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‘%-Infig&gfreport an elasto-plastic solution is given for determining the atresses,

straing, and displacements around a circular tunnel in rock. The relationship

between the principal stresses in the plastic zone are determined by the Coulomb-

Navier failure criteria and the concept of "normality” is used to relate the plastic

strains to the "yield' surface. The "“normality" concept results in a dilatancy

of the material at yielding when the angle of shearing resistance of the material

is greater than zero. Thus the displacements calculated by the method given in this

report include the effect of dilatancy in the yielded zone around the tunnel.

> The results of the study are presented in graphical form which enable a wide
variety of problems to be golved by hand without the use of a digital computer. /L
Example problems are given in which the method is applied to various situations includd
ing lined tunnels in a rock mass vwhich contains a destressed or loosened zone around
the tunnel before installation of the liner. The method of analysis presented is
especially applicable to problems where loads are imposed after the liner is installed
8s in the case of the design of protective structures. The method given herein is
useful for design because the calculation of deformations and strains, rather than
stresses, enable the designer to determine if a particular type of liner can tolerate
the deformationg imposed at the rock-liner interface.

Suggestions are also given for the selection of rock mass properties to be used
in the analysis, i.e. deformation moduli and shear strength properties.
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ABSTRACT

In this report an elasto-plastic solution is given for determining the
stresses, strains, and displacements around a circular tunnel in rock. The
relationship between the principal stresses in the plastic zone are determined
by the Coulowb-Navier failure criteria and the concept of "normality" is used
to relute the plastic strains to the "yield" surface. The "normality" concept
results in a dilatancy of the material at yielding when the angle of shearing
resistance of the material is greater than zero. Thus the displacements calcu-
lated by th. method given in this report include the effect of dilatancy in the

yielded zone around the tunnel.
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The results of the study ere presented in graphical form which enable

P

a wide variety of problems to be solved by hand without the use of a digital
computer, Example problems are given in which the method is applied to various
situations including iined tunnels in a rock mass which contains a destressed or
lcosened zcne around the tunrel before installation of the liner. The method of
analysis presented is especially applicable to problems where loads are iuposed
after the liner is installed as in the case of the design of protective

. structures. The method given herein is useful for design because the calcula-
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tion of deformations and strains, rather than stresses, ensble the designer to

determine if a particular type of liner can tolerate the deformations imposed
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at the rock-liner interface.
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Suggestions are also given for the selection of rock mass properties to

kel

hagi

be used in the analysis, i.e. deformation moduli and shear strength properties.
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NOTATION

a = Radius of a circular tunnel or tunnel lining i
C = Constant of integration
- D = Tunnel diameter ‘
r = Young's modulus of an elastic medium under plane strain conditions '
E! = Young's modulus of a loosencd or destressed zone around a tunnel
EO = Young's modulus for an elastic material under plane stress conditions
Er = Effective Young's modulus of deformation for a rock mass
Es = Young's modulus for steel
3 seis = Dynamic value of Young's modulus calculated from seismic surveys j
: i hS = Thickness of steel lining
N . L1l *sin ¢
: & 1l - sin ¢
! P = Difference between the circumferential and radial stresses in the

plastie zcne, (oe - °r)

P, = Radial pressuvre on the surface of a rock tunnel
P, = Uniform free~field stress
= +
Q p, *+ T
q, = Unconfined compressive strength
R = Radius to the elastic-plastic boundary
Rl = Radius of locsened or destressed zone
R2 = Radius of elastic-plastic boundary in the loosened medium, if any,
when R > R i
l .
I r = Radial distance from the center of a tunnel
; S = Stress differecnce in the elastic region (oe - or)
! ] = Jcint spacing
i
H ou
3 T S W -1

4 vi
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Radlal displacement

Tangential strain

Tangential plastic strain

Radial strain

Radial plastic strain

Poisson's ratio of medium in plane strain
Poisson's ratio ot loosen.d or destressed meiium
Poisson's ratic for plane stress

Angle of shearing resistance of the material
Radial stress

Radial pressure exeried by steel liner against the adjacent rock
medium

Circumferential stress or tangential stresses

Radial stress at radius R

Unconfined compressive strength of the rock mass surrounding a tunrel
Yield stress of steel

Shear stress in polar co-~ordinates
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

Multiptly

inches

feet

cubic inches
pounds

pounds per square inch

pounds per cubic foot

inch-pounds

inches per second

By
2,54
0.3048
16.3871
0.145359237

0.070307

16.0185

0.011521

2.54

viii

British units of measurement used in this report cun be converted to metric
units as follows:

To Obtain
centimeters
meters

cubic centimeters
kilograms

kilograms per square
centimeter

kilograms per cubic
meter

meter-kilograms

centimeters per second
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Chapter 1

Introduction

General

Cne of the most significant engineering properties of rock masses is shear

strength, The stability of both lined and unlined openings under various static
and dynamic loadings depends on the shear strength of the surrounding mass.

Since the shear strength of rock masses increases with confining pressure, it is

necessary to employ an analysis which includes this property in order to properly

assess the effects of various types of tunnel linings.

One of the first attempts to take into account the Coulomb-Navier shear
strength characteristics of earth materials in a yielded zone around a d=ep
tunnel was made by Terzaghi (1919). Although he did not obtain & general solu-
tion tc this problem he was impressed by his field observation that deep bore-
holez in frictional matecrials remained stable at depths where the material
adjacent to the opening should have failed. His curiosity about this problem
led him to ask H. M. Westevgaard, a colleague of his at Harvard, two questions.

(1) "What distributions of stress are possible in the soil around an
unlined drill hole for a deep well?"

(2) "What distributions of stress make it possible for the hole not to
collapse but remain stable for some time either with no lining or
with a thin "stove-pipe" lining of small stractural strength?"

Westergaard (1940) published the answers to these questions after obtaining a
solution for the stresses around a borehole where the material in the plastic

zone around the hole was assumed to fail according to the Coulomb-Navier

e m s g mmgre s ese NS YA AR e £ P/ T ST T A R Y S NI NS PSR I Y T LR AT T .4§




failure criteria. The results showed that a small radiel confining pressure at
the surface of the borehole enabled the radial stresses to increase rapidiy with
deptn behind the surface such that the radial pressures a few iuches behind the
borehole surface furnished sufficient confinement to support the high circum-
ferential stresses around the opening. The results of Westergaard's solution were
expanded and interpreted by Terzaghi, 1943. Essentially the same solution has been
published by Jaeger (1956), Jaeger and Cook {1969) and Sirieys (1964). In this
solution, the stresses are obtained around & long circular tunnel in & medium

where the free-field principal stresses are equal (i.e. o, = = Py» Fig. 1).

°H
For this case, the shear stresses around the opening, T.g 2T€ equal to zero and
the differential equation of equilibrium shown in Fig. 1 can be expressed in terms
of the radial stress °. and circumferential stress Og¢ The ~nlution was obtained
by integrating the differential equation of equilibrium in the plastic zone (Fig.
1) with the constraint that the circumferential and radial stresses are related
by the Coulomb-Navier failure criteria and requiring that the radial stresses are
continuous at the boundary between the elastic and plastic zones (Fig. 1).

An illustration of the stress distributions obtained from the Westergaard
solution is given in Fig. 2 for a tunnel in sand (C = 0, ¢ = 30°). The distribu-
tions of circumferential stress 9g and radial stress o, are shown in dimensicnless
form in terms of the free-field stress Pq and three differen. stress distributions
are shown for cases where the confining pressure on the inside of the tunnel is
equal to 1/10, 1/20, and 1/40 of the free-field stress b . For each stress dis-
tribution shown the circumferential stress is maximum at the boundary of the
elastic and plastic zones and the distance to the boundary between the elastic

and plastic zones increases as the ratio of the free-~field stress, P,» to the

internal pressure, Ps increases. It should also be noted that the circumfererntial

stress increases very rapidly with depth behind the opening in the plastic zone
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and illustrates the atility of a frictional material to czarry high circumferential
stresses at depth due to providing a nominal confining pressure, P;, On the inside
surface of the tunnel.

