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Several specific instances of the diffraction of acoustic
and electromagnetic waves on wavy surfaces of various types are
examined on the basis of general theory. Here the finite nature
.of the dimensions of the area on which the diffraction occurs is
taken into account. In the case where the uneven condition is

sinusoidal, the results obtalned by two different methods are
compared.

In work [1](we shall designate it 1 in the future) an approximate
theory of the diffraction of acoustic and electromagnetic waves on an
uneven surface, which had uneven areas which were large in comparison
to the length of the wave, on the assumption that the surface was infin-
itely extended, but that the uneven conditions were periodic, was given.

We shall consider the finite nature of the surface, as well as exaninz
several specific examples, below.

1. Diffraction on an Uneven Surface of Limited Dimensions

Let a limited sector on an uneven surface participate in the
scattering of waves. This may take place both as a consequence of
the limited nature of the area and as a consequence of the limited
nature of its illuminated sector. For the sake of simplicity, we
shall examine here a two-dimensional problem, i.e., we shall assume that
the "active" sector of the uneven surface has the form of an infinite
strip positioned in plane xy perpendicularly to the wave incidence plane
2z. As in [1] we shall describe the unevenness as a function depending,
in the case under examination, only on one variable X. We shall assume

the width of the area to be iarge in comparison to the period of uneven-
ness A,..

For an example, we shall examine the potential of the acoustic
field of a,scattered wave, which in the case of an infinite area is
given by the integral (12,1)} e shr.} introduce as an integral the

1 In the case of an electye... n:ure wave, the integral (32,1) is equivalent
to it.

1
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function F(X), which characterizes the change in the "illumination"

of the area in direction X. #s a result, if one considers that we

are examining a plane problem and the double Fourier series is reduced
to 2 single series, we shall cbtain

". ! _‘4:?‘13 (kyoloyaks) F(XY2xp {i(k 8 Ry + kez)) X
?—-—W m SS“ mAR Ny Ry Rz | x- 1

-t

% exp {{ (kS — ke, + mp) X +i(ng — ky) Y} dX dYak.dky. T

If the area is illuminated or sonicated with a sharply limited

beam with a constant intensity throughout its cross-section, or

the illumination is accomplished by an infinite plane wave, but the

area itself has the form of a strip beyond the limits of which there

is no reflection, F(X) will be equal to 1 within the strip and zero
outside of it. Generally, the illumination function F(X) is more complex.
Here we shall consider it to be little changing over the wave length of
unevenness A,.

Integration in' (1) for Y and k, is accomplished in the same manner
as in § 2 and 3 (see 1) for an infigite area, which is natural, insofar
as the area is assumed to be infinite in direction y, as was previously
the case. As a result we shall obtain

g I e '
P=g5 2 | Blewk)exp (i (bax + k,2)) gk, x

R Emell) —en)

' o

x { F(x) exp (i (kz— ks + mp) X) dy. (2)

-t

We shall write the expansion of the function F(X) in the Fourier integral:

-

e .
F) = e Ptds (3)

where @fx) is the function characterizing the spectral expansion
density defined by the equality:
(4o

O(x) = = S X F(X)ydX. (8
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In Fourier integral theory a relationship is known which is analogous

to the relatior~hip of indeterminacy, according to which intervals D and
&x of the changes in variables X and x, where the functions F(X) and $tx)
have values notably different than zero, are related by the relationship:

Dhxe ~ 27 . (5)

. Since we are suggesting that D » A (many periods of sinuosity are
being illuminated), the latter relationship yields

ax «< 21/A =p , (6)
which we shall utilize in the future.

Besides that, if F(X) is a function having a single maximum in
the middle of the area, then it follows from (4) that ¢(x) will be
maximum when 3¢ = 0. Comparing (2) and (4), we find

. A e
|

o= 3

Ran e 0O =D

Brs (R ) D (k3 — ks + mp) exp {{ (kox + ki2)) ks -

From here it is evident that in the case of a limited area there are
scattered waves with arbitrary k,, i.e., waves distributing themselves
in all directions. However, for each m the ampiitudes of these waves
differ notably from zerc only within the limits of

z‘x"kam*mPiA%,

since beyond these limits the function &(k0; — kz + mp) turns out to

be practically equal to zero. Since according to (6) Ax «p, it consequently
follows that the scattered waves will group themselves in narrow angular
intervals close to the directions set by the equation

kp =40 +mp, m=0,+1,+2, ...

