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ABSTRACT

The prollem of statistical decision waking under uncertainty is considered. A Bayes
approach based upon prior probatilities which are found using an ob jective inference
technique developed Ly R. L. Kashyap is proposed as the basic solution procedure,
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5% The prollew is for.ulated in a statistical decision theory format and the general

;ﬁ solution technique outlined. Several examples are solved to illustrate its

i application.

i

f Using this inference technique, it is possible to have different priors for
different experiments. A general decision criterion is formulated to handle
these situations.
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BAYRS DECISION RULES BASED ON OBJECTIVE PRIORS
PART I: FORMULATION ANC APPLICATION

. By T. L. Oberlin and R. L. Kashyap

- /Abstract
R ‘0
The problen of statistical decisign making under uncertainty is
considered. A Bayes approach based upen prior probabilities which are
found using an cbjective inference .technique developed by R. L. Kashyap
is proposed as the basic solution procedure, The problem is formulated
in a statistical decision theory format and the general solution tech-
nique outlined. Several examples are solved to illustrate its applice-

tion.

Using thie inference technique, it is possible to have different
priors for different experiments. A general decision criterion is formu-

lated to handle these situaticns. .

ii




1. " INTRGBUCTION
‘Lk;good'deal of curreat research is directed at aystems haviné varying
degrees of uacertalnty. A common method of handling these uﬁceriﬁiﬁties

is o assume thev can de characterized by random variables which are then

és&igned pxébabiiit}udisiEibutibnsa

Bagically there are twe schools Ef thought concerning this assiéh—

ment prc -adure--the subjective and the objective. Using tiie subjective

e ad el

apéidggﬁaés cutlined by Sa&agel, the decision ﬁaker éttempts to form a
consistent set of preferences from which he nbtains his prior'distribution;
note that two decision makers with the same information may have different
priors. On the other hand, the objective spprcoach attempts to present
neceesary or logical means of ohtaining the priors. Using this approach,

two decision makers having the same information will have the same priors,

. hence the term objective. Proponents of objective approaches range from

Bernoulli (principle of insufficient reascn) to Jeffreysz, Jayness,

Tribus&, and Kashysp%’ﬁs7’8

In this paper a new approach to the problem of statistical decision
making under uncertainty is presented. It uses Bayes decision rules based
on prior probabilities found by applying the objective inference techniqﬁe
developed by Kashyap. The problem is formulated in a statistical decision
theory format and the general solutiou technigue outlined. Several examples

are solved to illustrate its application.

Approvec "~ ~bl7e roleaseg
) el ],
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The major emphasis in this part of the paper is on the foxmulation
and use of the decision-making technique. Questions of justification

are vostponed until Part II.

The major result of this paper is the formulation of an objective
Bayes approach to the problem of decigion making under uncertainty. This
study also points out thg difficulties associated with using any inference
techrnique whose infevence varies with the experiement, A general approach
which permits different prior probabilities is formulated to handle these

eituations.
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IX.  STATEMENT OF THE DECISION MAKING PROBLEM

A, BASIC ELEMENTS
Assuming that the uncertainty in the decision problem can be re-
pregedéed by certain random vaiisbles--so called states of nature--the

basfc elements of the decision problew wnder uncertainty are as £ollows:

Ay
.

8: unknown state of nature, 6 € O, set of possible states
of nature.
¢ . v
a: actions available to decision maker, a € A, set of

potential actions.

L(€,a): loss function, L(8,a) {s a real-valued function defined
9 X a.

e: experiment, e € E, set of potential experiments.

y: outcome of the experiment, y € Ye’ set of possible out-
cones of an experiment e.

d(y): decision rule, d(y) selects an action from A for every

possible outcome y.

The observations y are dependént on 8 thioﬁgh the conditional ptob-
abilities P(yIQ), which are assumed to be known for all y € Ye’ 8¢ 0.
P(yle) is assumed to have a fixed set of values throughout the experiment;

if it changes, so does the experiment.,

<

For certain experiments it will be convenient to refer tc a sequence

oy et

of independent cbservations which will be denoted by y(l),y(2),.4.,y(m+l).




Unless otherwise noted these variables will have the same distribution

as y.

There also may be additional, testable prior information about €
other than its dumain ©. Information about 6 is testable if, given any
probability assigument for 6, it is (potentially) possible to verify whether
or not this probability agrees with the iuformations. For example, it may
be known that the average value of § is greater than a certain given
number or that the probability of a particular outcome is less than a
given value. For the latter case, since P(y|0) is known, this implies

a restriction on the allowable probabiiity distributions of 9.

Other types of loss functions considexed ars those which are functions
of an nutcome of the experiment and the action selected pricr to the cb-
servance of this outcome. Their form is simply L(y,a). However, in order
to emphasize the difference in loss fuuctions—nwhiéh is essantial to our

approach, as we shall soon seé--we shall use z inestvead of v to denote the

observation shen loss furctions L{z.a) are couzidered.

Both of thesge types of logs funetions--L(6,a), i{z,a)~-zhall be coan-

sldered in this paper. In the former @ is the varisble of interesr and

in the latter z is the variable of intevest. In order to account for
different experimenis, observations, and decision ruleg, more notationally

convenient fomms for these less functions will be used. If d  represents

a decision rule for experiment e, then these loss functions csn be raprasented

by L(a,de) or L(z,de) {see Fergusong).

»




Primary consideration in this paper will be on the selection of
singl? decision rules, de’ and not on selection of seguences of decision,

rules.

B. DEFINITIONS OF BAYES DECISION RULE, RESTRICTED BAYES DECISION RULE

The decision making problem is essentially the selection of decision

*

rules, d_, which for a given experiment e minimize the expected value of

the loss. Then the experiment which results in the minimum expected loss
%

is sélected as the optimal experiment e ., (More wiil he said on this

in Sec. VI.)

For a given probability distribution Pe(O), the risk r(Pe,de) is

given by

r(B,,d,) = ER(B,d ) = Ee[Eyl gl(8:d )] 12~1)
or by
r(P_,d,) = EgR(8,d ) = Ee[EzleL(z,de)] (2~2)

*
A declsion rule, de’ which minimizes r(?e,de) is called a Bayes

decision rule with respect to P (68). That is,

o

>~

%
d =-Arg Min x(P_,d) (2-3)
o x (e

%
If a decision rule, Ae’ minimizes r(P@,\e) subject to the restriction

that

Max R(O,A:) <c (2-3Y
6




- N Sk
wheve € € O and C is some specified constant, then >‘e is called a

restyicted Bayes rule with respect to Pe and C 10. Note that Eqs. 2-3

2~4 are given for a specific experiment e.




III. GENERAL SOLUTION PROCEDURE

The crux of the problem in forminy Bayes decision rules is the
selection of the prior probability density for the unknowm staﬁe'of nature

0.

A, PRIOR PROBARILITY ASSYGNMINT
In this paper the assigawent problem will be treated as an inference
problem, and an objective inference technique developed by Kashyap 5, 6, 7, 8

will be primarily used.

