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TITLE: Water Shock Waves from Above-Water Explosions
J. M. PINKSTON, JR., AND AKIRA SAKURAI
U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi

ABSTRACT: |h
In an effort to determine the amount of energy trans-

mitted into the water when an explosion occurs above a water sur-
face, both experimental and theoretical investigations were con-
ducted. The experimental study involved detonation of 21-1b

Sspheres of TNT above a water surface and measuring induced water
shock at spatial positions underwater. To fully incorporate the
nonlinear characteristics of the airblast into the study, free-

'air pressure-time data were used as the water surface loading
S.mechanism and the investigation was divided into two phases--in

!Phase I the generating source was at such a height that the in-
duced water shock could be adequately described by acoustic
theory, while in Phase II the generating sourde was nearer the
s- r•face and the resulting disturbance field was of a finite am-

'plitude that had to be considered to accurately determine
,underwater pressure.

Peak pressures and pressure-time histories derived dur-
ing F.iase I (acoustic theory) compare very well with experimental

;results for those cases wherein the theory is valid. When theSgenerating source nears the surface however, the theory becomes
inadequate (primarily because of a rigid interface assumption)

'and theoretical results are adjusted by a correction factor (e)
Sthat modifies the pressure values as Op . Appropriate 9 val-

.ues for each charge position were obtained by comparing theoreti-
ical and experimental results for each charge position.

4 'Phase II results (the effect of the finite disturbance)
-indicated that the disturbance is not as important as originally
estimated, and except near the zero point, the acoustic theory
can offer a complete description of the pressure phenomena in

'water. However, near the zero point, the finite disturbance ef-
fect is essential to an accurate determination of the underwa-vC:

S ! pressure.
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pnMSTON AN~D SAMMRI .I 1
""V, ~e'JpelQPdru~ring the investigation would Ioe in such a form -that Vie -
numerical procedure to determine the pressure-time history at spatial
!positions underwater could be easily performed.
~in ~i The theoretical investigation was divided into two phases.

!I Pas Ii ws ssindthat tegenerating sorewsat such a
-height above the surface that the induced water shock could be &de-4 quateJ.y described by acoustic theory, 'While Phase 11 covered those
:cases in which the generating source was nearer the surface and the
iresulting disturbance field in we~ter was of a finite amplitude that
.bad to be considered in determining underwater pressure. 1-0C

PHASE I -ACOUSTIC THEORY

2In this p~hase io the investiga~tion the problem can be re-

Itewave equation, subject to the boundary condition given by the) pressure loading p0  on the surface. Assuming po as

(- -ao(t) -+ rat)+ra2(t) for R > r >O02

00rt forr>R

(see Figure 1)
whorep can b)) are functions of time (t), the general solutionfor ca besimplified -into an expression given by a series ofsingle integrals including a1(), . in each integral as

<p(r,z,t) =po(r,t -M

n-O t1 (r,z~t)

where H is the Heav~side function and are known functions-;of
;r 9 z ,t ) and t' (z = gage depth).' The limits t and t2 are
i'unctions that are determined for each gage loain( r~z) and'
i time t.

The ao(t), ... , functions were determined using bothexperim~entl. free-air pressure-time data and the properties of areflected airbia~st wave at a rigid interface. Although practically
"nYfl number of these functions can be determined, indication.s are'
that when comnpared 'with experimental data sufficient &cc-)z'acy is
btheined using only the second approximation, i.e. retaining just
teao(t) and al(t) terms. These simplifications make it easier

I' to determine the pressure-time history at a given rositi'a-

~2



pINKSTON AND. SAMURAI

,' Znderwater by numerical integration over the desired time interval. '--'
' p' eak pressure values were determined directly from Equation 2 using

limiting process. All equations were programmed for computer
processing, and the results obtained are compared with experimental

• data in Figures 2 t'hrough 7.
C.Since the acoustic theory becomes inadequate when the

Sgenerating source nears the water surface (primarily because of the j

i ons)) theoretical values given by the acoustic theory are not in
good agreement with experimental results; however, these theoretical 10
values can be partially adjuste& using a correction factor (0) that
modifies the pressure values as ep . Appropriate 0 values (which

.should be in the range of 0 < 0 < 1) for each charge position were
obtained through a formal comparison of theoretical and experimental

