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3 ABSTRACT

5

< Using the tools of feedback system analysis and simulation . .

4 a study has been made of the limitations on helicopter approach -

1 and landing under conditions of low visibility. It is shown ) 3
1 that reletively steep approaches to low decision heights can be . e
3 | made on instruments. Successful loop topologles were identified - 2
z 1 and considerable improvement over the standard GCA approaches was
E‘ i shown to be possible with a scanning beam system especially if 2
¥ beam rate signals were empolyed. Errors introduced by turbulence 1
B and wind shear were the dominant ones. An automatic approach :
£ system could be mechanized using the same signals as the manual b
B approaches which were considered. -
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- I. INTRODUCTION

3 i;é; The objective of the research reported here has been to determine

: er the limitations which are placed upon the operational capability of the

i i -helicopter in approach and landing by the guidance, display, pilot and

£ ;ﬁ% machine itself - in combination. It has been specifically intended to

E W examine guidance system parameters needed for low visibility approaches

£ E%« . in helicopters. The effort has been in direct support of Avionics Labor-
E 3 atory's planned landing system program, the first goal of which is the

£ i development of a tactical, ground based, radio guidance system for heli-
£ '{; copters. It is expected that theoretical analysis, will be a valuable

adjunct to the planned flight research approach to the problem.

TR

In the first ten months on +his research we formulated an approach
to the systems problem and ga-hered vackground material on the system
elements, namely: «uidance, vchicle characteristies, forcing functions,
and pilot models. 11 addition some preliminary longitudinal closed-loop
analyses of helicopter ~ntrol in landing aporoach were accomplished and
the means for defining ti.- success of the approach were outline. All
this was reporied in the it:rst year's annual report (Ref. 1).

PR T AN L

During the subsequent periu@ covered by this report (1 July 1967
to June 1968) the closed-loop analyses were carried forward so as to
irclude both longitudinal and lateral control of both a typical single-
rotor and a typical tandem-rotor helicopter (Ref. 2). With these results
in hand, a simulation of pilot control of instrument low approach in
helicopters was set up and was exercised so as to yield data on:

L dantiariea v AL A

*the effect of ﬁhe addition of beam rate to the
control signals in both the vertical and lateral

dimensions

“the improvement to be expected from the use of
scanning beam guidance as opposed to the use of
the conventional GCA

*the influence on approach success of the addition
of a pitch damper to the control system

‘the influence of scanning delay in a scanning beam
approach guidance system

‘the influence of the geometric glide path angle
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i ‘the effect of varying degrees of the severity
. of atmospheric turbulence

3 ‘the effect of varying vehicle characteristics
: and trimmed flight condition

*the effect of wind shears on the accuracy of
A following the beam

*the minimum glide path angle for a specified
level of safety with respect to obstacle clearance

R YSUAE PRRR IR SURRE PN P P TE SR LILPULIOT SEFVISPL. Stied

*the signals required to be displayed to the pilot
3 or employed in an automatic approach control system

3 These results have been reported in Ref. 3 and 4 and are described
below.

f II. THE SYSTEM DESIGN PROCESS FOR AN APPROACH SYSTEM

FSZE PSS LIRS N PN AN SRS

The system design process for a pilot-vehicle system is similar
3 to.the one employed in the design of inanimate systems. It comprises at
3 lz2ast four significant steps:

1., definition of the purpose of the system

2. definition of the enviromment in which it is
to operate

Aaritile g e i e iy e

3. evaluation of the capabilities of subsystemé
and components (including the human operator)
and the synthesis of competing systems

4, application of criteria for system performance
and the selection oi' the "best" system.

Figure 1 shows how we may begin to study the system design of an
approach system comprising a helicopter or VTOL aircraft, a human pilot,
and an approach guidance system, The purpose of the system is to make
steep IFR approaches (considering first only longitudinal control).

This is also the mission phase. Guidance possibilities include at least

a scanning radar with voice communication (GCcA) and a redio beam system
f or its equivalent. The aircraft operating point is steady descending
flight. (It is considered premature to study decelerating flight paths
for IFR approaches without first understanding steady flight.)

