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Chapter I

INTRODUCTION

Periodic structures find a variety of applications in fields ranging from

acoustics and electromagnetics to optics. Typical examples are the diffraction

gratings used in optical spectrometers and as resonator components in sub-

optical lasers, the slow-wave structures in microwave tubes, and for micro-

wave lenses and broadband absorbers. They are also important to oceanograph-

ers in the study of acoustic or low-frequency radio wave scattering from ai1

idealized sea.lMathematically, the problem of the scattering of waves by a periodic

surface is one which is easy to formulate but difficult to solve. It consists

of solving the wave equation subject to boundary conditions imposed at a sur-

face whose shape can be very complicated. For this reason, an exact analytical

treatment of the problem is seldom possible, and it is only recently, with the

advent of the high speed computer, that reliable results have been obtained.

Prior to this time, a variety of approximate analytical treatments were

developed, most of them based on an approach originated by Lord Rayleigh

(1878). Assuming the surface to be infinite in extent and making use of the

periodicity in (say) the coordinate x, Rayleigh expanded the scattered field in

a discrete spectrum of outgoing plane waves, which representation was assumed

to hold right down to the surface. Application of the boundary condition leads

to an infinite set of linear algebraic equations, valid for all x, from which to

determine the complex amplitudes of the scattered waves, infinite in number.

The crucial and unjustified step (see Lippmann, 1953) in this procedure

is the assumption that the representation of the scattered field holds every-

where above and on the boundary. This has ever since been a subject of con-

troversy (see, for example, Lysanov, 1958). Thus, for a perfectly conducting

sinusoidal surface, Rayleigh (1878) obtained a solution by successive approxi-

mation based on the initial neglect of all attenuated waves and assuming that

i,1
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I the amplitudes of the corrugations are small irregularities compared to the

1 wavelength. Later, for the small surface, Tai (1948) proceeded via an

orthogonal mode expansion, followed by matrix truncation, and others have

pursued essentially the same path. An analogous treatment for a corrugated

interface between two homogeneous media was developed by Rayleigh (1907), and

applied to a sinusoidal profile by Pavageau (1963) and to a triangular profile by

Bousquet (1963).

A refinement of Rayleigh's method was developed by Uretsky (1965).

His method starts in the same way as Rayleigh's, but instead of merely assuming

that the scattered field can be expanded as an infinite set of plane waves, Uretsky

proved that this is possible for observation points not too close to the boundary.

To avoid Rayleigh's assumption that the representation holds right down to the

surface, Uretsky used Green's theorem to express the scattered field as an

integral over the elementary sources induced on the boundary by the incident

wave. Numerical results were obtained for a sinusoidal surface with a Dirichlet

boundary condition.

Methods of small perturbations similar to Rayleigh's were used by

Miles (1954) and Katsenelenbaum (1955). The typical procedure is as follows:

the boundary conditions specified on the uneven surface y f(x) are tmns-

formed to the plane y = 0 by expansion in a power series with respect to f(x).

Thus the problem of scattering from an uneven periodic surface is reduced to

solving the wave equation subject to specified boundary conditions on a plane.

At best, all such solution3 are valid only for corrugations whose height

is much smaller than the free space wavelength, and in an attempt to overcome

this restrictionMeecham (1956a) used a variational method to find the angular

distribution of scattered energy for a perfectly conducting grating. The scat-

tered field was represented as a linear combination of known solutions of the

wave equation whose coefficients were obtained by a least square fit to the

boundary condition at the surface, and the procedure was then applied to a tri-

angular (or sawtooth) profile.
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A somewhat different approach wa3 teken by Eckart (1953). He expressed

the scattered field aa a Helmholtz Integral invtlvhng te scattered field Itself and

its normal derivative on the boundary. TIM integral was then evaluated after

assuming that the reflection took place at an eqmivalent flat surface, and approxi-

mating the scattered field and Its normsal derivative on the boundary by the

incident field aloe. Another method also based on variations on the Kirchhoff

approximatlen was used by Brekhlovkildh (1952). The method assumed that the

field at the uneven surface was local In nature and could be specified in terms

of the laws of geometrical optics. The field at each point on the surface was

assumed to be the same as if the reflection from that point were to occur from

an infinite plane tangent to the surface at the apecffted point.

