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1 3. ABSTRACT

The pro. lem of statistical decision uaking under uncertainty is considered. A Bayes
approach based upon prior probabilities which are found using an objective inference
technique developed Ly R. L. Kajhyap is proposed as the basic solution procedure.
The probleia is foraulated in a statistical decision theory format and the general
solution technique outlined. Several examples are solved to illustrate its
"application.

Uiing this inference technique, it is possible to have different priors for
different experiments. A general decision criterion is formulated to handle
these situations.
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BAYES DECISION RULES BASED ON OBJECTIVE PRIORS

PART I: FOPIULATION AND APPLICATION

By T. L. Oberlin and R. L. K~shyap

The problem of statiatical decisipn making under uncertainty is

considered. A Bayes approach based ,upp prior probabilities which are

found using an objective inference technique developed by R. L. Kashyap

is proposed as the basic solution procedure. The problem is formulated

in a statistical decision theory format and the general solution tech-

nique outlined. Several examples are solved to illustrate its applica-

tion.

Using this inference technique, it is possible to have different

priors for different experiments. A general decision criterion is formu-

lated to handle these situaticns.
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I. INIMBDUCTION4

A good deal of curreat research is directed at systems having varying

degrees of ucrtaitnty. A common method of handling these uncertainties

Is to assume they can be c'haracterized by random variables which are then

assigned probability distributlons.

Basically there are two schools of thought concerning this assign-

ment prc -adure-t-he subjective and the objective. Using the subjective
*...."',* -' •"' , *..

approach as outlined by Savage the declsion maker attempts to form a

consistent set of preferences from which he ,obtains his prior distribution;

note that two decision makers with the same information may have different

priors. On the other hand, the objective approach attempts to present

necessary or logical means of obtaining the priors. Using this approach,

two decision makers having the same information will have the same priors,

hence the term objective. Proponents of objective approaches range from
2 3

Bernoulli (principle of insufficient reason) to Jeffreys , Jaynes ,

Tribus , and Kashyap5 I

In this paper a new approach to the problem of statistical decision

making under uncertainty is presented. It uoes Bayes decision rules based

on prior probabilities found by applying the objective inference technique

developed by Kashyap. The problem is formulated in a statistical decision

theory format and the general solution technique outlined. Several examples

are solved to illustrate its application.

ApprovoC "t'., role&5,



The major emphasis in this part of the paper is on the formulation

and use of the decision-making technique. Questions of justification

are postponed until Part 11.

The major result of this paper is the fo_,mulation of an objective

Bayes approach to the problem of decision making under uncertainty. Thia

study aloo points out the difficulties associated with using any inference

technique whose inference varies with the experiement. A general approach

which permits different prior probabilities is formulated to handle these

situations.



IU. STATEMENT OF THE DECISION MAKING PROBLEX

A. BASIC ELEMENTS

Assuming that the uncertainty in the decision problem can be re-

prezeinted by certain iandom V'riables--so called states of nature--the

basit elements of the decisi6n problei. udder uncertaint'y are as follows:

0:" unknown state of nature, 0 c 0, set of possible states

of nature.

a: actions available to decision maker, a e A, set of

potential actions.

L(e,a): loss function, L(O,a) is a real-valued function defined

x a.

e: experiment, e e E, set of potential experiments.

y: outcome of the experiment, y E Ye, set of possible out-

comes of an experiment e.

d(y): decision rule, d(y) selects an action from A for every

possible outcome y.

The observations y are dependent on 0 through the conditional prob-

abilities P(yIO), which are assumed to be known for all y e Y 0 C 0.

P(ylO) is assumed to have a fixed set of values throughout the experiment;

if it changes, so does the experiment.

For certain experiments it will be convenient to refer to a sequence

of independent observations which will be denoted by y(l),y(2),)1.,y(m+l).
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Unless otherwise noted these variables will have the same distribution

asy.

There also may be additional, testable prior information about 0

other than its d&main 0. Information about 0 is testable if, given any

probability assignment for 0, it is (potentially) possible to verify whether

or not this probability agrees with the information 3. For example, it may

be known that the average value of 0 is greater than a certain given

number or that the probability of a particular outcome is less than a

given value. For the latter case, since P(ylO) is known, this implies

a restriction on the allowable probability distributions of 0.

Other types of loss functions considered are those which are functions

of an outcome of the experiment and the action selected prioc to the ob-

servance of this outcome. Their form is simply L(y,a). However, in order

to emphasize the difference in loss functions--which is essential to our

approach, as we shall soon se6--we shall use z instead of v to denote the

observation when loss functions L(za) are cousidered.

Both of these types of loss functions--L(6,a), L(zoa)--ahall be con-

sidered in this paper. In the former 0 is the variable of interest and

in the latter z is the variable of interest. In order to account for

different experiments, observations, and decision rules, more notationally

convenient forms for these loss functions will be used. If dc K serLs

a decision rule for experiment e, then these loss furxctions cmn be represerted

by L(O,d ) or L(z,d ) (see Fergusong).
e e



Primary consideration in this paper will be on the selection of

single decision rules, d , and not on selection of sequences of decision,

rules.

B. DEFINITIONS OF BAYES DECISION RULE, RESTRICTED BAYES DECISION RULE

The decision making problem is essentially the selection of decision

rules, d which for a given experiment e minimize the expected value of

the loss. Then the experiment which results in the minimum expected loss

is selected as the optimal experiment e . (More will be said on this

in Sec. VI.)

For a given probability distribution P e(0), the risk r(P e,d e) is

given by

r(P ede) . E0R(O,de) = E O[E yL(8,d)] (2-i)

or by

r(P e,de) = E8R(8,de) = E[EZiaL(z,de)I (2-2)
*

A decision rule, de, which minimizes r(P ,de) is called a Baes
e e e

decision rule with respect to P (0). That is,

de *=Arg Min r(P ed) (2-3)
e ~d e

If a decision rule, X P minimizes r(Pe,\,) oubject to the restrictione•

that

Max "*) (24

e

5



wtere e e 0 and C is some specified constant, then A is called a
e

restricted Bayts rule with respect to P add C i Note that Eqs. 2-3

2-4.are given for a specific experiment e.

6



III. GENERAL SOLUTION PROCEDURE

The crux of the problem in formi•im Bayes decision rules is the

selection of the prior probability density for the unknown state of :,ature

e.

A. PRIOR PROBABILITY ASSJGNMNT

In this paper the assigouent problem gill be treated as an inference

problem, and an objective inference technique developed by Kashyap 5, 6, 7, 8

will be primarily used.

Following this procedure, when z is the variable of interest and

for'finite e, z and a given experiment e, the prior density Pe(0) is-

"given by

P (8) - Arg Max I(z;8)
P(6) (3-1)

"where

P(z o0)I(z;o) P= 16 Me P(jl)(i n ,(= ..

