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THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of
sclence and technology relating to aercspace for the following purposes:

-~ Exchanging of scientific and technical information;

- Continuously stunulating advances in the aerospace sciences relevant to strengthening the common defence
posture;

~ Ymproving the co-operation amrong member nations in aerospace research and development;

- Providing scientific and technical zdvice and assistance to the North Atlantic Military Committee in the
field of aerospuce research and deveiopment;

- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations
in cornection with rescarch and develupment problems in the aecospace field.

~ Praviding assisisttize to member rations for the purpose of iacreasing their scientific and technical potential;

- Recommending effsctive wevs for the member nations to use their research and development capabilities
for the common benefit of tie NATO comnuunity.

The highest authority within AGARD is the National Delegates Board consisting of officially appeinted senior
representstives from ecach Member Nation. The mission of AGARD is carried cut through the Panels which are
somposed for experts appointed by the National Delegzates, the Consultant and Exchange Program and the Aerospace
Applications Studies Program. The results of AGARD work are reported to thz Member Nations and the NATO
Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations,

Published July 1972

629.7.015.3
629.7.016.55
$529.792

—

%@

Frinted Sy Tecanical Lditing and Reproducivon Ltd

Harford House, 7-3 Charlonte St Lendon. WIP 18D

g&.i‘l,

PATE PR s




R S e e

~ Wu, oot WO ey e AT RS =
s e R e S sz?"‘.‘:‘i-%@«}f« TG e raget 57

L. ad,

PREFATE

A Lecture Series, directed by Professor Kurt £nkenhus, was held in January, 1970
at the von Kirmdn Institute, Rhode-St-Genése, ncar Brussels. In April, 1971 the Fluid
Dynamics Panel of AGARD agreed to the publication of these lectures, to which have
been added subsequentily two further papers (on viscous and real-gas effects), which
formed part of a VKI Lecture Serics entitled High-altitude Aspects of Lifting Re-entry
Vehicles, held in May, 1971, with Dr John Wendt as Lecture Series Director.

The resultant set of papers now appears in two volumes. The second of these is
concerned entirely with propulsion, and has already been published as ONERA Note
Technique No.169 (“Propulsion des véhicules hypersoniques”, 1970): acknowledgement
is due to ONERA, France, for permission fo reproduce this paper in its original form.

Acknowledgementi is also due to several of the lecturars for modifying their
original manuscripts in order to make them more suitable for publication in printed form. ,
The AGARD Fluid Dynamizs Panel member responsible for review of the original material ;
and for general editing of the pubiication was Dr R.C.Pankhurst (UK).

PREFACE

Un cycle de conférences a été organisé en Janviar 1970, A I'lustitut von Kiarmir ae
Rhode-Saint-Cenése, prés de Bruxelles, sous iz direction du Professeur Kurt Enkentaus.
En Avril 1971, le Groupe de Travail de Dynamique des Fluides, de ’AGARD, appro» .«
officiel:ement la publicztion de ces conférences, auxquelles furent ajoutées ultéri- urement
deux communications (sur les effets de lu viscosité ot des gaz réels), présent# s dans le
cadre d'un cycle de conférence: de I'IVK sur “Les aspacts, aux altituder cievées, des
véhicules de rentrée portants”, qui eut lieu en mai 1971 sous la dire.don du
Dr John Wendt.

PR T

Ces exposés font I'objet de deux volumes. Le sccona est entitrement cons?.cé d
la propulsion et a déji é:é publié par 'ONERA cn tan: que Note Technique 2«0. 169
(“Propulsion des véhicules supersoniques™, 1970). Nous remercions 'OM<RA (France)
de nous avoir permis de reproduire catte publication sous sa forme r.ginale.

AL bam Faak @SN R o E W amas

Nous exprimons également nos remerciements aux confé enciers qui ont modifié
le texte original de leurs exposés afin dz les rendre plus ad.ptés A I'impression. Le
membre du Groupe de Travail de Dynamique des Fluid.s de 'AGARD, responsable
de la révision des textes originaux et de leur prépara’.on 3 ia publication, est le
Dr R.C.Pankhurst (Royaume Uni).
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GENERAL INTRODUCTION

The purpose of the Lecture Series on “Aerodynamic Problems of Hypersonic Vehicles”
ko2 in January 1970 was to review current progress on specific areas of hypersonic
yehidie uesign.  Some peneral oonclusions from the course can be stated. The cost of
developing liypeisomic air-breathing propulsion systems js s high that the design of
vehicles using hypersonic ramjets is continually being postponed. it was speculated
that the next development we were likely to see would be the orbital ferry, a two-
stage rocket-propelled vchicle with recoverable stages, a prediction that is presently
being fulfitled by the NASA Space Shuttle. The acrodynamics and propulsion of
air-breathing vehicles are so closely interrelated that no progress can be made without
considering both problems simultancously. Interesting lectures on vehicle optimisation
were presented in which a generalised approach was used and the concept of the wave-
rider was thoroughly discussed. Heating was highiighted as one of the most important
problem arcas in the serodynamic design of hypersonic vehicles. Considerable emphasis
was placed on the need to develop large hypersonic facilities in which complete
configurations can be tested and on the desirability of conducting free-flight tests.

Two papess that fall within the general subject area of hypersonic acrodynamics
were presented at anotiies VK1 course held in May 1971, They treated the subjects
of viscous interaciion and non-equilibrium real-gas heat transfer respectively. and thus
contributed infonmatici un the migh-aitizzde aspects of high-speed flight. Metliods
for t=oating two-dimensional viscous flows with the combined effects of incidence,
displacement, and bluniness were reviewed as well as current efforts on such subjects
as finite-chord and finite-span effects, comer flows, and delta wings at incidence.
Although non-cquilibrium effects have only a smali influence on forces and moments
for delta planforms. appreciable departures from the equilibrium predictions of heat
transfer for areas removed from stagnation regions can be expected. The authors
made clear tk= point that although high altitude effects will certainly not dominate
the design philosophy of hypersonic vehicles, nevertheless, our understanding of flow
phenomena around real bodies of interest in this regime is presently in a very
rudimentary state.

Sincere thanks are expressed to the lecturers for their efforts and to their respective
organizations for providing them with the encouragement and time required to carry
out such a task, and 1o Dr R.C.Pankhurst who has been responsible for the overall
editing of these volumes.

Kurt R.Enkenhus John F.Wendt
Lecture Series Director Lecture Series Director
“Aerodynamic Problems “High Altitude Aspects of
of Hypersonic Vehicles™ Lifting Re-entry Vehicles™

March 1972
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LECTURE !

AERODYNAMICS AT MODERATE HYPERSONIC MACH NUMBERS*

P.L.Roe

Royal Aireraft Establishment, Bedford, England

In cach of my subsequent lectures 1 shall be dealing with a rescarch topic in the theory of inviscid hypersonic
flow. In this introdnctory talk 1 want to do three things. | want to define what I mean by hypersonic, 1 want to
justity the interest in inviscid flow, and | want to introduce briefly each of my future topics.

Almost everyone has their own definition of the term hypersonic, 1 we were to conduct something like a
pubhtic opinion poll amongst those present, and asked everyone to name & Machk number above which the flow of
a gas should properly be described as hypersonic there would probably be a majority of answers round about five
or six, but it would be quite possible for someone to advocate. and defend, numbers as smull as three, or as high
as 12,

I shall, therefore, adopt a different sort of definition. A good working rule in science is to classify together
phenomena which can be understood by means of the same explanation, and by “explanation” we usuatly mean
“theory™, Hypersonie flow, then, is flow which needs o particular sort of theory to deseribe 1 and T must deseribe
the sort of theory that I have in mind, Because | shall not be tatking about rarefied gases, or dissociation effects,
or strong viscous interactions, some people might deny that 1 was talking about nypersonics at all, But it does
seem necessary both as a basis for these advanced topics, and as a subject in its own right, to have a hypersonic
flow theory which treats air as @ continuum substance, in theemodynamic equilibrium, and lacking in viscosity.
This is the sort of theory | shall be talking about, and the reason why [ describe it as “hypersonic™ ruther than
merely “supersonic™ is that 1 wish to concentrate on those aspects which cannot adequately be deseribed by linear
theory. 1 shall be concerned with flows where the perturbation velocitios are not particularly smail, and in which
shock wives gencrate strongly rotational flow fields, I shall assume, however, that the effects of viscosity can be
represented entirely by very thin boundary layers, and by shock discontinuities.

To justify anything more than an academic interest in these fTows, | must show that there could exist at least
one sort of aircraft to which such flows are refevant, and so | shall spend some time considering the feasibility of a
hypersonic transport aireraft. 1 have in mind something not totally different from a contemporary airliner; some-
thing which operates from conventional airports and whose main purpose is to cirry goods and people over the

~ globe. Such a vehicle will offer o service to society and a profit to its makers only if' it fulfils @ need. The most

convincing need that an increase of speed might satisfy is not simply the reduction of journey times on existing
routes. but the opening up of entirely new travel prospects.

In all the history of travel it is possible to observe two constunts which, because they concern human nature,
may confidently be extrapolated into the future. One of these is the significance of personal contact between
people. whether traders or politiciana or the general populace. The other is the reluctance of most people to under-
tuke frequently journeys which last for gioee than a few hours, Regardless of how any of us personally regards the
prospect of a “global village™ in which all men are members of a truly international society, it does scem very
probable that this is the sventual destiny that a perceful earth must tend toward, but it cannot come about until
all major cities are brought within a few hours of each other.

Let us ook briefly at some of the consequences which extending the range of convenient travel might have,
Consider some particular ¢entre of population. How many journeys will its inhabitants wish to make over distances
lying between R and R + dR? The region that can be reached by such journeys is ring shaped. and we may
suppose that the number of journeys people will wish to make to that region depends in some way on the number
of attractions to be found in that region, For example, the number and size of trading centres. political capitals,
and holiday resorts, or perhaps the mineral wealth of the region, If we suppose, to a very rough approximation,
that the total “uttractiveness™ of the region is proportional simply to its arca, then for a spherical carth we obtain

the formula
R = sinf X Ll
2 S =), )
Rg ( )

* Since the original lecture material was written, a number of new relevant papers have been published. Some of these are listed in
the Appendix (page 6-10), with brief comments. Also included are a few older papers that have only recently come (o the author's
attention,




where

J(R) is the requirement for journeys of length “roughly cqual to R” ic. between R — AR and
R+ AR where AR s an arbitrary constant

and

Ry is the “global range™, equal to half the earth’s circumference.

This formula is used to plot J versus R in Figure 1, from which we can deduce that the potentially most
heavily used transport routes would be those which run about one quarter of the way around the globe (a distance
of about 6,200 statute miles, or 5,380 nautical miles, or 10,000 kilometres).

¥

An alternative approach would be to say that the potential travel between any two centres is proportional
to the product of their respective populations. Therefore Naysmith has analysed data for all cities having current
populations greater than three quarters of a million, For every pair of such cities he obtained the distance
between them, and a number proportional to the potential travel between them. His results are piven in histogram
form in Figure 1. They depart from the idealised curve for two reasons, The first reason, which nothing can alter,
is that the earth's land masses are rather irregularly distributed. The second reason is that at the present time, some
of those land masses are much more highly developed than others, The “peak™ at the left-hand side of the graph
represents travel within the already developed areas, such as North America and Western Europe. We may expect
that with time the graph will approach close to the ideal, but already the conclusion is striking enough; there is
a very large potential market for travel over ranges of about one quarter of the earth’s circumference.

The same results are plotted in cumulative form in Figure 2,

Now [ remarked carlier that travel over a given route would increase greatly as sooi as it met certain standards
of convenience. To be included in these standards are things like surface travel and airport management, which are
not within my province. Undoubtedly they raise severe problems, but these do not look insoluble. One very
important criterion of course, is simply travel time, and we shall take it that the task of the aircraft designer is
mainly to reduce this to an acceptuble level. As a guess, we shall take two hours as a good target to alm at.

What sort of speed, then, do we need to crulse at, in order to cover about §,500 n.m. in two hours? Accords
ing to estimates given in Reference 2 the answer is that the cruise Mach number should be about 4.5. The aircraft
would be required to carry about 30% of its take-off weight as fuel, and able to carry about 10% as payload.

This. then, is our starting point. The question to be asked is how we set about designing the aerodynamic
shape of a cruise vehicle intended to operate somewhere in the Mach number range between three und seven
(giving us a generous margin for error on either side of 4.5). The first thing to be noted ubout this speed range Is
that it is too fast for supersonic linear theory to be valid. and too slow .or Newtonian theory, Therefore, either
our designs must rely wholly on experiments, which will gertainly be very wasteful and costly without theoretical
guidance, or we must develop new theories.

Let us first, however, try to be more specific about the sort of aircraft shapes we are interested in, We have to
remember that even if the aireraft cruises hypersonically, it must remain safe and economical at all slower speeds,
down to the take-off and lunding speeds. To minimise the probleisa assoclated with transonic and low speed
operation it will be advisable to make the layout not too different from those alrcady known to be satisfactory.
There seem to be three main alternatives:

1. Conventional take-off and landing, using more or less straight wings, achieved by variable gcometry
2. Conventional take-off and landing, using a fixed delta wing, and

3. Unconventional take-off and landing, e.g. using direct-lift engines,
Of these three, the second appears simplest and safest, and also most economical, in that the alternatives
involve severe weight penalties. We begin to think, then, in terms of something like a delta wing.

One feature that seems worth introducing into the design right from the beginning is an integration of those
purts of the aircraft which provide volume and propulsion®. The basic idea behind this can be gathered from
Figure 3. Here we imagine a *“‘two-dimensional aircraft”, flying at zero lift, We suppose that it has to be of a
specified length, [, and to enclose u specified area, A, We ask how small the wave drag can be made, and use
linear theory to compute the answer. It turns out to depend on the base thickness. hy, and is a minimum when

A .
hh = T’l— . (l--)
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the section proﬁ.lc being then a parabolic arc which is streamwise at the base. This pibﬂle hus only one quarter ‘ ' B
the wave drag of the profile having hy, = 0,

_ Initself this is not a practical solution, because of the large “*base drag” associated with the extensive wake
behind such a body, but this disadvantage can be avoided as follows.

At speeds above about Mach two, the efficient internal design of jet propulsion units requires a duct whose
cross-section is considerably greater at exit than at inlet. Basically, the highly compressed air needs a lirge
expanding nozzle to receive the pressures which provide the main thrust forces. Squire® quotes area ratios of 2 or
3 at Mach four. Now a duct of these proportions, accommodated in an externally carried nacelle, would have a
large external drag (see upper parts of Figure 4). However, we can contrive a marriage of the bluff-based body
with the expanding nacelle, such that we retain the advantages of both and the drawbacks of neither (lower part
of Figure 4). By comparison with the layout at upper left, this merged configuration has lost 75% of the body
wave-drag, and all of its external nacelle drag. The penalties paid for this are a small loss of useful volume, and
the ingestion into the intake of some boundary-layer air, but the balance is overwhelmingly favourable.

Exactly how far these benefits are realised on three-dimensional lifting shapes is not clear, and depends on
many factors. Squire® estimated that at Mach four an integrated layout would achieve maximum lift-drag ratios

about 1.5 higher than a non-integrated competitor, and all the subsequent evidence seems to suggest that this is
about right,

So far our recipe for a hypersonic cruise vehicle reads — “a delta wing with integrated propulsion unit”, Next
we ask what sort of aspect ratio will be appropriate, The slender wing concept out of which Concorde developed
was based on trying to restrict the aircraft well within its own Mach cone. By this means it is hoped to gain three
advantages.

. The disturbances caused in the air should be relatively small i.e. causing only small energy losses.

2. The air is able to flow round the leading edge, developing local suction forces which reduce the drag.
3. The leading edge flow subsequently rolls up into separated vortices, which induce strong lift forces by
increasing the upper surface suctions.

Now at high supersonic speeds, suction forces contribute relatively little to the overall picture, so it will not
be worth much to try and achieve advantages two and three. Moreover, as Mach number rises, the Mach cone
shrinks (Fig.5), leaving no room for anything but an extremely fine and pointed shape. Thus we are led to examine
the possibility of shapes which are not acrodynamically slender, and which therefore cause strong disturbances to
the wir,

A further clarification of the design concept can be achieved at this stage by making the extreme assumption
that these strong disturbances are so strong that Newtonian theory can be used. It is then a simple matter, as we
shall see in Lecture 2, to find the wing which has the greatest possible lift-drag ratio. In deriving it, we make only
one assumption, that all wings are subject to a friction drag proportional to their wetted area times a known
constant (Cy). Thus, roughly,

Cofriction = 2Cr .

where Cyp s of the order of 0.001.

The optimum wing turns out to have a perfectly flat undersurfuce. By making the upper surface streamwise
we can provide volume with no loss of performance, and the resulting finite base area is available for integration
into the propulsion system (see Figure 6), The optimum incidence for the lower suriaces depends on the assumed
value of' Cyp and so therefore do the volume and base area of the configuration. The lift/drag ratio to be expected
from these wings is shown in Figure 7, plotted as a function of Cp .

