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Several specific instances of the diffraction of acoustic
and electromagnetic waves on wavy surfaces of various types ar4
examined on the basis of general theory. Here the finite nature
.of the dimensions of the area on which the diffraction occurs is
taken into account. In the case where the uneven condition is
sinusoidal, the results obta'ned by two different methods are
compared.

In work [l](we shall designate it 1 in the future) an approximate
theory of the diffraction of acoustic and electromagnetic waves on an
uneven surface, which had uneven areas which were large in comparison
to the length of the wave, on the assumption that the surface was infin-
itely extended, but that the uneven conditions were periodic, was given.
We shall consider the finite nature of the surface, as well as exa-ane
several specific examples, below.

1. Diffraction on an Uneven Surface of Limited Dimensions

Let a limited sector on an uneven surface participate in the
scittering of waves. This may take place both as a consequence of
the limited nature of the area and as a consequence of the limited
nature of its illuminated sector. For the sake of simplicity, we
shall examine here a two-dimensional problem, i.e., we shall assume that
the "active" sector of the uneven surface has the form of an infinite
ptrip positioned in plane xy perpendicularly to the wave incidence plane
=z. As in (1] we shall describe the unevenness as a function depending,
in the case under examination, only on one variable X. lie shall assume
the width of the area to be large in comparison to the period of uneven-
ness A..

For an example, we shall examine the potential of the acoustic
field of a,scattered wave, which in the case of an infinite area is
given by the integral (12,1) ,;e shr-. introduce as an integral the

1 In the case of an electro-..- wave, the integral (32,1) is equivalent

to it. 1



function F(), which characterizes the change in the "illumination"
of the area in direction X. 1,s a result, if one considers that we
are examining a plane problem and the double Fourier series is reduced
to a single series, we shall obtain

, - k.r.,, --k.~ A (x)2p (i(k..x + kyjy + kz)) X
(2n)ll 2 Ejj

i= -J

x exp (I (ko - h.,+ nip) X + 1 (nq - ky) Y) dXdYdkdk,. (1)

If the area is illuminated or sonicated with a sharply limited
beam with a constant intensity throughout its cross-section, or
the illun-ination is accomplished by an infinite plane wave, but the
area itself has the form of a strip beyond the limits of which there
is no reflection, FM will be equal to 1 within the.strip and zero
outside of it. Generally, the illumination function F(X) is more complex.Here we shall consider it to be little changing over the wave length of
unevenness Ax.

Integration in' () for Y and k is accomplished in the same manner
as in § 2 and 3 (see 1) for an infinite area, which is natural, insofar
as the area is assumed to be infinite in direction y, as was previously
the case. As a result we shall obtain

4+0 4.w
Yj=• B (k.. k:) exp i (kx + kz)) dk., x

× F(X) exp (i (k-- k, + nip) AdX. (2)

We shall write the expansion of the function F(X) in the Fourier integral:

,,D (x) d= ( 3)

where 4•sx) is the function characterizing the spectral expansion

density defined by the equality:

e&) Ie•f(X)dX" (4)
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In Fourier integral theory a relationship is known which is analogous
to the relatior'hip of indeterminacy, according to which intervals D and
Ax of the changes in variables X and x, where the functions F(X) and tcx)
have values notably different than zero, are related by the relationship:

DAx n, 2Tr (5)

Since we are suggesting that D > Ax (many periods of sinuosity are
being illuminated), the latter relationship yields

Ax< 2</A =p , (6)

which we sliall utilize in the future.

Besides that, if F(M) is a function having a single maximum in
the middle of the area, then it follows from (4) that 4(P) will be
maximum when % = 0. Comparing (2) and (4), we find

Y? (k,,k)( (k : - k, + mp) exp (i (k~x + kiz)) dk,.

From here it is evident that in the case of a limited area there are
scattered waves with arbitrary kX, i.e., waves distributing themselves
in all directions. However, for each m the amplitudes of these waves
differ notably from zero only within the limits of

kx = kO X4MP+±A7C,

since beyond these limits the function *(kx - kx + mp) turns out to
be practically equal to zero. Since according to (6) 4x <<p, it consequently
folluws that the scattered waves will group themselves in narrow angular
intervals close to the directions set by the equation

k2X = kO X + mp, m = 0,_+ 1, + 2,....