Following this procedure, when z is the variable of interest and

for'finite O, z and a given experiment e, the prior density Pe(e) is

given by
P _(0) = Arg Max I(z;8)
¢ P(8) (3-1)
where
‘ P(z,l6,)
I(z;6) =) ] P(2,]6))P(,) In —ﬁ?i._£~ .
8, z 3 zj)
1 (3-2)
and
P(zj) = g p(zjlek) B(0,)
k (3-3)

In the maximization in Eq. 3-1, P(0) is subject to the .estrictions

I PO =1 (3~4)
%

%
i

9
b
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P(8,) >0 ¥ 0, €0 : o (3-5)

3

and whatever testable information on © ig available

In Ref. 6 Kashyap has developed a version of Eq. 3~1 which allows
for previous observations to be taken into account. If O, z are finite
and there are m independent observations from z~-z(m+l) is the vgriable

of interest now--let " denote a finitg valued statistic of thgse|pbserva—

PR S

tions.

2% = ¢ [2(1),2(2),. @] T

MRS A

Then the inferred prior for a given experiment é; is

P, () = Arg Max I(z(m+1);8|2")
P(8)

(3-7)
where

. m = g n
I(z(mt1) ;6|2™) g‘ ﬁ Zm P(6,) P(z,|6,) P(zilei)
ik 7y '

. P(zk|ei)
m
Pz |2y (3-8)

and ¥ P(ei) P(zklei) P(Z?lei)

%

) M
g P(ijez) P(8,)
L (3-9)

m
‘P(zk{Zj) &
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p_(z‘le) 48 found from P(z|0) and the assumption that z'(l), z(2),...,z(m)
are independent. P(8) is again subject to restrictions imposed by Egs.
3~4 and 3-5 and the testasble prior information. When m = 0, Eq. 3-7 just
reduces to Eq. 3-1. It should be noted that if P(z|6) is altered, the
prior probabilities Pe(e), Pem(ﬁ) given by Egqs. 3-1 and 3~7 will be

altered.

When € 1s the variable of interest, the Principle of Maximum Entropy

developed by Jaynes3 will be used. According to this principle, for a
glven experiment e, the prior Pe(e) which maximizes the entropy of 6,
1(0;6) is selected as the inferred prior. For finite ©, this assignment

is given by

Pe(e) = Arg Max I1(6;6)
P(6) (3-10)

where

(1(8:8) =~ ] B(6,) In P(9,) \
% (3-11)
where again P(0) is subject to Eqs. 3-4 and 3-5 and whatever restrictions
imposed by testable prior information. Note the independence of Pe(e)

from P(y|9).

A comparison of the fundamental differ.ences between these inference
techniqdeS*-Kashyap's inference and Jaynes' Maximum Fatropy--is given in

Ref. 7.




Equations 3-1, 3-7, and 3-10 are given for finite 0,Y. For
continuous 0,Y, the summations can be replaced by integrals, and assuming

these integrals exist, the same approach followed.

B. REASONABLENESS OF INFERENCE
One result of using these probabhility assignment procedures is that
when the outcome of the experiment is also the variable of interest, the

inferred density is a function of the experiment.: Thus, for differeut

experiments the (ensities Pe(e) will generally differ. This is not
unreasonable since the amount of information available (P(zle) is a form
of knowledge) varies with the experiments. The implications of this will

be discussed in Sec. VI.

é; : Kashyap has justified his approach to the inference problem by show-
‘;’ '

:é_ ing it is the solution of a repetitive rero-sum game. Thus, if there is
f% an unknown, but true, frequency distribution for 2, any deviation from the

optinal inferred demsity by the player can only increase his maximum
possible losi. In addition, in Ref, 8 Kashyap has aﬁown that under
;ertatn conditions his inference technique minimizes the maximum possible
divergence between the unknqwn frequency distribution of z'and that
obtained using P(s'%) and the objective prior given by Eq. 3-1. In a

sense then this is a conservative inference procedure.

T
R e A
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C.  GENERAL SOLUTION -
We shall uge the term cbjective Bayes decision rules to denote those ?i
decigion rules which are Bayes with respect to priors formed by using the jél

objective inference techniques outlined in the previous section. These
cbjective Bayes decision rules then follow directly from the definitions

in Eqs. 2~3 and 2-4 and the inferred priors.

The final .step in solving the general decision making problem under
uncertainty is the selection of the experiwemt which results in the minimum
visk for a given loss function. For the inference technique used here
this necessitates comparing risks based on different priorxs. The validity

of these comparisons is discussed in Sec. VI,

11
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. markings distinguishing them. Urns of type O

IV. EXAMPLE 1 ~ URN PROBLEM

.+ , This problem has been considered previously by Raiffall. We will
modify it here by considering losses instead of gains and using an objective
approach.

: ) ; .. i e L A S U

A. STATEMENT OF THE URN PROBLEM

The baaic problem is as follows. There is a collection of 1000 urms,

. each gf‘ghich:is either the type 61 or type‘ez, but there are no external

1 contain-4 red balls and 6
black balls; umms of type 8, contain 9 red balls and-l black ball.

There are two participants--a decision maker and .a neutral referee.
The decision maker is to repeatedly dzaw one of the urns from the collection
and guess whether it is of type 61 or 62. He can also refuse to play.
Depending upon hig action and upon the type of urn (which is known to the
referee), he receives a reward or pays a penalty. He wishes to choose his
actions sc that he minimizes his average loss over all the draws. After
incurring the logs the decision maker returns the urn to the collection.
It is assumed that the number of 61, 62 urns in the collection does not

vary so that there is an underlying (frequency) distribution for 6, albeit

unknown.

Therefore, let the state space Ou, and action space Au be

GU = {61)62} (4—1)
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where

The losses are

= {aul’au2’3u3}

guess 61
guess 62
refuse to play

given in Table 4-1,

TABLE 4-1

LOSS MATRIX FOR URN PROBLEM

ul 242 u3
61 -40 5 0
62 20 -100 0

Consider two possible experiments

14

let Yy < red ball; Yy = black ball. Then

no observations at cost $0.00

a single observation, y, at cost $8.00

p(yllel) = 4

P(yzlel) = .6

P(y,[0,) = .9

P@2w2)=.1

]

(4~2)

(4-3)

where an observation y refers to withdrawing a ball from the chosen urn

and observing its color.

13
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B. SOLUTION
Following the procedure outlined in the preceding section, the

* *
objective Baves rules d. , d for experimeats e , e . can easily be
Cuo® "Cul P uo Y

ul
found.

Since the loss functions are of the form L(0,d), the principle of
Maximum Entropy will be used to infer Peuo(e), Peul(e). If there are a~

restrictions other than

2
) P(B) =1, P(8) >0, i=1,2 (4-4)
i=1

then by the Maximum Entropy Principle
Peyo(®) = Payo(8y) = 5 (4-5)
and

Pe (8 = -5 , Peyy (8y) = -5 (4-6)

* *
In order to find deuo’ deul’ is is perhaps easiest to enumerate the

candidates or allowable strategies. Denote them by ¢. Then
Guo: refuse to play

: cho
Gul ose aul

: e
GuZ choos au2

0.3 if y = red, choose aq

14
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i1f y = black, choose a,

1
. [ 1] n
cha. red aul
s " " black " a5
. i on 1]
UuS' red au2
: " " black " a
ul
. UM o 1
Gu6' red au2
. " 1) 11
: black au2 (4=7)

*
Thus, @ () Cs
R s Ou10 0 , are the candidates for deuo’ °u3’ Gu&’ ouS’ Gu6 are

uo u2

*
the candidates for d, 1
u

Following Sec. III, it is easily seen that

deuo =003 deul =05 (4~8)
and their corresponding risks are
*
r(Pe ,dé ) = .5(5) + .5(~100) = -47.5 (4-9)
uo do
*
r(P. ,d ) = .5(-14) + .5(~80) = ~47 (4-10)
e e
ul “ul

The next step in the decision making process is the selection of
the best experiment. While in this problem this selection is straight-
forward, it is not always so, as ve shall see in the next section.
Accordingly, we shall postpone selecting the "best" experiment until

Sec. VI.
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V. EXAMPLE 2 -~ BALL PROBLEM

A, STATEMENT OF THE BALL PROBLEM

The ball problem is similar to the uxn problem but there are some
basic differences. Again there is a collection of iOOO urng, each of
which is of type 91 or 62, having the same characteristics as in the urn
prcblem. Agein there are two participants--a decision maker and a neutral
referee. Howaver, now the decision maker is to repeatedly draw one of the

urps from the collection and then withdraw a ball from this selected urn.