The conclusion to be drawn from this scems to be that not only should the part of the aircraft that provides
volume be integrated with the propulsion system, but it should also be integrated with the lifting system. However,
before we give our complete acceptance to this principle, we should try to find out what the penalties are for
contravening it. To do this we devise non-integrated comparison shapes, which provide, at each value of Cp . the
same lift and volume and planform arca, All the lift is supposed to come from a thin flat wing, and all the volume
from a non-lifting **%-power” body of revolution. From Figure 7 it can be seen that the non-integrated configuration
has about a 30% lower performance than the integrated optimum.

Figure 8 shows the sort of layout that we have arrived at. A good deal of relevant information and discussion
about it has been given by Kiichemann® (also in Reference 2). Most of his conclusions have been unaltered by the
passage of time, and much of what | have to say in the next few minutes witl merely summarise these. The one
conclusion that does require modification s that gencralised design methods have extended the applicability of the
“waverider™ concept to lower Mach numbers than were indicated in References 2 and 4.
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. Let us lhcn‘con:ﬁidcr how we may set about obtaining more detailed design information fo: the sort of
vehicle dcm.clcd in Figure 8. In the first place, for the sort of Mach numbers we are considering, inviscid, ideal
£as caleulations with separate treatment of the boundary layer will be quite adequate, However, it is also cléar
lh‘ut caleulations using the full non-lincar equations of inviscid motion with arbitrary boundary conditions are
§t|!l some way into the future. Therefore a sensible policy for the time being will be to try and extract as much
information as we can from inviscid theories which are in various ways approximate,

[t also seems legitimate to design on the ussumption that the leading edges are perfectly sharp, Such an
idealised edge would soon be eroded in flight, due to the high heating rate associated with large shear across the
initially thin boundary layer, but the blunting needed to alleviate the effect is fairly small at these speeds, a
radius of much less than an inch being adequate for a vehizle whose length is, say, two hundred feet. Therefore
the effects of bluntness may be incorporated as small corrections at a late stage in the design procedure.

If the leading cdges are almost sharp then for non-slender shapes the shock wave will be almost attached,
and for most purposes the upper and lower surtaces of the shape will be serodynamically independent, Accord-
ingly they may be designed separately. Of the two the lower surface is by far the more important, contributing
about 80% ol the lift or even more, within the Mach number range of interest. In almost everything that follows
we shall concentrate our attention on the lower surface. This should not however, be taken as implying that the
upper surface design is irrelevant. Careful attention to its design, and the proportion of lift that it carries, will
certainly lead to gains in performance which are worth having. The reason for not saying more about it is simply
that so far not much work has been done in this area,

No attempt has yet been made to work out the full consequences of the integration of the lifting body with
the propulsion unit, One reason for this is that the ideal prop rtions of the propulsion unit cannot be worked out
without knowing something of the characterisiics of the engine to be used, the speed and altitude for cruise flight
and the wing loading. In the absence of any project study giving this sort of detail we can nevertheless proceed
© with refinements to the aerodynamic design, noting simply that finite base ureas roughly 10% of the planform
arca can be aceepted and replaced by exhaust nozzle area. Of course we should also try to ensure that this base
arcit is of a convenient shape, iw, concentrated in a fairly small region of the span.

This completes my definition of the sort of shape we are trying to design, and the assumptions and simplif-
ications that it seems reasonable to make,

In my second lecture | shall describe some of the results of optimisation theory, as applied to various
problems involving non-linear lifting acrodynamics. Such results are generally restricted to very simplified sube
problems that can be handled analy ticatly, Because of thedr simplicity, however, they do have u good chance of
increasing our physical insight into the more complex questions that we would really iike to answer.

In my third lecture 1 shall treat the subject of “waveriders™ or wings designed so as to support simple wave
systems and so be amenable to exact (inviscid) calculation. | want to show how the geometry of the wave
systems that we are able to calculate restricts the shapes of the resulting bodies, but also I shall indicate the
means so far found to create “realistic” shapes within these restrictions, 1 shall give a typical example of a shape
that combines a fair degree of realism with good caleulated performance. Finally 1 shall discuss the problemys that
arise when we try to caleulate the flow about these shapes in flight conditions for which they are not destgned:
this gives rise to rather puzzling questions about the behaviour of three-dimensional shock waves.

in my fourth lecture I want to discuss what scems to me one of the most promising approximate methods
for calculitting general Nows in this speed range, thin shock layer theory, So far this theory has only been
developed for conical Mow, Despite some basic mathematical difficulties which arise when treating attached
shock waves, the agreement with experiment is very good, 1 shall present a new approach to this theory, which
allows several very simple properties of the flow pattern to be clearly seen.

In my fifth lecture, 1 shall discuss an offshoot of the waverider approach, which permits a discussion of the
lift and drag forces in terms of momentum changes in the adjacent fMlow.

Lastly, in my sixth and final lecture, 1 shall deal with the changes brought about by direct heat addition to
the flow about a lifting body,

All these subjects are at quite carly stages of their development. What ! have tricd to do is to give some idea
of the current research status in them. The loose ends will probably be very apparent: it will be very gratifying if
other people feel able to take them up.
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{ECTURE 2
OPTIMUM SHAPES

P.L.Roe

Roval Aircraft Establishment. Bedford, England

In this lecture 1 want to review the progress that has been made in the application of optimisaion methods to
Rypersonie wing thectv. The sort of wing 1 shall consider is that described ir my first lecture, sharp-edged and non-
slender. it wilt help to set the current achievement in perspective if we first consider tne enormity of the work
involved in 2 really gzneral and soundly-based colution to the problem,

First ¢f all we should nced a2 computer programme capable of calculating the inviscid flow past a general three-
dimensional wing-like shape. For this programme to inspire r2al confidence, it would have to be based on the com-
plete Ruler equations of inviscid metion, and ils logical structure would have to be sophisticated enough to tske account

of shock waves in a priori unknown locations, pcssibly embedded in the flow field as well as attached to the leading
edges.

Quite a lot of simplifications would follow if we could assume that the shock wave was attached everywhere, so
that thr upper and lowar surfaces were independent, but even so, any such calculations seem at the moment a rather
remote prospact. The most that has been achieved to date is a pair of sclutions for the upper and lower surfaces of
3 plane dalta wing!™®. in both cases the solution is greatly aided by the conical self-similarity of the solution, and by
knowiedgs that the solution near the leading edge is of rather elementary form, being identical with the solution fou
a yawed wedge. However, cven in these wases, there are difficulties. The success of Babaev's solution (Fig,1) for the
lower suriace flow depends rather strongly on being able to make an intelligent first guess at the unknown shock shape
near the centre!, which would be less easy in a more general problem. In the case of the upper surface {Fig.2), there
has been controversy®® over the nature of the embeddad shock wave, and the numerical results in Reference 3 depend
on an appsoximate, even if numerically accurate, treatment of the rotational region. Agan, both the nature of the
soluticn and its numerical treatment, would be more difficult to establish in a general case,

1t {5 clear that we cannat hope {or a gencral solutior: for some years to come, and that even if it does eventually
arrive, the computer time necessary to compute one case 15 more likely to be measured in hours than minutes. But
just anz cese would only be a very small part of an optimization procedure. It would be necessery to specify the
unknown optimum shape by a large number of parameters. and to treat all thes2 as independent unknowns n some
sort of mu'tdimepsional search tachrique, the strategy of which would form a research subject 1 atself. And ¢ven
then 0a¢ wouid only have solved the inviscid problem.

Set sgainst these considerations the achievements I am sboui to describe may appear rather puny and insignifi-
cant. However, we can take courage froni twe considerations. In the first place, even the sort of programme { have
been describing, allied with a really good three-dinzensional compressible bovndary layer analysis woutd fail verv far
shott of acknow:edging the complexily of fovm of 3 practical aireraft. It is really not foresecable that an “opt:mised”™
calculated shape could do anything saore than give a guide to the designer. Seccndly, it is only a guide that the
designer actually wants from the aeradynamicist. He would really be a little embarrassed to be offered a perfect
sercdynamic shspe, which he would then have to carve holes in, add faicings to, and so on, in order to satisfy such
mundane requirements as that the piiot should be able to sec wiiere he is going or that people have somewkere
convenient to get in and out.

The r2al purpose of optimisation theory can oniy be to provide a catalogue of good shapes, together with the
assurpptions used 1o obtain them, and somz zort of explanation of the way these assumptions are reflected in the
geometry of the shapes. This catslogue is now beginning to taks shape. A good review of optimum aerodynamic
shapey, with a basic account of their derivation through the calculus of variations, was given 1n the book by Miele®,
However, even since then, there have been severaj important contributions, some of them duz to Micle himself and
his assaciates.

A fot of these have niade uss of the very simplest aerodynamic theory that has any pretence to realism, sunple
Newtontan theory. It seems worthwhile, therefore, to undertake a short digression to examine this theory,
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< it is often derived by something very like tie original method”. The fluid 1s supposed to be made up of com-
3 pletely inelastic parvicles, which therefore do not rebound on collision with a suhid budy, but follow on round #ts
surface in a very thin layer. From the fact that the flow in every impinging streamtube woud thicreby have iis
= momentum normal to the surface completely destroyed, it is an eavy deduction that the pressure coefficient at ail
e forward-facing points of the body is
g Cp = 2 sin?0 | 2.H
¢
where 8 is the local inclination of the surface to the free streamn. Sometimes a better agreement with expersment
: can be achieved by “adjusting” Equaticn (2.1) to read
C = k sin?d | (2.2)
: where k, sometimes calied ths “impact coefficient’ is chosen to securs agreemert ai, for example, thie stagnation
+ point.
? For some purposes the acciiracy obtained fron Equation (2.2 is good enough to allow its use as a prediction
. method, but generaliy spesking it cannot Se relied on. A fairly typical comparison with experiment is shown 11
- Figure 3, taken from Reference 8. The figure shows vaiues of a “local impact coefficient”, defined as k = Cy/sm?9,
A plotted against local inclination 8, for several points on a cone-segment body at various angles of attack 1n a super-
sonic flow of Mach number 4.3, For large values of 8, k is not far from its simple Newtonian value of 2.0, but
% obviously no constant value would reoresent these results satisfactorily.
The “unrealistic” derivation of the Newtonian press:ure formua, and the unreiiability of its predictions, some-
b times leads people to suppose that there can be little value in its use for opiimization exercises and little confidence
N in the resulting shapes. This distrust, however, is nrobably not wholly justifizd, for Newtonian theory can be reiatcd
’ rather men: convincingly .o conventional gasdynamic analysis. To begin with, consider the expressions for flow
¢ N deflection, density, and prassure coefficient behind an oblique shiock of angle 9 in an 1deal gas, flowang with Mach
: N number Mo
K =
3 2 cot § (M2, sin%6 — 1}
: : @and = LAl =2l L (2.33
; 24+ ML (v + 1~ 2sin*0)
: + 1ML 5in?6
A 2. _OF DMesinf (2.4)
: foo (v — DME, sinc9 + 2
. 2 cindf —
oy Cp = 4_(:'1.?;?.9.,?_{_” (2.5
3 (v + 1M
. If the gas is such that the ratio of specific heats, v, ¢an be thought of as close to unity, these equations simpiify
S thus
£ cot 8 (ML sin?0 — 1)
= tan § = cot 9 (M s °; e €2.6)
g I+ M% cos?d
&
4
£ 2
¥ — = M3, sin%0 Q@.n
\1 Pea
5
éf\ 3 cinp —
o o Wksi0 =1 @,
z P M2,
B g and from these we find that, as the ¥ach number becomes very large, tan § ~ tan 8, p = oo, and C, = 2 sin?6. Thus,
:’ g ; in the doubfe limit 3 ~ 1 and Mg - =, the flow behind an arbitrary three-dimeanstonal shock wave becomes very dense
g 5 and follows the shoek wave direction.
% Mareover, the pressure just brhind the shock takes on the value predicted by simple Newtonian theory, It is
B f very important, hewever, {0 observe that we have not justified its use to predsct pressures on the bedy. In order tua:
2 the fluid inside the shock layer may follow a curved path around the body it is necessary that a pressure difference
B ; should cxist across the fayer. Taking this into account gives the “‘centrifugat correction™ due to Busemann®,
Mo 2 written® in terms of a streamfunction ¢ .
B
& dlcos 8)
Cp = 2sin?9—2-- ?o cos 8 dy . 29N
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whih apphe: both tu two-dimensional bodies for which ¢ = pniley. ard to axi-symmetric bodies for which
V = §pemilort. The aaturs of the cotrection = more complicated Tor more general bodies, hecause the paths
followed by the streamines are less simple. In general they will be gendesics of the body surface®®,

The deuision whether or w0t to mnwurporate the Busemanno commaction i a1 optimisation »tudy is not particularly
easy. Although it does ensure that morz of the phvics of the real flow is represented, so that the conclusions a*.
more likely to be qualitateoly correct, sts indusion does not usually seem to unprove the numerical accuracy of
pressure distributions'™ 2, We chall see these two considerations clearly in one of the ensuing examples.

Before proceeding to an examination of shapes, we shall take a brief look at a nou-lifting problem, that of the
slender body of revoiaion causing least drag for given length and bawe areq. For slender axi-symmetric bodies the
Newton-Busemsnn pressuze law can be simplified to

Cp = 2% + An” 210

R T e S S T Ty R

whaere A = 1 if the Busemann corraction is 50 he incorporated, and zero if it is to be neglected. Suppose for the
sake of simplizity, that we only consider power-law bodies, whose profile i< given by

P TR g N LT St S RS A VISR E £ 1 ey

r = Ox0 2.1
then the following expression is eusily derived for the drag of the body

Cy _ n*+iAn(n—1)

Co cone -1 (2.12)

whers Csy oone 15 the drag of the cone {n = 1) which has the given length and base area. Equation (2.12) has its
minimum value when i = 3 if A= Qand whenn=3ifA = 1.

P AR Baser BEIWING NP AN WIS A S W8

Now the reason for considering this particular prublem is that it seems to be abou. the only example of an
optimusation study using Newtomsan thaory for which comparative experimental data exist'? ®. These are shown in

I~

: Figure 4. Although thers is some scatier amongst the experimental results, it does szem clear (Learing in mind that
; alt carves mist pass theough the pont (1,1)) that a power law exponent of about 0.7 1s best. This is an example of
) a phenemcnon that recurs vather frequently. Quite simple serodynamic theories predict optimum shapes that are

: closely confirmed by more accurate treatments. The cunfirmation by experiment is rzrer because the experiments

% have often not been performed.

2

Nete that we hase only considered here the particular variational problem for whick we have experimental data,
namgely. selecting the optimum member of the class of powes-law bodies. The probiem of finding the optimum body
without restriction on its form is fully discussed in Reference 6, where it is shown, using caluulus of variations, that
the optimum slender body of revu.ation 1s m fact 2 § power body according 1o simple Newtonian theory, but accord-
«6ig to ihe Newton-Busemann theory 1s has a mere complicated form consisting of a 3-power forebody for 60% of its
iength, folivwed by a “iree layer” i which the centrifugal term exactly cancels the mmpact term to leave no pressure
force on the body {Fig.5a). For such a body, Cp/Cp cops = 0.577, compared with 0.667 for the best (n = 3) “pure”
power-law dody.

Tae Newton-Busemann theory predicts®'® an even greater drag reduction {down to Cp/Cp cone = 0.422) for
vowled bodses (Fip.5b). However I know of hittle that has been done to see how far these additional gains are truly
roalisable.

T R L ]

We now pass to consideration of a simple lifting problem, to find the wing which crsates least drag while sup-
porting given hft. In consequence of the remarks in my introductory lecture I shall consider only the wing lower
surface by itself. The problem as stated has z trivial solutior n inviscid flow. We have only to make the wing area
(Al very large, and the angle of incidence (8) very small, in such a way that the lift (proportional to Ad) keeps its
desred value, and the drag (proportional to A8?) will become as small as we please. A meaningful problem can
cnly be got by imposing some additional constraints. Thus we might suppose that theie will be a skin friction dreg
directly proportiona! to A, or that the s.irface was required to meet certain geometrical conditions. A particularly
simple mathematical treatment can be given if we take the following set of conditions, some of which we will sub-
sequently see do not affect the character of the solution.