The solution discussed above however yields only the elastic-plastic stress
distribution arocund the opening. A knowledge of the stress distribution is only of
academic interest for the design of a tunnel lining unless the deformations at
the wall of the tunnel are compatible with the deformations a lining can resist
before failing. The radial displacements &t a tunnel wall are due to both the
inelastic strains in the plastic zone adjacent to the tunnel and the elastic
strains in the rock outside the plastic zone. Although the strains in the elastic
region are easily calculated, the calculation of strains in the plastic zone
involves some assumption regarding the relations between the plastic strains and
volume changes of the material at failure. Newmark (1969) obtained a closed
solution for the problem described above and shown in Fig. 1 which considers the
displacements and strains around the opening as well as the stress distributions.
To obtain this solution Newmark combined the differential equation of equilibrium
and the compatibility equation relating radial displacements to radial strains and
circumferential strains to yield the relation given as equation (4) in this report.
Since the differential equation of equilibrium and the compatibility relation
involve only equilibrium and geometry respectively it follows that the relation
given by equation (4) must be satisfied in both the elastic and plastic regions.
Newmark (1969) obtained a solution for equation (4) by assuming that after yield
of the material that the plastic components of the radial and circumferential
strains were such that the resulting volume change was zero or the yielded material
behaved as an incompressible solid. The results of the solution have been pre-
rared by Newmerk (1963) in the form of charts from which the displacements at the

tunnel wall can be determined as a function of the elastic properties of the

"
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medium (v, E), the shear strength properties of the medium as determined by the
i unconfined compressive strength and the angle of internal friction, the free-

‘ g field stress, and the capacity of the tunnel 2ining. Since real rock masses

increase in volume at failure, a phenomenon called "dilatancy', it is probable ‘ ?‘v

; that the Newmark solution underestimates the inward radial displacements at thre

tunnel wall because of the sssumption that the plastic components of strain yield ' b

no volume change.

4 Scope

é : In this report an elasto-plastic solution is given in Chapter 2 which ;

e

accounts for the diletant properties of a rock mass which obeys the Coulomb-
E ? Navier failure criterion. Example calculations are given to illustrate the

; variety of problems which may be solved by this method. Suggestions for the

selectior of rock mass propertiec and conclusions are given in Chapter 3.




Chapter 2 E

Analysis

The bagic configuration considered in this study is shown in Fig. 1. This illus-
tration represents a section through an infinitely long tunnel where the strain
in the direction of the tunnel axis is zero. The cylindrical coordinate system

with the origin at the center of the circular c¢pening is used in this analysis. o

Fundamental Relations of Equilibrium and Compatibility

9

The relations given herein are derived for plane strain conditions for a

uniform stress field.

The basic differential equation of equilibrium for a typical element

shown in Fig. 1(&) is
— + 1 -

where O and % rerresent the radial and tangential stresses respectively, at a

radial distance r.
The radial and tangential strains for the assumed conditions of plane

strain can be stated in terms of the radial displacement, u, as follows: 7%‘
u
€. = 3= €g = T (2)

Upon eliminating the displacement u from Eqs. (2), one obtains the

following equatior of compatibility:

-g) = 0 (3)




Egs. (1) and (3) can now be combired into & single equation by multiplying Eq. (1)

by the gquantity ~ (1 - u) r and adding it to Eq. (3) multiplied by the quantity E.
The result is:

rs-g-EEee-(l—u)or} + [Eee—(l-u)or] - Eﬁer-(l—u)oe:] = 0 (1)

It is to be noted here that Egs. (1), (3) and (k) are valid for both elastic and
inelastic conditions. However, the validity of Egs. (2), (3) and (4) is limited
to the case of small displacements,

In order to solve Eq. (L), it is necessary to relate the term in brackets
at the extreme right of Eq. (L) to the other terms in that equation through the

use of stress-strain relationships and to establish the appropriate boundary

conditions.

Relations for the Elsstic Zone

The stress-strain relationships for the elastic behavior of a material

under plane strain conditions can be written as follows:

Eee = 0y = WO (s)

= - \
Eer lof poe (6
where E and y are the Young's modulus and Poisson's ratio of the material under

plane strain conditions. The values of E and p for plane strain are related to

the corresponding values for plane stress by the following equations:

3
1}

2
Eo/(l -y ) (1)

=
]

uo/(l - uo) (8)
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where Eo is the Young's modmlus for plane stress and uo is the Poisson's ratio

for plane stress, If the quantity S, as suggested by Newmark (1969), is defined

by, _ .

S = Eey - (1 ~ ) o, (9)

then from Eq. (5) it follows that

-0c.) (10)

Thus in the elastic region the quantity S is equal to the stress difrferencs

between the tangential stress 9y and the radial stress 9. Eq. (6) gives

Be, -~ (L-w)og = a -0, = -5 (11)

Using Eqs. (9) anda (11), Eg. (L4) can be simplified as:

r %% + 25 = 0 (12)
or r 2 (o, —=a) + 2(o. -0 ) = 0 (137
or 0 6 r - ’
Bor
From Eq. (1) 2r =5t 2 (0r - ce) = 0 (1k4)
Adding Eqs. (13) and (14),
r = (o, +0.) = 0 (15)
ar e r

Eq. (15) indicates that in the elastic region, the sum (06 + or) is a constant.

a

At very large values of r, each of the stresses ¢, and 9. is equal to the free-

field uniform stress, po. Therefore in the elastic region,
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0y *+ 0, = 2p° (16)

and § = 0g-0g, = 2p - 2a (16a)

Integration of Eq. (12) yields

R 2
S = SR [’;} (17)
where SR represents the value of & at radius R in the elagstic region,

i.e., S = S

= 2p - 20R (18)

where OR = radial stress at radius R in the elastic zone.

At any radius r in the elustic zone,

2p - S 2

0. = 02 = p, - (po - °h) (%) (19)
R z

O ~ 2po =9, T Py T (po - oR) [;J (20)

Relations for the Plastic Zone

The radial and circumferential (or tangential) strains in the plastic

region can be writtea as the sum of the respective elastic and plastic components.

Thus in the plastic zone,

- . . .
€q ey (elastic) + €s (plastic)
(21)
and €. = &, (elastic) + e (plastic)
8
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The concept of perfect plasticity requires that the associated strain rate vector
must be normal to the yield surface, Drucker and Prager (1953). Accordingly, if
f represents the yield funcvion which is valid for the plastic zone, the plastic
strain rate components in the radial and tangential directions can be related by

. the equation

. ée (plastic) 3f/309
¢, (plastic) af780r

(22)

The yield function used in this analysis is btased on Coulcomb-Navier yield criterion

and is given by

= - o 1} - = [»)
f 09 Ul‘ L‘I¢ Ou o} (:_3)
where H¢ = %—:—E%ﬁ—% » 0, = unconfined compressive strength of the material
and ¢ = angle of shearing resistance of the material. Thus Eq. (22} gives

é6 (plastic)