Without knowing the type of urn, he s ro guess the coloxr of this ball.
Dependiung upon his action and upon the color ¢f the ball, he receives a
reward or pavs a penalvy. Again he wishes to choose his actions so that
he wminimizes his everage loss cver all the draws. After incurriung the

loss, the decision maker returns the urn to the collection.

Let the state space Ob and action space Ab be

Ap = Lapgraypay5) (5-2)
where

guess red

e

81
"2

2 gt do uot play K ‘

guess black

16




If z denotes the observation of the ball which determines the loss

incurred, then the loss function L(::,ab) is given in Table 3-2, where z, = red,

22 = black.

TABLE 5-1
LOSS MATRIX FOR BALL PROBLEM

%1 22 53

z =40 5 0

z 20 -100 0

Now consider two experiments €0’ b1’ With %0 there is only
prior information on the collection of urns and the conditional probabilities
P(z|0), which are the same as those given for y in Eq. 4-3, upon which to
base the decision. That is, under ebo the decision maker withdraws an urn
from the collection, selects an action, a € Ab’ and then withdraws a ball =z
from this urn. However, under el let the decision maker withdraw a ball
from the selected urn and observe its color before making a decision.

Call this observation z(1l). Then have him replace this ball, select an

action a € Ab’ withdraw another ball, z(2) = z, and incur the loss L(z,ab).

Let the cost of this extra observation be $3.00.

Thus, there are two possible experiments.

€ o Mo observations, at cost $0.00

ey1: one observation, z{l), at cost $3.00

17
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2 Let z, = red, z, = black. Then P(szSi), 4%1,2; 3=1,2; i=1,2, is the

same a8 that given in Eq. 4~3 for y.

B. SOLUTION

Section IIIL outlines the solution technique. Pe (6) and P (B®)

bo ®p1
are given by Eqs. 3-1 and 3-7, respectively, If there are no restrictions

e VUSSP, B

other than
!
14
| %
g P (0,)=1; P (8,) >0, i=1,2; j=1,2 (5-3)
! 121 %y * %y 1
?
! then
: P (6,) = .465 ; P (0,) = .535 (5-4)
i %o 1 %o 2
: and
! . 4
i P (8,) = .505 ; P (8,) = .495 (5-5)
: 1 1 1 2 :

; (Com;arison with Eqs. 4~5 and 4-6 illustrates the eff{wct of the variasble
p q

of interest upon the inferred prior for 6.)

Following the same procedure as in tbe urn problen. we will enumerate

. e ——— Y S RN

the allowable strategies for experiments o’ %p1’

18
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Gbo: refuse to play

bl: choose ab1

o’bzz choose a'bZ

0‘,03: if z(1) = red, choose a
L black " a,
O, " " red " a1
: won black " 3,
05t " red " 49
L black " ay
Opg* "o red " 39
A black " a,

*
Thus, obo’ Ubl’ sz are the candidates for d

*
e the candidates for d .
®p1

Following Sec. III, it is easily seen that

d* $ d* (z(1))
%o 0b2 ’ e ziy 0b4

d their corresponding risks are

r(P = -58(.465) - 5.5(.535) = -29,91

*
d )
®bo %o

e(e, ,d ) = =33.4(.505) ~28.15(.495) = -30.80

bl Sp1

19

ebo; %30 %42 Tbse e

(5-6)

5-7)

(5-8)




The selection of the "beat" experiment iz not as straightforward
as in the urn problem--since the risks in Eqs. 5-7 and 5-8 are based on
different priors, how valid is a comparison between them for use in
selecting the best experiment? We consider this question in the next

section.

20
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VI.  SELECTION OF EXPERIMENT

The previous sections have been directed mainly at the selection
of the "best" decision rule for a given experiment, where the comditional

probability P(Yle) has been fixed throughout the experiment.

However, the final step in the overall decision making problem is

the selection of the optimal experiment from a set of possible experiments.

A. BASIC PROBLEM
Quite simply, the basic problem confronting us is the selection of

a criterion for choosing the optimal experiment. The criterion for sele-~

ction of the decision rule for a given experiment was to choose the
decision rule, d:, which mininized the risk r(Pe,de) where Pe was given
by our objective inference technique. Notice, however, that this risk
is a function of Pe and that for loss functions of the type L(z,a), Pe
may depend on the experiment under consideration. Accordingly, sole
use of r(-,-) as a criterion--that is, choose experiment e, over e if

h|
and only if

% ¥
r(®, »d, ) <r(?, ,d_ ) (6-1)

is difficult to justify since difilerent probability distributions for 6
are used in evaluating the respective risks. If Pe . Pe ece identical,
i 73

then Eq. 6-1 can easil, be justified as an ordering using tae arguments -

21
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presented in Part II. When these priors differ, Eq. 6-1 must be used

with more care. Consider the following example.

1. Ball Problem~-Choose Between eb s ell

_in the previous section experiments ebo’ ebl were introduced in
the ball problem. The question now is, which experiment should be used?
(Note that experiment e has a $3 cost while 6 has no extra cost.

Hence the question could be phrased as—--is e worth $3 more than ebo?)

The respective risks for the two experiments are
|

*
. ,d 0..) = ~58(.465)~5.5(.535) = - 29.91 (6-2)
e b2
bo bo
r(e, A = Gy,) = =33.4(.505)-26.15(.495) = ~30.80 (6-3)
bl bl '

However, these risks do .5t tell the whole story. Consider r(p,cbz) and

r(p’0b4) as functions of p, the true probability that 6 = 61.

r(p,0,,) = =5.5 = 52.5 p (6-4)

r(p,dba) = -28.15 - 5.25 p (6-5)
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These risks are plotted versus p in Fig. 6-1. They intersect at about
p = .480. Thus, when p > .480 (p < .480), Gy results in less (greater)

average loss than de’ so if p actually did equal Pe~ (61) (=.505)

bl
r(Pebl,cb?_) < r(Pebl,c:b 4 (6~6)
However, from Eqs. 6~2 and 6-3,
r(Pebo,obz) > r(Pebl’Gba) (e-7)

Thus, we havza a situation in which we prefer Oba to ob2 if we evaluate

their respective risks based on P , P ,respectively; but if we compare

®p1 o
risks when both are evaluated at p = Pebl(el), we prefer Gb2 to Gb&'
* *
Obviously, factors other than just *(P. ,d ) and r(P_ ,d_ ) should
%o bo ®p1 ebl

be taken into consideraticn.

