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ABSTRACT

In this report an elasto-plastic solution is given for determining the

stresses, strains, and displacements around a circular tunnel in rock. The

t relationship between the principal stresses in the plastic zone are determined

by the Coulo~b-Navier failure criteria and the concept of "normality" is used

to relate the plastic strains to the "yield" surface. The normality" concept

fresults in a dilatancy of the material at yielding when the angle of shearing
resistance of the material is greater than zero. Thus the displacements calcu-

lated by thU method given in this report include the effect of dilatancy in the

yielded zone around the tunnel.

The results of the study are presented in graphical form which enable

a wide variety of problems to be solved by hand without the use of a digital

computer. Example problems are given in which the method is applied to various

[ situations including lined tunnels in a rock mass which contains a destressed or a
lcosened zone around the tunnel before installation of the liner. The method ofFi
analysis presented is especially applicable to problems where loads are imposed

i: after the liner is installed as in the case of the design of protective

structures. The method given herein is useful for design because the calcula-

tion of deformations and strains, rather than stresses, enable the designer to

determine if a particular type of liner can tolerate the deformations imposed

at the rock-liner interface.

Suggestions are also given for the selection of rock mass properties to

be used in the analysis, i.e. deformatiofi moduli and shear strength properties.
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NOTATION

a = Radius of a circular tunnel or tunnel lining

C = Constant of integration

D = Tunnel diameter

L = Young's modulus of an elastic medium under plane strain conditions

E' = Young's modulus of a loosened or destressed zone around a tunnel

E = Young's modulus for an elastic material under plane stress conditions

E = Effective Young's modulus of deformation for a rock mass
r

E = Young's modulus for steel
s

E = Dynamic value of Young's modulus calculated from seismic surveys
seis

h = Thickness of steel lining
s

1 + sin
N i-sin A

P = Difference between the circumferential and radial stresses in the
plastic zone, ((y - a )

Pi = Radial pressure on the surface of a rock tunnel

PO = Uniform free-field stress

O P+T

qu = Unconfined compressive strength

R = Radius to the elastic-plastic boundary

R = Radius of loosened or destressed zone

R 2  = Radius of elastic-plastic boundary in the loosened medium, if any,
when R > R1

r = Radial distance from the center of a tunnel

S = Stress difference in the elastic region (a0 - Or)

s = Joint spacing

T U
N - 1

vi



u = Radial displacement

E - Tangential strain

= Tangential plastic strain

| r = Radial strain

r = Radial plastic strainr rp
= Poisson's ratio of medium in plane strain

= Poisson's ratio of loosened or destressed meiium

o = Poisson's ratio for plane stress

* = Angle of shearing resistance of the material

r  Radial stress

a = Radial pressure exer'.ed by steel liner against the adjacent rock
ra medium

08 = Circumferential stress or tangential stresses

IR  - Radial stress at radius R

a = Unconfined compressive strength of the rock mass surrounding a tunnelu

C = Yield stress of steely

T = Shear stress in polar co-ordinates
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric
units as follovs:

Multiply To Obtain

inches 2.54  centimeters

feet 0.3048 meters

cubic inches 16.3871 cubic centimeters

pounds 0. 45359237 kilograms

pounds per square inch 0.070307 kilograms per square
centimeter

pounds per cubic foot 16.0185 kilograms per cubic

meter

inch-pounds 0.011521 meter-kilograms

inches per second 2.54 centimeters per second

I
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Chapter 1

Introduction

General

One of the most significant engineering properties of rock masses is shear

strength. The stability of both lined and unlined openings under various static

and dynamic loadings depends on the shear strength of the surrounding mass.

Since the shear strength of rock masses increases with confining pressure, it is

necessary to employ an analysis which includes this property in order to properly

assess the effects of various types of tunnel linings.

One of the first attempts to take into account the Coulomb-Navier shear

strength characteristics of earth materials in a yielded zone around a deep

tunnel was made by Terzaghi (1919). Although he did not obtain a general solu-

tion to this problem he was impressed by his field observation that deep bore-

holes in frictional materials remained stable at depths where the material

adjacent to the opening should have failed. His curiosity about this problem

led him to ask H. M. Westergaard, a colleague of his at Harvard, two questions.

(1) "What distributions of stress are possible in the soil around an

unlined drill hole for a deep well?"

(2) "What distributions of stress make it possible for the hole not to

collapse but remain stable for some time either with no lining or

with a thin "stove-pipe" lining of small structural strength?"

Westergaard (1940) published the answers to these questions after obtaining a

solution for the stresses around a borehole where the material in the plastic

zone around the hole was assumed to fail according to the Coulomb-Navier



failure criteria. The results showed that a small radial confining pressure at

the surface of the borehole enabled the radial stresseE to increase rapidly with

depth behind the surface such that the radial pressures a few inches behind the

borehole surface furnished sufficient confinement to support the high circum-

ferential stresses around the opening. The results of Westergaard's solution were

expanded and interpreted by Terzaghi,1943. Essentially the same solution has been

published by Jaeger (1956), Jaeger and Cook (1969) and Sirieys (1964). In this

solution, the stresses are obtained around a long circular tunnel in a medium

where the free-field principal stresses are equal (i.e. ov = GH = Po' Fig. 1).

For this case, the shear stresses around the opening, Tre' are equal to zero and

the differential equation of equilibrium shown in Fig. 1 can be expressed in terms

of the radial stress r and circumferential stress a. The -olution was obtained

by integrating the differential equation of equilibrium in the plastic zone (Fig.

1) with the constraint that the circumferential and radial stresses are related

by the Coulomb-Navier failure criteria and requiring that the radial stresses are

continuous at the boundary between the elastic and plastic zones (Fig. 1).

An illustration of the stress distributions obtained from the Westergaard

solution is given in Fig. 2 for a tunnel in sand (C = 0, 0 = 300). The distribu-

tions of circumferential stress aa and radial stress a are shown in dimensionless

form in terms of the free-field stress p ana three differen, stress distributions

are shown for cases where the confining pressure on the inside of the tunnel is

equal to 1/10, 1/20, and 1/40 of the free-field stress p o For each stress dis-

tribution shown the circumferential stress is maximum at the boundary of the

elastic and plastic zones and the distance to the boundary between the elastic

and plastic zones increases as the ratio of the free-field stress, p., to the

internal pressure, p., increases. It should also be noted that the circumferential

stress increases very rapidly with depth behind the opening in the plastic zone

2



and illustrates the ability of a frictional material to carry high circumferential

stresses at depth due to providing a nominal confining pressure, pi, on the inside

surface of the tunnel.

