
STANFORD RESEARCH INSTITUTE
Wenlo Park, California 94025 • U.S.A.

00

o
00

Q

A STUDY OF FAULT-TOLERANT COMPUTING:
FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

by
Peter G. Neumann
Jack Goldberg
Karl N. Levitt
John H. Wensley

Computer Science Group
Stanford Research Institute, Menlo Park

25 August, 1972

D D C

rjS SEP 12 m 1

ARPA Order Number \
1998, 27 December 1971

Program Code Number
2P10

Name of Contractor
Stanford Research Institute
Menlo Park, California 94025

Effective Date of Contract
12 January 1972

Contract Expiration Date
14 January 1973

Amount of Contract
$149,700.00

Contract Number
r00014-72-C-0254

Principal Investigator
Peter G. Neumann,
Phone 415-326-6200,
ext. 2375

Scientific Officer
Director, Information

Systems Program
Mathematical and Information

Sciences Division
Office of the Navy
800 North Quincy Street
Arlington, Virginia 22217

Short Title of Work
FAULT-TOLERANT COMPUTING

Sponsored by and prepared for the
Defense Advanced Research Projects Agency

Arpa Order Number 1998

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the U. S. Government.

(Form Approved Budget Bureau No. 22-R0293)

Approved:

David R. Brown, Director
Information Science Laboratory

OLG.'h '^«frwv*.
Peter G. Neumann,
Principal Investigator

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22131 SRI Project 1693

■DISTRIBUTION STATEMENT A

Approved for public release;

T

BEST
AVAILABLE COPY

Sgcurity Classification

DOCUMENT CONTROL DATA R&D
■Serunfv classiticBlion ol title, body ul nhstracl and indrKing antiottition nnjst br entered when tlie overall report is cliissitied)

I O«*IGINATING »C Ti vi TV cCorporal« «ui/ior;

Stanford Research Institute

i«. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

3 REPORT TITLE

A STUDY OF FAULT-TOLERANT COMPUTING:

FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

4 DESCRIPTIVE NOTES (Type ol report and inclusive dales)

6-month technical report covering 12 January - 1 August 1972
B Au THORlS) (First name, middle initial, last name',

Peter G. Neumann, Jack Goldberg, Karl N. Levitt, John H. Wensley

6 REPORT DA TE

25 August 1972
7a. TOTAL NO O ■" PAGES

62
7b. NO OF REF5

15 + 62 in appendices
8a. CONTRACT OR GRANT NO ^a. ORIGINATOR'S REPORT NUMBER(S)

N 000 14-72-C-0254 (ONR)
b. PROJEC T NO.

OTHER REPORT HOIS) (Any other numbers that may be assitineil
this repnrt)

10 DISTRIBUTION STATEMEN1

Approved for public release; distribution unlimited

It JUPPLEMENTARY NOTES

None

12 SPONSO RING f-'l Li T AR V ACTIVITN

Defense Advanced Research Projects

Agency
M ABSTRACT

This report describes technical progress in the first half year

of a study of fault-tolerant computing. Steps toward the development

of economical fault tolerance and high availability are discussed.

Appendices contain a survey of various existing systems and system

designs, as well as a paper on a hierarchical framework for fault-tolerant

computing systems.

DD.Tv^HTS (PAGE 1 PLATE NO. 21856 Unclassified

Unclassified
Security Classification

K E f WORDS

Fault-tolerant computing

Computer reliability

Computer availability

DD ^..1473 BACK
(PAGE 2)

icy

LINK B L "NK C

ROLE »VT

l
ünclassif:,od

Security CiasBification

A STUDY OF FAULT-TOLERANT COMPUTING:
FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

by
Peter G. Neumann
Jack Goldberg
Karl N. Levitt
John H, Wensley

Computer Science Group
Stanford Research Institute, Menlo Park, Ca

25 August, 1972

TABLE OF CONTFNTS

1. Technical report summary

2. Problems In fault-tolerant computing

3. Summary of progress

4. References

page 1

5

7

15

Appendix I: Census of fault-tolerant computing systems 17

Appendix II: Survey of fault-tolerant computing systemc 22

Appendix III; A hierarchical framework for fault-tolerant
computing systems 43

i cL

A STUDY OF FAULT-TOLERANT COMPUTING:

FIRST SEMI-ANNUAL TECHNICAL PROGRESS REPORT

by

Peter G, Neumann

Jack Goldberg

Karl N. Levitt

John H. Wensley

Computer Science Group

Stanford Research Institute, Menio Park, Ca

25 August, 1972

1. TECHNICAL REPORT SUMMARY

This document provides the first technical progress report in the one-year

study of fault-tolerant computing which SRI is carrying out for ARPA under

Contract Number N000U-72-C-1254. The first half year of the contract is

covered.

1.1. PURPOSE OF THE PROJECT

The general objectives of our study are to evaluate and to advance the

state of the art in fault-tolerant computing systems. The scope of the

study includes theoretical as well as practical considerations. The major

task areas are

(1) to survey and evaluate existing systems (and system concepts)

and relevant existing theory;

(2) to define and evaluate new directions for the development of

computing systems with high availability and extensive

fault-tolerance capability, with low cost.

We are seeking guidelines for the design and development of highly

economical systems with long life, near-perfect fault tolerance and

extremely high availability. Understanding of the tradeoffs among these

goals Is also being sought.

1»2. PROGRESS TO DATE

The study has progressed on many fronts. The following efforts are

considered In some detail In Sections 3.1 to 3.11, respectively.

(1) Survey of systems and system designs for fault tolerance

(2) Bibliography of relevant literature

(3) Investigations Into the causes of failure

(A) A hierarchical framework for fault toleranc»

(5) Fault-tolerant memories

(6) Fault-tolerant processing

(7) Reliability modelling

(8) Operational Implications

(9) Reliability tradeoffs among time, space and complexity

(10) Other efforts

References are Included to six project documents /1-6/.

1.3. CONCLUSIONS TO DATE

We feel at this point that the goal of obtaining significant fault

tolerance at costs substantially less than duplication or triplication of

hardware can be met under a wide range of operating requirements.

Particularly In large systems with somewhat flexible real-time constraints,

the cost can be quite low.

Numerous useful techniques exist, some of which have been carefully studied

in recent years. Various newer techniques which we are investigating also

seem promising. Framed-burst coding (in which bit clusters, or "frtunes",

are treated together — see Section 2.5) seems particularly appropriate for

various advanced technology memory organizations. This requires only a

logarithmic increase in the size of memory for single-frame burst error

correction (and a small increase in the overall cost due to encoding and

decoding). Sparing of chips on a frame basis, or of blocks of memory, is

also highly effective. In memory-dominated systems, selective replication

of critical processing capability may be used without greatly affecting the

logarithmic cost increase. This is greatly facilitated by the hierarchical

framework mentioned in Section 2.4, which appears to be very promising in

other respects as well. Interspersed on-line diagnostics are very

important, as are reliable reconfiguration with sparing and other concepts

such as reliable (e.g., distributed) power supplies. In general,

distributed logic-in-memory designs also hold some promise.

No fundamental gaps in the state of the art have been uncovered that

prevent the attainment of high degrees of fault tolerance. On the other

hand, up until now fault tolerance has generally implied substantial cost.

For example, hardware cost increases by factors of two, three and four due

to fault tolerance are common. (The overall cost increases may actually be

higher, if the storage required for fault-tolerance software is considered

along with the increased execution time.) The relatively high cost has

been a consequence of some limitations in the art that have hindered the

attainment of economical fault tolerance. Notable among these is that it

has not been possible to avoid considerable replication of hardware. As

mentioned above, we feel that this can now be sunoounted to a considerable

degree, except in systems with critical real-time requirements on uniformly

correct performance for all outputs. Nonunlformity of constraints and

requirements can be used to great advantage in system design. Another

limitation involves the ability to achieve practical systems with long

unmaintained lifetimes. This too now seems surmountable.

In addition, there are still some gaps of understanding, e.g., concerning

space-time tradeoffs, the relative efficacy of replication versus coding in

arithmetic and logical operations, etc. Furthermore, we are keenly aware

that the problem la net Just one of good hardware design. The work of this

pro .et is alaed at providing guidelines for the design of good economical

fault-tolerant systems. Thus although good hardware design Is paramount

our work must also consider Implications of the system design 3n

simplifying the operational and human aspects, which play a critical role

in keeping a system highly available. This includes considerations that

affect the fault tolerance and the continued availability of the operating

system, and those that lessen the critical dependence on skilled operators

and maintenance personnel.

On the basis of the work thus far. „e expect significant and favorable

results over the second half year of this project. We anticipate that the

final report will include a carefully balanced Integrated approach (or

family of approaches) toward achieving economical systems with high

availability and fault-tolerance. It is possible that as a result of this

project we will recommend further work toward the detailed design and

evaluation of a specific system. This system would presumably be for a

particular class of applications, such as the network interface systems for

a multi-computer network (e.g.. the ARPA network).

The implications of this research on the Department of Defense Include the

following. Systems that are extensively fault tolerant can now be

implemented. Such fault tolerance can be employed to yield error-free

computation with rather long maintenance-free life. The cost of

fault-tolerance is greatest when all outputs have critical real-time

constraints. Otherwise space-time tradeoffs permit considerable economy

Especially for large computing systems, it is possible to achieve the goals

economically. High availability is a somewhat simpler matter, and can be

achieved with a much smaller cost increase.

2. PROBLEMS IN FAULT-TOLERANT COMPUTING

A system that is designed for fault tolerance, high reliability and/or long

life may embody various of the following functions:

(1) Detection of errors,

(2) Prevention of error propagation,

(3) Location of faults,

(4) Replacement of faulty units,

(5) Rolling back of the system and/or the applications programs.

With static fault tolerance (e.g., fault masking), the above functions are

implemented at once, in that a coding or voting mechanism handles all five

functions (the last two trivially). With most dynamic techniques,

particularly those carrying out real-time control, the above functions are

performed in rapid sequential order (e.g., within 10-100 msec of the

occurrence of the fault). In systems with less critical real-time

requirements, there is a longer time period possible for these functions.

The five functions above are suggestive of the following problem areas.

(1) Techniques for detecting errors due to faults involve the use of

redundancy (in equipment and/or in time) to check the validity of a unit.

Coding techniq- es efficiently handle the situation for memory and si^le

arithmetic units. A problem exists with regard to arbitarary control

logic, for which duplication has been the primary vehicle for

fault-detection. We have been investigating three possibilities with

respect to control logic. The first approach involves realizing most of

the control portion of the processor as a memory function. In esseuca this

involve» a hierarchy of microprogramming techniques wherein the lowest

levels embody the highest speed. Memory coding techniques are used for

error detection, except for the residual arbitrary logic which is handled

by duplication. The second approach also relies upon microprogramming, but

here a combination of equipment and time redundancy is utilized to check a

computation. With each microprogram is associated a checking microprogram

that is executed following the main microprogram. A third approach relies

upon data-dependent error detection. That is, we are looking at coding

techniques for logic such that If a failure occurs It Is detected with son«

probability p, dependent on the Inputs. Thus If p Is close to 1 on the

average and If the failure Is permanent, that failure will eventually be

detected. We have also been Investigating problems on the use of feedback

In detection.

(2) The prevention of error propagation takes several forms. One Involves

the use of replication and voting, another the use of error-correcting

coding. Another approach is to resort to delay, by refusing to give any

output at all until a guaranteed correct output can be obtained.

(3) The location of a failure requires that some form of diagnostic

procedure be carried out subsequent to the failure detection. With regard

to memory failures we have been looking at frame-error-locating and

correcting codes and at more conventional diagnostic procedures.

Similarly we have briefly investigated byte-locating arithmetic codes.

(4) In approaching the problem of faulty unit replacement, the first step

is to identify a suitable partitioning of the system. The partitioning can

be accomplished at the level of an entire processor (albeit a small one),

or at the level of memory blocks, or of frames within a word. For this

case the replacement is quite easy, requiring on7y a modification in the

address. However, reliable switching is very important. For the computer

utility application, a large processor may be too expensive to represent a

viable discardable unit, so that a greater number of smaller processors .r.ay

be desirable.

(5) With regard to real-time systems, most proposed fault-tolerant systems

incorporate single-instruction rollback. General-purpose utilities usually

let the user worry about his own rollback. For real-time applications,

automatic program restart and system restart are essential. Fortunately,

the nature of the environment usually permits them to be implemented

easily, ror the utility environment it also seems that user-invisible

tollback can be effectively achieved. For example, a compiler might select

rollback points where the pertinent status information can be automatically

checkpolnted. However, there Is a severe problem In recovering from taajor

catastrophes such as power failures and certain critical hardware

malfunctions. System rollback Is clearly more difficult In an unknown

environment.

(6) Analysis of system design Is another Important problem area.

Evaluation, e.g., via design verification, modelling, simulation. Is

particularly Important In terms of reliability, fault tolerance and

availability.

(7) The development of systems with critical constraints can be difficult.

There is a need for structured system design to facilitate the development

process. The hierarchical framework of Section 3.4 aids greatly in this

respect.

3. SUMMARY OF PROGRESS

The following paragraphs describe progress on specific work being conducted

under this project. Essentially all tasks are directly related to the goal

of obtaining as much fault tolerance as possible for as little cost as

possible, commensurate with the nature of the system requirements.

3.1. SURVEY OF SYSTEMS AND SYSTEM DESIGNS FOR FAULT TOLERANCE

A census has been made of fault-tolerant systems and system designs. A

first version is given here as Appendix I, and includes a very superficial

summary of each system. To be able to represent systems in a mora-or-less

canonical way, we have designed a questionnaire (Included in Appendix II),

which we have sent to architects of most of these systems. The replies

received thus far are given in Appendix II. Most of them contain

significant detail, and permit ready comparison of the various goals,

motivations, principles, techniques and achievements. The design of the

questionnaire itself has exposed many dimensions of meaningful comparison

among systems and reflects many different design approaches based on widely

varying goals and constraints. (An earlier version of the survey was

distributed at the Second International Symposium on Fault-Tolerant

Computing, held In Boston, June 19-21, 1972. It formed the basis for a

well-received panel discussion entitled "Approaches to the Architecture of

Fault-Tolerant Computing", chaired by Jack Goldberg and Including John

Wensley as a panelist.)

In order to classify the numerous fault-tolerance architectures, we have

selected three categories of systems, corresponding to three roughly

disjoint applications areas:

(1) General-purpose computing utilities,

(2) Ground-based special-purpose systems

(3) Aerospace systems

The processor power and total system cost are more or less decreasing from

(1) to (3), as Is the size of memory required. The degree of preplanning

possible for the computations generally increases in this orrfer. The

reliability and availability requirements usually increase in critlcality

from (I) to (3). (RELIABILITY is the probability that the system will

perform satisfactorily for at least a given period of time when used under

stated conditions. AVAILABILITY is the probability that the system is

operatinp satisfactorily at any point in time when used under stated

conditions, where the total time considered includes operating time, active

repair time, administrative time, and logistic time...RELIABILITY

ENGINEERING, ed. W. H. von Alven, Prentice Hall, 196A, pp 14-15.)

Kost of the prior research efforts have been devoted to category (3). We

feel that the problems in this category are basically solved. Replication,

multiprocessing, coding, and sparing are commonly found techniques. While

the relative cost of fault-tolerance is high in many of these systems, this

is not always necessary. We feel that many of these systems may be

over-engineered.

The situation is less well developed for the other two categories, which

still seem relatively primitive (cf. the Census of Appendix I).

8

Intuitively, the relative cot t of fault tolerance could be substantially

less than In category (3), because of the looser constraints, and because

of the possibilities of advantageously using averaging effects in bigger

systems. This report tends to justify this statement.

3.2. BIBLIOGRAPHY OF RELEVANT LITERATURE

In March 1968 R. A. Short published a rather comprehensive bibliography 111

(containing 347 references) which resulted from an SRI study for NASA. He

is now helping us augment that bibliography with about 500 additional

references. A system of descriptors and cross-indices is expected to be

used which will greatly enhance the usefulness of the bibliography.

References to systems mentioned in this report are found in Appendices I

and II.

3.3. INVESTIGATIONS INTO THE CAUSES OF FAILURES

Early investigations have led to various (sometimes obvious) conclusions

regarding the significant sources of system failures.

* Magnetic core memories operated with low access times (one microsecond or

less) are major sources of system failures. Primary memory

still dominates most systems (especially large ones) with respect to cost,

size, and sources of unreliability.

* Peripherals are still a problem, although good system design should be

able to prevent peripheral failures from "crashing" the system. (Several

well-known systems are quite sensitive in this area, due to poor system

design. For example, a system should be able to survive errors in reading

most files, a capability which is facilitated by hierarchical design.)

* In several technologies transient or intermittent faults are more

significant (and more common) than permanent faults (e.g., "stuck-at").

although the latter are more commonly considered in the literature. These

arise in many ways, e.g., timing errors, data-dependent faults, and

marginal design. Correlated faults are also problematic in practice, both

operationally and in terms of analysis. For example in an LSI

implementation, a single chip failure may result in multiple chip-output

errors. Physical couplings are still a major source of difficulty, both

in bonding and in pin connections.

* Problems in operations and in the inner-core of the operating system are

a major source of trouble in large computer utilities. Even if the

hardware were faultless, there are still enormous problems in keeping such

a system rperational with high availability. These problems are

distributed among weak or inadequate software designs and questionable

operating practices, as well as an occasional hardware design error. Two

notable recent cases involve a ten-hour outage of an ESS No. 1 Installation

and a 29-minute outage of the NY Stock Exchange MDS-I. Both systems are

designed for fault tolerance and high availability, but both experienced

major outages attributable to human frailty (maintainers and system

programmers, respectively) that aggravated troubles due to hardware

difficulties. (Good system design can help circumvent these problems.)

3.4. A HIERARCHICAL FRAMEWORK FOR FAULT TOLERANCE '

Peter Neumann has formulated a hierarchical framework for fault-tolerant

computing systems, relevant to both hardware and software. It !■ described

in a paper to be presented at COMPCON 72 in September 111t included here as

Appendix III. This framework facilitates the dynamic alteration of

fault-tolerance techniques, as best suited to the current computing needs.

This holds great promise for the attainment of economical fault tolerance,

especially if real-time constraints are not uniformly critical. It is

immediately applicable to large computing systems, and is useful to small

systems as well. The hierarchical framework greatly facilitates the

control over the exchange of redundant equipment for occasional slight

increases in time, as well as enhancing the development and operation of

the system.

10

3.5. FAULT-TOLERANT MEMORIES

Several investigations «re under way involving fault tolerance in memories.

Memory organizations suitable for advanced technologies are being

investigated. Multiple-bit-per-chip ("frame-per-chip") organizations seem

very powerful, and make framed-burst coding (also called phased-burst

coding) highly advantageous. Peter Neumann has examined such an

organization, and shown that such coding can be highly effective and

economical /3/. Karl Levitt has incorporated these concepts into the BUGS

(Bus Checker System) design /8/t which appears to offer good reliability at

low cost. Although designed to take advantage of an aircraft environment,

its balance of design seems to have significant implications for our goals.

„Such coding techniques are also found in MDC (see Appendix I and II).]

John Wensley has been examining the problem of reliably reconfiguring at

the chip level in a large memory requiring many chips (somewhat akin to the

problem of making page relocation mechanisms reliable). One rather

promising solution involves distributed control. Also applicable is some

earlier work in our Computer Science Group /9/ on reliable switching,

useful for example in the switching of spare frames. In a related effort,

Jack Goldberg has been studying distributed processor designs for fault

tolerance /A/.

t

3.6. FAULT-TOLERANT PROCESSING

We have been Investigating fault tolerance for logic operations and for

arithmetic operations. In systems which are memory dominated, replication

of processing units may be reasonably economical. In other situations

coding may be desirable. Peter Neumann has shown /5/ that single faults

can be detected in logic operations by performing all arithmetic logic

operations in an arithmetic unit of suitable design, without additional

(redundant) circuitry. Montelro and Rao /10/ have recently investigated

arithmetic-logic units with greater fault coverage.

11

3.7. RELIABILITY MODELLING

John Wensley has been investigating existing work on reliability modelling

and its relevance to fault-tolerant computer design. Reliability modelling

for fault-tolerant computing has been the subject of several studies

/I1-15/. Models have been proposed and analysed, but in general they do

not answer certain important questions that arise in consideration of many

fault-tolerant computers. We note some of these deficiencies here.

Existing models are more concerned with "survivability" than with

reliability. In general the assumption is made that when a fault occurs it

totally disables the unit in which it occurs, and that that unit must then

be removed from future computational significance (possibly being replaced

by a spare), or its significance removed by such techniques as voting in a

TMR system. This does not allow accurate modelling of transient faults, in

which ?. unit may survive, but some data may have been corrupted. In

addicion auch models do not handle repetitive transients (intermittents)

and the loss of effective computer power due to the CPU activity involved

in error detection, correction, masking, etc.

A further deficiency of such models is the common assumption that any

correction of a fault (by sparing, reconfiguration, masking, etc.) can be

modelled by a single parameter, representing the probability of correct

recovery from a fault. This does not allow the modeller to distingaish for

example between faults that can be removed by voting and those whose

erroneous effects cannot be so removed (e.g., a mistyped line).

The last deficiency to be noted is that the models do not take into account

the fact that faults have different effects depending on the state of the

system at the time of the fault. In some computer systems a dynamic

trade-off is possible between reliability and computing power (^j. SIFT,

ARMMS). Faults that occur in the high reliability mode are less serious

than those that occur in the high computing-power mode.

The existing modela have further drawbacks. However the above discussion

clearly shows a need for research aimed at developing modelling techniques

12

that can handle some of the specialized problems arising in the analysis of
fault-tolerant computers.

The consequence of the above is that the rel^abilty estimates may be very

pessimistic, which could result in very costly over-engineered designs. It

is clear that improved methods of assesilng reliability are required.

3.8. OPERATIONAL IMPLICATIONS

Various Implications of system design on system reliability have been

considered, in response both to problems arising in existing systems and to

problems introduced by newer designs. As an example, John Wensley has

examined the existing time-shared computer systems at SRI, (both

TENEX systems), to ascertain the posslbllty of utilizing an automatic

checkpoint scheme is such environments. A conceptually simple scheme

consists of simultaneously recording on magnetic tape all data that is

normally placed on drums or disks. The saving of such data would provide a

continuous history of the state of the users files so that unavailability

of user files due the. loss of a disk or drum could be circumvented.

Initial studies show that a magnetic tape system of quite modest

performance could handle the total data currently written onto drums and

disks. (In one test the average over 3 1/2 hours was a bandwidth of 15

Kch/sec, which is well within the state of the art of magnetic tape

systems. With an assumption of 50 per cent efficiency of tape utilization

a single 2A00 ft. tape could store the total traffic of 24 minutes of

computer activity.) Here good design in input-output hardware can be of

great help, permitting simultaneous writes.

>

In another direction, Multics incremental backup experience shows half-hour

delayed backup is very helpful to users in the event of system crash.

However, recovery after damage to certain system files may be a very

lengthy procedure. Combatting this problem requires very careful system

design in a distributed system such as Multics. Another problem in Multics

is Introduced by operator errors in performing manual reconfiguration.

Significant care in hardware design can aid considerably in such problems.

13

3.9. REIIABILITY TRADEOFFS AMONG TIME. SFACE. AND COMPLEXITY

David „uffmm h.. „„„ lnVMtlg.tlng the lmplIcatlon of ixlf „

" . ° f
the OUtPUt8 0f ' =—"""» P"ce.s can ,r.«ly taprOT. the

results »ay hava son. practical significance.

tra^T '"' ^ W"l8«1<'" I-1™ «>• ««ects of tlM-,Pace

Probla. „attar (! cla. k ' '" be8ln"1"8 " ™i°™"" «"•

Holt la ant ^at t s L uV/"":8 "" 2•4•, '^ ^ ^ P to see If his formalisms can be of help.