1
m = -I—‘l— = constant.
r \plasti ¢
Since the ratio of the plastic strain rate components is a constant (for the yield
function used in this analysis), the ratio of the plastic strain components will
also be equal to the same constant. Thus the ratio between the plastic strain

components may be written as

. €q (plastic) ) 1
€ (plastic) = "~ W,
£ plastic N¢
or e, (plastic) = ¢ R (plastic)
0 6p n, " Cr
or € (plastic) = - N¢ . aep (2k)
9
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It should be noted that the relation given in Eq. (24) produces an increase in
volume at fallure and the percentage of volume change increases as N¢ increases.
EQ. (24) accounts for the primary difference between the solution presented herein

and the solution given by Newmark (1969) where the condition of incompressibility

assumed by Newmark imposed the condition that Erp + eep = 0. By utilizing
Eq. (24) Eqs. (21) can now be rewritten as: .
|
1 !
g =  (9g = wo,) + eq (25) §
i
€ = (0 -po) =N e (26) {
r E'r ] ¢ fp !
i
or Ee, = o, - wo_ +E €ap (a7 -
Be = 0. - Moy - N¢ « B . €op (28)
Substituting Eqs. (27) and (28) inte Ey. (L)
r® 4 o2 + B e (N, -1) = 0 (29)
ar 6p ¢
vhere S = Eey - (1 - w) o,

The quantity S is equal to the difference between the tangential and radial stresses
in the elastic range but in the inelastic (plastic) range it has only a formal
megning. For the inelastic conditions, the difference between the tangential

stress O and the radial stress oL ie defined as:

P = g, -0 (30)

i}

S - (oe - °r) = 8§-P (31)

By Ea. (27), Ee p = Ece -0, + Mo,




r . ammm mmm xmie P L R e L N e e o
"herefore Eq. (29) becomes
2
—— o] - - =
raz tos (s - P) (N¢ 1) 0
or r 2 45 (N +2) = P(N, -1) (32)
- or $ ¢
It may be noted that Eq. (32) is valid in tne plastic region only.
In the plastic region the Coulomb=liavier yield criterion is assumed to
be valid. Accordingly
Gq = 9. N¢ + 0 (33)
P = g,-0. = (N¢ -1) o ¢+ %y (34)
Differentiating Eq. (34) with respect to r
90
3P _ by
. = (N¢ - 1) (35)
; Substituting Eq. (35) into Eq. (1)
{
: P
é r === (N¢ -1 P 0 (36)
'
E The solution of Eq. (36) yields
§
: RN P
. P = Pa [E] (37)
i
! where P = P
: a
i r=a
8
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Let the radial pressure inside the tunnel bve Py and the radius of the circular

tunnel be a. Then F

Py = Pl = o, + (N, -1)p (38)
r=a
r\Ne-1 r)Ne~1 . -
Therefore P = P, [—5] = E“ + (N¢ - 1) pi-l [;] (39) B
At any radius r within the plastic zone, 3
_ ou r N¢-l Ou
Or = (P - ou)/(N¢ - l) = [pi + N l] [-8.. - ¥ )
$ $
. Ny=1
- r) ¢
= (p; + T la] -7 (40)
where T = Ou/(N¢ - 1) and (1) )
g = N¢ . or+ % (33)
Substitution of Eq. (39) into Eq. (32) gives %
N4=1
35 . r) ¢
PB sy e = - [ ep -] g
= A 1‘H¢—1 ("‘2)
where E
2
(N =1)" (p., +T)
= $ 1
A = W1 (L3)
A
Solution of Eq. (42) is of the form
N.+1 2N
sr ¢ =R T (LY)
EN¢

12
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where C is the coustant of integration. The constant C has to be evaluatced from

the boundary conditions specified for any given case.

Seven specific cages have been studied in this investigation, each with
a different set of boundary conditions. These cases are presented and analyzed

in the remainder of this chapter.

Case 1. Tunnel of radius a, supported with & ccustent internal pressure p; --

Z, iy 0,, and ¢ for the plastic zone are the same as for the elastic

zone. (Fig. 1b)

Let the radius of the elasto-plastic boundary be R. Let the radial and tangential

stresses at r = R be represented by ok and %3R respectively. According to

Eq. (39)
. R
P, = F = lf + (N, - 1) p:] f%
R r=R u ¢ i a
= -1 (o e (g (15)
From Eqs. (33) and (20)
OOR = op* N¢ + o T 2po - OR
. Py = %y 3
© R T W, T1 (16)

Substituting Eq. (46) into Egq. (34)
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N, -1
Py = oy (N =1 oy = °u+N¢ T (2, - 9,)
= 2 (g, +T) (N, - 1) (b7)
N¢ + 1 o ¢
Equating Eqs. (45) and (L7)
[ ]N(.p-l ) p +7T
a No+1 p +T
P
or R . 2 . P * T]H¢-1 (48)
a N¢ + 1 Py + T}l
(N, = 1)
At r =R, sR=PR=2(po+T)W:¢-+—lT (49)
Now the value of the constant in Eq. (4b4) can be estimated.
According to Eg. (4k), at r = R
2N
N, +1 ¢
= . ¢ u—R———
C = S *R - == (50)
®
Substitution of Eq. (50) into Eq. (4k)
N +1 2N 2N N, +1
sr ? =-£‘—[r¢-R¢+S'R¢ (51)
2N¢ R
Substituting for A and SR in Eq. (51), and simplifying
N+l N -1 2N, 2N,
S._| | = 4 |l N - R »
[p. T [a] o [a] (N, 1) + [a] (.1¢ + 1) (52)
1 ¢
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The vaiue of K/a to be used in Eq. (52} is given by Eq. (48). Eq. (52) gives the

value of S at any radius r in the medium.
When the values of S and o at any radius are known, one can calculate the cir-

cunferential strain €g at radius r using the following relation:

ee=—[s+(l-u)0{| (53)

The targential plastic strain component at any radius r in the plastic zone can

m -

be estimated from the relationship:

e, = %-(s - P) (54)

vhere S and P are given by Egs. {9) and (39) respectively.
Eqs. (52) and (39) can be combined into a single equation to yield the S - P

relationship applicable in the plastic region:

b1 2N,
$ -ty v - [ (55)

The corresponding relationship applicable to the elastic region can be readily

derived from Eqs. (17) and (37;:

R
S R
5 - [;J (56)
Eq. (47) yields
N, +1
p,*T = 3 N, = T Pe (s7)
15
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Let us now define Q = P+ 7 (58)
(N, + 1)
and K = 13 (59)
d
Thus Eq. (57} becomes
Q = K. PR
According to Eq. (37)
. N¢—l
P =t -
« [
. N¢—l
. Q=K‘PR=P°K[;]
' -1
or % = K (B-] (60)
r

It is to be noted that the quantity Q is independent of the radial stress

whether the stress situation is plastic or elastic.

Graphical Solution

Although the various quantities of interest for design can be calculated

from the relationships given above, charts summarizing the relationship between

S Ok i S e B . 1l o 0 A e, ik Bttt AP e Wt A B a5 i W i 11 wmhmmwmm

P, S, and Q can be made to facilitate calculations, Newmark (1969). Examples of
such cherts are given in Figs. 3 through 7 for values of N¢ ranging from 2 to 6.

These charts are based on Eqs. (55), (56) and (60).

E 16
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The abscissa in the chart is S and the ordinate is P, both being plotted
to a logarithmic scale, Lines sloping up to the right represent constant values
of R/r and the lines cloping up to the left give constant values of Q. The
heavy line for R/r = 1.00 represents the limit of elastic behavior. Below this
line the behavior is plastic and above this line the behavior is elastic. If the
circumferential strain and the radial stress are known at any point with radius r,
then both S and P at that point are known and their intersection can be determined
This intersection, if below the heavy line for R/r = 1.00, gives immediately the
value of Q from which p, may be determined. The value of R/r is also obtained,
which can be used directly to determine the radius of the elasto-plastic boundary.
If the point of intersection is in the elastic region, “he original value of P is
not valid ™t p_ can be determined directly from Eq. (16a) since o, and § are
known to begin with.

Similarly if the free-tfield stress Py and the radial stress at any radius
r are known, the quantities Q and P can be calculated and these values can then
be used to define the initial point in the chart. If the plotted point is in
the plastic region, it gives immediately the values of R/r and S frém which the
radius of the elasto-plastic boundary and the circumferential strain g at radius
r can be determined. If the plotted point is in the elastic region, the plotted
value of P i3 not valid but the value of S is always valid. This value of S can
then be used to determine the circumferential strain at the given radius r.