O AR AT e sk A oA 2SS N S s SAEN S bl Al wat o L R et

The vehicle characteristics which we shall be compelled to consider
will be strongly dependent on the particular operating point which is
salected. Figure 2 illustrates some of the factors which influence the
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choice of an operating point. It shows the interplay of airspeed (no-
wind groundspeed), rate of descent, and glide slope. Superposed on the
graph are two "forbidden" regions, the region of roughneis and the region
below the autorotation boundary. In order to stay well away from these
regions and in order to minimize the influence of longitudinal gusts on
control of the rate of descent, it is desirable not to fly much slower

or steeper than the recommended operating point shown as the cross-hatched
square. Of course, it is easily possible to fly faster or at shallower
glide path angles, but then much of the unique performance capability

of the helicopter would be obviated.

The environment in which the vehicle operates is simply the atmos-

Phere, and the forcing functions are gust velocity components of an assumed
isotropic turbulence,

III. ELEMENTS OF THE SYSTEM

The elements of the system are the ground based guidance, airborne
guidance receiver, other airborne instruments, the displays, the pilot,
and the vehicle including its control subsystem.

We shall consider two basic types of ground based guidance equip-
ment. The first is a scanning radar with voice transmission of the
indicated path errors. This is the so-called "no gyro" GCA. It
represents the standard method for providing approach guidance for
helicopters in use in the U. S. Army today. Observation of practice
hooded approaches at Ft. Rucker, Alabama, indicated that the mean rate
of transmissions for the correction of errors in the vertical plane is
one every 14 sec and the mean rate of transmissions for the correction
of lateral errors is one every 10 sec. We take it that a suitable model
of this system element is spproximately the measurement of deviation from
the glide path lagged by 1L sec and deviation from the "localizer" lagged
bv 10 sec.

The other guidance equipment is an jidealized radio beam system in
which the deviation from the glide path is measured practically in-
stantaneously and in which the measurement of range to the aircraft is
used to provide course softening. Later we shall wish to consider a
further idealization in which height rate with respect to the glide path
and lateral deviation rate with respect to the localizer are also avail-
able as outputs of the receiver. Lags and other imperfections in the
receiver are for the moment, neglected.

Standard indications of pitch and roll attitudes, heading, airspeed,
and barometric rate of climb/descent are assumed to be available. The
first four of these are indicated with negligible lag while the lag in
thﬁ indication of rate of descent is notorious. This lag is taken to be
0.4 sec.
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A model for the human pilot is the simple describing function form,

TREE % % W

- -Teffs
Y = K
H(8) = Ke ()

where the gain, Kp, is adjusted for good system performance, and the : A
effective time delay is taken to be 0.4 seec to account for scenning and ' %
sampling delays as well as for time delays and lags in the neuromuscular
system (Ref. 5 - 7). Where it may be required for stability, the pilot
can also introduce lead so that the describing function then becomes:

=T S
Yp(s) = xe °©ff (

5 Ts +1) (2)

E 2
T, might be as large as 5 sec (Ref. 5 = 7).

The vehicle and its control system are represented by the liniar-
ized equations of motion of a typical single-rotor helicopter. The
controls of interest are the collective pitch control and the longi- h
tudinal cyclic pitch control. Lags in the control system are neglected ;
as indeed are also any lags in engine speed governing. The operating
point condition is taken “o be 40 knots on & glide path of -1k deg.
Lacking any better information, however, the statility derivatives were
based on measurements and estimates of the derivatives in level flight.
(Recent model measurements for the XC-lhz, made on the Princeton -long
track, showed little difference in the dynamic motions between level and
descending flight, and a check of our simulation with substantial changes
in the drivatives suspected of being most sensitive to rotor through-
flow again showed that the results were very little, if any, different.)
The dynamics of the vehicle under the action of multi-loop feedback .
control were studied by means of servoanalysis techniques (Ref. 2, 8, 9). ]

PRULR IR )

o

IV. SYNTHESIS OF THE LOOP CLOSURES

The multi-loop analysis showed the best fashion in which motion
variables of the vehicle should be used to control the vehicle's dynamic
motions (Ref. 2). Figure 3, for example, shows that pitch angle and
. . pitch rate feedbacks to the longitudinal moment control (cyclic pitch)
U corrects the unstable phugoid of the vehicle and provides adequate pitch

3 damping. The additional feedback of velocity error to cyelic pitch,
Fig. 4, provides some additional stabilization of the low frequency mode
(phugoid). The feedback of height to collective pitch, Fig. 5, is used
in preference to the feedback of height to cyclic pitch because it
provides by comparison, increased height control bandwidth (i.e. “"tightness
of control"). These feedbacks, taken together, are basically a
representation of the manner in which the humen pilot controls a

, : helicopter in the longitudinal plane., Similar analyses were made for
- lateral control (Ref. 2).

sedltaaty.
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V. SIMULATION

In the simulation study the pilot model was placed in the system

50 that the appropriate aircraft output motion variables would be used
to move the controls (Fig. 6, 7).

