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1. INTRODUCTION

The use of pulse-position modulation (PPM), including variation
of the pulse period, has been investigated by the Harry Diamond Lab-
oratories as a method of obtaining signal identification. This
study was conducted for Research and Engineering Directorate of the
U.S. Army Missile Comniand.

Basically, this study considers a set of N periodic pulse
trains, each emanating from a distinct transmitter or source as
shown in figure 1. The objective of this study is to determine a
means of coding each pulse train in a way to make it possible for a
receiver to recognize a particular pulse train with a low probabil-
ity of error. Modulation and receiver costs, as well as the time
to decode, are not considered in this study; ultimately, however,
these factors must be considered.

SYNCHRO"'IZATION SI(iNALEO(F USED)

Sl
S2
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Figure 1. Model of coding problem.
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Regardless of the receiver that is actually used, the perfor-
mance of the system is limited by the properties of the signals
S1, i..., SN that are transmitted. If there are overlapping signals
or if the sum of two signals appears to be a third signal, any re-
ceiver will be restricted in its ability to decode or separate the
signals. Accordingly, performance limitation due to signal design
is the primary concern in this report rather than the characteris-
tics of the receiver.

Each transmitter puts out a pulse train of approximately the
same frequency, with the only allowable modulation being a small
displacement in pulse position. Each pulse in all pulse trains is
the same shape.

Treating time as discrete greatly facilitates an analysis of this
type of problem. Such an approach is possible if the maximum effect
of the timing uncertainties--which arise from such parameters as finite
pulse width, error in synchronization signal, and receiver resolution
ability--is small compared with the period of each pulse train. This
study assumes that such an approach is valid, and time will be taken
as discrete. The time grain to seconds will account for all the timing
uncertainties; to will be called the resolution cell, and the location
of a particular pulse in any pulse train will always be given as the
number of the resolution cell in which it resides. In this way, each
pulse train can be thought of as a sequence of zero's and one's.

2. MODULATION METHODS

2.1 Identical Period Pulse Trains with Synchronization

Considered here are N pulse trains, Si, i=l, 2, ... N, each
with the period T and one pulse per period. Th• only distinguish-
ing feature of any pulse train is the location of the pulse within
each interval of length T resolution cells. Hence, the only method
of coding or identifying the signals to make them recognizable to
the receiver is synchronization. It is assumed that synchronization
has been established only between the receiver and transmitter of
the desired signal. The location of each pulse in the ith pulse
train is given by nT + ti for some n, where ti is a fixed integer in
the interval (1,-]. The receiver is looking for the jth pulse train
and, hence, knows ti. It is the task of the receiver not only to
receive the jth pulge train, but to lock onto it. Precisely, this
means the receiver must be able to identify Sj. Knowing tj• the re-
ceiver will always be able to identify S., the only occasion for
error being when the receiver identifies Sk as Sj for k ý j. This
condition occurs only if tj = tk for some k / j.

The period of each pulse train is the same; therefore, if an
overlap occurs; it will occur every period. Thus, it is necessary
to examine the pulse trains for only T resolution cells to peiform
signal identifiaation. Note that it is also possible for more than
one signal to overlap the desired pulse train.

Let AN be the event that none of the N pulse trains overlap.
If AN occurs, the receiver will be able to function properly--that



is, receive and lock onto the specified pulse train. The probahil-
itv of this event, P(AN), is now calculated.