SJ (3-2)

and

P(z 1 ) = P(zjIOk) P(k)
0 k (3-3)

In the maximization in Eq. 3-1, P(O) is subject to the 'estrictions

X P(eO) a (3--4)

7



p(eO >o 0 e0 (3-5)

and whatever testable information on e is available

In Ref. 6 Kashyap has developed a version of Eq. 3-1 which allows

for previous observations to be taken into account. If 0,.z are finite

and there are m independent observations from z--z(m+l) is the variable

of Interest now--let Zm denote a finite valued statistic of these observa-

tions.

Zm

[.............,..... (3-6)

Then the inferred prior for a given experiment e is
m

Pem(O) = Arg Max I(z(m+l);eIzm)
P(O) (3-7)

where

I(z(u+l);OjZm) I P(O) r(zklel) P(zmIei)
i k Mzj

in P(zklet

and I P(e ) P(zklOi) P(Ztlei)

(3-9)



f P(?IO) Is found from P(zjO) and the assumption that z(l), z(2),...,z(m)

are independent. P(G) is again subject to restrictions imposed by Eqs.

3-4 and 3-5 and the testable prior information. When m - 0, Eq. 3-7 just

reduces to Eq. 3-1. It should be noted that if P(zjB) is altered, the

prior probabilities Pe (e), Pet(O) given by Eqs. 3-1 and 3-7 will be

a tered.

When e is the variable of interest, the Principle of Maximum Entropy

developed by Jaynes3 will be used. According to this principle, for a

given experiment e, the prior P (0) which maximizes the entropy of 0,

I(e;6) is selected as the inferred prior. For finite 0, this assignment

is given by

P e(0) Arg Max I(0;0)e(0) (3-10)

where

I(0;0) =- P(Oi) ln P(Oi)
(3-11)

where again P(O) is subject to Eqs. 3-4 and 3-5 and whatever restrictions

imposed by testable prior information. Note the independence of P e(0)

from P(ylO).

A comparison of the fundamental diffeLetices between these inference

techniques--Kashyap's inference and Jaynes' Maximum Entropy--is given in

Ref. 7.

V9



Equations 3-1, 3-7, and 3-10 are given for finite 0,Y. For

continuous O,Y, the summations can be replaced by integrals, and assuming

these integrals exist, the same approach followed.

B. REASONABLENESS OF INFERENCE

One result of using these probability assignment procedures is that

when the outcome of the experiment is also the variable of interest, the

inferred density is a function of the experiment. , Thus, for different

expaoftents the 1insities Pe (8) will generally differ. This is not

unreasonable since the amount of information available (P(zJ6) is a form

of knowledge) varies with the experiments. The implications of this will

be discussed in Sec. VI.

"* Kashyap has Justified his approach to the inference problem by show-

ing it is the solution of a repetitive zero-sum game. Thus, if there is

an unknown, but true, frequency distribution for z, any deviation from the

optimal infeered density by the player can only increase his maximum

possible losci. In addition, in Ref. 8 Kashyap has shown that under

certain conditions his inference technique minimizes the maximum possible

divergence between the unknown fre quency distribution of z and that

obtained using P(xI9) and the objective prior given by Eq. 3-1. In a

sense then this is a conservative inference procedure.

10



C. GENERAL SOLUTION

We shall use the term objective Bayes decision rules to denote those

decigion rules which are Bayes with respect to priors formed by using the

objective inference techniques outlined in the previous section. These

cbjective Bayes decision rules then follow directly from the definitions

in Eqs. 2-3 and 2-4 and the inferred priors.

The final step in solving the general decision making problem under

uncertainty is the selection of the experiweat which results in the minimum

risk for a given loss function. For the inference technique used here

this necessitates comparing risks based on different priors. The validity

of these comparisons is discussed in Sec. VI.

yl
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IV. UXAMPLE 1 - URN PROBLEM

. •This problem has been considered previously by RaiffaI. We will

modify it. here by considering losses instead of gains and using an objective

approach.

A. STATEMENT OF THE URN PROBLEM

The basic problem is as follows. There is a collection of 1000 urns,

each Qf •14ch. is either the type 01 or type ,0, but there are no external

mrkings ,distinguisýing tehem. Urns of type 01 contain.4 red balls and 6

black baýls;.:,Vrns of t ype 02 contain 9 red balls andJl black ball.

There are two participants--a decision maker and a neutral referee.

The decision maker is to repeatedly draw one of the urns from the collection

and guess whether it is of type 01 or 0 He can also refuse to play.

Depending upon his action and upon the type of urn (which is known to the

referee), he receives a reward or pays a penalty. He wishes to choose his

actions so that he minimizes his average loss over all the draws. After

incurring the loss the decision maker returns the urn to the collection.

It is assumed that the number of 0V, 02 urns in the collection does not

vary so that there is an underlying (frequency) distribution for 0, albeit

unknown.

Therefore, let the state space 0u, and action space A be
S=u
0 -- {0 0)2 (4-1)

u 2



"u-{au,a2,,a 3} (4-2)

where

aul: guess 01

au2: guess 02

a u3 refuse to play

The losses are given in Table 4-1.

TABLE 4-1

LOSS MATRIX FOR URN PROBLEM

a1  a aau. au2 au3

0 -40 5 0

O2 20 -100 0

Consider two possible experiments

e : no observations at cost $0.00uo

eu : a single observation, y, at cost $8.00

Let Y, red ball; Y2 black ball. Then

P(y1 ',,) .4 P(y 1 1' 2 ) = .9 (4-3)

P(Y21O1 ) = .6 P(y210 2 ) = .1

where an observation y refers to withdrawing a ball from the chosen urn

and observing its color.

13



B. SOLUTION

Following the procedure outlined in the preceding section, the

objective Bayes rules deuo, deuI for experiments euo, e can easily be

foun4.

Since the loss functions are of the form L(6,d), the principle of

Maximum Entropy will be used to infer Peuo(0), Peul(0). If there are w-.

c restrictions other thatn

2
SP(Gi) 1 , P(6i) > 0 , i=1,2 (4-4)

i=l

then by the Maximum Entropy Principle

Peuo(e 1) = Pbuo(62) = .5 (4-5)

and

Peul (61 ) = .5 Peul(6 2 ) = .5 (4-6)

In order to find deuo, deul, is is perhaps easiest to enumerate the

candidates or allowable strategies. Denote them by a. Then

a: refuse to play
uo

a ul: choose aaul

a u2: choose au2

au3: if y = red, choose aul

14



if y =black,choose au

a 4 . " " red " a

" " black " a

" r red a

" " black a ul

a *" red " au
u6 u2

•It ". " " black " au c47)

Thus, a uo aul, ou2 are the candidates for deýo; 'u 3 , au 4 , %5U, 'u6 are

the candidates for de
eul*

Following Sec. III, it is easily seen that

de = Ou2; de a u5  (4-8)
uo 11

and their corresponding risks are

r(Pe uo d Ao) = .5(5) + .5(-100) -47.5 (4-9)

r(P ,d ) = .5(-14) + .5(-80) -47 (4-10)

The next step in the decision making process is the selection of

the best exreriment. While in this problem this selection is straight-

forward, it is not always so, as .:e shall see in the next section.