If we now proceed from e given radius r to some new value of r, say r = b,
with R known, then R/b can be calculated and this value read as the new value of
R/r. One proceeds to this new value along & line of constant Q since P, does not
change in the same material. This new point gives directly the value of § as the
abscissa and the value of P as the ordinate for the new radius. If the inter-

gection is in the elastic range of the chart, the value of P is not valid but the
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value of S is always valid. If the intersection is in the plastic region, the
new P is valid and g, can be determined directly because cu is known. With o

determined, ee can be determined directly from S, If the new P is not valid, or

the situation is elastic, o, can be determined from Eq. (16a) since both S and (1 '
po are known for the new radius. Eq. (53) can then be used to determine the

circumferential strain e, .

e -
Regardless of whether the starting point is in the elastic region or in o ¢
the plastic region, a new point at another radius can be determined by going along ‘

a line of constent Q, taking into account of the fact that the change in radius

is one vhich corresponds to a constant value of R, which can be determined from
the first point located. It is thus apparent that one can start at any point and
go to any other point in the same medium directly but one must start over again in
each new medium, with some valid starting point being known.

The preparation of & chart for a given value of N¢ involves a large number
of repetitive calculations. Thus, a small computer program was written and used
to generate the data necessary for construction of the charts shown in Figas. 3
through T which were prepared for values of N¢ =2, 3, 4, 5, and 6. If the value
of N¢ in a given design problem is not an integex, the calculations may te done
by interpolation using the appropriate charts. The range of input parameters

covered by the charts shown in Figs. 2 through 6 is large enough to include nearly

8ll problems involving deep protective structwres in rock.
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Example 1 '
i
Data ’ i
Unlined Tunnel: & = 8! :
!
P, = 16,400 psi g
E = 6x106 psi ;
p = 1/3 3
o, = 2000 psi ,
E N¢ = L or ¢ = 37° |
¥ =
f mo
Required: €q = 2
% r=asa
Solution:
: _ 2000
5 T = ST = 667 psi (41)
At r = a :o

: 32-;—' = 3 [3+5 (%]8] (52) T

1/3
R _ (2. 1706
. (o2
= 2,17 : )
E und S = 667 x ‘3‘ [3 +5x 2.178]
g = 625,000 psi 5
h 19
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1 625,000

cg = § 5+ (1a) p) = ===
6 E i 6 x 10
=1
= 1.04 x 10 or 10.4 %
Graphical Solution (Use Chart for Ny = 4)
p,*+T = Q = 17,067 psi
P = o, * 3 py = 2000 psi
r=a

For @ = 17,067 psi and P = 2000 psi, read from the chart for N¢ =L,
R
7 - 2.17 and S = 625,000
1
€g = 7 (s + (1-u) pi)
r=a
= 10.4 %.

Case 2. Input Parameters are the Same as for Case 1 except that the value of

oy in the plastic zone varies linearly from zero at the tunnel wall

(r=a) to the full velue at the elasto-plastic boundary (r=R)

The assumption of a linear variation of o, in the plastic region intro-
duces the following changes in the relationships derived for the plastic region.

The Coulomb-Navier yield criterion for the plastic region becomes modified

ce = 01‘ . N¢ + Ou [R_-_E] (33a)
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where R = radius of elasto-plastic boundary

The stress difference, P, at radius r in the plastic region is now given by

g
P = gg-o0. = o (N -1)+ [R _“a] (r - a) (3ka)

Differentiating Eq. (3u4a) with respect to r,

oo} o
3P _ _r u
ar (N¢ - 1) r T [R - a} (35a)
Substituting Eq. (35a) into Eq. (1)
3 p _ %y
31-(N¢-1);~R-a (36a)
The solution of Eq. (36a) yields
; =
. N¢-l Ou . a . N¢-l .
P =P {;] *wR-m, -2 [E] - s (37a)
where P, = P = p, (N¢ - 1)
r=a
t
Therefore
N =1 N -1
P = (N, - 1) |& + Ju 2 ) * -z (39a)
Py Yy a R-a)v, -2 |la a
At any radius r within the plastic zone, (a < r < R)
i _ r ~a /
or-[P-cu-R-a]/(N¢-l) (40a)
]
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- . r-s
g = O, N¢ +a. [R — a] (33a)

Substitution of Eq. (39a) into Eq. (32) yields

r %% + SN +1) = Ax ¢ +Br (42a)
(N¢-l)2 T e a
vhexe A T T TR OW, - ]
$
(43a)
g ¢+ (N, = 1) F
. Su Y
and B—(R—a)(E-N(J

Solution of Eq. (%42a) is of the form

N,+1 2N ¢
b _ A ¢ Be+r
S 1 = {éﬁ- r * St C (Lha)
$ $
where C is the constant of integration,
At r =R, S = SR
N¢+1 A 2N¢ B . RN¢+2
(o . = — ————————
Therefore Sy R [2N¢} R + N¢ T 5 + C

N +1 2N 2N N +2 N, +2
Sor¢ =-A_lr ¢_R ¢]+ B [I‘¢ _R¢]

+s_ +RY (51a)
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At the elasto-plastic boundary (r=R)

Py = F;%T (oo + ™) G, - 1)

According to Eq. (39a)

N ~1

(47)

$ (o}
R
Pp = py (N, = 1) [E] *®- 27(N¢ _—)

Equating Eqs. (47) and (L5a)

g) ¢ R
[—J ey (4sa)

¢
[%] Lt ﬁ-f»(m 2)-I -3 B lT(N 2
a ¢ a ¢
There is no closed solution of Eq. (48a) for R/a.

R/a only by successive approximation.

2 (po + T)(Nd) - 1)

2(p, + 1) ,
):j = W, D (L48a)

Eq. (4B8a) has to be solved for

At r = R, Sg = P = (N¢ ey (u7)
Substituting this value of Sy into Eq. (51a) and simplifying
N +1 2N 2N N, +2 N, +2
$ - A ¢ ¢ $ $
Sr SN [r - R J + N + 2 [r -,R }
¢ ¢
2 (p_+ TN, - 1) N, +1
o $ .r®

+ W, 1 R (52a)

where A, B, and R are given by Eqs. (43a) and (L8a). Eq. (52a) gives the value

of S at any radius r in the medium. The circumferential strain €y C&n then be

calculated using Eq. (53).
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In the elastic region (r 3_R) the stresses and strains are given by

Eqs. (19), (20), (5), (6) and (L6).

[
©®
cr
»

' Unlined Tunnel: a = 8!

p, = 2000 psi
| E = 6x10° psi
: w = 1/3
o, = 12C0 psi
N = )
¢
p; = 0
Required: €5 = 7
r=a
! Solution: f
i T = l%g%» = 40O psi (41) |
; i
'
| @
| g|> 400 R (400 2 x 2400
B8 lR [ ~ & |TR [ = 5 (48a) :
= -1} 2 I:- 1 2 :
a a :
J ,
' solving = = LT or R = 1.75x8 = 1u |

Note: If 9y is constant over the plastic region

R 2 x 2loo) /3 (48)
a 5 x %00

B o 1.3y
a

2k




- T T———p %

R T T et SR P

L ey nta

3R R )
a a L
B - 1200 « 3 _ = 2koo
a* 0.75 « 2 a

5 _ _2koo [ 8 2koo [ 6
5 e 33.8|.a_Rﬂ _m[& -Rﬂ

2 x 2h00o x 3 _5

+ SRS R
s R 2
ubstituting s - 1.75
S = 300[1—1.75ﬂ - Li»OOl-l-l.'TSG.]
r=a
+ 28800 x 1.755
= 32200 psi
¢ = 2 [s+@-w = 5.4 x 1073
8 I H pi L—_—-_—
r=a

