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1. TECHNICAL REPORT SUMMARY 

This document provides the first technical progress report in the one-year 

study of fault-tolerant computing which SRI is carrying out for ARPA under 

Contract Number N000U-72-C-1254. The first half year of the contract is 

covered. 

1.1.  PURPOSE OF THE PROJECT 

The general objectives of our study are to evaluate and to advance the 

state of the art in fault-tolerant computing systems. The scope of the 

study includes theoretical as well as practical considerations. The major 

task areas are 

(1) to survey and evaluate existing systems (and system concepts) 

and relevant existing theory; 

(2) to define and evaluate new directions for the development of 

computing systems with high availability and extensive 

fault-tolerance capability, with low cost. 



We are seeking guidelines for the design and development of highly 

economical systems with long life, near-perfect fault tolerance and 

extremely high availability. Understanding of the tradeoffs among these 

goals Is also being sought. 

1»2.  PROGRESS TO DATE 

The study has progressed on many fronts. The following efforts are 

considered In some detail In Sections 3.1 to 3.11, respectively. 

(1) Survey of systems and system designs for fault tolerance 

(2) Bibliography of relevant literature 

(3) Investigations Into the causes of failure 

(A) A hierarchical framework for fault toleranc» 

(5) Fault-tolerant memories 

(6) Fault-tolerant processing 

(7) Reliability modelling 

(8) Operational Implications 

(9) Reliability tradeoffs among time, space and complexity 

(10) Other efforts 

References are Included to six project documents /1-6/. 

1.3.  CONCLUSIONS TO DATE 

We feel at this point that the goal of obtaining significant fault 

tolerance at costs substantially less than duplication or triplication of 

hardware can be met under a wide range of operating requirements. 

Particularly In  large systems with somewhat flexible real-time constraints, 

the cost can be quite low. 

Numerous useful techniques exist, some of which have been carefully studied 

in recent years. Various newer techniques which we are investigating also 



seem promising. Framed-burst coding (in which bit clusters, or "frtunes", 

are treated together — see Section 2.5) seems particularly appropriate for 

various advanced technology memory organizations. This requires only a 

logarithmic increase in the size of memory for single-frame burst error 

correction (and a small increase in the overall cost due to encoding and 

decoding). Sparing of chips on a frame basis, or of blocks of memory, is 

also highly effective. In memory-dominated systems, selective replication 

of critical processing capability may be used without greatly affecting the 

logarithmic cost increase. This is greatly facilitated by the hierarchical 

framework mentioned in Section 2.4, which appears to be very promising in 

other respects as well. Interspersed on-line diagnostics are very 

important, as are reliable reconfiguration with sparing and other concepts 

such as reliable (e.g., distributed) power supplies. In general, 

distributed logic-in-memory designs also hold some promise. 

No fundamental gaps in the state of the art have been uncovered that 

prevent the attainment of high degrees of fault tolerance. On the other 

hand, up until now fault tolerance has generally implied substantial cost. 

For example, hardware cost increases by factors of two, three and four due 

to fault tolerance are common.  (The overall cost increases may actually be 

higher, if the storage required for fault-tolerance software is considered 

along with the increased execution time.) The relatively high cost has 

been a consequence of some limitations in the art that have hindered the 

attainment of economical fault tolerance. Notable among these is that it 

has not been possible to avoid considerable replication of hardware. As 

mentioned above, we feel that this can now be sunoounted to a considerable 

degree, except in systems with critical real-time requirements on uniformly 

correct performance for all outputs. Nonunlformity of constraints and 

requirements can be used to great advantage in system design. Another 

limitation involves the ability to achieve practical systems with long 

unmaintained lifetimes. This too now seems surmountable. 

In addition, there are still some gaps of understanding, e.g., concerning 

space-time tradeoffs, the relative efficacy of replication versus coding in 

arithmetic and logical operations, etc. Furthermore, we are keenly aware 

that the problem la net Just one of good hardware design. The work of this 



pro .et is alaed at providing guidelines for the design of good economical 

fault-tolerant systems. Thus although good hardware design Is paramount 

our work must also consider Implications of the system design 3n 

simplifying the operational and human aspects, which play a critical role 

in keeping a system highly available. This includes considerations that 

affect the fault tolerance and the continued availability of the operating 

system, and those that lessen the critical dependence on skilled operators 

and maintenance personnel. 

On the basis of the work thus far. „e expect significant and favorable 

results over the second half year of this project. We anticipate that the 

final report will include a carefully balanced Integrated approach (or 

family of approaches) toward achieving economical systems with high 

availability and fault-tolerance. It is possible that as a result of this 

project we will recommend further work toward the detailed design and 

evaluation of a specific system. This system would presumably be for a 

particular class of applications, such as the network interface systems for 

a multi-computer network (e.g.. the ARPA network). 

The implications of this research on the Department of Defense Include the 

following. Systems that are extensively fault tolerant can now be 

implemented. Such fault tolerance can be employed to yield error-free 

computation with rather long maintenance-free life.  The cost of 

fault-tolerance is greatest when all outputs have critical real-time 

constraints. Otherwise space-time tradeoffs permit considerable economy 

Especially for large computing systems, it is possible to achieve the goals 

economically. High availability is a somewhat simpler matter, and can be 

achieved with a much smaller cost increase. 



2.  PROBLEMS IN FAULT-TOLERANT COMPUTING 

A system that is designed for fault tolerance, high reliability and/or long 

life may embody various of the following functions: 

(1) Detection of errors, 

(2) Prevention of error propagation, 

(3) Location of faults, 

(4) Replacement of faulty units, 

(5) Rolling back of the system and/or the applications programs. 

With static fault tolerance (e.g., fault masking), the above functions are 

implemented at once, in that a coding or voting mechanism handles all five 

functions (the last two trivially). With most dynamic techniques, 

particularly those carrying out real-time control, the above functions are 

performed in rapid sequential order (e.g., within 10-100 msec of the 

occurrence of the fault). In systems with less critical real-time 

requirements, there is a longer time period possible for these functions. 

The five functions above are suggestive of the following problem areas. 

(1) Techniques for detecting errors due to faults involve the use of 

redundancy (in equipment and/or in time) to check the validity of a unit. 

Coding techniq- es efficiently handle the situation for memory and si^le 

arithmetic units. A problem exists with regard to arbitarary control 

logic, for which duplication has been the primary vehicle for 

fault-detection. We have been investigating three possibilities with 

respect to control logic. The first approach involves realizing most of 

the control portion of the processor as a memory function. In esseuca this 

involve» a hierarchy of microprogramming techniques wherein the lowest 

levels embody the highest speed. Memory coding techniques are used for 

error detection, except for the residual arbitrary logic which is handled 

by duplication. The second approach also relies upon microprogramming, but 

here a combination of equipment and time redundancy is utilized to check a 

computation. With each microprogram is associated a checking microprogram 

that is executed following the main microprogram. A third approach relies 



upon data-dependent error detection. That is, we are looking at coding 

techniques for logic such that If a failure occurs It Is detected with son« 

probability p, dependent on the Inputs. Thus If p Is close to 1 on the 

average and If the failure Is permanent, that failure will eventually be 

detected. We have also been Investigating problems on the use of feedback 

In detection. 

(2) The prevention of error propagation takes several forms. One Involves 

the use of replication and voting, another the use of error-correcting 

coding. Another approach is to resort to delay, by refusing to give any 

output at all until a guaranteed correct output can be obtained. 

(3) The location of a failure requires that some form of diagnostic 

procedure be carried out subsequent to the failure detection. With regard 

to memory failures we have been looking at frame-error-locating and 

correcting codes and at more conventional diagnostic procedures. 

Similarly we have briefly investigated byte-locating arithmetic codes. 

(4) In approaching the problem of faulty unit replacement, the first step 

is to identify a suitable partitioning of the system. The partitioning can 

be accomplished at the level of an entire processor (albeit a small one), 

or at the level of memory blocks, or of frames within a word. For this 

case the replacement is quite easy, requiring on7y a modification in the 

address. However, reliable switching is very important. For the computer 

utility application, a large processor may be too expensive to represent a 

viable discardable unit, so that a greater number of smaller processors .r.ay 

be desirable. 

(5) With regard to real-time systems, most proposed fault-tolerant systems 

incorporate single-instruction rollback. General-purpose utilities usually 

let the user worry about his own rollback. For real-time applications, 

automatic program restart and system restart are essential. Fortunately, 

the nature of the environment usually permits them to be implemented 

easily, ror the utility environment it also seems that user-invisible 

tollback can be effectively achieved. For example, a compiler might select 

rollback points where the pertinent status information can be automatically 



checkpolnted. However, there Is a severe problem In recovering from taajor 

catastrophes such as power failures and certain critical hardware 

malfunctions. System rollback Is clearly more difficult In an unknown 

environment. 

(6) Analysis of system design Is another Important problem area. 

Evaluation, e.g., via design verification, modelling, simulation. Is 

particularly Important In terms of reliability, fault tolerance and 

availability. 

(7) The development of systems with critical constraints can be difficult. 

There is a need for structured system design to facilitate the development 

process. The hierarchical framework of Section 3.4 aids greatly in this 

respect. 

3. SUMMARY OF PROGRESS 

The following paragraphs describe progress on specific work being conducted 

under this project. Essentially all tasks are directly related to the goal 

of obtaining as much fault tolerance as possible for as little cost as 

possible, commensurate with the nature of the system requirements. 

3.1. SURVEY OF SYSTEMS AND SYSTEM DESIGNS FOR FAULT TOLERANCE 

A census has been made of fault-tolerant systems and system designs. A 

first version is given here as Appendix I, and includes a very superficial 

summary of each system. To be able to represent systems in a mora-or-less 

canonical way, we have designed a questionnaire (Included in Appendix II), 

which we have sent to architects of most of these systems. The replies 

received thus far are given in Appendix II. Most of them contain 

significant detail, and permit ready comparison of the various goals, 

motivations, principles, techniques and achievements. The design of the 

questionnaire itself has exposed many dimensions of meaningful comparison 



among systems and reflects many different design approaches based on widely 

varying goals and constraints. (An earlier version of the survey was 

distributed at the Second International Symposium on Fault-Tolerant 

Computing, held In Boston, June 19-21, 1972. It formed the basis for a 

well-received panel discussion entitled "Approaches to the Architecture of 

Fault-Tolerant Computing", chaired by Jack Goldberg and Including John 

Wensley as a panelist.) 

In order to classify the numerous fault-tolerance architectures, we have 

selected three categories of systems, corresponding to three roughly 

disjoint applications areas: 

(1) General-purpose computing utilities, 

(2) Ground-based special-purpose systems 

(3) Aerospace systems 

The processor power and total system cost are more or less decreasing from 

(1) to (3), as Is the size of memory required. The degree of preplanning 

possible for the computations generally increases in this orrfer. The 

reliability and availability requirements usually increase in critlcality 

from (I) to (3).  (RELIABILITY is the probability that the system will 

perform satisfactorily for at least a given period of time when used under 

stated conditions. AVAILABILITY is the probability that the system is 

operatinp satisfactorily at any point in time when used under stated 

conditions, where the total time considered includes operating time, active 

repair time, administrative time, and logistic time...RELIABILITY 

ENGINEERING, ed. W. H. von Alven, Prentice Hall, 196A, pp 14-15.) 

Kost of the prior research efforts have been devoted to category (3). We 

feel that the problems in this category are basically solved. Replication, 

multiprocessing, coding, and sparing are commonly found techniques. While 

the relative cost of fault-tolerance is high in many of these systems, this 

is not always necessary. We feel that many of these systems may be 

over-engineered. 

The situation is less well developed for the other two categories, which 

still seem relatively primitive (cf. the Census of Appendix I). 
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Intuitively, the relative cot t of fault tolerance could be substantially 

less than In category (3), because of the looser constraints, and because 

of the possibilities of advantageously using averaging effects in bigger 

systems. This report tends to justify this statement. 

3.2. BIBLIOGRAPHY OF RELEVANT LITERATURE 

In March 1968 R. A. Short published a rather comprehensive bibliography 111 

(containing 347 references) which resulted from an SRI study for NASA. He 

is now helping us augment that bibliography with about 500 additional 

references. A system of descriptors and cross-indices is expected to be 

used which will greatly enhance the usefulness of the bibliography. 

References to systems mentioned in this report are found in Appendices I 

and II. 

3.3. INVESTIGATIONS INTO THE CAUSES OF FAILURES 

Early investigations have led to various (sometimes obvious) conclusions 

regarding the significant sources of system failures. 

* Magnetic core memories operated with low access times (one microsecond or 

less) are major sources of system failures. Primary memory 

still dominates most systems (especially large ones) with respect to cost, 

size, and sources of unreliability. 

* Peripherals are still a problem, although good system design should be 

able to prevent peripheral failures from "crashing" the system. (Several 

well-known systems are quite sensitive in this area, due to poor system 

design. For example, a system should be able to survive errors in reading 

most files, a capability which is facilitated by hierarchical design.) 

* In several technologies transient or intermittent faults are more 

significant (and more common) than permanent faults (e.g., "stuck-at"). 



although the latter are more commonly considered in the literature. These 

arise in many ways, e.g., timing errors, data-dependent faults, and 

marginal design. Correlated faults are also problematic in practice, both 

operationally and in terms of analysis.  For example in an LSI 

implementation, a single chip failure may result in multiple chip-output 

errors.   Physical couplings are still a major source of difficulty, both 

in bonding and in pin connections. 

* Problems in operations and in the inner-core of the operating system are 

a major source of trouble in large computer utilities. Even if the 

hardware were faultless, there are still enormous problems in keeping such 

a system rperational with high availability. These problems are 

distributed among weak or inadequate software designs and questionable 

operating practices, as well as an occasional hardware design error. Two 

notable recent cases involve a ten-hour outage of an ESS No. 1 Installation 

and a 29-minute outage of the NY Stock Exchange MDS-I.  Both systems are 

designed for fault tolerance and high availability, but both experienced 

major outages attributable to human frailty (maintainers and system 

programmers, respectively) that aggravated troubles due to hardware 

difficulties.  (Good system design can help circumvent these problems.) 

3.4. A HIERARCHICAL FRAMEWORK FOR FAULT TOLERANCE ' 

Peter Neumann has formulated a hierarchical framework for fault-tolerant 

computing systems, relevant to both hardware and software. It !■ described 

in a paper to be presented at COMPCON 72 in September 111t  included here as 

Appendix III. This framework facilitates the dynamic alteration of 

fault-tolerance techniques, as best suited to the current computing needs. 

This holds great promise for the attainment of economical fault tolerance, 

especially if real-time constraints are not uniformly critical. It is 

immediately applicable to large computing systems, and is useful to small 

systems as well. The hierarchical framework greatly facilitates the 

control over the exchange of redundant equipment for occasional slight 

increases in time, as well as enhancing the development and operation of 

the system. 

10 



3.5.  FAULT-TOLERANT MEMORIES 

Several investigations «re under way involving fault tolerance in memories. 

Memory organizations suitable for advanced technologies are being 

investigated. Multiple-bit-per-chip ("frame-per-chip") organizations seem 

very powerful, and make framed-burst coding (also called phased-burst 

coding) highly advantageous. Peter Neumann has examined such an 

organization, and shown that such coding can be highly effective and 

economical /3/. Karl Levitt has incorporated these concepts into the BUGS 

(Bus Checker System) design /8/t which appears to offer good reliability at 

low cost. Although designed to take advantage of an aircraft environment, 

its balance of design seems to have significant implications for our goals. 

„Such coding techniques are also found in MDC (see Appendix I and II).] 

John Wensley has been examining the problem of reliably reconfiguring at 

the chip level in a large memory requiring many chips (somewhat akin to the 

problem of making page relocation mechanisms reliable). One rather 

promising solution involves distributed control. Also applicable is some 

earlier work in our Computer Science Group /9/ on reliable switching, 

useful for example in the switching of spare frames. In a related effort, 

Jack Goldberg has been studying distributed processor designs for fault 

tolerance /A/. 

t 

3.6.  FAULT-TOLERANT PROCESSING 

We have been Investigating fault tolerance for logic operations and for 

arithmetic operations. In systems which are memory dominated, replication 

of processing units may be reasonably economical. In other situations 

coding may be desirable. Peter Neumann has shown /5/ that single faults 

can be detected in logic operations by performing all arithmetic logic 

operations in an arithmetic unit of suitable design, without additional 

(redundant) circuitry. Montelro and Rao /10/ have recently investigated 

arithmetic-logic units with greater fault coverage. 

11 



3.7.  RELIABILITY MODELLING 

John Wensley has been investigating existing work on reliability modelling 

and its relevance to fault-tolerant computer design. Reliability modelling 

for fault-tolerant computing has been the subject of several studies 

/I1-15/. Models have been proposed and analysed, but in general they do 

not answer certain important questions that arise in consideration of many 

fault-tolerant computers. We note some of these deficiencies here. 

Existing models are more concerned with "survivability" than with 

reliability. In general the assumption is made that when a fault occurs it 

totally disables the unit in which it occurs, and that that unit must then 

be removed from future computational significance (possibly being replaced 

by a spare), or its significance removed by such techniques as voting in a 

TMR system. This does not allow accurate modelling of transient faults, in 

which ?. unit may survive, but some data may have been corrupted. In 

addicion auch models do not handle repetitive transients (intermittents) 

and the loss of effective computer power due to the CPU activity involved 

in error detection, correction, masking, etc. 

A further deficiency of such models is the common assumption that any 

correction of a fault (by sparing, reconfiguration, masking, etc.) can be 

modelled by a single parameter, representing the probability of correct 

recovery from a fault. This does not allow the modeller to distingaish for 

example between faults that can be removed by voting and those whose 

erroneous effects cannot be so removed (e.g., a mistyped line). 

The last deficiency to be noted is that the models do not take into account 

the fact that faults have different effects depending on the state of the 

system at the time of the fault. In some computer systems a dynamic 

trade-off is possible between reliability and computing power (^j. SIFT, 

ARMMS). Faults that occur in the high reliability mode are less serious 

than those that occur in the high computing-power mode. 

The existing modela have further drawbacks. However the above discussion 

clearly shows a need for research aimed at developing modelling techniques 

12 



that can handle some of the specialized problems arising in the analysis of 
fault-tolerant computers. 

The consequence of the above is that the rel^abilty estimates may be very 

pessimistic, which could result in very costly over-engineered designs.    It 

is clear that improved methods of assesilng reliability are required. 

3.8.  OPERATIONAL IMPLICATIONS 

Various Implications of system design on system reliability have been 

considered, in response both to problems arising in existing systems and to 

problems introduced by newer designs. As an example, John Wensley has 

examined the existing time-shared computer systems at SRI, (both 

TENEX systems), to ascertain the posslbllty of utilizing an automatic 

checkpoint scheme is such environments. A conceptually simple scheme 

consists of simultaneously recording on magnetic tape all data that is 

normally placed on drums or disks. The saving of such data would provide a 

continuous history of the state of the users files so that unavailability 

of user files due the. loss of a disk or drum could be circumvented. 

Initial studies show that a magnetic tape system of quite modest 

performance could handle the total data currently written onto drums and 

disks.  (In one test the average over 3 1/2 hours was a bandwidth of 15 

Kch/sec, which is well within the state of the art of magnetic tape 

systems. With an assumption of 50 per cent efficiency of tape utilization 

a single 2A00 ft. tape could store the total traffic of 24 minutes of 

computer activity.) Here good design in input-output hardware can be of 

great help, permitting simultaneous writes. 

> 

In another direction, Multics incremental backup experience shows half-hour 

delayed backup is very helpful to users in the event of system crash. 

However, recovery after damage to certain system files may be a very 

lengthy procedure. Combatting this problem requires very careful system 

design in a distributed system such as Multics. Another problem in Multics 

is Introduced by operator errors in performing manual reconfiguration. 

Significant care in hardware design can aid considerably in such problems. 

13 
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' APPENDIX T. 
CENSUS OF FAUl.T-TOLi.RANT COMPUTING TYSTEMS 

(SRI, first versior,, August, 1972) 

Following i8 a list of systems and system üesigns providing significant 
!r^  !f1" and/0r avallability. Those systems indicated by "(?)'' are 
IntJZu  lnA

gre"er ?"ail in our Su^y of Fault Tolerant Computing 
!re desert r"^ P' fere references *« Included.  Several systems 
S Mm.r n T w^i18 "ferred t0 here a8 thfi "Inttmetrlcs Report" (J. 
LmiiilV";  i10^* A* U  K08mala and J- A- s«Ponaro, Multiprocessor 
Computer Study, Final Report, Contract NAS 9-9763, Intemetrics. Inc 
Cambridge. Mass, March, 1970). Other systems are'given terse «fere^es 
here where available.  Abbreviations: P - Processor. M - Memory! SEC - 
single error correction, (D)ED - (double) error detection. 

u^xf^dlstTH MI^ING
 F1111"3' generally pood Pliability, human usets, modest reliability, maintenance permitted 

1. Multics MIT and Honeywell, Cambridge, Mass (F. J. Corbato); ARPA- 
funded development. See E. I. Organick, A Guide to Multics, MIT Press. 
nv^M^^T Comp"tin8 utillty (time-sharing, batch), with high 
availability and very high file integrity. Four systems currently 
operating. ' 

!f2p! HUSH01163"'*11 f45*!9 multiPro«8sed, manual on-line reconfiguration 
of Ps and Ms. extensive fault isolation via the ring mechanism for 

m^w?11 and VJauifil! 3y!tP7- aCCeSS contro1. half-hour lag incremental 
file backup, variable-depth system rollback, redundancy in the file 

til*?*?*  8t!Uvti,re\ (Sln8le ED' minlmal error decking in most systems, not mentioned below.) ».•»», 

ARPA* PRIME (nee "^^  UnlVer8ity of Caiifomla at Berkeley (H. Baskin)i 

* Reliable, secure, modest computer utility, high availability.  In 
development. 
* 5 P (design Practical for 3 P to 8 P). with highly restricted possible 
connectivity of M and disk, strict isolation with no memory sharing or 
multiprogramming, 'spontaneous" reconfiguration via a reliable 
self-checking switch. About 10% overhead for fault-tolerance. 

3. Carnegie-Mellon University; NSF. 
* Research system development with applications to ARPA speech 
understanding project; in design 
* 16 P x 16 M (PDP Us), with reliable crosspoint switch 

4. University of Newcastle-on-Tyne. England; Scientific Research Council 
* General computing; in design 
* PDP Us 
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5. Various commercial time sharing services gain availability (but not 
necessarily reliability) by having cross-switchable Ps, Ms and secondary 
memory. 

f ^BuSE? rECIAL PlIRP0SE SYSTEMS' controlling the environment (or 
controlled by it), generally higher reliability and availability, often 
tighter real-time constraints than in A above, human maintenance usually 
possible. ' 

6($). ESS (Electronic Switching Systems), Bell Labs, Napervillc, Illlnos. 
Telephone switching system; long-term continuous availability, with 

occasional errors tolerable to customers (?). Over 200 Number I ESS in 
operation, many more Number 2 ESS, TSPS. 

* 2 P (1 functional, 1 standby checking and diagnosis), automatic 
reconfiguration.  Separate nonalterable program store with SEC. 502 of all 
programs are diagnostics. Millions of hours of experience have aided In 
Improving hardware and software reliability. People problems still very 
difficult (operations, maintenance). 

7. FAA (Federal Aviation Admin.), IBM.  See IBM Sys J., vol 6, no 2, 1967. 
Air traffic control, long-term continuous availability. Untolerated 

nontransient errors can be disastrous. 20 systems at ATC centers coverinc 
the continental United States. 

* Up to 4 P (IBM 9020), up to 12 M. Program-controlled error analysis and 
reconfiguration, gracefully deconflgurable. 5-second battery backup power 
supply. Relies heavily on good and highly-available field engineers. 

8. MDS-2 (Market Data System), New York Stock Exchange 
* Stock trading ticker control. Near-continuous availability, no 
transaction losses permitted.  Operational August 1972.  Precursor MDS-1  " 
operational for 7 years. 

