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ABSTRACT 

The fluctuation-dissipation formula for the viscosity in terms 

of the stress tensor fluctuations reproduces the experimental 

logarithmic temperature dependence of the hydrodynamic viscosity. 

Using the theoretical wave number and frequency dependent viscosity 

in the problem of critical diffusion, we find that the effects of 

non-locality and retardation practically cancel, resulting in 

satisfactory agreement with a 'recent light scattering determination 

of the effective viscosity. 



Kawasaki has shown that the critical variation of the 

diffusion coefficient in a binary liquid near its critical point 

can be represented by the Einstein i elation D = T ijp5 where T is 

the temperature (we use natnral units such that Boltzmann's constant 

is uni^y), E,  is th3 correlation length for the concentration 

fluctuations, and y = {6nri^) " is Stolces' formula for the mobility 

of a sphere of radius £ moving through a liquid of visccsity n- 

2 
This result has also been established by one of the present authors 

by a different method, and gives the rate of relaxation of a con- 

centration fluctuation of wave number q as 

r = D q
2 = T^- , " (i) 

q    ^   BirriC 

provided E,«q    ;  i.e., the wavelength should be much greater than 

the correlation length. But as the critical point is approached, 

T+'i and £-»■«'. The above inequality is then no longer satisfied and 

D becomes a function of q, corresponding to "non-local" diffusion. 

This change is carried out in Eq. (1) by substitution of an 

effective value for C   according to 

^"^eff = aeff^ (2) 

where a ^  is some numerical constant of order of magnitude unity. 

Eq. (2) expresses in a quantitative form the qualitative rule of 

3 4 
dynamical scaling ' that all temperature dependence is to be 

expressed in tenns of C and that as T+T all factors of E. become 



replaced by the wavelength. Actual conputation yields 

a cc = 3-n/B so that in the limit T-*T we obtain err c 

q   16neff(q) 
(3) 

5 6 
In Eq. (3) we have allowed for the fact that recent experiments ' 

have clearly established a critical temperature dependence in the 

hydrodynamic viscosity i).    It, therefore, as well as the explicit 

factor E,    , has to assume a q-dependent effective value, which we 

denote by n ff(q). The purpose of the present note is to compare 

c our calculation of this function with some measurements of r 
q 

7 
recently carried out in this laboratory.  As the theory is rather 

involved, we prefer to present our results in a semiphenomenological 

fashion, touching only the nein points of the calculation at the end. 
o 

Proceeding in this spirit we first take note of the separation of" the 

hydrodynamical viscosity into an "ideal," non-critical background 
o 

n., and a residual critical portion An. An accurate empirical fit 

to the ratio of the critical portion to the total as a function of 

5  for the binary liquid 3-methylpentane-nitroethane is 

AnCr1) 
nCc"1) 

= A In (qD0, (4) 

where A = 0.051. The correlation length is known from light scattering 
7 

intensity measurements to have the terrperature dependence 



(C/£ ) = (T-T /T ) v with C = 2.56A and v = 0.616. New sub- o     c c       o 
vise 

stituting from Eq. (2) and denoting the numerical factor by a f^ , 

we obtain at the critical point 

"eff^-nid = A(ln iL . ^ avisC) (5) 
neff(q) q       eff 

Ihe fact that the functional dependence is logarithmic permits us to 

consider the case that the logarithm is very large. The constant term 

can then be neglected. To this "logarithmic accuracy," we expect 

the fractional critical viscosity which is effective in the diffusion 

process to be precisely the same function of q that the hydrodynamic 

viscosity is of g . This function is plotted as the solid line in 

Fig. 1. The values of n ff(q) determined experimentally from line 

widths are shown as circles. The parallel dashed line illustrates 

vise   —1 better-than-logarithmic accuracy for a ff' = 2 , which would follow 

from an incomplete theoretical treatment, as explained below. This 

line serves to indicate the sensitivity of the logarithmic 

v^sc     •    .     .   - approximation to a tp . It is evident in Fig. 1 that for the theory 