Accordingly, we shall postpone selecting the "best" experiment until

Sec. VI.

x,



V. EXIMPLE 2 - BALL PROBLEM

A. STATf.2ENT OF THE BALL PROBLEIM

The ball problem is similar to the urn problem but there are some

basic differences. Again there is a collection of 1000 urns, each of

which is of type 01 or 02, having the same characteristics as in the urn

problem. Again there are to participants--a decision maker and a neutral

referee. However, now the decision maker is to repeatedly draw one of the

urns from the collection and then withdraw a ball from this selected urn.

Without kmnowing the, type of urn, he is- to Zess the color of this ball.

Depending upon his action and upon the color of the ball, he receives a

reward or pays a penalry. Again he wishes to choose his actions so that

he minimizes his average loss over all the draws. After incurring the

loss,, the decision maker returns the urn to the collection.

Let the state space 0 b and action space Ab be

0 b (01,02} (5-1)

$ Ab {%al,ab 2 ,ab3} (5-2)

where

%1: guess red

guess black

ab3' do uot play

16
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If z denotes the observation of the ball which determines the loss

incurred, then the loss function L(za) is given in Table 3-2, where z= red,

z = black.

TABLE 5-1

LOSS MATRIX FOR BALL PROBLEM

%l %2 %b3

zl -40

Sz 20 -100

Now consider two experiments e bo' 'l With eo there is only

prior information on the collection of urns and the conditional probabilities

P(zf ), which are the same as those given for y in Eq. 4-3, upon which to

base the decision. That is, under ebo the decision maker withdraws an urn

from the collection, selects an action, a At,, and then withdraws a ball z

from this urn. However, under %l let the decision maker withdraw a ball

from the selected urn and observe its color before making a decision.

Call this observation z(l). Then have him replace this ball, select an

action E A.0, withdraw another ball, z(2) = z, and incur the loss L(z,a).

Let the cost of this extra observation be $3.00.

t Thus, there are two possible experiments.

ebo: no observations, at cost $0.00

ib1: one observation, z(l), at cost $3.00

17



Let zI red, z black. Then P(z I.9i), 1-1,2; i11,2; i-i,2, is the

same as that given in Eq. 4-3 for y.

B. SOLUTION

SSection III outlines the solution technique. Peo (0) and P i(0)

are given by Eqs. 3-1 and 3-7, respectively, If there are no restrictions

other than

2
I= 1 ; P (0i) > 0 , i=1,2; j=1,2 (5-3)i=1 bj %bj

then

Po(1) .465 ; P ( .535 (5-4)

and

P ( .505 P (2) = .495 (5-5)e bl 1eb

(Comparison with Eqs. 4-5 and 4-6 illustrates the eff..'t of the variable

of interest upon the inferred prior for 0.)

Following the same procedure as ir. the urn problez,. *,e will enumerate

the allowable strategies for experiments eb, ebl.

18 'bl



ho: refuse to play

abl : choose abl

Orb2: choose ab2

ao3; if z(1) = red, choose

" " "black abl

0b4: " " red ai

black. ab2

'b5: " " red ab2

: " " black a.

Cb6 : " " red %2

" " black %2

Thus, 0bo1 0blC2 O2 are the candidates for d ; e %3' 'b4' "b5' O%6

e the candidates for d
ebl

Following Sec. III, it is easily seen that

d* 01,2 ; de(Z(1) =b4 (5-6)

d their corresponding risks are

r(P ,d ) = -.58(.465) - 5.5(.535) = -29.91 (5-7)%o %o

r(P ,d ) -33.4(.505) -28.15(.495) = -30.80 (5-8)

1
;A• 1 9



The selection of the 'tbeat" experiment is not as straightforward

as in the urn problem--since the risks in Eqs. 5-7 and 5-8 are based on

different priors, how valid is a comparison between them for use in

selecting the best experiment? We consider this question in the ne.xt

section.

20



VI. SELECTION OF EXPERIMENT

The previous sections nave been directed mainly at the selsction

of the "best" decision rule for a given exper.iment, where the con',cltionial

probability P(y 0) has been fixed throughout the experiment.

However, the final step in the overall decision making problem is

the selection of the optimal experiment from a set of possible experiments.

A. BASIC PROBLEM

Quite simply, the basic problem confronting us is the selection of

a criterion for choosing the optimal experiment. The criterion for sele-

ction of the decision rule for a given experiment was to choose the

decision rule, d e, which mininized the risk r(P e,d e) where Pe was given

by our objective inference technique. Notice, however, that this risk

is a function of P and that for loss functions of the type L(z,a), P
e e

may depend on the experiment under consideration. Accordingly, sole

use of r(-,-) as a criterion--that is, choose experiment ei over e if

and only if

r(Peide' < r(Ped. ) (6-1)* 3

is difficult to justif) since different probability distributions for 0

are used in evaluating the respective risks. If P e Pe er identical,Sel'~a ej eietcl

then Eq. 6-1 can easily be justified av an ordering using the arguments

21



V presented in Part II. When these priors differ, Eq. 6-1 must be used

with more care. Consider the following example.

1. Ball Problem--Choose Betweeneb e

In the previous section experiments e., ebl were introduced in

the ball problem. The question now is, which experiment should be used?

(Note that experiment ebl has a $3 cost while ebo has no extra cost.

Hence the question could be phrased as--is ebl worth $3 more than e bo?)

The respective risks for the two experiments are

r(P ebo,debo = Ob2) = -58(.465)-5.5(.535) -29.91 (6-2)

*t

r(P ,d -b4)=-33.4 (.505)- 28 .i5(.4 95) = -.30.80 (6-3)

However, these risks do .•7L tell the whole story. Conside2r r(p,0b 2) and
Sr(P~b 4 ) as functions of p, the true probability that 8 =

r(p,ab2 ) -5.5 - 52.5 p (6-4)

r(pcb 4 ) = -28.15 - 5.25 p (6-5)

22



These risks are plotted versus p in Fig. 6-1. They intersect at about

p = .480, Thus, when p > .480 (P - .ISO), ab2 results in less (greater)

average loss t~han 0 b4' so if p actually did equal P (06) (=.505)%1

r(P ,aDb2) < r(P eblb4) (6-6)

However, from Eqs. 6-2 and 6-3,

r(P oab2 ) > r(P elb4) (6-7)

This, ve have a situation in which we prefer 'b4 to ah2 if we evaluate

their respective risks based on PeIl Pebo,respectively; but if we compare

risks when both are evaluated at p = P (eI), we prefer %b2 to ab 4 "ebl * *

Obviously, factors other than just r(P ,de) and r(P d ) should

be taken into consideration.

