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PREFACE

A Lecture Series. directed by Professor Kurt Enkenhus, was he!d in January, 1970

at the von Kirmin Institute, Rhode-Sz-Genise, near Brussels. In April, 1971 the Fluid
Dynamics Panel of AGARD agreed to the publication of these lectures, to which have
been added subsequently two further papers (on viscous and real-gas effects), which
formed part of a VKI Lectur Series entitled High-altitude Aspects of Lifting Re-entry
Vehicles, held in May, 1971. with Dr John Wendt as Lecture Series Director.

The resultant set of papers now appears in two volumes. The second of these is
concerned entirely with propulsion, and has already been published as ONERA Note
Technique No.169 ("Propulsion des v~hiLules hypersoniques", 1970): a knowledgement
is due to ONERA, France. for permission to reproduce this paper in its original form.

Acknowledgement is also due to several of the lectumrs for modifying their
original manuscripts in order to make them more suitable for publication in printed form.
The AGARD Fluid Dynam;:s Panel member responsible for rcview of the original material
and for general editing of the pubiication was Dr R.C.Pankhurst (UK).

PREFACE

Un cycle de conferences a dti organisk en Janvitr 1970, A l'lnstitut von Kirmii,- ae
Rhode-Saint-Cen~se, pros de Bruxelles, sous a direction du Professeur Kurt Enkenhus.
En Avril 1971, le Groupe de Travail de Dynamique des Fluides. de I'AGARD, aipro,,.d
officieliement la publication de ces conferences, auxquelles furent ajoutdes ult&ri-.,rement
deux communications (sur les effets de la viscosit6 et des gaz rdels). pr6sen .As dans le
cadre d'un cycle de conference; de rIVK sur "Les aspects. aux altitude- ;revdes, des
v~hicules de rcntrie portants", qui eut lieu en mai 1971 sous la dir,'.tion du
Dr John Wendt.

Ces exposds font l'objet de deux volumes. Le seconr est entiarement cons'..-
la propulsion et a ddj1i i6 publii par I'ONERA en tan: que Note Technique :,o. 169
("Propulsion des vdhicules supersoniques", 1970). :Nous remercions r'O?."RA (France)
de nous avoir permis de reproduire c-tte publication sous sa forme r.,ginale.

Nous exprimons dgalement nos remerciements aux conff"-nciers qui ont modifi6
le texte original de leurs exposes afin de les rendre plus a,'.pt~s A l'impression. Le
membre du Groupe de Travail de Dynamique des Fluid.s de I'AGARD, responsable
de la r6vision des textes originaux et de leur prdpar;,.,on A la publication, est Ic
Dr R.C.Pankhurs! (Royaume Uni).
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GENERAL INTRODUCTION

The purpose of the Lecture Series on "Aerodynamic Problems of Hypersonic Vehicles"
hl..: ;n January 1970 was to review current progress on specific areas of hypersonic

Scsign. Some gen.-ra, .onclustons from the course can be stated. The cost of
developing hypez1uib.c a;i-br-ailhing propulsion systems is so high that the design of
vehicles using hypersonic ramjets is continually being postponed. it was speculated
that the next development we were likely to see would be the orbital ferry, a two-
stage rocket-propelled vchicle with recoverable stages, a prediction that is presently
being fulfilled by the NASA Space Shuttle. The aerodynamics and propulsion of
air-breathing vehicles are so closely interrelated that no progress can be made without
considering both problems simultaneously. Interesting lectures on vehicle optimisation
were presented in which a generalised approach was used and the concept of the wave-
rider was thoroughly discussed. Heating was highlighted as one of the most important
problem areas in the aerodynamic design of hypersonic vehicles. Considerable emphasis
was placed on the need to develop large hypersonic facilities in which complete
configurations can be tested and on the desirability of conducting free-flight tests.

Two papers that fall w;h;.i tae general subjc:t area of hypersonic aerodynamics
were presented at anuth.- VKI course held in May 1971. They treated the subjects
of viscous interaction and non-equilibrium real-gas heat transfer respectively, and thus
contributed infonnioi on thle aspects of high-speed flight. Methods
for tmating two-dimensional viscous leow: with the combined effects of incidence.
displacement. and bluntness were reviewed as well as current efforts on such subjects
as finite-chord and finite-span effects, corner flows, and delta wings, at incidence.
Although non-equilibrium effects have only a small influence on forces and moments
for delta planforms, appreciable departures from the equilibrium predictions of heat
transfer for areas removed from stagnation regions can be expected. The authors
made clear tH point that although high altitude effects will certainly not dominate

ithe design philosophy of hypersonic vehicles, nevertheless, our understanding of flow
phenomena around real bodies of interest in this regime is presently in a very
rudimentary state.

Sincere thanks are expressed to the lecturers for their efforts and to their respective
organizations for providing them with the encouragement and time required to carry
out such a task, and to Dr R.C.Pankhurst who has been responsible for the overall
editing of these volumes.

Kurt R.Enkenhus John F.Wendt
Lecture Series Director Lecture Series Director
"Aerodynamic Problems "High Altitude Aspects of
of Hypersonic Vehicles" Lifting Re-entry Vehicles"

March 1972
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LECTURE I

AERODYNAMICS AT MIODERATE' IIYI'ERSONIC MAC11 NUMBIIRS*

P. L.Roe

Royal A ircraflt Ii sta lisliiiwii , Bedford, En: gland

In each of miy subsequent leCtUres I shall he dealing with a research topic in the theory of inviscid hypersonic
flow. In this introdhi tory talk I want to (to three things. I want to define what I mean by hypersonic. I want to
justify the interest in inviscid flow, and I want to introduce briefly each of lily tuLture topics.

A limost every one has their owni deliniiit ion of' thle termi hiyperson ic. It' we were to conduct sonetic ing like a
puh i c op ini on poll aminongst tliose prmesenut, and1( asked eve ryonie I o name at klach niumtiber atbove w hich It he flow otl'
a gas should properly be described as hypersonic there would probably hie a mtajority of' ainswers rounid about five
or six, but it would he qu1ilte possible for someone to advocate, and de fend, numbers as small as three, or as high
as 12.

1 shall, therefore, adopt a different sort of' definition. A good working rule in science is to classify together
p he no incna whtich call t e uIntderst ood by inca its ot' tlie saini ex plania t ion, aindI by "ex~platnat ion" we uistuil y mcii n

"lie ory"., I y persmiiic flow, the, iiIs flow whitch tieed s a particular sort of thleo ry I to tICsci Ie t, and I mustt sIdescribhe
the sort of theory that I have in mind, Btecaiuse I shal IIiot be talking aIboul rar'.'ficd gases, or dissociationt cl'ects.
or strong viscous interactions, sonme people might deny that I was talking about itypersonics tit ll l. But it does
seem necessary both as a tbasis for these advanced topics, and as at subject iii its own right. to have a hypersonlic
flow theory whtich treats air as at continuum subhstanice. in thtermtodyinamiic equiilibriumi, and lacking in viscosity.
This is thre sort oif theory I shall be talking about, and the reason why I describe it as -'hypersonic"' rather thain
merely -supersontic" is that I wish to conicentrate on those aspects which cannot adequat~tely be dewcritied by linear
theory, I shall hie concerned with flows where the perturbatioin velocities are not particularly stmall, and in which
shock waves generate strongly rotational flow fields. I shall assume, however, that the effects oft viscosity can lie
represented entirely hy very thiin boun11dary layers, and by shock diseontinuities.

To julstify anything mnore than an academic interest in these flows, I must show that there could exist at least
one sort of' aircraft to which such flows are relevant, and so I shalt spend soime time considering the feasibility of a
hiyp~ersonic transport aircraft. I hiave Ill miindt somte thing not tot alIly di ffere it from a conte m portary a i rliner: sotw-
thing whtich operates from conveniilonal airports and whose main purpose Is to carry goods anud people over tilie
globe. Such a vehicle will otter a service Ito society and a prof'it ito its makers ontly if it fulfils it need. The most
convincing needtt hat an increase of speed mlight Satisfy is not simply the reduction of journey times oii existing
routes. bilt thw opening tip of entirely new travel prospects.

In all thre history of travel i! is possible to observe two constants which, becatise they concern human natuire.
may confidently he ex trapolated in to tic tulIure. One of these is tire siginificance oft personal cointact between
people. whet her traders or polit iciami, or the geiter:l populace. ']'lie other is the reluctance of' motst people to uinder-
take fretquent ly journeys which last for .'"than at few hours. Regardless of' how ,lily of its personally regards tile
prospect of at "global villa,,e" in which all mein are members of a truly international society. it does seeml very
probable that this is the 2-venittal destiny that a pc-icetul earth must tend toward, hut it cannot coime about unttil
all inaj or cities arc b rougtglI withlin a tew hiours ot ea ch othle r.

Le t tin look brieflly ait siomie of tilie conseq uences whti ch exIctinling thle range oft coinveniientI travel in igh t have.
C'onsider sonme particular ceintre of1 populatioin. I low many Jiournieys sN ill its Inhabitalnts wish to make over distanices
lying between R and[ R I itR? T'he regiot thlat canl be reached by such journeys is ring shaped . and we may
SLIPP(oSe that thre number of' journeys people will wish to make ito that region depends fin some way onl the numbher
of attract ions to be found in thalt region. For example. the number and size of tradiing cent res. political capitals,
and holiday resorts, or perhaps I le mineral wealth of' the region. If' we suppose, to at very rough approximation.
th at thle total ''attractive ness'' oftit' tr region is proport ioinal siminply to !its a rea, t heni for at spherical carthI we obt aini
the forimula

300 %i~ll (1.1

*Since t he original lecue ilI material was writ ten, a nlumbner of new relevant papers havc been pbi~iltbhd . Soiie oti llicsc are listed in
the Appendix (page 6- 10), with brier comments. Alit) included are' a tt'w older papers thai have only recently come ;(o thle auithor's
attent ion,



where

J(R) is the requirement for journeys of length "roughly equal to 11" i.e. between R - AR and

R 4- AR where AR is an -arbitrary constant

a1id

Rg is the "global range", equal to hall' the earth's circumlrerence.

This formula is used to plot J versus R in Figure I, from which we can deduce that the potentially most
heavily used transport rouites would be those which run about one quarter of the way aroulnd the globe (a distance
of :about 6,200 statute miles, or .5.380 nautical miles, or 10,000 kilonmctres).

An alternative approach would be to say that the potential travel between any two centres is proportional
to the product of their respective populations. Therefore Naysmith has analysed data for all cities having current
populations greater than three quarters of a million. For every pair of such cities he obtained the distance
between them, and a number proportional to the potential travel between them. His results are given in histogram
formn in Figure I. They depart from the idealised curve for two reasons. The first reason, which nothing can alter,
is that the earth's land masses are rather irregularly distributed. The second reason is that at the present time, some
of those land masses are much more highly developed than others. The "peak" at the left-hand side of the graph
represents travel within the already developed areas, such as North America and Western Europe. We may expect
tht with time the graph will approach close to the ideal, but already the conclusion is striking enough: there is
a very large potential market for travel over ranges of about one quarter of the earth's circumference.

The same results are plotted in cumulative form in Figure 2.

Now I remarked earlier that travel over a given route would increase greatly as souc1 as it met certain standards
of convenience. To be included in these standards are things like surface travel and airport management, which are

not within my province. Undoubtedly they raise severe problems. but these do not look insoluble. One very
important criterion of course, is simply travel time, and we shall take it that the task of the aircraft designer is
mainly to reduce this to an acceptable level. As at guess, we shall take two hours as a good target to aim at,

What sort of speed, then, do we need to cruise at, in order to cover about 5,500 n.m. in two hours? Accord.
ing to estimates given in Reference 2 the answer is that the cruise Mach number should he about 4.5. The aircraft
would be required to carry about 30% of its take-off weight as fuel, and able to carry about 10% as payload.

This, then, is our starting point. The question to he asked is how we set about designing the aerodynamic
shape of a cruise vehicle intended to operate somewhere in the Mach number range between three and seven
(giving us a generous margin for error on either side of 4.5). The first tihing to be noted about this speed range is
that it is too fast for supersonic linear theory to he valid, and too slow .*,) Newtonian theory. Therefore, either
our designs must rely wholly on experiments, which will certainly be very wasteful and costly without theoretical
guidance, or we must develop new theories.

Let us first, however, try to be more specific about the sort of aircraft shapes we are interested in. We have to
remember that even if the aircraft cruises hypersonically, it must remain safe and econonical at all slower speeds,
down to the take-off and landing speeds. To minimnls the problc,,; associated with transonic and low speed
operation it will be advisable to make the layout not too different from those already known to be satisfactory.
There seem to be three main alternatives:-

I. Conventional take-off and landing, using more or less straight wings, achieved by variable geometry

2. Conventional take-off and landing, using a fixed della wing. and

3. Unconventional take-off and landing, e.g. using direct-lift engines.

Of these three, the second appears simplest and safest, and also most economical, in that the alternatives
involve severe weight penalties. We begin to think, then, in terms of something like a delta wing.

One feature that seems worth introducing into the design right from the beginning is an integration of those
parts of the aircraft which provide volume and propulsion3. The basic idea behind this can be gatlhered from
Figure 3. Here we imagine a "two-dimensional aircraft", flying at zero lift. We suppose that it has to he of a
specified length, I , and to enclose a specified area, A , We ask how small the wave drag can he made, and use
linear theory to compute the answer. It turns out to depend on the bast thickness. Ihb and is a minimum when

3A
hi = -- -(1.2)
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tile section profile being then a parabolic arc which is streamwise at the base. This profile has only one quarter
the wave drag of the profile having hh = 0.

In itself this is not a practical solution, because of the large "base drag" associated with the extensive wake
behind such a body, but this disadvantage can be avoided as follows.

At speeds above about Mach two, the efficient internal design of jet propulsion units requires a duct whose
cross-section is considerably greater at exit than at inlet. Basically, the highly compressed air needs a Ilrge
expanding nozzle to receive the pressures which provide the main thrust forces. Squire3 quotes area ratios of 2 or
3 at Mach four. Now a duct of these proportions, accommodated in an externally carried nacelle, would have a
large external drag (see upper parts of Figure 4). However, we can contrive a marriage of the bluff-based body
with the expanding nacelle, such that we retain the advantages of both and the drawbacks of neither (lower part
of Figure 4). By comparison with the layout at upper left, this merged configuration has lost 75% of the body
wave-drag, and all of its external nacelle drag. The penalties paid for this are a small loss of useful volume, and
the ingestion into the intake of some boundary-layer air, but the balance is overwhelmingly favourable.

Exactly how far these benefits are realised on three-dimensional lifting shapes is not cle3r, and depends on
many factors. Squire3 estimated that at Mach four an integrated layout would achieve maximum lift-drag ratios
about 1.5 higher than a non-integrated competitor, and all the subsequent evidence seems to suggest that this is
about right.

So far our recipe for a hypersonic cruise vehicle reads - "a delta wing with integrated propulsion unit". Next
we ask what sort of aspect ratio will be appropriate, The slender wing concept out of which Concorde developed
was based on trying to restrict the aircraft well withit, its own Mach cone. By this means it is hoped to gain three
advantages.

I. The disturbances caused in the air should be relatively small i.e. causing only small energy losses.

2. The air is able to flow round the leading edge, developing local suction forces which reduce the drag.

3. The leading edge flow subsequently rolls up into separated vortices, which induce strong lift forces by
increasing the upper surface suctions.

Now at high supersonic speeds, suction forces contribute relatively little to the overall picture, so it will not
be worth much to try and achieve advantages two and three. Moreover, as Mach number rises, the Mach cone
shrinks (Fig.5), leaving no room for anything but an extremely fine and pointed shape. Thus we are led to examine
the possibility of shapes which are not aerodynamically slender, and which therefore cause strong disturbances to
the air,

A further clarification of the design concept can be achieved at this stage by making the extreme assumption
that these strong disturbances are so strong that Newtonian theory can be used. It is then a simple matter, as we
shall see in Lecture 2, to find the wing which has the greatest possible lift-drag ratio. In deriving it, we make only
one assumption, that all wings are subject to a friction dray proportional to their wetted area times a known
constant (Cf). Thus, roughly.

Cufriction = 2(71-

where Cf is of the order of 0.001.

Tihe optimunm wing turns out to have a perfectly flat undersurface. By making the upper surface streamwise
we can provide volume with 110 loss of perfornance, and tle resulting finite base area is available for integration
into the propulsion system (see Figure 6), The optimum incidence for the lower surfaces depends on the assumed
value of C1" and so therefore do the volume and base area of the configuration. The lift/drag ratio to be expected
from these wings is shown in Figure 7, plotted as a function of Cf.

The conclusion to be drawn from this seems to be that not only should the part of the aircraft that provides
volume be integrated with the propulsion system, but it should also be integrated with the lifting system. However,
before we give our complete acceptance to this principle, we should try to find out what the penalties are for
contravening it, To do this we devise non-integrated comparison shapes, which provide, at each value of Cf . the
same lift and volume and planform area. All the lift is supposed to come from a thin flat wing, and all the volume
from a non-lifting "./-power" body of revolution. From Figure 7 it can be seen that the non-integrated configuration
has about a 30% lower performance than the integrated optimum.

Figure 8 shows the sort of layout that we have arrived at. A good deal of relevant information and discussion
about it has been given by Kilcheniann' (also in Reference 2). Most of his conclusions have been unaltered by the
passage of time, and much of what I have to say in the next few minutes will merely summarlse these. The one
conclusion ?hat doex require modificalton is that generallsed design methods have extended the applicability of the
"'waverider" concept to lower Mach numbers than were indicated in References 2 and 4.



Let us then consider how we may set about obtaining more detailed design information fo; the sort of
vehicle depicted in Figure 8. In the first place, for the sort of Mach numbers we are considering, Inviscid. ideal
gas calculations with separate treatment of the boundary layer will he quite adequate. However, it is also clWar
that calculations using the full non-linear equations of inviscid motion with arbitrary boundary conditions are
still some way into the future. Therefore a sensible policy for the time being will be to try and extract as much
inftornation as we can 'rom inviscid theories which are in various ways approximate.

It also seems legitimate to design on the assumption that the leading edges are perfectly sharp. Such an
idealised edge would soon be eroded in flight, due to the high heating rate associated with large shear across the
initially thin boundary layer, but the blunting needed to alleviate the effect is fairly small at these speeds. a
radius of much less than an inch being adequate for a vehi..le whose length is. say, two hundred feet. Therefore
the effects ol bluntness may be incorporated as small corrections at a late stage in the design procedure.

It' the leading edges are almost sharp then for non-slender shapes the shock wave will be almost attached,
ald for most purposes the upper and lower surfaces or the shape will be aerodynamically Independent. Accord.
ingly they may be designed separately. Of the two the lower surface is by far the more important, contributing
about 80% of the lift or even more, within the Mach number range of interest. In almost everything that follows
we shall concentrate our attention on the lower surface. This should not however, be taken as implying that the
upper surface design is irrelevant. Careful attention to its design, and the proportion of lift that it carries, will
certainly lead to gains in performance which are worth having. The reaso.a for not %aying more about it is simply
that so far not much work has been done in this area.

No attempt has yet been made to work out the full consequences or the integration of the lifting body with
the propulsion unit, One reason for this is that the ideal prop rtions of the propulsion unit cannot be worked out
without knowing something of the characteristics of the engine to he used, the speed and altitude for cruise flight
and tile wing loading. In the absence of any project study giving this sort of detail we can nevertheless proceed
with refinements to the aerod!.namic design, noting simply that finite base areas roughly 10% of tile planform
area can be accepted and repl.wtd by exhaust nozzle area. Of course we should also try to ensure that this base
area is of a convenient shape, i.e. concentrated in a fairly small region of the span,

This completes my definition of the sort of' shape we arc trying to design, and the assumptions and simplif-
ications that it seems reasonable to make.

In my second lecture I shall describe some of the results of optimisation theory, as applied to various
problems involving non-linear lifting aerodynamics. Such results are generally restricted to very simplified sub-
problems that can be hindled anttlytically. lIecause of their simplicity, however, they do have ia good chance of
increasing our physical insight Into the more complex questions that we would really like to answer.

In my third lecture I shall treat the subject of "waveriders'" or wings designed so :is to support simple wave
systems and so be amenable to exact (inviscid) caleulatien. I want to show how the geometry of the wave
syF.tems that we are able to calculate restricts the shapes of the resulting bodies, but also I shall indicate the
means so far roundd to create "realistic'" shapes within these restrictions, I shall give a typical example of a shape
that combines a fair degree of' realism with good calculated perfortance, Finally I shall discuss the problems that
arise when we try to calculate the flow about the.s shapes in flight conditions for which they are not designed'
this gives rise to rather puzzling questions about the behaviour of three-dimensional shock waves.

Iln my fourth lecture I want to discuss what seems to me one of the most promising approximate methods
for calculating general flows in this speed range, thin shock layer theory, So far this theory has only been
developed for conical flow, Desite some basic mathematical difficulties which arise when treating attached
shock waves. tile agreement with experiment is very good, I shall present a new approach to this theory, which
allows several very simple properties (1' the flow pattern to be clearly seen.

In my rifth lecture, I shall discuss an offshoot of the waverider approach. which permits a discussion of thie
lift and drag forces in terms of momentum changes in the adjacent flow.

Lastly, in my sixth and final lecture, I shall deal with the changes brought about by direct heat addition to
tile flow about a lifting body.

All theM subjects are at quite early stages of their development. What have tried to do is to give some idea
of the current research status in them. The loose ends will probably be very apparent: it will be very gratifying if
other people feel able to take them up.
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LECTURE 2

OPTIMUM SHAPES

P.L.Roe

Royal Aircraft Establishment. Bedford, England

In this lecture I want to review the progress that has been made in the application of optimisation methods to
hypersonic wing theoG,. The sort of wing I shall consider is that described in my first lecture, sharp-edged and non-
slender. It will hulp to set the current achievemert in perspective if we first consider toe enormity of the work
involved in a really general and soundly-based solution to the problem.

First of all we should need a computet programme capable of calculating the inviscid flow past a general three-
dimensional wing-like shape. For this programme to inspire real confidence, it would have to be based on the com-
plete Euler equations of inviscid motion, mnd its logical structure would have to be sophisticated enough to tajke account
of shock waves in a priori unknown locations, possibly embedded in the flow field as well as attached to the leading
edges.

Quite a lot of simplifications would follow if we could assume that the shock wave was attached everywhere, so
that thf upper and lower surfaces were independent, but even so. any such calculations seem at the moment a rather
"remote prospect. The most that has been achieved to date is a pair of solutions for the upper and lower surfaces of
a plane de.lta wing"- In both cases the solution is greatly aided by the conical self-similarity of the solution, and by
knowledgz that the solution near the leading edge is of rather elementary form, being identical with the solution foi
a yawed wedge. However, even in these Lzses, there are difficulties. The success of Babaev's solution (Fig, I) for the
lower surface flow depends rather strongly on being able to make an intelligent first guess at the unknown shock shape
near the centre', which would be less easy in a more general problem. In the case of the upper surface {Fig.2), there
has been controversy'"' over the nature of the embedded shock wave, and the numerical results in Reference 3 depend
on an approximate, even if numerically accurate, treatment of the rotational region. Again, both the nature of the
solution and its numerical treatment, would be more difficult to establish in a general case.

"It ts clear that we cannot hope for a general solution for some years to come, and that even ii it does eventually
arrive, the computer time necessary to compute one case is more likely to be measured in hours than minutes. But
just one case would only be a very small part of an optimization procedure. It would be necessary to specify the
unknown optimum shape by a large number of parameters, and to treat all these as independent unknowns in some
sort of mv"i',r.-ersional search techrique, the strategy of vhich would form a research subject in itself. And even

9then one wouli only have solved the inviscid problem.

Set against thems considerations the achievements I am about to describe may appear rather puny and insignfi-

Scant. However. we can take courage fronm two considerations. in the first place, even the sort of programme I have

been desetibi=g, allied with a really good !4.hre.dintensiona! compressible boundary !ayer analysis would fall very far
shott of acknow.-edging the c-inplexi~y of form of a practical aircraft. It is really not foreseeable that an "optrmised"
calcliat.d shape could do anything aore than give a guide to the designer. Secondly, it is only a guide that the
designer actually wants from the aerodynamicist. li-t would really be a little embarrassed to be offered a perfect
s"crodynamic shape, which he would then have to carve holes in, add fairings to, and so on, in order to satisfy such

S •mundane requirements as that the pilot should be able to see where lie is going or that people have somewhere
convenient to get in and out.

-The real purpose of optimisation theory can only be to provide a catalogue of good shapes, together with the
asswu:ptiuos used to obtain them, and som2 •,ort of explanation of the way these assumptions are reflected in the
geometry of the shapes. This catalogue is now beginning to take shape. A good review of optimum aerodynamic
shapem, wth a basic account of their derivation through the calculus of variations, was given in the book by Miele'.
However, even since then, there have been several important contributions, some of them due. to Miele himself and
his associates.

A lot of these have made us, of the very simplest aerodynamic theory that has any pretence to realtsm, simple
Newtonian theory. It seems worthwhile, therefore, to undertake a short digression to examine this theory.



it is often derived by something very like the original method'. The fluid is supposed to be made uip of comn-
pletely inelastic particles, which therefore do not rebound on collision with a solid body, but follow on round its
surface in a very thin layer. From the fact that the flow in !very impinging streatntube wowd thereby h~ave its
momentum norlnal to the surface completely destroyed, it is an ea!sy deduction that the. pressure coefficient at all

k forward-facing points of the body i's

CP=2sn 2 O,(21

where 6 is the local inclination of the surface to the free stream. Sometimes a better agreement with experiment
can be achieved by "adjusting" Equaticn (2.1) to read

C =k sin2 0 (2.2)

where k. somuetimnes called the "impact coefficient" is chosen to secure agreerner.t at, for examplte, the stagnation
point.

For some purpses the acc-aracy obtained fro).n Equation (2.2') is good enough to allow its use as a prediction

msethod, but generally speaking it cannot be relied on. A fairly typical comparison with experiment is shown iii
Figure 3, taken from Reference 8. The figure shows values of a "local impact coefficient", defined as k =Cp/sinlo,
plotted against local Inclination 0, for several points on a cone-segment body at various angles of attack in a super-

sonic flow of Mach number 4.3. For large values of 0, k is not far from t'ts simple Newtonian value of 2.0, butL ~obviously no constant valve would reprmsnt these results satisfactorily.

The "unrealistic" derivation of the Newtonian pressure formula, and the unreliability of its prcdictions, some-
times leads people to suppose that thert can be Ittle valu-t in its use for optimization exercises and liHl cfidence
i nt,! resulting shapes. TI-is distrust, however, is ',;obably not wholly justified, for Newtonsian theiory canl bie reilatcd
rather men.- convincingly .,) conventional gas-dynamic analysis. To begin with, consider the expressions for flow
deflection, density, and pzeissure coefficierit behind an oblique shock of angle 0 in an ideal gas, flowing 'A ith M~ach

numnber '14.I2 c~ot 0 01.2 sin 20 - 11
tanS (232 + MW2(Of + I1 2 sin2 0)

p (~y l)M~in20(2.4)
p~(-f - 1 %1,sin2 0 + 2

4(M10 sins 0 - 1)(25

11f thle gas is such that the ratio of specific heats. '1, can be thought of as close to unity, these equation~s sirmplify
thus

tanS c6 = -- - (2,6)I + ?.J2 cos20

M2 Msin'0 (2.7)
Poo

(MSin20 1 ) 2.

and from these we Find that. as the Mlacli number becomes very large, tan 6 -~tan 0, p -~~,and C. 2 sin 2 0. Thu-.
in the double limit i I an d M. ~ tl~e flow behind 2n arbitrary thre-dimeaisional shock wvave. becomes ver dense
and follows the shot-k wave direction.

Moreover, the pressre Just bhind the shock takes on the value predicted by simple Newtonian theory. It is
ver important. however, to observe th'at we have not justified its use to predict pressure-s an the body. In order Giaa
the fluid inside the shock layer may follow a curved path around the body it is necessary that a pressure differenCe
should exist across the layer. Taking this into account gives the "centrifugal correction" due to Busemarnn,
written11 in terms of a streari function jii

d(cos0)
Cp 2 sin'O - 2 'l cos 0d'P . (2.9)
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whrih applie.; both tv two-dimensional bodies for wh;-ic pk p y. ar.d to axi-symmetric bodies for which
4 9p,ýUrl. The nature of the co~rection is more complicated tor m~ore general bodies, because the paths

followed by thffe streamlines are less 3imple. 1.9 general they will be peod~esics of tile body surface"0.

Thtt JCusion whether or cot to :r.orporate the Buternann L.orre.-tiorn ii, ai. optimisation ,tudy is not particularly
easy. Aithough it does ensure that more_ of the p'v- izs of the real flow is represented, so that tilec conclusions a,;
more likely to be qualitattvcly corre.!, its in;.usio.n does not usually seern to improve the numerical accuracy of
preasure dustributions'".W shall see these two consideratioms clearly in one of the ensuting examples.

V, ~ Beforc proceedimg to an examtnmation of 4hapes, vie shall take a brief look at a non-lifting problem, that of thle
slender boddy of revolation cusing least drag for giý,n length and bai.c are,. ror slenjer axi-symmetric bodies the
Newion-Busemunri pressure law can be simplified to

C r Art" (2,10)

whe.-e A -,f !he Busemar~n corr.-c!ron is ;o be incorporated, and zcro if it is to be neglect!ed. Suppose for the
sake of simplicity, that wve only consider powcr-law bodies, whose profile iq given byV ~ ~r = Cxn (.1

thnthe following expriession is easily derived for the drag of the body

n+ 4An (n-l
To cne 2 - 1(2.12)

where C,) con. is the drag of the cone (n 1) which has the given length and base. area. Equation (2.12) has its
minimum value when r:j if A =0 and when n if A = .

Now th4 reason fo~r considering this particular problem is that it seems to be abou, the only example of an
optim-sation stu.Jý using Nevitonmra th.-ory for which comparative experimental data exist'2 ". These are shown in
Figure 4. Altho~ugh Owle- is some scatter amongst the experimental results, it does see-n clear (bearing in mind that
all curves must pas-s through the onirt ( 1, 1)) that a poywer law exponent of about 0.7 is best. This is an example of
a phent.nmenon thai recurs rather freqiiently. Quite simple aerodynamic theories predict optimum shapes that are
closely, confirmed by more accurate treatments. fhe confirmation by experiment is rcrer because the expetiments
have often not been perforined.

Note that vie have only considered here the partic;ular variational problem for which we have experimental data.
namely. selecting the optimum member of the class of power-law bodres. The problem of finding the optimum body
w ithout restriction on its form is fully discussed in Reference 6, where it is sho%% n, using cakuilus of variations, that
the optimirn slender body of revu.-ition is in fa..t t I power body aLxording to simple Newtonian theory, but accord-
.ng to ihe Newton-Busemann theory is has a more comnpli,,attd formi consisting of a i-power forebody for 60%~ of its
iength, followed by a "free layer" in which thle Lentrifugil term exactly, cancels the impact term to leave no pressure
force on, the body (Fig.5a). For such a body, CD/Crone = 0.577, compared with 0.667 for the best (n =J) "pure"
power-law body.

The Newton-Busemann theory preics 0 an even greater drag reduction (down to CD/CD con, = 0.422) for
vowled bodics (Fig.5b). However I know of lit'tle that has been done to see ho%% far these additional gains are truly
realisable.

We now p,-ss to t.onsideration of a simple lifting problem, to rind tile wing which cr~ates least drag while sup-
porting given lift. In ;onsequence of thle remarks in my introdujctory lecture I siiall consider only the wying lower
surface by itself. Tile problemn as stated ha% a tri,.ial solution in inviscid flow. We have only to make the wing area
(A I very large, and the angle of incidence (6) very small, in such a way that thle lift (toroportional to AS) keeps its
dcs.red value, and the drag (proportional to A62) will become as small as we please. A meaningful problem can
onily be got by imposing some additional .,onstraints. Thus we might suppose that theie will be a skin friction dra-g
directly proportiona! to A, or that the s.;rface was required to meet certain geometrical conditions. A particularly
simple mathematical treatment "an be given if we take the following set of conditions, some of which we will sub-
sequently see do not affect the character of the solution.

1. Both the lift (L arid the planformi area (A ) of the wing are assumed to be given.

2. The pressure is a function of the local surface inclination only.

3. There is no skin friction.



2.4

The second assumption is common to various theories. These include, for three-dimensional calculations,
simple Newtonian theory, ta.igent-wedge theory o: tangent-cone theory. For two-dimensional cakulations, the
list extends to include both linearized (Ackeret) and second-order (Busemann) theory. In all ihese cases it is
assumed that

p -F(c , (2.13)

where F and its first derivative F', are positive for 0 < a < n/2. I shall now show that for any such pressure law
the wing whicti has least drag under the stated conditions is a flat piatte. Th,. si.mplest proof ,l-;er. here in rather
sket,hy form, is to consider such a wing, and show that any small deparu•rc ftorw it -hi~n does not alter the lift
cannot reduce the-dzag. Thus, we consider a wing for which ot is givin by

a = a0 + e-t(xy)

where ao is a constant, a an arbitrary function of order unity and e a small parameter. Th.- lift of sucL a wing isgiven by

L = ff F(a) dAp,
q. Ap

which by Taylor's theorem can be written

L ff F(%0 ) dxdy + "F'(aO) ffo, (x,y) dxdy + 0(e2 )
Cia Awl A

Sand since we wish to consider only perturbations which do not change the lift, the integral of a, must be zero.

Now, if a small element of the wing surface has a vertical projection equal to dAp, it must have a st.eamwi.e
projection greater than or equal to dAp tana, and so we can write

D te> JJ F(a) tan a dApq a a A p

which becomes, if we expand both terms of the product as Taylor series,

> ff (F(ao) + eF'(ao)a,(x,y))(tan a0 + c sec'aiial(x,v)) dydy + 0(e 2)
qFd 

Ap

However. we have just seen that the terms in c do not contribute to the integral, and so

D > , F(ao) tan Oto dxdy +Oe . (2.14)
q o o A p

Therefore, the wing having least drag tinder the stated conditiot.s is the one for which the equality sign holds in
Equation (2.14), and this is only so for a flat plate.

We have derived this result by assuming that no skin friction was involved. If we make a crude allowance for
skin friction according to the formula

qD* = Ap X Cf
qoo

with Cf a constant, the triction drag has the same value for all wings with the same plarform area. It therefore does
not affect the optimisation process just considered. The proof given is sufficient to show that a flat wing is optimum.
in ti sense of hav:ng the greatest lift-drag ratio when any combination of any of the ,hree quantities, lift, nlanform
a.,a and friction coefficient are prescribed. In the case where the friction coefficient alone is given, for example,
suppose thai some other wing were bttter, and that it was associated with area A* and lift L*. It would follow
that this was also the wing which had least drag when A was prescribed equal to A*, and L equal to L*, and this
would contradict what we have just shown. Knouing that this particular optimum wing is flat. we can very easily
find its other properties. Let its surface inclination be a . Then

L = q. Ap F(Ro)

D = q.A(F(a*) tan a* + Cf).
Sq** Ap
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Maximising L/D leads to

dD dL

- or
F(**) (F'(a*) tan ox* + F(c*) sec2 a*) = (F(a*) tan cc* + Cr) F'(a*).

" ~ ~~~~i.e. F e* e~•

C F = ,sec'* (2.15)
F'(ci*)t which is an implicit formula for o:*.

It is instnrctive to examine the form taken by (2.15) for different pressure laws. In simple Newtonian theory
F(4) = n sin2 c, and Equation (2.15) gives

Cf = intan3 .

For small values of a. one can translate this into a statement that thte friction drag should be roughly one half
the pressure j~ag, or alternatively, one third of the total drag. This agrees with the conclusion reached by Mi le1s,
in an investigation of thin lifting wings.

If, on the contrary, we were to suppose a linear pressure law

F(a) = ka,

then Equation (2.15) gives

Cf = ka 2 ,

whwh says that the friction drag should be equal to thL pressure drag, or one half of the total drag. A tangent-wedge
or tangent-cone treatment would usually yield a friction somewhere between one half and one third.

Let us now summarize the results of our examination of this problem. A simple flat plate turns o.At to be the
best lifting surface under quite a variety of'constraints according to several aerodynamic theories, although these
differ rather substantially in the way they advise the drag to be distributed between pressure and friction forces.

We will treat the same lifting problem by theories which do not assume Cp = F(a). The simplest such theory
is the Newton-Busemann theory, and we wi!l begin with that, our approach being taken from Reference 10. The
simplest way to derive expressions for the lift and drag is to consider a momentum balance using the control volume
of Figure 6. Since the flow outside and inside the shock layer is hypersonic we can neglect all pressure terms with
respect to momentum terms. Let the momentum carried by the shock laer at any point along its length be U.P(x)
and let the momentum carned by the shock layer when it leaves the body (with inclination a) be U.P,. Then the
lift (per unit depth) can easily be found as

L = U..P1 sin o

and the pressure drag

D = p,,U-2y, - UoP 1 cos .

Consider for the moment wings with fixed values of xi, y, and a. Then because the quantity P, serves to increase
the lift and reduce the drag we obviously want to make it as large as possible. For a. body shape P can be found by
considering the incremental momentum given to the layer by each entering streamtube

dP = poU cos 0 dy,

so that
Pi p.Uo ,o'COS 0 dy

and the problem is to maximise this integral. Because the length of the v-vng is fixed, there is a constraint,

cot 0 dy1 =
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and since both integrands involve only 0 the solution must bc 0 constant t a, whcre tan a yYx/,. Therefore

-Pi = pooU COy, coe a,

so that
i• L =p,,U02y, cos a sin a,

and

D = pwUWy (I - cos a cos a)

or, in terms of lift coefficient based on streamwise chord length

CL = 2 sin o:sin o (2.16)

CD = 2 tan ce- 2 sin c cos oa (2.17)

Now, in general, the minimum value of CD for CL fixed does not involve having a a. In fact, it turns out
that

cosa = cos3a (2.18)

i.e., a > ot, so that the optimum wing has a small corner at its trailing edge (Fig.7). We can imagine that in a more
accurate physical picture of the flow this might appear as a highly loaded flap, narrow compared with the chord
length, but wide compared with the shock layer. We shall return to this point later, but Af we grant it temporary
acceptance, we can find the properties of an optimum class of wings from Equations (2.16) - (2.13). :or smull
values of at, we can obtain

a V3a

and

CD - 0.620 CL1.

For a wedge aerofoil, which we found to be optimum under simple Newtonian theory,

CL - 202

CD - 2(a3

and so 1
CD = - LCi'2 0.707C11.

Therefore, the Newton-Busemann theory promises to improve on the performance uf simple wedges by about
12.3%. To see whether this promise is fulfilled, we continue examining the same problem with more realistic methods.

Pike's has investigated the performance of shapes which are small perturbations of plane wedges (Fig.8). He
considers that the perturbation has both a direct effect (as though it took place in a uniform infinite stream at
M = M2 ) and an indirect effect due to disturban..es reflected back from the shock wave. These reflected disturbances
are weakened by a factor 2 each time they encounter the shO%,k wave, and under most circumstances it is numericall)
small16 . Assuming that the shape perturbations are of order 6, Pike develop. an expression for the pressure distribu-
tion in which the direct effects are represented by terms of order

8, 52, 83, etc.

the effects of disturbances reflected once from the shock wave by terms of order

X6, X62, )63, etc.

the effects of doubly rcflected disturbances by terms of order

X26, ),262, X.263

and so on. He then assumes that X and 5 are numerically of the same order, and truncates his double power series
after the second order terms. Thus his expression for the perturbation pressure consists of terms in 5, 52, and X•.
Applying the calculus of variation to this expression. he finds that the minimum drag surface having a prescribed
lift coefficient is a double wedge (Fig.9), folded in such a way that disturbances originating at the fold just fail to
regain the wing surface. this is an encouraging similat result to the one derived from the Newton-Busemann approxi-
mation. However, the numerical magnitude of the gains turns out to be very much less. Figure 10, taken from
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Pike's report, shows the percent.ge over plane wedges, the calculations being carried out for -y = 1.4. Tile improvement

in almost all cases shown is less than one percent, and we may ask why there should be this discrepant. with the
Newton-Busemann result of over twelve percent. To settle this question it would be necessary to examine Pike's
analysis in the double limit M.. -+ co, ' -" I.

A direct comparison is difficult, however, because the form of series solution used by Pike fails to converge as
M -. o, even though it converges well at M0. = 10. He presents, therefore, an alternative analysis L.;sed on hyper-
sonic small disturbance theory (M*. -+ 00, M**6 o 0 6 << I), and finds the percentage drag reduction as a function
of -. For y = 1.4, this works out at 0.95%, which is still very small As -y decreases towards unity, the poisible
improvements become greater, but again the convergence of the series breaks down for -y less than about 1.15. This
seems principall: due to the reflection coefficient X, which was assumed small, becoming numerically larger.
Indeed', as I -. i , -y -- 1 . A direct comparison is, therefore, not possible.

[- It is also worth mentioning a rather similar study by Cole ard Arcesty' 1 . They consider only the hypersonic
small disturbance theory limit, and develop series expression for the lift and drag of slightly perturbed wedges in
which enly tcims of the form XW6 are retained. They show that perturbation shapes exist for which tie lift-drag
ratio is Improved whilst the lift coefficient remains unaltered but because they retain no quadrature terms in 5, the
improvement appears to be a linearly increasing functioa of S. Under the arbitrary geometrc ,onstraint that the
surface shall be contained between the lines 00 + e0, they find the optimum shape to be a -.orrugated "multi-wedge"
as shuwn in Figure 11, although they also show that this is only fractionally better, by a factor (I + IXI)/( I - •Xl),
than the -touble wedge advocated by Pike. It is not clear how their conclusions would be modified by the incorporation
of terms involving 81.

For practical purposes, at least, the conclusioii is -Jlear. The best two-dimensibnal lifting wing is very close to a
flat plate over the whole range of supersonic Maclh numbers. There is, however, considerable theoretical interest in
the way the Newton-Buseniann theory hints at the nature of the true optimum shape. We also note that it only
became possible to improve on tl. plane wedge when we used an aetodynamic theory which allowed *or the inter
ference between different surface elements.

If we now turn to the corresponding problem in three dimensions, we may expect larger interference effects
(because, roughly speaking, the pressure waves due to an element extent from it along oblique Ma..h lines rather than
directly downstream of it) and th'trefore, probably, larger gains. This exrectation is certainly fulfilled at low super-
sonic speeds. There is an extensive literature on drag minimisation using linear theory. Chapter 8 of Reference 6
is devoted to th.s subject and ome other pertinent references are listed as 18 to 21. The amount of drag reduction
that can be achieved lepends on the wing planform. for delta wings with supersonic leading edges Germain"8 has
shown that the redu,.tion is greatest (about I I-) when the edge is nearly sonic, and decreases to zero as the aspect
ratio increases toward infinity. Cohen") has studied the shapes of such optimum w!ngs, insofar as they car be
approximated by double power series. Some indi,.ation of the accuracy of this representation is that when the
leading Ldge is sonic, six terms of the series can represent a wing whose drag jý, 8.9; less than the flat plate, and
ten terms are enough to reduce the drag by 9.67c. The 3hape of the optimum surface derived from a six-term
representation of a wing whose sweep angle X is given by cot X = 1.210 is shown in Figure 12.