The analog computer simulation started with the basic longitudinal
and lateral equations of motion for the H-19 single rotor helicopter.
The two sets of three-degree-of-freedom equations of motion were each

solved simultaneously on the analog computer so as to yield the motion
variables (Ref. 10, 11).

External disturbance inputs to the system come from atmospheric
turbulence and the pilot remnant, botn of which are noise with defin-
able power spectral densities. The form of the gust model of Etkin
(Ref. 10) was used for the spectrum of atmospheric turbvlence. Values
of the root mean square gust velocity, o, and scale length, L, however,
were determined from date given by Pritchard (Ref. 12). (The root mean
square gust velocities were made approximately 10% larger than they

might otherwise have been to approximately represent the effect of
the pilot's remnant.)

A transient analog, an impulse input to a first order filter in
which the impulse intensity was proportional to the zero frequency
intensity of the gust spectrum and the time constant was numerically
equal to the break frequency of the gust spectrum,was used as the actual
disturbance input to the simulation (Ref. 13-15). The formula for the
transient analog of the Etkin gust spectrum is simply

r(t) = V300§ e ¥t (3)
whece: o = rms gust velocity
I
w = g-fg = spectral break frequency
L = scale length = 100 ft
Uo = flight velocity

The convenient use of the transient analog allowed a direct reading of
the mean square height error output and overcame the messy problem of
evaluating the statistics of time dependent functions which would be
agsociated with using a random process as the input. The transient
analog was easlity varied so that the effect on the system of 12 different
inputs, representing turbulence from rather severe conditions to very
light conditions, could be quickly evaluated,

Ultimately no account was taken of inaccuracies in the received
position data from the scanning beam guidance system. The performance
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claimed for the equipment showed that indicated errors at ranges typical
of the final stages of the approach would be measured in fractions of a
foot. (At longer ranges the errors would be much less important.) Since
the turbulence induced errors in tracking the approach path were shown
to be of the crder of magnitude of several feet and the total rms error
would presumably be represented by the square root of the sum of the
squares, the inaccuracies in *tne received radio signal should be truly
negligible in determining the close-in system performance, provided the
claimed performance for the radio guidance system is actually achieved.

System dynamics were checked using the response to initial errors
with no disturbance (Figs. 8, 9 and 13). All reported rms errors
(Figs. 10 and 14) were calculated from simulated approach runs which
included various disturbances.

IV. DISCUSSION OF RESULTS

A. Longitudinal Case

In some cases, the insertion of the pilot time delay, T, ia the
control loops necessitated large changes in the gains of the feedback
loops with respect to those obtained in the no-lag multi~loop analyses
of Ref. 2. The loop closure gains finally used were determined by
considering, in order of importance, first the overall system stability
and next, realistic pilct behavior. Realistic pilot behavior was
defined by using a height error or lateral offset as an initial con-
dition observing the correction maneuver, and making a judgment concerning
the acceptability of the maximum attitude changes and rates of change.

What shall from here on be called the basic system (longitudinal),
including the vehicle, pilot loop closures, and guidance and instrument
indications was established so that in a correction maneuver from a
20 it. height offset the vehicle would recover the predetermined path in
approximately 4 sec with only a 3 ft. overshoot. (See Fig. 8.)

Also shown in Fig. 8 is the height error initial condition
response when instantaneous height error rate information is also
fed back to the collective pitch control through the pilot's time delay.
Note the improved damping of the initial condition response. The’
correction maneuver showed a return to the desired glide path in 3 sec
with virtually negligible orzrshoot. The root mean square height
error, with the instantan-ous height rate feedback, showed a reduction
of 50% when compared to the basic system as shown in Fig. 10.