Note: 1If o, is constant over the plastic zone

5 = 400 x 3 [3 +5x 1.3&8] = 8300 psi
r=a
= 4 _ -3
end €q = £ (8+Q-wp) = LbEx10
Ir=a

a5

(43a)

(52a)

(52)
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Case 3. Input parameters are the same as for Case 1 except that cohesion is
i assumed to be lost in the entire plastic region, i.e.,

gy =0

———

The assumption of a complete loss of c¢onhesion in the plastic region results
in the following modified equations:

Coulomb~Navier fajilure criteric...

gy = 0. ° N¢ (33v)
Stress difference P = o (N¢ -1) (3kv)
N =1
r) ¢
P = Pa . {E] (37®)
| vhere P, = P = py (N¢ - 1)
r=a

At any radius r within the plastic region

g, = P/(N¢ -1) (Lob)
Og = 0.° N¢ (33b)

_ 2
At r =R, P ———N¢ T P, (N¢ - 1) (47v)

R N"-l ,
= p (M, - 1) [;] (45b)
1/N =1

Thus R . 2 39 / * {(48p)

a N¢ + 1 pi
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Eq. (52) is now simplified as

5 {f]N°+l _— (—N-}N-i—ﬂ [—;’;]2N¢> (- 1)+ [{:—]2qu m, s 0| (52)

Eq. (52b) can now be used to determine the tangential astrain €g 8t radius r.
In the elastic region, r > R, the stresses and strains are determined using

Egs. (19), (20), (5) and (6) noting that o = 2p0/(N¢ + 1),

Case L4, Input parameters are the same as Case 1 except that the quantities E

and p have Jifferent values in the elastic and plastic regions.

Let
E, E' = Young's modulus in the elastic and plastic regions
P, ' = Poisson's ratio in the elastic and plastic regions
k = E/E'

The tangential strain at the elasto-plastic boundary (r=R) must have the same
value in both the elastic and plastic regions. Since the values of the Young's
modulus are different in the two regions, there will be a discontinuity in the
tangential stress at r = R.

Let op be the radial stress at the elasto-plastic boundary (r=R)

The circumferential strain at r = R due to stresses in the elastic

zone 1is

£ = 2 (o - N, + 'o
6R E' [R ¢ T % ¥ R:l




The corresponding value at r = R due to stresses in the elastic region

is

€ = & (2p. =-o0.) - po
6R E - %o R R

Equating these two expressions for €aR

N 2 P, - k o,
R RW¢-u')+(l+u)

Accerding t> Eq. (L0) op is also given by

Equating Eqs. (U6c) and (40c) and solving for R/a:

|0

[ 2 P, - k %

L

] l/N¢—l
RO, =5+ (L) +TJ/(pi+T)

Eq. (4Be) thus gives the radius of the elasto-plastic boundary.

For r > R (elastic zone)

>
—

A
~~
Q

[ 44

’
=
Q
~
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(46e)
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(48c)

(19)

(20)

(6)
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For a < r <R (plastic zone)

N,-1
- r ¢ N
op = (e [ -n (10)
0q = N¢ <o, + 9, (33)

The circunferential strain €q in the plastic region can he obtained from S which

is given by Eq. (52):

N +1 2N 2N
¢ N, -1 ¢ V¢
S Py _ r R
ol R CEE IR
€y = E}' [s + (1 - ') cr] (53¢)

Graphical Solution

The solution tc Case U can also be obtained using the chart. In this case,
since the elastic and plastic zones are assumed to have different material con-
stants, they will be treated as two different media arranged in a concentric
manner. For each medium (in this case for each zone) the appropriate chart will
have to be used.

Using the given date, the initial starting point is located in the chart of
one medium, Then the radiel stress and the tengential strain at the boundary
between the two media are determined which are then used to locate the initial
starting point in the second medium. The same procedure can be repeated if there
are more than two different media to deal with,

If the circumfereptial strain and the radial stress ere known at any

radius r in the medium, the procedure described above can be used directly to

29
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estimate the free field pressure P, oF the modulus of the medium required to limit
the circumferential strain at the tunnel wall to a tolerable value under e given
value of ) But very often the data may be insufficient to locete the initial
point in the chart for a graphical analysis, as for example, when it is reguired
to estimate the circumferential strain at r = a in Case 4 for a given value of Py
Under these conditions, it becomes necessary to use a successive approximation
procedure. For the example cited, an initial velue of circumferential strain at

r = a is assumed and the graphical analysis is carried outward from the innermost
radius a and the value of P, is estimated, If this value agrees with the value
given in the problem, the estimate of the circumferential strain at r = & is
correct, If not, a revised value of the circumferential strain is assumed and the
procedure is repeated until the assumed circumferential strain is consistent with

the given data.

Example 3
Data:
Unlined Tunnel: a = 8
P, = 2000 psi
E = 6x106 psi
E' = 3XI06 psi
= 1/3
u' = 1/3
o, ~ 1200 psi
N = L
$
p; = 0
30
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Required:

Solution:

l- \ . 1/3
000 = 2400
L[2 Y3315 " hoo]///hoé}

1.136
(Compare with the value 1.3h4 obtained for Example 2 with E = E' and 9, constant).

At r = ¢

bl

[3 +5 (1.136)8}

2540 psi.

1
—= [2540 + 2/3 x C]
3x10
(Compare with the value llmlO'h obtained for Example 2 with E = E' and o "

constant).
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Graphical Solution

L O 1 b L U AR

[

The data given in the example problem does not enable the starting point

to be located in the chart fer N¢ = b for the plastic zone. This umeans that the

problem has to be solved by successive approximation.

0 o e o A i, it e e s il st L

=h -

Let us assume that €y = 8.5 x 10 i

r=a .

At r = a, ';
. . _ 6 -4 [
S = E €y = (1 - ut) p, = 3x10° x 8.5 x 10 -0 5
= 2550 psi i
|
P = o ¢ (N¢ - 1) p; = 1200 psi.
i
3
For S = 2550 psi and P = 1200 psi, the chart (N¢=h) gives 3
8 _ B _ - ]
r - & 1.135 or R = 1.135 a : i

and Q = 1480 psi
R

At r = R, = = 1.0
P
; E
For R/r = 1.0 and Q = 1480 psi, the chart gives ; E
C
Po = 1755 Sg = 1755 psi ; ;
PR = 0, + 3 op = 1200 + 3 R ]
3
. Op = 185 psi |
E
32 4
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S8, = E'e._=(1=p')a

R 6R R
= L |s.+ (2 ")
or %R - E' R = wloog
1 [ 2
= 1755 + = x 185]
2108 3
= 626 x 107°

Now in the elastic region

SR = E €9R (L - g
= €x10% x 626x207° - %x 185
= (3756 - 123) 10 = 3633 u:8i
2p, = Sy +op = 4003 psi
p, = 2001.5 = 2000 psi (given)

This means that the initial assumed value of ¢

0 is correct.

r=a
If the value of P, obtained for an assumed value of Cq does not
r=a
agree with the given value of P,s the procedure has to be repeated with a second
trial value for € . This repetitive procedure is continued until all the
r=a

input data are satisfied.
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Case S, In this case the tunnel ig assumed to be initially surrounded with a

circular zone of loosened material having elastic constants which are

different from those of the insitu materisal.