The solution discussed above however yields only the elastic-plastic stress

distribution around the opening. A knowledge of the stress distribution is only of

academic interest for the design of a tunnel lining unless the deformations at

the wall of the tunnel are compatible with the deformations a lining can resist I

before failing. The radial displacements at a tunnel wall are due to both the

inelastic strains in the plastic zone adjacent to the tunnel and the elastic

A
strains in the rock outside the plastic zone. Although the strains in the elastic

region are easily calculated, the calculation of strains in the plastic zone

involves some assumption regarding the relations between the plastic strains and

volume changes of the material at failure. Newmark (1969) obtained a closed

solution for the problem described above and shown in Fig. 1 which considers the

displacements and strains around the opening as well as the stress distributions.

To obtain this solution Newmark combined the differential equation of equilibrium

and the compatibility equation relating radial displacements to radial strains and

circumferential strains to yield the relation given as equation (4) in this report.

Since the differential equation of equilibrium and the compatibility relation

involve only equilibrium and geometry respectively it follows that the relation

given by equation (4) must be satisfied in both the elastic and plastic regions.

Newmark (1969) obtained a solution for equation (4) by assuming that after yield

of the material that the plastic components of the radial and circumferential

strains were such that the resulting volume change was zero or the yielded material

behaved as an incompressible solid. The results of the solution have been pre-

pared by Newmark (1969) in the form of charts from which the displacements at the

tunnel wall can be determined as a function of the elastic properties of the

3



medium (v, E), the shear strength properties of the medium as determined by the

unconfined compressive strength and the angle of internal friction, the free-

field stress, and the capacity of the tunnel lining. Since real rock masses

increase in volume at failure, a phenomenon called "dilatancy", it is probable

that the Newmark solution underestimates the inward radial displacements at the

tunnel wall because of the assumption that the plastic components of strain yield

no volume change.

Scoe

In this report an elasto-plastic solution is given in Chapter 2 which

accounts for the dilatant properties of a rock mass which obeys the Coulomb-

Navier failure criterion. Example calculations are given to illustrate the

variety of problems which may be solved by this method. Suggestions for the

* selection of rock mass propertiez and conclusions are given in Chapter 3.

4 L



Chapter 2

Analsis

The basic -onfiguration considered in this study is shown in Fig. 1. This illus-

tration represents a section through an infinitely long tunnel where the strain

in the direction of the tunnel axis is zero. The cylindrical coordinate system

with the origin at the center of the circular opening is used in this analysis.

Fundamental Relations of Equilibrium and Compatibility

The relations given herein are derived for plane strain conditions for a

uniform stress field.

The basic differential equation of equilibrium for a typical element

shown in Fig. l(a) is

r - (ar - ae) ;0 (1)
3r r r

where ar and a0 re}resent the radial and tangential stresses respectively, at a

radial distance r.

The radial and tangential strains for the assumed conditions of plane

strain can be stated in terms of the radial displacement, u, as follows:

E ;u= u (2)
r 3r

Upon eliminating the displacement u from Eqs. (2), one obtains the

following equation of compatibility:

ac6
+ (C-r) - 0 (3)r r

5
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Eqs. (1) and (3) can now be combir-ed into a single equation by multiplying Eq. (1)

by the quantity p ( - p) r and adding it to Eq. (3) multiplied by the quantity E.

The result is:

r I Ec -(1-0)r] + [E~e-(l-..)o 1  [EEr-(l--)0 = 0 (4)

It is to be noted here that Eqs. (i), (3) and (4) are valid for both elastic and

inelastic conditions. However, the validity of Eqs. (2), (3) and (4) is limited

to the case of small displacements.

In order to solve Eq. (4), it is necessary to relate the term in brackets

at the extreme right of Eq. (4) to the other terms in that equation through the

use of stress-strain relationships and to establish the appropriate boundary

conditions.

Relations for the Elastic Zone

The stress-strain relationships for the elastic behavior of a material

under plane strain conditions can be written as follows:

Ee = Go0  PC r  (5)

E = a 0  (61)r r °(6

where E and p are the Young's modulus and Poisson's ratio of the material under

plane strain conditions. The values of E and v for plane strain are related to

the corresponding values for plane stress by the following equations:

E -E /(l- (7)

= PI - (8)

6
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where E is the Young's modulus for plane stress and 'P is the Poisson's ratio

for plane stress. If the quantity S, as suggested by Newmark (1969), is defined

by,

S- ( a (9)

then from Eq. (5) it follows that i

S = (a - ar ) (10)
r

Thus in the elastic region the quantity S is equal to the stress difference

between the tangential stress u@ and the radial stress a r . Eq. (6) gives

EE -(1- )1 = C -a = -S (11)6 r 0

Using Eqs. (9) aud (11), Eq. (4) can be simplified as: I

r 29 + 2 = 0 (12)

or r -a) + 2 (o a 0 (13)

or 0 r - r

F-om Eq. (1) 2r--r + 2 ( ar-o) 0 (14)

Adding Eqs. (13) and (14),

rr (a6 + r) 0 (15)

At very large values of r, each of the stresses u. and a r is equal to the free-

field uniform stress, pc. Therefore in the elastic region,

7I



- I

a8 + = p(6)

and S = a -a = 2p - 2a (16a)
6 r 0 r

Integration of Eq. (12) yields

S S s (17)

where S represents the value of S at radius R in the elastic region,

i.e., jrR - 2o (18)

where aR = radial stress at radius R in the elaitic zone.

At any radius r in the elastic zone,

a 2p- c ) R)r (19)

08 = 2 Po- r Po+(Po-aR) (20)

Relations for the Plastic Zone

I
The radial and circumferential (or tangential) strains in the plastic

region can be written as the sum of the respective elastic and plastic components.

Thus in the plastic zone, I
C = E0 (elastic) + ce (plastic)

(21)

and Cr = r (elastic) + sr (plastic)



The concept of perfect plasticity requires that the associated strain rate vector

must be normal to the yield surface, Drucker and Prager (1953). Accordingly, if

f represents the yield function which is valid for the plastic zone, the plastic

strain rate components in the radial and tangential directions can be related by

the equation

0e (plastic) af/3 0(
1 (plastic) = -frJ(r r

The yield function used in this analysis is based on Coulomb-Navier yield criterion

and is given by

f e or .N u 0 (23)

where 1¢ = 1 + sin a unconfined compressive strength of the material
1 - sin ' u

and * angle of shearing resistance of the material. Thus Eq. (22) gives

0% (plastic)i
(plastic) - = constant.

r (plastic) = N¢

Since the ratio of the plastic strain rate components is a constant (for the yield

function used in this analysis), the ratio of the plastic strain components will

also be equal to the same constant. Thus the ratio between the plastic strain

components may be written as

C (plastic) 1
(plastic) 1r

1or E o (plastic) c ep C (plastic)N6 r

or Er (plastic) = - N (2h)

rO



It should be noted that the relation given in Eq. (24) produces an increase in

volume at failure and the percentage of volume change increases as N increases.