Since numbering of the pulse trains is arbitrary, it may be
assumed without loss of generality that the receiver wishes to lock
onto the first pulse train. It is assumed that the starting times
of the N pulse trains are independent, uniformly distributed random
variables. The location of the pulse that lies in the interval
(l,T] of pulse train number one is some integer k. The probability
that the pulse of S2 in the interval [1,T] does not occur in reso-
lution cell k is (t-I)/r. Similarly, given that S, and S2 dc hot
overlap, the probability that S3 does not overlap S, or S2 i
(¶-2)/T. By induction, for N signals,

N-1
P(AN) = (1)i(1)

The expression 1 - P(AN) is plotted in figure 2 for 2 : N : 10.
It can be seen that for large values of T--that is, many resolution
cells per period--the probability of overlap between any of the signals
is small, even for relatively large numbers of signals. One way to
increase T for fixed time grain to is to decrease the pulse repetition
frequencl. This would iL.crease P(AN). This would, however, affect
the time to decode. Hence, there may be a lower limit on the pulse
repetition frequency. Furthermore, to will probably be determined
by the operating environment.
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By sp-'fying an acceptable value of P(AN), one will then be
able to determine N for any given value of T

The above analysis assumes that the receiver is able to com-
municate with the transmitter of the desired signal to the extent
necessary to achieve synchronization. If it is further assumed that
the receiver can establish synchronization with the other N-1 sig-
nals, each pulse train can be set so that no overlapping occurs.
Then for N £r T, P(AN) = 1 and the system will perform perfectly.

2.2 Periodic Pulse Trains with Distinct Periods
N

In this problem, there are N pulse trains or signals {Si. 1 ,

each with period Ti resolution cells, and one pulse per period.
The numbers (Ti) will be taken to be close to one another, but
dLstinct unless stated otherwise. Again, the task of the receiver
is to identify one pulse train and lock onto it. The situation
here is more difficult to analyze than that of the first case (sec.
2.1) since each pulse train now has a different period.

Consider two signals Si and Sj, i / j, with periods Ti and Tj,
res-oectively, and let So be the logical AND of Si and S. The
period To of So is the least common multiple' (LCM) of Ti and Tj,
that is,

To = LCM (Ti,Tj) (2)

By the properties of the LCM there exists integers n. and n. such
that 1

To = ni Ti = nT. (3)

Let B be the event that an overlap occurs, in which case So contains
other than all zero's. In time To, there are ni pulses of Si and
nj pulses of Sj. Since To is the LCM of Ti and Tj, every possible
overlap condition involves exactly one overlap. Hence, there are
ninj distinct ways that overlap can occur. Again, assuming uni-
formly distributed independent star+-ing positions for each pulse
train, it is seen that

n,n
P(B) - 3 (4)

To

From (3),
n. n.

P (B) -L = (5)J 1

It is desiraLble to compare case 2 (distinct pulse periods) with
case 1 (sec. 2.1). When P(B) is calculated, an interesting phenomenon
is observed. (This was pointed out by V.J. Graham, formerly of HDL.)

. Herstein, Topics in Algebra, Blaisdell Publishing Co., New York, 1)64, p. 22.
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Suppose Ti and rj are relatively prime, that is, .ontain no common
factors. Then

T= T T (6)

n. =T (7a)

and

n. = T. (7b)

Hence, (4) implies that P(B) = 1. There will always be an
overlap somewher'ý. regardless of the relative starting positions of
the two signals. If two out of the N signals are relatively prime,
then the probability of no overlap between any of the N signals is
zero. From equation (4) if T. and T. are nut relatively prime,
then P(B) < 1. 1 )

Several anomalies are apparent. First is the fact that P(B)
is highly dependent upon whether or not Ti and Tj are relatively
prime. Thus, the performance of the system as measured by P(B) is
sensitive to a quantity that does not seem to be physically signi-
ficant. Since the N signals have approximately the same perioc, it
may reasonably be assdmed that. there are two signals whose periods
are consecutive integral multiples of the resolution cell time.

proposition: Let m and n be two positive integers such
that m = n + 1. Then m and n are rela-
tively prime.

proof: Suppose the proposition is false. Then there
exist integers k, p, q, with k 2 2, such that
kp = n and kq = m. Therefore, both n/k and
n/k + i/k are integers, implying that 1/k is
an integer. Since k > 2, this is a contra-
diction and the proposition is proved, end.