B. QUASI-BAYES APPROACH

It seems dhat so long as our objective inference technique infers

different priors for different experiments, our final selection of experi-

ment must remain somewhat arbitrary. In order to formalize these arbitrary

considerations somewhat, we shall introduce the quasi-Bayes approach.

We assume that there is a fixed set of experiments, E = {el,e 2 ,...,en)

from which we wish to select an experiment and decision rule. We shall

call each decision rule and its associated experiment a strategy and let

7i'k i=l, 2,...,m, denote the admissible strategies formed by the experiment

4. in E and their corresponding decision rules. (Note that a decision rule

d1 might be admissible relative to the other decision rules in a given

4. 23



20 r(p,d)
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-20
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-40
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Figure 6-1: Comparison of Risks for Ball Problem

24



experiment e c E, but the strategy (e-d1 ) might be inadmissible relative

to the strategies ir i=1,,2,...,m.) Let p be a probability distribution

over the i's; that is, p is our randomized choice of decision rule and

experiment. We will restrict p to those mixtures of Ir's which are them-

selves admissible strategies.

Now if the true distribution for O--P(O)--were known, the risk r(P,p)

could be evaluated and p chosen to minimize it. For example, if ply p2 ' p3

denote the probabilities that p selects decision rules d e d e d fromSe 3e

experiments el, e 2 , e 3 , respectively, then

r(P,p) p Ilr(P,d e) + p 2 r(P,de 2) + P 3 r(P,d e) (6-8)

However, not only is the true distribution of 0 unknown, but our

objective inference technique may assign a different piior distribution,

P (0), to each experiment -. Using this technique, no corresponding r(Pe,p)

exists since P varies with the selectioi.a of p. Let E ,Ieiiote a mappinge

which relates the decision iule selected using p with its associated

objective probability. Then define r(T,p) analogously to r(P ,p); note,

however, that T is not a probability density. For example, if pI, 1 2 , p 3

are as defined in Eq. 6-8 and d e d e d are decision rules from experi-

ments el, e 2 , e 3, then

r(T,p) = p(P ,l d) d + P2r(P ,d ) + p 3 r(P ede) (6-9)
1 e 1 2e2e 2 3e 3e3

Define p to be P quasi-Bayes decision rule with respect to T if

Arg Hin r(T,p) (6-20)
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were natu:-ally p is subject to the conditions necessary for it to be a

probability distribution.

If there are no further restrictions on p or r(T,p) and there is one

decision rule-experiment combination whose risk is less than any other

risk, then p will select this decision rule-experiment .:ith probability

one. That is, the unrestricted quasi-Bayes procedurce just reduces to:

select the decisior rule d and experiment e having the least risk r(P ,de).
e .e e

However, if a restriction such as

R(O,p*) < C 0 C O0 (6-11)

if desired, then p will not necessarily be a degenerate probability dis-

tribution. We will denote the decision rules satisfying Eqs. 6-10 and

6-11 by and call them restricted quasi-Bayes decision rules.

It is this choice of C which allows the decision maker to formalize

his arbitrary considerations. A C close to the minimax risk indicates

little confidence in the accuracy of the inferred priors, whereas a

close to the maximum risk of the unrestricted Bayes rule indicates con-

fidence that the inferred and actual distributions are "close."

This approach, therefore, has some of the advantages of both the

minimax and unrestricted Bayes decision rules. On one hand it allows the

decision maker to restrict his maximum possible loss to some level T, but

on the other hand, since Pe is used in evaluating the risk that A minimizes,
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it isn't so pessimistic that it concentrates unduly (as determined by C)

on the worst states of nature. An example illustrating this behavior is

given in the next section.

C. EXAMPLE 3 - MODI.FIED BALL PROBLEM

The ball problem we will consider here has one slight modification

from that presented in Secs. V and VI-A-instead of a $3 observation cost

for experiment %I' we will assume a $6 observation cost. This modifica-

tion will give a more interesting solution to the problem.

Due to this modification in experimental costs, the unrestricted

quasi-Bayes rule selects experiment ebo and decision rule %b2 " That is,

Eq. 6-2 is unchanged, but Eq. 6-3 is changed to

r(P ,d = ) -30.80 + 3 = -27.80 (6-12)e %i %l b4

and consequently r(P e,"b 2 ) is l.ess than this new risk so (%o,0b2) is

the unrestricted quasi-Bayes rule.

If we wish to restrict the maximum possible risk to less than some

specified constant C it is then necessary to randomize over experiments.

Of the set of strategies available, only bl' 'b2' and ab4 are admissible.

if AI A2, A3 represent the probabilities that the restricted quasi-Bayes

rule A selects 0 bl' 0b2' and 0b4' respectively (and their associated

experiments), then applying Eqs. 6-10 and 6-11--for this case a linear

T programming problem results--we get

0 ~ + 25.15 263, 737
1 2 19.65 3 (6-13)

27



if C =-20; if C= -25.15, we get

X1= 0 P 3 (6-14)

- and if C =-26, we get

C + 25.15 096~*S 8.85 .096, = 0, .904 (6-15)

Note that the range for effective C is

-26.43 < C < -5.5 (6-16)

That is, C should be greater than the minimax risk -26.43 and less than

the maximum risk under the unrestricted quasi-Bayes rule.

This miniiMIx risk can be obtained by using well established. tech-
* * * *

niques. If y denotes the minimax strategy and y1 , 'Y2 ' Y3 the probabilities

that y respectively selects Gbl' Ob2' 'b4' (and, of course, their cor-

responding experiments) then applying these techniques we get

i = .149, y2 = 0, Y= .851 (6-17)

and the corresponding minimax risk is -26.43, independent of the true

probability distribution of 0 since y is an equalizer rule.

Vbr these rules the risk r(p,d) can be calculated where p is the

actual distribution of 0. In Fig. 6-2 the risks for these rules are

plotted versus p, the true probability that 0 = 0 From the figure it

is seen that the decision maker has choices ranging from a minimum pos-

sible risk of -$58, with a possible risk of -$5.5, to a guaranteed risk

of -$26.43. The compromising behavior of the restxicted quasi-Bayes is

evident.
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D. DISCUSSION

The basic difficulty, of course, is the possible variation in

inferred prior with changing P(y•O). If the inferred prior, P(6), were

fixed over the experiments, r(P,d) could be used as the sole decision

criterion. However, a variation in the prior requires some modification

in the decision making procedure. (We discuss some of the anomalies

associated with quasi-Bayes in Part II of this paper.) We have elected

to use the C restriction, feeling that it is a concise and general way

of handling the difficulty. In general any Bayes procedure using an

(objective) inference technique which in turn is a function of P(ylY)

will encounter this difficulty of multiple priors.
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VII. CONCLUSIONS

The use of this approach enables the solution of a wide range of

practical problems involving uncertainty. It can be applied to the group

Bayesian problem (Raiffa , Chapter 8)--collectively selecting C may be

easier than finding a collective (subjective) prior. In Ref. 12 this

procedure is used to find both open-loop and closed-loop controllers for

dynamic systems having unknown parameters. An advantage of this approach

is its ability to objectively use the available prior information.