We shall examine the field at sufficiently great distances from
the area, par.icularly in the Fraunhofer zone. We shall make the
beginning of the coordinates and the center of the area coincident
and we shall difine the angle created by the direction to the point
of observation and the x axis as a. Obviously,

R = R cos a, z -; R sin a,

3



where R is the distance from the center of the area to the point
of observation. The exponential curve in (7) will now be written:

exp {(M (14 Cos ccY•-k sin •}

Since R is assumed to be large, when k changes the exponential curve
will be an extremely rapidly changing function. This makes it possible
to use either the stationary phase [2] or the saddle-point [3] method
to calculate the integral. In this case the principal input to the
integral will be only the values of k. lying near the saddle points
kx = v, which are determined from the equation

S[(a/k 2) (k, cos c + ie'- k• sin 0,)]•.- = 0,

from whence

k k Cos a

To cailckate zhe integral in this case, in the first approximation
the entire subintegral function, except the exponential curve, may be
moved beyond the integral sign when k, = v; the expression in the expo-
nential curve may be expafided in a series according to the powers of
kx -v. As a result, we obtain from (7):

?= B. (a) D (k• +mp k cOs a) CUR X

M-0

ix exp -- LR (k.,--z)s dk.,. (8)

SHere Bm(kx,kz) is designated by Bm(a) when kx = k cos a and kZ = k sin a;

the integral in this case is reduced to the well-known Poisson integral
by substituting kz -- v = e and it yields

w lK sin ae-iT/

In view of the fact that the function 4Ck°O + mp - k cos a) differs from
zero only in the narrow interval where Ax << p, one may only consider,
of all the terms of the sum in (8), only that term for which m is equal
to a whole number close to the value:
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(l/p)(k cos a -ko0 ). (9)

SAs a result, we obtain:

B. =B (a) sin o (J(k° Jr+ p - k cos¢ exp {- (ir./4) + ikOR) YklR. (10)

Thus the diffraction field in this case will be a cylindrically
diverging wave of a directional nature in the form of separate lobes,
the maxima of which lie in the directions of a = am, which are determined
by the equality:

tksl~nacmkX+mp, me=O, :ki' 4--2,... (11)

In these directions the argument of the function 0 become, zero,
and the function itself is maximum. The width of the lobes is
determined by the magnitude of the interval x % 2nt/D, in which
the function is notably different from zero [see (4) and (5)].
In conformity with this, the boundary of 16be m may be defined as
angle a'm, for which

i I¢• ~kO+Mrp •k cos •. 2M D
S(12)

f From (11) and (12) we obtain

k k(cos am -cos a'to) 27ID;

from whence, considering the closeness of the values of angles am and

.4L
S~ar -- ' a V/D siii a. (13)

which will be the angular half-width of each lob6. The nunber of
lobos is determined by the interval of whole values of m where
Icos amn < 1 and approximately equal to.2A/X. The results obtained
do not differ in principle fror. the results obtained during the inves-
tigation of diffraction fror, an optical grid of finite dimensions :4].
If we were to have examined diffraction from an area bounded in both
directions, we should have obtained results analogous to those presented
in (4] ( 52) for a two-dimensional grid.

.<S



The form of each' lobe is determined by the form of function 4
in (10), and, consequently, according to (4), the form of function
F(X,'. In the case of a limited area with illumination which is constant
over the entire area, we have

p(X)=.o, IXI>DI2, (1)

and from (4) we find that

®b)-a• • s,•-.(iS)

For the maximum value of this function when'% = 0 we have D/2ir.
The function also has auxiliary maxima which may be disregarded in most
cases. The value of the function in the first axiliary maximum when
xD = 31 is approximately 5 times less than in the principal maximum.
The half-width of the principal 'maximum (from the center of the maximum to
zero) is, according to (lS)Vequal to

Ay. z 2r1/D

It is interesting to note that in the case of an infinite surface,
as is evident from (14, 1) and (21, 1) and the expressions (32, 1) and
(33, 1i) analogous thereto, that, in the case of electromagnetic [waves],
whenP k"- 0, the amplitude uf the corresponding spectrum increases
infinitely. In the case of a finite area, the amplitude of the spectrum,
in accordance with (10), is proportional to B (a) sin a, and, by virtue
of the fact that a + 0 when kZ - 0, the ampliTude is finite.