Vithe RA6 WSp wamy mps ome swd

1. Both the lift (L) and the planform arca (Ap) of the wing are assumed to be given.

2. The pressure is a function of the local surface inclination only.
3.

There is no skin friction.
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The second assumption 1s common to various theories. These include, for three-dimensional calculations,
simple Newtonian theory, taagent-wedge theory or tangent-cone theory. For two-dimensional calculations, the

list esteads to include both linearized (Ackeret) and second-order (Busemann) theory. In all these cases it is
assumed that

K

W

Ty, AL
e
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X0 e

where F and 1ts first derivative F', are positive for 0 < a < #/2. 1 shali row show that for any such pressure law
the wing which has least drag under the stated conditions 1s & flat piatz. The sumplest proof giser. here in rather
sketohy form, is to consider such a wing, and show that any small departusc fior it whin does not alter the lift
cannot reduce the.diag. Thus, we consider a wing for which « is given by

¥ L3
I AR 1,

€y

ax = & t eog{xy),

N v

where ¢ ts a constant, « an arbitrary functicn of order unity and € 2 small parameter. The lift of sucl a wing is
given by

L -
— = f F(o) dA, ,

which by Taylor’s theorem can be written

= [ Flao) dxdy + ~Fliag) [[ e (x,y) dxdy + Oe?)
A, Ay

I

o0
and since we wish to consider only perturbations which do not change the lift, the integral of &, must be zero.

Now, if a small element of the wing surface has a vertical projection equal to dAp, it must have a streamwis¢
projection greater than or equal to dAP tana, and so we can write

D #
—_— > F(o) tan o dA
q Y P

i = A
; which becomes, if we expand both terms of the product as Tayior series,
1
; D , .
~q— > ff (F(ap) + €F'(xp); £X,¥)) (tan o + € secd gy {x,¥)) dxdy + Ofe?) .
o A
P

However. we have just seen that the terms in € do not contribute to the integral, and so

D
—= > [ Fleo) tan a dxdy + Ote?) . (2.14)
w3

T R P R e SN N T

Equation (2.14), and this is only so for a flat plate.

We have dertved this result by assuming that no skin friction was involved. If we make a crude ailowance for
skin friction according to the formula

D¢
a—z ApXCf
o0

in (e s2nse of having the greatest lift-drag ratio when any combination of any of the hree quantities, lift, nlanform
aica and friction coefficient are prescribed. In the case where the friction coefficient alone is given, for example,
suppose thai some other wing were better, and that it was associated with area A% and lift L#. It wouid follow
that this was also the wing which had least drag when A was prescribed equal to A*, and L equal to L*, and this
would contradict what we have just shown, Knowing that this particular optimum wing is flat, we can very casily
find its other properties. Let its surface inclination be a*. Then

ol
|

= (oo Ap F(O*)
= Qoo Ap (F(a®) tan o* + Cp) .

o
)

Cp = Fla}, (2.13)

Therefore, the wing having least drag under the stated conditions is the one for which the equality sign holds in

with Oy a constant, the triction drag has the same value for all wings with the same planform area. 1i therefore does
no. affect the optimisation process just considered. The proof given is sufficient to show that a flar wing is optimum
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Maximising L/D leads tc
de di
or
F(a®) (F'(a™) tan a* + F(a*) sec’a*) = (F(a*) tan a* + Cy) F'(a%) .
ie. F2 (o* 2%
= __(o: ) secta (2.15)

F'(a™) ’
which is an implicit formula for a*,

It is instructive to examine the form taken by (2.15) for different pressure laws. In simple Newtonian theory
F(a} = n sin*e, and Equation (2.15) gives

Cr = 4ntan‘a.

For small values of «, one can translate this into a statement that tue friction drag should be roughly one half
the pressure u.ag, or aliernatively, one third of the total drag. This agrees with the conclusion reached by Mi le'$,
in an investigation of thin lifting wings.

If, on the contrary, we were to suppose a linear pressure law
Fley = ka,
then Equation {2.15) gives
C¢ = ka?,

which says that the friction drag should be equal to the pressure drag, or one half or the total drag. A tangent-wedge
or tangent-cone treatment would usually yield a fricticn somewhere between one half and one third.

Let us now summarize the results of our examination of this problem. A simple fiat plate turns o.it to be the
best hfting surface under quite a variety of ‘constraints according to several aerodynamic theories, although these
differ rather substantially 1n the way they advise the drag to be distributed between pressure and friction forces.

We will treat the same lifting problem by theories which do not assume C, = F(a). The simplest such theory
1s the Newton-Busemann theory, and we will begin with that, our approach being taken from Reference 10. The
simplest way to derive expressions for the ift and drag is to consider a momentum balance using the control volume
of Figure 6. Since the flow outside and inside the shock layer is hypersonic we can neglect all pressure terms with
respect to momentum terms. Let the momentum carried by the shock layer at any point along its length be UsP(x)
and let the momentum carried by the shock layer when it leaves the body (with inclination 0) be UsP;. Then the
lift (per unit depth) can easily be found as

L

UxP, sino

and the pressure drag

D PooULy, — UsP, cos o .

Consider for the moment wings with fixed values of x,, y, and a. Then because the quantity P, serves to increase
the hft and reduce the drag we obviously want to make it as large as possible. For a. body shape P can be found by
considering the incremental momentum given to the layer by each entering streamtube

dP = p,Usx cos 0 dy,

so that i
P, = p,.,U,.,I cos 0 dy
0

and the problem is to maximise this integral. Because the length of the w:ny 1s fixed, there is a constraint,

<
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and since both integrands involve only 0 the solution must be ® 6 = constant ~ «, where *an & = y,/x,. Therefore

P, = poolUsy, cosa,

.
g e U RO

so that
L = poUky, cosasina,

PN

Lt et

and
5 D

PaUy,; (1 — cos a cos a)

or, in terms of lift coefficient based on streamwise chord length
C, = 2sinasino (2.16)
Cpb = 2tana—2sinacoso. (2.17)

Now, in general, the minimum value of Cy, for Cy fixed does not involve having 0 = a. In fact, it turns out
that

%!

cos 0 = cosPa (2.18)

i.e., 0 > a, so that the optimum wing has a small corner at its trailing edge {(Fig.7). We can imagine (hat in a more
accurate physical picture of the flow this might appear as a highly loaded flap, narrow compared with the chord
length, but wide compared with the shock layer. We shall return to this point later, but if we grant it temporary
acceptance, we can find the properties of an optimum class of wings from Equations (2.16) - (2.13). For smuli
values of &, we can obtain

¢ = /3«

o A o s AT A D O RS

and
Cp = 0.620C{”.

For a wedge aerofoil, which we found to be optimum under simple Newtonian theory,

C, = 2

Cp = 202

peo-

and so

Cp = 1 = 0.707C}" .

—C

V2
Therefore, the Newton-Busemann theory promises to improve on the performance of simple wedges by about

12.3%. To see whether this promise is fulfilled, we continue examining the same problem with more realistic methods.

Pike' has investigated the performance of shapes which are sma!l perturbations of plane wedges (Fig.8). He
] considers that the perturbation has both a direct effect (as though it took place in a uniform infinite stream at
M = M,) and an indirect effect due to disturbances reflected back from the shock wave. These reflected disturbances
3 ) are weakened by a factor 2 each time they encounter the shock wave, and under most circumstances it is numencally
small's. Assuming that the shape perturbations are of order 8, Pike develops an expression for the pressure distribu-
tion in which the direct effects are represented by terms of order )

- ——"——

5, 82, 83, etc.

, the effects of disturbances reflected once from the shock wave by terms of order

A5, A82, 62, etc.
the effects of doubly reflected disturbances by terms of order

= A5, A282, \28%

and so on. He then assumes that A and & are numerically of the same order, and truncates his double power series
after the second order terms. Thus his expression for the perturbation pressure consists of terms in 8, §2, and AS.
Applying the calculus of vanation to this expression. he finds that the minimum drag surface having a prescribed

lift coefficient is a double wedge (Fig.9), folded in such a way that disturbances originating at the fold just fail to
regain the wing surface. 1his is an encouraging similar result to the one derived from the Newton-Busemann approxi-
mation. However, the numerica! magnitude of the gains turns out to be very much less. Figure 10, taken from
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Pike’s report, shows the percentage over plane wedges, the calculations being carried out for y = 1.4, The improvement
in almost all cases shown is less than one percent, and we may ask why there should be this discrepancy with the
Newton-Busemann result of over twelve percent. To settle this question it would be necessary to examine Pike's
analysis in the double limit Mg, = o0, v = I,

A direct comparison is difficult, however, because the form of scries solution used by Pike {2ils to converge as
Mo = o, even though it converges well at Mo, = 10. He presents, therefore, an alternative analysis Lused on hyper-
sonic smazll disturbance theory (Mg -+ 00, My,§ = o0, § << 1), and finds the percentage drag reduction as a function
of v. Fory = 1.4, this works out at 0.95%, which is still very small As ¥ decreases towards unity, the possible
improvements become greater, but again the convergence of the series breaks down for ¥ less than about 1.15. This
seems principally due to the reflection coefficient A, which was assumed small, becoming numerically larger.
Indeed®, as y~ 1, y-+—1. A direct comparison is, therefore, not possible.

It is also worih mentioning a rather similar study by Cole ard Arcesty!”. They consider only the hypersonic
small disturbance theory limit, and develop series expression for the lift and drag of shightly perturbed wedges in
which cnly terins of the form A" are retained. They show that perturbation shapes exist for which the lift-drag
rativ is improved whilst the ift coefficient remains unaltered but because they retain no quadrature terms in 5, the
improvement appears to be a lincarly increasing function of 8. Under the arbitrary geometr.c constraint that the
surface shall be contained between the lines 8, + €0, they find the optimum shape to be a corrugated “multi-wedge™
as shuwn in Figure 11, although they also sliow that this is only fractionally better, by a factor (1 + {AD/(1 - A,
tnan the fouble wedge advocated by Pike. It is not clear how their conclusions would be modified by the incurporation
of terms involving §2.

For practical purposes, at least, the conslusion is slear. The best two-dimensional lifting wing 1s very close to a
flat plate over the whole range of supersonic Mach numbers, There is, however, considerable theoretical interest in
the way the Newton-Buserann theory hints at the nature of the true optimum shape. We also note that it only
became possible to improve on th. plane wedge when we used an aetodynamic theory which ailowed Jor the inter
ference between different surface clements.

If we now turn to the corresponding problem in three dimensions, we may expect larger interference effects
{because, rougiily speaking, the pressure waves due to an element extent from 1t along oblique Mach lines rather than
directly downstream of it) and therefore, probably, larger gans. This expectation 1s certainly fulfilled at low super-
sonic speeds. There is an excensive literature on drag minimisation using hnear theory. Chapter 8 of Reference 6
1s devoted to th.s subject and .ome other pertinent references are histed as 18 to 21. The amount of drag reduction
that can be achieved depznds on the wing planform. for delta wings with supersonic leading edges Germain'® has
shown that the redu.tion is greatest (about 1177) when the edge is nearly sonic, and decreases to zero as the aspect
rat1o increases toward infinity. Cohen®® has studied the shapes of such opumum wings, insofar as they can be
approximated by double power series. Some indiation of the accuracy of this representation 1s that when the
leading cdge is sonic, six terms of the series can represent a wing whose drag 1 8.970 less than the flat plate, and
ten terms are enough fo reduce the drag by 9.67. The shape of the optimum surface derived from a six-term
representation of a wing whose sweep angle X is given by cot X = 1.2/8 is shown in Figure 12.

This figure seveals the mechanism by which the d:rag reduction tahes place. The incidence is highest along the
centerline, and progressively “washed-out™ toward the tips. High pressures are genzrated m the central region, but
spread out to the tip region where the small surface inclinations allow them to contribute effectively to the 1t
without adding greatly to the drag. This 1s the typical mechanism of favourable interfercnce, and one which we must
expect to find at work in the higher speed ranges also.

Attempts to exploit the concept of favourable nterfererice have led to the study of many counfigurations. Soms
of these are distinctly unorthodox, like the famous Busemann biplane??, or the half-ning wing?* 2%, and our mam
theme. From a practical point of view, attempts to exploit the inter-action between a wing and a central fuselage
are more attractive. The properties of interfering systems are most casily studied using linear theory (for example,
see Reference 25). Rehable calculations of non-hnear intesference effects on reahstie shapes are at present beyond
vs, but some ndication of the way that interference effects change with flow Mach number vun be got from studying
certain artificial contigurations, which accordingly 1 make no apology for considering next.

Consider (Fig.13a) a flat plate vt unlimited cxtent, aligned parallel with a uniform supersonic strearn. Let there
be a wedge, with its apex pointing into the stream, projecting vertically from the plate. Instially, we suppose this
wedge to be of infinite height. According to linear theory, the plate experiences a uniform pressure, Jue to the
wedge, over a region bounded b two parallel lines swept at the Mach angle. Now, let the projecting wedge be cut
off at a finite height, so that its leading edge terminates at the point A (Fig.13b). The Mach cone from A intersects
the plate 1in a hyperbola, asymptotiv to the leading rays of the interference pressure region. The arca between thus
hyperbola and thess fays 1s unaffected by removal of the ouier part of the wedge. and continues to experience a
umfonn pressure. Morcover, it still does so if the whole of the rest of the plate is removed. and al! the wedge
beyond the Mach line AE. We are left with a configuration which 1s a sort of sudimentary wing-body combination.
All of 1ts drag derives from a uniform pressure acting on the wedge, and all of s hft from the sume pressure acting
on the “wing™. Sinc: the arca of the wing is 1n principle unhmsted, there are seemingly no theoretical bounds on

the lift-drag ratios that can be obtained in this way.
- =
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Theoretical limrts on the efficiency of such an arrangement can orly be discoversd by considering the non-finear
features of the flow. TaXing these into account, we observe tha the front of the interference region would restly be
an oblique shock wave, and the rear boundary z Mach cone of the stuw behind the shock wave. The two boundarics
would always therefore intersect at a finite distance, and the litt-drag ratios are therefor restricted.

The pertormance of such a configuration s easily calculated from exact shock wave theory, cnd finding its optimum
form can be reduced to a purely geometrical problem®, One wishes, in faut, to draw trailing edges on the wedge and
on the plate which terminate the configuration i such a way that the ratio of wing area to body area i maximised,
and ro parr of points on esther trading edge are joined by a linc making less than the Mach arglz with, the local flow
This problem is solved in Reference 26, if the Muck cone from A intersects the wing leading cdge at 7, then the
Mach plane through the straight me AT ntersects the wing and the wedge along the optimum trailing edge. 1t is
then shown that the results of exact calculations on vonfigurations designed in this way collapse onto a single dia-
gram (Fig. 14}, where the vertical scale is the reciprocal of the “induced drag factor™, and the horizontal scale a
similanty vanabie deduced from a smail disturbaice analysis. The petformances of optimised interfererce ~cniiglra-
tions cluster very closely about a single curve, and the performances of plane (two-dimensional) wedges lie within a
narrow fan. Gver the range of Mach numbers considsred, the interference configuration turns oui to de better
previdaed

M&Cy

-1 <

In Figure 15 this criterion is used to illustrate those combinations of Aach number and lift coefficient for which
one or other method for generating lift is preferabwe. From this we may conclude that pure serodynamic interference
is most suited to flight conditions which create relatively weak disturbaunces.

In Reference 27, however, Pike has extsnded this analysis to show that for any combination of Mach number
and lift coefficient, interference effects can always be ir. -crporated to iriprove lift-drag ratios beyond the wedge valuc.
His dcmonstration utilises a generalisation of the simple caror wing. In the usval way (Fig.16) we draw a stream
surface belund a nlane shock wave retaining for simpliciry th. customary V-shaped leading edge. We may terminate
the wing by any trailing edge that is not subsonic. Suppose that thic edge is not now symmetrical about the ridge
line, and consider the forces which will act on the wing. The piussure is constant over the surface, and so tigre will
be a lift proportional to the vertical projected area, a drag proportional to the streamwise projucied area, and a side-
force proportional to the net area in side view. The lift coefficient (based on planform area) and tift-drag ratio will
be the same as those of the two-dimensional wedge from which the shape is denved.

Now let the configuration be rotated about the free stream vector. Nothing will happen to alter the forces,
except as regards to the direction in which they act. The rag force is completels unaltered. but the forces which
we previously described as “1ift” and “sideforce™ wili rot. . with the configuration, as will their resulta=t, which we
will describe as the “transverse force™. If we wish to obtain the maximum vertical force, we must rotate the con-
figuration undi the transverse force is vertical. In doing so, we de not zalter the lift coeffictent, because the surface
is always act: d on by the same consiant pressure, neither do we alter the drag force, but we do increace the lift
force, and hence the hift-drag ratio. As in the previous paper the maximisation of the effect involves only geometrical
constderations. The ratio of the areas of the two wing facets must be as great 5 possible, subject 10 the constraint
that the trailing edge is fully supersonic. Again the optimum trailing edge turns out to lie on a Vach plane.