This figure reveals the mechanism by wh;ch the d;ag reduction takes pla•.e. The incidence is highest along the
centerline, and progressively "washed-out" teward the tips. High pressures are generated in the ,entral region, but
spread out to the tip region where the small surface inclinations allow them to .ontribute effectively to the lift
without adding greatly to the drag. This is the typical mehanism of favourable interferncne, and one .vhi, h we must
expect to find at work in the higher speed ranges also.

Attempts to exploit the concept of favoirable interferen,.e have led to the s:udy of man-, toi.figurations. Some
of these are distinctly unorthodox, like the famous Busematin biplane22 . or the half-ring wing2 -24, and our main
theme. From a practical point of view. attempts to exploit the inter-a.tion between a wing and a central fuselage
are more attractive. The properties of interfering systems are most easily studied using linear theory (for example,
see Reference 25). Reliable calculations of non-linear interference effects on realisti• shapes are at present beyond
vts, but some indication of the way that interferenLe effects change with flow Mach number _n be got from studying
certain artificial configurations, which accordingly 1 make no apology for considering next.

Consider (Fig.13a) a flat plate vi unlimited extent, aligned parallel witl. a uniform supersonic stream. Let there
Sbe a wedge, with its apex pointing into the stream, projecting vertically from the plate. Initially, we suppose this

wedge to be of infinite height. According to linear theory, the plate experiences a uniform pressure, due to the
wedge, over a region bounded b-' two parallel lines swept at the Macl angle. Now. let the projecting wedge be cut
off at a finite height, so that its leading edge terminates at the point A (Fig.13b). The Mach cone from A intersects
the plate in a hyperbola, asymptotic, to the leading rays of the interference pressure region. The area between this
hyperbola and these ;.yb is unaffected by removal of the outer part of the wedge. and continues to experieuce a
unifonn pressure. Moreover, it still does so if the whole of the rest of the plate is removed, and a!! the wedge
beyond the Mach line AE. We are left with a c.onfiguration whnic is a sort of rudimnntary wing-body .ombination.
All of its drag derives from a uniform pressure ,.ting on the wedge, and all of its lift from the snme pressure ating
"oon the "wing". Since the area of the wing is in principle unlimitvd. there are seemingly no theoreti,.al bounds on
the lift-drag ratios that can be obtained in this way.

-j? J'*-ý",-- --



.• 2.8

Theoretical limits on the efficiency of such an arrangement ýarn or.ly be di-,overed by considering the non-iinea"
features of the flow. Taking these into account. we observe tha: the front of the interference region % ould really be
an oblique shock wave, and the rear boundary a Mach cone of the fltw behind the sl'oL-k wave. The two boundaries
would always therefore -Interect at a finite distance, and the lift-drag ratios are therefor- restricted.

The perlormance of such a configuration is easily calculated from exact shock wave theory, znd finding its optimum
form can be reduced to a purely geometrical problem2". One wishes, in fad, to draw trailing edges on the wedge and

g on the plate which terminate the configuration in such a way that the ratio of wing area to body area i- maximised,
and no pair of points on either tra.hing edge are joined by a line making less than the Mai.h angl: wit, the local qow
This problem is solved in Reference 26, if the Mach cone frcm A intersects the w~ng leading edge at 1%, then the
Mach plane through the straight line AT intersects the wing and the wedge along the optimum trailing edge. It is
then shown that the results of exact calculations on configurations designed in this way collapse onto a single dia-
gram tFig.14%, where the vertical scale is the reciprocal of the "induced drag factor", and the horizontal scale a
similarity variable deduced from a small disturbaice analysis. The performances of optimised interfererce ýcn,igt.ra-
tions cluster very closely about a single curve, and the performances of plane (two-dimensional) wedges lie within a

* narrow fan. Over the range of Mach numbers considereJ, the ;nterference configuration turns ou. to be better
providedS~M4C

MCL <

In Figure 15 this criterion is used to illustrate thove combinations of Mich number and lift coefficient for which
one or other method for generating lift is preferabic. From this we may conclude that pure aerodynamic interference
is most slited to flight conditions which create relatively weak disturbances.

In Reference 27, however. Pike has extended this aiialysis t- show that for any combination of Mach number
and lift coefficient, interference effects can always be it. -crporated to irmprove lift-drag ratios beyond the wedge value.

3 •His dcmonstration utilises a generalisation of the simple c,.ct wing. In the usual way (Fig. 16) we draw a stream
surface behinJ a plane shock wave retaining for simpltcivy t6, citstomary V-shaped leading edge. We may terminate
the wing by any trailing edge that is not subsonic. Suppose th.t thh edge i6 nrt now symmetrical about the ridge
line, and consider the forces which will act on the wing. The pr•vure is cnstant over the surface, and so there will
be a litt proportional to the vtrtical projected area, a d;ag proportional to the streamwise projected area, and a side-
force proportional to the net area in side view. The lift cotfficient (bzsed on planform area) and lift-drag ratio will
be the same as those of the two-dimensional wedge from which the shape is derived.

SNow let the configuration be rotated about the free stream vector. Nothing will happen to alter the fortes,
except as regards to the direction in which they act. The ,rag force is complctel,,, unalt.red. but the forces which
we previously described as "lift" and "sideforce" will rot, with the configu.iation, as wtill their resulta'-t, which we
will describe as the "transverse force". If we wish to obtain the maximum vertical force, we must rotate the con-
figuration untii the transverse force is vertical. In doing so, we do not alter the lift coeffictent. because the surface
is always act, d on by the same constant pressure, neither do we alter the drag force, but we do increase the lift
force, and hence the lift-drag ratio. As in the previous paper the mnaximisation of the effect involves only geometrical
considerations, The ratio of the areas of the two wing facets noust be as great -,s possible, subject to the constraint
that the trailing edge is fully supersonic. Again the optimum trailing edge turns out to lie on a Mach plane.

Pike"' has calculated the manimum percentage improve.nest fur various Mach numbers and lift coefficients, and
finds that it depends only on the similarity variable , encountered previously (Fig.17). The maximum im-
provements are striKin1g, and the shapes can be made a little more realistic by combining them in pairs, as shown in

* [Figure 15. Of course, they arc still very far from being "aircraft shapes" but they do provide tile only demonstration
I know that the two-dimensional wedge is not an optimum lifting surface tunder any combination of lift coefficient
and Maci number.

SBoth of these last two configurations feature highly swept tra!iing edges. and in both cases the trailing edge must
he swept before any advantage in performance is achieved. It has been known for a tong time that sweeping the
trailing edge of a plane delta wing (converting it to an "arrow wing") i% a simple way to improve its performance,
Some calculations UsIL9g linear theory taken from Reference 28 are shown in Figure 19. It remains unclear just how
much the efficiency of Pike's wings is due to "favourable interference" and how much to "planfonn effect". The
two effects are in any case intei-related. If we concentrate the volume of a configuration toward the middle in the
hope that it wtill have a favourable effect on thPi outboard regions, it would scem necessary to make these outboard
regions as extehsive as possible.

However, these highly swept configuamions do suffer from practicol dtsadvantage; over and above their evident
structura! defects. Amongst other things the Io% speed aerodynamics is complicated by ondesirable behaviour of
the separated upper-surface vortices as they pass over the swept trailing edge"°.

Experimental tests of shapes incorporating interferenfe concepts have often been disappointing. Simple conu'gur-
ations consisting of half-cones placed underneath flat delta wings were first suggested by Eggers and SY.ertson19 (see
Fig.2) and have been the subject of extensive experimental study in the USA. A very simple criterion for determining



t. effeetiveness of the interferene concept is to compl~re. the set of performance achloved by this design with tile
perfortritnce obtained by t-irnmng it upside: down. Su~i a comtpdrison, due to Be~ker -* and typical others, is shown
in Figure 2-1. The fact that the configurations actually work better uipside down at higher Mklaeh numb~ers issurprising
at first siulht, but a number of reasons for it canl be foind. B.-cKer attributes part of thL decline in Piterfererice benefits
to the increasing effects of viscous interaction., as Macli numbez rises. and also uses this to explair tht, dihcre-3,aicies
between results at identical Mach numbers. However. the downward treitd of this graph witi, incrt&;izng Mach number
cottid be explained without reference to viscosity. In h Oideli SttlcieS We have seen thai the benefits of inter-
ferenice Cal! off anyway with increasing Mlath number, betaust of hie smaller areas nvailable fur the indii.ed overpressures
to act on. Moreover, we can reasonably assume that at very high, Maclh numbers die predictions of Newtoniiaa theory
become more nearly correct, and the optimumi surface becomes more closely a flat plate.

Therefor- we may expect that the amount of Kiterfere:nce lift that one should optimall) inclade in a design will
Sbe a quite strong function of Macli number. It seenms very likcly that in the half-cont: + delta desl~gn tile anmount of

interference emp~loyed is appropriate at lower speeds, but somewhat overdone at very high speeds.

We have already ihoted that thle favourable efrect of cambering a delta wing can be regarded as a kind of inter-
ference, and we cin %ell suppose that these beniefits a!~o decline! with increasing Mach number. The inaximunm re-
duction in induced drag factor was, we saw, I I"( according to linear theory, on a source-leading-edge delta, and less
at higher aspect ratios. It seerns safe to assu.T.e that the greaitest reduction is associatz-d with the lowest aspect ratio
because a given high incider.ce, wgion (say, at the apex) has then ;lie chancýe to influe'nce thie greatest fraction of the
tota wing area. Thus, j. the o'erall propert~es of an aircraft are fixed by, &Ay, low speed handling criteria, the fastcr
we try to fly it, the less chan. interference effects, including camber, have to enhance the perfortrrance.

Howvever, we are not as y1A in a position to answer thle question, at what combination of MaAI number and l-ft
do the benefits to be derived tr~xn camber become negligible? Tile question ca.i only be answered with real co.nri-
dence after tackling optimisation problems aimost having the full compleAty of thle one, I began this lecture, by
describing, but useftl, eveti if tentative, answers can be given by studying thle "waveriders'" to which I shall relfer in
a late. lecture.

So far I have been dealing with the optimisation of designs where only thle lilt coefficient was give iin advance

1 want to go on now to discuss thle problem where volume is also prescribed.
A very simple example illustrating some features of tile problemn can ag-in be taken from the twc-diniensional

case (when we must consider -yings of fixed prcfile area). F-or additional simeplicity we can consider oily wings with
streamnwise upper surfaces (Fig.22) and we shall neglect base drag.

We will suppose that the pressure krw has the form

Cd cj + C2( dx)2  (2.19)

which includes as special cases:

(a) Linear theory

C1  2?f0. C2ý 0 .

(b) Busemann's second-order theory

C,=2~. ~ (M0 - 2) + Y\I"

(c) Newtonian th.-ory for slender bodies

C, = 0, C, 2=2

Then, for a wing having fixed (unit) chord, we can write

CL =f
1 CIY' + C2 y" dx

rj Cy'2+ C.,y'3dx
V and (=ce Figure 22)

A = (- x)y' dx .
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To find tho minrium value of CD with Cl. and A gien. iS equivalent 6 to minimiZing the intLg-- I

vl F dx,

F = C'y" + Cy'3 + X,(Cjy'+ C~y,2) + X.2(0 -" x)y'

a-,d X. , are Lagrange multipliers. The Euler equation saiiktied by the optimum contour is in this t.ase

aFIIay'
aiiý the uansversably condition, applieJ at x -- , 1..hhows this constant ta be zero. Therefore the 'ontour 13 dcscrlbA
b-" the- differential equation

2C,y' +r 3C2 y'J + "I(C 1 + 2C2'Y') + X22 (I - X) 0. (2.20)

It: the special case of linear theory (C2  0) Equation (2.20) redwce.e to

Ciy'+IiC. + 2(I - x) 0 ,

which integrates to give

v = -XIx+ - '(l--X) 2 - 1 t2.2 1.)
2C"t

That is, the optimum contour is parabolic. with ý.j and X•, determined by the required values of (L and V.

To see how this works out in terms of actual shapes. we can note that

y(i) = dx =C
C'

i.e.. all wings having a given CL pass through the same poirt in th: base plane. Of Me-sc, we already know that the
one with the least drag of a'l is the wedge (see Figure 23). Le: the area of that wedge = j y(I . = A*. Suprose we
actually need A > A*. Then we can see that the best way oi adding the extrd area is by means of a corner para-
bolic curve. Suppose on the other hand that our requirementý for A were not as grtat as A*. The best policy then
would be to use the wedge section, since this has less drag thin any other, and a!so offc.r vihout penalty a bonus
volume over and above our needs.

The same general conclusions hold when the case C2 * 0 i. ,onsidered, all that happens is that the detailed shape
of the section is alter d. The shapes can still be found analytically, because Equation (2.20) can be solved for )' to
give something of the form

y' a+(b-cx)"'

and thusI2
y ax -3- (b - cx)3. (2.22)

where a, b, c depend rathur cumbrously on C1, C2 and the prcscribed values of CLand A. Generally, the effect of
adding the non-linear term is to concentrate the volume farther aft.

To tredt even the two'dimensional problem with any greater accuracy than this would be a formidable task. It
is unlikely that any approximations can be used in the way that Pike treated the volume-free problem described
earlier, because the optimum shape will generat ly not now be close to any simple shape like a wedge. Bartlett 3" has
computed the optimum proportions of double wedges (see Figure 24) and found Ithem to be conv*x in all cases
considered.

If we go on to i.onsidur lifting three-dimensional wings with a volume constraint we find, so far as I know, no
published *aork based on anything except Newtonian theory, the most comprehensive tieatnient being that of
Maikaper". He considers three-dimensional wings (Fig.25) whose lower surfaces are defined by

z = zI(xy)

- ~ ~-AIM
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( and whose upper st. 'aces are defined by

Z2(X-Y)

The wing has a .oinpletely free pidilform area, and is subjeLt to a givcn friL ion ~oditsent. The pressure is.
ass'r* d to be given by

The wing is bought w~lch has the greatest lf.drag ratio of any v .ng enclosing a given volume. Thus the liftI coefficient cannot be fixcd in advance, but emerges as part of' thle problem solution.

Maikavor fw~ds that the best wings are syinit~rikal about an mn~denee plaite, and that thle upper surface 1% always
st~eamwise at th? triling edge. ThK achual profilt. shapes are K,2 power iaw, of tile sarni form as Equation (2.22). 1t
is interesting to note that the same airfoai profile also turns up in the solutioii to the slender, three-dimensional Pion-
ltifting wilig 6 Maikapor32 also 1,aes two extreme profileI shapes, between which the optimum profilief always liz
iFig.20). He does not. however, consider the optimum Shape Of tIL planformn. All his results ire tru.e fo7;n hoe
sape, but do not give rise to the same performance in each cuie. a~coe

I know of no work in which liftin6 thrce-dimiensional wings art. oplimised %%ithin more complex cunstraints.
Evidently many more constrainta would b,. ne4,essary to appii)ximate all the considerations that an airrsaft diesiener
must take into account, but as I said earlier. it is questionable to what extent thle Aill design process zouhd ever come,
under the province of optitnlsat~on thtory rather tli~n empiriLal j,,dgenient. Of ilhe constraints wlhicl, I have not dis-
cussed, probably the most important i., centre ot pressure position. This must be made to coincide wito the centre
of gravity. if the aircraft is to be !rimimed f'r level flight, and the ~entre of gravity is. within limits, fixed. An alternativea
attitude, however, is to optimiz thle aircraft des!Em on other g-ouiids. and then to ask whiether, with t)he centre of
pressure in the resulting position, the ,nternai design of thle aircrait can be Juggled so a% to make the cenire of
gravity match up.

In this lecture I h.;ve tried to give ail oulline of the way-, in whi~ih. at thle IIeen moment, optimisition theory
can help to define shapes for hypersonic transport Nehicles. *r,: date, it lias only bten possible to apply the theory
using rather simple aerudynamics. such as linear or Newwroiain theories, at an) rate on the thrce-&inicnsiý.mn4' Lase
Nevertheless, a consisten! picture begins to emerge of wit.; a good integrated aircraft shape should look like-
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Fig.5a Optimum nose shape, according to Newton-Busemann theory (proper optimum)

Fig.5b Optimum cowled nose shape, according to Newton-Busemann theory (absolute optimum)
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Fig.6 Control volume to calculate forces on two-dimensional wing using Newvton-Busemann theory
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Fig.7 Optimum wing according to Newton-Buscmann theory
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Fig.8 Flow past a two-dimensional quasi-wedge
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Fig.9 Optimum wing according to Pike's theory
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Fig. 10 Percentage rductions in drag for given lift, according to Pike (6o = angle o unperturbed wedge)
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Fig.!I I Optimum wing shape, according to Cole and Aroesty

Fig. 12 Chordwise sections of opfimum delta wing, according to linearised theory

R&ig i3 Widge-interferenice concept, according to linear theory
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Fig. 14a Wedge-interference concept (non-linear theory)
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I Fig. 17 Optimum performance of asymmetric caret wings
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Fig. 19 Performance of arrowhead wings, according to linear theory
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Fig.20 Half-cone and wing
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Fig.23 Family of optimum wings, according tc linear theory

Fig. 24 Bartlett's problem
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LECTURE 3

THEORY OF "WAVERIDERS"

P.L.Roe

Royal Aircraft Establisl-nent, Bedford, England

All the methods we have available at the present time for predicting directly the hypersonic behaviour of a
given shape are approximate to an extent that precludes full confidence in the deductions we can make from them.
It is useful therefore to have available for comparison more accurate, solutions even if these are of the inverse kind,
where wing shapes cannot be arbitrarily chosen in advance. Solutions whost accuracy is limited only by the need
to assume a perfect gas can be obtained by tracing wing-like streamsurfaces in calculated flow patterns which have
some simplifying feature, for example, they may be two-dimensional or axisymmetric. Because it is not the shape
of the wing which in this process is chosen in advance, but rather the -wave formation, they have come to be
known as "waveriders" and it is in this sense that I shall use that term.

It is useful to list what we may hope to achieve by studying waveriders.

1. We can use them, instead of expensive experimental data, to check the accuracy of approximate
prediction methods.

2. We can study systematic families of shapes and draw general conclusions as to the effects of aspect
ratio, contained volume, distribution of volume, etc., on performance characteristics.

3. We can establish levels of performance which will serve as criteria by which to judge the excellence
of designs achieved by other methods.

4. Although the flow about a waverider in its design condition has a deceptive simplicity, the flow in
conditions just slightly "off-design" may provide a point of entry for the study of more general and
more complex flows about wing-like shapes.

When using this approach to consider any of these four items, we must constantly keep in mind two reser-
vations. First, that the shapes we consider, although varied, are still in some sense special, so that the conclusions
we draw may only have a restricted validity. Second, that the valhe of the study will increase insof.ir as we are
able to make the waverider shapes share the qualitative features of practical aircraft designs.

We shall begin, then, by considering some very simple waveriders, and the extent to which their shapes may or
may not be manipulated. The simplest waverider is the caret wing 1,2. This is designed by starting with the flow
past a two-dimensional wedge. The flow pattern assoiated with the wedge is, of course, a plane shockwave followed
by uniform flow parallel to the wedge surface (Fig.la). We shall perform a simple thought-experiment on this flow.
In imagination, we draw a pair of intersecting straight lines lying in the plane of the shock, and visualise the stream-
surface which stems from them. It consists of a pair of intersecting planes (Fig. I b). Suppose now that we construct
a very thin sheet of stiff material, having exactly the shape of this surface, and suppose that we introduce it care-
fully into the flow field, from behind the shockwave, aligning it exactly with the flow direction. In a frictionless
fluid we can do this without causing any fl )w disturbance, provided the sheet does not protrude through the shock
surface. If the sheet is positioned so that its leading edge lies exactly in the shock surface, we can divide the flow
i n t o thr e r egio s rth e uts
whinto three regions (Fig.ib), region I being the undisturbed stream. Now it may be noted that there is no path bywhich an acoustic signal can pass from region !I to region ilt. A strongly compressive signal might pass if it were

strong enough to deform the shock wave outward from the leading edge of the sheet, but an expansion wave cannot
make the journey in any circumstances. Suppose now that the wedge with which we began is slowly worn away and
disappears. In the process, the part of the shock wave separating regions I and II will weaken and vanish, but no

it news of the event can reach region III, so that the original flow pattern persists there unaltered.

In the above argument I have tacitly assumed that the flow pattern extends to infinity downstream, but it can
be made to anply .qually well to finite systems if the sheet is supposed to terminate in a trailing edge that is every-
where supersonic with respect to !he flow behind the shock wave. Then we define regions I, II, and Ill with similar

aa ZA
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properties to the above except that now region II is hounded by (Fig. htc))

(a) the shock wave

(b) the stream surface

(c) the downstream Mach envelope from the trailing edge.

We must note that this extension is not valid if the shock wave is so strong as to cause subsonic flow to
exist, for then there is no surface (c).

By such an argument we convince ourselves that a flow pattern consisting of a plane ýhcck wave followed by
a parallel flow can exist on the thin sheet, if it is placed in isolation in a uniform stream of the right Mach
number (Fig.',d). The basic waverider hypothesis is that this flow pattern is the unique solulon for this shape
under design coaditions of Mach number and incidence. This is a very reasonable hypothesis and wJl supported
by all the experimental evidence, but it is not entirely beyond question, as we shall see later on.

For the moment, however, we put on one side the difficult question of uniqueness, and accept the thought-experiment a- satisfactory. The surface which we have designed bears some resemblance to a rudimentary wing.

Being infinitely thin it is not very practical, but we can remedy this by adding material on the upper surface, so
long as we do not add so much that we detach the shock wave, and spoil the designed flow. If we wish to have a
known flow everywhere, we can most easily achieve this by making the upper surface parallel to the free stream.
The result is the simple "caret wing" which has been the subject of many experimental studies - We shall
now consider, it. increasing order of complexity, some possible variants on the theme.

The simplest thing to vary is planform shape. Instead of drawing simply a pair of straight lines or, the shock
surface and taking these to represent the leading edge, we could choose a quite arbitrary curve, wlhtse vertical
projection wouwd become the planform of the wing.

All wing! so designed support the same consrant pressure, and therefore have the same lift coefficient based
on planform area. Moreover, they all have the same lift-drag ratio, which is the cotangent of the angle of the wedge,
and the centre of pressure always coincides with the centre of area.

There seems no reason of principle why the shape of the curve should be restricted in any way. The though.-
experiment described above seems equally valid however irregular the curve may be. whether ii is topologically
open or closed or even reentrant, but of course the wing designer is only interested in shapes which are, in some

sense, "natu'al". However the fundamental condition that the leading edge shall lie in the plane of the shock wave
is rather restri,.trve. The slope of this plane is fixed by the basic design requirements of Mach number and lift
coefficient, according to the formulat i"0 I 2(1.

510v = NP -( (3.1)M2. (,y + 1)

Any curve drawn in this plane has a similar .appearance whether viewed from in front or on top (Fig.2) the
two projections being affine transformations of eacla ather. In aerodynamii. parlance this means that if part of the
leading edge is highly swept, it must also be very aiihedralld and if the wing has overall a low aspect ratio it must
also have strong anhedral. and hence a !arge ratio of wetted area to planform area, and therefore, also a large
friction drag. For simile wings of this type thert is then of necessity a relationship between aspect ratio and friction
drag. This putt., .ixn 4: a disadvantage compared with lces special shapes if th. re is a design -equirement for either

(a) low crise Mach number

(b) high lift coefficient

(c) or relatively low aspect ratio.

In particular, it appears ,hat caret wings are much less efficient than slender wings over the Mach number
range three to five where both might be ,.onsidered. However, this disadvantage is typical of caret wings only. and
not of waveriders as a class, as we shall see.

Summarising 3o far. we have seen that when designing waveriders using the flow past a two-dimensional wedge.
we have an unlimited choice of planform area, but little opportunity to utilise this choice advantageously.

The next idea we might try is to alher the details of the flow field. Let us suppose that instead of a plane
wedge we begin with some other two-dimensional shape. Again this can in principle be ac general as we please
but there is probably little point in studying shapes which are anything other than simple and smooth. For
example, we can choose to start with the flow over a smooth convex wedge (Fig.3). Such flows can be calculated
by the method of characteristics' , and generally the streamline curvature will be in the same sense as that of the
body, so that any waverider shapes that we develop will also be convex (Fig.4).
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This is a very useful degree of freedom. Disadvantages of the caret wing are that its lift and volume are both
centred too far aft to be representative of practical designs, but this change remedies both defects similtaneously.
Moreover, the lift/drag ratio of the shapes is no longer j .anction of design Mach number and lift coefficient alore,
we can in principle easily investigate a fanily of shap,,s to find what sort of effects a redistribution of volume, say,has on performance. One way of doing this is to fix a planform shape and vary the shape of the two-dimensional
body that generates the flow field.

Pike ' has done this for waveriders of delta planform and given hit coefficient. He employs a similar theory
to that described in Lecture 2 for calculation of the flow field. That is, the generating body is supposed to be
nearly a plane wedge, the departures from this wedge being of order 6 . Disturuances reflected from the shock
wave are supposed to be attenuated by a factor :,., ana terms of order 6 , X6 , and 62 are accounted for in the
pressure distribution. He finds, as ore might expert, that the optimum generating body is very close to a wedge,
consisting of two nearly collinear straight sections joined by a curved mid-section. The optimum waverider derivable
from two-dimensional flow fields is therefore very close to a caret wing.

If the shape is also required to enclose a given volume (assuming always the same upper surface shape) the
problem is more complex, and not easy to treat by any realistic non-linear thtory. In unpublished work, Pike has
simplified the problem by considering linearized flow fields, and finds that, fo- wings of delta planform, the
optimum generating body has a quadratic representation

y(x) = ax2  + tIx + c, (3.2)

where the constants depend on the free stream conditions, the cons.rained valies of lift and volume, and on the
aspect ratio. Given reasonably "practical" values of these quantities, the shapes turn out to be convex. Fortunately
therefore, we find all our requirements tending in the same direction.

Nevertheless, these waveriders based on two-dimensional flows do still suffer from the basic disadvantage that

the leading edges must lie very close !v the plane defined by Eqn (3.1). Under many circumstances they will be very
anhedralled, and so be subject to large skin friction drags. If we are to pursue our ambition of finding configuration
shapes that are both "good" and "realistic", we shall need to use more general flow fields.

'Ihe first step in this direction was taken by J.nes'°. who obtained more realistic shapes by starting from the
flow past an unyawed zone (Fig.5). This at once produces a very useful change in the geometry. Suppose that we
chocse our waverider surface (Fig.6) by taking as ou; leading edge the intersection of the conical shock wave with
a plane surface. The leading edge will then be a hyperbola lyiiig in that plane, and the shock wave will curve well
outside the plane, as it does, e.g., on a plane delta wing. Waveriders designed in this way are much flatter, and
therefore have less friction drag, than those designed from two-dimcnsional flows. Three such shape3 have been tested
experimentally" to confirm this extension of the design method.

These uses of the simple cone-flow do, however, carry their own disadvantages. The btreamlines of the flow are
all concave with positive pressure gradients along them and so any waverider surface we choost will have, in even
more exaggerated form, the rearward centres of volume and press-vre that were part of our reasuns for rejecting the
caret wing. Therefore, we have to generalise yet again and this time we go to the flows about arbitrary bodies of
.evolution. Some details of this extension are given in Reference 12, here I shall partly summarise that work, and
partly describe more recent developments.

To calculate the flow post bodies of revolution, we need a computer programme based on the method of
characteristics or an equivalent. Such a programme can be greatly simplified if the body nose is initially a cone,
because tabulated cone flow solutions can then be used to start the programme off. Otherwise. if the body is
initially curved, the programme must take special measures to circumvent a singularity in the equations at the apex.
The shapes shown in Reference 12 were ,omputed using an existiag flok-fieid programme whilh assumed a conical
nose, but this turned out to be rather restrictive. We wish in fact to make the initiel curvature of the innermost
streamlines as strong as possible, so as to concentrate the volume of the resulting waveridvrs in a conveement and
efficient way.

4i A fresh programme was therefore written, but so as not to be troubled by the sii.gularity on the axis (which,
after all, we do not need to include in the chosen part of the flow field) we ha.e considered axisymmetric bodies
with an annuLr hole (Figs.7-8). Such bodies normally present no special computational difficulties. This programme
is part of a suite written by Moore and Pike at R.A.E. Bedford. which calculates axisymmetric flow fields, traces
the stream surfaces within them, and evatuates their performance when considered as waveriders.

Typical results from these programmes are shown in Figure 9. A section of the flow field used is shown at the
top, and then there follows a three-view drawing of a waverider taken from it. The planform was chosen to be a
delta of semi-span to length ratio 0.35. In the side view the leading edge is represented by a solid curve, and the
centre-line by a dotted curve. It will be observed that the wing lower surface is quite flat.
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At its design Mach number of 4.0 the lift coefficient of the lower surface ;s 0.05' I and *he drag coefficient
is 0.00543 if skin friction is supposed zero. The lift/drag ratio is then about 10.5. If we assume that the drag
coefficient is increased due to skin friction by an amoun,

(lower surface wetted area) x cf

(planfoim area)

Sthen the lift/drag ratio will be reduced as shown in Figure 9(c). This performance curve is v,:ry close indeed to
what one gets from a two-dimensional wedge producing the samie lift a! the same Mach number, and subjcct to
the same cf . It is rather better than one cou'd get from a caret wing, and that fact, combined '4;il the more
plausible shape and convenient camber of the shape in Figure 9, can be taken as ju-tify.ng the additional work
invo' "ed in computing these generalised waveriders.

So far no account has been taken of the possibility that the upper surface might be anything but streamwise.
It will of course not often be the case that a streamwise upper surface is best. Broadly speaking, it will be
advi.,able, whenever we require a large lift coefficient, to make the upper surface also contribute to the lift. On
the oher hand, if the need is for a large volume, we can get some of this by "building up" th2 upper side. so
that 't too becomes a compression surface.

In either case, it is possible to define the cl.ntours of the upper surface also by means of the streamline
tracýig technique, and so preserve everywhere the calculable nature of the flow. In what follows I shall give an
account of the process to be followed if an expansion flow is desired.

Figure 10 shows the simplest possibility, as first suggested by Flower' 3 . The flow field employed is a simple
PrandtI-Meyer expansion. shown in perspective in Figure 10(a). Figures 10(b) and 10(c) show how a stream surface
can be taken from the flow. In this case, if the surface of Figure 10(c) were to be placed in isolation in the
"design" stream conditions, its leeward side would experience simply the Prandtl-Meyer flow pattern. T1 e
geometric shortcomings of this shape are, however, similar to those of compression surfaces based on wedge flow.
The leading edge of the expansion surface must lie in a Mach plane. whose inclination is

0 = sin-' 1 (3.3)M_

If the edge is to be swept back, it must also be dihedralled (the edge of a wedge flow wing had to be
anhedralled) and so agamn subject to high friction losses. Therefore, it seems again that we have to reject two-
dimensional flows as a basis for design. It should be remembered, though, that waverider shapes based on two-
dimensional flu, might in some cir,.umstances be frnitful subjects for study. As one example, the) may provide
simple cases for developing an understanding of shock wave behaviour, we return to this point later. As another.
they may offer simple .ahlulable environments in which to stud) the development of three-dimensional boundary
layers 4 .

However, returning to cur efforts to design a suitable shape for the upper surface, we tr again to generalise
our approach. More general two-dimensional flows will not solve the problem. we turn therefore once more to
axisymmetric flow. Figure I I shows the flow over the tapering end of a body of a revolution, whose fcrebody we
can suppose t- be semi-infinite and parallel. Stream surfaces from such a flow can be found which are relatively
flat (Fig.1 2) and can be used in conjunction with designed lower surfaces so as to form complete configurations'.is.

The most promising technique. however, employs an ingenious idea due to Pike'" (see Figure 13). Two
axisymmetric expansion flows are supposed to be piaced side by side in such a way that their Mach cones inter
sect. For the moment, we ignore the region of their mutual interaction. We draw a stream surface which starts
upstream ot the expansion regions and is initially parallel to the main flow. As soon as it enters either expansion
region it curves inward. We overcome the interaction of the two fields by placing a vertical fin surface between
them. If the overall geometry is correctly chosen 12, 16 . it is possible to make the sides of the fin surface also
conform to stream surfaces of the two flows.

TThe particular advantage of this method lies in the fact that volume is selectively removed from the mid
semi-span positions, and left untouched near the centre (see Figure 13(b)). Thus the resulting base shape approx-
imates quite closely to the shape shown as our design aim in Figure 8 of Lecture I.

Now almost everything I have said up to this point has had to do with the g-.ometrical process. with trying
to achieve the most ge.neral and realistic configurations. The problem of maximising performance is partially
treated in Lecture 5. in addition to the methods described there one may elso try to apply the lessons learnt ;-I
Lecture 2 (convex streamlines, incidence washed out toward the tips). There remains the question of the b, "ur
of these shapes "off-design".

-. ..1I4.? ++'
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If a waverider shape operates at conditions far removed from its design point, then it loses all of its special
properties, and becomes f )m the point of view of computation no different from any arbitrary sharp edged
shape. But at conditions only just removed from the design point it may be possible to solve the fkw by small
perturbation techniques. One such technique has been vorked out by Pike, and will be published shortly

The other relationship between design and off-design cond;tions is that we mist iecover the design solution
Ls a special case of a more general calculation procedure. Let us then tentatively outline suh a procedure for
the shock attached case and see whether it will meet that basic test. We will suppose that either some three-
oamensional characteristics technique or other finite difference scheme is available to deal with the main part of
the disturbed flow. On the wing surface there will be a boundary condition of tangential flow, and at the outer
edge of the flow we shall have to satisfy the oblique shock relationshirs. On the line where these two surfaces
meet (i.e., the leading edge, we must satisfy both conditions. The free stream flow must there be turned parallel
to the surface by the attached shock wave.

So it would seem that we car, already make ri start on the solution by calculating the flow just at the leading
edge and this shoulG provide par, of the boundary conditions for the remaining calculations. Thrre are various
ways of computing th.e flow at a swept edge, tbe simplest and best known being the following. We consider a

"region of the leading edge which is so small that we can think of it as straight, and of the local surface and shock
wave as planar. The problem then is equivalent to finding the flow over a yawed wedge (Fig.14). To do this, we
con,-ruct a plane which is normal to the leading ede and resolve the incident flow into a component Ig the
edge, and a component in the plane. This latter component we show as Min . We can argue that in inviscid flow
the other component has no effect, since the wedge could be translated parallel to itself without changing the
flow. The problem reduces therefore to solving for a stream of Mach nombor Mn , deflectei through aii angle 6 n

The angle On, which determines the local position of the shock wave, then follows from the shock cubic

a sin 6On + b sin 4
0n + c sin2 0n + d 0 (3.4)

where a =.4

b •(, 4 1+ )si~ 26 - 1) - 2M,

c = 1% ('y4-l) 2 sinpl) hl' (-(+l)sin 2 6 - 21 + I

d = -I.

This is just the ordinary two-dimensional shock cutnic with M.0,6 . replaced by Mn,0n,bn. In general we

know that there will be either two, one or no thermodynamically permissible solutions.

If there are no solutions we must suppose that our hypothesis of an attached shock wave is contradicted, and
that the shock is in fact detached.

If there is only one solution then we supp,,ze the shock is about to detach.

If there are two solutions, we may, by analogy with the two-dimensional case, call them "weak" and "strong",
or perhaps more precisely, to show how they are derived, the "weak normal" and the "strong normal" solutions.
We define the "weak normal" solution as the one which lies closer to the surface, and we may observe that of the
two it has the smaller pressure ris,. and causes the less energy degradatioi, (entropy rise). It will be very natural to
take this "weak normal" solution as our leading edge boundary condition.

Unfortunately, a very simple example is enough to show that there are difficulties. Figure 13 shows a fi.mily
of caret wings all derived from the same wedge flow. The differ only in aspect ratio. Now as the aspect ratio gets
very high, the corresponding wing is identical with the original wedge, and in that case the shock wave is evidently
"weak normal". In the other limit, as the aspLct ratio gets very low, each facet of the wing becomes only
negligibly inclined to the incident stream. And yet we believe, from the thought-experiment described at the
beginning, that the wing still supports the same finite pressure rise across the leading edge sho,' wave. A little
reflection should convince thc reader that the shock wave in this case is of the "strong norma!" type.

If we' now imagine the shock wave being steadily reduced frori, infinity to zero, there will be a changeover
from "weak normal" to "strong normal" shock wives. For any particular case theie is no difficulty in calculating
numerically where this point is. All wt need to note here is that there does exist a class of wing for which the
computation scheme we outlined above breaks down, and that for wirgs of this class the flow. with its attendant
"strong normal" shock waves, is found experimentally 6'-.
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The interesting question now is this. Are these cases that we have discovered "freaks" brought about by our

particular waverider techni4ue, or do they have a mo'e general relevance? We shall begin our attack on thi'-
problem by considering the flow regimes which may occur on a given delta wing as its test conditions are varied.

In Figure 16 we present diagrammatical!y some of the things we think we know. The axes (M,., a) represent
particular test conditions with a being the incidence of the ridge line. (We do not here consider yaw effects.)
Suppose that for all (M_,aj we calculate the position of the weak normal shock wave, relative to the plane of the
leading edges. For dome values, the sh-)ck will lie below the plane, and for others above it. For a particular set of
values (ST in Figure 16a) the shock lies in the plane. The curve ST is the same curve tl'at one would calculate
from two-dimensional theory and for high aspect ratio wings extends to M,. - .It is the so-called "design curve"
of the caret wing (see, e.g., Reference 2). The other significant curve on the figure is tht one along which the weak
and strong normal solutions coincide (PR) and above which no solution exists. For each region defined by these
curves a small sketch is drawn, showing the typica. positions of the two solutions. There seems no reason to
suppose that the weak normal solution does not hold everywhere.

The picture becomes more complex as the aspect ratio is reduced. The curve defining conditions for which
the weak normal shock lies across the leading edges shortens to the finite length SQ, and a new curve QT appears,
defining conditions for which the strong normal shock replaces it as the design solution. "Ihe twG curves run
smoothly into each other. The "detachment cuive" PR shifts ro.ai. somewhat so as to touch the design curve Ot

Q. In Figure 16b we have reason to believe that the "strong normal" solution holds along QT. Let us suppose
that it continues to hold in some neighbourhood of QT.

If this is the case, we can imagine an experiment in which the wing, originally at a design point on QT, has
the Dnconing Mach number altered whilst the angle of incidence is kept constan.. One cza easily convince one-
self that the resolved leading edge deflection angle (n in Figure 14) is also held constant, whereas Mn varies in
proportion to NM . Then as the stream Mach number is reduced, say, Mn is reduced also. Therefore On is
reduced (we are considenng strong solutions which do have this property) and the shock moves inward closer to
the body. Conversely as the Mach number is increased, the shock wave moves outward. This is certainl) contrary
to one's expectations. it is also contrary to the results of preliminary attempts at a perturbation flow field analysis,
and moreover contrary to experimental evidence' 7

The paradox can be resolved in mo;e than one way. I indicate in Figure 17 the cr.e which seems simplest
and nc .1 natural to me. It is known that the flow patterns correspond ig to conJitions ins-de SQT may contain
powerfut embedded shock wases' . A consistent picture can be formed which assumes that the strength of these
shocks increases with increasing incidence, and that they simultaneously move outwari. finally reaching the
leadng edge when the incidence crosses QT. At that stage they join tip to o0c.upy exactly toe plate of the leading
edges. With still furthet increase of incidence, the whole shock system detaches, so that the real detachment hine
is PQT.

I must emphasize however, that the whole of this last paragraph is so far puely zonjectural. and not yet
confirmed by really careful experimental measurements.

If these conjectures prove to be correct, we will have shown that although "strong normal*" shock waves do
exist on caret wings, they happen only for condittons that are Nery rare (mathematically speaking) and so it might
seem that in our proposed calculation method we could safeh, neglect them after all. l-oever. when we go on to
non-coi'ical shapes, the situation looks very unclear.

Corisider a waverider surface with 3 strongly curved leading edge generated from a wedge flow as in Figure 18.
We can easily arrange for part of the shock wave to be "weak normal" and for the other part to be ' strong normal".
If a wing were formed from .uc a scrface and placed in a stream at its design condition. %khat would now happen?
For every point on the leading edge 6 n will stay the same, and Mn will decrease. It may be appropriate to leave
the consequences of this as "an cxerc.se for the reader". The problem is certainly not tr;v,,. and seems to have
more than one possible solution.

It may be mentioned in passing that these "n.ixed" leading edge shock waves are the r2Ic rather than thc
exception so far as "axisymmetric" waveriders are conLzrned (Fig.19). Nevertheless. Pike " found no very
remarkable off-design behaviour in his experimental tests of cone-flow waveriders. His ttsts. s ere. however, con-
ducted before the present approach was formulated, and no particular effort was made to look for the relevant
phenomena.

The final topic I want to di -uss in relation to the waverider piogramme is some special solutions that .an be
found for caret wings of rther extreme geometry in rather far off- lesign conditions '" . One such solution, formed
from a pattern of four interseting shock waves separating regions of uniform flow is shown in Figure 20 The
pressure distribution across the span of time wing is shaped like a top hat. The flow pattern occurs only if :he
angle between the facets is less than 90'. This flow pattern is menitoned not because of ary2 practical application
that it may have, but because of an interesting queQtior of general principle that emerges from it. It turns out iS
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that under certain very extreme geometrical .onditions (the apex angle of the fa.ets has to be greater than about
300, and the angle between them less than about 50) there can be non-uniqueness in the solition for the flow
over a caret surface. Figure 21 shows two curves in an (M.,ct plot. On one curve the "wing" can support a plane
shock wave, and on the other it can support the special flow shown in Figure 20. For the extreme geometries
described above, the two curves cross 18, and at that point either flow is possible.

A close examination reveals that at points on the desig,. curve shown by the dotted line, the flow behind the
single shock wave is subsonic. Therefore the "waverider thought experime~lt" is not valid, and we do not necessarily
believe in the single-shock solution*. Nevertheless, both solutions do satisfy exactly the Euler equations and all the
boundary conditions, and it would be a clever computer that could choose between them.

In a later lecture (Lecture 5), 1 shall take up the subject of waveriders again, and I shall deal there with the
question of how to select a flow field I kely to yield efficient waveriders. What I hope to have shown at this stage
is that the waveridr concept offers a considerable flexibility in the choice of shape, and that provided this
flexibility is taken full advantage of, shapes can be obtained which have many features of realistic design sketches,
and also offer high performance levels. I hope also to have shown that the study of such shapes arising from their
design conditions plunges us at once into intriguing problemin of basic fluid mechanios that may turn out to be of
.ery general significance.
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Fig.3 Two-dimensional flow past a curved wedge Fig.4 Waverider derived from the above flow field

Fig.S Flow past unyawed cone Fig.6 Streamnsurface in above flow

I Fig.7 Flow past annular body of revolution
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SFig.8 Streamsurface in the above flow
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I
(a) Expansion over two-dimensional corner

(b) Streamsurface in above flow (c) Designed expansion surface

Fig. 10 Using a two-dimensional flow to design an expansion surface

Fig. II Axisymmetric expansion flow
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Fig. 12 Streamnsurface in above flow

(b) Base shape of Pike's design

Fig. 13 Use of twin expansion flows
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Fig. 14 Construction of flow at a general leading edge

I
I Fig. 15 Family of caret wings with differing aspect ratios
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Fig, 17 Tentative resolution of Fig. 16

Fig. 18 Waverider with "mixed" shockwave

. - - - Fig. 19 Front view of axisymmetric wavcrider
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Fig.20 Caret wing with "crossed" shocks
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Fig.21 Occurrence of non-unique solutions
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LECTURE 4I

THIN SJIOCK-L*AYER ThEORty

R oyal A irc rail' IstablIish men I. BIed ford, I ngla od

At t he present mioment thle theory of thin shock' ltyers as applied to wing-like shaipe% seems to hie Iin a state
offerin g coinside rable interest hothI to tilhe mla: hemla tic ia ii and to the acrody na inicist. Its in terest ito the aer 0-

LlINImiilicistI lies ill file fact that in an crtnsa nces it yijelds hig4h ly accurait e answers to significant problems andi L
is in t erest to the mathemia ticiani in te 1w 'ac t that sticli accu racy seems Ii igh I> u nlikel y at til a priori examination.