The above-obtained results are valid for sufficiently remote points
lying within the Fraunhofer zone whore the condition

R >> k 2  (16)

is satisFted. This condition is well known in optics. This comes
about becal- of the requirement for slowness in changing the function
0(0 Xi- nip - cos a) as compared to the exponential curve in (8), which
is nicessary in order for it to be possible' tQ move this function beyond
the integral sign.
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2. Diffraction on a Sinusoidal Surface

When examining specific examples we shall limit ourselves to
the simplest case of a one-dimensional irregularity, assuming that
function Z depends only on X. In the case of an infinite surface,
the diffracted wave will consist of the aggregate of the flat waves,
the directions of distribution of which will be set by the components of
the wave vector kn. In the case of a finite area of width D, the
diffracted wave wave will be a cylindrical wave with a characteristic
of directionality consisting of the aggregate of the lobes, the maxima
of which lie in directions k ,-. The angular half-width of the lobes
is given by formula (13).Te amplitude of the wave in the center of
the lobe, according to (10) and (15), is given by:

A. = (DI2-.) V/7.-•R B,. (cc.) sin a,,,. (17)

-In the acoustic case Tn'(am) is found from (21, 1). In the
electromagnetic case, when the horizontal polarization is (Ey / 0,
Ex = Ez= 0), BA (cým) is calculated from (33, 1) if it is assumed there
that q = 0 at the same time that BT = B_ = 0. We shall note that
here BA (am) coincides with Bm (aY formthe acoustic case if V is taken
to be -1 in (21, 1) -- as should have been expected. In the same manner,
in the case of vertical polarization (Hu 4 0, Hx = Hz = 0), for a magnetic
field we shall obtain the formula (21, 1), where it is necessary to take
V to be equal to 1. However, since in the future we will be interested
only in the amplitudes of the waves and not in their phases, the cases
of V = l and V = -1 are fully equivalent.

Thus the finction

f (am) = IBm (am)1 sin am (18)

j characterizes the angular dependency of the amplitude of the scattered

waves for the plane problem of both acoustic and electromagnetic waves.
Making the exchange in (21, 1)

k," k sin a,., k! =kcos cc.,

k'=- k sin o, .O== cos Ao

(where ao is the slide angle of the incident wave), and having assumed
that IVI = 1, we obtain:

7



i -Cos (am-- CCO)0
"f (O(M) sinco + 31n IaG (aB )I' (19)

where, according to (17, 1), BO (am) are the coefficients of expansion
of the function: m

exp(--ik(sina ++sIn"aý)Z(X))= 2 BO(em) e"Px. (20)

SL We shall switch to an examination of scattering from a sinusoidal
surface: in this case we have

Z = a cos pX . (21)

As is known, there occurs the relationship

e-.(S) .p (s X. (22)

where JM is a Bessel function of order m. Tierefore, having designated

s--ka (sinac,, + slno) (23)

and compared (20) and (22), upon calculating (19) we obtain

B.('r () m nS) L241)

Substituting (24) into (20), we obtain the final formula for
wave amplitude in the maximum leaves, with an accu" acy of up to the
constant factor:

f ' -) Cos (a (25)Sin• c"c,.• + Sin-- Ja () (s

Figures 1-3 present graphs of the directionality characteristics of

8



a diffracted wave for two incident wave slide angles (450 and 100)
when there are various values for 6 = 2,ta/X, w:here a is the a•.pIitu~
of the sinuosity, ,I2d X is the length of the radiation wave. The rof the wave of sinuosity A is the s--%c iLn all cases an,,'. is equal tcz

Ah = i0.. However, the width of the lcbes7," which only the area dimen-si-"
influence, is done very approximately on the graphs. A view of the
uneven surface is dc-icted in the lower part of each Fig-ire. Where
the amplitudes of sinuosity are very low, the wa%- ]ine is depicted
as a straight line. The arrows on the graphis indicate the directicns
of the incident and reflected wave where specular reflection exists.
The force of the sound in decibels is indicated along the radius in
all the graphs.

*The length, of the area is taken as equal to 4A.

'I9

S•_. anglIes

1. 1 deg rees

(N' '

*1*

Figure 1: 6 2na/X = 10; A/,.= 6.28

We see that even at relatively low sinuosity (S = 10, i.e., a =
1.6X, Figure 1) diffusion scattering almost occurs. Even at low
amplitudes, when 6 = 6 and , = 3, nax•n,. radiation scattering occurs
not in the direction of specular reflection, but at angles equal to
1000 and 72%, correspondingly. This is easy to understand, using the
idea of rays. Rays specularly reflected fromn the point of inflection of the
sinusoid go in these directions. In view of the fact that the curvature
of the surface is equal to zero at the points of inflection, the ray's,
upon reflection, experience the least separation, as a consequence of
which the amplitude of the corresponding waves is ma'.imum.