From the proposition and the above discussion, it follows that
for N signals of nearly the same period there will always be an
overlap. Thus, the probability of overlap does not seem to be a
satisfactory measure of systerm performance.

In the case of N signals with identical periods, whatever hap-
pens in one period happens in every period. In the present situa-
tion of distinct pulse periods, the interaction between pulse trains
is not the same from period to period. Hence, rather than consider-
ing the probability of a given event ever occurring, it is more sig-
nificant to consider the frequency with which it happens.

For two signals of a given initial relative starting posit on,
the signals will either not overlap, or overlap periodically. For
two signals S, and S2, let fav be the average frequency af overlap
where the expectation is taken over the possible relative starting
positions. That is, for each of the J possible relative starting
positions, let fi be frequency of overlap, where fi = 0 if no o-ver-
lap occurs. Let Ci be the event that the ith relative starting po-
sition occurs. Then

11



J
fa = a f. P[Ci] (8)

i1

Now, fav will be calculated in terms of the pulse periods, There
are two cases to consider. First, suppose T, and T2 are relatively
prime. Then the logical AND of S, and S2 has a period of T = TIT2.
Hence, a length T of this joint pulse train is considered. Let
tJE(l,Ti] and t2C[l,Tz] be the location of the "first" pulses of S,
and S2, respectively.

The pulses of Si, i = 1,2, in [1, t] occur at niti + ti,
n 0,1,..., T/Ti - 1, where ni is any integer. It is desired to
find the positions where S, and S2 overlap, that is, n, and n2, SO
that

nIT1 + ti = n 2 T2 + t 2  (9)

lemma: Let a and b be two integers whose greatest common
divisor is g. Then there exists two integers p
and q such that

pa + qb = g (10)

proof: Herstein,' p. 17. end

theorem:Let T, and T2 be relatively prime integers, 1 & t, $Ti
and 1 ý t 2 ý T2 . Then equation (9) possesses a solu-
tion (ni, n2) and each solution of equation (9) is of
the form (kT 2 + n1 , kT1 + n 2 ).

proof: Rewriting equation (9) gives.:--

nITi r n2T 2 = t 2 - tl (11)

Let a = T, and b = T2 . Since T, and T2 are relatively prime,
the lemma implies that integers p and q exist such that

pT, + qT2 = 1 (12)

Assuming ti ý t 2 and multiplying equatinn (12) by t 2 - t, gives
equation (11), with ni = p(t2 - t1) and n 2 = q(ti - t2). If
tl = t 2 , then equation (11) is satisfied with ni = 0 = n2.

It has been 3hown that a solution (ni, n2) for equation (11)
exists. The general form of the solution is now determined.

Suppose that equation (11) is satisfied by (ni, n2) and

(n3, n4 ). Then

n1ti- n2T2 = n 3 TI - n4T2 (12)

or
(ni - n3)Tx = (n2 - nf )T2 (13)

I. Herstein, Topics in Algebra, Blaisdell Publishing Co., New York, 1964, p. 17.
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Therefore, dividing equation (13) by T, and observing that T, and
T2 are relatively prime implies that Ti divides n 2 - n4, or

n4 = ki 1T + n 2  (14a)

Similarly,

n3 = k2T2 + ni (14b)

From equation (12), it is seen that k, = k2.

Therefore, the general form of the solution to equation (11)
is (kT2 + ni, kTj + n2), for all k int6ger. end

The above theorem shows that, for every relative starting position
Ci of the two signals S, and S2 whose periods T, and T2 are relatively
prime, there is precisely one overlap per time TIT2. Hence, for each
i, fi = I/(T I T2), P[Ci3 = l/J, and equation (8) becomes

f 1 (15)
av TIT2

It is now desired to calculate fav for the case where T, and
T2 are not relatively prime. Let c > 1 be the largest common fac-
tor of T, and T2. Let r, and r2 be such that

T, = cri (16a)

T2 = cr2 (16b)

