/7 TN\
SRI STANFORD RESEARCH INSTITUTE
Menlo Park, California- 94025 - U.S.A.

N\ / /4

XN TY 224

4

A STUDY OF FAULT-TOLERANT COMPUTING:
FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

by
Peter G. Neumann
Jack Goldberg
Karl N, Levitt
John H. Wensley
Computer Science Group
Stanford Research Institute, Menlo Park, C
25 August, 1972

AD 748028

ARPA Order Number \ Contract Number
1998, 27 December 1971 1"00014-72-C~0254
Program Code Number Principal Investigator
2P10 Peter G, Neumann,
Phone 415-326-6200,
Name of Contractor ext. 2375
Stanford Research Institute
Menlo Park, California 94025 Scientific Officer
Director, Information
Effective Date of Contract Systems Program
12 January 1972 Mathematical and Information
Sciences Division
Contract Expiration Date Office of the Navy
14 January 1973 800 North Quincy Street

Arlington, Virginia 22217
Amount of Contract
$149,700,00 Short Title of Work
FAULT-TOLERANT COMPUTING

Sponcored by and prepared for the
Defensec Advanced Research Projects Agency
Arpa Order Number 1998

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or cf the U, S. Government,

(Form Approved Budget Bureau No. 22-R0293)

Approved: R
David R, Brown, Director Peter G. Neumann,
Information Science Laboratory Principal Investigator

Reiroduced by

NATIONAL TECHNICAL -
INFORMATION SERVICE \ DISTRIBUTION STATEMENT A |

U S Department of C
Seringeld VA ZA15T SR Project 1693 " Approved for public release;
.‘ - | -« . =Y s Yt 2.0



BEST
AVAILABLE COPY



1Y
Security Classification

DOCUMENT CONTROL DATA-R& D

Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classilied)

1 ORIGINATING ACTIVITY (Corporate author) 28. REPORTY SECURITY CLASSIFICATION
Unclassified
Stanford Research Institute B EEE

3 REPORT TITLE

A STUDY OF FAULT-TOLERANT COMPUTING:
FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

6-month technical report covering 12 January - 1 August 1972

5 AU THORIS) (First name, middle initial, fast name}

Peter G. Neumann, Jack Goldberg, Karl N. Levitt, John H. Wensley

6 REPORT OATE 7a, TOTAL NO OF PAGES 78, NO OF REFS
25 August 1972 62 15 + 62 in appendices
8a. CONTRACT OR GRANT NO ca, ORIGINATOR'S REPORT NUMBERI(S)

N 000 14-72-C-0254 (ONR)

h. PROJECT NO.

c, <, OTHER REPORT NOIS) (Any other numbess that may be assigned
this report)

12 DISTRIBUTION STATEMENT

Approved for public release; dis*ribution unlimited

11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY
N Defense Advanced Research Projects
one
Agency

7T ABSTRACT
This\report describes technical progress in the first half year
of a study of fault-tolerant computing. Steps toward the development
of economical fault tolerance and high availability are discussed.
Appendices contain a survey of various cxisting systems and system
designs, as well as a paper on a hierarchical framework for fault-tolerant

computing systems.

DD IFNOORVME\51473 (PAGE 1) PLATE NO, 21856

VL Unclassified



Unclassified

Security Classification

KEY WORDS

LINK A

LINK B

L'NR ¢

ROLE

wY

ROLE

Fault-tolerant computing
Computer reliability

Computer availability

wT

ROLE wT

DD \2™..1473 (sacx)

(PAGE 2)

Unclassif: od

Security Classification



A STUDY OF FAULT-TOLERANT COMPUTING:
FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

by
Peter G, Neumann
Jack Goldberg
Karl N, Levitt
John H, Wensley
Computer Science Group

Stanford Research Institute, Menlo Park, Ca
25 August, 1972

TABLE OF CONTFNTS
1. Technical report summary page
2., Problems in fault-tolerant computing
3. Summary »f progress

4, References

Appendix I: Census of fault-tolerant computing systems
Appendix II: Survey of fault-tolerant computing systemc

Appendix III: A hierarchical fromework for fault-tolerant
computing systems

1

15

17

22

43



A STUDY OF FAULT-TOLERANT COMPUTING;
FIRST SEMI~ANNUAL TECHNICAL PROGRESS REPORT

by
Peter G, Neumann
Jack  Goldberg
Karl N, Levitt
John H. Wensley
Computer Science Group
Stanford Research Institute, Menlo Park, Cg
25 August, 1972

1. TECHNICAL REPORT SUMMARY

This document provides the firs: technical progress report in the one-year
study of fault-tolerant computing which SRI is carrying out for ARPA under

Contract Number NOO014=72-C-1254. The first half year of the contract is
covered,

1.1. PURPOSE OF THE PROJECT

The general objectives of our study are to evaluate and to advance the
state of the art in fault-tolerant computing systems. The scope of the

study includes theoretical as well as practical considerations., The major
task areas are

(1) to survey and evaluste existing systems (and system concepts)
and relevant existing theory;

(2) to define and evaluate new directions for the development of
computing systems with high availability and extensive
fault-tolerance capability, with low cost.



We are seeking guidelines for the design and development of highly
economical systems with long life, near-perfect fault tolerance and
extremely high availability, Understanding of the tradeoffs among these
goals is also being sought,

1.2, PROGRESS TO DATE

The study has progressed on many fronts. The following efforts are
considered in some detail in Sections 3.1 to 3.11, respectively,

(1) Survey of systems and system designs for fault tolerance
(2) Bibliography of relevant literature

(3) Investigetions into the causes of failure

(4) A hierarchical framework for fault tolerance

(5) Fault-tolerant memories

(6) Fault~tolerant processing

(7) Reliability modelling

(8) Operational implications

(9) Reliability tradeoffs among time, space and complexity
(10) Other efforts

References are included to six project documents /1-6/.

1.3. CONCLUSIONS TO DATE

We feel at this point that the goal of obtaining significant fault
tolerance at costs substantially less than duplication or triplication of
hardware can be met under a wide range of operating requirements.
Particularly in large systems with somewhat flexible real-time constraints,
the cost can be gquite low.

Numerous useful techniques exist, some uf which have been carefully studied

in recent years. Variocus newer techniques which we are investigating also



seem promising, Framed-burst coding (in which bit clusters, or "frames",
are treated together -- see Section 2.5) seems particularly appropriate for
various advanced technology memory organizations. This requires only o
logarithmic increase in the size of memory for single~frame burst error
correction (and a small increase in the overall cost due to encoding and
decoding). Sparing of chips on a frame basis, or of blocks of memory, is
also highly effective, In memory-dominated systems, selective replication
of critical processing capability may be used without greatly affecting the
logarithmic cost increase. This is greatly facilitated by the hierarchical
framework mentioned in Section 2,4, which appears to be very promising in
other respects as well, Interspersed on-line diagnostics are very
important, as are reliable reconfiguration with sparing and other concepts
such as reliable (e.g., distributed) powcr supplies. In general,
distributed logic-in-memory designs also hold some promise,

No fundamental gaps in the state of the art have been uncovered that
prevent the attainment of high degrees of fault tolerance. On the other
hand, up until now fault tolerance has generally implied substantial cost.
For example, hardware cost increases by factors of two, three and four due
to fault tolerance are common. (The overall cost increases may actually be
higher, 1f the storage required for fault-tolerance software is considered
along with the increased execution time.) The relatively high cost has
been a consequence of some limitations in the art that have hindered the
attainment of economical fault tolerance. Notable among these is that it
has not been possible to avoid considerable replication of hardware. As
mentioned above, we feel that this can now be surmounted to a considerable
degree, except in systems with critical real-time requirements on uniformly
correct perfcrmance for all outputs, Nonuniformity of constraints and
requirements can be used to great advantage in system design, Another
limitation involves the ability to achieve practical systems with long
unmaintained lifetimes., This too now seems surmountable,

In addition, there are still some gaps of understanding, e.g., concerning
space-time tradeoffs, the relative efficacy of replication versus coding in
arithmetic and logical operations, etec, Furthermovc, we are keenly aware
that the problem is nct just one of good hardware design, The work of this



project is aimed at providing guidelines for the design of good economical
fault-tolerant systems, Thus although good hardware design is paramount,
our work must alsgo consider implications of the system design >
simplifying the operational and human aspects, which play a critical role
in keeping a system highly available, This includes considerations that
affect the fault tolerance and the continued avallability of the operating
8ystem, and those that lessen the critical dependence on skilled operators
and maintenance personnel,

On the basis of the work thus far, we expect significant and favorable
results over the second half year of this project. We anticipate that the
final report will include a carefully balanced integrated approach (or
family of approaches) toward achieving economical systems with high
availability and fault-tolerance, It is possible that as a result of this
Project we will recommend further work toward the detailed design and
evaluation of a specific system, This system would presumably be for a
particular class of applications, such as the network interface systems for
a multi-computer network (e.g., the ARPA network),

The implications of this research on the Department of Defense include the
following., Systems that are extensively fault tolerant can now be
implemented. Such fault tolerance can be employed to vield error-free
computation with rather long maintenance-free life, The cost of
fault-tolerance is greatest when all outputs have critical real-time
constraints, Otherwise Space~time tradeoffs permit considerable economy,
Especially for large computing systems, it is possible to achieve the goals
economically, High availability is a somewhat simpler matter, and can be

achieved with a much smaller cost increase.



2. PROBLEMS IN FAULT-TOLERANT COMPUTING

A system that is designed for fault tolerance, high reliability and/or long
1life may embody various of the following functions:

(1) Detection of errors,

(2; Prevention of error propagation,

(3) Location of faults,

(4) Replacement of faulty units,

(5) Rolling back of the system and/or the applications programs,

With static fault tolerance (e.g., fault masking), the above functions are
implemented at once, in that a coding or voting mecharism handles all five
functions (the last two trivially), With most dynamic techniques,
particularly those carrying out real-time control, the abovz functions are
performed in rapid sequential order (e.g., within 10-100 msec of the
occurrence of the fault)., In systems with less criiical real-time

requirements, there is a longer time period possible for these functions,
The five functions above are suggestive of the following problem areas.

(l) Techniques for detecting errors due to faults involve the use of
redundancy (in equipment and/or in time) to check the validity of a unit,
Coding techniq'.es efficiently handle the situation for memory and si.ple
arithmetic uvaits, A problem exists with regard to arbitarary contrcl
logic, for which duplication has been the primary wvehicle for
fault-detection., We have been investigating three possibilities with
respect to control logic, The first approach involves realizing most of
the control portion of the processor as a memory function, In essei.ce this
involves a hierarchy of microprogramming techniques wherein the lowest
levels embody the highest spaed. Memory coding techniques are used for
error detection, except for the residual arbitrary logic which is handled
by duplication. The second approach also relies upon microprogramming, but
here a combination of equipment and time redundancy is utilized to check a
computation., With each microprogram is associated a checking microprogram
that is executed following the main microprogram, A third approach relies



upon data-dependent error detection, That is, we are looking at coding
techniques for logic such that if a failure occurs it is detected with some
probability p, dependent on the inputs, Thus 1if h is close to 1 on the
average and if the failure is permanent, that failure will eventually be
detected, We have also been investigating problems on the use of feedback
in detection,

(2) The prevention of error propagation takes severul forms. One involves
the use of replication and voting, another the use of error-correcting -
coding, Another approach is to resort to delay, by refusing to give any

output at all until a guaranteed correct output can be obtained.

(3) The location of a failure requires that some form of diagnostic

procedure be carried ou: subsequent to the failure detection, With regard
to memory failures we have been looking at frame-error-locating and
correcting codes and at more conventional diagnostic procedures.

Similarly we have briefly investigated byte-locating arithmetic codes.

(4) In approaching the problem of faulty unit replacement, the first step
is to identify a suitable partitioning of the sveiem, The partitioning can
be accomplished at the level of an entire processor (albeit a small one),
or at the level of memory blocks, or of frames within a word, For this
case the replacement is quite easy, requiring onl)y a modification in the
address., However, reliable switching is very important. For the computer
utility application, a large processor may be too expensive to represent a
viable discardable unit, so that a greater number of smaller processors may
be desirable,

(5) With regard to real-time systems, most proposed fault-tolerant systems
incorporate single-instruction rollback, General-purpose utilities usually
let the user worry about his own rollback, For real-time applications,
automatic program restart and system restart are essential, Fortunately,
the nature of the environment usually permits them to be implemented
easily, ror the utility environment it also seems that user-invisible
tollback can be effectively achieved. For example, a compiler might select

rollback points where the pertinent status information can be automatically



checkpointed. However, there is a severe problem in recovering from wmajor
catastrophes such as pover failures and certain critical hardware
malfunctions., System rollback is clearly mose difficult in an unknown
enviroament.

(6) Analysis of system design is another important probiem area.
Evaluation, e.g., via design verification, modelling, simulation, is
particularly important in terms of reliability, fault tolerance and
availability.

(7) The development of systems with critical constraints can be difficult,
There is a need for structured system design to facilitate the development
process., The hierarchical framework of Section 3.4 aids greatly in this

respect.

3. SUMMARY OF PROGRESS

The following paragraphs describe progress on specific work being conducted
under this project. Essentially all tasks are directly related to the goal
of obtaining as much fault tolerance as possible for as little cost as

possible, commensurate with the nature of the system requirements.

3.1, SURVEY OF SYSTEMS AND SYSTEM DESIGNS FOR FAULT TOLERANCE

A census has been made of fault~tolerant systems and system designs. A
first version is given here as Appendix I, and includes a very superficial
summary of each system, To be able to represent systems in a mors-or-less
canonical way, we have designed a questionnaire (included in Appendix II),
which we have sent to architects of most of these systems. The replies
received thus far are given in Appendix II, Most of them contain
significant detail, and permit ready comparison of the various goals,
motivations, principles, techniques and achievements., The design of the

questionnaire itself has exposed many dimensions of meaningful comparison



among systems and reflects many different design approaches based on widely
varying goals and constraints. (An earlier version of the survey was
distributed at the Second International Symposium on Fault-Tolerant
Computing, held in Boston, June 19-21, 1972, It formed the basis for a
wéll-received panel discussion entitled "Approaches to the Architecture of
Fault-Tolerant Computing", chaired by Jack Goldberg and including John
Wensley as a panelist,)

In order to classify the numerous fault-tolerance architectureé, ve have
selected three categories of systems, corresponding to three roughly
disjoint applications areas:

(1) General-purpose computing utilities,
(2) Ground-based speclal-purpose systems

(3) Aerospace systems

The processor power and total system cost are more or less decreasing from
(1) to (3), as is the size of memory required, The degree of preplanning
possible for the computations generally increases in this order. The
reliability and availability requirements usually increase in criticality
from (1) to (3). (RELIABILITY is the probability that the sys:tem will
perform satisfactorily for at least a given period of time when used under
stated conditions, AVAILABILITY is the probability that the system is
operating satisfactorily at any point in time when used under stated
conditions, where the total time considered includes operating time, active
repair time, administrative time, and logistic time.,,RELIABILITY
ENGINEERING, ed., W. H. von Alven, Prentice Hall, 1964, pp 14-15,)

Nust of the pricr research efforts have been devoted to category (3)., We
feel that the problems in this category are basically solved, Replication,
multiprocessing, coding, and sparing are commonly found techniques, While
the relative cost of fault-tolerance is high in many of these systems, this
is not always necesszry, We feel that many of these systems may be

over-engineered,

The situation is less well developed for the other two categories, which
still seem relatively primitive (cf, the Census of Appendix 1),

8



Intuitively, the relative cott of fault tolerance could be substantially

less than in category (3), because of the looser constraints, and because
of the possibilities of advantageously using averaging effects in bigger

systems, This report tends to justify this statement.

3.2, BIBLIOGRAPHY OF RELEVANT LITERATURE

In March 1968 R, A, Short published a rather comprehensive bibliography /7/
(containing 347 references) which resulted from an SRI study for NASA., He
is now helping us augment that bibliography with about 500 additional
references, A system of descriptors and cross-indices 1s expected to be
used which will greatly enhance the usefulness of the bibliography,
References to systems mentioned in this report are found in Appendices I
and II,

3.3. INVESTIGATIONS INTO THE CAUSES OF FAILURES

Early investigations have led to various (sometimes obvious) conclusions

regarding the significant sources of system failures,

s

* Maynetic core memories operated with low access times (one microseconc or
less) are major sources of system failures, Primary memory
still dominates most systems (especially large ones) with respect to cost,

size, and sonrces of unreliability,

* Peripherals are still a problem, although good system design should be
able to prevent peripheral failures from "crashing' the system, (Several
well-known systems are quite sensitive in this area, due to poor system
design. For example, a system should be able to survive errors in reading

most files, a capability which is facilitated by hierarchical design.)

* In several technologies transient or intermittent faults are more

significant (and more common) than permanent faults (e.g., "stuck-at"),



although the latter are more commonly considered in the literature, These
arise in many ways, e.g., timing errors, data-dependent faults, and
marginal design. Correlated faults are also problematic in practice, both
operationally and in terms of analysis, For example in an LSI
implementation, a single chip failure may result in multiple chip-output
errors., Physical couplings are still a major scurce of difficulty, both

in bonding and in pin connections.

* Problems in operations and in the inner-coré of the operating system are
a major source of trouble in large computer utilities. Even 1f the
hardware were faultless, there are still enormous problems in keeping such
a system cperational with high availability. These problems are
distributed among weak or inadequate software designs and questionable
operating practices, as well as an occasional hardware design error. Two
notable recent cases involve a ten-hour outage of an ESS No. 1 installation
and a 29-minute outage of the NY Stock Exchange MDS-1, Both systems are
designed for fault tolerance and high availability, but both experienced
major outages attributable to human frailty (maintainers and system
programmers, respectively) that aggravated troubles due to hardware

difficulties. (Good system design can help circumvent these problems,)

3.4, A HIERARCHICAL FRAMEWORK FOR FAULT TOLERANCE )

Peter Neumann has formulated a hierarchical framework for fault-tolerant
computing systems, relevant to both hardware and software, It is described
in a paper to be presented at COMPCON 72 in September /2/, included here as
Appendix III, This framework facilitates the dynamic alteration of
fault-tolerance techniques, as best suited to the current computing needs.
This holds great promise for the attainment of economical fault tolerance,
especially 1if real-time'constraints are not uniformly critical. It is
immediately applicable to large computing systems, and is useful to small
systems as well, The hierarchical framework greatly facilitates the
control over the exchange of redundant equipment for occasional slight
increases in time, as well as enhancing the development and opernation of

the system,

10



3.5, FAULT-TOLERANT MEMORIES

Several investigations are under way involving fault tolerance in memories.
Memory organizations suitable for advanced technologies are being
investigated, Multiple-bit-per-chip (''frame-per-chip') organizations seem
very powerful, and make framed-burst coding (also called phased-burst
coding) highly advantageous. Peter Neumann has examined such an
organization, and shown that such coding can be highly effective and
economlcal /3/. Karl Levitt has incorporated these ccncepts into the BUCS
(Bus Checker System) design /8/, which appears to offer good reliability at
low cost. Although designed to take advantage of an aircraft environment,
its balance of design seems to have significant implications for our goals.
[Such coding techniques are also found in MDC (see Appendix I and II).]
John Wensley has been examining the problem of reliably reconfiguring at
the chip level in a large memory requiring many chips (somewhat akin to the
problem of making page relocation mechanisms reliable). One rather
promising solution involves distributed control, Also applicable is some
earlier work in our Computer Science Group /9/ on reliable switching,
useful for example in the switching of spare frames., In a related effort,
Jack Goldberg has been studying distributed processor designs for fault

tolerance /4/.

3,6. FAULT-TOLERANT PROCESSING

We have been investigating fault tolerance for logic operations and for
arithmetic operations., In systems which are memory dominated, replication
of processing units may be reasonably economical, In other situations
coding may be desirable. Peter Neumann has shown /5/ that single faults
can be detected in logic operations by performing all arithmetic logic
operations in an arithmetic unit of suitable design, without additional
(redundant) circuitry. Monteiro and Rao /10/ have recently investigated
arithmetic-logic units with greater fault coverage.

11



3.7. RELIABILITY MODELLING

John Wensley has been investigating existing work on reliability modelling
and its relevance to fault-tolerant computer design., Reliability modelling
for fault-tolerant computing has been the subiect of several studies
/11=15/, Models have been proposed and analysed, but in general they do
not answer certain important questions that arise in consideration of many

fault-tolerant computers. We note some of these deficiencies here,

Existing models are more concerned with "survivability" than with
reliability. In general the assumption 1s made that when a fault occurs it
totally disables the unit in which it occurs, and that that unit must then
be removed from future computational significance (possibly being replaced
by a spare), or its significance removed by such techniques as voting in a
TR system. This does not allow accurate modelling of transient faults, in
which 2 unit msy survive, but some data may have been corrupted. In
add.cion such models do not handle repetitive transients (intermittents)
and the loss of effective computer power due to the CPU activity involved

in error detection, correction, masking, etc.

A further deficiency of such models is the common assumption that any
correction of a fault (by sparing, reconfiguration, macking, etc.,) can be
modelled by a sinéle parameter, represeﬂting the probability of coé;ect '
recovery from a fault, This does not allow the modeller to distinguish for
example between faults that can be removed by voting and those whose

erroneous effects cannot be so removed (e.g., a mistyped line).

The last deficiency to be noted is that the models do not take into account
the fact that faults have different effects depending on the state of tle
system at the time of the fault, In some computer systems a dynamic
trade-off 1s possible between reliability and computing power (eg3. SIFT,
ARMMS). Faults that occur in the high reliability mode are less serious
than those that occur in the high computing~power mode,

The existing models have further drawbacks., However the above discussion

clearly shows a need for research aimed at developing modelling techniques

12



that can handle some of the specialized problems arising in the analysis of

fault-tolerant computers.

The consequence of the above is that the reliabilty estimates may be very
pessimistic, which could result in very costly over-enginzered designs., It
is clear that improved methods of assesiing reliability are required.

3.8, OPERATIONAL IMPLICATIONS

Various implications of system design on system reliability have bheen
considered, in response both to problems arising in existing systems and to
problems introduced by newer designs, As an example, John Wensley has
examined the existing time-shared computer systems at SR1, (both

TENEX systems), to ascertain the possibilty of utilizing an automatic
checkpoint scheme is such environments. A rconceptually simple scheme
consists of simultaneously recording on magnetic tepe all data that is
normally placed on drums or disks, The saving of such data would provide a
continuous history of the state of the users files so that unavallability
of user files due the loss of a disk or drum could be circumvented.

Initial studies show thac a magnetic tape system of quite modest
performance could handle the total data currently written onto drums and
disks. (In one test the average over 3 1/2 hours was a bandwidth of 15
Kch/sec, which 1s well within the state of the art of magnetic tape
systems, With an assumption of 50 per cent efficiency of tape utilization,
a single 2400 ft, tape could store the total traffic of 24 minutes of
computer activity,) Here good design in input-output hardware can be of
great help, permitting simultaneous writes.

In another direction, Multics incremental backup experience shows half-hour
delayed backup is very helpful to users in the event of system crash,
However, recovery after damage to certain system files may be a very
lengthy procedure. Combatting this problem requires very careful system
design in a distributed system such &s Multics. Another problem in Multics
is introduced by operator errors in performing manual reconfiguration,
Significant care in hardware design can aid considerably in such problems.

13



3.9. RELIABILITY TRADEOFFS AMONG TIME, SPACE, AND COMPLEXITY

David Huffman has been investigating the implication of information
feedback on reliability and fault telerance. Coding theory shows that
knowledge of the outputs of a communication Process can greatly improve the
efficiency of reliable communication, Similar results are being sought for
reliable computation. A fairly realistic model is being developed, so that
the results may have some practical significance.