Ili this lecture I shalt outline tile Levelopminlet 01' the subje ct and its present status, and I hope I shall be able to
in(1 ca IC so me directioins for htiture researcht.

[I'li thteory is 4ssenii iall v a tl rst ortle r correction toi simpl e Newt on ian the ory, and it w ill lie convenii en t to
start by% discuissinog thiat I hiave altready -aid somet hi n- aboot New toinian flow ill L~ec ture 2. hiltl it is necessa ry now
to expand those renarks; a little, We noted] there that in tile doubLc limit Ni- yI . thle flow behind it
givein shock wave became infinitely deilse aiit thle initiaul detlection ot' a streamlinle crossing thle \hock became
identical ito thle local inclination of the shock itself. This leads uis to consider a model of' the flow ill whlich the
shock wave andL thle body suirt'ace a liost coinucide and all the captutred air flow% Iin a very t hini layer betIween Iiioem.

Evenilli lhii limit i, ho weve r, tilIe tflo' ill to IlayLier e s ii its lea t tresi whIicihI are eoniabIc s Llegene tate cases
of' realI gas I'low patIterns,. TIhe key observation i% that a la e r otf intil'nitely LI C se tliniil can not lie accelerated by
mierely tintte pressure gradlienits. Si~ce the streamineis t'oltow the igenerally corved) body suirtace, tile), do have
cu rvatu re in ormal It tilIte so r ace, and tile Inecessa ry in fin it e pressure prad jellts art. supplied. inl I) iiscmllunn's ill odel,
by finite pressure cllaiwes across thle int'initesinial thickmie-ss of' tile layer. H owever. for smooth body shapes thle
pressure distribution is also smooth. so t hat pre%,utre grudienllt in the surf*ace,% are finite eserywhiere. We conclude

Ithat t(tie streamnIines hlave no0 curva tore in tilie suri rtace. Ini gooiietIrica I ternis. thIiis im plies that they fol low tilie surface
geodesics. or paths ofit shlortest distance. The tracing otut ti1 thlese pathis. for a general body shtape. is at n101-Irivial
probhIe i inl LIiffe rentia I geonllCtry. hoil g ivenllt1w geodlesic%. thle amerod ynam01ics is sitmple. We observe t hat each sI rcamin
line,* when i it strike% (lie hod v. takes alli ini tial di rec tion Ii fiIle so rl'a-ce sticli that tilie act ual tiriing angle is min inmnised
('"path of' steepest descent"i or "f'all line"). Rlnereafter it follows that geodesic which! passes through thle initial
point inl thlat directijon.

For many body shapes this approacih yieldis at conlsistent and satisfactory pict ore oft th fletosw strulctuire. butl for
certain hodly shapes a 11010 lies appear. Thiese Lb( not necessarily ule rim from i lie cisc thii hss oLi' tilie a pproa cl; rallier
Ite y Iiiay en hia ice It. I a yes an Pillrobs ivini have w ritIte ".''.. thle anomalies Lit' Newt onian tiIheoiry are not to hie

avoided. bilt rather sought ouit. in order toi discover phwnoiiena which may' lie imlportanlt Iin hypersonic flow bliti
which have 110 cotlnterparts in flows at w ore modLerate speedis. Ini adldit ionl tile mlethods developed Iin Newtonian
theory sugg0est analogous methlods in more realistic theories". It \% ill very likely lie profitable to tak: at similar
attituode toward thle thin-shoick-layer approximation.

A pplications (if this theory to wing-like shapes have so fiar beein rest rictedl either toi conical wiligs`' , or to
w i igs at very Itigh Inc idenlce' . Flie tormer appIlicat ion appears tilie molire prom isIing. anld It is thIls (mei I that we sitall
consider hiere.

Let US briefly considler the flow past a conical wing inl the Newtonian approximlation. Since the wing is conlical.
its surface is "developable". i.e.. can he unrolled without stretching to yield a flat suirface. The geodesics (streamlines)
of' a conical wing are tlierctore straighlt lines in the developed surface. It' we look at at trute view (Fig. l(a)) of this
developed surface, we %cc that a streamline arriving at thle suirtace takes somne initial direction that dependts oin the
local geomletry, 1111( subsequently follow, tillsq mitlue direct ion, utlievialitifly. TIhe rays throutgh thle wing apcx ( can
he divided into two classes lying to the right or to the left of thle ray which is parallel to thle given streamilinle. Only
rays Iin the outboard class are crossed by thle streaimlinle. We mention this property because it is anl unrealistic
feature which persists into our higher approximationl. Generally, we would expect a streamline to continule cutting
across rays unitil it arrived at one where the pressure was at a mfininittil. For tile ease tit' a flat ulelta wing. thlis
wotild lie at thle centrelinc 0( ig. I (h)).
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A more serious anotnal- occurs if the initial Jellection directs the streamline toward thle centreline. This
happens if the wing is anlhedralled, and the simple theory then predktts that thle streamiline Lontinues straight atrcss
onto the other half of the wing (Fig. I( )~), whRikh it cannot do without tLolliding with its "Opposite nlumber". Trhe
situation can be resolved within the Newtonian approximation by remiinibering that the Maih number insid thle
layer, as well as in the free stream, is infinite. Trhus a consistent explanatiton ,-. giscn by supposing that thle left and
right-haad flows I ollide on thle centrecline, and are turned parallel to it. to form a narrow streamitub, within whu-.h
the density ;s "infinitely squared". Such a streanitube is termned a Newtonian shock line' . Ani analogous pheno-
menonl occurs in the higher approximation and its resolution there is not yet clear.

Having seen that anl intelligible and itlteresting theory canl be .onstruc ted onl the assumption tmat thle shock
layer is of infinitesimal thickness. it it natural to go on and see what result,, from assuming it to be merely very
thin. This is the theory that we are about to study. As a nunieric~il ineasirc of hlow thick the sliock layer is likely
to be in a given problem, we may !ake the density ratio across some typl.kal pert of thc shock wave, and denlote
this by e6 pjlps where

e = -Y-I+ 2(4.1)

for 4 perfect gas, with a the loc al shock inclination angle. S!IILC tile 1.1o0ck layer is anyway supposed to be thin,
we may take as a typical value of a the actual incidence of the ,tirface, a . so that our basic assuna~ptIOn for at
perfec~t gas is going to be that

2Y I (4.2)
y y4- 1),%12 sinll

is a numerically small quantity. At first sight ',his ;., unpron-ising, because we can see that f will never be less
than (-Y - I)1(7 + I) and for air tL~is quantity is one-sixth. Substantially smaller values of IE ocLir if the shIock
wave produces changes in thle molecular structmire (if the gas. so that Equitions (4.1 ) and t4.2) no longer apply,
mid we might expect the theory to be inure applic.able In such. LJCaSelo~si numeriLal talculations reported Ill
References 6 and 7 show ver useful agreement with experiment at ver) mo0k~derte inILcidence and Mach numbers.
even when the allegedly "small" parameter e is of order unity (see Figure 2).

Before embarking onl thc mathematical analy sis we must -Thoose a coordinate sy stein. rhis choic-e is discussed
in Reference I. For .m general investigation it would be :onvenient to adopt flesible co~ordinaites adaptet to the
geometry of the shape being studied. For example. If the p~roblem weri. to 11-.111,1e thle 1`10% past :heC coni,,-. body
shown in Figure 3. tile c oordinate s) stein drawn there might be .oni\ cnienit. comIpounlded of normnals to thle body
surface and curnes orthogonal to them. Alternatively,. if the problem were to oninpjute the flow behind a givcii shock
wave, a coordinate system based onl that might he preferable. .Suchl generaited .oordinates are emiploy ed inl
Referetices 1. 4 and 5.

Here, however, so ais to simplify thle algebrdi as muchI 1 as possible, we employ straightforward caritesian -oordinates.
We may tiote that these would in any -case b.- appropriate pros ided that eithcr thle body or thle ShOLk does not de, iate
too far from a plane, and that for lifting wings this will probably be the case.

Following Mc'ssiter 2 . we begin tile .-'malysis by defining right-handed c artesian c oordinates txyhoriented with
respect to some "mtean plane" of the wnig under c onsideration t lig.4(a)). and deint: corresponding velocity Wom-
pontents to be If we agree to caill tile fluid density p and thle static pressure 1). then wve ha-'e tile following
equations of motion:

Con tinuit m'

(pim) + (PiiY + (pw), =0.

65i + uy +W (I, + 0

0i1~i~+u,+l)~O.

uVR+ Vvy + Vi + P 1 0. (4.3)

-Entropy )j+
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and these shock relationships

P- = I+isn L 2 u2. =Ps-P. (4.4)I Ps c '+ \ c2,/ p+c2

0 = (--Vsys. -- vs -- UY's, sin a)i + (u'sYsF - WsY's - UYS..cos ct)j +

' + (ff' + VYs. - U cos a + U-sF sin a)k . (4.5)

In these equations:

1. Suffix ( )s denotes conditions just behind the shock,

2. Other suffices denote partial differentiation,

3. U is the free stream velocity,

4. a is the incidence of the reference plane,

5. i_, j , k are unit vectors in the (7.7,z-) directions,

6. = (,z) is the equation of the shock wave,

7. n is a unit vector normal to the shock wave, directed into the free stream,

8. c = q..'n is the component of the free stream velocity normal to the shock wave.

Now we set out to simplify these equa.ions on the assumption that the shock layer is thin. To begin with, we
need 9 'stretched" coordinate system that will be described by quantities of order unity. The choice for the x and
y coordinates is fairly obvious (Fig.4(b)); we take our stretched (starred) variables to be

x* -

eta= } (4.6)
c tana

The choice of a z-transformation is less obvious, but it is helpful to note that interesting problems of flow
structure, such as shock detachment, occur on wings whose aspect ratio is of the same order .. the Mach angle in
the shock layer, and this angle can easily be shown to be O(ell) . Provisionally, then we set

z* , (4.')
C"2 tan a

where the factor tan a is introduced to simplify tie later algebra.

Next we need to estimate the orders of magnitude of the indetjendent variables. This can be done by consider-
ing the known ,lution for attached flow ot a swept leading edg., and ,ssu~ning that all flow quantities have the
same order of ,i:agnitude elst.z'iere that they have there. The dettiis ere given in Reference 2, here we will note
only the resulting scalings:

- = cos a + e(..n 2 a//cos a)u +
U

-•= esina v +...
* U

- = e" 2sin a w +... (4.8)
U

-= sina + e sin~a p +

P -- C-- • +W2u w) - C1 + p) + ..

P 2
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The last of these equations is not independent, but is a consequence of the previous four and of the co1!servatrior
of total enthalpy. The quantities u , v , w , and p which appear in Equations (4.8) are all of order unity anid
represent corrections to the Newtonian solu~ion. The equations that they ý,bey can be found by sub~aututing (M 6*.
(4.7) and (4.8) into the equations of inoti')n and the shock relationships. The result is

Continuity

vy + Wz* 0 0.[ ~ ~~x-mornentuinUx+ y+W * 0

y-momenturn (4.9)IX + VV y +t WVz* -Py*

z-t:ionen turn

Sokrelationships

vs (ay~sIax*) - Oy*Saz*)2 - I

ps 2a1,a* - (ay*/ai*)2 - I
In all these ... uations the relative error is of order e . We may note that the equations are nowv not only much

shorter, but also quite drastically changed in form. We have lost one of the original five equations of motion by
making use of the explicit solution for p , but even more importantly, we have lost much of the coupling bttween
the remaining four. The equations of continuity and z-momentumn contain only v and w as independent variables,
and can therefore be solved wi,;-out reference to the others. Then the x- and y-monlentum eqitations can be solved
for u and p respectively.

Moreover, these equations imply several very simple properties of the flow. I a Equations (4t the ,x-momentuin
equation can be interpreted as a statement that u remamnl. constant along streamlines, and the z-.momen~tum equation
implies that w also has this property. Turning back t,- Equations M4.8) we se-- firon the last of tbceze tihat if u and
w are both preserved along streamlines, then so are the icad-.-g terms in the expression for densisty. 1'hus along any
given strearntube, both density and x-wise velocity are constant to firs; ;td:r, and it ful!ows from continuity th2t all
sections of a streamntube, cut by planes x = constpait , have the -,znf area. This icst result can anso te estabiished
as a geometrical consequence of the simplified continulity equation.

For the remainder of this lecture, we shall con~sider oaly con~cal flows, uinat is, if we niwrodu,ý.: coiiical coordinatcs

z~*x ..II

we will consider flows in which u , v ,w , and p depend onlyý on y :ind z . If we raca-.' the equaation, of !rotior.
,,-o that y and z are w~e independealt variable-, we obtair.

(V -Y)u Y + (W -- 7)u, . 0

(V-YY+ (W '~Z1.", -- Iy

Tne shoco wave is comipc-icly described by an riqum-lon cf the fornn y yý(z; and the 4iock, r.-lationshitis theru
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U. + zY,

•: ", = Ys - zy1 - .s.", --
Y-(4.13)

S-s = -Y

". ~~ ~ s= y-- ,Zy-Ys --l Ps 2sI _,

Equations (4.12) and (4.13) together constitute Messiter's very simple formulation of the conical thin shock
layer problem, and since his original paper2 have supplied the basis for work by Hida3 , Squire6 '7, and Woods8. The
discussion to be given here is based partly on these paprs, and partly on my owr work. so far not published.

First of all we look at the mathematical structure of these approximate equations of motion and compare it
with the structure of the full Equations (4.3), The full equations can be thought of as four independent equations
for three unknown velocity components and one unknown pressure, with density and entropy eliminated by means
of the energy equations and the equation of state. In a conical coordinate system involving just two independent
variables the characteristic directions of the set can be sought.

For a set of equations involving four unknowns dhere will be in general four characterisdc directio.i- through
every point' 0 . The equation which gives these directions for the case of rotational conical supersonic flow has
generally either two or four real roots Two vf these roots are coincident, and correspond to the streamliae direction.
The other two are inclined to this direction at an angle corresponding to the Mach angle of the cross-flow", and
disappear when this c-oss-flow becomes subsonic, i.e., when the velocity component normal to the lay through the
apex becomes less than the local speed of sound. When this happens there are no longer enough characteristic
equations to solve for all the unknown quantities, and the equations are essentially elliptic in character. These
different regimes are illustrated in Figure 5.

Now let us leok at the structure of the approximate E'uations (4.12). As already remarked, the first and !ast
of these equations can be solved independently of the othtrs, and their behaviour determines that of the whole
system. Effectively we are now dealing with two equations ;n two unknowns, and therefore there can be no more
than two characteristic directions. In fact, there are always just twe, which can easily be found to be

dy v - 1
dz w - z (4.14)

and dz= 0 J
fhe first of these (see Figure 6) is the streamline direction, and therefofe corresponds to a feature of the full

equations. The second is an unrealistic feature, which implies that disturbances can be transmitt,-d instantaneously
across the shock layer. Since both sets of characteristics exist everywhere, the flow has everywhere a hyperbolic
character, which is another unrealistic feature. However, when we solve these equations w' shall see that vestigial
traces of the elliptic region do in fact remain. On reflection, this seems a fairly satisfactory state of affairs, for we
clearly cannot expect the full structure of a system having four characteristic directions to be represented by an
approximation which has onty two.

In Reference 2 the foliowing method is adopted to solve EquationF (4.12) and (4.13). By taking account of
the differeutial equations for v and w , the shock relaiionships and the boundary conditions on the body (which
we have not yet mentioned) a rather complex integral relationship is set up between the shape of the shock ys(z)
aiid the shape of the body yb(z). The equation is in fact

I ds
Yb ys + -- + " (4.15)

7. S

where •" is the solution - the equation

-Ys) = z.

In cases where y,(z) is known tinverse problems) Equation (4.!5" yieldq the unknown body share by straight-
forward quadrature. In cases where yb(t) is known, the solution of (ýA. I) to find y-, is not straightforward.
it seems best to transform it into a differential equation2 ,r' which can be treated nu-icrically. This process, or a
similar one, has been the basis for the work in References 1-7. in Rceference S a Jifferent, and a very' much simpler
approach was taken, but limited to a special class of .olution&. The differe.itizl equations wee considered by theni-
selves, independently of the boundary conditions on shock wave or body. a-id solutions of "simpie wave" ty'pe, that
is, having ,onstant properties along the "streamline" characteristics, were discovered. It was found that shock waves
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compatible *idh these solution,; were struight or parabolic, and that solutions satisfy'ing the boundary conditionsV
for a flat dielta wing with asn ettashed shock %;nuld be built up if the shock wave were supposed to ;onsist of straight

*segmnents.

We fohow here a process which may be thought of a,; a geaieraltsation of this last scheme. We repeat hire the
two equations which have to be solved for v and w with-In the flow field:

av aw (4.16)
ay az

aw aw
( )-+( Z)T = 0 (4.17)ay

We may nate that once wye have solved these equation~s to obtain v and w everywhere, we can draw in the

streamlines by following th~z different~al eq~uation for their slope

ai y v -y (4.18)
dz w- z

Thus, (4.16) and (4.17) in effect give the streamlines of the flow~. We may ask whether there are any properties
of the streamlinies which can bc deduced from themn dirmcly. The following short piece of algebra provides an
affirmative answez to this question.

Consider two streamline% iyirg very close to each other (Fig.7(a)). Each will be associated, as we have seen,
with a patticulur, constant, value of w . Let these values be w and w + dw . Let the streamline shapes be
y = y(z) and y =y(z) -r A(z) I where A(z) Is the small vertical distance b.-tween them. If we want to know
how dapidly the lines r~re convergirg %ye can look at the quantity

I CIA

~.dz

It is easy to show that this is equal t-) the vertical rate of change of streamlipe slope aSIay , where
S =(v - y)/(w - z). Now we car rind *3S/ýy from Equation (4.18), and the result is

as I dA (w - z) (av/8y - 1) - Iv - y) 8w18y (4.19)
4)y A dz (W-Z) 2

The right-hand side can be simplified by use of Equations (4.16) and (4.17) and we get

I dA 1 (4.20)
-A dz (-'

Now, since w is conslant along sTreamlines we kan regard (4.20) as an ordinary differential equation, valid
along any streamline, so long as w is givt.i the appropriate zonstarit value. The integral of chis eqvation is simply

A =const x (%%- z) . (4.21)

Thus, any two narrowly separated strea~nihines approach each o~lier linearly with z and intersect when z has
the value w.-

From this theorem many equally sixtple cunsequences follow. iFirst, wi. may )bserve that in genera( any 'Lwo
stireamlines must ba acparated from each other by a 1inearly vazying verticul distance, because the sum of any number
of linear functions is itself a .4near function kFig.71(b)). This holds only if all the intcrvening .strearrtub- are con-
tinuouts, i.e., none of them comes to a stop in the region consi-cered. That is to say, if any one streamtube can be
expressed by

y f(z) + Az+ H (4.22)



On differentiating this, we get

dy_
dy f'(z) + A (4.23)

tdz

so that any two streamlines differ in slope by a constant amount. A further differentiation produces
' d2y

, = f " (4 24 )

dz2

Therefore, all streamlines which cross a given z-section have the same second derivative. In particular, if one
of them has an inflexion point, they all have.

The fundamental property (4.21) also allows us immediately to sketch in the various patterns which a set of
stieamlines can form. These patterns are shown in Figure 8. On the left are patterns formed by streamlines running
toward the plane of symmetry (w < z), and on the right patterns formed by streamlines running away from the
piane of symmetry tw > z). The top picture shows streamlines which each have the same value of w , and which
therefore (Eqn (4.21)) all meet in the same point. Immediately below this we show the case (b) where w increases
smoothly and monotonically from top to bottom of the bundle. Below this again we show the similar case (c)
with w decreasing. In both cases the locus of intersection points forms a smooth envelope to the family of
streamlines.

By combining patterns (b) and (c) we can form patterns in which w reaches either a maximum value (case (d))
or a minimum value (case (e)). In these cases the envelope curve may be either simple or cusped. Finally, in (fM
and (g) we show cases where w is discontinuous. The essential feature of these patterns is that there is a dividing
streamline which is intersected by its neighbour from above and its neighbour from below at widely different points.

It is not at all diffiLult to imagine more compliLated patterns involving more complicated behavior of w. One
very interesting question is the extent to which these patterns correspond to features of more accurate solutions.

The other interesting point to emerge from these pattern5 is the question of the boundary condition to be applied
on the body. Since the body is a solid surface it must, in a conical view, be either a streamline or an envelope of
streamlines, or, as we shall see later, partly the one ind partly the other. Where the body surface is a streamline,
the boundary condition to be applied is dw/dz = 0 ; where it is an envelope curve, the boundary condition is
w = z. This amb-guity is a source of difficulty, the correct boundary condition is not known a priori everywhere
on a given body.

So far everything we have said follows from a consideration of the differential equations alone. The shock
relationships enter into the solution in such a way as to determine both constants in the equation

A = con,.tx(w-z)

Let the shock wave be given by the equation y ys(z) . Let a pair of closely adjacent streamlines intersect
this curve at point z = ý", z = " + d" (Fig.9).

Then, from the third of the shock relationships (4.13) we see that the value of w on these streamlines is

W = - 'd ' ( 4 .2 5 )

and thus that they intersect where

z = -y') , (4.26)

which point may, of course, he either inboard or outboard of z =

The initial slope of the streamlines is given by the general expres-ion for streamline slope (4.14) which just
"behind the shock takes on the value

vs •Y

which, on insertion of the shock relationships becomes

S-= y() + (4.27)
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From this, the initial spacing between the streamlines follows at once; it is equal to d•" times the difference
between the slopes of the shock wave and the streamlines (Fig.9) and is therefore

SY)+ 1 (4.28)

Using this result, one can calculate very simply the area enclosed between these two streamlines,

Le., fA dz = dA

Since A is a linear function of z , this area is just one half of the maximum value of A , which is A. times the
horizontal extent of th%ý area, wMich is •" - w(') , or •" + y$',3') . From Fquation (4.28) it follows that

,•dA = I dt (4.29)
or So far in our study of the approximate equations we have made no use of the concepts of conically subsonic

or conically supersoric flow. The structure of the solution has not in 'olved such ideas, nor should we exp.-ct it to,
as the approximate equations of motion involve no characteristic velocity. Nvertheless, conically sub- and supersonic
regions of the flow can be identified, and turn out to be of importance. To find them, we need the speed of sound
ir the shock layer: it can easily be shown that this is

"" a = e12 Usina+ C(e 3 12  (4.30)

The •ow will be conically sub- or supersonic according to whether this quantity is greater or less than the
velockty component normal to the ray. This component is c0 U sin alw - zl and so thv flow is conically supersonic
if

lw- zl> I

and conically subsonic if

;w - zI < I

Although these cordi:ions seesm irrelevant to the differential equations, they turn up, rather surprisingly, in the
shock wave relationships. To begin with, we repeat here the equations for streamline slope just behind the shock
wave

SS• = y,"{()1 (4.27)5, y.({') + . (.7

in this equation, suppose that we are give.n Ss - C (say), when 1" £, in other words we are solving for
y, at a given leading edge. Equation (4.27) then becomes a quadrature for y,', but it is more convenient to work
with the value of w(= -y. = w, (say)) as the unknown, and even more so to work with (SI - w,). Accordingly
we rewrite Equation (4.27) as

SC + 2 = (n - wo) + ---- (4.31)

A little consideration of this equation shows that it has no solution unless (C + ,Q) > 2 ; if this is not the
case we must assume the shock wave to be detached. If there is an attached shock, Equation (4.31) shows that
there are two solutions for (SI - we), one the recipmocal of the other. The one for which (E - wo) > I gives
conically supersonic flow, and the one for which (41 - wo) < 1 gives conically subsonic flow. There is, pleasingly,
a close correspondence between these two solutions and the "weak" and "strong" solutions of exact shcrk wave
theory.

The subsomc/supersonic distinction turns up again if we calculete the snieamline "curvature" (more properly
the second derivative d' y/dz2 ). It will be recalled that this is constant on lines of constant z . We may expect
therefore, that it can bc expressed solely in terms of shock wave properties at a given z-station. This is, in fact, the
case and the calculation proceeds as under (see k:gure 10).

The required curvature can be written as

d 2 _•y S2 - S3
dz2  d"

- - r,~. -A
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Now from Equations (4.19) and (4.20)

AS
S• -S• ,(r) + r"

and by differentiating Equation (4.27) along the shock wave wZ get

s2 - =I + [ G1y )S,2- SI = ys"(G) ['+ t ,2

Putting all these together with Equation (4.28) yields the desired result

d2 y ____

d Y= V) [t + y-(r) . (4.32)

Now the factor in curly br. .kets is positive if the flow immediately behind the shock wave is conically super-
sonic, in that case the shock and the streamlines will have curvatures of the same sign (Fig. 11). If the flow behind
the shock wave is conically subsonic, the factor in curly brackets is negative, and the streamlines curve in the opposite
direction to the shock wave.

If the flow behind the shock is conically sonic, the factor is zero, and therefore either the streamline curvature
is zero, or the shock wave curvature is infinite. This latter pos.ibility has been suggested by Messiter as providing
an appropriate boundary condition for the leading edge of a wing with a detached shock; the outflow is conically
sonic (see Figure 2) and the shock curvature infinite. The analogy thereby suggested between flow round a leadin6
edge, and choked flow in a nozzle may be worth following up.

One final simple property of the solution will be noted here. an e:xpression that allows the pressure distribution
to be found when the above results have been used to obtain the streamline pattern The streamline curvature can
be written in two alternative forms:

d2 y as as
__ = -+S-. (4.33)
dz2  az ay

If we enpand the right-hand side using Equation (4.18) and then simplify according to the equations of motion
(4.12), the result is

y day (4.34)

dz2  (w - z)(

This shows that the streamline curvature is related to the vertical pressure gradient alone.

WWe now apply some of the results given above. As I have already mentioned, the "inverse problem" of finding
the flow field and body shape associated with a given shock wave is almost trivial. There are two possible ways,and it is not difficalt to prove their equivalence. One of these is to use the quadrature formula given by Messiter",

rz w~s) - z
y(',z) = ys(z) - [W(S) z ds (4.35)

4 [W(S) - s1 2

where y(',z) is the ordinate of a streamline that has i.rossed the shock at a spanwise station r and subsequently
travelled to a spanwise station z.

A much quicker, if slightly less accurate, alternative is a graphical method. The shock wave shape is drawn as
in Figure 13, together with the beginning of one streamline, assumed straight (Fig. 13(a)). Then we move a little
outboard, and draw in the next streamline, also straight until it comes under the first one Then we draw in the
rest of the second streamline, assuming that its separation from the first one is a linear function of z , zero when
z = ½(w1 + w2 ), i.e., the average value of w for the two streamlines. Subsequent strezmlines follow in the same
way.

The inner -zgon is difficult to draw in this way because the streamlines are almost vertical. It can either be
treated analytically, or else the body shape, pressures, etc., can be faired in "by eye".
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- igure 14 shows the flow behinJ the shock wave,

Ys= I 8 (4.36)

drawn in this %ay. The "body" consists of an inner region HI which is an envelope of streamlines, and an outer
one IJ which is identical with a particular streamline. The "source point" is marked on the shot.k wave. Note
that, as predicted, all the streamlines inflect as they pass below this point. Also marked are the points it which the
sonic condition is reached on each streamline, although as already observed this has no particular significance in the
solution.

A "feel" for the way these thin-shock-layer solutions behave can be developed by drawing large numbers of
inverse solutions. The possibilities are enormous, but the interested reader can easily draw up his own catalogue.
Only a few examples will be given here.

-2 ' If we modify the above shock shape by making it straight outboard of z = 1.8 , we get the pattern shown in
Figure 15. The streamlines flowing from the straight portion all have the same value of w and therefore form a
centred fan, which causes the body shape to be kinked.

The total area occupied by the flow pattern originating between z = ' and z = ý2 is therefore just
- '2) . It follows that for flows with attached shock waves (see Figures 14-15) the average thickness of the

shock layer across the span is one half.

Another possibility which turns out to be of importance is that the shock wave may have a discontinuity in
"slope (Fig. 16). These discontinuities are needed to satisfy certain problems, although their significance is not
altogether clear. What is clear, however, is that the shock on both sides of the discontinuity should give rise to the
same streamline slope. When this happens we shall provisionally use the term "permissible disLuntinuity". If the
streamline slopes on either side of the discontinuity are (y's) and (ys)2 , then the condition for a permissible
discontinuity is (from Equation (4.27))

(Ys), + +-- = (Y0)2  + +
-• ( Y 's ) , + • "( Y 's) , + •

If we discard the trivial solutions (y' = (Ys), this simplifies to

,Y'), + f'l R(y) 2 + N' I • (4.37)

From this we see that there is a transition between supersonic ana subsonic flow across the discontinuity. In
Figure 16 an example is shown where subsonic flow outboard of the discontinuity changes to supersonic inboard.
The body surface is ridged and it is possible to think of the discontinuity as representing a sudden expansion
associated with this ridge. The streamline RS must be an approximate representation of a region of intense shear.

Two examples of flows with detached shock waves are shown in Figure 17.

We now have enough results to be able to tackle the direct problem (body given). We begin by discussing the
case of a detached shock wave. Provided it can be assumed that the flow pattern is of one of the types shown in
Figure 17, i.e., the body is everywhere an envelope of streamlines, the integral which connects the shock and body
shapes (4.15) is the same everywhere. and can be transformed"'6 into a second order ordinary differential equation
for th unknown shock shape, which has to meet just two boundary conditions. By symnmetry we have

Sy'(O) 0 (4.38)

and at the wing tip, where z = ,

y = -(I + 2) (4.39)

(from the discussion following (4.29)).

At the wing tip we also have that y,'(f2) is singular like (z - - 92)- , but this can be deduced from (, 2)
and (4.36) and is therefore not an independent condition.

Some solutions for normal force on a flat delta wing were given by Messiter 2 , who gave no details of his
numerical method. Subsequently, Hida' developed a method applicable to wings of more general .ross-section.
assuming that both the shock and body shapes could be expressed by simple power series in z . Squire6 compared
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Hida's solutions with experimental pressure distributions, and found that although they compared well for flat wings,
the agreement was not good for diamond cross-sections, and was not improved by taking, more terms of the series.
This is not very surprising, for no series representation could be expected to converge well near the leading edge
where ys' is singular. Squire also found, however, that a full numerical solution of the differential equation did
give results that agreed very well with experiment (see Figure 2). There seems to be no difficulty of principle about
extending this solution lo general smooth cross-section shapes, and this particular aspect of the problem can now
probably be regarded as fully solved.

When we come to wings with attached shock waves we encounter a fundamental difficulty. If we assume for
theu moment that'the problem again reduces to a second order ordinary differential equation, we find that the
problem appears to be overconstrained, because we have to satisfy three boundary condlitions, viz.

At the centreline: y'(0) = 0 . (4.40)

At the wing tip: y,(02) yB(OI) . (4.41)

I Also at the wing tip yl(SZ) = ~((S2 + C) ± (J2 -C) 2 - 4 )i1f2) (4.4-.)

which is a consequence of (4.28). and quite independent of (4.41).

A mathematical purist would probably abandon the problem at this stage, ciaiming that our approximatior
were so crude as to preclude a solution. However, ' solutions" have been obtained, by using one of two artifice
Hayes and Probsteini and Woods' have proposed discontinuous solutions analogous to the one shown in Figure 6.
The solutions that they each propose are, however, quite different. Squire7 has waived the body boundary condition
over part of the span, and has thereby obtained flows over wings that are close to plane deltas. In what follows we

4 shall reexamine the flow over a plane delta wing using the simple results derived earlier, and note how these three
treatments differ.

At the wing tip, we have, setting C 0 in Equation (4.42),

y'$(2) -(2 ± (S21 -- 4)I12} (4.43)

It seems that the minus sign corresponding to the weak solution is to be taken in all practical cases. Note also

that an attached shock w.-e is only possible if 12 > 2 . As an example we may take 12 = 2.5 , in which case

y'(2 = -

Then the streamline originating at this point is associated with a value of w(= we, say) given by wo 4 and
extends inward as fai as z - 4 . This streamline must represent the body surface over the range I < z < 24 , and
must therefore be straight. Put we have seen that all streamlines at a given z-station have the same curvature.
Therefore, all streamlines in the flow are straight for 4 < z < 24 .

Now streamline curvature and shock ,.urvature are related by Equation (4.32), and setting streamline curvature
equal to zero in this equation gives

0, _ __ -

Y s(•')I - + y ) = 0 , (4.44)

which admits the alternative solutions

Y's'() 0 . ]
or YA )+" = 1 - J

Thus the shock wave can be either straight, with arbitrary inclination, or else parabolic, of the form

ys(-) = A-(0 (4.45)

Now except for the special kase S2 = 2 . Equation (4.42) cannot match the requirement on y, at t =
we conclude that the shock must be initially straight, with slope chosen to match the tip boundary condition. We
can therefore start to draw in the flow pattern (Pi.i. 18(a)). It is easy to show that this straight section does not
extend al! the way in to z = I . (Even if the centre-section of the shock were horizontal, the average thickness
of the layer would come out greater than its known value of one half.) Therefore, the shock wave must change
shape somewhere within 4 < z < 24 but it must still satisfy (4.44). It can change discontinuously to another



4-12

straight section, if the compatibility condition (4.37) is met. However, if we look at the "exact" solutions due t3
Babaev 2 ,•3 of the full equations, it seems preferable to make a smooth transition if possible. Therefore, we join
the straight portion onto the parabolic solution (4.45), which can be done only at the single point z = I wo

J(= 1 in our example) that is to say at the sonic point. We can now draw in a second stage in the construction of
the flow pattern (Fig.18(b,) The streamlines which cross the parabolic section can be drawn inboard of z = by
using the condition that they envelope onto the wing surface. It will be found that to do this they must turn
discontinuously at z = .

Now the shock wave cannot follow the parabolic arc for long, since this arc curves downward inboard of z
But the streamlines are straight for z > I . Therefore yet another solution to (4.44) is required. It can only be
another straight section, and if it joins the parabola at a "transition point" z = ,* its slope must be -(z* - I).
We can now construct a th rd stage of the flow pattern (Fig. 18(c)), which, in a continuous solution, must hold right
in to the point z= .

It is when we try to cross z = 4 that we have to admit a discontinuity. We have noted that the streamline
curvature is singular there, and according to Equation (4.32) the shock curvature will also be singular unless
([ + y's(i)] = 1 . That is to say ys(4) munt be +½ (which is obviously wrong) or -14. But we know that its
slope is actually (I - z*), and so z* must equal 21 (which is also absurd). Therefore the shock wave, despite all
efforts to keep it smooth, must be discontinvous here at least. If the discontinuity is accepted, the solution can be
continued. We shall not give details heie, but the process involves choosing z* by trial and error so as to meet
the boundary condition y,(O) = 0 . An infinity of further discontinuities are encountered between L = 4 and
z = 0 (see Figure 18(d)). A similar solution is described qualitatively in Reference 1, but no numerical results
seem to have been worked out.

An alternative procedure, much simpler computationally, and no more objectionable mathematically. is that
adopted by Woods8 . He has proposed a solution in which the shock wave is composed entirely of straight line
segments. The first break occurs just inboard of the sonic point and the first step in the numerical solution is to
make a guess at its posetion. The slope of the second section is found from Equatior (4.37) and this section is
assumed lo continue to z = wo (Fig.19(b)). The streamlines entering through the second section are supposed to
turn discontinuously at z = wo , and since they are all associated with the same value of w they converge to a
single known point on the wing (E).

Another straight section of shock wve DF is then determined by the condition that the streamline through D
has slope DE. This pattern is supposed to repeat indefinitely. By numerical experiment Woods8 fcund that there

, was a unique choice of position for the fat,. break that caused the pattern to "Lonverge" to *he centrelines.

The third variant is due to Squire', who requires the shock wave to be smooth, and to achieve this relaxes the
boundary condition over part of the body. Near the wing tip (Fig.20(a)) Squiae adopts the same solution as Hayes
and Probstein, i.e., a straight section AY and a parabolic section YS . By the general theory of characteristics
this determines the body shape from A into N . Near the centreline, lhe assumes that all streamlineg thrugh a
smooth section RS of the shock wave envelope onto the body in a region PQ , and" in ettect solves the integral
Equation (4.15) to obtain the shape of RS , given that PQ is flat. The solutions to this problem form a one
parameter family and Squire selects the one which matches smoothly at some point with the outboard solution.
With the entire shock wave ,ow determined, the full flow field can be found by inverse means as discussed earlier,
The shape of the body between Q and N ha., not been spec;fied in the solution, and does not generally have the
desired flat shape. However, the errors seem to be quite small.

Which of these solutions is "best" remains so far an unanswered question. As far as the predicted pressure
distribution is concerned, there seems little difference between Squire's and Woods' solutions, despite their very
different natures (Fig.21). As already mentioned, there appear to be no numerical examples of Hayes and Probstein's
solution. In computational effort, Woods' solution requires rather less work than Squire's and both considerably
less than Hayes and Probstein. However, if wing shapes, more general in cross-section than the flat delta, are to be
considered, it is fairly clear how to extend the Hayes and Probstein treatment, but not clear how to extend the
other two (although they will cope with wings of diamond and caret section7'8 ).

These criteria are essentially practical in nature. A more fundamental criterion would be to ask, which solution
forms the best basis for proceeding to higher approximations (in which we might hope that the anomalous features

{ would disappear)? This questitn would probably be a good starting point for a future researOh project. Certainly,
we shall not attempt to answer it here, but we shall briefly discuss one important "higher approximation".

This is simply the matter of giving "uniform validity" to the present approximatiod, a question which has be.n
treated in References I, 4, and 5. To see how the problem arises, we must go back to the spanwise momentum
equation, which we write below in conical, dimensional coordinates,

I
(V - 3')•y + ( 5'-ti',- = --Y-- Pi (4.46)

a
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'Ithis can also be written

(W - 1-) .... l P-, (4.47)
dz p

where the differentiation on the left-hand side is carried out along streamline pr3iections. Now let us reintroduce
the dimensionless quantities, defined by (4.8) and (4.11) which we have been using 3o tar; then

Fdw 1 CZ+ (2
[w -- z - O(e)0 + 0(c = "-Pz + 0(e2 ) • (4.48)

Ldz J

low hitherto we have neglected the ribht hand-side of this equation, on the grounds that it is "smaller" than
the left-hand side. But this is not a consistent approximation, because at the terminal points of streamlines we
have encountered the condition w = 7 , which would make the two sides of (4.48) of the same magnitude. We
may consider, then, the alternative equation

dw
(w - z)- = -'EPz (4.49)

dz

Over most of the flow field the inclusion of the extra term has negligible effect, but near the terminal points
it obviously produces greater realism. For example, Equation (4.49) states that a streamline can only terminate
(w = z) provided the lateral pressure gradient is zero. For a more fundamental derivation, see Reference I. Now
Equation (4 49) proves surprisingly difficult to solve analytically (see Refecences 1, 4, 5). The straightforward
attempt to expand w as a series

w = We(Z) + ewI(z) + e2 w2 (z) etc.

fails to converge. To illustrate, suppose in a particular example we had Pz = const I , so that

dwi ~(w--z)-- -- C
! dz

Substituting the above expansion wc get
(wo - z + ew1 + eCw2 + ...)(wo + ew', + e2 w) = -E

Evidently, the first approximation is

wo = constant = W (say) (A)]
(4.50)

or wo= z. (B) j

For the next approximation

ww + w'(W-z) = -l

and the solution to this is

either w'I(W-z) = --

i.e. w = const + log(W - z) (A)

or w =--. (B)

These two solutions are -itown in Figure 22, together with the exact ;olution, which can be found in this
simple case to be

w - const+ elog(w- .+e) , (4.52)

with thz constants in (4.51A) and (4.32) both chosen to make the solution pass through z= 2 , w =

Evidently the Aprroximation scheme breaks, down near z = W due to the discontinuous nature of the I rst
approximation. Methods are available"' to deal with this sort o" thing, and have bee-, tried in the present case.
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Spezifically, the method of matched asymptotic expansions has been employed in Reference 4, and the Poincar6-
Lighthill-Kuo technique of "coordinate straining" in References 4 and 5.

From these studies it emerges that the problem is essentially one involving three layers, one in which w is
nearly constant along a streamline (the "outer layer", with which the earlier parts of this chapter were concerned),
another in which w is very nearly equal to z , (the inner layer), and a transitional layer, across which orders of
magnitude change abruptly. Mathematically, the inner and outer layers are distinguished by

(w - z) = 0(l) dz - O(e) (outer layer)

dw
(w - z) = O(e,0 d O(1) (inner layer)

dz

-in illustration of these layers in relation to the streamline pattern is shown in Figure 23. To estimate how
important each of these regions is in the o',cral solution we may woik out the area which a given "streamtube"
(pair of streamlines) takes up in each layer. I find myself unable to give a short proof but the answer is known,"4 .
If the area of the streamtube in the outer layer is taken as re.ference, the area in the transitional layer is O(e2 )
times this, and the area in the inner layer is O(exp(-i/e)) times it. Thus the inner layer would almost certainly
be swamped by the boundary layer in a real flow, but the transitional layer could well be significant.

In an inverse problem A would be quite easy to work out solutions incorporating the inner and transitional
layers. The outer layer solution is found as described earlier. For each streamtube the pressure is found as a function
of z for z > w . It can be assumed that the streamtube continues into the minimum pressure point, as an infinitely
thin layer (A = 0) making infinitely slow progre,; (w = z). .hen we have a firt approxi.m.in t•. res....re. s...
wise velocity, and streamtube height (Fig.24). Now it will be a good approximation to assume that p(z) is not
much altvred by taking the two inner layers into account, so we can use the first approximation for p to develop,
via Equation (4.49) a secoad approximation for w . Having done this we can also use Equation (4.49) to write
Equation (4.19) as a uniformly valid equation for A

I dA I + dw/dz

A dy (w - z)

With this carried out for all streamtubes in the flow, the streamline pattern can be redrawn, and new pressures
worKed out, e.g. from (4.38). The cycle can be repeated as often as may be worthwhile.