The pilot-aireraft system was next evaluated in a simulation of
a "no gyro" GCA apprnach. The "no gyro" GCA is a term used in Army
Aviation to signify ¢ GCA approach in which the pilot is told only his
direction of deviation from the desired glide path (i.e. above, below,
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right or left of course). Simulation of the "no gyro" GCA system was
accamplished by delaying height information to the pilot by 14 sec and g
by delaying height rate feedback to the collective (representing . :
barometric height rate signals) by 0.4 sec. The correction maneuver with g
8 20 ft. height offset as the initial condition is shown in Fig. 9. oOf
particular interest in the "no gyro" run are the extremely small variations
in motion variables other than the height, and the tendency to oscillatory
instability, but the "no gyro" run demonstrated that with all of the feed-
back loops working, even rather poor height information (delayed 14 sec)
can be used to obtain relatively satisfactory performance. This, of course,
is not incompatible with actual experience. As an example, with a gust :
input representing rather severe atmospheric turbulence, the root mean |
square height error for the "no gyro" GCA system was only approximately 10 ft. :
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The influence of a pitch damper, which relieved the pilot of the :
necessity of supplying pitch damping, was investigated in connection P
with the "no gyro" GCA system, the basic system, and the instantaneous
height rate system. While the damper was indeed beneficial in supplying
demping of the pitching motions, evaluation of the root mean square, height

. error showed that the effect on control of height, in each case, was
negligible. .
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The comparison cf root mean square height errors for a typical
vertical gust input spectrum is shown in Fig. 10. (Horizontal gust
inputs in the direction of flight were shown to have only very small
effects.) Also illustrated in Fig. 10, in addition to the performance
of the systems already discussed, are the performances of two systems
substantially identical to the idealized "basic" system and the
insvantaneous height rate system except that height and height rate
information are delayed 0.25 sec. This time delay represents the influence
of the scanning delay in a scanning beam approach guidance subsystem
which scans (in elevation) U times each sec. The Avionics Laboratory,
U. S. Army, has such a scanning beam equipment under development. It
pe may be seen that the influence of the scanning delay is very small.
7 Lower scanning rates, however, would have a more pronounced effect.
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By changing terms in the equations of motion which contain the
flight path angle, vy, it was possible to investigate the effects on the

33
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;gg‘ basic system root mean square height err~r of changes in the geometric §
e~ flight path angle. Path angles of -8 deg, -1l deg, -18 deg, and -2l deg :
s were investigated and 12 different gust input spectra were used as each ;
o angle. The results, shown in Fig. 11, reveal that for each gust input B
-4 spectrum the influence on the root mean square height error of varying 3
i the geometric glide path angle was entirely negligible. Confidence in j
s this result was further heightened by varying, by t20% from their 3
E- initial value, the stability derivates X , M , Z , which are thought to 5
H be most sensitive to the rotor through-flow veloeity. There was still :
gfﬁ only a regligible effect on the root mean square height error. i
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At the operating point of 40 wmots, X 2 AD/AU £ 0, and the
vehicle is on a 'relatively flat portion,ofuthe power required curve, It
is primarily for this reason that longitudinal gusts have so little effect
on height errors. Substantial increments in Xy, both positive and
negative, did not have any appreciable effect on the response of the
closed-loop system, Nevertheless, the advantage of conducting actual
operations at or near the spzed for minimum power required should not he

overlooked,

For very much the same reason that longitudinal gusts do not indue:
substantial height errors, it vas fourd that longitudinal wind shears
had very little effect. The mndel of the shear input which was used was
8 ramp function increasing at 1 £t per sec over a period of ten sec,
(Although little seems to be known about wind shears in the lower
portions of the atmosphere it wculd probably be generally conceded
that this was e severe wind shear.) The effect of this shear was tested
on both the basic system and the instantaneous height rate system. 1In
neither case did the height deviation because of the wind shear exceed a
value of 0.2 ft. This was considered to be a negligibly small effect.

The dats collected in the evaluation of system performance by
means of simulation may be used to make statements concerning the safety
of operations into a proposed tactical heliport (Ref. 16). Figure 12
depicts the results of such calculations for the longltudinal case.
Using a "no gyro" GCA approach and a glide slope of -8 deg it is seen
that at a decision height of 150 ft. tnere is a 4.09% probability that
the vehicle will be below the 7 deg line established as a minimum safety
slope to the signal source. For the same case, however. there is only a
0.2% probability of the vehicle being below the line from signal source
to the tope of an 80 ft. obstacle located 800 ft. from the signal source.
The corregponding probabilities for the basic system are 0.001% and
1 x 10°12%, Tne comparison of these figures with the ones for the "no
gyro" GCA show the improvement to be expected from the use of an improved
guidance subsystem. A glide slcpe of 10° LO' with "no gyro" GCA would
provide for arrival at decision height directly over the 80 ft. obstacle
with a probability of very near zero of actually hitting the cbstacle,
and the same thing is true only much more so in connection with improved

approach guidance subsystems.