When there is only one experiment, the application of our approach

is straightforward and, as will be seen in Part II, quite justifiable.

It is, in a sense, an objective alternative to the minimax procedure.

However, when there is a choice of experiments, our results are not as

conclusive. More will be said on this subject in Part II but suffice

it to say that no alternative decision making procedure exists which

doesn't have some serious objections to it!
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BAYES DECISION RULES BASED ON OBJECTIVE PRIORS

PART II: JUSTIFICATION

By T. L. Oberlin and R. L. Kashyap

Abs tract

In Part I of this paper an objective Bayes approach to decision

making under uncertainty was proposed. The priors were obtained by using

an objective inference technique developed by Kash;-.'p. Justification

arguments are now given for this approach based upon axiomatic considera-

tions, rtasonableness arguments and comparison of the average losses in-

curred using both this approach and the minimax approach.

It is shown that in situations where the experimentation is fixed

and the decision problem is faced repeatedly, but not necessarily an

infinite number of times, this approach is justifiable. In situations

where there is a choice of experiiments, these arguments are not as con-

clusive; however, the approach still has practical merit as an objective

alternative to the minimax approach.

ig
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I. INTRODUCTION

The basic approach of Part I was to assume that the uncertainties

present in the decision problem could be characterized by random variables

whic• are then assigned probability distributions.

We wish now to give justification for this approach. We shall do

this by axiomatic considerations, reasonableness arguments and comparison

of average losses incurred using other approaches. These approaches include

subjective Bayes, empirical Bayes (Robbins ) and minimax. Techniques such

as hypothesis testing, confidence intervals and point estimation will not

be discussed. Lindley2 gives an interesting comparison between some of

these approaches and those using the concept of a prior distribution.

The merits of and objections to each approach depend a great deal

upon the type of problem in which they are t•ed, especially the repetitive

nature of the problem. We start by conside±ring a repetitive decision

problem in which there is no choice of experiment and then generalize to

the situation where the decision maker has a choice of experiments.

II. SINGLE EXPERIMENT

In general we do not expect to show that any one decision rule is

always "better" than others; that is, there will be situations in which

a number of decision rules are admissible. Naturally, we are primarily

interested in those situations in which the objective Bayes rules seem

to be better than any others, so we assume that we are in a situation in
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which the decision problem is faced repeatedly--not necessarily an infinite

number of times--and in which the experimentation is fixed.

In )rder to provide a basis for comparison and to provide insight

into the nature of the jut3tification problem, an axiomatic approach to

selecting a decision criterion is briefly discussed, and then arguments

are given for the validity of other approaches to forming decision rules.

Finally, a direct comparison of the objective Bayes and minimax approaches

is made.

A. AXIOMATIC APPROACH

In using the axiomatic approach, the order of the decision-making

process is reversed from that given in Part I. In Part I a decision

criterion is postulated, resulting decision rules formed and then the per-

formance of these decision rules is &-aluated. An alternative procedure--

the axiomatic approach--is to list certain desiderata or axioms for a

decision criterion to fulfill and then see if the proposed criterion

satisfies these axioms. This is done prior to using the criterion to find

decision rules. The dxioms at posed, naturally, so that if a criterion

fulfills them the resulting decision rules are justifiable. Not surpris-

ingly, one of the major problems in applying the approach is the selection

of axioms such that they are mutually compatible and also intuitively

reasonable (see Birnbaum 3).

4 I4
In Chapter 13 of their book4, Luce and Raiffa give a very readable

presentation of the axiomatic approach, and consequently it will not be

2



repeated here. However, some conclusions can be drawn. Namely, of the

four decision criteria that they applied to their list of axioms--minimax,

minimax regret, a pessimism-optimism and insufficient reason--no one

criterion dominated. That is, of these four decision criteria, noie ful-

filled all the axioms in a completely satisfactory manner.

However, the criterion based on the principle of insufficient reason

satisfied the basic axioms 1 thru 9 in Luce and Raiffa, but there is

question as to when the criterion is applicable, that is, the axiomatic

representation of complete ignorance. The essence of the argument is that

if the decision maker is "completely ignorant" as to the state of nature,

then should his final decision rule be altered by deleting a state of

nature (assuming 0 finite) that has the same losses as another state for

any action a £ A? If the number of states of nature is changed, the

probability assigned to each state ty the principle of insufficient reason

,ill change, which can change the selected decision rule. Hence, the

argument is joined!

If the decision criterion given by the objective Bayes approach is

applied to these axioms, for fixed experimentation (only one prior P (6))

it can be shown that it satisfies the basic axioms 1 thru 9. Hcwever, it

is subject to the Same criticism as the insufficient reason criterion.

Namely, that if the number of states of nature is changed, the inferred

prior P (0) will generally change and possibly the resulting objective

Bayes decision rule will be altered.

3
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It arms as though al.y decision criterion based upon an 1,7-erence

',,pzoach. which. is independent of the values assigned to the 1.,sses--as

both. the principle of insufficient reason and our objective inference

are--xrill be subject to this criticism. For these inference techniques,

the numbaer of state, of nature muct remain fixed for a given problem;

if this numbcr ct.:nges, the problem is changed and a new ordering of

decision rules in possible. It is felc that this failing is relatively

-inor in co-riarison with the difficulties associated with those procedures--

such as m- `imax or minimay. regret--which can be viewed as having inference

techniques '•jsed t.,on the loss function.

In, strn..ary, ::'e a:._icimaic approach is useful since it shows that

oP- ias yet foi'-,d a decision criterion which has all the desired prop-

er'ies .; at ca-'. logically be dasired.

B. JUSTIFICATION OF BAYES APPROAtH

if a Bay.!s appzoach i•s to be followed--that is, 0 is assumed to be

-_ndoni variable and a ptuljabi.Lity distribution is assigned to it--two

.asLc que.stions conculning jvstification arise5 :

(i) ad:,qiay )f the assurption of randomness of 6 and knowledge

of tL-• irioý probability distribution of 0;

(iI) inaterr .tation of the minimum expected loss as optimum.

Obvio,:sly th- answ .. o (i), (ii) will depend on the probability

distributio Z,•it 11.mnt Lechniqu.!. The following sections will discuss

s-veral of t)kese as.ign,4 ent techniques, including Kashyap's, in light of

(i), (ii).