Now, it is very likely that the matiematical .tatu. of the outer solhtion for the direct proz)!em can be restored
by considering the inner layers in this way. This has alrealy been shown to be the case in a very similar problem
by Cole and Brainerd'. They applied the thm-shoAk-laycer theory of Equations (4.9) and (4.10) to the two-dimensional
flow past a blunt plate, and obtained the basic system

Ux+ Vy = 0

uvx + vuy = 0.

with shock boundary conditions

Sus =I + x2

This very simple system is not capable of meeting the boundary conditiors on arbitrary Lodies directly, but
Cole and Brainerd showed that it wouid do so indire,.tly. if a single inner layer were interposed 'ietween the body
and tOw outer solution (Fig.20). Thanks tG the very simple nature of their outer soleation, they wv're aole to carry
out analytically processes which in the conical case probably have to be denc nunmerically.

I • A useful theoretical answer to the question, which of the three available outer bohutions is best, c,,uld very
likely be, "the one which best lends itself to the above extensiurns".

Starting from the two basic assumptions of a thin shock tayer and an aspect ratio of the same order is the
Mach angle in the disturbed flow, we have seen that it is possible to develop ft theory reirarkably rich in simp:,e
results. I l.ave tried to show that this simplicity is much enhanced by treafing the streamlinq pattern as the ma,n
unknown. fh-s simpl;ity makes it possible to see clearly the cornections between exis:ing treituients. a•.d gives
confidence that sigi &cant refinem.nts can probablv be maile without overwhelming analytic complexity. Finaliy.
I hav'.e indicated one fornt that these refinements might take.
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LECTURES

MOMENTUM THEORY

P.L.Roe

Royal Aihcraft Establishment, Bedford. Englarid

The subject of this lecture can probably best be approached by regardng it a, an offshoot of the "wavender"
design technique. The distinguishing [,.ature of that approach t• that calulatiun of the wave system and flow pattern
precedes the selection of tht actual lifting shape. Therefore as soon as the shape Is chosen, we already have in hand
all the necessary information to find the aerodynam'z forces acting on it by means of a momentum balance. By
comparison w~th integr, tion of the surface pressures, the momentum method offers some conmputational advant,iges.
More importantly, however, it provides a fresh and timul..ting uzy to study the eff.,,ient generation of aerodynamic
lift.

In calculating a momentum balance, the first step is always to choose a suitable control volume. The one we
employ here is shown in Figure 1. Separate, independent "boxes"are dra%%n to evaluate the force contributions
made by the upper and lower surface,. When we select the boundaries for these boxes ccrtamr. surfaces suggest
themselves ver,, naturally. Fairly obviously one boundary ought to be the wing surface being considered, the
pressure integral over this surface is the thing we want to know, and the momentum flux through it is zero.
Another boundary that suggests itself is the upstream limit of the flow disturbances caused by the surface This
may be a shockwave or a Mach wave, in either case we draw the boundary just on the upstream side of it, where
the flow co.ditions 3re those of the free stream.

The choice of tl.e third boundary is less obvious. Evidently it must intersect the wing surface at the trailing
edge. Two boundaries wh;ch meet this cond. in and which also have physiial significance are the upstream and
downstream characteristic surfaces through the trailing edge. At the present stage of the investigation, however,
no advantage has been found in their use, and the third surfate has been .hosen purely on the grourds of -comput-
ational simplicity. We chose !fit rear boundary to be composed entirely of vertical generators, so that no pressure
terms appear ih tae calculation of the lift. If the ua.iling edge is unswept, as !t is in Figure 1. ,,nd as it often will
be in practice, the third surface becomes a plane normal to the free stretam.

The chosen control volume is redrawn in Figure 2. This shows only the control volume for the iower surface.
Indeed from this point on we shall ,onsider only lower surface flows, althoughi it will 5e e.b.ioub that tipper surface
flows can be analysed in the same way. Figure 2 also show, a plr:iculr streamtube passing through the control
volume. It is identified, for a reason which will appear later, by the plan view area WdA p of the curve in which
it intersects the upstream boundary (shockwave).

Now the forces acting on the su:face* can be obtained, a.-cerding to the nPomentum theorem, by integrating
the appropriate components of pressure and momentum flu^ over the upstream ..nd downstream boundaries, and
taking the difference. Ever, streaintube that enters the contrcl volurie through the upstream boumidary leaves it
through the downstream boundary. It contribu,es therefore, to both integrals. The diffei, nce between these two
contributions may be thought of as its contribution to the force or the surface.

Le: the"con(ribution"as defined abo-ve, of a given streamtube to the lift force be

(q** dApn ) fL

where q*. = free stream dynamic pressure,
dAr. = small area defined by Figure 2,

"Tlse pressure force acting on a closed body can be written as F _= ff p a dA. where n is the inward unit normal to the surface
elenment dA. This can be put into the alternativf form F = ff (p - pdn dA, wlhere p, is .ny convenient constant referen.e
pressure. This is becau e for any closed body ffRn dA = 0. If we try to ý.on~ider any p.-t of the body in isolation. e.g. the wing
lower surface, then JJ. n dA * 0 and the vaFie" chosen for p, will makc a difference. This should not affeit the validity of tlse
answers provided we subsequently choose the same Pt when studying the .ither surfa-mes. Here, huwever, we do intend only to study
the lower sbrface, which is the most importapIt hfting element, and must therefore diouse a p1 whikh give5 the most useful answers.
W. have taken Pr = p* so that F = If (p - p.)n dA. This is then the force which would act on a body obtained by coupling
the given lo'ker surface wit:, a streamwise upi'ver surface, if base drag can be negiected.

• ,• • •.., ••# •'• •->•,- ; ,o• • •% o••*•.,. ,;• - '•,¢: ••',•'t ,• ,,• ... • w••' °"....
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and kL is a nondmensional quantit, associated with that streamtube which we shall call its "lift function".

Similarly we suppose the same streamtube contributes to the drag force by an amount

(q. x dAp) X fD

and we shall call fD the "drag function"

The quantities f, and fD will depend on the state of the flow at entry and at exit. The algebraic expressions
for them have been foi.nd in Reference 1. For the special case where the trailing edge is unswept and the rear control
boundary is normal to the stream hese expressions are:

21 v,
fL - - (5.1)

n v,,

fD [4I V P Pa.oV] (5.2)

In these expressions, we have made use of a coordinate system (x, y, z) as shown in Figure 2. The shtkwave,
at tae point wht it is penetrated by the streamtube, has direction cosines (1, in, n) in this system, so that the
fraction 1/n which appears in (5.1) and (5.2) defines tihe ratio of the streamtube cross-section area before it meets
the shock to the reference area dA . Of the other quantities appearing in (5.) and (5.2), vx and vz are velocity
components in the n and z direclions, p is the static pressure, and p the density, all evaluated at the point
where the streamtube crosses the exit plane. Free stream pressure is denoted by p* , and free stream velocity by
V, .

Now the total lift acting on the wing is found by summing the contributions from all the captured streamtubes.
It is therefore

L = Jj 9 fL dAp. (5.3)
AP

The lift coefficient, based on planforn area, defined as

LCL = L

I I!
becomes CL = J fi L dAp (5.4)

Ap A

and evidently we shall also have

CD = flD dAp. (5.5)
Ap .. P

It was in order to obtain the simple "mean value" property expressed by Eqns (5.4) and (5.5) that dAp was chosen
as reference area in defining the lift and drag functions.

We shall now try to devise some applications for these results.

The first application is illustrated in Figure 4. We suppose that we have (somehow,) chosen a flow field which
is to be the basis of a wavender design, ant Inat we are now trying to select the most suitable streamsurface from
it. In part this will be a geometric problem, and this aspect was discussed in my third lecture. Now, however. -'e
are concerned only with the lifting efficiency. Suppose that %e have arbitrarily chosen some particular stream
surface, a..j are conbiderirg the possibility of slightly altering our choice. We show this streamsurfacc, intersecting
the shorkwave in some "leading edge" in Figure 4.

Let us -on,;ider the oonsequences of slightly extending the leading edge, in the manner shown by the dotted
!,ne. The planform area of the wing increases as shown in the upper figure, and we shall cail the amount of the
increase dA . The new wing also "captures" an additional small streamtube from the flow field. Let the lift
function of Fhis streamtube be fL and its drag function fD . Then the lift of the wing is increased by an amount
q00fLdAp.



5-3' •We can also, however, because of Eqn (5.4) make the following useful qualitatiive statement. If the lift

fur..tion of the proposed additional streamtube is greater than the lift coefficient of the original wing, then, and
only then, will the lift coefficient be iuicreased by the modification. Again it is evident that a siniilar statement

EA • holds true with regard to the drag coefficient.

r:d •:With the aid of these results, it is possible to establish very rapidly the potentialities of any given fluw field as
!• •. a source of waverider surfaces.

The flow field shown in Figure 4 is drawn as axisynmetric; this is not of course a necessary condition for the
validity of the above results, which hold for any flow field (even one not prescribed in advance). However, since
axisymmetric flows are at the moment the most general flows conveniently available for this work, it is of interest
to investigate their special properties from this "momentum" viewpoint.

The general expressions (5.1) and (5.2) for the lift and drag functions simplify somewhat. In an axisymmetric
flow any streamline iies entirely in a plane 0 = const. .! (Fig. 5), and the element of shockwave through which it
enters is normal to that plane. Let that element of shockwave be inclined at an angle 0 to the axis of symmetry.•-• Then

I tan 0
(5.6)

n cos€

Also let the velocity vector of that streamline in the exit plane have magnitude v and make an angle 6 with

the axis of symmetry, then

vx = v cos6 (5.7)

vz = v sini &cos . (5.8)

Substituting these in (5.1) and (5.2) we get

v sin6

fL = 2 tan 0 - (5.9)

and "2..tan._.• 0 v cos (P -- P.e)"
t = cvos [ •pp (5.10)

Cos5 L v" pvvý Cos 6J

New suppose the flow field is described in a cylindrical coordinate system (x, r, ¢). Then we can see that
for a given exit plane (x = I, say) the quantities p, p, v, 0, 6, which appear in (5.9) and (5.10) depend only
on one variable, for instance the x-coordinate at which the streamline crosses the shockwave r rs (x). Thus we
have. for a streamline crossing the shockwave at (x. vs(x), •)

f (x, 0) =fL*(X) (5.1)

fD(x, 0) = fD*(X)/cos ¢ (5.12)

Tht; very simple nature of the dependence on 0 makes it possible to reduce the double integrals for lift and
drag to single integrals. Consider the streamtube which on entering the shockwave is bounded by lines x = x,
x = x 1 +dx, and 0 = ,, + = . For this streamtube

dAp rs(x 1 ) cos 0 d~dx . (5.13)

Now insert (5.1 I). (5.12) and (5.13) into (5.4) and (5.5). The result is

* CL = (X)rs(x) cos ¢ d~dx (5.14)
A x L

and
I xT p+L D(XrsX

CD = - f D(x)rs(x) dCdx . (5.15)
p XN -01.

- ~ ~. . . . . . .- ~
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SIIn these expressions

xN is the x-coordinate of the wing apex

xT is the x-coordinate of the trailing edge

and OL(x) is the 0-coordinate of the leading edge.

The integration with respect to 6 is immediate, and comes out as

- XT

CL y(X) fL*(x) dx (5.16)

Y. J
T  

/r~ x
CD r(x) sin-' fD*(x) dx. (5.17)

where y(x) is the local wing semi-span. Ar.alogous formulae have been derived by Jones and Woods ' , and Cole
* and Zien 3 .

Both thbse reports treat special cases of axisymmetric flow fields. Jones and Woods' consider only flow fields
around unyawed circular cones, and use the formulae pureiy for their computational conveni.Lne. Cole and Zien3

consider self-similar flows generated by power-law axisymmetric bodies at..ording to hypersonic small-disturbance
theory. They then try to exploit the simole form of the expressions to find a family of optimum shapes. Part of
the problem which they consider can be shown using our notation. We use Eqn3 (5.16) and (5.17) to write the
actual lift and drag for.es on a surface as

L 1 x 7- = y(x) fL*(x) dx (5.18)

2q f ( x)

D f x rs(x) sin-' fD*(X) dx . (5.19)
2q. XN rs(x)

For a given flow field and a given value of xT in it, fL* fD* , and rs may be regarded as given functions
of x . We may choose y(x) . the function which defines the planform shape, so as to optimise some criterion. "Ihe
prcblem proposed oy Cole and Zien is given L and xT . minimise D. The equation for y(x) follows at once
from standard results in the calculus of variations; it is

YX2 f D• 2 1/2
X. f L-- D2  

, (5.20)

where ?, is a Lagrange multiplier.

Eqn (5.20) only gives sensible results if (fDlfL" is a decreasing function of x in the contrary case Cole and
Zien 3 show that the "optimum" wing is defined by y/rs = constant.

Eqn (5.20) is undoubtedly a very simple result. However, it treats only a very small part of the optimisation
problem. Tht required amount of lift .ould have been obtained from the samc flow field terminited at a different
xT , or from a quite different flow field. Cole and Zien go on to consider some of these further choices, but
restrfit their ,onste.'rattons. as mentioned earlier, to the self-similar flow past power-law bodies. They consider
bodies defined by rb = rxn with a fixed exponent n . bat variaole r . For each value of T , one particular
choize of X in Eqn (5.20) gives risc to the desired value of L . From amongst the family of "optimised" wings
so obtained, they choose the value of r which minimises D . They express their results in terms of an effi•iency
parameter D0L I , p. U_, )' The ef, iciency parameter takes on this form because the flow fields which they
use in fact restrict the ank1c of attack and aspe.t ratio of the wings to be of the same order of magnitude. It has
'the following r.umerical values:
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17 n f DiL 41 (p. U 2 0 ,1/

0.50 1.16
0.65 1.25
0.75 1.29
1.0 1.38

1.5 1.65
3.0 2.37
6.0 3.60

10.0 5.26

It will be seen that the best value occurs when n = 1/2 . The hypersonic small-disturbance tneory is not
con-idered valid for smaller value of a . It is interesting to note that for plane delta wings whose angh af attack
is equal to their semi-apex angle this efficiency parameter is unity. If angle of attack is then held constant whihk
aspect ratio varies, the paramneter is proportional to (aspect ratio)- I . In summary, it may be maid ti-at the Cole
and Zien approach gives iesults of rather limited significance, but might well be cipable of useful i.tension.

"We turn now to a rather different application of the momentum approach. The basic idea is a f. mniliar one in
the conttxt of propulsion aerodynamics. There the generation of thrust is often regarded from viewpoint of
momentum and pressure changes in the jet or slipstream. One works out the ideal flow process wh-ch the jet should
undergo, and then cons.ders thu impli,.ationh of this for, say, the shape of a nozzle. The generation of aerodynamic
lift can be thought of in the same way. The lift and drag are associated with certain changes of velocity Iad direction
in the nearby air, and it is equally valid to regard these as beinC taused by the presence of a lifting body, or to regard
tht lift and drag as caused by the chianges in the flow.

If wc t)ake the iatter view. we can ask what changes it would be desirable to bring about, and then determine
how these are compatible with the design of a lifting shape. As a first Aep in this approach we shall consider the
following problem. A streamtube forming par, of the flow field of a waverder wing is to be associated with a given
vwlue of the lift fuinction . '.... flow process which provides this will minimise the drag function fD ?

For simplicity we shall consi-'er only the flow in a plane of symmetry (y = 0) . Then we write the
expressions for fL and fD

fL = 2 tanO0 v_ (5.21)
V00

fD = 2 t-'n O [0 . ,-v .1 (5.22)

For the time being we considrr the family of flow processes %ith a given value of the initial shock strength 0 .
We will suppose that the subsequent flow is isentropic, betLause it .an be showrn' tihat in the contrary case the
eificiency ,ar. only be lowered. Ticn tne various qua.ititie., entering into the lift and drag functions are not all
independent; we have in fact

p = p(v)

p p(v)

and if we aiso write
V - v Cos 6

; ~vt = v sin 8

we sh~all h, ie v sin 6
wfL". 6) = 2 tan J 

(5 23)

fD~v. 6 ) 2 tan 0 I - (5.2
D! L cos 6 (

where

k(v) - (5 25)
pv) vv**
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No% by s, steinatically varying the two quantities v and 8 , we ;an generate the full range of possible pairs
of values (fL, fD) . An example is shown in Figure 6 for the special case of flow from a free stream at Mach
number 8.0 through a shockwave inclined at 250. The general features of the diagram are similar for any other set
of conditions (M., 0) , in particular there always appears an envelope which bounds the curves from below. This
envelope can be found analytically, for the condition to be satisfied on it is

"L na _ afL ým = 0
av 36 a8 av

and this simplifies to

k(v) tan 2  
= V +Vdk (5.26)

V0  dv

It can be shown further' that this relationship is satisfied for all 6 by a value vo of v such that
k(vo) = 0, i.e.p = p., . The envelope cu:,e is therefore -ven parametrically by

fL = 2 tan 0 v0 sin 8 (5.271
VOO

fD = ? tan0 L I vO Cos 1 (5.28)

The envelope can be seen to be a circle of radius 2 tan 0 (vo,'Vý,) with its centre at the point (0, 2 tan 6).

Pausing to assess the results obtained so far we note that the ideal lifting process involves returning all the
"captured" air to ambient pressure, which evidently cannot be accomplished by any orthodox lifting surface. (It
is, interestingly, nearly acomplished by Basemann's biplane). The limit which we have placed on liftin? efficiency
is overophmistic, because we have neglected a most ,:n;ortant constraint on the vilues which v and . an assume.
namely that it must be possible to find them paired in a flow field which is physically possible, i.e. satissies th,:
equations of motion. To incorporate this constraint even widiin a restricted family of lifting surfaces, such as
waveriders, would be a formidable task, considerably more difficult than anything su far achieveo*, but perhaps
not imposýible. What our partial solutiop does demonstrate is the existence of limit which cannot be passed. and
from Figsre 6 we observt that the closer we can bring v to its ideal value, v0 , the closer the lifting efficiency
wiEl approach to this limit.

There is one further respect, however, in which the ideal flow process can be improved. So far we have studied
the possible processes behind shockwaves of given strength. If now, at some constant free stream Mach number, we
allow the shock strength to vary, we obtain a family of limit -urves (Fig. 7(a)) which themselves have an envelope,
which is worked out analytically in Refe:ence I. The int,;resting result is that points on this envelope at any non-
zero value of fL correspond to non-zeru values of the initial shock ,trength.

This comes about because a wing of given planform area "captures" a greater mass flow if the s'o,'k system
is steeper. This gives us reason to suppose that the finite shotk system necessarily associated with non-siender
lifting shapes is not wholly disadvantageous.

The actual lifting efficiencics achieved by the ideal processes are shown in Figure 7(b). The efficiency !s
measured by comparing the drag function of the ideal process with the drag function that arises %hen a similar
lift function is obtained by means ,af simpie defkctior. through a plane shocks.ave. In other words we are compar-
ing the "lift-drag ratio" of the ideal process with the "lift-drag ratio" of a plane wedge. Symbolically

S(VD) plane shock (at same

-D) ideal process

i.p.
(Lf)p.s.

(CL/("D) wedge

"aFo, an interesting Aiscussion of an .nalogous. simple, but nevertl.2 .ss taxing probiem, the desig,. of optimised surirso nc nozuies. V.e
"the a-'cles by Ieo4 and Guderley and Armitage$. In that cas.,, a ..one-c.irnensional" treatment of the ~tinmum flow arocess is
re.narkably successful, and leads %n an accurate solhtlor, of the axisymnettc toblem.

- -. ~iia- ýA



5.7

From Figure 7(b) we can see that this ratio is never greater than 2.0.

It has been demonstrated' that flow processes which come very close to achieving these Pmiting efficiencies
are in fact found in certain circumstances. The example quoted there was the flow fi:ld generated at Mo = 3.0
by a particular ogival body of revclution, where at one point in the flow 17 was equal to 1.95 with fL = 0.020.

In our subsequent work at RAE Bedford on waverider design we have tried to use these results to guide our
choice of flow fielus and surfaces. One thing that has emerged is the unwisdom of striving to achieve very high
lifting efficiency over a relatively small part of the flow. It always seems to happen that the overall efficiency is
thereby compromised. Thus, although there is a theoretical interest in knowing that the limits exist, their
practical importance is that they give a general qualitative recipe for the efficient production of lift. They show
that below the trailing edge of a lifting wing we should try to achieve a combination cf small pressure coefficients
with large vertical velocity components,. and that we need not worry too nmuch about creating shockwaves of finite
strength, provided these are not excessively strong.

It is interesting to compare this recipe with what we know we want on the surface of the wing itself. Thcre
we would like to see large pressure coeffibients, coupled with small surface inclinations, which imply cmall vertical
velocity components, in fact precisely the opposite mixture. This illustrates the way in which the two approaches
complement each other. At the present moment ncither approach is capable of offering a complete design method,
but an attempt to synthe,.-h. t ht may well offer eventually the most complete understanding of supersonic
wing design.
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: dAp

Fig.2 A streamtube passing through the low -r surface control volume

A p

where fL' fD are dimensionless lift and drag functions

2Z Vz
L n vS~co

f 2P v p- po
D n LV PVVJ

where [£,m,n] are direction cosines of the shock surface at che entry

point, p, p, 'I v are flow properties at the exit point.

Fig.3 Definition of lift and drag functions
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Modification

Fig.4 Choosing a streamsurface from an axisymmetric flow field

.2A
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For an axisymmetric flow:-

vfL = 2 tan 0 r

f =2 tan -D 11 vPvxv4

where 0 is the shock inclination at the point of entry of the streamtube.

For flow without embedded shocks

p - p(O,v)

p - P(Ov)

If we write

V - tan 6
vx

p - p"
and * k(O,v)

pvv

then

f * 2tan Ovin
6

L v

f 2 2tan [0 v cos 6 kv
D - cost I V09

Now, in an axisymetric flow v, 6 and 0 depend only on the

x-coordinate of the entry point, and so

fL(x, ) - fL(xO) - fL(x)

fD(XO) f*(x)

D cos 0 cos

Inserting these in the formulae for CL and CD we can obtain

TE

C Lf y(x)fL(x)dx
p .

LE

TE

- 2- f r(x) tan 1l (q4x)) f*(x)dx

LE

Fig.5 Relationships in axisymmctric llow
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FLOWS WVITlt hIEAT ADDIITION

P.L. Roe

Royal A ircrafl' Istablishiiint, tied lord. Eingland

It is always in~teresting to specculate about tile simplest mIlitod ol, achieviing somei desired aim, tile miachiuc which
accompin)1shes its cod w i I the loin inm ol* mfiovi ng parts, for exsam ple. Somectimes wec call see inl p r inciplec how to
arraniw a %c ry siminple solution, bioltilhe prac ticalI di ffie iitics d cta t Li s, So that til tideua has to he laid aside f'or a tim1e,
awaitinig new techniques or new inspirationm. IThe ttirhinc-propelled motor car comes perhaps into this catcgory.

It is with this phIilosophly inl mlind that I wanlt now to examiine thle propulsion of* hypersonic aircraft. WVe 1inSi1
begin by asking exactly what it is that we ame trying to acconmplish. and this in trni leads uis to cnml~iirc into thie
I'tiidaincntal natuire ofl aerodynamic drag, A ii aircraft Which is glidiiig wi thoutI power Iloses energy at a rate equlal to
its d rag times its veloc ity. Th is clenergy cannot tI i-:ippcar from the uni vcersc: it nit ist be absorbed by tilie atliiospheicr,
,.-itlicr as kinctic oncrgy or ais heat. Shock waves, wakcs. aiid trailing vortices all contrihutc to (lie prces

D~rag thercf'orc involvcs fihe transfeor of' energy. Generally, it also involves tilc transfcr ofl iuonini:tuml. Suppose
hie mire raft to bie gliding hiorizon tally, a nL there fore deceeIrating. FlT' horizontIa Imnomeniitu lioiI st is I ra nsfc ired t
hie atinotspheicre, To convecrt t Iiis LI eecIcraIi ng IhoLrizon talI glide intIL o sustainhedl, sIcadly, levm'l Ii ig hi we mui Lst supp1 ly

thle atmosphilere wit lit acompt~ensatintg source of' mulotentluni, usually thfe sliplslreaml ol' i propeller' or thle exlianst ot'
ai jet or rocket.

As f'ar as the atmosphere is conceriied, thie rate at which it receives energy is probably increased by this new
sourcec of' suipply. Siiice thle aircraf't is in steady fligh t thie atmlospherie's energy is now being entirely supplied f'rom
tlie fuel. thle re lure thle problemi of' e l~cic ivit pro pul sion is basically thlat oLI suIpply inrg a giveni ainlou it of' il omlel f' k ill)
with ItIlie lo~w est exspendi~lituore of energy. If' tilie propuiilsion uit iIi provides somie sort of jet or s i psI rca in, it is eaisy to
see tha tilIhis meanls thle jet shoul d bie as W idet as piossibllt.

Now IL) ob taini a w ide ex shau st f'rom a let or ric ke moto me01(ina ns a liarge nozzl, IcýIi it I would ki he ieavy anid
suibject to large friction losses. We look theref'orc f'or ain uiiconventional soluitilon. and ill keepiiig Witlli our. itdeas
rega rI itig simiip liecit y, sup pose that we call adtd hieat directly to aniiy part of' tilie flow ticeld we wish. TLo ima ke M ir
thinkinig a little more realistic, we cali imagine that1 we t' I this by injecting fulel into tile airflow upsirel-alil of' tn
chosen tpoint , and thenl sotiiehlow igntititig it.

Very little is yet known about the feasibility of' adding heait like this inl a controlled mannier. Itetore getting
too iiivolved in the practical difficulties, however, it seems sensible to answer the quest ion, if* wej con Id do thiis.
woul d it he worthwhiwleI? Are lie rather vague a rgumeniths in f'avour of' tice scemiem rcalIly soiund or- are tt rc I im it at liow
that we have iiotI taken iiniito accoun lt? I waint to give aii a tcorilitl oL' sume o ofil the II oretIicat tilTticiiliis tos1 Ili
overcome iii at stLudy of' these probleims.

Consider first a uniiiorni stream Li1' gas, (Fig. It) havinig velocity \' . and Static teinpelatuire To. lu tis gas We
addt 3 q i alit itY 0o' heat 1112, illSi 51ch a way thIiat lit) esternialI work is doneic anld as a reso It WI sump pose iii atlte pias
acquires velocity V2 and static temperature rU2 . Conservation of' eniergy states that

i m~ - VI) ý ("I ill. - T u _ I I,,m

which is to say that filet'heat mlay lie received either a% kintitti einergy or as inrerasedt temperalnrv. (.onvenmtionially, .. -

it is supposed thiat thme kitnetic energy is at least ptenttitially uisel'iml. and thlat file teitperaltire rise mu11st tie at1 least
partially wasted, so tflat a thermal efficiency 17,,, is (IclmnctI.

If* tile process is one of' producin g a piropulIsiv'e jet', so that VI = V_ a ;,,,( v, 7- V t Ilit'ii Ii is (I jliliiim
measu5LIres t he e fficlL' tcy wit Ii Wh1h01 hel helvl supp111it'd is convert edl !M0t a usabtle jet. A scL'tOnd~ Common itltIy Iitself
ilicasure oft cfficiency compaired the available propulsive work in thie jet. V_ V V_- with filit kinetic eeg
given kip hy thle jet as it returns Ito rre'L-strcamm coniditionls.
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Thus "jet efficiency", n, . is given by

j= +2 j (6.3)

The product of 77th and 72j is the propulsive efficiency (7p) , where

77p = V) (6.4)
q

In the assessment of conventional propulsion systems all these quant*ties are useful and significant. Their
significance in the present context seems hcwever. to be rather slight, and I shall show this by considering two
extreme examples.

The first of these is shown in Figure 2, a flat-bottomed, two-dimensional "wing." Somewhere und"rneath this
we suppose that heat is released across the station 1-2. This is the "burner disc" considered by Oswatitsch' and
KUchemann 2 . The effect of the disc is to produce a sudden large pressure rise. Behind it the heated air expands
back towards the free-stream pressure, which we can suppose is more-or-less reached at station 3. After this, the jef
will slowly return to free-stream temperature also, by a diffusive process. A schematic flow cycle for the process
is shown in Figure 3.

The cycle seems to indicate that work is being done, and in a numerical example Kiichemann 2 indicates that
the thermodynamic efficiencies are quite high (Oth = 0.37 based on stations I and 3 and iet efficency

V, (V3 - ) = 0.92).
"tj = ' Jr/ (V3

2  
- VI~2) =09

However, it is quite evident that no drag reduction is being achieved, because pressure changes are only being
produced on streamwise surfaces. It is conceivable that small thrust forces are induced on the fuel injection system,
bu! even these cannot occur if the fuel emerges, say, as a high speed jet which ignites as it breaks up.

Oswatitsch' resolves the paradox by noting that work is indeed being done, but only on the atmosphere. The
work goes into the propagation of a wave system which is associated with the expznsion of the heated jet (Fig. 2(b)).

A second example concerns the relief of base drag. A two-dimensional or axisymmetric blunt-based body in an
unheated supersonic stream will usually experience flow "ike that shown in Figure 4(a), with a low velocity recirculating
region behind it. The pressure in this region (Pb) is fairly uni"orm and quite small (often about equal to p*/M.)
,,nd the pressure difference (p.. - Pb), times the base area, is known as the base drag. Now experiments have
shown 3 that if fuel ( hydrogen in the case of Reference 3) is injected into the boundary layer just upstream of the
base, and ignited, a stable flow pattern can be produced which is of quite a different form. It does not in fact
depart very far from the situation shown in Figure 4(b), with fhe pressure within the wake very nearly equgl to
p*., and the external flow nearly parallel.

Since the flow is almost at constant pressure everywhere, i flow diagram on a pressure-volume chart would have
almost no area, and it would appear that no useful work was available. Moreover. since the flow is aimost at
constant velocity, it appears 7?p must be vere smail. However, it is quite clear that a usful result has been achieved;
the base drag has been eliminated.

From these two exam-ples, it is Jear that the effectiveness of any external burning scheme can onl assessed
by looking at the overall effect, and that it may be quite misleading to took ait parts of the flow patteri isolation.

I now want to consider some of the ways in which we might try to compute iiore general cases. Figures 5 and
6 show a pair of two-dimensional configurations that have been proposed by Kichemann2 and Broadbent', To
evaluate such configurations it seems that a non-linear m"ethod is required because, to quote Oswat-tschl "Urearised
formulae for this type of propulsion show that the field of application lies outside the ihicarisation region."

The configuration shown in Figure 5 conb:sts of a wedge forebody, following which heat is added aý a detonation
wave'. The resulting high pressures are transmitted to a forward-facing afterbody surface, which provides the
thrust. Some general remarks on this sort of configuration have been nwade by Oswatiisch 6 . Townend, and
Zierep5.

To determine just hcw effective such an .irfangement might be it seems necessary at this stage to embar,: on
the computation of some examples, aiming aiways to obtain insights intc the principles involved and so improve the
design. When this has been done, ever- if only for two-dimensional shapes, wc should be better able to assess the
promise of the concept.
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Flows involving very sudden heat release can be computed using the properties of detonatiun waves' plus
standard methods (e.g. characteristics) for the unheated regions. I know of no generally avuable ,alcLatioi,s un
these lines, although work has been reported, by Townend 9 .

Flows with distributed heat release (which may be thought of as including the abovc casc) havc been invcstiated
by Broadbent 4 , and since his method is rather novel it may be of interest to review it briej'iy here. We noted above
that any useful investigation of flows with heat addition would have to employ the full, non-hnear eqkiations of
motion. However, Broadbent has discovered a method of solving them which employs only linear algebra. This
involves starting with an assumed pattern of streamlines, and asktng what distribution of heat release wwuld be
compatible with them. For the purpose of building Lip a catalogue of solutions, and attemoting t! find their desirabli'
properties, this approach is as valid as any other.

The streamlines, then, are assumed to be givLn, and distances along them are intasurtd by a co-ordinate s
Distances along the orchogonals to the btreamlines are measured by a co-ordinate n (set' Figure 7). The width of a
particular streamtube may h. wiitten as An , and generally will vary with s . T"ie radius of curvature of a stieamline
is set equal to R . The state of the flow at any point is iepresented by pressure 1., density, p , velocity u, and

:• enthalpy It. The heat add-Ilion per unit mass per uni t fc any point is given by the quantity q .

Now the equations of motion in (s, n) co-ordinates L follows:-

Continuity

puAn Ct , (6.5)

C where C1 is constant for any streamtube.

lMgmenturn in flow direction
: •_au =-ap

pU - (6.6)
as as

Momentum across flow direction

- .p(6.7)
R an

Conservation of energy

u (h + •u2) = q. (6.8)

Now we can use (6.5) to substitute 'or (pu) in eqns. (6.6) and (6.7). obtaining

i~l ..u= -An/ ap
auffs ,C a •'(6.9)

us \ 1 /as
• (-R,•n' ap

-. u = (6.10)
c, ) an

If we assume that the streamline shapes are known, then the bracketed quantities are fixed, and Eqns (6.9) and
(6.10) become a pair of linear differential equations for u and p . The system is hyperbolic- wiht characteristics
coinciding with the (s, n) c,-ordinates, and can be sohed easily if appropriate boundary conditions are Liven. 'nice
u has been found, p can be got from Eqn. (6.2) and then finally q from Eqn (6.5). In this last step only it is
necessary to assume some equation of state. The eAample shown later assumes a perfect gas with j = 1.4.

Among thle boundary value problems that can be solhed is the one set out in Figntrc 8. Complete flow, conditions
ace specified along one orthogonal, and the pressure alone is spc•ified on one streamline. The solution then utnulves
a straightforward marching process4 . Broadbent has applied this to the solution of a J.lss of lifting propulsive
bodies, a typical member of wmtih is shown in F igure 6. The body consists of a wedge-sh.;ped nose AB. generating a
plane shock AF. Th.s shock wave is supposed to continue unweakened beyond F, implying the ext•stnce cf a
straight streamline FG, parallel to AB. This streamline is taken as one boundary of the "heating zone" BDGF.
The curved portion of the body, B0. and the streandines within BDGF are chosen to have simple analytic fomrs
and the flow field then calculated as described above. A straight afterbody DE is drawn. alor.g whiicl the press ire
decreases, and a straight upper surface AE. The point E is chosen to :nximin.e the overall forwaid force, it is easy
to see that the conditiomi for this is that the pressaire at L should be thle same on both srfacts. (if the pressure is

Shigher on the lower surface, the thrust can be increased by extending DE and acc.p.:ng a more inclined upper
surface).



6.4

A LomputLd example is shown in Figure 9. Figure 9(a) shows the body shape and the temperature distribution in the
heating zone. Figure 9(b) shows the "drag distribution" along tihe body. The.ab.•cissa for this figure is ;treamwise
distance, x , and the ordinate is C tnces the tangent of the local surface inclination. The area between tht; curve
and the x-axis is proportional !u the streamwise for, e oii the body. Results arc shoyn for flows with and without
heating. With heating the drag coefficient of the undersurf-ace becomes very small, and the drag .ocfficient of the
whole body (tipper surface incltded) is 0.00:04. This coo'parLs with a value of 0.00784 without heating.

"TThe efficiency with which the added heat reduces the drag can be calculated from tie fonnula

(Du - D) x (6.11)

in which
Du is the drag with unheated flow

Dh is the drag with heat flow

U_ is the flight speed

and 1 is the heat supply per unit time.

For the example shown i? works out at 21.5%, which seems not too bad. However, the use of rl as a
criterion to assess the effectiveness of the sc!hem. is open to sonic objections, and it is instructive to examine these

First, it would be preferable to compare the drag reduction to the fuel consumption rather than the heat
release. In other words, to get a more realistic measure of the efficiency, we ought to multiply r7 as defined by the
ratio (heat actually released)j(heat tontent of fuel released). How.-ver, this would require more knowledge of the
likely combustion processes than we have at present.

Second, the heat release not only reduces the drag, but also greatly increases the lift acting on the body. This
surely ought to appear on the credit side of any balance sheet, but it is not easy to see a simple "figure of merit"
which accounts for it.

Third. although we note that the example given does not a,.hieve comlplete drag cancellation (nor, indeed, do any
of Broadbent's other numerical examples' ) it is not clear whether this is r.tally a disadvantage. We can imagine a
hypersonic transport vehicle operating in something like a "boost-glide" trajectory, except that the glide phase might
be power-assisted. That is. after an initial boost to high altitude and hypersonic velocity, there coulu be a flight
phase involving inomplete drag cancellation, and therefore a gentht descent or deceleration. This could be not only
acceptable. but might even be the most economical way of achieving a desired range. We may remark that the
example in Figure 9 has, with heat on. a lift/drag ratio of just over 40.

This last paragraph brings out another aspect of the "integrated" nature l hypersonic aircraft. Not only is il
impossible to consider the aerodynamic design of any .omponent of the aircr'.ft independently of the others, but at
sulficiently high speeds it also becomes difficult to assess the economic effi&.ioncy of any part of the flight patth by
itself.

Having. I hope. sawo enough to convince )ou of the novelty and difliculty of some of the ansolved problems,
I would not wish to end on. too pessimistic a note. To put tile problems of thc innovator into some perspective,
I would like to recommend to you Reference 10. In this, one of the pioneers of atomic energy imagines a satiation
in the remote future wien the near-exhaustion of nuclear fuels proimipts research into the long forgotten possibility
of coal-fired power stations. Contemplation of the imaginary future rearcher wre'stling 'vith w*:at tie supposes to
be nearly insuperable difficulties may lead us to hope that many of tie pr.:blems which are obscure today will appear
laughably simple in times to come.
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APPENDIX

Since the original lecture material was written, a number of new relevant papers have been published.
Some of these are listed below, with baief comments. Also included are a few older papers

that have only recently come to the author's attention.

LECTURE 2

Optimum Shapes

This chapter opcned with a discussion of the general prediction problem for .upersonic wings. A great deal of
progress his taken place recently in this field, and the following papers desmribe methods b.sed on the full equations
of inviscid flow, the situation with rcg.rd to optimisation studies based on such methods is still, howecvei, much as
described.

G.P.Voskiesenkii Numerkal Solution of the Problem of a Supersonic Gma Flow Past an Arbitrary Surface
of a Delta Wing. Mekh. Zhid. i Gaza. Vol.4, 1968, p. 134.

J.South Methods for Calculating Non-Linear Supersonic Flows. NASA SP 228, 1969.
E.B.Klunker

P.Ktitler The Completion of Supersonic Flow Fields about Wing Body Combinations by
H.Lomax "Shock-Capturing" Finite Difference Techniques. To be published in Lect-Notes

Physics.

At the end of the chapter an account was given of work by Maikapar based on Newtonian theory, a considerably
extended account of this is available as

G.I.Maikapar Wing Shape Selection for Hypersonic Speeds Mekh. Zhid. i Gaza, Vol.2. 1967. p.25,
available in translation journal "Fluid Dynamics". Pergamon.

It was noted in the text that according to Newtonian theory the optimum wing under various constraints is a
flat plate. However. under just those conditions where Newtonian theory is usuaby supposed to be most aLcurate.
i.e. very high incidence and Mach number, this conclusion does not hold. Wings with concave undersurfaces. which
cannot be adequately handled by Newtonian theory. generate more lift than flat wings. This result, which has
important implications for re-entry 'light, was first pointed out by

L.H.Townend Some Design Aspects of Space Shuttle Orbiters RAE TR 71054, 1971.

A detailed theoretical and experimental investigation of this idea will be published in a paper L.Davies. et al
to be given at the 10th AIAA Meeting. San Diego. February 1972.

LECTURE 3

An extension of the known flow fields design technique to generate a class of liftin? wing body •. ,mbinatiors

has been described in

J.Pike Wqing-Body Shapes from Known Flow Fields RAE TR 2035. December 1970.

A method for calculaing the off-design performance of caret wings in certain circumstances is given in

J.Pike The Flow Past Flat and Anhedral Delta Wings with A ttached Shockwam'es RAE
TR 71081, Apnl 1971.

The latest developments in designing waveriders for high cruise efficiency are described in

J.Pike Lifting Configurations for High Supersonic Speeds froin AxisYmnietric Non-Homenaropic
Flow Field. RAE TM Aero 1247, August 1970

-2J
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LECTURE 4

Thin-Shock-Layer Theory

The streamline-pattern approach described in this chapte, has been toed to find a solution for flat delta wings.

L.• R .•oe A Simple Treatment of the Attached Shock Layer on a Plane Delta Wing. RAE
TR 70246, December 1970.

An application of the theory to designing optimum re-entry sh,.pes is destnbed in the paper by Davies, et al.
mentioned in the notes to Lecture 3.

The extension of the theory to yawed wings is given in

R.Hillier The Effects of Yaw on Conical Wings at High Supersonic Speeds. Mro Quarterly,
XXI, August 1ý70.

The study of non-conical wings has been cormenmd in Hilliers Ph-D thesis (Cambridge University Engineering
Dept, 1970).

LECTURE 6

Flows with Heat Addition

Broadbent has continued his study by indirect means of desirable modes of heat addit.on tc, an external flow.
His latest calculations, which show the effect of partial ducting, with a first attempt at designing suitable "intake"
and "nozzle" processes are contained in

E.G.Broadbe,.t Flowlfeld Calculations for Some Supersonic Sections with Ducted Heat Addition.
RAE TR 71120, June 1971.

4 1
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a LECTURE 7

SPECIAL TOPICS IN HYPERSONIC FLOW

Richard D.Neumann

"Technical Manager for Aerothermodynamics
Gasdynamics Branch

Flight Mechanics Division
Air Force Flight Dynamicc Laboratory

SECTION I - INTRODUCTION

This section sets out the basii, relations relating to flight performanie and aerodynamic heating of tntry glide
vehicles.

I-I CONFIGURATION TRAJECTORY

The equations of motion for atmospheric flight are

N W dVc.,
D-Wsiny =

g dt

L -+ - cos = - V.
- Re g ]dt

For gradual descent we assume:

sin -f d<t
dt

I dV1ý
cosy ' I sin y«< -

g dt

reducing the equations to the following

DA ,,, '

2W gdt

CLA V2

2W C

The equation for CL is essentially that given by Sanger. This equation relates free-stream density to velocity,
lift coefficient and wing loading. From this equation we -an cvaluatc the equilibnum flnight performance of entry
glide vehicles.

i-2 VEHICLE CHARACTERISTICS

From Newtonian theory we can define the aerodynamics of an arbitrary lifting configuration.
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CL = CLOsin2 acosa

CD = CDo + CDL sinla.

We will assume for the present discussion that CLO = Cpmax = 1.83 and CDL L0= 1.83 .

Figure 1-1 indicates the performance characteristics for a series of configurations having variable L/D
capabilities.

Differentiation of the equation ior CL yields the max CL given as

CLmax -- 0.7 at ca a 550

and in gcneral LID -E cot t as shown in Figure 1-I.

The maximum lift to drag razio performance is primarily determined by CDO - that is by the degree of
bluntness and Reynolds number at which the vehicle operates

[L/Dlmax = 0.65/CO3 .32

Thus it can be seen that increasing the (L/D)niax of a vehicle requires that one minimize CDO which, in
turn, is related to the configuration variables and operating attitude. The angle of attack for maximum L/D is Z
given as

" [l~lLIorax -- C 0 i

1-3 AERODYNAMIC HEATING

The c"•figuration aerodynamic heating rates are also directly related to the trajectory flown, the -.onfiguration
"r attiti, and geometric features.