Pike?” has calculated the masyimum percentage improvemert for various Mach nambers and lift coefticients, and
finds that 1t depends only on the similarity variable M&,C, /8% encountered previously (Fig.17). Thke maximum im-
provements are striking, and the shapes can be made a little more realistic by combining them in pairs. as shown n
Figure 15. Of course, they are still very far from being “aircraft shapes™ but they do provide the only demonstration
I know that the two-dimensional wedge 1s not an optimum lifting surface under any combination of lift coefficient
and Mack number,

PN | TP

Both of these last two configurations feature highly swept tralting edges. and in both cases the trailing edge st
he swept before any advantage ir performance is achieved, It has been known for 3 long time that sweeping the
trailing edge of a planc delta wing (converting it to an “arrow wing™) is & simple way to improve its performance.
Some calculavons using hnear theory taken from Reference 28 are shown in Figure 19, It remains unclear just how
much the efficiency of Pike's wings 1s due to “favourable interference”™ and how much to “planforn efiect”™. The
two effects are 1n any casc intes-related. 1f we concentrate the volume of a configuration toward the middle in the
hope that 1t wiil have a favourable cffect on the outboard regions, it would scem necessary to make these outboard
regions as extensive as possible.

However, these highly swept configuraiions do sutfer from practicsi disadvaniage; over and above their evident
structura! defects. Amongst other things ihe low speed aerodynamics is comiplicated by andesirable behaviour of
the separated upper-surface vortices as they puss over the swept trailing edge?®,
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£xpenmenial tests of shapes mcorporating interference concepts have often been disappointing. Simple conr’gur-
ations consisting of half-concs placed underneath flat delta wings were first suggested by Eggers and Syvertson?? (sce j
Fig.2) and have been the subject of extensive experimental study in the USA. A very simple criterion for determining ;
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t. : effectiveness of the interference concept 1 to compare the set of performance achieved by this design with the
performance obtained by turning it upside down. Such a comparison, due to Beker *® and typical ~ ohers, is shown

i Figure 21, The fact that the configurations actually work better upside down at higher Mach numbery is surprising

at first sight, bur a number of reasons for 1t can be found. Bazcker attributes part of the decline in iaterference benefits
to the increasing effects of viscous mteractions as Mach number rises, and also uses this to explair the discrepancies
between results at identical Mach numbers. However, the downward trend of this graph with increasing Mach number
couid be explained without reference to viscosity. in the 1dealisud stucies we have seen that the benefits of inter-
fercnce fall ofi anyway with increasing Mach number, because of Jhe smaller areas dvailable fur the induced overpressures
to act on. Moreover, we can reasonably assume that ac very high Mach numbers the prediciions of Newtonias theory
become more nearly correct, and the optimum surface becomes more closely a flat plate.

Therefore we may expect that the amount of interference lift that one should optimaily inclade in a design will
be a quite strong function of Mach number. It seems very likcly that in the half-cone + delta design the amount of
interference employed is appropriate at lower speeds, but somewhat overdone at very high speeds.

We Lave already aoted that the favourable efiect of cambering a delta wing can be regarded as a Kind of inter-
ference, and we van well suppose that these benefits also decline with increasing Mach number, The maximum re-
dJuction 1n ncuced drag factor was, we saw, 117 according to linear theory, on a source-leading-edge delta, and less
at hugher aspect ratios. It seems safe to assume that the greatest reduction is associatzd with the lowest aspect rativ
because a given high incider.ce egion (say, at the apex) has then he chance to influence the greatest fraction of the
tota wing area. Thus, i the overall properties of an aircraft are fixed by, suy, low speed handling criteria, the faster
we try to fly it, the less chan ¢ interference effects, including camber, have o0 enhance the perforrance.

However, we are not as yx4 1n a position to answer the question, at what combination of Mazh number and {ift
do the benefits to be derived troe camber become negligible? The question ca. only be znswered with real confi-
dence after tackling optimisation problems aimost having the {ull compleaity of the one { began this lecturs by
describing, but useful, even 1f tentative, answers can be given by studying the “waveriders™ to which I shall refer in
a late: lecture.

So far 1 have been dealing with the optimisation of designs where only the lift coefficient was give1 in advance
I want to go on now to discuss the problem where volume is also prescribed.

A very simple example illustrating some features of the problem can again be taken from the twe-dimensional
case (when we must consider wings of {ixed prefile area). For additional simplicity we can consider orly wings with
streamwisz upper surfaces (F1g.22) and we shali neglect base drag.

We will suppose that the pressure lew has the form

6 = e e (2, 21
which includes as special cases:
(a) Linear theory
¢, =28 ¢ =0,

{(b) Busemann's second-order theory

. (M2 — 2)2 + yM¢
Cl = 2/3» (: = '—""'——:’E““-—--”a-_

{¢c) Newtonian theory for siender bodies

C, =0, G

"
[N

Then, for a wing having fixed (unit) chord. we can write

i
C, = fe(‘.y'-!-(‘zy" dx

1
CD = vro (,y'z +C3y'3 dx

and (sce Figure 22)
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To find thie minirum value of Cp with | and A given, is equivalent ¢ to minimizing the intogsad
j: Fdx,
where
Fo= 0% 4 Cy? + MGy + Cry™) o+ Myt = x)y
a-d 1y, %; are Lagrange multipliers. The Euler equation satisfizd by the optimum contour is in this case

oF onstant
— = consiat
ay'

aind the (zansversably condition, applied at x - 1, shows this constan? €5 be zere. Therefore the contour 5 describod
by the differential equation

20,¥ % 307 F 0 (Cy + 26, + (1~ %) = 0, (2.20)
In the special case of linear theory (T, = O0) Equation (2.20) reduces to
Cy +5,C +0(1—x) = 0,
witich integrates to give

A
v = -)\,x-i-% i=x2 -1, 2.2h)
|

That is, the optimum contour is parabolic. with X, and A, determined by the required valugs of | and V.

To see how this works out in ferms of actual shapes. we can aote that
i 11
y(l): Iydxz___‘
‘\

1e., all wings having a given € pass through the same pemt in the base plane. Of thesc, we already know that the
one with the least drag of ail is the wedge (see Figure 23). Let the area of that wedge = 4y(1} = A®, Suprose we
acwally need A > A%, Then we can see that the best way of adding the extrs area 15 by means of a corner para-
bolic curve. Suppose on the other hand that our requirements for A were not as great as A®. The best golicy then
would be to use the wedge section, since this has less drug than any o.her, and also offcrs without penalty a bonus
volume over and above our needs.

The same general conclusions hold when the case T, # 0 is considered, all that happens 1s that the detailed shape
of the section is altercd. The shapes can still be found analy ticaily, because Equation (2.20) can be solved fory' to
give something of the form

y' = a+ (b—cx)'?
and thus

R
y = ax — g (b —cx)*? (2.22)

where a, b, ¢ depend rather cumbrously on C,, C; and the pruscribed values of Cpand A. Generally, the effect of
adding the non-linear term is to concentrate the volume farther aft.

To treat even the two-dimensional problem with an, greater accuracy than this would be a formidable task. It
15 unlikely that any approximations can be used in the way that Pike treated the volume-free problem described
carlier, because the optimum shape will generally not now be close to any simple shape like a wedge. Bartlett®' has
computed the optimum proportions of double wedges (see Figure 24) and found them to be convex in all zases
considered.

If we go on to vonsider lifting three-dimensional wings with a volume constrzint we find, so far as 1 know, no
publiched work based on anything except Newtonian theory, the most comprehensive treatment being that of
Maikaper®?. He considers three-dimensional wings (Fig.25) whose lower surfaces are defined by

z = 2(xy)

X -
3 - < éjﬁ g A‘h‘{
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and whose upper st faces are defined by
L = Z;(X.y) .

The wing has a completely free planform arca, and s subject 10 a given fricton vooflivient.  The pressure is
assirr d to be given by
73z\?
C, = k{—) .
3 {ax/
The wing 1s sought wlach has the greatese lift,drag ratio of any v .ng enclosing a given volume. Thus the lift
coeificient cannot be fixed in advance. but ¢morges as part of the problem solution.

Maikavor fiads that the best wings are symmctrical about an incidence plane, and that the upper surface is always
streamwise at the trailling edge. The actual profile shapes are 3,2 power waw, of the sam+ form as Equation (2.22). it
1s interesting to note that the same airfou profile also turns up in the solution to the slender, three-dimensional non-
iftng ving . Makapor®? also p.ves two extreme profile shapes, between which the optisaum profiles always liz
(F1g.26). He does not, howsver, consider the optimum shape of the planform. Al his results are tris for any chosen
shape, but do not give rise to the same performance in each case,

I know of no work 1n wiuch hftiny thrze-dimensional wings are optimised within more complen constraints.
Evidently many more constraintz would by necessary to apptoximate ali the considerations that an airzraft desipner
mus take into account, but as I smd carlier. 1t 1 questicnable to what eatent the Jull design process Zeuld ever coms
under the province of optimisation theory rather then emprrical judgement, Of she constraings which | have not dis-
cussed, probably the most smportant 1. centre o3 pressure position. This must be made to coincige wita the centre
of gravity, f the asreraft 1s to be trimmed for level flight, and the centre of gravity is, within limits, fixed. An alternative
attitude, however, 1s to optimuze the aircraft des)en on other grounds. and then to ask whether, with the centre of
pressure in the resulting position, the :nternai design of the aircrast can be juggled so as to make the centre of
gravity match up.

In tins lecture | have tried to give an outhne of the ways i which, at the present momeat, optinusation theory
can help to define shapes for hypersonic transport vehicles. To date, 1t has only buen possiole to apply the theory
using rather simple aerudynamius, such as linear oi Newtonian theories, au any rate on the three-dimensiong! case
Nevertheless, a conasten? pictute begins to emerge of wihai a good integrated aircraft shape should ook like.
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Fig.20 Half-cone and wing
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Fig.21 Comparison of (L/D)may for 5° half-angle conestdelta-wings in “design” and “inverted” configurations
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LECYTURE 3
THEORY OF “WAVERIDERS”

P.L.Roe

Royal Aircraft Establiskment, Bedford, England

All the methods we have available at the present time for predicting directly the hypersonic behaviour of a
given shape are approximate to an extent that precludes full confidence in the deductions we can make from them.
It is useful therefore to have available for comparison more accurate solutions even if these are of the inverse kind,
where wing shapes cannot be arbitrarily chosen in advance. Solutions whost accuracy is imited only by the need
tc assume a perfect gas can be obtained by tracing wing-iike streamsurfaces in calculated flow patterns which have
some simplifying feature, for example, they may be two-dimensional or axisymmetric. Because it 15 not the shape
of the wing which in this process is chosen in advance, but rather the wave formation, they have come to be
known as “‘waveriders” and it is in this sense that I shall use that term.

It is useful to list what we may hope to achieve by studying waveriders.

1. We can use them, instead of expensive experimental data, to check the accuracy of approximate
prediction methods.

2. We can study systematic families of shapes and draw gencral conclusions as to the effects of aspect
ratio, contained volume, distribution of volume, etc., on performance characteristics.

3. We can establish levels of performance which will serve as criteria by which to judge the excellence
of designs achieved by other methods.

4. Although the flow about a waverider in its design condition has a deceptive simplicity, the flow in
conditions just slightly “off-design™ may provide a point of entry for the study of more general and
more complex flows about wing-like shapes.

When using this approach to consider any of these {our items, we must constantly keep in mind two reser-
vations. First, that the shapes we consider, although varied, are still in some sense special, so that the conclusions
we draw may only have a restricted validity. Second, that the value of the study will increase insofar as we are
able to make the waverider shapes share the qualitative features of nractical aircraft designs.

We shall begin, ther, by considering some very simple waveriders, and the extent to which their shapes may or
may not be manipulated. The simplest waverider is the caret wing !,2, This is designed by starting with the flow
past a two-dimensional wedge. The flow pattern associated with the wedge 1s, of course, a plane shockwave followed
by uniform flow parallel to the wedge surface (Fig.1a). We shall perform a simple thought-experiment on this flow.
In imagination, we draw a pair of intersccting straight lines lying in the plane of the shock, and visualise the stream-
surface which stems from them. It consists of a pair of intersecting planes (Fig.1b). Suppose now that we consiruct
a very thin sheet of stiff material, having exactly the shape of this surface, and suppose that we introduce it care-
fully into the flow field, from behind the shockwave, aligning it exactly with the flow direction. In a frictionless
fluid we can do this without causing any fl>w disturbance, provided the sheet does not protrude through the shock
surface. If the sheet is positioned so that its leading edge lies exactly in the shock surface, we can divide the flow
into three regions (Fig.1b), region I being the undisturbed stream. Now it may be noted that there is no path by
which an acoustic signal can pass from region II to region III. A strongly compressive signal might pass if it were
strong enough to deform the shock wave outward from the leading edge of the sheet, but an expansion wave cannot
make the journey in any circumstances. Suppose now that the wedge with which we began is slowly worn away and
disappears. In the process, the part of the shock wave separating regions I and I1 will weaken and vanish, but no
news of the event can reach region HI, so that the original flow pattern persists there unaltered.

In the above argument | have tacitly assumed that the flow pattern extends to infinity downstream, but it can
be made to anply .qually well to finite systems if the sheet is supposed to terminate in a trailing edge that is every-
where supersonic with respect to the flow behind the shock wave. Then we define regions [, Il, and 11l with similar
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properties to the above except that now region Il is hounded Dy (Fig.1(c))
(a) the shock wave
(b) the stream surface

(¢} the downstream Mach envelope from the trailing edge.

We must note that this extension is not valid if the shock wave is so strong as to cause subsonic flow to
exist, for then there is no surface (c).

By such an argument we convince ourselves that a flow pattern consisting of a plane heck wave followed by
a parallel flow can exist on the thin sheet, if it is placed in isolation in a uniform stream of the right Mach
number (Fig,id). The basic waverider hypothesis is that this flow pattern is the unique solutfor for this shape
under design coaditions of Mach number and incidence. This is a very reasonable hynothesis and weil supported
by ali the experimental evidence, but it is not entirely beyond question, as we shall see later on.

For the moment, however, we put on one side the difficult question of uniqueness, and accept the thouglt-
experiment a: satisfactory. The surface which we have designed bears some resemblance to a rudimentary wing.
Being infinitely thin it is not very practical, but we can remedy this by adding material on the upper surface, so
long as we do not add so much that we detach the shock wave, and spoil the designed flow. If we wish to have a
known flow everywhere, we can most easily achieve this by making the upper surface parallel to the free stream.
The result is the simple **caret wing” which has been the subject of many experimental studies 77, We shall
now consider, i1. increasing order of complexity, scme possible variants on the theme.

The simplest thing to vary is planform shape. Instead of drawing simply a pair of straight lines or the shock
surface and taking these to represent the leading edge, we could choose a quite arbitrary curve, whuse vertical
projection wou:d become the planform of the wing.

All wings so designed support the same consiant pressure, and therefore have the same lift coefficient based
on planform area. Moreover, they all have the same lift-drag ratio, which is the cotangent of the angle of the wedge,
and the centre of pressure always coincides with the centre of area.

There seems no reason of pririciple why tie shape of the curve should be restricted in any way. The thought-
experiment described above scems equally valid however irregular the curve may be, whether it is topologically
open or closed or even reentrant, but of course the wing designer is only interested in shapes which are, in some
sense, “natusal”. However the fundamental condition that the leading edge shall lie in the plane of the shock wave
is rather restrictive, The slope of this plane is fixed by the basic design requirements of Mach numbe: and lift
coefficient, according to the fonmula 200

sin* 0 Mi T('y+ h (3.1)

Any curve draws in this plane has a simslar sppearance whethier viewed from in front or on top {Fig.2) the
twe projections bemng affine transformations of each stiier. In 2erodynamic parlance this means that if part of the
leading edge 1s highly swept, it must aiso be very anhedrallld and if the wing has overall a low aspect ratio it must
also have strong anhedral, and hence 2 targe ratio of wetted arca to planform area, and therefore, alsc a large
friction drag. For siaple wings of this type there 15 then of necessity a relationship between aspect ratio and frction
drag. This puts ¢ .2 &% a disadvantage compared with lcss spevial shapes if th re is a design requirement for either

{a) low criise Mach number
(L) high iift coefficient
(c) or relatively low aspect ratio.

In particular, 1t appears Jhat caret wings are much less efficient than slender wings over the Mach number
range three to {ive where both might be counsidered. However, this disadvantage is typical of caret wings only, and
not of waveriders as a class, as we shall see.

Summarising so far, we have scen that when designing waveriders using the flow past a two-dimensional wedge,
we have an unlimited choice of planform area, but little opportunity to utilise this choice advantageously.

The next idea we might try is to alter the details of the flow field. Let us suppose that instead of a plane
wedge we begin with some other two-dimensional shape. Again this can in principle be as general as we please
but there 1s probably little point in studying shapes which are anything other than simple and smooth. For
example, we can choose to start with the flow over a smooth convex wedge (Fig.3). Such flows can be calculated
by the method of characteristics® , and genzrally the streamline curvature will be in the same sense as that of the
body, so that any waverider shapes that we develop will alsu be convex (Fig.4).
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This is a very useful degree of freedom. Disadvantages of the caret wing are that its lift and volume are both
centred too far aft to be representative of practical designs, but this change remedies both defects simultaneously.
Moreover, the lift/drag ratio of the shapes is no lunger 1 _unction of design Mach number and lift coefficient alore,
we can in principle easily investigate a farily of shapes to find what sort of effects a redistribution of volume, say,

has on performance. One way of doing this is to fix a planform shape and vary the shape of the two-dimensional
body that generates the flow field.