We shall examine the field at sufficiently great distances from
the area, par.icularly in the Fraunhofer zone. We shall make the
beginning of the coordinates and the center of the area coincident
and we shall define the angle created by the direction to the point
of observation and the x axis as a. Obviously,

x =R cos g, 2 =R sin a,
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where R is the distance from the center of the area to the point
of observation. The exponential curve in (7) will now be written:

exp (iR (ks cosa + V k% — k3 sin ).

Since R is assumed to be large, when k. changes the exponential curve
will be an extremely rapidly changing function. This makes it possible
to use either the stationary phase [2] or the saddle-point [3] method
to calculate the integral. In this case the principal input to the
integral will be only the values of k, lying near the saddle points

ky = v, which are determined from the equation

[(010k) (ks cosa + Vk* — % sin )] o = 0,

from whence

oo s
L = IR I N i st e Sl I

P2k cos a .

o

To caiculate che integral in this case, in the first approximation
the entire subintegral function, except the exponential curve, may be
. moved beyn=d the integral sign when k, = v; the expression in the expo-
. nential curve may be expanded in a serles according to the powers of

k, —v. As a result, we obtain from (7):

o :
; 2= Bn(«)® (k% + mp— kcosa) e"R x

Mo nO

x Texp{—--,’;R(kv —0)* ez e ®

Here Bj(k,,k,) is designated by B, (a) when k, = k cos a and k, = k sin a;

the integral in this case is reduced to the well-known Poisson integral
by substituting k, —v = e~%"/*% ¢ and it yields

R L R i

/7k/R sin ae-t™/4 |

. In view of the fact that the function &(k0_ + mp —k cos «) differs from
zero only in the narrow interval where Ax < p, one may only consider,

of all the terms of the sum in (8), only that term for which m is equal
to a whole number close to the value:
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(1/p) (k cos a ~k0.). (9)

As a result, we obtain:

9 = B («) sina D(RS + mp — k cos a) exp {— (ir/4) + ikR) VTEIR. (10)

Thus the diffraction field in this case will be a cylindrically
diverging wave of a directicnal nature in the form of separate lobes,
the maxima of which lie in the directions of a = o,, which are determined
by the equality:

i o
¢ Eslnan=AS+mp, m=0, &1, £2... an
g - .
% In these directions the argument of the function ¢ becomes zero,

and the function itself is maximum. The width of the lobes is
determined by the magnitude of the interval &x = 2n/D, in which
the function is notably different from zero [see (4) and (5}].

In conformity with this, the boundary of 1cbe m may be defined as
angle a'p, for which '

~

kS ++ mp < & cos oy == 2%/D. 12)

From (11} and (12) we obtain

k(cos , —cos a'y) ~ 21/D;

TN AT T YA ST S

¥

i from whence, considering the closeness of the values of angles «, and
4 s

N

g by oty 3 MD sin wy , (13)

2

f:’y h ra~ * . >

o which will be the angular half-width of each lobé¢., The number of

e lobes is detemmined by the interval of whole values of m where

5 |cos «,| € 1 and approximetely equal to.2A/%. The results obtained

v do not differ in principle from the results obtained during the inves-
h tigation of diffvaction from an optical grid of finite dimensions [4].
z If we were to have cxamined diffraction from en avea bounded in both

2 directions, we should have obtained results analcgous to those presented
<

in {4] (§ 52) for =z two-dimensionsl grid.

o
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The form of each' lobe is determined by the form of function ¢
in (10), and, consequently, according to (4), the form of fuuction

P(X,. 1In the case of a limited area with illumination which is constant
over the entire area, we have

F(X)=1 —D]2<X<D
: (19)
F(X)=0, |X|>Dp, |

and from (4) we find that

@{x) --'-14:—;8!&!—22. (15)

For the maximum value of this function when ® = 0 we have D/2n.
The function also has auxiliary maxima which may be disregarded in most
cases. The value of the function in the first awailiary maximum when
D = 3n is approximately 5 times less than in the principal maximum

The half-width of the principal waximum (from the center of the maximum to
zero) is, according to (15), equal to

= 2w/D .