* 3 P (360/50), 2 multiprocessing with shared M & LCS (but 1 P basically 
monitoring), 3rd P normally spare (while running background lobs), 
extensive program checking. 

9($). COMEX, Pacific Coast Stock Exchange 

* Stock trading control; near-continuous availability, no transaction 
losses permitted, small real-time lag permitted.  Operational since 1969; 

2 complete systems (each has 360/50 plus 2 PDP 8s), one In San Francisco, 
one in Los Angeles, capable of running separately or cross-switched 
(interconflgurable). 

10. NASDAQ, National Associaticu of Securltes Dealers Automated Quotations 
See Datamation, March 1972, pp. 42-A5. 

* ^-""f interactive system to facilitate trading of OTC securities; high 
availability; operational since end of 1971. 

* 2 P (11088), multiprocessing under EXEC 8, capable of running simplex. 
Dual records in file structure, automatic recovery techniques. 
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11. CLC, Bell Labs, Whlppany NJ; ABMDA (Safeguard) 

r*Äardlf;!iir defen8e; contin— availability when (and if) required.  In development since mid-60s. 

not'proJsso^riteabl^9"' ^^ 0n'line 8parlng' SeParate P«*™» ornery words!      ^iteable; program retry; ED via four-bit checking on 64-blt 

* n»^ K  JW   ^erosPace and Electronic Sys., Sept. 1971 on 974-981 
^U h.„dll„g for deep .p.» probes. AvLlLll^ Zl^lull.    ^ 

Manual 

^«r« mT!l7oc?T"15-TM Ub• H"l0,'•England- See Ele"rI<:''1 
* Real-time control 

and of facces^^wUch^s'^ininVr0 ^ ^  ^^^ of punch/reader 
52. of bar^ "e'to^fluU JoL^« ^ ^^ *"* ** ^^ ^t' 

14.  Foxboro 88.  Foxboro Corp.    Process control using 2 P  (PDP  Ss) 

r;q"rR^sc! ™lZ'cT£ll r-ti^if irellabHillty and '^^y 

Ho^kinf JrtrPPsf;d?W; inte"lal «Terence unit), MIT Draper Lab (A. L. 
n^i*  .I*      " Inte™et'i« Report (reference above). 
* Apollo guidance.  Used in Apollo program. '* 
* 2 P (1 as standby), M duplicated. 

16($). JPL-STAR, JPL, Pasadena Cal (A. Avizienis); NASA 
* Unmanned outer-space travel computer, long-life availability without 
malnten-nce.  Prototype in operation since 1969,     lablilty »"hout 

1 P (uniprocessing), heavy use of coding (residue cherlHnc rnr  cm 4 
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MAS :£:.r«rPÄ S2es
i'h ""-"^ -^ - 

coding). Two concepts-       Processing unit and within memoiles (without 

ibLiiopJer:Lp
d

r.o„cr8lnB-8crat*padmi"- 

rr„p.„.P P^oto^'L «rk^p;'1"PUrP0" """""■»•. '"eluding 

r.po'H^^r„. (vJbl;16x
6r,Td^lMtlon,) •8par1"8' ^^^^^ 

»Ul^TJnu1" "fltal C0"''ut")' IBM Y"k"- "»• >«.. 

=rror5 h-ndUd In „. eit^l" si?f-checU„g!8n08"CS• b-dJace°t ■»»"Pi* 

swltchrtle vl. "TiMltr"    hnr.? I,        /        pl,,S  3 9pare blta  «ll.bly 
control. -»plJc.»Ä^™^r

c
r« r

d«:«1°° ** """ "•  trtpU«t.!l 
■me UUrMy<t«M entry Is similar to the JPL STAR. 

NAsl-üS S°ftV"" lm'>leMnted  f'u"  tolerence.  SRI   (John „„sley), 

* Airborne control (comerclal aviation)- avalLMH«.    . 
during flight; some teaks more orltlo^l «■!.    Z^        ^ " c<,rre':t results 
degradation of l.aa orltJcal tasks "' P'™1«1"* »"Pht 
* Multiprocessing with variable softwsre reollc.n™    A.     J 
eppllcatlon progr.« (..,„,„ reconflgurabL,  "f^J d*pe"den' °° 
software technlon^a avni^. »—J  r «.«wi«/.     rauit  tolerance via 
existing desCIgn8

q:e8CoanVn0      1^    y
d 1«°^? ^ejf^"' ^^ - of 

can read all Ms,  preventing fault nrn^I^J ."" no6i{y 0nly ita own M. 
fault-tolerance procedures as the JHlSUJ ^    Executive "***  the same redundant oce<™«s «8  the application programs.    About  75% 
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22($). ARMMS, Hughes, Fullerton CA (W. L. Mart.ln); NASA-Marshall (MSFC) 
" Spaceborne control; long-life reliability 

* n P, dynamically reconfigurable, e.g., as independent-process 

(variabler81"8 ^ " replication w±th 8ParlnP.  20%-80Z redundant 

23($), Intermetricü multiprocessor, Cambridge Mass (J. S. Miller) 
outgrcwth of EXAM; NASA-ERC (Houston) 
* Manned orbiting space station 

* m P (1 to 8, nominally 3), each f duplicated, coding in M (ED), buffered 
instruction retry, save within interrupted instruction. 

24($). Autonetlcs (N. Am. Rockwell, Anaheim, L. J. Koczela); NASA-MSC 
* Space shuttle; long-life reliability 

* A-level redundancy, FO-FO-FS (cf. MDC) requires 80% redundancy, less for 
lower fault tolerance. 

25. BUGS (bus checker system), SRi (Karl Levitt), NASA-Langley. 
See SRI Final Report. NAS1-10920, 1972 (Reference 8 of this Report). 
* Aircraft control, as in SIFT 

* 5"101
(io"1) P & M unlts, each duplicated internally, frame coding in 

central M, bus checker coordinates restart mechanism, periodic diagnoses of 
M and of unflexed processor functions. About 33% redundan',/. 

26. TOPS, JPL (Gilley). See IEEE Trans. Astr-Aero, Sept. 1970. 
Thermo-electric outerplanet space travel 

* Related to JPL-STAR. 

27. MFC, Hamilton-Standard; NASA-ERC.  See Intermetrics Report. 
* Modular flight computer 

* 3 P, 3 M, cross-configurable, TMR or 3 P multiprocessor 

28. ALPHA, CDC. See Intermetrics Report. 

29. AADC, Honeywell; NASA, AADC Naval Air Systems Command.  See 
Intermetrics Report. 

30. IRAD, Litton. See Intermetrics Report. 

31. SDC-Burroughs; USAF-Wright-Patterson, Multiprocessor 

32. S-3, Univac 

33. COSMOS, RCA (cf. SUMC) 
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APPENDIX II 
SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS (revised Aug 1972) 

Jack Goldberg, Peter G. Neumann and John H. Wensley 
Computer Science Group, SRI, Menlo Park, CA, 94025 

This appendix presents replies to a questlonalre sent to architects of 
various fault-tolerant computing systems. It Is hoped that the questlonalre 
will Itself be useful as a descriptive form and that the replies will aid 
In understanding and comparing the ays ferns Included here. To this end the 
questlonalre hns been designed to permit a concise description of each 
system, its goals, its motivations, its principles, its structure, its 
techniques, and its achievements to date. 

The first issue of this document was distributed Informally to conference 
participants at the Second Symposium on Fault Tolerant Computing, Boston, 
June 19-21, 1972.  It was Intended to support the panel discussion 
Approaches to the Architecture of Fault-Tolerant Computing", chaired by 
Jack Goldberg. The replies given here are included essentially in their 
entirety. Significant efforts not represented here Include several 
existing systems (such as IBM's FAA system. Bell Lab's CLC and various 
query systems) as well as numerous design and development efforts (e.g. 
government systems, and systems under development at Carnegie-Mellon 
University and the University of Newcastle-on-Tyne). 

The contents of this appendix are as follows. 

Questionnaire page 23 

Replies of the panelists: 
A. Avitienis, JPL and UCLA 2A-25 
W. C. Carter, IBM 26-27 
A. L. Hopkins, Jr., MIT Draper Lab 28-29 
W. L. Martin, Hughes Aircraft 30-31 
J. H. Wensley, SRI 32-33 

Other replies: 

B. R. Borgerson, U. C, Berkeley 34-36 
J. L. Deltmare, EMD, France 36-37 
L, J. Koczela, North-American Rockwell 38 
J. S, Miller, Intermetrics 39 
D. C. Wallace (SRI) for PCSE 40-41 
W. Ulrich, Bell Labs, Napervllle, Illinois 42 
Capt. L. A. Fry, SAMSO, Los Angeles, Ca 42 

The preparation of this document and the questiouaire was supported by the 
Defense Advanced Research Projects Agency of the Department of Defense, and 
was monitored by ONR under Contract Number N00014-72-C-0254. The views are 
clearly those of the named contributors and do not necessarily represent 
any official policies of ARPA or the U. S. Government. 
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SURV1T OF FAULT-TOLERANT COKPÖT1HC STSms-QUKSTIOHNAIRB 

.'•ck Goldb.rg and P.r.r Ü. Ntuunn, SRI. Mwilo Park CA 

1.  IDKNTIFTCAIION of the By fa 

1.2. RESPONSIBILITY, Hh«t tl th. r..por.lbU org«i«tlon? 

1.3. SUPPORT: l)h«t ar* th« lourcu of support? 

1.4. PARTiriPANTS: Who (md what organization., if 
ralevant) are the principal participant»? 

1.5. START: What vaa the data of conception? 

1.6. COMPLETION: What waa. or 1. ejected to be. the 
t«pl.tlon date?    (Specify prototype acceptance date, or 
dealgn coaipletlon date if design only.) 

1.7. BIBLIOGRAPHY: What are th. .oat relevant «farence«? 

2. MOTIVATION for the aystaa 
2.1. PURPOSE: What la the naln purpose of the ayata 
le.g., raneral-purpoae computing, real-time alr-trofflc 
control, atore-and-forward)? 

2.2. PHYSICAL ENVIRONMENT: Where does ths system operate 
la g., ground-baaed, airborne, spaeeborne)? 

2.3. CMPUTING ENVIRONMENT: How d^es the systaa relate 
conputatlonally to its envlronnent (e.g.. locally, 
rawtely, via a network. Interactively, via peripherals, 
with huaan users)? 

2.4. COMPUTING OBJECTIVES: Mitt are the specific computing 
objectlvea, regarding capablUty. capacity, perfonanca 
(throughput or rasponaa), configuration acaleablllty. 
■"1",M r«al-tl»ie delay», etc.  (aa .relevant)? 

2.5. RELIABILITY OBJECTIVES: What are the apadflc ayitea 
reliability oblectlvea. with respect to desired 
availability during what period, sialmm ttae to eyaten 
failure, uziauii permitted duration of outage, etc.? 

2.6. DYNAMIC VARIABILITY: How may these objective, very 
during operation?     (E.g.. how may parfentanca degrade? 
May perfonanca be explicitly exchanged for increaaad 
reliability?) 

2.7. PENALTIES:    What are the penaltlea arising from 
fmUjr operation?    (Possible azsmpjes include lee. of 
life, badly decreased performance, the necessity of manual 
intervention, loaa of revenue, etc.) 

2.8. CONSTRAINTS: What explicit physical constraint» exist 
(e.g., with respect to site, weight, power, cost)? 

2.9. TRADEOFFS: What critical tradeoffs exist among the 
objectives? 

3. DESCRIPTION of the system 
3.1. ARCHITECTURE 
3.1.1. CONFIGURATIONS 
3.1.1.1. INTERCONHECTIVITY: What la the baaic configura- 
tion, and what reetrietlona exist on InterConnectivity? 
(You may choose to Include a block diagram, a PHS dlagraa 
a la Bell end Newell, or other uaaful representation.) 

3.1.1.2. RANGE: What la the range over which config- 
uration« are sansibl« (minimum to maxima), «,E., how many 
procaaaors, how many memory modules (of what sice and word 
length, and with what restriction» if any), etc.? 

3.1.1.3. CAPABILITY: What la the effective conputlug power 
of the »malleat aenaible configuration in 3.1.1.2?    Fleaae 
?f,pfj?«lt rou«hx3' *1Ö> • «U-known »;stem (e.g., 360/40, 
65, 195), and cite a ball-park figure for the number of 
additions par second.    Capability required for fault- 
tolerance should not be Included. 

3.1.2.    EXECUTIVE and operating syatasi 
3.1.2.1. MODES cf operation: How does ths system operate? 
(E.g.,is each procaaeor muUiprograamable? la Independent- 
process multiproceaeing possible? la cooperatlvc-proceaa 
multlprogramnad ■ultiproeeaaing possible?) 

3.1.2.2, SOFTWARF organisation: What la the etructure of 
the aystaa aoftwaraT Row is it distributed with respect 
to th« hardrtr«? 

3.2,  FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED: What faulte are tolerated by the 
system, with what reaulting effeeta on systsa behavior? 

3.2.2.  FAULTS HOT TOLERATED: Whet feults cannot be 
tolereted by the ayatem, and what are the correapondin» 
effeeta?    identify the weakest linke. 

NOTE; Faulte may be cheractarisad In many waya, including 
typ« (a.g.. faulty hardware at various level» such aa a 
chip, -jodula. bus, power aupply. arithmetic unit, 
proceaeor, memory; faulty software such aa in the 
executive, in a compiler, or in en applicatlena prograni 
-aiuty usage and bed Inputa), nature (e.g., timing 
considerations, old age, varloua phyeleal phenomena), 
duration and frequency (e.g., one-shot, recurrent, 
permanent), scope (e.g., isolated faulte, correleted or 
independent multiple faulte, with varying derrees of 
propagation), effect (random, predictable),  etc. 

3.2.3. TECHNIQUES: What baalc techniques are employed to 
provide fault-tolerant capability, and when, where, and 
how are they used? Include herdwere and aoftwar» 
techniquea, 

NOTE: Applicable techniques include  (poMibly in 
combination) replicetion (e.g., triple-modular redundancy 
at varloua levels, redundant computatione ualig 
Independent elgorlthma), coding (i.g., error-detecting or 
-correcting    codes on a hue,  in memory, in arithmetic), 
repetition and rollback, reconfiguration (including 
removel without replacemen'; end replacement with epares), 
diagnostic» (e.g., st«nd-»lona, on-line, interaetivei 
preventive, emergency! reiote. local), protection (of 
procassee. data, prograaa, etc.), and outside Intervention 
(human or otltarwiaa).    These techniques may be used 
ststlcally (e.g., alwaya inroked) or dynmmleally (e.g., 
configured aa needed); et virioue module levels In 
hardware and software, <n combination with certain events 
and with certain other technique». 

3.3. NOVELTY: What are the meet ur.uausl deaign feature, of 
this system? 

3.4. INFLUENCES: Whst other efforts (ayateme, naaerch) 
have had en Influence on your system deaign? 

3.5. HARD-CORE: If there la a concept of "hard-core" in 
your system, what is its significance?    (Pleeae define 
your concept.) 

4. JUSTIFICATION for the system 
4.1    RELIABILITY EVALUATION: How Is r.=J.lebillty estlmsted 
end/or demonstrated (e.g,. via aaalvala. »Imulation. 
atlmulation of fault«. th«oretlcal argiaenta)? 

4.2. COMPLETENESS OF EVALUATION: How complete le your 
deaign evaluation? 

4.3. 0VERHF.AD: What percentage(a) of total ayatem 
reaourcas do you attribute to the echiei/ament of 
fault-tolerance?    (Conaider coat, logic, execution time, 
memory, etc., as applicable.) 

4.4. AmiCABILITY: What la the potantiel range of eppllc- 
ablllty beyond that stated In sections 2.1 - 2.4 sbove? 

4.5. EXTEITOABILITY: In what waye could the system design 
be sdvantageoualy extended, with what Increaaa in coat, 
and to what effect? 

4.6. CRITICALIIIES: How critically do the design choices 
match the design gosls?    (E.g., could slight changes in 
goal» reault in great savingr in deaign. Implementation, 
and/or operation?    la multiprogramming or multlproceaslnp 
critical?    Is th« choice of herdwere critical?) 

A,7, IMPLICATIONS: What special requirement«  (If eny)  doea 
the baalc deaign Impose (e,g,, on the herdwere designer», 
on th« «oftwara developer«, on uaer» and maintain»™)7 

5,  CONCLUSIONS 
5.1, STATUS: What la the current statu» of th« «yet«m7 

5.2, EXPERIJJNCF: '-'het conclusion« c«u you reach baaed on 
your «xparlence with the ay«t«ei to dar. («.g,, in deaign 
itiplementatlon and operation)? 

5.3, FUTURE: What la planned for future devalopawnt or ua» 
of the ayatem? 

5.4, ADVANCES: What development»  (theoretical or 
practical) would be deairabla for significantly «dvanclng 
th« «tat« of the art in fault-tolerant computing? 

6. COMENTS  (Plea»* Include any comment« on your «y«tem 
on thi« qu««tlonn«lr«, etc, which you would like to add,' 
Opinion«, prajudlcea and phlloaophlea are welcomed. 



SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS 

Alglrdu  AvlztenU 
UCLA Computer Science Dept., Loa Angeles, CA and 
Spacecraft Computer Section, JPL,  Pasadena, CA,  June  1972 

1.     IDENTIFICATION 
1.1 NAME:  JPL-STAR (Self-Teatlng-And-Repalrlng)  Computer 

1.2 RESPONSIBILITY: Spacecraft Computer Section, 
Aatrlcnlcs Division of the Jet Propulsion Laboratory, 
Pasadena, California. 

1.3 SUPPORT: NASA - Office of Advanced Research and 
Technology  (via JPL) 

1.4 PARTICIPANTS:    A.  Avlzlenls, D. A.  Renneis,  J.  A. 
Rohr,  F.  P. Mathur, 0.  C.  Gllley 

1.5 START:   1961 

1.6 COMPLETION: Operational • Spring 1969 (laboratory 
model), modifications continue 

1.7. BIBLIOGRAPHY: 
*1. A.  AvUienls, et »I,, The STAR (Self-Testing and 
Repairing)  Computer: An Investigation of the theory and 
practice of  fault-tolerant computer design,  IEEE Trans. 
Computer    C-20,  pp.   1312-1321  (November 1971). 

*2. A.  Avlzlenls, "Design of fault-tolerant computr   s," 
FJCC,  pp.  73>743,   1967. 

*3, A.  Avixlenls, "An experimental self-repairing 
computer," Information Processing,  IFIP, Vol.  2,  pp. 
872-877,   1968. 

*4. A,  Avlilenls,  F.  P. Mathur, D.  Rennels,  and J.  A. 
Rohr, "Automatic maintenance of aerospace computers  and 
spacecraft Information and control system," Proc. AJAA 
Aerosp.  Comput.  Syst.  Conf., Paper 69-966, pp.   1-11, 
September 8-10,  1969. 

*5, A.  Avlilenls, "Concurrent diagnosis of arithmetic 
processors," Digest of the 1st Annual IEEE Comput.  Conf., 
pp.   34-97,   1967. 

*6. A.  Avlzlenls,  "Arithmetic error codes:  Coat and 
effectiveness studies  7      <iolicatlon in digital system 
design," IEEE Trans.  Cum)),   .-20,, pp.   1322-1331,Nov 1971. 

*7.  F.  P.  Mathur and A.  Avlilenls, "Reliability analysis 
snd architecture of a hybrid-redundant digital system: 
Generalized triple modular redundancy with self-repair," 
SJCC,  pp.   375-383,   1970. 

*8, F. P. Mathur, "On reliability modeling and analysis of 
ultrarellable fault-tolerant digital systems," IEEE Trans. 
Comp.,   C-20,  pp.   1376-1382. 

*9.  G.  C,  Gllley, "Automatic maintenance of spacecraft 
systems  for long-life,  deep-space missions," Ph.D. 
dlssertstion, Dept.  Comput. Sei., UCLA,  September 1970. 

MO. F. P. Mathur, "Reliability estimation procedures and 
CARE: The computer aided reliability estimation program," 
Jet Propul.  Lab.  Quart. Tech.  Rev., Vol 1, October 1971. 

2.    MOTIVATION 
2.1 PURPOSE:  Experimental laboratory GP machine; suitable 
for spacecraft control 

2.2 PHYSICAL ENVIRONMENT:  Laboratory environment 

2.3 COMPUTING ENVIRONMENT:  Local 1/0 facilities 

2.4 COMPUTING OBJECTIVES:  Capable of automatically 
maintaining an unmanned spacecraft 

2.5 RELIABILITY OBJECTIVES: 100,000 hour survival with 
0.95 reliability; tolerance of transient faults; outage 
for recovery below 50 msec. 

2.6 DYNAMIC VARIABILITY: Maximum computing power required 
at end of mission 

2.7 PENALTIES: None for lab model; loss of spacecraft 
for flight model 

2.8 CONSTRAINTS: None for lab model;  for th« flight model 
the «eight rf the subsystem way not to exceed 40 lb.  and 
the power consumption was not to be greater than 40 W. 

2.9 TRADEOFFS: None 

3.  DESCRIPTION 
3.1 ARCHITECTURE 
3.x.I    CONFIGURATIONS 
3.1.1.1 INTERCONNECTIVITY: See   Figure 

3.1.1.2 RANGE: One processor of ea^-h class  (operating); 
16 memory modules of 4096 words each   (maximum operating 
memory) 

3.1.1.3 CAPABILITY:   500 KHz maximum clock rate and 
byte-serial operation in laboratory model. 

3.1.2     EXECUTIVE 
3.1.2.1 MODES: Only one processor operates at a given 
time  (Single-processor organization) 

3.1.2.2 SOFTWARE:    The programming subsystem consists of 
three modules: an assembler,  a loader,  and a functional 
simulator.    An executive program facilitates coordinated 
use of these modules.    The operating subsystem consists of 
two modules:  the resident executive module and the 
applications programs module.     The prograimilng subsystem 
has been implemented on the Unlvac 1108.    The modules of 
the operating system of the STAR computer softwsre system 
consist of the resident executive module and the 
application module.    The STAR resident executive augments 
the self testing and repairing features of the hardware In 
addition to Its normal  functions.    The standard features 
include interrupt control.  Input/output processing and Job 
scheduling.    Novel festures incorporated due to the 
fault-to'»"--  architecture of the STAR computer Include 
« "col ■'ability,  reconfiguration processing, 
rollbav ,  and diagnosis of faulty units.    The 
cold start ^.. .ty resets  the hardware and softwsre 
after a disaster restart as well  as prior to ar initial 
load.    Reconfiguration processing is  required for memory 
replacement, since software assistance is  required to load 
a newly activated memory unit.    All programs running on 
the STAR computer require rollback  (recovery)  points.    The 
resident executive provides  rollback status storsge and 
controls events which are nonrepeatable,  i.e.,  they may 
not occur more than once even If a rollback takes place. 
Finally,  it Implements diagnosis  for faulty units to 
determine the cause and extent of  failures  for possible 
reuse.    The present application modules include floating 
point arithmetic subroutines,  and test and demuiistratlon 
programs.    The application programs  that will be required 
for space missions are a part of  the TOPS control computer 
subsystem project. 

3.2     FAULT TOLERANCE 
3.2.1 FAULTS TOLERATED:  The principal goal of the design 
la  to attain fault  tolerance for a variety of faults: 
transient, permanent,  random,  and catastrophic. 

3.2.2 FAULTS NOT TOLERATED:   (a)  Transients at a rate 
higher than allowed by  tlie length of "rollback" segments 
of programs;   (b)  shorted bus wires   (Isolators sre 
employed)  or power switch "on"  failures. 

3.2.3 TECHNIQUES: 
*1. All machine words  (data and Instructions)  «re encoded 
In error-detecting codes  and fault  detection occurs 
concurrently with the execution of the programs. 

*2.  The computer is divided Into a set of replaceable 
functional units containing their own instruction decoders 
and sequence generators.    This decentraliiatlon allows 
simple fault-location procedures and simplifies system 
interfaces. 