A related area of investigation involves the effects of time-space
tradeoffs on reliability, Slight relaxation of critical real-time
constraints seems to have potential for dramatically reducing the cost of
hardware required for fault tolerance. We are beginning to understand this
problem better, (It clearly has a bearing on 2.4,) Liason with Anatol
Holt is anticipated to see if his formalisms can be of help,

Also reiated is our desire to obtain some results on complexity-reliability
tradeoffs, The results of Cowan and Winograd and of Elias are based on
some highly unrealistic assumptions. We have some hopes of obtaining
meaningful results with mere realistic assumptions,

3.10, OTHER EFFORTS

We are also devoting some effort to other problems, Ope is the massive-
transieat recovery.problem, in which a highly correlated faylt source
(e.g., a power surge) has left all units of the 8ystem suspect (see the end
of Appendix III), Another problem 1g the "unflexed unit" Problem, 1i,e,, of

how to diagnose normally unused but critical portiong of the system

(hardware and/ur software), as for example the disaster recovery process

itself., The general role of diagnosis 1g also being considered. Bernard
Elspa: /6/ has examined an extension of the model for self-diagnosis of

Preparata, Metze and Chien., Thig extension holds some promise for useful
results,

14



4, REFERENCES

4.1. PROJECT DOCUMENTS

1, J. Goldberg, P, G, Neumann and J. H, Wensley, Survey of fault-tolerant
computing systems (Version 2), August 8, 1972, This survey contains our
questionnaire, 12 system representations, and many relevant references

beyond those given here. Reproduced here as Appendix 1I.

2, P, G. Neumann, A hierarchical framework for fault-tolerant computing
systems, to be presented, IEEE Computer Snciety Conference, San Francisco,
Ca., Sept. 12-14, 1972, (Preliminary work on this paper received some
support from NASA-Langley Research Center under Contract NAS-1-10920, prior
to the start of the ARPA contract.) Reproduced here as Appendix III.

3. P. G, Neumann, Framed burst correction, Project memorandum, May 4, 1972,

4, J. Goldberg, Distributed computing for reliability, Project memorandum,
Feb. 3, 1972,

5. P. G. Neumann, A note on reliable arithmetically derived logic

operations, Project memorandum, July 3, 1972,

6. B. Elspns, An analysis and generalization of the connection assignment

model for fault-diagnosable systems, Project memorandum, March 22, 1972,

15



4,2, OTHER REFERENCES (See also Appendices for further references)

7. R, A, Short, The attainment of reliable digital systems through the use

of redundancy -~ a survey, Computer Group News, pPp. 2-17, March 1968,

8, J. H. Wensley, K. N, Levitt, M, W, Green, P, G. Neumann, J. Goldberg,
Fault Tolerant Archtectures for an Airborne Digital Computer, Stanford
Research Institute, Report of Task I, Contract NAS1-10920, 24 July 1972
(Final Report ~- draft version),

9. K. N, Levitt, M, W, Green and Jack Goldberg, A study of the data
commutation problems in a self-repairable multiprocessor, SJCC 1968, pp.
515=527,

10, P, Monteiro and T. R, N, Rao, A residue checker for arithmetic and
logical operations, Digest of the 1972 International Symposium on
Fault-Tolerant Computing, IEEE Computer Society, June 19-21, 1972,

11, W. G, Bouricius, et al., Reliability modelling for fault-tolerant
computers, IEEE Trans, Comp., vol C-20, pp 1306~1311, Nov, 1971,

12, F. P, Mathur, Reliabilty analysis and archicecture of a hybrid

redundant digital system: generalized triple modylar redundancy with self
L4

repair, AFIPS Conf, Proc,, SJcCc, vol 36, May 5-7, 1970

13, F. P, Mathur, Reliabilty modelling and architecture of ultra-reliable
fault tolerant computers', PhD thesis, UCLA, Computer Sciences Dept., June
1971,

14, F, P. Mathur, On reliability modelling and analysis of ultra-reliable
fault~tolerant digital systems, 'EEE Trans. Comp. vol Cc-20, pp 1376~1381,
Nov, 1971,

15, J. Kruus, Upper bound for the mean life of self-repairing systems,
Coord. Sci. Lab., Univ, I1linois, Urbana, Rep, R-172, July 1963,

16



APPENDIX T
CENSUS OF FAULT-TOLERANT COMPUTING SYSTEMS
(SRI, first version, August, 1972)

Following is a list of systems and system Jesigns providing significant
fault-tolerance and/or availability. Those systems incicated by "($)" are
considered in greater detail in our Survey of Fault Tolerant Computing
Systems (see Appendix I1), where references are included. Several systems
are described in what is referred to here as the "Intermetrics Report" (J.
S. Miller, D, J, Lickly, A. L. Kosmala and J. A, Saponaro, Multiprocessor
Computer Study, Final Report, Contra~t NAS 9-9763, Intermetrics, Inc.,
Cambridge, Mass, March, 1970). Other systems are given terse references
here, where available, Abbreviations: P = Processor, M = Memory, SEC =
single error correction, (D)ED = (double) error detection,

A. GENERAL-PURPOSE COMPUTING UTILITIFS, generally good availability, human
users, modest reliability, maintenance permitted

1. Multics, MIT and Honeywell, Cambridge, Mass (F. J. Corbato); ARPA-
funded development, See E. I. Organick, A Guide to Multics, MIT Press,

* General-purpose computing utiliey (time-sharing, batch), with high
availebility and very high file integrity. Four systems currently
operating,

* 2 P (GE~-Honeywell 645s), multiprocessed, manual on-line reconfiguration
of Ps and Ms, extensive fault isolation via the ring mechanism for
protection and via file systew access control, half-hour lag incremental
file backup, variable~depth system rollback, redundancy in the file
directory structure. (Single ED, minimal error checking in most systems,
not mentioned below,)

2($). PRIME (nee MCS), University of California at Berkeley (H. Baskin)g
ARPA

* Reliable, secure, modest computer utility, high availability, 1In
development.

* 5 P (design practical for 3 P to 8 P), with highly restricted possible
connectivity of M and disk, strict isolation with no memory sharing or
multiprogramming, "spontaneous" reconfiguration via a reliable
self-checking switch, About 10% overhead for fault-tolerance.

3. Carnegie-Mellon University; NSF,

* Research system development with applications to ARPA speech
understanding project; in design

* 16 P x 16 M (PDP 11s), with reliable crosspoint switch

4, University of Newcastle-on-Tyne, England; Scientific Research Council,
* General computing; in design
* PDP 1ls

17



5. Various commercial time sharing services gain availability (but not
necessarily reliability) by having cross-switchable Ps, Ms and secondary
memory,

B. GROUND=BASED SPECIAL PURPOSE SYSTEMS, controlling the environment (or
controlled by it), generally higher reliability and availability, often

tighter real-time constraints than in A above, human maintenance usually
possible.

6($). ESS (Electronic Switching Systems), Bell Labs, Naperville, Illinos.

* Telephone switching system; long=-term continuous availability, with
occasional errors tolerable to customers (7). Over 200 Number 1 ESS in
operation, many more Number 2 ESS, TSPS,

* 2 P (1 functional, 1 standby checking and diagnosis), automatic
reconfiguration, Separate nonalterable program store with SEC., 50% of all
programs are diagnostics. Millions of hours of experience have aided in
improving hardware and software reliability, People problems still very
difficult (operations, maintenance).

7. FAA (Federal Aviation Admin,), IBM, See IBM Sys Joy vol 6, no 2, 1967,
* Adlr traffic control, lonp=-term continuous availability, Untolerated
nontraneient errors can be disastrous, 20 systems at ATC centers covering
the continental United States.

* Up to 4 P (IBM 9020), up to 12 M, Program-controlled error analysis and
reconfipuration, gracefully deconfigurable, 5-second battery backup power
supply. Relies heavily on good and highly-available field engineers.

8. MDS=2 (Market Data System), New York Stock Zxchange

* Stock trading ticker control. Near-continuous availability, no
transaction losses permitted. Operational August 1972, Precursor MDS-1
operational for 7 years.

* 3 P (360/50), 2 multiprocessing with shared M & LCS (but 1 P basically
monitoring), 3rd P normally spare-(while running background jobs),
extensive program checking,

9($). COMEX, Pacific Coast Stock Exchange

* Stock trading control; near-continuous availability, no transaction
losses permitted, small real-time lag permitted. Operational since 1969;

* 2 complete systems (each has 360/50 plus 2 PDP 8s), one in San Francisco,
one in Los Angeles, capable of running separately or cross-switched
(interconfipurable). '

10, NASDAQ, National Associaticy of Securites Dealers Automated (Quotations
See Datamation, March 1972, pp. 42-45,

* On-line interactive system to fazilitate trading of OTC securities; high
availability; operational since end of 1971,

* 2 P (1108s), multiprocessing under EXEC 8, capable of running simplex.
Dual records in file structure, autematic recovery techniques,

18



11. cLC, Bell Labs, Whippany NJ; ABMDA (Safeguard)

* Safeguard missile defense; continuous availability when (and 1if)
required, 1In development since mid-60s,

* Up to 10 P, multiprocessed with on-line sparing, separate program memory
not processor-writeable; progra. retry; ED via four-bit checking on 64-bit
words,

12, MULTIPAC, General Telephone and Electronics, Waltham, Mass; NASA-Ames.
See IEEE Trans, Aerospace and Electronic Sys., Sept. 1971. pp. 974-981,

* Data handling for deep space nrobes. Avallability not critical, Design
only,

*Up to 5P, 15M (4 K each), gracefully degradable to 1 P, 1 M, Manual
reconfiguration of software and hardware via ground-based diagnosis,
reprogramming , reassembly and transmittal of a new system back into space,
Ability to fix live bugs (hard and soft) thus also exists,

13, Standard Telecommunications Lab, Harlow, England. See Electrical
Review, 6 Feb 1:70, rp. 1-3,

* Real-time control

* 1 P, SEC/DED in M, in transfers, and in I-0; duplication of punch/reader
and of M access switches; triplication of control and of function unit,
52X of hardware due to fault tolerance

14, Foxboro 88, Foxboro Corp. Process control using 2 P (PDP 8s)

C. AERO-SPACE SYSTEMS, usually with ultra-high reliability and availabilicy
requirements, usually critical real-time contraints, human maintenance
usually not possible. At least the first four efforts have resulted in
installed or prototype systems., The remaining efforts represent mostly
desipns in various stages of completion,

[

15, SIRU (Strapped-down intertial reference unit), MIT Draper Lab (A, L.
Hopkins, Jr,). See Intermetrics Report (reference above),

* Apollo guidance. Used in Apollo program,

* 2 P (1l as standby), M duplicated.

16 ($) . JPL-STAR, JPL, Pasadena Cal (A, Avizienis); NASA

* Unmanned outer-space travel computer, long-1ife availebility without
maintensnce, Prototype in operation since 1969,

* 1 P (uniprocessing), heavy use of coding (residue checking for SED in
memory and arithmetic, ED in op codes), duplicated logic operations,
triplicated monitoring and control (TARP = test and repair processor),
sparing by power switching, User-provided rollback points. 602 of
hardware due to fault tolerance

19



17($). ACGN, CERBERUS, etc,, MIT Draper Lab, Cambridge, Mass '(A,L, Hopkins,
Jr.); NASA/MSC,

* Apollo manned Space on-board control, very high reliability during the
mission without maintenance, Prototype exists,

* At least 1 processing unit (up to 6), multiprocessing among processing
units, replication within each processing unit and within memories (without
coding), Two concepts:

(a) duplexed Processing units, triplexed scratchpad memories, triplexed
memories and buses, with spares;

(b) triplexed processing-scratchpad units,

About 80% redundant

18($). MECRA, Electronique Marcel Dassault, St, Cloud, France; DRME

* General-purpose design for speclal-purpose applications, including
aerospace, Prototype now working,

* Duplex arithmetic, Hammiag code (7,4) as DED on coded decimal
representations (with six unused combinations), sparing, microprogrammable
reconfiguration. About 66% redundant

19($). MDC (Modular digital computer), IBM Yorktown Hts, NY,;
NASA-Huntsville,

* Modular system, wide range of high-reliability applications; desigzn only
*mP, multiprocessing and replication as well, FO-FO-FS (fail-operational
on first and second faults, fail-safe on the third) in 4 P fault-tolerant
Mode, detection mode also possible, Microdiagnostics, b-adjacent multiple
2rrors handled in M, extensive self-checking,

20($). MSC (Modujar spsiecraft computer), Ultrasystems (Newport Beach Ca)
and Raytheon (Waltham )3 SAMSO/SYT (Los Angeles Ca)

* Reconfigursble gueid  ce and control, space shuttle use; long-11ife
reliabiliry,

* The Raythenn entry in this effort has 1 P, identical subP and subM :
reliably switchable with sparing, SEC in M plus 3 spare bits reliably
switchable wia "rippler", burst-error detection in mass M, triplicated
control, duplicated configuration control,

* The Ultrasystems entry 1s similar to the JPL STAR,

21($). SIFT, Software implemented fault tolerance, SRI (John Wensley);
NASA-Langley

* Airborne control (commercial aviation); availability of correct results
during flight; some tasks more critical than others, permitting slight
degradation of less critical tasks,

* Multiprocessing with variable softwave replication, dependent on
application program (software reconfigurable), Fault tolerance via
software techniques avoids need for special hardware, permits use of
existing designs, Connectivity 1g restricted: P ecan modify only its own M,
can read all Ms, Preventing faylt Propagation, Executive uses the Same
fault-tolerance Procedures as the application programs, About 752
redundant

20



22($). ARMMS, Hughes, Fullerton CA (W. L. Martin); NASA-Marshall (MSFC)
* Spaceborne control; long-life reliability

* n P, dynamically reconfigurable, e,g., as independent-process
multiprocessing or as replication with sparing.  20%-807 redundant
(variable)

23($) . Intermetrics multiprocessor, Cambridge Mass (J, S. Miller),
outgrowth of EXAM; NASA-ERC (Houston)

* Manned orbiting space station

*m P (1 to 8, nominally 3), each ? duplicated, coding in M (ED), buffered
instruction retry, save within interrupted instruction,

24($). Autonetics (N, Am, Rockwell, Anaheim, L. J. Koczela); NASA-MSC

* Space shuttle; long-life reliability

* 4-level redundancy, FO-FO-FS (cf, MDC) requires 807 redundancy, less for
lower fault tolerance,

25. BUCS (bus checker system), SRL (Karl Levitt), NASA-Langley.

See SRI Final Report, NAS1-10920, 1972 (Reference 8 of this Report).

* Aircraft control, as in SIFT

* 5-10 (local) P & M units, each duplicated internally, frame coding in
central M, bus checker coordinates restart mechanism, periodic diagnoses of
M and of unflexed processor functions. About 337 redundan-y,

26, TOPS, JPL (Gilley). See IEEE Trans. Astr-Aero, Sept., 1970,
* Thermo-electric outerplanet space travel
* Related to JPL-STAR,

27, MFC, Hamilton-Standard; NASA-ERC, See Intermetrics Report,
* Modular flight computer
* 3P, 3M, cross-configurable, TMR or 3 P multiprocessor

28, ALPHA, CDC, See Intermetrics Report,

29, AADC, Honeywell; NASA, AADC Naval Air Systems Command. See
Intermetrics Report,

30. IRAD, Litton., See Intermetrics Report,

31. SDC-Burroughs; USAF-Wright-Patterson, Multiprocessor

32, S-3, Univac

33, COSMOS, RCA (cf. SUMC)



APPENDIX II
SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS (revised Aug 1972)

Jack Goldberg, Peter G, Neumann and John H. Wens ley
Computer Science Group, SRI, Menlo Park, CA, 94025

This appendix presents replies to a questionaire sent to architects of
various fault-tolerant computing systems, It is hoped that the questionaire
will itself be useful as a descriptive form and that the replies will aid
in understanding and comparing the systems included here, To this end tle
questionaire has been designed to permit a concise description of each
system, its goals, its motivations, its principles, its structure, its
techniques, and its achievements to date.

The first issue of this document was distributed informally to conference
participants at the Second Symposium on Fault Tolerant Cowputing, Boston,
June 19-21, 1972, It was intended to support the panel discussion
"Approaches to the Architecture of Fault-Tolerant Computing", chaired by
Jack Goldberg, The replies given here are included essentially in their
entirety., Significant efforts not represented here include several
existing systems (such as IBM's FAA system, Bell Lab's CLC and various
query systems) as well as numerous design and development efforts (e.g.
government systems, and systems under development at Carnegie-Mellon
University and the University of Newcastle-on-Tyne).

The contents of this appendix are as follows,
Questionnaire page 23

Replies of the panelists:

A. Avizienis, JPL and UCLA 24=25
W. C. Carter, IBM 26-27
A. L. Hopkins, Jr., MIT Draper Lab 28-29
W. L. Martin, Hughes Aircraft 30-31
J. H. Wensley, SRI 32-33
Other replies:
B. R, Borgerson, U. C, Berkeley 34-36
J. L. Delamare, EMD, France 36-37
L, J. Koczela, North-American Rockwell 38
Jo. S, Miller, Intermetrics 39
D, C, Wallace (SRI) for PCSE 40-41
W. Ulrich, Bell Labs, Naperville, Illinois 42
Capt. L. A, Fry, SAMSO, Los Angeles, Ca 42

The preparation of this document and the questiotiaire was supported by the
Defense Advanced Research Projects Agency of the Department of Defense, and
was monitored by ONR under Contract Number N00014-72-C-0254, The views are
clearly those of the named contributors and do not necessarily represent
any official policies of ARPA or the U. S, Government.

22



SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS-=QUESTIONNAIRE
Jeck Goldbarg and Peter ¢. Neumann, SRI, Menlo Park CA

1. IDENTIFTCATION of the oystem

1.1. NAME: What 1s the relevant name of the systam (and/or
projact)?

1.2, RESPONSIBILITY: What ie the responsible organizstion?
1.3. SUPPORT: What ara the sources of support?

1.4, PARTICIPANTS: Who (and whst organizetions, if
ralevant) are ths principsl participante?

1,5, START: What was the date of conception?

1.6, COMPLETION: What was, or is expected to be, the
completion date? (Spacify prototype scceptance date, or
design completion dete if design omly,)

1.7, BIBLIOGRAPHY: What srs the most televant references?

2, MOTIVATION for tha system

2,1, PURPOSE: What is the main purpose of the system
(e.g., panaral-purpose computing, real-time air-trnffic
control, store~and-forwsrd)?

2,2, PHYSICAL ENVIRONMENT: Where does ths system operste
(a.g., growmd-baead, airborns, epaceborne)?

2,3, COMPUTING ENVIRONMENT: How d~es the eystem relate
computitionally to ite environment (e.g., locally,
remotely, via a network, interactively, via peripharsls,
with human usars)?

2.4, COMPUTING OBJECTIVES: \hat are the specific computing
cbjectives, ragarding capability, capacity, performance
(throughput or raaponse), configuration scaleebility,
maximm raal-time delsys, ete. (as velevant)?

2,5, RELIABILITY OBJECTIVES: What are tha specific system
reliability objectives, with respact to desired
availability during what pariod, minimum time to system
failure, maximm permitted durstion of outage, etc,?

2,6, DYNAMIC VARIABILITY: How may thesa objectivas vary
during oparation? (E.g., how may performance degrade?
May performance be explicitly exchanged for increassd
reliability?)

2,7, PENALTIES: Whst are tha penalties srising from
frelty operation? (Possible axampias includa loss of
lifs, dadly decreased performanes, the nscseeity of manual
intervention, loss of revenue, etec.)

2.8, CONSTRAINTS: Whet explicit phyeical constrainta exist
(s.g., with raspsct to eize, waight, power, cost)?

2.9, TRADEOFFS: What criticel trsdeoffes ¢xist arong the
objsctives?

3. DESCRIPTION of the eystem

3.1, ARCHITECTURE

3.1.1, CONFIGURATIONS

3.1,1.1, INTERCONNECTIVITY: What is the basie configura-
tion, and what restrictions exist on interconnsctivity?
(You may choosa to include s block diagram, a PMS diagram
a 1s Bell snd Newell, or other usaful rspresentstion.)

3.1.1,2, RANGE: Whet is the ranga over which config-
urations sra sensible (minimum to maximum), €,g., hov many
procassors, hov many memory modules (of whst siza and word
length, and vith whet rastrictions 1f any), ete.?

3.1.1,3, CAPABILITY: Whet is the effactive cosputiug power
of tha smallest sansible configuration in 3,1.1.2? Please
compare it roughly with a well-knesm eystem (e.p., 360740,
65, 195), and cite a bsll-park figurs for the number of
additions par second. Copability required for fault-
tolarance should not be included.

3.1,2. EXECUTIVE and orersting system

3.1,2,1, MODES cf oparation: How doas the syetem operate?
(E.g.y1is each procaseor multiprogrammsble? Is indapendent-~
process multiprocassing poseible? Is cooparative-process
multiprogrammed multiprocassing possibla?)

3.1,2,2, SOFIWARF organization: What {e the structure of
the eystem software? FHow is it distributad with Treapact
to tha hardiara?

3.2, FAULT TOLIRANCE
3.,2.1, FAULTS TOLERATED: Whst faults sra tolaratad by tha
system, with what resulting effacts on system behavior?

3.2.2, FAULTS NOT TOLERATED: What fsults cannot be
toleratad by tha system, and what are tha corresponding
sffacte? identify the weskest links.

NOTE: Fsults may bs charecterized in many weys, including
type (a.g., faulty herdvers st vsrious lavels such as s
chip, wodule, bus, power supply, arithmetic wnit,
proceseor, memory; fauity software such as in the
axacutive, in s compiler, or in an applications program;
faulty usage and bsd inputs), nature (e.g., timing
consideratione, old sge, various physical phanomens),
durstion and frsquency (a.g., one-shot, racurrent,
pernanent), scops (e.g., isolstad fsults, corralsted or
independent multiple feults, with varying degrees of
propagation), effect (random, predictable), etc,

3.2,3, TECHNIQUES: What basic techniques are employed to
provida fault-tolerant capability, and when, where, and
how sre they ussd? Include hsrdwsre and aoftware
techniques,

NOTE: Applicable techniques include (possibly in
combination) raplicetion (e.g., tripla-modulsr redundancy
at verious levels, rsdundant computations using
independeat slgorithms), coding (4e8., error-detacting or
-correcting codes on a bus, in memory, in arithmetic),
repetition and rollback, re:onfiguration (dncluding
removal without replacemans; and replscement with epares),
disgnosties (e.g., stand-slone, on-lina, intaractive;
preventive, emergency; resote, local), protection (of
procseses, deta, programs, etc.), and outeide i{nterventioen
(hunan or otherwise), ' Thess techniques may ba used
statically (e.g., alwsys insoked) or dynmically (a.g.,
configured as needed); at virious module levele in
hardvare and software, ‘n combinetion with certain evente
and with certsin other techniques.

3.3, NOVELTY: Whet sre tha most urusual deeign featurss of
thie syetem?

3.4, INFLUENCES: What other afforts (syetens, resesrch)
have had sn influencs on your system design?

3.5, HARD-CORE: If there is a concapt of "“hard-core” in
your system, whst is its eignificanca? (Plaase dafina
your concept,)

4, JUSTIFICATION for the aystam

4,1, RELIABILITY EVALUATION: How $a reiiability estimated
and/or demonstreted (0.8., via axslysis, eimulation,
otimulation of fsults, theoreticsl srguments)?

4.2, COMPLETENESS OF EVALUATION: How complete is your
design evslustion?

4,3. OVERHFAD: What percentsge(s) of total system
rasources do you attribute to tha achievament of
fault-tolerance? (Consider cost, logic, execution time,
memory, etc., as spplicable.)

4.4, APPLICABILITY: What 1s the potantisl rangs of epplic-
ability beyond that statsd in sections 2.1 - 2.4 above?

4.5, EXTENDABILITY: In what vays could the system design
be edvantageously extended, with what increase in cost,
and to what effect?

4,6, CRITICALITIES: How critically do the design choices
natch the deeign goele? (E.g., could slight changes in
goals result in greet ssvinge in design, implementstion,
and/or opersrion? Ia sultiprogramming or multiproceseing
criticsl? Is the choice of herdwsre critical?)

447, IMPLICATIONS: Whst specisl requirements (if sny) does
the basic deeign impose (e.g., on tha herdware designere,
on the software developers, on users and mainteiners)?

