Specimens 3, 9, and 10 possessed some slight imperfections in bonding
of the various mosaic-type :locks into the arch configuration and accordingly
exhibited Tower strength characteristics than did better constructed speci-
mens. Specimens 1, 2, 4, 5, 6, 7, and 17 collapsed into a nonsymmetric
configuration upon buckling. For ali of these specimens, collapse occurred
in the neighborhood of 135 1b/1’n2 or slightly more, which is in good agree-
ment with theoretical predictions based upon an asymmetric buckling mode.

A somewhat greater collapse pressure was found for Specimen 8. This a°ch
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2 but finally buckled
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deflected symmetrically up to approximately 130 1bsin
into an unsymmetric configuration. Figs. 13(c) and (d) illustrate this
arch as progressively greater pressures were applied.

The experimentally obtained arch displacements were usually somewhat’
greater than predicted by theory. This is attributed to (i) too great
a resin content in the mosaic blocks, (ii) nonhomogeneities in the
blocks, and (iii) a fully clamped condition was not achieved at the
supports.

An overall characteristic of the arches was a slight brittleness.
This is not necessarily an inherent property of such a composite material
but is believed to be due to impurities or possible dislocations in the

specimens.
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CHAPTER V
CONCLUSIONS

The analytical results obtained from the classical-type theory lead
to higher buckling loads «:»: if transverse shear effects are included.
Inclusion of transverse normal stress effects in addition to transverse
shear stiil further decreases the predicted buckling loads. The predic-
tions of these three types of theories are in closer agreement as the thick-
ness of the arch decreases.

The transverse normal stress effect on a thin or even a mederately
thick arch is smail and can usually be reglected. However the effect of
transverse shear is quite significant even in the case of a thin arch.

For the theory incorporating shear deformation effects the modification in
strain-displacement relations achieved by not completely negiecting terms

of the form z/R leads to predictions in better agreement with experiments

than if these terms are completely neglected.

It was found analyticaily that the dimensionless parameter A can be
used to characcerize regions of symmetric and asyrmetric buckiling. The
value of 10.8 for this parameter separates these tvnes of buckling for 2
hinged end arch and a value of 25 for a clamped end arch,

Predictions of the general theory developed in this study, which
includes transverse shear as well as transverse normal stress effects are
in satisfactory agreement with experimental evidence and permit reasonabl s
accurate pradictions of load-deflection relations of a uniformly loaded

arch fabricated of radially reinforced composite material.
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