*3.  Fault detection,  recovery    and replacement ate carried 
c it by special-purpose hardware.     In the case of memory 
daiiage, software augmentc  the recovery hardware. 

*  .  Transient  faults are identified and their effects are 
corrected by the repetition of a segment of the current 
program; permanent  faults are eliminated by  the 
replacement of  faulty  functional  units. 

*5.  The replacement is implemented by power switching: 
units are removed by turning power off and connected by 
turning power on.    The information  lines of all units are 
permanently connected to the buses  through isolating 
circuits;  unpowered units produce only  logic "lero' 
outputs. 

*6. The error-detecting codes are supplemented by 
monitoring circuits which serve to verify  the proper 
synchroniiation and Internal operation of the functional 
uni ts. 

*7. The "hard core" test and repair processor (TARP) Is 
protected by triplication and repljcenent of failed 
members of the triplet. 



3.3    NUVELTY:    Power iwltchlng, statin signals, encoding 
of in», ructions, emphasis on transient-recovery with 
program survival. 

3.'     INFLUENCES:    Theoretical work by Reed and Brimley; 
Kruua and Seshu;  Griesmer, Miller and Roth. 

3.5    HARD-CORE: The "hard core" monitor of the STAR system 
is designated as TARP  (test and repair processor)  in the 
Figure.    Th.. TARP monitors  the operation of the STAR 
computer by two methods:   (1)   testing every word sent over 
the  two data    buses  for validity of its code; and  (2) 
checking the status messages  from the  functional units  for 
predicted responses. 

Three  fully powered copies of the TARP are operated at all 
tl.ues  together with n standby spares  (n - 2 in the present 
design).     The oitput» of the TARPs are decided by a 
2-out-of-(n+3)   threshold vote.    When one powered TARP 
disagrees with  the other two,  the recovery mode is entered 
and an attempt is made to set  the internal state of the 
disagreeing unit  to match the other two units.  If this 
TARP rollback attempt  fails,  the disagreeing unit is 
returned to the standby condition and one of the standby 
units  receives power,  goes  through the TARP rollback,  and 
Joins the powered triplet.    The computer is now restarted, 
a rollback performed,  and standard operation continues. 
Because of the  three unit requirement, design effort has 
been concentrated on reducing the TARP to the least 
possible complexity.    Experience with the present model 
has  led to several refinements of the design. 

The replacement of faulty  functional units is  commanded by 
the TARP vote and is implemented by pc        switching.     It 
offers several advantages over the swii       ig of 
information lines which connect th*   - o the bus.    The 
number of switches are reduced to on nit,  power is 
conserved, and strong isolation is jd for 
catastrophic failures.    Magnetic po.      nwitches have been 
developed which are part  o. each uni'      power supply and 
are designed to open for most inten       failures.    The 
threshold function is Inherent in the control windings of 
the switch.     The information lines of each unit are 
permanently connected to the buses  through 
component-redundant  isolation circuits.    The signal on a 
bus  Is  the  logic OR of all Inputs  from the units, and 
unpowered units  produce only logic zero outputs.    The 
power switch and the buses utlllie component redundancy 
for protection against  fatal "shorting"  failures. 

4.  JUSTIFICATION 
4.1 RELIABILITY EVALUATION: The computing operations  for 
the analysis was done with  the aid of the computer-aided 
reliability estimation  (CARE)  program, which was developed 
as a design tool during the reliability study.    CARE is a 
software package developed on the Unlvac 1108.    CARE may 
be  Interactively accessed by a designer from a teletype 
console  to calculate his  reliability estimates.    B>« input 
Is In  the  form of a system configuration description 
followed by queries on  the various rell.bility parameters 
of Interest and their behavior with respect  to mission 
time,   fault  coverage,   failure rates, dormancy factors, 
allocated spare,!,  and partitioning.    The CARE program Is 
extensible,  and it may be updated to incorporate new 
reliability models as  they become available».    Physical 
fault-injection experiments are currently In progress. 

4.2 COMPLETENESS OF EVALUATION: Experiments are expected 
to continue through  1972, 

4.3 OVERHEAD: Depends on the number of spares. With one 
spare for each module—about 150 percent extra cost (i.e. 
60?   cnvrV^id). v   ••.! 

4.4 APPLICABILITY:  Various  real-time applications that 
require very  fast  recovery. 

4.5 EXTENDABILITY:    Spare processors could be utilixed in 
a multiprocessor mode.  Additional buses and supervisory 
mechanisms would be required. 

4.6 CR1TICALITIES:  The design goal was a better 
understanding of replacement systems.    In order to retain 
contact with the practice of computer design, it was 
decided to design and construct an experimental 
general-purpose digital computer which would Incorporate 
dynamic redundancy (i.e.,  fault detection and replacement 
of failed subsystem«)  as Integral parts of it» structure. 
The design objective» have been carried out and th» 
system,  called  the STAR computer, began operation in 1969. 
The modular nature of the STAR computer ha» allowed 
systematic expansion and modification» that are »till 
being continued. 

An early objective of the design is  to study the class of 
problems which are encountered in transforming the 
theoretical model of a self-repairing system into a 
working computer.    State-ot-the art  integrated circuit end 
memory  technology was employed in the design.    This 
objective appears to have been attained reasonably well, 

4.7     IMPLICATIONS:     Ceslgnera  must  give   (a)   advance 
attention to modularltatlon and coded operands;   (b) 
special software features are needed  (see  3.1.2.2);   (c) 
users must observe "rollback"  rules  1r, programming. 

5.     CONCLUSIONS 
5.1 STATUS;  Operating in  laboratory;  being extensively 
tested and modified to improve weaknesses  thtr  are 
uncovered. 

5.2 EXPERIENCE:  Practical Implementation of  replacement 
systems is  feasible.    Transient  faults can be 
systematically eliminated without Programm loss. 
Transient tolerance can be specified in terms of 

duration" and "frequency" parameters. 

5.3 FUTURE:  The research and development p-ofram which 
led to the STAR computer Is continuing in several 
directions.    The design of several  Improved necond 
generation STAR functional units  is under way,  including a 
new arithmetic processor, a control  proceaso.- for 
medium-scale integrated-circuit  implementation, and the 
shared READ-WRITE memory unit  for the storage of automatic 
maintenance information from the spacecraft  telemetry 
system.    Analysis of automatic maintenance algorithms and 
design of a command/data bus  for their implementation art 
under intensive study,    other current investigations arc 
concerned with  the  following areas:   (1) hardware-software 
Interaction in a fault-tolerant system with recovery, 
especially  the interaction of the TARP and the operating 
system;   (2)  studies of advanced recovery techniques,  i.e 
post-catastrophic restart, TARP replacement schemes, 
recovery  from massive interfernnce,  partial utl.'ization of 
failed units;   (3)  advanced component  technology, 
especially methods to attain bus and power switch  (i.e. 
hard core)  immunity to faults;   (4)  heuristic studies of' 
fault   tolerance by interpretation of extensive experiments 
with the STAR breadboard as  the instrument;   (5)   design of 
a second-generation STAR-type  computer with universal 
processor and storage modules,  and their implementation by 
large-scale Integration;   (6)   computational  utilization of 
the spare units  for supplemental  tasks  in a 
multiprocessing mode. 

5.4    ADVANCES:   (a)  methods of coverage measurement;   (b) 
technology ad-;nces in Isolator and switch design;   (c) 
studies in restart   ("roll-back")  Implementation by 
automatic methods. 

6.    COMMENTS:    Design,  construction, and testing of 
laboratory models is critically  important  to advance the 
state of the art  and to gain acceptance among 
practitioners of design in Industry. 

CONTROL BUS 191. 

SIHTUS LINES, 

SWITCH LINfS 

COP 

LOP 
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STAR computer organization. 

Control prr-essor,  contains  the  location counter and 
index registers. 
Logic processor,   (two copies are powered). 
Main arithmetic processor. 
READ-ONLY memory,  16,384 permanently stored words. 
READ-WRITE laemory unit  (4096 words,  two copies 
powered,  12 units directly addressable.). 
Input/Output processor, contains I/O buffar. 
Interrupt processor, handles interrupt  request. 
Test and repair processor,   (three copies powered). 



SURVEY  OF  FAULT-TOLERANT COMPUTING  SYSTEMS 

W, C.  Career 
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Yorktown Heights NY 10598 

1. IDENTIFICATION 

1.1. NAME:    I  am reporting mainly on a long-term research 
effort In techniques  for fault-tolerant computer 
architecture.    The relevanf prior publications have used, 
for example,  the  tern« "nod ilar architecture", 
"self-repairing computers",   'dynamic checking",  "fault 
diagnosis",  "stand-by sparing" or "dynamic recovery" in 
the titles and the authors have been some subset of the 
participants named in  1.4.   For present purposes I will 
tall, about a paper Modular Digital Computer svstem called 
MDC whose principal properties «ill be specified later. 
For reality, some  requirements will be Imposed which have 
nothing to do with  fault tolerance per se.    This system 
does not  really exist, and will not exist, but Is 
specified to provide a focus  for our fault tolerant 
computing research. 

1.2 RESPONSIBILITY:  IBM Research. 

1.3 SUPPORT:  Support has come from IBM, U. S. Air Force 
and NASA. 

1.4 PARTICIPANTS: W. G. Bouriclua, W. C. Carter, E. P. 
Hsieh, D. C. Jessep, Jr., G. P. Putzolu, J. P. Roth, P. R. 
Schneider, C. J. Tar, A. B. Wadla. 

1.5 START:  Formal initiation occurred In March, 1966. 

1.6 COMPLETION Open ended. No end item is scheduled. 

1.7 BIBLIOGRAPHY: 
*Roth, J.  P,     "Diagnosis of automata failures:  a calculus 
and a method",  IBM Journal,vol.   10, A,  1966. 

»Bouricius, W.  G.,  Hsieh, E.  P., Putiolu, G.  R,,  Roth, 
J.P.,  Schneider,  P.  R,, Tan,  C.  J., "Algorithms  for 
detection of faults  in logic circuits",  IEEE TC,  Vol 
C-20, Nov.   1971. . 

»Bouricius, W.  G.,  Carter, W.  C.  and Schneider, P.  R., 
Reliability modeling techniques and tradeoff studies  for 

self-repairing computers", ACM National Conference,  San 
Francisco, California, August,   1969, 

•Bouriclua, W.  G.,  Cirter, W.  C.,  Roth, J.  P.  and 
Schneider,  P.   R.,  "Investigations in the design of an 
automatically repaired computer", Paper Number 6.4 
Conference Digest of the First Annual IEEE Computer 
Conference, Chicago,  Illinois, September 6-8,   1968. 
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Research Center,  Report Number 70-208-002. March 26,   19 70. 

»Carter, W.  C.,  Jessep, D.  C, Wadla, A.  B., Schneider,  P. 
R., Bouricius, W.  G.,  "Logic design for dynamic and 
interactive recovery",  IEEE TC, Vol.  C-20, Nov.   1971. 

2.   MOTIVATION 
2.1 PURPOSE:    Real  tin 
management. 

2.3 COMPUTING ENVIRONMENT: The HX is planned to be able 
to run the gamut from being insulated from human control, 
oervlng a variety of sensors and effectors, to being able 
to accept ground-based human directed control. 

2.4 COMPUTING OBJECTIVES:    Predicted configuration 
scaleabillty primarily under Internal control including 
system« which are  fault  tolerant by masking redundancy, by 
stand-by redundancy, or by software checks; systems whose 
use of power Is variable  (but whose thruput is affected); 
and systens operating in parallel.    The major objective Is 
to provide means  for meeting various  requirements with a 
high degree of confidence.. 

2.5 RELIABILITY OBJECTIVES:    The system 1»  to be designed 
to meet  varying specific mission  reliability  objectives 
with a high degree of certainty.    Examples are survival 
for n years with a probability p; "Fall operational,   fail 
operational,  fall safe", or reliability variable with 
mission  task. 

2.6 DYNAMIC VARIABILITY:    As stated above,  dynamic 
variation of system parameters such as perfomance, 
reliability and power consumption with confidence in the 
design as a major objective. 

2  7 PENALTIES:    Variable with mission,   ranging from loas 
of human life through expensive flight hardware  to 
abortion of flight objectives. 

2.8 CONSTRAINTS;    Hardware must be designed to fit weight, 
power and size requirements, yet able  tc have  thruput 
compatible with mission requirements and to support  the 
software necessary  for reasonable programming effort per 
mission. 

2.9 TRADEOFFS: Hardware efficiency and potential thruput 
are traded for 1) system reliability as defined per 
mission phase; 2) simplification of recovery process and 
other basic executive functions; 3) high malfunction 
coverage and design certlflcatlor; 4) ease of program 
validation; 5) convenience of programming and ease of 
diagnosis for external equipment; 6) system flexibility. 

3. DESCRIPTION 
3.1 ARCHITECTURE 
3.1.1. CONFIGURATIONS 

3.1.1.1. INTERCONNECliVITY: Tlie basic uniprocessor 
configuration consists of partitioned computer subunlts 
attached to several busses. The basic subunlts are (see 
attached rough diagram): ALU, Scatch and Program Control 
Unit, Bus Control, I/O Processor and Recovery Control 
Unit.  The bis orientation remains, but the units may be 
modified (microprogrammed) for varying missions. The 
system consists of replicas of the basic subunlts, with 
configuration control governed by the RCU and Executive 
Program. A major problem Is the interface design to meet 
the constraints of fault tolerance, long life, and varying 
modes of operation.  The memory is encoded with a 
b-adjacent error correcting code and spare b wide subunlts 
per basic module. 

control, data acquisition and date 

2.2 PHYSICAL ENVIRONMENT: Aerospace application« have 
predominated in specific design decisions. Modularity 
should ensure wide applicability. 
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3.1.1.2    RANGE:    The  range of rhe system Is uof. frozen In 
f Jf

r
<  J'!^""1 ""«P'-    Aft" four processors  the law 

ot diminishing returns sets In sharply and further 
partitioning may well be a better bet  for long life.    The 
memory will consist of modules, each module consisting of 
b-wide units with b-adjacent  coding and spare b-wldth 
units.    The upper limit depends upon the hardware 
available, but hardware does not appear to be critical. 

3.1.1.3.  CAPABILITY:    The order of  10E5  to  10E6 additions 
per sscond per basic system with a minimum of 256K-5;2K  32- 
blt words of memory.     I/O will be handled bv up to 4  16- 
bit parallel cannels with 50.000 transfers   per second 
simultan.-.aly on one lnpuc BBd one ^ c, ^^    ^ 
I/O processor will handle  the details of I/f, .onrrul under 
direction from the processor Executuve. 

3.1.2 EXECUTIVE:    Toe standard executive control 
(allocation,  scheduling,  dispatching,  I/O) will be 
achieved by  replicated software routines.    These tasks 
have not been studied much. 

3.1.2.1. MODES OF OPERATION:    Each processor is 
multlprogiammable.    System operation Includes  fault 
masking, multiprocessing with hardware fault detection and 
multiprocessing with .oftware analysis.    The mode of 
operation of most concern is  that of recovery initiation, 
the interaction of the recovery and error analysis 
programs of the executive and the RCU.    Recovery and audit 
programs always run background whether the system is  in 
fault masking,   fault detection or software analysis modes. 

3.1.2.2. SOFTWARE ORGANIZATION: The system software will 
be distributed among the processors and analyzed by audit 
routines  for early detection of c:rors. 

3.2.   FAULT TOLERANCE 
3.2.1 FAULTS TOLERATE!:    In the error-masking mrde, any 
number of faults which affect only one partitioned 
sub-unit cai   be  tolerated.     The system handles  transient 
faults with instruction retry or permanent  faults with 
hardware controlled reconfiguration.    The cause is 
Irrelevent as  long as  the interface detects disagreement 
The disagreement circuits are self-checking so faults  In 
them are detected.     Initially the same malfunction in 
thrse units  is necessary  to defect  the system.    After 
reconfigurations  two faulty units may escape detection. 
In the error detection mode,  faults  causing a single 
subunlt to be  In error are detected.    At  this point  the 
same errors in two units will be undetected.    Diagnosis 
and software recovery is necessary  for continuation. 

Faults detected by software checks are detected and 
recovery should follow in the unchecked multiprocessing 
mode.    Faulty software may be detected by the RCU time-out 
tests and system evaluation procedures. 

3.2.2.  TECHNIQUES:     In hardware fault  tolerant mode the 
system should F0 - F0 - FS  for each one of the partitions 
of the system it four copies of the basic computer are 
used,     Diagnosis can continue the computation with one 
partition uncheckeii.    Detailed fault .inalysls must be 
performed to validate ouch goals.    In hardware fault 
detection mode the system should run at least two 
multiprocessor hardware  checked systems.    A fault would be 
detected, and diagnoses would allow continuation with one 
partition unchecked by hardware.    Achieving such 
hardware/firmware/dlagnosis goals depends upon the 
development of many tools of fault analjsis.  The memory 
encoding Is b-adjacent multiple error co-rectlng and/or 
multiple b-adjacent error detecting.    The codes used are 
variants of Reed-Solomon codes with combinational self- 
:hecklng translators which pass only correct code words. 
Standard single instruction retry is available, 

Mlcrodlagnostics under exe:utlve program control with 
program variable input patterns will be used for fault 
analysis.    The executive software will use the standard 
fault  tolerant  technique» •   two way lists with pointer 
verification before proceedi.^, s.ored data and programs 
will be  taggec with redundant identification,  read only 
programs will ..How simple updating etc.    Rollback i <d 
restart will bt used for multi-procesning with hardware or 
software error detection.    The RCU monitors constantly for 
catastrophic faults - those not detec:ed by the hardware 
and software tests.    Tht standard time-out tests and 
ayatem performance evaluation routines are run and 
controlled by the RCU,    Power is conserved under program 
control by forcing n cycle.» between uiemory accesses, 
Imposed by a counter with program changeable ccntents. 

3.3 NOVELTY:     Reconfiguration under hardware control In 
fault  masking mode.     Choice of  computer  fault  masking 
multiprocessing with  fault masking and various  forms of 
detection, muUiptocessing wlth hardware error detectior 
by comparison, multiprocessing wit!   software error 
detection.     Storage  reliability by b-adjacent  multiple 
error  detecting and  correcting codes.     Self  chfcklng 
memory  translators,  checking circuits, and error-analysis 
cirults.     Use of power under program control. 

3.4 IHFLUENCLS:     1.    JPL Star - the  total effort:  2.     SRI 
Technique»  for the Realization of Ultra-Reliable 
Spacebome Computers;   3. MIT -Draper Lab.   tor spaceb.jme 
multiprocessors:  4.  Rapid emergence of LSI   for feasibility 
ot much  redundant hardware. 

3.5 HARD-CORE:    Assuming that hard core means hardware, 
redundant or not, whose  failure will produce ...-.detected 
errors,  there Is „o such hardware in this system 
Hopefully,  the software can be validated so  that'equal 
claims  can be made for It. 

4.   JUSTIFICATION  FOR THE  SYSTOt 
4.1  RELIABILITY EVALUATION:    Architectural  reliability 
evaluation by  interactive program using exponential 
failure assumption for the units.    Determination of 
component  failure rate» by analysis based upon previus 
data,  experience,  and analysis.    Logic  fault analysis  of 
circuits  in design stage by interactive,  fault simulation 
programs.  Diagnostic pattern evaluation by simulation 
programs.    Memory  failure predictions by careful 
probabilistic   fault  analysis  to predict  error patterns 
programed computation of the circuit  failure constants, 
programmed evalutatlon of reliability.    Programmed 
analysis of RCU functions.    Theoretical analysis of 
design, with hardware and so'tware,  in complicated 
situations  (guided by simulation). 

4.2 COMPLETENESS OF EVALUATION:    Major unsolved problem. 

4 3 OVERHEAD:    Variable.    In the processors about a 3  1/2 
:1   logic  count  penalty  is  paid  (th,    cost  ie  much   less) 
In the memory about a  3:2 storage penalty  is paid.     In  the 
aottware the cost is unknown, but considerable. 

4.4 APPLICABILin:    Ihe concepts can be used elsewhere 
the system 1» oriented toward space and extremely high' 
reliability applications. 

4.5 EXTENDABILITY:    This computer Is too reliable  to  fit 
Into most other systems.     For extension some of the  fault 
tolerant  techniques  In the computer must be eased  for 
better total system ualance. 

4.6 CRITICALITIES:    Multitasking, as with all Executive- 
controlled recovery system»,  is critical,  achieved here 
with multiprogramming.    Multiprocessing is an imposed 
condition, but small system simplifications would result 
if  this  condition were relaxed.    Design validation    oolii 
are critical. 

4.7 IMPLICATIONS:    Architects must perform automated error 
and vecovery analysis while doing system specification 
Human „nalyais  is  too fallible.    Hardware designers must 
have and use tools  to do fault analysis as  they design 
After the   first pass  they must do design validation and 
Itarat-.    Software designers must participate In the 
Initial  decisions, must produce more techniquts for 
producing self-checking programs, and r.ust produce  the 
tools   for program validation.    Applications programmers 
must validate their programs  (top down programming 
techniques will help),  and must  follow system rules   (not 
so  far known). 

5.  CONCLUSIONS 
5.1 STATUS:  This system Is  the collection of a group of 
Ideas   from a research project. 

5.2 EXPERIENCE:    None to report to date. 

3.3 rUTUREl    The system will be pursued only ir. a modified 
form as a paper study only. 

5.4 ADVANCES:    The proolema of validation - hardware and 
»oftwar« - will provide many a bottleneck for fault 
tolerant computing.    The basic problem of definition of 
fault  tolerant computing will be with us - do w» consider 
any algorithm, procedure? 
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1.    IDBTIFICATIOII 

iikw^Si^"" 5,«K,rtl»t •■ • looi-Mt. davalepMnt 
•Hort which haa h,m .upport.d by dlffarant proj.ct. ■« 

puliliahad raporta: 

• "A Faule-Tolawt Xnfonatlon <>roeaaalng Syataa for 
Advanead Control, Suldaaca,and Na-lgatlon". 

* "Spaea Tranaportatlon Syataa Duta Hauas«mt SyaUa". 

In addition, an azparlaantrl thraa-prouaaor 
thrjj-aer.tchpad bra^Iboard haa baan (Im tha .crony- 
CMMRDS for tha thraa-haadad dog In elaaaleal aytholoay, 
Tha acronym angandarad tha titla: Controllad Brror 
Kaeerary Bahavlor Baploylng Raduadant Uaa of Scratchpad». 
In «hat follow, 1 uaa "tha ayatu" to Man tha ganoral 
coneopc, rathar th»n a «pacific hardvara dMlgn.   Thla 
VVm ■! ^ ■d»"'tM« of halng abla to ba light on -y 
toat and adapt to any altuatlen bafora tha fact. 

1.2. RISPOHSIBILini Thla work la In tha Digital 
TSJT"* -roup of th• Q»"!«» St«rk Drapar Laboratory. ■ dlvlalon of M.I.T. ' ^, 

1.3. SUPPon SOüRCBSi    So far all anpport haa COM froa 
tha NASA Mannad Spaeaeraft Cantar. 

1.4. PArriCIPASTS: MIT and HiSA/tlSC. 

1.5. START: Work In thla araa bagan In 1966. 

1.6. COMPLKTIONi Opan «ndad.    No and itm la achadalad. 

1.7. BIBLIOGRAPHY: 

*„ R; L' "«■o. A. L. Hopklna, Jr., and H. A. Thalar, 
Daalgn Crltorla for a Spaeaeraft Conputar", Spaeabornc 

Multlorocaaalng Saalnar, pp.  23-28, NASA ERC, Boaton 
Muaein of Sclanca, Oct.  1966. 

* R. L. Alonao, A. L. Kopkina, Jr., and H. A. Thalar, "A 
Multlprocaaaing Structura". Dlgaat of tha Flrat Annual 
IKE Coaputar Conf., pp. 56-59, Chicago, Sapt. 1967. 