4
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1. Subjective Bayes

Essentially a subjectivist holds the view that probability measures

a person's degree of belief as evidenced by his betting or action behavior.

DeFinetti6 demonstrates that if a person is consistent in placing his bets,

his subjective probability assignments will satisfy the usual laws of prob-

ability. From this point: of view then, (i) is adequately answered by the

subjective assignment of a probability distribution to 0.

In order to answer question (ii), the subjectivist views the loss

function as a negative utility in the sense of Von Neumann-Morgenstern.

In Ref. 7 Savage showed these concepts of utility and subjective prob-

ability can be linked together. Now the optimality of the minimum expected

loss, where the expectation is with respect to the subjective probability

distribution, follows from the expected utility hypothesis. Thus, ques-

tion (ii) is answered.

There are some objections to this approach. One is the practical

difficulty in assigning the probability distribution such that there

are no inconsistencies. A more fundamental objection is that two different

people, when faced with the same decision problem, may end up with two

completely different solutions.

All in all, however, in a non-repetitive situation--that is, the

decision problem is a "one shot" affair--the subjective approach is hard

to argue against, even considering the diffuculties of consistent assign-

ment and nonobjectivity. However, in repetitive type situations where

5
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there is a true underlying frequency probability distribution for 0--

alheit unknown--the subjective approach seems hard to defend. It has

no guarantee against the improper se of information--.the actual average

incurred loss may differ widely from the expected loss. Hence, the

argument for answering (ii), while valid for non-repetitive situations,

is not satisfactory for repetitive situations.

2. Empirical Bayes

The empirical Bayes approach is suitable for situations in which

the decision problem presents itself repeatedly and independently with

a fixed but unknown underlying frequency distribution for e. A good

1 8summary of the method is given by Robbins . (Maritz also summarizes

the method and contains more current references.) Essentially, in using

the empirical Bayes approach, the decision maker forms sequential decision

rules which utilize past observations to extract some information about

the frequency distribution of 0. Under certain conditions then it can

be shown that as n ÷ • ( n is the number of repetitions), the risk cor-

responding to these decision rules converges to the artual Bayes risk

that results if the frequency distribution of 0 were known. (This prop-

erty is called asymptotic optimality of the decision rule.)

Consequently, in the limit as n -÷ -, (i) and (ii) can be answered

by the same arguwents, given for when the frequency distribution of e is

known; that is, by the law of large numbers, the Bayes risk approaches

the actual average loss.

6



1' The major objection to this approach is that the value .of n neces-

sary for convergence is not clearly specified. In practical situations

there may be only a limited number of observations available. In these

cases, general results for the assessment of the performance of empirical

Bayes methods have not yet been found (p. viii, Ref. 8).

3. Objective Bayes

In using the objective Bayes approach, we assume that the problem

is repeated often enough so that a purely subjective approach is un-

satisfactory. In general, the situation can be characterized as one in

which the decision problem presents itself repeatedly and independently

whitit the same underlying frequency dis tribution of 0, but the number

of repetitions is insufficient for convergence of an-adaptive decision

procedure such as empirical Bayes. For a problem of this type, initial

choices for the unknown probability distributions will have a pronounced

effect on the average loss incurred.

In a sense then, the question of randomness of 0 is answered by

the type of problem considered--S is assumed to have an unknown frequency

probability distribution. The answer to the second part of question (,i)

lies in the inference technique used. Since the actual performance of

the decision rule can be noticeably affected by the inferred prior prob-

ability distribution oY 0, a conservative approach is desirable. Kashyap's

inference technique has this conservative character. Thus, since the

true frequency distribution of 0 is unknown, a conservative "estimate"

of it is used instead.

7
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Note that this estimate is conservative from the inference point

of view and is not necessarily conservative as far as the decision problem

is .concerned, that is, the actual average loss incurred. This leads to

question (ii)--what is the interpretation of the resulting risk r(P e,d e)?

r(P ede) is really just an estimate of the average loss that will be

incurred using de, but due to the nature of the problem its accuracy

cannot be verified, just placed within limits. Some of the difficulties

in using r(P e de) as the sole measure of performance are discussed in

Sec. III.

4. Westricted Objective Bayes

If the decision maker is not satisfied with the bounds--that is,

the maximum possible average loss is too high--he may wish to choose a

decision rule y to minimize his upper bound, that is, his maximum possible

average loss. Of course, y is simply a minimax decision rule. However,

this minimax approach has certain drawbacks.

A compromise between these two approaches--objective Bayes and

minimax--is offered by the restricted objective Bayes approach. This

approach has some of the advantages of both the minimax and unrestricted

Bayes decision rules. On one hand it allows the decision maker to restrict

his maximum possible loss to some level C, but on the other hand, since

P is used in evaluating the risk that A minimizes, it isn't so pes-••e e .

simistic ti.at it concentrates unduly (as determined by C) on the worst

states of nature. Examples illustrating this behavior are given in Part I.

8
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In a sense then, our restricted objective Bayes rule is a hybrid--

it is based on an objective prior probability and loss function but is

affected by an arbitrary value of C. However, since this arbitrariness

is restricted to the choice of C at the "end" of the problem solution

rather than in the beginning as is the case with the subjective approach,

this approach avoids some of the criticisms of the purely subjective

approach. Namely, it is applicable to situations in which the decision

problem is faced repeatedly, and the effect of the subjectivity is easily

seen. Ultimately the decision problem is subjective, and this seems to

he a good place to account for it.

Undoubtedly there are those who will disagree with some of the

arguments and assumptions used above. In the next section the actual

performances of objective Bayes rules and minimax rules will be compared

to provide a more real or operational justification of our approach.

C. COMPARISON WITH MINIMAX DECISION RULES

For the type of problem being considered--repetitive but not neces-

sarily having an infinite number of repetitions of th: decision problem--

it is felt that the minimax decision rule is the main competitor of the

' objective Bayes decision rules.

1. Basic Differences

The minimax approach is the most conservative decision making

approach•--it can be given a zero-sum game interpretation.

9



!43

A comparison with. the objective Bayes decision rules can be made

by viewing these minimax decision rules as simply Bayes rules with respect

to the least favorable distribution over 0. The difference between the

two approaches then lies in the prior distributions of 0 that are assumed.

In the objective Bayes approach, Kashyap's inference technique is used,

which. itself is an interpretation of the solution of a two-person zero-

sum game. However, the essential difference is that this inference pro-

cedure is independent of the values in the loss function; that is, P e(8)

does not depend on the losses assigned in the decision problem. However,

as noted it does depend on the form of the loss function. This is not

the case for the least favorable distribution, which obviously depends

upon the loss function values.

It is felt that the major objection to minimax decision rules--

their high sensitivity to greater risk with low sensitivity to less risk--

arises because of this dependence of the inference of the loss function.

By avoiding this dependence, the objective Bayes decision rules are not

as subject to this criticism. The following example will illustrate this.