B. QUASI-BAYES APPROACH
It seems chat so long as our objective inference technique infers
different priors for different experiments, our final selection of experi-

ment must remain somewhat arbitrary. Ir order to formalize these arbitrary

considerations somewhat, we shall introduce the quasi-Bayes approach.

We assume that there is a fixed set of experiments, E = {el,ez,...,en]
from which we wish to select an experiment and decision rule. We shall
call each decision rule and its associated experiment a strategy and let
“i’ i=1, 2,...,m, denote the admissible strategies formed by the experiment
in € and their corresponding decislon rules. (Note that a decision rule

d1 aight be admissible relative to the other decision rules in a given
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experiment e € E, but the strategy (e—dl) might be inadmissible relative
to the strategies s i=1,2,...,m.) Let p be a probability distribution

over the T's; that is, p is our randomized choice of decision rule and

experiment. We will restrict p to those mixtures of m's which are them-

selves admissible strategies.

Now if the true distribution for 6--P(8)--were known, the risk r(P,p)
could be evaluated and p chosen to minimize it., For example, if pl, 02, p3
denote the probabilities that p selects decision rules de s de s de from

1 2 3
experiments €15 €y €4, respectively, then

r(P,p) = plr(P,del) + pzr(P,dez) + p3r(P,de3) (6-8)

However, not only is the true distribution of 6 unknown, but our
objective inference technique may assign a different prior distribution,
Pe(e), to each experiment ~, Using this technique, no corresponding r(Pe,p)
exists since Pe varies with the selectioiz of £, Let 1 lenote a mapping
which relates the decision i1ule selectzd using p with its associated
objective probability. Then define ;(T,p) analogously to r(Pe,p); note,
however, that T is not a probability density. For example, 1if Pys Py p3
are as defined in Eq. 6-8 and de s de s de are decision rules from expuri-

1 2 3
ments el, e2, e3, then

T(1,0) = pyrlP, 44, ) + p,r(P,

1 "1 2

sd_ ) + p.r(P ,d ) (6-9)
e2 3 e3 e3

*
Define p to be ¢ quasi-Bayes decision rule with respect to T if

* ~
p = Arg Min r(t,p) (6-10)
p
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were natui-ally p is subject to the conditions necessary for it to be a

probability distribution.

If there are no further restrictions on p or r(T,p) and there is one

-

decision rule-experiment combination whose risk is less than any other

risk, then p will select this decision rule-experiment .;:ith probability

g
g
5
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one. That is, the unrestricted quasi-Bayes procedur: just reduces to:

select the decisior rule de and experiment e having the least risk r(Pe,de).

However, if a restriction such as
* —
R(B,p ) < C ¥ 00 (6-11)

*
if desired, then p will not necessarily be a degenerate probability dis-
tribution. UWe will denote the decision rules satisfying Eqs. 6-10 and
~g 4
6-11 by A and call them restricted quasi-Bayes decision rules.
It is this choice of C which allows the decision maker to formalize
his arbitrary considerations. A C close to the minimax risk indicates

little confidence in the accuracy of the inferred priors, whereas a C

close to the maximum risk of the unrestricted Bayes rule indicates con-

fidence that the inferred and actual distributions are 'close."

This approach, therefore, has some of the advantages of both the
minimax and unrestricted Bayes decision rules. On one hand it allows the

decision maker to restrict his maximum possible loss to some level T, but

~%
on the other hand, since Pe is used in evaluating the risk that A minimizes,
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it isn't so pessimigtic that it concentrates unduly (as determined by ©)
or the worst states of nature. An example illustrating this behavior is

given in the next section.

C. EXAMPLE 3 -~ MODIFIED BALL PROBLEM

The ball problem we will consider here has one slight modification
from that presented in Secs. V and VI-A-instead of a $3 observation cost
for experiment e pe Ve will assume a $6 observation cost. This modifica-

tion will give a more interesting solution to the problem.

Due to this modification in experimental costs, the unrestricted
quasi-Bayes rule selects experiment &0 and decision rule “bz‘ That is,

Eq. 6-2 is unchanged, but Eq. 6~3 is changed to

r® ,d =0 ,) = ~30.80 + 3 = ~27.80 (6-12)
€1 %1 P4

and consequently r(Pebo,dbz) is less than this new risk so (ebo’obZ) is
tile unrestricted quasi-Bayes rule.

If we wish to restrict the maximum possible risk to less than some

specified constant 6; it is then necessary to randomize over experiments.

Of the set of strateglies available, only Op1° °b2’ and cb4 are admissible.

* %
AZ’ A3 represent the probabilities that the restricted quasi-Bayes

' ~

if Al’

-~

*
rule A selects Op1 T2

experiments), then applying Eqs. 6~10 and 6-11--for this case a linear

, and Oy 4 respectively (and their associated

programming problem results--we get

* ~% € 4+25.15 _ ok _ .
A; =0, A, = SSEtetS s 263, Ay = 737 (6-13)
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1£ T = =203 if C = -25.15, we get

A =0=h, A=l 6-14
l - 0 = Az, s3 - ( - )
and if C = -26, we get

F .. L2515 a0, ¥ -

Al = .85 .096, Az =0, A3 .904 (6-15)
Note that the rangé for effective C is

~26.43 < € < -5.5 , (6-16)

X

That is, C should be greater than the minimax risk ~26.43 and less than

the maximum risk under the unrestricted quasi~Bayes rule.

This minipax risk can be obtained by using well established:tech-
* *  *x %
niques. If y denotes the minimax strategy and Y12 Yo V3 the probabilities
*
that Y respectively selects obl’ obZ’ 0b4’ (and, of course, their cor-

responding experiments) then applying these techniques we get

* o 49, Y =0, vy =.81 C (6-17
Yl"" H ‘Yz" s Y3"' "‘)

‘

and the corresponding minimax risk is =-26.43, independent of the true

*
probability distribution of O since ¥ is an equalizer rule.

Fbr these rules the risk'r(p,di can be calculated where p is ghe
actual distribution of 8. In Fig. 6-2 the risks for‘these rules ar;
plotted versus p; the true probability that 6 = 81. From the figurelit
is seen that the decision maker has choices ranging from a minimum po;-
sible risk of -$58, with a possible risk of -$5.5, to a guaranteed risk
of ~$26.43. The compromising behavior of the restiicted quasi-Bayes is

evident.

28




o~ e

Wr(p,d)
20 |
0 + } + 4 e
.2 4 .6 .8 1.0 p
~e
A ,C =-26
~
% ,C = =25.15
"20 "\ A
\
e —————
-40
Tk
A : restricted quasi-Bayes
*
Y ¢ minimax
~-60 T .
GbZ' quasi-Bayes

Figure 6-2: Comparicon of Risks for Ball Problem

with $6 Observation Cost

29

o — mr————




D. DISCUSSION

The basgic difficulty, of course, is the possible variation in
inferred prior with changing P(yle). If the inferred prior, P(0), were
fixed over the experiments, r(P,d) could be used as the sole decision
criterion. However, a variation in the prior requires scme modification
in the decision making procedure. (We discuss some of the anomalies
assoclated with quasi-Bayes in Part II of this paper.) We have elected
to use the C restriction, feeling that it is a concise and general way

of handling the difficulty. In general any Bayes procedure ueing an

(cbjective) inference technique which in turn is a function of P(y|90)

will encounter this difficulty of multiple priors.
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- VII. CONCLUSIONS
The use of this approach enables the solution of a wide range of
practical problems involving uncertainty. It can be applied to the group
Bayesian problem (Raiffa , Chapter 8)--collectively selecting C may be
easier than finding a collective (subjective) prior. In Ref. 12 this
procedure is usad to find both open-loop and closed-loop controllers for
dynamic systems having unknown parameters. An advantage of this appreach

is its ability to objectively use the available prior information.