* A. I. Graan at al.. "STS Data Hanaganant Syataa 
Doalgn', MIT C.S. Drapar Laboratory, Caafcrldia. Maaa.. 
Roport E-2529, Juna 1970. ^ ' ' 

* A. L. Hopklna, Jr., "A Pault-Telaraut Intonation 
Proeaaalng Concept for Spaea Vahlclaa", IEEE Tr«». 
Coaputara, Vol. C-20, pp. 1394-1403, Nov. 1971. 

2.    MOTIVATION 
2.1. PÜRP0SB: Real tlaa control, data acqulaltlon and 
data aanagaaant. 

2.2. PHTSICAL ENVIRONMENT:  In principle It could ba any 
but aeroapaca appllcatlooa have pcadoKlnatad In daalgn 
dedalona. 

2.3. COMPUTING ENVIROWOMT!    Sy.teu conaldarad hara are 
•nvlaloned aa largely aalf-ceatalned Infonatlon 
proeeealng ayatana aarrlng e variety of aeaaon and 
affectora Including hiaaa operator«.    Such ayataw would 
be dlatrlbuted, hierarchical and rediadaat.    Central 
fault-tolerant aultlprocaaaora would coaaunleat« ovar 
••rial date buaa« to local precaaaor ccwplexe« «bedded In 
aubayetaM of tha total ayetea.   A principal application 
conaldarad for thla approach »aa the Space Shuttle, «hare 
the Orblter would heve ooa central aultlproeaaeor «1th 
adaquete redundancy and apara hardware to be operational 
after three aalfvoetleoa.    Each aubay«t«a or grot« of 
Identical aubayataae «ould be «arvad by «Ingle or 
redadeat local proeeaaora. aa eppropr'ate, to fulfill the 
radundancr raqulraaant for that «id>«y«r«a or grm*. 

Tha looeter «tag« of the Space Shuttle «ould. In thla 
concept contain a ayetea alatlar to that of tha Othltar, 
capable of en—micatlt, «1th It by «ay of a aerial bia 
eooiactlng tha t»o central nultlproceero-i.   All 
ceaatBlcatloo betaeeo a centrel aultlproeaaeor end Ita 
local proceeaiara «ould ba via a aerial data baa. 

2.4. COMPUTING OBJECTIVES TO» THE CENTRAL MOLVIPROCESSOR: 
Variable froa the order of 10*5 (I.e., 10 to the 5)  to the 
order of 10E6 operatlona par aacond, with uaory 
capadUea of froa 2E1* to 2E17 «otda of aaln randan 
acceee aaaory.    Input-output bandwidth 10E5 uaeful 
blta/aec on a 10E6 pulae-per-aecond bua.    Reaction tin 
order of 10 allllaaconda. 

2.5. HKLlABILITIf OBJECTIVES: Varlou« typee of objectlvea. 
One esaapla le elrllne appllcatlcn« «hat« laee than one 
cateatrophlc ayataa aalfimetlon In 10E7 flight« la aought. 
Other cbjectlvee ere atated In teraa of the o-^)er of 
Individual aalfmctlona which can b« toleiated la e 
flight, euch «a "Pall operational, fall operational, 
falleefe" (PO-FO-ys).    Th« .yatea la generally aaent to be 
used In very high reUeblllty appllcatlooa. 

2.6. DYNAMIC VARIABILITY: Graceful degradation 1« 
available aa a neena of azehenglng parforaence for 
reliability. 

2.7. PENALTIES: In the Spece Shuttle application, aa In 
poaalbl« elrcreft application«, huaan Ufa la concerned, 
ea well aa axpenalva flight hardware. 

2.8. CONSTRAINTS: In Space Shuttle and aircraft. 
approxlaataly 2    cubic    feet, 120 lb.,  300 «atta. 
(Katlaata for a central nultlpr->c«««or). 

2.9. TRADEOFFS; Hardware efficiency le treded for    1) 
eyetaa reliability, 2) high aalfwetlon eoverega. 3) aaaa 
of pregraa verlflcetlon, 4^ ayetea flexibility. 

The «hjber of fault« tolerated 1« variable through e 
coablutlon of repllcetlon end «perlng.    Proceeeora and 
aaaorlea can be edded (deleted) to Incraaae (dacreaae) 
proceeelcig and aaaory reaourcee. 

3.    DESCRIPTION OF THE SYSTEM 
3.1.     "RCHITECTURE 
3.1.1.    C0NFIGURAII0MS 
3.1.1.1. INTBRCOHNECTIVITY: The «y«tea aakee extensive 
uae of replication, and eonaaquantly conaectlooe have a 
high -.oet.    Serlel end byte-eerlal buaaa era uaed between 
bealc unite.   Multlplaxara are eaployed to prevent alngle 
«It aalfunctlena fron apraadlng to all coplea of a 
red« dent bua.   The canonical Interconnection echew la 
•hewn In Figure 1. 

3.1.1.2. RANGE: No reage llalta have been datarained, but 
the following nnbxr« aay be typical for an aeroepece 
«ppllcatlen.    There ere two current coape'ltlve 
conceptualltatlona of the eyataa.   Theee nubata rapreaant 
the newer end leaa well developed concept. 

* 6- Nsaber of «laul «naou« job «tepa la procaaa 
* > Degree of replication of eesh proceaeor»ecratchpad 
* > Miabar of apere proceaaor-ecratchpad« 
•21- Total proceeaor «cratehpada -6x3+3 
* 4« Nwfear of Independent aeaory blocke of 16K 
* > Degree of replication of each block 
* 3- N «bar of apare bloeka 
*15- Ti   '' aaaory block aodulea • 4 x 3 ♦ 3 

The niaba.  of procea«ot-«eratchpeda «ad aaaory bloeka can 
ba Incraaüed up to the practical bandwidth llalt of the 
proceaeor-Beaory bua and the I/O bua. 

3.1.1.3.    CAPABILITY: The order of 10E5 to 10E6 addition« 
par aecond «ad the order of 2114 werde of aaaory.    Three 
proceaaore would ba tha aaalleet "aaaelble" maabar. 

3.1.2.   EUCUTIVE 
3.1.2.1. MODES OF OPERATION: All prograaa era aegMnted 
Into job atepe which are dlapatchad by a floating fora of 
executive.    Eecb job «top occupla« one precaeeer full tlaa 
while It tun«.    Multlprocaaaing la the normal operating 
aod«.    Multlprograanlng of each proceaaor la not 
emrleloaed. 

3.1.2.2. SOFTWARE ORCANIZATICH: 1/0 proeaaalng la 
quaal-dedlcated to one proceaaor (I.e. It cm float but 
daaa as only when aalfunction aakaa It naceaaary). 
Executive, aealtor, and reconfiguration prograa are rim 
en an at-needed baeU by each proceaaor aa It flnlahae a 
job atap. 



3.2. FAULT TOUUMCE 
3.2.1. FAULTS TOUMTIDi Individual unit« (a.g. 
proeaaier, Maoty mit, aultlpluar) en uilfiactlon on* 
at a tlaa with no raatrlctlon en «hat th* nature of the 
■alfuactlon 1*.    Errors are aaakad by the aystaa until It 
reconflgurw Itaalf to a fault-tolarant atata. 

3.2.2. FAULTS NOT TOLERATED: Certain aalfunctlon pairs 
which occur slaultanaeolr or cleee together In tlaa can 
produce loae of data and nany require a prograi restart. 
Incorrect specifications or progrea malfunctions een 
defeat the systsn.    Syetaawtlc hardware ■alfonctlona In 
which the aeae aalfunctlon occurs In two redundant units 
can defeat the eyatea. 

3.2.3. TECHNIQUES: Two different coacepte. 

First concept:    all procaeeom ere duplexed for detection. 
All scratchpad* era trlpleaed for aaaked duap capability. 
Single Instruction reatarl.    Graceful degradation of 
proceseer-acretehpad groups.    Triples aaaory unite with 
dedicated eperee.   Triples buaea with epare*. 
Multiplexers Isolat* buaae froa failed grcupe of imlts. 

Second concept:    processor-scratchpad unite en  orgenlsed 
late groups of three under eoftwere control.    Each looks 
for dlaagreeaant.    If dleegreaaant oecura, continue 
runnlofr to end of job etep, tnen enter reconfiguration 
progra».    Graceful degradation of Individual 
proceeeor-scretchpsd unite (rather then groups of three 
ecratehpads and two processors aa In first concept). 
Triplex mmovr unite with non-dadlcatad epana.   Triplex 
busss with sps....    Multiplexer* Isolat* buaae fron felled 
Individual wit* (rathei than grcupe ea In first concept)! 

In both concepts, softwsra configuration control la uaed, 
which la valid aa long a* * working processor group, 
aaaory group, and bua-auldplaxer group are available. 
Hultlplexere pertlelpate In conflguiatlon control. 

3.3. N'VEI.TT: Single Inatructlon restsrt.    Absence of 
Interrupts snd progna rollbacks.    Distributed aonltor and 
reconfiguration functions.    Use of nultlplexers to Isolate 
bus and unit aalfunctlon*.    Fault-tolsrsnt clock. 
Hierarchical eystsa with fault tolarenee extended Into 
eubeyec<aa. 

3.4. INFLUBICES; Rapid aaarganca of LSI aeaorlee end 
processor* ha* encouraged use of replication and 
partitioning with slaple, idantlcel units.    Apollo 
Guidance Coarputer experience proapted ellalnatlon of 
Interrupts and wMbtuft for the eaka of progrea 
verification.    Carter and Beurldus for rslleblllty 
aodela,    Avlslsnla for eoncapta of fault tolerance, 

3.5. HARD CORE: Assualng that hard core aeans 
nou-redundant hardware, there la no hard cor* In this 
•ystsB, Configuration control la a eoftwere function 
using the evallable hardware to configure the systsa. 

*.    JUSTinCATI« 
'.1.    RELIABILITY EVALUATION: So fsr mostly geared towerd 
/O-FO-FS,    Soae Probeblllatle enalyale.    No rellsblllty 
projections es yst sines hardware has not been selected 
end failure retea sre therefor* not ' iown. 

4.2. COMPLETENESS OF EVALUATION: Hsrowar« not sslsc:sd, 
hsnes fsllurs rsts not krown. 

4.3. OVERHEAD: About 80Z of the systea Is devoted to the 
schlsvsaant of fault toleranca. 

4.4. APPLICABILITY: Thle concept le applicable to most 
digital control envlronaent*, depending on the econoalra 
of the eppllcstlor. rsgerdlng fault tolarenee. 

4.5. EXTENDABILITTi    Cxtandablllty probably doe» not 
apply, (Inc* the ayste» Is still loos*J7 spsdfied. 

4.6. CRlrlCALITIES: Th* *yst*a le «ost eoa«:-effeetlve 
coapend to oth*r sy*taH whan th« riaber of fault* to he 
tolerated 1* high *nd »rt- r* ulrra-lilgh reliability la 
sought.    For slngla-fsult toljraucs «d less high 
relleblUty, the eysisa coo^lguratlim might be changed, 

4.7. IMPLICATIONS: In an ultre-hlgh relleblUty 
application, specifications and prograis Bust bs pinvan to 
bs correct.    In this eyatsn, *ppllcatlons progrsaaers sust 
also segasat thslr pjv,'reas Into short Job steps. 

5.    CONCLUSIONS 
5,1.1    STATUS: This is s resesrch project with s 
breadboard experlnentel unit almost completed. 

3.2. EXPERIENCE: None to report to date. 

5.3. FUTURE:  Soae parts of the syiiten still need to be 
designed end prototyped. Excperiacnte miut be conducted on 
e full-ecala prototype system. 

5.4. ADVANCES:    The following will be beneficial. 

«Demonstrated field experience with various fsult-tolersnt 
concspts. 

♦Practical techniques for generstlng correct prograaa. 

'Practical waya of verifying that a prograa is correct. 

6.     COMMENTS 

The questlonnairs vss good In ths ssnse of being thorough, 
but In ay haste to r**pond to it I wonder if I h*v* 
omitted elgnificant materiel.    Aa additional conaant about 
this systea Is thst It ha* b*en configured around 
integrsted procesaor* end a*aorl** which reeea>>le thoe* 
thst srs svsilabla 'odey. The hardware efficiency nuaber 
given In Section 4.3 Is very alsleeding, becau** th* coat 
of th* hardware can be the leaat important coat of the 
syetaa. If the hardware la convaatlonal and not overly 
expenelva.    Thi* *y*tSB 1* cxp*ct*d to «eve in coet* of 
systsa intgegretion, progrsa vsrlflcatlon, and oparational 
reliability experience.    Theae savings aay bs far in 
a.ce** of th* hardware coat. 

A* an additional note, the replicated approach uaed hare 
reeults in e covereg* of 1,0 agelnet single aaltunctlona. 
Codad approachee generally give lower conrag*, difficult 
to quantify, and often lapo**lbl* to v*rlfy In the field. 

A^^^ CH ■•• E. CD 

P...Froce**or 
S...Scr*tchp*d a*aory 
M...HaaoTy module 
X...Multiplexor 

SSI...Sub*yct*a interface 
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SURVEY OF FAULT-TOLEKANT COMPWING  SYSTEMS 

W. I, fUrtln, Hughe» Aircraft Coapany 
:ull«rton, Callfornl« 9263*, M«y,  1972 

1.     IDENTIFICATION 

Mui
1aP^:-1)o

A"t
s7"^1|];KSisTfl,urableModul" 

1.3. SUPPORT: Samt u 1.2 

1.4. PARTICIPANTS! The participating organl.atlon. 
nclud. NASA MSFC, Hugh..  (,mL d„

g
lgnf( J" c^utlng 

iub."jT?UtlV! ,,0ftW,re Und,r -""contJact to Hugh«   ; 
Auburn Univ.r.lty  («.cutlv. control approach., ind« 
con ract to NASA).    Principal partlclp"t. by na« .r. a. 

I   US*    *tta' 
Dr-  J'   B-   Whl"'  Sh«"» Job«i  Hugh«  -". 

''-win '        T*  Sch,M,Mn: Aubu™ - Dr.  DaJid 

I'J.'.. !T^RT! The ''•" of «"x1«?"«»" "a. circa 1968 in a 
concept doci».nt wrltt.n by Dr. Whit.,    MSFC haa b.fal 
developing technology und.r th.lr Space Ultrareli.ble 
Modular Computer (SUMC) progra» alnce ahortly th.re.fter 
The ayat.« d„lgn .ffort b.lng f,Ttotmi „    ^n^vL 
.ollctt.d in May,  1971 with a contract in bctoSe." 197'.. 

win h
C<»,?LETI0N- ?» «"«".a ayat.» definition contract 

hü „K* "■»P'-ted in April.  1973.    Conatructlon of a 
uncertäJnf 0r Pr0t0type "•"  foUow *** compl.tlon date 

1.7.    BIBLIOGRAPHY: V.riou. planning document, hay. l.en 

Ph! "Tr" ""ort
1
1• dlvld«d *»*• ">r.e ph...., vith the 

Phaae 1  report rel.u.d on April  15,  1972.     It 1.  titled 
De.lgn of a Modular Digital Comput.r Sy.tem",  DRL 4 

Phaa,  1  Report, Hugh.. Alrcr.ft Company    FR 72-11-45(5. Two 
other p.p,r. h.ve been .ubmltt.d for public.tlon.    Th.lr 
f.te i. uncertain aa of yet, but int.reated p.rtle. may 
obtain cople.  from W.  L.  Martin at Hughes.    Theae are the 

B"1'«,'  "O1^'!' * Unl£led H'tt,od for Analy.lng Miaalon 
Profile Reliability for Standby and Multiple Modular 
Redundant Computing Syattn. which allows  for Degraded 
Perfomance (submitted to the IEEE Tranaaction. on 
Reliability Theory), 

*J.  L.  Bricker and W,  L. Martin,  R.ll.bllity of Modul.r 
Computer System« with V.rylng Configur.tlon and Lo.d 
Requirements  (submitted to 1972 IEEE Comput.r Society 
Conference), ' 

2.    MOTIVATION 
2.1. PURPOSE:    ARMMS 1.  to b. applicable through 
modularity to diverae type, of space miaalon. ranging from 
launch vehicles,  to space station,  to deep ap.ee probes. 

2.2. PHYSICAL ENVIRONMENT:  Sp.cborn. 

2.3. COMPUTING ENVIRONMENT:  See 2.1,  2,2. 

2.4. COMPUTING OBJECTIVES:  The Bctivmng COB-.ting 
objective 1» to be able  co configure 1 »-:~- which are 
fault tolarant through TMR or oth.r redundant modea or to 
ua. the module, in p.r.11.1 for high computing capacity 
«id to b. able to r.conflgur. from one type £0 tn. other 
dynamically.    Hazlaia capacity in a non-redundant mod. la 
to be    several million" addition, per second. 

2.5. RELIABILITY OBJECTIVES: On. .p.clfic reli.bllltv 

f il^ Ve *'  that the 'r°b'b^y of "u^vS of« 2„t 
a almpl«  computer after 5 years should be at leaat  0 9? 
(with no on-board maintanance).    The ov.r.U int" 
however,  1.  th.t the system should be .ble to be 

wh«ifrr!h  t0l>
me" """"^ «Mi« relUblllty obje-tlves 

whether they be st.ted In term, of maximum recovery tl« 
mmber of failures  tolerated, etc, ' 

2.6. DYNAMIC VARIABILITY! As noted in 2.4,  dynamic 
variability of configuration la one of the primary 
motivation». rn~mij 

2.7. PENALTIES:    See 2.1. 

2.8. PHYSICAL CONSTRAINTS!  There are no explicit phy.lc.l 
con.tr.lnt. except  those Implied by the n.tSre of. IZ 
Intended apaceborne application.    However, an implicit 
phy.lcal constraint is  the difriculty of contriving an 
approach to a large  (by aeroapace standarda)  computing 
capability  fault-tolerant design within the confines of 
weight and power budgets which may pr-.vall for 
Interplanetary mission., 

2.9. TRADEOFFS: At th. current stage of the de.lgn,  there 
«re many critical tradeoffs yet to be made. 

*    For a computer which will be built after 1975    what 
device complexity and failure  rate, sho-.'d be asiuned' 
Almost all aspects of the design .re crltlc.lly .ffec ed 
by this question.    Some of the more crucl.l one. are  the 
maximum complexity of any module;  the degree to which 
proce.sors must he sub-p.rtitioned;  the re.ultlng cost in 
switching hardware;  the maximum number of replicate, of 
any one module type which muat be accommodated;  and th • 
complexity of the configuration control software. 

", .rS? hfie AW,MS COn"Pt ''•»•loP«' by «ASA incorporates 
a r/ed^eted executive module r.ther than a floatln« 
executive.     Resulting tradeoffs include apeclfic 
definition of function,  to be performed, apeclflcatlon of 
status monitoring and reconfiguration parameters,  and a 
dealgn approach which y elds sufficiently high  reliability 
for the executive module, "•"•oiixty 

*    The system architecture Is not yet defined in any 

IZli'fi" TM6;  .Questlons "«  '° »" ««olved Include 
specific definition of allowed modes of operation; 
definition of the means of interconnecting the modulea- 

fll"^ "Ü" U8e Pf VOter8:  USe of ""r-correcting cidea 
for memory data; maximum number of roplicatea per module 
Ua.;  specific technique,  for memory data pjection; Id 

fault  tolerance  features vithin each module claa.      At 
present, we are making tradeoffs baaed on two mejor 
configur.tlon alternatives.  Although  few tradeoff 
conclusions have been reached,  the predominating 
evaluation criteria are almost cert-.ln to be the 
following: 

LiTr6"'""011 fea8lblllty - **y <i"lgn feature which 
doea not  aeem to L-a to be feaalble in any major sense 

rejected.    We are not p.rtlcularly intere.ted In 
developing new theorleg or technique, of fault-tolerant 
computing but are very intereated In developing a 

thfT^dsd,n"tbed b'8ed 0n the re«arch P«f .rmed over tne  last 5-10 years. 

*    Suitability to the multi-mode configuration 
requirements - ARMMS is Intended to be usable in 
configurations  ranging from a aimplex computer to IKS wi U 
standby .p.res.  Any fe.ture which Imposes .xc.lve 

expe'n.6. oCf0oth.  r ?* beM£lt 0t ^ """«"""on at the 
«r ^H ?i f      J"        »V"«'-    ** ««»Pi«, added hardware 
per module  for intern.l f.uit  tol.r.nce multiplle.  the 
hardware penalty palt' In TOR mode. 



3.    SYSTEM DESCRIPTION: A. seen fron, the tradeoff 
dlscusiiion «bove, nc  flnn system description la possible 
now.    Therefore, the  -esponses in this section are 
neceaaarily brief and incomplete. 

3.1.     ARCHITECTURE 
3.1.1.     CONFIGURATION 
3.1.1.1.    INTERCONNECTIVITY:  All processors,  I/o, and 
executive controller may access  all of main memory (a 
study of the desirability of Identifving an additional 
level of memory, cache or task oriented was made, with a 
negative conclusion reached).    The most probable scheme is 
a system of replicated busses with access contro]  governed 
by the executive module.    The nature of spac.borne I/O 
aC^Vlw u" bla8ln8 "" tow«d » direct proeeacw I/O data 
path which can be used for transmitting short: bum« of 
dita.    The executive controller will monitor the other 
system modules via a time-shared bu,.    Ihls bua ordinarily 
polls  the modules in sequence but may be  l.terrupted by 
the processors on task completion or other time-critical 
event.    No direct interaction of modules of a given class 
(e.g., processor-to-processor)  is planned, 

3.1.1.2. RANGE:    The general approach to achieving the 
large capacity mentioned previo jly is  to maximize the 
individual processor performance so that throughput  Is not 
dependent on a large number of parallel Instruction 
streams.     (Three is a deslra'.le upper limit.)    The maxtmun 
main memory capacity is  to I e  large enough  (e.g., 
256K-512K words)   to support  the high-throughput goals. 
The word length is to be 32 bits as dictated by  the choice 
for the NASA SUMC processor.    Cumulative I/O data rate 
capability la to be 10 million bits per second.     In all 
cases, maximum nunber of modules per class  (and the memory 
module capacity) wili be determined primarily by 
reliability tonaideratlons.    A least upper bound    a 4 for 
each class. 

3.1.1.3. CAPAIILIIY:   (See 2.4.) 

3.2. FAULT TOLERANCE:   (The system Is still too much 
conceptual to allow a decent  response.    All faults are to 
be tolerated.    None are to be not  tolerated.    All 
techniques will be considered.    Ask again In a year and 
let'.« see how it turned out.) 

3.3. NOVELTY:    On the one hanc.   there's nothing that one 
can point out as being f undamentt U/ novel (this is  true 
of most machines,  I  think).    On tie other hand,  there are 
no machines  that I know of that hive successfully 
Implemented a variable redundancy approach such as is 
being sought.    The choice of a dedicated executive module 
Is  th» only deviation at the block diagram level  from 
other multlproceasors  (but  this module is a rather close 
parallel of the TARP in STAR). 

3.4. INFLUENCES: JPL STAR;  NASA ERC Modulsr Computer- 
NASA MSFC SUMC;  IBM,  "Architectural Study for a 
Self-Repairing Computer; SRI, Techniques  for the 
Realization of Ultra-Reliable Spaceborne Computers. 

3.5. HARD-CORE:    The executive module is hard-core.    The 
effect is  to be minimlied by simplifying the module as 
much as possible and by Internal redundancy  (which may 
ultimately  result In replication). 

4.     JUSTIFICATION 
4.1. RELIABILITY EVALUATION:  To date,   reliability has 
been evaluated solely by analyaia   (as described  in the two 
papers mentioned In 1.7).    Later in  the effort, we expect 
to extend the analysis to include coverage and switch 
unreliability.    We also expect to simulate the logical 
performance of the intermodule switches and to simulate 
the injection of faults. 

4.2. COMPLETENESS OF EVALUATION:  I'm not surt that  I 
understand the question.    But whatever you mean by design 
evaluation,  I'm sure that  I wish we had more time and 
money to do It better. 

4.3. OVERHEAD: Since the configuration is dynamic,  the 
percentages of resources attributed to the achleveaient of 
fault-tolerance also vary with time.    An upper limit la 
probably 601; a lower limit is probably 201  (in coat, 
logic, execution time, etc.). 