A method based on physical opt.ics was used by Senior (1959). Once

again the determination of the field is reduced to quadratures, and Senior showed

that for a plane wave at normal incidence on a sinusoidal grating, the physical
optics integral can be evaluated exactly to give the complex amplitudes of the

scattered waves. As indicated in Appendix A, the same is true (if shadowing Is

ignored) for both polarizations, and for oblique incidence as well as normal. It

should be emphasized, however, that the solution Ia still approximate by virtue

of the postulated surfice field distribution, and the failures of the physical optics

estimate of the surface fields are examined in Chapters MI and V of this work.

A method which is quite distinct from all of the above was developed

by Stvov (1964) who used conformal transformation and a considoration of the

static limit to analyze reflections from periodic surfaces with shallow and deep

corrugations. The procedure Is similar to that recently employed by Millar

(1969, 1971) to investigate the Inherent limitation of Rayleigh's method (see

Chapter V11). As first noted by Lippmann (1953), it in not in general valid to

assume that the expansion of the scattered field as a discrete spectrum of out-

going waves alone holds over the entire scattering surface, and this fact was

later verified by Petit and Cadilhac (1964) in the case of a sinusoidal grating.
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In any general treatment of the grating problem it is therefore necessary to

allow "ingoing" waves in the immediate vicinity of the surface.

All of the methods considered so far are very limited (satisfactory only

for certain classes of structures) and have little success in predicting certain

chara.cteristics of periodic structures (for example the P-type Wood anomalies).

In the desire for a better understanding of Wood anomalies (see Chapters IV and

VI), a different point of view was proposed by Hessel and Oliver (1965). They

used a guided wave approach and replaced the uneven surface by a pldne which

had a modulated surface reactance. Their theory is more general than the pre-

vious theories and predicts the general location and shapes of the anomalies.

Since the surface geometry and the modulated plane reactance cannot be related

quantitatively, information about the performance of a specific structure cannot

be obtained.

Recently, another approach based on function theoretic techniques was

used by Tseng, Hessel and Oliner (1968), and Itoh and Mittra (1969). Unfor-

tunately structures for which such methods are possible are very few.

Without exception, all of these analytical attempts to deternine the fields

scattered by periodic surfaces are subject to approximation, either implicit or

explicit, and It is only with the use of high speed computers permitting the

direct digital solution of the integral equations that reliable results have been

obtained.

Most of the initial work in this area was carried out by the French

investigators, such as Petit, Cadilhac and Wirgin, and was motivated by the

desire for more efficient optical diffraction gratings. In his early papers Petit
(e. g. 1963) followed Rayleigh's approach in expressing the scattered field as a

discrete spectrum of outgoing waves alone, leading to a matrix equation for the

determination of the spectral amplitudes. Since the matrix was then truncated

and inverted numerically, it will be appreciated that the method is no more than

a digitization of that originated by Rayleigh. However, in later papers (Petit,
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1967), the Rayleigh assumption was circumvented by using an integral equation

formulation. Series expansions were adopted for the Lncident and scattered

fields and the integral equation converted to a matrix equation which was solved

numerically. Specific results were obtalned for plane wave Incidence on gratings

with triangular profiles, and the efficiencies computed. A rather dtffereWt

approach was taken by Pavageau (1967) who dbrived the integral equation direct-

ly in terms of the unknown surface current. The equation was cast in the form

of a honhomogeneous Fredholm equation of the second kind and solved by iteration.

[ Methods which are very similar to that which we shall use have recently

been employed by Neureuther and ZakW (1968, 1971a, b) andby Oreen (1970). The

former considered scattering by periodic structures, either dielectric or per-

cthe f The integral equation was obtained from Green's theorem

and the modified Green's function expressed in either of two ways depending on

the parameters of the surface. The first (space harmonic) representation is

analogous to that used by Petit; the second consists of an infinite series of Haikel

functions, and was computed using a Mellin transform and an asymptotic com-

parison scheme. Numerical data were obtained for sinusoidal profiles, and very

recently data were obtained also for triangular proffe% by Kalhor and Neureuther

(1971). Green (1970) also used the space harmonic rtpresentation, but improved

its convergence by summation techniques. Data weret, presented for the surface

field and diffraction efficiencies of perfectly conductilg gratings with triangular

Vprofiles.