5. CONCLUSIONS
S.1. STATUS: Whst is the current status of the system?

5.2. EXPERIENCT: What conclusions can you reach hsved on
your uxparienca with the system to dete (e,8., 1n deeign,
izplementstion and operstion)?

5.2, FUTURE: Whet 1e plenned for future development or use
of the system?

5.4, ADVANCES: Whet developments (theoretical or
practicel) would be daeirable for sfgnificantly advancing
the state of ths srt in fault-tolerent computing?

6, COMMENTS (Pleass include any comments on your eystem,
on this quastiomnsire, atc. which you would 1ika to edd,
Opinieons, prsjudices and philoeophies are walcomed,



SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS

Algirdas Avizienia
UCLA Computer Science Dspt., Loe Angalas, CA and
Spececreft Computer Ssction, JPL, Pasadena, CA, June 1972

1. IDENTIFICATION
1.1 NAME: JPL-STAR (Self-Telting-And-Repeiring) Computer

1,2 RESPONS181LITY: Spacecraft Computer Section,
Astrionics IMviaion of ths Jet Propulaion Leboretory,
Pesadena, Californie,

1.3 SUPPORT: NASA - Office of Advanced Reseerch and
Technology (via JPL)

1.4 PARTICIPANTS: A, Avizienis, D, A, Rennela, J, A,
Rohr, F. P. Mathur, G, C. Gilley

1.5 START: 1961

1.6 COMPLETION: Operational - Spring 1969 (laboratory
model), modifications continue

1.7. BIBL1OGRAPHY:

*1, A, Avizisnia, et al., The STAR (Self-Testing and
Repairing) Computer: An investigstion of the theory and
practice of fault-tolerant computer design, IEEE Trans,
Computer C-20, pp. 1312-1321 (Novamber 1971).

*2, A. Avizienie, "Design of fault-tolsrant computr 's,"
FJCC, pp. 733-743, 1967.

*3, A. Avizienis, "An axperimental self-repairing
computer,” Information Processing, IFIP, Vol. 2, pp.
872-877, 1968,

*4, A, Avizienia, F. P, Mathur, D, Rennels, and J, A,
Rolir, "Automstic maintenance of aerospace computers and
spececraft information and control systems," Proc. ATAA
Aerosp. Comput, Syat, Conf., Paper 69-965, pp. 1-11,
September 8-10, 1969,

*5, A. Avizienia, "Concurrent diagnosis of erithmetic
processors,' Digeat of the lat Annual 1EEE Comput. Conf.,
pp. 34-97, 1967,

*6, A, Avizienis, "Arithmetic error codes: Coet and
effectiveneaa studies #-» anplication in digital system
design,” IEEE Trans, Comp, -20,, pp. 1322-1331,Nov 1971,

*7, F, P, Mathur end A, Avizienis, "Rsliability analysis
and architecture of s hybrid-redundant digital syatem:
Generalized triple modular redundancy with self-repeir,"
§JCC, pp. 375-383, 1970,

*8, F. P. Mathur, "On reliability modsling and enalysis of
ultrareliable fault-tolarant digital systems," 1EEE Trans,
Comp., C-20, pp. 1376-1382,

*9, G, C, Gilley, "Automatic maintenance of spacecraft
systems for long-life, deep-space missions," Ph,D,
dissertation, Dept. Comput, Sci., UCLA, September 1970,

*10, F. P. Mathur, "Rsliability estimation procedures and
CARE: The computer aided reliability estimation progrem,"
Jet Propul. Lab. Quart. Tech. Rev,, Vol 1, October 1971,

2, MOTIVA1ION
2.1 PURPOSE: Experimental laboratory GP machine; auitable
for spacecraft control

2,2 PHYSICAL ENVIRONMENT: Laboretory environment
2,3 COMPUTING ENVIRONMENT: Local I/0 facilities

2.4 COMPUTING OBJECTIVES: Capeble of automatically
maintaining an unmanned spacecreft

2.5 RELIABILITY OBJECTIVES: 100,000 hour aurvival with
0,95 reliability; tolerance of transient faults; outage
for recovery telow 50 msec,

2.6 DYNAMIC VARIABILITY: Maximum computing powar rsquired
at end of miesion

2,7 PENALT1ES: None for lab model; loss of spacecraft
for flight model

2,8 CONSTRAINTS: None for lab modal; for the flight model
tha waight cf tha subsystem wau not to excaed 40 1b, and
the power consumption was not to ba grseter than 40 W,

2.9 TRADEOFFS: None

3., DESCRIPTION

3.1 ARCHITECTURE

3.4.1 CONFIGURATIONS

3.1.1.1 INTERCONNECTIVITY: See Figure

3,1.1.2 RANGE: One processor of each clasa (operating);
16 memory uwodulea of 4096 words each (maximum opersting
memory)

3.1.1.3 CAPABILITY: 500 KHz maximum clock rate and
byte-serial operation in laboratory model.

3.1.2 EXECUTIVE

3.1.2,1 MODES: Only one processcr operates at a given
time (Single-processor orgaunization)

3.1.2,2 SOFIWARE: The programming subsystem consists of
three modules: an assembler, a lnader, and s functional
simulator. An executivs program facilitates coordinated
use of these modules, The operating subsystem coneists of
two modules: the resident executive module and the
spplications programs module, The programming subsystem
has been implemented on the Univac 1108, The modules of
the opersting system of the STAR computer aoftware system
consist of the resident executive module and the
application module, The STAR resident executiva sugments
the self testing snd repairing features of the hardware in
addition to its normal functions. The atandard fastures
include interrupt control, input/output proceesing and job
scheduling. Novel features incorporated due to the
fault-tn'er--~ architecture of the STAR computer include

a "col ~ability, reconfiguration proceasing,
rollba. 'y and diagnosis of faulty units., The
cold start ., -ty resets the hardware and software

after a disaster restart aa well as prior to an initial
load. Reconfiguration proceasing is required for memory
replacement, since software sssistance is required to load
& nevly activeted memory unit, All programs running on
the STAR computer require rollback (recovery) points, The
resident executive provides rollback status storage and
controls svents which are nonrepeatable, i.e., they msy
not occur more thsn once even if a rollback takes place,
Finally, it implemants diagnosis for faulty units to
determina the cause and extent of fallures for possible
reuse, The present application modules include floating
polnt arithmetic subroutines, and test and demurstration
programs, The application programs that will be required
for space missions are a part of the TOPS control computer
subsystem project,

3.2 FAULT TOLERANCE

3.2.1 FAULTS TOLERATED: The principal goal of the design
is to attain fault tolerance for a variety of faults:
transient, permanent, random, and catastrophic,

3.2.2 FAULTS NOT TOLERATED: (a) Transients at a rate
higher than allowed by the length of "rollback” segments
of programs; (b) shorted bus wirss (isolators are
employed) or power switch "on" fallures,

3.2,3 TECHNIQUES:

*1, All wmachine words (data and instructions) are encoded
in error-detecting codes and feult detection occurs
concurrantly with the execution of the programs,

*2, The computar is divided into a aat of replaceable
functional units containing their own instruction decoders
and sequence generatora. This decentralization ellows
aimple fault-location procedures and simplifies system
interfaces.

*3, Fault detection, recovery and raplacement ate carried
¢t by special-purpose hardware, In the case of memory
dansge, software augmentr the recovery hardware,

v+, Translent faults are idantified and their effects are
corrected by the repetition of a segment of the current
program; permanern: faults are eliminated by the
replacement of faulty functional units,

*5, The replacement is implemented by power switching:
units are removad by turning power off end connected by
turning power on., The informetion lines of all units are
permanently connectad to the busea through isolating
circuits; unpowered units produce only logic "zero'
outputs.

*6, The error-detecting codes are supplamented by
monitoring circuits which serve to verify the proper
synchronigation and intsrnal operation of the functional
unita,

*7, The "herd cors" teat and repair processor (TARP) is
protacted by triplication end replacement of failsd
menbers of the triplet.



3.3 NOVELTY: Power switching, status signals, encoding
of ins.ructions, emphaaia on transient-recovery with
program wurvival,

3.4 INFLUENCES: Theoretical work by Reed and Brimley;
Kruus and Seshuj Griesmer, Miller and Roth.

3.5 HARD-CORE: The "hard core" monitor of the STAR system
is designated as TARP (test and repalr processor) in the
Figure. Th. TARP monitors the operation of the STAR
computer by two methods: (1) testing every word sent over
the two data buses for validity of its code; snd (2)
checking the status mesaages from the functionsl units for
predicted responses.

Three fully powered copies of the TARP sre opersted at all
times together with n standby spsres (n = % in the present
design)., The outputa of the TARPs sre decided by a
2-out-of=-(n+3) threahold vote. When one powered TARP
disagrees with the other two, the recovery mode is entered
and an attempt is made to set the inteiaal stste of the
disagreeing unit to match the other two wnits., If this
TARP rollbsck attempt fails, the dissgreeing unit is
returned to the standby condition snd one of the standby
units receives power, goes through the TARP rollbsck, and
joins the powered triplet. The computer is now restarted,
a rollbsck performed, and stsndard operation continuesn,
Becsuse of the three unit requirement, design effort has
been concentrated on reducing the TARP to the least
possible complexity. Experience with the present model
haa led to several refinements of the design,

The replacement of faulty functional units is commanded by
the TARP vote and is implemented by po switching, 1t

offers several advantages over the swi: 1g of
informwstion lines which connect the '~ o the bus, The
number of switches are reduced to or mnit, power is

conserved, and strong isolstion is «d for
cstsstrophic failures. Magnetic pow ~witches have been
developed which are part o. each uni* power supply and
are designed to open for most inten fsilures, The
threshold function ia inherent in the control windings of
the switch., The information lines of each unit are
permanently connected to the buses through
component-redundant isolation circuits, The signal on a
bus is the logic OR of all inputs from the units, snd
unpowered units produce only logic zero outputs, The
power switch snd the buses utilize component redundancy
for protection against fatal "ahorting" fsilures.

4, JUSTIFICATION

4.1 RELIABIL1TY EVALUATION: The computing operstions for
the analysis was done with the aid of the computer-aided
relisbility estimation (CARE) program, which was developed
8s 8 design tool during the reliability study. CARE is s
softwsre pscksge developed on the Univac 1108, CARE msy
be intersctively accessed by a designer from a teletype
console to calculate his reliability estimstes, The input
18 in the form of s syatem configurstion deacription
followed by queries on the variocus reliability parsmeters
of interest and their behavior with respect to miasion
time, fault coversge, fsilure rstes, dormancy fsctors,
allocsted spsrea, and partitioning., The CARE program is
extensible, snd it msy be updsted to incorporste new
reliability models as they become svailable, Physicsl
feult-injection experiments are currently in progress,

4,2 COMPLETENESS OF EVALUATION: Experiments sre expected
to continue through 1972,

4.3 OVERHEAD: Depends on the nurber of spares, With one
spare for each module--sbout 150 percent extra cost (l.e.,
607 overtiaad),

4,4 APPLICABILITY: Various real-time applications that
require very fast recovery.

4.5 EXTENDABILITY: Spare procesaors could be utilized in
a multiproceasor mode, Additional buses and aupervisory
mechanisms would be required,

4,6 CRITICALITIES: The design goal wus a better
understanding of replacament aystems, In order to retain
contact with the practice of computer design, it was
decided to design and construct an experimental
general-purpose digital computer which would incorporate
dynamic redundancy (i.,e,, fault detaction and replacement
of failed subsyataus) as integral parts of its structure.
The design objectivaa have baen carried out and the
system, called the STAR computer, began oparation in 1969,
The modular nature of the STAR computer has allowed
systematic expansion and modificationa that are still
being continued,

An edrly objective of the design is to study the class of
problems which sre encnuntered in transforming the
theoretical model of s self-repairing system into s
working cemputer, State-of-the art integrated circuit and
memory technology wss amployed in the design, This

ob jective sppesrs to hsve been attained reasonably

4.7 1MPLICATIONS: CLesigners must give (8) advance
attention to modulsrizstion and coded operands; (b)
special software features sre needed (see 3.1,2.2); (c)
users must observe "rollbsck” rules in programming.

5. CONCLUS1ONS

5.1 STATUS: Operating in lsborstory; being extensively
tested snd modified to improve wesknesses thtt sre
uncovered,

5.2 EXPERIENCE: Practicsl implementstion of replscement
systews is feasible, Transient faults can be
systematicslly eliminsted without programm loss,
Transient tolersnce can be specified in terms of
"durstion" snd "frequency" psrsmeters.

5.3 FUTURE: The research and development progrsm which
led to the STAR computer is continuing in several
directions, The design of several improved aecond
generation STAR functional units is under wsy, including s
new arithmetic processor, s control processo,s for
medium-scsle integrsted~circuit implementation, snd the
shared READ-WRITE memory unit for the storage of automatic
maintenance information from the spacecraft telemetry
system, Analysis of sutomatic maintenance algorithms and
design of a command/data bus for their implementation srv
under intensive study, Other current investigstions sre
concerned with the following areas: (1) hsrdwsre-software
interaction in a fault-tolerant system with recovery,
especially the intersction of the TARP snd the opersting
system; (2) studies of sdvsnced recovery techniques, i,e,,
post-cstastrophic restart, TARP replacement schemes,
recovery from massive interference, partial util’ization of
falled units; (3) advanced component technology,
especlally methods to attain bus and power switch (i.e.,
hard core) immunity to faults; (4) heuristic studies of
fsult tolerance by interpretstion of extensive experiments
with the STAR bresdbosrd as the instrument; (5) design of
a second-generstion STAR-type computer with universsl
processor snd stnrage modules, snd their implementstion by
large-scale integrstion; (6) computstional utilization of
the spsre units for supplemental tasks in s
multiprocessing mode,

5.4 ADVANCES: (a) methods of coversge messurement; (b)
technology ad—-inces in isolstor snd switch design; (c)

studies in restsrt ("roll-bsck”) implementstion by
sutomstic methods.

6, COMMENTS: Design, construction, and testing of
laboratory models is criticslly important to advsnce the

stste of the art and to gsin acceptsnce dmong
prsctitioners of design in industry.

|

15
w0l . r
- r_l'u [ - a:l_- i - L —
CONTROL BUS 131 | | = | :
STATUS LINES,
SWITCH LINES

STAR computer organization.

= m

Erramam

COP  Control prc._essor, contains the location counter and
index registers,

LOP Logic processor, (two copies are powered),

MAP Main arithmecic processor.

ROM READ-ONLY memory, 16,384 permanently stored words.,

RWM READ-WRITE uemory unit (4096 words, two copies
powered, 12 units directly addressable,).

I0P  Input/Output processor, contains 1/0 buffer,

1RP Interrupt processor, handlea interrupt request,

TARP Test and repair processor, (three copies powered),



SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

W, C. Carter
IBM Thomas J, Watson Resaarch Center
Yorktown Heights NY 10598

1. IDENTIFICATION

l.1. NAME: I am reporting mainly on a long-term reaearch
effort in techniques for fault-tolerant computer
architecture. The relevent prior publications heve used,
for example, the terms "mod.lar architecture",
"self-repairing computers”, “dynamic checking”, "fault
diegnosis", "stand-by sparing" or "dynamic recovery' in
the titles and the authors heve been some subset of the
participants named in 1.4, For present purposes I will
talk about a paper Moduler Digital Computer system called
MDC whose principal properties will be specified lster,
For reality, aome requirements will be imposed which have
nothing to do with fault tolerance per se, This system
does not really exist, and will not exist, but is
specified to provide a focus for our fault tolerant
computing reaearch,
1.2 RESPONSIBILITY: 1BM Research.
1.3 SUPPORT:
and NASA.

Support haa come from IBM, U. S. Air Force

1.4 PARTICIPANTS: W, G. Bouricius, W, C, Carter, E, P,
Hsieh, D, C. Jeasep, Jr., G. P. Putzolu, J., P. Roth, P, R,
Schneider, C, J, Tan, A. B. Wadia.

1.5 START: Formal initiation oceurred in March, 1966,

1.6 COMPLETION Open ended, No end item is scheduled,
1.7 BIBLIOGRAPHY:

*Roth, J. P. "Diagnosis of automata failures: a calculus
and a method", 18M Journal,vol. 10, 4, 1966,

*Bouricius, W. G., Hsieh, E,. P., Putzolu, G, R,, Roth,
J.P., Schneider, P. R,, Tan, €. J., "Algorithms for
detection of faults in logic circuits", IEEE TC, Vol,
€-20, Nov. 1971,

*Bouricius, W, G,, Carter, W. C, and Schneider, P, R.,
"Reliability modeling techniques and tradeoff studies for
self-repairing computers", ACM Natlonsl Conferer.ce, San
Francisco, Cslifornia, August, 1969,

*Bouriciua, W. G., Cirter, W. C,, Roth, J, P, snd
Schneider, P. R., "Investigations in the design of an
eutomatically repaired computer”, Paper Number 6.4
Conference Digest of the First Annual 1IEEE Computer
Conference, Chicago, Illinois, September 6-8, 1968,

*Carter, W, C. and Schnetder, P, R., "Des’gn of
dvnamically checked computers”, IFIPS, Eainburg, Scotland,
August, 1968,

*Carter, W. C., Jessep, D. C., Wadia, A, B., "Error-free
decoding for failure-tolerant mewories’, 1970 1EEE
Computer Conference, Washington, D. C., June, 1970, pp.
229-239.

*Carter, W. C.,Jessep, D, C., Bouricius, W. G., Wedia, A,
B., McCarthy, C. E., Milligan, F. G., "Design techniques
for MARCS" (Modular Architecture for Reliable Computer
Systems) , NASA Contract NAS8-24883, RA12, IBM T, J. Watson
Research Center, Report Number 70-208-002, March 26, 1970,

*Carter, W. C., Jessep, D, C., Wedia, A, B., Schneider, P,
R., Bouricius, W, G., "Logic design for dynamic and
interactive recovery", IEEE TC, Vol. C-20, Nov. 1971.

2, MOTIVATION
2,1 PURPOSE:
management,

Real time control, data acquisition and data

2.2 PHYSICAL ENVIRONMENT: Aerospace applicationa have
predominated in specific design decisions, Modularity
should ensure wide applicability.

26

2.3 COMPUTING ENVIRONMENT: The “JC 1is planned to be able
to run thc gamut from being insulated from human control,
oerving s variety of sensors and effectora, to being able
to accept ground-based human directed control,

2.4 COMPUTING OBJECTIVES: Predicted configuration
acaleebility primarily under internal control including
systems which sre fault toierant by rasking redundancy, by
stand-by redundsncy, or by software checks; systems whose
use of power is variabie (but whose thruput is affected);
and systems operating in psrallel., The major objective is
to provide means for meeting various requirements with a
high degree of confidenc~.

2.5 RELIABILITY OBJECTIVES: The system is to be designed
to meet varying specific mission reliability objectives
with a high degree of certainty, Examples sre survival
for n years with a probability p; "Fail operstional, fail
operational, fail ssfe', or reliability variable with
mission taak.

2,6 DYNAMIC VARIABILITY: As stated above, dynamic
variation of system parameters such ss performance,
reliability and power consumption with confidence in the
design as a major objective.

2.7 PENALTIES: Variable with mission, ranging from loss
of human life through expensive flight hardware to
abortion of flight objectives,

2,8 CONSTRAINTS: Hardware must be designed to fit weight,
power and aize requirements, yet able tc have thruput
compatible with mission requirements and to support the
software necessary for reasonable programming effort per
mission,

2.9 TRADEOFFS: Hardwsre efficiency and potential thruput
are traded for 1) system reliability as defined per
mission phase; 2) simplification of recovery process snd
other basic executive functions; 3) high malfunction
coverage and design certificatior; 4) ease of program
validation; 5) convenience of programming and ease of
diagnosis for external equipment; 6) aystem flexibility,

3. DESCRIPTION

3.1 ARCHITECTURE

3.1.1. CONFIGURATIONS

3.1.1.1, INTERCONNECTIVITY: The basic uniprocessor
configuration consists of partitioned computer subunits
attached to several busses, The basic subunits are (see
attached rough diagram): ALU, Scatch and Program Control
Unit, Bus Control, 1/0 Processor and Recovery Control
Unit. The bis orientation remains, but the units may be
modified (microprogrammed) for varying missions, The
system consists of replicas of the basic subunits, with
configuration control governed by the RCU and Executive
Program, A major problem is the int.rface design to meet
the constraints of fault tolerance, long life, end varying
modes of operstion. The memory is encoded with a
b-adjacent error correcting code and spare b wide subunits
per basic module,

——
BUS
cTL
MS i cTL
! — -
Lop
sP
PCU
= ALY
RCU




3.1,1.2, RANGE: The range of the system {3 nof frozen in
the architectural concept., After four processora the lsw
of diminishing returns se:s in sharply and further
partitioning may well be s better bet for long life. The
wmewory will consiat of modules, esch module consisting of
b-wide unita with b-adjacent coding and spare b-width
units. The upper limit depends upon the hardware
available, but hardware does not appesr to be critical,

3.1.1.3, CAPABILITY: The order of 10E5 to 10E6 sdditions
per szcond per basic system with a minimum of 256K=5{2K 32-
bit words of wesory, 1/0 will be handled by up to 4 16~
bit parallel c.annels with 50,000 transfers per second
simultan.one’y on one input and one output «.annel, The
1/0 processor will handle the details of I/ ~ontrol under
direction from the processor Executuve.

3.1.2 EXECLTIVE: Tne standard executive control
(allocation, scheduling, dispatching, I/0) will be
schieved by replicated aoftwere routines, These tsaks
hsve not been studied much.

3.1.2.1. MODES OF OPERATION: Each prncessor is
wultiprogrammable, System operstion includes fsult
masking, multiprocessing with hardwsre fsult detection snd
wultiprocessing with softwsre snslysis, The mode of
operstion of most concern is that of recovery initiation,
the intersction of the recovery and error snslysis
programs of the executive end the RCU. Recovery and sudit
programs slways run beckground whether the system is in
fsult masking, fault detection or softwsre snalysia modea,

3.1.2.2, SOFTWARE ORGANIZATION: The syatem softwsre wlll
be distributed among the processors and analyzed by auait
routlnes for early detection of c:rors.

3.2. FAULT TOLERANCE
3.2,1 FAULTS TOLERATEY): In the error-masking mnde, sny
number of faults which affect only one partitioned
sub-unit car be tolerated. The system handles transient
fsults with instruction retry or permanent faults with
hardwere controlled reconfiguration, The cause is
rrelevent as long as the interface detects dissgreement,
The dissgreement circuits are self-checking so faults in
them are detected, Initially the same malfunction in
three units ia necessary to defect the system, After
reconfigurations two faulty units may escape detection,
Ir the error detectlon mode, fanlts causing s aingle
subunit to be in error are detected, At this point the
asme errors in two unita will be undetected. Diagnosis
and software recovery 1s necessary for continuatlon,

Faults detected by softwsre checks are detected snd
recovery should follow in the unchecked multiprocessing
mode. Fsulty softwsre may be detected by the RCU time-out
tests snd system evaluation proccdurea.

3.2,2, TECHNIQUES: 1n hsrdwsre fault tolerant mode the
system should FO - FO - FS for esch one of the partitions
of the system 1f four copies of the basic computer sre
used. Disgnosis can continue the computstion with one
psrtltion unchecked, Detailed fault anslysia must be
performed to vslidete ouch gosls, In hardwure fsult
detection moda the system should run at least two
multiprocessor hardwsre checked systems, A fault would be
detected, and diagnoses would allow continustion with one
psrtition unchecked by hardware, Achiiving such
hardware/firmiare/diagnosis goela depeniis upon the
development of many tools of fault anslysis, The memory
encoding ia b-adjacent multiple error correcting and/or
multiple b-sdjacant error detecting, The codes used are
variants of Reed-Solomon codes with combinationsl self-
checking translators which pass only correct code words,
Stendard single instruction retry is avsileble,

Microdisgnostics under exe:utive program control with
program variable input patterns will be used for fault
snalysis, The executive software will use the standard
fault tolerent techniques - two way lista with pointer
verification befora proceedisg, s.ored dats and progrsus
will be taggeu with redundant identificstion, read only
programe will i.llow simple updating etc. Rollback ¢'d
restsrt will be used for multi-proceasing wlth hardware or
aoftware error detection, The RCU monitors constsntly for
catsstrophic faults - those not detec:ed by the hardware
and software testa, The standard time-out teats snd
system performance evaluation routines are run and
controlled by the RCU, Power is conserved under program
control by forcing n cycles between wemory accesses,
imposed by a counter with program changeebla ccntents.