Consider the urn problem described in Part I and the single experi-

ment eI.

If y denotes the minimax decision rule for this problem, where

y selects au3 and au5 with probabilities YI' Y2' respectively, then

Y1 = .524

Y = .476 (2-1)

10
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The corresponding minimax risk is

r(P ,y) = -23.43 (2-2)

The objective Bayes decision rule for experiment eul is

de = u5 (2-3)

with corresponding risk

I *
r(PeuldeI -47 (2-4)

Comparison of r(P ,y ) and r(Pede) is not too meaningful since these
e U e u

risks are evaluated at different probability distributions for 0. A more

meaningful comparison is to consider their respective risks evaluated

with the true probability of 61 ,p. These risks can easily be evaluated.

r(p,du) = 66p - 80
e l

r(p,y *) = -23.43 (2-5)

They are plotted versus p in Fig. 2-1.

Notice that if p < .857, the risk incurred using the objective

Bayes rule is less than that incurred using the minimax rule. In fact,

the objective Bayes rule can be almost four times less than the minimax

risk (-80 versus -23.43 when 0 = 01). On the other hand, the objective

Bayes risk can go as high as -14 versus the -23.43 bound on the minimax

risk.

!,• 11
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This then demonstrates the sensitivity of the minimax approach--

highly sensitive to greater risks, much less sensitive to lesser risks.

This is the major criticism of the minimax approach.

However, if the decision maker objects to the possibility of an

average loss of -$14, he can use a restricted objective Bayes rule to

reduce this maximum risk. Let denote the desired maximum possible

risk. Then the restricted objective Bayes rule X for experiment eul is

C + 14 32 +_C
1 18 2 18 (2-6)

where -23.43 < C < -14 and Xi' X2 represent the probabilities that X

selects (Y and Cu respectively.
u3 u

For C -20, the risk r(p,X*) is given by

r(p,X ) = 24p - 44 (2-7)

This is plotted in Fig. 2-1. Notice that in exchange for a smaller maxi-

mum risk, the minimum possible risk is reduced. As C approaches -23.43,,

these upper and lower bounds converge and the restricted objective Bayes

rule approaches the minimax rule. Thus, the restricted objective Bayes

rule can be viewed as a sort of compromise between the objective Bayes

and minimax decision rules.

Another consideration for use in the comparison of objective Bayes

and minimax decision rules is the use of sampling information. There

are various ways for the objective Bayes approach to use this information,

essentially by the use of judicious approximations.

13
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However, a true minimaxer can't really make even these approximation!

he is only concerned with the possibility that P(6) can assume its least

favorable value and not the probability that it does.

Radner and Marshak give a good example illustrating some of the

objections to using minimax rules when sampling is allowed. They essen-

tially have found a situation in which even though P(O) is unknown, the

optimum minimax decision rule calls for no sampling, no matter how cheaply

it may be obtained. The problem is that as long as it is possible for

P(O) to be least favorable, the minimax approach will assume it is so.

Thus, in summary, the attitude of the minimax approach makes it

difficult to use "uncertain" information.

2. Variations in the Loss Function

So far we have assumed that the loss function is a known, scalar

performance index. However, if we allow unknown, random terms in the

loss function, the sensitivity of the minimax approach can be considerably

increased relative to the objective Bayes approach.

Another shortcoming in the minimax approach arises when multiple

losses are considered; that is, the performance index may be given by

14
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R 1(6,d l)

R2 (1,dln)

PI = E

R (e, ) (2-8)S0'l,n

or

PI Pr [Rl(Odln) 3:c>_ nfR 2 (e,dn > n2o ...

n Rm(O, dl,n) > am] (2-9)

where dl,n represents a collection of decision rules (dl,d 2 ,...,dn

The objective Bayes approach is suitable for application to decision

problems having performance indices of this form due to the independence

of the inference from the loss fumction. The minimax approach, on the

other hand, isn't really suitable for these types of performance indices

since evaluation of either Eqs. 2-8 or 2-9 requires a probability dis-

tribution for 0. However, for these performance indices, the minimax

approach doesn't indicate a way to find this probability distribution.

D. SUMMARY

This section has been concerned with the justification, for fi: td

_experimentation, of the objective _ayes approach. Part B cotained reason-
ableness arguments--what properties should a decision criterion possess;

15
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what interpretation can be given to the resulting expected losses? In

this section a more practical approach x'as .aken--is there another ob-

Jective approach that does as well or better than the objective Bayes

approach?
C

Based on the answers to these questions and the number of situations

in which the objective Bayes approach is better than the minimax approach,

we feel the objective Bayes is a justifiable approach for fixrd experi-

mentation. In the next. section the question of its justification when

there are several priors (that is, several different experiments) in the

decision problem is considered.

III. MULTIPLE EXPERIMENTS

Assume that there are a finite number of experiments from which to

choose. The basic difficulty confronting us is the possible variation in

priors with experiment. (P(ylj) is fixed throughout an experiment, but

may vary between experiments and consequently so can the objectively

inferred prior.)

To attack this problem, we formulated the quasi-Bayes approach.

We are now interested in the validity of this approach. We shall use

much the same procedure as in Sec. Il--axiomatic considerations, reason-

ableness arguments and direct comparison with the minimax approach.

However, in order to illustrate some of the properties of the quasi-

Bayes approach, we shall first introduce a new approach--the standard

approach--and compare the two.

16
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A. ALTERNATE APPROACHION OF EXPERIMENT

1. Standard Approach

) A typical way of selecting an experiment and ultimately the "optimal"

decision rule is to find the best decision rule for each experimeat and

then select the experiment whose associated best decision-rule has the

minimum risk. We shall call thls approach the standard approach.

We can foi'alize this approach as follows. For each experiment

e, c E, i=l,2,...,n, let the associated objective Bayes decision rule be

denoted by A e That is,
ei

eA =Arg Min r( A )(3-1)

where P is the objective prior probability density for experiment ei
i

found using Kashyap's inference technique.

In addition there may be restrictions of the form

R(8,Ae ) < CS, 0 8, i=l,2,...,n (3-2)

on these decision rules.

Now let 5 be a randomized rule for selecting the experiment., where

Si, i=l,2,...,n, correspond to the probability that experiment e. is

selected. If

A**r(d) =6 6r(P ,A e r
1 e i' n
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then following the standard approach, the rule for selecting the experi-

ment is. given by 6 where

lA

5"=Arg Min r(6) (3-3)

(We have introduced this notation to facilitate comparison with the quasi-

Bayes approach. 0biously a degenerate probability distribution

which simply selects the experiment having minimum r(P ,Xe).)