As a 1,-3t example, let us consider the stagnation point where for a laminar boundary layer, the convective

heating rate ir be written as:

Employing the trajectory equation previously discussed this becomes

[I (V,~o/V) 2 10 .5 (W)"

Thus it can be seen that the glide parameter (W/CLA) which includes both wing loading and vehicle attitude

through the lift coefficient, CL , modifies stagnation point heating. Operation at CLmax clearly mi.aimizes stagna-
tion point heating. Further, the velocity term [I - (V./Vc)) 0 1 V.2 determines the velocity for peak stagnation
point laminar heating.

This velocity, obtained through differentiation of velocity dependent terms is at V. = 21.000 ft/sec for maximum
stagnation point heating. This velocity is helpful as a repreentative point for design heating ,.alculations employing
radiation equilibrium structures where peak heating rates are important rather than the total integrated heat load
and within the assumption of an equilibrium glide trajectory.

To the extent that other laminar heali:.g points are related to the stagnation point, the stagnation point derived
velocity for peak heating will be employed for all other laminar heating calculations.

Turbulent heating presents another velocity where peak heating will occur, In turbulent flow

q a p.

yielding a velocity of 17,700 ft/sec for peak turbulent heating (assuming transition has previously ot.urred).

14 THE FLIGHT ENVELOPE

Before we go further into heating prediction methods it would appear of some interest to discuss the generation
of flight envelopes and maneuver corridors as outlined by Yoler in his revic, of Dyna Soar technology'.
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In Figure 1-2 we see s typical flight envelope for a boosted lifting entry system. The aciessible flight corridor

is bounded below the trajectories by heating and load placards and above by recovwry xeilings. The heating and load
placards are important at different times during the entry and the practical design limit is an envelope uf all suth
placards. Design margirs between the placards and the dcsign limit account for unk.ertaini', in adrodynaifiL Aoef-
ficients, heating rates, surface emittance, winds, materials allowables, etc...

The design limit line shown in Figure 1-2 is not a unique function of velocity alone but for a biven velocity is
also a functioi, of the vehicle angle of attack. Figure 1-3 indicates the variation of temperature pladards with angle 4
of attack indicating the severity of the upper surface heating at low but positive angles of ,tta,.k. Also noted in
Figure 1-3 is a positi' e maneuver margin throughout the angle of atta,.k spectrum between the equilibrium traje-.tory
and the configurational design limits. Such a margin is ne•essary in order to assure that the air-raft su,.Lessfully
recovers frnm nonequiiibrium initial conditions which might arise during boost and/or re-entry.

SECTION I1 REFERENCE

I. Yoler, Y. Dyna-Soar - A Replew of Technology. Aerospace Engineering, August 1961.
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SECTION 11 - SURFACE PHENOMENA

Many of the aerodynamic, heating problems encountered by pratAIl re-entry vehicles are not representable by
small st.ale wind tunnel models cmpno).ng idealized and smooth loft line surfauc untouls. It as important that due
,consaderation be given to effects of surfa,, condition and mnufacturing irregularities early in the configuration
fomulation so that the rescar,.h aerod)nanma.st and the minufacturer may rcsolve. rtit,.al problems to the airframe
This section of the course will discuss several x•amples of such hardware oriented problems Lanuovered over the past
decade of hypersonic design. The following examples will be d!scassed.

I. Aerodynamnic bNeed of the boundary-layer air through tht: configuration.

2. Surface distortion of the heat shield and tis effect on aerodynamic heating, and

3. Surface boundary-layer distortion due to bleed flow.

Il-1 BLEED FLOW AROUND CONTROL SURFACES

It is extremely difficult, if not impossible. to nompletel) seal the g.,p between aerodynamic control surfaces

and the configuration. Tht; resultant bleed of high energy airflow between adjacent .ontrol surfaces may cause

critical heat shield design problems not entirl) be.ause of the high heating rates but Also beCause of the lack of

radiation relief of the surfaces caused by Nery low radiation view factors between adjacent surfaces.

Design relief from Nuc.h situations may rmquire an adjustment an the aerodynamn contours to assure radiation

relief and. as well. stru,tural re-adjustment within the aerodynami, surface% to allow the heat to radiate to cooler

parts of the surface. Figure I1-1 indicates suth c.hanges to a typical eleoii gap ;egton. the recommended changeE

did. in fact. sigmfifantly reduce the thcmal placard altitude. It must be pointed out however that such charges

to acrodynamit shape have important Lomisequen.cs both to the aerod)namic performance and structural desir. ol

the configuration. In the case of the clevon gap, al'owing contour changes to assure acrothcrmodynami, integ.ity

did signifi,.antly degrade the low speed performance of the ,onfiguration noted as a moment shift in Figure Il-!

Perhaps the most complete evaluation of bleed flow in gap regions about control surfaces was reported by

Stem and Rowel. Stern's model shown an Figure li-2 allowe'0 one to vai-y the gap from 0.05 to 0.35 in 0.10 inch

incremenits. He concluded that although sonic aerod)namiu v.nefits aid occur from bleed flow e g retarding

boundary-layer separation, and redu.ing the probability of boundary-layer transition the aerodynamic heating

problem was significant and self aggravat-ng for .iblating surfaces Later work on gap effects in connection wi-h

deflected control surfaces has been .onoucted at NASA Langle) and reporteco in References 2 and 3.

A dramati. example of the effec.ts of aerodynamic bleed is to be found iti an analysis of tne recovered ASSET

configuration. Figure 11-3 indicates a gap region neat the wing apex at the j•jnture of !he leading edge/nose skirt

and lower surface heat shield. This gap .aused an internal bleed of high encrgy airflow through the interior of the

aircraft along the bulkhead as shon ian Figurt 11-4. expelling thte flow on the upper surface shown in Figure 11-5

The result fortunately .auad no stru.tural damage and was rec-tified by installing a heat barrier in subsequent

flights.

Similar bleed phenomena ,ere found du-nng the '.-I5 flight program4 in which severe air leakage into the nose

wheel compartment caused an aluminum tubing within the. wel.l to melt and other equipment to be damaged !n an

earlier article4 leading-edge skin buckhng wab rel.orted (see Figure 1l-6) to be c.aused by entrapped flow in the leading-

edge. expansion joints. The fix. also shown in Figure 11-6. was a tab over the expansion joint to minimize the heat

flow.

11-2 SURFACE DISTORTION

Surfat.ce distortion during re-entr) -s caused by an) of a Nurns of imposed phenometn.!. Manufacturing require-

meents, load deformations and thermal expansion effect% are but a -,% ,.auses As a result of the Dyna Soar

expenence Jaeck6 presented data and theory on a series of basic. onfigt,.-.,mons ..nd covenng a series of related

surface irregulanties. Whale the tests and re'ults ire noi amenable to a genera,.-ed presentation. the following
observations can be made.

I. Relativ, ly small surfaue irregularities 1with regard to the Iocal boundar,-layer tbick.er,), an cause relatively

large increases !n heating The heating increase, an much greater titan the .orresponding "'ressure increases

2. Roughness nf the typt; cvaluated (shallov- waves) can mi geencal lie classed in relation to the loc al boundary'-

laye: thickness. Those small in relawton to the bouiadary•-layer th:skir.ss are insensitive to external flow

effects and the heating is caused by the protrusion of the wie into t!; higher energy portion of the

boundary h.yer. Large scile roLghncss on the other hi.nd should o.irr~iatc with tle measured pressure data
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, 3. Correlation of available da:a for shallow waves against the boundary-layer displacement thiLkness implies
strongly that this parameter is of primary interest in dubign. Further, it indicates that regions near the
configurehon nose where the boundary layer is thin and the basic heating is highest are susceptible to the
highest increments of roughness indued heating. It also implies that real gas effects on boundary-layer
thickness are of importance as are three-dimensional effects.

4. For the rather speciahzed t.a~e of a shallow wave as bump above the mold line, correlation theory has

been presented by Bertram et al.' for both laminar and tu'rbulent boundary-layer flow in terms of the
ratio of roughness height. H , to smooth body displacement thickness. 6* . Figure 11-7 lists these ,.orre-
lation equations. Figure H-8 employs both the theory of Bertram and that of Jaeck4 (as presented for
design purposes by Thomas) to indi ate the relative height of a surface irregularity to cause a 20"t increase
in smooth body heahng. Finally. Figure 11-9 indicates the correlation of multiple wave data with the
respective approaches.

11-3 LEAKAGE EFFECTS DOWNSTREAM OF A GAP

Downstream of a mold line gap the aerodynamii. heating to the hbat shield is augmented due to a thinning of
the boundary layer. An empircal .orrelation of this buating increase was generated with the aid of a Nonsimilar
Boundary-Layer Computer Program described in Appendix C of Referenc.e 6. The resultant correlation curve for
these computer generated data is shown in Figure 11-10.

SECTION 11 - REFERENCES
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SECTION III - INTERACTION HEATING

The interaction of one flow field with another is,, inhvrcrnt part ot any flight configuration As these
phenomena are poorly understood at the prehent tll,., it is prudent in any design to attempt to inmizin•'e inter-

actions. In spite of this, interac.tion problems w.re obicrd during the Dyna So,-r oe,.Ioprnent and continue to
he important to both hypersonic aircraft and Spa.e.Cr:i dstgn,. In this s,:k .,n I jilould like to discuss, (I) the
interaction problems and their evaluation during the Dyna Soar developinent. (2) thc c.urrent literature and trends
,n understanding both basi. and configuration interaction-, and (3) a detailed evaluation of particular interaction
cxperitients which will illuminate some of the diflerences between two- and three-dimensional interactions

1111- THE DYNA SOAR EXPERIENCE

A fundamental design prenmise in the l)yna Soar configuration development %-.as to minimize aerodynamic
interactions. In spite of this, three areas of flow field interaction were noted on the Dyna Soar class of configura-
(tons, MI) the control surface interaction. (-) tile wing/fin interaction problem, and (3) the canopy heating

111-1.1 Wing/Fin Interaction

SWe have discussed and are generally more concerned Mliti the flow field and aerodynamic heating generated on
the compression surfaces of the highly swept leading edge. It is also important in a total design to evaluate the
influence of tile leading-edge shock on tipper body heating. Stch heating was discussed by Nagel' and is z charac-
teristic of distinct wingjbody entry vehicles. Figure I11-1 indicates schematically the problem area and Figure 111-?.5
outlines the "double shock method" nostulated to handle such an interaction. In thi, mnethod the fin leadi-g edpl.
was assumed to be a swept cylinder downstr,:am of at. arbitrary oblique shock. I he angle of this ob!quic sho, K

*0 . was varied to maximize the heating on the fin leading edge. Figure 111-3 indica.tes data genierated .t Mach iO in
comparison with the double shock method, It is interesting to note that the hot localized , cr, the fin leading
edge was first observed during a temperature sensitive paint test of the configuration.

This problem of leading-edge interference was also noted during the development of the ASSET research
configuration. Figure 111-4 indiLctes data extracted frcm Reference 2 indicating a rclatisely hot localized region on
the conical tipper body caused by tfll. wrapping around of the shock wave formed on the wing lcadmi.g edge This
phenomena is noted to diminish in magnitude and occur higher on the coni, tipper body as the angle of attack is
increased. The antenna area created ye" another mnterfi ren,. as it protruded from tile con'iguratmon moid lines
itgh locahied heating is also noted near the forward jun, tion of tile anteit-ii with the body. Fig,•.- i11-5 indicates
a vapour screen flow visualization photograph of the flow over the upper surface of the ASSET in this region

111-1.2 Canopy Heating

Pressure data on the canopy surfatce of a Dyna Soar research model are sho%% n in Fmgt.re 1M1-6 from Reference I
In order to interpret the fluid mechanics associated with the experimental data, .t '-eral rational fluid model, were
necessary, as shown, depending upon the configuration angle of attack. The sh. J data band represents the locus
of theoretical calculations .orrespondmn, to the analytical model. Similar results for the heat transfer data are shown
ii Figure 111-7 for icro yaw and in Figure 111-8 for moderate vehicle yaw angles. These examnles of interaction
heating were serious c.onsiderations at the lower vehmc!e angles of attack and formed a portion ," tile low a%le of 9,

attack thermal placards discussed in the maneuver corridor figure of Section I.

"111-2 X-1 5 EXPERIENCE

Severe interaction heating was also observed during the final flights of the X-15 due to the presence of tile

dummy ramjet pylon on the aft lower surface of the body. Figure 111-9 indicates a post-flight picture of the
interaction region.

111-3 INTERFERENCE HEATING TO HYPERSONIC AIRCRAFT

Hypersonit. aircraft will encounter many interference heating situations not to be found in carly re-entry con- 4,
figuration designs. These mnteractmoais arise duc to the very characteristics of the vehicle, for example due to

I. The aircraft ccncept of operation and the capability for sustained and economniLal operation of the
aircraft at all flight speeds

2. The aerodynamic effect of the propulsion system on the configuration a major design considetation at
higher flight Mach numbers. 4

3. Tile configuration length approaching 300 feet length. I
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As a point of dep.rture from lifting entry configurations discussed earlier, the cruise .onfigurations differ from
these shapes due to

1. Configuration scale,"-

2. Configuration complexity, :

3. The operating environment.

"Configuration scale will be roughly twice the length of proposed space transportation systems and • to 10 times
thie iength of earlier boosted glide vchicle designs. Such length increases mitigate the relative importance of transition
and focus our attention on the difficulty of accommodating the existing turbulent boundary layer.

"Configuration .omplexity will foc.us design ,ttention on the inevitable heating increases caused Oy multiple flow
field interp.tions. The principal charactenstic of this dlass of configurations will be that of a flying interference
region.

Finally, tile hypersonim aircrft will operate at lower .altitudes dictated by engine performance capabilities and
the .mr.raft unit and total Reynolds number characteristics will su:ely challznge advanced aerodynamic facility designs
in th.- developmental phase of the program. (This will be discussed in Section VI of these notes.)

Interaction heating of su,.h configurations is today poorly understood and the subject of many unfounded
speculations regarding aerodynam!,, heating levels. Today I should like to discuss several useful aerodynamic models
for such interac.tons to r inforce *hat is already, known about such interactions, to highlight fundamental differences
between two- and three-dim.nsional intcractions and to point out the problems involved with configurations having
several simultaneous flow field processes occurring.

Sn

1114 TWO-DIMENSIONAL INTERACTIONS

The .lassical problem of a remote generator :mpinging an incident shock on a known planar flow field has been
evaluated by many authors. Configurations as shown in Figure Ill-10a have been evaluated expenmcntaliy over both
hypersonic and supersonic Mac-h number ranges. The analytic expre~sions for heating generall, relate interaction
pressure rise to interaction heating rise, i.e.I = FPpk1n where n = 0.5 for laminar flow

hfp, lPfp] = 0.8 for turbulent flow.

I his relationship follows dire,.tly from flat-plate theory accounting for an additional pressure in.remett due to the
impingement process. I have chosen to identify this correlation approach as pressure interaction theory. This
approach assumes that the imposed heating does not disrupt the mxisting buundary layer but merely impresses an

additional pressure increment upon it.

Employing this approach, turbulent data from several sources" 4 as wtcll as data generated within the Air Force
Flight Dynamics Laboratory were compared. For turbulent flow the correlation of data in Figure Il1-11 is noted to
be excellent. As a point to note, the data from the Air Force Flight Dynamics Laboratory were taken under an
induced turbulent boundary lay er using a tripping device shown in Figure 111-12 The reference flat-plate values
were generated on the same plate without the remote generator and in these tests the flow was probed to assure
that vaiid turbulent boundary-layer conditions did. in fact. exist.

Laminar boundary-layer data were also taken on the same model but ý" i more forward station and without
the trip mechanism. These data are shown together with other "laminar" dald5 6 in Figure 111-13. A distinct lack
of agreement is apparent in this figure which was assumed to be caused by boundary-layer transition.

Correlation of these initially lanwmar data under tile aforementioned assumption was achieved by r isidenng
not only the relationship between peak heating and peak pressure in a turbulent boundary la,,,., which was ,alidat~d
in Figure 111-12, i.e.

but also the relationship 'between turl'uleit and laminar undisturbed flow from Eckert's formulation, i.e.

L= 0.08916 -X0

hlam] no L J Xturb
intcr,
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where the lengtl, dimension, X . has units of milies with the lan.nar distance measured from the plate leading edge
to the intraction. The turbulent distance is measured either from onset of transitional flow ahead of the interaction

Soi from the onset of nonlaminar flow when transition is not clearly discernible.

The results, which are shown in Figure 111-14, indicate that turbulent flow was indeed the cause of the lack of
data correlation. It also indicates the transitional nature of the Mach 10 data.

The ,orrelation indicates that the pressure interaction theory is valid for two-dimensional flow. It is noted
that suc.n inte,...tion tends to cause premature boundary-layer transit!.on. The results point to the fact that the
primary prcblem is it speLifying the proper pressure level in thc interaction using one of several available methods
as for instance the recent paper by Rose. Murphy and Watson".

Ill-5 THREE-DIMENSIONAL INTERACTION

Heating to three-dimensional interaction configurations su.h as the model shown in Figure Ill-10b presents a
far different interaction problem for .onsidcration. In order to understand such a flow field, let us first ,.onsider
data generated by thie Air Force Flight Dynamics Laboratory and then generalize the results to include the data of
other authors.

Pressure data were generated in the inttraction region for fins having varying deflection and sweep angles.
These data. shown in Figure I11 15, indicate that '.he pressure deay with sweep varies only as the 0.3 power of the
cosine of the sweep angle and that all the data from the test could be correlated as shown in Figure 111-16.

Initial correlations of the heat transfer data were made using the pressure interaction theory verified for the
two-dimensional case and the previously correlated pressure data. The pressure interaction theory seriously under-
predicted the heating data. Turbulent ,.orrelatijn of the laminar data as in the two-dimensional Lase improved the
prediction somewhat, however, turbulent three-dimensional intcraction data showed still higher and unaccounted
for heating levels.

A new approach analogous to the control surface heating methods of Bushnell and Weinstein was adopted
which postulated a new effective boundary layer caused by the interaction. This model has been identified for
purposes of discussion as the effe.tivc boundar)-layer model. This procedure is a modifiation of the two-dimensional
app, ach to include a new boundar) layer caused by the interation process and initiating for convenience at present
the fin shock wave. For simplicity, this new boundary layer is assumed to be planar in the direction of the free-
stream velocity of the flow. A form of this approaLh was employed by Miller in 1963 tR#.f.9). In Miller's correlation
pressure mtera•tion theory was modified to obtain the Ma,.h 8 correlation by using plate.au pressure in place of flat-
plate pressure and basing Reynolds number on the distance from the start of reattachment.

The present approach is coneeptuall' in agreement with Miller. however, the interference pressure increment
was taken as that from undisturbed to peak pressure as it was not always true with our data that separation did
ot.cur. Further, and for the same reason, a more general flow boundary %,,s s,.Lected to initiate the boundary layer,
i.e. the interference shock. Finally, the Bertram-Feller term accounting for the presence of an adverse pressure
gradient, K . was acquired in our case by a correlation of the data using the assumed method, i.e.

K3  
li-max/lifp

V'i.xm Pfp

The %alues so jerived were both reasonable and in general agreement with the values denved by measunng the
slope of pressure with distance. The latter method is open to sonic question as the origin of the distance, X . is
not known and must be assumed.

Several checks of the data were made using both the Miller correlation and our approach One example at
Mach 8 for the laminar data indicated the following comparison:

X from LE = 16.5" e Diff.

Ih x 10' (Miller) 33.35 10.6%

It x 10' (AFFDL) 38.9 4.3%

l x 104 (DATA) 37.3

so that for Iminar data the two methods tend to agree. The diffcren,.ce i methods applicability is that the AFFDL
method can also be applied to cases where no separation occurs as for instance to turbulent boundary layers which
are more resistant to separation.
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Laminar correlation of the appropriate Mah 6 data employing both the effective boundary-layer model and
th,. pressure interaction theory is shown in Figure 111-17. Correlation of data with the effective boundary-iayir
model is excellent exkept at the highest angle of ir, idenc.v, 20, where transition onset is suspec.ted. Corresponding
data at Mach 8 are shown in Figure 111-18.

Turbulent c.orrelation of the higher Reynolds number Mach 6 data are shown in Figure 111-19 again with the
two methods outhried. The reverse trend of the data for long distani.es aft of the fin hcading edge is considered to
be indicative of local boundary-layer transition. Corresponding Mach 8 data are shown in Figure 111-20.

Turning to data from other authors, Stainback' ,1f the NASA Langley Research Center presented a technical
ot Otutlining an expenmcntal program at Langley in whic.h fully developed interaction characteristics werL not

e1arly present. Figure 111-21 presents Stainback's data together with the eff.,tive boundary layer approach noting
that th, leffec•.te boundary-layer approa.lh bounds and ,orrelates the Stainba.k data far from the origin of the
interaction.

Pigure 111-22 presents data generated by Miller' of the Boeing Company as well as data from the present tests
I lie result indicates that relatively long distanc.es are required to ahieve a fully descloped laminar interaction

Figure 111-23 indi•ates a composite of Miller's. Stainhback's and the present data for sharp fin intcractions The
Ollc.t of tinl blunting is shown to reduce the heating at the same location within the interac.tion. This is due to the
shape of the shock produced by a blunt fin tn'.eraction. the greater distance from the start of the new boundar, layer
to the location of peak heating and hence the lesser heating.

Figure 111-24 presents a correlation of Mdlch 20 data taken by Watson and Weinstein 5 i Ilelium flow Both
pressure and heat transfer rate data were given in Reference 15. A value of the Bertramn and Feller parameter. K3
equal to 2 was selected bai,.d upon an extrapolation of 6. 8. and 10 data previously generated and presented The
value ,/0.215 accounts for the new effective boundary layer and is derived iam Appendix Ill of Reference 16

Three-dimensional experiments have shown a deLidely different charater to the interaction which is caused by

the additiona! dimension of the flow. The effectie boundary-layer concept discussed is con;ceptual and requires
refinement but it does indicate two related problem areas:

I. For large hlypersonic aircraft des-gns. severe heating can occur far frotm the nose due to the fomiation of
a new boundary layer.

2. in testing of such aircraft ,.onfigurations. the experiment ,.ale is important particularl. in a turbulent

boundaiy-layer environment which is the environment of practical interest.

111-6 REAL GAS PHENOMENA

To date all experimental data on the interaction heating problem have been geaicrated in perfect gas wind
tunnels. While these tests arc important to develop the fluid mechanic relationship involved, there are indicatior-s
from pubhshed papers by Nagel and Thomasi" and Etlneyit th.mt the increased density caused by real gas flows canl
significantly incre,.se the mtera.tion heating process. SUchl a conjecturc is easily made through analysis but very
difficult to prove experimentally. Real gas wind tunnels to generate a low y test flow ty = 1.0) must employ
gases other than air s51ce the high temperature air cxpansion pro,.cess will freeze the airflow early in the expansion
process ant' dnve the ratio of specific heats. ,y . toward the monatomic level 1 = 1.667 . Experiments in process
at the Langley Research Center in a tetrafluoroinethane (CF,4 ) Mach 6 facility i should give us additional insight
into tile effect of real gas behavior on interference heating althougi. admittedly without the other factors present
in a hypersonic free flight flow field.

'4g
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Fig.lll-lOa Two-dimensional interaction model

GAGE STATIONS

Fig.lll-lOb Three-dimensional interaction model

50[.