3.3 NOVELTY: Reconfiguration undar hardware control in
fault mssking mode, Choice of computer fault mssking,
multiprocesaing with fault meaking snd vsrious forms of
detection, multiprocessing with hardware error detection
by comparison, multiprocessing witt software error
detection, Storage relisbility by h-sdjacent multipie
error detecting and correcting codes, Seif checking
memory translators, checking circuits, and error-anslysis
ciruits. Use of power under progrsm control,

3.4 INFLUENCES: 1, JPL Stsr - the total effort; 2, SRi,
Techniques for the Realization of Ultra=Relisble
Spaceborne Computers; 3., MIT -Draper Leb. for spaceburne
multiprocesscrs; 4, Repid emergence of LSIL for feaslbllicy
of much redundant hardware.

3.5 HARD-CORE: Assuming thst hard core means hardware,
redundaat or not, whose failure will produce vodetected
errors, there is no such hardwsre In this aystem,
Hopefully, the software can be validsted so thst equsl
cleims can be made for it,

4. JUSTIFICATION FOR THE SYSTLM

4.1 RELIABILITY EVALUATION: Architectural relisbility
evaluation by interactive progrsm using exponential
fsilure amsumption for the units, Determinstion of
component failure rstes by anslysia based upon previus
dats, experience, and analysis, Logic fault analysis of
circults in design stsge by interactive favlt slmulstion
progrews, Diagnostic psttern evsluation by aimulstion
programs, Memory fsilure predictions by careful
probabilistic fault anslysis to predict error patterns,
programued computation of the circuit failure constants,
programmed evalutation of religbility, Programmed
snalysis of RCU functions. Theoreticsl analysis of
design, with hardwsre and software, in complicated
situations (guided by aimulation).

4.2 COMPLETENESS OF EVALUATION: Major unsolved problem,

4.3 OVERHEAD: Vsrialle. In the processors about a 3 1/2
:1 logic count penalty is pald (th. cost ig much less),

In the memory about s 352 storsge penalty is psid, In the
software the cost 1is unknown, but considerable,

4.4 APPLICABILITY: The concepts can be used e=lsewhere,
the system 1s orlented tuward spsce and extremely high
reliability applications,

4.5 EXTENDABILITY: This computer i8 too relisble to fit
intc most other syatems, For extension some of the fault
tolerant techniques in the computer must be essed for
better totsl svstem bslance.

4.6 CRITICALITILS: Multitasking, aa with sll Executive-
controlled recovery systems, {s critical, achieved here
with multiprograuming, Multiprocessing 1s sn imposed
condition, but smsll system slmplificstions would result
tf this condition were relaxed, Design vslidati.n :ools
sre criticsl,

4.7 IMPLICATIONS: Architects must perform sutomated error
snd recovery analyais while doing systew specificstion.
Human gnalysis is too fallible, Hsrdwsre designers must
hsve snd use tools to do fsult analysis aa they desipn.
After the first pass they must do deslgn validation and
iterat~. Software designers must participate in the
initisi decisions, must produce more technlques for
producing self-checking progrems, and must produce the
tools for progrsm validation, Applications programmers
must validate their programs (top down programming
techniques will help), and must follow system rules (not
so far known),

5. CONCLUSIONS
5.1 STATUS: Thls aystem is the collection of a group of
ideas from a research project.,

5.2 EXPERIENCE: None to report to date,

35,3 FUTERE: The system will be pursued only in a modified
form as a peper atudy only,

5.4 ADVANCES: The proolems of validation - hardware and
software ~ will provide many a bottleneck for fault
tolerant computing. The beaic problem of definition of
fault tolerant cowputing wlll be with us - do we consider
any algorithm, procedure?



SURVEY ON FAULT-TOLERANT COMPUTER SYSTEMS

Albert L. Hopkins, Jr,, MIT Draper Laboratory
Cambridge, Mase,. 02139, May 1972

I. IDENTIFICATION

1.1, NAME: I gm reporting on a long-term development
sffort which hes baen eupported by dif ferent projecte ac
different times, The following titles heve besn used for
publiehed reporte:

* "A Feult-Tolersrt Information froceseing Syetes for
Advenced Control, Guidemce,snd Navdgation".

* "Space Transportation System Duta Mauagement Syetes".

In addition, en exparimentel three-processor
three-scratchpad breadboard has been given tha acronym
CERBERUS for the thres-headed dog in claseical mythology.
The acronym engendered the title: Controlled Rrror
Racovery Behavior Employing Redundent Use of Scratchpads.
In vhat follows, I use "the eyeten" to maan the general
concepc, rether thew a epacific herdware design, Thie
8ives me the adventage of being able to be light om ny
feet and adapt to any eituaticm befors the fact.

1.2, RESPONSIBILITY: Thie work ie in the Digital
Development Group of tha Charlce Stark Draper Laboretory,
a divieion of M,I.T.

1.3, SUPPORT SOURCES: So far all oupport hes coms from
the NASA Manned Spacacraft Canter.

1.4, PARTICIPANTS: MIT end Ni SAMSC,

1.5, START: Work in thie area begen in 1966,

1,6, COMPLETION: Opan endad. No end Zten 18 scheduled.
1.7. BIBLIOGRAPHY:

* R. L. Aloneo, A. L, Hopkins, Jr., snd H. A, Thaler,
"Design Criteria for e Spacacraft Computer”, Spacaborne
Multiprocessing Seminar, PP. 23-28, NASA ERC, Boaton
Museum of Science, Oct, 1966,

* R. L. Alonso, A. L. Hopkins, Jr., and H, A. Theler, "A
Multiproceseing Structure”, Digest of the First Annuel
IEEE Computer Conf., pp. 56-59, Chicago, Sept, 1967,

* A. L. Green et al., "STS Deta Menagement Syetes
Deeign", MIT C.S. Draper Laboratory, Cambridge, Mess.,
Raport E-2529, June 1970,

* A. L. Hopkine, Jr., "A Fault-Toleraut Infermstion
Processing Concept for Space Vehicles", IEEE Trams.
Computers, Vol, C-20, pp. 1394-1403, Nov. 1971.

2, MOTIVATION
2.1, PURPOSE: Resl time control, data ecquieition snd
data management.,

2.2, PHYSICAL ENVIRONMENT: In principle 1t could be sny,
but aerospace applicatione have pradominated in deeign
decieions,

2.,3. COMPUTING ENVIROMMENT: Syetems considersd here ore
euvieioned as largely self-contained information
processing eyetems eerving a veriety of esneors and
effectore includiag human oparaters. Such eyetems would
be dietributed, hiererchical end redumdsnt. Central
fault-tolerent multiproceseors would communicate over
eerial date buses to local proceseor complexes embeddad in
subeystems of the total eyatem. A principal epplication
considered for this spproach wes the Spacs Shuttle, whore
the Orbiter would have one coentrel multiproceassor with
edequste redundsncy and epare herdvars to be opsretional
efter three malfunctions. Rsch subeyetem or growp of
idemtical eubeyetems would be eerved by eingle or
redundant loecal prosssecre, as sppropriate, to fulfill the
redundancy requirameat for that eubeyetem or growp,

The Booster etage of the Space Shuttle would, in thie
concept contain e eyetem eimilar to that of the Orbiter,
capable of commmicatirg with it by vay of e earfal bus
conlacting the two cemtral multiprocesrois. All
comaunicetion batween e ceatral multiproceseor end its
local processore would ba via a eerial date bue.

2.4, COMPUTING OBJECTIVES POP THE CENTRAL MULL ({PROCESSOR:
Variable from the order of 1025 (1.0,, 10 to the 5) to the
order of 10E6 operatione per escond, with memory
capacities of from 2F14 to 2E17 worde of main rendom
6ccese mamory. Input-output bendwidth 10ES useful
bits/eec on e 10E6 pulse-per-eecond bus. Keaction time
order of 10 milliseconds.

2,5, RELIABILITY OBJECTIVES: Various typeaes of objectives.
Ona example ie eirline applications where leee then one
catestrophic syetem malfunction in 10E7 flighte 1s sought,
Other cbjectives ere etated in terms of the n.mber of
individual malfunctione which cem be toleraced ia a
flight, euch es "Feil oparational, fail operational,
faileefe" (FO-FO-FS), The eystem ie generally masnt to be
used in very high reliabilicy applicetions.

2.6, DYNAMIC VARIABILITY: Greceful dagradation ie
available as a neans of exchanging performance for
reliability,

2,7. PENALTIES: In the Space Shuttle application, es in
poseible aircraft epplicatione, human life 1o concarned,
@8 vell es expensive flight hardware.

2,8, CONSTRAINTS: In Space Shuttle emd alrcraft,
spproximately 2 cubic fest, 120 1b., 300 watte.
(Cetimate for a central multiprocessor).

2,9. TRADEOFFS: Herdware efficiency 1e traded for 1)
eystem relisbility, 2) high malfunction coverage, 3) sese
of progrem verification, 4} eyetem flexibilicy,

The wudber of feu.ite tolerated ie variable through a
combinetion of replicetion snd sparing. Proceseors and
memories can be added (deleted) to increese (decreese)
proceesing emd memory resourcee.

3. DESCRIPTION OF THE SYSTEM

3.1. ARCHITECTURE

3.1.1, CONFIGURATIONS

3.1.1,1. INTERCONNECTIVITY: The eyoten makes extansive
use of replication, and quently ions have e
high zoet. Serial snd byte-serial buses are used betwean
besic units. Multiploxere are employed to prevent eingle
wmit malfunctione from epreading to all copies of a

redu dant bus. The canonical interconnection echems ia
ehown in Figure 1.

3.1.3.2. RANGE: No range limits have besn determined, but
the following numbers may be typical for an asrospace
application. There are two curremt compe’ ltive
conceptualizations of the eystes. Thees aumbers Tepresent
the newer end less well devaloped coneept.

* 6= Nusber of eimul:sneous job etepe in procese

* 3= Degree of replication of each procaseor-ecratchpad
* 3= Number of epare processor-scratchpads

#21= Total proceesor ecratchpads = 6 x 3 + 3

* 4= Number of independent msmory blocks of 16K

* 3= Degree of replication of eech block

* 3= Nwher of epere blocks

#15= T. ~' memory block modules = 4 x 3 + 3

The aumbs. of p ecratchpede snd memory blocke can
be incressed up to the prectical bandwidth limie of the
proceseor-memory bus and the I/0 bue.

3.1.1.,3. CAPABILITY: The order of 10E5 to 10E6 additions
par eccond and the ordar of 2E14 words of namory. Three
proceseors would be tha smallest "eensible" number.

3.1.2, EXECUTIVE

3.1,2,1, MODES OF OPERATION: All programs are eegmemted
into job eteps which ere diepetched by a floeting form of
txecutive, Each job etsp occupies one proceseor full time
while it tume, Multiproceeeing ie the normal operating
modes, Multiprograsming of each proceseor ie not
envieioned,

3.1.2,2. SOFTWARE ORGANIZATION: I/0O procaseing ie
quasi-dedicated to one processor (1.e, it can float but
does e0 only vhen malfunction makes it neceseary).
Exacetive, monitor, and reconfiguretion programs are run
on an as-naeded besis by eech procaseor es it finishee a
job etep.



3,2, PAULT TOLERANCE

3.2,1. FAULTS TOLERATED: Individual units (e.g.
processor, mamory 'mnit, aultiplexer) cen malfunction one
ot s tism with no restriction on whet the nature of the
amlfunction is, Srrore ere masked by the system until it
reconfigurea itself to & feult-tolarent stats,

3.2,2, FAULTS NOT TOLERATED: Certain malfunction paivs
which occur simultensously or close together in time can
produce loss of date end meny require e program restert,
Incorroct specifications or program smlfunctions can
defest the system, Systematic hardvere amlfumctions in
which the same malfunction occurs in two redundant unite
can defest the systam,

3.2.3. TECHNIQUES: Two different coacepts,

First concspt: ell processors ers duplexed for detection.
All ecratchpeds ere triplexed for masked dusp cepability,
Single instruction restert. Gracaful degredation of
processor-scretchpad grouwps. Triplex memory unite with
dedicated speres, Triplex buses with apares.
Multiplexers isolate buses from failed grcups of units,

Second concept: processor-scretchped units ert¢ organiszed
ianto groups of thres undar software control. EKsch looks
for disagreamant. If disagreemsnt occurs, continus
running to end of job step, tanen enter reconfiguretion
program. Graceful dagredation of individual
processor-scretchped wmite (rether than groups of three
scretchpads and two processoxs as in firet concept).
Triplex memory units vith non-dediceted sperss. Triplex
buses with epaie.. Multiplaxere isolets busas from feilsd
individual unite (rether than groups es in firet concept).

In both concepte, softwere configuretion control is used,
which is velid es long as s working processor group,
mamory group, and bus-multiplexer group are svailable,
Multiplexere participete in configuretion control,

3.3, NVELTY: Single imstruction restert., Absence of
interrupts and program rollbecks. Distributed monitoer and
reconfiguretion functions. Use of multiplexers to isolete
bus and it malfunctions, Peult-tolarant clock.
Hiererchicel systam with feult toleramce extandad into
aubeysiems,

3.4, INFLUENCES: Rapid emergence of LSI memories end
procesasors hes encoureged use of replicetion and
pertitioning with simple, identical wmite, Apollo
Guidence Computer szperiance promptad eliminetion of
interrupts and rellibe.l. for the saka of program
verificetion, Certer and Bouricius for reliability
mnodels, Avizienis for conceapts of feult tolerence,

3.5, HARD CORE: Aseuming thet herd core means

nou-redundaut herdwere, there is no herd core in thie
eystem, Configuretion control is e softwere function
using the eveilable herdwers to configure the systesm.

&, JUSTIFICATION

5,1, PRELIABILITY EZVALUATION: So fer mostly geerad towerd
¢0-PO-FS, Some Probabilistic anelyeis, No reliability
projections es yst since hardvers hes not bean celscted
and failura retes srs therefore not '1own,

4,2, COMPLETENESS OF EVALUATION: Herowars not sslec:ed,
hence feilure rete not krown.

4,3, OVERHEAD: About 80% of the system is davoted to the
echievement of feult tolerance.

4,4, APPLICABILITY: Thie concept is aprliceble to wost
Jdigitel control environments, depending on the ¢conowics
of the epplicetion regerding feult tolerancs.

4,5, EXTENDABILITY: Extandability protably does not
apply, #ince the syster is still looeely specifiad.

4,6, CRILICALITIES: The systam is most cost~sffective
compered to other eyetame when the rumber cf feults to bs
tolsrated 1s high and vbore ultcz-uigh reliability ie
sought, TYor single~feult tolureuce md less high
reliebility, the systiem confipuretion might be changsd.

4,7, IMPLICATIONS: Im un ultre~high reliability
spplicetion, specifications snd programs must be proven to
be correct. In this eyaten, epplications programmers ~ust
also segmen: their pr.>vams into short job steps,

20

5. CONCLUSIONS

5.,1.1 STATUS: Thia i{s a research project with a
breadboerd experimentsl unit almost completed.
5.2, EXPERIENCE: None to report to dste,

5.3, FUTURE: Some perts of the system still need to be
designed end prototyped., Exepariments muat be conducted on
s full-ecals prototype system.

5.4, ADVANCES: The following will be beneficiel,
*Damonstreted field experience with vericus feult-tolerant
concepts.

*Practicel techniques for genersting corvect programs,

*Precticel ways of verifying thet e program is correct.

6. COMMENTS

The questionnairs wes good in the sense of being thorough,
but in my haste to rsspond to it I wonder if I heve
omitted eignificent materisl, An additionel commant about
thie eystem is thet it hes besn configured eround
integretad procesaors and mesories which resemols those
thet ere eveilable *oday, The herdwere efficiency numbar
given in Section 4.3 is very misleeding, bsceuse the cost
of the herdvere can be the leest important cost of the
system, if the herdwere is conwventionel end not owarly
expaneive, This syetem i expected to eeve in costs of
syatem intgegretion, program verificstion, and opsretionel
reliability sxperisnce. Theas sevinge mmy te fer in
acess of the hardvere cost.

As an edditionel nots, the repliceted approech usad here
reaulto in e coveregas of 1.0 egainst single amltunctions.
Coded epproeches geuarally give lower cowirage, difficult
to quantify, and often impossible to verify in the field.

11
W

{
[

e o
ap Fmbiirr
ity bl |

L"\. LT 4

o iH
T JEny
- e _!,E.I'

—— l

:III foma |

frdTigier

R

P.soProcessor

S...5cretchped mamory

M...Memory modula

X. .. Multiplexor
SSI...Subaystem interfece



SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

We I, Martin, Hughee Afrcraft Company
tullerton, Celifornie 92634, Mey, 1972

1. IDENTIFICATION
1.1. Name: Automatically Reconfigurable Moduler
Multiproceeaor Syetems (ARMMS )

1,2, RESPONSIBILITY: Astrionice Leboratory, Mershell
Spece Flight Center, NASA

1.3, SUPPORT: Same as 1.2

1.4, PARTICIPANTS: The participeting organieationa
include NASA MSFC, Hughea (eyetem deeign), MsS Computing,
Inc, (executive eoftwere under eubcontrect to Hughaz);
Auburn University (executive control epproeches under
contrect to NASA). Principal participants by neme ere as
followe: NASA - Dr, J, B. White, Sherman Jobe; Hughea - W,
L., Mertin; M&S - T, T, Schensman; Auburn ~ Dr. Devid

7 win,

1.5, START: Tha dete of concaption waa clrce 1968 in e
concept document writtan by Dr, White. MSFC haa becs
developing technology under their Spece Ultrarelieble
Moduler Cowputer (SUMC) program eince ehortly thereefter.
The system daeign effort being performed by Hughea was
aolicited in May, 1971 with e contrect in October, 1977,

1.6, COMPLETION: The Hughes eyetem definition cont ract
will be completed in April, 1973, Construction of e
breadboard or Prototype may follow with completion date
uncartain,

1.7, BIBLIOGRAPHY: Verious planning documente heve tLeen
written et NASA. Dr, White may be contactad for theaw.
The Hughes effort ie divided into three phases, vith the
Phaae | report released on April 15, 1972, It fe titled
"Deaign of a Moduler Digital Computer Syetem", DRL 4,
Phase 1 Report, Hughae Atrcraft Company FR 72-11-450. Two
other pepera heve been eubmittad for publicetion, Thetir
fate e uncertein ae of yet, but intereated pertiee mey
obtain copiea from W, L. Martin at Hughea. These ere the
following:

*J. L. Bricker, A Unified Method for Anelyeing Mieeion
Profile Reliability for Standby and Multipla Moduler
Redundant Computing Syetems which allows for Degreded
Performance (aubmitted to the IEEE Traneactione on
Reliability Theory).

*J. L. Bricker and W. L. Martin, Reliebility of Moduler
Computer Syatems with Verying Configuretion and Loed
Requirements (aubmitted to 1972 IEEE Computer Society
Conference),

2, MOTIVATION

2,1. PURPOSE: ARMMS is to be appliceble through
modularity to diveree typee of epece miesiona ranging from
launch vehiclea, to spece etetione to deep space probea,

2,2, PHYSICAL ENVIRONMENT: Spaceborne
2,3, COMPUTING ENVIRONMENT: See 2.1, 2,2,

2,4, COMPUTING OBJECTIVES: The metivsting comuting
objective is to ba eble to configure svesa== which ere
feult tolerant through T™R or othar radundant nodee or to
use tha modulee in perallel for high computing cepecity
end to be abJe to reconfigure from one type to tha other
dynamically, Maximum capacity in a non-redundant mode is
to be "eaverel million" additione per aacond,

2.5. RELIABILITY OBJECTIVES: One apacific reliebility
objective ie that the probability of survivel of at leaet
4 aimplex computar efter 5 years ehould be at leaat 0,99
(with no on-board maintenance). The overall intent,
however, ia thet the system should be eble to be
configured to maet specific miesion reliability obje:tives
whether they ba steted in terma of maximum recovery time,
number of failurea tolerated, etc,

2,6, DYNAMIC VARIABILITY: As noted in 2.4, dynamic
variebility of configuration is one of the primery
motivations.

2.7, PENALTIES: See 2.1,

2.B, PHYSICAL CONSTRAINTS: There are no explicit physical
conatrainta axcept thoae implied by the nature of the
intended speceborne application, However, an implicit
phyeical conatraint is the dif{iculty of contriving an
approach to a large (by aercapeca standerde) computing
capability fault-tolerent deaign within the coufines of
waight and power budgeta which may prevail for
interplanetary misaions,

2.9, TRADEOFFS: At the currant stage of the design, there
Are many critical tradeoffs yet to be made,

* For a computar which will be built after 1975, what
device complaxity and failure rates shou'd be aseumed?
Almost all aapects of the deaign ere critically affec:ed
by thia queation. Some of the more cruciel ones are the
Daximum complexity of any module; the degree to which
processora must he sub-pertitioned; the reeulting coat in
awitching hardware; the maximum nunber of replicetea of
any one module type which must be eccommodeted; and th:
complexity of tha configuration control software,

* The basic ARMMS concept devaloped by NASA incorporates
3 dedl.ated executive module rather than e floeting
“Xxecutive, Reaulting tradeoffa include specific
definition of functiona to be performed, specification of
atetus monitoring and reconfiguration pérameters, end a
deaign approech which y elds aufficiently high reliability
for the executive module,

* The aystem architectura ia not yet defined in any
complete aense, Questions yet to be resolved include
Specific definition of allowed modes of operation;
definition of the maens of interconnecting the modulea;
placement and use of votere; use of error-correcting codea
for memory deta; meximum number of replicates per module
clasa; apecific techniques for Demory date protection; and
fault tolerence feetures within each module cleee, At
preeent, we are making tradeoffs beaed on two mejor
configuretion alternativaa. Although few tradeoff
conclusions heve been reached, the predominating
eveluation criteria are almoat certzin to be the
following:

* Implemantation feasibility - Any design feeture which
does not aeem to va to be feasible in any major eense
(a.8., pin count, ex:assive power, deaign coat; will be
rejected, We are not particularly intareated in
developing new theories or techniquaa of fault-tolerant
computing but ara very intarested in developing a
much-needed teatbed besed on the reaearch perf,rmed over
tha laat 5-10 yeara.

* Suitability to the multi-mode configuretion
raquirements - ARMMS ia intended to be usable in
configurationa ranging from a simplex computar to TMR wi.hu
stendby aparea, Any feeture which imposea exceaaive
overheed coat for the banefit of one configuretion at the
expenae of othera is ausnect, For example, edded hardware
per module for internal fauit tolarance multiplies the
hardwere penalty paic in TMR mode,



3. SYSTEM DESCRIPTION: As sean from the tradeoff
discusaion above, nc firm system deacription 1s possible
now, Therefore, the responsea in this section are
neceasarily brief and incomplete,

3.1 ARCHITECTURE

3.1,1. CONFIGURATION

3.1.1,1, INTERCONNECTIVITY: All procesaors, 1/0, and
executive controller may access all of main memory (a
Study of the desirability of identifving an additional
level of memory, cache or task oriented wae made, with a
negstive conclusion reached), The moat probsble scheme is
a system of replicated busses with access contro] governed
by the executive module. The nature of spacnborne 1/0
activity is biasing us toward a direct proceasor 1/0 data
p8th vhich can be used for transmitting short “ursts of
dita, The executive controller will monitcr the other
system modules via a time-ahared bu;. 7This bus ordinarily
polls the modules in sequence but may be titerrupted by
the processors on task completion or other time-critical
event, No direct interaction of moduleo of a given class
(e.g., processor-to-processor) 1is planned,

3.1.1.2, RANGE: The general approach to achieving the
large capacity mentioned previo aly is to maximize the
individual processor performance so that throughput 1s not
dependent on a large number of parallel instruction
streams, (Three 1s a desira'.le upper Iimit.) The marimum
main memory capacity is to te large enough (e.g.,
256K-512K words) to support the high-throughput goals.