The case could represent a tunnel with a "destressed zone" from static
loading which is subsequently loaded with another free-field stress such as a

dynamic loading over a large aresa,

Let a = radius of tunnel opening

R = radius of elasto-plastic boundary

Rl = radius of loosened zone

R2 = radius of elasto-plastic boundary in the loosened medium, if
any, when R » Rl

P, = uniform free-field pressure

p, = internal pressure at r = a

E = Young's modulus of intact medium

E' = Young's modulus of loosened medium

py = Poisson's ratio of intact medium.

pu' = Poisson's ratio of loosened medium,

o, = unconfined compressive strength of the medium (assumed to be
the same in both the intact and loosened zones)

Ny = i . :ig b

¢ = angle of shearing resistance of the mediur (assumed to be

the same in both the intact and loosened zones)

In the analysis of tl.e :resent problem, two distinct cases have to be

considered:

a) R <R b) R > R1
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Case (8) R <Ry

The elastic zone (r 3_R) in this case consists of two rings of material

with two different values of Young's modulus. Therefore the stresses and strains

T TR memTe wpr wepr F R 4

in the elastic zone can be computed using the elastic solution obtained by

: savin (1961),

_ E For R<r < R]
g o, = ap+ (po - OR) N (61)
T gy = Op + (po - oR) C, (62)
where ¢, = [(1 + X,) (n® - R12 r‘?):l/n (63)
c, = [(1 + xp) (n° + RS re):]/D (6b)
D =2(a—1)-n2[(u-l)-(l+xla)] (55)
xy = Trir (66)
i
. 3.
Xo = -1—':'% (67)
! n = Rl/R (68)

E (1 )
a = EF—TEI:E;T (69)

and 9g = g0

T




For r 2 Rl !

cr = po - (po - OR) C3 (70) ’
o = P * (pg =) Cg (12) :
1
5 3
(n® = 1) (1+x,)| B i
where c, = |1 - (72) !
3 D 2 3
Jr
The strains in the elastic zone can be obtained from the stresses as g
: follows: ?
'
For R<r <R £ =-i(o-p'o) (73) i
- =" r E' r 8 i
! = 1 '
i eg = v (0g=-1'a)) (74) !
i
3
| For r > R, e, = § (0. -wap) (75) ;
i
f
e, = = (05 =no0) (76) -

5] E 6 r

However, in Eqs. (61), (62), (70} and (71), op is still an urknown and
therefore has to be obtained before the stresses and strains can be determined in ! ;

the elastic region. This can be done by equating the circumferential strains at T

r = R in both the elastic and plastic regions. Thus

1 1 9
o (°6Re -y OR) = (cJ6 - ' oR) (77) ‘

Fp
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|
where %gre = % in the elastic region g
r=R g
oeRp N in the plastic region 3
r=R
Eq. (77) eives Y9Re = oeRp i
By Eq. (62) Jgre = Og * (po - cR) ¢,
r=R 3
= op *+ (p, - °R) C (78) |
where C = (1+x,) -2 n2/p i
In the plastic region i
i
. 3
= . (_79) ;
oeRp oY N¢ + o, é
k|
Equating Eq3. (78) and (79), and simplifying %
Cp.~-o0 1
O Pl - R ;
9 ~ [N¢-1+C} (80) ;

Eq. (80) can now be used in conjunction with Egqs. (61) through (7€) to define

completely the stresses and strains in the elastic zone.

From Eq. (40) it is known that

ot AT Lt 4 as b

Rr) ¢ ,4
op = o+ 87 -1 (81) j

Eqs. (80) and (81) can now be combined to yield
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Cp -4 -]l/N¢—l
R sz | |t B 4+ M ( + 7T) (82)
a Ny -1+C - Py J

The value of R/a obtained from Eq. (82) should be less than Rl/a for the above

analysis to be valid, The analysis of the problem when R > Rl is congidered

under Case (b).

The stresses in the plastic zone (a < r < R) are given by Eqs. (L0) and
(33). The circumferential strains in the plastic zone can be determined from

Eq. (52) and

S = E' gq-(1-y") o (83)

Case (b) R > Ry

When R > Rl, the loosened zone may exist in any one of the following

three states, depending on the magnitude of the radial stress Ty at r = Rl:

(1) Completely plastic
(1i) Partly plastic and partly elastic

(iii) Completely elastic

Therefore it is necessary to first determine the magniivde of oRl' The procedure

for determining ORl is given below.

Pased on Eq. (48) it may be written that

TN, +1 o +T (8L)

R ¢ 2 po + T
R1

Similarly from Eq. (52) it can be derived that
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2N

S N -1
R1 . 2 (N, - 1) + (N, + 1) % (85)
I 2N, ¢ ¢ R
vhere Sp; = E €01 " (1 - w) 981 (86)
and egpy) = €
r=R1 .
Eqs. (8L4), (85) and (86) can be combined to give
r 2]
N¢-l
N -1 p_+T
- 3 2y . % - _2._ . o .
er = [(omg*T) c o -GN, ¢ (L) {N g +T] g
¢ $ Rl
L | J
+ (2-p) Op1
" .
= (87)

As a generai case, let it be assumed that the locsened zone becomes partly
plastic and partly elastic. If R2 is the radius of the elasto-plastic boundary

in the loosened zone the following relationships must be satisfied.

) ¢
opp = © = (pi +T) féﬂ -7 (ko0a)
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oeRle = ce in the elastic loosened zone
r=Rl
2 2
. . B *Ry . 2R® (88)
Rl R 2 -R 2 R2 R 2 R 2
l 2 1 T e
€ = i (o - u' gg,) (54)
6R1 E!' O0Rle Rl
Equating Eqs. (87) and (5ad)
' E'
€r1e = ¥ ‘m = § K (89)
It can also be shown that
2 2
a * R -C *« R
] _ . Rl | R2 2
(h¢ + 1) Opo * 0, = 2 3 > (90)
Ry =Ry

Eqs. (89), (90) and (40d) can now be solved to yield the values of the two

unknovwns g and RQ'

Rl
If the locsened zone remains entirely elastic or entirely plastic,
Eqs. (40d), (88) and (90) are not valid and cannot be used to determine Opy°

When the loosened zone is entirely elastic

(’ 2 a2) -p, * 28
_ Yp '\ 1
%n1e °© 2 2 (92)

Rl - 8a

2
i

This value of OgRle can now be substituted into Egq. (89) to get the value of o, .

Rl

Substitution of gy in Eq. (84) gives the value of R,

4o




When the loosened zone is entirely plastic, the values of R, o_ and ¢

R Rl

can be obtained directly from the following equations:

%r1

i

(o

+ T)

R

5 [po + T}

By + TJ

(2 py = 0) [ (w, + 1)

N (92)

The value of R obtained from the preceediing equations should be greater

than R,. If not, the procedure given under cese (a) has to be used.

1

Stresses and Strains

r> R
O, =
% =
€. =
€g =
vhere
0, =

P, - (po - og) [

P,

1|~

=3~

+ (p
(o -

X

(o6 -

" oe)

3]2
)

Y (

r

L1

(93)

(94)

(95)

(96)

(92)
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2(p +T) N¢"l
c = 2 [5] -7
r N, +1 R
¢
‘ oe = cr N¢ + ou
’ 8 r N¢+l Ny~ 1 r . . .l
km[ﬁ] eyl [CAERY [ﬁ] ”“"”)J
< ¢ b
wh .re 5 = Ese-(l-u) 0.
a<r <Ry
Fully plastic
N -1
o = (p, +T) EJ ¢ - T
r Pi af
oe = g N¢ + g
2
N, +1 N -1) ., + T 2N 2N N, +1
! (94 r ¢ = ( ¢ (pl ) r '¢ - R ¢ + sl P ¢
: ~ Ny-1 Rl 1
: 2N, «a?
$
where S =

— oyt
E'ee-(l p)(‘]r

Rl "0R1

L2

(97)

(98)

(99)

(100)

(98)

(101)




and

Partly plastic and

as obtained from Eq. (99).

partly elastic

Rosr <R
2 2 2 _2
s o m” Ry” - opy * R," (o) - op,) Ry Ry
r 2 2 - 2 2y, 2
R, - R, (Rl - R, ) x
2 2 2.2
o = 9g1 " By - 9pp * Ry . (op) = 9gp) 87 By
8 - 2 2 2 2y 2
R ° - R, (Rl - R, ) r
- L1 :
T (o, = w %)
I S '
€g = g7 (g -’ o)
&:riRQ
N,-1
g, = (p, +T) Eﬂ ’ -7
T pi a)
Og = O.° N¢ + %,
A
N+l N1 oN R A,
S _ L = | -1 [ . (1 +1) |2
p, *+ T (a 2N¢ ¢ ¢ a |

where

[

(102)

(103)

(104)

{105)

(100)

198)




Fully elastic

- 2

o, = A-B/r (107) :

] 2

0’e A + B/r (108) 4

wvhere

6.. *R -p. ¢4 =

A= A2 (109) |

R 2 _ a2 :

1 :

2 2

: (0,7 - P.) R 3

: B - R1 i 1 (110) 1

! (r,? - &%) ;
i 1

| :

E e = = (0, =10 (104) %

_ r E' r ] ;

i

= l_ ' i

eg = g7 (55 -n'a) (105) ]

i

The preceeding paragraphs thus give a complete and closed analytical %

solution for Case 5. This problem can, however, be solved more readily by tne ;

graphicel procedure using appropriate charts. The details of the procedure are 2

1

! the same as explained at the end of Case L, ?