It is interesting to note that in the case of an infinite surface,
as is evident from (14, 1) and (21, 1) and the expressions (32, 1) and
(33, 1) analogous thereto, that, in the case of electromagnetic [waves],
when X' » 0, the amplitude uf the corresponding spectrum increases
infinitely. In the case of a finite area, the amplitude of the spectrum,
in accordance with (10), is proportional to B_ (a) sin a, and, by virtue

of the fact that a + 0 when k; + 0, the ampll?ude is finite.

The above-obtained results are valid for sufficiently remote points
lying within the Fraunhofer zone whore the condition

R » kD? (16)

is satisf.ed. This condition is well known in optics. This comes
about becarse of the requirement for slowness in changing the function
¢(k°“ + mp — cos a) as compared to the exponential curve in (8), which

is ngcessary in order for it to be possible ta move this function beyond
the integral sign.
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“z : 2. Diffraction on a Sinusoidal Surface

A

'% v When examining specific examples we shall limit ourselves to
. the simplest case of a one-dimensional irregularity, assuming that
g function Z depends only on X. In the cz2se of an infinite surface,

the diffracted wave will consist of the aggregate of the flat waves,
3 the directions of distribution of which will be set by the components of
4 the wave vector k,,. In the case of a finite area of width D, the
{% diffracted wave wave will be a cylindrical wave with a characteristic
‘3‘;} <
e

of directionality consisting of the aggregate of the lobes, the maxima
of which lie in directions

. The angular half-width of the lobes
g is given by formula (13).

e amplitude of the wave in the center of

| . the lobe, according to (10) and (1S5), is given by:

13 3

%‘

*.”J . ’

E An={D|27) V' =k[R Bn(¢m) sn tm. (17)

; ‘In the acoustic case Bm(a,) is found from (21, 1). In the

o electromagnetic case, when the horizontal polarization is (Ey # 0,

P Ey = E; = 0), B (a,) is calculated from (33, 1) if it is assumed theve

. that ¢ = 0 at the same time that BE = B; = 0. We shall note that

" here BY (a,) coincides with By, (amT for the acoustic case if ¥ is taken

% to be -1 in (21, 1) ~- as should have been expected. In the same manner,

in the case of vertical polarization (#, # 0, Hy = H, = 0), for a magnetic

7 field we shall obtain the formula (21, 1), where it is necessary to take
t

E V to be equal to 1. However, since in the future we will be interested
bt only in the amplitudes of the waves and not in their phases, the cases
b ¢ of V=1 and V = -1 are fully equivalent.
=
% Thus the function
z
- f (ay) = |By (ap)] sin o (18)

X
3 characterizes the angular dependency of the amplitude of the scattered
. waves for the plane problem of both acoustic and electromagnetic waves

k[ Making the exchange in (21, 1)

2
kY =ksinam kY = RCOSan,
£ = — Esinay, 8%==kcosx,

(where ag is the slide angle of the incident wave), and having assumed
that |V] = 1, we obtain:

.’{
1
. ¢
i
B g
Fx
. o3
gy
3
X ;
i
v,ﬂ&
Yier
Y
2
2
%
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0 1, 3\t
S lam) = sin «,, + sina, | B (o) | ' (19)
'g where, according to (17, 1), BO (am) are the coefficients of expansion
3 of the function: m
2 |
N i : = .
4 i exp (— ik (sinaw +sinug) Z(X)} = 3} Bm(em) o, (20)
3 g
é A We shall switch to an examination of scattering from a sinusoidal
i surface: 1in this case we have
g
v
j: Z = q cos pX . (21)
2 As is known, there occurs the relationship
:
} X .k-: m'.y ) ImpX
14 ves 039X o= —— S)€ .
o= B (=i (22)
R fim—0 ) .
% '
%
K where Jy, is a Bessel function of order m. Therefore, having designated
x
2
4 s==ka (sina, + sinag) (23)
_:; and compared (20} and (22), upon calculating (19) we obtain
4
i /' 0 * ' 3
9 B (an) = (=)™ I (s). (24)
: ’ Substituting (24) into (20), we obtain the final formula for
i wave amplitude in the maximum leaves, with an accu acy of up to the
2 constant factor:
A
2
A

1 — cos («,, —«
S (om) = sina,, i R aoo) Im (). (25)

Figures 1-3 present graphs of the directionality characteristics of
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a diffracted wave for two incident wave slide angles (45° and 10°)

when there are various values for 8§ = 2ma/A, where ¢ is the amplitud

of the sinuosity, &hd X is the length of the radistion wave. Tne sergi.
of the wave of sinuosity A is the ss=¢ in ail cases and 1s equal te

A = 10».* However, the width of the lcbes, which only the area dimensi.r-
influence, is done very approximately on the graphs. A view of the
uneven surface is depicted in the icwer part of cach Figure. Where

the amplitudes of sinuosity are very low, the wavy line is depicted

as a straight line. The arrows on the graphs indicate the éirecticns

of the incident and reflected wave where specular reflection exists.