4.4.    APPLICABILITY: ApplicMllty to other than space 
applications  is questionable. 

4 5. EXTENDABILITY: I think that it la more likely that 
the system design can usefully contract than that it can 
be usefully  extended. 

i.b.    KITICALITIES:  The major difficulty of the design 
ij  ütt breadth of the goals.    The critical problem is 
Mereti.-re to find a set of design choices which coiiiplles 
-.eaaonai-iy well with all the goals    (e.g., we want high 
speed and capability but  require low weight and power). 
However,  I  don't  think that slight charges would 
critically affect  the design.     (Also, as a side 
observation, while one la  In the mUiat of a system design 
all choices seem critical,  don't  they?) 

4.7.    IMPLICATIONS:     (Let me plead that this question 
seems  too vague.     I don't know where to start with a btlsf 
response.) 

5.     CONCLUSIONS 
5.1.1    STATUS:  The status is sufficiently described by the 
above comments,  I  think.     In aummatlon, we are about 
one-third of the way through a system definition phase. 

5.2. EXPERIFNCE:   It appears that  component technology is 
contributing more to the feaBiblllty of highly reliable 
machines than architecture concepts are.    As recently as  2 
or 3 years ago, gate  failure  rate of 10E-7 per hour seemed 
optimiatic.    At present, gate failure rates of 10E-10    per 
hour are credible  for the apace environment. On the othet 
hand,  the assumption  that dormant  failure rates are a 
small fraction of active  failure ratea appears 
questionable.     For a long-life machine In an unmanned 
environment,  these  two factors are of major significance 
to the system designer. 

5.3. FUTURE: There are two conflicting possible  futures 
of ARMMS.    The pesslmictic view is  that it will go the way 
of 10 or 15 similar paper design efforts and will die with 
only a final report  to commemorate its non-existence.    The 
optlslatlc view Is  that it will appear sufficiently 
promising in concept  that NASAwlM continue its 
development and eventually attach it to a mission. 
Planning la of course being directed toward the optimistic 
alternative. 

5.4. ADVANCES:   I  cannot add anything to the lists of 
theoreticsl problem areas and needed areas of 
investigation which SRI described In  Its reports under 
contract NAS  12-33.     In psrtlcular.   I agree that there 
have been too  few case studies which can be evaluated. 

A major practical advance which  is needed Is the 
identification and exploitation of specific applications 
in which  vault-tolerant machines  can be Justified 
economically.     It is significant,  1  think,  that the Bell 
ESS-I and System-3iri  FLT's instruction retry, etc., 
represent  the most e>.,"Mi8lve application of 
fault-tolerance and diagnostic techniques.    Both are in 
areas where the payoff  for high  reliability Is great. 
Although aerospace applications have supported much of the 
research in fau)t-tolerapt machines,   I am skeptical that 
thert is a sufficient mass of money there to lead to very 
widespread results lr  fielded systems.    The situation  Is 
analogous  to that wnich has existed  for associative 
processing  for 10 years,  in that  the glamour,  concepts, 
and techniques are often apparent but  cost considerations 
ultimately  lead to more conventional choices. 

Also,  I wonder If "fault-tolerant computing" Is  too narrow 
a view and that many of the baaic ideas would be 
applicable to a discipline of "Fault-tolerant systems". 
Perhaps  there are other equally fertile, but  less plowed 
fields  to be conquered. 

6.    COMMENTS:   (See  5.4) 



SIRVEY OF FAULT-TOLERANT  COMPUTING  SYSTEMS 

John H, Wcnsley, Stanford Research Institute 
Menlr »ark, Ca. 94025, May 1972 

1.     IDENTIFICATION 
1.1, NAME:    Sin   (Software-Implemented Fault Tolerance), 
project:    design study of a fault  tolerant digital 
computer 

1.2 RESPONSIBILITY:  SRI 

1.3 SUPPORT: NASA Langley 

1.4. PARTICIPANTS: J, Goldberg, K. Levitt, R. Ratner, J. 
Wenaley, H. Zcldler, M. Green 

1.5. bTART: August 1971 

1.6. COMPLETION: Experimental version 1973, final design 
1974 

3.1.1.3.  CAPABILITY: The design concept la valid over 
the entire range of processor, memory and bus capability. 

3.1.2. EXECUTIVE: Executive control (allocation, 
scheduling, dlspatchlt.g, reconfiguration, etc.) Is 
achieved by replicated software execu'.lve routines. 

3.1.2.1. MODES: The primary operating mode la on 
repetitive real-time calculationa Involving many loosely 
connected tasks.  Both multiprocessing and 
multlprogranailng are Included. 

3.1.2.2. SOFTWARE: Tasks are multlprogramned In each 
processing module.  Each task for which fault tolerance la 
demanded Is present la more than one module. A loose 
synchronlxa^lon of t^sk processing Is achieved by the 
system executive (which Itself Is replicated and loosely 
sftichronized).  Software fault detection Is carried out 
hetween each Iteration of a taak before erroneous results 
are used by the r.ext Iteration or other tasks. 

1.7. BIBLIOGKAPHY: Technical Progress Narratives 1-7; 
"SIFT - Software Implemented Fault Tolerance," submitted 
to FJCC 1972 

2.  MOTIVATION 
2.1. P'jiPOSE: Control proceaalng In an advanced 
technology transport (aircraft) Including navigation, 
stability augmentation, engine control, instrument blind 
landings, etc. 

2.2. PHYSICAL ENVIRONMENT: Airborne — the system concept 
however la applicable to any environment. 

2.3. COMPUTING ENVIRONMENT:  Real-time 

2.4. COrlFUTING OBJECTIVES: Configuration acaleabllity, 
graceful degradation, transportability of concept to any 
processor or memory design. 

2.5. RELIABILITY OBJECTIVES: Hinlmua probability of 
erroneous results, and of loss of com, tting capacity 
during aircraft flight. 

2.6. DYNAMIC VARIABILITY: Variable degrees of fault 
tolerance for tasks of differing critical!ty. Ability to 
trade off between computing power and fault tolerance. 

2.7. PENA'.TIES: Worst case - human lives; Intermediate - 
aircraft d.image; least case - need to abort flight 
objectives. 

2.8. CONSTRAINTS: hardware must be designed with weight, 
size and power requirements consistent with aircraft 
requirements. Th* baaic concept of the system is only 
affected by the constraint that maintenace cannot be 
carried out during flight. 

2.9. TRADEOFFS: Computing capacity vs. reliability 

3.  DESCRIPTION: A system architecture in which fault 
tolerance la achieved with no apecial fault-tolerant 
hardware. 

3.1. ARCHITECTURE: A multi-computer (see Fig 1) 

3.1.1. CONFIGURATIONS: No constraints are present on 
processor or memory design.  Fault tolerance is achieved 
by the reatricted connection of processors and memories, 
and by software control. 

3.1.1.1. INTERCONNECTIVITY: Processing modules comprising 
a processor and memory are connected via multiple busses. 
The Interconnection is designed so that processors may 
only read (and not write) into the memory of other 
modules. The busses are used as alternative routea rather 
than as multiple simultaneous transmission paths. 

3.1.1.2. RANGE: The scale of the system Is not frosen in 
th« architectursl concept. It Is envisaged that a minimum 
configuration would contain three proceaalng modulea and 
three busses. The design does not (at present) place any 
limit on the maximum configuration. Greater fault 
tolerance is achieved with a large numoer of low- 
capability unite rather than with a small numbe- of high 
capability units. 
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3.2 FAULT TOLERANCE 

3.2.1. FAULTS TOLERATED: The system is tolerant to faults 
In any unit (processor, bus or memory).  The faults may be 
the erroneous retult of an action (calculation, 
transmission or storage) or the failure of a unit, to carry 
out any action. 

The system hardies transient, and permanent faults, 
treating long-term Intermittent faults as permanent. The 
reconfiguration procedures can bring back into service a 
unit that was at one time subject to faults but has since 
recov .ed or been repaired. 

The cause of the fault (electrical, mechanical, etc.) is 
not of Importance, the only consideration la whether the 
results of actions In replicated units agree or disagree. 

Independent multiple faults can be tolerated to any degree 
depending on the extent of replication of the function. 
Correlated faults both in hardware and aoftware ar.i not 
tolerated to the same extent as uncorrelated faults. The 
loose synchronization of tasks assists in tolerating 
faults which are correlated in time rather than function. 
One-shot faults do not cause removal or reconfiguration of 
unit» from the system. The propagation of a fault from 
any unit to another can only occur if both units are 
faulty. 

3.2.2. FAULTS NOT TOLERATED: Multiple correlated faults 
that are not detected by a voting procedure, or by 
repeating the task, e.g., simultaneous Identical failure 
of two memory units when threefold replication is used. 
Massive faults that reduce the system to a size too small 
to handle the computing load. 

3.2.3. TECHNIQUES:  Fault detection is carried out by 
replication and voting. Other fault detection methods 
(hardware or software) are compatible with and can be 
Incorporated into the system concept.  Fault correction 
(or tolerance) la achieved by voting after replication in 
most cases but can be aupplemented by other techniques 
such as repetition or roll-back.  The allocation of 
resources to tasks can be changed el'.ner when faulty units 
are removed or when the mission dem.nds different fault 
tolerance and/or computational power. 

3.3. NOVELTY:  Lack of need (or special hardware units to 
facilitate fault tolerance. Ability to t-ade off fault 
tolerance with computing power.  Appllcab. lity of the 
system concept to different memory or processor designs. 

3.4. INFLUENCES: The design is influenced by the need to 
avoid special hardware for fault tolerance, freezing 
fault tolerance techniques at design time, designs gesred 
to particular size and speed computers. 

3.5. HARD C0R1:  I don't mean anything by "hard core" In 
the system described.  I can imagine other system concepts 
In which the term has meaning (but little utility). 

4.  JUSTIFICATION 

4.1. RELIABILITY EVALUATION:  By analysis, assuming 
'incorrelated faults of equal probability In each part of 
the syatem (chip, connector, cable, etc.). 

4.2. COMPLETENESS OF EVALUATION:     Incomplete. 

4.3. OVERHEAD:  Variable, typically a 3-1 cost penalty Is 
paid for r.:ault tolerance. 

4.4. APPLICABILITY: General; the design la applicable to 
any environment. 

4.5. EXTENDABILITY:  Unlimited. 

4.6. CRITICALITY: Multiprocessing Is critical. 
Multiprogramming la highly desirable (see Fig 2). 

4.7. IMPLICATIONS:  There are no Implications on the 
hardware designers of processors and memories. The busses 
are constrained In the way units communicate. The 
applications' software must bo Implemented so that Input 
data for a program la fetched by calling a general system 
routine which carries out fault detection and correction. 

5.  CONCLUSIONS 

5.1. STATUS;  A conceptual design of hardware, software 
and fault tolerance procedures exists. 

5.2. EXPERIENCE: Software design studies show that the 
time and memory requirements of the fault detection and 
correction routines are reasonable. 

5.3. FUTURE:  The projection Is for an experlmemal 
version of the system to be built. 

5.4. ADVANCES:  I/O units with fault tolerance 
capability. 
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SUKVn 07 FAUir-TOUUHt COWOTIHC SYSTEMS 

Barry I. lorgcnoa, Caaputar Sjmtim» RMaarch Projact 
UnlTaraltT of CaUfornla, Barkalay, Hay 1972. 

1.    IDBninCATION 
1.1. NAME:     PRIME 

1.2. USPOHSIBILITTi Coapucar Srataa» Raaaarch Pfojaet 
(CSRP), U. C.  Barkalay 

1.3. SUFPORIt AXFA - Contract No. DAHC70 15 C 0724 

I.A.    FAKIICIPAIRSl Hartart B. Baaklo, Prindval 
InvMtliatori Rogar Robarta, Principal PreirMaar; Barry 
R. Bomaraon, Haad, HardHara BAD. 

1.5. SIARIi  7/1/70 

1.6. COHPUTIOKi ' 

1.7. BIBLIUCU«. 

piototypa to ba running about 7/73 

•Baakln, Harbart B., Barry R. Borgaraon and Rogar lobarta, 
"PRIME - An Archltaciura for Taralnal Orlantad Syataaa," 
Freeaadlaga of tha 1972 SJCC, AFIPS Fraaa pp. A31-437. 

*Borgaraon. Barry R., "A Fall-Softly Syataa for Tlaa 
Sharing Uaa," Dlgaat of (3H 1972 Intarnatlonal Fault 
Tolarant Coaputlng Syiyoaloa. 

•Quataa, Jaaaa T., Flam Caulana and Donald Dodga, "Tha 
Eztamal Aceaaa Natwork of a Nodular Coaputar Syataa," 
Froeaadloga of tha 1972 SJCC, AFIPS Fraaa, pp.  783-790. 

*Fabry, F. S., "Dynaair. Varifleation of Op*rating Syataa 
Dadalona," CSRP DoeiaMt Ho. P-1A.0, Uslr. CaUfornla, 
Farkalay, laauad 2/23/T2. 

•Borgaraon, Barry R., "Spoot'Moua Raconflguratloa In a 
Fall-Softly Coaputar Utility," CSRP Doc<»eat Ho. P-15.0, 
Unl«. California, larkalay, laauad 2/29/72. 

•Borgaraon, Barry R., "IDynaale Conflnatloa of Syatas 
Intagrlty," CSRP Deeiaant Vo. F-19.0, Univ. California, 
Barkalay, laauad A/2A/7Z. 

3. DESCRIPTION 
3.1. ARCHITECTURE 
3.1.1. CONFIGURATION 
3.1.1.1. INTERCOM]«CTIVTi'!'i  Figur* 1 la a block diagraa of 
PRIME.    Tha Extarnal  -ccaaa Natwork (EAM) allow* any pro- 
caaaor to coonact to any dlak driwa, aitamal davlca, or 
othar proeaaaor. Each proeaaaer haa thraa auch ladapaudant 
patha Into tha EAN.    Tha EAM connactlvlty taaaln* inlvar- 
aal ovar tha dlffarant ayataa ilaaa.    Unlvaraal awltchlng 
batwaan all procaaaora and all aaaory block* la not provl- 
dad.    Inataat, aaeh proeaaaer alwaya eonnaeta to aaactly 
64K of aaaory ragardlaa* of tha alia of tha ayataa. 

3.1.1.2. RANGE) Tha PRIME archltactwra will uaafully 
accoaaodata froa 3 to about 30 procaaaora.    Each proeaaaor 
could conaect to froa 16K to 12K of prlaary aaaory. 
Depending en the type of dlak drive* uaed, froa 1 to 3 
drlvee per proceeaor would be reeaonable.   The current 
ayataa hue been deigned to operate with froa three to 
eight proceeaor* without requiring any additional hard»*« 
or aoftware dealgn.    Uaeful aaaory alaea reng* froa 64K to 
about 25iR.    Dlak drlvea range froa about als to 24.    Each 
proeaaaer to be uaart In the Initial laplaaantatlon of 
PRIME will be e Meta 4 (Digital Scientific Corp.).    The 
Mete 4 la a gaaeral-purpoae, 16-blt, 32-ragiatar, 90na- 
eycle tlae alcroproceaear.    The aeaory la 33 bit* wide, 
about 600 na cycle, and aade froa 1024-blt MOS chlpa.    Tha 
dlak drlv** are double (track) deaalty 2314-typa drl*** 
that have beat aodlfled to tranafer Inforaatloa on two 
heed* at a tlae.    The Initial configuration will have five 
proeaaaor*, 104K of aaaory, and IS dlak drlvea. 

3.1.1.3. CAFABILITTi The capability la not accurately 
known at thla tlae. 

3.1.2. EXECUTIVE 
3,1.2.1.    MODES: At any given tlae, one proceeaor la 
deelgnatad tha Control Proeaaaor (CP) while the reat 
ftactlon aa Problea Preeeaaore (FPa).    Uaer procea*** are 
na on tha PP*.   Multlprograaalng la not uaed, but 
procea*** are overlap-nwappad.    In order to achieve a vary 
high Interproeeaa Integrity, It wea decided never to let 
two procaaaaa ahare aaaory{ hence, cooparatlva-proeea* 
■ultlprocaaalng la not poeelbl* with PRIME. 

2.    MOTIVATION 
2.1. PURPOSES General-purpoee, Intareetlve, aultl-eeeea* 
coaputlng. 

2.2. PHTSICAL ENVIROMMENTi Ground baaed 

2.3. COMPUTING EHVIMNMENTi Raaote aceaaa over telephone 
llnea and eventually over the Arpanet. 

2.4. COMPUTING OBJECTIVES I Thla 1* not tha prlaary 
motivating area In our ayataa dealgn.    We anticipate thet 
the original configuration of PRIMS will euppert about 100 
uaer* with a went caaa reaponaa tlae of lea* than two 
aaeond* for trivial job*. 

2.3.    RELIABILITY OBJECTIVESl Becauae we vlll be able to 
repair unite aa they bceoae feulty, we era alalng for 
contlnuoua availability.    The ayataa perforaaaca ahould 
never degrade below 751 of It* peak capacity. 

2.6. DYNAMIC VARIABUTT I Parferaanee cannot ba 
dynaalcally traded for reliability.    However, provlelon* 
any aoaeday be added which will allow dynaalcally trading 
parfotaaaca for Intraproeea* Integrity (See Saetlea 6). 

2.7. PENALTIES: The effeete of intreprocee* date 
contaalnatlon (See Section 3.3.2) du* to eyataa fallutrea 
will etrongly depend on the nature and purpoee of the 
proceaa.    There aeeaa to ba no way to generallia about 
thl*.    If th* ayataa Itaalf were to rraah, thla would no 
doubt lead to a loaa of revenue If PRIME were tranafarred 
to a coaaare .al anvlronaent. 

Dt» PIM 
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2.1.    CONSTRAINTS: There ere no apeelflc coaatralnta of 
alia, weight, and power.   The aalf-lapoaed conatralnt on 
eoat 1* to try to build a fault-tola»» ayataa that la a 
cloea In coat aa poeaibla to ay current ayataa with 
ceaparable power cad eapabllltlea. 

2.9.    TRADEOFFS:  (Too 
aee Section* 4.4, 4.6 

eapllcatad to deal with briefly) 
ad 6.) 
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3.1.2.2.    SOFTWAUtl Th« »yttm loftwara 1» dlvld«d Into 
thraa ••ctlmu.    Than la tha Cantral Control Monitor 
(CCM) which run» on tha Targat Naehlna of tha CP; tha 
Extanalon of tha Control Monitor (ECM) which raaldaa 
dlractlj In tha alcraeoda of aach procaaaor; and tha local 
Monitor (LM) which ruia on tha Targat Maehlna In tha PFa. 
Tha CO! la raapooalbla for aehadullng proeaaaaa, allocat- 
ing raaourca, and conaioaatlng Intarprocaaa aaaaaga 
tranafara.    Tha ECM Includaa tha dlak, tarainal, and 
eoammlcatlon controllara, logic for doubla-chacklng 
critical CCM daclalona, bootatrap logic, and aoaa Intalll- 
ganca to daal with raconflguratlon,    Tha LM contain« tha 
file and worklng-aat managaaant ayataaa.    Tha CCM doaa not 
gat Involwd with a procaaa aftar It haa atartad tha 
procaaa up.    Tha proeadura followad by tha CCM la to 
alloeata tha nacaaaary raaoureaa, Inltlata tha roll In, 
and lat tha LM and ECM taka onr fron thara.    Tha CCM will 
not gat Involvad again until tha procaaa althar tlaaa nut 
or blocka Itaalf.    Tha LM daala only with uaar procaaaat; 
It la coaplataly laolatad fron tha raat of tha ayataa. 
Bacauaa of thla, uaara will ba fra* ,M provlda thalr own 
LM If thay do nor Ilka tha atandard one provldad. 

3.2.     FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED:    PRIME will tolarata all 
Internal fault!.    That la, tha ayataa la expected to 
continue oparatlng even In tha praaanca of any arbitrary 
■oftwar« or hardwara fault«. Tha «yatea will raconflgura 
to run without any placa of hardwara that bacoaaa faulty, 
and aachanlaaa azlat for llalf*'g tha affacta of any 
•ottwar« fault.    PRIME haa b«t., daalgnad ti   prorlda 
contlnuoua «arvlre to (alaoat) all tatalnala.    In aott 
caaaa, a faulty unit will ba rapalrad an-1 r«turned ti 
aarvlc« bafora another failure occur«.    However,  tha 
ayataa will etlll  continue to oparata with a aubatantlal 
part of tha raaoureaa raaovad fron active uaa.    Tha ayataa 
ahould almoet nav«r degrade to balow 75 percent of Ita 
naxlma capacity.    In addition to continuity of «one 
alnlaia aarvlca, Intarprocaaa Integrity violation« are 
prevented at all tlaaa; thla Include« tha relatively 
unatable perlode between the onaat of a fault and the 
detection and laolatlon of tha faulty unit. 

3.2.2. FAULTS NOT TOLERATED: Only envlronaantal  faulte 
are not tolerated by PRIME,    The aoet cotmon of thaaa 
faulte would be In tha A.C. power and air conditioning. 
Since It le eaay to aaa how to back thaaa raaoureaa up, no 
effort haa been aada to Incorporate fault tolerance with 
raapact to thaea unite wlthlln PRIME.    Wille PRIME aa a 
ayataa will continue to run In eplte of Internal failure«. 
Individual procaaaaa aay occaalonally gat clobbarad.    That 
la, no «pedal provlalona hav« been aada In PRIMS tc 
guarantee Intarprocaaa Integrity.    Hence tranalant 
fall-jraa will frequently cauaa contamination of 
Infonatlon for aona procee«.    Al«o hard fallurea will 
often clobber one proceaa before being detected.    Tha .noat 
acrloua dlaruptlon will probably occur whan a dlak drive 
falle.    When thla happen«, all of tha proeaaaora that ware 
ualng that drive will be euapandad until an operator can 
recover their data, either by moving the dlak pack to 
another drive, or recovering froa tapae In tha unlikely 
event of a head craah.    Rut even In thle worat-caae 
cata«trophy, only a aaall part of tha uaara  (about 7 
percent In tha Initial ayataa) will be affected. 

3.2.3. TECHNIQUES; The baalc ayataa-wlda technique uaed 
to achieve fault tolerance la to allow tha ayataa to 
degrade gracefully by neonflgurlng to run without any 
faulty unit«.    At t'.e heart of the «cheae la a dlatrlbuted 
architecture with a multiplicity of all functional  unit« 
except the F/N, which 1« dealgned to fall aoltly on Ita 
own.    Fault detection le accoDpllahad by a variety of 
method« which Include parity neaoty and buaea, «urvaill- 
anca taata on each proeaaaer after each job atep, a double 
check on all critical ayataa-vlde declelooa aada by the 
CP, and fault Injection In auch araaa aa error detector« 
and tha eeldoa uaed reconfiguration logic.    Aftar a fault 
la detected, an initial raconflguratlon cauaaa a procaaaor 
not Involved in tha detection to becoae th« new CP.    Thla 
virtual "hard-core" than Initiate« dlagnoatica to locate 
the faulty unit, iaolate it, and    reconfigure the ayataa 
to run aa efficiently aa poaalbla without it.    A email 
amount of dedicated hardwara aaaoelated with aach 
procaaaor guarantaaa that tha initial reconfiguration will 
ba accoopliahad properly.    It le poaalbla to logically 
iaolate each major unit at ita ayatea boundariae eo that 
tha ayataa can na fine-«ah dlagnoatica or axarciae the 
hardware to aid in locating tha faulty component.    In tha 
caae of a failure of tha 1(elation logic, «ay unit can ba 
dynaaically powered down to provide guaranteed laolatlon 
from th« raat of tha ayataa. 