The present work also employs the numerical v.pr;roach, and is concerned

with the scattering of electromagnetic waves by infinite, prfectly oonducting,

two-dimensional periodic surfaces of arbitrary but coi.itinus profile. Plane

wave incidence is assumed, with either E or H polariiftuo:,,, a.od both normal

and oblique incidence are considered. A representation of the J.feen's function

As employed which is similar to that used by Green (1970), i"nd the convergence

is improved still further by subtracting the dc terms. Tb.s has the added ad-

vantage of making explicit tbv behavior of the Green's function in a neighborhood
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of its singularity. The integral equations are formiulated on the basis of the

Green's theorem, and the range of integration is reduced to a single period

by application of Floquet's theorem. Using the moment method and an inter-

polation scheme, the integral equations are converted into a matrix equation

which is solved to yield the unknown garface current.

Chapter Ils concerned with the formulation of the integral equations

and the de- -'",)ment of numerical procedures for solving them. Numerical data

for E polarization are presented in Chapters HI and IV. Chapter M is concerned

with the surface field while Chapter IV is devoted to the scattered field. Numer-

ical results are obtained for a variety of surface profiles such as sinusoidal,

full-wave rectified, inverted full-wave rectified and triangular, having various

combinations of amplitudes, periods and for various incidence angles. In pre-

senting the numerical data in Chapter IV, particular attention is given to the

Wood anomalies (P-type), and in both chapters, the data are compared with the

physical optics predictions.

The numerical results for H polarization are presented in Chapters V and

VI and the S-type Wood anomalies discussed. The results support Palmer's

experimental observation that the S-type anomalies are generally stronger

than the P-type and can occur on structures with relatively shaltow grooves.

Chapter VII is devoted to Rayleigh's method. After a brief historical

survey of the assumption, numerical data are obtained for the scattered field

using the exact representation as well as Rayleigh's.

Lastly, in Chapter VMI, the knowledge gained from the study of periodic

surfaces is applied to an investigation of scattering from rotigh surfaces. The

rough surface is treated as a small scale roughness superimposed on a periodic

base (large scale roughness) with the small scale roughness represented by a

random variable having a Gaussian distribution,



Chapter II

FORMULATION OF THE INTEGRAL EQUATION

FOR NUMERICAL SOLUTION

i$ We consider here an infinite, perfectly conducting periodic surface

illuminated by a plane electromagnetic wave. Since the surface is assumt.d

two dimensional in the sense of being independent of a Cartesian coorrjtmate z,

the entire problem is two dimensional, and the most general solution can be

deduced from the particular solutions appropriate to incident plwue waves having

either E or H in the z direction, i.e. parallel to the corrugations. In either

case, the problem is essentially scalar.

2.1 Formulation

It is convenient to develop first the integral equation in the somewhat

simpler case of a scattering surface of finite extet.. Let S (see Fig. 2-1) be

this surface, and surround it by another closed surface S R. Let •(r) and G(rr')

be two scalar functions which are ontinuous, vigether with their first and second

derivatives, on S and S and throughout th, volvme V enclosed by them. Assume,

moreover, that VAr) satisfies the homoganeous wave equation

2 2(V+k 0 (2.1)

inside and on the boundaries of V, wYer8aa

W2 + k2)G(f ýK') -(r- r') (2.2)

Applying Green's theorem to the volume V, we obtain

i, ~S+ SI

2G• =r G IV•2 + r')-,(r%)( +k Mr' dr'V1 r

dV )r d(2.3)

I7
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Fig. 2-1: Geometry for the Application of Green's Theorem.
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Fig. 2-2: Illustration of the interpolation procedure.
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by virtue of the properties of the delte function. We now identify .(r) with a

total field

tot I a
ii @t~t(-'r)(( ilr-)+(b:(r)

where ((.r) is an incident plane wave originated by a source at infinity (and

therefore outside V), and •(r) is the field scattered by the surface S. Since
(b8(r) must satisfy a radiation condition at infinity, its contribution to the inte-

" 1gral over SR decreases to zero as the surface SR recedes to infinity, whereas

kb (r) contributes itself. Equation (2.3) then becomes

tot a st
:°t'(r) = (/( _r)+ G(rr) - ((_r')-._r')•-- G(rLr9J dS' (2.4)

and in spite of the assumptions of an incident plane wave and a surface of finite

extent, Eq. (2.4) is also valid for an arbitrary incident field and for a surface

S extending to infinity. T- .i latter case, however, the proof is by no means

trivial (Jones, 1952).

The particular situation of concern to us is that in which S is doubly

Infinite &tnd divides space into two regions. It is then sufficient to integrate

over only the upper ("illuminated") side of the surface. We also assume that

S is independent of the coordinate z, and this allows uv to distinguish two par-

ticular cases according to the polarization of the incident field. Mks units are

employed and a time factor eYA suppressed throughout.