The force of the sound in decibels is indicated along the radius in

all the graphs.

*The length of the aree is tsken as eguel to bA!
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Figure 1: & = 2na/A = 10; A/o+= 6.28

.

We see that even at relatively low sinuosity (8 = 13, i.e., a =
1.6), Figure 1) diffusion scattering almost occurs. Even at low
amplitudes, when § = 6 and § = 3, maximun radiation scattering occurs
not in tne direction of specular reflection, but at angles equal to
100° and 72°, correspondingly. This is easy to understand, using the
idea of rays. Rays specularly reflected from the point of inflection of the
sinusoid go in these directions. In view of the fact that the curvature
of the surface is equal to zero at the points of inflection, the rays,
upon reflection, experience the least separation, as a consequence of
which the amplitude of the corresponding waves is mavimum.

The situation where a wavy surface, even one differing ver: l:itle
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from flatness, yields a noticeable deviation from specular reflection,
as is evident, for example, from Figures 5 and 6, is interesting.

Only in Figure 7, where the amplitude of the sinuosity is 209 times
less than the length of the radiation wave and 2090 times less than A,
may the reflection be considered specular, since the side lobes are

. approximately 30 db less than the principal lobe.

Where the slide angle of the incident wave is 10°, the scattering
is more directional (compare, for example, Figures 3 and 9), given the
same § values, than is the case at 45°, This is a confirmation of the

well-known fact that at low siide angles the reflection from aurough
surface is more directional.

We shall also note that in all cases to which the above-presented
figures apply, the theory applicability conditions indicated in § 5, 1
are satisfied. Specifically, the directions of the lobes depicted in
the Figures nowhere greatly differs from the directions of possible
geometric reflections of the rays.

3. A Comparison of Sinusoidal Surface Solutions Obtained by Various
Methods

In the case of a sinusoidal surface one may obtain a solution to
the problem by another methods Although the analysis of this solution
is mest complicated, it is useful to compare it to our solution for

the case where the amplitude of the sinusoid is small in comparison
to wave length.

For the sake of simplicity we shall examine the case of a wave
striking the surface perpendicularly. We shall again write the
equation for the surface in the form

Z =aqcos pX .

We shall assume the surface to be a reflecting surface, assuming that
the boundary condition ¢-= 0 is fulfilled thereon. In electrodynamics
this case corresponds absolutely to the conducting surface and to the
vector E which is directed parallel to the y axis.

We shall write the total field of the incident and diffracted waves
in the form?

o =e-m 4L /fob'" + Aelit cos px 4 Asefcos 2px + . .., (26)
where b= V=AY, ne=1,2,...

2 Our method of obtaining a precise solution is essentially a generali-
zation of Re_ley's discussions [5].

14
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This kind of full field representation coincides fully with
the separation of the diffracted field into spectra [see, for example,
formula (14, 1)] obtained in [1]. Here each term of the formula (26),
beginning with the third, corresponds to two spectra, which is easy to
envision if the cosines are expressed by exponential functions.

Substituting the surface equation Z = g cos pX into equation (26)
and letting ¢ = 0, we obtain:

Ac + exp {— 2iak cos pX) + A, exp {— s, cos pX} cos pX +

+ Ay exp {—is; cos pX} cos 20X +... =0, (27)
where .
in = (kY F %) a, (28)

In equation (27) the exponentir: - urves may be replaced by
sums, if one considers that, analogously to (22), we have

c-l: cos pX

=Jy (§) — 2iJ, (s) cos pX — 2J, (s)cos2pX +...