Also related is our desire t* nK- A

trsdaoffs. Tha rasnIt „ '^ r"Ult8 "" —^»"^'".blUty

-inEfni n,au. ulth _:_:;,;:.::;::::_—of ^^

3.10. OTHER EFFORTS

We are also devoting some effort to „.-haa

transient reccery.,,^. T^TH'T °™ * *° -'"'-

of Appendix III,. ÄI,other „„ " I1 ' •="«" soapect (... the end

H~ t, dla8ne.e „„many ^ u c lcaTp ' ,,nlt" Pr0bl8- 1-- "
(hardware and/« aoftw.re) .. , " 0n8 0f th' s''"""

Itself. Th. general role „f L!' T* "" "'"^ ""^ ■"»—

n.P« /«/ has «aMned 1 .„ „T f
alS0 beIn8 Cm'U'^- -^

-psrata. Metre and C.Z ZlZlX Zu '" ""-^°-18 "
results. extension holds some promise for useful

14

4. REFERENCES

4,1, PROJECT DOCUMENTS

1. J. Goldberj?, P. G, Neumann and J. H. Wens ley, Survey of fault-tolerant

computing systems (Version 2), August 8, 1972. This survey contains our

questionnaire, 12 system representations, and many relevant references

beyond those given here. Reproduced bpre as Appendix II.

2. P. G. Neumann, A hierarchical framework for fault-tolerant computing

systems, to be presented, IEEE Computer Society Conference, San Francisco,

Ca., Sept. 12-14, 1972. (Preliminary work on this paper received some

support from NASA-Langley Research Center under Contract NAS-1-10920, prior

to the start of the ARPA contract.^ Reproduced here as Appendix III.

3. P. G. Neumann, Framed burst correction. Project memorandum. May 4, 1972.

4. J. Goldberg, Distributed computing for reliability. Project memorandum,

Feb. 3, 1972.

5. P. G. Neumann, A note on reliable arithmetically derived logic

operations. Project memorandum, July 3, 1972.

6. B. Elsp<».8, An analysis and generalization of the connection assignment

model for fault-dlagnosable systems. Project memorandum, March 22, 1972.

15

4.2. OTHER REFERENCES (See also Appendices for further xeferences)

7. R. A. Short, The attainment of reliable digital systems through the use

of redundancy - a survey. Computer Group News, pp. 2-17, March 1968.

8. J. H. Wensley, K. N. Levitt, M. W. Green, P. G. Neumann, J. Goldberg

Fault Tolerant Archtectures for an Airborne Digital Computer. Stanford

Research Institute, Report of Task I, Contract NAS1.10920, 24 July 1972
(Final Report — draft version).

9. K. N. Levitt, M. W. Green and Jack Goldberg. A study of the data

commutation probiems In a self-re,alrable multiprocessor, SJCC 1968. pp
515-527. * PP'

10. P. Montelro and T. R. N. Rao. A residue checker for arithmetic and

logical operations. Digest of the 1972 International Symposium on

Fault-Tolerant Computing, IEEE Computer Society, June 19-21, 1972.

11. W. G. Bourlcius, et al.. Reliability modelling for fault-tolerant

computers, IEEE Trans. Comp. vol C-20, pp 1306-1311, Nov. 1971.

12. F. P. Mai'.ur, Reliabilty analysis and architecture of a hybrid

redundant digital system: generalized triple modular redundancy with self

repair, AFIPS Conf. Proc.. SJCC. vol 36. May 5-7. 1970

13. F. P. Mathur, Reliabilty modelling and architecture of ultra-reliable

fault tolerant computers", PhD thesis, UCLA. Computer Sciences Dept., June
1971. y *

U. F. P. Mathur, On reliability modelling and analysis of ultra-reliable

fault-tolerant digital systems, 'EEE Trans. Comp. vol C-20, pp 1376-1381
Nov. 1971. *

15. J. Kruus. Upper bound for the mean life of self-repairing systems.

Coord. Sd. Lab.. Univ. Illinois. Urbana. Rep. R-172. July 1963.

16

' APPENDIX T.
CENSUS OF FAUl.T-TOLi.RANT COMPUTING TYSTEMS

(SRI, first versior,, August, 1972)

Following i8 a list of systems and system üesigns providing significant
!r^ !f1" and/0r avallability. Those systems indicated by "(?)'' are
IntJZu lnA

gre"er ?"ail in our Su^y of Fault Tolerant Computing
!re desert r"^ P' fere references *« Included. Several systems
S Mm.r n T w^i18 "ferred t0 here a8 thfi "Inttmetrlcs Report" (J.
LmiiilV"; i10^* A* U K08mala and J- A- s«Ponaro, Multiprocessor
Computer Study, Final Report, Contract NAS 9-9763, Intemetrics. Inc
Cambridge. Mass, March, 1970). Other systems are'given terse «fere^es
here where available. Abbreviations: P - Processor. M - Memory! SEC -
single error correction, (D)ED - (double) error detection.

u^xf^dlstTH MI^ING
 F1111"3' generally pood Pliability, human usets, modest reliability, maintenance permitted

1. Multics MIT and Honeywell, Cambridge, Mass (F. J. Corbato); ARPA-
funded development. See E. I. Organick, A Guide to Multics, MIT Press.
nv^M^^T Comp"tin8 utillty (time-sharing, batch), with high
availability and very high file integrity. Four systems currently
operating. '

!f2p! HUSH01163"'*11 f45*!9 multiPro«8sed, manual on-line reconfiguration
of Ps and Ms. extensive fault isolation via the ring mechanism for

m^w?11 and VJauifil! 3y!tP7- aCCeSS contro1. half-hour lag incremental
file backup, variable-depth system rollback, redundancy in the file

til*?*?* 8t!Uvti,re\ (Sln8le ED' minlmal error decking in most systems, not mentioned below.) ».•»»,

ARPA* PRIME (nee "^^ UnlVer8ity of Caiifomla at Berkeley (H. Baskin)i

* Reliable, secure, modest computer utility, high availability. In
development.
* 5 P (design Practical for 3 P to 8 P). with highly restricted possible
connectivity of M and disk, strict isolation with no memory sharing or
multiprogramming, 'spontaneous" reconfiguration via a reliable
self-checking switch. About 10% overhead for fault-tolerance.

3. Carnegie-Mellon University; NSF.
* Research system development with applications to ARPA speech
understanding project; in design
* 16 P x 16 M (PDP Us), with reliable crosspoint switch

4. University of Newcastle-on-Tyne. England; Scientific Research Council
* General computing; in design
* PDP Us

17

5. Various commercial time sharing services gain availability (but not
necessarily reliability) by having cross-switchable Ps, Ms and secondary
memory.

f ^BuSE? rECIAL PlIRP0SE SYSTEMS' controlling the environment (or
controlled by it), generally higher reliability and availability, often
tighter real-time constraints than in A above, human maintenance usually
possible. '

6($). ESS (Electronic Switching Systems), Bell Labs, Napervillc, Illlnos.
Telephone switching system; long-term continuous availability, with

occasional errors tolerable to customers (?). Over 200 Number I ESS in
operation, many more Number 2 ESS, TSPS.

* 2 P (1 functional, 1 standby checking and diagnosis), automatic
reconfiguration. Separate nonalterable program store with SEC. 502 of all
programs are diagnostics. Millions of hours of experience have aided In
Improving hardware and software reliability. People problems still very
difficult (operations, maintenance).

7. FAA (Federal Aviation Admin.), IBM. See IBM Sys J., vol 6, no 2, 1967.
Air traffic control, long-term continuous availability. Untolerated

nontransient errors can be disastrous. 20 systems at ATC centers coverinc
the continental United States.

* Up to 4 P (IBM 9020), up to 12 M. Program-controlled error analysis and
reconfiguration, gracefully deconflgurable. 5-second battery backup power
supply. Relies heavily on good and highly-available field engineers.

8. MDS-2 (Market Data System), New York Stock Exchange
* Stock trading ticker control. Near-continuous availability, no
transaction losses permitted. Operational August 1972. Precursor MDS-1 "
operational for 7 years.

* 3 P (360/50), 2 multiprocessing with shared M & LCS (but 1 P basically
monitoring), 3rd P normally spare (while running background lobs),
extensive program checking.

9($). COMEX, Pacific Coast Stock Exchange

* Stock trading control; near-continuous availability, no transaction
losses permitted, small real-time lag permitted. Operational since 1969;

2 complete systems (each has 360/50 plus 2 PDP 8s), one In San Francisco,
one in Los Angeles, capable of running separately or cross-switched
(interconflgurable).

10. NASDAQ, National Associaticu of Securltes Dealers Automated Quotations
See Datamation, March 1972, pp. 42-A5.

* ^-""f interactive system to facilitate trading of OTC securities; high
availability; operational since end of 1971.

* 2 P (11088), multiprocessing under EXEC 8, capable of running simplex.
Dual records in file structure, automatic recovery techniques.

18

11. CLC, Bell Labs, Whlppany NJ; ABMDA (Safeguard)

r*Äardlf;!iir defen8e; contin— availability when (and if) required. In development since mid-60s.

not'proJsso^riteabl^9"' ^^ 0n'line 8parlng' SeParate P«*™» ornery words! ^iteable; program retry; ED via four-bit checking on 64-blt

* n»^ K JW ^erosPace and Electronic Sys., Sept. 1971 on 974-981
^U h.„dll„g for deep .p.» probes. AvLlLll^ Zl^lull. ^

Manual

^«r« mT!l7oc?T"15-TM Ub• H"l0,'•England- See Ele"rI<:''1
* Real-time control

and of facces^^wUch^s'^ininVr0 ^ ^ ^^^ of punch/reader
52. of bar^ "e'to^fluU JoL^« ^ ^^ *"* ** ^^ ^t'

14. Foxboro 88. Foxboro Corp. Process control using 2 P (PDP Ss)

r;q"rR^sc! ™lZ'cT£ll r-ti^if irellabHillty and '^^y

Ho^kinf JrtrPPsf;d?W; inte"lal «Terence unit), MIT Draper Lab (A. L.
n^i* .I* " Inte™et'i« Report (reference above).
* Apollo guidance. Used in Apollo program. '*
* 2 P (1 as standby), M duplicated.

16($). JPL-STAR, JPL, Pasadena Cal (A. Avizienis); NASA
* Unmanned outer-space travel computer, long-life availability without
malnten-nce. Prototype in operation since 1969, lablilty »"hout

1 P (uniprocessing), heavy use of coding (residue cherlHnc rnr cm 4

19

MAS :£:.r«rPÄ S2es
i'h ""-"^ -^ -

coding). Two concepts- Processing unit and within memoiles (without

ibLiiopJer:Lp
d

r.o„cr8lnB-8crat*padmi"-

rr„p.„.P P^oto^'L «rk^p;'1"PUrP0" """""■»•. '"eluding

r.po'H^^r„. (vJbl;16x
6r,Td^lMtlon,) •8par1"8' ^^^^^

»Ul^TJnu1" "fltal C0"''ut")' IBM Y"k"- "»• >«..

=rror5 h-ndUd In „. eit^l" si?f-checU„g!8n08"CS• b-dJace°t ■»»"Pi*

swltchrtle vl. "TiMltr" hnr.? I, / pl,,S 3 9pare blta «ll.bly
control. -»plJc.»Ä^™^r

c
r« r

d«:«1°° ** """ "• trtpU«t.!l
■me UUrMy<t«M entry Is similar to the JPL STAR.

NAsl-üS S°ftV"" lm'>leMnted f'u" tolerence. SRI (John „„sley),

* Airborne control (comerclal aviation)- avalLMH«. .
during flight; some teaks more orltlo^l «■!. Z^ ^ " c<,rre':t results
degradation of l.aa orltJcal tasks "' P'™1«1"* »"Pht
* Multiprocessing with variable softwsre reollc.n™ A. J
eppllcatlon progr.« (..,„,„ reconflgurabL, "f^J d*pe"den' °°
software technlon^a avni^. »—J r «.«wi«/. rauit tolerance via
existing desCIgn8

q:e8CoanVn0 1^ y
d 1«°^? ^ejf^"' ^^ - of

can read all Ms, preventing fault nrn^I^J ."" no6i{y 0nly ita own M.
fault-tolerance procedures as the JHlSUJ ^ Executive "*** the same redundant oce<™«s «8 the application programs. About 75%

20

22($). ARMMS, Hughes, Fullerton CA (W. L. Mart.ln); NASA-Marshall (MSFC)
" Spaceborne control; long-life reliability

* n P, dynamically reconfigurable, e.g., as independent-process

(variabler81"8 ^ " replication w±th 8ParlnP. 20%-80Z redundant

23($), Intermetricü multiprocessor, Cambridge Mass (J. S. Miller)
outgrcwth of EXAM; NASA-ERC (Houston)
* Manned orbiting space station

* m P (1 to 8, nominally 3), each f duplicated, coding in M (ED), buffered
instruction retry, save within interrupted instruction.

24($). Autonetlcs (N. Am. Rockwell, Anaheim, L. J. Koczela); NASA-MSC
* Space shuttle; long-life reliability

* A-level redundancy, FO-FO-FS (cf. MDC) requires 80% redundancy, less for
lower fault tolerance.

25. BUGS (bus checker system), SRi (Karl Levitt), NASA-Langley.
See SRI Final Report. NAS1-10920, 1972 (Reference 8 of this Report).
* Aircraft control, as in SIFT

* 5"101
(io"1) P & M unlts, each duplicated internally, frame coding in

central M, bus checker coordinates restart mechanism, periodic diagnoses of
M and of unflexed processor functions. About 33% redundan',/.

26. TOPS, JPL (Gilley). See IEEE Trans. Astr-Aero, Sept. 1970.
Thermo-electric outerplanet space travel

* Related to JPL-STAR.

27. MFC, Hamilton-Standard; NASA-ERC. See Intermetrics Report.
* Modular flight computer

* 3 P, 3 M, cross-configurable, TMR or 3 P multiprocessor

28. ALPHA, CDC. See Intermetrics Report.

29. AADC, Honeywell; NASA, AADC Naval Air Systems Command. See
Intermetrics Report.

30. IRAD, Litton. See Intermetrics Report.

31. SDC-Burroughs; USAF-Wright-Patterson, Multiprocessor

32. S-3, Univac

33. COSMOS, RCA (cf. SUMC)

21

APPENDIX II
SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS (revised Aug 1972)

Jack Goldberg, Peter G. Neumann and John H. Wensley
Computer Science Group, SRI, Menlo Park, CA, 94025

This appendix presents replies to a questlonalre sent to architects of
various fault-tolerant computing systems. It Is hoped that the questlonalre
will Itself be useful as a descriptive form and that the replies will aid
In understanding and comparing the ays ferns Included here. To this end the
questlonalre hns been designed to permit a concise description of each
system, its goals, its motivations, its principles, its structure, its
techniques, and its achievements to date.

The first issue of this document was distributed Informally to conference
participants at the Second Symposium on Fault Tolerant Computing, Boston,
June 19-21, 1972. It was Intended to support the panel discussion
Approaches to the Architecture of Fault-Tolerant Computing", chaired by
Jack Goldberg. The replies given here are included essentially in their
entirety. Significant efforts not represented here Include several
existing systems (such as IBM's FAA system. Bell Lab's CLC and various
query systems) as well as numerous design and development efforts (e.g.
government systems, and systems under development at Carnegie-Mellon
University and the University of Newcastle-on-Tyne).

The contents of this appendix are as follows.

Questionnaire page 23

Replies of the panelists:
A. Avitienis, JPL and UCLA 2A-25
W. C. Carter, IBM 26-27
A. L. Hopkins, Jr., MIT Draper Lab 28-29
W. L. Martin, Hughes Aircraft 30-31
J. H. Wensley, SRI 32-33

Other replies:

B. R. Borgerson, U. C, Berkeley 34-36
J. L. Deltmare, EMD, France 36-37
L, J. Koczela, North-American Rockwell 38
J. S, Miller, Intermetrics 39
D. C. Wallace (SRI) for PCSE 40-41
W. Ulrich, Bell Labs, Napervllle, Illinois 42
Capt. L. A. Fry, SAMSO, Los Angeles, Ca 42

The preparation of this document and the questiouaire was supported by the
Defense Advanced Research Projects Agency of the Department of Defense, and
was monitored by ONR under Contract Number N00014-72-C-0254. The views are
clearly those of the named contributors and do not necessarily represent
any official policies of ARPA or the U. S. Government.

22

SURV1T OF FAULT-TOLERANT COKPÖT1HC STSms-QUKSTIOHNAIRB

.'•ck Goldb.rg and P.r.r Ü. Ntuunn, SRI. Mwilo Park CA

1. IDKNTIFTCAIION of the By fa

1.2. RESPONSIBILITY, Hh«t tl th. r..por.lbU org«i«tlon?

1.3. SUPPORT: l)h«t ar* th« lourcu of support?

1.4. PARTiriPANTS: Who (md what organization., if
ralevant) are the principal participant»?

1.5. START: What vaa the data of conception?

1.6. COMPLETION: What waa. or 1. ejected to be. the
t«pl.tlon date? (Specify prototype acceptance date, or
dealgn coaipletlon date if design only.)

1.7. BIBLIOGRAPHY: What are th. .oat relevant «farence«?

2. MOTIVATION for the aystaa
2.1. PURPOSE: What la the naln purpose of the ayata
le.g., raneral-purpoae computing, real-time alr-trofflc
control, atore-and-forward)?

2.2. PHYSICAL ENVIRONMENT: Where does ths system operate
la g., ground-baaed, airborne, spaeeborne)?

2.3. CMPUTING ENVIRONMENT: How d^es the systaa relate
conputatlonally to its envlronnent (e.g.. locally,
rawtely, via a network. Interactively, via peripherals,
with huaan users)?

2.4. COMPUTING OBJECTIVES: Mitt are the specific computing
objectlvea, regarding capablUty. capacity, perfonanca
(throughput or rasponaa), configuration acaleablllty.
■"1",M r«al-tl»ie delay», etc. (aa .relevant)?

2.5. RELIABILITY OBJECTIVES: What are the apadflc ayitea
reliability oblectlvea. with respect to desired
availability during what period, sialmm ttae to eyaten
failure, uziauii permitted duration of outage, etc.?

2.6. DYNAMIC VARIABILITY: How may these objective, very
during operation? (E.g.. how may parfentanca degrade?
May perfonanca be explicitly exchanged for increaaad
reliability?)

2.7. PENALTIES: What are the penaltlea arising from
fmUjr operation? (Possible azsmpjes include lee. of
life, badly decreased performance, the necessity of manual
intervention, loaa of revenue, etc.)

2.8. CONSTRAINTS: What explicit physical constraint» exist
(e.g., with respect to site, weight, power, cost)?

2.9. TRADEOFFS: What critical tradeoffs exist among the
objectives?

3. DESCRIPTION of the system
3.1. ARCHITECTURE
3.1.1. CONFIGURATIONS
3.1.1.1. INTERCONHECTIVITY: What la the baaic configura-
tion, and what reetrietlona exist on InterConnectivity?
(You may choose to Include a block diagram, a PHS dlagraa
a la Bell end Newell, or other uaaful representation.)

3.1.1.2. RANGE: What la the range over which config-
uration« are sansibl« (minimum to maxima), «,E., how many
procaaaors, how many memory modules (of what sice and word
length, and with what restriction» if any), etc.?

3.1.1.3. CAPABILITY: What la the effective conputlug power
of the »malleat aenaible configuration in 3.1.1.2? Fleaae
?f,pfj?«lt rou«hx3' *1Ö> • «U-known »;stem (e.g., 360/40,
65, 195), and cite a ball-park figure for the number of
additions par second. Capability required for fault-
tolerance should not be Included.

3.1.2. EXECUTIVE and operating syatasi
3.1.2.1. MODES cf operation: How does ths system operate?
(E.g.,is each procaaeor muUiprograamable? la Independent-
process multiproceaeing possible? la cooperatlvc-proceaa
multlprogramnad ■ultiproeeaaing possible?)

3.1.2.2, SOFTWARF organisation: What la the etructure of
the aystaa aoftwaraT Row is it distributed with respect
to th« hardrtr«?

3.2, FAULT TOLERANCE
3.2.1. FAULTS TOLERATED: What faulte are tolerated by the
system, with what reaulting effeeta on systsa behavior?

3.2.2. FAULTS HOT TOLERATED: Whet feults cannot be
tolereted by the ayatem, and what are the correapondin»
effeeta? identify the weakest linke.

NOTE; Faulte may be cheractarisad In many waya, including
typ« (a.g.. faulty hardware at various level» such aa a
chip, -jodula. bus, power aupply. arithmetic unit,
proceaeor, memory; faulty software such aa in the
executive, in a compiler, or in en applicatlena prograni
-aiuty usage and bed Inputa), nature (e.g., timing
considerations, old age, varloua phyeleal phenomena),
duration and frequency (e.g., one-shot, recurrent,
permanent), scope (e.g., isolated faulte, correleted or
independent multiple faulte, with varying derrees of
propagation), effect (random, predictable), etc.

3.2.3. TECHNIQUES: What baalc techniques are employed to
provide fault-tolerant capability, and when, where, and
how are they used? Include herdwere and aoftwar»
techniquea,

NOTE: Applicable techniques include (poMibly in
combination) replicetion (e.g., triple-modular redundancy
at varloua levels, redundant computatione ualig
Independent elgorlthma), coding (i.g., error-detecting or
-correcting codes on a hue, in memory, in arithmetic),
repetition and rollback, reconfiguration (including
removel without replacemen'; end replacement with epares),
diagnostic» (e.g., st«nd-»lona, on-line, interaetivei
preventive, emergency! reiote. local), protection (of
procassee. data, prograaa, etc.), and outside Intervention
(human or otltarwiaa). These techniques may be used
ststlcally (e.g., alwaya inroked) or dynmmleally (e.g.,
configured aa needed); et virioue module levels In
hardware and software, <n combination with certain events
and with certain other technique».

3.3. NOVELTY: What are the meet ur.uausl deaign feature, of
this system?

3.4. INFLUENCES: Whst other efforts (ayateme, naaerch)
have had en Influence on your system deaign?

3.5. HARD-CORE: If there la a concept of "hard-core" in
your system, what is its significance? (Pleeae define
your concept.)

4. JUSTIFICATION for the system
4.1 RELIABILITY EVALUATION: How Is r.=J.lebillty estlmsted
end/or demonstrated (e.g,. via aaalvala. »Imulation.
atlmulation of fault«. th«oretlcal argiaenta)?

4.2. COMPLETENESS OF EVALUATION: How complete le your
deaign evaluation?

4.3. 0VERHF.AD: What percentage(a) of total ayatem
reaourcas do you attribute to the echiei/ament of
fault-tolerance? (Conaider coat, logic, execution time,
memory, etc., as applicable.)

4.4. AmiCABILITY: What la the potantiel range of eppllc-
ablllty beyond that stated In sections 2.1 - 2.4 sbove?

4.5. EXTEITOABILITY: In what waye could the system design
be sdvantageoualy extended, with what Increaaa in coat,
and to what effect?

4.6. CRITICALIIIES: How critically do the design choices
match the design gosls? (E.g., could slight changes in
goal» reault in great savingr in deaign. Implementation,
and/or operation? la multiprogramming or multlproceaslnp
critical? Is th« choice of herdwere critical?)

A,7, IMPLICATIONS: What special requirement« (If eny) doea
the baalc deaign Impose (e,g,, on the herdwere designer»,
on th« «oftwara developer«, on uaer» and maintain»™)7

5, CONCLUSIONS
5.1, STATUS: What la the current statu» of th« «yet«m7

5.2, EXPERIJJNCF: '-'het conclusion« c«u you reach baaed on
your «xparlence with the ay«t«ei to dar. («.g,, in deaign
itiplementatlon and operation)?

5.3, FUTURE: What la planned for future devalopawnt or ua»
of the ayatem?

5.4, ADVANCES: What development» (theoretical or
practical) would be deairabla for significantly «dvanclng
th« «tat« of the art in fault-tolerant computing?

6. COMENTS (Plea»* Include any comment« on your «y«tem
on thi« qu««tlonn«lr«, etc, which you would like to add,'
Opinion«, prajudlcea and phlloaophlea are welcomed.

SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS

Alglrdu AvlztenU
UCLA Computer Science Dept., Loa Angeles, CA and
Spacecraft Computer Section, JPL, Pasadena, CA, June 1972

1. IDENTIFICATION
1.1 NAME: JPL-STAR (Self-Teatlng-And-Repalrlng) Computer

1.2 RESPONSIBILITY: Spacecraft Computer Section,
Aatrlcnlcs Division of the Jet Propulsion Laboratory,
Pasadena, California.