Example U

The input parameters for this example are the same as for Example 1 except
that the tunnel opening is surrounded by a loosened zone 8 feet thick having

the following properties:
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Solution:

E' = 2x106 psi
' = 1/3
o9, = 2000 psi
N, = b
$
= 7

This problem can be solved analytically using the relationships derived

for Case 5,

But the procedure is long and time-consuming.

graphical procedure is used in this example.

Therefore the easier

As has been explained earlier, the solution to this problem can only be

obtained by successive trials, the number of trials being dependent on how close

the first triasl value is to the actual value.

Then at r = a

€ = 0.05

2000 psi

0.05

E' = 2x106 psi

po= 1/3
2x10% x 0,05 ~ 0 = 10> psi
2000 + 0 = 2000 psi

For these values of S and P, read from Chart (N¢ = L)

L5

In the present case let us assume

(9)
(34)
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i Q = 8600 psi
: R _
rli 1.725
i
At =R =2a (=16) %I = 0.863

S TR WA N M NP ST T T ORI,

For @ = 8600 psi end % = %— = 0.863, read from the chart

=~
[0}
[+]
1
®
5
o
o9
B
1]
oY
[ add
£
(]

7700 psi

]
o

At %— < 1, the material is elastic at r

2p -8 2(Qq-1T) -8 s
= 5 = ) = (Q - T) - 5 (19>

(8600 - 667) - L go 4083 psi.

At r = Rl in the loosened zone,

i I s 1| "
1 W A o Al o i it o M i it ikt o b el 0l M i s it

1 :

€ = v [S+(1—u') Ur:|
;.
e [7700 ¥ %x h083] 3
2x10 3

= 5211 x 10‘6
At r = Rl in the unloosened zone

|
[
3
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8 = Eegg=(1=-u)o, (9)
= 6x10% x 5211 x 107 - £ x 4083
= 2854} psi
P = o, + (N, -1)0, = 2000+ 3 x 4083 (34)
= 14250 psi
For these values of S and P, the chart for N¢ = L gives
Q = 16900 or P = Q-T = 16900 - 667 = 16233 psi

o}

This value is sufficiently close to the given value of P, of 16400 psi. So the

assumed value of €g = 0,05 is very nesr the correct value and the calcula-
r=a

tions need not be repeate-

Case 6, Lined tunnel with a circular zone of loosened material.

A tunnel may be provided with a liner to limit the strains at the inner

surface of the tunnel within allowable limits. The linings may be of concrete

or steel or a combination of both. In this analysis the liner materials also will
be aussumed to behave elasto-plastically. The analytical solution of the stresses
and strains in a tunnel system consisting of one or more sets of liners and a
loosened zone of material surrounding the liners, is very complex, lengthy and
cumbersome, However, the graphical solution, using the charts of the type

presented earlier, offers a relatively simple means of solving the problem.
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The analysis must proceed outward from an inner element or inward from an outer
element of the tunnel system. For each element of the system the chart with the
appropriate value of N¢ has to be used, At least two quantities,such as the
circumferential strain or the radial stress, are required to locate the initial
starting point for the analysis of any one element. Once these quantities are
known, they can be used to estimate the values of the radiasl stress and circum-
ferential strain at the boundary with the next element, which are in turn used

to locate the starting point for the analysis of that next element. This process
can be repeated until the stresses and strains in the whole tunnel system sre
known. The following example is worked out to illustrate the approach mentioned

above.

The dimensions and rock properties assumed in this example (Fig. 8) are
the same as for Example U4 except that the tunnel cpening is provided with a 12"

thick liner of concrete having the following properties:

6

E,6 = Lx10™ psi
M, = 1/3
o0, © 5000 psi
I =
¢
Required: eol = 7
r=a

L8




Solution:

Let us consider the concrete liner first. Let us assumne, as a first

trial value,

€ = 0.03

It is known that at r = 7!

g = 0
r
_ 6 _ 5
S = Lx10 x0.03-0 = 1.2 x 107 psi (9)
P = 5000 +0 = 5000 psi (34)

For these values of S and P, read from chart [N¢(concrete) = L]

Q = 16500 psi

R . O

‘,'T' = .579 thus R = 11

= R _ 11 _

For Q = 16500 psi and %- = 1,375, read

S = 64000 psi

P = 7600 psi = 5000 + 3¢ (34)
Therefore at r = 8'

e .0, = 867 psi
L9
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g = IriﬁY; [64000 + 2/3 x 867T] (53)
x10
= 16147 x 10‘6

Let us now consider the loosenei zone.

At r = 8'

1]

v}
]

6

€, = 16147 x 107 and

0. = 867 psi
2 x 10% x 16147 x 107 - 2/3 x 867 (9)
31720 psi
2000 + 3 x 867 = L60O psi (34)

For these values of S and P, read from the N, = b chart for the loosened zone,

At ¢ = 16!

" |

For @ = 9250 psi

AS = .67 < 1,

e

the relstion

¢

Q = 9250 psi
R _ ‘ '
B = 1.34 o . R = 10.72
= ;gi%g = 0.67 < 1
and % = 0.67, read

S = 5000 psi

the value of P is not valid, but 5 can be calcu.sted using

i
. . i
i
e e ‘
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Thus at r = 16"

= 5 = 5000
. . oL (Q-T) - 2 (9250 - 667) - A
= 6083 psi
e = —X_ Ts000 + — x 6083]
6 23100
= 4528 x 10"6

Let us now consider the invact (non loosened) medium.

! At r = 16"
| eq = U528 x 1076
t o, = 6083 psi
Joos = 6x100x 4528 x 107 - -32-x 6083
= 23113 psi
P = 2000 + 3 x 6083
= 20250 psi
For these values of S and P,
Q = 18200 psi
and p, = Q@-T = 18200 - 667 = 17533 psi
Sy

(53)

(9)

(34)
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But the value of P, specified in the problem is 16400 psi. This means that the

assumed value of ¢ = 0.03 is slightly on the high side.

0 r=7'

So let us now assum2 that at r = 7'

€, = 0,028

A similar analysis gives the following values:

Atr =17 In concrete

S = 1.12 x 10° psi

]

At r 8! In concrete

5.95 x 10

(92}
1]

Q
1]

833 ps*.