When there is only one experiment, the application of our approach
is straightforward and, as Vill be seen in Part IX, quite justifiable.
It is, in a sense, an objective alternative to the minimax procedure.
However, when there is a choice of experiments, our results are not as

conclusive. More will be said on this subject in Part II but suffice

it to say that no alternative decision making procedure exists waich

doesn't have some serious objections to it!
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BAYES DECISION RULES BASED ON OBJECTIIVE PRIORS
PART IXI: JUSTIFICATION

By T. L. Oberlin and R. L. Kashyap

Abstract

ey e e e < AT e AT RIS

In Part I of this paper an objective Bayes approach to decision
making under uncertainty was proposed. The priors were obtained by using
an objective inference technique developed by Kashrap. Justification
arguments are now given for this approach based upon axiomatic considera~
tions, reason;bleness arguments and comparison of the average losses in-

: curred using both this approach and the minimax approach.

It is shown that in situations where the experimentation is fixed
and the decision problem is faced repeatedly, but not necessarily an

infinite number of times, this approach is justifiable. In situations

s LY e T o A

where there is a choice of experiuents, these arguments are not as con=-
clusive; however, the approach still has practical merit as an objective

alternative to the minimax approach.
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I. INTRODUCTION

The basic approach of Part I was to assume that the uncertainties

- | present in the decisfion problem could be characterized by random variables

which are then assigned probability distributions.

We wish now to give justification for this approach. We shall do
this by axiomatic considerations, reasonableness arguments and comparison
of average losses incurred using other approaches. These approaches include
subjective Bayes, empirical Bayes (Robbinsl) and minimax. Technlques such
as hypothesis testing, confidence intervals and point estimation will not
be discusséd. Lindley2 gives an interesting compariscn between some of

these approaches and those using the concept of a prior distribution.

The merits of and objections to each approach depend a great deal
upon the type of problem in which the, are vsed, especially the repetitive
nature of the problem. We start by considesing a repetitive decision
problem in which there is no choice of experiment and then generalize to
the situation where the decision maker has a cholce of experiments.

i

1I. SINGLE EXPERIMENT

In genergl we do not expect to show that any one JZCision rule is
always '"better" than others; that is, there will be situations in which
a number of decision rules are admissible. Naturally, we are primarily
interested in those situations in which the objective Bayes rules seem

to be better than any others, so we assume that we are in a situation in
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which the decisior problem is faced repeatedly--not necessarily an infinite

number of times--and in which the experimentation is fixed.

In »rder to provide a basis for comparison and to provide insight
into the nature of the justification problem, an axiomatic approach to
selecting a decision crlterion is briefly discussed, and then arguments
are given for the validity of other approaches to forming decision rules.
Finally, a direct comparison of the objective Bayes and minimax approaches

is made.

A. AXTOMATIC APPROACH

In using the axiomatic approach, the order of the decision-making
process is reversed from that given in Part I. In Part I a decision
criterion is postulated, resulting decision rules formed and then the per-
formance of these decision rules is evaluated. An alternative procedure--
the axiomatic approach--is to l1ist certain desiderata or axioms for a
decision criterion to fulfill and then see 1f the proposed'criterion
satigfies these axioms. This iz done prior to using the criterion to find
decision rules. The 4xioms ar posed, naturally, so that if a criterion
fulfills them the resulting decision rules azre justifiable. Not surpris-
ingly, one of the major problems in applying the approach is the selection
of axioms such that they are mutually compatible and also intuitively

reasonable (see Birnbaum3).

In Chapter 13 of their booka, Luce and Raiffa give a very readable

pregentation of the axiomatic approach, and consequently it will not be
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repeated here. However, some conclusions can be drawn. Namely, of the
four decision criteria that they applied to thelr list of axioms--minimax,
minimax regret, o pessimism-optimism and insufficient reason--no ome
criterion dominated. That is, of these four decision criteria, none ful-

filled all the axioms in a completely satisfactory manner.

However, the criterion based on the principle of insufficient reason
satigfled the basic axioms 1 thru 9 in Luce and Raiffa, but there is
question az to when the criterion {s applicable, that is, the axiomatic
representation of complete ignoranca. The essence of the argument is that
if the decision maker is "completely ignorant" as to the state of nature,
then should his final decision rule be alterxed by deleting a state of
nature (assuming O finite) that has the same losses as another state for
any action a € A? If the number of states of nature is changed, the
probability assigned to each state bty the principle of insufficient reason
will change, which can change the selected decision rule. Hence, the
argument is joined!

"If the decision criterion given by the objective Bayes approach is

applied to these axioms, for fixed experimentation (only one prior Pe(e))

it can be shown that it satisfies the basic axioms 1 thru 9. Hecwever, it
ig subject to the same criticism as the insufficient reason criterion.
Namely, that if the number of states of nature is changed, the inferred
prior Pe(O) will generally change and possibly the resulting objective

Bayes decision rule will be altered.
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It sexms as though any decision criterion based upon an iw.cerence

=pzoach which is imdependent of the values assigned to the lisses—-as

both. the principle of insufficient reason and our objective inference
are~-will be subject to this criticism. For these infereace techniques,

" the number of states of nature muct remain fixed for a given problem;
if this numbcr chonges, the problem is changed and a new ordering of
Cecision rules is possible. It is felc that this failing is relatively
minor in cownarison with the difficulties associated with those procedures-—-
such as m*1imax or minimax regret--which can be viewed as having inference

technigu2s Lased woon tite loss function.

I~ sumnary, zhe awnicmatic approach is useful since it shows that
. on2 aas yet formd a decision criterion which has all the desired prop-

er-ies o at car logicelly be dasired.

4
o
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B. JUSTIFLICATION OF BAYES APPROAGH
1f a Bay2s spproach is to be followed--that is, O is assumed to be
2 -ondom variable and o probability distribution is assigned to it-~two

. . . . . 5
rasic questions concednlng jurstification arise™:

(1) ad:nuacy »f the assurption of randomness of 6 and knowledge
of the wxior probability distribution of 6;

(ii; waterr ctation of the minimum expected loss as optimum.

Cbvio:siy th~ ansiv'e.c .o (i), (4i) will depend on the probability
distributio- aszirrunt cechniguz. The following sections will discuss

several of these assignaent techniques, including Kashyap's, in light of

(1), (i),
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¢ 1. Subjective Bayes

? Essentially a subjectivist holds the view that probability measures

[

‘ a person's degree of belief as evidenced by his betting or action behavior.

! DeFinetti6 demonstrates that if a person is consistent in placing his bets,
his subjective probability assignments will satisfy the usual laws of prob-

¢ ability. From this point of view then, (i) is adequately answered by the

subjective assignment of a probability distribution to 0.