Eq. (24) accounts for the primary difference between the solution presented herein

and the solution given by Newmark (1969) where the condition of incompressibility

assumed by Newmark imposed the condition that crp + ep = 0. By utilizing

Eq. (24) Eqs. (21) can now be rewritten as:

1

C = (a - POr) + C0p (25)

r (0 r PC- a0 N, .E (26)

or Ece = ae - Par + E cep (27)

Ec = a - - N E • C (28)r r 0 *Op

Substituting Eqs. (27) and (28) into E4. (4)

r -S + 2S + E cp (N - 1) 0 (29)

where S = Ec U r

The quantity S is equal to the difference between the tangential and radial stresses

in the elastic range but in the inelastic (plastic) range it has only a formal

meaning. For the inelastic conditions, the difference between the tangential

stress a8 and the radial stress ar is defined as:

P = 0 G (30)

By Eq. (27), Ecep =Eca - a + POr = S - (a - or ) S - P (31)

10



I

'iherefore Eq. (29) becomes

3S rI

r .2 + 2s + (s - F) (N - =)- 0

I

or r + S (N + 1) P (N- 1) (32)

It may be noted that Eq. (32) is valid in tne plastic region only.

In the plastic region the Coulomb-iavier yield criterion is assumed to
i

be valid. Accordingly

= 0r "N + 0u  (33)

e= (N 1)a +o (34)o- r  -io r  u

Differentiating Eq. (34) with respect to r
I

r -1 ) -r (35) I

Substituting Eq. (35) into Eq. (1) 3

r -(N ) P 0 (36)

The solution of Eq. (36) yields

P -- Pa (37)

where Pa r=a

111



Let the radial pressure inside the tunnel be pi and the radius of the circular

tunnel be a. Then

= I = + (No - 1) p, (38)a r=a lp

Therefore P au + (N 1) pj (39)

At any radius r within the plastic zone,

S1 rNl 1
(P- )/(N -1) = N -Gr  • ( i + 1)

S(p 
+ T) [E ' - T (hO)

where T = o./(N - 1) and (hi)

0e r u  (33)

Substitution of Eq. (39) into Eq. (32) gives

S+S(N + i) = (N 1) + Pi (N a

- A r11 -1  (42)

where

A(N - 1)2 (+T) + hT)

A (43)-

Solution of Eq. (42) is of the form

S= ] r + C (44)

12



where C is the constant of integration. The constant C has to be evaluated from

the boundary conditions specified for any given case.

Seven specific cases have been studied in this investigation, each with

a different set of boundary conditions. These cases are presented and analyzed

in the remainder of this chapter.

Case 1. Tunnel of radius a, supported with a costant internal pressure p.i --

E, 'p, a, and c for the plastic zone are the same as for the elastic

zone. (Fig. ib)

Let the radius of the elasto-plastic boundary be R. Let the radial and tangential

stresses at r = R be represented by oR and o B respectively. According to

Eq. (39) _ ¢-

R]N I

(1r = (u ) (P + T) (45)

From Eqs. (33) and (20)

R = aR N + au = 2Po -

2p0 - o

a (46 )"R = 11 + I

Substituting Eq. (46) into Eq. (34)

13 j



Pl = +u (N 1) Ru + N + 1 " -

2 +T) (N 1) (47)

Equating Eqs. (45) and (47)

N-i po +T

(ai N + 1 P + T

1

or a - o +  (48)

(N - +

At r =R, S = P = 2(P + T) (49)R Rop0 T N + 1)

Now the value of the constant in Eq. (44) can be estimated.

According to Eq. (44), at r = R

N+1 A 2N o

C .R  A R (50)

Substitution of Eq. (50) into Eq. (44)

srN¢+ I  A r2N40 _2N ]RN +

Sr 2t4 + SH R (51)

Substituting for A and S R in Eq. (51), and simplifying

I

S~--- )l- (r rI N 2 + L- 2 N + 1 ( 2

+ 2

[a).



The value of R/a to be used in Eq. (52) is given by Eq. (48). Eq. (52) gives the

value of S at any radius r in the medium.

When the values of S and a at any radius are known, one can calculate the cir-r

cumferential strain e at radius r using the following relation:

S= + (- )Or (53)

The tangential plastic strain component at any radius r in the plastic zone can

be estimated from the relationship:

1. (s - P) (54)

where S and P are given by Eqs. (9) and (39) respectively.

Eqs. (52) and (39) can be combined into a single equation to yield the S P

relationship applicable in the plastic region:

+ + r, 2 11 ( 5 5 ) I
21'I2 2N (}

The corresponding relationship applicable to the elastic region can be readily

derived from Eqs. (17) and (37): 1
I-I

SI
S= (56)

Eq. (47) yields

+1
p T P (57) jPo RT =2(¢ I

151___ ___



Let us now define = p + T (58)

(N + 1)
and K = (59)

Thus Eq. (57) becomes

K. PR

According to Eq. (37)

N -1

P=

or =K (60)PI
It is to be noted that the quantity Q is independent of the radial stress

whether the stress situation is plastic or elastic.

Graphical Solution

Although the various quantities of interest for design can be calculated

from the relationships given above, cherts summarizing the relationship bcv4een

P, S, and Q can be made to facilitate calculations, Newmark (1969). ExampleS of

such cherts are given in Figs. 3 through 7 for values of N ranging from 2 to 6.

These charts are based on Eqs. (55), (56) and (60).
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r - I

The abscissa in the chart is S and the ordinate is P, both being plotted

to a logarithmic scale. Lines sloping up to the right represent constant values

of R/r and the lines sloping up to the left give constant values of Q. The

heavy line for R/r = 1.00 represents the limit of elastic behavior. Below this

line the behavior is plastic and above this line the behavior is elastic. If the

circumferential strain and the radial stress are known at any point with radius r,

then both S and P at that point are known and their intersection can be determinedI I
This intersection, if below the heavy line for R/r = 1.00, gives immediately the

I value of Q from which po may be determined. The value of R/r is also obtained,

which can be used directly to determine the radius of the elasto-plastic boundary.

If the point of intersection is in the elastic region, the original value of P is

not valid ',,t p0 can be determined directly from Eq. (16a) since or and S are

known to begin with.

Similarly if the free-field stress p0 and the radial stress at any radius

r are known, the quantities Q and P can be calculated and these values can then

be used to define the initial point in the chart. If the plotted point is in

tthe plastic region, it gives immediately the values of R/r and S from which the

radius of the elasto-plastic boundary and the circumferential strain e at radius

r can be determined. If the plotted point is in the elastic region, the plotted

value of P is not valid but the value of S is always valid. This value of S can i
then be used to determine the circumferential strain at the given radius r. j

If we now proceed from a given radius r to some new value of r, say r = b,

with R known, then R/b can be calculated and this value read as the new value of

* R/r. One proceeds to this new value along a line of constant Q since p0 does not

change in the same material. This new point gives directly the value of S as the

abscissa and the value of P as the ordinate for the new radius. If the inter-

e !section is in the elastic range of the chart, the value of P is not valid but the

17 -



r!
value of S is always valid. If the intersection is in the plastic region, the

new P is valid and c can be determined directly because a is known. With a

determined, ce can be determined directly from S. If the new P is not valid, or

the situation is elastic, a can be determined from Eq. (16a) since both S and
r

PO are known for the new radius. Eq. (53) can then be used to determine the

circumferential strain .