1.3 SUPPORT: NASA - Office of Advanced Research and
Technology (via JPL)

1.4 PARTICIPANTS: A. Avlzlenls, D. A. Renneis, J. A.
Rohr, F. P. Mathur, 0. C. Gllley

1.5 START: 1961

1.6 COMPLETION: Operational • Spring 1969 (laboratory
model), modifications continue

1.7. BIBLIOGRAPHY:
*1. A. AvUienls, et »I,, The STAR (Self-Testing and
Repairing) Computer: An Investigation of the theory and
practice of fault-tolerant computer design, IEEE Trans.
Computer C-20, pp. 1312-1321 (November 1971).

*2. A. Avlzlenls, "Design of fault-tolerant computr s,"
FJCC, pp. 73>743, 1967.

*3, A. Avixlenls, "An experimental self-repairing
computer," Information Processing, IFIP, Vol. 2, pp.
872-877, 1968.

*4. A, Avlilenls, F. P. Mathur, D. Rennels, and J. A.
Rohr, "Automatic maintenance of aerospace computers and
spacecraft Information and control system," Proc. AJAA
Aerosp. Comput. Syst. Conf., Paper 69-966, pp. 1-11,
September 8-10, 1969.

*5, A. Avlilenls, "Concurrent diagnosis of arithmetic
processors," Digest of the 1st Annual IEEE Comput. Conf.,
pp. 34-97, 1967.

*6. A. Avlzlenls, "Arithmetic error codes: Coat and
effectiveness studies 7 <iolicatlon in digital system
design," IEEE Trans. Cum)), .-20,, pp. 1322-1331,Nov 1971.

*7. F. P. Mathur and A. Avlilenls, "Reliability analysis
snd architecture of a hybrid-redundant digital system:
Generalized triple modular redundancy with self-repair,"
SJCC, pp. 375-383, 1970.

*8, F. P. Mathur, "On reliability modeling and analysis of
ultrarellable fault-tolerant digital systems," IEEE Trans.
Comp., C-20, pp. 1376-1382.

*9. G. C, Gllley, "Automatic maintenance of spacecraft
systems for long-life, deep-space missions," Ph.D.
dlssertstion, Dept. Comput. Sei., UCLA, September 1970.

MO. F. P. Mathur, "Reliability estimation procedures and
CARE: The computer aided reliability estimation program,"
Jet Propul. Lab. Quart. Tech. Rev., Vol 1, October 1971.

2. MOTIVATION
2.1 PURPOSE: Experimental laboratory GP machine; suitable
for spacecraft control

2.2 PHYSICAL ENVIRONMENT: Laboratory environment

2.3 COMPUTING ENVIRONMENT: Local 1/0 facilities

2.4 COMPUTING OBJECTIVES: Capable of automatically
maintaining an unmanned spacecraft

2.5 RELIABILITY OBJECTIVES: 100,000 hour survival with
0.95 reliability; tolerance of transient faults; outage
for recovery below 50 msec.

2.6 DYNAMIC VARIABILITY: Maximum computing power required
at end of mission

2.7 PENALTIES: None for lab model; loss of spacecraft
for flight model

2.8 CONSTRAINTS: None for lab model; for th« flight model
the «eight rf the subsystem way not to exceed 40 lb. and
the power consumption was not to be greater than 40 W.

2.9 TRADEOFFS: None

3. DESCRIPTION
3.1 ARCHITECTURE
3.x.I CONFIGURATIONS
3.1.1.1 INTERCONNECTIVITY: See Figure

3.1.1.2 RANGE: One processor of ea^-h class (operating);
16 memory modules of 4096 words each (maximum operating
memory)

3.1.1.3 CAPABILITY: 500 KHz maximum clock rate and
byte-serial operation in laboratory model.

3.1.2 EXECUTIVE
3.1.2.1 MODES: Only one processor operates at a given
time (Single-processor organization)

3.1.2.2 SOFTWARE: The programming subsystem consists of
three modules: an assembler, a loader, and a functional
simulator. An executive program facilitates coordinated
use of these modules. The operating subsystem consists of
two modules: the resident executive module and the
applications programs module. The prograimilng subsystem
has been implemented on the Unlvac 1108. The modules of
the operating system of the STAR computer softwsre system
consist of the resident executive module and the
application module. The STAR resident executive augments
the self testing and repairing features of the hardware In
addition to Its normal functions. The standard features
include interrupt control. Input/output processing and Job
scheduling. Novel festures incorporated due to the
fault-to'»"-- architecture of the STAR computer Include
« "col ■'ability, reconfiguration processing,
rollbav , and diagnosis of faulty units. The
cold start ^.. .ty resets the hardware and softwsre
after a disaster restart as well as prior to ar initial
load. Reconfiguration processing is required for memory
replacement, since software assistance is required to load
a newly activated memory unit. All programs running on
the STAR computer require rollback (recovery) points. The
resident executive provides rollback status storsge and
controls events which are nonrepeatable, i.e., they may
not occur more than once even If a rollback takes place.
Finally, it Implements diagnosis for faulty units to
determine the cause and extent of failures for possible
reuse. The present application modules include floating
point arithmetic subroutines, and test and demuiistratlon
programs. The application programs that will be required
for space missions are a part of the TOPS control computer
subsystem project.

3.2 FAULT TOLERANCE
3.2.1 FAULTS TOLERATED: The principal goal of the design
la to attain fault tolerance for a variety of faults:
transient, permanent, random, and catastrophic.

3.2.2 FAULTS NOT TOLERATED: (a) Transients at a rate
higher than allowed by tlie length of "rollback" segments
of programs; (b) shorted bus wires (Isolators sre
employed) or power switch "on" failures.

3.2.3 TECHNIQUES:
*1. All machine words (data and Instructions) «re encoded
In error-detecting codes and fault detection occurs
concurrently with the execution of the programs.

*2. The computer is divided Into a set of replaceable
functional units containing their own instruction decoders
and sequence generators. This decentraliiatlon allows
simple fault-location procedures and simplifies system
interfaces.

*3. Fault detection, recovery and replacement ate carried
c it by special-purpose hardware. In the case of memory
daiiage, software augmentc the recovery hardware.

* . Transient faults are identified and their effects are
corrected by the repetition of a segment of the current
program; permanent faults are eliminated by the
replacement of faulty functional units.

*5. The replacement is implemented by power switching:
units are removed by turning power off and connected by
turning power on. The information lines of all units are
permanently connected to the buses through isolating
circuits; unpowered units produce only logic "lero'
outputs.

*6. The error-detecting codes are supplemented by
monitoring circuits which serve to verify the proper
synchroniiation and Internal operation of the functional
uni ts.

*7. The "hard core" test and repair processor (TARP) Is
protected by triplication and repljcenent of failed
members of the triplet.

3.3 NUVELTY: Power iwltchlng, statin signals, encoding
of in», ructions, emphasis on transient-recovery with
program survival.

3.' INFLUENCES: Theoretical work by Reed and Brimley;
Kruua and Seshu; Griesmer, Miller and Roth.

3.5 HARD-CORE: The "hard core" monitor of the STAR system
is designated as TARP (test and repair processor) in the
Figure. Th.. TARP monitors the operation of the STAR
computer by two methods: (1) testing every word sent over
the two data buses for validity of its code; and (2)
checking the status messages from the functional units for
predicted responses.

Three fully powered copies of the TARP are operated at all
tl.ues together with n standby spares (n - 2 in the present
design). The oitput» of the TARPs are decided by a
2-out-of-(n+3) threshold vote. When one powered TARP
disagrees with the other two, the recovery mode is entered
and an attempt is made to set the internal state of the
disagreeing unit to match the other two units. If this
TARP rollback attempt fails, the disagreeing unit is
returned to the standby condition and one of the standby
units receives power, goes through the TARP rollback, and
Joins the powered triplet. The computer is now restarted,
a rollback performed, and standard operation continues.
Because of the three unit requirement, design effort has
been concentrated on reducing the TARP to the least
possible complexity. Experience with the present model
has led to several refinements of the design.

The replacement of faulty functional units is commanded by
the TARP vote and is implemented by pc switching. It
offers several advantages over the swii ig of
information lines which connect th* - o the bus. The
number of switches are reduced to on nit, power is
conserved, and strong isolation is jd for
catastrophic failures. Magnetic po. nwitches have been
developed which are part o. each uni' power supply and
are designed to open for most inten failures. The
threshold function is Inherent in the control windings of
the switch. The information lines of each unit are
permanently connected to the buses through
component-redundant isolation circuits. The signal on a
bus Is the logic OR of all Inputs from the units, and
unpowered units produce only logic zero outputs. The
power switch and the buses utlllie component redundancy
for protection against fatal "shorting" failures.

4. JUSTIFICATION
4.1 RELIABILITY EVALUATION: The computing operations for
the analysis was done with the aid of the computer-aided
reliability estimation (CARE) program, which was developed
as a design tool during the reliability study. CARE is a
software package developed on the Unlvac 1108. CARE may
be Interactively accessed by a designer from a teletype
console to calculate his reliability estimates. B>« input
Is In the form of a system configuration description
followed by queries on the various rell.bility parameters
of Interest and their behavior with respect to mission
time, fault coverage, failure rates, dormancy factors,
allocated spare,!, and partitioning. The CARE program Is
extensible, and it may be updated to incorporate new
reliability models as they become available». Physical
fault-injection experiments are currently In progress.

4.2 COMPLETENESS OF EVALUATION: Experiments are expected
to continue through 1972,

4.3 OVERHEAD: Depends on the number of spares. With one
spare for each module—about 150 percent extra cost (i.e.
60? cnvrV^id). v ••.!

4.4 APPLICABILITY: Various real-time applications that
require very fast recovery.

4.5 EXTENDABILITY: Spare processors could be utilixed in
a multiprocessor mode. Additional buses and supervisory
mechanisms would be required.

4.6 CR1TICALITIES: The design goal was a better
understanding of replacement systems. In order to retain
contact with the practice of computer design, it was
decided to design and construct an experimental
general-purpose digital computer which would Incorporate
dynamic redundancy (i.e., fault detection and replacement
of failed subsystem«) as Integral parts of it» structure.
The design objective» have been carried out and th»
system, called the STAR computer, began operation in 1969.
The modular nature of the STAR computer ha» allowed
systematic expansion and modification» that are »till
being continued.

An early objective of the design is to study the class of
problems which are encountered in transforming the
theoretical model of a self-repairing system into a
working computer. State-ot-the art integrated circuit end
memory technology was employed in the design. This
objective appears to have been attained reasonably well,

4.7 IMPLICATIONS: Ceslgnera must give (a) advance
attention to modularltatlon and coded operands; (b)
special software features are needed (see 3.1.2.2); (c)
users must observe "rollback" rules 1r, programming.

5. CONCLUSIONS
5.1 STATUS; Operating in laboratory; being extensively
tested and modified to improve weaknesses thtr are
uncovered.

5.2 EXPERIENCE: Practical Implementation of replacement
systems is feasible. Transient faults can be
systematically eliminated without Programm loss.
Transient tolerance can be specified in terms of

duration" and "frequency" parameters.

5.3 FUTURE: The research and development p-ofram which
led to the STAR computer Is continuing in several
directions. The design of several Improved necond
generation STAR functional units is under way, including a
new arithmetic processor, a control proceaso.- for
medium-scale integrated-circuit implementation, and the
shared READ-WRITE memory unit for the storage of automatic
maintenance information from the spacecraft telemetry
system. Analysis of automatic maintenance algorithms and
design of a command/data bus for their implementation art
under intensive study, other current investigations arc
concerned with the following areas: (1) hardware-software
Interaction in a fault-tolerant system with recovery,
especially the interaction of the TARP and the operating
system; (2) studies of advanced recovery techniques, i.e
post-catastrophic restart, TARP replacement schemes,
recovery from massive interfernnce, partial utl.'ization of
failed units; (3) advanced component technology,
especially methods to attain bus and power switch (i.e.
hard core) immunity to faults; (4) heuristic studies of'
fault tolerance by interpretation of extensive experiments
with the STAR breadboard as the instrument; (5) design of
a second-generation STAR-type computer with universal
processor and storage modules, and their implementation by
large-scale Integration; (6) computational utilization of
the spare units for supplemental tasks in a
multiprocessing mode.

5.4 ADVANCES: (a) methods of coverage measurement; (b)
technology ad-;nces in Isolator and switch design; (c)
studies in restart ("roll-back") Implementation by
automatic methods.

6. COMMENTS: Design, construction, and testing of
laboratory models is critically important to advance the
state of the art and to gain acceptance among
practitioners of design in Industry.

CONTROL BUS 191.

SIHTUS LINES,

SWITCH LINfS

COP

LOP
MAP
ROM
RWM

I0P
IRP
TARP

STAR computer organization.

Control prr-essor, contains the location counter and
index registers.
Logic processor, (two copies are powered).
Main arithmetic processor.
READ-ONLY memory, 16,384 permanently stored words.
READ-WRITE laemory unit (4096 words, two copies
powered, 12 units directly addressable.).
Input/Output processor, contains I/O buffar.
Interrupt processor, handles interrupt request.
Test and repair processor, (three copies powered).

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

W, C. Career
IBM Thorn«« J. Watson Research Center
Yorktown Heights NY 10598

1. IDENTIFICATION

1.1. NAME: I am reporting mainly on a long-term research
effort In techniques for fault-tolerant computer
architecture. The relevanf prior publications have used,
for example, the tern« "nod ilar architecture",
"self-repairing computers", 'dynamic checking", "fault
diagnosis", "stand-by sparing" or "dynamic recovery" in
the titles and the authors have been some subset of the
participants named in 1.4. For present purposes I will
tall, about a paper Modular Digital Computer svstem called
MDC whose principal properties «ill be specified later.
For reality, some requirements will be Imposed which have
nothing to do with fault tolerance per se. This system
does not really exist, and will not exist, but Is
specified to provide a focus for our fault tolerant
computing research.

1.2 RESPONSIBILITY: IBM Research.

1.3 SUPPORT: Support has come from IBM, U. S. Air Force
and NASA.

1.4 PARTICIPANTS: W. G. Bouriclua, W. C. Carter, E. P.
Hsieh, D. C. Jessep, Jr., G. P. Putzolu, J. P. Roth, P. R.
Schneider, C. J. Tar, A. B. Wadla.

1.5 START: Formal initiation occurred In March, 1966.

1.6 COMPLETION Open ended. No end item is scheduled.

1.7 BIBLIOGRAPHY:
*Roth, J. P, "Diagnosis of automata failures: a calculus
and a method", IBM Journal,vol. 10, A, 1966.

»Bouricius, W. G., Hsieh, E. P., Putiolu, G. R,, Roth,
J.P., Schneider, P. R,, Tan, C. J., "Algorithms for
detection of faults in logic circuits", IEEE TC, Vol
C-20, Nov. 1971. .

»Bouricius, W. G., Carter, W. C. and Schneider, P. R.,
Reliability modeling techniques and tradeoff studies for

self-repairing computers", ACM National Conference, San
Francisco, California, August, 1969,

•Bouriclua, W. G., Cirter, W. C., Roth, J. P. and
Schneider, P. R., "Investigations in the design of an
automatically repaired computer", Paper Number 6.4
Conference Digest of the First Annual IEEE Computer
Conference, Chicago, Illinois, September 6-8, 1968.

•Carter, W. C. and Schneider, P. R., "Des'gn of
dynamically checked computers", IFIPS, Eoinburg, Scotland.
August, 1968.

»Carter, W. C., Jessep, D. C, Wadla, A. B., "Error-free
decoding for failure-tolerant memories", 1970 IEEE
Computer Conference, Washington, D. C, June, 1970. pp.
229-2 39.

»Carter, W. C, Jessep, D. C, Bouriclua, W. C., Wadla, A,
B., McCarthy, C. E., Milllgan, F. G., "Design techniques
for MARCS" (Modular Architecture for Reliable Computer
Systems), NASA Contract NAS8-24883, RA12, IBM T, J. Watson
Research Center, Report Number 70-208-002. March 26, 19 70.

»Carter, W. C., Jessep, D. C, Wadla, A. B., Schneider, P.
R., Bouricius, W. G., "Logic design for dynamic and
interactive recovery", IEEE TC, Vol. C-20, Nov. 1971.

2. MOTIVATION
2.1 PURPOSE: Real tin
management.

2.3 COMPUTING ENVIRONMENT: The HX is planned to be able
to run the gamut from being insulated from human control,
oervlng a variety of sensors and effectors, to being able
to accept ground-based human directed control.

2.4 COMPUTING OBJECTIVES: Predicted configuration
scaleabillty primarily under Internal control including
system« which are fault tolerant by masking redundancy, by
stand-by redundancy, or by software checks; systems whose
use of power Is variable (but whose thruput is affected);
and systens operating in parallel. The major objective Is
to provide means for meeting various requirements with a
high degree of confidence..

2.5 RELIABILITY OBJECTIVES: The system 1» to be designed
to meet varying specific mission reliability objectives
with a high degree of certainty. Examples are survival
for n years with a probability p; "Fall operational, fail
operational, fall safe", or reliability variable with
mission task.

2.6 DYNAMIC VARIABILITY: As stated above, dynamic
variation of system parameters such as perfomance,
reliability and power consumption with confidence in the
design as a major objective.

2 7 PENALTIES: Variable with mission, ranging from loas
of human life through expensive flight hardware to
abortion of flight objectives.

2.8 CONSTRAINTS; Hardware must be designed to fit weight,
power and size requirements, yet able tc have thruput
compatible with mission requirements and to support the
software necessary for reasonable programming effort per
mission.

2.9 TRADEOFFS: Hardware efficiency and potential thruput
are traded for 1) system reliability as defined per
mission phase; 2) simplification of recovery process and
other basic executive functions; 3) high malfunction
coverage and design certlflcatlor; 4) ease of program
validation; 5) convenience of programming and ease of
diagnosis for external equipment; 6) system flexibility.

3. DESCRIPTION
3.1 ARCHITECTURE
3.1.1. CONFIGURATIONS

3.1.1.1. INTERCONNECliVITY: Tlie basic uniprocessor
configuration consists of partitioned computer subunlts
attached to several busses. The basic subunlts are (see
attached rough diagram): ALU, Scatch and Program Control
Unit, Bus Control, I/O Processor and Recovery Control
Unit. The bis orientation remains, but the units may be
modified (microprogrammed) for varying missions. The
system consists of replicas of the basic subunlts, with
configuration control governed by the RCU and Executive
Program. A major problem Is the interface design to meet
the constraints of fault tolerance, long life, and varying
modes of operation. The memory is encoded with a
b-adjacent error correcting code and spare b wide subunlts
per basic module.

control, data acquisition and date

2.2 PHYSICAL ENVIRONMENT: Aerospace application« have
predominated in specific design decisions. Modularity
should ensure wide applicability.

 ■

BUS
CTL

MS
1
1

. ip

SP

PCU

ALU

RCU

26

3.1.1.2 RANGE: The range of rhe system Is uof. frozen In
f Jf

r
< J'!^""1 ""«P'- Aft" four processors the law

ot diminishing returns sets In sharply and further
partitioning may well be a better bet for long life. The
memory will consist of modules, each module consisting of
b-wide units with b-adjacent coding and spare b-wldth
units. The upper limit depends upon the hardware
available, but hardware does not appear to be critical.

3.1.1.3. CAPABILITY: The order of 10E5 to 10E6 additions
per sscond per basic system with a minimum of 256K-5;2K 32-
blt words of memory. I/O will be handled bv up to 4 16-
bit parallel cannels with 50.000 transfers per second
simultan.-.aly on one lnpuc BBd one ^ c, ^^ ^
I/O processor will handle the details of I/f, .onrrul under
direction from the processor Executuve.

3.1.2 EXECUTIVE: Toe standard executive control
(allocation, scheduling, dispatching, I/O) will be
achieved by replicated software routines. These tasks
have not been studied much.

3.1.2.1. MODES OF OPERATION: Each processor is
multlprogiammable. System operation Includes fault
masking, multiprocessing with hardware fault detection and
multiprocessing with .oftware analysis. The mode of
operation of most concern is that of recovery initiation,
the interaction of the recovery and error analysis
programs of the executive and the RCU. Recovery and audit
programs always run background whether the system is in
fault masking, fault detection or software analysis modes.

3.1.2.2. SOFTWARE ORGANIZATION: The system software will
be distributed among the processors and analyzed by audit
routines for early detection of c:rors.

3.2. FAULT TOLERANCE
3.2.1 FAULTS TOLERATE!: In the error-masking mrde, any
number of faults which affect only one partitioned
sub-unit cai be tolerated. The system handles transient
faults with instruction retry or permanent faults with
hardware controlled reconfiguration. The cause is
Irrelevent as long as the interface detects disagreement
The disagreement circuits are self-checking so faults In
them are detected. Initially the same malfunction in
thrse units is necessary to defect the system. After
reconfigurations two faulty units may escape detection.
In the error detection mode, faults causing a single
subunlt to be In error are detected. At this point the
same errors in two units will be undetected. Diagnosis
and software recovery is necessary for continuation.

Faults detected by software checks are detected and
recovery should follow in the unchecked multiprocessing
mode. Faulty software may be detected by the RCU time-out
tests and system evaluation procedures.

3.2.2. TECHNIQUES: In hardware fault tolerant mode the
system should F0 - F0 - FS for each one of the partitions
of the system it four copies of the basic computer are
used, Diagnosis can continue the computation with one
partition uncheckeii. Detailed fault .inalysls must be
performed to validate ouch goals. In hardware fault
detection mode the system should run at least two
multiprocessor hardware checked systems. A fault would be
detected, and diagnoses would allow continuation with one
partition unchecked by hardware. Achieving such
hardware/firmware/dlagnosis goals depends upon the
development of many tools of fault analjsis. The memory
encoding Is b-adjacent multiple error co-rectlng and/or
multiple b-adjacent error detecting. The codes used are
variants of Reed-Solomon codes with combinational self-
:hecklng translators which pass only correct code words.
Standard single instruction retry is available,

Mlcrodlagnostics under exe:utlve program control with
program variable input patterns will be used for fault
analysis. The executive software will use the standard
fault tolerant technique» • two way lists with pointer
verification before proceedi.^, s.ored data and programs
will be taggec with redundant identification, read only
programs will ..How simple updating etc. Rollback i <d
restart will bt used for multi-procesning with hardware or
software error detection. The RCU monitors constantly for
catastrophic faults - those not detec:ed by the hardware
and software tests. Tht standard time-out tests and
ayatem performance evaluation routines are run and
controlled by the RCU, Power is conserved under program
control by forcing n cycle.» between uiemory accesses,
Imposed by a counter with program changeable ccntents.

3.3 NOVELTY: Reconfiguration under hardware control In
fault masking mode. Choice of computer fault masking
multiprocessing with fault masking and various forms of
detection, muUiptocessing wlth hardware error detectior
by comparison, multiprocessing wit! software error
detection. Storage reliability by b-adjacent multiple
error detecting and correcting codes. Self chfcklng
memory translators, checking circuits, and error-analysis
cirults. Use of power under program control.

3.4 IHFLUENCLS: 1. JPL Star - the total effort: 2. SRI
Technique» for the Realization of Ultra-Reliable
Spacebome Computers; 3. MIT -Draper Lab. tor spaceb.jme
multiprocessors: 4. Rapid emergence of LSI for feasibility
ot much redundant hardware.

3.5 HARD-CORE: Assuming that hard core means hardware,
redundant or not, whose failure will produce ...-.detected
errors, there Is „o such hardware in this system
Hopefully, the software can be validated so that'equal
claims can be made for It.

4. JUSTIFICATION FOR THE SYSTOt
4.1 RELIABILITY EVALUATION: Architectural reliability
evaluation by interactive program using exponential
failure assumption for the units. Determination of
component failure rate» by analysis based upon previus
data, experience, and analysis. Logic fault analysis of
circuits in design stage by interactive, fault simulation
programs. Diagnostic pattern evaluation by simulation
programs. Memory failure predictions by careful
probabilistic fault analysis to predict error patterns
programed computation of the circuit failure constants,
programmed evalutatlon of reliability. Programmed
analysis of RCU functions. Theoretical analysis of
design, with hardware and so'tware, in complicated
situations (guided by simulation).

4.2 COMPLETENESS OF EVALUATION: Major unsolved problem.

4 3 OVERHEAD: Variable. In the processors about a 3 1/2
:1 logic count penalty is paid (th, cost ie much less)
In the memory about a 3:2 storage penalty is paid. In the
aottware the cost is unknown, but considerable.