B. Lateral-Directional Case

In the lateral plane of motion the pilot-vehicle systems were
established with the same components comprising the longitudinal systems,

i.e. vehicle, pilot loop closures, and guidance and instrument indications.

Again pilot loop gains were established using the criteria of system
stability and realistic pilot behavior. Realistic pilot behavior was
determined by establishing an initial 500' offset error from the desired
course and observing the correction maneuver to the course. In addition
to the time delays of the pilot, all cases in the lateral plane of
motion which were studied had a 0.25 sec time delay superposed on the
system to represent the influence of the scanning delay in a scanning
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beam approach guidance subsy-~tem which scans (in azimuth) 4 times each
second, '

The first system investigated in the latcral case was a heading
command system in whi:h the distance of deviation frcm the desired course
provided the command input. Integration in the forward loop of this
system satisfies the cequirement of maintaining course in the presence
of a steady crosswind (Ref. 16). What shall henceforth be referred to as
the integral-control system was a system containing, in addition to the
feedback loops shown in Fig. 7, the addition of course deviation, AD,
integration as a feedback to the lateral cyclic control. The loup gains
established for tris system wa2re such that with the initial 500 ft.
offset from the course, the correction maneuver of the pilct-vehicle system
would be as shown in Fig. 13. Here the maximum bank angle for the
correction maneuver was approximately 6° and the maximum heading change
was approximately 10°, The correction maneuver itself showed a return
to the course in 22 sec with a slight tendency toward a very low
frequency oscillatory instability.

The next system to be considered was a simulation of the "no gyro"
GCA system in the lateral plane of motion. For this simulation the
seme pilot loop closures were used as in the integral control system.
However, in the "no gyro" GCA simulation course deviation information
to the pilot was delayed 10 sec. The motion variables of interest in
the correction maneuver executed with the "no gyro" system showed a
shallower bank angle and smaller heading change in connection with a
slower return to the desired cause than with the integral-control system.
Nevertheless, the correction maneuver showed that even with relatively
poor course deviation information (delayed 10 sec) it was a workable
system. This agein is not incompatible with actual exerpience.

Also of interest in the lateral case was a bank angle command
sysiem. In this third type of lateral system the heading information
was not fed back, but instecad was replaced by course offset distance
and closure rate feedback as the command input for bank angle control.
This system, called the beam rate system, was established with
appropriate pilot gains so that the correcticn meneuver was a return
t0 the desired course in approximately only 16 sec with virturally no
coursw overshoot, At the same time the mction variables, bank angle,
heading, and yaw rate were maintained within veasonable limits,

A comparison of root mean square lateral doviation errors for
a typical heorizontal gust input spectrum representing moderately severe
atmospheric turbulence is showm in Fig, i4. 1 : cach system the rms
lateral deviation errcr was considered reasonable in terms of actual
practice. Of particular interest is the reduction by 30" of the rms
lateral deviation error of the beam rate system when compared to the
integral control system. Although the improvement obtained by a beam
rate feedback is not as great as in the longitudinal case, the important
beneficial effect should possidbly be considered in specifying receiver
characteristies for new helicopter approach guidance systenms.

Side wind shear effects were also investiga.ed for .cach system
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in the lateral case. The horizontal wind shear model used was the same

as for the longitudinal case, i.e. a ramp input increasing at 1 ft per sec
for 10 sec, Recall that this shear may be considered to be severe, For
each case the lateral deviation error at the conclusion of the wind shear
input was on the order of 15 ft. Even with the low frequency and low
demping characteristic of the lateral systems these deviation errors were
still considered to be relatively unimportant. The errors because of the
shear were of the same order of magnitude as the side gust induced
components of error for the systems with scanning beam guidance. A
displacement from the desired course at the decision height of even thirty
feet (which might represent the combined effect of severe gusts and shears)

would not be likely to have any very serious effects.