In order to answer question (ii), the subjectivist views the loss
function as a negative utility in the sense of Von Neumann~-Morgenstern.
In Ref. 7 Savage showed these concepts of utility and subjective prob-

ability can be linked together. Now the optimality of the minimum expected

loss, where the expectation is with respect to the subjective probability

N distribution, follows from the expected utility hypothesis. Thus, ques-

§< S tion (11) is answered.

There are some objections to this approach. One is the practical
difficulty in assigning the probability distribution such that there
are no inconsistencies. A more fundamental objection is that two different

people, when faced with the same decision problem, may end up with two

completely different solutions.

gty

All in all, however, in a non-repetitive situation-~that is, the

decision problem is a 'one shot' affair--the subjective approach is hard

PO % o TR s,

to argue against, even considering the diffuculties of consistent assign-

)

ment and nonobjectivity. However, in repetitive type situations where
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there ig a true underlying frequency probability distribution for 8--
glheit unknown--the subjective approach seems hard to defend. It has

no guarantee against the improper se of information—~—-the actual average

incurred loss may differ widely from the expected loss. Hence, the
argument for answering (ii), while valid for non-repetitive situations,
is not satisfactory for repetitive situations.

7~

2. Empirical Bayes

The empirical Bayes approach is suitable for situations in which
the decision problem presents itself repeatedly and independently with
a fixgd but unknown underlying frequency distribution for €. A good
summary of the method is given by Robbinsl. (Marit28 also supmarifes
the'method and contains more current references.) Essentially, in using
the empirical Bayes approach, the decision maker forms sequential decision
rules which utilize past observations to extract some information about
the frequency distribution of 6. Under certain conditions then it can
be shown that as n + ® ( n is the number of repetitions), the r@sk cor-
responding to these decision rules converges to the actual Bayes.risk
that results if the frequency distribution of 0 were known. (This prop-

erty.is called asymptotic cptimality of the decision rule.)

Consequently, in the limit as n -+ «, (i) and (i1i) can be answered
by the same arguwents given for when the frequency distribution of & is
known; that is, by the law of large numbers, the Bayes risk approaches

the actual average loss.




The major objection to this approach is that the value .of n neces-

sary for convergence is not clearly specified. In practical situations

there may be only a limited number of observations available. In these
cases, general results for the assessment of the performance of empirical

Bayes methods have not yet been found (p. viii, Ref. 8).

3. Objective Bayes

B T e i Gy e
o . P

In using the objective Bayes approach, we assume that the problem

is repeated often enough so that a purely subjective approach is un-

L gy ementeen

satisfactory. In general, the situation can be characterized as one in
which the decision problem presents itself repeatedly and independently
whith the same underlying frequency distribution of 6, but the number
of repetitions is insufficient for convergence of an' adaptive decision
procedure such as empirical Bayes. For a problem of this type, initial
choices for the unknown probability distributions will have a pronounced

effect on the average losgs ingurred.

In a sense then, the question of randomness of B is answered by

the type of problem considered--f is assumed to have an unknown frequency

probability distribution. The answer to the second part of question -({)

lies in the inference technique used. Since the actual performance of

pan B N, 9 o B

the decision rule can be noticeably affected by the inferred prior prob-
ability distribution of 6, a conservative approach is desirable. Kashyap's
inference technique has thils conservative character. Thus, since the

true frequency distribution of 0 is unknown, a conservative "estimate"

of 1t is used instead.

ol e
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Note that this estimate is comservative from the inference point
of view and is not necessarily conservative as far as tle decision problem
is .concerned, that is, the actual average loss incurred. This leads to
question (ii)--what is the interpretation of the resulting risk r(Pe,d:)?
r(Pe,d:) is really just an estimate of the average loss that will be
incurred using d:, but due to the nature of the problem its accuracy
cannot be verified, just placed within limits. Some of the difficulties
in using r(Pe,dZ) as the sole measure of performance are discussed in

Sec. III.

4, Restricted Objective Bayes

If the decision maker is not satisfied with the bounds~-that is,
the maximum possible average loss is too high--he may wish to choose a
decision rule Y* to minimize his upper bound, that is, his maximum possible
average loss. Of course, Y* is simply a minimax decision rule, However,

this minimax approach has certain drawbacks.

A compromise between these two approaches--objective Bayes and
minimax~--is offered by the restricted objective Bayes approach. This
approach has some of the advantages of both the mipimax and unrestricted
Bayes decision rules. On one hand it allows the decision maker to restrlct
his maximum possible loss to some level E} but on the other hand, since
Pe is used in evaluating the risk that A: minimizes, it isn't so pes-

simistic tuat it concentrates unduly (as determined by C) on the worst

states of nature. Examples illustrating this behavior are given in Part I.
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In a sense then, our restricted objective Bayes rule is a hybrid--
it is based on an objective prior probability and loss function but is
affected by an arbitrary value of C. However, since this arbitrariness
is Qestricted to the choice of C at the "end" of the problem solution
rather than in the beginning as is the case with the subjective approach,
this approach avoids some of the criticisms of the purely subjective
approach. Namely, it is applicable to situations in which the decision
problem is faced repeatedly, and the effect of the subjectivity is easily

seen. Ultimately the decision problem is subjective, and this seems to

be a good place to account for it.

Undoubtedly there are those who will disagree with some of the
arguments and assumptions used above. In the next section the actual
performances of objective Bayes rules and minimax rules will be compared

to provide a more real or operational justification of our approach.

c. COMPARISON WITH MINIMAX DECISTON RULES
For the type of problem being considered--repetitive but not neces-
sarily having an infinite number of repetitions of tho decision problem—-

it is felt that the minimax decision rule is the main competitor of the

objective Bayes decision rules.

1. Basic Differences

The minimax approach is the most conservative decision making

approach-=-it can be given a zero~sum game interpretation.
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A comparison with the objective Bayes decision rules can be made
by viewing these minimax decision rules as simply Bayes rules with respect
to the least favorable distribution over 0. The difference between the
two approaches then lies in the prior distributions of § that are assumed.
In the ohjective Bayes approach, Kashyap's inference technique is used,
which itself is an interpretation of the solution of a two-person zero-
sum game. However, the essential difference is that this inference pro-

cedure is independent of the values in the loss function; that is, Pe(e)

does not depend on the losses assigned in the decision problem. However,
as noted it does depend on the form of the loss function. This is not
the case for the least favorable distribution, which obviously depends

upon the loss function values.

It is felt that the major objection to minimax decision rules—-

their high sensitivity to greater risk with low sensitivity to less risk--

arises because of this dependence of the inference of the loss function.
By avoiding this dependence, the objective Bayes decision rules are not

as subject to this criticism. The following example will illustrate this.

Consider the urn problem described in Part I and the single experi-

ment e ..
—~———ul

*

If v denotes the minimax decision rule for this problem, where
* %
Y selects 0u3 and 0u5 with probabilities Yl’ YZ’ respectively, then

* 24

Yl = 5

*

Yz = 1476 (2_1)

10
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The corresponding minimax risk is
w x
r(®P,y ) = -23.43 (2-2)

The objective Bayes decision rule for experiment el is

*
de = 0u5 (2-3)
ul

with corresponding risk

A

r(Pe ,d: Yy = =47 (2-4)
ul ul

PRI T T e Y %

* *
Comparison of r(?w,y ) and r(Pe s,d ) is not too meaningful since these
ul Tul

rigks are evaluated at different probability distributions for 0. A more
meaningful comparison is to comsider their respective risks evaluated
with the true probability of el,p. These risks can easily be evaluated.