Regardless of whether the starting point is in the elastic region or in

the plastic region, a new point at another radius can be determined by going along ,

a line of constant Q, taking into account of the fact that the change in radius

is one which corresponds to a constant value of R, which can be determined from

the first point located. It is thus apparent that one can start at any point and

go to any other point in the same medium directly but one must start over again in

each new medium, with some valid starting point being known.

The preparation of a chart for a given value of N involves a large number

of repetitive calculations. Thus, a small computer program was written and used

to generate the data necessary for construction of the charts shown in Figs. 3

through 7 which were prepared for values of N 2, 3, h, 5, and 6. If the value

of N in a given design problem is not an integer, the calculations may be done

by interpolation using the appropriate charts. The range of input parameters

covered by the charts shown in Figs. 2 through 6 is large enough to include nearly

all problems involving deep protective structures in rock.

18



Example 1

Data:

Unlined Tunnel: a = 81

P0 = 16,400 psi

E = 6xi06 psi

P = 1/3

( =2000 psi

N~ 4 or =370

Ir

Solution:

FT == 6 6 7 psi (41)

At r =a

S:= [ + 5(52)

R 1 2 J /3 (8

=2.17

S~ = 6x[3+ 5 x2.17]

=625,000 psi

19



Ni
Ce (S +(1-1) P625 000

6 x 10
= 1.04 x 101 or 10.14%

Graphical Solution (Use Chart for N= 4)

PO + T Q = 17,067 psi

r a 3 •Pi = 2000 psi

r=a

For Q = 17,067 psi and P = 2000 psi, read from the chart for N. 4,

r 2.17 and S = 625,000r *

C 1_ (s + (1-1j) pi)¢8 E

r=a

ra=10.4%j

Case 2. Input Parameters are the Same as for Case 1 except that the value of

u in the plastic zone varies linearly from zero at the tunnel wall

(r=a) to the full value at the elasto-plastic boundary (r=R)

The assumption of a linear variation of au in the plastic region intro-

duces the following changes in the relationships derived for the plastic region.

The Coulomb-Navier yield criterion for the plastic region becomes modified

as

a0,, = r + u r - a (33a)

20



where R - radius of elasto-plastic boundary

The stress difference, P, at radius r in the plastic region is now given by ]

P = -a = a a (N - i) (r -a) (34a)
0 r r 0

Differentiating Eq. (34a) with respect to r,

(aa
_p (N 1) r + u (35a)- 0 Dr -R(al

Substituting Eq. (35a) into Eq. (i)

ap P p
-(N 1) 7 T (36a)

The solution of Eq. (36a) yields

P P + 'u a - (37a)
'a (La) R- a(N0  2)

where P Pr = P(N o -i)

r=a

Therefore

N au aFrN rl
P= (No - i) + (B - a)(N 2) L - (39a)

At any radius r within the plastic zone, (a < r < R) i

a u ( -1) (0a)I

21



= 0 r •N¢ + u (33a)

Substitution of Eq. (39a) into Eq. (32) yields

N -1
+ S (N +) = A r + B r (42a)

Dr

(N¢ 1 )2 pT•a

where A = N + ()-

C u '(N -i) I(43a)a N 1
and = (R - )2 NT7

Solution of Eq. (142a) is of the form

N +2
N¢+I ( 2A B r

Sr 2 r + N + 2 + C (44a)

where C is the constant of integration.

At r =R, S S
RI

N +2

Therefore S = N +2 + C

Eliminating C from the above equation, Eq. (44a) can be rewritten as

• + A 2N 2N + B rN+2 - +21

2NRrN +  I2R

+ S+R  (51a)
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At the elasto-plastic boundary (r=R)

2
N (P + T) (N 1) (47)PR =N +-- 1-

According to Eq. (39a)

R (N -i) + a a(N¢ )[ - (45a)

Equating Eqs. (47) and (45a)

There is no closed solution of Eq. ((8a) for R/a. Eq. (48a) has to be solved for

R/a only by successive approximation.

2 (po + T)(N¢ 1 )At r R, S = = - (N +-) (47)

R (N T+ 1

Substituting this value of SR into Eq. (51a) and simplifying

N+ A 2N - 2N + B -N+2 N+21
Sr = - [€ R +N+2 -

2 (p + T)(N -1) N.+1
+ 0.(52a)

where A, B, and B are given by Eqs. (43a) and (48a). Eq. (52a) gives the value

of S at any radius r in the medium. The circumferential strain E0 can then be

calculated using Eq. (53).
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In the elastic region (r > R) the stresses and strains are given by

Eqs. (19), (20), (5), (6) and (h6).

Data:

Unlined Tunnel: a = 8'

Po = 2000 psi

-6
E - 6xl0 psi

= 1/3

Ou  = 1200 psi

N =4

P = 0

Required: ?

Solution:

T 1200 40 psi (41)

3 21oo R 400 1 24oo
Wa - 2 - 2 = X- (48a)1 a 15

Rt
Solving R- 1.75 or R 1.75 x 8 = 14'

a

Note: If c is constant over the plastic region

a (2 x 40)1/Z =  (5x 400 (48)

• R-- =1.34
a

24



_ _ _ 2 _0 _400

(43a)

B0 - 020 • _ - 24oo
a - 0.75 • a

At r- a

5  24o00 81 - 4 -
A

S a 3 • R8

28400 x 5 (52a)5

Substitieing -- =1.75

II
+ 28800 x 1.755

= 32200 psi

1 + (1 -) p

IS Jra

Note: If a is constant over the plastic zone

S =a 400 x .-g [3 +5 x 1.341 = 8300 psi (52) 1

and Ee = * (S+ ( - -pi) = 1.4 x Io
25I
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Case 3. Input Zarameters are the same as for Case 1 except that cohesion is

assumed to be lost in the entire plastic region, i.e..

Ou 0

The assumption of a complete loss of cohesion in the plastic region results

in the following modified equations:

Coulomb-Navier failure criteriu,..

oN= r (33b)

Stress difference P a r (N - 1) (34b)

P Pa " 4' (3m")

where P PI pi -±J-1

r=a

At any radius r within the plastic region

r  P(N -1) (40b)

Ge = Or •N1 (33b I
2

At r R, PP N + I o (N -1) (47b)

pi (N - )( (45b)

Thus R 48b)

26
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Eq. (52) is now simplified as

s p + 1 N¢ [2N. (N -1) + (N¢ + 1)

Eq. (52b) can now be used to determine the tangential strain c6 at radius r.