With respect to motion in the horizontal plane, Fig. 15 shows the
effect of lateral deviation error because of gusts, at decision height,
for the integral-control lateral-directional control system. For pur-
poses of discussion we might assume a localizer beam width of 3°,
Placing the localizer signal source at the far end of tbe heliport from
the direction of approach increases the effective coverage and "flyability”
of the localizer. With an approach made at -8° glide slope, the vehicle
arrives at the 150 ft. decision height approximately 2100 f+. from the
i.ocalizer signal source. At this point, with the integral-control systenm,
there is a 0.02% probability that the vehicle will be outside the (assumed)
limit of the beam. Being outside the beam would correspond to a full-
scale needle deflection in an arrangement where the localizer beam gave
displacement as in the conventional ILS system. The same system gives
a 0.12% probability of being outside the beam when the approach is made
at -10° 40' glide slope. As the glide slope angle is increesed (negatively),
ancd the distance from the signal source at decision height is thereby
decreased, the probabilities of being outside the beam will then corres-
pondingly increase., These facts indicate that it is probably desirable
to use a wider beam. The irtegrel-control heading command system seems
plausible for use even with a localizer beam 3° in width.

The beam rate bank angle command system has lower probatilities
of being ocutside of the beam than the integral zontrol system. For
the approach at -8° glide slope the beam rate system has a negligibly
small probability of being outside of the beam and this "tight" system

is to be recommended.

In the horizontal plane the "mo gyro" GCA system can be discussed
without any confinement to a given beam width. For a "no gyro” GCA
appraoch at -8° glide slope the vehicle would arrive at decision height
2100 ft, from the approach end of the heliport and with a .0026%
probability of being outside a distance of 133.5 ft. from the desired
approach course. The value of 133.5 ft. corresponds to three standard
deviations of the gust induced lateral deviation error distribution.
Even if the vehicle were 133.5 ft. from course, however, upon arrival at
the decision height on the same heading as the course, a turn of only
7° would put the vehicle on an inbound course to the heliport. For a
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"no gyro" GCA system approach at -10° 40' glide slope there is the

same ,0026% probability of being 133.5 f£t. from the course. Upon
arrival at decision height a 9.6° turn would be required to establish
an inbound course to the approach end of the heliport. These are com-
peratively mild maneuvers and tend to establish the fact that gust or
shear induced lateral deviation errors are not so serious a limitation
in helicopter operations as in fixed wing aircraft operations because
it is not necessary to line the helicopter flight path up with a runway.

VII. TMPLICATIONS FOR COCKPIT DESIGN

The results of this system analysis of control of helicopters on
instrument low approach, suggest, but do not demonstrate, certain
implicaticas for cockpit design.

1. Display-Control Association. Since the best means for the
control of airspeed and the decoupling of height control was found to
involve the feedback of pitch aengle error and speed error to the longi-
tudinal cyclic pitch control, it would seem that, contrary to the
practice in fixed-wing aircraft, a speed error indication should be
closely associated with display of pitch angle, while the height error
(fed to the collective pitch control) should be spearated from these two
in the display.

2. Use of Instantanecus Hight-Rate and Lateral Beam Rate. The
powerful advantage of instantaneous height rate and lateral beam rate
in the reduction of dynamic errors in following the approach path commends
a flight director instrument combining vertical displacement and height-
rate information and lateral displacement, beam rate, and bank angle to
our attention. The substantially instantaneous height rate information
might possibly be derived from the radio guldance, or alternatively may
be computed by integrating the output of an airborne vertical accel-
erometer corrected to the true vertical and combined in a complementary
filter with barometric rate of climb/descent information (Ref. 18).

3. Vertical and Horizontal Situation Displays. If the height
and height rate information are combined in a director instrument, a new
vertical situation i1isplay is going to be required. One version of such
a display, The Flight Profile Indicator, has been synthesized by
Mr. William Austin, Link Division, General Precision, Inec. in connection
with a U. 5. Air Force program (Ref. 18). The Flight Indicator shows
the position of the aircraft with respect to the glide slope and the
runway as well as showing the magnitude and direction of the aircraft's
velocity vector, Much, if not all the information required for this
display, can be derived from an improved ground based guidance subsystem.
It seems that a conventional horizontal situation display would be suitable.