• vise to agree with the data the computed value of a ^ should not be 

significantly smaller than unity. The remainder of this note is 

devoted to establishing that this is, indeed., the outcome. In fact, 

we find from a complete theoretical treatment (i.e. , one taking into 

account both the wave number and the frequency dependence of the 

vise 
viscosity) a ff =0.92. This is so close to unity that there is no 



need to draw an additional line. We can regard the hydnodynamic 

a sufficiently accurate representation of 

the theoretical effective viscosity and we see from Fig. 1 that it 

is consistent with the experimental finding a ff (EXP) = 2±1. 

In order to achieve better-than-logarithmic accuracy-, we need 

a theory of critical viscosity for calculating a ^ . Such a 

9 L .10 
theory has been proposed by Kawasaki and by Deutch and Zwanzig . 

We have followed the latter approach, which is based on the 

11 12 
fluctuation-dissipation theorem '  connecting the viscosity with 

fluctuations in the off-diagonal components of the stress tensor. 

13 
In this way we have obtained an expression  of precisely the form 

. .  14 
of Eq. (4) with a theoretical value for the coefficient  A equal 

2        . . . 
to 8/15TT = 0.054, m close agreement with the experimental value 

0.051.  (The Debye cutoff q^ is a free parameter in the theory and 

is to be fixed by taking it equal to the experimental value.) The 

fluctuation-dissipation theorem expresses the wave number and 

frequency-dependent viscosity as a four-dimensional space-time Fourier ' 

integral over the correlation function of fluctuations in the off- 

diagonal component T  of the stress tensor,  (x and y are particular 

Cartesian coordinates.) It is more convenient, however, to treat 

the time dependence by the Laplace transform, in which we write the 

c 3 
"frequency" as r times the dimensionless variable y • Thus the 

generalized viscosity is 

i q-x91   -  r^Y3|t, 
(6) n(q,Y) =  2r   Jd21e      '     21        q        21    <Txy(2) Txy(l)>, 



where the integration is over all of space-time, q is in the y- 

direction, and the angular brackets denote the thermal equilibrium 

average. We are interested in the critical fluctuations in T , 

which are given by the canonical expression 
15 

xy   x 3s. 
-,-1 
ti    s s * 

x y 
(/: 

where the Landau-Ginzburg free energy density depends quadratically 

on the partial derivations of the concentration s   through the 

gradient term (Vs) /2Z. Inserting Eq. (7) into Eq. (6) and factoring 

the enoemble average in terms of the concentration correlation 

function • 

G(21) = < s(2) s(l) > = (2Tr) 
-3 •  i q-x21 - r |t21| 

d q e        ^   g(q) (8) 

enables us to carry out tie integration in terms of the Fourier 

transform 

g(q) = —Y 
q 

(9) 

Substituting Eq. (7) into Eq. (5) and factoring the fluctuating 

concentration variables into pairs we find for the critical viscosity, 

after a certain airount of manipulation, 

64^ q 



2 2^ 
g(q1>g<q2

)(i1-
q2) 

dq1dq2q1q2 ^ ^-^ 
2, 2.  2 2    2, [2q'(q^qp-q -(q^-qp ] 

q1
+q2^q 

krq^l-q 
%,2^c 

64TT2rc 

du, du^ f zi! 
J ^u 

lu2 

Ul+U2-1 

U1,2V4 

2    2^ 

^^3 [2(u2+u2
2)-l-(u^u2

2)
2] 

U^+U2+Y 

(10) 

The cutoff q    is proportional to the Debye cutoff q«.    The static 

case Y = 0 can be integrated analytically and yields 

An(q,o) _      8    nn    qc 4    13      4TL_) 

'eff (q) 15TT 
o   (;Ln 

2 q 15 9/~3     ISTI
2 

(In -— + 0.062).     (11) 