If the proof of the theorem is now repeated, equation (11) becomes

nicr1 - n2cr2 = c(nir, - n2r 2 ) = t2 - tl

However, t2 - t j may or may not be divisible by c. Suppose that
t2 - tj contains c as a factor. Then equation (17) can be divided by
c, and since r, and rz are relatively prime, the theorem implies that
there precisely one overlap every crir2 time unit. Since the left-
hand side of equation (17) is divisible by c, equation (17) will
possess a solution only if t2 - t l is divisible by c. Hence, for
the relative starting positions of Si and S2 so that t2 - ti is not
divisible by c, S1 and S2 will never overlap, and fi = 0 for these
configurations. Without loss of generality, t1 may be taken to zero;
t2 is a uniformly distributed, integer-valued, random variable. Since
one of every c integers is divisible by c, the probability of t2 - tl
being divisible by c is 1/c. Therefore, fav is given by (8) as

f1 1
av crjr 2 c

1 (18)

TI ,

13



Thus, it is seem from equations (15) and (18) that fav is
given by the same expression, whether or not T, and T2 are relative-
ly prime. This is intuitively appealing, since one would not expect
the performance of a physical system to depend strongly on the
property of relative primeness of two quantities.

If the receiver must be able to identify signals rapidly, fav
will be required to be a small number. If more than two sigrals are
involved, the relative frequency of three or more signals overlapping
at a point in time will be much smaller than the frequency of overlap
for any two signals and is neglected here. Therefore, as a measure
of system performance for N signals, the quantity F is defined to be
the sum of the average frequency of overlap for every pair of signals
si and Sj, i ý j, where 1 • i • N and 1 • j : N. If F is small, over-
lapping of signals is infrequent. If F is large, the overlapping of
signals will be a serious problem and F fails to be a meaningful
measure of overlap.

It was stated earlier that the periods of the N signals are
approximately equal. Therefore, suppose that for N signals (Si),
the period Ti of Si can be written as

Ti = T + C. i = 1,2,.. .N (19)

where 7 and Ei are both integers, and

Ci << T i = 1,2,...N (20)

Then, for signal Si and Sj,

fav= ( + 1i) + j)'

17- (21)

Thus, fay for two signals of this type is essentially inde-
pendent of the particular pair of signals. Since the number of
signal pairs that can be formed from N signals is given by

CN N(N-1) (22)2

it follows that F is given by

F = N(N-I) (23)

Suppose there are N signals with a nominal period of T = 100
resolution cells. Then,

F = 5 ( 1 0 -s) N(N-l) (24)

14



For N = 2, F = 10-4, which means there is an average of one
overlap every 104 resolution cells. In this case, that means one
overlap every 100 periods. Suppose now that N - 5. Then equation
(24) implies F = 10-3, or that on the average there is one overlap
somewhere every 10 periods.

These results merit some discussioh. It is beyond the scope
of this report to say whether any particular value of F renders a
system either practical or infeasible. Answers to such questions
depend upon both the application of the system and the reliability
with which the task is to be performed and the "acceptable" cost.
In any case, the value of F must be interpreted correctly. In the
second numerical example, it was found that among the five signals,
there is on the average one overlap per 10 periods. Now, for each
pair of the five signals, there may be either no overlap or one
overlap every T resolution cells for some T. As T decreases, the
probability of an overlap becomes smaller. It is possible that two
signals can overlap every pulse period or every other pulse period.
Although this happens relatively infrequently, if it is occurring
with the signal that the receiver is attempting to lock onto, it is
an intolerable situation. For any particular value of fav, it is
not possible to say whether this value results from the rare oc-
currence of frequent overlaps or the highly likely case of infre-
quent overlaps. The point is that, using random process terminol-
ogy, F represents an ensemble average, the system performance is
dependent on a time average, and the process is not ergodic. The
usefulness of F as a performance measure lies in the fact that for
small values of F, the probability of a high overlap rate for any
pair of signals is small. Thus, it is unlikely that the system
will fail because of overlaps if F has a small value.