The situation where a wavy surface, even one differing ver". ],ttle

N"



' V.

-° degrees

96100910 1.7 7.1V. JV ZJ 42200 1V 20 X40 47VO V 12 7 R WO S5 1JDf

Figure 2: 8 2ra/ ; Ala 10,5

•Ic lee°°

V 'aglesin
degrees

IN i 47 70 1V R v x 20 10 0 1o 0a so SO 70 A W1 Db

Figure 3: 8" :2.=3;/20,9

Is

/ , ~ . angles in
• degrees

Figure 4: • 2,/ =g N I,
I.s

1 6

I r •

I ** j 0 * • .)
I nle

V/•li" ere



~.deg rees

0 -
- I

Figure 5: 8 .. 2-.a/). 0.3; A!a 209

anle i

~deg rees

soso vo ao 17 vao 50" / /aoZ# .1 go soe is v a 'so Db

Figure 6: .~2.-al 0,1; Ala 628

h. ngles ip
Sdegrees

10 YO /W 70 M4 SO Q? .77 M 47 0 / 0 aZO X, VO S9 M5 V0 SO0 100 96 Ob

Figure. 7: 9 -2.-al/X ,03; A14 2090



•. angles in : :
Sdeg rees i

Figure 8: 8 2ca -- 6; A/a- 10,5.

.10

I.I

• '•- • ang~es in

¶ .~ ... rees

96o *o0$ S# 80 v m w 02 w1 0 1v 2 0 a0 ao v0 to so ;0'F Ob

Figure 9: 8=2r,/a=3;A/a-=20,9

5'.

f.-----••=. angles in

--- • degrees

10080 70T10 60 v0 JO Z0 10 0 /00 MO (' V0 R a0 v0 $O 1:0 g• Db

Figure 10:8-21a/X 1; Ala.6,828

.- 12,



degrees

10 so f, 7a irJ .7;1a/ vz vfo1 , f7s lg4D

Fiur I I) 0 l 0 Sangles in

], " • • m degrees

96 0 7vJaJ OR".~J M4U2J? '1170 0S0 Db

Figure 12: .8-2na/).m.O,;A/a,=2O9

* * 0050 '0 10 J45 (', V0 0 /0 2000 '0 V MF0 750 MS5910 3 b

Figure 12: .. 2na[=-.O,3; A1a6209
•, ;. angles iSdegrtees

Figure 13: a;=2neaX--O,3;.A/a=.6'J'



from flatness, yields a noticeable deviation from specular reflection,
as is evident, for example, from Figures 5 and 6, is interesting.
Only in Figure 7, where the amplitude of the sinuosity is 209 times
less than the length of the radiation wave and 2090 times less than A,
may the reflection be considered specular, since the side lobes are
approximately 30 db less than the principal lobe.

Where the slide angle of the incident wave is 100, the scattering
is more directional (compare, for example, Figures 3 and 9), given the
same 6 values, than is the case at 459. This is a confirmation of the
well-known fact that at. low slide angles the reflection from a::rough
surface is more directional.

We shall also note that in all cases to which the above-presented
figures apply, the theory applicability conditions indicated in § 5, 1
are satisfied. Specifically, the directions of the lobes depicted in
the Figures nowhere greatly differs from the directions of possible
geometric reflections of the rays.

3. A Comparison of Sinusoidal Surface Solutions Obtained by Various
Methods

In the case of a sinusoidal surface one may obtain a solution to
the problem by another methods Although the analysis of this solution
is most complicated, it is useful to compare it to our solution for
the case where the azplitude of the sinusoid is small in comparison
to wave length.

*. For the sake of simplicity we shall examine the case of a wave
striking the surface perpendicularly. We shall again write the
equation for the surface in the form

Z = a cos pX .

We shall assume the surface to be a reflecting surface, assuming that
the boundary condition -= 0 is fulfilled thereon. In electrodynamics
this case corresponds absolutely to the conducting surface and to the
vector E which is directed parallel to the y axis.