4.4 APPLICABILin: Ihe concepts can be used elsewhere
the system 1» oriented toward space and extremely high'
reliability applications.

4.5 EXTENDABILITY: This computer Is too reliable to fit
Into most other systems. For extension some of the fault
tolerant techniques In the computer must be eased for
better total system ualance.

4.6 CRITICALITIES: Multitasking, as with all Executive-
controlled recovery system», is critical, achieved here
with multiprogramming. Multiprocessing is an imposed
condition, but small system simplifications would result
if this condition were relaxed. Design validation oolii
are critical.

4.7 IMPLICATIONS: Architects must perform automated error
and vecovery analysis while doing system specification
Human „nalyais is too fallible. Hardware designers must
have and use tools to do fault analysis as they design
After the first pass they must do design validation and
Itarat-. Software designers must participate In the
Initial decisions, must produce more techniquts for
producing self-checking programs, and r.ust produce the
tools for program validation. Applications programmers
must validate their programs (top down programming
techniques will help), and must follow system rules (not
so far known).

5. CONCLUSIONS
5.1 STATUS: This system Is the collection of a group of
Ideas from a research project.

5.2 EXPERIENCE: None to report to date.

3.3 rUTUREl The system will be pursued only ir. a modified
form as a paper study only.

5.4 ADVANCES: The proolema of validation - hardware and
»oftwar« - will provide many a bottleneck for fault
tolerant computing. The basic problem of definition of
fault tolerant computing will be with us - do w» consider
any algorithm, procedure?

SU1V1T ON FABLI-TOLIMIIT COHPUTll STSTDiS

Alb.« I. Hopkln.. Jr., MI Dnpti Ubor.toiy
Caibrldg«, Maaa. 02139, May 1972

1. IDBTIFICATIOII

iikw^Si^"" 5,«K,rtl»t •■ • looi-Mt. davalepMnt
•Hort which haa h,m .upport.d by dlffarant proj.ct. ■«

puliliahad raporta:

• "A Faule-Tolawt Xnfonatlon <>roeaaalng Syataa for
Advanead Control, Suldaaca,and Na-lgatlon".

* "Spaea Tranaportatlon Syataa Duta Hauas«mt SyaUa".

In addition, an azparlaantrl thraa-prouaaor
thrjj-aer.tchpad bra^Iboard haa baan (Im tha .crony-
CMMRDS for tha thraa-haadad dog In elaaaleal aytholoay,
Tha acronym angandarad tha titla: Controllad Brror
Kaeerary Bahavlor Baploylng Raduadant Uaa of Scratchpad».
In «hat follow, 1 uaa "tha ayatu" to Man tha ganoral
coneopc, rathar th»n a «pacific hardvara dMlgn. Thla
VVm ■! ^ ■d»"'tM« of halng abla to ba light on -y
toat and adapt to any altuatlen bafora tha fact.

1.2. RISPOHSIBILini Thla work la In tha Digital
TSJT"* -roup of th• Q»"!«» St«rk Drapar Laboratory. ■ dlvlalon of M.I.T. ' ^,

1.3. SUPPon SOüRCBSi So far all anpport haa COM froa
tha NASA Mannad Spaeaeraft Cantar.

1.4. PArriCIPASTS: MIT and HiSA/tlSC.

1.5. START: Work In thla araa bagan In 1966.

1.6. COMPLKTIONi Opan «ndad. No and itm la achadalad.

1.7. BIBLIOGRAPHY:

*„ R; L' "«■o. A. L. Hopklna, Jr., and H. A. Thalar,
Daalgn Crltorla for a Spaeaeraft Conputar", Spaeabornc

Multlorocaaalng Saalnar, pp. 23-28, NASA ERC, Boaton
Muaein of Sclanca, Oct. 1966.

* R. L. Alonao, A. L. Kopkina, Jr., and H. A. Thalar, "A
Multlprocaaaing Structura". Dlgaat of tha Flrat Annual
IKE Coaputar Conf., pp. 56-59, Chicago, Sapt. 1967.

* A. I. Graan at al.. "STS Data Hanaganant Syataa
Doalgn', MIT C.S. Drapar Laboratory, Caafcrldia. Maaa..
Roport E-2529, Juna 1970. ^ ' '

* A. L. Hopklna, Jr., "A Pault-Telaraut Intonation
Proeaaalng Concept for Spaea Vahlclaa", IEEE Tr«».
Coaputara, Vol. C-20, pp. 1394-1403, Nov. 1971.

2. MOTIVATION
2.1. PÜRP0SB: Real tlaa control, data acqulaltlon and
data aanagaaant.

2.2. PHTSICAL ENVIRONMENT: In principle It could ba any
but aeroapaca appllcatlooa have pcadoKlnatad In daalgn
dedalona.

2.3. COMPUTING ENVIROWOMT! Sy.teu conaldarad hara are
•nvlaloned aa largely aalf-ceatalned Infonatlon
proeeealng ayatana aarrlng e variety of aeaaon and
affectora Including hiaaa operator«. Such ayataw would
be dlatrlbuted, hierarchical and rediadaat. Central
fault-tolerant aultlprocaaaora would coaaunleat« ovar
••rial date buaa« to local precaaaor ccwplexe« «bedded In
aubayetaM of tha total ayetea. A principal application
conaldarad for thla approach »aa the Space Shuttle, «hare
the Orblter would heve ooa central aultlproeaaeor «1th
adaquete redundancy and apara hardware to be operational
after three aalfvoetleoa. Each aubay«t«a or grot« of
Identical aubayataae «ould be «arvad by «Ingle or
redadeat local proeeaaora. aa eppropr'ate, to fulfill the
radundancr raqulraaant for that «id>«y«r«a or grm*.

Tha looeter «tag« of the Space Shuttle «ould. In thla
concept contain a ayetea alatlar to that of tha Othltar,
capable of en—micatlt, «1th It by «ay of a aerial bia
eooiactlng tha t»o central nultlproceero-i. All
ceaatBlcatloo betaeeo a centrel aultlproeaaeor end Ita
local proceeaiara «ould ba via a aerial data baa.

2.4. COMPUTING OBJECTIVES TO» THE CENTRAL MOLVIPROCESSOR:
Variable froa the order of 10*5 (I.e., 10 to the 5) to the
order of 10E6 operatlona par aacond, with uaory
capadUea of froa 2E1* to 2E17 «otda of aaln randan
acceee aaaory. Input-output bandwidth 10E5 uaeful
blta/aec on a 10E6 pulae-per-aecond bua. Reaction tin
order of 10 allllaaconda.

2.5. HKLlABILITIf OBJECTIVES: Varlou« typee of objectlvea.
One esaapla le elrllne appllcatlcn« «hat« laee than one
cateatrophlc ayataa aalfimetlon In 10E7 flight« la aought.
Other cbjectlvee ere atated In teraa of the o-^)er of
Individual aalfmctlona which can b« toleiated la e
flight, euch «a "Pall operational, fall operational,
falleefe" (PO-FO-ys). Th« .yatea la generally aaent to be
used In very high reUeblllty appllcatlooa.

2.6. DYNAMIC VARIABILITY: Graceful degradation 1«
available aa a neena of azehenglng parforaence for
reliability.

2.7. PENALTIES: In the Spece Shuttle application, aa In
poaalbl« elrcreft application«, huaan Ufa la concerned,
ea well aa axpenalva flight hardware.

2.8. CONSTRAINTS: In Space Shuttle and aircraft.
approxlaataly 2 cubic feet, 120 lb., 300 «atta.
(Katlaata for a central nultlpr->c«««or).

2.9. TRADEOFFS; Hardware efficiency le treded for 1)
eyetaa reliability, 2) high aalfwetlon eoverega. 3) aaaa
of pregraa verlflcetlon, 4^ ayetea flexibility.

The «hjber of fault« tolerated 1« variable through e
coablutlon of repllcetlon end «perlng. Proceeeora and
aaaorlea can be edded (deleted) to Incraaae (dacreaae)
proceeelcig and aaaory reaourcee.

3. DESCRIPTION OF THE SYSTEM
3.1. "RCHITECTURE
3.1.1. C0NFIGURAII0MS
3.1.1.1. INTBRCOHNECTIVITY: The «y«tea aakee extensive
uae of replication, and eonaaquantly conaectlooe have a
high -.oet. Serlel end byte-eerlal buaaa era uaed between
bealc unite. Multlplaxara are eaployed to prevent alngle
«It aalfunctlena fron apraadlng to all coplea of a
red« dent bua. The canonical Interconnection echew la
•hewn In Figure 1.

3.1.1.2. RANGE: No reage llalta have been datarained, but
the following nnbxr« aay be typical for an aeroepece
«ppllcatlen. There ere two current coape'ltlve
conceptualltatlona of the eyataa. Theee nubata rapreaant
the newer end leaa well developed concept.

* 6- Nsaber of «laul «naou« job «tepa la procaaa
* > Degree of replication of eesh proceaeor»ecratchpad
* > Miabar of apere proceaaor-ecratchpad«
•21- Total proceeaor «cratehpada -6x3+3
* 4« Nwfear of Independent aeaory blocke of 16K
* > Degree of replication of each block
* 3- N «bar of apare bloeka
*15- Ti '' aaaory block aodulea • 4 x 3 ♦ 3

The niaba. of procea«ot-«eratchpeda «ad aaaory bloeka can
ba Incraaüed up to the practical bandwidth llalt of the
proceaeor-Beaory bua and the I/O bua.

3.1.1.3. CAPABILITY: The order of 10E5 to 10E6 addition«
par aecond «ad the order of 2114 werde of aaaory. Three
proceaaore would ba tha aaalleet "aaaelble" maabar.

3.1.2. EUCUTIVE
3.1.2.1. MODES OF OPERATION: All prograaa era aegMnted
Into job atepe which are dlapatchad by a floating fora of
executive. Eecb job «top occupla« one precaeeer full tlaa
while It tun«. Multlprocaaaing la the normal operating
aod«. Multlprograanlng of each proceaaor la not
emrleloaed.

3.1.2.2. SOFTWARE ORCANIZATICH: 1/0 proeaaalng la
quaal-dedlcated to one proceaaor (I.e. It cm float but
daaa as only when aalfunction aakaa It naceaaary).
Executive, aealtor, and reconfiguration prograa are rim
en an at-needed baeU by each proceaaor aa It flnlahae a
job atap.

3.2. FAULT TOUUMCE
3.2.1. FAULTS TOUMTIDi Individual unit« (a.g.
proeaaier, Maoty mit, aultlpluar) en uilfiactlon on*
at a tlaa with no raatrlctlon en «hat th* nature of the
■alfuactlon 1*. Errors are aaakad by the aystaa until It
reconflgurw Itaalf to a fault-tolarant atata.

3.2.2. FAULTS NOT TOLERATED: Certain aalfunctlon pairs
which occur slaultanaeolr or cleee together In tlaa can
produce loae of data and nany require a prograi restart.
Incorrect specifications or progrea malfunctions een
defeat the systsn. Syetaawtlc hardware ■alfonctlona In
which the aeae aalfunctlon occurs In two redundant units
can defeat the eyatea.

3.2.3. TECHNIQUES: Two different coacepte.

First concept: all procaeeom ere duplexed for detection.
All scratchpad* era trlpleaed for aaaked duap capability.
Single Instruction reatarl. Graceful degradation of
proceseer-acretehpad groups. Triples aaaory unite with
dedicated eperee. Triples buaea with epare*.
Multiplexers Isolat* buaae froa failed grcupe of imlts.

Second concept: processor-scratchpad unite en orgenlsed
late groups of three under eoftwere control. Each looks
for dlaagreeaant. If dleegreaaant oecura, continue
runnlofr to end of job etep, tnen enter reconfiguration
progra». Graceful degradation of Individual
proceeeor-scretchpsd unite (rather then groups of three
ecratehpads and two processors aa In first concept).
Triplex mmovr unite with non-dadlcatad epana. Triplex
busss with sps.... Multiplexer* Isolat* buaae fron felled
Individual wit* (rathei than grcupe ea In first concept)!

In both concepts, softwsra configuration control la uaed,
which la valid aa long a* * working processor group,
aaaory group, and bua-auldplaxer group are available.
Hultlplexere pertlelpate In conflguiatlon control.

3.3. N'VEI.TT: Single Inatructlon restsrt. Absence of
Interrupts snd progna rollbacks. Distributed aonltor and
reconfiguration functions. Use of nultlplexers to Isolate
bus and unit aalfunctlon*. Fault-tolsrsnt clock.
Hierarchical eystsa with fault tolarenee extended Into
eubeyec<aa.

3.4. INFLUBICES; Rapid aaarganca of LSI aeaorlee end
processor* ha* encouraged use of replication and
partitioning with slaple, idantlcel units. Apollo
Guidance Coarputer experience proapted ellalnatlon of
Interrupts and wMbtuft for the eaka of progrea
verification. Carter and Beurldus for rslleblllty
aodela, Avlslsnla for eoncapta of fault tolerance,

3.5. HARD CORE: Assualng that hard core aeans
nou-redundant hardware, there la no hard cor* In this
•ystsB, Configuration control la a eoftwere function
using the evallable hardware to configure the systsa.

*. JUSTinCATI«
'.1. RELIABILITY EVALUATION: So fsr mostly geared towerd
/O-FO-FS, Soae Probeblllatle enalyale. No rellsblllty
projections es yst sines hardware has not been selected
end failure retea sre therefor* not ' iown.

4.2. COMPLETENESS OF EVALUATION: Hsrowar« not sslsc:sd,
hsnes fsllurs rsts not krown.

4.3. OVERHEAD: About 80Z of the systea Is devoted to the
schlsvsaant of fault toleranca.

4.4. APPLICABILITY: Thle concept le applicable to most
digital control envlronaent*, depending on the econoalra
of the eppllcstlor. rsgerdlng fault tolarenee.

4.5. EXTENDABILITTi Cxtandablllty probably doe» not
apply, (Inc* the ayste» Is still loos*J7 spsdfied.

4.6. CRlrlCALITIES: Th* *yst*a le «ost eoa«:-effeetlve
coapend to oth*r sy*taH whan th« riaber of fault* to he
tolerated 1* high *nd »rt- r* ulrra-lilgh reliability la
sought. For slngla-fsult toljraucs «d less high
relleblUty, the eysisa coo^lguratlim might be changed,

4.7. IMPLICATIONS: In an ultre-hlgh relleblUty
application, specifications and prograis Bust bs pinvan to
bs correct. In this eyatsn, *ppllcatlons progrsaaers sust
also segasat thslr pjv,'reas Into short Job steps.

5. CONCLUSIONS
5,1.1 STATUS: This is s resesrch project with s
breadboard experlnentel unit almost completed.

3.2. EXPERIENCE: None to report to date.

5.3. FUTURE: Soae parts of the syiiten still need to be
designed end prototyped. Excperiacnte miut be conducted on
e full-ecala prototype system.

5.4. ADVANCES: The following will be beneficial.

«Demonstrated field experience with various fsult-tolersnt
concspts.

♦Practical techniques for generstlng correct prograaa.

'Practical waya of verifying that a prograa is correct.

6. COMMENTS

The questlonnairs vss good In ths ssnse of being thorough,
but In ay haste to r**pond to it I wonder if I h*v*
omitted elgnificant materiel. Aa additional conaant about
this systea Is thst It ha* b*en configured around
integrsted procesaor* end a*aorl** which reeea>>le thoe*
thst srs svsilabla 'odey. The hardware efficiency nuaber
given In Section 4.3 Is very alsleeding, becau** th* coat
of th* hardware can be the leaat important coat of the
syetaa. If the hardware la convaatlonal and not overly
expenelva. Thi* *y*tSB 1* cxp*ct*d to «eve in coet* of
systsa intgegretion, progrsa vsrlflcatlon, and oparational
reliability experience. Theae savings aay bs far in
a.ce** of th* hardware coat.

A* an additional note, the replicated approach uaed hare
reeults in e covereg* of 1,0 agelnet single aaltunctlona.
Codad approachee generally give lower conrag*, difficult
to quantify, and often lapo**lbl* to v*rlfy In the field.

A^^^ CH ■•• E. CD

P...Froce**or
S...Scr*tchp*d a*aory
M...HaaoTy module
X...Multiplexor

SSI...Sub*yct*a interface

29

SURVEY OF FAULT-TOLEKANT COMPWING SYSTEMS

W. I, fUrtln, Hughe» Aircraft Coapany
:ull«rton, Callfornl« 9263*, M«y, 1972

1. IDENTIFICATION

Mui
1aP^:-1)o

A"t
s7"^1|];KSisTfl,urableModul"

1.3. SUPPORT: Samt u 1.2

1.4. PARTICIPANTS! The participating organl.atlon.
nclud. NASA MSFC, Hugh.. (,mL d„

g
lgnf(J" c^utlng

iub."jT?UtlV! ,,0ftW,re Und,r -""contJact to Hugh« ;
Auburn Univ.r.lty («.cutlv. control approach., ind«
con ract to NASA). Principal partlclp"t. by na« .r. a.

I US* *tta'
Dr- J' B- Whl"' Sh«"» Job«i Hugh« -".

''-win ' T* Sch,M,Mn: Aubu™ - Dr. DaJid

I'J.'.. !T^RT! The ''•" of «"x1«?"«»" "a. circa 1968 in a
concept doci».nt wrltt.n by Dr. Whit., MSFC haa b.fal
developing technology und.r th.lr Space Ultrareli.ble
Modular Computer (SUMC) progra» alnce ahortly th.re.fter
The ayat.« d„lgn .ffort b.lng f,Ttotmi „ ^n^vL
.ollctt.d in May, 1971 with a contract in bctoSe." 197'..

win h
C<»,?LETI0N- ?» «"«".a ayat.» definition contract

hü „K* "■»P'-ted in April. 1973. Conatructlon of a
uncertäJnf 0r Pr0t0type "•" foUow *** compl.tlon date

1.7. BIBLIOGRAPHY: V.riou. planning document, hay. l.en

Ph! "Tr" ""ort
1
1• dlvld«d *»*• ">r.e ph...., vith the

Phaae 1 report rel.u.d on April 15, 1972. It 1. titled
De.lgn of a Modular Digital Comput.r Sy.tem", DRL 4

Phaa, 1 Report, Hugh.. Alrcr.ft Company FR 72-11-45(5. Two
other p.p,r. h.ve been .ubmltt.d for public.tlon. Th.lr
f.te i. uncertain aa of yet, but int.reated p.rtle. may
obtain cople. from W. L. Martin at Hughes. Theae are the

B"1'«,' "O1^'!' * Unl£led H'tt,od for Analy.lng Miaalon
Profile Reliability for Standby and Multiple Modular
Redundant Computing Syattn. which allows for Degraded
Perfomance (submitted to the IEEE Tranaaction. on
Reliability Theory),

*J. L. Bricker and W, L. Martin, R.ll.bllity of Modul.r
Computer System« with V.rylng Configur.tlon and Lo.d
Requirements (submitted to 1972 IEEE Comput.r Society
Conference), '

2. MOTIVATION
2.1. PURPOSE: ARMMS 1. to b. applicable through
modularity to diverae type, of space miaalon. ranging from
launch vehicles, to space station, to deep ap.ee probes.

2.2. PHYSICAL ENVIRONMENT: Sp.cborn.

2.3. COMPUTING ENVIRONMENT: See 2.1, 2,2.

2.4. COMPUTING OBJECTIVES: The Bctivmng COB-.ting
objective 1» to be able co configure 1 »-:~- which are
fault tolarant through TMR or oth.r redundant modea or to
ua. the module, in p.r.11.1 for high computing capacity
«id to b. able to r.conflgur. from one type £0 tn. other
dynamically. Hazlaia capacity in a non-redundant mod. la
to be several million" addition, per second.

2.5. RELIABILITY OBJECTIVES: On. .p.clfic reli.bllltv

f il^ Ve *' that the 'r°b'b^y of "u^vS of« 2„t
a almpl« computer after 5 years should be at leaat 0 9?
(with no on-board maintanance). The ov.r.U int"
however, 1. th.t the system should be .ble to be

wh«ifrr!h t0l>
me" """"^ «Mi« relUblllty obje-tlves

whether they be st.ted In term, of maximum recovery tl«
mmber of failures tolerated, etc, '

2.6. DYNAMIC VARIABILITY! As noted in 2.4, dynamic
variability of configuration la one of the primary
motivation». rn~mij

2.7. PENALTIES: See 2.1.

2.8. PHYSICAL CONSTRAINTS! There are no explicit phy.lc.l
con.tr.lnt. except those Implied by the n.tSre of. IZ
Intended apaceborne application. However, an implicit
phy.lcal constraint is the difriculty of contriving an
approach to a large (by aeroapace standarda) computing
capability fault-tolerant design within the confines of
weight and power budgets which may pr-.vall for
Interplanetary mission.,

2.9. TRADEOFFS: At th. current stage of the de.lgn, there
«re many critical tradeoffs yet to be made.

* For a computer which will be built after 1975 what
device complexity and failure rate, sho-.'d be asiuned'
Almost all aspects of the design .re crltlc.lly .ffec ed
by this question. Some of the more crucl.l one. are the
maximum complexity of any module; the degree to which
proce.sors must he sub-p.rtitioned; the re.ultlng cost in
switching hardware; the maximum number of replicate, of
any one module type which muat be accommodated; and th •
complexity of the configuration control software.

", .rS? hfie AW,MS COn"Pt ''•»•loP«' by «ASA incorporates
a r/ed^eted executive module r.ther than a floatln«
executive. Resulting tradeoffs include apeclfic
definition of function, to be performed, apeclflcatlon of
status monitoring and reconfiguration parameters, and a
dealgn approach which y elds sufficiently high reliability
for the executive module, "•"•oiixty

* The system architecture Is not yet defined in any

IZli'fi" TM6; .Questlons "« '° »" ««olved Include
specific definition of allowed modes of operation;
definition of the means of interconnecting the modulea-

fll"^ "Ü" U8e Pf VOter8: USe of ""r-correcting cidea
for memory data; maximum number of roplicatea per module
Ua.; specific technique, for memory data pjection; Id

fault tolerance features vithin each module claa. At
present, we are making tradeoffs baaed on two mejor
configur.tlon alternatives. Although few tradeoff
conclusions have been reached, the predominating
evaluation criteria are almost cert-.ln to be the
following:

LiTr6"'""011 fea8lblllty - **y <i"lgn feature which
doea not aeem to L-a to be feaalble in any major sense

rejected. We are not p.rtlcularly intere.ted In
developing new theorleg or technique, of fault-tolerant
computing but are very intereated In developing a

thfT^dsd,n"tbed b'8ed 0n the re«arch P«f .rmed over tne last 5-10 years.

* Suitability to the multi-mode configuration
requirements - ARMMS is Intended to be usable in
configurations ranging from a aimplex computer to IKS wi U
standby .p.res. Any fe.ture which Imposes .xc.lve

expe'n.6. oCf0oth. r ?* beM£lt 0t ^ """«"""on at the
«r ^H ?i f J" »V"«'- ** ««»Pi«, added hardware
per module for intern.l f.uit tol.r.nce multiplle. the
hardware penalty palt' In TOR mode.

3. SYSTEM DESCRIPTION: A. seen fron, the tradeoff
dlscusiiion «bove, nc flnn system description la possible
now. Therefore, the -esponses in this section are
neceaaarily brief and incomplete.

3.1. ARCHITECTURE
3.1.1. CONFIGURATION
3.1.1.1. INTERCONNECTIVITY: All processors, I/o, and
executive controller may access all of main memory (a
study of the desirability of Identifving an additional
level of memory, cache or task oriented was made, with a
negative conclusion reached). The most probable scheme is
a system of replicated busses with access contro] governed
by the executive module. The nature of spac.borne I/O
aC^Vlw u" bla8ln8 "" tow«d » direct proeeacw I/O data
path which can be used for transmitting short: bum« of
dita. The executive controller will monitor the other
system modules via a time-shared bu,. Ihls bua ordinarily
polls the modules in sequence but may be l.terrupted by
the processors on task completion or other time-critical
event. No direct interaction of modules of a given class
(e.g., processor-to-processor) is planned,

3.1.1.2. RANGE: The general approach to achieving the
large capacity mentioned previo jly is to maximize the
individual processor performance so that throughput Is not
dependent on a large number of parallel Instruction
streams. (Three is a deslra'.le upper limit.) The maxtmun
main memory capacity is to I e large enough (e.g.,
256K-512K words) to support the high-throughput goals.
The word length is to be 32 bits as dictated by the choice
for the NASA SUMC processor. Cumulative I/O data rate
capability la to be 10 million bits per second. In all
cases, maximum nunber of modules per class (and the memory
module capacity) wili be determined primarily by
reliability tonaideratlons. A least upper bound a 4 for
each class.