In the expression obtained after this [operation] the products of
the cosines must be expressed by the cosines of the multiple angles.
It is also necessary to group the terms containing the cosines of
identical arguments as factors. Equating the coefficients before
these cosines to zero, we obtain the following infinite system of
equations for determining the coefficients Ags Ay, o3

© . (29)
Z Tmadn=C,, m=0,1,2...,
AmQ *
where .
Co=1Jy (2ak), 100 =1, (30)
Cn=2(~8)"Jm (26k), Ymo=0, m=1,2,...
and finally

Ton = (= ™" Ungm (50) + (= 1) nmrm (sn))y m=1,9,... (31)

Investigation of the system of equations (29) is an extremely
complicated problem. It would be of interest, first and foremost,
to investigate the convergence of the series (26) where the coefficients
Ags Ay, A2, ... are to be found from (29). We shall limit ourselves
here to an examination of the case of small irregularities (ak <<1),
3 We omit here computations reduced principally to a transfommation of

the order of summing in compound sums.
15
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when the coefficients decrease very rapidly as n increases [as (a)™,
X and we shall compare the results obtained with the results of the

above-presented theory. Retaining in the expressions for A, only the
lowest powers of ak, we find from (29) that
1 Ay=—1, Ay =2k, Ay=(ak)*[1— 2]
4 o=—1 M= » i3 2ak )’
' {15\ s __fL)] (32)
Ay = —1(ak) [‘:T‘“'z (IEE) 2ak( Zak /)’
3x‘ ot¢octoo.oo.-oo¢0000..a'0
} i Changing (26) to the form of (14, 1) by means of substituting
) exponential curves for cosines, one may convince oneself that Ag, 4,,
. Az, A3, ... must coincide with the values for By, 2B}, 2B,, 2Bj3, ..
3 The latter may be found according to formulas (26, 1) and (24). Here
2 & it is necessary to take into account the fact that V = -1 with our
S limited conditions. Besides that, since the incidence is assumed to
! be perpendicular, kJ = -k, kg = 0. As a result, we obtain
b
3 . Bo==— (k] k) (— )™ Jo [ak (sin am + sine,)) (33)
%i ¢ and, finally, considering the smallness of ak as well as the relation-
i ﬁ ships kg = k sin @, and oy = n/2, we find that
- Bo=—1, 2By=lt ' LA '
- e ,_‘m%( + slngy), 2B“=un%(7)(l+smadt(3ﬂ
. ¢ .
> L ak \3 : )
: ¢ 233—-@“—%(7—) (1 +sln«,)'.~
ﬁ : Here . : .
: kT —iey
x ' Sfﬂdn,:-;—:;,/l-'%{-)—, ”l..—'..l' 2. 3.
;‘ ' Comparing the sequences of (32) and (34) we see that they will
3 coincide, if we disregard (mp)? in comparison with k2, As a matter of
B fact, here, on one hand, sin : 1, and, on the other hand, in con-
7S formity with (28), s, : 0 and we obtain:
"
Av=By=—1, A, =28, =%,

Ay=2By=(ak), Ay=—(/3)(ak)... (39)

Thus the validity of our solution in the case being examined

16

ye.
i3

Tl IR hes v

g



0

7
o

RN IR
e
LRy

e LUy
TN

%
4

RPN SO R PP TS ANTE ST S W R v Nt et S e am Sy L T ' .

SR

H

is limited by the condition that (mp)? «k?, which is equivalent to

the condition that sin ap = 1, i.e., o, = /2. In other words, we

shall chtain correct amplitudes only for waves scattered in directions
close to perpendicular. This result confirms the conviction expressed

in § 5,1 above thot the method of calculation is valid oniy for

waves scattered in directions close to the directions of geometri-
reflection from various parts of the surface. In the case being examined,
in view of the smallness of the amplitudes of the sinuosity, the directions
of geometric reflection will be grouped around the perpendicular to the
average surface level,

k, Wave Superposition

We shall sxamine the case where a wavy surface is formed by
superpositioning several waves.

We shall assume that we have solved the probiem of diffraction
on a surface, the form of which is given by a certain function Z(X).
This means that the coefficients of Bom {o,) have been found in an
expansion of (20). The question is asked, how do these coefficients,
and, consequently, the amplitudes of the diffracted spectra as well,
change if a sinuosity defined by the cosine curve a cos ypX and having
a period y whole number of times less than the period of function Z(X)
is superimposed on this surface?