15014 x 10“6

™
[}

In loosened zone

S = 29472 psi

At r = 16' In loosened zone

S = L.7x 103 psi
o. = 5883 psi
gy = 4311 x 10‘6

52

P = 5000 psi
P = 7500 psi
= 4500 psi

mmmaaca—  —o e =




In intact zone

A

S =

P, =

value.

because the radial

wvhichever is less.

a =
ra

h =
8

o =
Y

a =

E =
8

Ee =

21944 psi P = 19650 psi

16433 (= 16400) psi

Thus the assumed value of e, (at r=T') = 0.028 is very near the actual

Note: For relatively thin steel liners, the analysis is slightly simplified

pressure exerted by the thin steel liner against the medium

next to it is given by

=2
o ’ms‘

8
o = — E €
a

or
ra s 8

In the above equation

radial pressure exerted by steel against the
adjacent medium

thickness of steel lining

yield stress of steel lining

radius to outside of steel lining

Young's modulus of steel lining

circumferential strain of the steel liner

Case T. Tuunel provided with back packing: Loosened zone present.

< This caese is very similar to Case 5, the cnly difference being that the

radial pressure p1

at r = a is # 0. The back packing material usually has a
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very low yield value and serves to exert an equal all around pressure on the
inner surface of the tunnel over a considerable range of strain., The analysis
for the present case 1s illustrated by the following example problem and is very

similar to that of Example L.

é Example 6

The input parameters are the same as ihose of Example U except that the

radial pressure due to back packing is 150 psi (pi = 150 psi).

Required: €q = 7
r=a

Solution:

Assume at r =g = 8', €g = 0.0k

Then at r = 8
. 6 2 _ . \
3 = 2x 10 x .04 - 3 X 150 = 79900 psi (9)
P = 2000 + 3 x 150 = 2450 psi (35%)

For these values of S and P read from chart (N¢=h)

= 9 psi = N
Q 000 i %- 1.641
R = 13.12¢
At r = 16"
R _ 13.12 _ \
r ~ 1%.0 = 0.62 < 1
sL
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PRy = =

T

—— g~

For Q = 9000 psi, = = 0.82 S = 7250 pel
o, = (Q-T)-%
= (9000 - 667) - 3625
= L4708 psi
¢ * —¢ [72504-%1 h708]
2¢10
= 5195 x 1076
Now for the intact material ot r = 16'
o. = 4708 psi
€y = 5195 x l()-6
. s | = 6 x 10% x 5195 » 1070 - £ x w708 (9)
= 28040 psi
P = 2000 + 3 x 4708 = 1612k psi (34)

For these values of S and P

Q = 18000 psi

p, = Q@-T

17333 psi (in comparison vith the actual value of

16L00 psi)
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Therefore the assumed value of €y at r = a = 8' has to be revised. So let us now
assume at r = 8! €g = 0.038.
A gimiler analysis leads to a value of P, = 16633 psi. So vy a slight

extrepolation it can be found that for p, = 16400 psi,

€ = 0.0373 or 3.7%.
=81
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Chapter 3

Conclusions

General

The analysis presented in the previous chapter yields a means whereby
stresses and strains can be determined around a circular tunnel in a Coulomb-

Navier material which increases in volume at fajilure.

to design liners if the insitu rock properties are kncwn. The results of the

analysis are dependent on the rock properties assumed; therefore, recommenda-
tions are given in this chapter on the selectiova of the approriate rock mass

properties to use in this analysis. The effects of a non-uniform system of

free-field stresses are also discussed.

Shear Strength Properties

The values of ou and N¢ to be used in the analysis are related to the

rroperties of the jointed rock mass surrounding the opening. R

i : 3;2-%-where the appropriate angle of frictional resistance should be taken

¢ is given by

as the angle of frictional resistance along the Jjoints or discontinuities not

the angle of internal friction derived from triaxisl tests on intact samples of

rock.

a function of the ratio of tunnel diameter to joint spacing as shown in Fig. 9.
The larger the ratio of tunnel diameter to joint spacing, D/S, the smaller the
value of 9 appropriate for design. If D/S is very small the value of o, can

approach the unconfined strength, Q, of intact samples of the rock surrounding

the tunnel. Similsrly if D/S is vVery large 9% approaches zero and the shear

57

This analysis may be used

The value of the uncouviined compressive strength of the rock mass, oL is
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strength of the rock mass approaches the shear strength along the Jjoints. Fig.
10 gives a straight line relationship between the ratio of cu/qu and the ratio
of D/S which can be used to select a value of %L for design if Q, and D/S are

known. This relationship is based on field experience in locations where dis-

placement and strain measurements have been made.

Elastic Properties

~ The method of analysis presented in Chapter 2 is also quite dependent on
the "effective" modulus of elasticity, E, selected for the rock mass. A method
for selecting the deformation modulus of a rock mass has been given by Deere,
Hendron, Patton and Cording (1967). By this method the rock quality of the rock
mass must first be assessed quantitatively in terms of the Rock Quality Designa-
tion (RQD) or the Velocity Ratio as described by Deere et al (1967). After the
rock quality has been determined Fig. 11 should be entered on the abscissa using
the RQD value or the square of the velocity retio and the reduction factor
Er/Eseis should be determined from the dotted line shown in Fig. l11. The
reduction factor is the ratio of the deformation modulus of the rock mass Er
to the dynamic value of Young's modulus Eseis calculated from P wave velocities
measured in seismic surveys. The deformation modulus of the Jointed rock mass
can tnen be Laken as the product of the reduction factor and Eseis'
This analysis is not very sensitive to the value o) Poisson's ratio

sclected, which is fortunate because there is little known about the selection

o7 e Poisson's ratio for an insitu rock mass. It is recommended that a Poisson's

HUatis Lf oloamt 0.3 be used.
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Dilatancy

Dilatancy of the rock mass at failure is accounted for in the elasto-~
plastic analysis by the normality condition expressed by Eq. 24. Experimental
evidence however guggests that the increases in volume resulting from the
normality condition are too large compared to the behavior of real rocks. Thus
the radial displacements or tangential strains computed by this theory are
& conservative upper bound., On the other hand the charts developed by Newmark
(1969) are based upon no volume change due to the plastic strains at failure
and give radial displacements and tangential strains which are toc small sna
should be taken as a lower bound. The charts given in Figs. 3-7 would be
identical to Newmark's charts if the lines of constant Q in the elastic region
are extended as stralght lines into the plastic region. The proper amount of
dilatancy to include in calculating strains and displacements is somewhere

between that given by Newmark (1969) and the analysis given herein.

Non-unji form Stress Conditicns

For real design problems the free-field principal stresses in a plane
perpendicular to the tunnel axis may be o, and 03 where oy is the major principal
free-field stress and oq is the minor free-field principal stress. The solution
for this problem cannot be obtained in closed form as was done in this paper
for the case of g, =03 =p,. Reyes (1966) has solved several problems for
unlined openings in a medium with Coulomb-Navier failure properties and
dilatancy, as described in this report, for non-uniform free-field stress con-

ditions. A comparison of the wiform, free-field stress solution presented

herein with the solutions presented by Reyes has shown that the maximum diametral
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strain Gr/r (max) across the tunnel in the non-uniform stress field (free-field
stresses = oy and 03) is closely approximated by the solution givegﬁherein ir
Py is assumed to be equal to the major principal free-field stress, oy- The
distortion of the tunnel from a circular shape can also be approximated within

20 % if the minimum diametral strain Gr/r (min) 1is taken as

S °% %
r Zmins = ol r (max

Since the ratio of 03/0l for protective structures problems may range from
about 1/3 to 2/3 the minimum diametral strain of the tunnel may be approximated
Tor preliminary design purposes as being about 1/3 to 2/3 the maximum diametral
strain across the tunnel. Reyes solution has also shown that the maximum
diametral strain of ihe tunnel occurs across & diameter parallel to the

direction of 01 and the minimum diametrel strain occurs across a diameter

parallel to 03.

For preliminary design purposes it is felt that the approximations
given in this section for estimating tunnel distortions for the non-uniform
stress field are at least as accurate as the initial assumption of the ratio
of 03/0l appropriate for design problems in protective structures. If more
accurate estimates are desired, then time consuming and expensive f;nite

element calculations similar to those used by Reyes (1965) must be performed.
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