The performance of identical pulse periods and possibly dis-
tinct pulse periods is now compared. If there is ever an overlap
with N identical pulse periods, there will be an overlap every pe-
riod. Therefore, the probability of no overlap is a useful per-
formance measure for this system. For comparison purposes, the
probability of overlap is now related to the total average frequency
of overlap for N identical pulse periods.

Let the period of Si, i = 1,2,...N be T resolution cells.
Then, using the same argument as above,

fav = (25)

and

F N(N-1) 1 (26)2 TY

It is seen that both systems--that is, identical pulse periods
and distinct pulse periods--have the same performance as measured
by F. However, as stated above, F does not completely specify sys-
tem performance. As a simple example, consider the following two
possible configurations:

15
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0 a, a2 2r 2r+aI 21ra2 4v

Figure 3. Two pulse trains.

(a) N = 2, Tm = T2 = 100,

(b) N = 2, Tm = 99, T2 = 100.

F = (10-) for both cases. In case (a), the probability that the
signals overlap is 0.01, but if overlaps do occur, they do so every
pulse period--that is, every 100 resolution cells. Thus, the sig-
nals will overlap completely and the system will not function one
percent of the time. On the other hand, in case (b) the signals
will always overlap, but there will be approximately one overlap
every 100 pulse periods or 104 resolution cells. It is seen that
although F is about the same for both systems, the performance
characteristics are quite distinct.

Suppose the probability of the receiver successfully finding
the desired pulse train exceeds 99 percent when it loses one pulse
fromii each 100, then B is the desired operating configuration.
Otherwise, configuration A is preferred since in this case the sys-
tem works 99 percent of the time (assuming, of course, that the
system always works if it receives 100 percent of the pulses).
Hence, either system may be preferable, depending upon the situation.

2.3 Alternate Pulse Modulation

In this coding scheme, every other pulse is modulated. More
precisely, there are N signals Si, i = 1,2,.. .N, each with the same
period 2T. In time, the locations of the pulses in Si are of the
form

2nT + ti,

2nT + ti + ai , (27)

where ti is the initial phase and ai • aj for i • j. Two pulse
trains are illustrated in figure 3.

16



Since ai 1 aj for i X j, Si and Si either never overlap or
overlap every other pulse which is once a period. Thus, alternate
pulse modulation in some sense can be considered to lie between
identical period pulse trains and periodic pulse trains with dis-
tinct periods. It is similar to the identical period case, in that
it is 2eriodic and thus a meaningful probability of overlap may be
calculated. It is like distinct pulse periods in that each pulse
train is distinguishable without synchronization and it is not pos-
sible for two pulse trains to overlap one another for all pulses.

The probability of no overlap CN is now calculated. Consider
Si with pulses at ti and ti + ai for i = 1,2.

Since S, and S2 can overlap only once per period, there are
four values for t2 that will produce an overlap. Hence,

P[C2] = 2T 2- 4

T - 2

T (28)

Suppose now that S1 and S2 do not overlap and that the probability
of S3 overlapping Si and S2 is negligibly small. Then there are
eight values of t that will produce an overlap and, hence,

P =c T 2 T 4 (29)

By induction, N-1 - 2(
P[CN ] = Tj L (30)

If 2 N-1 > T, then P[CNI as given by equation (30) is clearly
not valid. This is because of the assumption regarding multiple
overlap. However, for the system to be usable, P[CN] will be near
unity and therefore equation (30) is an adequate approximation.
The expression 1 - P[CN] is plotted in figure 4. In comparing figures
4 and 2, it should be noted that T represents the average number of
resolution cells between pulses for both systems. Regarding overlap,
it can be seen that the system employing N identical pulse periods
is superior to that of alternate pulse modulation.