2. Comparison of Approaches

The basic difference between the two approaches is that with the

scandard approach an experiment is selected only on the performance of

its "best" decision rule whereas with the quasi-Bayes approach an experi-

ment can be selected on the performance of any decision rule leading to

an admissible strategy. (A strategy is any decision rule-experiment

combination.) There are two major consequences of this difference that

are of interest to us: the admissibility of the experiment "and consequent

decision rule which are chosen, and the difference in ranges of C and

If the inferred prior P (0) iS the same for all e c E, then the
e

experiment" and consequent decision rule selected by the standard approach

wdill be admissible relative to the other possible exporiment-decision

rule combinations. However, if the inferred prior P (0) varies with the
e

experiment, then it is quite possible that the experiment-decision rule

selected by the standard approach will be inadmissible relative to the

other strategies Using the quasi-Bayes approach, it is easy to avoid

18
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this by, initially considering only admissible strategies; that is, we

restrict p to admissible strategies and admissible mixtures of these

strategies. Consequently, the resulting p is admissible.

Another difference between the approaches is the ranges of C, C S'

Specifically, it is possible for

min (C) < min (CS) (3-4)

where min (-) means that if C or CS is lers than this value, no solutions

exist which satisfy the constraint.

It is easy to see this from a graphical point of view. Assume

E = {e,el} and that there are three admissible strategies for each

experiment--%,G:oJ 1 i, i=l,2,3--having conditional risks R(0,a) as plotted

in Fig. 3-1. Only the lower left hand boundaries of the risk sets are

drawn.

From Fig. 3-1 we see that if C = C, we can obtain a minimtax risk

of C using the restricted quasi-Bayes approach with C C. However,

with the standard approach, if CS < C + A, Fig. 3-1 shows that no solu-

tions e* e* exist which satisfy constraint (3-2).e 'e
0

Moreover, using the quasi-Bayes approach with

C C+tA (C-5)
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, •, R(8 2 ,a)

• . a01

a

'02

or 12 R(O1,)

0 (c+A) 003 13

Figure 3-1: Conditional Risks for eo, e1 Strategies
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we can obtain restricted quasi-Bayes solutions whereas no solutions exist

for corresponding values of CS using the standard approach- (Note that

this is ture regardless of the priors assigned to 0.)

If C, CS are so large as to be ineffective, then e, ,

will be nonrandom decision rules and the standard approach will yield the

decision rule and experiment having minimum r(P eA e). Assuming that

this experiment-decision rule is an admissible strategy, the quasi-Bayes

approach will yield the same decision rule and experiment.

Now if C, CS are of such values that they are effective, it is

hard to compare the resulting selections. The standard approach will

select an experiment and then randomize over possible decision rules

for this experiment. The quasi-Bayes approach will randomize over both

experiment and decision rule; in fact, when a strategy is selected, the

decision rule to be used in the experiment is specified. Consequently,

following the quasi-Bayes approach, an experiment may be selected and

performed and a decision rule used which might not be optimal if that

experiment along were being considered. Thus, if C, CS are such that

they are effective, the standard approach will yield decision rules which

are consistent within the chosen experiment, and the quasi-Bayes approach

can yield decision rules which, while not necessarily the best for the

given experirnt, are optimal, in the sense defined, over the set of

experiments.
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Note that when we say the decision problem is faced repeatedly we

rýean that the selection of both the experiment and the decision ru2e is

f.aced repeatedly. Consequently, we feel that the quasi-Bayes approach

is a "better" approach than the standard approach.

B. AXIOMATIC CONSIDERATIONS

The axiomatic approach was briefly discussed in Sec. II. It was

stated- there that the axioms presented by Luce and Raiffa were satisfied

by the objective Bayes criterion, with the exception that the ordering

is altered if the number of states is changed by. deleting a state having

the same losses as another state for any action a c A. Unfortunately,

the extension of the objective Bayes--the quasi-Bayes approach--does not

satisfy all the basic axioms.

For example, admissibility of the optimal decision rula is a basic

axiom, and we can only obtain it by restricting p to admissible strategies

and admissible mixtures of strategies. Without this restriction the final

choice of experiment-decision rule might not be admissible.

This restriction can cause some other discrepancies, however. For

example, if two strategies are optimal, that is, quasi-Bayes decision rule

then a mixture p of them may have the minimum r(T,p), but this mixture

may be inadmissible and hence non-optimal. In other words, the optimal

set of strategies is not necessarily convex.
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There are other discrepancies. If we add a constant to a row of

the matrix (assuming finite O,A), we can chan-e the ordering between

strategies. For example, suppose $100 is added to the second row of

* the loss matrix for the ball problem, Table 5-1, Part I. Then the priors

P ,P remuain unchanged but tue risks r(P oUb2), r(Pe ,'b 4 ) go

from -29.91 and -30.80 to 3.34 and 4.50, respectively. Hence, the (un-

restricted) quasi--Bayes rule is changed from ab2 to ab4 by adding a

constant to a row of the loss matrix.

While the failure of the quasi-Bayes approach to satisfy these

axioms is discouraging, it should not preclude the use of this approach,

since, as mentioned previously, no one decision criterion has been found

which has all the desired properties as expressed by the axioms. In

view of this, the ultimate justification of this approach is how well it

performs relative to the alternative approaches. (It should be noted

that the standard approach exhibits these same faults.)

C. REASONABLENESS ARC'UMENTS

In Sec. II arguoents were presented for the reasonableness of certain

Bayes procedures for dftifeent situations, Similar arguments can be given

for using the quasi-Bayes approach to select the best experiment. The

repetitive nature of the problem is the same (except now, of 2ourse, the

decision maker repetitively selects his experiment) and so conservative

estimates of the prior probhbility of 0 for each experiment are desirable.

Again, the interpretation of the resulting risk is arbitrarl; the risk

can be bounded, but otherwise no properties such as convergence to the

actual average loss can be claimed.
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In Part I, Sec. VI, an example was solved using both quasi-Bayes

and minimax decision rules. From Fig. 6-2, Part I, it can be seen then

that the quasi-Bayes approach is a viable one (at least for this particular

C Cproblem). A comparison between the two approaches was made for another

problem--control of a dynamic system with unknown parameters 1 0 -- with

much the same type results.

In general it is felt that often the quasi-Bayes approach will

yield experiment-decision rule choices whose performance is quite satis-

factory. From a practical point of view, this fact in itself is sufficient

to justify its use.

IV. CONCLUSIONS

Well now, where do we stand with respect to justification of our

approach to decision making under uncertainty? We have looked at alter-

nate approaches in terms of axiomatic considerations, reasonableness

arguments and comparison of average losses incurred. The conclusion that

we now reach is that the objective Bayes (and its generalization the

quasi-Bayes) approach is a good practical approach to this problem.

There are inconsistencies in this approach; however, the majority

of them only occur when the inferred prior varies with the experiment.

If the inferred prior is the same for all experiments under consideration,

the jintification arguments presented in Sec. I for the case of a single

experiment apply to the quasi-Bayes approach.
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