Pike ® has done this for waveriders of delta planform and given hit coefficient. He employs a similar theory
to that described in Lecture 2 for calculation of the flow field. That is, the gencrating body is supposed to be
nearly a plane wedge, the departures from this wedge being of order & . Distutuances reflected from the shock
wave are supposed to be attenuated by a factor A, and terms of order & , A& , and 62 are accounted for in the
pressure distribution. He finds, as one might expect, that the optimum generating body is very close to a wedge,
consisting of two nearly collinear straight sections joined by a curved mid-section, The optimum waverider derivable
from two-dimensional flow fields is therefore very close to a caret wing.

If the shape is also required to enclose a given volume (assuming always the same upper surface shape} the
preblem is more complex, and not easy to treat by any realistic non-linear theorv, In unpublished work, Pike has
simplified the problem by considering linearized flow fields, and finds that, for wings of delta planform, the
optimum generating body has a quadratic representation

x4

y(x) = ax? + bx + ¢, 3.2)

where the constants depend on the free stream conditions, the cons.rainad values of lift and volume, and on the
aspect ratio. Given reasonably “practical” values of these quantities, the shapes turn out te be convex. Fortunately
therefore, we find all our requirements tending in the same direction.

Nevertheless, these waveriders based on two-dimensionat flows do still suffer from the basic disadvantage that
the leading edges must lie very close v :ie plane defined by Eqn (3.1). Under many circumstances they will be very
anhedralled, and so be subject to large skin friction drags. If we are to pursue our ambition of finding configuration
shapes that are both “good” and *realistic™, we shall need to use more general flow fields.

The first step in this direction was taken by Jones'®. who obtained more realistic shapes by starting from the
flow past an unyawed cone (Fig.5). This at once produves a very useful change in the geometry, Suppose that we
chocse our waverider surface (Fig.6) by tuking as our leading edge the intersection of the conical shock wave with
a plane surface. The leading edge ill then be a hyperbola lying in that plane, and the shack wave will curve well
outside the plane, as it does, e.g., on a plane Jelta wing. Waveriders designed in this way are much flatter, and
therefore have less friction drag, than those designed from two-dimension:l flows. Three such shapes have been tested
experimentally'! to confirm this extension of the desizn method.

These uses of the simple cone-flow do, however, carry their own disadvantages. The streamlines of the flow are
all concave with positive pressure gradients along them and so any waverider surface we choose will have, in even
more exaggerated form, the rearward centres of volume and pressure that were part of our reasuns for rejecting the
caret wing. Therefore, we have to generalise yet again and this time we go to the fiows about arbitrary bodies of
cevolution. Some details of this extension are given in Refercnce 12, here I shall partly summanise that work, and
partly describe more recent developments.

To calculate the flow past bodies of revolution, we need a computer programme based on the method of
characteristics or an equivalent. Such a programme can be greatly simplified if the body nose is initially a cone,
because tabulated cone flow soiutions can then be used to start the programme off. Otherwise. if the body is
initially curved, the programme must take special measures to circumvent a singulanty in the equations at the apex.
The shapes shown in Reference 12 were computed using an existiag flow-ficid programme which assumed a conical
nose, but this turned out to be rather restrictive. We wish 1n fact to make the initizl curvature of the innermost

streamlines as strong as possible, so as to concentrate the volume of the resulting waveriders in a convement and
efficient way.

A fresh programme was therefore written, but so as not to be troubled by the su.gularity on the axis (which,
after all, we do not need to include in the chosen part of the flow field) we ha.e considered axisymmetric bodies
with an annulur hole (Figs.7-8). Such bodies normally present no special computational difficulties. This pregramme
is nart of a suite written by Moore and Pike at R.A.E. Bedford. which calculates axisymmetric flow fields, traces
the stream surfaces within them, and evaiuates their performance when considered as waveriders.

Typical results from these programmes are shown in Figure 9. A section of the flow field used is shown at the
top, and then there follows a three-view drawing of a waverider taken from it. The planform was chosen to be a
delta of semi-span to length ratio 0.35. In the side view the leading edge is represented by a solid curve, and the
centre-line by a dotted curve, It will be observed that the wing lower surface is quite flat.
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At 1ts design Mach number of 4.0 the lift coefficient of the lower surface s 0.0571 and *he drag coefficient
is 0.00543 if skin friction is supposed zero. The lift/drag ratio is then about 10.5. If we essume that the drag
coefficient is increased due to skin friction by an amoun*

(lower surface wetted area) x cr

(planfoim area)

then the lift/drag ratio will be reduced as shown in Figure 9(c). This performance curve is very close indeed to
what one gets from a two-dimensional wedge producing the same lift at the same Mach number, and subject 0
the same cy . It is rather better than one could get from a caret wing, and that fact, combined =ith the more
plausible shape and convenient camber of the shape in Figure 9, can be taken as justify.ag the additiona! work
invo' 'ed in computing these generalised waveriders.

Sou far no account has been taken of the possibility that the upper surface might be anything but streamwise.
It wilt of course not often be the case that a sireamwise upper surface is best. Broadly speaking, it will be
advisable, whenever we require a large lift coefficient, to make the upper surface also contribute to the lift. On
the oiher hand, if the need is for a large volume, we can get some of this by “building up™ the upper side. so
that it too becomes a compression surface.

In erther case, it 1s possible to define the coentours of the upper surface also by means of the streamline
trac.1g technique, and so preserve everywhere the calculable nature of the flow. In what follows I shall give an
account of the process to be followed if an expansion flow is desired.

Figure 10 shows the simplest possibility, as first suggested by Flower'?. The flow field employed is a simple
Prandtl-Meyer expansion, shown in perspective in Figure 10(a). Figures 10(b) and 10(c) show how a stream surface
can be taken from the flow. In this case, if the surface of Figure 10(c) were to be placed in isolation in the
*“design” stream conditions, its leeward side would experience simply the Prandtl-Meyer flow pattern. T e
geometric shurtcomings of this shape are, however, similar to those of compression surfaces based on wedge flow.
The leading edge of the expansion surface must lic in a Mach plane, whose inclination is

1
0 = sin”! —, (3.3
" )

If the edge 1s to be swept back, it must also be dihedralled (the edge of a wedge flow wing had to be
anhedralled) and so agamn subject to high friction losses. Therefore, it scems again that we have to reject two-
dimenstonal flows as a basis for design. It should be remembered, though, that waverider shapes based on two-
dimensional flow might 1n some circumstances be fruitful subjects for study. As one example, they may provide
simple cases for developing an understanding of shock wave behaviour, we return to this point later. As another,
they may offer simple caleulable environments 1n which to study the development of three-dimensional boundary
layers'? .

However, returming to cur efforts to design a suitable shape for the upper surface, we try again to generalise
our approach. More general two-dimensional flows will not solve the problem, we turn therefore once more to
axisymmetric flow, Figure 11 shows the flow over the tapering end of a body of a revolution, whose fcrebody we
can suppose to be semi-infinite and parallel, Stream surfaces from such a flow can be found which are relatively

flat (Fig.12) and can be used 1n con,unction with designed lower surfaces so as to form complete configurations'?-!S.

The most promusing technique, however, employs an ingenious idea due to Pike'® (sce Figure 13). Two
axisymmetric expansion flows are supposed to be piaced side by side in such a way that their Mach cones inter
sect. For the moment, we 1gnore the region of their mutual interaction. We draw a stream surface which starts
upstream ot the expansion regions and is initially parallel to the main flow. As soon as it enters cither expansion
region it curves inward. We overcome the interaction of the two fields by placing a vertical fin surface between
them. If the overall geometry is correctly chosen 216 it is possible to make the sides of the fin surface also
conform to stream surfaces of the two flows.

The particular advantage of this method lies in the fact that volume is selectively removed from the mid
semi-span positions, and left untouched near the centre (see Figure 13(b)). Thus the resultirg base shape approx-
imates quite closely to the shape shown as our design aim in Figure 8 of Lecture 1.

Now almost everything I have said up to this point has had to do with the g.ometrical process, with trying
to achieve the most general and reahistic configurations. The problem of maximising performance is partially
treated 1n Lecture 5. in addition to the methods described there onc may also try to apply the lessons learnt in
Lecture 2 (convex streamlines, incidence washed out toward the tips). There remains the question of the by Hur
of these shapes “off-design™.
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if a waverider shape operates at conditions far removed from its design point, then it loses all of its special
properties, and becomes f ym the point of view of computiation no different from any arbitrary sharp edged
shape. But at conditions only just removed from the design point it may be possible to solve the flcw by smail
perturbation techniques. One such technigue has been v orhed out by Pike, and will be published shortly

The other relationship between design and off-design coadétions is that we muast vecover the design solution
s a speciai case of a more general calculaticn procedure. Let us then tentatively outline such a procedure for
the shock attached case and see whether it will meet that basic test. We will sappose that either some three-
ammensional characteristics technique or other finite difference scheme is available to deal with the main part of
the disturbed flow. On the wing sarface thers will be a boundary condition of tangential flow, and at the outer
edge of the flow we shall have to satisfy the oblique shock relationships. On the line where these two surfaces
meet (i.e., the leading edges we must satisfy both conditions. The free stream flow must there be turned parallel
to the surface by the atiached shock wave.

So 1t would seem that we can already make 2 start on the solution by calculating the flow just at the leading
2dge and this shoule provide part of the boundary conditions for the remaining calculations. There are various
ways of computing the flow at a swept edge, the simplest and best known being the following. We consider a
region of the leading edge which is so small that we can think of it as straight, and of the local surface and shock
wave as planar. The problem then is equivalent to finding tiie flow over a yawed wedge (Fig.i4). To do this, we
construct a plane which is normal to the leading edge and resolve the incident flow into a component ''ng the
edge, and a compenent in the plane. This latter component we show as b, . We can argue that in inviscid flow
the other component has no effect, since the wedge could be irenslated paralicl to itseld without changing the
flow. The problem reduces theretore to solving for a stream of Mach number M, , deflected through au 2ngle &,

It v oo Hd T 3T
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The angle 8, , which determines the local position of the shock wave, then follows from the sheck cubic

asin®@, + bsin8, + csinlfy + d = 0, (3.4

where a = Mg

b = Mj{{(rtUDsin?é — 1} — 2M3
¢ = Mp {(yt1)sin?8} + M2 {(y+Dsin?8 + 2} + |

d = =1,

This 1s just the ordinary two-dimensiona} shock cubic with M_.0.6 . replaced by M, ,0,.6,. In general we
know that there will be either two, one or no thermodynamically permissible solutions.

If there are no solutions we must suppose that our hypothesis of an attached shock wave is contradicted, and
that the shock is in fact detached.

If there is only one solution then we supp/»e the shack is about to detach.

If there are two solutions, we may, by analogy with the two-dimensional case, call them *‘weak’ and “‘strong™,
or perhaps more precisely, to show how they are derived, the **weak normal’ and the *‘strong normal” solutions.
We define the “weak normal” solution as the one which lies closer to the surface, and we may observe that of the
two it has the smaller pressure risc and causes the less encrgy degradation (entropy rise). It will be very natural to
take this “weak normal’ solution as our leading edge boundary condition.

Unfortunately, a very simple example is enough to show that there are difficulties. Figure 13 shows a f~mily
of caret wings all derived from the same wedge flow. The differ only in aspect ratio. Now as the aspect ratio gets
very high, the corresponding wing is identical with the original wedge, and in that case the shock wave is evidently
“weak normal”. In the other limit, as the aspect ratio gets very low, each facet of the wing becomes only P
negligibly inclined to the incident stream. And yet we believe, from the thought-experiment described at the ki
beginning, that the wing still supports the same finite pressure rise across the leading edge sho-'t wave. A little
reflection should convince the reader that the shock wave in this case is of the “strong norma!™ type.

if we'ncew tmagine the shock wave being steadily reduced fron. infinity to zeto, there will be a changeover
from *‘weak normal” to “‘strong normal” shock waves. For any particular case theie is no difficulty in calculating
numerically where this point is. All we need to note here is that there does exist a class of wing for which the
computation scheme we outlined above breaks down, and that for wirgs of this class the flow, witk its attendant
“strong normal’ shock waves, is found experimentally 17,




The interesting question now is this. Are these cases that we have discovered “freaks™ brought about by our
particular waverider techniyue, or do they have a more general relevance? We shall begin our attack on this
problem by considering the flow regimes which may occur on a given delta wing as its test conditions are varied.

In Figure 16 we present diagrammatically some of the things we think we know. The axes (M_, «) represent
particular test ronditions with « being the incidence of the ridge line. (We do not here consider yaw effects.)
Suppose that for all (M_,a) we calculaie the position of the weak normal shock wave, relative to the plane of the
leading edges. For .ome values, the shack will lic below the plane, and for others above it. For a particular set of
values (ST in Figure 16a) the shock Jies in the plane. The curve ST s the same curve that one would calculate
from two-dimensional theory and for high aspect ratio wings extends to M_ = 9,1t 15 the so-called “*design curve™
of the caret wing (see, e.g., Reference 2). The other significant curve on the figure 1s the one along which the weak
and strong normal solutions coincide (PR) and above which no solution exists. For each region defined by these
curves 3 small sketch is drawn, showing the typicai positions of the twe solutions. There seems no reason to
suppose that the weak normal solution does not hold everywhere.

The picture becomes more complux as the aspect ratio is reduced. The curve defining conditions for which
the weak normal shock lies across the leading edges shortens to the finite length SQ, and a new curve QT appears,
defining conditions for which the strong normal shock replaces it as the design solution. The twe curves run
smoothly into each other. The *“detachment cuive™ PR shifts ro.und somewhat so as to touch the design curve ut
Q. In Figure 16b we have reason to believe that the “‘strong normal” solution holds along QT. Let us suppose
that it continues to hold in some neighbourhood of QT.

If this is the case, we can imagine an experiment in which the wing, originally at a design point on QT, has
the oncoming Mach number altered whilst the angle of incidence is kept constan.. One caa eastly convince one-
self that the resolved leading edge deflection angle (8, in Figure 14) is also held constant, whereas M, varies m
proportion to M, . Then as the stream Mach number is reduced, say, Mp is reduced also. Therefore 6, is
reduced (we are considenng strong solutions which do have this property) and the shock moves inward closer to
the body. Conversely as the Mach number is increased. the shock wave moves outward. This 1s certainly contrary
to one's expectations, 1t 1s also contrary to the results of prelminary attempts at ¢ perturbation flow ficld analysis,
and moreover contrary to experimental evidence!” .

The paradox can be resolved in mose than one way. | indicate in Figure 17 the ore which seems simplest
and inc.¢ natural to me. It 1s known that the flow patterns correspond 1g to conditions tnside SQT may contan
powerfu: embedded shock waves® . A consistent picture can be formed which assumes that the strength of these
shockhs increases with increaming incidence, and that they simultaneously move outwara, finally reaciung the
lead'ng edge when the incidence crosses QT. At that stage they jomn up to owupy exactly toe plane of the leading
cdges. With still furtheu increase of incidence, the whole shock system detaches, so that the real detachment fine
is PQT.

I must emphasize however, that the whole of this last paragraph 1s so far purely conjectural. and not yet
confirmed by really careful experimental measurements.

If these conjectures prove to be correct, we will have shown that aithough “strong nommnal™ shock waves do
exist on caret wings. they happen only for condit:ons that are very rare (mathematically speakingy and so 1t might
seem that 1in our proposed calculation methed we could safely neglect them after all. However, when we go on to
non-corical shapes, the situation looks very urclear.

Cousider a wavender surface with 1 strongly curved leading edge generated from a wedge flow as 1in Figure 18.
We can casily arrange for part of the shock wave to be “weak normal™ and for the other part to be * strong normai™,
If a wing were formed from suc  a surface and placed 1n a stream at its design condetion, what would now happen?
For every point on the leading edge 5, will stay the same, and M, wall decrease. It may be appropriate to leave
the consequences of this as **an exerc.se for the reader™. The problem 1s certainly not triviel, and seems to have
more than one possible solution.

It may be mentioned in passing that these “n.axed” leading edge shock waves are the r:le rather than the
exception so far as “axisymmetric” waveriders are conczrned (Fig.19). Nevertheless, Pike!* found no very
remarkable off-design behaviour in his experimental tests of cone-flow waveriders. His tosts, were, however, won-
ducted before the present approach was formulated. and no particular effort was made to look for the refevant
phenomena.