In the elastic region, r > R, the stresses and strains are determined using

Eqs. (19), (20), (5) and (6) noting that aR  = 2 p0/(N + 1).

Case 4. Input parameters are the same as Case 1 except that the quantities E

and p have Oifferent values in the elastic and plastic regions.

Let

E, E' - Young's modulus in the elastic and plastic regions

P, i. = Poisson's ratio in the elastic and plastic regions

k -E/E'

The tangential strain at the elasto-plastic boundary (r=R) must have the same

value in both the elastic and plastic regions. Since the values of the Young's

modulus are different in the two regions, there will be a discontinuity in the

tangential stress at r = R.

Let oR be the radial stress at the elasto-plastic boundary (r=R)

The circumferential strain at r = R due to stresses in the elastic

zone is

1 N +
eR V u -

27



r?

The corresponding value at r R due to stresses in the elastic region

is

C - PO a PC
OR E -R

Equating these two expre3sions for e

R k (N - ) + (i (46)

According to Eq. (h0) cR is also given by RJ

oR =(pi + T) (R - T (hOc)

Equating Eqs. (46c) and (40c) and solving for R/a:

R 2Po - 4 
u

= k ) + + Tj1/N- ( 4 8c)

a Lk (N + (l +TJ (P

Eq. (48c) thus gives the radius of the elasto-plastic boundary.

For r - R (elastic zone)

r Po - (po a ) (19)

ce = + (Po-ar) 
(20)

1Ie (or pce) (6)

S(a - ir 2 (5)
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For a < r < R (plastic zone)

= ( +T) T (40)
ar --(i IT a]

=N • + a (33)

The circumferential strain Ee in the plastic region can be obtained from S which

is given by Eq. (52):

S N1) = i) + (N + 1) (52)pl + T,[!a 2No  NO

E = 0 S + (l-')Or (53c)

Graphical Solution

The solution to Case 4 can also be obtained using the chart. In this case,

since the elastic and plastiv zones are assumed to have different material con-

stants, they will be treated as two different media arranged in a concentric

manner. For each medium (in this case for each zone) the appropriate chart will

have to be used.

Using the given data, the initial starting point is located in the chart of

one medium. Then the radial stress and the tangential strain at the boundary

between the two media are determined which are then used to locate the initial

starting point in the second2 medium. The same procedure can be repeated if there

are more than tio different media to deal with.

If the circumferertial strain and the radial stress are known at any

radius r in the medium, the procedure described above can be used directly to

29



estimate the free field pressure p0 or the modulus of the medium required to limit

the circumferential strain at the tunnel wall to a tolerable value under a given

value of p0  But very often the data may be insufficient to locate the initial

point in the chart for a graphical analysis, as for example, when it is required

to estimate the circumferential strain at r = a in Case 4 for a given value of po.

Under these conditions, it becomes necessary to use a successive approximation

procedure. For the example cited, an initial value of circumferential strain at

r = a is assumed and the graphical analysis is carried outward from the innermost

radius a and the value of p is estimated. If this value agrees with the value

given in the problem, the estimate of the circumferential strain at r = a is I

correct. If not, a revised value of the circumferential strain is assumed and the

procedure is repeated until the assumed circumferential strain is consistent with

the given data.

Example 3

Data:-

Unlined Tunnel: a = 8'

Po = 2000 psi

E = 6x106 psi

E' = 3x106 psi I
= 1/3

p' = 1/3

a u  = 1200 psi

No = 141

pi = 0

30
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Required: Ee r = ?
r~a

Solution:

1200

- -- 400 psi (41)

k = E/E' 2

R =00 - 2Wo 0 + Woo 1 4oo] ( 4 8c)L-2 x3 2/ +/3 +  10 1/348¢

= 1.136 .

(Compare with the value 1.34 obtained for Example 2 with E = E' and au constant).

At r a

S 3 [r~ 8l
= 4 - [3 + 5 (52)

7 [3+ 5 (1.136)8]

S : 2540 psi.

: - [2540 + 2/3 x 0] = 8.5 x 10 - 4
10

-4
(Compare with the value 14xl0 " obtained for Ecample 2 with E E' and o u

constant).
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Graphical Solution

The data given in the example problem does not enable the starting point

to be located in the chart ffo:" No = 4 for the plastic zone. This means that the

problem has to be solved by successive approximation.

Let us assume that c. 8.5 x 0
r~a

At r a,

S= E' - (1 - '. = 3x106 x 8.5 x 10-  - 0

-2550 psi

P = U + (N 1) Pi = 1200 psi.

For S = 2550 psi and P = 1200 psi, the chart (N,=4) gives

R- - 1.135 or R = 1.135 a
r a"

and Q = lh80 psi

Atr R, r = 1.0

For R/r = 1.0 and Q 1480 psi, the chart gives

PR 1 1755; S = 1755 psiIi R
PR= u + 3R 1200 + 3 R

R  1 8 5 psi
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SR O OR 
R

or OR = [ R + (R- ') ]

- 755 +- x 185I. - ~ ~3x107

= 626 x lo-6

Now in the elastic region

S R = E cOR (a 
R

= 6x1O6 x 626xi0- 6  x

= (3756 - 123) 10 = 3633 si

2po = SR + aR 4003 psi

Po = 2001.5 2000 psi (given)

This means that the initial assumed value of E.1 is correct.II
r=a

If the value of p obtained for aw assumed value of c.1 does not0 r=a1
agree with the giver, value of po, the procedure has to be repeated with a second

trial value for £ . This repetitive procedure is continued until all theII
rIa

input data are satisfied.

33
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Case 5. In this case the tunnel is assumed to be initially surrounded with

circular zone of loosened materia. having elastic constants which are

different from those of the insitu material.

The case could represent a tunnel with a "destressed zone" from static

loading which is subseqaently loaded with another free-field stress such as a

dynamic loading over a large area.

Let a = radius of tunnel opening

R = radius of elasto-plastic boundary

R1  = radius of loosened zone

R = radius of elasto-plastic boundary in the loosened medium, if

any, when R > R

p 0 uniform free-field pressure

Pi= internal pressure at r = a

E = Young's modulus of intact medium

E = Young's modulus of loosened medium

= Poisson's ratio of intact medium.

ii' = Poisson's ratio of loosened medium.

