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ABSTRACT

Tne fluctuation-dissipation formula for the viscosity in terms
of the stress tensor fluctuations reproduces the experimental
logarithmic temperature dependence of the hydrodynamic viscosity.
Using the theoretical wave number and frequency dependent viscosity
in the problem cf critical diffusion, we find that the effects of
non-locality and retardation practically cancel, resulting in

satisfactory agreement with a ~ecent light scattering determination

of the effective viscosity.
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Kawasakil has shown that the critical variaticn of the
diffusion coefficient in a binery liquid near its critical point
can be represented by the Einstein reiation D = T Mo where T is
the temperature (we use natiral units such that Boltzmann's constart
is uni*y), £ is tk=2 correlation length for the concentration
fluctuations, and M = (6-.-7:15)-l is Stoles' formula for the mobility
of a sphere of radius £ moving through a liquid of viscesity n.
This result has also been established by one of the present author-s2

by a different method, and gives the rate of relaxation of a con-

centration fluctuation of wave number q as

(1

provided g<<q—1; i.e., the wavelength should be much greater than
the correlation length. But as the critical point is approached,
T+1, and g+=. The above inequality is then no longer satisfied and
D becomes a function of g, corresponding to "non-local diffusion.
This change is carried out in Eq. (1) by substitution of an

effective value for g—l according to

=it

(€ ™) (2)

eff = FBorfdd

where a.er is some numerical constant of order of magnitude unity.
Eq. (2) expresses in a quantitative form the qualitative rule of
dynamical scaling3’q that all temperature dependence is to be

expressed in terins of £ and that as T—»TC all factors of g become




A i

replaced by the wavelength. Actual computation yields

a = 3n/8 so that in the limit T»T_ we obtain
eff c

3

C Tq

I° = e

S T (3)

eff 9

In Eq. (3) we have allowed for the fact tha* recent experiment85’6
have clearly established a critical temperature dependence in the
hydrodynamic viscosity n. It, therefore, as well as the explicit
factor 5_1, has to assume a gq-dependent effective value, which we

denote by neff(q)' The purpose of the present note is to compare

ow calculation of this function with some measurements of I'C
recently carried out in this laboratory.7 As the theory is rather
involved, we prefer to present our results in a semiphenomenological
fashion, touching orly the main points of the calculation at the end.
Proceeding in this spirit we first take note of the separation8 of the
hydrodynamical viscosity into an "ideal," non-critical background
"4 and a residual critical portion An. An accurate empirical fit8

to the ratio of the critical portion to the total as a function of

g—l for the binary liquid 3-methylpentane-nitroethane is

—_——T-)—_ = in (qD«E), ()

where A = 0.051. The correlation length is known from light scattering

intensity measurements7 to have the temperature dependence
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Yo (7T /T Y)Y ol = 2 = =
(g/go, = {T ic/Tc) with go = 2.5A and v = 0.616. Now sub

stituting from Eq. (2) and denoting the numerical factor by a:;;c’

we obtain at the critical point

dp vise
—n'——(-aj_ = A(1n —q—- - 1n aeff ) (5)

The fact that the functional dependence is logarithmic permits us to

consider the case that the logarithm is very large. The constant term

"

can then be neglected. To this "lngarithmic accuracy,” we expect

the fractional critical viscosity which is effective in the diffusion

prccoess to be precisely the same function of q that the hydrodynamic

viscosity is of g—l. This function is plotted as the solid line in
Fig. 1. The values of neff(q) determined experimentally from line

widths are shown as circles. The parallel dashed line illustrates

better-than-logarithmic accuracy for aZ%?C =071

from an incomplete theoretical treatment, as explained below. This

, which would follow

line serves to indicate the sensitivity of the logarithmic

visc
eff °*
visc

to agree with the data the computed value of A rf should not be

approximation to a It is evident in Fig. 1 that for the theory

significantly smaller than unity. The remainder of this note is
devoted to establishing that this is, indeed, the outcome. In fact,

we find from a complete theoretical treatment (i.e., one taking into

account both the wave number and the frequency dependence of the

visc

viscosity) A fr

= 0.92. This is so close to unity that there is no




need to draw an additional line. We can regard the hydrodynamic
ion (a = 1.00) as a sufficiently accurate representation of
the theoretical effective viscosity and we see from Fig. 1 that 't
is consistent with the experimental finding aZ%?C(EXP) = 241,

In order to achieve better-than-logarithmic accuracy. we need
a theory of critical viscesity for calculating azéic. Such a
theory has been proposed by Kawasaki9 and by Deutch and Zwanziglo.
We have followed the latter approach, which is based on the

fluctuation-dissipation theorem 212

connecting the viscosity with
fluctuations in the off-diagonal components of the stress tensor.
In this way we have obtained an expression13 of precisely the form
of Eq. (4) with a theoretical value for the coefficientl'4 A equal

to 8/152

= 0.054, in close agreement with the experimental value
0.051. (The Debye cutoff qp is a free parameter in the theory and
is to be fixed by taking it equal to the experimental vaiue.) The

fluctuation-dissipation theorem expresses the wave number and

frequency-dependent viscosity as a four-dimensional space-time Fourier

integral over the correlation function of fluctuations in the off-
diagonal component Txy of the stress tensor. (x and y are particular
Cartesian coordinates.) It is more convenient, however, to treat

the time dependence by the Laplace transform, in which we write the
"frequency" as IC times the dimensionless variable y°. Thus the
generalized viscosity is