3.1.1.3. CAPAIILIIY: (See 2.4.)

3.2. FAULT TOLERANCE: (The system Is still too much
conceptual to allow a decent response. All faults are to
be tolerated. None are to be not tolerated. All
techniques will be considered. Ask again In a year and
let'.« see how it turned out.)

3.3. NOVELTY: On the one hanc. there's nothing that one
can point out as being f undamentt U/ novel (this is true
of most machines, I think). On tie other hand, there are
no machines that I know of that hive successfully
Implemented a variable redundancy approach such as is
being sought. The choice of a dedicated executive module
Is th» only deviation at the block diagram level from
other multlproceasors (but this module is a rather close
parallel of the TARP in STAR).

3.4. INFLUENCES: JPL STAR; NASA ERC Modulsr Computer-
NASA MSFC SUMC; IBM, "Architectural Study for a
Self-Repairing Computer; SRI, Techniques for the
Realization of Ultra-Reliable Spaceborne Computers.

3.5. HARD-CORE: The executive module is hard-core. The
effect is to be minimlied by simplifying the module as
much as possible and by Internal redundancy (which may
ultimately result In replication).

4. JUSTIFICATION
4.1. RELIABILITY EVALUATION: To date, reliability has
been evaluated solely by analyaia (as described in the two
papers mentioned In 1.7). Later in the effort, we expect
to extend the analysis to include coverage and switch
unreliability. We also expect to simulate the logical
performance of the intermodule switches and to simulate
the injection of faults.

4.2. COMPLETENESS OF EVALUATION: I'm not surt that I
understand the question. But whatever you mean by design
evaluation, I'm sure that I wish we had more time and
money to do It better.

4.3. OVERHEAD: Since the configuration is dynamic, the
percentages of resources attributed to the achleveaient of
fault-tolerance also vary with time. An upper limit la
probably 601; a lower limit is probably 201 (in coat,
logic, execution time, etc.).

4.4. APPLICABILITY: ApplicMllty to other than space
applications is questionable.

4 5. EXTENDABILITY: I think that it la more likely that
the system design can usefully contract than that it can
be usefully extended.

i.b. KITICALITIES: The major difficulty of the design
ij ütt breadth of the goals. The critical problem is
Mereti.-re to find a set of design choices which coiiiplles
-.eaaonai-iy well with all the goals (e.g., we want high
speed and capability but require low weight and power).
However, I don't think that slight charges would
critically affect the design. (Also, as a side
observation, while one la In the mUiat of a system design
all choices seem critical, don't they?)

4.7. IMPLICATIONS: (Let me plead that this question
seems too vague. I don't know where to start with a btlsf
response.)

5. CONCLUSIONS
5.1.1 STATUS: The status is sufficiently described by the
above comments, I think. In aummatlon, we are about
one-third of the way through a system definition phase.

5.2. EXPERIFNCE: It appears that component technology is
contributing more to the feaBiblllty of highly reliable
machines than architecture concepts are. As recently as 2
or 3 years ago, gate failure rate of 10E-7 per hour seemed
optimiatic. At present, gate failure rates of 10E-10 per
hour are credible for the apace environment. On the othet
hand, the assumption that dormant failure rates are a
small fraction of active failure ratea appears
questionable. For a long-life machine In an unmanned
environment, these two factors are of major significance
to the system designer.

5.3. FUTURE: There are two conflicting possible futures
of ARMMS. The pesslmictic view is that it will go the way
of 10 or 15 similar paper design efforts and will die with
only a final report to commemorate its non-existence. The
optlslatlc view Is that it will appear sufficiently
promising in concept that NASAwlM continue its
development and eventually attach it to a mission.
Planning la of course being directed toward the optimistic
alternative.

5.4. ADVANCES: I cannot add anything to the lists of
theoreticsl problem areas and needed areas of
investigation which SRI described In Its reports under
contract NAS 12-33. In psrtlcular. I agree that there
have been too few case studies which can be evaluated.

A major practical advance which is needed Is the
identification and exploitation of specific applications
in which vault-tolerant machines can be Justified
economically. It is significant, 1 think, that the Bell
ESS-I and System-3iri FLT's instruction retry, etc.,
represent the most e>.,"Mi8lve application of
fault-tolerance and diagnostic techniques. Both are in
areas where the payoff for high reliability Is great.
Although aerospace applications have supported much of the
research in fau)t-tolerapt machines, I am skeptical that
thert is a sufficient mass of money there to lead to very
widespread results lr fielded systems. The situation Is
analogous to that wnich has existed for associative
processing for 10 years, in that the glamour, concepts,
and techniques are often apparent but cost considerations
ultimately lead to more conventional choices.

Also, I wonder If "fault-tolerant computing" Is too narrow
a view and that many of the baaic ideas would be
applicable to a discipline of "Fault-tolerant systems".
Perhaps there are other equally fertile, but less plowed
fields to be conquered.

6. COMMENTS: (See 5.4)

SIRVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

John H, Wcnsley, Stanford Research Institute
Menlr »ark, Ca. 94025, May 1972

1. IDENTIFICATION
1.1, NAME: Sin (Software-Implemented Fault Tolerance),
project: design study of a fault tolerant digital
computer

1.2 RESPONSIBILITY: SRI

1.3 SUPPORT: NASA Langley

1.4. PARTICIPANTS: J, Goldberg, K. Levitt, R. Ratner, J.
Wenaley, H. Zcldler, M. Green

1.5. bTART: August 1971

1.6. COMPLETION: Experimental version 1973, final design
1974

3.1.1.3. CAPABILITY: The design concept la valid over
the entire range of processor, memory and bus capability.

3.1.2. EXECUTIVE: Executive control (allocation,
scheduling, dlspatchlt.g, reconfiguration, etc.) Is
achieved by replicated software execu'.lve routines.

3.1.2.1. MODES: The primary operating mode la on
repetitive real-time calculationa Involving many loosely
connected tasks. Both multiprocessing and
multlprogranailng are Included.

3.1.2.2. SOFTWARE: Tasks are multlprogramned In each
processing module. Each task for which fault tolerance la
demanded Is present la more than one module. A loose
synchronlxa^lon of t^sk processing Is achieved by the
system executive (which Itself Is replicated and loosely
sftichronized). Software fault detection Is carried out
hetween each Iteration of a taak before erroneous results
are used by the r.ext Iteration or other tasks.

1.7. BIBLIOGKAPHY: Technical Progress Narratives 1-7;
"SIFT - Software Implemented Fault Tolerance," submitted
to FJCC 1972

2. MOTIVATION
2.1. P'jiPOSE: Control proceaalng In an advanced
technology transport (aircraft) Including navigation,
stability augmentation, engine control, instrument blind
landings, etc.

2.2. PHYSICAL ENVIRONMENT: Airborne — the system concept
however la applicable to any environment.

2.3. COMPUTING ENVIRONMENT: Real-time

2.4. COrlFUTING OBJECTIVES: Configuration acaleabllity,
graceful degradation, transportability of concept to any
processor or memory design.

2.5. RELIABILITY OBJECTIVES: Hinlmua probability of
erroneous results, and of loss of com, tting capacity
during aircraft flight.

2.6. DYNAMIC VARIABILITY: Variable degrees of fault
tolerance for tasks of differing critical!ty. Ability to
trade off between computing power and fault tolerance.

2.7. PENA'.TIES: Worst case - human lives; Intermediate -
aircraft d.image; least case - need to abort flight
objectives.

2.8. CONSTRAINTS: hardware must be designed with weight,
size and power requirements consistent with aircraft
requirements. Th* baaic concept of the system is only
affected by the constraint that maintenace cannot be
carried out during flight.

2.9. TRADEOFFS: Computing capacity vs. reliability

3. DESCRIPTION: A system architecture in which fault
tolerance la achieved with no apecial fault-tolerant
hardware.

3.1. ARCHITECTURE: A multi-computer (see Fig 1)

3.1.1. CONFIGURATIONS: No constraints are present on
processor or memory design. Fault tolerance is achieved
by the reatricted connection of processors and memories,
and by software control.

3.1.1.1. INTERCONNECTIVITY: Processing modules comprising
a processor and memory are connected via multiple busses.
The Interconnection is designed so that processors may
only read (and not write) into the memory of other
modules. The busses are used as alternative routea rather
than as multiple simultaneous transmission paths.

3.1.1.2. RANGE: The scale of the system Is not frosen in
th« architectursl concept. It Is envisaged that a minimum
configuration would contain three proceaalng modulea and
three busses. The design does not (at present) place any
limit on the maximum configuration. Greater fault
tolerance is achieved with a large numoer of low-
capability unite rather than with a small numbe- of high
capability units.

*—♦

3^

y. Memory
1

p Processor

B —- Bus

« ■ II

* * *—#

I/O System)

Figure I Systum Con)ImiraI tun

3.2 FAULT TOLERANCE

3.2.1. FAULTS TOLERATED: The system is tolerant to faults
In any unit (processor, bus or memory). The faults may be
the erroneous retult of an action (calculation,
transmission or storage) or the failure of a unit, to carry
out any action.

The system hardies transient, and permanent faults,
treating long-term Intermittent faults as permanent. The
reconfiguration procedures can bring back into service a
unit that was at one time subject to faults but has since
recov .ed or been repaired.

The cause of the fault (electrical, mechanical, etc.) is
not of Importance, the only consideration la whether the
results of actions In replicated units agree or disagree.

Independent multiple faults can be tolerated to any degree
depending on the extent of replication of the function.
Correlated faults both in hardware and aoftware ar.i not
tolerated to the same extent as uncorrelated faults. The
loose synchronization of tasks assists in tolerating
faults which are correlated in time rather than function.
One-shot faults do not cause removal or reconfiguration of
unit» from the system. The propagation of a fault from
any unit to another can only occur if both units are
faulty.

3.2.2. FAULTS NOT TOLERATED: Multiple correlated faults
that are not detected by a voting procedure, or by
repeating the task, e.g., simultaneous Identical failure
of two memory units when threefold replication is used.
Massive faults that reduce the system to a size too small
to handle the computing load.

3.2.3. TECHNIQUES: Fault detection is carried out by
replication and voting. Other fault detection methods
(hardware or software) are compatible with and can be
Incorporated into the system concept. Fault correction
(or tolerance) la achieved by voting after replication in
most cases but can be aupplemented by other techniques
such as repetition or roll-back. The allocation of
resources to tasks can be changed el'.ner when faulty units
are removed or when the mission dem.nds different fault
tolerance and/or computational power.

3.3. NOVELTY: Lack of need (or special hardware units to
facilitate fault tolerance. Ability to t-ade off fault
tolerance with computing power. Appllcab. lity of the
system concept to different memory or processor designs.

3.4. INFLUENCES: The design is influenced by the need to
avoid special hardware for fault tolerance, freezing
fault tolerance techniques at design time, designs gesred
to particular size and speed computers.

3.5. HARD C0R1: I don't mean anything by "hard core" In
the system described. I can imagine other system concepts
In which the term has meaning (but little utility).

4. JUSTIFICATION

4.1. RELIABILITY EVALUATION: By analysis, assuming
'incorrelated faults of equal probability In each part of
the syatem (chip, connector, cable, etc.).

4.2. COMPLETENESS OF EVALUATION: Incomplete.

4.3. OVERHEAD: Variable, typically a 3-1 cost penalty Is
paid for r.:ault tolerance.

4.4. APPLICABILITY: General; the design la applicable to
any environment.

4.5. EXTENDABILITY: Unlimited.

4.6. CRITICALITY: Multiprocessing Is critical.
Multiprogramming la highly desirable (see Fig 2).

4.7. IMPLICATIONS: There are no Implications on the
hardware designers of processors and memories. The busses
are constrained In the way units communicate. The
applications' software must bo Implemented so that Input
data for a program la fetched by calling a general system
routine which carries out fault detection and correction.

5. CONCLUSIONS

5.1. STATUS; A conceptual design of hardware, software
and fault tolerance procedures exists.

5.2. EXPERIENCE: Software design studies show that the
time and memory requirements of the fault detection and
correction routines are reasonable.

5.3. FUTURE: The projection Is for an experlmemal
version of the system to be built.

5.4. ADVANCES: I/O units with fault tolerance
capability.

Procu 'Sors

A

r

• i«S <

1 2 3

I

1

u
5 ü

I

! I

x !

TT

1 X j X
-*— 1

X f X
I

' !

FiRure 2 An Example of Task/Processor Al local!

33

SUKVn 07 FAUir-TOUUHt COWOTIHC SYSTEMS

Barry I. lorgcnoa, Caaputar Sjmtim» RMaarch Projact
UnlTaraltT of CaUfornla, Barkalay, Hay 1972.

1. IDBninCATION
1.1. NAME: PRIME

1.2. USPOHSIBILITTi Coapucar Srataa» Raaaarch Pfojaet
(CSRP), U. C. Barkalay

1.3. SUFPORIt AXFA - Contract No. DAHC70 15 C 0724

I.A. FAKIICIPAIRSl Hartart B. Baaklo, Prindval
InvMtliatori Rogar Robarta, Principal PreirMaar; Barry
R. Bomaraon, Haad, HardHara BAD.

1.5. SIARIi 7/1/70

1.6. COHPUTIOKi '

1.7. BIBLIUCU«.

piototypa to ba running about 7/73

•Baakln, Harbart B., Barry R. Borgaraon and Rogar lobarta,
"PRIME - An Archltaciura for Taralnal Orlantad Syataaa,"
Freeaadlaga of tha 1972 SJCC, AFIPS Fraaa pp. A31-437.

*Borgaraon. Barry R., "A Fall-Softly Syataa for Tlaa
Sharing Uaa," Dlgaat of (3H 1972 Intarnatlonal Fault
Tolarant Coaputlng Syiyoaloa.

•Quataa, Jaaaa T., Flam Caulana and Donald Dodga, "Tha
Eztamal Aceaaa Natwork of a Nodular Coaputar Syataa,"
Froeaadloga of tha 1972 SJCC, AFIPS Fraaa, pp. 783-790.

*Fabry, F. S., "Dynaair. Varifleation of Op*rating Syataa
Dadalona," CSRP DoeiaMt Ho. P-1A.0, Uslr. CaUfornla,
Farkalay, laauad 2/23/T2.

•Borgaraon, Barry R., "Spoot'Moua Raconflguratloa In a
Fall-Softly Coaputar Utility," CSRP Doc<»eat Ho. P-15.0,
Unl«. California, larkalay, laauad 2/29/72.

•Borgaraon, Barry R., "IDynaale Conflnatloa of Syatas
Intagrlty," CSRP Deeiaant Vo. F-19.0, Univ. California,
Barkalay, laauad A/2A/7Z.

3. DESCRIPTION
3.1. ARCHITECTURE
3.1.1. CONFIGURATION
3.1.1.1. INTERCOM]«CTIVTi'!'i Figur* 1 la a block diagraa of
PRIME. Tha Extarnal -ccaaa Natwork (EAM) allow* any pro-
caaaor to coonact to any dlak driwa, aitamal davlca, or
othar proeaaaor. Each proeaaaer haa thraa auch ladapaudant
patha Into tha EAN. Tha EAM connactlvlty taaaln* inlvar-
aal ovar tha dlffarant ayataa ilaaa. Unlvaraal awltchlng
batwaan all procaaaora and all aaaory block* la not provl-
dad. Inataat, aaeh proeaaaer alwaya eonnaeta to aaactly
64K of aaaory ragardlaa* of tha alia of tha ayataa.

3.1.1.2. RANGE) Tha PRIME archltactwra will uaafully
accoaaodata froa 3 to about 30 procaaaora. Each proeaaaor
could conaect to froa 16K to 12K of prlaary aaaory.
Depending en the type of dlak drive* uaed, froa 1 to 3
drlvee per proceeaor would be reeaonable. The current
ayataa hue been deigned to operate with froa three to
eight proceeaor* without requiring any additional hard»*«
or aoftware dealgn. Uaeful aaaory alaea reng* froa 64K to
about 25iR. Dlak drlvea range froa about als to 24. Each
proeaaaer to be uaart In the Initial laplaaantatlon of
PRIME will be e Meta 4 (Digital Scientific Corp.). The
Mete 4 la a gaaeral-purpoae, 16-blt, 32-ragiatar, 90na-
eycle tlae alcroproceaear. The aeaory la 33 bit* wide,
about 600 na cycle, and aade froa 1024-blt MOS chlpa. Tha
dlak drlv** are double (track) deaalty 2314-typa drl***
that have beat aodlfled to tranafer Inforaatloa on two
heed* at a tlae. The Initial configuration will have five
proeaaaor*, 104K of aaaory, and IS dlak drlvea.

3.1.1.3. CAFABILITTi The capability la not accurately
known at thla tlae.

3.1.2. EXECUTIVE
3,1.2.1. MODES: At any given tlae, one proceeaor la
deelgnatad tha Control Proeaaaor (CP) while the reat
ftactlon aa Problea Preeeaaore (FPa). Uaer procea*** are
na on tha PP*. Multlprograaalng la not uaed, but
procea*** are overlap-nwappad. In order to achieve a vary
high Interproeeaa Integrity, It wea decided never to let
two procaaaaa ahare aaaory{ hence, cooparatlva-proeea*
■ultlprocaaalng la not poeelbl* with PRIME.

2. MOTIVATION
2.1. PURPOSES General-purpoee, Intareetlve, aultl-eeeea*
coaputlng.

2.2. PHTSICAL ENVIROMMENTi Ground baaed

2.3. COMPUTING EHVIMNMENTi Raaote aceaaa over telephone
llnea and eventually over the Arpanet.

2.4. COMPUTING OBJECTIVES I Thla 1* not tha prlaary
motivating area In our ayataa dealgn. We anticipate thet
the original configuration of PRIMS will euppert about 100
uaer* with a went caaa reaponaa tlae of lea* than two
aaeond* for trivial job*.

2.3. RELIABILITY OBJECTIVESl Becauae we vlll be able to
repair unite aa they bceoae feulty, we era alalng for
contlnuoua availability. The ayataa perforaaaca ahould
never degrade below 751 of It* peak capacity.

2.6. DYNAMIC VARIABUTT I Parferaanee cannot ba
dynaalcally traded for reliability. However, provlelon*
any aoaeday be added which will allow dynaalcally trading
parfotaaaca for Intraproeea* Integrity (See Saetlea 6).

2.7. PENALTIES: The effeete of intreprocee* date
contaalnatlon (See Section 3.3.2) du* to eyataa fallutrea
will etrongly depend on the nature and purpoee of the
proceaa. There aeeaa to ba no way to generallia about
thl*. If th* ayataa Itaalf were to rraah, thla would no
doubt lead to a loaa of revenue If PRIME were tranafarred
to a coaaare .al anvlronaent.

Dt» PIM

p "'■'- 11: P Bas. 11 p pä—U [Cj
i tia-aric-jtmi»

SSEJöBöS
IM» «mrT IUKR im) M-

2.1. CONSTRAINTS: There ere no apeelflc coaatralnta of
alia, weight, and power. The aalf-lapoaed conatralnt on
eoat 1* to try to build a fault-tola»» ayataa that la a
cloea In coat aa poeaibla to ay current ayataa with
ceaparable power cad eapabllltlea.

2.9. TRADEOFFS: (Too
aee Section* 4.4, 4.6

eapllcatad to deal with briefly)
ad 6.)

34

3.1.2.2. SOFTWAUtl Th« »yttm loftwara 1» dlvld«d Into
thraa ••ctlmu. Than la tha Cantral Control Monitor
(CCM) which run» on tha Targat Naehlna of tha CP; tha
Extanalon of tha Control Monitor (ECM) which raaldaa
dlractlj In tha alcraeoda of aach procaaaor; and tha local
Monitor (LM) which ruia on tha Targat Maehlna In tha PFa.
Tha CO! la raapooalbla for aehadullng proeaaaaa, allocat-
ing raaourca, and conaioaatlng Intarprocaaa aaaaaga
tranafara. Tha ECM Includaa tha dlak, tarainal, and
eoammlcatlon controllara, logic for doubla-chacklng
critical CCM daclalona, bootatrap logic, and aoaa Intalll-
ganca to daal with raconflguratlon, Tha LM contain« tha
file and worklng-aat managaaant ayataaa. Tha CCM doaa not
gat Involwd with a procaaa aftar It haa atartad tha
procaaa up. Tha proeadura followad by tha CCM la to
alloeata tha nacaaaary raaoureaa, Inltlata tha roll In,
and lat tha LM and ECM taka onr fron thara. Tha CCM will
not gat Involvad again until tha procaaa althar tlaaa nut
or blocka Itaalf. Tha LM daala only with uaar procaaaat;
It la coaplataly laolatad fron tha raat of tha ayataa.
Bacauaa of thla, uaara will ba fra* ,M provlda thalr own
LM If thay do nor Ilka tha atandard one provldad.

3.2. FAULT TOLERANCE
3.2.1. FAULTS TOLERATED: PRIME will tolarata all
Internal fault!. That la, tha ayataa la expected to
continue oparatlng even In tha praaanca of any arbitrary
■oftwar« or hardwara fault«. Tha «yatea will raconflgura
to run without any placa of hardwara that bacoaaa faulty,
and aachanlaaa azlat for llalf*'g tha affacta of any
•ottwar« fault. PRIME haa b«t., daalgnad ti prorlda
contlnuoua «arvlre to (alaoat) all tatalnala. In aott
caaaa, a faulty unit will ba rapalrad an-1 r«turned ti
aarvlc« bafora another failure occur«. However, tha
ayataa will etlll continue to oparata with a aubatantlal
part of tha raaoureaa raaovad fron active uaa. Tha ayataa
ahould almoet nav«r degrade to balow 75 percent of Ita
naxlma capacity. In addition to continuity of «one
alnlaia aarvlca, Intarprocaaa Integrity violation« are
prevented at all tlaaa; thla Include« tha relatively
unatable perlode between the onaat of a fault and the
detection and laolatlon of tha faulty unit.

3.2.2. FAULTS NOT TOLERATED: Only envlronaantal faulte
are not tolerated by PRIME, The aoet cotmon of thaaa
faulte would be In tha A.C. power and air conditioning.
Since It le eaay to aaa how to back thaaa raaoureaa up, no
effort haa been aada to Incorporate fault tolerance with
raapact to thaea unite wlthlln PRIME. Wille PRIME aa a
ayataa will continue to run In eplte of Internal failure«.
Individual procaaaaa aay occaalonally gat clobbarad. That
la, no «pedal provlalona hav« been aada In PRIMS tc
guarantee Intarprocaaa Integrity. Hence tranalant
fall-jraa will frequently cauaa contamination of
Infonatlon for aona procee«. Al«o hard fallurea will
often clobber one proceaa before being detected. Tha .noat
acrloua dlaruptlon will probably occur whan a dlak drive
falle. When thla happen«, all of tha proeaaaora that ware
ualng that drive will be euapandad until an operator can
recover their data, either by moving the dlak pack to
another drive, or recovering froa tapae In tha unlikely
event of a head craah. Rut even In thle worat-caae
cata«trophy, only a aaall part of tha uaara (about 7
percent In tha Initial ayataa) will be affected.

3.2.3. TECHNIQUES; The baalc ayataa-wlda technique uaed
to achieve fault tolerance la to allow tha ayataa to
degrade gracefully by neonflgurlng to run without any
faulty unit«. At t'.e heart of the «cheae la a dlatrlbuted
architecture with a multiplicity of all functional unit«
except the F/N, which 1« dealgned to fall aoltly on Ita
own. Fault detection le accoDpllahad by a variety of
method« which Include parity neaoty and buaea, «urvaill-
anca taata on each proeaaaer after each job atep, a double
check on all critical ayataa-vlde declelooa aada by the
CP, and fault Injection In auch araaa aa error detector«
and tha eeldoa uaed reconfiguration logic. Aftar a fault
la detected, an initial raconflguratlon cauaaa a procaaaor
not Involved in tha detection to becoae th« new CP. Thla
virtual "hard-core" than Initiate« dlagnoatica to locate
the faulty unit, iaolate it, and reconfigure the ayataa
to run aa efficiently aa poaalbla without it. A email
amount of dedicated hardwara aaaoelated with aach
procaaaor guarantaaa that tha initial reconfiguration will
ba accoopliahad properly. It le poaalbla to logically
iaolate each major unit at ita ayatea boundariae eo that
tha ayataa can na fine-«ah dlagnoatica or axarciae the
hardware to aid in locating tha faulty component. In tha
caae of a failure of tha 1(elation logic, «ay unit can ba
dynaaically powered down to provide guaranteed laolatlon
from th« raat of tha ayataa.