= unconfined compressive strength of the medium (assumed to be

the same in both the intact and loosened zones)

1 + sin
1 - sin 4

S= angle of shearing resistance of the mediun' (assumed to be

the same in both the intact and loosened zones)

In the analysis of tl.e t'esent problem, two distinct cases have to be

considered:

a) R < R b) R > R
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Case (a) R < RI

The elastic zone (r > R) in this case consists of two rings of material

with two different values of Young's modulus. Therefore the stresses and strains

in the elastic zone can be computed using the elastic solution obtained by

Sa in (1961),

For R r < R

a = oR + (po a- ) C1  (61)

CO = a +(po - aE) C2  (62)

where CI = [(1+ X2 ) (n 2
- RI2/r2)] D (63)

X!1 / 2)]/

C, [(+ X,) (n 2 +a R 2/2 )/D (4

D =2 (a - 1)- n a 1) -(1 + x O (65)

X,=.~j- (66)

3--i (67)X2 = I+

n /R (68)

E(+'(69)

and R = r I

r=R
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For r > R,

i r = PO (po - aR) C3 (70)

= p + (po - aR) C3  (71)

l (n 2  + x) ( 2 E
where - 2 - (72)

L jr

The strains in the elastic zone can be obtained from the stresses as

follows:

For R< r < R1  r-E- ° (73)11

For< = E-  (a0 - ii' Or) (73)
E" rrE

_- =! (%r - 1') (74)

For r (> R -a ) (75)
r r

Ce - 6 )- a r)  (76)

However, in Eqs. (61), (62), (70) and (71), oR is still an unknown and

therefore has to be obtained before the stresses and strains can be determined in

the elastic region. This can be done by equating the circumferential strains at

r = R in both the elastic and plastic regions. Thus

l (a -i R ) = - (a p - p' R ) (77)

E 6 Rp R
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r1

where a e  061 in the elastic region

r=R

aR p = 6 rR in the plastic region

Eq. (77) gives aene a 0 6RP !
I

By Eq. (62) 0CRe R + (Po -R) C2 Ir -R

= aR + (Po OR) C (78)

2where C = (1 + x2 ) •2 n/D

In the plastic region

aRP = a R N 0 + au (79) j

Equating Eqs. (78) and (79), and simplifying J

OR N + uCj (80)

Eq. (80) can now be used in conjunction with Eqs. (61) through (76) to define

completely the stresses and strains in the elastic zone.

From Eq. (40) it is known that I

OR = (pi + T) a T)

Eqs. (80) and (81) can now be combined to yield

37I
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II

a = -" + c + T pi + T) (82)

The value of R/a obtained from Eq. (82) should be less than Rl/a for the above
1I

analysis to be valid. The analysis of the problem when R > H is considered

under Case (b).

The stresses in the plastic zone (a < r < R) are given by Eqs. (40) and

(33). The circumferential strains in the plastic zone can be determined from

Eq. (52) and

s = E' Ce" (1 - ) or (83)

i

Case (b) R > R1

When R > RI, the loosened zone may exist in any one of the following

three states, depending on the magnitude of the radial stress ael at r = Rl:

(i) Completely plastic

(ii) Partly plastic and partly elastic
(iii) Completely elastic j

Therefore it is necessary to first determine the magnitude of cRl* The procedure

for determining aR1 is given below.

.ased on Eq. (48) it may be written that

l _ I2 p T

N+ 1 R1 +T (8) j_+T
Similarly from Eq. (52) it can be derived that
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S R1 NN +1 +I 2N (85)
I + T 2N

where SRl = E CR - (- ) OR1  (86)

and c R 1  = Ce1r R1

Eqs. (84), (85) and (86) can be combined to give

22I0i T ). ( N -I ) + C N + i ) 2_° T N -

£8R1 = E- ( R1+T) " N " + TJ

SK 

(87)

As a genera case, let it be assumed that the loosened zone becomes partly

plastic and partly elastic. If R2 is The radius of the elasto-plastic boundary
in the loosened zone the following relationships must be satisfied.

N -i

(R2 = = (Pi+T) ] - T (40d)
r=R2
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a Rle = in the elastic loosened zone

r=R1

2 2RI  + R2  2
1 2 2R2

a 0R1 2 2 R2R12 R2 2 (88)

1 2 1l - 2

eRl  El ORle- i' o~) (5d)

Equating Eqs. (87) and (5d)

CeRl R = Ef K (89)

It can also be shown that

= ~ ~ 2 2 (0
1R1 " ]2 R2 2( N + i) oY + CTu  2 (9o))

R2RI -2 R2
1 2

Eqs. (89), (90) and (hOd) can now be solved to yield the values of the two

unknoWns a and R
RI 2

If the loosened zone remains entirely elastic or entirely plastic,

Eqs. (hOd), (88) and (90) are not valid and cannot be used to determine 0

When the loosened zone is entirely elastic

U R1 (aI1 + a2 - Pi " 2 a2

0e21e = 2 2 (91)
R -a

This value of cS~le can now be substituted into Eq. (89) to get the value of oRl.

Substitution of OR1 in Eq. (84) gives the value of R.

ho



When the loosened zone is entirely plastic, the values of R, a R and aR

can be obtained directly from the following equations-,

N-i-

[R 1

a=R (a R+ T) -T

The value of R obtained from the preceeiing equations should be greater

than R1 . If not, the procedure given under ce.se (a) has to be used.

Stresses and Strains

r R

ar = PO -p 0P - aCR) r](3

P+ (p -C R) (12 (94)

Cr a ~C -~ (95)

r (C (96)

where

C C =(2 p0 -C
r r N + 1u
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Rr r R

N ___

2 (p + T) R

= N + 1 T (97)

= N + a (98)
e r T u

wh re S = E c0 - (I - ) r

a < r R1

Fully plastic

Cr (P i + T) a - T (100)

a r N + a (98)

SrV+1 (N - 1 ) 2 (p + T) 211 2N] + S IN +l (101)

Sr2 NF r ~' F.( 01
2N ra " Ri 1

where S E' ee - (i - ) 0r

S' E' -
RI Ri - Rl
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and eRl =C as obtained from Eq. (99).

Partly plastic and partly elastic

R 2  2r < R

aRl R 1 G R2 " 2 (aRi a R2 1 210
2 2 2 2 2(102)RI - 2  (R1  -R R2)r

1 21 2
C RI R12 - R2 R R22 (a RI - a R2) R 12 R 2 2

e  =2 2 22 22 (10)

R R ( -R r
1 2 1 2

Cr Ef r - '0 )  (io4)

Ce = 1 (ae - p'o) (105)

a< r <R 2

NO-1

Or = (pi + T) -T (100)

= • N, + a 98)

N +1 2NR 2N

he a T 2 L1i ) + (N. + I)[2 (106)

where S E' E (i - Or') r
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pr -i - - .=i.---- -. w= .- * W wt h -rr' . w..r..crr..u-I 
-
r-uP- rluP,,

Fully elastic

= A-B/r2  (107)

Ge = A + B/r2  (108)

where

2 2crR " Pi "a
= 2(19)

1I 2

a2

RI Pi 1I

1

B = (ai-p)o)a
B2 _2 (110)

(R - a)

1 _
C r  : l cr ( r  o )  (104)

-c' ar) (105)El e rr(

The preceeding paragraphs thu-s give a complete and closed analytical

solution for Case 5. This problem can, however, be solved more readily by tne

graphical procedure using appropriate charts. The details of the procedure are

the same as explained at the end of Case 4.