MA

20 o61
o8 AFFDL DATA; REF. 16

S10 • FABISH REF. 3 o

',* SAYANO oP
t~RF 1, EF

,' .. ' 6 ARL 70-92 ,E,4

'" ~~AI.ZNER & •,•
•E ZAKKAY " -o -""-

3 AD

0

2 •=/ BACK AND -- ___,•CUFFEL

1 •OCT. 70

1 2a 3 6 10 20 406 100

Figill- I-1 Turbulen; intcrfre~nco lhetin caud by a r~m•.te shock generator

~~~~~ 
X6 

Zd 
'--



7-27

DIM'[NSIONS IN INCHES 3.0

Fig.1l1-12 Trip device on flat plate model to ac.hieve a turbulent boundary layer
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SECTION IV - NUMERICAL TECHNIQUES

IV-1 INI RODUCTION

Tihe next decade or two witll see a rather interesting tomipetition ltn engineeriing to general•e flow field data for

conceptual Lconfigurations. The competition will be between high-speed digital ,.omputcrs generdting so called
"'exact" numerical solutions to three-dimensional flow problems and the more traditional airflow measurement in
wind-tunnel facilities. There are those who herald on the honron the end of wind-tunnel facilities with the pr..:_.ial
application of these exact methods and others, principally experinmentalists, who foresec a cooperative inter-
relationship between the two where experiments in either approach would be ,uggested by the success and/or lack
of success in the other.

The area of numerical solution is relatively new. Two-dimensional solutions for perfe.t gas flows and for flows
both in equilibrium and with finite reaction rates have been generated and these solutioiN and the programs which
generate them have been openly reported. Three-dimensional solutions have been .onsidt.rWd for the last 10 years
with progress impeded by the size of. cost of and availabilitý of computing equipment necessary to generate
engineering solutions. The Air Force Flight Dynamics Laboratory has pursued a c.ontinuing program in the area of
generatirig engineering solutions for fully three-dimensional flow fields over this tim. period sponsoring the work of
Moretti of GASL. Powers et al. of Northrop and Strom of ( ornell. Much progress has been made with respect to
program formulation, accuracy and approach. However solutions have. in general, bvcn himited to the more lassical
shapes of right circular cones at low angles of incidence. The generation of flow field data on more practical delta
wing configurations is not yet to the engineering solution state and hence as yet there is no contest between the two
approaches.

The challenge of the digital computer to generate competitive data to the classical wind tu~nnel Is based to a
large extent on the inability cf the wind tunnel to support the design engineering efforts thro, gh a lack of diagnostic
instrumentation compatible with three-dimensional shapes and, as well. a lack of rapid re.ponse to the design engineer
early in the design evolution. In Section VI of this report ground test facilities will be discussed in greater depth
with the emphasis toward generating data with which to prove a configurational .oncept. Thcrt are. however, various
other goals for ground test facilities toward the understanding of three-d.mensitonal ,hapes both in the more
funiamental understanding of three-dimensional behavior and to guide in the design process and screen candidate
concepts to focus on and eliminate undesirable ,.onfiguration qualities early IIn the program. Facilities supporting
this latter goal would generate representative hypersonic data but their range of oicration and ultimate test cepability
would be subjugated to the limitations and capabilities of a,c.urate instrumentation to evaluate three-dimensional
flow fields. An excellent example of such a concept is the electron beam diagnostic, work whic~h allows one to
visualize three-dimensional flow fields and evaluate shock-layer properties but v hich will only operatc in faIlitites
at pressure levels less than I mm Hg.

This section will indicate in some detail the present state of development and problem areas - both demon-
strated and anticipated in the generation of three-dimensional flow ficlds. It is not the intent of this section to
develop mathematical detail buit rather to give physical interpretation to the approa,.hes and problems of three-
dimensional flow.

IV-2 APPROACHES

The most direct approach to the solution of flow fields about generaliz,d three-dimensional bodies, and piobably
the most meaningful approach physically, is to ,olve the .omplete Nayicr-Stokes equations. Uafortunately. even with
modern high-speed computers, this approach is not presently practical. It is neessary, then. h. simplify the equations
into a more trictable form. The obvious way is to divide the flow into viscid and inviscid layers. The vs•isd LIyer
must be further divided into laminar flow, turbulent flow. and cparated flow. Onlý laminar attached flow solutions
will be discussed here. For ,ome methods it is necessary to divide the inviscid layer into subsonic .1nd supersonic
regions. Ev.,n with these simplifiations the equations to be solved are nonlincar part:al differential equations of the
elliptic, hyperbolic or parabohi. type. and do not lend themselves to analytic solutions. Numcn.ial approaLhes must
therefore be developed. These approaches can be broken down into two broad techiiqucs. the method of integral
relations, and the replacement of the partial differential equations by a system of difference equations

The method of integral relations permits a direct numerical integration of thc equations between two known
bouadaries (i.e. the shock wave and the body wall) and is of particular use in subsonic flow in front of a blunt body.
The technique involves the reduction of the partial differential equation set to ordinary differential equatmoi.-, by
approximaticn with a polynomial series. The resulting ordinary differential equations c.an be solved by numerical
integration. The method was first suggested by Derodnmtsyn' and su..cesfully demonstrated for axiv -imetric flow
by Belotserkovsky 2 and extended to problems in three-dimensional flow by Belotserkovsky and ( lit .i'. Chushkin4

also reports the application of integral relations to three-dimensional supersonic flow about bodies ait a.idence by
Katskova and Chushkin".

1 .
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* These tec' nulques are distinguished by their simpliity. howet.r the) do nitt suppl) data between tile shoLk and
btdy nor have they been demonstrated to fun%.tion efficiently it, purely three-dimensional supersuni. flow. In addl
lion, they may violate the zine of dependence which will be discussed later

Mre method of finite elements which .an also be used for solving a set of partial diflercntial equations is
related to the method of integral relations. The signifiant feature of this m.thod is that th,.- flow field must he
divided into a set of finite elements or cells with the values of tih. dependtrnt variables pr~scribtd at spe- fit. points
(nodes) or on the surfaces (faces) of the elements. Tile dependent variables must be ontimuLou, atross the cle,'ient
and in general must be continuous it the interfaces betweCLn elements. Utili/ing the funiktioiaIl relations between
the independent and dependent variables and some appropliate method of solution (tor c^ampl:. the a1.ahulus of
variations, the method of steepest decents, the residudl linte element method), an expression fur the deptndent
varnab!es can be found subject to the boundary constraint. The form of this expresion depends on the method of
solution, but the expression can in general be evaluated by numerical methods.

The application of the boundary conditions is, in general. eas) ini the method of 6mite elements. However, the
coordinate5 of the body must be transformted into some sy tem to pernih rgular ,on.,truction of the finite elements.
This constraint is not as significant as it first appears in that the elements ina-, be cunvilinear. cacth boundary.
however, must lie on the surface of a set of the elements. Because tile funl.tions must b. ,.ontinuous. distoitinliltie,
are not allowed in the flow field, although this constraint is also less restrIctive than it might appear.

A paper by de Vries, Berard, and Norne6 u. the apphicat.in of finite elements to two-dimensional steady,
invis•id, irrotational, compressible flow has been reported by dc Vries'. In prin,ciplc, this tediilqutc is extendable
to three-dimensional flow. but a practical program utilizing it has not yet been formulated.

The. majonty of three-dimensional programs developed to date have used difc.cnc,.- equations. These approache!
break down into two further groupings, steady and runsteady solutions. The stca.id state solutions .an further be
subdivided according to the direction and manner in whi.h differencs are taken. Only two possibilities "ill be
c.onsidered here, differences along some physihally defincd surfa.c and Jifffrcn,.cs along sonic arbitrary ,.oordiratC
system. The former are charactenstic solutions and involve the most onoplcx .oding bUt boundary conditions are
easy to apply and the solution follows the natural flow making interpretation e.is). In gencial. tile solut.ons will
obey the stability mn~eria to be discussed later. The arbitrary coordinate ,sýstcl leads to a inuLih simpler .oding
and in general muth faster compitter times. Hlowever. boundary conditions arc not cais, to appl% and tile stability
criteria are difficult or impossible to impose.

The problem of stability is of utmost concern Iln anly finiet different e scheme What is needed is a ,tatement
of the necessary and sufficient ,onditions for stability. Unfortunatcl). for nonhltlar partial dilferential cqutation,.
necessary and sufficient conditions are not available

The Courant-Fredrichs-Lew, (CFL) stability .ondititoi i vv ell know n. It st.itcN that the domain of u,.pcphl.lr-
of the differential equation. musM be c-ompletely contained in the domain of dependent.. of the differen,•, tqualioni
The domain, or zone. of dependence can be seen in Figure IV-I. it i% ,imply the Io%.uus ol points on the initial valtue
surface from which a disturbance sigiial caan propagate through the ntv point P 1 lie domain of infltuen.c is
obviously the locus of a disturbantc propagated forward from the initial %,hlu. surfa.c The gcomnctriL nC.,ning of
the CFL stability condition is show n in Figure IV-2. For the diflercning s.hchm. to btc ttable. an irregular polygon
connecting the points used in tile difference Ceutillon mlUst ctonlpL1te . Vly n ipaiss the domain of decpt.ndn.c Thus
the lettered points must be used in the differene equation. the numnbcrcd points,. if used. would rcstlt ih, anl unstable
solution.

The CFL is not a sufficient condition for stability, nor i, it the only necessary condition. Another c.ondition is
the von Neumann stability condition whicl, states diat the absolute vtalue% ol the cigens alucs of tile dmplificatlon
matrix must be sufficiently small for the differcncing scheme to b. stable. i-o ihntar •L.uattons tni. can be evaluated.
in general for nonlinear equations it ,cannot. Bramn.rd' report% that numcrial ,.\p.rimcnt,, ind,.itt, that the naiimnuni
step size allowed by the von Neumann condition is. mi many cases. more strigcnit th,4n the Cr1. condition and may
cut the maximum step size to one half that allowed under the (FL condition. More typhal step sizes are 0.75 to
0.9 of the CFL value.

Both of the commo'nly used methods of solving the flow field problem rely on ,oni,crting the boundary• ,due
problem into an initial value problem tU permit numcrial solutions. Thu% ,.ia.i solution will be obtained by marching
forward in steps from an initial value suracJe to a ,tiw data sturfa.c At the completion of the new data surface, it
will become the initial vaiue surface for another step forward

IV-3 STEADY-STATE SOLUTIONS

Spatial characteristics are, of .ourse. applicable only to regions whcr-. the flow i- %kupcisonm. Sce,cral methods
are available for providing all initial ,,,due surta,.e in tile supersonic flou region it tit. subsontic flow has rotational
symmetry. Fur bodies without rotational symmetry mi thie subsont.i region, only sp.cial ases CaLn be handled. The
existence of an initial value surface will be assumed for purposes of this discussion.

-. .
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Many methods for lo0.ating tile -.hara.tenstit k.rfa,.cs for thrie-ditnev.,ioal aradLteristil•S have been ..uggested.
Only three schemes will be described to illustrate the nie.hods and problems.

One method is the tetrahedral ,haraiLteristi-. !tie network .how in Figure IV-3. Suppose three points are chosen
on the initih4 value surfat.e and Ma%.h .ones are %.onstruted from ca.I point opening downstream In suLh a way that
they have a kommon intersettIon. A surface tangent to J' Mach .onoid is a characternstic surla•c and tile line of
tangenty is a bit.haracteristic. [-hus the three lines conne1cting the base point% ald the downstream point are by
definition bicharacternstics.

A streamline can now be passed bac.k through 'he intcrse,.tun to the initial plane giving four equations to solve
otr tour unknowns. This array has the very desirable fcature of rcquiring only one interpolation In the initial plane

(for the streamline intersec.tiun) wiht all other baae point data known. Unfortunately this scheme violates the CFL
rnteria immediately. Referring to FIgurt IV-2. it , an be seen that using the numbered points results in an unstable

difference scheme.

Figure IV-4 shows a modifiation of this tehnique .uggesied by Thornhill' and Fern'° called the tetrahedral
chararcterist, surfa.e network. whlh makes use of three planes conuntung the threL known points on the initial
plane and intersecting at the new point. While this does satisfy tihe CFL crntena. it does not necessarily satisfy the
von Neumann condition. A program using this technique will be discussed later.

The best known characteristi.-s programs in use todayi are based on chara,.teristiL surfaces and bicharactenstics
as shown in Figure IV-5. A major problem f'aed in the d.velopment of any chara,.teristic solution in three dimen-
,,ions is the location of the new downstream point. It is imnatenal whet'ier Macl ,.ones are extended forwarl and
their intersection loc.ated, or a point chosen and a Mac. Lone extcnded back to the initial value surface, the location
and data at this point , l! r.quire iteration for nonlinear equations. Several s.nen.es have been devised to reduce
this pioblem. II one developed by Strom' a referen.e plane normal to the longitudinal axis of the coordinate
system Is .onstiuc.ted and a streamlimne from a known point or on the initial value surface passed forward to intersect
this plane. Here. iter,•tin is required to Iocate the intersection of the strcamline and the plane, the path of the
streamline being a fun.t,on of density and velo•ity gradients along the streamline. A Mach -ont is now passed back
to intersect the initial value surfac.e. the base points of the characteristiLs Iocated and base point data obtained by
surfadce fitting of the nine points surrounding the three base poi.its. The principal advantage of this system lies in
the following of tht. streamlines, allowsing ichemistry to be handled along the streamlinc without interpolation.

One dlfficlt.y encountered with tils system is the "bunclIng'" of streamlines and. consequently. the data
becomimg nonuniformly distributed on tile new Initial valu. surfat.cc. ExpericLCe with this -,rogramn has shown stable
step sizes to be very small, with the result of excessively long c.omputer run times for useful bodies Other difficulties
with this method will be discussed later.

To simplify the lotations of the new downstream point and maintain as uniform spa.ing of points as possible.
Ferrani2 devised what has been called the method of near ,haracteristis' 3 14 shown in Figure IV-6. This methcd
has been adapted by Morcttis and has also been modified by Rakmch'. It is of at least historical interest that
Ferran used this techlnque to hand cal,.ulate a three-dimensional flow field. In this technique two orthogonal
sets of rcferen,.e planes are established, one set being .he initial data surface, the other mneridional planes. In
loretti's method, two points on the initial value plane are chosen and Macli .ones extended rorward until th.:y

imterse.t. This c.onstitutes a new point ind the pro.cedure is .ontiitiUed until all points on the new surface between
the shock and the body have been located These points do not, however, lie in a single plane and are therefore
not ,uitable for use in a I'ite difftren.e schemtI, to obtain .ross derivatives (i.e i.ir•,umferential derivatives). To
circumvent this. Morciti -,ablishcs i rfeicen-.e plane ,,,I, Ioloaes the ii.tersectio,i of streamlines connecting the nev
pomnts to the initial value surfae. lie then perform, a linear nterpolalion along the streamline to obtain data for
a new su, fac.L. When all the .onm1 .mtations are complete. he has a new data surfaL. (or referen,.e plane) in which one
dimension is tonstant and aiother dimension vanes uniforml). Thus c.ross derivatives -an be obtained by finite
differencirig techniques. This also leaves a new initia: value sturfac.e for the rext step forward.

In the modification of Ferran's near -haract-rniti,.s by Rakich. the refere .cc plane is selected, based on the
CFL criteria, prior to the beginning of a new plane of data. A ,tre-amline I, passed fora.d to the new surface and
a Ma.h .ona extended bac.k to the mimt,al value surfa.e. The bi.lharatenstics are then proje, ted onto the m 'ridional
reference plane and khe finite dilference taken along thiese n'ar ,haratrnsti.s. Note that in this system as opposed
to Moretti's rnterpolatmon is done for the base points, not for the new initial vJue surfa.e. Rakich .AIso fits data on
the ineridmonal planes for oss derivatives using a Fourier S% ries. Thus a se.ond degree interpolation is used in the
mendional rdferenie plane for base point data with thi, .toss driNvatives supplied b\ fitting Linium'ferential derivatives
with a Fourier Series

The !echmnque developed by Powers"' is similar to that of Stronm', except the new initial value surface is a
left-running charactenstiL. At eact point t-.. t1- ,itma: value surfa,.c a streamline is passed forward until it intersects
the next left-running charactcristit surface. s paLing betweea c.har.ctenstics surfaces is arbitrary. Therefore, the
step size is set by a user ontrolled expressio. ývhmtl is a function of tht meridional angle. allowing the step size to
vary froxi the windward to the leeward. On.. the inters-Ation of the strcamine and the left-ninning characteristic
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is located, a Mach cone is constnrcted back toward the initial value suiface and the base point data obtained by
interpolation These values are then used in the finite differencing to obtain data at the new stream point.

Without going into extensive detail oil the various • haractensti%. systems, there are some simple .omnparisons
that can be made and significant differences that should be pointed out. First, in Moretti's method, cross flow must
remain small or the equations are not valid Raidch does not appear to be limited to small c-ross flow, but there is
a question about the validity at low Madh numbers and highly three-dimensional flow. Rakich properly considers
the CFL criteria (Moretti dii not) but considers the von Neumann , nt.ria only by imphication. lie observed stable
solutions when the maximum step size was 87,' of that al~owed by the CFL .riteria. This .ompares favorably with
Brainard'ss estimate of the von Neumann limit. Rakich has ,ised his technique to solve the flow about cones at
angles of attack, and suggests the method can be applied to other shapes. for example slab delta wings. Moretti's
program har been used for cones and angle of attack although it was developed for slab delta wing ,.onfigurations.

Powei; handles the surface fitting by transforming into a new coordinate system based on the streamline base
point and the velocity vector at that point as shown in Figure IV-7. The coordinate system is described by dv'ining
a tangent to the initial value surface, choosing the Z axis as the cross product of the velotity v,.,ctor. The base
points of the Mach conoid opening upstream from the new point are now chosen to lie on (or near) the Y and Z
coordinates. Thus interpolation is required only oil one variable. Note, however, that this fitting is really a two-
parameter fit. with one parameter assumed small in comparison to the other.

Strom also transforms to a local coordinate system, then literally surface fits data to obtain base point data.
lie -liooses the 9 points on the initial value surface surrounding the st,-amline, and fits them with a polynomial
conta.ning 9 terms and including powers of X2 Z

The programs of Strom'' and Powersi" were efforts to avoid any of the approximations used by Moretti and
which may be present in Rakich's program. They result, however, in program logi, far more complicated than
either reference plane method, and more significantly, the requirement for two-parameter fits at tile base points.
At the present time this requirement appears to be :he single most diffi..ult problem in three-dimensional flow. As
long as the flow remains reasonablý uniform both work well, however, for many c.onfigurations, for example cones
at angle of attack, slab delta wings. etc.. the flow does not remain uniform, even over the small surface being fitted.
This "warped" surface gives rise to bad base point data and results in eventual failures, generally due to pressure
oscillation In attempts to avoid this problem both programs make use of "averaging'* techniques. Powers passes
back four bicharacteristics, using the foLur resulting eypressions in three sets of three to calculate the three unknowvrs.
Tile resultant unknowns are then averaged, ill some cases with certain combinations weighted, to obtain the final
result Strom actually passes back nine bichar,,teristics and solves them as three groups of three ror the unknownvts,
also averaging the results.

Both these techniques appear to be *smoothing" initial value plane data. When the initiil value surface is not
warped. they are adequate: thiey are not satisfactory when a warped surface occurs.

Because of the complexities of .oding characteristi, solutions and the difficulties Lmcountercd in numerical
surface fitting, efforts have been made to develop a finite differencing scheme not ticd to the phhfisical flos. One
of the most recent efforts is a program by Kutler and Lomax"S whi.h is apparently vcry, suctessful. By use of a
differencing scheme suggested by, MacCormacki" advancing through a fixed Lulcrman mesh. the programn has the
property of shock capturing Thus, given boundary Londitions as the body boundary and lthe frestreamm. shock and
expansion waves are allowed to form and decay automatically. Kutler has run the prograin on a digital nomputer
employing interac.tie graphics allowing man-mnachine interaction to .ontrol any numermcal instabilities that eolve.
The program does have drawbac ks, the grid used is Josely related to the body shape as in Figure IV-8. requiring
that the program be. in effect, rewritten for eaihl different shape to be examuned. The mesults difer slightl% depend-
ing on the direction the shock is moving in the grid and whether forward or backward difTerencT:, ,ite being taken.
Finally. it cannot supply a precise location or intensities of shocks.

IV-4 UNSTEADY SOLUTIONS

One of the problems encountered in any steady flow solution is tile variable nature of the equations that must
be solved Thus several different techniqUics haVe to be used in ,anous portions of the body to handle the subsonic.
transonic and supersonic flow. In addition, if spatial charactcrnst,.s are being used and the flow becomes subsonic
in the af:erbody or supersonic region, or encounters a sh '-. the hyperboli, equations cease to be valid, resulting in
failure in tile numencal program. To circumvent this pr an., steady solution ,.ain be obtained by Litilihing unsteady
techiiques and allowing the time to become large Fo the flow has effect•ely reahied a steady-state condition.
Obviously, such techniques are applicable to unsteady problems which may have to be solved alo.

The addition of time to the basi, system of equations to be solved results in a sys,'em that is everywhere hy per-
bolic in time, Two choices are again available for solving the resutting set, making use of thie chara.mceristmc property,
of the equations in the time plane and some finite difference scheme based on the coordinate grid.



7-38

A characteristic method for equations in four independent variables ha, been desnribed by Roesner" 711c
descrnption of this tehlnique in geometnc form is obviously diffit.cult, however hlic. matrix equations tused are straight-
forward. 'IALc tetrahedial characteristic surface network is the basis of this schenme. l•ach new point is located by
the intersection of three planes extended in the *tinie-like" dirvch.in from lines connecting thtd three point. on thre
"'space-hke" surface. Bichara.tenstics are the lines of tangen.-y between these planes and the Lhara.iteristic conoid
from the new point. Two choices are available. keepiiag the initial value points constant and allowing the new
points to fall at various times or forLing all new points to lie on a Jonstant time plane and hiterpolating in the
initial value surface for base point data. Roesner chooscs the former ,course with the argument that in this inanner
only one interpolation need be made and that made at the c.onclusion of the process when ti:ui.,s large (i e.
properties are relatively uncharging at a point). This tehinlquc is reported to have. bLen used in the thrce-diininsional
flow field. A major advantage o- the system •s the us..e of fixed base pouuts. thus eliminating the requirement for
much ntcmpoilaton. The sstem is tom.tsrdined to regions noi hauing imbd lcd di •fttinltiAs thus ,iolating one of
the basic reaons for going to unsteady solutions.

Roesner states that by it., very nature the tecLhniqueC c.annot Violate the (1 L stability criteria Because it is in
four-space. it is diffil.ult gcornetnically to show that this is indeed the, ase. lie doe( , point Ouht that In each problem
one must balance the requirement for acc..uraty with the storage capact) of the -onhI .iting mnachinle and the step
size in the time plane tand consequently the running time of the problem)

There have probably been more uasteady solutions suggested utiltizng a .urvilicnar .oordinate system based onl
the body and shock tsimilar to the steady finite differenc system) wath lihe finite differencing done in the time
plane. While the ,oordiidte transforn is not striughttforward in all ,as... in miost practtital cses it c.an be accompllshed
with a minimum ol effort and tle resulting set of equations do,-, lend tt.lf to straightforward machine work. For
the most part such programs utilize L.,x-Wendroff2 differen•cs or a variation thereof. ]'he best known published
example of this type is the work of Moretti and Abbott" althtligh there arc ntinwrous internal publiatiois d&csribing
schemes of this type.

The primary advantage of this s•ysten is the extreme ease of prepar:ng the ma•ihmne programn for th: calculation
and the speed with which the individual calculations -,an be ,ompleted on the oomputing machine. The choice of
utilizing a shock capturing approac.h or tile sharp shock tetchnique is available, the chliot.e of inplicit or explicit
differencing is also available, although almost all choose an miplicit diflerncining stlichme. It Is a, cry promising
technique.

It doe,, however, Lave drawbaks. First. a,! of the poinlts in the flow field for which cal,.ulations are to be
done must be specified at tile stait of tCie acahzilatitn with all the initial data gi%_i These points are all allowed to
relax simultaneously to a steady-state solution. BcLautse these points must all move lorward in time together. the
steepest gradient in the flow field tontrOi, the step size for the entire flow fild. lluis effcti•.vely means that for
practical three-dimensional problems. tilt i Limber ot flow field points required can tax the capacity of the largest
computers and the time required to make ti., tlemendtuti> number of ,calculations nctcssary to rea.bi a steady state
is large even on the fastest tomputers. This is a pamtmiu.laiil %exing problcin n hecn the bodl is large and suspected
steep gradients q," forcing closely spaced flow fie.d points to sup-ly the necesiary detail.

There Is one final proble.n commnon to all utrste.ld) solutions that should be .onstdcred. TI'l basi, assumption
is that the variable, or vanables. used to identify thlc steady-statc c.ondition is approaching that condition along a
steep gradient so that when the change in the ,alue of tile vanable is less than some prcdletermined value during a
time step. it can be said that the solution is rcachled. Unfortunately. this is not known in gcnical at the beginning
of the oroblem. It is entirely possible that the krradient is sufficiently shallow that the nuncric.al a, clcracy limit
imposed by the computing machine cannot detect the slope.

IV-5 BOUNDARY-LAYER ANALYSIS

Because of the c-umplexity of thrc,.-dmrrn.imnil boundarý-laycr theory. the most popular approa.h until recently
was a quasi-two-dimensional c.alculation Gbtant:d by asulmlng small cross flow. T'heic are two major drawbacks to
this approach. First, for many shapes of prac.tic.al inter.st, the cross flow is not small, moreover, even when cross
flow is small, the cross flow derivatives, whih are neglected in small cross flow theory, are mroi small It has also
been suggested that the term .ottaining the cross flow derivative is i dominating tern affecting three-dimensional
boundary-layer separations.

In the second place, sm.lhl .ross flow al,.ulaticns, in general, violate tht influen.e principle suggcsted by Raetz
and Der. A zone of influence is formWd beCtause a diturbance is .onvetted at flow velocity along the streamlines
In general the streamline is curved apid the c-entrifugal foru.c is balaneti by the cross flow pressure gradient Because
the pressure is constant ac ross the boundary layer while tl.c vi loý. iy varie., the flow angle must be varied to maintain
the same centrifugal force. Thus resul's in an upstranm wedge whic.h forms the .-one of dependence and a downstream
wedge which is the 7one of influence, as shown in Figure IV-iO.
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5. Several r(ccent investigators have. however, developed three-dim~nsional boundary -lay er tehlniques" 3 All
or' theCSL techniques are f~nite difterence medhod. Der'si" being ifl explitit finile: differvii, ,while Hill. lvwyer and
Wang"" 2 have used impkcit schiieme of the Crank-Nicholson typc:.

Thle method suW_-stkd by Raetz and D~r and the method of Wang will be dis, ussed hni-fly to %how probikii1
encountered.

Figure IV 9 shows the five boundaries required by Der's boundary-layer stlchme. body stirfaLC. thle in1VIS~id-
viscid interface, two si,', boundaries and an initial value boundary. The viscijd-invisc id boundary Londitiuns are
supplied by an inviscid ~akulation .'iid Include pressure *md,'or templleraiture distribution plus l~ieeLot vet:Lors
These call be approximated by Newtonian theory for the initial try in the lDer program

The body , onditions are normally defincd as. for example the bod% geometli ., wall temperature and boundary
layer suction or injectiun. Side .onditiLcns arc normally spe.-ifkod by .hoosing ,~ pliao ol sy ine ctry. for example.
the top and bottom centerline. The initial value sirfLCe is in general uinkinown. This %lirf ace Lan be found by
approximating the surface. then iterating until thle ins isid and wall boundary .ondition% are satisfied.

Raetz and Der define anl arbitrary. orthogonal grid comiposed of cells At x ~Aý x Ill where t is the down-
stream coordinate, ý' is the latkral c oordinate and ij the normal to thle body surla.ce as shown inl Figure IV- I I
Normally Aý and At? are chosenI si, as to be equal. 1-lowcser. ini order to obtlain stability. Der"' found that At
must be much less than Aý' . Der cites an approximation in the finite differcuc1ing equlation ,is thle reason for this.
Thle error introduced by the approximnationl is

ýA7)\ at2

While this is no doubt true, a more physical, if not better. argumeci t ..in be found. Remembering thle /cne of
dependence and the (1-L trnteria. we see thiat, for larg~ ,os .tow h itnebtenllsms esalt
ensure the differenee equations do indeed mneet the (EL ~.ritcrij. There v.ai, be no assura,mce of stability if thle
condition is not met. It Should also be v'oted here that. ,~s pominted out by NWang 2l. thle iinstraint At ver), much
less than Aý doe% not guarantee the CFL criteria will be mie' at each plane.

One unsolved probicim in three-dimensional flovk is the loa~tion o1 separated region%. Der numnerically dJ,'les
the ipproximate Itne separation as the line dividinig regions ut positive aind ne~g~tmsc longitudinal wall shecar. Thu..
when the longitudinal wall shecar be.omnes ivro or negative. the flow is assumecd !o have scparatcd and no furth-
calculations are made along th~it longitudinal coordinate.

Der has published resumlts for boundary layers onl ai 150 spherCconeC at angle of att.Ick6 . a deltai wmiig with
elliptical cro-,s section and a 3 .4.S ellipsoid".' It must be noted that thie solutions obtained arc no0t completecly
satisfactory and solutions have not been obtained for all .ases .ittei,)ted. Iloweser. it maiy he due to poor
inviscidl-viscid interface condition., (specifically. the Newtonian pressure distribution).

Wang 25 attempts to avoidt many of the problems enc ountered by Der by choosing a streamline c oordinate
system as shown in Figure IV- 12 and an implicit Militc differen~ing tec.hnique. The selectlion o1 .i streamillmn
coordinate system adds a major .omplitation to the nuniericail L01mpuLtltn. butl it does allow thle CFL k.iterma
to be met at evcry step, regardless of c.ross flow. V% ang also riports that his tec.hnique corrictl% handle:s %Ire altwisc
vortices embedded in the boundary layer. By using a two-step finite dmffecrcnc~ing schtmc1. hie rcqulires boundary
conditions at a body surfatc, the movisc id-vescmd intcrfa,mc and two succe.ssiNe eqjumpotential lilies. N~ote that a sy-in-
metry plane is no longer required. Techniques are available to obtain thle initial value linies.

Be~ausc of the stability of the Crank-Nicholson finite differec~ling. thet stcp sizes reported by Wang arc relatively
large, particularly in comparison with D~er's explicit method which requires a very small step siic.

IHow succe-ssful Wang's method will be over a general 'uody. for example am slab delta, remains to b, seen, lie is
still faced with two of the dtfficulties ercotintcred by Der and oth~rs. As yet thcre is no ins IScid solution available
to suipply i.-viscid edgeW conditions for the boundary layer. There is also no good method to locate separalhon
Studies such as those of Wang may indeed mmprovc thlt numecrical undcr-standmng of m paratmoii. but thie i.1vis%.1d edge
conditions must await the development of better inviscid calculations.

In suimmery'. significant improvem,,nts in th-ce-dimniosional boundary laycrs mus~t await mmiproseme1.'t.% in the
inviscid calculations so accurate edge conditions can be established.
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SECTION V - THE ASSET PROGRAM:
PROBLEMS OF FLIGHT DATA REDUCTION

Early in the space program the Air Force Flight Dynamics Laboratory was evolvil grams to employ aero-
dynamic lift during the entry process. Such studies were initiated in 1958 through both aialytiz and experimental
studies of generahzed delta wing configurations. These studies were not co,,l,ned to thi, area of aerodynamics alone
but involved all disciplines necessary to configure and design lifting spacecraft. These programs, while obviorily
influenced by early Dyna Soar research problems, were distinct in their goals and concepts.

In this same time period a research oriented booster program was initated under NASA auspices and entitled
SCOUT. The success of SCOUT as a NASA booster and the adaptation of SCOUT by tl'' Air Force to research
programs gave our Laboiatory an available tool to employ in atmospheritc experiments with subseale aerodynamic
configurations. The availability of the SCOUT booster system coupled with the importance which w'is placed on
duplicating the true environment through atmospheri- experiments to all disciplines was the key to the initiation of
the A.SET program.

Research studies on the preliminary design and operational feasibdily of such a configuration were conducted
both internally within the Air Force FI-ght Dynamk•s, Laboratory and under contracts. Such studies were unidiscipli-"
in nature stressing either aeromechanics or structures but all studies were constrained by the practical limitations of
the BLUE SCOUT* system as follows:

A maximum weight spacecraft of roughly 700 lb.

A maximum surface area of 10 ft2 .

Figures V-I and V-2 indicate proposed configurations at this stage of development. Of particular nete is ,'le
lower surface keel angle - a feature of early hypersonic delta-wing design to assure directional stability

Late in 1960 the individual program goals typifying earlier studies were merged into a single program which
would evaluate aerodynamiLs, structures, and aerothermoelasticity of lifting spacecraft throught flight test This
combined approach integrated the expenmental objec.tites of all earlier programs into a single interrelated system
and predated the contract with McDonnell Aircraft Corp. to perform the program known as ASSET The contract
with McDonnell was initiated in 1961 and was successfully concluded in 1966.

The name ASSET is derived from Aerothermodynanmi./Elastic Structural Systems Enmironmental Tests which
was the program goal. In the present lecture the problems inmoved and methods of data acquisition and evalua
tion will be outlined prefaced by this short introduction to the projeict. Program results are unfcrtunately classified
and cannot be discussied.

Figure V-3 indicates the final ASSET configuration differing from previous d!esigns in that a flat lower surfacc
was employed and a larger equipment bay was tmnoroorated. The configuration was statically stable at trim angle of
attack and employed reaction cotrols to maintain staoihty about that point. Aerodynamic control surfaces were
not employed.

The configuration hleat shield was constructed of refra,.tory metal panels insulated from the load-bearing structure
Leading edges were constructed of graphite and the nose cap of zirconia rod.

One immediate result of the fixed planform area constraint for the final flight vehicle. 14 ft2 , and the physical

temperature himits of the nose cap, 4000'F, was that the design flight attitude of the configuration was somewhat
higher than desirable and this was aggravated by inevitable inreases in vehicle weight which further increased the
flight angle of attack.

From ,ection I recall that functionally the stagnation point heat flux is given as

a Q(V.) R-12S~LC,.AJ'

For the ASSET design at its design velocity (VMAX)

a (W/('LA R,)"2 •

As the planform area was fixed and as the available materials limit the nose heating, i.e. 4.,/R, Const and
A = Const. . a change in weight, W . must be balanced by ail increase in lift coefficient

_(4V'/Ro)A --- const a W/CLA

Thu SCOUT booster was later replaced by Thor boosters allowing additional payload weight and planion area
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which increases the vehicle angle of attack

CL = K sin2a cosa

In such a design process the aerodynamic contours are firmed up much faster than the vehicle weight and for
such a res"arch mission, the vehicle total weight is highly variable due to the experimental nature of the configuration
and paylvad so that large weight growth is not uncommon.

Increasing the conFiguration angle of attack reduces the stagnatiun flux but increase,; the heating to other body
locations. The severity of such heating must be viewed not in absolute terms but li, relation to the thermal potential
of selected or available heat shield materials.

As a result, most heat slueld panels as well as the nose were thermally stressed to their design lin::s by tile
configuration, wnich was flown at wing loudings tip to 88 Ib/ttJ.

Data were generated from flights through cnboard recording and both real time and dtLlayed playba k telemetry
95 channels of test data were recorded during the flight which ineludeJ 35 lhannels of surface pressure and 42 channels
of surface temperature data. Figures V-4 and V-5 indicate gage placement and gage type emnployed on the ASSET
configurations,

While the pressure data were easily generated with no particular acquisition or evaluation problems, the thermal
data posed several interesting problems both in acquisitioki and at interpretation which may be of interest to others
contemplating such flight programs.

Due to the multiplihcy ti' technical purposes for :he kSSET flight test program. techniques for instrumentation
employed for rocket propelled free flight models by the Langicy Reseaich ('enter' were not appropriate. As opposed
to the short flight durations of the NASA probes., of the order of seconds, the ASSET flight ouration was of tile
order of 10O0 seconds. In place of a highly transient flight environmen! where copper o. inconel (steel) skin material
was emplyed together with spot-welded thin gage chromelialumel thermocouples, material tests on high temperature
re-radiative refractory metal panels were conducted and temperature levels approached radiation equilibrium which
required tungsten thermocouples heavily sheathed against oxidation. Finall,. in place of thin and idealied aero-
dynamic skins, actual spacecraft structures were employed. Figure V-6 indicates a cross section of such a structural
arrangement including the refractory metal heat shield panels an.d subsurface insulation blankets.

Data reduction in such an enviroimient was both complex and expensive. The major steps in such reduction
were as follows.

1. Data smoothing to niunimiie transmnit ed nolst and assure data qtiahti ol the transmitted temperatures
In this step. data tapes from several source% covering various phase% of tile flight were assembled into a
single and unified record.

2. Generate a thermal model* for each thermocouple location representing all possible hex.: paths through
the strictture and modes of heat transfer.

3. To evaluate heat transfer rates from temperature data through the tinlewie satislfaction of the thermal
models and boundary cunditions.

4. To rondimensionalize the resulting iterated heating rate data for data correlations.

Obviouslv item 3 was the most complex part of the reduction and required L.irge amounts of computer time
to complete.

LooKing in greater detail at tills facet of the data reduttion thle fllowing problem ;rcas were found itmpi,,rtant

I. All :emperature histories were nmeaured below the mold line.

2. In most instances the heat sink caused by tile mass of the thermo,:ouple and its sheath was significant

3. Thermal resistance between the thlermovoutile and struLture due to mech,•nical a1'tachintents of thermo-
couples. particularly during larg,: temperature transients, was signific;intJ

4. Surface emitttanc and material properties of various heat shield panel& varied with temperature and required
specitih evaluationt.

5. The structure was non-homogeneous and was complex.

6. Fhermal radiation was significant both externally and in many caes within the structure

"The thermal model is a mathematical description of file physical configurailio dewcribimg ihe :aflous wodes of heat iransfer amd
temperature response of elemental volumes of material.

K "!" Surface enilttanec data was prntarily important throughotiut the g.ding fimgili. however. ,malen.al propcrties *ind contact resittai ke
S data were most important during rzpid transients. Particular emphasis was placed on assuring goodl contact duz it) the imuechniil
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Using the transmitted timewise temperature data, surface heat flux was generated by assuming a heat flux and
comparing the alculated temperature response of a subsurface point or points with temperature measured at that
point. The assumed surface heat flux w'as then corrected by successive iterations until agreement was reached.

The resultant aerodynam', heating data was cf a generally acceptable quality during the glide portion of flight,
however, the boost phase of the flight generated poor data due to low gage output at low surface temperature,
thermal lags in the system and rapid aerodynamic flight tranbients. Of particular interest was the millivolt output
of various thermocouples. Relative to that of a chromel/alumel thermocouple it 1500°F, the output of the
tungoten-5• reniun,'tungsten-26C• renium thermocouple was only 43% and that of platimum/,plat irum-lO% rhodium

- thermo.ouple was only 22". Of course .hromel/alumel thcrmocouples are not usable at thesc, higher temperatures
where glide data were acquired but even at these temperatures the output of the tungsten thermocouple was only
887, of the chromel thermociuple at ! 500°F and the platinum thermocouple was only 54%. Clearly then, although
high temperature measurements Lan be made, the relative error is high due to the low gage output (mV,'deg) and
high temperature data are generated at the expense of low temperature boost data.

The outhined procedures employed in the ASSET flight were complex, difficult and yielded data with some
potcntla! errors It is of some interest to note that little advancle has b,-en made in sen.or design in the intnrvening
years since ASSET. Flights today of vehicles like ASSET would still rely on high temperature thermocouples to
measure iubmold line Lemperatures and infer heat flux. Wnile improvements have been made in the thermal mass
"of the thermocoupie system and in the telemetering pro.ess, we must still go through the formalism of constructing

* a complex thermal model fo. cac, gage. Error build-up from the transmission of temperature and the relationship
that h-ating rate is proportiona to the fourth power of the temperature is still the fundamental problem. Clearly
there is a need for new forms of heat flux sensors to transmit heating rate directly and circumvent these problems.

SECTION V - REFERENCE
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LENGTH 68.82 INCHES
SPAN 54. 88 I NCHES
HEI GHT 32. 79 INCHES
WING SWEEP 70 DEGREES (TRUE)
WING AREA 14 SQUARE FEET
NOSE TIP RADIUS 3 INCHES
LEADING EDGE RADIUS 2 INCHES
AVERAGE WEIGHT

AEROTHERMOUYMLAMIC
STRUCTURE VEHICLE 1130 POUNDS

AEROTHERMOELASTIC
VEHICLE 1225 POUNDS

i0 '
ILI

S-F- A

Fig.V-3 Finial ASSET vehilcl configuration
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SECTION VI - GRGUND TEST FACILITIES

VI-I INTRODUCrION

Hypersonic wind-tunnel nacillties are indispensable tools in any .onfiguration development program. Frum a
des~gn standpoint the configuratiozis arc too complex to be amenable to -ompletv- evaluation through present
analytical approaches, which are mainly a~ialogics to the actual flow situation based upon a.. understanding of the
pnmary flow feature. More complete analytic approa.hes are in an embryonic stage of d:.velopment with practi:al
applicability still several years off.

,ks wind tunnels serve many functions in engineering, it is essential at the start to delineate those elements of
grounu test facilities whi.h will be stressed in the present dis.ussion. Specifically, the discussion will center on the
application of ground test fac.hties to ,,erodynamic and aerodynamic-heating problems and will not consider such
areas as materials response and strut.tural duplication testing. Secondly. I will confine m) remarks to the application
of wind tunnels to configuration evaluation as opposed to more basic investigations of flow phenomena.

A general discussion of ground facilities and their problems and apphi.ations must also consider the classes and
functions of proposed veclem.ls to be evaluated. In general there are two lasses of interrelated configurations. (I) the
hypersonic aircraft as an evolutionary development of classical aircraft design, and (2) the lifting entry vehicle The
hyperson-c aircraft clearly will be a large and complex configuration of the order of 300 ft long which will possess
many flo v-field interactions and require detailed localized investigation. The lifting enir) vehicle will also tend to
be large as in the case of recently discussed space shuttle designsi ai,d in general this tlass of configurations will be
of the order of 150 ft long. The resultant unit Reynolds numbers of such con~gurations are shown in Figures VI-I
and VI-2 as a function of flight parameters.

Based upon the assumed nature of these configurations, the question arises how can such configurat:ons be

adequately tested? And perhaps more basic yet is what constitutes an adequate test?

In that context, we have three primary variables to evaluate with respect to flight simulation

I. Mach number,

2. Reynolds number, and

3. Flow enthalpy.

In addition to these there is one interesting and yet only implied variable that will permeate tOis entire disc.ssion
model scale.

It is obvious that independently each of these variables can be evaluated to a ,eriain extent but togtlh-'r the
total duplication of flight is not only difficult but of questionable merit.

Let us start by evaluating our ability to generate high Reynolds number fkL.w at high M.,,.h nuiabers. Figure VI-3
indicates the -orrespondirj state of the art for operational hypersonic, facilities in the United States both at the
present time and during the Dvna Soar duvelopmunt program (shown urder the .roshat-ied c.uw, Also %hown in
this figure is the current Rocket Sled c-apabiht. at SANDIA' and the various tunnel test section Jiaiiieicrs av.1able
Rocket sleds, of whlch the SANDIA sled is typical, will not be further considered as ttst tools within the context "
aerodynamic testing of configurations due to the following practical limitations:

I. Sled modei dynamics arc very important, i.e. the model lift forces in co..ibination with the sled must be
balanced over the entire speed region to avoid gouging of tLe rails by the sled.

2. Model we-ghts arc restricted through propulsion requirements. 1lhe highest mo2 wcght dis•cussed was

300 lb.

3. Instrumentation is severely limited. SANDIA has "flown" an 8-ch,i-nel telemetry system to date.

4. Model umeovery at Mach numbers greater than 6 is questionable.

5, Full-scale heating to partial scale models evwn for short duraions would c.ause a senous and expensive
:molel construction problem.

Thus while I have 5hown the data acqnisition point for --ompanson, the potenti.a at present for such devices
appears to be in the development :esttng of new hardware rather than in researc.h testing of new configurations
Through a review of failitihs in gunrtir-g this figure, it was noted that in genera; high Rcnolds number simulation
has been a~hiaved through the use of rcativeyl small scalc nozzles and high pressurc driver se.tions Also. the
lacUlities are imp;ulsi in duration Fin.lly, the peak Reynolds ,iimber has been a.hieved at a condit'jn of minimam
Sflow energy ecessary to avoid liquefa,.ion. This is due to the relationship between Reynolds no.nbcr and supply
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The conflict in simultai eOusl, achieing both high Reynolds liumbers and high-flow energy is thus clearly
apparent.

High Reynolds numbers ,ire important from two points of view. (I) the extrapolation of aerodynamic data to
flight conditions, and (2) the investigatior. of boundarý-la)er transition and the resultant turbulcnt boundary-layer
characteristics.

Due to the imnrease in the transtion Reynolds number with MacLih number, transitional and turbulent boundary-
layer investigations of such c.onfigurations are at present limited to the lower Matl number regime (M. • 10) and
for some configurations possessing unusual acrodynanui contours or lo•.ahzed interference regions to much lower
Mach numbers. This limitation may be relaxed some:what by ertif.ial boundary-Iayer tripping, however, tripping
techniques have not proven to be suc,.essful at the higher Mach numbers [M = (0)101 and in general the roughness
height c.aused by the tripping mcchanisnm nc•essary at these Mach numbers must be many times the characteristic
boundary-layer thickness ' . Sutih a largc, trip height itself will influence the aerodynamics to a consider.,ble extent
NASA studies indicate that about 35C of the total drag of a delta wing was due to drag on the tripping device alone

Higher Reynolds numbers may be generated either b3 incrLasing the supply pressure of the tunnel or by increasing
tunnel scale. Supply pressures of the order of 30,000 lb,'nn are employed today in both shock tunnels and hotshot
facilities although the longshot .oncept at VKI iacreases this substantially. Unfortunately. such an increase in total
pressure would go diretly into raising the unit Re5 nolds number of the facility which in turn would increase the
dynamic pressure of the flow anid limit tests of slender lifting configurations through increasing the sting to model
diameter past the point where one would interat on th. other. Figure VI-4 indicates the practical limit for high unit
Reynolds iiumber testing near 3 x 10' per foot for in arbitrary ratio of sting diameter to model length based upon
current materials at a typic-al design test point of Mach 10 and a length Reynolds number of 200x 10 " The cross-
hatched area indicates a feasible test area extending from full duplication of flight Reynolds number (top line) to
turbulent flow occurring oicr the aft two thirds of the model. Extending this test limit, a sizable portion of our
present test capability is currently utiasa.i,,ble for ,onfigurabmon testing, as shown in Figure VI-5. due tco the potential
interaction of the sting with the model, In addition, this tc.hnique would drive tie unit Reynolds number still
further from flight -.onditions. %ielding turthc.r uncertaintics in suc.h arcas as the cffe,.t of unit Rey nolds number on
transition.

The remaining direLtiCn a,,ailabie. whlic.h admittedly requires the large%,s harlware expt.nditure. is the more
direc•t method of imnreasing tunnel ,,ak and operating at moderate unit Reynolds nuumbers. Sulh a facility concept
would allow its to understand d.tails of the flow about large hypcrsoni,. .raft with models of the order of 10 ft in
lcngth while operating at unit Reynolds numbers of the order of 10' per foot.

The discus.mun to this pomnt haa .onL0m'tratd on min:ma! cinergy iacilmties to maximize Reynolds number Let
us now discuss the situation as flo, cnerg., is increased to free flight values. As we increase flow energy wke must
consider its effects .)n. I I ) our ability to generate high pressure air, (2) fundamental limitation of throat hcatnng.
(3) run durations, and (4) modei survivability.

From the previous discussion recall the relation

Re IP, C ,qml
ft V_

so that the supply pressure, P0 . incre,,es ais T" or as t]" to maintain a required unit Reynolds number. As
facilities are near the pra,.t;,cal state uf th,. art in driner picssurvs it must bC conc.luded that new, technology wouldbe required to generate thc substamntialtý higher pressures perhaps 200.000 lb'in: nec.essary to generate high