The word length 18 to be 32 bits as dictated by the choice
for the NASA SUMC processor. Cumulative 1/0 data rate
capability is to be 10 million bita per second, 1In all
cases, maximum number of modules per class (and the memory
module capacity) will he determined primarily by
reliability considerations. A least upper bound s 4 for
each class,

3.1.1.3, CAPARILITY: (See 2.4.)

3.2, FAULT TOLERANCE: (The system is still too much
conceptual to sllow a decent responae, All faults are to
be tolerated, None are to be not tolerated, All
techniques will be conaidured. Ask again in a year and
Iet's see how it turned out,)

3.3, NOVELTY: Onu the one hanc, there's nothing that one
can point out as being fundament:l.; novel (this is true
of most machines, I think), On t.e other hand, there are
no machines that I know of that hL.ive 8succeasfully
implemented a variable redundancy approach such as is
being sought, The choice of a dedicated executive module
is the only deviation at the block diagram level from
other multiprocessors (but this module is a rather close
parallel of the TARP in STAR),

3.4, INFLUENCES: JPL STAR; NASA ERC Modular Computer;
NASA MSFC SUMC; IBM, "Architectural Study for a
Self-Repairing Computer; SRI, Techniques for the
Realization of Ultra~Reliable Spaceborne Computers.

3.5, HARD-CORE: The executive module is hard-core. The
effect is to be minimized by simplifying the module as
much as possible end by internal redundancy (which may
ultimately result in replication).

4, JUSTIFICATION

4,1, RELIABILITY EVALUATION: To date, reliability haa
been evaluated solely by analysis (as described in the two
papers mentioned in 1,7). Later in the effort, we expect
to extend the analyaila to include coverage and switch
unreliability. We also expect to simulate the logical
performance of the intermodule awitchea and to aimulate
the injection of fsults,

4,2, COMPLETENESS OF EVALUATION: I'm not sure that I
understand the question., But whatever you mean by design
evaluation, I'm sure that I wish we had more time and
money to do it better,

4,3. OVERHEAD: Sinca the configuration is dynamic, the
percentages of resourcea attributed to tha achievement of
fault-tolerance also vary with time, An upper limit is
probably 80%; a lower limit is probably 20% (in coat,
logic, execution tima, etc,).

4.4, APPLICARILITY: Applicability to other than apace
applications is queationable.

4,5, EXTENDABILITY: I think that it ie more likely that
the aystem design can usefully contract than that it can
be usefully extended,

4.b. CHITICALITIES: The major difficulty of the design

1s e breadth of the goals. The critical problem is
taeretvre to find a set of deaign choices which complies
seaaonaily well with all the goals (e.g., we want high
speed and capability but require Iow weight and power),
Houever, I don't think that slight charges would
critically affect the design, (Also, as a side
observation, while one is in the midst of a system design,
all choicea aeem critical, don't they?)

4.7. IMPLICATIONS: (Let me plead thst this question
seema too vague. I don't know where to start with a brief
response,)

5, CONCLUSIONS

5.1,1 STATUS: The atatus is sufficlently deacribed by the
above comments, I thirk, In summation, we are about
one-third of the way through a system definition phase,

5.2, EXPERIFNCE: It appeara that component technology is
contributing more to the feasibility of highly reliable
machinea than architecture concepts are, As recencly as 2
or 3 yeara ago, gate failure rate of 10E-7 per hour seemed
optimiatic., At present, gate failure rates of 10E-10 per
hour are credible for the 8pace environment, On the othet
hand, the asaumption that dormant failure ratas are a
small fraction of active failure ratea appears
questionable, For a long-1ife machine in an unmanned
environment, tliese two factors are of major significence
to the ayatem designer,

5.3. FUTURE: There are two conflicting poeeible futures
of ARMMS, The pessimirtic view is that it will go the way
of 10 or 15 similar paper design efforts and will die with
only e final report to commemorste its non-existence, The
optiziatic view is that it wilt appeer sufficiently
proulsing in concept that NASA will continue its
development and eventually attach it to a mission,
Planning 1s of course being directed toward the optimistic
alternative,

5,4, ADVANCES: I cannot add snything to the lists of
theoretical problem areas and needed sress of
investigation which SRI described in its reports under
contrsct NAS 12-33, In particular, I agree that there
have been too few case studies which can be evaluated,

A major practical advance which 1s needed is the
icentification and exploitation of specific applications
in which fault-tolerant machines can be Juscified
economically. 1t is significant, I think, that the Bell
ESS-1 and System-3.9 FLT's instruction retry, etc.,
represent the most ea.ensive application of
fault-tolerance and diagunostic techniquea, Both sre in
areas where the payoff for high reliability is great,
Although aerospece applications have supported much of the
research in fault-tolerant machines, I am skeptical that
there is a sufficient mass of money there to lead to very
widespread results ir fielded systems. The situation is
analogous to that winich has existed for associative
processing fcr 10 years, in that the glamour, concepts,
and techniques are often apparent but cost considerations
ultimately lead to more conventional choices,

Also, I wonder if "fault-tolerant computing" is tou narrow
a view and that many of the basic 1deas would be
applicable to a discipline of "Fault-tolersnt systems".
Perhaps there are other equally fertile, but less plowed,
fields to be conquered,

6. COMMENTS: (See 5,4)



SLRVEY OF FAULT=-TOLERANT COMPUTING SYSTEMS

John H. Wanslsy, Stanford Reeaerch Instituta
Menle Park, Cs, 94025, May 1972

1, IDENTIFICATION

I.1, NAME: SIFT (Softwsre-Implamentad Feult Tolavance),
project: dasign study of & fault tolerant digital
computer

1.2 RESPONSIBILITY: SRI
1.3 SUPPORT: NASA Langlay

1.4, PARTICIPANTS: J. Goldbsrg, K. Levitt, R, Ratner, J.
Wensley, H, Zeidler, M, Green

1.5. 57ART: August 1971

1.6, COMPLETION: Expsrimentel vereion 1973, final design
1974

1.7. BIBLIOGRAPHY: Technicsl Prograss Narratives 1-7;
"SIFT - Softwsre Implemented Feult Tolarance,” submittsd
to FJCC 1972

2. MOTIVATION

2,1, PURPOSE: Control processing in an advancad
tschnology traneport (aircraft) including navigation,
stability augmentetion, angina control, instrument blind
landings, etc.

2.2, PHYSICAL ENVIRONMENT: Airborna -- ths systam concapt
howaver is epplicable to any environment.

2.3. COMPUTING ENVIRONMENT: Real-time

2,4, COMPUTING OBJECTIVES: Configuration scaleability,
graceful degradstion, traneportebility of concept to any
procsssor or memory design.

2.5, RELIABILITY OBJECTIVES: Minimum probability of
srronaous raesults, and of loss of com,ting capacity
during aircraft flight.

2,6, DYNAMIC VARIABILITY: Variablc dagrees of feult
tolerance for tasks of differing criticality. Ability to
trads off batwsen computing power and fault tolerance.

2.7. PENALTIES: Worst case - human Iives; intermediata -
sircreft dumage; least case - nead to ebort flight
objectives,

2.8, CONSTRAINTS: hcvdwera must be daeignad with waight,
eize and power raquireuents consiatant with sircraft
raquiraments, Tha basic concapt of the systsm ie only
effacted by ths constraint that maintenece csnnot be
cerrisd out during flight.

2,9, TRADEOFFS: Computing capacity vs, reliability

3. DESCRIPTION: A systsm erchitecture in which fault
toleranca is schiavad with no special fault-tolarant
hardware,

3.1, ARCHITECTURE: A multi-computer (see Fig 1)

3,1.1. CONFIGURATIONS: No constraints sre prssent on
procassor or memory dssign. Fault toleranca is achieved
by ths restrictad connaction of processors and memorias,
and by software control.

3.1.1.1, INTERCONNECTIVITY: Processing modulas comprising
e procaseor and memory are connectad via multiple busses,
Tha interconnection is designed so that processors may
only rasd {and not write) into the memory of other
modulas, The busses ara used as alternativa routes rathsr
than as multipls simultaneous tranemiasion paths,

3.1.1.2, RANGE: Tha scale of the system is not frozen in
the architectural concept. It is envisaged that a miniaum
coufiguration would cuntain thres procassing modulee and
three busses., The deaign does not (at present) placa any
1imit on the maximum configuration, GCreatar feult
tolerance is achieved with & larga numbar of low=
capability units rather than with & small number of high
capability units,

3.1.1,3. CAPABILITY: Ths dssign concapt is valid ovar
the entizs range of processor, memory and bus capability.

3.1.2, EXECUTIVE: Executiva control (allocstion,
schaduling, dispetching, reconfigurstion, stc.) is
achievad by raplicstad softwsra sxacu.ive routines.

3.1.2,1, MODES: Tha primary operating moda is on
rapetitive rsal-time cslculstions involving many loosely
connsctad tasks, Both multiprocassing and
multiprogramming ara included.

3,1.2.2. SOFTWARE: Tesks ara wultiprogrammed in each
processing module, Esch task for which fault toleranca is
demanded ie prasant in more than one module, A loose
synchrontzacion of tiek processing is schiavad by tha
system exacutive (which itsalf is rsplicated and loosaly
syachronized). Software fault detsction is csrrisd out
batwaen each itarstion of a task bafore arroneous rssults
ers used by the rsxt itsrstion or other tasks.

B
1
My 3 ] 2
T |
y)
P Al
1 S
"%
¥, [\ Y
x|
P2 <
- i
]
1
|
H
]
. {
. i
.
AN
M P
N 7
L4
— 1]
P 2.
N Al
A
‘!‘ -~~~ Memory
P‘ === Processor
1/0 Sysiem

B, --- Bus
t

Figure 1 Bystem Confipguration



3.2 FAULT TOLERANCE

3.2,1. FAULTS TOLERATED: The syatem ia tolerant to faults
in any unit (proceasor, bus or memory). The faults may be
the erroneous result of an action (calculation,
transmiaaion or storcage) or the failure of a unit to carry
out any action,

The syatem handles transient, and permanent faults,
treating long-term intermittent faults as permanent, The
reconfiguration procedurea can bring back into service s
unit that was at one time subject to faults but has since
recov- red or been repaired,

The cause of the fault (electrical, mechanicai, etc.) is
not of importan.e, the only consideration 1s whether the
regults of actions in replicated units agree or disagree,

independent multiple faults can be tolerated to any degree
depending on the extent of replication of the fuiction.
Correlated faulta both in hardware and software ar: not
tolerated to the same extent as uncorrelated fauits, The
loose synchronization of tasks assists in tolerating
faults which are correlated in time rather than function.
One-shot faulta do not cause removal or reconfiguration of
units from the system, The propagation of a fauit from
any unit to another can only occur if both units are
faulty,

3.2.2, FAULTS NOT TOLERATED: Multipie correlated faults
that are not detected by a voting procedure, or by
repeating the task, e.g., simultaneous identical failure
of two memory units when threefold replication is used.
Masaive faults that reduce the system to a size too small
to handle the computing load.

3.2,3, TECHNAQUES: Fault detection 18 carried out by
replication and voting. Other fault detection methoda
(hardware or software) are compatible with and can be
incorporated into the aystem concept., Fault correction
(or tolerance) 1s schieved by voting after replication in
most cases but can be aupplemented by other techniques
such as repetition or roll-back, The allocaticn of
resourcea to tasks can be changed ei’her when faulty units
are removed or when the mission demenda different fault
tolerance and/or computational power.,

3.3. NOVELTY: Lack of need for spectal hardware units to
faciiitate fault tolerance, Ability to t-ade off fault
tolerance with computing power, Applicab.lity of the
system concept to different memory or processor designs,

Proce isors

. -
”
1 2 K] 4 5 6 ..
( T
A X X ’ X
b
n ;x x]x
¢ X ‘ ! i
\
i ! |
, 1
I f x ! ox ! !
A l |
$ | +
E X v X N
~ASKS f H ! |
Y H
F i X X X
{
G xx:'(‘
H ¢
H A H ioX X
i !
! H
1 X f x . X
!
J X '(ix X X X
)
Figure 2 An Exsmple of Task/Procesaar Allocation

33

3.4, {NFLUENCES: The design is influenced by the need to
avold special hardware for fauit tolerance, freezing
fault tolerance techniques at design time, designs geared
to particular aize and speed computers.

3.5, HARD CORE: 1 don't mean anything by "hard core" in
the system described. I can imagine other system concepts
in which the term has meaning (but little utility).

4, JYISTAFICATiON

4,1, RELIABILITY EVALUATiON: By analysis, assuming
'neorrelated faults of equal probability in each part of
the system (chip, connector, cabie, etc.).

4

4.2, COMPLETENESS OF EVALUATION: Incomplete,

4.3, OVERHEAD: Variable, typically a 3-1 cost pensity is
pald for rault tolerance,

4.4, APPLTCABLLATY:
any environment,

General; the design is applicable to

4,5, EXTENDABILITY: Unlimited,
4,6, CRITICALITY: Multipioceasing is critical.

Multiprogramming is highly desirable (see Fig 2).

4,7, AMPLICATiONS: There are no impiications on the
hardware designers of proceasors and memories. The busses
are conatrained in the way units communicate, The
applications' software must be implemented so that input
data for a program is fe:ched by calling a general system
routine which carries out fault detection and correction,

5, CONCLUS1GNS
5.1, STATUS; A conceptual design of hardware, software
and fault tolerance procedures exists.

5.2, EXPERIENCE: Software design studiea show that the
time and memory requirements of the fault detection and
correction routines are reaaonable,

5.3. FUTURE: The projection is for an experimenial
version of the aystem to be built,

5.4, ADVANCES:
capability,

1/0 units with fault tolerance



SURVEY O FAUL[-TOLERANT COMPUTING SYSTEMS

Berry R. Borgerson, Computer Systems Reseerch Project
Univereity of Californie, Berksley, May 1972,

1. 1DENTLFICAT1ON
1.1, NAME: PRIME

1,2, RESPONSIBILITYT: Computer Systems Resesrch Project
(CSRP), U, C, Barkelsy

1,3, SUPPORT: ARPA - Contrect No. DAHC70 15 C 0724

1.4, PARTICIPANTS: Herbert B, Beskio, Principal
lnvestigetor; Roger Robarts, Priocipal Progrssmer; Berry
R. Borgerson, Hsed, Hardwers R & D,

1.5, START: 7/1/70

1,6, COMPLETION: ™ prototype to be running sbout 7/73

1,7. BI1BL10GL:

SBaskio, Herbert B,, Berry R, Borgerson and Roger Roberts,
"PRIME = An Architecture for Terminal Oriented Systems,"
Procesdings of tha 1972 SJCC, AFIPS Press pp. 431-437,

SBorgerson, Berry R,, "A Fail-Softly System for Tims
Shering Use," Digast of ta 1972 Internationsl Fault
Tolerant Computing Symposium,

*Quatse, Jesse T., Plerrs Gaulene and Donald Dodge, "The
External Access Network of e Moduler Computer System,”
Procsedings of tbs 1972 SJCC, AFIPS Press, pp. 783790,

Fabry, ¥. 5., "Dynamic Verification of Upsreting System
Decisions,” CSRP Document No, P=14,0, Uaiv, Californie,
Rerksley, Issuved 2/23/72,

SBorgerson, Barry R,, "Spontsisous Reconfiguratiom in e
Peil-Softly Computer Utility,"” CSRP Documesat Nn, P=15,0,
Univ, Californis, Ssrkeley, lssued 2/29/72,

SBorgerson, Berry R., "Dynamic Confirmationm of Syste™
1ntegrity,” CSRP Document No, P-19.0, Univ, Cslifornie,
Berkeley, Iseuad 4/24/71,

2, MOTIVATION
2,1, PURPOSE: Gemersl-purposs, ioterective, multi-access
computing.

2,2, PHYS1CAL ENVIROMMENT: Ground based

2,3, COMPUTING ENVIRONMENT: Remots access over telephome
1ices and eventually over the Arpanet.

2,4, COMPUTING OBJECTIVES: This is not the primary
motivetiog eres io our systes design, We anticipete thet
the origioal coofiguretion of PRIME will support asbout 100
users vith e voret cese respones time of less tban two
seconds for crivial jobs.

2,5, RELIABILITY OBJECTIVES: Secsuss we will be able to
repair units as they becoms feulty, wve ere aiming for
continuous evailability, The system parformames should
oever degreds below 75 of its peak capecity.

2,6, DYNAMIC VARIABLITY: Performancé camnot be
dynamicelly traded for relisbility. However, provisions
say someday be edded which will sllow dynamically tresding
performanca for iotreprocess integrity (See Ssctiom 6).

2,7, PENALTIES: The sffects of intraprocess dete
contaminstion (See Section 3,3,2) dus to system failuves
will strongly depend on the nsture and purpess of the
process, Thare ssems to be no wey to ganeralise about
this, If ths system itself were to rrash, this would o¢
doubt leed to @ loss of revenus if PRIME were transferrsd
to ¢ cosmercial envirommeat,

2,8, CONSTRAINTS: There ere no spacific constraiats of
sise, weight, and power. The self-imposed constraint om
cost 18 to try to build e feult-toleran’ systex tbet is se
closs in cost es possibls to say curvent system with
comperable power cad capabilitiss,

2.9, TRADEOFFS: (Too compliceted to dsal with brisfly;
see Sections 4,4, 4.6 mnd 6,)

34

3, DESCRIPTION

3.1, ARCHITECTURE

3.1.1. CONFIGURATION

3.1,1,1, INTERCONWECTIV™iY: Figurs 1 1s e block diagram of
PRIME, The Externel iccess Natwork (EAN) ellows any pro-
cessor to connect to any disk drive, external dsvice, or
other pr « Eech p7 hes three such indspeudect
peths into the EAN., The EAN ivity remains univer-
sel over the differant system sizes, Universel switchiog
b ell pr s and ell memory blocks is not provi-
ded, Instead, sech pr ealvays s to exectly
64K of mamery regerdless of the sise of ths system,

3.1,1,2. RANGE: The PRIME srchitecturs will usefully
sccommodate from 3 to about 30 p rs. Eech p

could connect to from 16K to 128K of primary memory,
Depandiog on the type of disk drives used, from 1 to 5
drives per processor would bs reesonabls, The current
system hes besn designad to operete with from tbree to
eight processors wathout rsquiring any edditional herdwers
or softvers design. Useful memory sises ramge from 64K to
sbout 256K. Disk drives range from sbout six to 24, Eech
procassor to be used 10 the initiasl implementetion of
PRIME will be @ Mete 4 (Digital Scieotific Corp.). The
Mete 4 1s ¢ gmnerel-purposs, 16-bit, 32-register, 90ne-
cycle time microprocescor. The mesory is 33 bite wide,
about 600 ns cycle, and sade from 1024-bit MOS chips., The
disk drives ere double (treck) density 23lé-type drives
thet heve bean modified to transfer informstion on two
heeds ot & tims, The {nitiel configuretion will hevse five
processore, 104K of memory, and 15 disk drivaes,

3¢1.1.3. CAPABILITT: The capability is not eccuretely
known et this time,

3.1.2, EXECUTIVE

3.1.2,1. MODES: At any given time, ome processor is
designated tbs Cootrol Processor (CP) while the rest
function as Problem Processors (PPs). User processes ere
run on the PPs, Multiprogramming is not used, but
processes ere overlep~wwapped. 1n order to schieve e very
high interprocess iotegrity, it wes decided never to let
two processes shere memory; hence, cooperstive-process
multiprocessiog is not possible with PRIME,

Figure 1 A Bleoh Diagram of the FPRINE Syetem
——my —
b | T | e e e | DINK @ . urmﬁ
R TVT m vy IWVICE VI
!
1
— e m—
L.
gad ] .
2]
- B TR
AN TLICATED
LIKE RSPUSLTS
16 TIvDAL |
FrUTIME

U oAb ll@ Tttt 1 1 T |

l I 110

LINL L -!i bl Rl K L
—— | Bl |

LA MR RLOCK () (G 1STE W -

| =



3.1.2.2, SOFTWARE: The system softwara is divided into
thres eections, Thers 1s the Central Control Memitor
(CQM) which runs on tha Tsrget Machine of the CP; the
Extansion of the Control Monitor (ECM) which rasides
directly in the microcode of each procesasor; snd the locsl
Monitor (LM) which runs on the Terget Machioe in the PPs,
The CCM 1e rasponsible for echeduling procesese, allocst-
ing resource, and consummating interprocese msseage
transfers, The ECM includes tha disk, terminal, and
comaunication controllere, logic for double-checking
critical CCM decisions, bootstrap logic, and some intelli-
gence to deal with reconfiguration. The LM containe the
file and working-set mansgement systems, The CCM doee not
get involved with a process sfter it has stsrted the
process up., The procedure followed by the CCM ie to
sllocate the necasesry rascurcss, initista the roll in,
and let tha LM aod ECM take over from thare. Tha CCM will
oot get involved sgain until the proceeces sither times out
or blocks itself, The LM desls only with user processas;
it 1s completely isolated from the reet of the eystem.
Because of thie, users will be free .. provide their own
LM 41f thay do no” like the standerd one provided,

3.2, FAULT TOLERANCE

3.2,1. PFAULTS TOLERATED: PRIME will tolerste all
internsl feulte. Thst ie, the system ie expacted to
continur opereting even in the presence of any erbitrery
softwsre or hardvare faults, The ayetem will reconfigure
to run without any piace of hardwere thet becomee faulty,
snd machanisms exist for limitf~g the effects of any
eotewsre feult, PRIME has bec. deeigned t( provide
continuous eervice to (almost) 81l terminals. ln most
cases, s faulty unit will be repaired ani returned tc
service before another fsilure occure. However, the
eyatem will still continus to operste with s suhstantiel
psrt of the rasourcas removed from ective use, The system
should slmost never degreds to below 75 percent of its
naximum cspscity. ln addition to comtinuity of some
ninimum esrvice, interprocees integrity violstions sre
preventad st all times; this includes the relstively
unstable periods between ths onest of & fault and the
detection and ieolation of the faulty unit,

3,2.2, PAULTS NOT TOLERATED: Only sanvironmantal faulte
are not tolarated by PRIME, The most common of thase
faults would be in tha A.C., power and air comditioning.
Since it ie essy to see how to back these resources up, no
sffort has besn made to incorporsts fsult tolerance with
raspact to these unite withiin PRIME, While PRIME as o
syetea will continue to run in spite of internsl failures,
individual procassee may occasionally get clobbared. Thet
ia, no specisl provisions have bean made in PRIME t¢
guarantee interprocass integrity. Hence transient
feilurss will frequently cause contsminstfon of
information {or eome process., Also hard failures will
often clobber one procese befors being detectsd. The most
serious disruption will probably occur when s diek drive
failes. When this hsppens, all of the processors thst ware
usiog that drive will be suspended until an operstor can
recover their data, either by moving the diek peck to
enother drive, or recovering froxm tepas in the unlikely
avent of # head crash. But even in this woret-cass
catestrophy, only s small pert of the usere (about 7
parcent in the initisl syetem) will ba sffected.

3.2.3. TECHNIQUES; The besic system-wide technique used
to schieve feult tolersnce is to ellow the system to
degrade grecefully by reconfiguring to run without any
favity unite., At the heart of the scheme i@ e distributed
erchitacture with e muleiplicity of all functionsl units
except the EAN, which 1s designed to fail soltly om 1its
own, Feult datection 1s sccomplished by e veriety of
nethods which include parity memory and buses, surveill-
ance tasts on each procassor sfter ssch job etep, a double
chack on all critical eyetem-wids decisions made by the
CP, and feult injection in such sreas as error detectore
and the seldom used reconfigurstionm logic. After a fsult
is detected, an initial reconfiguration csuses @ proceesor
not iovolved in the datection to become the new CP, This
virtual "hsrd-core” then ioitiatee disgnostics to locste
the faulty unit, isolste it, and reconfigure the system
to run ss efficiently as possible without it. A small
amount of dedicated hardwsre sssociated with aach
procaseor guarantess that the initial reconfiguration will
be sccomplished proparly. 1t is possible to logically
ieolste esch msjor unit at its system boundsriee so thst
the eystem can run fine-mesh disgncstics or exercies the
hsrdvare to sid in loceting the faulty component, 1ln the
case of & failure of the i(olation logic, sny unit cen be
dynsmically powered down to provide gusranteed isolstion
from the rest of the eyetem.