The final topic 1 want to di -uss in relation to the wavender programme 1s some speaial solutions ihat can be
found for caret wings of rather extreme geometry in rather far off- fesign vonditions ' . One such solutiun, formed
from a pattern of four intersecting shock wavces separating regions of untform flow 1s shown m Figure 20 The
pressure distribution across the span of the wing 1s shaped like a top hat. The flow pattern occurs only if the
angle between the facets is less than 90°. Thus flow pattern is mentioned not because of ary practical application
that 1t may have, but because of an nteresting questior of general panaple that emerges from at. It turns out '* |
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that under certain very extreme geometrical conditions (the apex angle of the facets has to be greater than about
30°, and the angle between them less than about 5°) there can be non-uniqueness in the solation for the flow
over a caret surface. Figure 21 shows two curves in an (M_,@) plot. On one curve the *“wing™ can support a plane
shock wave, and on the other it can support the special flow shown in Figure 20. For the extreme geometries
described above, the two curves cross '®, and at that paint either flow is possible.

A close examination reveals that at points on the desig.. curve shown by the dotted line, the flow behind the
single shock wave is subsonic. Therefore the “waverider thought experimeat™ 1s not valid, and we do not necessarily
believe in the single-shock solution*. Nevertheless, both solutions do satisfy exactly the Euler equations and all the
boundary conditions, and it would be a clever computer that could chovse between them.

In a later lecture (Lecture S), 1 shall take up the subject of waveriders again, and [ shall deal there with the
question of huw to select a flow field ! kely to yield efficient waveriders. What | hope to have shown at this stage
is that the waverid.r concept offers a considerable flexibility in the choice of shape, and that provided this
flexibility is taken full advantage cf, shapes can be obtained which have many features of realistic design sketches,
and also offer high performance levels. I hope also to have shown that the study of such shapes arising from their
design conditions plunges us st once into intriguing problems of basic fluid mechanics that may turn out to be of
very general significance.
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Fig.10 Using a two-dimensional flow to design an expansion surface
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LECTURE 4
THIN SHOCK-LAYER THEORY

P Roe

Royal Aireratt Establishment, Bedtord, England

At the present moment the theory o thin shock-fayers as applied 1o wing-like shapes seems to be in a state
offering considerable interest both to the mathematician and to the acrodynamicist,  Its interest to the acro-
dynamicist Hies in the fact that in many circumstances it yiclds highly accurate answers to significant problems, and
its interest to the mathematician in the fact that such accuracy seems highly unlikely at an a priori examination.
In this tecture T shall outline the development of the subject and its present status, and 1 hope 1 shall be able to
indicite some directions for future research.

The theory s exsentinlly o first order correction to simple Newtonian theory, and it will be convenient to
start by discussing that [ have atready <aid something about Newtonian flow in Lecture 2, but it is necessary now
to expamd those remarks a fittle, We noted there that in the double limit M~ , 5 — |, the flow behind a
given shoek wave became infinitely dense and the initial deflection of a streamline crossing the shock became
identical to the local inclination of the shock itself,  This leads us 1o consider a model of the flow in which the
shock wave and the body surface almost comcide and all the captured air 1Tows in o very thin fayer between them.

Even in this limit, hewever, the flow in the Liver exhibits features which are cecognisable as degenerate cases
of real gas Mow patterns, The key obseevation is that o Lver of infinitely dense fluid cannot be accelerated by
merely finite pressure gradients. Since the streamdines tollow the (generally corved) body surfiace, they do have
curvature normal to the surface, and the necessary infinite pressure gradients are supplied, in Busemann's model,
by finite pressure clianges across the infinitesimal thickness of the layer. However, Tor smooth body shapes the
pressure distribution is also smooth. so that pressure pradients in the surface are finite everywhere,” We conclude
that the streamlines have no curvature in the surface. In geometrical teims, this implies that they follow the surface
geodesics, or paths of shortest distiance. The tracing out of these paths, for ¢ general body shape, is a non-trivial
problem in difterential geometry, hut given the geodesies, the acrodynamics is simple. We observe that cach stream-
line, when it strikes the body, takes an initial direction in the surface such that the actual turning angle is minimised
("puth of steepest descent™ or “fall line™). Thereatter it Tollows that geodesic whicl passes through the initial
point in that direction,

For many body shapes this approach vields @ consistent and satisfactory picture of the flow structure, but for
certain body shapes anomalies appear. These do not necessarily detract from the usefulness of the approach; rather
they may enhance it. Hayes and Probstein' have written .., the anomalies of Newtonian theory are not to be
avoided, but rather sought out, in order to discover phenomena which may be important in hypersonic flow but
which have no counterparts in flows at more moderate speeds.  In addition. the methods developed in Newtonian
theory suggest analogous methods in more realistic theories™. 1t will very Jikely be protitable to take a simitar
attitude toward the thin-shock-layer approximation.

Applications of this theory to wing-like shapes have so Far been restricted cither to conival wings*™, or to
wings at very high incidence”. The former application appears the more promising, and it is this one that we shall
consider here, '

Let us brictly consider the flow past a conical wing in the Newtonian approximation,  Since the wing is conical.
its surface is “developable™, ie.. can be unrolled without stretching to vield a flat surface.  The geodesics (streamlines)
of a conical wing are therefore straight lines in the developed surface. IF we look at a true view (Fip. lay of this
developed surface, we see that a streamline arriving at the surface takes some initial direction that depends on the
local geometry, and subsequently follows this sume direction, undeviatingly,  The rays through the wing apex O can
be divided into two classes lying to the right or to the left of the ray which is parallel to the given streamline,  Only
rays in the outboard class are crossed by the streamline.  We mention this property because it is an unrealistic
feature which persists into our higher approximation.  Generally, we would expect a streamline to continue cutting
across rays until it arrived at one where the pressure was at a minimum.  For the case of a tTat detta wing. this
would be at the centreline (Fig. 1(b)),
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A more serious anomal:* occurs if the mitial Jeflection directs the streamhine toward the centreline. This
happens if the wing is anhedralled, and the simple theory then predicts that the streamhine continues straight acress
onto the other half of the wing (Fig.1(0)), which it cannot do without colliding with 1ts “opposite rumber”. The
situation can be resolved within the Newtonian approxiation by remembering that the Mach number inside the
layer, as well as in the free stream, is infinite. Thus a consistent explanation 1 given by supposing that the left and
right-haad flows collide on the centrcline, and are turned parallel to 1t, to form ¢ narrow streamtube within whe h
the density is “infinitely squared™. Such a streamtube s termed & Newtonan shock line'. An analogous pheno-
menon occurs in the higher approximation and its resolution there 1s not yet clear.

Having seen that an intelligible and ateresting theory can be constructed on the asumption tiat the shouk
layer is of infinitesimal thickness, it iv natural to go on and see what results from assuming 1t to be merely very
thin. This is the theory that we are about to study. As a numerical measure o1 how thick the shock layer s hkely
to be in a given problem, we may take the density ratio across some typical part of the shock wave, and denote
this by € = p/pg , where

-1 2
Y+ 1 (v+ DMisine

for & perfect gas, with @ the local shock inclination angle. Stnce the shock layer 15 anyway supposed to be thin,
we may take as a typical value of o the actual incidence of the surface, . s0 that our basie assunption for a
perfeet gas is going to be that

y—1 2
€ = + 3 (+.2)
v+ 1 {y+ DM sin?a

is a numerically small quantity. At first sight this is unpromising, because we can see that € will never be less
than (y — /(v + 1) and for air this quantity is cae-sinth. Substantially smaller values of € occur if the shock
wave produces changes in the molecular structiiee of the gas, so that Equations (4.1) and (4.2) no longer apply.
and we might expect the theory to be more applicable m such cases  Howevei, numerical caleulations reported in
References 6 and 7 show very useful agreement with experiment at very moderate inadence and Mach numbers.
even when the allegedly “small” parameter € is of order unity (see Figure 2).

Before embarking on the mathematical analysis we must choose a coordingte system.  This choiee 15 discussed
in Reference 1. For a general investigation it would be convenient to adopt flevible coordinates adapted to the
geometry of the shape being studied.  For example. if the problem were to calcnlate the flow past the conicel body
shown 1n Figure 3, the coordinate system drawn there might be convement, compounded of normals to the body
surface and curves orthogonal to them.  Alternatively ., if the problem were to compute the flow behind a given shodk
wave, a coordinate system based on that might be preferable. Such generated coordinates are ecmployed in
References 1. 4 and 5.

Here. however, 5o as to sumplify the algebra as much as possible, we employ straightforward cartestan coordinates.
We may note that these would 10 any case be appropriate provided thad either the budy or the shock does not deviate
too far from a plane, and that for lifting wings this will probably be the case.

Following Messiter®, we begin the analysis by defining pght-handed cartesian coordinates (3.3 .7) orented with
respect to some “mean plane” of the wing under consideration (Fig.d(a)), and define corresponding velouty com-
ponents to be (1.¥.W). If we agree to call the flud density p and the static pressure P, then we have the following
squations of motion:

Continuity h
(p)g + (p¥)y + {pw), = 0.
X-momentum

1
filig + Vil + Wi, + = Py

= 0.
y-momentum
Wiwvﬁwﬂ%p" =0 > (4.3)
Z-momentum
Uiy + ¥y + W W +-:;p2 = 9
Entropy

o dsarite as
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4.3
Q and these shock relationships

:

% Poo ‘n 2 u? P,— P,

?; 1 - |+t 1-=) = == (4.4)

o Ps c v+ 1 c PeoC?

E 0 = (=¥, — ¥ - U¥; sin )i + (0¥, — %,¥s; — Uy, cos@)j +
£
£ + (T + TFs; — U cos a + UF_sina)k . (4.5)
:g '

i In these equations:

5
. . Suffix ( ) denotes conditions just behind the shock,

'{ 2. Other suffices denote partial differentiation,

3. U is the free stream velocity,

{

i 4. o« is the incidence of the reference plane,

5. i, j, k are unit vectors in the (¥¥,2) directions,

: 6. ¥ =¥(X2) is the cquation of the shock wave,

7. n isa unit vector normal 1o the shock wave, directed into the free stream,

i 8.

€ = Qo *n is the component of the free stream velocity normal to the shock wave.

Now we set out to simplify these equations 0a the assumption that the shock laver is thin. To begin with, we
need 2 ‘stretched™ coordinate system that will be described by quantities of order umty. The choice for the x and
y coordinates is fairly obvious (Fig.4(b}); we take our stretched (starred) variables tc be

*

X X

4.6
N 7 (4.6)
€ tan o

The choice of a z-transformation is less cbvious, but it is helpful to note that intcresting problems of flow
structure, such as shock detachment, occur on wings whose aspect ratio is of the same order > the Mach angle 1n
the shock layer, and this angle can easily be shown to be O(e'?}. Provisionaily, ther we set

Z

W e y
T eMpna @5

where the factor tan a is introduced to simplity the later algebra.

Next we need to estimate the orders of magnitude of the independent variables. This can be dene by consider-
ing the known s~lution fur attached flow st a swept leading edg.. and assu.ning that all flow quantities have the

same order of .uagnitude elscv mere that they have there. The detaus ere given in Reference 2, here we will note
only the resulting scalings:

u
U = cos a + e(sinafcos ¥)u + ...
V -
-J= esinav+ ..
w
T eMsinaw + .. 4 (4.8)
P—2,
T = sinfa + esinap + ..
p
o0 Yo
e e(Qu+w)—eX(l+p)+ ...
p 2 )
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The last of these equations 1s not independent, but is a consequence of the previous four and of the cowservatior
of total enthalpy. The quantities u, v, w, and p which appear in Equations (4.8) are all of order unity and
represent corrections to the Newtonian solution. The equations that they ~bey can be found by subsututing {3 67, i
(4.7) and (4.8) into the equations of notion and the shock relationships. The result is

1% g

F

¥

¥
Y Continuity \
i Vy+ +we = 0.
¥ X-momentum
§ ugs + Vigs + wuge = 0.
{*:' y-momentum 4 (4.9)
gﬁ‘ Vgr HVVye Fwe = —pue
i
E % z-imomentum
e Wye + Vwye + wwpe = 0,
E /
S
{ Shock relationships
s i N\
e ug = —3y¥/ox*
3 '
| Ve = (dy5/ox*) — (dy¥/az*) — |
J L (4.10)
4 ! wg = —dy¥/az*
o
;. P = 2(dy¥/ax*) — (ayF/az*)? — 1.
B3 B J
5 i

In all these .guations the relative error is of order € . We may note that the equations are now not only much
, shorter, but also quite drastically changed in form. We have lost one of the original five equations of motion by
making use of the explicit solution for p , but even imore importantly, we have lost much of the coupling between
the remaining four. The equations of continuity and z-momentum contain only v 2and w as independent variables,

and can therefore be solved wi.::out reference to the others. Then the x- and y-momentum eqnations can be solved
g for u and p respectively.

S0y b
oy

Lot

Moreuver, these equations imply several very simple propertivs of the flow. In Equations {4 9) the x-momentun
equation can be interpreted as a statement that u remazs constant aiong streamlinzs. and the z-momentum equation
mplies that w also has this property. Turning back to Zquations 74.8) we sec from the last of ihese that if u and
w are both preserved along streamlines, then so are the ie3diug terms in the exypression for density. {tus along any
given streamtube, both density and x-wise velocity are constant te firs, ordsr, and 1t fullows from continuty that all
sections of a streamtube, cut by planes x = constanl , have the same arca. This iast resplt can also be estabtished
as a geometrical consequence of the simplified continuity gquation.

For the remamder of this lecture, we shall consider oaly coniczi flows, that is, if we introdece conical coordinates

¥

[
L
»
P
-3
s

b (4.1
2= e, |

we wiil consider flows in which u, v, w,and p depesc only on y snd z. If we racast the equations of motion
so that y znd z are tne independont variabler, we obtain

!
=
vy + w, Q l
vy, (w2, = 0 :
¢ (4.12)
(Voyivy +(w iy, & -py i
e —yhwy F(w ~zw; = $ . Ji

‘Thie shock wave is cotapletcly described by an equat-on of the form ¥y = yiz; and the shock ratationshivs then
become
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2 Wy = Ty

2 pe = W~ 2oy —yd — 1
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Equations (4.12) and (4.13) together voastitute Messiter's vary simple formulation of the conical thin shock
layer problem, and since his original paper? have supplied the busis for work by Hida®, Squire®?, and Woods®. The
discussion to be given here is based parliy on these papers, and partly on my owr work. so far not publisned.

First of all we look at the mathematical stiucture of these approximate equations of motion and compare it
with the siructure of the full Equations (4.3). The full equations can be thought of as four independent equacions
for three unknown velocity components and one unknown pressure, with density and entropy eliminated by means

of the cnergy equations and the equation of state. Ir a conical coordinate system involviag just two independent
variables the characteristic directions of the s=t can be sought.

For a set of equations involving four unknowns there will be in general four characteriscic directions through
every point!®. The equation which gives thuse directions for the case of rotational conical supersonic flow has
generally either two or four real roots Two of these roots are coincident, and correspond to the streamline direction.
The other two are inclined to this direction at an angle corresponding to thie Mach angle of the cross-flow!!, and
disappear when this c-oss-flow becomes subsoric, i.e., when the velocity component normal to the 1ay through the
apex becomes less than the local speed of sound. When this happens there are no longer enough characteristic
equations to solve for all the unknown quantitics, and the equations are essentially elliptic in character. These
different regimes are illustrated in Figure 5.

Now let us leok at the structure of the approximate Equations (4.12). As already remarked. the first and last
of these equations can be solved independently of the others, and their behaviour d=termines that of the whole
system. Effectively we are now dealing with two equations :n two unknowns. and therefore there can be no more
than two characteristic directions. In fact, there are always just twe, which can easily be found to be

dy v—y
dz  w=z (4.14)
and dz = 0.

[he first of these (see Figure 6) 1s the streamline direction. and thercfore corresponds to a feature of the full
; equations. The second is an unrealistic featvre, which implies that disturbances can be transmitted instantaneously
‘) ' across the shock layer. Since both sets of characteristics exist everywhere, the flow has everywhere a hyperbolic
) ’ character, which is another unrealistic feature. However, when we sotve these equations we shall see that vestigial
) traces of the elliptic region do in fact remain. On reflection, this seems a fairly satisfactory state of affairs, for we
. clearly cannot expect the full structure of a system having four charactenistic directions to be represented hy an
approximation which has oniy two.

In Reference 2 the foliowing method is adopted to solve Equations {4.12) and ¢4.13). By taking account »f
the differential equations fer v and w . the shock relaiionships and the boundary conditions on the body (which
we have not yet mentioned) a rather complex integral relationship is set up between tie shape of the shock y(2)
aud the shape of the body yu(z) . The cquation is in fuct

. " 1 + [t ds
Yo = Vet m——+ | —
R AR RE

(4.15)

where § is the solution ~{ the equation
-y} = z .

In cases where y (2) is known {inverse problems) Equation (4.153 yields the unknown bady shape by straight-
forward quadrature. In cuses where yu(2) is known. the solution of {4.15} in find y {2} is not straightforward:
it scems best to transform it into a differential equation®® which can be tecated numerically. This process, ot o
similar one, has been the basis for the work in References 1-7. In Beference § a Jii¥erent, aad a very much simpler
approach was taken, bat limited to a special class of soiutions. The differeatisl equations were nonsidesed by them-
selves, independentiy of the boundary conditions on shock wave or bedy, aad solutions of “simpie wave™ type, that

is, having constant properties along the “strcamline™ characteristics. wete discaovered. It was fouad that shock waves
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compatible wich these solutions were straight or parabolic, and that sclutions satisfying the boundary conditions
for a flat delta wing with an attached shock could be built up if the shock wave were supposed to consist of straight
segments.