3.3. NOVELTY) Tha dlatrlbuted nature of the «y«tem. 
Including the dlatrlbuted intelligence In the form of the 
ECMa, provide« a varr  ).awurful atructure whereby fault 
tolerance le «chleva... without the uaa of any "reliable" 
hardware,    V«ry hlgh-perfomance low-coat dlak drives h«ve 
been Incorporated in auch a way a«  to allow these devices 
to be used «s second level storage,  third level storage, 
and the swspplnp medium.    By distrlbutinp these ttiree 
functions over many Identical physical imita, very high 
availability la achieved at what la  actually a lower cost 
and with higher overall performance than would be possible 
with three distinct  types of unite.    PRIME automatically 
raaponda to faults by reconfiguring to run without the 
faulty unit.    Since there la a multiplicity of all 
functional unite except the LAN, it le quite eaay to run 
without any particular unit. Rather than maka the EAN 
"reliable," a acre economic«)  approach waa taken whereby 
carefully controlled failure mode« war« daalgnad into it. 
Thla reaulta In a failure within the EAN manifesting 
Itself aa a failure of a aaall niabar of ports, which le 
equivalent to losing whatever le attached to thoaa port«, 
and the eyataa waa slraady dealgned to hsndle chat 
eventuality.    Tha reconfiguration atructure le alao very 
intereatlng.    Whenever a failure le detected, an initial 
reconfiguration takes placa which aetabllahea a new 
proceaaor aa tha CP.    Tha new CP, which la    one not 
Involved In the detection oi tha fault, la than uaed aa 
the temporary "hard-con" to initiate dlagnoatica, locate 
the fault if Indeed it exiete, and remove the faulty unit 
from tha ayatea.    The distributed Intelligence of PPIME 
has been u««d to provide doubl« checking on all critical 
ayeren functions, which in turn guarantaaa that than will 
ba no interprocess intarferanca.    Probably tha moat 
unusual general featun of PRIME with raapact to fault 
tolerance la that it la s«lf-dlagnoalng and aalf-npalring 
without Incorporating any "hard-con." 

3.4. INFLUENCES: Many previous afforte have, of course, 
Influe-ced ua, but no aingla system «tsnd« out aa having 
apadal Influence. 

3.5. HARD-COREi No,  then la no "hard-con" in PRIME. 
Inatead, tha concept of a "floating hard-con" exists 
whereby a working procaaaor la prasse 1 into service aa the 
Control Procaaaor whenever a malfiaictlon la detected. 
Thle la cooalatant with tha overall ayataa phlloaophy of 
not having any "reliable" hardwan anywhere In the ayatsm. 

4.     JUSTIFICATION 
4.1.    RELIABILITY EVALUATION:  Rallablllty will be 
demonstrated by stimulation of faults. 

4.3. OVERHEAD: Tha coat  of tha additional hardware  that 
haa bean incorporated in PRIME specific«.;y  for fault 
tolerance la laaa than 10 percent of the total hardware 
coat of tha ayatea.    Leaa than 10Z of each processor's 
useful time la devoted to fault-'..lanr.t  functions, since 
the aurvalllanca progrow an run during what would 
otherwise be idle time while proceaaee an being awappad. 

4.4. APPLICABILITY: PRIME haa been vary cenfully 
dealgned to perform economically in a particular envlron- 
ent.    If It waa to be uaed in another environaant, a 
detailed analyala would have to ba performed to determine 
what change* would have to ba aada to allow it to perfon 
adequately in tha new environaant.     In particular, moat 
other potential  envlronnanta would require that steps be 
taken to guarantee intraprocaaa integrity. 

4.6.    CRITICALITIES: Tha choice of dlak crlvaa Is quite 
critical alnca a low coat/bit ia neceaeevy aa wall a« a 
high bandwidth due to tha different function« thaaa drlvea 
parfon.    Since 3330-typ« drive« were not available when 
thla design atarted, ?314-typa   Irlvee w«n «elected and 
modified to transfer at SHHt.    Alao,  tha EAN had to be 
carefully dealgned with wall-apaelfiad failure aodea. 
However, the primary aaaury and tha procaaaor« an alaply 
"off tha ahalf" Itena.    A« for goals, th« decision to not 
provide intraprocaaa integrity checks haa bean carefully 
exploited in tha design of PRIME and haa provided a v«ry 
aubatantlal coat savings. 
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4.7.    IMPLICAIIOHIt    IUa«r rallaea li placad on parlodlc 
chaeklBf of hardxan rathai than concurrent chacklaf. 
Ihiia, tha »Ulltr to Injaet faulta Into tha approprlau 
araaa ha» baaa a difficult raqulTaaaat placed on all of 
tha hardnara daalisata.   Tha aoat notabla aeftwara 
raquliaaaat lupwad by tha baalc daal(n la tha elaar 
dlvlaloD of tha oparatlng »jttm Into thraa part», ooa of 
which can ba fuxnlahad by a u»»r.    Tha only »Ignlfleaat 
raqulraaant placad on a uaar la that ha mat ba amra that 
no Intraproca»» IncafrltT chac • ara  ifrt (juat Ilka la 
all currant tlaa-aharlnf »jfm») 

5.    CONCLUSIOWS 
5.1. STATUS! Tha daalp of "MME 1» about 95 pareant 
coarplatad, and laplaaaatatlor haa b»|uu on both tha 
hardwara and aoftwara.    Tha drat varalen capable of 
raconfl|urla( In the praaant ct a failure ahould ba 
nanlng hy Aufuat, 1973, 

5.2. EXPERIENCE: Tha naln eondualon that tha raapondent 
can aaka regarding tha daalgn of FUME la that by aoamhat 
Halting tha goal of tha FRIMI ayatea. It «aa poaalbla to 
create a ayataa that ahould exhibit excellent fault- 
tolarent diaractarlatlca at a r.uch lower Inerauntal coat 
than that of any other fault-tolamt ayataa known to hin. 

J.3. rOTUREi Tha near future will be devoted to building 
PRIME. After that, evaluation and timing will take place 
with eonnaetlea to the Arpanet vary likely, 

5.4.    ADVANCISt It aaaaa that tha aoat algnlflcant 
developaaat that would aid tha PRIME ayataa would ba the 
availability of a geoeral-purpoae, aalf-checklng 
proeaaaor.    Slnca 100 pareant »alf-checkablllty la 
axtranly difficult to daalgn Into a proeaaaor, tha beat 
eouraa of action her» aaaaa to ba to wait for LSI 
proeaaaor» of aufflelant power to be built.    Theae 
proeaaaor» »hould ba ae Inaxpanalva, eoaparad to the reet 
of tha hardwara coat, that running two of thaa 
alaultanaoualy and capering output» ahould ba a vary 
attractive procedure »eonoalcally.    In fact, the current 
proeeaalng elaaant In FRIMI could be broken Into aaveral 
aubprecaaaora: one for ci—inileatlona, oae for the dlak 
controller, one fcr the tanlaal controller, two for the 
Target Machine, etc.    Probably only tha Terget Machine 
proeaaaor would have to ba duplewd beeauaa the other» cai 
havn Independent check» on the validity of thalr raaulta. 
With thl» procedure, Intraproca»» Integrity would be 
poaalbla at an Inalgnlflcant Ineraaantal coat. 

6.    COMMENTS i I eagerly await the reaulta frea thla SRI 
atudy.    I have exparlancad I  graat deal of difficulty 
locating any ether efforta at dealgnlng end building what 
I eonaldar to ba truly gneafully degrading    aalf- 
rapalring ayataaa.    Moat of the effort In fault-tolerant 
cceiputlng to data aaau tea be centered around allltary 
•yateaa, or even noraao,   irotmd »pace exploration ayataaa. 
Thla typically dletatea tliat a fixed «oiBt of coaputlng 
power ba aada available a: all tlae»; hence, the lack of 
action around fall-aoftly ayataaa.   Of eouraa, by 
providing fault tolaiaDca through graceful degradation, 
vary aubatantlal coat aavlng« can ba realltad over the 
"rediBdant" aethodJ.    In addition to allowing tha ayatea'e 
perfotaanee to degrade In tha praaanea of faulta, wa havn 
choaen not to guarantee latraproeaaa integrity.    Tha eoab- 
inatlon of theae two eeneaaalcna haa allowed ua to daalgn 
a vary aconoalcal fault-tolerant tlae-aharlng ayataa. 
There la little doubt that tha anticipated degradatlori 
will be quite acceptable for a wide range of applleariena. 
Tha lack of Intrapneaaa-latagrlty guaraataea, homvar, 
will ba a Halting factor In expandlnp thia architecture 
into other area».    Of eouraa, hardwara provialona could ba 
added to guarantee latroproeeae Integrity,    end tha 
raaultant ayataa would »till ba aore aconoalcal than aoat 
other fault-toleraat ayataaa.   A aora prealalng approach, 
and one which wa will tndoubtadly explore In the 
reaaonably near fjture, le to leeve the hardwara aa la and 
na critical pregraaa twice on twp different proeaaaor». 
Thla will «How tha ayataa coat to reaain vary low, and 
will alao allow Intraproceaa Inttgrlty guaranta»».    Thua, 
only thsae procaaaea that that naed tb'a guarantee will 
heve to pay for thla added feature.    A final aapect of the 
PRIME architecture that ahould ba Invaatigatad la whether 
It can aore acoBoalcally provide a guaranteed coaputlng 
power In aoaa anvlroaaaata than can ba provided by a 
"redundant" ayataa.    It can ba overbuilt by an aaotait 
aufflelant to guarantee that Ita degraded condition la 
powerful enough to handle the naceeaary coagatlag, with 
background t.«-.r available moat of the tlaa. 

SURVEY  OF  FAULT-TOLERANT  COMPUTING  SYSTEMS 

Jacques J,  Delaoare, Electronlque Marcel  Das8ai.lt 
(E.M.Ü.),  55, qual Carnot,  92 - S»lnt-Cloud France,, j'.ne 
1972 

I. IDENTIFICATION 
1.1. NAME:    HECRA (Maquatte Expert mentale de Calculateur 
a Reconfiguration Automatlque). 

1.2. RESPONSIBILITY:     E.M.D.   (Electronlque Marcel 
Dasüault). 

1.3. SUPPORT:    Support has  three sources: D.G.R.S.T. 
(Delegation Generale a la Recherche Scientlfique)  with 
preliminary Etudl;i;D.R,M.E.   (Direction des Recherchüs et 
des Moyens d'Essals) with   realization of MECRA prefect; 
E.M.D.   (Electronlque Marcel  Dassault)   In each case. 

1.4. PARTICIPANTS:    Jacques J.   Delamare,  Gerard Germain, 
Jean-Claude R.  Charpentler,  all of E.M.D., and four 
researchers  from "Centre de Calcul  Numerlque de Toulouae", 

1.5. START:    May   19 70 

1.6. COMPLETION:     July   1972,   this  consists of  a 
demonstration of  fault   tolerance and  reconfiguration 
capabilities.    Evaluation of  reliability performance  Is 
expected  to be  in Autuon   1972. 

1.7. BIBLIOGRAPHY:    "The MECRA:  a Self Reconfigurable 
Computer  for Highly Reliable Process",   IEEE vol C-20 no. 
II, pp.   1382-1388, Nov.   1971.    A report also due end of 
1972. 

2.     MOTIVATION 
2.1.     PURPOSE:     The system was  conceived  for research  In 
fault-tolerant computer architecture,   feasibility,  and 
reliability evaluation.    The  idea  for  further development 
is  a real-time medium-sized computer  for aircraft. 

2.2. PHYSICAL  INVIRONMENT; 
laboratories. 

2.3. COMPUTING  ENVIRONMENT: 
communication with '.ECRA. 

Syster operates  In EMD 

A single peripheral allows 

2.4.    COMPUTING OBJECTIVES:    Main objectives of  the 
project were not  computing objectives.     However addition 
and multiplication are performed with   11 decimal dlglta 
plus sign operands.    Complete addition needs  less  than   3O0 
mlcroaec.    Such delays  relate  to  the  cycle  time of 
microprogram memorv   (1  mlcroaec), to response  time of 
discrete circuits,  to unused time  IntervaU  In each 
microlnstructlor  cycle,   (allowing hardware modifications), 
and  laatly by  the mlcrosoftware package   (allowing 
reconfiguration). 
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RELIABILITY OBJECTIVES:     Practical experience  and a 
te basis  for evaluation such aa: 
Ulty gain with different kind» of redundancy, 
re contribution  in  failure probabilities, 
re contribution with different  architectures, 
ility gain with  reconfiguration, 
ncrease in control with  reconf Igurabl Uty, 
ime due  to reconfiguration   (during anu after), 
re response  time with  respect  to computing time. 
reliability objective« were only of interest  for 
robabllltu« of succeaa   (probabilities higher than 

2.6. DYNAMIC VARIABILITY:     Computing speed but not 
accuracy may degrade with  reconfiguration  (201 maximum). 
Performance cannot be exchanged  for Increased rellabilitv 
such  as   :    two processors  each one hiving It» own Job, 
switch.J to parallel processing on  the same  fob and 
checking one another. 

2.7. PENALTIES:    Penalties  from faulty operation can be 
of several kinds:   /Los« of  tine due  to recovery processes, 
las    ned performince after »»If-reconfiguration,   loss of 
service./    Manual  Intervention» have not been 
invea'lgated, but will be neceasarlly  Improved aa a 
conseq ence of self-testing and self-healing capabilities 
of MECRA. 

/SRI note: The  text encloeed in aU»he»  1» an SRI 
p«r»phra»» of the origin»! survey  response./ 

2.8. CONSTRAINTS:    Circuitry alia alght not exceed four 
tine»  the size of the equivalent  irredundant  computer. 



(Uapooaa, Barry R. DOBGERSEN,  continued 

4.7.    IHrLICAIIOMtt    H««»y rallmea ii pi «cad on pulodlc 
chaeklai of hardwara rathar than coneurrant chacklng. 
Thua, tha ability to lajaet fault« Into tha approprlata 
araaa haa baaa a difficult raqulraaaat placed on all of 
tha harfeara daalgnara.    Tha aoat notabla aoftwara 
raqulrauot lapoaad by tha baalc daal(n la tha claar 
dlvlalon of tha oparatlng ayataa Into thraa part», one of 
which can b« fumlahad by a uaar.   Tha only algnlfleant 
raqulranant placad on a uaar la that ha nuat ba eaara that 
no Intraprocaaa Intagrlty thacka ara oada (Juat Ilka In 
all currant tlm-aharln; ayataaa). 

5.    CONCLUSIONS 
5.1. STATUS: Tha daalgn of VKLHT. la about 95 parccat 
coaplatad, and laplaaantatlon haa begun on both the 
hardware and aoftvara.    Tha flrat varalon capable of 
reconfiguring In tha praaant of a failure ahould be 
running by Auguat, 1973, 

5.2. EXPERIENCE) Tha main conclualon that tha raapondant 
can make regarding tha daalgn of PRIME la that by aonawhat 
Halting tha goal of tha PRIME ayaten. It waa poaalble to 
create a ayar.aa that ahould exhibit excellent fault- 
tolarant charactarlatlca at a Buch lower Incremental coat 
than that of any other fault-tolerant eye tea known to him, 

5.3. FDIURZi Tha i.eer future will be devoted to building 
PRIME. After that, evaluation aid timing will take place 
with eonneetlea to tha Arpanet very likely. 

5.4. ADVANCES! It aaaaa that tha moat algnlfleant 
davaiopaant that would aid tha PRIME ayaten would be the 
availability of a general-p' rpoae, aalf-ehecklng 
proceaaor.    Since 100 percent f^lf-ehaekablllty la 
astraaaly difficult to daalgn Into a proceaaor, tha beat 
couraa of action here aaaaa to ba to wait for LSI 
procaaaere of aufflelaot power to be built,   Theae 
procaaaora ahould ba ao Inaxpanalve, conpared to tha reat 
of tha hardware coat, that running two of than 
alaultanaoualy aid canparing outputa ahould be e very 
attractive procedure «eonoalcally.    In fact, the current 
proer-aalng element In PRIME could be broken Into aeveral 
aubprocaaaora: one for comaunlcatlona, one for the dlak 
controller, one for the ta»laal controller, two for the 
Target Hechln«, etc.    Probably only the Target Machine 
proceaaor would have to »a duplexed bacauae the other« can 
have Independent checke on the validity of their reaulta. 
With thla procedure, Intraprocaaa Integrity would ba 
poaalble at an Inalgnlfleant Incrnauintal coat. 

6.    COMMENTS I I eag.riy await the reaulta froa thla SRI 
atudy.    I have experlaacad a great deal of difficulty 
locating any other efforts- at dealgnlng and building what 
I cooaldar to be truly graceful^ degrading   aalf- 
repalrlng ayataaa.    Moat of the «cfot'l In fault-tolerant 
computing to date aaana to be c«-   »tud around military 
■yatena, or even aoreao, around apace exploration ayatana, 
Thla typically dletatea that a fixed aaotnt of computing 
power be made available at all tlaea; hence, the leek of 
action around fall-aoftly ayataaa.    Of couraa, by 
providing fault tolerance through graceful degradation, 
very eubatsntlal coat »avlng» can ba realized over tha 
"redundant" method:-.    In addition to allowing the ayatam'a 
performance to degrade In tha praaence of faulte, we have 
chosen not to guarantee Intraprocaaa Integrity.    The coab- 
Inatlon of theae two concaaalona haa allowed ua to deelgn 
a very econcalcal fault-tolerant tlae-aharlng ayataa. 
There la little doubt that tha anticipated degradatlona 
will ba quite aceeptabla for a wide range of application«. 
Tha lack of Intraprocaaa-lntegrlty guarantee«, however, 
will be a Halting factor In axpawUng thla architecture 
Into other araaa.    Of couraa, hardware provlalona could be 
added to guarantee Introprocaaa Integrity,   and tha 
reaultant ayataa would «till ba more aeonoalcal than moat 
other fault-tolerant ayataaa.   A acre proalalng approach, 
and one which we will undoubtedly explore In ttM 
reaaoaably near future, la to leave tha hx-.jware ea la and 
run critical prograaa twice on two different proeeaaora, 
Thla «ill allow tha ayataa coat to reaaln vary low, and 
will alao allow Intraprocaaa Integrity guarantee«,    Thua, 
only thsae procaaaaa that that need thla guarantee will 
have to pay for tW« added feature.    A final aspect of the 
PRIME erchltectura that ahould ha Invaatlgated la whether 
It can more acoooalcally provide a guaranteed eoaputlng 
power In aoaa envlraoBanta than can ba provided by a 
"redundant" ayntaa.    It can be overbuilt by ao aaeint 
sufficient to guarantee that Ita degraded condition la 
powerful enough to handle the necaaaary eoaputlng, with 
background power available moat of tha tlaa. 

SURVEY  Or   FAULT-TOLERANT COMPUTING  SYSTEMS 

Jacques J.  Delamare, Electronlque Marcel Dassault 
(E.M.D.),  55,  qua! Carnot, 92 - Salnt-Cioud France,  June 
1972 

I. IDENTIFICATION 
1.1. NAME:    MECRA (Kaquette Experlmentale de Calculateur 
a Reconfiguration Automatlque). 

1.2. RESPONSIBILITY:    E.M.D.   (Electronlque Marcel 
Dassault), 

1.3. SUPPORT:    Support has  three sourceo: D.C.R.S.T. 
(Delegation Generale a la Recherche Scientlflque) with 
preliminary studlej;D.R.M.E.   (Direction des Recherches et 
des Moyens d'Essals) with  realijatlon of MECRA project; 
E.M.D.   (Electronlque Marcel Dassault)   in each case. 

1.4. PARTICIPANTS:     Jacques J.   Delamare,  Gerard Germain, 
Jean-Ulaude R.  Charpentler, all if E.M.D., and four 
researchers   from "Centre de Calcul Numerique de Toulouse", 

1.5. START;     May  1970 

1.6. COMPLETION;    July  1972,  this consists of a 
demonstration of fault  tolerance and reconfiguration 
capabilities.    EvaiuFtim of reliability performance is 
expected  to be  in Autumn   1972. 

1.7. BIBLIOGRAPHY:    "The MECRA:  a Self Reconfigurable 
Computer for Hi^My Reliable Process",   IEEE vol C-20 no. 
II, pp.   1382-1388, Nov.   1971.    A report also due end of 
1972. 

2.     MOTIVATION 
2.1.     PURPOSE:    The system was conceived for research in 
fault-tolerant computer architecture,   feasibility,  and 
reliability evaluation.    The idea for further development 
is a real-time medium-sized computer for aircraft. 

2.2.     PHYSICAL  INVIRONMENT: 
laboratories. 

System operates  in EMD 

2.3. COMPUTING ENVIRONMENT:    A single peripheral allows 
communication with MECRA. 

2.4. COMPUTING OBJECTIVES:    Main objectives of the 
project were not  computing objectives.    However addition 
and multiplication are performed with  11 decimal digits 
plus sign operands.    Complete addition needs  less  than  300 
microsec.     Such delays relate to the cycle  time of 
microprogram memory  (1 microsec), to response  time of 
discrete circuits,  to unused time intervals in each 
microinstruction cycle,   (allowing hardware modifications), 
and lastly by the mlcrosoftware psckage  (allowing 
reconfiguration). 

2.5. RELIABILITY OBJECTIVES;    Practical experience and a 
concrete basis  for evaluation such as: 
reliability gain with different kinds of redundancy, 
hardcore contribution in failure probabilities, 
hardcore contribution with different architectutes, 
reliability gain with  reconfiguration, 
cost Increase in control with reconflgurablllty, 
lost  time due  to reconfiguration  (during and after), 
hardcore  response  time with respect  to computing time. 
These  reliability objectives were only of Interest  for 
high probabilities of success   (probabilities higher than 

2.6. DYNAMIC VARIABILITY:    Computing speed but not 
accuracy may degrade with reconfiguration  (201 maximum). 
Performance cannot be exchanged for Increased reliability 
such as   :     two processors each one having Its o«n Job, 
switched to parallel processing on the same Job and 
checking one another. 

2.7. PENALTIES:    Penalties  from faulty operation can be 
of seversl kinds;   /loss of time due  to recovery processes 
lessened performance after self-reconfiguration,   loss of 
service./    Manual  interventions have not been 
Investigated, but will be necessarily improved as a 
consequence of self-testing and self-healing capabilities 
of MECRA. 

/SRI note: The text enclosed In slashes is an SRI 
paraphrase of the original survey response./ 

2.8. CONSTRAINTS:    Circuitry size might not exceed  four 
times  the size of the equivalent  irredundant  computer. 



3.  DESCRIPTION 
3,1 ARCHITECTURE 

3.1.1.  CONFIGURAXIONS 
3.1.1.1. INTERCONNECTIVITY: See IEEE paper.  The basic 
configuration Is a microprogrammed üonoprocessor with a 
bus architecture. A restriction can be seen here since 
addresses are binary coded, whereas data are Decimal 
Hamming coded. This has no Importance for the purpose . f 
the project, but would not have been used on a prototype, 

3.1.1.2. RANGE:  Control Unit Configuration: 

Maxlmlm 

^t counters 
3 spare counters 
8  registers 
4 spare registers 
3 multiplication processors 
1 addition prcceasors 
it  'and  '   logic processors 
4 'or'   logic processo's 
^   'exclusive or'  processors 
'i   'inverter'  blocks 

Minimum 

3 counters 
0 spare countfrs 
6 registers 
0 spare registers 
1 multiplication processor 
1 addition processor 
3 or 2 
3 or 2 
3 or 2 
3 or 2 

Note:    Any  logic function can foil completely and can be 
reconfigured with three other functions.    In several cases 
a failed logic  function can be reconfigured with only two 
o^er function. 
M mory configuration:    Three memory blocks   • 4 K 16-bit 
words.    Each memory block has its own address decoder 
circuits.    At each memory cycle a 4S-bit word is  read or 
written;     this word contains  two identical words of 24 bite 
each, so that any one of the  three blocks can be declared 
void and the computer still runs if the other two operate 
properly.    Efficiency of address error detection reaches 
50% on each memory block.    After any read restore cycle, 
each eight-bit byte  (6 bytes)  is checked and is switched 
or not on busses.    Then error detection efficiency is SOX 
with instructions or microinstruction (if there is only 
one erroneous bit)  and 100Z with data  [if f-ire la one or 
two erroneous bit). 