3.3. NOVELTY) Tha dlatrlbuted nature of the «y«tem.
Including the dlatrlbuted intelligence In the form of the
ECMa, provide« a varr).awurful atructure whereby fault
tolerance le «chleva... without the uaa of any "reliable"
hardware, V«ry hlgh-perfomance low-coat dlak drives h«ve
been Incorporated in auch a way a« to allow these devices
to be used «s second level storage, third level storage,
and the swspplnp medium. By distrlbutinp these ttiree
functions over many Identical physical imita, very high
availability la achieved at what la actually a lower cost
and with higher overall performance than would be possible
with three distinct types of unite. PRIME automatically
raaponda to faults by reconfiguring to run without the
faulty unit. Since there la a multiplicity of all
functional unite except the LAN, it le quite eaay to run
without any particular unit. Rather than maka the EAN
"reliable," a acre economic«) approach waa taken whereby
carefully controlled failure mode« war« daalgnad into it.
Thla reaulta In a failure within the EAN manifesting
Itself aa a failure of a aaall niabar of ports, which le
equivalent to losing whatever le attached to thoaa port«,
and the eyataa waa slraady dealgned to hsndle chat
eventuality. Tha reconfiguration atructure le alao very
intereatlng. Whenever a failure le detected, an initial
reconfiguration takes placa which aetabllahea a new
proceaaor aa tha CP. Tha new CP, which la one not
Involved In the detection oi tha fault, la than uaed aa
the temporary "hard-con" to initiate dlagnoatica, locate
the fault if Indeed it exiete, and remove the faulty unit
from tha ayatea. The distributed Intelligence of PPIME
has been u««d to provide doubl« checking on all critical
ayeren functions, which in turn guarantaaa that than will
ba no interprocess intarferanca. Probably tha moat
unusual general featun of PRIME with raapact to fault
tolerance la that it la s«lf-dlagnoalng and aalf-npalring
without Incorporating any "hard-con."

3.4. INFLUENCES: Many previous afforte have, of course,
Influe-ced ua, but no aingla system «tsnd« out aa having
apadal Influence.

3.5. HARD-COREi No, then la no "hard-con" in PRIME.
Inatead, tha concept of a "floating hard-con" exists
whereby a working procaaaor la prasse 1 into service aa the
Control Procaaaor whenever a malfiaictlon la detected.
Thle la cooalatant with tha overall ayataa phlloaophy of
not having any "reliable" hardwan anywhere In the ayatsm.

4. JUSTIFICATION
4.1. RELIABILITY EVALUATION: Rallablllty will be
demonstrated by stimulation of faults.

4.3. OVERHEAD: Tha coat of tha additional hardware that
haa bean incorporated in PRIME specific«.;y for fault
tolerance la laaa than 10 percent of the total hardware
coat of tha ayatea. Leaa than 10Z of each processor's
useful time la devoted to fault-'..lanr.t functions, since
the aurvalllanca progrow an run during what would
otherwise be idle time while proceaaee an being awappad.

4.4. APPLICABILITY: PRIME haa been vary cenfully
dealgned to perform economically in a particular envlron-
ent. If It waa to be uaed in another environaant, a
detailed analyala would have to ba performed to determine
what change* would have to ba aada to allow it to perfon
adequately in tha new environaant. In particular, moat
other potential envlronnanta would require that steps be
taken to guarantee intraprocaaa integrity.

4.6. CRITICALITIES: Tha choice of dlak crlvaa Is quite
critical alnca a low coat/bit ia neceaeevy aa wall a« a
high bandwidth due to tha different function« thaaa drlvea
parfon. Since 3330-typ« drive« were not available when
thla design atarted, ?314-typa Irlvee w«n «elected and
modified to transfer at SHHt. Alao, tha EAN had to be
carefully dealgned with wall-apaelfiad failure aodea.
However, the primary aaaury and tha procaaaor« an alaply
"off tha ahalf" Itena. A« for goals, th« decision to not
provide intraprocaaa integrity checks haa bean carefully
exploited in tha design of PRIME and haa provided a v«ry
aubatantlal coat savings.

■Uapooaa, larrr K. DUHQERSEN, conttnuad

4.7. IMPLICAIIOHIt IUa«r rallaea li placad on parlodlc
chaeklBf of hardxan rathai than concurrent chacklaf.
Ihiia, tha »Ulltr to Injaet faulta Into tha approprlau
araaa ha» baaa a difficult raqulTaaaat placed on all of
tha hardnara daalisata. Tha aoat notabla aeftwara
raquliaaaat lupwad by tha baalc daal(n la tha elaar
dlvlaloD of tha oparatlng »jttm Into thraa part», ooa of
which can ba fuxnlahad by a u»»r. Tha only »Ignlfleaat
raqulraaant placad on a uaar la that ha mat ba amra that
no Intraproca»» IncafrltT chac • ara ifrt (juat Ilka la
all currant tlaa-aharlnf »jfm»)

5. CONCLUSIOWS
5.1. STATUS! Tha daalp of "MME 1» about 95 pareant
coarplatad, and laplaaaatatlor haa b»|uu on both tha
hardwara and aoftwara. Tha drat varalen capable of
raconfl|urla(In the praaant ct a failure ahould ba
nanlng hy Aufuat, 1973,

5.2. EXPERIENCE: Tha naln eondualon that tha raapondent
can aaka regarding tha daalgn of FUME la that by aoamhat
Halting tha goal of tha FRIMI ayatea. It «aa poaalbla to
create a ayataa that ahould exhibit excellent fault-
tolarent diaractarlatlca at a r.uch lower Inerauntal coat
than that of any other fault-tolamt ayataa known to hin.

J.3. rOTUREi Tha near future will be devoted to building
PRIME. After that, evaluation and timing will take place
with eonnaetlea to the Arpanet vary likely,

5.4. ADVANCISt It aaaaa that tha aoat algnlflcant
developaaat that would aid tha PRIME ayataa would ba the
availability of a geoeral-purpoae, aalf-checklng
proeaaaor. Slnca 100 pareant »alf-checkablllty la
axtranly difficult to daalgn Into a proeaaaor, tha beat
eouraa of action her» aaaaa to ba to wait for LSI
proeaaaor» of aufflelant power to be built. Theae
proeaaaor» »hould ba ae Inaxpanalva, eoaparad to the reet
of tha hardwara coat, that running two of thaa
alaultanaoualy and capering output» ahould ba a vary
attractive procedure »eonoalcally. In fact, the current
proeeaalng elaaant In FRIMI could be broken Into aaveral
aubprecaaaora: one for ci—inileatlona, oae for the dlak
controller, one fcr the tanlaal controller, two for the
Target Machine, etc. Probably only tha Terget Machine
proeaaaor would have to ba duplewd beeauaa the other» cai
havn Independent check» on the validity of thalr raaulta.
With thl» procedure, Intraproca»» Integrity would be
poaalbla at an Inalgnlflcant Ineraaantal coat.

6. COMMENTS i I eagerly await the reaulta frea thla SRI
atudy. I have exparlancad I graat deal of difficulty
locating any ether efforta at dealgnlng end building what
I eonaldar to ba truly gneafully degrading aalf-
rapalring ayataaa. Moat of the effort In fault-tolerant
cceiputlng to data aaau tea be centered around allltary
•yateaa, or even noraao, irotmd »pace exploration ayataaa.
Thla typically dletatea tliat a fixed «oiBt of coaputlng
power ba aada available a: all tlae»; hence, the lack of
action around fall-aoftly ayataaa. Of eouraa, by
providing fault tolaiaDca through graceful degradation,
vary aubatantlal coat aavlng« can ba realltad over the
"rediBdant" aethodJ. In addition to allowing tha ayatea'e
perfotaanee to degrade In tha praaanea of faulta, wa havn
choaen not to guarantee latraproeaaa integrity. Tha eoab-
inatlon of theae two eeneaaalcna haa allowed ua to daalgn
a vary aconoalcal fault-tolerant tlae-aharlng ayataa.
There la little doubt that tha anticipated degradatlori
will be quite acceptable for a wide range of applleariena.
Tha lack of Intrapneaaa-latagrlty guaraataea, homvar,
will ba a Halting factor In expandlnp thia architecture
into other area». Of eouraa, hardwara provialona could ba
added to guarantee latroproeeae Integrity, end tha
raaultant ayataa would »till ba aore aconoalcal than aoat
other fault-toleraat ayataaa. A aora prealalng approach,
and one which wa will tndoubtadly explore In the
reaaonably near fjture, le to leeve the hardwara aa la and
na critical pregraaa twice on twp different proeaaaor».
Thla will «How tha ayataa coat to reaain vary low, and
will alao allow Intraproceaa Inttgrlty guaranta»». Thua,
only thsae procaaaea that that naed tb'a guarantee will
heve to pay for thla added feature. A final aapect of the
PRIME architecture that ahould ba Invaatigatad la whether
It can aore acoBoalcally provide a guaranteed coaputlng
power In aoaa anvlroaaaata than can ba provided by a
"redundant" ayataa. It can ba overbuilt by an aaotait
aufflelant to guarantee that Ita degraded condition la
powerful enough to handle the naceeaary coagatlag, with
background t.«-.r available moat of the tlaa.

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

Jacques J, Delaoare, Electronlque Marcel Das8ai.lt
(E.M.Ü.), 55, qual Carnot, 92 - S»lnt-Cloud France,, j'.ne
1972

I. IDENTIFICATION
1.1. NAME: HECRA (Maquatte Expert mentale de Calculateur
a Reconfiguration Automatlque).

1.2. RESPONSIBILITY: E.M.D. (Electronlque Marcel
Dasüault).

1.3. SUPPORT: Support has three sources: D.G.R.S.T.
(Delegation Generale a la Recherche Scientlfique) with
preliminary Etudl;i;D.R,M.E. (Direction des Recherchüs et
des Moyens d'Essals) with realization of MECRA prefect;
E.M.D. (Electronlque Marcel Dassault) In each case.

1.4. PARTICIPANTS: Jacques J. Delamare, Gerard Germain,
Jean-Claude R. Charpentler, all of E.M.D., and four
researchers from "Centre de Calcul Numerlque de Toulouae",

1.5. START: May 19 70

1.6. COMPLETION: July 1972, this consists of a
demonstration of fault tolerance and reconfiguration
capabilities. Evaluation of reliability performance Is
expected to be in Autuon 1972.

1.7. BIBLIOGRAPHY: "The MECRA: a Self Reconfigurable
Computer for Highly Reliable Process", IEEE vol C-20 no.
II, pp. 1382-1388, Nov. 1971. A report also due end of
1972.

2. MOTIVATION
2.1. PURPOSE: The system was conceived for research In
fault-tolerant computer architecture, feasibility, and
reliability evaluation. The idea for further development
is a real-time medium-sized computer for aircraft.

2.2. PHYSICAL INVIRONMENT;
laboratories.

2.3. COMPUTING ENVIRONMENT:
communication with '.ECRA.

Syster operates In EMD

A single peripheral allows

2.4. COMPUTING OBJECTIVES: Main objectives of the
project were not computing objectives. However addition
and multiplication are performed with 11 decimal dlglta
plus sign operands. Complete addition needs less than 3O0
mlcroaec. Such delays relate to the cycle time of
microprogram memorv (1 mlcroaec), to response time of
discrete circuits, to unused time IntervaU In each
microlnstructlor cycle, (allowing hardware modifications),
and laatly by the mlcrosoftware package (allowing
reconfiguration).

2
concre
rellab
hardco
hardco
rellab
cost
lost
hardco
Theae
high p
.9).

RELIABILITY OBJECTIVES: Practical experience and a
te basis for evaluation such aa:
Ulty gain with different kind» of redundancy,
re contribution in failure probabilities,
re contribution with different architectures,
ility gain with reconfiguration,
ncrease in control with reconf Igurabl Uty,
ime due to reconfiguration (during anu after),
re response time with respect to computing time.
reliability objective« were only of interest for
robabllltu« of succeaa (probabilities higher than

2.6. DYNAMIC VARIABILITY: Computing speed but not
accuracy may degrade with reconfiguration (201 maximum).
Performance cannot be exchanged for Increased rellabilitv
such as : two processors each one hiving It» own Job,
switch.J to parallel processing on the same fob and
checking one another.

2.7. PENALTIES: Penalties from faulty operation can be
of several kinds: /Los« of tine due to recovery processes,
las ned performince after »»If-reconfiguration, loss of
service./ Manual Intervention» have not been
invea'lgated, but will be neceasarlly Improved aa a
conseq ence of self-testing and self-healing capabilities
of MECRA.

/SRI note: The text encloeed in aU»he» 1» an SRI
p«r»phra»» of the origin»! survey response./

2.8. CONSTRAINTS: Circuitry alia alght not exceed four
tine» the size of the equivalent irredundant computer.

(Uapooaa, Barry R. DOBGERSEN, continued

4.7. IHrLICAIIOMtt H««»y rallmea ii pi «cad on pulodlc
chaeklai of hardwara rathar than coneurrant chacklng.
Thua, tha ability to lajaet fault« Into tha approprlata
araaa haa baaa a difficult raqulraaaat placed on all of
tha harfeara daalgnara. Tha aoat notabla aoftwara
raqulrauot lapoaad by tha baalc daal(n la tha claar
dlvlalon of tha oparatlng ayataa Into thraa part», one of
which can b« fumlahad by a uaar. Tha only algnlfleant
raqulranant placad on a uaar la that ha nuat ba eaara that
no Intraprocaaa Intagrlty thacka ara oada (Juat Ilka In
all currant tlm-aharln; ayataaa).

5. CONCLUSIONS
5.1. STATUS: Tha daalgn of VKLHT. la about 95 parccat
coaplatad, and laplaaantatlon haa begun on both the
hardware and aoftvara. Tha flrat varalon capable of
reconfiguring In tha praaant of a failure ahould be
running by Auguat, 1973,

5.2. EXPERIENCE) Tha main conclualon that tha raapondant
can make regarding tha daalgn of PRIME la that by aonawhat
Halting tha goal of tha PRIME ayaten. It waa poaalble to
create a ayar.aa that ahould exhibit excellent fault-
tolarant charactarlatlca at a Buch lower Incremental coat
than that of any other fault-tolerant eye tea known to him,

5.3. FDIURZi Tha i.eer future will be devoted to building
PRIME. After that, evaluation aid timing will take place
with eonneetlea to tha Arpanet very likely.

5.4. ADVANCES! It aaaaa that tha moat algnlfleant
davaiopaant that would aid tha PRIME ayaten would be the
availability of a general-p' rpoae, aalf-ehecklng
proceaaor. Since 100 percent f^lf-ehaekablllty la
astraaaly difficult to daalgn Into a proceaaor, tha beat
couraa of action here aaaaa to ba to wait for LSI
procaaaere of aufflelaot power to be built, Theae
procaaaora ahould ba ao Inaxpanalve, conpared to tha reat
of tha hardware coat, that running two of than
alaultanaoualy aid canparing outputa ahould be e very
attractive procedure «eonoalcally. In fact, the current
proer-aalng element In PRIME could be broken Into aeveral
aubprocaaaora: one for comaunlcatlona, one for the dlak
controller, one for the ta»laal controller, two for the
Target Hechln«, etc. Probably only the Target Machine
proceaaor would have to »a duplexed bacauae the other« can
have Independent checke on the validity of their reaulta.
With thla procedure, Intraprocaaa Integrity would ba
poaalble at an Inalgnlfleant Incrnauintal coat.

6. COMMENTS I I eag.riy await the reaulta froa thla SRI
atudy. I have experlaacad a great deal of difficulty
locating any other efforts- at dealgnlng and building what
I cooaldar to be truly graceful^ degrading aalf-
repalrlng ayataaa. Moat of the «cfot'l In fault-tolerant
computing to date aaana to be c«- »tud around military
■yatena, or even aoreao, around apace exploration ayatana,
Thla typically dletatea that a fixed aaotnt of computing
power be made available at all tlaea; hence, the leek of
action around fall-aoftly ayataaa. Of couraa, by
providing fault tolerance through graceful degradation,
very eubatsntlal coat »avlng» can ba realized over tha
"redundant" method:-. In addition to allowing the ayatam'a
performance to degrade In tha praaence of faulte, we have
chosen not to guarantee Intraprocaaa Integrity. The coab-
Inatlon of theae two concaaalona haa allowed ua to deelgn
a very econcalcal fault-tolerant tlae-aharlng ayataa.
There la little doubt that tha anticipated degradatlona
will ba quite aceeptabla for a wide range of application«.
Tha lack of Intraprocaaa-lntegrlty guarantee«, however,
will be a Halting factor In axpawUng thla architecture
Into other araaa. Of couraa, hardware provlalona could be
added to guarantee Introprocaaa Integrity, and tha
reaultant ayataa would «till ba more aeonoalcal than moat
other fault-tolerant ayataaa. A acre proalalng approach,
and one which we will undoubtedly explore In ttM
reaaoaably near future, la to leave tha hx-.jware ea la and
run critical prograaa twice on two different proeeaaora,
Thla «ill allow tha ayataa coat to reaaln vary low, and
will alao allow Intraprocaaa Integrity guarantee«, Thua,
only thsae procaaaaa that that need thla guarantee will
have to pay for tW« added feature. A final aspect of the
PRIME erchltectura that ahould ha Invaatlgated la whether
It can more acoooalcally provide a guaranteed eoaputlng
power In aoaa envlraoBanta than can ba provided by a
"redundant" ayntaa. It can be overbuilt by ao aaeint
sufficient to guarantee that Ita degraded condition la
powerful enough to handle the necaaaary eoaputlng, with
background power available moat of tha tlaa.

SURVEY Or FAULT-TOLERANT COMPUTING SYSTEMS

Jacques J. Delamare, Electronlque Marcel Dassault
(E.M.D.), 55, qua! Carnot, 92 - Salnt-Cioud France, June
1972

I. IDENTIFICATION
1.1. NAME: MECRA (Kaquette Experlmentale de Calculateur
a Reconfiguration Automatlque).

1.2. RESPONSIBILITY: E.M.D. (Electronlque Marcel
Dassault),

1.3. SUPPORT: Support has three sourceo: D.C.R.S.T.
(Delegation Generale a la Recherche Scientlflque) with
preliminary studlej;D.R.M.E. (Direction des Recherches et
des Moyens d'Essals) with realijatlon of MECRA project;
E.M.D. (Electronlque Marcel Dassault) in each case.

1.4. PARTICIPANTS: Jacques J. Delamare, Gerard Germain,
Jean-Ulaude R. Charpentler, all if E.M.D., and four
researchers from "Centre de Calcul Numerique de Toulouse",

1.5. START; May 1970

1.6. COMPLETION; July 1972, this consists of a
demonstration of fault tolerance and reconfiguration
capabilities. EvaiuFtim of reliability performance is
expected to be in Autumn 1972.

1.7. BIBLIOGRAPHY: "The MECRA: a Self Reconfigurable
Computer for Hi^My Reliable Process", IEEE vol C-20 no.
II, pp. 1382-1388, Nov. 1971. A report also due end of
1972.

2. MOTIVATION
2.1. PURPOSE: The system was conceived for research in
fault-tolerant computer architecture, feasibility, and
reliability evaluation. The idea for further development
is a real-time medium-sized computer for aircraft.

2.2. PHYSICAL INVIRONMENT:
laboratories.

System operates in EMD

2.3. COMPUTING ENVIRONMENT: A single peripheral allows
communication with MECRA.

2.4. COMPUTING OBJECTIVES: Main objectives of the
project were not computing objectives. However addition
and multiplication are performed with 11 decimal digits
plus sign operands. Complete addition needs less than 300
microsec. Such delays relate to the cycle time of
microprogram memory (1 microsec), to response time of
discrete circuits, to unused time intervals in each
microinstruction cycle, (allowing hardware modifications),
and lastly by the mlcrosoftware psckage (allowing
reconfiguration).

2.5. RELIABILITY OBJECTIVES; Practical experience and a
concrete basis for evaluation such as:
reliability gain with different kinds of redundancy,
hardcore contribution in failure probabilities,
hardcore contribution with different architectutes,
reliability gain with reconfiguration,
cost Increase in control with reconflgurablllty,
lost time due to reconfiguration (during and after),
hardcore response time with respect to computing time.
These reliability objectives were only of Interest for
high probabilities of success (probabilities higher than

2.6. DYNAMIC VARIABILITY: Computing speed but not
accuracy may degrade with reconfiguration (201 maximum).
Performance cannot be exchanged for Increased reliability
such as : two processors each one having Its o«n Job,
switched to parallel processing on the same Job and
checking one another.

2.7. PENALTIES: Penalties from faulty operation can be
of seversl kinds; /loss of time due to recovery processes
lessened performance after self-reconfiguration, loss of
service./ Manual interventions have not been
Investigated, but will be necessarily improved as a
consequence of self-testing and self-healing capabilities
of MECRA.

/SRI note: The text enclosed In slashes is an SRI
paraphrase of the original survey response./

2.8. CONSTRAINTS: Circuitry size might not exceed four
times the size of the equivalent irredundant computer.

3. DESCRIPTION
3,1 ARCHITECTURE

3.1.1. CONFIGURAXIONS
3.1.1.1. INTERCONNECTIVITY: See IEEE paper. The basic
configuration Is a microprogrammed üonoprocessor with a
bus architecture. A restriction can be seen here since
addresses are binary coded, whereas data are Decimal
Hamming coded. This has no Importance for the purpose . f
the project, but would not have been used on a prototype,

3.1.1.2. RANGE: Control Unit Configuration:

Maxlmlm

^t counters
3 spare counters
8 registers
4 spare registers
3 multiplication processors
1 addition prcceasors
it 'and ' logic processors
4 'or' logic processo's
^ 'exclusive or' processors
'i 'inverter' blocks

Minimum

3 counters
0 spare countfrs
6 registers
0 spare registers
1 multiplication processor
1 addition processor
3 or 2
3 or 2
3 or 2
3 or 2

Note: Any logic function can foil completely and can be
reconfigured with three other functions. In several cases
a failed logic function can be reconfigured with only two
o^er function.
M mory configuration: Three memory blocks • 4 K 16-bit
words. Each memory block has its own address decoder
circuits. At each memory cycle a 4S-bit word is read or
written; this word contains two identical words of 24 bite
each, so that any one of the three blocks can be declared
void and the computer still runs if the other two operate
properly. Efficiency of address error detection reaches
50% on each memory block. After any read restore cycle,
each eight-bit byte (6 bytes) is checked and is switched
or not on busses. Then error detection efficiency is SOX
with instructions or microinstruction (if there is only
one erroneous bit) and 100Z with data [if f-ire la one or
two erroneous bit).

3.1.2 EXECUTIVE
3.1.2.1. MODES: MECRA is a monoprocessor.

3.1.2.2. SOFTWARE: There are three working modes on the
computer: user mode, test-diagnosis mode, decision and
reorganization mode.
a) In the USER mode the computer executes the user
program.

b) The TEST-DIAGNOSIS mode la set in motion in two
different ways to which two different programs correspond.
The first is set in motion by interrupts when a failure
has been detected by hardware checkers. The goal of this
program is to localize precisely where the failure .
occured. The second program is set in motion periodically
and its purpose is to test the computer with the data
configurations which reveal failures best. This program
allows detection of the errors which cannot be detected by
the hardware checkers (i.e. sa erroi eous data with correct,
encoding). Thes« two program* update a status table which
contains the star.'is of compm.er components (failed or not,
number of transient failures). Xhey also decide to stop
the computer when certain cataniiTDphlc failures occur or
to set Xn motion the decision and reorganization mode.
c) in th'- DECISION AND REORGANIZATION mode, a program
analyie?: the status word (la the status cable) of the
componen'; in which one of the two test-diagnosis programs
has detected a permanent failure and It decides either to
reconfigure or to stop the computer.