3.3, NOVELTY: The distributed nature of the system,
including the distributad intelligence in the form of the
E(Ms, provides e very jowurful etructure whereby feul:
tolerance is achievel without the use of any "reliable"
hardwers, Very high-parformance low-coet disk drivas have
bean incorporated in such a way ss to allow thesa devices
to be used es second level storage, third level storage,
and the swapping medium, By distributing these threa
functions over many identical physicel units, very high
aveilsbility is echieved et whet {s ectually a lowar cost
end with higher oversll parformance than would be possible
with three distinct types of units. PRIME sutomaticelly
responds to faults by reconfiguring to run without the
faulty unit, Since thare ia e multiplicity of oll
functionel unite except the EAN, it {s quite easy to run
without any particuler unit, Rather than make the EAN
“reliable,"” s more sconomical approach was teken wharsby
cerefully controlled fsilure modes wars deeigned into it.
This results in e feilure within the IAN manifesting
iteelf es o feilure of e small number of ports, which le
equivalent to losing whatever ie stteched to those ports,
and the system was slresdvy deeigred to handle that
eventuality. The reconfigurstion structure is aleo vary
interesting. Whenaver s failure ie detected, an initial
reconfigurstion tskes plsca which establishes e nevw
proceesor ss the CP. The new CP, which ie ome not
involved in the detection of the fsult, is then used eo
the temporsry "herd-core"” to initiate disgnostice, locsts
the feult if indead 1t exists, and remove the fsulty unit
from the syetem, The distributed intelligence of PFIME
has been used to provide double checking on all criticsl
system functiona, which in turn guarantees thet thers will
be no interprocess interference. Probably the most
unusual gensrel feature of PRIME with respect to fault
tolerance is thst it 1s self-diagnosing and self-repsiring
without incorporsting any "hsrd-cors."

3.4, INFLUENCES: Many previous efforts heva, of course,
influenced us, but no single syatem stends out as heving
spaciel influence,

3.5, HARD=CORE; No, there 1s no "hard-core" 1in PRIME,
Instead, the concept of s "floating hard-core" exiats
whareby a working procassor i{s presead into service as the
Cont.rol Processor wvhenaver s malfunction is detected,
This ie consietent with the overall system philoaophy of
not having any "relisble"” hsrdwsre anywhers in the system,

4, JUST1FICATION
4,1, RELIABIL1TY EVALUATION: Reliability will be
demonstreted by stimuletion of faults.

4,3, OVERHEAD: The cost of tha edditione! hsrdwsre thet
hes been incorporsted in PRIME specificelly for feult
tolerance is lees than 10 percent of the totsl hsrdware
cost of the system. Lese than 10X of ssch processor's
usaful time is devoted to fsult-’_lerant functions, since
the surveillance programs sre run during whst would
othervise be 1dle time whils processes sre being swepped.

4,4, APPLICABILITY: PRIME has been very cerefully
designed to perform econcmically in e particulsr environ-
ent, 1f it was to be used in another environment, s
detailed analysis would heva to be performed to determine
vhat changes would hsve to be made to ellow it to parforw
adequstely in the new environment, 1ln perticuler, most
other potantial envircnments would require thet steps bs
taken to gusrentes intreprocess integrity.

4,6, CRITICALITIES: The choice of disk crivas is quite
critical since s low cost/bit is cecssesry as wall ax o
high bandwidth dus to the different functions these drives
perform, Since 3330-typs drives were not svsilsble when
thie dasign started, 23lé~typa drivee were selected and
nodified to transfer st RMHz, Aleo, the EAN had to be
carefully designed with well-epacified failure modes,
Howaver, the primery memory and the proceseors sre simply
"off the shelf" items, As for goale, the decision to not
provide intreprocese integrity checks has been cersfully
exploited in the design of PRIME and has provided e vary
subatantial cost sevings.



Response, Barry R, BORGERSEN, continued

4.7, TMPLICATIONS: Heevy relisnca ie pleced on periodic
checking of herévere rether than concurrent checking,
Thus, the skility to inject feulte into the eppropriuta
ereas has been e difficult requiremsant pleced on ell of
the herdvere designers, Tha most notable softwere
requitement iupassed by the basic deaign is the cleer
divieion of tbe opereting system into three perts, oma of
which can be furniebed by e user. Tha only significant
requirement pleced on ¢ user is that hs must be aware that
no intreprocess integrity chec's era ~e’s (just like in
all currant time-ehering eyscems)

5., CONCLUS10NS

5.1, STATUS: Tha deaign of PPIME is about 95 percent
complated, and implamantatior has bagun on both tha
hardwera and softwere, Tha first version cepabla of
raconfiguring in tha preeent of a failure should ba
runing by August, 1973,

5,2, EXPERIENCE: The main conclusion that tha respondent
can make ragarding tbe deeign of PRIUHE is that by aomewhet
limiting the goal of tha PRIME system, it was poesibla to
craata a eystem thet should axhibit excallent feult-

tolarant cherecteristice ot ¢ such lowar incrementel cost
than tbet of any other feult-tolarant system known to him,

5,3, TYUIURE: Tha near future will be davotad to building
PRIME, After tbat, svaluation end tuning will take placa
wvith connection to the Arpanet vary likely,

5.4, ADVANCESt It seams thet the most eignificent
davelopment thet would aid the PRIME system would be tha
availability of a ganaral-purposa, ealf-checking
proceseor. Since 100 percemt self-checkability ie
extremely difficult to design into a processor, the baat
course of ection here seems to ba to wait for LSI
procegeore of eufficient power to he built. Thaaa
procasenrte should be 80 inexpeneive, compared to tba rast
of the herdware cost, thet running two of them
simultaneously and compering outputs should ba a very
ettrective procadure economicslly, 1n fact, tba current
procaseing elemsnt in PRIME could ba broken into several
subprocessors: one for communicstions, ona for the diek
controllar, ona for tha terminal controller, two for tha
Target Macliina, atc, Probebly only tha Targat Machina
procassor would heve to be duplaxed bscesuse tha others can
have indapendent checks on tha velidity of their results,
With thie procadure, intreprocese integrity would ba
possibla at an insignificant incremantal cost,

6, COMMENTS: T eagarly asweit the rasults from this SRI
study., I heve axperianced / great deel of difficulty
locating any other afforts et designing and building whet
I cousider to be truly grrcafully degrading salf-
rapairing eystems. Moet f the sffort in feult-tolerant
computing to data seems t.: ba canterad eround military
systems, Or aven morsso, /round space exp.oretion eystems,
Thie typically dictetes tiiat a fixed amont of computing
power be mada evailabla a: sll times; hance, the lack of
action around fail-softly seystems. Of courma, by
providing fault tolarance through grecaful dagredation,
very eubstantial coet esvinge can be raalized over the
"radundant” method’, In eddition to allowing the aystem's
parformance to dagrede in the pressnce of feults, ve have
choaen not to guarantea intreprocess intagrity, The comb-
ination of these two concsssions has ellowed us to daeigm
e vary aconomical feult~tolarant time-shering aystew,
There is little doudbt thet the anticipatad dagradetiors
will be quita ecceptable for s wide Traage of applicarions,
The lack of intreprocsse~integrity guarantess, hows.er,
will be e limiting factor in expanding this erchitecture
into other eress. Of couree, herdvars provieions could ba
added to gusrantee introprocese integrity, and tha
resultant system would still be more economicel than moet
other feult-tolarant systems, A mors promising epproach,
and one vhich we will undoubtedly axplors in tha
raeaonably neer future, is to leave tha herdvera ss ia end
run critical progrems twice on twe different proceesors.
This vill ellow the system cost to remsin very low, and
will aleo allow intreprocaas integrity guarantees. Thus,
only those proceaeas that thet need th'e guarantee will
have to pey for thie added festure, A final sspsct of tha
PRIME architecture thet sbould be investigeted is whathar
it can more economically provida a guarantaed computing
power in eoms anvirmmmente then can be provided by a
"redundant” eyetem, 1t can ba overbuilt by an smowmt
sufficient to guarantae thet ite degraded comdition ie
powerful anough to handle tha necassery computing, with
beckground puewr available most of tha time,

SURVEY OF FAULT-TOLERANT COMPUTING SYS1.MS

Jacques J, Delamare, Electronique Marcel Dassault
(E.M.D.), 55, qusi Carnot, 92 - Saint-Cloud France, June
1972

1. IDENTIFICATION

1.1, NAME: MECRA (Maquette Experimentale de Calculateur
a Reconfiguration Automstique),

1.2, RESPONSIBILITY: E.M.0. (Electronique Marcel
Oasssult),

1,3, SUPPORT: Support hss three sourcea: 0,G,R.S.T.
(Delegation CGenerale a la Recherche Scientifique) with
preliminary studles;0.R,M,E. (Direction dea Recherchea et
des Moyena d'Essats) with realization of MECRA project;
E.M,0, (Electronique Marcel Dassault) in eack case.

1,4, PARTICIPANTS: Jacquea J. Delamare, Gerard Germain,
Jean-Claude R, Charpentier, all of E.M,0., snd four
researchers from "Centre de Calgul Numerique de Toulouse",

1,5, START: May 1970

1.6, COMPLETION: July 1972, thia conaista of a
demonstration of fault tolerance and reconfiguration
capabilities, Evaluation of reliability performance is
expected to be in Autumn 1972,

1.7, BIBLIOGRAPHY: "The MECRA: # Self Reconfigurable
Computer for Highly Relisble Proceaa", 1EEE vol C=20 no.
i1, pp. 1382-1388, Nov, 1971, A report alao due end of
1972,

2, MOTIVATION

2,1, PURPOSE: The aystem waa conceived for research in
fault-tolerant computer architecture, feaaibility, and
reliability evaluation, The idea for further development
is a real-time medium-sized computer for aircraft.

2,2, PHYSICAL INVIRONMENT: System operates {n EMD
laboratories,

2.3, COMPUTING ENVIRONMENT: A single peripheral allows
communication with PECRA,

2,4, COMPUTING NBJECTIVES: Main objectives of the
praject were not computing objectives. However addition
and multiplication are performed with 11 decimal digita
plus sign operands. Complete sddition needs less than 300
microsec, Such delays relate to the cycle time of
microprogram memorv (1 microsec), to response time of
discrete circuite, to unused time {ntervale in each
microinatructior cycle, (allowing hardwsre modifications),
and lastly by the microsoftware package (sllowing
reconfiguration),

2.5, REL1ABILITY OBJECTIVES: Prsctical experience and a
concrete basia for evaluation auch ss:

rel{ability gain with different kinda of redundency,
hardcore contributfon in faflure probabilities,

hardcore contribution with di fferent architectures,
reliability gain with reconfiguration,

coat {ncrease in control with reconfigurability,

loat time due to reconfiguration (during end sfter),
hsrdcore response time with respect to computing time,
These reliabiiity objecrives were only of {nterest for

high probabilities of succesa (probabilities higher than
9.

2.6, DYNAMIC VARIABILITY: Computing speed but not
accuracy may degrade with reconfigurstion (20% max{mum),
Performance csnnot be exchanged for increased reliabiifity
such as : two proceasora each one having {ts own job, ’
switched to parallel processing on the ssme job and
checking ore another, ’

2,7, PE“ALTIES: Pensities from faulty operstion cen be
of seversl kinda: /Loss of time due to recovery processes,
les ned performince sfter self-reconfigurstion, loss of
service./ Manusl interventions have not been
invesrigeted, but will be necesasri ly Improved ss a

conseq .ence of self-testing snd aelf-hesling cepsbilities
of MECRA,

/SR1 note: The text enclosed in slashes {s an SR1
psrsphrsse of the originsl survey response,/

2.8, CONSTRAINTS: Circuitry size might not exceed four
times the size of the equivelent irredundsnt computer,



Responsa, Berry R, BORGERSEN, continued

4,7, IMPLICATIONS: Heevy ralisnce is pleced on paricdic
checking of hardware rathar then concurrant checking.
Thus, the sbility to injact feults into tha appropriets
areas has been e difficult requirement pleced on all of
tha herdvera designare, Tha most notabla software
requirement imprsad by the besic design is tha clear
division of the opereting eyetem into threa perts, one of
vhich can be furnishad by e usaxr. The only significant
raquitement pleced on a wsar {s that he must be awars thet
no intraprocese integrity chacks ere made (just lika in
all current time-shering eystems),

5, CONCLUS1ONS

5.1, STATUS: The design of PRIM% {s about 95 perceat
cosplated, and isplementation has bagun om both the
herdvare and softvara, The firet varsion capabla of
raconfiguring in tha present of e failure should be
running by August, 1973,

5.2, EXPERIENCE: Tha main conclusion thet tha respondent
cau maka regerding the design of PRIME {e that by semewhet
lzditing tha goel of the PRIME eystem, it was poseibla to
creata a systen thet should exhibit excallent feult-

tolarant cherecteristica at e much lowsr incremantel cost
than thet of any other fault-tolarant system known to him,

503, FUTURE: Tha raer future will be devotad to building
PRIME, Aftar that, evaluation end tuming will take plece
with connaction to tha Arpanet wery likaly,

5,4, ADVANCES: 1t sesma thet tha most eignificant
development thet would aid the PRIME system would ba the
aveilability of e ganaral-purposa, self~checking
processor, Sinca 100 perecent r:li—chocknbnity 10
extremely Aifficult to deaign into e processor, tha best
coursa of ection hare ssams to ba to weit for LS1
proceseors of eufficient power to be built, Thase
processore should ba so inexpeneive, compersd to tha rest
of tha hardwara cost, thet running two of them
simultaneously end comparing outpute should be e very
attractive procedure ecomomically., In fact, the current
procroeing alament in PRIME could bs brokan into seversl
subprocessors: one for commmications, one for tha diek
controllar, ona for the tarainal controller, two for the
Target Mechinm, etc, Probably only tha Target Machine
processor would have to e duplexed buceuse tha others can
have indepandent chacks on the validity of their resulte,
With this procadure, intraprocase intagcity would ba
poasible et an insignificant incremental cost.

6, COMMENTS: I aagurly await the results from this SRI
study, 1 heve expariscuad e grest deal of difficulty
loceting any other afforic at designing and building whet
1 considar to ba truly grecafullr degreding salf-
repairing eystems. Moet of tha gifort in fault-tolarant
computing to dete sasms to ba céniarud around militery
systems, or even morsso, eround epace exploration eystems,
This typically dictatas that a fixad amount of computing
pover ba made available et all timea; hLenca, tha leck of
action around feil~-softly syetems. Of course, by
providing fault tolerence through grecaful dagradationm,
very substantial cuat sevings can ba reelizad over tha
"redundant” mathod:. In addition to allowing tha syetam's
parformanca to degreds in the presanca of faults, we heve
chosan not to guarantas intreprocess integrity, The comb-
ination of thase two conceseions hes ellowed us to dasipgn
a vary economical feult-tolerant time-sharing eystem.
Thara ie littla doubt that tha anticipatad degradetioms
will be quita eccaptabla for a wide ranga of applicetions.
The lack of intreprocese-intagrity guarantees, howsver,
will ba a limiting factor in expand.ng thie architacture
into othar arass, Of courea, hardvare provisions could be
addad to guarsntae introprocese intagrity, snd tha
resultant eystem would etill ba more aconomical than moet
other fault-tolarant eystems, A more promising approech,
and ona which we vill undoubtadly explore in thz
reasonably near future, is to laave the F=- jwera as is end
run critical programs twice on two diffarent procaseora.
Thia will allow tha eyetem cost to remsin very low, and
will aleo allow intraprocese integrity guarsatase. Thus,
only thosa procaseas that that need this guarsntaa will
hava to pay for thia eddad faeture, A final sspect of the
PRIME architecture that should he investigated ie whather
it cen more aconomically provide e guerantaad computing
power in eome environmente than can ba provided by a
"radundent” eystem, It can ba overbuilt by en asownt
sufficlent to guarantea that ite digraded condition ie
powarful anough to handla the nacessery computing, with
background pewar availabla most of the time,

SURVEY Or FAULT-TOLERANT COMPUTING SYSTEMS

Jscques J. Delamare, Electronique Marcel Dassault
(E.M.D.), 55, qusi Carnot, 92 - Saint-Cioud France, June
1972

1, IDENTIFICATION

1.1, NAME: MECRA (Maquette Experimentale de Calculsteur
a Reconfigurstion Automatique),

1,2, RESPONS(BILITY: E.M,D. (Electronique Marcel
Dassault).

1.3. SUPPORT: Support has three gsourceg: D,L.R.S.T.
(Delegation Genersle a4 la Recherche Scientifique) with
preliminsry studies;D.R,M,E. (Direction des Recherches et
des Moyens d'Essais) with realization of MECRA project;
E.M.D. (Electronique Msrcel Dassault) in each case.

l.4, PARTICIPANTS: Jacques J, Delamare, Gerard Germain,
Jean-Claude R, Charpentier, all nf E.M,D., and four
researchers from "Centre de Calcul Numerique de Toulouse".

1.5, START: May 1970

1.6, COMPLETION: July 1972, this consists of s
demonstration of fault tolerance and reconfiguration
capabilities. Evsluetion of reliability performance is
expected to be in Autumm 1972,

1.7. BIBLIOGRAPHY: "The MECRA: s Self Reconfigurable
Computer for Highly Reliable Process', IEEE vol C<20 no.
11, pp. 1382-1388, Nov, 1971, A report also due end of
1972,

2, MOTIVATION

2,1, PURPOSE: The system was conceived for research in
fault-tolerant computer architecture, feasibility, and
relisbility evaluation. The idea for further deve lopment
is a real-time medium-sized computer for aircraft.

2,2, PHYSICAL INVIRONMENT: System operates in EMD
laboratories.

2.3. COMPUTING ENVIRONMENT: A single peripheral allows
communication with MECRA.

2.4, COMPUTING OBJECTIVES: Main objectives of the
project were not computing objectives. However addition
and multiplication are performed with 11 decimal digits
plus sign opersnds, Complete addition needs less than 300
microsec. Such delays relate to the cycle time of
microprogrsm wemory (1 microsec), to response time of
discrete circuits, to unused time intervals in each
microinstruction cycle, (allowing hardware modificstions),
and lsatly by the microsoftware package (allowing
reconfiguration).

2,5, RELIABILITY OBJECTIVES: Practical experience and a
concrete basis for evaluation such as:

reljability gain with different kinds of redundancy,
hardcore contribution in failure probsbilities,

hardcore contribution with different srchitectures,
reliability gain with reconfiguration,

cost increase in control with reconfigurability,

lost time due to reconfiguration (during snd after),
hardcore response time with respect to computing time,
These reliability objectives were only of interest for
h;gh probabilities of success (probabilities higher thsn

2.6, DYNAMIC VARIABILITY: Computing speed but not
accuracy msy degrade with reconfiguration (20% msximum),
Performance csnnot be exchanged for increased reliability
such as : two processors each nne Laving its own job,
switched to parallel processing on the same job and
checking one another,

2.7, PENALTIES: Penalties from faulty operation csn be
of seversl kinds: /loss of time due to recovery processes,
lessened performance after self-reconfiguration, loss of
service./ Manual interventions have not been
investigated, but will be necessarily improved as a

consequence of self-testing and self-healing cepabilities
of MECRA,

/SRI note: The text enclosed in slashes is an SRI
paraphrase of the originsl survey response,/

2.8. CONSTRAINTS: Circuitry size might not exceed four
times the size of the equivslent irredundant computer,



3., DESCRIPTION

3.1 ARCHITECTURE

3.1.1. CONFIGURATIONS

3.1.1.1, INTERCONNECTIVITY: See IEEE paper. The basic
configuration is a microprogrammed wonoprncesaor with a
bus architecture, A restriction csn be seen here since
addresses sre binsry coded, whereas data are Decimal
Hamming coded. This has no importance for the purpose . f
the project, but would not have been used on a prototype

3.1.1,2, RANGE: Control Unit Configuration:
Maximim Minimum

4 counters 3 counters

3 spare counters 0 apare counrers

8 registers 6 registers

4 spare reglaters 0 spare registers

3 multiplication processors 1 multiplication processor
2 addition prccessors 1 addition processor
4 'and ' logic processors Jor2?

4 'or' logic processors Jor2

4 'exclusive or' processors Jor2

4 "inverter' blocks Jor 2

-

Note: Any logic function can fail completely and csn be
reconfigured with three other functions, In several casea
a failed logic function can be reconfigured with only two
oti.er function,

M mory configuration: Three memory blocks ~ 4 K 16=bit

words, Each memory block has its own addres. decoder
circuits., At each memory cycle a 48-bit word is read or
written; this word contains two identical words of 24 bitg

each, so thst any one of the three blocks can be declared
vold and the computer still runs if the other two operate
properly, Efficiency of address error detection reaches
50% on each memory block., After sny read restore cycle,
each eight-bit byte (6 bytes) is checked and is switched
or not on busses. Then error detection efficiency is 50%
with instructions or microinstruction (if there is only
one erroneous bit) and 100% with data {4f thzre is one or
two erroneous bit),

3,12 EXECUTIVE
3.1.2,1, MOOES: MECRA is a monoprocessor,

3.1.2,2, SOFTWARE: There are three working modes on the
computer: user mode, test~diagnosis mode, declsion and
reorganization mode.

a) 1In the USER mode the computer executes the user
program,

b) The TEST-DIAGNOSIS mode is set in motion in two
different ways to which two different programs correspond.
The first is set in motion by interrupts when a failure
has been detected by hardware checkers, The goal of this
program is to localize precisely where the failure .
occured. The second program is set in motion periodically
and its purpoae is to test the computer with the data
configurations which reveal failures best, This program
allows detection of the errors which cannot be detected by
the hardusze checkers (i.e., an erroreous data with correct
encoding), These tuyo programs updae a atatus table which
contains the status of computer components (failed or not,
number of transient failures), They also decide to stop
the computer when certain catastrophic failures occur or
to set in motion the decision and reorganization mode,

c) In the OECISION ANO REORGANIZATION mode, a program
analyrzes the atatus word (12 the status rable) of the
component: in which one of the two test-dlagnosis programs
has dete:ted a permanent failure and it decides either to
reconfigure or to stop the computer

3,2, FAULT TOLERANCE

3,2,1, FAULTS TOLERATEO: Any single fault is tolerated
in memories, arithmetic and logic units (since they are
mounted in a duplex acheme) or in logic units (quadded
redundancy). Any error detected on the busses, switches
the MECRA to interrupt programs, while all writing in
memcries, registers or counters is inhibited, Multiple
errors can also be tolerated in number of cases. Multiple
errors can lesd to repair or to loss of service as said
sbove (2.,7,).

3,2,2, FAULTS NOT TOLERATED: Faults not tolerated
include errors in the main control circuit, which leads to
8 design with an increased degree of microprogramming snd
uwinimised control circuita. Also not tolerated ave
errors undetected at the memory output, Power supply
failures have not been investigated in MECRA.

37

3.2,3, TECHNIQUES: One of the gosls of MECRA is an
investigation of as many fault-tolerance techniques as
possible, such as triple medular redundancy, qusdded
redundancy, duplex redundancy at very low level (clock)
and higher level (memories and srithmetic circuits),
random redundancy (counters, registers), error detecting
codes (Hamming d = 3) aud parity bit, repetition,
rollback, reconfigurati.n with removal without
replacement, reconfiguration with replacement, diagnosia -
stand-alone, preventive and emergency, local protections
of process snd dsta, These techniques are used statically.
It does not seem possible to describe these techniques in
detail in thia paper, since it would require a description
of the whole computer, Other techniquea were slso
investigated but not used on MECRA, such as atopping the
couputer during noisy periods, snd control of correct
microprogram linking.