I‘ccly:;l‘t

21

1qg'x
1 4 122
n(ay) = 5 Jd 21 e 1

<Txy(?) Txy(l)>, (6)
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where the integration is over all of space-time, q is in the y-

direction, and the angular brackets denote the thermal equilibrium

average. We are interested in the critical fluctuations in Ty

y
which are given by the canonical expression15

where the landau-Ginzburg free energy density depends quadratically

on the partial derivations of the concentration Sx,y thrcugh the
b

gradient term (vs)?/ 2z, Inserting Eq. (7) into Eq. (6) and factoring

the ensemble average in terms of the concentration correlation
function 0

g C
; 1'%y = Tolty,|
3(21) = < s(2) s > = (207 Jd3q e -7 Uy ()

enables us to carry out tie integration in terms of the Fourier
transform
gq) = 2 . (9)
q
Substituting Eq. (7) into Eq. (6) and factoring the fluctuating
concentretion variables intc pairs we find for the critical viscosity,
after a certain amount of manipulation,

i

GHﬂzqs

ar(g,y) -
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8ay)ela) (=) 5 9 o 4 g 5.2 |
” 49 HM0 Y T3 (297 (g *a3)-a = {ay -9 J i
T 4L 4Ty '
94 49 9 b B
q,%9,29 |
la;-q,1<q i
9,259 §
’
3 du,du (u2—u2)2 2 3 |
= Tq,c j[ = i 2 ql 32 3 [2(u?+u§)-l—(u§-u§) ] P
Bun‘r 12 ujrupty +
ul+u221 é :
Iul—u2|sl |
ul,quc/q (10)

The cutoff is proportional to the Debye cutoff q.. The static
q. o8 D

case v = 0 can be integrated analytically and yields

q 3 g
> (In —< 4 13 % 5y 8  (in—S+0.062). (11)

An(g,0) _ 8 _ s
T D g/F 152 q

(@ 15q

Eq. (10) has been written for the special case 5_1:0. Finite values

2771 arg [l+(q£)_2]1/2 in

of & require correction factors [1+(qf)
g(q) and Fq’ respectively.16 Comparison of the resuit for the
q =0, g_1>0 hydrodynamic case with the g>0, g'1=0 non-local case

gives, in the language of Eq. (2)

ab:be o) exp (-

eff 3/ 3

B —é-l ) = 0.496. (12)

If we were to assume that the frequency dependence of the viscosity

could be neglected in the critical diffusion process, we would have

§
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. visc . _N.L.
the approxiuration AFf -~ qoff

by the dashed line labelled "N.L." in Fig. 1. It is interesting

This epproximation is depicted

to note that Eq. (12) confirms the general rule of thumb17 that
when the factorization brings in the correlation length twice (via
the equal-time Green's function), aeff:1/2.

But Eq. (12) cannot directly be applied to the diffusion
problem because it is applicable only in the static limit. The
approximation aZ%?CZ agfg' is too crude, as the diffusion process
depends upon the relaxation of current fluctuations, which are the
product of concentration and velocity fluc-tuations. Because of
the finite concentration relaxation rate we are forced to siudy
viscuous damping of the vélocity field at non-zero frequencies.
This results in a kind of '"retardation" correction to the critical
viscosity which leads to a decrease in the effective viscosity.
Our final task is the computation of this decrease, which entails
the use of Eq. (10) at all frequencies y3. We define a dynamical

scaling function o(y) by

n{g,y)-nlq,e) _ _8
Nogg(a) 157

5 oly). (13)

For O<y<<lyns(y) = —0.316y3, while for y>>1 we have the high frequency

approximation
: 1/3 .
_ 2 7/3 2/3 -2 13 , 2n/3
o(y) = In ~ s i S Ry S = 101 €7 4c)

0.169 - lny - 0.u79y"2 ()




We have confirmed by numerical corputation that the above low
and high frequency approximations are, in fact, very accurate
for y<0.5 and y>1.5, respectively. Interpolation through the
region y:1 yields a smooth negative-definite monotonic curve,

Therefore, the effect of retardation is necessarily to decrease

15
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we expanded the reciprocal of the viscosity, which

the logarithmic divergence hy a weighted mean 0. To

determine OAVE
appears in the time-dependent velocity correlation function, in
powers of the critical portion An, and worked to first order in 4n.
The resulting two-dimensional integral over the wave numbders of the
concentration and velocity fluctuations can be reduced analytically
to quadrature in terms of their ratio y. Using the values of o(y)
obtained as described above, and carrying out this intecration

nurerically, we have found IavE * -0.62, corresponding to

VE

visc _ _N.L.

a e = ager © = 0.92. (155

As mentioned above, this is in satisfactory agreement with the

experimental value a’ 5% (FxXP) = 2:1. The fact that this coefficient

eff
comes out so close to unity 1s a consequence of two competing phvsical
effects, namely the nori-locality and the retardation.

A further outcome of the theory, which we mention onlv in passing,
is that the retardation produces some non-lLorentzian djsrortionls in
the diffusion line shapes which may, however. be too weak an effect to
detect experimentally. Finallv, it is a pleasure to acknowledre a

stimulating conversation with Professor L. Kadanoff and many helptul

discussions with R.F. Chang, P.H. Keyes, J.V. Sengers, and C.0. Allev.
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Fig. 1

CAPTIONS FOR THE FIGURES

Fractional critical viscosity vs. wave number. The solid
line labelled "HYD! represents the experimental logarithmic
dependence of the hydrodynamic viscosity upon the inverse
correlation length (references 5 and 6). The dashed line
labelled "N.L." shows the static non-local correction for
the theoretically computed value of ay 1. = 0.u9%. This
would be the result for a crude theory which did not include
retardation. In the complete theory the correction for
retardation cancels the effect of static non-locality and
brings the theor';' back down to the solid line. Thus the
solid line represents both the hydrodynamic viscosity and
the theoretically expected effective viscosity. This line
is in satisfactory agreement with the circles, which show
the light scattering line widths measured by Chang, Keyes,

Sengers, and Alley (reference 7).
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