3.2. FAULT TOLERANCE
3.2.1. FAULTS TOLERATED: Any single fault is tolerated
in memories, arithmetic and logic units (since they are
mounted in a duplex scheme) or in logic units (quadded
redundancy). Any error detected on the busses, switches
the MECRA to interrupt programs, while all writing in
memories, registers or counters Is Inhibited. Multiple
errors can also be tolerated in number of cases. Multiple
errors can lead to repair or to loss of service as said
above (2.7.).

3.2.2. FAULTS NOT TOLERATED: Faults not tolerated
Include errors In the main control circuit, which leada to
a design with an increasexl degree of mlcroprogranmlng and
minimised control circuits. Also not tolerated ate
errors undetected at the memory output. Power supply
failures have not been investigated in MECRA.

3.2.3. TECHNIQUES: One of the goals of MECRA is an
inveatlgation of as many fault-tolerance techniques as
possible, such aa triple modular redundancy, quadded
redundancy, duplex redundancy at very low level (clock)
and higher level (memories and arithmetic circuits),
random redundancy (counters, registers), error detecting
codes (Hamming d ■= 3) ai.d parity bit, repetition,
rollback, reconflgurati-m with removal without
replacement, reconfiguration with replacement, diagnosis -
stand-alone, preventive and emergency, local protections
of process and data. These techniques are used atatlcally.
It does not seem possible to describe these techniques In

detail In this paper, since it would require a description
of the whole computer. Other techniques were also
investigated but not used on MECRA, such as stopping the
computer during noisy periods, and control of correct
microprogram linking.

3.3. NOVELTY; When the project started, two ideas
unusual in the literature were employed in MECRA: address
decoder redundancy in memories so as to separate address
errors and data errors, single-error-free hard-cor.'.

3.4. INFLUENCES: A synthesis of efforts which came
almost exclusively from the U.S.A. - universities,
laboratories, and research institutes.

3.5. HARD-CORE; This is defined as a circuit,
interconnecting several redundant functions, whatever Its
own redundancy level (it is a relative concept).

4. JUSTIFICATIONS

4.1. RELIABILITY EVALUATION: Reliability la not
demonstrated, it is computed, in two steps using a model.
The first step concerns analysis and drawing a network
model, the second step concerns random failure assignment
into the model. After a great number of trials, the
progrnm furnishes results (e.g. curves, marginal
probabilities...).

4.2. COMPLETENESS OF EVALUATION:
now being tested.

Program evaluation is

4.3. OVERHEAP- Approximately 60% to 70% of total system
resources are de'oted to fault tolerance (same percentage
for iogic, cost, and time).

4.6. CRITICAUTIES: Use of decimal coded characters
seems not well- fitted to fault-tolerant computers. This
chf.ige could result in great savings in design. Other
points are not critical.

4.7. IMPLICATIONS: The basic design assumes low.level
integrated circuits, wtih a very small number of different
circuits.

5. CONCLUSIONS

5.1. STATUS: The system is now operating and will be
delivered in July 72, evaluation will follov during
October and November.

5.2. EXPERIENCE: Everything is possible, except, perhaps
a sufficiently low cost, and reliable packaging and wiring
of components. Note that LSI would put problems to
fault-tolerant computers because they need more pins to
check redundant functions before connecting all together.
This would probably lead to simultaneous r-e of LSI, MSI
and fmall scale Integrated circuits. Com-oneu^
manufacturers have not yet taken into af count

fault-tol3rance constraints, but they vlll probably do so
soon.

5.3. FUTURE; First prototype is projected 1976 - 1977,
Current computer is projected 1980, Use: Missiles,
aircraft, real-time nonoprocessors.

5.4. ADVANCES: Different fault tolerant computers can be
roughly compared in i-crms of reliahility versus mission
time; but ihis wi'l fall back to evaluations of components
and wiring HTBF. Such data, estimated by constructors, do
not seem to give a sufficient common basis for
evaluations. Theoretical and conventional data on
component MTBF seen to be needed for accurate romparisors
among different fault-tolerant computers.

37

SURVEY OF FAULT-TOLERANT CCHPUTING SYSTEMS

L. J. Kocicla, North American Rockwell Corp.
3370 Miraloma Avenue, Anaheim, California 92803, May 1972

1. IDENTIFICATION
1.1. NAME: A Three Failure Tolerant Computer System

1.2. RESPONSIBILITY: Electronlca Group, North American
Rockwell Corp.

1.3. SUPPORT: Manned Spacecraft Center, NASA

1.4. PARTICIPANTS: L. J. Kociela, J. Jurlson, D. Broslus
- North American Rockwell; P. Sollock - NASA,

1.5. START: 1/1/70

1.6. COMPLETION: 1/1/71 (dealgn concept)

1.7. BIBLIOGRAPHY: A Three Failure Tolerant Computer
System, IEEE Trans, on Computers, November 1971

2. MOTIVATION
2.1. PURPOSE: Real-Tlme Central Guidance and Control
Computer

2.2. PHYSICAL ENVIRONMENT: Spacebome

2.3. COMPUTING ENVIRONMENT: The computer system Interacts
with avionics subsystems via a multiplexed data bus.

2.4. COMPUTING OBJECTIVES: 30,000 words of memoryj
500,000 operations/second speed

2.5. RELIABILITY OBJECTIVES: Must tolerate first two
failures with no degradation In performance and third
failure with no degradation In aafety.

2.6. DYNAMIC VARIABILITY: Third failure could have less
computational capacity.

2.7. PENALTIES: Would require manual Intervention with
possible loss of life.

?.3. CONSTRAINTS: No physical constraints but a relative
weighting of Importance between physical parameters,

2.9. TRADEOtFS: Site, weight and power least Important.

3. DESCRIPTION
3.1. ARCHITECTURE
3.1.1. CONFIGURATIONS

3.1.1.1. INTERCONNECTIVITY: Four redundant computers
Interconnected by four voter switches at their 1/0
channels.

3.1.1.2. RANGE: 2-6 CPUs, no restrictions on word
length.

3.1.1.3. CAPABILITY: 500,000 operations/second

3.1.2. EXECUTIVE
3.1.2.1. MODES: The executive may operate the redundant
computers In "..ny modes of operation: non-redundant
Independe*-- computers, multi-programed, multi-computer,
and various combinations of redundancy such as comparison,
voting, etc.

3.1.2.2. SOFTWARE: Software control is equally distributed
among the redundant computers - no central control exists.

3.2. FAULT TOLERANCE

3.2.1. FAULTS TOLERATED; Any 3 faults. A fault can range
from a »Ingle circuit element to a complete module such ss
a CPU falling. A failure has no effect on system behavior.
The system actually tolerate more than three faults of
many different types but It will tolerate at least any
three faults.

3.2.2. FAULTS NOT TOLERATED: Software faults that arc not
caught In debugging.

3.2.3. TECHNIQUES: The technique used Is replication of
hardware with quadruple redundancy. Computat!.•>.;» arc
performed redundantly and reconfiguration la accomplished
without removal or replacement after failure detection by
voting.

3.3. NOVELTY: Through the redundant use of adaptive
voters operating on the Input/output of redundant
computers, any three failure can be tolerated.

3.4. INFLUENCES: None

3.5. HARD-CORE: No hard core exists.

4. JUSTIFICATION
4.1. RELIABILITY EVALUATION: Extensive fault simulations
have been successfully performed.

4.2. COMPLETENESS OF EVALUATION: It Is Impossible to
verify a design goal of 100 percent confidence.

4.3. OVERHEAD: For triple failure tolerance, about 80%,
less for lower failure tolerance.

4.4. APPLICABILITY: To many critical real-time control
systems, Industrls]. space and defense applications,

4.5. EXTENDABILITY: The design can be extended to
tolerate different numbers of failures, eg. any two
failures, any four failures, etc.

4.6. CRITICALITIES: Requirement for 100X confidence In
tolerating any 3 failures Is very critical, lowering to 99
percent or so would reduce complexity and cost.

4.7. IMPLICATIONS: Hardware designers must Insure
independence of failures at computer I/O Interfaces.

5. CONCLUSIONS
5.1. STATUS: System design concept completed,
voter-switch detailed design completed, prototype hsrdware
of voter-switch currently under development.

5.2. EXPERIENCE: A very rigid failure tolerance
requirement can be met assuring that a minimum number of
failures will be tolerated.

5.3. FUTURE: Possible use on space shuttle program

5.4. ADVANCES: A significant area Chit can enhance the
state of the art In designing fault-tolerant computers is
analysis of failure modes of components and computer
subsystems in depth. Another v«ry important area Is
error-free software.

6. COMMENTS: Much of the work on fault-tolerant
computers is dedicated to single failures at the gate and
circuit level. Unfortunately, In many cases this is not
applicable to real world failures when considering
computers mechanized from state of the art LSI Integrated
circuits.

H
1UI .J

Compultr üvsltin mixhaniMtuin

1

E^ ̂ 3d -M
1—

"t

■H 3. • Q

i

1 r
i..-.n„:.i 1 ^r ' -K

VCS mechanwiuon.

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

J. S. Miller, In t erne trie« Inc.
701 Concord Ave, Cambridge, Mus. 02138, May, 1972

1. IDENTIFICATION: Th. .y.tem la referred to only aa the
™fn°etrlc8 Mul"Ptoceaaor (occaalonally abbreviated
IMP). It la sponsored by the NASA Manned Spacecraft
Center, Houaton, Texaa. Personnel participating In the
design, In addition to royaelf, are W, H. Vandever, A. L.
Koamala, S. F. Stanten, S. J. Schwartz, and A. Avaklan.
The pruject began In June, 1969, and has continued to
date, except for a thirteen-month Interval between the
original contract and the current one, which euda in about
two montha. One report haa been publiahed: "FinaJ
Report—Multiprocessor Computer System Study", by James S.
Miller, Daniel J. Lickly, Alex L. Koamala, and Joaeph A.
Saponaro, in March, 1970. A second report la presently in
preparation. The work haa been design-only; no hardware
is involved,

2. MOTIVATION: The system is oriented towards the
general-purpose computational requirements oi i manned
orbiting space station of about the 1980 tine period. Its
expected uses include real-time stations control and
data-acquiaitlon functions, plua Interactive and batch
data procesaiDg oparatlona. The performance objectives
are soft, but a real-time response of 5 me or better, and
an equivalent of two million addttlona per second for a
three-processor configuration aeem adequate.

Because no hardware la being deaigned, no specific
reliability figure has been imposed. The use of the
system for control of the space atatlon itself places
heavy emphasis upon continued operation, at reduced
performance in the presence of faulta. Although we expect
that temporary outages of the computer ayatem will be
tolerable, our efforts have been directed at avoidance of
single-point failure modes,

3. DESCRIPTION: Although an earlier design favored the
use of a single internal bua connectlrg all Bodules, with
caches at each procesaor incorporated to diminish traffic,
we have now settled upon a more conventional croasbar-like
network. Each processor and main memory module poaaeaaes
a bua, as does the I/O controller. Secondary atocage is
accessed via the latter unit. Configurationa of up to
eight processors, and as few as one, are planned, with
nominally three, A 32-blt word, with additional bits
added for error-detection, haa been chosen,

A full complement of multiprocessirg is provided by the
system software. Processes may be dependent or
independent of each other. Each processor is
multiprogrammed by a "floating" operating system executed
by any processor, as necessary. Interprocess
communication is supported, and processes may field their
own Iterrupts if they choose.

The instruction set of the processor is designed to
support the execution of high-order block-structured
languages, such aa Algol, PL/I, and HAL, the laat being an
Intermetrica-deslgned language also sponsored by NASA/MSC.
The inatruction set somewhat resembles that of the
Burroughs B670O, although aubstantlal differencea have
been introduced. It la planned that only high-order
source languages will be supported. The system is
designed to tolerate "all" faults in the hardware,
provided that aecond, independent, faults do not occur
before recovery action la complete. Our experience with
the error-prone diaclpline of aoftware reatarts on the
Apollo program haa »teered the design. Comprehensive
error-detection facilities are provided in the hardware,
so that detection is immediate and highly probable.
t'urthermore, sufficient redundant information la
maintained In independent locations so that the operating
syntem and hardware capabilities are adequate to continue
execution of all processes (subject to reduced performance
limitations) witho'it explicit particlpstion by application
software.

Processors ire dually-redundant to provide complete
error-checking capability. Instruction execution is
devised so that inputs are always preserved until
error-free completion is signalled; thus re-try is always
possible. Processor state information is maintained in
local memory which is externally accessible, so that
execution of an inatruction interrupted by a processor
fault may be resumed by another processor if re-try proves
unsuccessful.

Main memory is dynamically time-multiplexed, using
variable-aize segments, similar to the B67O0, The
read-write funcilona of the memories are implemented in a
way that enables duplicate Htorage of information when
this is specified via the high-order-language. Procedure
code and other read-only data id.il be resident in
secondary storage, and thus need not be duplicated in main
store. Variable data may or may not be stored doubly; if
not, the owning process will be marked for termination if
such data is destroyed through memory fault. The
duplicate storage of apedfied data, although supported by
hardware, is relatively transparent to the memory
management aoftware; no spedally-dealgnated memory
modules are used.

4. JUSTIFICATION: The design is relatively complete, but
has not been evaluated by any formal procedure. Somewhat
deliberately, it was baaed on working architectures to
reduce the number of possibilities for unanticipated
difficulty.

As mentioned above, processors are duplexed, and some
information contained in main mumory is stored
redundantly. An additional "overhead" for fault-tolerance
is triple-redundancy in certain access-elements of main
memory, and the I/O controller.

In our Judgement, the system we have deaigned is suitable
for Implementation in any application where transparency
to faults and continued operation are worth the cost o!
the redurlancy. It is emphasized that comprehensive
error-det 't on, apart from recovery, is responsible for
much of t[., additional cost.

No claim is made that the system is tolerant of software
flaws. However, the Insistence on use of high-order
language is expected to reduce the probability of such
errors, both by mcklng their commission less likely, and
by implementing error-detection features in the languages
and compilers. Run-time checking will be provided via
hardware features (where possible) and by
compller-inaerred code to at least signal the occurrence
of software misbehavior, before the effects can propagate.

5. CONCLUSIONS: Intermetrics believes that its
fault-tolerant HOL-machlne would be cost-competitive with
a "conventional" system manufactured In the same quantity,
since the memory saved by usage of HOL instructions is
expected to be significant. Further development will be
pursued.

39

auRVET OF FAULT TOLERANT COMPUTER SYSTEMS

Donald C. Wallace
Stanford Ksaaarch Inatltutt, Manlo Park Ca, June 72

1. IDENTIFICATION
1.1 NAMEiCOMEX- Online o-det handling systea

1.2 RESPONSIBILTlf: P.C.Senric« Corp. (subaidiary Pacific
Coast Stock Exchange)

1.3 SUPPORT: Member firaa of PCSE

1.4 PARTICIPANTS: Member flma of PCSE

1.5 START: Contract let i7 November 1967

1.6 COMPLETtON: System accepted - * December 1969

1.7 BIBLIOGRAPHY: The most accurate deaription of the
COMEX is the final document ilun delivered with the system.
Docunents!
Specification for data processing and consmnlcation
equipment for Pacific Coaat Stoc Ex-hange PC Service
Corp., 1967
Proposal for Real-Tlme Order Handling System BBN
fp68-DE-01,4 August 1967
Contract for Real-Time Order Handling System for Ptcific
Coaat Stock Exchange BBN/PCSE,17 November 1967

2. MOTIVATION
2.1 PURPOSE: Real tine odd-lot order execution

2.2 PHYSICAL ENVIRONMENT; Ground baaed

2.3 COMPUTING ENVIRONMENT: Tlie system serves tvo trading
floors, one in Los Angeles, the other In San Francisco.

2.4 COMPUTING OBJECTIVES: COMEX is designed to handle
virtually all low-speed teletype speeds, levels and code«.
It appears as a node on each of the connected broker firms
connunlcatlon networks and must conform to the line
protocols and hardware constraints of that network. The
design objectives were tor 64 "nodes" in LA. and 64 in
SF., and for a maximum meaaage-switchlng traffic of 25,000
orders/transactions per day.

2.5 RELIABILIT' OBJECTIVES: The system was designed to
provide 99J;+ uptime and with a no "message loat" criteria.

2.6 DYNAMIC VARIABILITY: The ayatem is designed so that
order entry ia performed in real tine, but the order
execution process may lag an arbitrary period of time. In
operation this lag never exceeds 20 minutes (approx.??).

2.7 PENALTIES: COMEX has various degreea -•{ degradation,
the ultimate being total manual operation and execution of
the orders by the specialiats on the trading floora.
Esoteric software/hardware malfuncticna could cause
extremly large manual intervention pruulens aa the system
Is really buying and selling stock on the behalf of
members of the exchange.

2.8 CONSTRAINTS: The PCSE is really two exchanges with two
different trading floors, one in Loa Angeles and one in
San Francisco. For reliability reasons the system Is
fully redundsnt. A PCSE constraint on the system was that
the system be equally split between the two sites.

3. DESCRIPTION
3.1 ARCHITECTURE
3.1.1 CONFIGURATION
3.1.1.1 INTERCONNECTIVITY: See diagram which shows the
twin IBM 360 computers and the 680 systems each of which
Includes a DEC PDP8 computer.

3.1.1.2 RANGE: The ayatem Is really tvo aystaiM running in
parallel. It Is sensible to run them aa single units or a
fully redundant system. Two configurationa are possible:-
Non-partitionad trading floora:

LA-rcmote680, SF-local6K and SF-360
SF-renote680, LA-local680 and LA-360

Partitioned trading floors:
SF-local680 and SF-360
LA-local680 and LA-360

3.1.1.3 CAPABILITY; COMEX consists of two (2) 360/50
computers plus the front-end communications ayatema.

3.1.2 EXECUTIVE and operating system: COMEX runs under
IBM/360 DOS with its fixed nuiLber of multiprogra»
partitlona option.

3.1.2.1 MODES of operation: The order execution process
runs in a high priority partition of DOS while normal
operation of PC Service Corp. computer operations are
being run in other "foreground" and the background
partitlona. The comnunlcation proceaa (in the bSO's) is
dedicated and allows no other functiona.

3.1.2.2 SOFTWARE organitation: Baaically the 680's do
character aasembly (bits), line protocol interpretation
(answer back, echo, etc.), message segment aasembly, 1/0
buffering, transmission to local and remote 360'8. The
3*0's do message switching, code translation, message
decoding (syntax analysis), order queuing, decoding of
NYSE and AMEX tickers (identify tradea), execute queued
orders, send confirmations to broker and apecialist.

3.2 FAULT TOLERANCE
3.2.1 FAULTS TOLERATED: Essentially the system will
tolerate any or «11 failures in a single system (i.e.,
backup or primary).

3.2.2 TAULTS NOT TOLERATED: Any simultaneous failures In
both the primary and backup ryatem causes loss of
integritry of the data files. This ia considered a
cataatrophic event and some manual correction and
Intervention for order execution and notification will be
needed. (To my knowledge this has only occured onci In
the almost tnree years of operation.)

3.2.3 TECHNIQUES:
HARDWARE: The COMEX systam is i.ompletely reuundant

(two of everything), and both systems run in parallel
The major design criteria was that nothing ahould hap)en
in one syatem half that could adversJy effect the nth r.
This led to the system interconnections (PCU) b»tng
unidirectional and step-locked In a "here's a word, take a
w „ fashion. AU TTY connections to the ayatem are dual
dropped and there ic a hardware interlock to prevent both
680 machines from outputlng to a line at the saw time.

SOFTWARE: The software (s designed to be very
modular, and no control flow exists betveer. functional
routines. Control flow Is between the COMEX scheduler/
executive and each fun.tlonal module. Data Is passed from
function to function by means of stacks and lists, and
standard ayatem global coutines are used to accomplish
this. Both systems are actually performing the entire
order execution taak In parallel and there Is reslly no
contunlcatlon between them. The only difference Is that
the "backup" system is not outputlng transaction
conflrmationa and order receipt notifications. The backup
system mslntalns a queue of the laat "n" messages to each
line In the syatem. When »witch-over occurs, these
messages are output to the specialists/brokers with a "may
be duplicate" tag,

3.3 NOVELTY: The Interconnection of the DEC 680's and the
S/360's is accomplished without re-uiring modifications or
additiona to the IBM operating system or providing
"special" I/O todulea. The ABO's (two of them) have a
S/360 channel equivalent (FCU) that talks to the IBM 2841
disk controler with the two channel feature (8100). This
is the equivalent of having two 360 systems talking to one
disk system. This ia a standard IBM configuration
possibility (though not supported by IBM software). If
the uaer Is willing to accept Implementing hia own
read'write lock mechanisms there is nothing In the IBM
syatej to preclude this mode of operation. Given all of
the above It la now possible to write s communications
system strictly at the uaer level using standard IBM 1/0
software. Data Just "appears" on the disk and ia read
into tha 360 and is in turn written on the disk and Just
"disappears". The data from the 680*8 is written as a
sequentially ever growing file, capturing an entire day's
transactions. This allowa "rerunning" a day's
transactions in real time to find obscure bugs.

3.4 INFLUENCES: After spending -ever»! ears working on
modified or baatard 360 Systeme and realizing the effort
level to maintain these systems given ehe freqi«ncy of new
IBM releases, It seemed Insane to design a ayatem that
relied on any thing except the most rudimentary features
of the IBM monitor. The approach described haa proven
very successful in over three years of operation. To my
knowledge no problems have been encountered due to the
monitor/ Comex system Interface.

40

4. JUSTIFICATION
4.1 RELIABILITY EVALUATION: The avstem hu met «id
exceeded the design criteria over the last 2 years of
operation,

4.3 OVERHEAD: Since the system la totally redundant, at
least half the oat of the coantmlcatlons front end Is due
to reliability requirements. The rellabllltv vequlrements
of the system probably did not contribute significantly to
the software design, and probably helped in the checkout
and operational phases.

4.4 APPLICABILITY: The system haa general applicability
for cosDunications and message switching systems where the
base computer facility oust be IBM (for what ever
reasona). It offers aignifleant cost savings when
compared to an equivalent all-IBM equipment configuration.
Its novel interfacing technique allows the users to
concentrate on the application program and offers long-
term savinga in effort by not having a modified IBM
operating system. The ay*i.4n has specific applicability
to other email or moderate si^ed stock exchanges both U.S.
and foreign.

4.5 EXTENDABLILITY: There appear to be no obvious
extentions to the systen as far as capacity is concerned.
Two- or three-fold Increases in throughput are possible
whereas factors of t'«n are out of the qt'stion. Since the
next obvious exchange automation task is either NYSE or
AMEX and the voliini' of message traffic for those exdtangi
is staggering. COMEX most certainly has no real logical
extension for th—? situations. Specific experience and
techniques in deling with automation of a stock exchange
process may have general applicability.

4.6 CRITICALITIES: A specific goal In hardware deslpn not
to exceed the "state of the art" was imposed by PCSE to
gain assurance of reliability. This constraint caused the
selection o. hardware that most assuredly is obsolete by
today's standards (e.g., bit serial TTY interface),
greatly restricting overall I/O capacity (like maybe a
factor of 10),

5. CONCLUSIONS
5,1 STATUS. The system is currently handling 15Ji of the
maximum iiessage switching capacity of 25,000 order
transactions per day. It is undergoing significant
modification to handle round-lot traffic, which
potentially will increase load to 50Z of capacity within
the next 18 months. Studies are underway (- evaluate
high-speed I/O capability.

5,2 EXPERIENCE; Overall system operation has been highly
satisfactory to the PCSE,

TIME
>NTEI*ML

TELETYPE
WUtTIPLEHEHH

«85

*
/

5L

iW U

POP I
noev urn

na t

TIMC
■ffJDML

«WMTOft

SAN FRANCISCO

COMEX SYSTEM - PACIFIC COAST STOCK EXCHANGE

41

Wanwr Ulrich, Ball Labs
NapcrvlUc, UUnola 40S40 Hay 1972

Eaaantlally, Alt questionnaire rapraaants the entire body
of publl-ned materlil an ulncanance aapecta of ESS, I
hav« thf.rafora taken the liberty of aaoding a bibliography
In pUca of a coaplatad quaatlonnalra. You will notlca
that Boat of tha art Idea ara quite brief wich the
except inn of Itaaa 1 and 2 which ara coaplaca liaacriptlona
of the No. 1 and No. 2 ESS aaintananca plan, and learn 3
which la a longer arcicle on a apaciallied datall of our
trouble location unual or dictionary approach,

Tha bibliography, in addition to artlclaa on No. 1 and No.
2 ESStContaina itaaa on our data awitchlng system (never
cosaarcially offered. Item 5), the traffic aarvica
poaltion ayatac (item 9), and a military application of
No. 1 ESS (Item 14).