We shall write the total field of the incident and diffracted waves
in the form2

T = e- 11- + Ao0 lj + A lIe',, cospx + A2e',," cos 2px -2..6)

where Fi.-&1/I'2..--n2pt, n =1 ,2,...
where. 

1.

2 Our method of obtaining a precise solution is essentially a generali-
zation of Rr ey's discussions [5].

14
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This kind of full field reprosentation coincides fully with
the separation of the diffracted field into spectra [see, for example,
formula (14, 1)] obtained in [1]. Here each term of the formula (26),beginning with the third, corresponds to two spectra, which is easy to
envision if the cosines are expressed by exponential functions.

Substituting the surface equation Z = a cos pX into equation (26)
and letting tf = 0, we obtain:

A0 + exp (- 2iak cospX) + A, exp (- Is, cospX} cospX +
+ As exp(-is2 cospX}cos2pX+... =0, (27)

where

an (k F2 =12pý) . (28

In equation (27) the exponentip! 'irves may be replaced by
sums, if one considers that, analogously to (22), we have

J ,) (s) -2UiJ (s) CospX - 2,1 (s) cos 2pX +...

In the expression obtained after this (operation] the products of
the cosines must be expressed by the cosines of the multiple angles.
It is also necessary to group the terms containing the cosines of
identical arguments as factors. Equating the coefficients before
these cosines to zero, we obtain the following infinite system of
equations for determining the coefficients AO, A1, .. (

O (29)
,-.,, c,., m =, 1, 2...,

where

Co = Jo (2ak), yoo = 1, (30)
C,. = 2 (-- 1)J,. (2ak). "b.o = 0, m =1, 2 ....

and finally

" (- i)"+" [J.+. (s.) + (- 1'i.. (s.)], ni, n 2,... (31)

Investigation of the system of equations (29) is an extremely
complicated problem. It would be of interest, first and foremost,
to investigate the convergence of the series (26) where the coefficients
AO, A,, A2, ... are to be found from (29). We shall limit ourselves
here to an examination of the case of small irregularities (ak -< 1),3 We omit here computations reduced principally to a transformation of

the order of summing in compound sums.
15



when the coefficients decrease very rapidly as n increases [as (ak)n],
and we shall compare the results obtained with the results of the
above-presented theory. Retaining in the expressions for An only the
lowest powers of ak, we find from (29) that

Ao =- 1, A, WaAs,=(ak)'[I I
SA 3=--i(ak3 [F - -_ si _ (32A = -- I (aa)' Nk

.~ ~~ ~ ~ . ... . . . . . . .

Changing (26) to the form of (14, 1) by means of substituting
exponential curves for cosines, one may convince oneself that A0 , A1,
A2, A3, ... must coincide with the values for B0 , 2B 1, 2B2, 2B3, ---
The latter may be found according to formulas (26, 1) and (24). Here
it is necessary to take into account the fact that V = -1 with our
limited conditions. Besides that, since the incidence is assumed to
be perpendicular, kO = -k, kO = 0. As a result, we obtain

B.m - (k/kf') (i) m J,, [ak (sin cc. + sin cco)] (33)

and, finally, considering the smallness of ak as well as the relation-
ships k0 = k sin a and a0 r/2, we find that

B ,'1, 2B, ak (I + sinc ), 2B2 =...../ak, (1+ I sln)',i • ']° -- l' 2Bz" snai Ii • 2J(34)

I (ak \2B3 2 (1-"sin3).

Here
kr'

sinl.,, =- = I---, = , 2, 3.

Comparing the sequences of (32) and (34) we see that they will
coincide, if we disregard (Mp) 2 in comparison with k2 . As a matter of
fact, here, on one hand, sin am z 1, and, on the other hand, in con-

Sformity with (28), 8m z 0 and we obtain:

Ao =13o = - , A = 2B = 2ik, (35)
A, = 28, = (ak)2, A3 =--fi/3)(ak)3...

Thus the validity of our solution in the case being examined

16



is limited by the condition that (mp) 2 <<kO, which is equivalent to
the condition that sin 1 z 1, i.e., am z w/2. In other words, we
shall obtain correct amplitudes only for waves scattered in directions
close to perpendicular. This result confirms the conviction expressed
in § 5,1 above th3t the method of calculation is valid only for
waves scattered in directions close to the directions of geometri-
reflection from various parts of the surface. In the case being examined,
in view of the smallness of the amplitudes of the sinuosity, the directions
of geometric reflection will be grouped around the perpendicular to the
average surface level.