Example 4

The input parameters for this example are the same as for Example 1 except

that the tunnel opening is surrounded by a loosened zone 8 feet thick having

the following properties:
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FL

E 2xO 6 psi

=1/3

=u 2000 psi

N = 24

Required: = ?

Solution: -J

This problem can be solved analytically using the relationships derived

for Case 5. But the procedure is long and time-consuming. Therefore the easier

graphical procedure is used in this example.

As has been explained earlier, the solution to this problem can only be

obtained by successive trials, the number of trials being dependent on how close

the first trial value is to the actual value. In the present case let us assume

Era 0.05

Then at r a O = 2000 psiu
ce = 0.05

E = 0 
6

E =E' = XlO6 psi

' -- -- 1/3

1S x 0.05 - 0 105 psi (9)

P 2000 + 0 = 2000 psi (31)

For these values of S and P, read from Chart (N = 24)
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Q 8600 psi
RI/I

-- = 1.725
a

At r =R 1 = 2a (=16') R 0.863 A

Ri

R RFor Q - 8600 psi and - = . 0.863, read from the chart
r R

(loosened medium) = 7700 psi

r=R1 1
At < 1, the material is elastic at r = RI

2 Po -S 2 (Q -T)-S S i
- = (Q--T) (19)

2 2 2r=IRI

-(8600 667) _ 7700 = h083 psi.

At r R in the loosened zone,

= + (1- ') r]

[7700 +-x 4083]I
2x106 3 0

- 5211 x 10
- 6

At r = R in the unloosened zone
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W ,r T

S = Ee (- r (9)

- 6x106 x 5211 x 10- 6 x 4083

= 28544 psi

P = au + (N - 1) = 2000 + 3 x 4 083 (34)

= 14250 psi

For these values of S and P, the chart for N@ = 4 gives

Q = 16900 or Po = Q - T = 16900 - 667 16233 psi

This value is sufficiently close to the given value of p0 of 16400 psi. So the

assumed value of cel = 0.05 is very near the correct value and the calcula-

tions need not be repeate.

Case 6. Lined tunnel with a circular zone of loosened material.

A tunnel may be provided with a liner to limit the strains at the inner

surface of the tunnel within allowable limits. The linings may be of concrete

or steel or a combination of both. In this analysis the liner materials also will

be assumed to behave elasto-plastically. The analytical solution of the stresses

and strains in a tunnel system consisting of one or more sets of liners and a

loosened zone of material surrounding the liners, is very complex, lengthy and

cumbersome. However, the graphical solution, using the charts of the type

presented earlier, offers a relatively simple means rf solving the problem.
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The analysis must proceed outward from an inner element or inward from an outer

element of the tunnel system. For each element of the system the chart with the

appropriate value of N has to be used. At least two quantitiessuch as the

circumferential strain or the radial stress, are required to locate the initial

starting point for the analysis of any one element. Once these quantities are

known, they can be used to estimate the values of the radial stress and circun-

ferential strain at the boundary with the next element, which are in turn used

to locate the starting point for the analysis of that next element. This process

can be repeated until the stresses and strains in the whole tunnel system are

known. The following example is worked out to illustrate the approach mentioned

above.

Example 5

The dimensions and rock properties assumed in this example (Fig. 8) are

the same as for Example 4 except that the tunnel opening is provided with a 12"

thick liner of concrete having the following properties:

E c = 4x106 psi

= 1/3

C = 5000 psiu

Required: C0 L =

Sr=a
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Solution:

Let us consider the concrete liner first. Let us assue, as a first

-Itrial value,

Ce - 0.03

r=7'

It is known that at r 7'

=0
r

s 4 x 106 x 0.03 - 0 1 .2 x 105 psi (9)

i 5000 + 0 5000 psi (34)

For these values of S and P, read from chart [N (concrete) = 4]

Q =16500 psi

R
- = 1.57, thus R = 11'7

At r =8' R 1 1r = -g= 1.37'5

For Q = 16500 psi and = 1.375, readr

S = 64000 psi

P = 7600 psi = 5000 + 3 C (34)

Therefore at r = 8' I
r = 867 psi
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1I

= . . (64ooo + 2/3 x 8671 (53)
4x10

- 16147 x 106

Let us now consider the loosenei zone.

At r =8'

= 16147 x 10-  and

= 867 psi

S = 2 x 106 x 16147 x 10- 6  2/3 x 867 (9)

=317?_0 psi

F = 2000 + 3 x 867 = 4600 psi (34)

For these values of S and P, read from the N = 4 chart for the loosened zone,

Q - 9250 psi

= 1.34 R - 10.72'

At r = 16' .67 10.72
16

For Q = 9250 psi and R = 0.6'r, read
r

S = 5000 psi

As 0.67 < 1, the value of P is not valid, bul car, be caicuated usingr

the relation

S
= PO - wherePo = Q-T
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Thus at r = 16'

a (Q-T) S (9250 667) 50oO

I
1

= 6083 psi

£e = + 2 x 6o83] (53)
0 2:707 L =

i0.6

= 4528 x

Let us now consider the intact (non loosened) medium.

At r 16'

6
= 528 x 10-

0r = 6033 psi

" 21

s1= 6 x l0 6 x 4528 x 10-6 2 x 6083 (9)

= 23113 psi

P = 2000 + 3 x 6083 (34)I

= 20250 psi

For these values of S and P, I
Q = 18200 psi

and PC = T 18200 -667 = 17533 psi

I

53.



But the value of p0 specified in the problem is 16400 psi. This means that the

assumed value of El r=71 = 0.03 is slightly on the high side.

So let us now assumn. that at r = 7'

Ce = 0.028

A similar analysis gives the following values:

At r = V' In concrete

S = 1.12 x l05 psi P = 5000 psi

At r = 8' In concrete

S = 5.95 x 104 P = 7500 psi

= 833 ps-r :.

= 15014 x l0 - 6

In loosened zone

S = 29472 psi P = 4500 psi

At r = 16' In loosened zone

S 4.7 x 10 psi

a = 5883 psi
r

E = 4311 x 10- 6
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In intact zone

S = 21944 psi P - 19650 psi

P0  = 16433 (- 16400) psi

Thus the assumed value of c (at r 7') 0.028 is very near the actual

value.

Note: For relatively thin steel liners, the analysis is slightly simplified

because the radial pressure exerted by the thin steel liner against the medium

next to it is given by

h h
a E E or°ra a a 6 y

whichever is less. In the above equation

ara o radial pressure exerted by steel against the

adjacent medium

h = thickness of steel linings

O = yield stress of steel lining

a = radius to outside of steel lining

E = Young's modulus of steel lining

ce = circumferential strain of the steel liner

Case 7. Tunnel provided with back packing: Loosened zone present.