3.1.2  EXECUTIVE 
3.1.2.1. MODES: MECRA is a monoprocessor. 

3.1.2.2. SOFTWARE: There are three working modes on the 
computer:  user mode, test-diagnosis mode, decision and 
reorganization mode. 
a) In the USER mode the computer executes the user 
program. 

b) The TEST-DIAGNOSIS mode la set in motion in two 
different ways to which two different programs correspond. 
The first is set in motion by interrupts when a failure 
has been detected by hardware checkers. The goal of this 
program is to localize precisely where the failure      . 
occured.  The second program is set in motion periodically 
and its purpose is to test the computer with the data 
configurations which reveal failures best.  This program 
allows detection of the errors which cannot be detected by 
the hardware checkers (i.e. sa erroi eous data with correct, 
encoding). Thes« two program* update a status table which 
contains the star.'is of compm.er components (failed or not, 
number of transient failures).  Xhey also decide to stop 
the computer when certain cataniiTDphlc failures occur or 
to set Xn motion the decision and reorganization mode. 
c) in th'- DECISION AND REORGANIZATION mode, a program 
analyie?: the status word (la the status cable) of the 
componen'; in which one of the two test-diagnosis programs 
has detected a permanent failure and It decides either to 
reconfigure or to stop the computer. 

3.2.  FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED:  Any single fault is tolerated 
in memories, arithmetic and logic units (since they are 
mounted in a duplex scheme) or in logic units (quadded 
redundancy). Any error detected on the busses, switches 
the MECRA to interrupt programs, while all writing in 
memories, registers or counters Is Inhibited. Multiple 
errors can also be tolerated in number of cases. Multiple 
errors can lead to repair or to loss of service as said 
above (2.7.). 

3.2.2. FAULTS NOT TOLERATED: Faults not tolerated 
Include errors In the main control circuit, which leada to 
a design with an increasexl degree of mlcroprogranmlng and 
minimised control circuits. Also not tolerated ate 
errors undetected at the memory output. Power supply 
failures have not been investigated in MECRA. 

3.2.3. TECHNIQUES: One of the goals of MECRA is an 
inveatlgation of as many fault-tolerance techniques as 
possible, such aa triple modular redundancy, quadded 
redundancy, duplex redundancy at very low level (clock) 
and higher level (memories and arithmetic circuits), 
random redundancy (counters, registers), error detecting 
codes (Hamming d ■= 3) ai.d parity bit, repetition, 
rollback, reconflgurati-m with removal without 
replacement, reconfiguration with replacement, diagnosis - 
stand-alone, preventive and emergency, local protections 
of process and data. These techniques are used atatlcally. 
It does not seem possible to describe these techniques In 

detail In this paper, since it would require a description 
of the whole computer.  Other techniques were also 
investigated but not used on MECRA, such as stopping the 
computer during noisy periods, and control of correct 
microprogram linking. 

3.3. NOVELTY; When the project started, two ideas 
unusual in the literature were employed in MECRA: address 
decoder redundancy in memories so as to separate address 
errors and data errors, single-error-free hard-cor.'. 

3.4. INFLUENCES: A synthesis of efforts which came 
almost exclusively from the U.S.A. - universities, 
laboratories, and research institutes. 

3.5. HARD-CORE; This is defined as a circuit, 
interconnecting several redundant functions, whatever Its 
own redundancy level (it is a relative concept). 

4.  JUSTIFICATIONS 

4.1.  RELIABILITY EVALUATION: Reliability la not 
demonstrated, it is computed, in two steps using a model. 
The first step concerns analysis and drawing a network 
model, the second step concerns random failure assignment 
into the model. After a great number of trials, the 
progrnm furnishes results (e.g. curves, marginal 
probabilities...). 

4.2.  COMPLETENESS OF EVALUATION: 
now being tested. 

Program evaluation is 

4.3. OVERHEAP- Approximately 60% to 70% of total system 
resources are de'oted to fault tolerance (same percentage 
for iogic, cost, and time). 

4.6. CRITICAUTIES:  Use of decimal coded characters 
seems not well- fitted to fault-tolerant computers.  This 
chf.ige could result in great savings in design. Other 
points are not critical. 

4.7. IMPLICATIONS:  The basic design assumes low.level 
integrated circuits, wtih a very small number of different 
circuits. 

5. CONCLUSIONS 

5.1. STATUS: The system is now operating and will be 
delivered in July 72, evaluation will follov during 
October and November. 

5.2. EXPERIENCE: Everything is possible, except, perhaps 
a sufficiently low cost, and reliable packaging and wiring 
of components. Note that LSI would put problems to 
fault-tolerant computers because they need more pins to 
check redundant functions before connecting all together. 
This would probably lead to simultaneous r-e of LSI, MSI 
and fmall scale Integrated circuits. Com-oneu^ 
manufacturers have not yet taken into af count 

fault-tol3rance constraints, but they vlll probably do so 
soon. 

5.3. FUTURE;  First prototype is projected 1976 - 1977, 
Current computer is projected 1980, Use: Missiles, 
aircraft, real-time nonoprocessors. 

5.4. ADVANCES: Different fault tolerant computers can be 
roughly compared in i-crms of reliahility versus mission 
time; but ihis wi'l fall back to evaluations of components 
and wiring HTBF.  Such data, estimated by constructors, do 
not seem to give a sufficient common basis for 
evaluations. Theoretical and conventional data on 
component MTBF seen to be needed for accurate romparisors 
among different fault-tolerant computers. 
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SURVEY OF FAULT-TOLERANT CCHPUTING SYSTEMS 

L.  J. Kocicla, North American Rockwell Corp. 
3370 Miraloma Avenue, Anaheim,  California 92803, May 1972 

1. IDENTIFICATION 
1.1. NAME: A Three Failure Tolerant Computer System 

1.2. RESPONSIBILITY: Electronlca Group, North American 
Rockwell Corp. 

1.3. SUPPORT: Manned Spacecraft Center, NASA 

1.4. PARTICIPANTS: L. J. Kociela, J. Jurlson, D. Broslus 
- North American Rockwell; P. Sollock - NASA, 

1.5. START: 1/1/70 

1.6. COMPLETION: 1/1/71 (dealgn concept) 

1.7. BIBLIOGRAPHY: A Three Failure Tolerant Computer 
System, IEEE Trans, on Computers, November 1971 

2. MOTIVATION 
2.1. PURPOSE: Real-Tlme Central Guidance and Control 
Computer 

2.2. PHYSICAL ENVIRONMENT: Spacebome 

2.3. COMPUTING ENVIRONMENT: The computer system Interacts 
with avionics subsystems via a multiplexed data bus. 

2.4. COMPUTING OBJECTIVES: 30,000 words of memoryj 
500,000 operations/second speed 

2.5. RELIABILITY OBJECTIVES: Must tolerate first two 
failures with no degradation In performance and third 
failure with no degradation In aafety. 

2.6. DYNAMIC VARIABILITY: Third failure could have less 
computational capacity. 

2.7. PENALTIES: Would require manual Intervention with 
possible loss of life. 

?.3. CONSTRAINTS: No physical constraints but a relative 
weighting of Importance between physical parameters, 

2.9. TRADEOtFS: Site, weight and power least Important. 

3.  DESCRIPTION 
3.1. ARCHITECTURE 
3.1.1. CONFIGURATIONS 

3.1.1.1. INTERCONNECTIVITY:   Four redundant computers 
Interconnected by  four voter switches at their 1/0 
channels. 

3.1.1.2. RANGE:  2-6 CPUs, no restrictions on word 
length. 

3.1.1.3. CAPABILITY:  500,000 operations/second 

3.1.2. EXECUTIVE 
3.1.2.1. MODES:    The executive may operate the redundant 
computers In "..ny modes of operation: non-redundant 
Independe*-- computers, multi-programed, multi-computer, 
and various combinations of redundancy such as comparison, 
voting, etc. 

3.1.2.2. SOFTWARE:  Software control is equally distributed 
among the redundant computers - no central control exists. 

3.2. FAULT TOLERANCE 

3.2.1. FAULTS TOLERATED; Any 3 faults. A fault can range 
from a »Ingle circuit element to a complete module such ss 
a CPU falling. A failure has no effect on system behavior. 
The system actually tolerate more than three faults of 
many different types but It will tolerate at least any 
three faults. 

3.2.2. FAULTS NOT TOLERATED: Software faults that arc not 
caught In debugging. 

3.2.3. TECHNIQUES: The technique used Is replication of 
hardware with quadruple redundancy. Computat!.•>.;» arc 
performed redundantly and reconfiguration la accomplished 
without removal or replacement after failure detection by 
voting. 

3.3. NOVELTY: Through the redundant use of adaptive 
voters operating on the Input/output of redundant 
computers, any three failure can be tolerated. 

3.4. INFLUENCES: None 

3.5. HARD-CORE: No hard core exists. 

4. JUSTIFICATION 
4.1. RELIABILITY EVALUATION: Extensive fault simulations 
have been successfully performed. 

4.2. COMPLETENESS OF EVALUATION:  It Is Impossible to 
verify a design goal of 100 percent confidence. 

4.3. OVERHEAD: For triple failure tolerance, about 80%, 
less for lower failure tolerance. 

4.4. APPLICABILITY: To many critical real-time control 
systems, Industrls]. space and defense applications, 

4.5. EXTENDABILITY: The design can be extended to 
tolerate different numbers of failures, eg. any two 
failures, any four failures, etc. 

4.6. CRITICALITIES:  Requirement for 100X  confidence In 
tolerating any 3 failures Is very critical, lowering to 99 
percent or so would reduce complexity and cost. 

4.7. IMPLICATIONS: Hardware designers must Insure 
independence of failures at computer I/O Interfaces. 

5. CONCLUSIONS 
5.1. STATUS: System design concept completed, 
voter-switch detailed design completed, prototype hsrdware 
of voter-switch currently under development. 

5.2. EXPERIENCE: A very rigid failure tolerance 
requirement can be met assuring that a minimum number of 
failures will be tolerated. 

5.3. FUTURE: Possible use on space shuttle program 

5.4. ADVANCES: A significant area Chit can enhance the 
state of the art In designing fault-tolerant computers is 
analysis of failure modes of components and computer 
subsystems in depth. Another v«ry important area Is 
error-free software. 

6.  COMMENTS: Much of the work on fault-tolerant 
computers is dedicated to single failures at the gate and 
circuit level. Unfortunately, In many cases this is not 
applicable to real world failures when considering 
computers mechanized from state of the art LSI Integrated 
circuits. 
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SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS 

J.  S. Miller,  In t erne trie« Inc. 
701 Concord Ave,    Cambridge,    Mus.  02138, May,  1972 

1.   IDENTIFICATION: Th. .y.tem la referred to only aa  the 
™fn°etrlc8 Mul"Ptoceaaor (occaalonally abbreviated 
IMP).     It la sponsored by the NASA Manned Spacecraft 
Center, Houaton, Texaa.    Personnel participating In the 
design, In addition to royaelf, are W, H.  Vandever, A.  L. 
Koamala, S.  F.  Stanten,  S.  J.  Schwartz, and A. Avaklan. 
The pruject began In June,  1969,  and has continued to 
date, except for a thirteen-month Interval between the 
original contract and the current one, which euda in about 
two montha.    One report haa been publiahed:    "FinaJ 
Report—Multiprocessor Computer System Study",  by James S. 
Miller,  Daniel J.  Lickly,    Alex L.  Koamala,    and Joaeph A. 
Saponaro, in March,  1970.    A second report la presently in 
preparation.    The work haa been design-only; no hardware 
is  involved, 

2. MOTIVATION: The system is oriented towards  the 
general-purpose computational requirements oi  i manned 
orbiting space station of about the 1980 tine period.     Its 
expected uses include real-time stations control and 
data-acquiaitlon functions, plua Interactive and batch 
data procesaiDg oparatlona.    The performance objectives 
are soft, but a real-time  response of 5 me or better,  and 
an equivalent of two million addttlona per second for a 
three-processor configuration aeem adequate. 

Because no hardware la being deaigned, no specific 
reliability figure has been imposed.    The use of the 
system for control of the space atatlon itself places 
heavy emphasis upon continued operation, at reduced 
performance in the presence of faulta.    Although we expect 
that  temporary outages of the computer ayatem will be 
tolerable, our efforts have been directed at avoidance of 
single-point  failure modes, 

3. DESCRIPTION:    Although an earlier design favored the 
use of a single internal bua connectlrg all Bodules, with 
caches at each procesaor incorporated to diminish traffic, 
we have now settled upon a more conventional croasbar-like 
network.    Each processor and main memory module poaaeaaes 
a bua,  as does the I/O controller.    Secondary atocage is 
accessed via the latter unit.    Configurationa of up to 
eight processors, and as  few as one, are planned, with 
nominally three,    A 32-blt word, with additional bits 
added for error-detection, haa been chosen, 

A full complement of multiprocessirg is provided by the 
system software.    Processes may be dependent or 
independent of each other.    Each processor is 
multiprogrammed by a "floating" operating system executed 
by any processor, as necessary.     Interprocess 
communication is supported, and processes may field their 
own  Iterrupts if they choose. 

The instruction set of the processor is designed to 
support  the execution of high-order block-structured 
languages, such aa Algol, PL/I, and HAL,  the laat being an 
Intermetrica-deslgned language also sponsored by NASA/MSC. 
The inatruction set somewhat resembles that of the 
Burroughs B670O, although aubstantlal differencea have 
been  introduced.     It la planned that only high-order 
source  languages will be supported.    The system is 
designed to tolerate "all"  faults in the hardware, 
provided that aecond,  independent,   faults do not occur 
before recovery action la complete.    Our experience with 
the error-prone diaclpline of aoftware reatarts on the 
Apollo program haa »teered the design.    Comprehensive 
error-detection facilities are provided in the hardware, 
so that detection is  immediate and highly probable. 
t'urthermore, sufficient redundant information la 
maintained In independent locations so that the operating 
syntem and hardware capabilities are adequate to continue 
execution of all processes  (subject  to reduced performance 
limitations) witho'it explicit particlpstion by application 
software. 

Processors  ire dually-redundant  to provide complete 
error-checking capability.    Instruction execution is 
devised so that inputs are always preserved until 
error-free completion is signalled;  thus  re-try is always 
possible.    Processor state information is maintained in 
local memory which is externally accessible,  so that 
execution of an inatruction interrupted by a processor 
fault may be resumed by another processor if re-try proves 
unsuccessful. 

Main memory is dynamically time-multiplexed,  using 
variable-aize segments, similar to the B67O0,    The 
read-write  funcilona of the memories are implemented in a 
way that enables duplicate Htorage of information when 
this is specified via the high-order-language.    Procedure 
code and other read-only data id.il be resident in 
secondary storage, and thus need not be duplicated in main 
store.    Variable data may or may not be stored doubly;  if 
not,  the owning process will be marked for termination if 
such data is destroyed through memory  fault.    The 
duplicate storage of apedfied data, although supported by 
hardware,  is  relatively transparent  to  the memory 
management aoftware; no spedally-dealgnated memory 
modules are used. 

4.  JUSTIFICATION: The design is  relatively complete, but 
has not been evaluated by any formal procedure.    Somewhat 
deliberately,  it was baaed on working architectures  to 
reduce the number of possibilities  for unanticipated 
difficulty. 

As mentioned above,  processors are duplexed,  and some 
information contained in main mumory is stored 
redundantly.    An additional "overhead"  for fault-tolerance 
is    triple-redundancy in certain access-elements of main 
memory,  and the I/O controller. 

In our Judgement,  the system we have deaigned is suitable 
for Implementation in any application where  transparency 
to faults and continued operation are worth  the cost o! 
the redurlancy.     It is emphasized that  comprehensive 
error-det   't on, apart  from recovery,  is  responsible  for 
much of t[., additional cost. 

No claim is made  that the system is  tolerant of software 
flaws.    However,  the Insistence on use of high-order 
language is expected to reduce the probability of such 
errors, both by mcklng their commission less  likely, and 
by implementing error-detection features in the languages 
and compilers.    Run-time checking will be provided via 
hardware features  (where possible)  and by 
compller-inaerred code to at least signal the occurrence 
of software misbehavior, before the effects can propagate. 

5.  CONCLUSIONS:   Intermetrics believes  that  its 
fault-tolerant HOL-machlne would be cost-competitive with 
a "conventional" system manufactured In the same quantity, 
since the memory saved by usage of HOL instructions  is 
expected to be significant.    Further development will be 
pursued. 
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auRVET OF FAULT TOLERANT COMPUTER SYSTEMS 

Donald C. Wallace 
Stanford Ksaaarch Inatltutt, Manlo Park Ca, June  72 

1.   IDENTIFICATION 
1.1 NAMEiCOMEX- Online o-det handling systea 

1.2 RESPONSIBILTlf: P.C.Senric« Corp.   (subaidiary Pacific 
Coast Stock Exchange) 

1.3 SUPPORT:   Member  firaa  of PCSE 

1.4 PARTICIPANTS: Member flma of PCSE 

1.5 START:  Contract let       i7 November  1967 

1.6 COMPLETtON:  System accepted - * December 1969 

1.7 BIBLIOGRAPHY: The most accurate deaription of the 
COMEX is the final document ilun delivered with the system. 
Docunents! 
Specification for data processing and consmnlcation 
equipment  for Pacific Coaat Stoc Ex-hange PC Service 
Corp.,   1967 
Proposal for Real-Tlme Order Handling System BBN 
fp68-DE-01,4 August  1967 
Contract  for Real-Time Order Handling System for Ptcific 
Coaat Stock Exchange BBN/PCSE,17 November 1967 

2.  MOTIVATION 
2.1 PURPOSE:  Real tine odd-lot order execution 

2.2 PHYSICAL ENVIRONMENT; Ground baaed 

2.3 COMPUTING ENVIRONMENT:  Tlie system serves  tvo trading 
floors,  one in Los Angeles,  the other In San Francisco. 

2.4 COMPUTING OBJECTIVES:  COMEX is designed to handle 
virtually all low-speed teletype speeds,  levels and code«. 
It appears as a node on each of the connected broker firms 
connunlcatlon networks and must conform to the line 
protocols and hardware constraints of that network.    The 
design objectives were tor 64 "nodes" in LA.  and 64 in 
SF.,  and for a maximum meaaage-switchlng traffic of 25,000 
orders/transactions per day. 

2.5 RELIABILIT' OBJECTIVES: The system was designed to 
provide 99J;+ uptime and with a no "message loat" criteria. 

2.6 DYNAMIC VARIABILITY:  The ayatem is designed so that 
order entry ia performed in real tine, but the order 
execution process may lag an arbitrary period of time.     In 
operation this  lag never exceeds  20 minutes   (approx.??). 

2.7 PENALTIES:  COMEX has various degreea -•{ degradation, 
the ultimate being total manual operation and execution of 
the orders by the specialiats on the trading floora. 
Esoteric software/hardware malfuncticna could cause 
extremly  large manual intervention pruulens aa the system 
Is  really buying and selling stock on the behalf of 
members of the exchange. 

2.8 CONSTRAINTS: The PCSE is  really two exchanges with  two 
different trading floors, one in Loa Angeles and one in 
San Francisco.     For reliability reasons  the system Is 
fully redundsnt.    A PCSE constraint on the system was that 
the system be equally split between the  two sites. 

3.  DESCRIPTION 
3.1  ARCHITECTURE 
3.1.1  CONFIGURATION 
3.1.1.1 INTERCONNECTIVITY:  See diagram which shows  the 
twin IBM 360 computers and the 680 systems each of which 
Includes a DEC PDP8 computer. 

3.1.1.2 RANGE:  The ayatem Is really tvo aystaiM running in 
parallel.   It Is sensible to run them aa single units or a 
fully redundant system.    Two configurationa are possible:- 
Non-partitionad trading floora: 

LA-rcmote680, SF-local6K and SF-360 
SF-renote680, LA-local680 and LA-360 

Partitioned trading floors: 
SF-local680 and SF-360 
LA-local680 and LA-360 

3.1.1.3 CAPABILITY; COMEX consists of two  (2)   360/50 
computers plus  the  front-end communications ayatema. 

3.1.2 EXECUTIVE and operating system: COMEX runs under 
IBM/360 DOS with its  fixed nuiLber of multiprogra» 
partitlona option. 

3.1.2.1 MODES of operation:  The order execution process 
runs in a high priority partition of DOS while normal 
operation of PC Service Corp.  computer operations are 
being run in other "foreground" and the background 
partitlona.    The comnunlcation proceaa  (in the bSO's)  is 
dedicated and allows no other functiona. 

3.1.2.2 SOFTWARE organitation:  Baaically the 680's do 
character aasembly  (bits),  line protocol  interpretation 
(answer back, echo, etc.), message segment aasembly,  1/0 
buffering,  transmission  to local and remote  360'8.    The 
3*0's do message switching, code translation, message 
decoding  (syntax analysis), order queuing,  decoding of 
NYSE and AMEX tickers  (identify tradea), execute queued 
orders, send confirmations  to broker and apecialist. 

3.2  FAULT TOLERANCE 
3.2.1 FAULTS TOLERATED:  Essentially the system will 
tolerate any or «11  failures in a single system (i.e., 
backup or primary). 

3.2.2 TAULTS NOT TOLERATED: Any simultaneous  failures  In 
both the primary and backup ryatem causes  loss of 
integritry of the data files.    This  ia considered a 
cataatrophic event and some manual correction and 
Intervention for order execution and notification will be 
needed.     (To my knowledge this has only occured onci   In 
the almost tnree years of operation.) 

3.2.3 TECHNIQUES: 
HARDWARE: The COMEX systam is i.ompletely  reuundant 

(two of everything),  and both systems  run in parallel 
The major design criteria was that nothing ahould hap)en 
in one syatem half that could adversJy effect  the nth r. 
This led  to the system interconnections  (PCU)  b»tng 
unidirectional and step-locked In a "here's a word,  take a 
w „ fashion.    AU TTY connections to the ayatem are dual 
dropped and there ic a hardware interlock to prevent both 
680 machines   from outputlng to a line at  the saw  time. 

SOFTWARE: The software   (s designed to be very 
modular,  and no control flow exists betveer. functional 
routines.    Control  flow Is between the COMEX scheduler/ 
executive and each  fun.tlonal module.     Data Is passed from 
function to function by means of  stacks and lists,  and 
standard ayatem global  coutines are used to accomplish 
this.    Both systems are actually performing the entire 
order execution taak In parallel and there Is  reslly no 
contunlcatlon between them.    The only difference Is  that 
the "backup" system is not outputlng transaction 
conflrmationa and order receipt notifications.    The backup 
system mslntalns a queue of the  laat "n" messages  to each 
line In the syatem.    When »witch-over occurs,  these 
messages  are output  to the specialists/brokers with a "may 
be duplicate" tag, 

3.3 NOVELTY: The Interconnection of the DEC 680's and the 
S/360's is accomplished without  re-uiring modifications or 
additiona  to  the  IBM operating system or providing 
"special"  I/O todulea.    The ABO's  (two of  them) have a 
S/360 channel equivalent  (FCU)   that talks  to the IBM 2841 
disk controler with  the two channel  feature  (8100).    This 
is  the equivalent  of having two 360 systems  talking to one 
disk system.  This ia a standard IBM configuration 
possibility  (though not supported by  IBM software).     If 
the uaer Is willing to accept Implementing hia own 
read'write  lock mechanisms  there is nothing In the IBM 
syatej to preclude  this mode of operation.    Given all of 
the above It  la now possible to write s communications 
system strictly at  the uaer level  using standard IBM 1/0 
software.     Data Just "appears" on the disk and ia read 
into tha  360 and is in turn written on the disk and Just 
"disappears".    The data from the 680*8  is written as a 
sequentially ever growing file,  capturing an entire day's 
transactions.    This allowa "rerunning" a day's 
transactions  in  real time to find obscure bugs. 