*

r(p,d, ) = 66p - 80
e
ul

r(p,y") = -23.43 (2-5)

They are plotted versus p in Fig. 2-1.

Notice that 1f p < .857, the risk incurred using the objective
Bayes rule is less than that incurred using the minimax rule. 1In fact,
the objective Bayes rule can be almost four times less than the minimax

risk (~80 versus -23.43 when 6 = 6.). On the other hand, the objective

1
Bayes risk can go as high as ~14 versus the -23.43 bound on the minimax

risk.

i1
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This then demonstrates the semsitivity of the minimax approach--
highly sensitive to greater risks, much less sensitive to lesser risks.

This is the major criticism of the minimax approach.

However, if the decision maker objects to the possibility of an
average loss of ~$14, he can use a restricted objective Bayes rule to
reduce this maximum risk. Let C denote the desired maximum possible

*
risk. Then the restricted objective Bayes rule A for experiment e is

Ao C*14 o3zt c
1 15 * "2 18 (2-6)

*
2

gselects 0.3 and 0,5 respectively.

- * *
where -23.43 < C < ~-14 and Al’ A, represent the probabilities that A

- *
For C = ~-20, the risk r(p,A ) is given by
*
r(p,A ) = 24p - 44 (2-7)

This is plotted in Fig. 2-1. Notice that in exchange for a smaller maxi-
mum risk, the minimum possible risk is reduced. As C approaches -23.43,.
these upper and lower bounds converge and the restricted objective Bayes
rule approaches the minimax rule. Thus, the restricted objective Bayes
rule can be viewed as a sort of compromise between the objective Bayes

and minimax decision rules.

Another consideration for use in the comparison of objective Bayes
and minimax decision rules is the use of sampling information. There
are various ways for the objective Bayes approach to use this information,

essentially by the use of judicious approximations.

13
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However, a true minimaxer can't really make even these approximation:

he is only‘concerned with the possibility that P(8) can assume its least

favorahle value and not the probability that it does.

Radner and Marshak9 give a good example illustrating somz of the
objections to using minimax rules when sampling is allowed. They ess;n—
tiaily have found a situation in which even though P(0) is unknown, the
optiﬁﬂm minimax decision r;le calls for no sampling, no matter how cheaply

it may be obtained. The problem is that as long as it is possible for

P(8) to be least favorable, the minimax approach will assume it is so.

Thus, in summary, the attitude of the minimax approach makes it

difficult to use "uncertain" information.

2. Variations in the Loss Function

So far we have assumed that the loss function is a known, scalar
performance index. However, if we allow unknown, random terms in the
loss function, the sensitivity of the minimax approach can be considerably

increased relative to the objective Bayes approach.

Another shortcoming in the minimax approach arises when multiple

losses are considered; that is, the performance index may be given by

14




PI = E '
Rm(e,dl’n) (2-8)

orx

- N oeee
PI = Pr [R)(6,d) ) >0 NRy(6,d; ) >0

1 2

N Rm(e,dl,n) > ozm] (2-9)

where d represents a collection of decision rules (d,,d,,...,d ).
1,n 1°72 n

The objective Bayes approach is suitable for application to decision
problems having performance indices of this form due o the independence
of the inference from the loss function. The miniwmax approach, on the
other hand, isn't really suitable for these types of performance indices
since evaluation of either Eqs. 2-8 or 2-9 requires a probability dis-
tribution for 8. However, for these performance indices, the minimax

approach doesn't indicate a way to find this probability distribution.

D. SUMMARY
This section has been conceined with the justification, for fi: d

experimentation, of the objective layes approach. Part B contained reason-

ableness arguments--what properties should a decision criterion possess;

15
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what interpretation can be given to the resulting expected losses? In
this section a more practical approach \'as _aken--is there another ob-
jective approach that does as well or better than the objective Bayes

approach?

Based on the answers to these questions and the number of situations
in which the objective Bayes approach is better than the minimax approach,

we feel the objective Bayes is a justifiable approach for fixrd experi-

mentation. In the nex” section the question of its justification when
there are several priors (that is, several different experiments) in the

decision problem is considered.

III. MULTIPLE EXPERIMENTS

Assume that there are a finite number of experiments from which to
choose. The basic difficulty confronting us is the possible variation in
priors with experiment. (P(y|6) is fixed throughout an experiment, but
may vary between experiments and consequently so can the objectively

inferred priocr.)

To attack this problem, we formulated the quasi-Bayes approach.
We are now interested in the validity of this approach. We shall use
much the same procedure as in Sec. II--axiomatic considerations, reason-
ableness arguments and direct comparison with the minimax approach.
However, in order to illustrate some of the properties of the quasi-
Bayes approach, we shall first introduce a new approach--the standard

approach--and compare the two.

16
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A, ALTERNATE APPROACH TO SELECTION OF EXPERIMENT

1. Standard Approach

A typical way of selecting an experiment and ultimately the ''optimal"
decision rule is to find the best decision rule for each experimeat and
then select the experiment whose associated best decision -rule has the

minimum risk. We shall call this approach the standard approach.

We can forralize this approach as follows. For each experiment

e c E, 1=1,2,...,n, let the associated objective Bayes decision rule be
®
denoted by A_ . That is,
e
i
*
Ae = Arg Min r(P, A, ) (3-1)
i Ae i i
i

where Pe is the objective prior probability density for experiment ey
i
found using Kashyap's inference technique.

In addition there may be restrictions of the form
* —
R(e,)\e ) 5-CS sy ¥0e 0O, 1i=1,2,...,n (3-2)
i

on these decision rules.

Now let § be a randomized rule for selecting the experiment, where

§,, i=1,2,...,n, correspond to the probability that experiment e, is

i,
gselected. If

~ * . *
r(§) = 61r(Pe ’Ae Y+ e+ 6nr(92 ’Ae )
1l 1l n n

17
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then following the standard approach, the rule for selecting the experi-~

ﬁent is given by 6* where
3 N . § = Arg Min £(S) (3-3)
$

{We have introduced this notation to facilitate comparison with the quasi-
*
Bayes approach. OCbviously § will be a degenerate probability distribution

) ‘ *
which simply selects the experiment having minimum r(Pe,Ae).)

e R P e AT RO G ey TS

PN

2. Comparison of Approaches

The basic difference between the two approaches is that with the
gcandard approach an experiment is selected only on the performance of
its "best" decision rule whereas with the quasi-Bayes approach an experi-
ment can be selected on the performance of any decision rule leading to
an admissible strategy. (A strategy is any decision rule-experiment
combination.) There are two major consequences of this difference that

are of interest to us: the admissibility of the experiment 'and consequent

decision rule which are chosen, and the difference in ranges of C. and

fol

1f the inferred priorx Pe(e) is the same for all e € E, then the
experiment’ and consequent decision rule selected by the standard approach
will be admissible relative to the other possible expseriment-decision
rule combinations. However, if the inferred prior Pe(e) varies with the
2xperiment, then it is quite possible that the experiment-decision rule
gselected by the standard approach will be inadmissible relative to the

other strategies. Using the quasi-Bayes approach, it is easy to avold

18




this by initially considering only admissible strategies; that is, we
restrict p to admissible strategies and admissible mixtures of these

%
strategies. Consequentiy, the resulting ¢ i1s admissible.