2. 1. 1 E (or horizontal) Polarization

If E = Ei P. the electric vector in the scattered field will also be

confined to the z direction, and we can make the identification

A totS= Et(r). (2.5)

Since the normal derivative of Etot is related to the surface current density

K by the equation
z
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a E (r') = -jWpKz(r) , (2.6)

where p' is the permeability of free space, Eq. (2.4) can be written as

I "
tot

S - (2.7)

At the perfectly conducting surface S the boundary condition is

E t(r) = 0 (2.8)

and hence, on allowing r to approach the surface, Eq. (2.7) gives rise to the

integral equation

(rr z W9 r~S = --L-1Ez(_r) (2.9)
• G~•')z~r'dS'j-E (r

S

For 4 two dimensional problem the free space Green's function is

GQolr') = - (2 H 2(klr-_,) (2.10)

where H(2) is the zero order Hankel function of the second kind. The final

integral equation is thereforeS (2) t=4 Ii (.1K z r)H 0)(k.E.rI I) d1' =I :E (r) (2.11)

•S

from which K has to be determined.
z

2. i. 2 H (or vertical) Polarizatio.i
I i HiA

If H H z, the total magnetic field is likewise in the z direction, and

on making the identification
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(2.12)

Eq. (2.4) becomes

tntt
H (r) H;r f ot B dSI. (2.13)z - +-S

The boundary condition at the perfectly conducting surface S is

- H (r) = 0 (2.14)

and on allowing r to approach the surface, Maue (1949) has shown that (2.13)
reduces to

1 tot I
-(r) H(r) .tot(r) (2.15)
2 z -Stzotr)=Hl_

The quantity Htot is the induced current density, and since this current flows
z

tangential to the surface In a plane perpendicular to the z direction, we can

write

K K(r) H (r) t (2.16)

A
where t is a unit vector tangential to S. Inserting finally the expression (2. 10)

for the free space Green's function, we have

HJ'(krr_ ---L H( '<kI_)dE'- 4j 1  ) Hr)- K (r (2.17)

Si.e.
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(2) H 12)krr] o(n, - --~d 4j JH ýr)- ..K
Kt,_ kl-Klcs/ . (2.18)

This is an integral equation from which to determine Kt.

2.2 Reduction of the Integral Equations for the Periodic Surfaces

We now make use of the fact that the incident field is a plane wave and

that the surface y = f(x) is periodic with period d, i.e.

."f(x+md) =fOx), m 1, _ +2, t+3, . (2.19)

As before, it is convenient to consider separably the cases of E and H polari-

zation.

2.2. 1 E Polarization

Let us assume that

Eir (•) = e--jkx sin0 - y cos0) (2.20)z -

where 0 is the angle of incidence with respect to the normal to the mean sur-

face. The integral equation is as shown in Eq. (2. 11), but since the integration

extends from -co to co, this is not appropriate for - numerical solution. How-

ever, by invoking the periodic property of the surface, the Integral can be reduced

to one over a single pei'-c,, alone at the expense of a more complicated form for

the kernel.

From Floquet's theorem, we have that

K (r+md•) K (r)ej-kmdsinO + +
K=, m = -1, _2, 3,.... (2.21)

Moreover,

2dx,

%where f'(x) is the derivative of f with respect to x. This allows us to express

the integral as one along the x' axis, and since
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H2
Ir- 'ixt -md) 2 + (yy7) 2

we obtain

T ( x-x-od) +(y-y,)2'\ -jkmdsin r 2 (X,)dx,
"H V 1+ rf'(x') K12 ~ x0 m-z

.4 -Jk(xsinO-ycosO) (2.22)
IiA

valid for 0 < x < d with y fAx), y' f(x').

In arriving at (2.22) we have implicitly assumed that interchanging the

order of integration and summation is valid (a fact which is by no means obvious),

but even so Eq. (2.21) in not a very promising equation for numerical purposes

because of the extremely ppor convergence of the izftnite series constituting the

kernel. To rectify this situation, consider
OD

(2) 2N- +km kdainO
(k (x-x'-md)2+(y-y')2e- (2.23)

M=-OD

Using the Fourier integral representation of the Hankel function, the Poisson

summation formula (see, for example, Morse and Feshbach, 1953) applied to

(2.23) gives

2 J -- n ---- +ksinO)(x-x') -Jly-yllX

P 1  d X e e (2.24)
m~-- m

where
rX k2 2mdr 0)2m \-•+ksin (2.25)

and the chosen branch of the square root Is that for which

ImX <0
m-r

in order to satisfy the radiation condition.
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The expression (2.23) for P1 has been used by Yen (1962) and Green