The total average frequency of overlap is now calculated. The
probability of overlap for two signals is 2/T and frequency of such
an overlap is 1/(2T). Therefore,

1
fay - (31)

and
N(N - 1)

2T' (32)

17
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Figure 4. Probability of P(CN) versus N for

different values of T.

It is seen from equations (23), (26), and (32) that all three
systems have the same value of F. Since equations (23) and (26) are
the same and alternate pulse modulation lies "between" identical
pulse period and distinct pulse periods, equation (32) is not
unexpected.

2.4 False Signals

The above sections have been concerned with the problem of
overlapping signals in which one signal may hide the existence of
another signal. Another possible type of "error" is that of two or
more undesired signals arriving at the receiver at such times so as
to appear to be the desired signal. This phenomemon will be referred
to as the generation of a false signal.

In the case of N signals with identical pulse periods, the
receiver is synchronized with the desired signal. The only type of
error is that of overlapping signals. It is not possible to gen-
erate a false signal unless the receiver is synchronized to the
wrong signal. But this possibility has been ruled out by
hypothesis.

18



For N signals with distinct pulse periods, it is possible to
generate false signals. The mechanism by which this happens and the
effect on system performance depend heavily on the logic of the re-
ceiver. Suppose that the receiver is seeking signal S. it exam-
ines all of the incoming pulses in an attempt to find a pulse train
with period Ti. The question then arises as to how long the re-
ceiver should look. It will be assumed that there is a cost asso-
ciated with this decision time. In fact, the cost may rise in a
highly nonlinear manner with increasing decision time. Clearly,
the longer the receiver looks, the less likely it is that it will
lock onto the wrong signal. For example, suppose the receiver re-
quires two pulses located Ti time units apart to say it has found
St. For a false detection to occur, two false pulses--each from a
distinct pulse train--are required to be in a certain relationship
to each other. This is roughly equivalent to the requirement for
two signals to overlap. Thus, both the probability and relative
frequency of these two events (overlap and false signals) are about
the same. It is much more improbable that three incorrect pulses
separated by T i will occur. Thus, if the decision time is 3Ti and
the frequency of overlap is small, then the possibility of false
codes is negligibly small. The choice of a decision time depends
on the cost of decision time and the complexity of the decision
scheme that one is willing to use; in turn, these factors depend
upon the particular application.

Suppose now that alternate pulse modulation is being employed,
and the receiver is seeking signal Sj. Then it is possible for two
undesired signals to be arranged to appear as Sj to the receiver.
The probability of this occurrence is the same as the probability
of overlap. Hence, alternate pulse modulation is at least as likely
to suffer from false signal interference as for distinct pulse pe-
riod modulation.

3. SUMMARY AND CONCLUSIONS

This report discusses the problem of coding a finite collec-
tion of pulse trains in a manner that permits the identification of
any single pulse train specified. Three particular schemes were
considered--namely: identical pulse periods with synchronization,
distinct pulse periods without synchronization, and modulation of
the position of every other pulse. Factors such as cost of decod-
ing and complexity of implementation were not considered, although
these parameters would ultimately affect the choice of a particular
scheme for a given application.

Two phenomena have been examined--pulses from two or more sig-
nals overlapping in time so as to be indistinguishable and two er-
roneous signals combining in a way to produce a false signal that
appears to be the desired signal. The false signal was found to be
non-existent in the case of identical pulse periods; and for each
of the other two schemes, false signals were found to occur less
frequently than pulse overlap.
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The average frequency of overlap, f, where the average is
taken over all the possible relative starting positions, was intro-
duced. It was shown that for each of the three coding schemes, f
is given by approximately the same expression. Thus, for any given
set of parameters, the performance of each coding scheme as measured
by f is the same. However, since f is an average quantity, it is
possible for different sets of signals having different overlap
characteristics to give the same value of f. Even though f is only
an average, and does not completely describe system performance, it
can be stated that for sufficiently small f, the likelihood of dif-
ficulties arising from overlaps is nearly eliminated.
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