We foliow here a process which may be thoughy of as a geacralssation of this last scheme. We repeat here the
two equations which have to be solved for v and w within the flow field:

dv  ow
.—..{- —— = 0 (4.16)
3y oz
dw ow
(v=yy—+{w—2zj— = 0, (4.1n
ay oz

We may aote that once we have solved these equations to obtain v and w everywliere, we can draw in the
streamlines by following th= differentie! enuation for their slope

4.18)

Thus, (4.16) and (4.17) in effect gve the streamlines of the flow. We may ask whether there are any properties
of the streamiimes which can bc deduced from then dircctly. The following short piece of algebra provides an
affirmative answer to this question.

Consider two streamlines 1ying very close $0 each other (Fig.7(a)). Each will be associated, as we have seen,
with a particular, conctant, value of w . Let these values be w and w + dw . Let the streamline shapes be
v=y(z) and y = y{z) + &4(z) , where A{z) is the small vertical distance batween them. If we want to know
how rapidly the lines sre converging we can look at the quantity

1 da
& dz

It is easy to show that this 1s equal t9 the vertical zate of change of streamlire slope 9S/dy , where
S=(v—y)(w—2}. Now we can find 3S/dy from Equaticn (4.18), and the result is

S 1 da  (w—2)@v/ay— 1) — {v—y)dw/dy (4.19)

— wm e e—an

Iy A d (w—z)?

The right-hand sidz can be sirpiified by uce of Equations (4.16) and (4.17) and we get

. (4.20)

Zdz (w2}

Now, since w is consiant along streamiines we <an regard {4.20) as an ordinary differential equation, valid
along any streamline, so long as w is givea the appropriate constant value. The integral of chis equation is simply

A = const % (w—2) . (4.21)

Thus, any two narrowly scparated steeamlinzs approcch cach other tinearly with 2 and intersect when 2 has
the valu? w.

From this theorem many equally sunple consequences follow. First, we may wbserve that in generai any iwo
streamlines must bz scpsrated from cach other by a linearly vatying verticul distance, because the sum of any number
of lincar functions s itseif a fincar function (Fig.7{b)). This holds only if all the intervening strearatub- are con-
tinuous, i.¢., none of them comes to a stop in the region consigered. That is to say, if any one streamtube can be

expressed by

y = flay+ Az +B . 4.22)

O S S . e - - -
RS ot R T e T e it e = &m:é
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On differentiating this, we get
dy
— = f@2)+A, (4.23)
dz
so that any two streamlines differ in slope by a constant amount. A further differentiation produces
y
— = f(z) . 424)
dz?

Therefore, ail streamlines which cross a given z-section have the same second derivative. In particular, if one
of them has an inflexion point, they ail have.

The fundamental property (4.21) also altows us immediately to sketch in the various patterns which a set of
stieamlines can form. These patterns are shown in Figure 8. On the left are patterns formed by streamlines running
toward the plane of symmetry (w <z), and on the right patterns formed by streamlines running away from the
piane of symmetry (w > z). The top picture shows streamlires which each liave the same value of w, and which
therefore (Eqn (4.21)) all meet in the same point. Immediately below this we show the case (b) where w increases
smoothly and monotonically from top to bottom of the bundle. Below this again we show the similar case (c)

with w decreasing. In both cases the locus of intersection points forms a smooth envelope to the family of
streamlines.

By combining patterns (b) and (c) we can form patterns in which w reaches cither a maximum value {case (d))
or a minimum value (case (e)). In these cases the envelope curve may be either simple or cusped. Finally, in (f)
and (g) we show cases where w 15 discontinuous. The essential feature of these patterns is that there is a dividing
streamline which 1s intersected by its neighbour from above and its neighbour from below at widely different points.

It 1s no. at all difficult to imagine more complicated patterns involving more complicated behaviour of w . One
very interesting question is the extent to which these patterns correspond to features of more accurate solutions.

The other interesting point to emerge from these patterns is the question of the boundary condition to be applied
on the body. Since the body is a solid surface it must, in a conical view, be either a streamline or an envelope of
streamlines, or, as we shall see later, partly the one and partly the other. Where the body surface is a streamline,

the boundary condition to be applied is dw/dz = 0, where it is an ¢nvelope curve, the boundary condition is

w =z . This ambiguity is a source of difficvlty, the correct boundary condition is not known a priori everywhere
on a given body.

So far everything we have said follows from a consideration of the differential equations alone. The shock
relavionships enter into the solution in such a way as to determine both constants in the equation

4 = conet x(w—3z) .

Let the shock wave be given by the equation y = y,(z) . Let a pair of closely adjacent streamlines intersect
this curve at poiat z=¢, z=¢ + df (Fig.9).

Then, from the third of the shock relationships (4.13) we sec that the value of w on these streamlines is
w = —ydl) (4.25)
and thus that they intersect where
z = =y . (4.26)

which pnint may, of course, be either inboard or outbeard of z = ¢,

The inttial slope of the streamiines is given by the general expression for streamline slope (4.14) which just
behind the shock takes on the vaiue
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From this, the initial spacing between the streamlines follows at once; it is equal to d¢ times the difference
between the slopes of the shock wave and the streamlines (Fig.9) and is therefore

A, = d (4.28)
oo+t '

Using this result, one can calculate very simply the area enclosed between these two streamlines,

ie., Jad = aa .

Since A is a linear function of z, this area is just one half of the maximum value of A, which is A, . times the
horizontal extent of the srea, winch is § — w(}), or ¢ + vi{8). From Equation (4.28) it follows that

dA = dt . (4.29)

So far in our study of the approximate equations we have made no use of the concepts of conically subsonic
or conically supersoric flow. The structure of the solution has not in‘olved such ideas, nor should we expact it to,
as the approximate equations of motion involve no characteristic velocity. Nevertheless, conically sub- and supersonic
regions of the flow can be identified, and turn out to be of importance. To find them, we need the speed of sound
ir the shock layer: it can easily be shown that this is

a = e®Usina + G(e’?) . {4.30)

The flow will be conically sub- or sup2rsonic according to whether this quantity is greater or less than the
velocity component normal to the ray. This component is ¢2U sinalw —z| and so the flow is conically supersonic
if

iw—1zl>1

and conically subsonic if
w1 <1

Although thz2se conditions seem irrelevant to the dirferential equatiors, they turn up, rather surprisingly. in the

shock wave relationchips. To begin with, we repeat here the equations for streamline slope just behind the shock
wave

S = y{) + (4.27)

1
ys@) +§

in this equation, suppose that we are given § = C (say), when § = £, in other words we are solving for
y; at a given leading edge. Equation (4.27) then becomes a quadrature for y. , but it is more convenient to work
with the value of w(= —y; = w, (say)) as the unknown, and cven more so to work with ( — w,). Accordingly
we rewrite Equation (4.27) as

C+Q = Q—w,)+ — 4.31)
(R w,) (

A little consideration of this equation shows that it has no solution unless (C + ) > 2 ; if this is not the
case we must assume the shock wave to be detached. If there is an attached shock, Equation (4.31) shows that
there are two solutions for (§ — w,), one the reciprocal of the other, The one for which { —w,) > 1 gives
conically supersonic flow, and the one for which (2 —w,) <! gives conically subsonic flow. There is, pleasingly,
a close correspondence between these two solutions and the “weak® and “‘strong” sclutions of exact sheck wave
theory.

The subsonsc/supersonic distinction turns up again if we calculzte the sticamline “curvature™ (more progerly
the second derivative d?y/dz?). It will be recalled that this is constsnt on lines of constant z . We may expect
therefore, that it can be expressed solely in terms of shock wave properties at a given z-station. This is, in fact, the
case and the calculation proceeds as under (see rigure 10).

The required curvature can be written as

e e AN o s sucth
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4.9
Now from Equations (4.19) and (4.20)
A
Sl - 83 = 7 s )
Yy +¢§
and by diffzrentiating Equation (4.27) along the shock wave we get
1+ v(§)
$; =8, = v — ———=
[§ + y()i
Putting all these together with Equation (4.28) yields the desired result
d?y " !
— = y'@}) 4l = —— (4.32)
dz? ) [t + yiOP

Now the factor in curly br. ckets is positive if the flow immediately behind the shock wave is conically super-
sonic, in that case the shock and the streamlines will have curvatures of the same sign (Fig.11). If the flow behind
the shock wave is conically subsonic, the factor in curly brackets is negative, and the streamlines curve in the opposite
direction to the shock wave.

If the flow behind the shock is conically sonic, the factor is zero, and therefore either the streamline curvature
is zero, or the shock wave curvature is infinite. This latter possibility has been suggested by Messiter as providing
an appropriate boundary condition for the leading edge of a wing with a detached shock; the outflow is conically
sonic (see Figure 12) and the shock curvature infinite. The analogy thereby suggested between flow round a leadiny
edge, and choked flow in a nozzle may be worth following up.

One final simple property of the solution will be noted here. an expression that allows the pressure distribution
to be found when the above results have been used to obtain the streamline pattern The streamline curvature can
be writien in two alternative forms:

d?y as as
— = — S, (4.33)
dz? 0z oy

If we exnand the right-hand side using Equation (4.18) and tnen simplify according to the equations of motion
(4.12), the result is

d?y dp/dy
— = - = 4.34
dz? (w—2)? 4.34)

This shows that the streamline curvature is related to the vertical pressure gradient alone.

We now apply some of the results given above. As [ have already mentioned, the “inverse problem” of finding
the flow field and body shape associated with a given shock wave is almost trivial. There are two possible ways,
and it is not difficult to prove their equivalence. One of these is to use the quadrature formula given by Messiter?,

€ =y~ [ 072, (4.35)
) = - -_— ’ .
d Ve ¢ we—sl?

where y({,z) 1s the ordinate of a streamline that has crossed the shock at a spanwise station ¢ and subsequently
travelled to a spanwise station z .

A much quicker, if slightly less accurate, alternative is a graphical method. The shock wave shape is drawn as
in Figure 13, together with the beginning of one streamline, assumed straight (Fig.13(a)). Then we move a little
outboard, and draw in the next streamline, also straight until it comes under the first one Then we draw in the
rest of the second streamline, assuming that its separation from the first one is a linear function of z , zero when
z = §(w, + w,), re., the average value of w for the two streamlines. Subsequent strezmlines follow in the same
way.

The inner r2gion 1s difficuit to draw in this way because the streamlines are almost vertical. It can cither be
treated analytically, or else the body shape, pressures, etc., can be faired in “'by eye”.

.
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~igure 14 shows the flow behind the shock wave,
Z2

Yy¢ = 1 —— (4.36)

; s 8

e

i ;

R ' drawn in this way. The “body" consists of an inner region HI which is an envelope of streamlines, and an outer

¥ { one IJ which is identical with a particular streamline. The “source point” is marked on the shock wave. Note

. E that, as predicted, all the streamlines inflect as they pass below this point. Also marked are the points at which the
] ;3 : sonic condition is reached on each streamline, although as already observed this has no particular significance in the
g t solution,
i {

E: A *“feel” for the way these thin-shock-layer solutions behave can be developed by drawing large numbers of

;’ inverse solutions. The possibilities are enormous. but the interested reader can easily draw up his own catalogue.

5 ; Only a few examples will be given here.
- 52' g

,, ' If we modify the above shock shape by making it straight outboard of z = 1.8, we get the patters shown in
:'; Figure 15. The streamlines flowing from the straight portion all have the same value of w and inerefore form a
'«"? centred fan, which causes the body shape to be kinked.

&

The total area occupied by the flow pattern originating between z = {, and z = §, is therefore just

E 3§, — ;) . 1t follows that for flows with attached shock waves (see Figures 14-15) the average thickness of the

b shock layer across the span is one half.
.1' * Another possibility which turns out to be of importance is that the shock wave may have a discontinuity in

slope (Fig.16). These discontinuities are needed to satisfy certain problems, although their sigaificance is not

3 altogether clear. What is clear, however, is that the shock on both sides of the discontinuity should give rise to the
I same streamline slope. When this happens we shall provisionally use the term “permissible discontinuity™. If the
- A streamline slopes on either side of the discontinuity are (y;)I and (y;)2 , then the condition for a permissible
. Ex discontinuity is (from Equation (4.27)}

V), + ———— = (yl), + ——
'T s (yS)| + ; s (yS)z + {

If we discard the trivial solutions {yg), = (y;), , this simplifies to

tainh

((ye), +$Hi(y), +¢) = 1. 4.37

Fat L

'f

From this we see that there is a transition between supersonic ana subsonic flow across the discontinuity. In
Figure 16 an example is shown where subsonic flow outboard of the discontinuity changes to supersonic inboard.
The body surface is ridged and it is possible to think of the discontinuity as representing a sudden expansion
associated with this ridge. The streamline RS must be an approximate representation of a region of intense shear.

Two examples of flows with detached shock waves are shown in Figure 17.

"3k We now have enough results to be able to tackie the direct problem (body given). We begin by discussing the
B 3 ' case of a detached shock wave. Provided it can be assumed that the flow pattern is of onc of the types shown in

) ; Figure 17, i.e., the body is everywhere an envelope of streamlines, the integral which connects the shouk and body

= ' shapes (4.15) is the same everywhere, and can be transformed®® into a second order ordinary differential equation

f ' for th unknown shock shape, which has to meet just two boundary conditions. By symmetry we have

= : yi0) = 0 (4.38)

and at the wing tip, where z=Q ,

y() = —(1+Q) (4.39)

" (from the discussion following (4.29)).
- At the wing tip we also have that y'(R2) is singular like (z-- )" | but this can be deduced from (< 2%)
3 and (4.36) and is therefore not an independent conditicn.
q Some solutions for normal force on a flat delta wing were given by Messiter?, who gave no details of his
:1' numerical method. Subscquently, Hida® developed a method applicable to wings of more general cross-section,
i assuming that both the shock and body shapes could be expressed by simple power senies in z . Squire® compared
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Hida's soluttons with experimental pressure distributions. and found that although they compared well for flat wings,

the agreement was not good for diamond cross-sections, and was not improved by takiny more terms of the series.
This is not very surprising, for no series representation could be expected to converge well near the leading edge
where y¢ is singular. Squire also found, however, that a full numerical solution of the differential equation did
give results that agreed very well with experiment (see Figure 2). There seems to be no difficulty of principle about
extending this solution ¢o general smooth cross-section shapes, and this particular aspect of the problem can now
probably be regarded as fully solved.

When we come to wings with attached shouk waves we encounter a fundamental difficuity. If we assume for
thu moment that*the problem again reduces to a second order ordinary differential equation, we find that the
problem appears to be overconstrained, because we have to satisfy three boundary conditions, viz.

At the centreline: ys(0) = 0 . (4.40)
At the wing tip: vs(S2) = yu(R2) . 4.41)
Also at the wing tip V() = —3{(Q+0)x{(R—C)? —4)?} , 4.4")

which is a consequence of (4.28), aad quite independent of (4.41).

A mathematical purist would probably abandon the problem at this stage, ciaiming that our approximatior;
were so crude as to preclude a solution. However, ‘ solutions” have been obtained, by using one of two artifice
Hayes and Probstein' and Woods® have proposed discontinuous solutions analogous to the one shown in Figure 6.

The solutions that they each propose are, however, quite different. Squire’ has waived the body boundary condition

over part of the span, and has thereby obtained flows over wings that are close to plane deltas. In what follows we
shall reexamine the flow over a plane delta wing using the simple results derived earlier, and note how these three

treatments differ.
At the wing tip, we have, setting C = 0 in Equation (4.42),
V() = =42 (Q* -4} . (4.43)

It seems that the minus sign corresponding to the weak solution is to be taken in all practical cases. Note also
that an attached shcck w.ve is only possible if € > 2. As an example we may take & = 2.5, in which case

ya2.5) = —§

Then the streamline originating at this point is associated with a value of w(= w,, say) given by w, =14 and
extends inward as far as z =4 . This streamline must represent the Sody surface over the range $ <z < 24, and
must therefore be straight. But we have scen that ali streamlines at a given z-station have the same curvature.
Therefore, all streamlines in the flow are straight for 4 <z <2} .