.results as shown in the following paragraphs. -

•• I Peak pressure values for the case when the charge is
Sdirectly above the gages (Xr = 0) are plotted (solid lines) in
'Figure 2. The upper half of the figure illustrates test geometry
w'.-.-•here }ji is reduced charge height, Xr is reduced horizontal dis--

otance from charge surface zero to gage surface zero, and z is the -- 20
:gage depth in feet. The two curves for each X correspond to 0

values of 0.8 and 1.0. For reduced charge heihts of 4X and 5X ,
theoretical and experimental results are in excellent agreement,

. but as suspected, the theory becomes inadequate as the charge nears
;the water surface. Figure 2 establishes the range and validity of
;the present'theory and providcs an estimate of the appropriate e

Svalue for each charge position. (A e value of 0.6 when xH = 1
,and 0.7 when XH = 2 or 3.)

Figure 3 is a plot of arrival time as a function of gage
depth and indicates that the shock wave in water is well documented

I t iby acoustic theory. Peak pressure calculations for spatial posi-
itions underwater were equally successful when con4ared with exper-
• mental data as shown in Figures 4 and 5 for the illustrated test
conditions.

Experimental pressure-time results are compared with theoryl
in Figure 6 for the case when the charge is directly above the gages ,

A(r = 0). The results compare very well, particularly for the
Sdeeper gages. Pressure-time histories at spatial positions under-

water are contained in Figure 7. Except for an apparent difference
in shock wave decay rates for the deeper gages, theoretical and .... '
experimental results are in good agreement and further improvements
can be expected by retaining additional terms., that is, a2 ,a

... , in the basic equation.

PHASE II - THE FINITE DISTURBANCE EFFECT IN WATER

IS As stated earlier, when the generating source nears the I.r water surface the acoustic theory is no longer valid and the effect
* or the finite disturbance must be considered. Though the distur-

'fnce is of a finite amplitude, it is reasonable to assume that the

. • . . •. °. . ... ., 3
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* ". plInOTON AND SAKURAI

r'dirsturbance* fiel:d is restricted to a small region on the water surfaci.
S"Figure 8 illustrates this particular case wfnich is characterized by i

' • :the interaction of the airblast and water shock fronts at point c on
;th" e water surface. When this occurs, the water is compressed, its
',front is a genuine shock wave, and a nonlinear analytical approach

Sis required to determine the flvow f t.ld . Fortunately the flow
field near the intersection (point c) acts independently, and its

:exact solution can be determined through the Rankine-Hugoniot rela-
itions of both the air and water shock fronts and knowing the condi-

"" tionb that exist at the interface. These relations are reduced to -- I0
is system of transcendental equations to determine the angles of

intersection, in addition to pressures, velocities, and densities
' in both the air and water. The equations were solved numerically,s"' :and the water shock pressure values obtained for various reduced
,charge heights are sho.m in Figure 9. (These values correspotid to
,Po values when r = R in Equation 1.)

Table 1 compares pO values for r = R = 0 from Phase I
1'with corresponding values from Phase I. Since Phase T results are4 . based on the rigid interface assumption, the difference in the two ......

-•| , -values-indicates what effect the compressibility of water has on ,
its ref. ,ection characteristics.

.KPRSSURSAT TABLE 1

.PRESSURS AT r = R F0 OR VARIOUS X VALUES

0.1 0.5 1.0 2.0 3.0 .0

Phase I 67,390 16,212 6,566 1,872 594 291
Phase II. 63,763 15,697 6,432 1,852 591 291 - '"

Results show a decrease in pressure that is more pronounced
]near the water surface. Though the difference is rather small and 9

perhaps insignificant, except for the XH = 0.1 case, these data
do suggest that the effect of the finite disturbance in water is
not as important as originally estimated.

Using the solution near the point c , a successive ap-
proximation method to determine the entire flow field in air and
water was developed and its first approximation studied in detail .Figure 10 shows a plot of pressure values from this first approx-

imation for the H = 0.5 0, = case as compared with available
experimental data. Again, indications are that the acoustic theory

:ca•n offer a complete description of the pressure phenomena in the
Swater) 'with the exception of the near zero point, if the appropriate

-i lue is selected. In the vicinity of the zero point, however,
the finite disturbance effect in water is essential to an accurate
"termination of the underwater pressure.
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