4. Wave Superposition

We shall examine the case where a wavy surface is formed by
superpositioning several waves.

We shall assume that we have solved the problem of diffraction
on a surface, the form of which is given by a certain function Z(X).
This means that the coefficients of B0m (c•m) have been found in an
expansion of (20). The question is asked, how do these coefficients,
and, consequently, the amplitudes of the diffracted spectra as well,
change if a sinuosity defined by the cosine curve a cos ypX and having
a period y whole number of times less than the period of function Z(X)
is superimposed on this surface?

We shall designate the new coefficients which are analogous to
BOm (am) as CO% (ca ). The latter may be found from an expression
which is analogous to (20):

exp - .;k (sin x, + sill ao) [Z (,') + a cos vp\'J) = C, (.,,) e."x,
m

which, when (20) and (23) are computed, is written in the form

Y BT c ""P = , Ce'nPX

Substituting the series (22) for the exponential curves in
the left-hand portion, multiplying out the series and grouping
terms correspondingly, we obtain

+00 + +00

17
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from whenceI..=

Co.( t)"% (s) B*,-ht (36)

Figure 14 depicts the scatter field in the case where the
sinuosity is a superpositioning of two sinusoids. Calculation is
accomplished with the help of formula (36). The angle of wave
incidence is taken to be 45O. Besides that, it is taken that

6 1 = ka1 = 3, and 62 = ka 2 = 2,

where al and a. are the amplitudes of the sinusoid. As in the

preceding cases, it is assumed that A/A = 10.

S•- angles in

degrees

g o101012 O '0 0 .7J2415• 3 I //020 LI 0 4'S J 10 70 10 12 02 d

Figure lh: 6 3, 61 2

Figure 15: Individual sinusoids comprising the surface shcwn
in Figure 14
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A view of the scattering surface is depicted in the lower
portion of the Figure [141. Individual sinusoids, the superposition
of which results in this surface, are depicted in Figure 15.

We shall exanwine diffraction on a surface defined by the
Lquations (Figure 16):

ZZ=a(1+4XIA), -A .2<X.<o.
Z=a(1-4XIA), O..<,X-<AI2. (37)

Fr the expansion coefficients of (20) we have, according to the
known formulas for Fourier series coefficients,

IAI
B-7 exp{--ik(sinlnc., +sin ao)Z(X)--jinp.VdX (38)

A

Figure 16: Cross-sectional view of a "broken-line" surface

or, taking intio account (37) and (23),

0
b," -- exp is{-s(I +)-- impXdX+

"+ x {- "is'i- ±•)ZmX}dX.
0

lHaving corr•pht.tod the integration, we obtain

,(S') (39)
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where the relationship p =27r/A is also taken into account.

Sangles in
!.*degrees

g 1020 $a 70R60 SO2 V 2 X /0 0 1 2V0 ZO Jo Ve $1 7o FO /0 i 6 Db

Figure 17: Scattered wave directionality characteristic
according to formula (40)

6 = 2,ra/X, A/a = 20.9

Having substituted (39) into (19), we find for the amplitudes
of the waves at the lobe maxima with an accuracy up to a constant
factor that:

"f"(W= ak[I -Cs(m-o ) sln(-n+ s)""'" \(2 (40)

Figure 17 depicts the scattered wave directionality characteristic
calculated according to formula (40). The angle of incidence is taken
to be 450, A/A = 10, and 6 = 2na/X = 3.

As may Le seen, the scattered wave has a character close to that
of diffusion. The lobe directed at an angle of approximately 660 has
maximum amplitude. This lobe corresponds to specular reflection from
the flat areas forming the left slopes of each peak in the uneven
surface (for example, the sector -A/2 ,< X < 0 in Figure 16).

The lobe directed at an angle of approximately 230 and corresponding
to reflection from the right slopes is also most intensive.

As was already indicated above (see § 5, 1), our theory is able
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to give correct values for lobe magnitudes only for angles which
do not differ too greatly from these two directions of geometric
reflection. At angles greater than 900 it may not be expected that
the dimensions of the lobes will be correct. They are depicted in
Figure 17 only to illustrate the resulis of the theory, which is
based on Kirchhoff's principle.

The scatter diagrams presented here were constructed by Ye.
Zezyukina; she also did all the necessary calculations. In connection
with this, I express my gratitu•de to her.
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