4. Supplementary Automatic Control. It did not appear, from the
results of our study that, on apprcach, there was any performance ad-
vantage to be gained by the use of automatic control, notably a pitch
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damper., This, of course, is not to say that the pilot's cumfort,
convenience, and stress level might not be ameliorated by performing some
functions automatically.
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A suggested evolutionsry panel arraugement for instrument 3
low approach in helicopters is presented as Fig. 16.
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VIII. CONCLUSIONS
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. The theoretical analyses and simulation studies conducted at
Princeton University under the PPAAR Task: 'System Study of Low
Visibility Approach and Landing" have shown that relatively steep
angle (12°) approaches to low decision heights (150 ft.) can be made,
on instruments, in helicopters equipped with available instrumentation
and provided with a suitable source of guidance information.
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The general features of a typical (voice link) GCA approach

were reproduced in the simulation, and the 12° glide slope recommended

after flight tests at Ft. Rucker, Alabama, was shown to correspond to

an operating point (airspeed and rate of descent) near the speed for ]

A minimum power required, above the region of roughness (which can extend 3

3 as high as 30 knots), and at a rate of descent only about half of a
typical rate of descent in autorotation. (For the same flight condition
with respect to the air mass, the glide slope would be in excell of 20°
when flying into a 20 knot headwind.) Investigation showed, over a wide
range of typical values (-8° to -24°), that there was no appreciable 3
effect on the closed loop dynamics of changes in the inertial terms in
the equations of motion which are functions of the flight path angle.
Stebility derivatives thought possibly to be sensitive to rotor through
flow velocity were also varied in the simulation with only minute effects
on the closed loop dynamics. These facts, taken together, indicate that
up to 24O, at least, the steepness of helicopter approach paths is not

: limited by considerations of stability and control as long as the airspeed
is approximately the speed for minimum power required and the rate of A
descent does not approach the rate of descent in autorotation. (Other
considerations which might limit the steepness of approaches, such as
the time available to make a transition to visual flight upon reaching
the decision height, or forward visibility through the cockpit windshield
were not amenable to analysis by the methods used in this study.) 4
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With the performance of the human pilot taken into account via
a describing function model and considering the guidance data rate
actually proposed to be employed, two very successful loop topologies
were identified for each of the longitudinal and lateral cases., 1In
both cases the system may be made to work at a level which shows a con-
siderable improvement over the standard GCA without the use of radio
beam rate. In both cases a further improvement can be achieved through
the use of derived rate from the vertical scanning beam and the azimuth
scanning beam., The biggest improvement is with the use of derived rate
from the vertical scanning beam,
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R The influence of a pitch damper on the performance of the

s longitudinal closed loop control and guidance system was found to
be very samll. For this reason roll and yaw dampers were not
investigated.
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Errors induced by random atmospheric turbulence were the dominant
errors in the longitudinal case and were comparable to errors induced by
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heading angle

',? wind shear in the lateral case., Errors induced by inaccuracies in the
2 i 3 guidance were thought, but were not shown to be, much smaller.
E g For menual control of instrument low approach in helicopters
é g at least the following signals should be displayed to the pilot for
% i flight control:
3 ¥ . pitch attitude
: E . airspeed
; E « height error (beam displacement)
3 g ~ bank angle

DS T RPN TIY o U ORL P T \PURRS JITIY

¢ 3 lateral beam displacement
3 . « lateral acceleration (slip)
4 & + yaw rate (turn)
é 5§ . A successful automatic approach system could be mechanized with ?
: 3 the same signals. ]
( - ‘
A; Potential improvements could be realized, especially if flight
3 director type instruments were employed, by adding pitch rate, in-
A stantaneous vertical speed or vertical beam rate, and azimuth beam

rate. The use of these signals would also improve an automatic system.
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Lateral deviation (convenient units which may be linear
or angular)

Base of natural logaritmms = 2,718
Height (ft)

Height error (ft)

= -1
Gain constant
Piiot's gain

Scale length of atmospheric turbulence (ft)
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Pitching moment due to longitudinal velocity

Yawing velocity, (deg/sec)
Transient analog of gust input spectrum
= o+jw, Laplace transform variable

Equalization (lead) time constant (sec)

Time (sec)

Longitudinal velocity (ft/sec)

Trimmed longitudinal velocity (ft/sec)
Perturbation longitudinal velocity (ft/sec)
Plunging velocity (ft/sec) .

= %-%% s Longitudinal force due to plunging velocity

Number of normalized standard deviations (1bs)

Pilot's describing function

, Normal force due to longitudinal velocity (1bs)
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