3.4 INFLUENCES: After spending -ever»!    ears working on 
modified or baatard  360 Systeme and realizing the effort 
level  to maintain these systems given ehe  freqi«ncy of new 
IBM releases,  It seemed Insane to design a ayatem that 
relied on any thing except the most rudimentary features 
of the IBM monitor.    The approach described haa proven 
very successful in over three years of operation.    To my 
knowledge no problems have been encountered due to the 
monitor/ Comex system Interface. 
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4. JUSTIFICATION 
4.1 RELIABILITY EVALUATION: The avstem hu met  «id 
exceeded the design criteria over the last 2 years of 
operation, 

4.3 OVERHEAD:  Since the system la  totally redundant, at 
least half the    oat of the coantmlcatlons  front end Is due 
to reliability requirements.  The rellabllltv vequlrements 
of the system probably did not  contribute significantly to 
the software design, and probably helped in the checkout 
and operational phases. 

4.4 APPLICABILITY: The system haa general applicability 
for cosDunications and message switching systems where the 
base computer facility oust be  IBM (for what ever 
reasona).    It offers aignifleant cost savings when 
compared to an equivalent all-IBM equipment configuration. 
Its novel interfacing technique allows  the users to 
concentrate on the application program and offers  long- 
term savinga in effort by not having a modified IBM 
operating system.    The ay*i.4n has specific applicability 
to other email or moderate si^ed stock exchanges both U.S. 
and foreign. 

4.5 EXTENDABLILITY:  There appear to be no obvious 
extentions to the systen as  far as capacity is  concerned. 
Two- or three-fold Increases in throughput are possible 
whereas factors of t'«n are out of the qt'stion.  Since the 
next obvious exchange automation task is either NYSE or 
AMEX and the voliini' of message traffic for those exdtangi 
is staggering.    COMEX most  certainly has no real  logical 
extension for th—? situations.    Specific experience and 
techniques  in deling with automation of a stock exchange 
process may have general applicability. 

4.6 CRITICALITIES:  A specific goal  In hardware deslpn not 
to exceed the "state of the art" was imposed by PCSE to 
gain assurance of reliability.    This constraint caused the 
selection o.  hardware that most assuredly is obsolete by 
today's standards  (e.g., bit serial TTY interface), 
greatly restricting overall I/O capacity  (like maybe a 
factor of  10), 

5.   CONCLUSIONS 
5,1 STATUS. The system is currently handling  15Ji of  the 
maximum iiessage switching capacity of 25,000 order 
transactions per day.     It  is undergoing significant 
modification to handle round-lot traffic, which 
potentially will increase  load to 50Z of capacity within 
the next   18 months.    Studies are underway  ( - evaluate 
high-speed I/O capability. 

5,2 EXPERIENCE;  Overall system operation has been highly 
satisfactory to the PCSE, 

TIME 
>NTEI*ML 

TELETYPE 
WUtTIPLEHEHH 

«85 

* 
/ 

5L 

iW U 

POP   I 
noev urn 

na t 

TIMC 
■ffJDML 

«WMTOft 

SAN  FRANCISCO 

COMEX      SYSTEM   -   PACIFIC   COAST   STOCK  EXCHANGE 

41 



Wanwr Ulrich, Ball Labs 
NapcrvlUc,  UUnola 40S40 Hay 1972 

Eaaantlally,  Alt questionnaire rapraaants the entire body 
of publl-ned materlil an ulncanance aapecta of ESS,   I 
hav« thf.rafora taken the  liberty of aaoding a bibliography 
In pUca of a coaplatad quaatlonnalra.    You will notlca 
that Boat of tha art Idea ara quite brief wich the 
except inn of Itaaa 1 and 2 which ara coaplaca liaacriptlona 
of the No.  1 and No.  2 ESS aaintananca plan, and learn 3 
which la a longer arcicle on a apaciallied datall of our 
trouble location unual or dictionary approach, 

Tha bibliography, in addition to artlclaa on No.  1 and No. 
2 ESStContaina itaaa on our data awitchlng system (never 
cosaarcially offered.  Item 5),  the traffic aarvica 
poaltion ayatac  (item 9),  and a military  application of 
No.   1 ESS   (Item 14). 
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1.     IDENTIFICATION 
1.1 '.AMI-::  Modular Spacecraft Computer 

1.2 RESPONSIBILITY:     SAHSO/SYT,   Loa Angeles AFS,  Ca. 

1.3 SUPPORT: Not available 

1.4 PARTICIPANTS:  Raytheon Company,  Sudbury, MA., 
Ultrasystema,   inc., Newport  Beach, Calif. 

1.5 START;  Project atarted nild-1971 

1.6 COMPLETION:  Architecture study  completed January 
1972. Other efforts continuing. 

2 MOTIVATION 
2.1 PURPOSE: Support of all satellite data proceaaing 
requirements 

2.2 PHYSICAL ENVIRONMENT; In satellite 

2.3 COMPUTING ENVIRONMENT: Hardwired to environment 

2.4 COMPUTING OBJECTIVES: Approximately 200K operations 
per second. Memory expandable to basic 32 bit word fovmat 
with 64K words of memory. 

2.3 RELIABILITY OBJECTIVES: High reliability for 3 year 
life 

2.6 DYNAMIC VARIABILITY; Eaaentially no variability 

2.7 PENALTIES:  Loss of major satellite functions 

2.8 CONSTRAINTS: 2 3 pounds and 30 watts. 

3. DESCRIPTION 
3.1 ARCHITECTURE 
3.1.1 CONFIGURATIONS: Not available 

3.1.2 EXECUTIVE 
3.1.2.1 MOOISl    Inten-uptlble but not a true 
multiprocessor 

3.1.2.2 ■   tTWA.<l :   Not yet  developed 

3.2 FnULT TOLERANCE 
3.2.1 FAULTS TOLERATED;    Trarsient and permanent—.ill 
logic types.    Also can tolarc   ' catastrophic faulte. 

3.2.2 FAULTS NOT TOLERATED:     Faults  resulting from major 
phyalcsl damage. 

3.2.3 TECHMiqUES:    Replication; coding; repetition and 
rollback;  and reconfiguretion.       Techniques  used 
statically and dynamically. 

3.3 NOVELTY;    Extensive dynamic   redundancy 

3.4 INFLUENCES;    Not  avsllable 

3,3    HARD-CORE;    Configuration Control  Unit la 
trl^iy-modular-redundant, controlling all retries and most 
reconfigurations, 

4. JUSTIFICATION;    Not available 

3.     CONCLUSIONS 
3.1 STATUS:    Performing  Interpretive simulation 

5.2 EXPERIENCE;    Architecture very suitable  for Intended 
application 

5.3 Fl'TURE;    Not available 
5.4 ADVANCES:    Not available 

6.     COMMENTS;     Fault-tolerant   computers  can make a major 
contribution to long duration space missions. 
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ABSTRACT 

A hierarchical design framework for fault-tolera^ 
considered here  Th* < . ..  . tolerant computing systems Is 

red here. The Intrinsic flexibility and dynamic 

IZlZtT Tre8Ult preatly enhance the —— of system operation and system development. 

INTRODUCTION 

cone »ion th« c.r.f„lly COI,celved lnternal ° 

b.n.Hcl.l to the *ol. develop»«« process      It .. th    "" 

it;:::" r a"ch ~ -----: L" :.con",,tlM 

correct performance despite Internal malfunctions. 

A framework la considered here which oermii-- . ■.-. 

for  fault tolerance to be applle a IT "^ ^ teChnlqUe8 PP    at each of various levels In A 
hierarchy, when and where most effective  Thla M    T 

rective. mis hierarchical framework 
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permits fault tolerance to be achieved at low cost, especially In 

systems with some real-time leeway. Various Implications are examined. 

The framework Is applicable primarily to designs for new systems. It is 

also suitable for the software of some existing systems. Finally, a 

problem is considered which is greatly simplified by employing the 

hierarchical framework. This is the massive-transient recovery problem, 

in which arbitrarily many unknown faults may have occurred. 

FAUI.T-TOLEK  E TECHNIQUES 

A variety of techniques exists for increasing system fault-tolerance 

/1-2/. Two basic types of techniques are usually found in execution, 

static aud dynamic. STATIC techniques involve preplanned actions with 

no changes in the operating environment or in the flow of jontrol 

("fault-masking" via coding, replication with voting, etc). DYNAMIC 

techniques involve detection and diagnosis of faults, followed by a 

non-trivial corrective action. Examples include repetition (e.g., 

rolling back the entire system to an earlier valid state) and 

reconfiguration with or without replacement by spares (e.g., removing or 

working around faulty units, and either substituting spares or accepting 

a degradation in capacity). In certain cases, human intervention is 

useful. Fre-execution techniques are also useful, e.g. proofs of 

correctness of programs and design. Note that static techniques may be 

found in dynamic usage, e.g., replication used only for particular 

processes ^c certain times (see below). Similarly, conceptually dynamic 

techniques may appear in static usage (e.g., instruction retry in which 

all eventual results are buffered making rollback trivial). 

LEVET,S OF STRUCTURE AND DYNAMIC RECONFIGURATION 

Many design approaches assume that essentially all single faults are 

equally critical. In reality, certain faults may be far more critical 

than others. Thus a system architecture is desired in which fault 

tolerance techniques may vary In time and space, depending on current 

usage and on the critlcallty of the errors which might otherwise result. 

As used here, "dynamic reconfiguration" implies alteration during 
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execution of the fault-tolerance techniques, or of the rest of the 

hardware and software, or both. The framework presented here 

facilitates control o* such reconfiguration. It reduces system overhead 

(hard- and soft) due to fault tolerance, and increases the overall system 

effectiveness. 

Numerous levels at which these techniques for fault tolerance may be 

applied are readily identifiable. These levels range from components to 

modules to processors; from bits of memory to words to blocks to memory 

modules to hierarchies of diverse types of memories (e.g., as in a 

virtual memory. In which all memories in the hierarchy appear to the 

external interfaces as a single level); from hardware to microprogram 

through various levels of operating system software to command software 

to user programs; from system elements to systems to networks of 

systems. 

A very significant system structure is given by Dljkstra /3/. Details 

Internal to implementation at a given level are made invisible to all 

higher levels by the interface language at the given level. Capability 

at that level is dependent on the capability of the next lower level, 

and is precisely that provided by the interface language. The use of 

these distinct "levels of invisibility", or "levels of abstraction", is 

highly beneficial to system development. Two familiar examples are the 

invisibilility of a cache memory to a program and the invisibility of 

tnultiprograuming to a user. 

THE HIERARCHICAL FRAMEWORK 

The desired hierarchical framework for fault- tolerant computing systems 

is as follows. 

(1) Various levels of structure are established explicitly in the 

design as levels of invisibility. Control and conmunication facilities 

must be provided.  (Useful mftchanisms are known for this purpose, e.g., 

for coordinating among processes — both to avoid conflicts and to 

permit sharing of programs, data and control ~ and for communicating 
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among or within levels. Except for deadlock avoidance, these mechanisms 

are fairly dear-cut.) 

(2) Associated with these levels are possible configurations of 

fault-tolerance techniques and possible modes of dynamic 

reconfiguration. 

(3) Analysis, simulation, and operating experience should be used to 

study the relative effectiveness of these techniques under varying 

demands and of reliable algorithms for deciding how and when to switch 

smong configurations. The suitability of the choice of levels should 

also be evaluated. 

An illustration of this framework is provided by Table I. The first 

column of ihe table identifies some typicel levels of invisibility. 

(Lower levels are toward the top of the table.) The second column gives 

examples of concepts invisible at each level. The third colimm shows 

techniques which can enhance fault tolerance at each level, and whose 

details should be invisible at higher levels. Those techniques in the 

table which lend themselves to dynamic reconfigurability are indicated 

by an asterisk. The dynsmic control over reconfiguration of such 

techniques may be done Internally, or via the interface language for the 

appropriate level. Techniques at one level may be applied relatively 

independently of those at other levels, if desired. 

As an example, consider a system normally configured as five independent 

multiprocessed processors. At the VIRTUAL SYSTEM level, each user (or 

application environment) deals with a command language interface to the 

system. At the VIRTUAL PROCESS level, each virtual process may in turn 

employ one or more processes, either to exploit intrinsic parallelism 

(e.g., simultaneously processing, moving a file, and printing) or to 

provide redundant computations. At the VIRTUAL PROCESSOR level, these 

processes may be executed on the same or on different processors. The 

configuration might on occasion include two processors in a comparison 

mode with two identical processes (or with two different algorlthmi), or 

three processors in a voting mode, or even in rare cases five in s 
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INVISIBILITY LEVEL 
(««•■pie») 

Component», chip» 

Module» 

Functional unit«: 
Proce»»or», 
central, etc. 

Hanoric» 

Input-output 

Virtual hardware 

Virtual proee»»or 

Virtual  process 

INVISIBLE CONCEPTS 
(axaaplaa) 

APPLICABLE FAULT-TOLERANCE TECHNIQUES 
(cxaaplaa) 

Virtual memory 

Virtual  input- 
output 

Virtual system 

Virtual network 

Tachnology detalla, 
fabrication method» 

Board layouta, pin 
connections, timing 

Proceaaor algorlthM 
Address calculation 
Bua control 
Interrupts 

Cache mechanism» 
Internal representa'ion 
Internal configurations 
Device characterlatlci. 

Madia properties, 
device dependence 

Configurations 

Multiprocessing— 
processor multiplexing 
for distinct processes 
Array computing 
Processor dispatching 

Multiprogransing— 
process multiplexing on 
a virtual proceaaor 
Process scheduling 
Virtual Interrupts, 
process Isolation 

Multiplexing of memory 
hierarchy; locations, 
relocations, backup and 
retrieval, directories 

1-0 multiplexing, 
virtual devices 
Exception handling 
Aaynchrony, buffering 

User multiplexing, 
sharing of data 
System correctness 

System multiplexing 

Intrlneically reliable technologlea, good englnaarlng, 
quality control, coding and fault-masking, replication 

Conservative deaign, reliable connectors, environmental 
control; •Diagnoala, component replication, replacement 

»Automatic Instruction retry, arithmetic coding 
Bound» checking, memory protection 
•Alternate routea, coding, degradable priority mechanism» 
*Race-free fail-operational interrupt design 

•Automatic reloading 
•Coding on memory contcnta 
•Reconfiguration around bad memory (via paging, de-interlace) 
Use of read-only memories to avoid ovetvrlte and nld recovery 

•Coding on contenta of media and transmission 
•Verification, checking, reread and compare after write 

•Configuration aensing and a» f-reconflguration, powering on- 
off (e.g., spares), distributing and replacing power supplies 

Coding, handshaklnr on interprc>ce»sor ronnunlcation, avoidance 
of interprocessor Interference; *Repllcatlon of physical pro- 
ceaaors as a single (virtual) proceaaor, voting aa needed 

•Reconfiguration and replacement within the array 
•Configuration insensltivity via checked table-drlvlug 

•Replication of virtual processors for a single process 
•Independent computational checks (via poaalbly distinct 
processes) as aingle virtual pro-ess;  •Automatic rollback 

•Explicit measures of permitted degr/idatlon per process 
Safeguarda on interprocess comunication (vs. lost interrupts, 
blocked polling), avoidance of interproceaa Interference, 
intraprocesa protection (rings, capabilities, manter modes) 

•Replication of critical data in varioua places in hierarchy, 
including reliable cheap backup store;  •Automatic rollback 
Redundant pointers In directory structure and file maps to 
permit fast recovery; Access control on files (e.g., write 
protection) and the use of pure procedure to inhibit loaa of 
critical data or programa and to aid in automatic rollback 

Handshaking to avoid loss of Information; •Statu» information 
•Device »witchability, media replication 
•Coding (e.g., redundant headers); •Flexible error handling 
Race-condition and deadlock avoidance 

Isolation of users from the system snd each other; 
•Controlled shsrlng (If any); Self-identifying deacriptors 
•Validation, evaluation of effectiveneas and correctness 
*nn-line maintenance; Good compilers, diagnostics, debuggers 

•Coding on intersystem communication, alternate paths 
•Detailed status of network control and network requests 

TABLE 1. Examolea of techniquea for fault-tolerance applicable to varioua level» of invlalbillty 
Aaterlaks denote techniquea particularly amenable to dynamic reconflgurablllty. 
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voting mode.  In these modes there may be 4, 3, and 1 distinct virtual 

processCes), respectively, Instead of 5 as In the fully multiprocessing 

mode.  (Several of these modes are also useful if some processors are 

not operational. In which case replacement Is also desirable.) The 

Internal mechanics of such mechanisms should be mostly Invisible to each 

virtual process. 

At the VIRTUAL MEMORY level, device addresses are Invisible. When being 

actively used, a virtual memory page may In fact be found In various 

states of recency and/or In various modes of replication on various 

devices In the memory hierarchy, even in the absence of fault-tolerance 

techniques.  For example, in a paged environment, various instances of a 

given page may exist simultaneously in a cache-type memory, in primary 

memory and in secondary memory. If it is procedure that is "pure" 

(unchanged by execution), then the contents of all Instances are 

identical (barring errors); if it is data, the instances may differ. 

In the present framework this natural temporary proliferation can be 

used constructively to provide checkpoints, thus greatly facilitating 

automatic rollback.  This is especially useful with various Instances of 

critical data. 

At the MEMORY level, coding techniques offer very Inexpensive 

fault-tolerance. Only 8 redundant bits are needed to provide 

single-error correction for 6A-bit words in memory and arithmetic, a 13% 

increase in memory cost.  (The cost of error correcting circuitry is 

small by comparison.)  Coding techniques also lend themselves to dynamic 

reconfiguration. One such approach involves different uses of a 

particular encoding.  Consider for example a code with Hamming (or 

arithmetic) distance A for single-error correction and double-error 

detection. When the multiple error rate is high, the code may better be 

used for triple-error detection (accompanied by increasingly loud cries 

for help).  (Another example is using a byte-error correcting code as a 

multiple-error detecting code.) A second approach involves varying the 

encoding itself, e.g., changing the redundancy. 

Similarly at the MODULE level, multiple arithmetic or functional units 
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tied to a control unit may be used in replication for fault tolerance, 

in synchronem as in the ILLIAC IV for handling parallelism in 

computation, or independently. The first of these applications 

substantially increases reliability, while the others may substantially 

increase the computational throughput. 

Explicit levels of structure are now evident in a few recent operating 

systems.  For example, the Multics protection hierarchy (see /4/) 

provides successive levels of resilience to errors in its levels of 

protectability. A spectrum of criticality exists with ttspect to 

faults. Only malfunctions (hard or soft) involving the lowest software 

level affect the viability of the system. Others have diminishingly 

serious affects on the correctness of operation as the level increases, 

e.g. aborting a user's process or one command. As with hardware, 

software techniques for fault tolerance may differ from level to level. 

IMPLICATIONS OF THE HlEk^RCHICAL FRAMEWORK 

There are numerous advantages of this hierarchical framework. These 

include considerations of reliability, computational capacity, and cost. 

(1) A wide variety of techniques can be applied, each where it is most 

effective, responsive to the needs for fault tolerance and computing 

capacity, and subject to the cost factors. Each configuration can be 

dynamically altered, based on the current usage of the system.  (This 

may affect more than one level at once.)  The net cost of system fault 

tolerance can therefore be reduced, especially if rarely used techniques 

can be performed reliably in software. Considerable savings also result 

if occasional modest real-time delays are permitted »,e.g., for 

diagnosis, recovery and reconfiguration), further reducing the need for 

dedicated hardware. Nonuniform costs also permit the reduction of the 

incremental cost of fault tolerance. If memory costs (including 

secondary storage) dominate total hardware costs, then the relatively 

small cost of redundancy in memory (e.g., logarithmic for single-error 

correction in memory and arithmetic) may dominate the incremental cost, 

even with replicated processors. If memory costs do not dominate, then 
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memory Is relatively cheap and logic-ln-memory architectures  (see below) 

may be of interest.    The framework also facilitates checkpoint 
mechanisms which permit varying degrees of rollback as needed, involving 

different levels of the hierarchy.    On-site maintenance is also aided, 

as are on-line interactive diagnostics. 

(2)    In general, computing capacity not currently dedicated to fault 

tolerance is available for useful computing, assuming reasonable system 

balance.    It is desirable to have pools of modules, of functional units, 

of processors, and of Systeme to configure among.    The multiplicity of 

each pool should be large enough so that the mesh of graceful 

degradation is reasonably smooth and that the loss of any unit is not 

serious.    This increases the overall system effectiveness, in terms of 

both computing capacity and fault tolerance. 

(3) The intrinsic structure of the hierarchy enhances each stage of 

system development, including the stages of designing, implementing, 

documenting, debugging, certifying, analyzing, maintaining, and 

modifying a system.    At each such stage the notion of levels of 

Invisibility permits issues of fault tolerance relevant to lower levels 

to be abstracted and analyzed, aiding in isolating any side-effects. 

Thus the framework serves as a useful model as well. 

(4) Recent technological advantages  (e.g., LSI) significantly improve 

the cost-effectiveness of «any of the techniques.    These advances should 

also stimulate new architectural directions, such as multiprocessors 

with considerable multiplicity, and distributed-logic or logic-in-memory 

designs.    The latter case Involves large arrays of small memory 
elements, each containing processing capability.    These arrays may be 

organized into subarrays of subarrays, possibly with structures 

geometrically oriented toward the problem to be solved. 

There are of course many questions left unanswered, 

(1)    Questions of overhead and reliability resulting from the control of 

such systems must be examined carefully.    It appears that the overhead 
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can usually be kept small, except when fault-tolerance limits are 

approached.  It is obviously desirable that the mechanisms for 

controlling reconfiguration must themselves be fault tolerant, thrash 

resistant, and reconfigurable.  Interference problems and 

intercommunication must also be handled reliably. 

(2) This framework seems particularly effective for large 

general-purpose systems. How effective it can be under various 

circumstances, e.g., for small systems, for those with tight real-time 

constraints, requires further study. 

(3) How can the various tradeoffs among fault tolerance, computing 

capacity, cost, overhead, etc., be characterized? Under what 

circumstances is it desirable to reconfigure? What kind of limiting 

behavior occurs as computing capacity or fault-tolerance capacity is 

reached? What are the penalties associated with having too many or too 

few levels? What happens to the notion of the "weakest link"?  Can it 

be distributed among less weak links? How does it shift during 

reconfiguration? 

THE MASSIVE TRANSIENT RECOVERY PROBLEM 

As an example of a specific problem which can be greatly simplified by 

the adoption of tiue hierarchical framework, consider the "massive- 

transient" recovery problem: 

A correlated fault source (e.g.,a power surge or a bolt of lightning) 

has left all units of the system suspect, perhaps introducing both 

transient and permanent faults. The problem is for the system to 

diagnose and configure Itself back into a working configuration and to 

validate itself for correctness, all under Its own control. 

This problem is essentially a generalized fault- tolerance problem, 

where performance may cease temporarily during and just after the 

massive transient. It is also closely related to normal system 

Initialization. The hierarchical framework and the dynamic 
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reconflgurablllty bof.h aid greatly in solving this problem. One 

solution involves reestablishing minimally correct hardware by 

bootstrapping upwards from the lowest levels of the hierarchy, until a 

satisfactory rudimentary system is obtained. It is also desirable to 

validate downwards from the higher levels. This solution is aided by 

the UST; of a hard-wired non-volatile read-only memory which provides a 

basis of correct programs for recovery. Further help is offered if this 

meiaory is directly executable and the programs are pure, and if these 

programs operate only cat of local memory at first. By working up the 

hierarchy, valid portions of the system begin to emerge.  (Another 

solution might involve trying experiments on various configurations of 

the whole system.) Note that this problem may be Intrinsically 

insoluble for a given system. It may also oe insoluble for the 

particular massive transient, e.g., becaus» not enough operational 

equipment remains to self-diagnose and configure a valid system, or even 

Just to operate such a system.  (More equipment might be required for 

diagnosis than for operation.) 

CONCLUSIONS 

The hierarchical framework presented here appears to have great 

potential in the design of fault-tolerant systems. It can increase the 

effectiveness of new systems as well as the ease and flexibility of 

their development and operation.  It should increase in utility as 

technological advances permit much larger systems to b? developed. 

Further study is intended. 
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