BIBLIOCRAPHY

1. Downing, K. W,, at al., "No 1 ESS Maintenance Plan,"
BeU System Technical Journal, Vol. 43, pp. 1961-^020,
September, 1964.

2. Biuachar, H. J., at al., "Admlniatration and
Maintenance Flan of No. 2 ESS," Bell system Technical
Journal, Vol. 48, pp. 276S-2813, üecobar, 1969.

3. Chang, H. Y, and Thomas W,, "Methode of Interpreting
Diagncatlc Data for Locating Faulta in Digital Machinea,"
Ball System Technical Journal, Vol. 46, ,>p. 289-318,
February, 1967.

4. Taiang, S. H., Ha^gk, C. and Seckler, H. N.,
"Maintenance of a Large Electronic Switching System," IEEE
Tranaactions on Covunicatlona Technology, pp. 1-9,
February, 1969.

3. Aitchaaon, E. J. and Cook, R. F., "No. 1 ESS ADF
Haintanance Plan," Ball System Technical Journal, Vol. 49,
No. 10, pp. 2831-2836, December, 1970.

6. Nuwak, J. S. and Tuoaanokaa, L. S., "Memory Mutilation
in Stored Progran Controlled Telephone SyataD," 1970 IEEE
International Conference of Conaunicationa, pp.
43-32-43-43.

7. Chang, U. Y. and Scanlon, J. M., "Design Principles
for Proceaaor Maintainability in Keal-Tiaa Syateaa,"
Procaadlnga of Fall Joint Computer Conferencea, pp.
319-328, 1969.

8. Nowak, J. S., "Emergency Action for No. 1 ESS," BeU
Labontunaa Record, Vol. 49, No. 6, pp. 176-179,
June/July, 1971.

9. Connat, J. ft., Pasternak, E. J. and Wagner, B. D,,
"Software Dafanaas in Raal-Tiae Control Syatema," Second
annual International Symposium on Fault Tolerant
Computing, June 19-21, 1972, Boaton, Masaachuaetta.

10. Almquiat, R, T., at al, "Software Protection in Mo, 1
ESS," 1972 IEEE Conference on Communications, June, 1972.

11. Kitchledge, R. W., "Service Experlencit with No. 1 ESS
Equipment," International Conference on Electronic
Switching, 1966 Procatdinga, Paria, Edition Chiron, pp.
712-716.

12. Vaughan, H. I,, "Experience with the No. 1 ESS,"
International Conference on Electronic Switching, 1966
Proceedinga, Paria, Edition Chiron, pp. 704-711.

13. Haugk, C, "Early No. 1 ESS Field Exnarir.icae, Part 1,
2-Wlra Syatam for CoaMrclal Implications," IEEE
Tranaactiona on Communications Technology, Vol. 13, pp.
744-730, December, 1967.

14. Seeklar, H. N., "Early No. 1 ESS Field Experience,
Part 2, 4-Wlre Syatam for Government and Military
Implication;»," IEEE Tranaactiona on Communications
Technology, Vol. 13, pp. 731-734, December, 1967.

13. Johanneeen, J. D., "No. 1 ESS Sarvica gxparience -
Software," IUEE Conference on Switching Techniques for
TelecoMunication Network«, Conference Publication No. 32,
pp. 439-462, April, 1969.

16. staehler, R. E,, "Mo. 1 ESS Service Expariance -
Hardware," IEEE Conference on Switching Technique« for
lelecommunlcstia.- Network«, Conference Publication No. 32,
pp. 463-466, April, 1969.

Capt. L. A, Fry, Space and Missile Systems Organiiation
(SAMSO), Los Angeles AFS, California, June 1972.

1. IDENTIFICATION
1.1 '.AMI-:: Modular Spacecraft Computer

1.2 RESPONSIBILITY: SAHSO/SYT, Loa Angeles AFS, Ca.

1.3 SUPPORT: Not available

1.4 PARTICIPANTS: Raytheon Company, Sudbury, MA.,
Ultrasystema, inc., Newport Beach, Calif.

1.5 START; Project atarted nild-1971

1.6 COMPLETION: Architecture study completed January
1972. Other efforts continuing.

2 MOTIVATION
2.1 PURPOSE: Support of all satellite data proceaaing
requirements

2.2 PHYSICAL ENVIRONMENT; In satellite

2.3 COMPUTING ENVIRONMENT: Hardwired to environment

2.4 COMPUTING OBJECTIVES: Approximately 200K operations
per second. Memory expandable to basic 32 bit word fovmat
with 64K words of memory.

2.3 RELIABILITY OBJECTIVES: High reliability for 3 year
life

2.6 DYNAMIC VARIABILITY; Eaaentially no variability

2.7 PENALTIES: Loss of major satellite functions

2.8 CONSTRAINTS: 2 3 pounds and 30 watts.

3. DESCRIPTION
3.1 ARCHITECTURE
3.1.1 CONFIGURATIONS: Not available

3.1.2 EXECUTIVE
3.1.2.1 MOOISl Inten-uptlble but not a true
multiprocessor

3.1.2.2 ■ tTWA.<l : Not yet developed

3.2 FnULT TOLERANCE
3.2.1 FAULTS TOLERATED; Trarsient and permanent—.ill
logic types. Also can tolarc ' catastrophic faulte.

3.2.2 FAULTS NOT TOLERATED: Faults resulting from major
phyalcsl damage.

3.2.3 TECHMiqUES: Replication; coding; repetition and
rollback; and reconfiguretion. Techniques used
statically and dynamically.

3.3 NOVELTY; Extensive dynamic redundancy

3.4 INFLUENCES; Not avsllable

3,3 HARD-CORE; Configuration Control Unit la
trl^iy-modular-redundant, controlling all retries and most
reconfigurations,

4. JUSTIFICATION; Not available

3. CONCLUSIONS
3.1 STATUS: Performing Interpretive simulation

5.2 EXPERIENCE; Architecture very suitable for Intended
application

5.3 Fl'TURE; Not available
5.4 ADVANCES: Not available

6. COMMENTS; Fault-tolerant computers can make a major
contribution to long duration space missions.

42

APPENDIX III

A HIERARCHICAL PRAMEVORK FOR FAUlT-TOtERAHI COMPUTE SYSTEMS

Peter G. Neumann

SRI. Menlo Park, California 94025

IEEE Computer Society Conference

San Francisco, September 12-U, 1972

ziiTr8up,,orced'-part b'th'o'"™ *—- «...«c Pro ..„ ARency of th. D.p„t«B, o£ DofeMo (mUBni by * . r

Contract N00014-72-C-02SÄ anA A . y ; der

ood.r coot„ct »AS. .„•"„"„:;:?: r u"giey R""rch cTOt" xu^u. No official views are Implied.

ABSTRACT

A hierarchical design framework for fault-tolera^
considered here Th* < tolerant computing systems Is

red here. The Intrinsic flexibility and dynamic

IZlZtT Tre8Ult preatly enhance the —— of system operation and system development.

INTRODUCTION

cone »ion th« c.r.f„lly COI,celved lnternal °

b.n.Hcl.l to the *ol. develop»«« process It .. th ""

it;:::" r a"ch ~ -----: L" :.con",,tlM

correct performance despite Internal malfunctions.

A framework la considered here which oermii-- . ■.-.

for fault tolerance to be applle a IT "^ ^ teChnlqUe8 PP at each of various levels In A
hierarchy, when and where most effective Thla M T

rective. mis hierarchical framework

43

permits fault tolerance to be achieved at low cost, especially In

systems with some real-time leeway. Various Implications are examined.

The framework Is applicable primarily to designs for new systems. It is

also suitable for the software of some existing systems. Finally, a

problem is considered which is greatly simplified by employing the

hierarchical framework. This is the massive-transient recovery problem,

in which arbitrarily many unknown faults may have occurred.

FAUI.T-TOLEK E TECHNIQUES

A variety of techniques exists for increasing system fault-tolerance

/1-2/. Two basic types of techniques are usually found in execution,

static aud dynamic. STATIC techniques involve preplanned actions with

no changes in the operating environment or in the flow of jontrol

("fault-masking" via coding, replication with voting, etc). DYNAMIC

techniques involve detection and diagnosis of faults, followed by a

non-trivial corrective action. Examples include repetition (e.g.,

rolling back the entire system to an earlier valid state) and

reconfiguration with or without replacement by spares (e.g., removing or

working around faulty units, and either substituting spares or accepting

a degradation in capacity). In certain cases, human intervention is

useful. Fre-execution techniques are also useful, e.g. proofs of

correctness of programs and design. Note that static techniques may be

found in dynamic usage, e.g., replication used only for particular

processes ^c certain times (see below). Similarly, conceptually dynamic

techniques may appear in static usage (e.g., instruction retry in which

all eventual results are buffered making rollback trivial).

LEVET,S OF STRUCTURE AND DYNAMIC RECONFIGURATION

Many design approaches assume that essentially all single faults are

equally critical. In reality, certain faults may be far more critical

than others. Thus a system architecture is desired in which fault

tolerance techniques may vary In time and space, depending on current

usage and on the critlcallty of the errors which might otherwise result.

As used here, "dynamic reconfiguration" implies alteration during

44

execution of the fault-tolerance techniques, or of the rest of the

hardware and software, or both. The framework presented here

facilitates control o* such reconfiguration. It reduces system overhead

(hard- and soft) due to fault tolerance, and increases the overall system

effectiveness.

Numerous levels at which these techniques for fault tolerance may be

applied are readily identifiable. These levels range from components to

modules to processors; from bits of memory to words to blocks to memory

modules to hierarchies of diverse types of memories (e.g., as in a

virtual memory. In which all memories in the hierarchy appear to the

external interfaces as a single level); from hardware to microprogram

through various levels of operating system software to command software

to user programs; from system elements to systems to networks of

systems.

A very significant system structure is given by Dljkstra /3/. Details

Internal to implementation at a given level are made invisible to all

higher levels by the interface language at the given level. Capability

at that level is dependent on the capability of the next lower level,

and is precisely that provided by the interface language. The use of

these distinct "levels of invisibility", or "levels of abstraction", is

highly beneficial to system development. Two familiar examples are the

invisibilility of a cache memory to a program and the invisibility of

tnultiprograuming to a user.

THE HIERARCHICAL FRAMEWORK

The desired hierarchical framework for fault- tolerant computing systems

is as follows.

(1) Various levels of structure are established explicitly in the

design as levels of invisibility. Control and conmunication facilities

must be provided. (Useful mftchanisms are known for this purpose, e.g.,

for coordinating among processes — both to avoid conflicts and to

permit sharing of programs, data and control ~ and for communicating

45

among or within levels. Except for deadlock avoidance, these mechanisms

are fairly dear-cut.)

(2) Associated with these levels are possible configurations of

fault-tolerance techniques and possible modes of dynamic

reconfiguration.

(3) Analysis, simulation, and operating experience should be used to

study the relative effectiveness of these techniques under varying

demands and of reliable algorithms for deciding how and when to switch

smong configurations. The suitability of the choice of levels should

also be evaluated.

An illustration of this framework is provided by Table I. The first

column of ihe table identifies some typicel levels of invisibility.

(Lower levels are toward the top of the table.) The second column gives

examples of concepts invisible at each level. The third colimm shows

techniques which can enhance fault tolerance at each level, and whose

details should be invisible at higher levels. Those techniques in the

table which lend themselves to dynamic reconfigurability are indicated

by an asterisk. The dynsmic control over reconfiguration of such

techniques may be done Internally, or via the interface language for the

appropriate level. Techniques at one level may be applied relatively

independently of those at other levels, if desired.

As an example, consider a system normally configured as five independent

multiprocessed processors. At the VIRTUAL SYSTEM level, each user (or

application environment) deals with a command language interface to the

system. At the VIRTUAL PROCESS level, each virtual process may in turn

employ one or more processes, either to exploit intrinsic parallelism

(e.g., simultaneously processing, moving a file, and printing) or to

provide redundant computations. At the VIRTUAL PROCESSOR level, these

processes may be executed on the same or on different processors. The

configuration might on occasion include two processors in a comparison

mode with two identical processes (or with two different algorlthmi), or

three processors in a voting mode, or even in rare cases five in s

46

INVISIBILITY LEVEL
(««•■pie»)

Component», chip»

Module»

Functional unit«:
Proce»»or»,
central, etc.

Hanoric»

Input-output

Virtual hardware

Virtual proee»»or

Virtual process

INVISIBLE CONCEPTS
(axaaplaa)

APPLICABLE FAULT-TOLERANCE TECHNIQUES
(cxaaplaa)

Virtual memory

Virtual input-
output

Virtual system

Virtual network

Tachnology detalla,
fabrication method»

Board layouta, pin
connections, timing

Proceaaor algorlthM
Address calculation
Bua control
Interrupts

Cache mechanism»
Internal representa'ion
Internal configurations
Device characterlatlci.

Madia properties,
device dependence

Configurations

Multiprocessing—
processor multiplexing
for distinct processes
Array computing
Processor dispatching

Multiprogransing—
process multiplexing on
a virtual proceaaor
Process scheduling
Virtual Interrupts,
process Isolation

Multiplexing of memory
hierarchy; locations,
relocations, backup and
retrieval, directories

1-0 multiplexing,
virtual devices
Exception handling
Aaynchrony, buffering

User multiplexing,
sharing of data
System correctness

System multiplexing

Intrlneically reliable technologlea, good englnaarlng,
quality control, coding and fault-masking, replication

Conservative deaign, reliable connectors, environmental
control; •Diagnoala, component replication, replacement

»Automatic Instruction retry, arithmetic coding
Bound» checking, memory protection
•Alternate routea, coding, degradable priority mechanism»
*Race-free fail-operational interrupt design

•Automatic reloading
•Coding on memory contcnta
•Reconfiguration around bad memory (via paging, de-interlace)
Use of read-only memories to avoid ovetvrlte and nld recovery

•Coding on contenta of media and transmission
•Verification, checking, reread and compare after write

•Configuration aensing and a» f-reconflguration, powering on-
off (e.g., spares), distributing and replacing power supplies

Coding, handshaklnr on interprc>ce»sor ronnunlcation, avoidance
of interprocessor Interference; *Repllcatlon of physical pro-
ceaaors as a single (virtual) proceaaor, voting aa needed

•Reconfiguration and replacement within the array
•Configuration insensltivity via checked table-drlvlug

•Replication of virtual processors for a single process
•Independent computational checks (via poaalbly distinct
processes) as aingle virtual pro-ess; •Automatic rollback

•Explicit measures of permitted degr/idatlon per process
Safeguarda on interprocess comunication (vs. lost interrupts,
blocked polling), avoidance of interproceaa Interference,
intraprocesa protection (rings, capabilities, manter modes)

•Replication of critical data in varioua places in hierarchy,
including reliable cheap backup store; •Automatic rollback
Redundant pointers In directory structure and file maps to
permit fast recovery; Access control on files (e.g., write
protection) and the use of pure procedure to inhibit loaa of
critical data or programa and to aid in automatic rollback

Handshaking to avoid loss of Information; •Statu» information
•Device »witchability, media replication
•Coding (e.g., redundant headers); •Flexible error handling
Race-condition and deadlock avoidance

Isolation of users from the system snd each other;
•Controlled shsrlng (If any); Self-identifying deacriptors
•Validation, evaluation of effectiveneas and correctness
*nn-line maintenance; Good compilers, diagnostics, debuggers

•Coding on intersystem communication, alternate paths
•Detailed status of network control and network requests

TABLE 1. Examolea of techniquea for fault-tolerance applicable to varioua level» of invlalbillty
Aaterlaks denote techniquea particularly amenable to dynamic reconflgurablllty.

47

voting mode. In these modes there may be 4, 3, and 1 distinct virtual

processCes), respectively, Instead of 5 as In the fully multiprocessing

mode. (Several of these modes are also useful if some processors are

not operational. In which case replacement Is also desirable.) The

Internal mechanics of such mechanisms should be mostly Invisible to each

virtual process.

At the VIRTUAL MEMORY level, device addresses are Invisible. When being

actively used, a virtual memory page may In fact be found In various

states of recency and/or In various modes of replication on various

devices In the memory hierarchy, even in the absence of fault-tolerance

techniques. For example, in a paged environment, various instances of a

given page may exist simultaneously in a cache-type memory, in primary

memory and in secondary memory. If it is procedure that is "pure"

(unchanged by execution), then the contents of all Instances are

identical (barring errors); if it is data, the instances may differ.

In the present framework this natural temporary proliferation can be

used constructively to provide checkpoints, thus greatly facilitating

automatic rollback. This is especially useful with various Instances of

critical data.

At the MEMORY level, coding techniques offer very Inexpensive

fault-tolerance. Only 8 redundant bits are needed to provide

single-error correction for 6A-bit words in memory and arithmetic, a 13%

increase in memory cost. (The cost of error correcting circuitry is

small by comparison.) Coding techniques also lend themselves to dynamic

reconfiguration. One such approach involves different uses of a

particular encoding. Consider for example a code with Hamming (or

arithmetic) distance A for single-error correction and double-error

detection. When the multiple error rate is high, the code may better be

used for triple-error detection (accompanied by increasingly loud cries

for help). (Another example is using a byte-error correcting code as a

multiple-error detecting code.) A second approach involves varying the

encoding itself, e.g., changing the redundancy.

Similarly at the MODULE level, multiple arithmetic or functional units

48

tied to a control unit may be used in replication for fault tolerance,

in synchronem as in the ILLIAC IV for handling parallelism in

computation, or independently. The first of these applications

substantially increases reliability, while the others may substantially

increase the computational throughput.

Explicit levels of structure are now evident in a few recent operating

systems. For example, the Multics protection hierarchy (see /4/)

provides successive levels of resilience to errors in its levels of

protectability. A spectrum of criticality exists with ttspect to

faults. Only malfunctions (hard or soft) involving the lowest software

level affect the viability of the system. Others have diminishingly

serious affects on the correctness of operation as the level increases,

e.g. aborting a user's process or one command. As with hardware,

software techniques for fault tolerance may differ from level to level.

IMPLICATIONS OF THE HlEk^RCHICAL FRAMEWORK

There are numerous advantages of this hierarchical framework. These

include considerations of reliability, computational capacity, and cost.

(1) A wide variety of techniques can be applied, each where it is most

effective, responsive to the needs for fault tolerance and computing

capacity, and subject to the cost factors. Each configuration can be

dynamically altered, based on the current usage of the system. (This

may affect more than one level at once.) The net cost of system fault

tolerance can therefore be reduced, especially if rarely used techniques

can be performed reliably in software. Considerable savings also result

if occasional modest real-time delays are permitted »,e.g., for

diagnosis, recovery and reconfiguration), further reducing the need for

dedicated hardware. Nonuniform costs also permit the reduction of the

incremental cost of fault tolerance. If memory costs (including

secondary storage) dominate total hardware costs, then the relatively

small cost of redundancy in memory (e.g., logarithmic for single-error

correction in memory and arithmetic) may dominate the incremental cost,

even with replicated processors. If memory costs do not dominate, then

49

f

memory Is relatively cheap and logic-ln-memory architectures (see below)

may be of interest. The framework also facilitates checkpoint
mechanisms which permit varying degrees of rollback as needed, involving

different levels of the hierarchy. On-site maintenance is also aided,

as are on-line interactive diagnostics.

(2) In general, computing capacity not currently dedicated to fault

tolerance is available for useful computing, assuming reasonable system

balance. It is desirable to have pools of modules, of functional units,

of processors, and of Systeme to configure among. The multiplicity of

each pool should be large enough so that the mesh of graceful

degradation is reasonably smooth and that the loss of any unit is not

serious. This increases the overall system effectiveness, in terms of

both computing capacity and fault tolerance.

(3) The intrinsic structure of the hierarchy enhances each stage of

system development, including the stages of designing, implementing,

documenting, debugging, certifying, analyzing, maintaining, and

modifying a system. At each such stage the notion of levels of

Invisibility permits issues of fault tolerance relevant to lower levels

to be abstracted and analyzed, aiding in isolating any side-effects.

Thus the framework serves as a useful model as well.

(4) Recent technological advantages (e.g., LSI) significantly improve

the cost-effectiveness of «any of the techniques. These advances should

also stimulate new architectural directions, such as multiprocessors

with considerable multiplicity, and distributed-logic or logic-in-memory

designs. The latter case Involves large arrays of small memory
elements, each containing processing capability. These arrays may be

organized into subarrays of subarrays, possibly with structures

geometrically oriented toward the problem to be solved.

There are of course many questions left unanswered,

(1) Questions of overhead and reliability resulting from the control of

such systems must be examined carefully. It appears that the overhead

50

can usually be kept small, except when fault-tolerance limits are

approached. It is obviously desirable that the mechanisms for

controlling reconfiguration must themselves be fault tolerant, thrash

resistant, and reconfigurable. Interference problems and

intercommunication must also be handled reliably.

(2) This framework seems particularly effective for large

general-purpose systems. How effective it can be under various

circumstances, e.g., for small systems, for those with tight real-time

constraints, requires further study.

(3) How can the various tradeoffs among fault tolerance, computing

capacity, cost, overhead, etc., be characterized? Under what

circumstances is it desirable to reconfigure? What kind of limiting

behavior occurs as computing capacity or fault-tolerance capacity is

reached? What are the penalties associated with having too many or too

few levels? What happens to the notion of the "weakest link"? Can it

be distributed among less weak links? How does it shift during

reconfiguration?

THE MASSIVE TRANSIENT RECOVERY PROBLEM

As an example of a specific problem which can be greatly simplified by

the adoption of tiue hierarchical framework, consider the "massive-

transient" recovery problem:

A correlated fault source (e.g.,a power surge or a bolt of lightning)

has left all units of the system suspect, perhaps introducing both

transient and permanent faults. The problem is for the system to

diagnose and configure Itself back into a working configuration and to

validate itself for correctness, all under Its own control.

This problem is essentially a generalized fault- tolerance problem,

where performance may cease temporarily during and just after the

massive transient. It is also closely related to normal system

Initialization. The hierarchical framework and the dynamic

51

reconflgurablllty bof.h aid greatly in solving this problem. One

solution involves reestablishing minimally correct hardware by

bootstrapping upwards from the lowest levels of the hierarchy, until a

satisfactory rudimentary system is obtained. It is also desirable to

validate downwards from the higher levels. This solution is aided by

the UST; of a hard-wired non-volatile read-only memory which provides a

basis of correct programs for recovery. Further help is offered if this

meiaory is directly executable and the programs are pure, and if these

programs operate only cat of local memory at first. By working up the

hierarchy, valid portions of the system begin to emerge. (Another

solution might involve trying experiments on various configurations of

the whole system.) Note that this problem may be Intrinsically

insoluble for a given system. It may also oe insoluble for the

particular massive transient, e.g., becaus» not enough operational

equipment remains to self-diagnose and configure a valid system, or even

Just to operate such a system. (More equipment might be required for

diagnosis than for operation.)

CONCLUSIONS

The hierarchical framework presented here appears to have great

potential in the design of fault-tolerant systems. It can increase the

effectiveness of new systems as well as the ease and flexibility of

their development and operation. It should increase in utility as

technological advances permit much larger systems to b? developed.

Further study is intended.

ACKNOWLEDGMENT

The author is indebted to Jack Goldberg, Karl Levitt and John Wensley

for many helpful comments.

52

REFERENCES

1. E.g., see IEEE Trans, on Computers, C-20, November 1971, and the

Digest of the IEEE 1972 Internatifnal Symposium on Fault-Tolerant

Computing, Newton, Mass., June 19-,? 1, 1972,

2. W. C. Carter, et al.. Design Techniques for Modular Architecture for

Reliable Computer Systems, IBM Report 70-208-0002 under Contract

NAS8-24883, Yorktown Hts. NY, March 26, 1970.

3. E. W. Dijkstra, The structur«. of the "THE" multi-programming system,

CACM 11, pp. 3A1-346, May 1968.

4. M. D. Schroeder and J, H. Saltzer, A hardware architecture for

Implementing protection rings, CACM 15, pp. 157-170, March 1972.

53