enthalpy high Reynolds number d ita. Figure V:-6 mid!c.at'.% thc. irflucr.ce of inrcrasning the flow enthalpy from near
liquefaction to flight duphliation on tomnnl Stlppl ,.oilidtons and mod,.l heating rates for a noderate test point of
Mach 10 and a unit Reynolds number of 10' per foot

VI-2 THROAT HEATING

In any facility te,.liniclue whlih ,dds energy to low ,,,lo•.ty air flow prior to c\panding thc flow through a
sonic throat, a limitation will occt.ur when neat tianfe. to t1W no,,zl throamt i,. suffic.iently high to cause throat
melting. Studies by Vassallo and No\, lafi mnducate t!, exisltn.c of defir.tc iimits on the enthalpý and pressure of
a high performance reservoir. I lie gouriung equaisin for the heating of ihe throat of in impulse facility is
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Enmploying a tungten throat. which was shu•n to be the most desirable, a representative throat heating limit
line as a function of enthalpy and pressure in the reservcir Lan be shown in Figure VI-7. The limit line of course
becomes more restrictive as the test duration inL.reases and to a lesser "*xtent as the throat diameter varies.

VI-3 NOZZLE NONEQUILIBRIUM

The lack of an equilibrium airflow expansion is letrimeital !o an) operational facility as it is difficult to
understand the tunnel test section conditions, as eaj• run must be made with a test section flow calibration or
rel) on anal. tic estimates of the expansion process and as the instrumentation required to measure static density
and temperdturL Is cumplex and not conducive to production testing. Finally. if one Lan evaluate test section
properties, the noncquilibrium flow field over a complex three-dimensional shape must also be evaluated and
contrasted with the flight Lase which, in general, will be much different. As a tesult it appears reasonable to circum-
vent suc.h problems and thus operate in equilibrium airflow test setion. StudiLs have shown that significant enthlpy
remains frozen for flow entropy levels (SR) greater than 3 1. The resulting limit line as a function of reservoir
enthalpy and pressure is shown in Figure VI-7.

VI-4 RUN DURATION

The useful run duration from shock tunnel facihities operating over a wide range of shock Mach numbers which
also relates total flow temperature is shown in Figure VI-8. Gun tunnel and hotshot facilities can, of course, generate
much longer test durations but at substantially low flow energy levels. Shock tube. generate comparable flow test
times at shock Mach numbers greater than 10.

VI-5 MODEL SURVIVABILITY

Increasing the :otal pressure and total enthalpy in an attempt to more closely duplihate free-flight conditions
raises man) questions of model survivabilit). icating rates on wind-tunnel models in today•s high Re)nolds number
tunnels are alread) many times higher than in flight, and it is .nly the ver) short tunnel durations which allow us
to employ easily formed materials. In spite of this. there is unavoidable long-term damage due to scouring of the
model by foreign materials and significant gage loss through thennal effects. A significant increase in flow enthalpy
could easily introduce new problems in model design. fabrication costs. and test feasibility.

From the foregoing discussion it is apparent that it will be diffic.ult cnot.gh to evaluate transitional and turbulent
heating on hypersoni, aircraft without :he added .omplcxity of cnthalpy simulation. Whereas high Re)nolds number
testing wvill require new hardwarc but existing technology cilidalpy simulation in addition to Reynolds number
simulation will require major state of tile art advancs in sc%-ral areas of facility with questionable near-term success.

VI-6 INSTRUMENTATION

Facilities are only as good as the instrumer.tation available to extract Information from them. It is therefore
important to spend some time ealu•ting what can be accomplish,.d in the facilities we have discussed. Recall that
suich facilities are impulse in duration or at best operate for the order of I scond. Data will geaerally be required
to validate over 11 forces and moments to the ,.onfiguration as well a.. localized pressure and heat transfer. Our
discussion wi!l -enter about the folluwing points ( I ) how do Instrumentation requirements affeLt the facility with
regard to fin daration and model .tale? t2) what non-.lassical instnimentatiun techniques are required to supple-
ment evolutionary and available instrumentation?

VI-6.1 Force Data

rorce and moment data in impulsc facilities must be measured by an accelcrallon .ompensated balance. The
omplexity of thl.- bal.,ncc and the need for balin.ce -.omipactnk:ss has ini.rc.acd wit'i the evaltiat~on of higher fineness

ratio configurations and v%:th the increased load ranges for high Rcynolds number testing. ru date. acceleration
coompensated hal.mnces have been designed on the premise that ti s tcst model heing c aluated vibraitcs as a r.gid bod,.
Slender bodies and, or largc models tend to genrate ,ibratioi,, vitlm th.c ,od, yiclding impcrfc * inc rtia compensa
tion. For shock tunncLS. a minimum frequency of roughly 1000 liz can be tolerated and this limits the model scale
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to something of the order of 18 in. for model slenderness ratio, L/D 10. Increasing the test duration hy an
order of magnitude, however, allows one to select a minimum frequency of the order of 200 and 300 I/ and leads

4 to model lengths of 60 in. with an L/D = 10 . Clearly. the short duration shock tunnel flow severely limits model
scale. Figure VI-9 indicates the largest configuration model eýaluated in tile Cornell Aeronautical Laboratory shock
tunnel. This 24-in. model, a hypersomn transport i onfiguration, was tested at Mach 8 to determine high Reynolds
number-turbulent flow effects on vehitlc aerodynamics. The full scale version of this model would be about 300 ft
long.

VI-6.2 Pressure Tests

The generation of pressure data in any impulse facility requires the location of sensing transducers within the
model and a minimization of tubulation length to the measurement point. Maximizing the number of measurements
to assure data coverage and adequate measurements in the relatively thin regions caused by aerodynamic surfaces
again requires large model scale.

VI-6.3 Heat Transfer Tests

Unlike the generation of pressure data, the thermal sensor employed for point measurements of aerodynamic
heating is capable of some minimization. Figore VI-1O indicates the relative size of sensors as a function of the test
flow duration. As the sensor must contain thc imposed thermal pulse, its size will increase somewhat as the test
duration in.reases. The Cornell-developed thin film gage is obviot-!y quite compact and has been proven successful
to very high heating rates. Therefore from the standpoint of gage size, the application of shock tunnels to heat
transfer testing appears desu,.ble. This, however, may be deceptive as the time to stabilize the flow over the model
may be longer than the available test duration. Figure VI-I I indicates data on gage response in a shock tunnel on a
two-foot model having a compressively deflected flap and flow separation ahead of the flap. The data at gage 2 near
the nose stabilized in the order of I msec, however, data further back on the model, gage 25, reqt, -ed almost 3 msec
to stabilize and when fl,,w separation was present, over 3 msec were necessary to stabilize the flow. Nagel and
Thomas' indicate through a simplified analysis that flow stabilization time increases for both larger models and
higher Reynolds number flows. Finally. a recent article by Davies and Bernstein" indicates that in a turbulent
boundary-layer flow, the model boundary layer should not be considered steady until the starting shock is at least
one chord downstream of the model trailing edgt.. These studies tend to caution one to consider the use of longer
duration facilities for the generation of data on large models particularly at turbulent flow conditions.

VI-6.4 Flow Survey Testing

For both the generation of pressure and more importantly heat transfer data, the researcher will also be faced
with the fact that understanding of complex interaction regions will require an instrumentation density far in excess
of that available in such facilities or economically f.asible. It is for this reason that a new form of heat-transfer
testing will be necessary as an integral part of the experimental program to evaluate these large complex configura-

tions. The technique has many versions but it is generally classed as heat transfer survey testing. Figure Vl-12
indicates the many foirms and approximate test durations required of flow survey test techniques which are employed
today. The potential features of such techniques arm as follows:

1. Low cost model fabrication.

2. Capability of on-site configurational modification.

3. Comprehension of overall heating patterns.

4. Accuracy of technique comparab:e with that required for preliminary design.

There is a tendency to forget that at various stages of configuration development fundamentally different data
are required. It is not correct to assume that highly accurate data are always required. Early in a design program
our need is for trend data to screen approaches and select promising directions for future work. These data need

not be highly accurate but must allow economical evaluation of many configurations This trend data must give
way to more precise data as the design progresses and selective approaches are progressively narrowed Flow survey
testing serves this earlier screening function magnificently. Further. let me stress overall flow comprehension At
the AEDC facility complex we can currently generate 8000 to 10.000 heat-transfer measurenents per day' While

sensor saturation of an important area on the vehicle may be paluable and needed and can certainly be done, the

process of reconstncting the fic v patterns requires far more time than the screening of a film of paint removal or
evaluation of iso-density lines on a still photograph.

A review of Figure VI-12 indicates a survey testing technology capable of generating data in both impulse as
well as continuous flow facilities. Of particular interest in the present context is the thennographic phosphor

technique which has been successfully demonstrated in hotshot facilities'. 'Fhe thermographic phosphor technique
employs a thin coating of phosphors on a nonconductive model. The tunnel flow generates a characteristic heating
pattern which is observed through a quenching of the phosphorescence with temperature nse Rapid quenching
rates (termed thermographic). high luminosity of the phosphor and high resolution, very fast film are required to

Ua
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generate accurate data. In principle, data could be taken in shock tunnel flows [(0) 5 msec] and some progress has
been made in this area by the Cornell Aeronautical Laboratory. The data generated on film are read as lines of
constant intensity on an isodensitometer and reduced to heating rate data through a semi-infinite slab model of the
a rodynamic configuration. Figure VI-13 indicates data generated on the tail fin of a lifting body design by the
McDonnell Douglas Corporation and Figure VI-14 indicates data on a Gemini model.

For continuous flow facilities [(b) 1O sec duration] the Tempilaq technique has proven qtite successful in
generating both qualitative and quantitative data and many heat transfer investigations are presently being tonduc.ted
employing the Tempilaq coating te,-hnique exclusively. A major and general drawback to the applikation of tempera-
ture coatings in continuous tunnels is w:.c development of more suitable and higher temperature materials. The
highest temperature machinabl,: matenal (Teflon) employed to date has a 1500°F potential but most castable materials
are limited to 500 to 7000F. Further, castables have the general problem of nonrepeatable thermal propert;es which
are necessary to evaluate data output -nd they are generally brittle and fail easily during repetitive testing.

Irrespective of the heat transfer survey test technique applied in a particular tunnel situation, such testing is
and will be more necessary in the design evaluation and evolution of hypersonic aircraft and spacecraft. Not only
will it serve to define the aerodynamic heating but it will serve as a necessary adjunct to aerodynamic force and
moment tests in which the boundary layer will be composed of laminar, transitional and turbulent areas, where
instantaneous transition of the boundary layer cannot be ýtssured even with tripping devi,.es and where a knowledge
of transition will be necessary in the evaluation and extrapolation of data to free flight conditions.

VI-7 CONCLUSION

The review of facilities with regard to test durations necessary to allow meaningful measurements on models of
large hypersonic aircraft and spacecraft indicates to me the necessity to consider facilities having test durations
tiubstantially larger than presently available or currently foreseen for shock tunnels. While these fatilities have beer.
of great value in the past decade ani while they may remain useful for small scale testing, the next decades will see
greater use made of the long duration gun tunnel approach or a refinement of the hotshot conept. Further, ground
facilities will require entirely new test techniques of which the heat transfer survey testing is but a suggestion.
Finally, I feel that these facilities will operate over a considerable Mach number range at high Reynolds numbers
but at moderate enthalpy levels necessary to avoid the limits of liquefaction and real gas phenomena. Ext-ursions
into real-gas investigation- will be made in s, pplemental and highly specialized facilities such as shot.k tubes and
foreign gas flow channels.
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LECTURE 8

SOME DESIGN ASPECTS Of HYPERSONIC VEHICLES

W.L.Hankey

Hypersonic Research Laboratory, AR I
Wright-Patterson A, :B, Ohio 45433, USA

NOTATION

Symbol Description Units

ci species conce:ntration -

CA axial force cotfficient -

Cy side force coefficient -

C'.4 normal force coetficient -

C, rolling moment coefficient

Cm pitch moment coefficiem-

Cn yawing moment coefficient

Cf friction coefficient

C-, lift coefficient

CD drag coefficient

SCp pressure coefficient
or specific heat at constant pressure Btu/lb

D drag lb
or binary diffusion coefficien:

g acceleration of gravity ft/sec2

h static enthalpy ft2 /sec 2

hs total enthalpy ft2/sec 2

i unit vector in x direction -

unit vt'tor in y direction -

k unit vector in r direction -

k Newtonian modifier -

L lift lb

Le Lewis number

M Mach number

n surface outward normal

p pressure Ib/ft2

q dynamic pressure lb/ft2

t heating rate Btu/ft2 see

Re Reynolds nur.,ber
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Symbol Description Units

RE earth radius ft

S relerence planform area ft7

thrust lb
or temperature OR

t time sec

u x-componenrt of velocity ft/sec

"v y-component, of velocity ft/sec

V flight velocity ft-sec
or volume ft 3

'W weight lb

x, y, z orthogonal cocrdinate system in body axes

a angle of attack radians

angle of sideslip radians

_ flight path angle radians

. body angle radians

damping rati3

-- rvolumetric efficiency

0 shock angle radians

mean free path ft

U dynamic viscosity lb sec/ft'

p density slug/ft.

r shear stress lb/ft2

1. FLIGHT MECHANICS

In analyzing hypersonic lifting vehicles one must first examine the trajectory and flight environment. In so
doing, the influence of various design paramneters ma, be placed in the proper perspective. The equations of motion
for planar flight are listed as fo~lows'

mV = -D-mngsiny +T

mV2

"mVi = L+-cos3--mgcosy'.
RE-

Lifting bodies permit gradual descent, hence, the following assumption for path angle of y and " equal zero may
be used. Thus the last equation produces a simple algebraic relationship

L V2

W VC

where V, = gRE

Since L = 4PV 2CLS a relitionship between vei3city and density which is a function only of altitude results,

p~) 2W (I- INP (h) -- -- 2 2S~SCLV

For a constant value of W/SCL the flight corridor results. A typicai value of 100 lb/ft2 for W/SCL permits aEl comforeable reentry between the "too high" and "too hot" r~gimcs (Fig.I).
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The time of reentry may be ascertained from the first equation.

D
g9 I

This equation may be integrated for constant L/D as follows:

g LLdt.

Carrying out the integration for V = 0 at t = 0 produces

V /-gtV- = tanh -gt

VC kcL!D/

Figure I shows reentry times whidt are independent of altitude indicating that long durations (measured in hours)
are to be expected. Thermal protLction systems for these lifting vehicles, therefore, must possess long duration
capability.

Having a relationship between altitude and velocity for the flight corridor permits us to examine the r6gimes
of fluid mechanics encountered. Air may 'e treated as a continuum provided the mean free path (W) of the mole-
cules (which is the average distance traveled between collisions) is small .ompared with some characteristic dimension
of the vehicle. For standard conditions, X is 2 x 10-" ft at sea level but varies inversely with density and is one
foot at 335,000 fl altitude. Since orbital speeds are attained by this altitude and since the vehicle dimensions we
shall consider generally are larger than one foot, then continuum mechanics may be employed to predict the aero-
dynamic characteristics.

Next the condition of the boundary layer (i.e. laminar or turbulent) shall be examined. Figure 2 shows the
free stream Reynolds numnbcr based on a characteristic length of 100 feet. There is a wide variation in observed
transition Reynolds number amor, g experimenters. Hlowever, selecting a transition Reynolds number of 3 x 10'
indicates iaminar flow above 200,000 ft and turbulent conditions at lower altitudes. Therefore, both hypersonic
laminar and turbulent boundary layers must be conside-ed.

Analysis of the aerodynamic characteristics requires a knowledge of the air properties at the energy levels
associated with hypersonic flight. Air is composed of nitrogen and oxygen diatomic molecules which dissociate
into atomic species at sufficiently high energy levels. Figure 3 shows, for conditions throughout the flight corridor.
the constituent species in equilibrium air after undergoing a normal shock. Notice the small region in which ideal
gas conditions prevail. One could conclude from this that ideal gas computations are worthhlss at hypersonic speeds.
But let us examine the magnitude of the discrepancy between ideal gas and real gas calculations for surface pressure.
shear stress, and heat transfer required in v.hicle design. Figure 4 shows the normal shock pressure coefficient along
the flight corridor for equilibrium air ' and idezl air (o = 1.4). At a Mach number of 20 the difference in pressure
coefficient is orly 7T- for the stagnation point. tHencc. we conclude that even though real gas effects begin to occur
at Mach 3, only small pressure corrections result.

Examination of the Navier-Siokes equations is reouircd in order to .tudy shear and heat transfer effects.

Continuity: -p + V Ip " = 0
at

i)V
Momentum: p ) P,>;
Energy: 1 - V (P1- V) + V.4

Equation of

State- p = p(h0p)
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where 1
Ox Txy TX 7  py "

I' = stress tensor (dyadic) = [ a
7X rxt Tyz °8u•-

TX/ TY1 0Z At -p

V2

S=

For a two-dimensional boundary layer3

a a
-(pu) + (pv) 0ax ay

( au auII dp +aT
ax ay) dx ay

( ahs a.) a
p +V i = (uii+V

(Uax ay ay

where
a [k aT a

V = +pD'h ayc'
conduction diffusion of energy

and

h =1hci

hi= CpidT + h.

Therefore
ah ach aihi

ah, - hi 3T - aT
*ay aT ay 3 Y

But XCpiCi = Cp of mixture.

Hence
a-= k [(I--Le) y 4- Lek CayJ

where

Le= p_.i k

Now if Le I and I = CpT then V al = /ay which is the ideal gas result implying that the energy trans-
ferred is the same whether it is transfened by diffusion or conduction. Hence, if Lewis number is near unity

(actually it is about 1.4), then the governing equations for real gas boundary layers are identical to the ideal
equations. Thus we conclude that since Lewis number is near unity ideal gas calculations may be used to predict
approximate numerical results even though tl.e physical phenomenon represented is not appropriate. This is an
extremely useful result enabling us to use many of the convenient tables and theorits previously employed in the
supersonic rdgime.

2. HYPERSONIC AERODYNAMIC CHARACTERISTICS

To obtain the 2erodynamic characteristics, one seeks an engineering solution of the Navier-Stokes partial
differential equations derived in the previous section for boundary conditions pertinent to the geometry of the
vehicle of interest. The only part of the solut;o, required, however, is the pressure and shear stress on the
vehicle surface. Integration of these stresses over the body produces the aerodynamic forces.
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First let us examine how to do the problem right. "Exact" numerical solutions of the Navier-Stokes partial
"differential equations are possible by employing finite differences. Several investigators have accomplished this
feat. One of the most successful methods was developed by l)r John G.Trulio of Applied Theory, Inc.4 . He
computed the flow over a cylinder for a supersoni, Mach number at a low Reynolds number. The resulting map
of velocity vectors depicts the shock wave, boundary layer, separated wake and recirculation region. With the
present generation of computers, meaningful solutions are possible only for two dimensions at Reynolds numbers
less than about 100, which makes exact Navier-Stokes solutions of little practical importance in the design of
aircraft. This is caused by the fact that the Reynolds number based on step size must be of order one in order
to insure accurate, stable solutions in representing shock waves and boundary layers. Therefore since

"ReAx I

L
-= N = number of stepsAx

ReL - N.

The capacity of the computer is proportional to N2 and a grid work of about 100 x 100 utilizes the full .apacity
• -. • of today's machines.

With the rapid strides occurring in computer technology and the improvements taking place in programming,
we are not too far away from practical solutions. In the meantime, however, we must resort to sonic approxmmate
methods.

[Flow fields may be broken itp into an outer region in which viscous effects are insignificant and into an inner
region in which !he boundary layer assumptions apply. Even with these assumptions general three-dimensional
"--lutions are not yet available. However accurate t%%o-dimensional solutions are possible in both inner and outer
regiun, . rig.5) Rotational characteristic programs with imbedded shocks have been devised ' and two-dimenstonal
boundary la). olutions for compressible, laminar flows have been obtained'. For flowvs involking separation and
reattachment, boundary layer solutions cannot be superimniosed up,- :,, invis.W presbure distribution due to the
inter..:: een the £,,..r and outer reginns. These two flows must be again coupled and simultaneously solved.
Two-dimensional solutions for these interacting flows have been obtained by Lees and Reeves", Nielsen', Reyhner
and FluggeLotz' and Holden' 0. Progress in this area is encouraging but until general three-dimensional solutioas
are obtained the designer must resort to simpler and even mort, app, ,.dmate schemes.

2.1 Simplified Design Procedures

Recalling that only the pressure an,, shear stress on the surface are required and not detailed properties for the
entirc flow field then maybe something zimpler is possible. If the shock shape ,s kiiown, pressure may be precisely
determined using the extremely accurate kankine-Hugoniot shock relationships. Fi-r oblique shock waves the
relationship between shock angle and body angle is as follows:

M, sinl2O + 5sin' (0 - 65) =-'
rn ,-M(7M- sin'0- 1)

For modest angles and high Mach numbers

and
12 M sin10 - I "M In 2  - k smin' k sin 26.

P 0.61%12

Therefore, at hypersonic speeds pressure may be estimated by assuming the shock wave is tangent to the body
surface (Fig.6). The pre.sure coefficient is a function of body shape alone.

Cp = k(n -i).

f Skin friction coefficients (Cf) have been obtained by Schmidti i based on reference enthalpy techniques

for flat plates at angle of attack at various flight altitudes and velocities..
C(f =- 'f(Re,). )

Using these simple relationship., the aerodynamiL, problem becomes elementary. The lift and drag equations.
for a general shape are as follows:
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S•' L
-= § (Cp(k -n) -Cf(k -t)] dA

= [Cp(ki -n)-Cf(i -

The problem becomes only one of geometry. The normal and tangential veLtors must be determined and the
two integrals evaluated over the body. This is quite often a tedious and laborious problem, however. Two schemes
have been employed. In otte scheme the surface is broken up in a grid, the pressure and shear coefficients deter-
mined, and numerical integrations performed to ascertimn the forces. In the other method the configuration is
approximated by segments of analytical surfaces, closd form integrations pecformed, and a set of algebraic relation-
ships established for tht force coefficients. The following set of equations is an example of a typical configuration
(Fig.7) which was successfully analyzed in this manner' 3:

Nose Equations

CN -NtRkN sin a(I + cosa)
4S

SCA _ IIR~JkN (I +cos~v)A
4S 2

= xN _ zN
Cm CN CA -

CA C

CyP = -CA
COS a:

CA ZN

CIO cos a b

Ci CA x
cos~ b•

A!l derivatives and all angles are in radians.

Leading Edge Equations

These equations are for a pair of leading edge elements.

CN = (4'LEILE'\ kLEsinoa(cosAe+cosAcos c)

CA = (4RLEL kLE cos A (cos Ae + cos A cos 01)
2

XLE ZLCm CN--=- CA--c C

= 4RLs/LE) kLE-Sfn2 A cos A. (l+cosa•) 2

4 RLEILE 2LEE

C = 3 kLE sin A ( + cosN) LE sin A cos Ae(l + cosc) - E sin

r t4RL__E.ELE' +. .CLE N 2)o

.=(4R3S E kLEsinAcosAU +cosA)e (IsinA ---- cosA)

(sinAe)R = sinA cos cost3 cosA sin
L

(cot ae)R = cos A cot ct ± ----- tant3

L sin ot

ILE for one leading edge.
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Lower Surface Equatlons

CN = k ((Lm) sinar

'I
L~0.45 cos a + 4.65 sin a COS2.2 aC

CA GTO 0) (laminar)

0.048 sin (4.5a) + 0.70 - cos2"a sinl.Sa
CA =G (W) / 00 (turbulent)

L(V__VC£ 0.2

Cm = CN XL -CA zL

.t•, CA
Cy3 = -C
Cp Cos a

C/o CA zL 2 YLE" ki = 3.8

cosa b k Si 9b

CnO CA XL
cos a b

where
G• 2 1 I- m + n ]

•"G=n(i + T _ n) 1

= 0.5 laminar

10.8 turbulent

m = planform taper ratio.

Vertical Fin Equations*

,F 8RFIFkl E
"CN = cos 2 (AF + a) sin AF

3S
SSF _____-1

CA = 2kF -- (X3 cos2 
a) + 8 RFIFk cos 2(AF +a) cos AF-• 3S

C = - kF -•F (X 3 cos2ot (zF)c _ _______ Cos + E A cos2 (AF + a) sin AF +SAF]
S U 3S c

Cy- = -4kF "5 (X cos a)

Cip = -4kF (X cos O) (-)

"= 4kF -- (X cos a) Lu + L'

SF for one fin

IF for one fin.

The equations are for p rair of fins.
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2.2 Ultra-Simplitied Method

Considerable understanding and insight into the hypersonic aerodynamic characteristics of lifting vehicles can be
achieved by examining the simple Newtonian approach.

Let
CL = (ksin 2 a) cosa

and
C ('D = (k sin 2 a) sin a + CD0.

Therefore
L sill20 cos a

D sinlot 4 CDO/k

and
DL L

rhe niaximuin L/D for constant CDr) 0/k can be obtained by differentiation with respect to a . Optimum angle of
attack and maximum values of L/D are shown in Figures 8 and 9 for the above equations. Two aspects should be
noted: higher values of (LID)max are acideved at the lower angles of attack and (L/D) values much in excess of 4
are not possible due to skin friction alone.

3. STABILITY ANALYSiS

The dynamics of a vehicle must be such that the handling qualities are within the servo response capabilities of
the pilot. The short period modes are the most critical, namely the longitudinal short period mcde (pitching) and
the lateral oscillation short period mode (D)tVth roll. The equations of motion for these oscillations are as follows:

S+ W2(oc- co) =0

+ W:3= 0.

where

2 = qSc ('me

y

W• = qSb l cosco - ixll

Aerodynamic damping at hypersonic speeds is generally small because the reduced frequency (wc/V, which is a
measure of the dynamic angle of attack) is low due to V appearing in the denominator.

Pilot rated simulator studies have indicated tlhe most desirable operating conditions are when the short period
mode has the following characteristics:

f = frequency = 0.7 c/s ± 0.3

= damping ratio compared to critical = 0.7 ± 0.3.

Oscillations of this type are within his servo response characteristic's. yet the vehicle possesses satisfactory maneuver-
ability (neither too sluggish nor too sensitive). Present day aircraft attain these handling qualities either by
aerodynamic means or artificially by ' adaptive control" features. Since negligible aerodynamic damping exists
G - 0) the handling quality criteria cannot be achieved for emergency situations in which artificial augmentation is
inoperative. Zero damping implies periodic motion of constant amplitude for which the pilot must reduce any
disturbance by "out-of-phase" control modulation. Long pef'ods (P > 10 seconds) are required to effectively
accomplish this feat. Therefore a hypersonic vehicle should be designed with a low dynamical frequency which
implies neutral stability. This condition is not comfortable to fly, but is considered acceptable through flight
simulator training as long as augmentation on all channels is not simultaneously inoperative. Thus

'mo = ('no =('1 0

is a design goal.
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4. LANDING ANALYSIS

The low-speed flying, requirements impose several constraints on a hypersonic lifting vehicle. First, the vehicle
, must be able to execute a satisfactory horizontal landing and, secondly, it must possess acceptable stability.

Low-speed performance requirements are not considered as important since most of the maneuverability is accom-
plished at hypersonic speeds, although some low-speed maneuverability is a fall-out from the landing constraint.
The point is that the vehicle will probably not be designed for good low-speed performance but must aLept tile
amount available.

The method presently deemed most desirable for landing hypersonic aircraft is the "aiming point" :echniquet
used in the X-15. In this method the pilot dives the vehicle at a point on the earth's surface several thousand feet
before the runway, ther executes a flare at some predetermined altitude to a shallow glide angle, and decelerates by
increasing the angle of attack until touchdown at some preselected speed. By the use of this "Dynamic Approach"
technique, vehicles of low subsonic L/D may be safely landed. In this maneuver the highest lift coefficient is
required at touchdown. For - = 0,

(C)s
(CL)max 

qTD

The lift coefficient for low aspect ratio (AR) airfoils may be estimated by the theory of Jones

7r
CL = -ARce.2

When the last two equations are combined,

W if
t-- ;qTDc'O

For touchdown velocities less than about 200 knots and for angles of attack less than IS*,

W
< 50 lb/ft2 .

SAR

Hence the preceding relationship ' -tween wing loading and aspect ratio becomes the sii-le-t . -nimum landing
constraint.

5. OPTIMIZATION SEARCHING :ZOUT'INE

After the aerodynamic equations have been formulated, the best combination of the design parameters must
be found. Hence an automated search routine is required.

One class of multivariable optimization problem is concerned with the maximization of a function 0 (Ref.14).
This function is commonly referred to as a payoff, criterion, cost, or performance function and is of the form

0 = f(xi,...,Xj).

which may ,' subject to constraints of the form

q'i = f(X,....,Xn), i =1,2....k<j,

where the X,'s are variables which describe the system. In the case of aeronautical design the system may be a
wing, where the performance function 0 is the lift-drag ratio, and the constraints %'P are wing volume, area, etc.
The number of indeperdent design %ariables of the system n is the number of description variables j minus the
number of constrairt relations k,

n = j-k.

The optimization problem represented here is called an "ordinary" maximum-minimum problem to distinguish
it from the variational calculus problem' s

There are, in general, two broao ..,ethods of optimizing ordinary functions. The first is the classical indirect
"nmethod which involves finding the necessary conditions for a maximum or minimum. The second method is the
so called direct method which involves, as the name implies, direct numerical evaluation of the criterion function
0 and the constraint functions *'I.
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The method used for tile optimization of a particular Lunc.tion depends upon the nature of the function and
the form in whi.h information is available. The indirct method is most conveniently applied to problems in which
the algebraic form and .ontinuit) properties of the function to be optimized are known. The direct method of
optimization, on the other hand, .an be applied to a class of problems in which the strutture and the nature of the
function to be optimized are unknown. This cla-s of problems has arisen more frequently v ith the advent of the
high-speed digital computer in whiih a .omputerizcd niathematical model is used to synthesizc the actual system.

Several direct search algoritimn• (Table I) have beei combined into a single computet program called tile
Automated Engineering and Scientific. Op-imization Programs (ALSOP) (Ref. 16). The programi AESOP is indepeni-
dent of the problem being sclved. In a vehicke syntliesi, problem, the ,onMpiter program .onainin, the algorithm
for the evaluation of the vehicle performance can be linked to ALSOP to determine the optimum configuration.

TABLE I

Basic Search Algorithms Contained in Program AESOP

1. Sectioning - Succession oil one-dimensional optimization calculations Parallel to
coordinate axes. Variable~s may bL perturbed in iandom or natural order.

2. Pattern - A Ray Search in the gross direction dofined by a previous search or search

combination.

3. Magnificatiott - Straightforward magnification or diminution about the origin.

4. Steepest-Descent Search along tne weighted gradient-direction. Sever-. weighting
options available.

5. Adaptive Creeping - Search in small incremental ;tcps parallel to the coordinat- axes.
Step-size adjusted zutoinatically in the algorithm. Variables may be perturoed in
random or natural order.

6. Quadratic - Second-order mtiltivariable curve fit to the function being optimized,
followed by searcl, in direction of second-order surface optimum.

7. Daridon A Method - An attempt to achieve the advantages of second-order search
from an ordered succession of first-order (steepest-descent) searches.

8. Random Point - Function to be optimized is evaluated at a set of uniformly
distributed random points in a specified region.

9. Random Ray Search - Function is optimized by search along a sequence of random
rays having a uniformly distributed angular orientation in the mutltivariable parameter
space.

T1hree of these search options which have been most successful ii, vehicle s),ithests will be discussed below.

The random point method randomly selects a series of design points. from points %litih have uniform distribu-
tion throughout the design space. These design points are evaluated one by oe and the design point with the
highest value of the criterion function is retained. This method has an advintage 4n that its effectiveness is
independent of the shape of the response surfac.e. Fie method works as well on multimodal as on unimodal
response surfaces. One disadsantage due to thc vastness of the design space is that many points must be evaluated
before attaming a high probability that the best point selected is actually at or near the optimum. The random
method is useful durinn the early exploration of the design space when the response of the criterion function is
unknown.

Another method which is useful in the early phases of the optimumn configuration search is sectioning.

Search by stctioning is a c-i-es of one-dimensional searhes aiong the entire ray in design space parallel to each
of the coordinate axes. The ont niensional ray in design space is formed by fixing all tile search variables except
tile one oil which the search is to tc perforned. The length of the ray is determined by the tipper and lower
boand of tile design variables. The value of the variable giving the ..zxinuum performance is retained and tile
process is repeated fcr each of the remaining design variables.

The adaptiie reeper method is a form of sectioning described above. However, instead of seaching along the
entire length of the ray parallel to the coordinate axis as in th!. global search, only small perturbations are made in
one of tile mdepem,.ýent variables. Perturbation., in the independent variable a.e continued until no further improve-
ment in performance is possible. %% hen the process lias been repeated tor each independent '-ariat!e in turn,
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a creeper search cycle is completed. In the case where there is no interaction between the indepei.dent variables,
one search cycle is sufficient to locate a peak in the response surface. Usually, however, the shape of the response
surface is such that more than one search cycle is required to locate a peak.

6. OPTIMIZATION OF HYPERSONIC LIFTING BODIES

The view 'ken herein is that the primary objective of a lifting body is to enclcse a prescribed payload tvolume
requirement) with the minimum structural weight (wetted area limitation) and proda.ce the highest possible hyper-
sonic lift-to-drag ratio' ' The geometric quantity that best represents payload-to-structural weight ratio is volunietric
efficiency rl , a dimensionless volune-area ratio referenced to that of a sphere.

Olt 112 V
7 A 3/2

Thus lr < I always, being unity only for the sphere.

Besides meeting L,10 and volumetric efficiency requirements. the vehicle must be ca.- ble of being trimmed,
p•ossess adequate stability, include the effeLts of skin friction, withstand aerodynamic heating, and provide safe
rernuinal landing. To better understand the importance of certain of these constraints, three were singled out to be
examined sequentially: namely, volumetric efficiency, nose heating, and skin friction. I hese constraints were
imposed and the configuration determined which maximized hypersonic L/u).

The procedure utilized was to express a geperal closed geometric shape. by a finite number of degrees of
freedom, program the aerodynamic characteristic equations as a funtion of the geometric relationships, and employ
a numerical searching routine to find the aptimum. The details of this operatiorn are presented in the following
paragraphs.

The generalized shape (Fig. 10) was established with nine degrees of geometric freedom. This configuration is
composed of four conical and four prismoidal sections plus nose and base sections. (Lateral-directional stability
requirements dictate symmetry about the x-z plane). A Newtonian pressure distrihutiom is assumed and laminar
skin friction is considered. Integration of the pressure and shear forces produed relationships for L/D and 17
as shown in functional form.

L L (c b2  R h, bl h2  C'•

V D hIllb, R R R 'c'

b2 R. h, h2 h, AC
77-• R h h = prescribed

L1= e = prcciitied
c

"(fe prescribed

These relationships contain eight geometric ratios %,hich :nust b,-- determined through the optimizaLion procedure by
maximizing LID subject to the three constraint equations. The "adaptive creeper" searching routine was employed
to ascertain the optimum geometric values.

6.1 Results

Case I: Prescribed Volumetric Efficiency

The constraints are t fixed, e = free z.nu Cfc = 0. One of the optimiz;,d configurations is shown in
Figure I I for in L/D of four. The resuiting values of L/D are shown in Figure 12 as a function of volumetric
efficiency. (Also shown for com•parison are the X-20. ASSET and Gemini configurations). It is also interesting to
note that simple wave-ridci configurations produce about I. the LiD value for the same 17 as the optimized shapes.
These "classically" optimized configurations achieve the ultimate in hypersonic L/I) in the absence of heating,
skin frictio.n, or other constraints.

For these optimum configurations, primarily only an increase in fineness ratio (c/lh,) is needed to increase
L/D. In fact, for infinite fineness ratio (needle shaped) an. infinite L,'D iesults. Over most of the region of interest
L/D is proportional to fineness ratio as follows:

L
D II
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and also •nore fundamentally

L

Case 2: Prescribed '%,,1,,metric Efficiency and hleating Con.straints

The constraint equations are 17 = fixed, e = fixed and Cfc 0. The searching procedure was again employed
for three different values of nose bluntness (e). The optimized configurations tended to become blunted cones and
approached a finite LID limit even for a zero value of lt (Fig. 13).

SL 0.45
L- - 0.45for zero 27.
D e°'s

Case 3: Prescribed V1olumetric Efficiency and Skin Friction Constraints

The constraint equations are r? = fixed, e = 0 and Cfc = fixed. Four values of skin friction were computed
anG again a finite limit on LID occurs for zero t? (Fig. 14).

L 1 0 .4 2 1 o z

D 1.5 (4Cf)•r3  C "

This result is identical to that for a rectangular flat plate at angle of attack. The resulting optimum configurations
approach a simple wedge in the limit of small 77.

Case 4: Prescribed Volumetric Efficiency and Combined !leating and Skin Friction Constraints

The three constraint equations are -q = fi).ed. e = fixed and 'fc = fixed. For combined heating and skin
friction constraints two relative maxima appeared. One configuration resembled a blunted cone which possessed
superior L/D fo: e/Cf, > I. The other configuration was more wedge-like and was superior for e/Cfc < I .
The resulting performan,:e is shown in Figure 15.

The reason for tbe superior performance may be ascertained by examining the radio of leading edge drag to
skin friction drag. DL1E _CDhlb C

Df Cfccb Cie

The choice of the superior coitfiguration is clear when this ratio is vastly different from unity: however,
anticipated values of skin friction and nose bluntness for future systems indicate e/Cfc near one. The designer
then may choose between two drastically different geometries with nearly identical values of LID. For example,
"Figure 16 shows two optimized configurations at an 17 of 0.4. ('fc = 0.001 and e = 0.0015. The cone-like
geometry is superior since elCfe = 1.5 > I and possesses an LID of 3.63 compared to 3.61. The resulting
configurations are shown at similar scales to produce identical volumes and wetted areas. With large differences in
geometry and only a subtle difference in L/D the designer would select one de ign over the other for practical ,
constraints not considered here. Many hypersonic systems studies have been ,ndt,,'ted on the cone-like configura-
tions while the wedge-like configurations have received little attention.

6.2 Experimental Verification

To confirm the use of tie simplified mathematical flow model ,;f Newtonian pressure and elementary laminar
skin friction, an experimental force test was conducted at M z 14 n the Aerospace Research Laboratories 20 inch
hypersonic wind tunnel at WPAFB, Ohio. The model was 19 inches long and shaped as shown in Figure I!. The
experimental results are presented in Figure 17 along with the theoretical prediction. fhe excellent agreement gives
confidence in the applicability of the assumed flow model in predicting the integrated LID value.

7. OPTIMIZATION OF A HYPERSONIC CRUISE VEHICLE

Examining the Breguet range equation shows an increased potential as velocity increases.

L W,
D - sp log, Y1vvl)
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wvhere

L= W I

dW
T = - Isp

R = fVdt

The velocity term approaches infinity at satellite speed. Eowever, LID. sp , and the weight fraction generally
decrease with velocity. Answering the question of what happens to the product of these four terms at high velocities
will tell us if a hypersonic transport is feasible.

An air traffic survey' 8 shows that an attractive market is in 4,000 to 6,000 nautical mile range (Fig. 18). Since
most of the land mass and population is contained within the northern hemisphere, global range (10,000 n.mi) would
be rarely needed. Shorter ranges can be achieved adequately with the subsoni or supersonic transport, hcncc

5,500 n.nii range would be appropriate for a hypersonic transport. Figure 19 shows the time required to accomplish
this range for different speeds. Time ceases to be an important factor after about M = 8.

Fuel selection for hypersonic propulsion systems may ,oc determined by examining the following table of candi-
date fuel characteristics.

Property Heat ,I Combustion Heat Sink Density M
Btu/lb Btu/lb lb/ft3  max

Liquid H2  51.600 5100 4.4 16

Methane 21,500 1100 26.4 7

JP-4 18.600 165 50.0 3

Liquid hydrogen possesses better than twrce as mt,.h chenlial energy is either hydrocarbon. The main factor in fuel
determination, ho%%ever, is the cooling required for sustained cruise at hyperson;c flight. Active cooling is essential
in the combustion chamber of hyperson,. %chicles. A qualitative cstimate of the limiting velocity a vehicle can attain
may be obtained by cquating the heat sink of the ft.el to the total enthalpy of the air flow, The last column indicates
the maximum cruise Mach number fot this condition. For sustained flight at Mach numbers above 7. only one filel,
Li-i,, can be considered. Note the low density of L1t 2 which necessitates much larger flel volumeis than required in
conventional hydrocarbon fueled aircraft.

With fuel selected, the next featire to consider is the oiombustion process, i.e., subsonic or supersonic burning
in a ramjet cycle. Previous studies have shown that subsonic combustion ;s more efficient below about NI = 8
while supcr-onic combustion is more efficient for higher speeds. Therefor., in this study1  a supersonic combustion
ramjet, hydrogen fueled, cruise vehicle will be considered for flight above NI = 8.

A generalized configuration with 26 dcgrees of freedom was programmed and the aerodynamic characteristics
determined in the following manner.

Inlet. A two-dimensional multiple-shock inlet with shock on cowl lip .vas employed. Forces were obtained using
oblique shock relationships and turbulent skin friLtion superimposed. A minimum combustor entrance temperature of
2000°R corresponding to the auto-ignition value of the fuel-air mixture was imposed.

Combustor. A constant area ideal one-dimensional ,.on-. stion cycle was employed utilizing real gas equilibrium
conditions. Turbulent skin friction was superimposed.

Noz:le. A two-dimensional characteristic program was utilized with turbulent skin friction to obtain the nozzle
forces.

Fuselage and Wing. Oblique-shoLk. Prandil-Meer and superimposed turbulent skin friction relationships were
used to obtain the remaining body forces.
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7.1 Coristrainhs

[it addition to thie required geomectric interrelationships, thle l'ollowing const raintis were imiposed:

i. Equilibriumi Flight: I. =W -

2. 1 rimined Condit ions: MCI9 0

31. Ve hidle Weight : T otal weight, equtiipme nt and pay load weight, st ructuLiralI panel d ensi ty and fuiel den sit y
were fixed. P

4. Cooling: Aerodynamic heating requirements miu~st nol~tcxcced the available h'ied coolhig Capacity.

7.2 Results

The random search anid adaptive creeper methods %%ere employed to locate the mnaximutm range condition for thec
optimal value of the configuration variables. Figure 20 shows that cruise range increases with vvlocity as anticip~ated
fromt the lireguet range equation for the case without skin friction, I lowevet, for the realistic case with skinl friction,
little change in range was observed with speed. Thec Nlch 10o optimiz.ed configurat ion is sh~own inl Figure 21. The
following qualitative conclusions can be deduced fromn this investigation.

1. Adequate cooling was available in thie Miach range (8-1 2) considered.

2. The optimium configuration flies at about ;.ero angle of at ack so that tIN inlet develops no lift. A large
pitchup moment is produced, hiowever.

3. The optimium inlet geometry prodtices nearly maximumi pressure rccOvtiy.

4. Minimium combustor entrance temperature is desirable (limited by the atito-ignit ion tern perat Lire),

.5. NIinimum i conibii istor length was prefe rred I im i ed by thle coimbus tion ireact ion liniie.

(I. [he opt Iiutikit nlole A ex pansion angle wais about 1.5"

7. [lhe cornbustor-nozzle cowl extension was minimumi.

8. 1 lie uipper fuselage angle was zero.

9, Th'le mnaximumti lossible take-off weight was superior 1-cuhe-squ~are'' lawv prefers litrgest scale possible. i.e.

(5-A. 747).

10, '1hle fuselage height nearly equaling the widilt is optimum.
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LECTUR~E 9

REAL GAS EFFECTS ON LIFTING RE-ENTRY AEROTE'ERNIODYNAMICS

K.N.C.Bray

University of Southampton, E.igland

1. INTRODUCTION

In aerodynamics, the term real gas effeci is appliLd to deviations in the thermodynamic propeities of reall air
from an idea, gas with constant specific heats. These deviations result from various phy .11 al ro~.e~es in air at high
temperatures, namel:', molecular vibrational excitation, chemical rkdCtions and ionisation. Such tprocCSSCS occur at
finite rates, which cani be characterised by relaxation times, or by relaxation length% in ai flow of given velocity. I1

k ~all relevant relaxation. lengths are very much shorter than thzc smallest fljwfield dimension of' interest. the fiov. may
* be regarded as being in thermochemical equilibrium. The equilibrik~ni thermiod% namic properties of real air are well

known', -nd may be incorporated without undue tlif'* atlt inio flowfiew, caikulations. so cq~uhlbri-mn real gas effects
present no fundamental p )blems. The real gas ficr .i nevertheless he very different from that predicted on the
assumption of a perfect gas witY constant spkelflc heats.

If relaxation lengths and flowfield dimensions are Lomparabl.c, jepartures fromt thermiochern,;al equilibiunim will
occur. The resulting nonequilibrium flow real gas effects may g:.-atly iinflacn-e aerodynamic piroperties. lPr~dditOn
of nonequilibrium air flows requires det.ilcd inforina:icn onl thc mec~hanisms and iates of high tem~perature prOcLLSSCS
and almost always involves very ex.'-nsiv'e nu-merical computations. Sonic fundanivnta! nonequilibritina flow problem'.
remain unsolved.

If all relevant relaxation lengths are very much greater than t~ie largeot flowfiele. diir nsion of interest, thle flow
may be r-garded as being frozen, so that its vibrational energy. hleiniical ýornpositio:n and degg~ee of ionisation remiainl
constant. In this situation air may again be treated as a perfect gas with constant ipecific heats.

Entry into the earth's atmosphere starting from orbital veloc ity genefatcs air temnperaitures in excess of O000 0 K
and, under such conditions, equilibrium air behaves very differenitly from a perfect gph with constant specific hieats.
Relaxati ),- lengths range from many miles at orbital altitudes down to %mall fraction1s C. anl 11L., at Sea level p17CsUR~
Similarly, flowfield dimensions of interest in the aerodynamics of a spa~e shuttle '.ehicle may range from 100 ft or
more (vehicle length) to a small fraction of a foot (stand-off distan e tn front of the leading edge of t' wing or tail?.
It is inescapable that, for parts of the re-entry trajectory of the vehii;ce, re'a~ation length5 and flow fit id 6hiiieisioiis
will be comparable. Nonequilibriumn flow must occur during re-entry.

The objectives of this review of nonequilibritrim flow effects on space shukttle -.chiclt. aterody namics ,'re a% folloSs

1. to estimate flight conditions tinder whic-h nonequihibriumn flow will occur:

2. to assess whether consequences of i~onequilibriurn flow may be important to %0hiclc design.

3. to discuss the adequacy of available methods, of predic tion for solving nonKquimhibriuin flowv problemns likely
to arise during design of a space shuttle.

4. to dcscribe difficulties which will arise in attempting wvind tunnel simulation of nlmnequiihibriminl floss pas.
space shuttle shapes under re-entry conditions.

The theory of nonequilibriumn flows is sell out in References 2 to 6.

2. NONEQUILIBRIUNI FLOW 'REGIMES IN FLIGHT

Chemiiel reaction mechanisms and rates in high temperature air hame been stud~ed in great detail dirmiog the
past decade, and the information available is guner ..ly sufficiently accurate for the requirement- )f re-v~itiy Ilo% field
calculations. A possible excerifkl is the influence of products of ablation onl the kinetics of' air
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For conditions generated in flight at less than about 20.000 ft/sec (Ref.7), the following reaction scheme is
adequate to describe chemical changes in the high tempetature region behind a bow shock wave in pure air:

0 M+ M (2.1)

N2 + M N + N + I (2.2)

NO + M N +0+ Ni (2.3)

NO+ 0 02+ N (2.4)

N2 + +0 NO + N (2.5)

N + 0 NO' + e" (2.6)

where M represents aily of the neutral species present. Reaction rate data may be found for example in Reference 8.
At vkIcities in excess of 20,000 ft/sec, charge transfer reactions such as

N2 + NO - N* + NO

become progressively more important .'nd generate significant concentrations of N*. 0. N' and O . Mcording
to Reference 7. the 54 elementary tea,.tons shown in Table I are then required for an idequate description of
chemistry .,nd ionisation history of the flow. it should be noted that for some of these reactions the rate coefficients
and their variations with temperature are not yet known at all accurately. A further complication is that, at the very
high temperatures existing just behind the bow shock wave, vibrational excitation of tile molecules N2 . 02 and
NO is not complete before dissociation begins. The various species also exchange vibrational energy. Under these

conaitions, with many competing processes occorring simultaneously, it is not possible to make a rigorous character-
isation of the approach to equilibrium in terms of 't single relaxation time. Many widtly different time (and length)
scales may be discerned. lHowever. Figure I illustrates the definition ' of an empirical relaxation time for dissociation,
based on the approach to equilibrium of the temperature T in tile nonequilibrium flow behind a normal shock wave
in air. if this di~sociatien time is multiplied by a -:elocity typical of the flow behind the normal shock wave, a
characteristic length for dissociation. d . is obtained, as shown in Figure I. The length d will he used to illustrate
the existence of rcgions of nonequilibrium flow durng re-entry. This will bt lone in terms of typical re-entry
trajectories, and displayed on altitude -- velocity plots.

Figure 2 shows typical'0 re-entry trajectories for lifting and non-lifting vehicles. These trajectories do not
represent tile extrcmes of possibie variations of velocity with altitude and in particular it appears feasible to design
for re-entry with even higher altitudes at given velocity. For comparison. Figure 3 shows how freestream Reynolds

number per unit length and the parameter W/SCL vary with velocity and altitude. The lifting trajectory of Figure 3