3.3, NOVELTY: When the project started, two ideas
unusual in the literature were employed in MECRA: address
decoder redundancy in memories so ss to separate address
errors and data errors, aingle-error-free hard-cor:,

3.4, [INFLUENCES: A synthesis of efforts which came
almost exclusively from the U,S,A, - universities,
laboratories, and research institutes,

3.5. HARD-CORE: This is defined as a circuit,
interconnecting several redundant functions, whstever its
own redundancy level (it is a relative concept).

4, JUSTIFICATIONS

4,1, RELIABILITY EVALUATION: Reliability is not
demonstrsted, it is computed, in two steps using & model,
The first step concerns analysis and drawing a network
model, the second step concerns random failure assignment
into thc model. After a great number of trials, the
program furnishes results (e.g., curves, marginal
probabilities,,.).

4.2, COMPLETENESS OF EVALUATION:
now being tested,

Program evaluation is

4.3. OVERHEAP: Approximately 60% to 70% of total system
resources ure devoted to fault tolerance (same percentage
for iugic, cost. and time),

4.6, CRITICAILTIES: Use of decimal coded chsracters
seems not well- fitted to fault-tolerant computers, Thia
chenge could result in great savings in deaign. Other
pol.ts are not critical,

4.7. IMPLICATIONS: The basic design assumes low-level
integrated circuits, wtih a very small number of different
circuits,

5. CONCLUSIONS

5.1, STATUS: The system is now operating and will be
delivered in July 72, evalustion will follow during
October snd November,

5.2, EXPERIENCE: Everything is possible, except, perhaps
a sufficiently low cost, and reliable packaging snd wiring
of components, Note that LSI would put problems to
fault-tolerant computers because they need more pins to
check redundant functions before connecting all together.
This would probsbly lead to simultaneous vee of LS1, MSI
and smgll scale integrated circuits, Cow .oneu.
manufacturers have not yet taken into ar count
fault-tol2rance constraints, but they will probably do so
soon,

5.3, FUTURE: First prototype 1s projected 1976 - 1977,
Current computer ia projected 1980, Use: Missiles,
aircraft, real-time monoprocessors.

5.4, ADVANCES: Oifferent fault tnlerant computers. can be
roughly compared in t<rms of reliability versus mission
time; but this wi'{i fall back to evaluations of compcnents
and wiring MTBF. Such data, estimsted by constructors, do
not seem to give a sufficient common bssis for
evaluations, Theoretical and conventional data on
component MTBF seen to be needed for accurate comparisors
among different fault-tolerant computers,



SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

L. J. Koczela, North American Rockwell Corp.
3370 Mireloma Averue, Anaheim, California 92803, May 1972

1. IDENT1F1CAT1ON
1.1, NAME: A Three Failure Tolerant Computer Syatem

1,2, RESPONS1BIL1TY: Electronics Group, North American
Rockwell Corp.

1,3, SUPPORT: Manned Spececraft Center, NASA

1,4, PARTICIPANTS: L, J, Koczela, J, Jurison, D. Brosius
- North American Rockwell; P, Sollock ~ NASA,

1.5. START: 1/1/70
1.6, COMPLETION: 1/1/71 (design concept)

1.7, BIBL1OGRAPHY: A Three Failure Tolerant Computer
System, 1EEE Trens, on Computera, November 1971

2, MOTIVATION
2,1, PURPOSE: Resl-Time Central Guidance and Control
Computer

2,2, PHYSICAL ENVIRONMENT: Spaceborne

2,3, COMPUTING ENVIRONMENT: The computer system interacts
with avionics subsystems via a multiplexed data bus,

2.4, COMPUTING ORJECTIVES: 30,000 words of memory;
500,000 operetions/aecond apeed

2,5, REL1ABILITY OBJECTIVES: Must tolerate firat two
failures with no dsgradation in performance and third
failure with no degradation in aefety,

2,6, DYNAMIC VARIABILITY: Third failure could heve less
computational capacity.

2,7. PENALTIES: Would require manual intervention with
possible loas of life,

2.8, CONSTRAINTS: No physical constraints but a relative
weighting of importance between physical perameters.

2,9, TRADEOrFTS: Size, weight and power least important,

3., DESCRIPTION

3,1, APRCHITECTURE

3.1,1, CONFIGURAT1ONS

3.1.1,1, INTERCONNECTIVITY: Four redundant computers
interconnected by four voter switches at their 1/0
channels,

3.1.1.2, RANGE: 2 - 6 CPUs, no restrictions on word
length,

3.1.1.3, CAPABILITY: 501,000 operations/second

3.1.,2, EXECUTIVE

3.1.2.1., MODES: The executive may operats the redundant
computera in r.ny modes of operation: non-redundent
independe-. computers, multi-programmed, multi-computer,
and various combinations of redundancy such as comparison,
voting, etc.

3.1.2,2, SOFTWARE: Software control is equally diatributed
among the redundant computers - no central control exiata.

3.2, FAULT TOLERANCE

3.2.1, FAULTS TOLERATED: Any 3 faults, A fault can range
from a single circult element to a complete module such aa
e CPU failing. A failure haa no effect on syatem behavior,
The system actually tolerate more than three faulta of
many different types but it will tolerate st least any
three faulta.

3.2,2, FAULTS NOT TOLERATED: Software feults that ere not
caught in debugging.

3.2,3. TECHNIQUES: The technique used is replicetion of
hardvara with quedrupla redundancy, Computations are
performed redundently and reconfiguretion ia accompliahed
without removal or replacement after failure detectlion by
voting.

3.3, NOVELTY: Through the redundant use of adaptive
voters operating on the input/output of redundant
computera, any three failure can be tolerat=d.

3.4, INFLUENCES: None

3.5, HARD-CORE: No hard core exicts,

4, JUSTIFICATION
4,1, RELIABILITY EVALUATION: Extensive fault simulations
have been succeaafully performed,

4.2, COMPLETENESS OF EVALUATION: 1t is impossible to
verify a deaign goal of 100 percent confidence,

4,3, OVERHEAD: For triple failure tolerance, about 80%,
Iesa for lower failure tolerance,

4,4, APPLICABILITY: To many critical real-time control
syatems, industrial. space and defense applications,

4,5, EXTENDABILITY: The design can be extended to
tolerste different numbers of failures, eg. any two
failures, any four failures, etc,

4,6, CRITICALITIES: Requirement for 100% confidence in
tolerating sny 3 failures is very critical, lowering to 99
percent or so would reduce complexity snd cost,

4,7. IMPLICATIONS: Hardware designers must insure
independence of failures at computer I/0 interfaces,

5, CONCLUSIONS

5.1, STATUS: System design concept completed,
voter-switch detailed design completed, prototype hardware
of voter-switch currently under development,

5,2, EXPERIENCE: A very rigid failure tolerance
requirement can be met assuring that a minimum number of
failures will be tolerated,

5.3. FUTURE; Possible use on space shutt.e program

5.4, ADVANCES: A significant area that can enheance the
state of the art in designing fault-tolerant computers ia
analysis of failure modes of components and computer
subsyatems in depth., Another very important area is
error-free software,

6. COMMENTS: Much of the work on fault-tolerant
computers is dedicated to single failures at the gate and
circuit level, Unfortunately, in many cases this is not
applicable to real world failurea when considering
computers mechanized from state of the art LSI integrated
circuits.

coumtea cowmtax urm ooum vaa I
'

Rikg !
|
i }

Compuler systesn mecharization

d: o] [
VY I wovetl | I | l
(i st IETO

sy

3

€, €

rw ey umr

VCS mechamization.



SURVEY OF FAULT-TOLERANT CUMPUTINC SYSTEMS

Jo 8. Miller, Intermetrics Inc,
701 Concord Ave, Cambridge, Maes, 02138, May, 1972

1, IDENT1FICAT1ON: The eyetem 1s referrad to only as the
Intermetrics Multiproceeeor (occasionally abbreviated
IMP). It is eponeored by the NASA Manned Spacecraft
Centsr, Houston, Texas. Personnel pParticipating in the
deeign, in addition to myself, are W, H, Vendever, A. L.
Kosmala, S, F, Stanten, S. J. Schwartz, and A, Avakian,
The pruject began in Juna, 1969, and has continued to
dete, except for a thirteen-month interval betwean the
original contract and the curren! one, which euda in about
two months. Ons report haa been publiehed: '"Final
Report--Multiproceseor Computer System Study", by James S,
Miller, Daniel J, Lickly, Alex L, Kosmala, and Joseph A,
Saponaro, in March, 1970, A second report le presently in
preparation, The work has been design~only; no hardware
1s involved.

2. MOTLVATION: The system ia oriented towards the
general-purpoae computational requirements o a manned
orbiting space stetion of ebout the 1980 time period., Its
expected uses include reel-time statione control and
data-acquieition functions, plus interactive snd batch
data processirg operstions. The performance objectives
are soft, but a real-time reeponse of 5 ms or better, and
an equivalent of two million additiona per eecond for a
three-procassor configuration seem adequate,

Because no hardware is being deeigned, no epecific
reliability figure has been imposed, The use of the
system for control of the apace atation iteelf pleces
heavy emphasis upon continued operation, at reduced
performance in the presence of faults. Although we expect
that temporary outeges of the computer system will be
tolerable, our efforte heve baen directed at avoidsnce of
single~-point failure modes,

3. DESCRIPTION: Although an earlier design favored the
use of a single internal bus connectirg all wodulee, with
caches et each proceesor incorporated to diminieh traffic,
we have now settled upon a more conventional croeebar-like
network, Each processor and main memory module possesees
a bus, as does the I/0 controller. Secondary storage is
accesged via the latter unit. Configurations of up to
elight processors, and ae few es one, are planned, with
nominally three, A 32-bit word, with additional bits
added for error-detection, has been chosen.

A full complement of multiprocessing is provided by the
system software, Processea may be dependent or
independent of each other, Eech processor is
multiprogrammed by a ''flosting' operating system executed
by any processor, as neceeeary. Interprocess
communication is eupported, and proceases may field their
own itterrupts if they choose,

The instruction set of the processor is designed to
support the erecution of high-order block-structured
languages, such as Algol, PL/I, and HAL, the last being an
Intermetrics-designed language aleo eponsored by NASA/MSC,
The instruction set eomewhat reeemblee that of the
Burroughs B6700, although eubetantial differences have
been introduced., 1t is planned that only high-order
source languages will be supported., The system is
designed to tolerate "all" faults in the hardware,
provided that second, independent, faults do not occur
before recovery action is complete, Our experience with
the error-prone discipline of software restarts on the
Apollo program hes steered the deaign, Compreheneive
error-detection fscilitiee ere provided in the herdware,
80 that detention ie immediate and highly probsble,
Furthermore, eufficient redundant information ie
malntained in independent locations so that the opersting
system end hardware capabilitiea are adequate to continue
exzcution of all processes (subject to reduced performance
limitations) withonut explicit perticipation by application
software,

39

Processors are dually-redundant to provide complete
error-checking capability. Instruction execution is
devised so that inputs are always preserved until
error-free ccmpletion is signalled; thus re~try is always
possible. Processor state information i{s maintained in
local memory which 1s externally accessible, so that
execution of an instruction interrupted by a processor
fault may be resumed by another processor if re-try proves
unsuccessful,

Mzin memory is dynamically time-multiplexed, using
vsrieble-size segments, similar to the B6700. The
read-write funciions of the memories ara implemented in a
way that enablee duplicate utorage of informaiion when
this is specified via the high-order-language. Procedure
code and other read-only data wi'l be resident in
secondary storage, and thus need not be duplicated in main
store, Variable data may or may not be stored doubly; 1f
not, the owning process will be marked for termination if
such data is destroyed through memory fault. The
duplicate storage of specified data, although supported by
hardware, is relatively transparent to the memory
management goftware; no epecially-designated memory
modules are used,

4, JUSTIFICATION: The design is relatively complete, but
has not been evaluated by any formal procedure, Somewhat
deliberately, it wss bssed on working architectures to
reduce the number of possibilities for unanticipated
difficulty.

As mentioned above, processors are duplexed, and some
information contsinad in main memory 1s stored
redundantly, An additional "overhead" for fault-tolerance
is triple-redundancy in certain access-elements of main
memory, and the 1/0 controller.

In our judgement, the system we heve designed 18 suitable
for impizmentation in any application where transparency
to faults and continued operation are worth the cost of
the redurdancy., 1t is emphasized that comprehensive
error-det. “t .on, apart from recovery, is responsible for
much of ti.z additional cost,

No claim is made that the system ie tolerant of software
flaws, However, the insietence on use of high-order
language ia expected to reduce the probability of such
errors, both by meking their commission less likely, and
by implementing error-detection features in the langusges
and compilers. Run-time checking will be provided via
hardware features (where possible) and by
compiler-inserted code to at least signal the occurrence
of software misbehavior, before tke effecta can propagate,

5. CONCLUSIONS: Intermetrics believes that its
fault-tolerant HOL-machine would be cost-competitive with
4 "conventional" system manufactured in the same quantity,
since the memory saved by usage of HOL instructions is
expected to be significant. Further development will be
pursued,



SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS

Donsld C. Wallaca
Stanford Resaarca Instituta, Manlo Park Ca, June 72

1, IDENTIFICATION
1.1 NAME:COME¥- Online o-der handling syaten

1.2 RESPONSIBILTY: P,C.Ssrvica Corp. (aubsidiary Pscific
Coast Stock Exchange)

1.3 SUPPORT: Membsr firms of PCSE
1,4 PARTICIPANTS: Member firms of PCSE

1.5 START: Contract lst 17 Novembar 1967

1,6 COMPLETION: System accepted - 4 December 1969

1.7 BIBLIOGRAPHY: Tha most accurate dasription of the
COMEX 1s the final documentiion delivared with the system,
Documents *

Specificsiion for dats procagsing and communication
aquipment for Pacific Coast Stoca Ex~hange PC Service
Corp., 1967

Proposal for Real=-Time Ordar Handling System BBN
#p68-DE-01,4 August 1967

Contract for Real=-Time Order Handling System for Pucific
Coast Stock Exchange BBN/PCSE,17 Novamber 1967

2, MOTIVATION
2,1 PURPOSE: Raal time odd-lot order execution

2,2 PHYSICAL ENVIRONMENT: Ground based

2.3 COMPUTING ENVIRONMENT: The syatam gerves two trading
floors, one in Los Angales, the other in San Francisco.

2,4 COMPUTING OBJECTIVES: COMEX ia designed to handle
virtually all low-spesd tslatype spaeds, levels and codas.
It appeara as a noda on each of tha connectad broker firms
communication networks and must conform to the line
protocols snd hardwsra constraints of thst network. The
design objectives were ror 64 "nodea" in LA, and 64 in
SF., and for a maximum measage-switching traffic of 25,000
ordera/transactions per dsy.

2,5 RELIABILIT/ OBJECTIVES: Tha system was designad to
provide 992+ uptime and with a no "message lost” criteria,

2.6 DYNAMIC VARIABILITY: The system is designed so that
order entry is parformed in real time, but the order
execution process may lag an arbitrsry pariod of time. In
operstion this lag never exceeds 20 minutes (approx.??),

2,7 PENALTIES: COMEX has various degrees ~f degradation,
the ultimate being total manual oparation and axecution of
the orders by the spscialists on tha trading floors.
Esoteric softwere/hardware malfuncticns could causa
extremly large manual intarvention prouleme as ths syatsm
18 reslly buying and salling stock on the behalf of
members of the sxchange,

2.8 CONSTRAINTS: The PCSE is really two exchangas with two
diffarant trading floors, one in Loa Angales and one in
San Francisco., For relisbility raasons ths systam is
fully redundant. A PCSE constraint on tha systsm was that
the syatem ba equally split bstween tha two sites,

3. DESCRIPTION

3.1 ARCHITECTURE

3.1.1 CONFIGURATION

3.1.1.1 INTERCONNECTIVITY: See diagram which shows the
twin IBM 360 computers and the 680 systems aach of which
includes s OEC PDP8 computer,

3.1.1.2 RANGE: The system is really two systsms running in
psrsllel. It is sensible to run them as singla units or a
fully redundant system. Two configurations ars possible:-
Non-partitionad trading flocrs:

LA-rsmota680, SF-1ocal680 and SF=360

SF-remota680, LA-10cal680 and LA-360
Partitionad trading floors:

SF-local680 and SF-360

LA=10cal680 and LA=-36C

3.1,1,3 CAPABILITY: COMEX consists of two (2) 360/50
computers plus tha front-end communications systams,

40

3.1.2 EXECUTIVE and opersting system: COMEX runs under
IBM/360 DOS with 1ta fixed nunber of multiprogram
partitions option,

3.1.2.1 MODES of operation: The order execution process
runs in a high priority psrtition of DOS while normal
operstion of PC Service Corp. computer operaticas are
being run in other "fureground” and the bsckground
psrtitions. Tha communicstion process (in the 680's) 1is
dedicatad snd allowa o other functions.

3.1.2,2 SOFTWARE organization: Basically the 680's do
character assembly (bits), Iine protocol interpretation
{answar back, echo, etc...), message segment assenbly, I/0
buffering, transmission to Iocal and remote 360's. The
%0's do message switching, code translation, message
decoding (syntax snalysia), order queuing, dacoding of
NYSE and AMEX tickers (identify tradas), axecute queuved
orders, send confirmations to broker and specislist.

3.2 FAULT TOLERANCE

3.2,1 FAULTS TOLERATED: Essentially tha system will
tolerate sny or s11 failures in a single system (1.e.,
bsckup or primary).

3.2.2 FAULTS NOT TOLERATED: Any simultaneous failures in
Loth the primary and backup eystem causes loss of
integritry of the data files. This 1s considered a
catsstrophic event and some manual correction and
intervention for order execution and notification will be
needed, (To my knowledge this has only occured onct in
the almoat three yesrs of oparstion.)

3.2,3 TECHNIQUES:

HARDWARE: The COMEX system 1s .ompletely reuundsnt
(two of everything), snd both systems run in parallel
The major design criteris was that nothing ahould hap) en
in one aystem half that could adversly effect the ath.r.
“his led to the system interconnections (PCUj being
unidirectionsl and step-locked 1n a "here'sa word, take s
we s fashion, All TTY connections to the system are dual
dropped and thare ic a hardware interlock to prevent both
680 machines from outputing to a line st the same time.

SOFTWARE: The aoftwsre (s designed to be very
modular, and no control flow exists betweer. functional
routines. Control flow 1s betwean the COMEX scheduler/
executive and asch fun_tionsl module, Data ia passed from
function to function by mesns of stscks and lists, and
stsndard system global .outines are used to accomplish
this. Both systems are sctuslly performing the entire
order execution task in parallel and thera is really no
communicstion between them. The ¢nly difference ia thst
the "bsckup" system is not outputing transaction
confirmstions and order receipt notifications, The backup
aystem maintains a Gueue of the Iast "n" messages to each
line in the system, When wwitchenver occurs, these
messagea sre output to the specialists/brokers with a "may
be duplicate” tag.

3.3 NOVELTY: The interconnection of the DEC 680's and the
5/360's 1s accomplished without re uiring modificstions or
additicns to th: IBM opersting aystem or providing
"special” 1/0 nodules, The 580's (two of them) have a
$/360 channel eguivalent (FCU) that talks to ihe IBM 2841
disk controler with the two channel feature (8100). Thia
18 the equivalant of having two 360 systems talking to one
digk system. Thia is a stsndsrd IBM configuration
possibility (though not supported hy IBM software). If
the usar 1s willing to accept implementing his own
read/write lock mechanisms there is nothing in the IBM
systea to preclude this moda of operation, Given a'l of
the above it is now possible to write a communicationa
system strictly at the user level using standard IBM I/0
software. Data just "sppeara” on the disk and ia resd
into tha 360 and 1s in turn writtsn on the disk and Just
"dissppears”. The dsta from the 680's is written as a
sequentislly ever growing fila, capturing an entira day's
transactions., This allows "rerunning’" a day's
transactions in resl time to find obscure buga,

3.4 INFLUENCES: After apending "avers. .ears working on
modifiad or bastard 360 Systems and realizing the effort
leval to maintain these systeme given cle fraquency of new
IBM releases, it seamed insane to design a system that
rslied on any thing excspt tha most rudimentary features
of ths IBM monitor, Ths approach dascribad has proven
vary successful in over three years of operation. To my
knowledge no problems have been encountered due to the
monitor/ Comex system interfsce,



4. JUSTIFICAT1ON

4.1 RELIABILITY EVALUATION: The oystem has met and
exceeded the deaign criteria over the laat 2 yeers of
operation,

4.3 OVEFHEAD: Since the system is totally redundant, at
least half the :oet of the communications front end is due
to reliability requirementa, The reliabilitv yequirements
of the ayetem probably did not contribute aignificantly to
the sof:ware design, and probably helped in the checkout
end operazional phases,

4.4 APPLICABILITY: The syetem hes general epplicebility
for communications and mesaage switching aystems where the
bese computer facility must be IBM (for what ever
reasone), It offers significant cost savings when
compered to an equivalent all-IBM equipment configuration,
Its novel interfacing technique allows the usere to
concentrate on the applicetion program and offers long-
term savings in effort by not having e modified IBM
operating system, The sys.om has apecific epplicability
to other amall or moderete si:ed atock exchangea both U,S.
and foreign,

4K MEMORY
MODULE
L)

H

TIME
INTERVAL
GENERATOR
»op-o
1/0 PROCESSOR ,
——{ TELETYPE .
MULTIPLEXER| 4 %
T ' //7
DIAECT MEMORY /
T ACCESS  CHANNEL 4(
l 7

'—"—--—q I e tLrinl
RS = L=
: R == ..1_4|,:i‘_.‘!-'-=
EIRES bl
i - = __l_ e it
i e
var| |
| |
||. B i
Il ]
Il e g
=gl |
L — = e i i
= | [ e o
L
ﬂ_ ]
SR ’t:
L.
LOS ANGELES
COMEX  SYSTEM

4.5 EXTENDABLILITY: There appear to be no obvious
extentions to the systen as far as capacity is concermed.
Two- or three-fold increases in throughput are possible
whereas factors of ten are out of the quration. Since the
next obvious exchanye automation task is either NYSE or
AMEX and the volum: of message traffic for those exchangs
ia ataggering. COMEX most certainly has no real logical
extension for the~=2 siruations, Specific experience and
techniques in de..ing with automation of a stock exchange
process may have general applicability,

4,6 CRITICALITIES: A specific goal in hardware design not
to exceed the "atate of the art" was imposed by PCSE to
gain assurance of reliability, This constraint caused the
selection oi hardware that most assuredly is obaolete by
today's standards (e.g., bit serial TTY interface),
greatly reatricting overall I/0 capacity (like maybe a
factor of 10),

5, CONCLUSIONS

5.1 STATUS. The sys:em is currently handling 15% of the
maximum message switching capacity of 25,000 order
transactions per day. It 1is undergoing significant
modification to handle round-lot traffic, which
potentially will increase load to 50X of capacity within
the next I8 months, Studies are underway .. evaluate
high-speed 1/0 capability.