Eq.   (10) has been written for the special case 5    =0.    Finite values 

-? -1 -2 1/2 
of 5 require correction factors [l+(qC)    3      ard [l+(qf;)    ]        in 

g(q) and r  , respectively.        Comparison of the result for the 

q = 0, 5    >0 hydrodynamic case with the q>0, C =0 non-local case 

gives,  in the language of Eq.   (2) 

N.L. 2 exp ( 
9/1 

11 ) =  0.496. (12) 

If we were to assume that the frequency dependence of the viscosity 

could be neglected in the critical diffusion process, we would have 

Misa 



the approximation a ifc ; aoö^' . This approximation is depicted 

by the dashed line labelled "N.L." in Fig. 1. It is interesting 

17 
to note that Eq. (12) confinns the general rule of thumb  that 

when the factorization brings in the correlation length twice (via 

the equal-time Green's function), a ff;l/2. 

But Eq. (12) cannot directly be applied to the diffusion 

problem because it is applicable only in the static limit. The 

approximation a^^^ ~ a lf' is too crude, as the diffusion process 

depends upon the relaxation of current fluctuations, which are the 

product of concentration and velocity fluctuations. Because of 

the finite concentration relaxation rate we are forced to study 

viscuous damping of the velocity field at non-zero frequencies. 

This results in a kind of "retardation" correction to the critical 

viscosity which leads to a decrease in the effective viscosity. 

Our final task is the confutation of this decrease, which entails 

3 
the use of Eq. (10) at all frequencies y  .    We define a dynamical 

scaling function a(y)  by 

nlSLülp^j2l =_§_0 (13) 

Vf(q) 15.2 

3 
For 0<Y<<l,a(Y) = -0.316Y  , while for Y

>>
1 we have the high frequency 

approximation 

21/3        TT/3      ,„2/3 N-2        13 ^ 2TT/3 
a(Y) = in —   - -^^(2      Y)      - -^ +  3sinU/3) 

=  0.169 - Iny -• O.HTOy"2 (14) 



We have confirmed by numerical confutation that the above low 

and high frequency approximations are, in fact, very accurate 

for Y<0.5 and Y^-S, respectively. Interpolation through the 

region y^l yields a smooth negative-definite monotonic curve. 

Therefore, the effect of retardation is necessarily to decrease 

the logarithmic divergence by a weighted mean , oAVp<0. To 

determine o.™ we expanded the reciprocal of the viscosity, which 

appears in the time-dependent velocity correlation function, in 

powers of the critical portion An, and worked to first order in An- 

The resulting two-dimensional integral over the wave numbers of ths 

concentration and velocity fluctuations can be reduced analytically 

to quadrature in tenns of their ratio y.    Using the values of a(>) 

obtained as described above, and carrying out this integration 

numerically, we have found o.™ = -0.62, corresponding to 

Avisc __  aN.L. e-
0AVEr 0i92> (15) 

eri   err 

As mentioned above, this is in satisfactory agreement with the 

experimental value a -f (EXP) = 2+1. The fact that this coefficient 

comes out so close to unity is a consequence of two competing physical 

effects, namely the non-locality and the retardation. 

A further outcome of the theory, which we mention onlv in passing, 

is that the retardation produces some non-Lorentzian distortion  in 

the diffusion line shapes which may,  however, be too weak an effect to 

detect experimentally. Finally, it is a pleasure to acknowledge a 

stimulating conversation with Professor L. Kadanoff and many helpful 

discussions with R.F, Chang, P.H. Keyes, J.V. Sengers, and CO. Allev. 



1 

2 

10 

REFERENCES 

Research supported in part by the Office of Naval Research. 

Ihis work constitutes a portion of a thesis submitted by Robert 

Perl to the faculty of the University of Maryland in partial 

fulfillment of the requirements of the ?h.D. degree. 

K. Kawasaki, Phys. Letters 30A, 325 (1969); Ann. Phys. (N.Y.) 61, 1 (1970). 
See also L.P. Kadanoff andTTSwift, Ann. Phys. (N.Y.) 50, 31f"Tl968). 