Now streamline curvature and shock curvature are related by Equation (4.32), and setting streamline curvature
equal to zero in this equation gives

1
"W -————] =0, 4.44
¥s (9] I: [k + Y;(DPJ ( )

which admits the alternative solutions

1]

ye(§) = 0 .

or v + ¢ t 1

Thus the shock wave can be cither straight, with arbitrary inclination, or else parabolic, of the form
ys(®) = A—101 -7 . (4.45)

Now except for the special vase £ = 2, Equation (4.42) cannot match the requitement on yg at t = ;
we conclude that the shock must be imtially straight, with slope chosen to match the tip boundary condition. We
can therefore start to draw in the flow pattern (Fis. 18(a)). It is casy to show that this straight section does not
extend al! the way in to z = ¢ . (Even if the centre-section of the shock were horizontal, the average thickness
of the layer would come out greater than ns known value of one half.) Therefore, the shock wave must change

shape somewhere within 4 <z <2} but it must still satisfy (4.44). It can change Jiscontinuously to another
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straight section, if the compatibility condition (4.37) is met. However, if we Jook at the “‘exact” sciutions due to
Babaev!®!? of the full equations, it seems preferable to make a smonth transition if possible. Therefore, we join
the straight portion onto the parabolic solution (4.45), which can be done only st the single point z = 1 + W,

= 14 in our example) that is to say at the soniv poms. We can now draw in a second stage in the construciion of
the flow pattern (Fig.18(bj) The streamlines which cross the parabolic section can be drawn inboard of z =4 by
using the condition that they envelope onto the wing surface. It will be found that to do this they must turn
discontinuously at z = 4 .

Now the shock wave cannot follow the parabolic arc for long, since this arc curves downward inboard of z = | .

But the streamlines are straight for z > 1. Therefore yet another solution tc (4.44) is required. It can only be
another straight section, and if it joins the parabola at a *“transition point™ z = z¥ | its slope must be —(z* — 1).

We can now construct a th td stage of the flow pattern (Fig.18(c)), which, in a continuous solution, must hoid right
in to the point z =14 .

It is when we try to cross z = 4 that we have to admit a discontinuity. We have noted that the streamline
curvature is singular there, and according to Eguation (4.32) the shock curvature will also be singular unless
(4 + ye@®)) = 1. That is to say ys(4) must be +1 (which is obviously wrong) or —14. But we know that its
slope 1s actually (1 —2z*), and so z*¥ must equal 24 (which is also absurd). Therefore the shock wave, despite all
efforts to keep it smooth, must be discontinuous here at least. If the discontinuity is accepted, the solution can be
continued. We shall not give details here, but the process invelves choosing z*¥ by trial and error so as to meet
the boundary condition yg(0) = 0. An nfinity of further discentinuitics are encountered between = = 4  and
z = 0 (see Figure 18(d)). A similar solution is described qualitatively in Reference 1, but no nvmerical results
seem to have been worked out.

An alternative procedure, much simpler computationally, and no more objectionable mathematically. is that
adopted by Woods®, He has proposed a solution in which the shock wave is composed entirely of straight line
segments. The first break occurs just inboard of the sonic point and the first step in the numerical solution is to
make a guess at its position. The slope of the second section is found from Equatior (4.37) and this section is
assumed to continue to z = w, (Fig.19(b)). The streamlines entering through the second section arc supposed to
turn discontinuously at z = w, , and since they are all associated with the same value of w they converge to a
single known point on the wing (E).

Another straight section of shock wave DF is then determined by the condition that the streamline through D
has slope DE . This pattern is supposed to repeat indefinitely. By numerical experiment *Woods® fcund that there
was a unique choice of position for the fast break 1hat caused the pattern to *“*converge™ to the centrelines.

The third variant is due to Squire”, who requires the shock wave to be smooth, and to achieve this relaxes the
boundary condition over part of the body. Near the wing tip (Fig.20(a)) Squire adopts the same solution as Hayes
and Probstein, i.e., a straight section AY and a parabolic section YS . By the general theory of characieristics
this determines the body shape from A into N . Near the centreline, lie assumes that all streamlines through a
smooth section RS of the shock wave envelope onto the body in a region PQ , and in ettect solves the integral
Equation (4.15) to obtain the shape of RS , given that PQ is flat. The solutions to this problem fcrm a one
parameter family and Squire selects the one which matches smoothly at some point with the outboard solution.
With the entire shock wave .ow determined, the full flow field can be found by inverse means as discussed earlier,
The shape of the body between Q and N ha. not been specitied in the solution, and does not generally have the
desired flat shape. However, the errors seem to be quite sinall.

Which of these solutions is “best” remains suo far an unanswered question. As far as the predicted pressure
distribution is concerned, therc seems little difference between Squire’s and Woods' solutions, despite their very
different natures (Fig.21). As already mentioned, there appear to be no numerical examples of Hayes and Probstein’s
solution. In computational effort, Woods' solution requires rather less work than Squire’s and both considerably
less than Hayes and Probstein. However, if wing shipes, more general in cross-section than the flat delta, are to be
considered, it is fairly clear how to extend the Hayes and Probstein treatment, but not clear how to extend the
other two (although they will cope with wings of diamond and caret section”8).

These criteria are essentially practical in nature. A more fundamental criterion would be to ask, which solution
forms the best basis for proceeding to higher approximations (in which we might hope that the anomalous features
would disappear)? This question wuuld probably be a good starting point for a future research project, Certainly,
we shall not attempt to answer it here, but we shall bricfly discuss one important “higher approximation”.

This is simply the matter of giving “uniform validity” to the present approximatior, a question which has been
treated in References 1, 4, and 5. To see how the problem arises. we must go back to the spanwise momentum
equation, which we write below in conical, dimensional coordinates,

1
+(W—UERy = ——P; . (4.46)
[
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‘This can also be written

dw 1
@—-Tn— = ——P , (447
dz p

where the ditferentiation on the left-hand side is carried out along streamline projections. Now let us reintroduce
the dimensionless quantities. defined by (4.8) and (4.11) whick we have been using 2o tar; then

L e i Balxa ooy

dv
fw=-2z -+ O(€)] [:g + O(e)] = —ep, + O{e?) . (4.48)

{ow hitherto we have neglected the right hand-side of this equation, on the grounds that it is “smaller” than
the left-hand side. But this is not a consistent approximation, because at the terminal points of strcamlines we
have encountered the condition w = 7 , which woutd make the two sides of (4.48) of the same magnitude. We
may consider, then, the alternative equation

dw
w—1z)— = —€p, . 4.49
( ) 9z P2 ( )

Over most of the flow field the inclusion of the extra term has negligible effect, but near the terminal points
it obviously produces greater realism. For example, Equation (4.49) states that a streamline can only terminate
. (w = 2} provided the lateral pressure gradient is zero. For a more fundamental derivation, see Reference 1. Now
H ; Equation (4 49) proves surprisingly difficult to solve analytically (see References 1, 4, 5). The straightforward
% . attempt to expand w as a series

-

W = w,o(z) + ew,(2) + € w,(2) etc.

[,

fails to converge. To illustrate, suppose in a particular example we had p, = const = | , so that

w-n
W—2Z)— = —€ .
dz

Substituting the above expansion we get
(Wo—2z+ ew, + @w, +..)(wg + ew) + €?wy) = —¢ .

Evidently, the first approximation is

TV TR PR ARG RANM FTE W) D o RE AV ek SN W

w, = constant = W (say) (A) 1
3 (4.50)
E or Wo = 2 (B) J
“ ¥ For the next approximation
L’ E wywo + Wi(w, —2) = —I
E f and the solution to this is
£ either WiW—2) = -1
3 ie w, = const + log(W ~ 2) (A)
8 @45
or w, = =1 . (B)

These two solutions are siown in Figure 22, together with the exact solution, which can te found in this
simple case to be

w = const + elogiw—z+¢) , 4.52)

with th2 constants in {4.51A) and (4.52) both chosen to make the colution pass through z= 2, w=1.

Evidently the aprroximation scheme breaks down near 2 = W due to the discontinuous nature of the tirst
approximation, Methods are avsilable!® to deal with this sort or thing, and have been tried in the presen? case.
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Specifically, the method of matched asymptotic expansions has been employed in Reference 4, and the Poincaré-
Lighthill-Kuo technique of “coordinate straining” in References 4 and S.

From these studies it emerges that the problem is essentially one involving three layers, one in which w is
nearly constant along a streamline (the “outer layer”, with which the earlier parts of this chapter were concerned),
another in which w 1s very nearly equal to z, (the inner layer), and a transitional layer, across which orders of
magnitude change abruptly. Mathkematically, the inner and outer layers are distinguished by

o(l) ad
' dz

(w—12) O(e) (outer layer)

TNIM S CT T e Ao Ty, - -

dw

o) (inner fayer) .

(w—2) O(e) ,

dz

A

~he

An illustration of these layers in relation to the sireamline pattern is shown in Figure 23. To estimate how
important each of these regions is in the overall solution we may woik out the arza which a given “streamtube™
(pair of streamlines) takes up :n each layer. [ find myself unable to give a short proof but the answer is knswa™?®,
If the area of the streamtube in the outer layer is taken as reference, the area in the transitional layer is O(e?)
times this, and the area in the inner layer is O(exp{—1/e}) times it. Thus the inner layer would aimost certainly
be swamped by the boundary layer in a real flow, bu! the transitional layer could well be significant.

[BRAR 270
;e

Wiy

o

In an inverse problem .t would be quite easy to work out solutions incorporating the inner and transitional
layers. The outer layer soiution is found as described earlier. For each streamtube the nressure is found as a function
s of z for 2> w. It can be assumed that the streamtube continues into the minimum pressure point, as an infinitely
thin icyer (A4 = 0) making infinitely siow progress {w = 7). Then we have 3 first approximation to pressure span-
wise velocity, and streamtube height (Fig.24). Now it will be a good approximation to assume that p(z) is not
much altered by taking the two inner layers into account, so we can use the first approximation for p to develop,
via Equation (4.49) a secoad approximation for w . Having done this we can also use Equation (4.49) to write
Equation (4.19) as a uniformly valid equation for A,

B R T TR

1 dA 1 + dw/dz
—_—— = —_——T (4.53)
3 A dy (w—12z}

With this carried out for all streamtubes in the flow, the strcamline pattern can be redrawn, and new pressures
worked out, e.g. from (4.38). The cycle can be repeated as often as may be worthwhile.

oY PO

Now, 1t 15 very hkely that the matiematical status of the outer solaticn for the direct prodlem can be restored
by considering the inner layers in this way. This has alrealy been shown to be the case in a very similar probiem
by Cole and Bramnerd®, They apphlied the thin-shouk-layer theory of Equations (4.9) and (4.10) to the two-diniensional
flow past a blunt place, and obtained the basic system

ug +vy = 0 :
uv +vu, = 0,
with shock boundary conditions
v = X
u, = 1+ x?

This very sumgie system is not capable of meeting the boundary conditiors on arhitrary Lodies directly, but
Cole and Branerd showed that 1t wouid do so wadirectly, 1f a single inncr layer were interposed wetween the body
and the cuter solution (Fig.26). Thanks tc the very siinple nature of their outer selution, they were aole to carry
out analytically processes which in the conical case probably have to be denc numericaliy,

A usefu! theoratical answer to the question, which of the three availablz outer solistions is best, could very
likely be, “the one which best lends itself to the above extensions™

Starting from the two basic assumptions of a thin shock laycr and an aspect ratie of the same order as the
Mach angle in the disturbed flow, we have scen that it 1s possible {0 develop a thedry remzarkably rich in simple
results. 1 l.ave tned o show that this simplicity is much cnhanced by treating the streamling pattern as the mann
unknown. [his simphutty makes it possible to see clearly the connections betweenr cxisting treatiacnts, aid gives
confidence that sigr iicant refinem.nts can probably be made without overwhelming anaiytic complexity. Finaliy,
I have indicated onc form char these refinemenis might take.
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LECTURE §
MOMENTUM THEQRY

P.L.Roe

Royal Aiicraft Establishment, Bedford, England

The sutiect of this lecture can probably best be approached by regarding 1t as an offshoot of the “waverider”
design technique. The distinguishing fLature of that approach 15 that caleulation of the wave system and flow pattern
precedes the selection of the actual lifting shape. Therefore as soon as the shape 1 chusen, we already have 1 hand
al! the necessary information to find the aerodynam’: forces acting on it by means of 4 momentum balance. By
comparison with integr: tion of the surface pressures, the momentum method offers some computational advantages.

More impnrtantly, however, it provides a {resh and stimuluting woy to study the eff.cient gencration of aerodynamic
lift.

In calcuiating a momentum balance, the first step is always to choose a suitable control volume. The one we
empioy here is shown in Figure 1. Separate, independent“*boxes” are drawn to evaluate the force contributions
made by the upper and lower surface.. When we select the boundaries {cr these boxes certair surfaces suggest
tihemselves ver, naturally. Fairly obviously one boundary cught to be the wing surface being considered, the
pressure integral over this surface is the thing we want to know, and the momentum flux throagh 1t 1s zero,
Another bounuary that suggests itself is the upstream limit of the flow disturbances causea by the surface This

may be a shockwave or a Mach wave, in cither case we draw the boundary just on the upstream side of 1t, where
the flow corditions are those of the free stream.

The choice of the third boundary is less obvious. Ewidently it must intersect the wing surface at the trathng
edge. Two boundarics which meer this cond. on and which also have physical sigiuficance are the upstream and
downstream characteristic surfaces through the trailing edge. At the present stage of the wnwvestigaiion, however,
no advantage has been found in their use, and the third surface has been chosen purely on the grourds of comput-
ational simplicity, We chose the rear boundary to be composed entirely of vertical generators, so that no pressure
terms appear i1 tie calculation of the lift. If the udiling edge is unswept, as :t is in Figure 1, and as 1t oftern will
be in practice, the third surface becomes a plane normal to the free stream,

The chosen control voluine is redrawn in Figure 2. This shows only the control volume for the jower surface.
Indeed from this point on we shall consider only' lower surface flows, although 1t will be ¢bvicus that upper surface
flows can be analysed in the same way. Figure 2 also shows g patiteular streamtube passing through the control

voiume. It is identified, for a reason which will appear later, by the plan view area (dAp) of the curve in which
it intersects the upstream boundary (shockwave).

Now the {orces acting on the sa:face* can be cbtained, cicording to the momentum theorem, by integrating
tite appropriate componenis of pressure and momentum flua over the upstream ..nd downstream boundarnies, and
taking the difference. Every streantube that enters the contrel voiurme through the upstream boundary leaves it
through the downsiream boundary. It contribu.es therefore, to beth integrals, The diffes, nce Letween these two
contributions inuy be thought of as its contributinn to the forze orn the surface.

Le: the*concribution” as defined above, of a given streamtube to the lift force be
(Qeo dAp )%

where Qoo
dA ¢

free stream dynamic pressure,
small area defined by Figure 2,

"The pressure furce acting on a closed budy can be witten as F, = I p i dA, where n s the inward umit normal to the surface
clement dA. This can be put into the altcrnati\f form F =

{p - p,n dA, where P, 1s uny convenient constant refetence
pressure. This is becauge for any closed body ndA = 0. If we try to vonader any p=-t of the body i 1solation, ¢.g. the wing
lower surface, then f

ndA # 0 and the value chosen for p, will mahe a difference. This should not affect the vahidity of the
answeps provided we Subsequently choose the same p, when studying the .ther surfaces. Here, huwever, we do intend only tu study
the lower sutface, which is the most importapt hfting element, and must therefore chouse a p, which gves the most useful answers.
We have taken p = p_ ,sothat F = J (p ~ p.)n dA. This is then the force which would act un a bedy obtained by coupling
the given lower surface witlt a streamwise ugper surface, if base drag can be negiected.
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and ] 1s a nondimensional quantity associated with that streamtube which we shali call its “lift function”.
Similarly we suppose the same streamtube contributes to the drag force by an amount
and we shall call f[; the “drag function”

The quantities ] and fp will depend on the state of the flow at entry and at exit. The algebraic expressions
for them have been found in Reference 1. For the special case where the trailing edge is unswept and the rear contrdl
boundury is normal to the stream hese expressions are:

2L v

N Yy

2 ~ Peo
n Voo meVx

In thess expressions, we have made use of a coordinate system (X, y, z) as shown in Figure 2. The shuikwave,
at tae roint whe it is penetrated by the streamtube, has direction cosines ({, m, n} in this system, so that the
fraction Ifn whch appears in (5.1) and (5.2) defines tite ratic of the streamtube cross-section area before it meets
the shock tc the reference area dA, . Of the other quantities appearing in (5.1) and (5.2), v, andv, are velocity
components in the n and z direcgions, p is the static pressure, and p the density, all evaluated at the point
where the streamtube crosses the exit plane. Free stream pressure is denoted by ., , and free stream velocity by
Veo -

Now the total lift acting on the wing is found by summing the contributions from all the captured streamtubes.
It is therefore

L = ” g f dA,. (5.3)
AP

The lift coefficient, based on planform area, defined as

L
C = —
L qooAP
[
becomes CL = ™ J fp dAp (5.4)
p A
?
and evidently we shall also have
Cn = L f fr, d4 (5.5)
D~ A D Y% - d.
P .lp

It was in order to obtain the simple “‘mean value” property expressed by Eqns (5.4) and (5.5) that dAp was chosen
as reference area in defining the lift and drag functions.

We shall now try to devise some applications for these results.

The first apphcation s illustrated in Figure 4. We suppose that we have