Ke shall designate the new coefficients which are analogous to

BY, (og) as Com {a_). The latter may be found from an expression
which is analogous to (20):

exp {— ik (sin % + sin ao) [Z (X) + acosvpX]} = Z‘,C,‘l, (@) '™,
m
which, when (20) and (23) are computed, is written in the form

~l2 203 Yo X +-m 0  l1pX = Y
¢ 2 Bne‘p = 2 C,",,e'”"“.

3w GO Mas =00

Substituting the series (éZ) for the exponential curves in
the left-hand pertion, multiplying out the series and grouping
terms correspondingly, we obtain

‘

+00 impX -l-_.o X +% .
Ne s N =0 Ji(S) Bhery = 3 Coe'mr¥

Flwa =t Ser=in Mwaaein

17
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from whence
+o x )
Calam)="3} (=" (s) Boucay (otm). (36)
. Ame—co .

Figure 14 depicts the scatter field in the case where the
sinuosity is a superpositioning of two sinusoids. Calculation is
accomplished with the help of formula (36). The angle of wave
incidence is taken to be 45°. Besides that, it is taken that

6, = kal = 3, and 6, = ka2 = 2,

where a, and a, are the amplitudes of the sinusoid. As in the
preceding cases, it is assumed that A/A = 10,

100 &
W , £
A
) %
$ f @ %2 angles in
% degrees
§ \ 2 b
X e
, \,{""&/.
\ﬁb\gi "'."L/I 4
- =;§;§5 Z

W w0 w06 S I W8 0200 SEE Sl gs P

/\/\._\ ).
7 \aE6'x_\\\\~“///ﬂ-\\\h‘//zwnu

Figure 14: 6§ =3, 6 =2

Figure 15: Individual sinusoids comprising the surface shown
in Figure 14
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A view of the scattering surface is depicted in the lower
portion of the Figure [14). Individual sinusoids, the superposition
of which results in this surface, are depicted in Figure 15.

5. Diffraction on a surface which, [when viewed] cross-sectionally,
is a broken line

We shall examine diffraction on a surface defined by the
cquations (Figure 16):

Z=a(l+4X[A) —A[2€X<L0,

Z=a(l ~4X]4), 0KX<A[2 (37

For the expansion coefficients of (20) we have, according to the
known formulas for Fourier series coefficients,

., A3
Bgl (am) =1 S

A2

exp {— ik (sinen + sineg) Z (X) —imp XN} dX  (38)

Figure i6: Cross-sectional view of a 'broken-line' surface

or, taking into account (37) and (23},

“ ..}\_. -S:Aexp{»- is([ -+ -%\’—)-—-ime}dX +
" .,?{.'S's exp{—is(1— 2)- zmpx} dx.

Having completed the integration, we obtain

Y it
e B (o),

(mg) —g V2 (39)

19
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where the relationship p =2n/A is also taken into account.

1 &
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Figure 17: Scattered wave directionality characteristic

according to formula (40)

§ = 2ra/X, A a = 20.9

Having substituted (39) into (19), we find for the amplitudes

of the waves at the lobe maxima with anr accuracy up to a constant
factor that:

. kil — Xy — &
“ flamy = 2 {nf:S,( n =l g (1"554- s).
(z) -

(40)

~ -

Figure 17 depicts the scattered wave directionality characteristic
calculated according to formula (40).

The angle of incidence is taken
to be 45°, A/A = 10, and § = 2ma/\ = 3.

As may bLe seen, the scattered wave has a character close to that
of diffusion,

The lobe directed at an angle of approximately 66° has
maximum amplitude.

This lobe corresponds to specular reflection from
the flat areas forming the left slopes of each peak in the uneven

surface (for example, the sector —A/2 £ X < 0 in Figure 16).

The lobe directed at an angle of approximately 23° and corresponding
to reflection from the right slopes is also most intensive.

As was already indicated above (see § S, 1), our theory is able

20
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to give correct values for lobe magnitudes only for angles which

do not differ too greatly from these two directions of geomerric
reflection. At angles greater than 90° it may not be expecred that
the dimensions of the lobes will be correct. They are depicted in
Figure 17 only to illustrate the results of the theory, which is
based on Kirchhoff's principle.

_ The scatter diagrams presented here were constructed by Ye.
Zezyukina; she also did all the necessary calculations. In connection
with this, I express my gratitude to her.
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