—

Another difference between th> approaches is the ranges of c, C

g
Specifically, Lt is possible for
min (C) < min (Eé) (3-4)

where min (~) means that if C or ES is lecs than this value, no solutions

exist which satisfy the constraint.

It i3 easy to see this from a graphical point of view. Assume
E= {eo,el} and that there are three admissible strategies for each

experiment——ooi »0.,, i=1,2,3--having conditional risks R(6,0) as plotted

11
in Fig. 3-1. Only the lower left hand boundaries of the risk sets are

drawn.

From Fig. 3-1 we see that if C = C, we can obtain a minimax risk
of C using the restricted quasi-Bayes approach with C = C. However,
with the standard approach, if ES < C+ A, Fig. 3-1 shows that no sclu-
tions )\: , A: exist which satisfy constraint (3-2).

0 1

Moreover, using the quasi-Bayes approach with

C<C<sCc+A (3-5)

19
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we can obtain restricted quasi-Bayes solutions whereas no solutions exist
for corresponding values of Eé using the standard approach. (Note that
this is ture regardless of the priors assigned to 0.)
- = *
If C, CS are so large as to be ineffective, then Ae , 1I=1,2,...n,
i
will be nonrandom decision rules and the standard approach will yield the
*
decision rule and experiment haviag minimum r(Pe ’Ae ). Assuming that
i i
this experiment-~decision rule is an admissible strategy, the quasi-Bayes
approach will yield the same decision rule and experiment.
Now if E} Eé

hard to compare the resulting selections. The standard approach will

are of such values that they are effective, it is

select an experiment and then randomize over possible decisicn rules

for this experiment. The quasi-Bayes approach will randomize over both
expariment and decision rule; in fact, when a strategy is selected, the
decision rule to be used in the experiment is specified. Consequently,
following the quasi-Bayes approach, an experiment may be selected and
performed and a decision rule used which might not be optimal if that
experiment along were being considered. Thus, if c, Eé are such that
they are effective, the standard approach will yield decision rules which
are consistent within the chosen experiment, and the quasi-Bayes approach
can yield decision rules which, while not recessarily the best for the

given experim.nt, are optimal, in the sense defined, over the get of

experiments.

21
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Note that when we say the decision problem is faced repeatedly we
pean that the selection of both the experiment and the decision rule is
faced repeatedly. Consequently, we feel that the quasi~Baycs approach

is a "better" approach than the standard approach.

B. AXIOMATIC CONSIDERATIONS

The axiomatic approach was briefly discussed in Sec. II. It was
stated there that the axioms presented by Luce and Raiffa were satisfied
by the objective Bayes criterion, with the exception thaé the ordering
is altered if the number of states is changed by deleting a state having
the same losses as another state for any action a € A. Unfortunately,
the extension of the objective Bayes--the quasi-Bayes approach--does not

satisfy all the basic axioms.

For example, admissibility of the optimal decision rulz is a basic

axiom, and we can only obtain it by restricting p to admissible strategies
and admissible mixtures of strategles. Without this restriction the final

choice of experiment-decision rule might not be admissible.

This restriction can cause some other discrepancies, however. For
example, 1f two stiategles are optimal, that is, quasi-Bayes decision rule
ihen a mixture p of them may have the minimum ;(T,p), but this mixture
may be inadmissible and hence non-optimal. In other words, the optimal

get of strategies 1s not necessarily convex.

22
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There are other discrepancies. If we add a2 _constant to a row of

the matrix (assuming finite 0,A), we can change the ordering between

strategies. For example, suppose $100 is added to the second row of

the loss matrix for the ball problem, Table 5-1, Part I. Then the priors
P L, P remain unchanged but tne risks r(® ,0..), r(? ,0,,) go
b0 b1 ®ho P2 ey b

from -29.91 and -30.80 to 3.34 and 4.50, respectively. Hence, the (un~

restricted) quasi-Bayes rule is changed from sz to by adding a

%4

constant to a row of the loss matrix.

While the failure of the quasi-Bayes approach to satisfy these
axioms is discouraging, it should not preclude the use of this approach,
since, as nentioned previcusly, no one decision criterion has been found
which has all the desired properties as expressed by the axioms. In
view of this, the ultimate justification of this approach is how well it
performs relative to the alternative approaches. (It should be noted

that the standard approach exhibits these same faults.)

C. REASONABLENESS ARCGUMENTS

In Sec. II arguments werc presented for the reasonableness of certain
Bayes procedures for dirifesent situacions, Similar arguments can be given
for using the quasi-Baynss approach to select the best experiment. The
repetitive nature of the problem is the same (except now, of course, the
decision maker repetitively selects his experiment) and so conservative
estimates of the prior probability of 6 for each exgeriment are desirable.
Again, the interpretation of the resulting risk is arbitrary; the risk
can be bounded, but otherwise no properties such as convergence to the

actual average loss can be claimed.
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In Part I, Sec. VI, an example was solved using both quasi-Bayes
and minimax decision rules. From Fig. 6-2, Part I, it can be seen then
that the quasi-Bayes approach is a viable one (at least for this particul;r
proflem). A comparison between the two approaches was made for another
problem--control of a dynamic system with unknown parameterslo—*with

much the same type results.

In general it is felt that often the quasi-Bayes approach will
yield experiment—decision rule choices whose performance is quite satis-

factory. From a practical point of view, this fact in itself is sufficient

to justify its use.

IV.  CONCLUSIONS

Well now, where do we stand with respect to justification of our
approach to decision making under uncertainty? We have looked at alter-
nate approaches in terms of axiomatic considerations, reasonableness
arguments and comparison of average losses incurred. The conclusion that

we now reach is that the objective Bayes (and its generalization the

quasi-Bayes) approach is a good practical approach to this problem.

There are inconsistencies in this approach; however, the majority
of them only occur when the inferred prior varies with the experiment.
1f the inferred prior is the same for all experiments under consideration,
the justification arguments present~d in Sec. T for the case of a single

experiment apply to the quasi-Bayes approach.
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In Part I, Sec. VI, an example was solved using both quasi-Bayes
and minimax decision rules. From Fig. 6-2, Part I, it can be seen then
thst the quasi-Bayes approach is a viable one (at least for this particul;r
proﬁlem). A comparison between the two approaches was made for another
problem-~control of a dynamic system with unknowm parameterslo——with

much the same type results.

In general it is felt that often the quasi-Bayes approach will
yield experiment-deciéion rule choices whese performance is quite satis-
factory. From a practical point of view, this fact in itself is sufficient

to justify its use.

IV.  CONCLUSIONS

Well now, where do we stand with respect to justification of our
approach to decision making under uncertainty? We have looked at alter-
nate approaches in terms of axiomatic considerations, reasonableness
arguments and comparison of average losses incurred. The conclusion that

we now reach is that the objective Bayes (and its generalization the

quasi-Bayes) approach is a good practical approach to this problem.

There are inconsistencies in this approach; however, the majority
of them only occur when the inferred prior varies with the experiment.
If the inferred prior is the same for all experiments under consideration,
the justification arguments present~d in Sec. T for the case of a single

experiment apply to the quasi-Bayes approach.
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