This case is very similar to Case 5, the only difference being that the

radial pressure pl at r = a is 0 0. The back packing material usually has a
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very low yield value and serves to exert an equal all around pressure on the

inner surface of the tunnel over a considerable range of strain. The analysis

for the present case is illustrated by the following example problem and is very

similar to that of Example 4.

Example 6

The input parameters are the same as those of Example 4 except that the

radial pressure due to back packing is 150 psi (Pi = 150 psi).

Required: =?

r=-a

Solution:

Assume at r =a8', 0 = 0.04

Then at r = 8'

- ? x 106 x .04 - x 150 = 79900 psi (9)3

P = 2000 + 3 x 150 = 2450 psi (34)

For these values of S and P read from chart (11 =4)

R
9000 p3i = 1.64'

R =13.12'

At r 16'

R 13.12 0.82 < i
r 160..2o -1
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For Q * 9000 psi, 0.82 S 7250 psi
r4

S

:i

- (9000 - 667) - 3625 1

a 4708 psi

.41 7 [250 .9x To8

" 5195 x 10
-6

Now for the intact material ot r = 16' 

4+708 psi
rI

C ... =5195 x 10

S1 6 x 5195 y - x 47O8 (9)

280o40 psi I
P = 2000 + 3 x 4708 = 16124 psi (34)

For these values of S and P 1I
18000 psi

Po - T = 17333 psi (in comparison vith the actual value of I
164oo psi)
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Therefore the assumed value of c,9 at r = a = 8' has to be revised. So let us now

assume at r =81 = 0.038.

A similar analysis leads to a value of p 0 =16633 psi. So '~y a slight

extrapolation it can be found that for p0 = 16400O psi,

Cel 0.03T3 or 3./"P
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Chapter 3

Conclusions

General

The analysis presented in the previous chapter yields a means whereby

stresses and strains can be determined around a circular tunnel in a Coulomb-

Navier material which increases in volume at f2ilure. This analysis may be used

to design liners if the insitu rock properties are known. The results of the

analysis are dependent on the rock properties assumed; therefore, recommenda- I
tions are given in this chapter on the selection of the approriate rock mass

properties to use in this analysis. The effects of a non-uniform system of

free-field stresses are also discussed.

I

Shear Strength Properties

The values of a and N to be used in the analysis are related to the

rroperties of the jointed rock mass surrounding the opening. N. is given by

1 + sin where the appropriate angle of frictional resistance should be taken
1 - sin 4

as the angle of frictional resistance along the joints or discontinuities not

the angle of internal friction derived from triaxial tests on intact samples of

rock. The value of the uncoifined compressive strength of the rock mass, o , is

a function of the ratio of tunnel diameter to joint spacing as shown in Fig. 9.

The larger the ratio of tunnel diameter to joint spacing., D/S, the smaller the

value of a appropriate for design. If D/S is very small the value of a can

approach the unconfined strength, qu, of intact sAmples of the rock surrounding

the tunnel. Similarly if D/S is Very large au approaches zero and the shear I
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strength of the rock mass approaches the shear strength along the joints. Fig.

10 gives a straight line relationship between the ratio of au/qu and the ratio

of D/S which can be used to select a value of au for design if qu and D/S are

known. This relationship is based on field experience in locations where dis-

placement and strain measurements have been made.

Elastic Properties

The method of analysis presented in Chapter 2 is also quite dependent on

the "effective" modulus of elasticity, E, selected for the rock mass. A method

for selecting the deformation modulus of a rock mass has been given by Deere,

Hendron, Patton and Cording (1967). By this method the rock quality of the rock

mass must first be assessed quantitatively in terms of the Rock Quality Designa-

tion (RQD) or the Velocity Ratio as described by Deere et al (1967). After the

rock quality has been determined Fig. 11 should be entered on the abscissa using

the RQD value or the square of the velocity ratio and the reduction factor

E IE should be determined from the dotted line shown in Fig. 11. Ther seis

reduction factor is the ratio of the deformation modulus of the rock mass Er

to the dynamic value of Young's modulus Eseis calculated from P wave velocities

measured in seismic surveys. The deformation modulus of the jointed rock mass

can then be taken as the product of the reduction factor and E seis.

This analysis is not very sensitive to the value of Poisson's ratio

selected, which is fortunate because there is little known albout the selection

ot a Poizszon'ls ratio for an insitu rock mass. It is recommended that a Poisson's

. 0.3 be i,-ed.
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Dilatancy

tI

Dilatancy of the rock mass at failure is accounted for in the elasto-

plastic analysis by the normality condition expressed by Eq. 24. Experimental

evidence however suggests that the increases in volume resulting from the

normality condition are too large compared to the behavior of real rocks. Thus

the radial displacements or tangential strains computed by this theory are

a conservative upper bound. On the other hand the charts developed by Newmark

(1969) are based upon no volume change due to the plastic strains at failure

and give radial displacements and tangential strains which are too small andL

should be taken as a lower bound. The charts given in Figs. 3-7 would be

identical to Newmark's charts if the lines of constant Q in the elastic region

are extended as straight lines into the plastic region. The proper amount of I
dilatancy to include in calculating strains and displacements is somewhere

between that given by Newmark (1969) and the analysis given herein.I

Non-uniform Stress Conditions

For real design problems the free-field principal stresses in a plane

perpendicular to the tunnel axis may be a1 and 03 where cI is the major principal

free-field stress and a3 is the minor free-field principal stress. The solution

for this problem cannot be obtained in closed form as was done in this paper

for the case of a, = a3 = Po. Reyes (1966) has solved several problems for

unlined openings in a medium with Coulomb-Navier failure properties and

dilatancy, as described in this report, for non-uniform free-field stress con-

ditions. A comparison of the uniform, free-field stress solution presented

herein with the solutions presented by Reyes has shown that the maximum diametral
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strain 6 r/r (max) across the tunnel in the non-uniform stress field (free-field

rI
stresses = c and a3) is closely approximated by the solution given, herein if

PO is assumed to be equal to the major principal free-field stress, a1. The

distortion of the tunnel from a circular shape can also be approximated within

20 % if the minimum diametrdl strain 6 r/r (min) is taken as

6r a 3 6r
r (rain) a 1 r (max)

Since the ratio of a3/1 for protective structures problems may range from

about 1/3 to 2/3 the minimum diametral strain of the tunnel may be approximated

for preliminary design purposes as being about 1/3 to 2/3 the maximum diametral

strain across the tunnel. Reyes solution has also shown that the maximum

diametral strain of the tunnel occurs across a diameter parallel to the

direction of a and the minimum diametral strain occurs across a diameter

parallel to a3*

For preliminary design purposes it is felt that the approximations

given in this section for estimating tunnel distortions for the non-uniform

stress field are at least as accurate as the initial assumption of the ratio

of C3/a1 appropriate for design problems in protective structures. If more

accurate estimates are desired, then time consuming and expensive finite

element calculations similar to those used by Reyes (1966) must be performed.
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