has a W/SC1  which varies betwe-,en 10 and 100 Ibnvft2

rurrent ideas of space shuttle re-entry vehicle configurations ihvolve blunt noses which will support nearly

normdl shock waves during re-entry. Fi4;!.;e 4 show.% the equihbriuin stagnation temperature. T . compressibility.
Z , and dissociation length. d . behind a norn .i shock wave in air. in the vicinity of the re-entry corridor. Since Z
represents the number of particles for each i,,olecule in the unshocked air. Z close to unity indicates conditions
where dissociation. effects are small, white dissociation o-econ1s complete as Z approaches 2. A stand-off distance
of the order of I ft may be expected .t the nose of the vehicle. It may be seen from Figures 2 and 3 that d is
comparable with the stind-off distance it, regions of the trajectory where Z is considerably greater thllan unity, and
so nonequilibri'i:,t .Mfects are exr cted in the nose tegion.

Large angles of incidence (tip to about 60') arc contemplated during re-entry anJ therefore large parts of the
vehicle away from the nos'e region will mneet air which has been processed by a strong obliout- shock wave. Figures
5 and 6 show T , Z arn the ,lissoc;i,,'iv.: Itngth. dl . in air behind plane oblique shock '. ies making an angle of
600 and 30' to the flo" Be'auze the l1 -.'. behind at' Ablique shock wave has a velociti, mponent parallel to the
wave, the di.;sociation length d i:it.ease, rdpmdly , t.. ,rave becomes more oblique. At the same time T and Z
decrease. Figures 5 and 6 show values of d comparable with major dimensinns of a vehicle, again indicating that
chemical nonequi!ibrit, m will occur, over sigoificant areas of the vehicle. For the J 0° shock wave. Figure 6. condi-
tions exist which -nay lead to tmpiertalit vibrationil nonequilibnum as illustrated* by the vibrationai relaxation
',ngth L for ai- tinder the conditions existing behind the shock wave.

Figure 7 shows the fraction of the stagration enthaipy of the flow behind normal and ublique shock waves
which becomes absorbed in chemical reaction when equilibrium has been achieved. It may be seen that this fraction
increases with fli'lht velocity, altitude a id w.dge ai'.tle, and that well over unc half of the stagnation entha!py is
stored in this mLnu. under conditions of interest.

-. ,: given conditte-'s, d should be greater 0-an ,in equal to I. . This is not so in Figure 6 because d and L have different arbitrary
definitions, representing the lcngth within which the flow appioached withit a different fraction of the equilib,nira linut for a different
variatle. ......• N
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Figure- 8 and 9, obtained from Figures 4 and 5, show the variation of T, Z and d along the lifting trajectory
of Figure 2, for normal and 60W shock waves. P n example from thest. zigures illustrates the region of the re-entry
trajectory for which dissociation nonequilibrium is to be expected. The following typical fiowfield dimensions ore
chosen:

stand-off distance at nose: 1.0 ft

stand-off distance at leading edge of wing or tail: 0.1 ft

wi.g chord with 600 incidence: 20 ft.

It is arbitrarily assumed that dissociation is nearly frozen when these dimensions are snmaller than 0.1d , that disso.,-
ation is close to equilibrium when these dimensions are greater than 10 d , and that dissociation involves negligible
enthalpy when Z is less than 1.l. The resulting nonequilibrium region of the lifting trajectory is set out in Table 2.

It may be seen from Table 2 that the nonequilibrium region for dissociation extends from above 300,000 ft
altitude to below 200,000 ft. Above about 300,000 ft, dissociation is almost frozen in the high-ten-perature nose,
leading edge and under wing flows, and is slower in other cooler parts, so the whole fiowfield is nearly frozen.

Below about 200,000 ft, dissociation is still not fast enough to approach equilibrium, for this traj:.ctory, but the
flight velocity is sufficiently low so that dissociation is not dominant.

The corresponding information for re-entry along the zero-lift trajectory of Figure 2 is shown in Table 3. It
may be seen that the boundary above which the flow will be nearly frozen is just above 300,000 ft, as in the lifting
re-entry case. However, in contrast to the lifting case., the flow past (he zero-lift vehicle achieves dissociation equi-
librium at altitudes between 237,000 ft and 168,000 ft, with Z still much greater than unity (highly dissociated
air). Nonequilibrium flow will in fact extend down to lower altitudes, in the present example, because this highly
dissociated air will fail to maintain recombination equilibrium as it expands away from nose regions.

The difference between these two examples is that the zero-lift vehicle descends out of the nonequilibrium
flight regime, maintaining high velocity, whereas the lifting vehicle decelerates out of the nonequilibrium regime,
maintaining high altitude. In principle, it would be possible to design a lifting re-entry vehicle which slowed down
at such a great altitude (say above about 300,000 ft) that it passed from the near-frozen flow regime straight into
the low velocity, negl;gible dissociation regime (say below about 9,000 ft/sec). The regime of significant finite-rate
chemical reaction could be avoided. However, published data suggests that current space shuttle designs de.elerate
at lower altitudes, and therefore do encounter this regime of significant finite-rate reaction.

3. OTHER EFFECTS OVERLAPPING THE NONEQUILIBRIUM FLOW REGIME

Having identified the altitude and velocity range of interest for nonequilibrium flow effects dunng lifting re-entry,
we ':an enquire what other complicating effects will occur in the same flight regime. Since the equilibrium degree of
ionisation is less than 1 percent except in the top right-hand comer of Figure 4, at higher velocities and altitudes
than those considered here, it is clear that ionisation will not be thermally significant. Radiative heat transfer from
the hot gas cap to the body"3 becomes important only in the bottom right-hand comer of Figure 4. far from the
trajectories of interest.

Viscous and low density effects near blunt leading edges may be assessed in the manner shown in Figure 10
(Probstein"4 ) We consider the lifting vehicle. In the range of altitudes and velocities for which nonequilibrium flow
occurs, as set out in Table 2. the nose and leading edge regions of the flow pasz through the following two viscous
flow regimes:

viscous iayer (thin shock wave followed by viscous shock layer);

boundary layer (thin shock wave followed by inviscid shock layer followed by thin boundary layer).

Probstein's merged layer regimes, in which the thickness of the shock wave itself becomes significant, occur at greater
altitudes where chemistry is almost frozen.

For a wing of 20 ft chord, the Reynolds number based on conditions behind a 60* shock wave increases from
1.8 x 10' to 4.2 x l0s in the nonequilibrium range of altitudes and velocities from Table 2. Boundary layers will
bc laminar under these conditions. However, Reynolds numbers based upon fuselage length become large enough
for turbulent flow to be expected.

The viscous interact:on param'!tcr MI/R"• , based on a 20 ft chord and conditions behind a 600 shock wave,
has values of 0.5 and !ess in the nonequilibrium regime from Table 2. It is t.oncluded that, in this particular example,
the boundary layer on the lower surface of the wing will be predominantly in the weak interaction regime
IM!/R 12 < 4 (Ref.15)l. On the other hand M3/RII , based on a 20 ft chord and free stream flow properties, can
be as large as '270 In the same flight regime, showing that upper surfaces of wings and also lower surfaces at small
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angles of attack will meet iows with strong vist.ous ir zrac ion effects. Without a more detailed specification of
geometry and trajectory information, it is not clear whethe. important viscous interadtion and nonequilibriurn flow
effects will occur simultaneously in flow past wings.

4. INFLUENCE OF NONEQUILIBRIUM FLOW ON VEHICLE DESIGN

4.1 Aerorynamic Forces and Momenta

A w•o-dimensional wedge provides a simple starting point for a discuss-on of nonequilibrium flow effects in
lifting re-entry aerodynanihcs. Below the shock wave detachment angle, equilibrium flow and frozen flow each
consists of a plane o•l.we shock wave follewed by unforin flow at constant pressure (Fig II). The density rise
across the shock wave is larger in the equilibrium flow. ar-d therefore the shock layer is thinner, the shock wave
"more oblique, and the pressure on the wedge is I3wer. A real. nonequilibrium wedge flaw' 6 involves a transition
front frozen fltjw to equilibrium. The flow is frozen at the wedgi. vertex, so the wave angle and surface pressure
appropriate to frozon flow apply there. The shock was.. is convex in shape, its angle decreasing towards the equi-
libnium angle at large distances downstream of the vertex. Similarly the surface pscsiurc falls from the frozen value
towards tho equilibrium valac. The flow betw,-un the shock and the wedge is no longer uniform, and solutions must
be obtained frorn the method of caiaractenstics for ninequilibrium flow". Reference !8 includes results of extensive
oblique shock wave calculations far frozen and equilibrium air.

Figure 12 (Ref.19) shows the lift coefficient CL of two-dimensional wedge-section wings, plotted against the
angle a presented b- the wedge tw the flow. Curves for perfect gas (frozen flow) and real gas (equilibrium flow)
are shown, for flight at hi = 15 at an altitude of 200.A00 ft. Because both of these flows produce constant pressure
cnn the wedge surface, the percentage difference in CL between perfect gas and real gas flow at given a is the same
as the percentage drop in surface pressure as the actual nonequilibrium flow approaches equilibrium For example.
under the conditions of Figure 12, the fall in pressure along the surface of a wedge in nonequilibrium flow with
a = 400 is 10% of the pressure at the vertex. This percentage increases rapidly with a . It also increases20 with
velocity and altitude and values in excess of 20% are possible. A similar phenomenon occurs due to vibrational
relaxation, involving a fall in pressure of up to about 5%.

The hypersonic flow past a wing of rectangular planform will be very similar to that past a wedge "e• lift
will be influenced by nonequilibrium flow as illustrated in Figure 12, and the pressure will fall with ins ,g
distance from the leading edge, as described above. This fall in pressure will also cause a nose-up pitching moment
whose magnitude depends on chemical reaction rates.

A caret wing has an undersurface sh•.pe which supports a plane oblique shock wave and a uniform flow past its
lower surface, for flight under design conditions. Nonequilibrium flow will produce a curved shock wave and a non-
uniform flow, for which solutions are not at present available. However, the caret wing close to the design condition

* ;has a flow very similar to a wedge flow, and it may be expected tha! nonequilibrium effects will be of similar magni-
tude in the two flows under comparable conditions.

Frozen flow past slender wings at large angles of attack has been studied by Messiter"i using an extended
Newtonian, thin-shock-layer theory. The analysis has been extended by Squire"' and applied to a variety of wing
shapes in both perfect gas (frozen) and real gas (equilibrium) flow. Some results are shown in Figure 12 It may be
seen that under the conditions stated for a flat delta wing of aspect rntio 0.8. the lift in equilibrium flow is only
very slightly less than in frozen flow. For example the reduction is 1.6% at a = 400 (c.f. 10% for the wedge) The
reason why the slender delta is influenced so little by real gas effects is that. because of the spanwise component of
velocity, the shock wave for the delta lies much closer to the surfa.e than for thc-- wedge. Therefore the flow past
the delta approaches more closely to the true Newtonian limit which is independent of gas properties Althnuth the
caret wing is more susceptible to real gas lesses of :ift it remains superior to the flat delta in terms of CLnax and
also L/D.

It is concluded that nonequilibrium flow effec!s on pressure distribution and .,erodynamic forces are likely to
be negligible for wings of slender delta planform at large angles of attack, but may not be negligible for wings pro-
ducing nearly two-dimensional flows. Available methods of analysis for ionequilibrium flow".i','7 2 s do not appear
to be entirely suitabic for this situation, particularly if viscous interaction and wins'body interference effects must
also be taken into account.

4.2 Heat Transfer

As noted fronm Figure 7, a large fraction of the stagnation enthalpy of the air passing through a strong shock
wave becomes invested in dissociation and other reactions, at velocities and altitudes of present intcrest An
immediate consequence is that the rate of heat trar.sfer from real air is several times greater than would occur from
an ideal gas at the same temperature, Reynolds number. etc.

<~



Finite rate gas-phase chemical reactians occur in the flow both outside and inside the boundary layer. Surface
reactions also okccur, involving catalytit. recombiration os' atoms or possibly degradation of the surface. Departures
from chemical equilibrium can either decrease or inrcrase the .eal gas heat transfer rate. The influence of finite
rate chc-mistry arises partly .',On its effe,.ts on the distributions of temperature and density around the vehiclec, and
partly from its influence on the number of atoms diffusing to the wall and recombining tbere.

Some of the possible effects may be illustrated by considering thi: case of heat transfer to the stagnation point
of a blunt-nosed body If chemical reactions are frozen within the boutndary layer but finite rate cýAdlytft. rccombina-
tion occurs at the wall, the rate of heat transfer is16

= .73fle~~i2~Ah I + (LE 6  I) ~m(4.1)

where P inviscid velocity gradient at stagnation point

pe = density at edge of boundary laycr

Pe= viscosity coefficient at edge of boundary layer

PR=Prandtl number

Al= enthalpy difference, he - h

=enthalpy at edge of boundary layer

hw= enthalpy at wall

chem = chemical contribution to he

LF=Lewis number

C = surface reaction ratt divrided by convective diffusion rate.

it may be seen that, if LE = I or if C = 0 (no reaction at will) the heat transfer rate is simple proportional to
the enthalpy differerce Ah . However. if LE > I and C > 0 (a more ncalistic situation), the chemical enthalpy
heheam increases the heat transfer rate through the curly bracket term in Equation (4.1). in addition to its direct
effect in the term Alh . This occurs hecauzc, with LL > 1 , the diffusion of atoms transports energy through the
boundary layer more efficiently than thermal c.ondtiction. With C > 0 some of this energy i's given up to the wall.

The analogous equation when gas-phase reactiors in the boundary layer are fa.1 enough to maintain equilibrium

qW = 0.6(pi ."P* fl~ + (LE - 1) Achcm}0 (4.2)

fra co~d wall,. !i. will be not ed that this equation is very similar to Equation (4. 1). The two equations are identical
if LE =I or if khem =0 . Even when Lr. is not equal to unity, the two equations give very,. similar results. so
1lng as C i; much greater than unity. Thus the stagnation point heat transfer rate is not significantly influpened
by the gas-phase rea.tion rate in the boundar) layer, so long as the wall reaction rate is f iast. On the other hand if
the wall reaction rate is small (C - 0) 'he frozen flow Equation t4.1 i gives a much smaller heat transfer rate than the
equilibr ium flow Equation (4.2). Nonequilibrium flow ouatside the boundary layer influences qw through its effect
on 0 , Pt , oe and lichen, . The effects on the first thrve tend to cancel, for stagnation point flow, and it is not
until dc-14rturcs from equilibrium reduce khcm that a significant Paffect on heat transter is to be expected for a
cztpjytac wall.

z: a~t mnay be noted' that metal surfaces tend to be cffictent ~.313al5St for eCLOMblination of oxygcii and nitrogen
atom. Ox~ie =rfaf-ts may be m-wh less .atalytic. and1 soene niaterials !;, as pyrex 1iasses are almost non-cataiytic.

The sittation becomcfs more complicated when we move away ftc-,i the region adjacent to the stagnation point.
Nociqeuilibriuni flow bcondary-layart thteory 3 is not yet .oraplctc for the gei~cral case. However, the fo.1lowing trends
inr CXpecee'i:

f i) at .attitudes so great I I dissociatlion does not have time to occur, the heat transfet rate will be less than
2Would be expoctc .. it basis osf tquilibrium real ga: calculations:

GO) at lower attitudes wricre some dmtssociptirm does occur but gak phase reactions in the boundary layer rema~n
frozen, a large reduction In heat trir'sfcr mav be achieved by the use of' a non-catallytic wall;
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(in) it seents likely that heat transfer will be influenced by the large changes in velocity, density and temperature
at the boundary-layer edge caused by nonequilibrium flow outside the boundary layer, these effects cannot
be predicted with confidence at present.

It is concluded that, while the heat transfer rate in the vicinity of a stagnation point is well understood and can
be predicted accurately, the situation is much less satisfactory for other parts of the vehicle. Of course the heat
transfer rates are much lower than at the stagnation point, but predictions must still be made. The following aspects
of the problem await solution:

0i) three-dimensional, invi.cid, nonequilibrium flow past realistic vehicle shapes, to provide flow properties at
the boundary-layer edge;

* (it) three-dimensional nonequilibrium laminar (and possibly turbulent) boundary-layer analysis, for realistic
shapes, including surfaces of finite catalytic efficiency;

(ii) nonequilibrium flow viscous interaction effects for realistic shapes, including self-indu.ed pressure gradients,
and the rate of ingesting of dissociated air from the bow shock region into a thick boundary laycr.

4.3 Radio Communication Blackout During Re-Entry

The desire to communicate with earth during re-entry requires the placing of an aerial at a suitable forward-
facing position in the vehicle. Electromagnetic waves are strongly attenuated by the plasma sheath surrounding the
vehicle, so it is necessary to locate the aerial in a position where this effect may be minimised. For this purpose it
is necessary to know the electron number density and collision frequency throughout the relevant parts of the plasma
sheath. Nonequilibrium flow has a very large effect on these properties. Calculations2 .2s must take account of the

V very large number of reactions which occur among the charged species in high temperature air (Table I). Boundary-
layer effects may be important'. Available methods of analysis are perhaps adequate in the vicinity of blunt-nosed
stagnation points, but difficulties might be expected if it proved necessary to extend the calculations far downstream
for complex shapes.

S. WIND TUNNEL TESTS

It has been suggested above that available methods of analysis are not adequate for predicting some aspects of
vehicle aerodynamics in the nonequilib-ium flow regime. Wind tunnel testing will therefore be desirable. Figure 13
shows the reservoir pressure p0 and reservoir temperature To required in a wind tunnel to duplicate flight condi-
tions, assuming that full equilibrium is maintained in the wind tunnel nozzle. It may be see,, that enormous values

( of p0 and To are required in order to duplicate conditions corresponding to high velocity flight.

A second difficulty arises, because departure from chemical equilibrium occurs28 during expansion of the test
air in the wind-tunnel nozzle. The composition freezes with excess 0 and N atoms, and sometimes excess NO
molkcules, and the test medium then does not properly represent the chemical properties of atmospheric air For
,xample, dissociation equilibrium will be achieved more rapidy behind a shock wave in a frozen wind tunnel flo,
than behind the equivalent shock wave in flight. A convenient measure of the importance of chemical freezing in a
wind-tunnel nozzle is the ratio hf/ho, where hf is the chemical enthalpy of nonequilibrium species in the test
section, 4nd hI is the reservoir enthalpy. Figure 14 shows hf/ho plotted as a function of altitude and flight
velbcity. The data was taken from Reference 29 for large wind-tunnel nozzles*, but a tenfold decrease in nozzle
size increases the frozen enthalpy by only about 30%. It may be seen ;Yom Figure 14 that the fraction of reservoir
eritha!py frozen in chemical energy increases rapidly with altitude to be simulated.

Figure 15 shows the reservoir requirements for a wind tunnel to duplicate flight conditions along the lifting
e•heicle trajectory of Figure 2. Also shown is the ratio hf/ho from Figure 14. It may be recalled from Table 2

that, for this trajectory. the nonequilibrium flight regime extends approximately from 25,000 !'Isec down to
9,000 fl!sec. Figure 15 shows that at the peak reservoir condition of about 12,000*K and 10' atmos, only about
3% of the retsivoir enthalpý is frozen. However, these conditions cannot be generated in present-day wind tunnel-
"At higle; and lower velocities Po and To fall to more accessible values but at the same time hf/ho rises rapidly
to 10% or more. Vibrational freezing also becomes important at the lower end of thv 'eocity -ange, because the
relevant range of reservoir tiimperatures occurs along with very low reservoir pressures, for which vibration is almost
completely frozen. At around 10,000 ft/sec the fraction hv/ho rises to around 12%. see Figure 15, where hv is
the enthalpy locked up in vibrational freezing of nitrogen. It is concluded that difficulties adise in the duplication
of conditions throughout the nonequilibrium flight regime, due either to the need for high reservoir temperatures
and pressures or to freezing in the wind-tunnel nozzle.

In the absence of complete duplication of flight conditions, is it possible to simulate the most important condi-
tions in wind tunnel tests" Simulation can be successfully achieved for nonequilibrium flow in the vicinity of ihe
Mtagnation point of a blunt-nosed body, through the application of "binary scaling". According to this scaling, the

Chiarctefistlc flow time at freezint point: r = I0s see, see Reference 29.

AH
's 

A:".,-,-
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ratio of the dissociation length scale to r. flowfield dlmeiision will be correctly simulatcd in the wind tunnel if the
product (density) x (body dimension) is the same in flight as in the tunnel test. Thus small models may be tested
in high density nonequilibrium flow. This scaling law, together with the Mach number independence principle of
hypersonic flow ts, has permitted the simulation of stughation point heat transfer in shock tubes and electric arc
flows. Binary scaling, which allows the simultaneous scaling of dissociation and Reynolds number effects, ssumes
that chemical reactions result from binary collisions only. This is correct so long as only dissociation is occurring.
However, as soon as recombination sta.'ts to be important three body reactioas .ome iOto play, and binary scaling
fails. This occurs as soon as the gas expands round the shoulder of the blunt nose, and applies to the remainder of
the flow field. With both binary and three-body reactions taking place, no density-length scaling is possible, and
the only valid simulation is full scale. Also, chemical equilibrium occurs at too low a Jegree of dissociation, due to
the higher density, in a binary-scaled model test.

In the absence of either flight duplication or correct flow simulatio., wind tunnel tests must resort to one or
more of ihe following expedients:

(i) correct simulation Pf only a part of the nonequilibrium flo% field (e.g. flow in the vicinity of a stagnation
point);

(ii) partial simulation (see for example Reference 30) in which not all of the similarity parameters of the flight
situat;on are properly matched, but attempts are made to choose condition. which minimise the resulting
errors;

(iii) nonsimulation, in which tests are made under conditions known to be unrepresentative of flight (e.g. partly-
dissociated free stream or incorrect velocity). results arc used to validate norequilibrium flow computer
programmes, which may then be applied also to the real flight conditions.

6. CONCLUSIONS

1. A :egime of nonequilibrium flow wi!l occur during re-entry ol a lifting vehicle.

2. Departure from equilibrium will influence forces, moments and heat transfer rates to a signir'cant extent, order-
of-magnitude effects are generally not expected, but the results of departure from equilibrium are large enough
to require consideration.

3. Nonequilibrium flow determines the plasma sheath properties which control radio blackout.

4. Knowledge of the chemical kinetics of high temperature air is adequate for these purposes, at least in the
absence of effects from products of ablation.

S. Further theoretical study is required of both inviscid and viscous nonequiiibrium flows past .omplex three-
dimensional shapes.

6 Correct wind-tunnel simulation of the complete nonequilibrium flow field past lifting re-entry vehicle shapes
under conditions of interest appears to be impossible at the present time. Techniques involving incomplete
simulation must be employed.
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TABLE 2

Approximate Extent of Nor, equillbrium Region or Re-Entry Flight
for Liftisn Traivtory Shown in Figure 2

Part cf Vehic Type of Flow Altitude Velocityk. ft k. ft/sec

Nt, Near Frozen 302 25.0 1.73

Small Dissociation 192 9.0 1.10

Leading Edge Near Frozen 266 23.6 1,65

Small Dissociat- 192 9.0 1.10

Wing Chord Near Frozen 316 25.1 1.58
S Dissociation 197 10.7 1.10

TABLE 3I Approximate Extent of Nonequillbrium Region of Re-Entry Flight
for ZeroLifting Trajectory Shown in Figure 2

Part ? Vehicle Type of Flow Altitude Velocity. k.ft k.ft/sec

Nose Neer Frozen 302 25.4 1.77

Near Equilibrium 223 24.6 1.70
!

Leading Edge Near Frozcn 266 25.4 1.75

Near Equilibrium 168 ' 20.0 1.44

Wing Chord Near Frozen 316 25.4 1.59

Near Equilibrium 23 7 _ _25.0 1.55

p:
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LECTURE t0

VISCOUS INTERACTION EFFECTS ON RE--ENTRY AEROTHERMODYNAMICS:
THEORY AND EXPERIMENTAL RESULTS

J.L.Stollery

Imperial College of Science and Technology, London

NOTATION

a speed of sound

Sal,2... constants

A (,y - I) 0.664 (I + 2.6 Tw/To) , see Equation (2.4) et. s,'!q.
b,, constants

c (vU/x)'2 , velocity characterising the spread of vorticity

C constant of proportionality in the linear viscosity-temperature relation, see Equation (0.7)

Cf skin friction coefficient

Cp pressure coefficient

d thickness of shock wave

k a constant, or the nose drag coefficient, see Equation (2.27)

K M.(dye/dx)
•- 1 kt

Ke I M0-0-- M , a parameter controlling the biuntnes¶ý effect
x

I a characteristic length, defined in the text

1i extent of upstream influence

L distance from leading edge to compression corner, see Section 6.

m constant

M Mach number

n constant

p pressure

P pressure ratio p/p,

Pr Prandtl number

r nose radius

Re Reynolds number

St Stanton number
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t time or thickness of leadipg cdge 4

T temperature

u velocity in the x direction

U, U.. free stream velocity

Iv velocity in the y direction

V rarefaction parameter Moo/(Rex)" 2  or M.oC"2/Rex" 2

X, y rectangular coordinates along and normal to the free stream direction

z, " variables related to Ye and x as defined in the text

a local surface slope dyw/dx

U incipient separation angle

7' ratio of the specific heats

Ke'Mla/2(Ax)2 a parameter governing the interaction between the effects of bluntness,
displacement and shape (incidence)

5,5* boundary ]a) -r and displacement thicknesses respectively

5, thickness of subsonic part of the boundary layer

shock stand-off distance

see under z

mean free path

A sweep back zngle

/A viscosity

v kinematic viscosity

dummy x variable

p density

hypersonic viscous incraction parameter

'Subscripts
b edge or boundary layer

eequivalent body (but note K. above)

s shock

t thickness or bluntness

w wall

0 total (but note Sto defined in Equation (2.15))

CO free stream
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1. INTRODUCTION

A Definition

Viscous interaction may be defined as the matual interaction between the external flow field and the boundary
layer growth around a body of given shape. Two important examples are hypersonic viscous interaction near a
sharp leading edge and shock-boundary layer interaction at both supersonic and hypersonic speeds.I • Though viscous interaction is present to some degree in all flight situations, we need to highlight the conditions
under which these effects are large.

1.1 The significance of V

"Rayleigh's problem of an infinite flat plate jerked into motion in its own plane demonstrates very well how the
spread of vorticity can be characterised by a velocity c = vfit'. Similarly the spreading velocity of a laminar
boundary layer is given by

6 U6 Up
c . . . . . •(1.1)t x x

[! Thus V =• may bewritten as v•

SU / c(
a Ux a a

spread of the vorticity field
spread of the pressure field

viscous diffusivity
pressure diffusivity

This type of argument is perhaps ninore fiamiliar in comparing the spread of heat and vorticity. The appropriate
non-dimensional parameter is then the Prandtl number,

Pv viscous diffusivityPr = - = -(1.3)
K thermal diffusivity

when Pr = 011 we anticipate the thermal and velocity boundary layers to be of similar size.

Similarly when V = 0[11 we expect the boundary layer and shock layer to be "merged". At somewhat
lower values of V the boundary layer will be separately distinguishable within the shock layer but will occupy
a significant fraction of it and viscous interaction will be important.

In subsonic and most supersonic flows Re >> MI and the effect of boundary layer growth in changing the
effective shape may be ignored. Under hypersonic high altitude conditions this is no longer true and viscous

interaction effects become increasingly important.

The importance of V can also be demonstrated for hypersonic blunt body flows, see for example Van Dyke
(1961).

Uoor
')efining Reo. as -- then with reference to the figure on the next page it can be shown that

V00 I; M6d Moo 2-- -MO and
A NM; r Re,.

assuming p o T.

Again 6 is a measure of the spread of the viscous field and A a measure of the pressure field. If V is
0( 11] then the two fields will be of similar size and hence to some extent "merged" making separate regions hard

to distinguish.
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To relate p to the effective body shape (Yb Y, + 6*) we use the tangent-wedge approrimation
SK2  + 7K2 +1)(1.9)

= d d6* dyw 0(1.!)

wbcre K M.. = M_-" here, since d 0.
\dx dx ex

Strong viscous Interaction K> I , K2 >> I

For K2 >> I !Equation (9) yields

Sp '7+)K2 7 +!) M2 (2* 2

pw 2 2 \ dx 0. 1)

Substitution in (1.8) and integrating gives

/* C..\12--* -s-M - VI (I,12)

x ,/Tex M

so note that 5 x- 4  (1.13) 3

dS"'/dx - x- va(1.14)

and P/py x (1.1:)
K 2 -M2 (dSi*/dx)2 may now 1, re-written from (1. 12) as

"- M** -ex(!6

where 3 is termed the hypersonic viscous interaction parameter. Returning to 1.9) expanded by the binomial
theorem we get

I a,• -t4 a2 + a3 ..= - • ....+ ~ (1.17)

Note for I >> 1 p/p* " as^ so we could write this alternatively as

f,= p - p.* 2a,

Weak viscous Interaction K < I , K2 << I

The tangent-wedg rule is re-written as

p .... ~l 7+!A I +1)K2 +7K 1+ -K (Y.t)

pOO 4 4

I +yK + K2 4+.......
4

3o p/p*. o, I and ths immediately from (1.8)

2 _C
x M"• or x-- (1.20)

X )X
and x-M. ."dx ~ Rex,
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Once agein is the relevant parameter and

1.2.2 Turbulent .flow

A similar analysis for turbulc~it ilow putting

6

x (erU 
2

gives the following results:

Stran-i nrteraction 
2n~

Tradlin Rynodsnumbers :r- o igh2.i athproi achi nanmbers that stronig turbtslcnt viscrus.itrclni

1.3 ThM- various flow regimes

1'be character of the flow field near the loading edge of a sharp flalt plate its mreflcd hyper,-onic flow is
sketched below.

Strong Wook fOmfidry

InteradIon Dnwaflcofl L"Ki

Ner Lytr P FI~ - tnICdf
Fro.

These particular notes concentrate on the continuum rugime and in particular on strong and wea!. viscous inter-
action. Experiment shows that strong interacton is valid for V < 0.15S and that above this value (i.e. closer
to the leading edge) the preswtre and heat transfe~r rate drop awiay as shown itt Figuree 1. The various flowN regimes
are plotted in Figure 2. The V = 0.15S boundary shows that at low Machi number (M < 6 say) thvrc is no

strong interaction zone, the flow moving through the rarefied region straight into weak vis.-ous interaction.

The significance of V in continuum flow has already been described. Its utility in rarefied flow (V is often
calied the rarefaction parameter) has been demortst:ated experimentelly but ther. is as yet no widely accepted
theoretical meason for its significance though one "explanation" is given below.

!A4 Knudsen number (1(n) and the rareftctken parameter

In a rarefied ges flow which cannot be regarded as a contirnuum the dominant variable is Kn.

Kn = mean free path

7 some characteristic length in, the flow field

but P - Aa where a is the speed of sound

so th.at Kit X M e

I - R .,--



U If !he gas is only slightly rarefied then th.! typical linear dimension is botter taken to ve th- bniondary layer
thickness (6). Since 8 i1./-,IR wt! have

jFe

I.5 The effects of bluntness

IV So far the discussion has centred on bodies with a sharp leading edge whereas all real shipes are to some
extent blunt. In order to compare the relative imnportance of bluntness and strong viscous int.eiaction we will
compare the pressure distribution3 induced by both neaT the leading edge.

For viscous flow on a sharp flat plnntc

"p
- ~ see Equation (17) .

PMe

For inviscid flow past a blunt flat plate blast wave theory predicts that

p - (L126)

PM x/

Using suffices (t) for bluntness eficct and (v) fcr viscous effect and replacing x/! by ReIRet then

Pt ______ 1.27)

Ifthe pldte is to be effective' y sharp (i.e. the pt «< p,) then

M~, '> ~i/2Ret

i.e. Re, «< Mw'/T/ (1.28)

Taking Moe = 0 and noting that 'ý for strong viscous interactrion is 0[l 10oe then this criterion implies

Ret < 100 say .

The line M, 500 is marked on Figure 2. Below this line it will bc diffi:ult to satisfy the relation (1.28)

and hence bluntness effects may be important.

* j 2. THE GENERAL PROBLEM OF VISCOUS INTERACTION IN 2D FLOW

Entropy layer
Shock

Boundary layer wave

Geometri
....v.... body.....bo...y..sh...pe.shape... Ye x .LOW ARUN A. BLN .. LEN..... ER.... BODY....

... . .. . ... .

.. ...... .. ..... .... . .... .... .......................
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Ir the most general case it is necessary to consider the combined effect of:

(i) incidence (body shape)

(ii) displacement (boundarv layer growth)

r2 (iii) bluntness (entropy layer).
We shall follow the classic work of Cheng (1961) with subsequent modifications and extensions by Sulliva

" •(1968) and Stollery (1970).

2.1 Plate with a sharp leading edge (ye =.

U We need Ye = f(5*) (2.1)

6* = f2(Pe) (2.2)

Pp, = f 3(ye) (2.3)

Many choices for these three basic equations are possible; we shall adopt r:ither simple relations for all three
For Equation (2. 1) we assume

Ye Yw +/P , 2. 1a)
so that dYe dyw +- .

dx dx dx

Since S* is not a streamline this simple expression is only approximate. The correct coupling equa!ion is

dye = dyw + db* d
dx dx dx dx

as shown for example by Lees and Reeves (1964). The last term is small and 5* -- as M - o.

For Equation (2.2) the local flat plate similarity solution for hypersonic boundary layers is adopted. First
derived by Lees (1956) for blunt body flows undee cold wall conditions it was later used by Cheng and critically
re-examined by Moore (1961). Readers are rmforred to these papers for a full discvssion of the derivation. For unit
Prandtl number the results are:

N112M.,&* Ak x
- L • (2.4)

x dP

MI St = 0.332 P P (2.5)

L J
Cf = 2 St (2.6)

where A 7y-t - I) 0.664 l+ 2., L (2.71

and P = P/P.

For Equa:ion (2.3) Cheng used the Newton-Busemann law

p = yM2(y12 +yeye) = 7M2(Yey) (2.8)

° nich, though mathematically a reasonabl- approximation, does no: allow P - I as ye " 0 and leads to physically
unrcalistic oscillatory solutions in some cases. Thus Equation (2.8) is only suitable for strong viscous interaction.

Using (2.1a), (2.4) and (2.8) gives the fundamental equation for ye given an) shape of wall yw(x)Yw t ) 1 A2! 29
Q,- (YreYYe) (2.9)

A number of examples can now be considered.
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2.1. Flat plate at zero Incidence

With Yw = 0 and writing

z = ye// -nd = x/l (2.10)

converts Equation (2.9) to

Z 1(ZZ')- = 1 (2.11)

provided' that A`R2 x

1 -- (2.12)

This scaling immediately emphasises that, to the degree of approximation implit..t in the analysis, the important
parameter is A3/M2 - AV.

SSubstitution of z = kr' in EqLation (2.11) shows that the familiar strong interaction solution is given
by nm 3/4 and k 23"2/311 so that

6* 2 S* 2
M = - - (A3) or - - -- (AV)M2  (2.13)

-x (3.)1- x (31/4

P =(\31 (2.14)

A• • (3-y) 1/4 Mg)/2or St = '-3(3y)I/4 (AV,)5! (2.15)Sto,

v'here Sto 0.332 (CiRex)".

The weak vis.ori interaction solution where P I as y," 0 does not satisfy the Newton-Busemann relation
and hence is no, a solutioo of (2.11).

2.1.2 Surfaces *escnbed by yw = kxn

The family of shapes y,.
• "" • .•" ---- "•"O• Z ýn, •1

- ( )

is of some interest and includes the flat pla!c at ooth positive and negative incidence, (n = ±1) . The
governing Equation (2.11) may now be written as

S(z+ ± ~n) [z:z')2]' = I (2.16)

provided that A2 5ý2 x 17)

4-/MW.e

In terms of the new variables the required physical quantities are

S• = ~~(z T1 •.n) (.8

.tM2a = (zz')'

A St _ (2.201

0.332 c047-, (z n) a*Ll

-.I 1 .
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The most significant point about the analysis is that it immediately highlights the important parameter when
,, both strong interaction and incidence (shape) effects are present, namely,

A•/Ma2 or 21a 2  (2.21i)

2.2 Plate with a blunt leading edge Ye 0- Yb

A further relation is now required to relate the equivalent body shape (Y.) to the displacement body
shape (Yb m Yw + 8*) in terms of the body bluntness.* This is done most simply by applying the
momentum equation to the control volume sketched below.

<:P, SI __L) I

Iis

DN + X Pb yb dx + P jYs Y- p dy = pu2dy-pooOVys. (2.22)

Yb Yb

The continuity equation is

pMUysYs = pu dy. (2.23)"Yb

"Using the continuity equation and recognising that sufficiently far fhom the nose u U., then the RHS of

(2.22) becomes negligible and

DN+ Pb Yb dx = pm ys -- pdy. (2.24)

The energy equation with t - UM becomes

7 (.p •)p. vv 2 p-i ( 2.v 2L -- i• or •(2)(22 5

Integrating with the use of continuity gives finally that

_,pdy - P - pdy-- -dy

t b 717 y'b fYb
so that

DN + Pb yb dx = p dy + .-py sSyb YbI JYb 2 y

l h may be noted here that the effects of bluntness and displacement are similar in so i.r as they envelope the geometric body in
layers of high.tempera-izre. low.density fluid across which the pressure is approximately consta t.
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In this equation the major contribution to the LHS is the nose drag and on the RHS the first tcrm is dominant.
Hence to a first approximation, putting y, - Ye

DN dyf. (2.26)

Cheng showed by an order of magnitude analysis that pressure changes across the entropy layer are negligibly smallso it is possible to use the simplification that p is constant across the layer, hence P, Pb Pw = f(x) only.

The important bluntness equation is then

(Ye -Yb) _ 1 2 1 kt (2.27)
Poo 'YM00 4

DN

where k= DpNUt

anl t is the nose thickness.

The relevant equations are now

Y)P -'-
(Ye -Yb) - kt

P = ,-IYY

(2.28)

Yb = Yw + 8*
W adMooS* A-x fox dt]r

and -

X P[ Pxj "

2.3 The flat plate with bluntness and displacemcnt

Equation (2.28) reduces to

z(zz')' -- /z7 = (2.29)

provided that

z = 8M. (A5/Ke) 2 (Ye/Kex) and t 16(AX/Ke' 3 )6 .

Once again the analysis emphasises the important parameter, i.e. A5?

where Ke 2 xA/ k..00 2 x

and A = 0.6 6 4  I + 2.6 Lw
2 To

A•x AV"so kt/x is the relevant ratio. (2.30)

For small values of AR/K 2, i.e. bluntness dominant, the solution of (2.29) gives

M6*
x ad

and P = 7 Ke
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which are the blast wave solutions for two-dimensional flow.

2.4 The flat plate with bluntness and incidence

Equation (2.28) now becomes

(z + N1(zzT)' I (2.31)

with z = 4ceYe/("7- )kt and 4 1 41a13x/('y- I)kt.

The important parameter is then 00- •o perhaps better written as
kt

1 (2.32)

2.5 The flat plate with bluntness, incidence and displacement

The governing equation becomes

(z - mf)(zz')' -Vt = I (2.33)

where z = 8M(A 2 2 /l) 2 ('e/Kex) , " = 16 _2-/)(2.34)

KeMe

and r = K , independent of x . (2.35)
2A 2

2

One of the mior accomplishments of this analysis is to point out the significance of the three parameters

A5Z ~ an\M 
2 kt)23

M~ 2o. A• and M (2.36)

It is perhaps not surprising that they turn out to be those asse-iated with (i) inviscid hypersonic flow over a sharp
edged slender body (hypersonic small disturbanc:e theory), (i) vis&.ous flow on a flat plate (viscous interaction theory),
(iii) flow around blunt nosed slender bodies (blast wave tl'eory). Cheng himself noted that often the empirical
linear-combination laws gave results reasonably close to th. more exact analysis described above.

2.6 Alternative expressions for the pressure law P(ye)

The Newton-Busemann rule for pressure suffers two great disadvantages, it does not asymptote to the correct
downstream limit (P - I as ye -+ 0) and it often over-corrects for centrifugal effects giving rise to unrealistic
highly-oscillatory solutions. The scope of the theoretizal anlisis already described can therefore be greatly enhanged
by using a pressuie law which is capable of embracin6 oath the strong and weak viscous interaction regimes and
which ignores centrifugal effects. For example a simple Newtonian law could be used, i.e.

p = I+y MYM 2 (2.37)

One of tie most successful approximations at hypersonic speeds i: the tangent-wedge rule

P - 1+ , 2-+- ) j- I ---)t + M-y-- 1 (2.38)

and both Sullivan and Stollery have used this to examine a number of different flows. Though the use of either of
the above pressui, relationships decreases the mathcmatic.! elegance there is a great gain in practical utility and the
subsequent analysis is straightforward. Readers are referred to the paper by Stollery (1970) for dc~ails.

3. COMPARISONS WITH EXPERIMENTAL DATA

Comparisons are made between some experimen.tal data and various theoretilal predictions in Figures 3 to 9.
As we lAr tiqitjtWis UOtfloA say .a risor4 ejr; topo Jo~rrewaton look very good whereas
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individual predictions compared with raw experimental data often look very bad. There is no doubt that use of
the tangent-wedge rule improves the comparison and removes the oscillatory nature of the solutions for th'e flow
over concave surfaces.

4. THE EFFECTS OF SWEEP

A'I

I,

Boger and Aiello (1970) showed that Cheng's theory could be successfully developed to treat the yawed case
for a two-dimensional wedge with leading edge bluntness and vis•,ous interaction. The additional assumption then
made was that there should be no variation in the flow along the span.

For the combined effects of bluntness, incidence and viscous interaction the governing equation is identical
to (2.33) namely

(z - r')(zz')'- - zz' = 1 (4.1)

Ke(MocoA)a 8(M~ocosA)(Aý)4 Ye
2A2• 2  K~xSbut now r _______ R__2__Z__K __3 _

where K = (MoocosA)3-..i kt = 16(AR . Ke'2/)6
2 x

0= McosA )(C/Rex)1'2,

and Rex = p,(U.ocosA)/p.. .

Equation (4. 1) can be solved and expressed in series form. Boger and Aiello quote the pressure as

- = 0.382 - K 213 I + 1.04 ' + (0.505 + 0.162)•" 3J (4.2)

Because of the sween the effective values of 3ý and K are decreased significantly so that Pw and the form
drag are greatly reduced, Under these conditions skin friction may b, more significant.

Tests were made on a blunt wedge and a blunt flat plate, see Figure 10, at sweep angles of 600 and 70V. A

selection of results is shown in Figure Ii.IA
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Provided that the normal component of Mach number (McosA) is hypersonic, agreement between theory
and experiment appears to b-, good.

S. EFFECT OF FINITE CHORD AND FINITE SPAN

Whatever the freestream Mach number there will always be a subsonic region in whiki signals may propagate
upstream. A recent analysis of compression corner flows showed that the upstream influence (before separation)
was constrained to a distance (Yl) and that (Ij/8) decreased with Mach number. A similar study by Bogdonoff
(1969) on trailing-edge effects indtated the same trend. The dimensional distance (/i) is oflen still significant
because 8 - M2 . In both the studies mentioned an attempt was made to correlate lt/61 where 61 is the
thickness to the sonic line. So far the scatter precludes worthwhile comment. What is expected and what is
found experimentally is shown in Figure 12, the pressure changing ahead of the trailing edge so as to reduce the
pressure difference between top .,nd bottom surfaces.

5.2 Finite span

Nardo and Cresci (1970) have reported some machine calculations of merged layer flow over a finite width
plate. Some of their results are shown in Figure 13. Although a region of constan! (spanwise) pressure exists in
the middle of the plate it can be considerably less than the two-dimensional value and is therefore no guarantee of
2D flow. Their report serves as a sober warning but results are too limited to give any overall picture of finite span
effects.

6. CORNER FLOWS

6.1 Compression corners

St

For the simplest corner flow sketched above the adverse pressure gradient will depend on (Mce)2 whilst the
boundary layer growth along the plate will be governed by • . Hence there is some reason to correlate incipient
separation data by plotting Moo vs XL and indeed the experimental data currently available support a relation

MOal = k' L12 . (6.1)

The effect of wall "-mperature is harder to gauge but wind tunnel tests show that cooling the wall inhibits separation.
Reasonable predictions can be made using

M,.a 1 = 1.4 (1 -Tw/ 2To)RL"2 
, (6.2)

see Needham (1967).

6.2 Axial corners

Here the situation is much more complex and the reader is referred to the survey by Korkegi (1970). Charwat
and Redekopp made detailed experiments in a corner constructed from intersecling wedges. Their measurements at
2.5 < M < 4 laid the foundation for the inviscid flow model shown in Figure 14. Subsequent investigations with
intersecting wedges in hypersonic flow have revealed the same basic flow features.

Currently (and probably quite rightly) the emphasis is on careful experiment though a theoretical merged layer
analysis by Bloom et al (1969) shows promise for low density flows. For the higher density flows however there
exists no adequate method of predicting even the inviscid flow structure.



7. APPLICATIONS OF VISCOUS INTERACTION THEORY TO SPECIFIC SHAPES

2 7.1 Straight wing designs

Reasonable estimates of the pressure, heat transfer, force and moment coefficients can be made by using the
modification to Cheng's theory (employing the tangent-wedge rule for P(ye) ) already described.

The effect of viscous interaction is to increase the lift-curve slope above the inviscid value but the pressure
drag is also increased as is the skin friction. The usual result is a loss of maximum lift/drag ratio.

7.2 Caret wing designs

j When "on design" the flow field is essentially two-dimensional and the remarks made above apply to strips
parallel to the root chord. For convenience it may be useful to adopt the method due to Davies (1970) described
under the section on delta wings.

7.3 Delta wing designsI Conventional strip theory, as applied to an infinite yawed wing or to a swept edge, considers the normal
components of velocity and Mach number (Un = U.. cosA and Mn = M. cosA) as the effective quantities
for a subsequently two-dimensional approach. This approach fails in the neighbourhood of the root chord which is
of course unswept. For highly swept delta wings in hypersonic flow the roct area is dominant and it is more
appropriate to apply 2D theory to strips parallel to the root chord. Thus the flow is assumed to lie in strips
parallel ,c the centre-line with each strip independent of the other strips as shown in the sketch below.

SI-

This assumption is admittedly somewhat precarious in view of the observed delta wing flow patterns which
indicate important three-dimensional effects particularly at incidence.

S7.3. 1 Sharp leading edge delta wings

At moderate incidence (up to say 200) simple strip theory gives reasonable estimates on the windward or
compression surface as far as heat transfer rate and skin friction is conceried. The prediction of pressure seems
less accurate as shown for example in the study by Wallace and Burke (1963).

On the lee side of a delta wing 3D effects appear significant even at low incidence. Whitehead (1970) reported
heating rates on the leeward meridian of a 750 swept delta wing at 5* incidence in M = 6 flow which were
approximately three times the two-dimensional value.

If 2D strip theory is used for estimates on a delta wing then a convenient way of applying it has been
"described by Davies (1970) and is shown in ; igure 15. By taking strips parallel to the leading edge the value of

etc. is constant along the strip though its numerical value is of course estimated using properties and
distances measured in the freestream direction. He has estimated viscous interaction effects in this way and shows
that there can be significant increases in the normal force coefficient of the lower surface and a forward movement
of the C.P.
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7.3.2 Bblnt leading edge delta wings

Again strip theory can be applied but the question arises of how Wo modify the nose drag coefficient for sweep.One solution is to treat the leading edge as part of a yawed cylinder and put

CDN = CD x cos 2 A.
4D A CNAO0

However the data of Wallace and Burke show better agreement with estimates made using

CDNA = CDNA=o

i.e. making no sweep correction whatsoever.

7.4 Viscous interaction on high L/D vehicles (L/Dmax > 2)

The effect of viscous interaction on any but the simplest complete configuration is extremely difficult to
estimate. As for example Koppenwallner (1970) has shown, the lift coefficient is usually slightly improved but
the drag coefficient substantially increased. The net result is a significant reduction in lift/drag ratio as V or
Sis increased. The necessity for accurate knowledge of high altitude aerodynamics depends on the vehicle
mission but as Hidalgo and Vaglio-Laurin (1967) point out, the influence of low Reynolds number effects can
reduce the lateral range of a high performance space-shuttle by up to 45% and cause even greater reductions in
longitudinal range.

7.5 Viscous interaction on low L/D vehicles

Boylan and Potter (1967) tested a number of different shapes shown in Figure 16. In all these cases not only
did CD rise but the CL fell with increasing V so that the lift/drag ratio was again reduced. More recent tests
by Kussoy et al (1970) on the Faget SSV (Figure 17) at re-entry incidence (cc - 50-60) show a 40% reduction
of L/D betwen altitudes of 200,000 and 340,000 ft. In this case the decrease is primarily due to the increased
skin friction drag significantly reducing CL .

A similar effect has been noted on the Gemini and Apollo re-entry capsules. Since these vehicles fly at an
angle of attack the stagnation point is off centre, the flow around the blunt foc, ;s asymmetric so that pressure
and shear forces do not balance out about the vehicle centre line. As shown in Figure 18 the surface shear on
the front face produces a major component in the lift direction (tending to decrease the overall lift) and a smaller
component which increases the drag. At high Re these shear effects are small but under high altitude low Re
conditions they are very significant. Their neglect was the probable explanation as to why the three earliest
manned Gemini flights all fell consistently short of the predicted splash points. Goldberg (1966) investigated
these effects theoretically and his findings have recently been confirmed by Boylan and Griffith (1969) during
extensive tests on the Apollo Command Module.

Figure 19 attempts to summarise the influence of high altitude effects on (L/D)max for various types of
vehicle. Though individual estimates are difficult the trend is both obvious and significant.
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Id. inchee
Fig.4 Bouudury-laycr growth over a cubic concave body, (yw xl/ISO , where x and y.~, are in inches).

1l,6* Newtor.-Rusemann pressure law; -2,8* tangent-wedge rule; -0-. shock position from
photograph; -6v-, "edge" of boundary layer as measured from schlieren photograph
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Fig5b he eattras~rto a concave surface of the form y, = kx2 . - 1, Cheng's theory; ---- 2, solution
using tangent-wedge rule, M.. I 1 --- 3, 6(jy)1"2M1 cN2 A5 - -4, asymptotic value, y, =Yw
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I Fig.6 Pressure distribution on a concave cubic body. y, x3/150 where x and y, are in inches and

0 <x <5. .I ,theory; -0-,meicsurements, M,. 12.25, Re=0.86 x105 per inch
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Fig.7 Comparisons between the theoretical and experimental distributions of pressure and heat transfer rate or.
a compression corner model. --- , theory: -C-, -4-, -0-, measurements.

(a) Moo = 9.7, awedge = 770, = 0.87 at the hinge line.
1 (b) M.. = 20, twedge 16', 5 = 19.8 at the hinge line.

(c) M., = 20, w = 21', X = 19.8 at the hinge line.
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Fig.Sa Pressure distribution over an expansion corner model at zero incidence - a comparison between theory
and experiment. -- 0--, measurements, Moo = 14.8, • 18.9 at the corner. Theory:

-- , Sullivan; -..-.. Cheng: -.- , inviscid.
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Fig.9 Data for a slightly blunted p.late. (a) Shock-wave shape, (b) surface prezsure, (c) surface heat-ransfer rate.
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Fig. 10 Thc swept back wing sections tested by Boger and Aiello ( 1970)
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Fig.12 Surface pressure distribution on centre of flat plate at 7° incidence and M. = 2.1 (Re • 180 per inch)
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Fig.16 The shapes tested by Boylan and Potter



10-28

I, -74 3 ,0 00= A , 5 1

%la e" Ola "f N'm .rlImcr .ra llgilmrallon for

pre.el[ te.m..

0 10 20 ,0 40 50 W 0 so

a. deg

C1, aml LID nofmr N r1

Fig. 17 Viscous effects on the Faget Space Shuttle
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