5,2 EXPERIENCE: Overall system operstion has been highly
satisfactory to the PCSE,

OIRECT MEMORY _
ACCESS CHANNEL | i & —
P———— — o —
- HLI|--§ - ']_]-|
LT 1
POP-8 s
PROCESSOR [T}

Pcu

MULTIPLEXER
DMDI

DIRECT  WMEMORY
ACCESS CHANNEL

POP 3
PROCE’ 3OR

¥ Vi B g
M MULTIPLEXER -
s —

THOE
INTERVAL
GENERATOR

o

4X NEMORY
MODULE
104

SAN FRANCISCO

PACIFIC COAST STOCK EXCHANGE

41



Werner Ulrich, Bell Labs
Neperville, I)linois 60540 May 1972

Essentielly, this quastionnaire represents the entire body
of publirhed materisl on maintenance espects of ESS, J
heve thrirefore taken the liberty of sending e bibliogrephy
in plrce of e completed questionnaire. You will notice
thet most of the erticlee ere quite brief with the
exception of items 1 and 2 which ere complete descriptions
of the No. 1 and No, 2 ESS maintenence plan, and item 3
which i¢ e longer erticle on e specielized deteil of our
trouble locetion manue) or dictionery approech,

The bibliogrephy, in eddition to erticles on No, 1 and No,
2 ESS, conteins items on our dete switching eystem (never
cosaercielly offered, item 5), the treffic eervice
position system (item 9), and e militery epplication of
No, 1 E3S (item 14),

BIBLIOGRAPHY

1, Downing, R, W., et el., "No 1 ESS Maintenance Plan,"
Bsil System Technicel Journel, Vol. 43, pp. 1961-2020,
Septenber, 1964,

2. Beuecher, H. J,, et el.,, "Administretion and
Maintenance Plan »f No. 2 ESS," Bell System Technicel
Journel, Vol. 48, pp. 2765-2B15, October, 1969,

3. Chang, H, Y. and Thomas W., "Methode of Interprsting
Diegncstic Dete for Loceting Feulte in Digital Mechines,”
Bell System Technicel Journel, Vol. 4b, pp. 289-318,
Februsry, 1967,

4, Telang, S. H., Heugk, C. and Seckler, H, N,,
"Meintenance of e Lerge Electronic Switching System," IEEE
Traneections on Communicetions Technology, pp. 1-9,
Februery, 1969,

5. Aitcheson, E. J. and Cook, R, F., "No. 1 ESS ADF
Maintenence Plan,"” Bell System Technicel Journal, Vol. 49,
No, 10, pp. 2831-2856, December, 1970,

6, Nowak, J, S, and Tuomenokee, L. S., "Memory Mutiletion
in Stored Program Controlled Telephone Syetem,” 1970 IEEE
Internetionel Conference of Communicetions, pp.
43-32-43-45,

7. Chang, H, Y. end Scanlon, J, M., "Design Principles
for Processor Maintainability in Reel-Time Systeas,”
Proceedings of Fell Joint Computer Conferences, pp.
319-328, 1969,

8. Nowek, J. S., "Emergency Action for No. 1 ESS," Bell
Leboratoriee Record, Vol. 49, No. 6, pp. 176-179,
June/July, 1971,

9, Connet, J. R,, Pasternek, £, J. and Wegner, B, D.,
"Softwere Defenses in Reel-Time Control Systems," Second
Annusl Internetionel Symposium on Feuit Tolerant
Computing, June 19-21, 1972, Boston, Meesechusetts,

10, Almquist, R, T,, et el, "Software Protection in No. 1
ESS," 1972 IEEE Conference on Communicetions, June, 1972,
11, Katchledge, R. W., "Service Experience with No, 1 ESS
Equipment,” Internetionel Conference on Electronic
Switching, 1966 Procesdings, Peris, Edition Chiron, pp.
712-716,

12, Veughan, N, E., "Experience with the No. 1 ESS5,"
Internetionel Coaference on Elcctronic Switching, 1966
Proceedings, Peris, Edition Chiron, pp. 704-711,

13, Neugk, G,, "Eerly No. 1 ESS Field Exnerieaces, Part 1,
2-Wire System for Commarciel Implicetions,” IEEE
Trensectione on Communicetions Technology, Vol. 15, pp.
744-750, December, 1967,

14, Seckler, N, N., "Eerly No, 1 ESS Fleld Experience,
Pert 2, 4-Wire Syetem Zor Government and Militery
Imp)icetione,” IEEE Traneections on Communicetions
Technology, Vol. 13, pp. .751-754, December, 1967,

15, Johannesen, J. D., "No. 1 ESS Service Bxperience -
Softwere,” INEE Conference on Switching Techniques for
Telecommunicetion Networks, Conferance Publicetion No, 52,
pp. 459-462, April, 1969,

16, Steehler, R, E,, "No, 1 ESS Service Exparience ~
Nerdwere," IEEE Conference on Switching Techuiques for
Telecommunicstio> Networks, Conference Publicetion No. 52,
pp. 463-466, April, 1969,

42

Cept. L., A, Fry, Space end Miesile Syetems Organizetion
(SAMS0), Loa Angeles AFS, Celifornie, June 1972,

1, IDENTIFICATION

1.1 "AME: Moduler Spacecraft Computer
1.2 RESPONSIBILITY: SAMSO/SYT, Los Angelea APS, Ca.
1,3 SUPPORT: Not eveileble

1,4 PARTICIPANTS: Raytheon Company, Sudbury, MA.,
Ultresystems, inc., Newport Beech, Celif.

1.5 START: Project eterted mid-1971

1,6 COMPLETION: Archjtecture study completed January
1972, Other efforte continuing.

2 MOTIVATION
2.1 PURPOSE: Support of all eetellite dete processing
requirements

2,2 PHYSICAL ENVIRONMENT: In setellite
2,3 COMPUTING ENVIRONMENT: Hsrdwired to environment
2.4 COMPUTING OBJECTIVES: Approximately 200K operetions

per secornd, Memory expendable to basic 32 bit word format
with 64K words of memory.

2.5 RELIABILITY OBJECTIVES:
1ife

High reliability for 5 yeer

2,6 DYNAMIC VARIABILITY: Essentielly no variebility

2,7 PENALTIES: Loes of mejor aetellite functions
2.8 CONSTRAINTS: 25 pounds and 30 watta.
3. DESCRIPTION

3.1 ARCHITECTURE

3.1.1 CONFIGURATIONS: Not availsble

3,1.2 EXECUTIVE

3.1.2,1 MOLES: Intsrvuptible but not e true
multiprocessor
3.1.2.2 SUFTWARE: Not yet developed

3.2 FaULT TOLERANCE
3.2.1 FAULTS TOLERATED:
logic types,

Trarsient and permanent--all
Also cen toler: ' cetestrophic faults,

3,2.2 FAULTS NOT TOLERATED:
phyeicel damage,

Feulta resulting from major

3.2,3 TECHNIQUES: Replication; coding; repetition end
rollbeck; and reconfiguretion. Techniques used
etaticelly end dynsmicelly.

3.3 NOVELTY: Extensive dynamic redundancy

3.4 INFLUENCES: Not eveilable

3,5 HARD-CORE: Configuretion Control Unit is
triply-moduler-redundent, contrclling ell retries and most
reconfiguretions,

4, JUSTIFICATION: Not nvelleble

5. CONCLUSIONS
5.1 STATUS: Performing interpretive simuletion

5.2 EXPERIENCE:
applicetion

Architecture very auitable for intended

5.3 FUTURE:
5.4 ADVANCES:

Not eveileble
Not evaileble

6. COMMENTS: Fault-tolerent computers cen make ¢ major
contribution to long duration spece missione.



APPENDIX III
A HIERARCHICAL FRAMEWORK FOR FAULT-TOLERANT COMPUT NG SYSTEMS

Peter G, Neumann
SRI, Menlo Park, California 94025
IEEE Computer Society Conference
San Francisco, September 12-14, 1972

This work was Supported in part bv the Defense Advanced Resear:h
Projects Agency of the Department of Defense (monitored by ONR) under
Contract N00014~72-c-0254 and in part by NASA Langley Research Center
under Contract NAS-1-10920, No official views are implied.

ABSTRACT

A hierarchical design framework for fault-tolerant computing systems ig
considered here., The intrinsic flexibility and dynamic
reconfigurability which result greatly enhance the effectiveness of

System operation and System development,

INTRODUCTION

Recent efforts in developing large computing systems have led to the
conciusion that carefully conceived internal system Structure is
beneficial to the whole development pProcess, It is the basic contention
of this paper that such structure is especially helpful in the

development and operation of fault-tolerant Computing systems, in which

43



permits fault tolerance to be achieved at low cost, especially in
systems vith some real-time leeway. Various implications are cxamined.
The framework is applicable primarily to designs for new systems, It is
also suitable for the software of some existing systems. Finally, a
probiem is considered which is greatly simplified by employing the
hierarchical framework, This is the massive-transient recovery problem,

in which arbitrarily many unknown faults may have occurred.
FAULT-TOLER.::'E TECHNIQUES

A variety of techniques exists for increasing system fault-tolerance
/1=2/, Two basic types of techniques are usually found in execution,
static and dynamic, STATIC techniques involve preplanned actions with
no changes in the operating environment nr in the flow of :ontrol
("fault-masking" via coding, replication with voting, etc). DYNAMIC
techniques involve detection and diagnosis of faults, followed by a
non-trivial corrective action. Examples include repetition (e.g.,
rolling back the entire system to an earlier valid state) and
reconfiguration with or without replacement by spares (e.g., removing or
working around faulty units, and either substituting spares or accepting
a degradation in capacity). In certain cases, human intervention is
useful. Pre-execution techniques are also useful, e.g. proofs of
correctness of programs and design. Note that static techniques may be
found in dynamic usage, e.g., replication used only for particular
processes .t certain times (see below). Similarly, conceptually dynamic
techniques may appear in static usage (e.g., instruction retry in which

all eventual results are buffered making rollback trivial).
LEVE!".S OF STRUCTURE AND DYNAMIC RECONFIGURAT1ON

Many design approaches assume that essentially all single faults are
equally critical, In reality, certain faults may be far more critical
than others. Thus a system architecture is desired in which fault
tolerance techniques may vary in time and space, depending on curcent
usage and on the criticality of the errors which might otherwise result,

As used here, "dynamic reconfiguration" implies alteration during

44



execution of the fault-tolerance techniques, or of the rest of the
hardware and software, or both, The framework presented here
facilitates control ¢f such reconfiguration, It reduces system overhead
(hard and soft) due to fault tolerance, and increases the overall system
effectiveness.

Numerous levels at which these techniques for fault tolerance may be
applied are readily identifiable, These levels range from components to
modules to processors; from bits of memory to words to blocks to memory
modules to hierarchies of diverse types of memories (e.g., as in a
virtual memory, in which all memories in the hierarchy appear to the
external interfaces as a single level); from hardware to microprogram
through various levels of operating system software to command software
to user programs; from system elements to systems to networks of

systems,

A very significant system structure is given by Dijkstra /3/. Details
internal to implementation at a given level are made invisible to all
higher levels by the interfacc language at the given level. Capability
at that level is dependent on the capability of the next lower level,
and is precisely that provided by the interface language, The use of
these distinct "levels of invisibility", or "levels of abstraction", is
highly beneficial to system development. Two familiar examples are the
invisibilility of a cache memory to a program and the invisibility of

multiprogramming to a user,
THE HIERARCHICAL FRAMEWORK

The desired hierarchical framework for fault- tolerant computing systems
is as follows,

(1) Various levels of structure are established explicitly in the
design as levels of invisibility, Control and communication facilities
must be provided, (Useful mechanisms are known for this purpose, e.g.,
for coordinating among processes == both to avoid conflicts and to

permit sharing of programs, data and control -- and for communicating

45



among or within levels. Except for deadlock avoidance, these mechanisms
are fairly clear-cut,)

(2) Associated with these levels are possible configurations of
fault-tolerance techniques and possible modes of dynamic

reconfiguration.

(3) Analysis, simulation, and operating experience should be used to
study the relative effectiveness of these techniques under varying
demands and of reliable algorithms for deciding how and when to switch
among configurations. The suitability of the choice of levels should
also be evaluated,

An 1llustration of this framework is provided by Table 1. The first
column of he table identifies some typical levels of invisibility,
(Lower levels are toward the top of the table,) The second column gives
examples of concepts invisible at each level. The third column showa
techniques which can enhance fault tolerance at each level, and whose
details should be invisible at higher levels, Those techniques in the
table which lend themselves to dynamic reconfigurability are indicated
by an asterisk, The dynamic control over reconfiguration of such
techniques may be done internally, or via the interface language for the
appropriate level, Techniques at one level may be applied relatively
independently of those at other levels, if desired,

As an example, consider a system normally configured as five independent
multiprocessed processors, At the VIRTUAL SYSTEM level, each user (or
application environment) deals with a command language interface to the
system., At the VIRTUAL PROCESS level, each virtual process may in turn
employ one or more processes, either to exploit intrinsic parallelism
(e.g., simultaneously processing, moving a file, and printing) or to
provide redundant computations., At the VIRTUAL PROCESSOR level, these
proceases may be executed on the same or on different processors. The
configuration might on occasion include two processors in a comparison
mode with two identical processes (or with two different algorithms), or

three processors in a voting mode, or even in rare cases five in a

46



INVISIBILITY LEVEL
(axemplea)

INVISIBLE CONCEPTS
(examplas)

APPLICABLE FAULT-TOLERANCE TECHNIQUES
(examples)

Componants, chips

Modules

Functionel units:
Procesaors,
central, etc.

Memories

Input-output

Virtuel herdware

Virtuel processor

Virtual process

Virtuel memory

Virtual input-
nutput

Virtual aystem

Virtual network

TABLE 1.

Asterisks denote techniques

Tachnology details,

fabricetion methods

Board leyouts, pin
connections, timing

Processor elgorithme
Address celculetion
Bus control
Interrupts

Cecha mechanisms
Internal representaion
Internel configureticns
Device cherecteristic:

Medie propertias,
device dependence

Configuretions

Multiprocesaing--
processor multiplexing
for distinct processes
Array computing
Processor dispatching

Multiprogramming--
procasa multiplexing on
e virtuval processor
Process scheduling
Virtual interrupts,
procesa isoletion

Maltiplexing of memory
hiererchy: locetions,
relocations, beckup snd
retrieval, directories

1-0 multiplexing,
virtuel devicas
Exception hendling
Asynchrony, buffering

User multiplexing,

shering of data
Systemn correctness

System multiplexing

Intrinefcelly reliabla technolopies, good enginaering,
quality control, coding end fault-masking, raplication

Conservetive design, reliable connectors, environmentel
control; *Diagnosis, componant replication, replecement

*Autometic instruction retry, erithmetic coding

Bounds checking, memory protection

*Alterneta routes, coding, degradeble priority mechaniams
*Rece-free feil-operetional interrupt design

*Automatic reloeding

*Coding on memory contents

*Reconfiguretion around bed memory (via peging, de-interlace)
Use of reed-only memories to evold overwrite and aid recovery

*Coding on contents of medie and transmission
*Verificetion, checkin~. rereed and compere after write

*Configuration sensing end se:f-reconfiguretion, powering on-
off (e.g., spares), distributing end replecing power supplies

Coding,. handshaking on interprocessor communicetion, evoidance
of interprocessor interference; *Replication of physical pro-
cesaocra as e single (virtual) processor, voting es needed
*Reconfiguration and replecement within the arrey
*Configuration inaenaitivity vie checked teble~-driviug

*Replicetion of virtual processors for e aingle process
*Independent computational checks (via possibly distinct
procassea) es single viztual process; *Automatic rollback
*Explicit measures of permitted degradation per process
Sefeguerds on interprocess commmication (vs. lost interrupts,
blocked polling), evoidence of interprocess interference,
intreprocess protection (rings, capabilities, mastar modes)

*Replication of criticel date in verious pleces in hiererchy,
including relieble cheap beckup store; *Automatic rollback
Redundant pointers in directory atructure and iile meps to
permit fast recovary; Access control on files (e.g., vrite
protection) and the usa of pure procedure to inhibit loss of
criticel deta or programs end to aid in automatic rollbeck

Hendsheking to evoid loas of information; #*Status informetion
*Devica switchebility, media replicstion
*Coding (e.g., redundant heedars); *Flexible error handling
Race-condition end deedlock evoidence

Iaolation of usars from the system snd each other;
*Controlled shsring (1f eny); Self-identifying deacriptora
*Validation, evaluation of effectiveness end correctness
*On-line maintenence; Good compilers, diagnostics, debuggera

*Coding on intersyatem communication, alternate petha
*Detailed status of network control end network requests

Examples of techniques for feult-tolerence epplicable to verious levels of invisibility,
perticulerly ameneble to dynamic reconfigurebility,

47



voting mode. In these modes there may be 4, 3, and 1 distinct virtual
process(es), respectively, instead of 5 as in the fully multiprocessing
mode. (Several of these modes are also useful if some processors are
not cperational, in which case replacement is also desirable.) The
internal mechanics of such machanisms should be mostly invisible to each

virtual process,

At the VIRTUAL MEMORY level, device addresses are invisible, When being
actively used, a virtual memory page may in fact be found in various
states of recency and/or in various modes of replication on various
devices in the memory hierarchy, even in the absence of fault-tolerance
techniques. For example, in a paged environment, various instances of a
glven page may exist simultaneously in a cache-type memory, in primary
memory and in secondary memory, If it is procedure that is "pure"
(unchanged by execution), then the contents of all instances are
identical (barring errors); if it is data, the instances may differ,

In the present framework this natural temporary proliferation can be
used constructively to provide checkpoints, thus greatly facilitating
automatic rollback. This is especiall’ useful with various instances of

critical data.

At the MEMORY level, coding techniques offer very inexpensive
fault-tolerance, Only 8 redundant bits are needed to provide
single-error correction for 64-bit words in memory and arithmetic, & 13%
increase in memory cost. (The cost of error correcting circuitry 1is
small by comparison.) Coding techniques also lend themselves to dynamic
reconfiguration. One such approach involves different uses of a
particular encoding. Consider for example a code with Hamming (or
arithmetic) distance 4 for single-error correction and double-error
detection, When the multiple error rate is high, the code may better be
used for triple-error detection (accompanied by increasingly loud cries
for help). (Another example is using a byte-error correcting code as a
multiple-error detecting code.) A second approach involves varying the
encoding itself, e.g., changing the redundancy.

Similarly at the MODULE level, multiple arithmetic or functional units

48



tied to a control unit may be used in replication for fault tolerance,
in synchronsm as in the ILLIAC IV for handling parallelism in
computation, or independently., The first of these applications
substantially increases reliability, while the others may substantially

increase the computational throughput.

Explicit levels of structure are now evident in a few recent operating
systems. For example, the Multics protection hierarchy (see /4/)
provides successive levels of resilience to errors in its levels of
protectability, A spectrum of criticality exists with respect to
faults. Only malfunctions (hard or soft) involving the lowest software
level affect the viability of the system. Others have diminishingly
serious affects on the correctness of operation as the level increases,
e.g. aborting a user's process or one command. As with hardware,

software techniques for fault tolerance may differ from level to level,
IMPLICATIONS OF THE HIEKaRCHICAL FRAMEWORK

There are numerous advantages of this hierarchical framework. These

include considerations of reliability, computational capacity, and cost,

(1) A wide variety of techniques can be applied, each where it 1s most
effective, responsive to the needs for fault tolerance and computing
capacity, and subject to the cost factors. Each configuration can be
dynamically altered, based on the current usage of the system. (This
may affect more than one level at once.) The net cost of system fault
tolerance can therefore be reduced, especially if rarely used techniques
can be performed reliably in software. Considerable savings also result
1f occasional modest real-time delays are permitted (e.g., for
diagnosis, recovery and reconfiguration), further reducing the need for
dedicated hardware. Nonuniform costs also permit the reductiin of the
incremental cost of fault tolerance, If memory costs (including
secondary storage) dominate total hardware costs, then the relatively
small cost of redundancy in memory (e.g., lcgarithmic for single-error
correction in memory and arithmetic) may dominate the incremental cost,

even with replicated processors. If memory costs do not dominate, then

49



memory is relatively cheap snd logic-in-memory architectures (see below)
may be of interest., The framework also facilitates checkpoint
mechanisms which permit varying degrees of rollback as needed, involving
different levels of the hlerarchy. On-site maintensnce is also aided,

as are on-line interactive diagnostics.

(2) 1In general, computing capacity not currently dedicated to fault
tolerance is available for useful computing, assuming reasonable system
balance. It is desirable to have pools of modules, of functional units,
of processors, and of systems to configure among. The multiplicity of
each pool should be large enough so that the mesh of graceful
degradation is reasonably smooth and that the loss of any unit is not
serious. This increases the overall system effectiveness, in terms of

both computing capacity and fault tolerance.

(3) The intrinsic structure of the hierarchy enhances each stage of
system development, including the stages of designing, implementing,
documenting, debugging, certifying, analyzing, maintaining, and
modifying a system, At each such stage the notion of levels of
invisibility permits issues of fault tolerance relevant to lower levels
to be abstracted and analyzed, aiding in isolating any side-effects.

Thus the framework serves as a useful model as well,

(4) Recent technological advantages (e.g., 1LSI) significantly improve
the cost-effectiveness of many of the techniques. These advances should
also stimulate new architectural directions, such as multiprocessors
with considerable multiplicity, and distributed-logic or logic-in-memory
designs. The latter case involves large arrays of small memory
elements, each containing processing capability, These arrays may be
organized into subarrays of subarrays, possibly with structures

geometrically oriented toward the problem to be solved.
There are of course many questions left unanswered.

(1) Questions of overhead and reliability resulting from the control of

such systems must be examined carefully, It appears that the overhead

50



can usually be kept small, except when fault-tolerance limits are
aﬁproached. It 1s obviously desirable that the mechanisms for
controlling reconfiguration must themselves be fault tolerant, thrash
resistant, and reconfigurable. Interference problems and

intercommunication must also be handled reliably.

(2) This framework seems particularly effective for large
general-purpose systems, How effective it can be under various
circumstances, e.g., for small systems, for those with tight real-time

constraints, requires further study.

(3) How can the various tradeoffs among fault tolerance, computing
capacity, cost, overhead, etc,, be characterized? Under what
circumstances is it desirable to reconfigure? What kind of limiting
behavior occurs as computing capacity or fault-tolerance capacity is
reached? What are the penalties associated with having too many or too
few levels? What happens to the notion of the "weakest 1ink"? Can it
be distribuvted among less weak links? How does it shift during
reconfiguration?

THE MASSIVE TRANSIENT RECOVERY PROBLEM

As an example of a specific problem which can he greatly simplified by
the adoption of tie hierarchical framework, consider the "massive-

transient" recovery problem:

A correlated fault source (e.g.,a power surge or a bolt of lightning)
has left all units of the system suspect, perhaps introducing both
transient and permanent faults., The problem is for the system to
diagnose and configure itself back into a working configuration and to

validate itself for correctness, all under {ts own control,

This problem is essentially a generalized fault- tolerance problem,
where performance may cease temporarily during and just after the
massive transient, It is also closely related to normal system

initialization., The hierarchical framework and the dynamic

51



reconfigurability bosh aid greatly in solving this problem, One
solution involves reestablishing minimally correct hardware by
bootstrapping upwards from the lowest levels of the hierarchy, until a
satisfactory rudimentary system is obtained. It is also desirable to
validate downwards from the higher levels. This solution is aided by
the usz of a hard-wired non-volatile read-only memory which provides a
basis of correct programs for recovery., Further help is offered if this
memory is directly executable and the programs are pure, and if these
programs operate only ~ut of local memory at first, By working up the
hierarchy, valid portions of the system begin to emerge, (Another
solution might involve trying experiments on various configurations of
the whole system,) Note that this problem may be intrinsically
insoluble for a given system, It may also oe insoluble for the
particular massive transient, e.g., becaus= not enough operational
equipment remains to self-diagnose and configure a valid system, or even
just to operate such a system, (More equipment might be required for

diagnosis than for operation,)
CONCLUSIONS

The hierarchical framework presented here appears to have great
potential in the design of fault-tolerant systems. It can increase the
effectiveness of new systems as well as the ease and flexibility of
their development and operation, It should incvease in utility as
technological advances permit much larger systems to be developed,

Further study is intended.
ACKNOWLEDGMENT

The author is indebted to Jack Goldberg, Karl Levitt and John Wensley
for many helpful comments,

52



REFERENCES

1. E.g., see IEEE Trans. on Computers, C-20, November 1971, and the
Digest of the IEEE 1972 Internaticnal Symposium on Fault-Tolerant
Computing, Newton, Mass., June 19-I1, 1972.

2, W, C, Carter, et al., Design Techniques for Modular Architecture for
Reliable Computer Systems, IBM Report 70-208-0002 under Contract

NAS8-24883, Yorktown Hts, NY, March 26, 1970,

3, E. W, Dijkstra, The structur: of the "THE" multi-programming system,
CACM 11, pp. 341-346, May 1968,

4. M. D, Schroeder and J. H, Saltzer, A hardware architecture for
implementing protection rings, CACM 15, pp. 157-170, March 1972,

53