R.A. Ferrell, Phys. Rev. Letters 24, 1169 (1970); Dynamical Aspects 

of Critical Phenomena, Ed. J.I. Budnick and M.P. Kawatra, pp. 1-18, 

Gordon and Breach, New York (1972). 

R.A. Ferrell, N.Menyhard, H. Schmidt, F. Schwabl, and P. Szepfalusy, 

Phys. Rev. Letters 18%  891 (1967), Phys. Letters 2HA, 493 (1967); and 

Ann. Phys. (N.Y.) 47, 565 (1968). 

B.I. Halperin and P.C. Hohenberg, Phys. Rev. Letters 19, 700 (1967); 

and Phys. Rev. 177, 952 (1969). 

A. Stein, J.C. Allegra, and G.F. Allen, J. Chem. Phys. 55, 4265 (1971). 

B.C. Tsai, Master's thesis. University of Akron, 1970 (unpublished). 

R.F. Chang, P.H. Keyes, J.V. Sengers, and CO. Alley, Phys. Rev. 

Letters 27, 1706 (1971). 

J.V. Sengers, "Transport processes near the critical point of gases 

and binary liquids in the hydrodynamic regime," conference on Critical 

Phenomena of the Deutsche Bunsengesellschaft für physikalische Chemie 

and the Societe de Chimie physique, Lindau, W. Germany, Sept. 21-24, 

1971 (to be published in the Ber. Bunsenges,physik• Chem.). 



11 

10 

11 

12 

13 

14 

15 

15 

17 

K. Kawasaki, Ehrico Fermi Lectures on Critical Phenomena, Ed. 

M.S. Green, (1970), Acad. Press (to be published). While 

preparing the present report we received a preprint of a paper 

by K. Kawasaki and S.M. Lo which extends the theory of critical 

viscosity to the diffusion problem and obtains results similar 

to ours. We wish to express our appreciation to the authors 

for communicating the results of their investigation in advance 

of publication. 

J.M. Deutch and R. Zwanzig, J. Chem. Phys. 46, 1612 (1967). 

M.S. Green, J. Chem. Phys. 22_, 398 (1954). 

R. Zwanzig.'Ann. Rev.'Phys. Chem. 16, 67 (1965). 

R. Perl and R. Ferrell, Bull. Am. Phys. Soc. Series II, 17, 54 (1972). 

This is smaller by a factor of two than the value presented in 

reference 10 and in K. Kawasaki, Critical Phenonena in Alloys,■ 

Magnets, and Superconductors, Ed. R.E. Mills, E. Ascher, and 

R.I. Jaffee, pp. 489-502, McGraw-Hill, New York (1971). Prof. 

Kawasaki (private communication) is now in agreement with the 

present value. 

This and other details of the theory will be discussed in a more 

complete paper- being prepared for publication. 

This corresponds to a constant scaling function, in the terminology 

of reference 2, and is a better fit to the data than the one 

shown there in Fig. 1. 

R.A. Ferrell, Journal de Physique 32, 85 (1971). 

MMMla 



CAPTIONS FOR THE FIGURES 

Fig. 1   Fractional critical viscosity vs. wave nimber. The solid 

line latxBlled "HYD" represents the experimental logarithmic 

dependence of the hydrodynamic viscosity upon the inverse 

correlation length (references 5 and 6). The dashed line 

labelled "N.L." shows the static non-local correction for 

the theoretically computed value of aj^. . =0.496. This 

would be the result for a crude theory which did not include 

retardation. In the conplete theory the correction for 

retardation cancels the effect of static non-locality and 

brings the theory back down to the solid line. Thus the 

solid line represents both the hydrodynamic viscosity and 

the theoretically expected effective viscosity. This line 

is in satisfactory agreement with the circles, which show 

the light scattering line widths measured by Chang, Keyes, 

Sengers, and Alley (reference 7). 
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