(1970), and is equivalent to that obtained by Neureuther and Zaki (1968) using

a space harmonic expansion. The features that should be noted are that if

y I y' the successive terms decrease exponentially with increasing Im, for all

kd tkd
"M+- sineO>

27r 1 21r

and that in addition there is an algebraic decrease (proportional to m-1 ) pro-

vided by the factor X in the denominator.m

We can produce still a further improvement in the convergence properties

of the series by separating out the zero-frequency (k = 0) terms, and this has

the added advantage of making explicit the behavior of P1 in the vicinity of the

singular point x' = x, y' = y. Putting k = 0 in (2.24), we have

0- .2m ( 27r
l 2- (x- xI) - Im(y-y')i

pik =2 1 e e (2.26)
1k0 d m--_ lml-1

and since

OD 27 27T
d -JT (x-x')-•T y-y'

mFl- 21T log -I - e

d= *j-log I-e

(see, for example, Collin, 1960), provided y' • y, it follows that
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= (m 0 term) - lo~g [f, -e [d -'~xx~1

Hence, by subtracting the zero frequency value of each term of (2. 24) and then

adding (2.27), the integral equation (2.21) takeis the form

*1 I'd

< <x <d, (2.28)

where

G (x,y;x',y') - I * Jk(Yyjoloso
1k oos 9

Ld log T Iy-y'l+,(X.x'Th 1
2w log e

IL.

OD 2mw +xx, -jl ,1X mrI-'

+ e + + 2mwr

2l (x - -9 -d'
+Z eJT ~ djya y +J e 2mff (2.29)

with

d ksiO~~~ k--+kainO 2 X k(-~ (2.30)
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We observe that the Green's function has now been expressed as the sum of

a term involving explicitly the amplitude and the angle of Incidence, a logar-

ithmic function representing the true behavior of G in a neighborhood of its

singularity, and two series which are themselves differences of two convergent

series.

2.2.2 H Polarization

The incident field in this case is taken to be

HI (r) e -jk(x sin0 - y cos 0) (2.31)
z-

and the reduction of the integral equation (2.17) to a form suitable for numerical

solution proceeds in much the same way as for E polarization. Since

S1 + f1(x'): x

Eq. (2.17) can be written as

d { 1'Ktxr)= (2.32)

P2 Kt(x')dx' 4J H (r) - - K-(r)(.

0

where

OD
= 28(x - x'2 )- r 2 2> -jkmd sine

2 \ I+ f'(x') n /m=-CO

OD

2j 1 1 f,(x,)(2-+ksinO)-X sgn(y-y') X
d 21 X d m

m=-wO m

2m_
-J +kslnO)(x-x') -j(y-y.3Xd in

A, e e (2.3:3)

in which sgn(r) is the signum function and X is given In (2.25). The zero
m

frequency tk = 0) limit of P2 is
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OD 2mff 2-'r

~k=0f~x' + snY-y4 d(x x)

2-~~( 2 f')J -j--dx) I-~P2 f '(x')+jsn(- eg~~'}+ f'x+snyy e d

a) 2 ~ d
+~-'(x') +jsgn(y -yf)2 + O+ g~

mm1

and since

22 2'

we have

df( '+ iff (lt)+ 4  sgn(y-y,) co - ( -- )+ -I - '
P2 k= 'x') d, d(X d dIY'J

+I ý' -f t(x') +j -Y cot{ .xx)jIyy (2.34)

Hence, by subtracting the zero-frequency value of each term of (2. 33) and then
adding (2. 34), the integral equation (2. 32) takes the form

Cd
G 2 (x, Y; X', y)Kt(xt)dxf jd~ 2H'i(x) -Kt(x). 0 < x <d (2.35)

where
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G(x, y;x', y')

-j sgn(y- y') - j - f'(x')tane - sgn(y- y') e -jksin O(x - x') - jkcos e ' "

OD 2m•r [-iY-Y'fX-

-jksinx(xx9- ) em

-e e+
m=l X-

2mr

2m~r ,2mif
+ dIY-Y'l

f'(x') -+ksine)-X sgn(y - y(')+ e dy-y' jf(x)-sgn(y-y')
d in

co cot -X ly'JXl Xdi ln o t -costx ) oet im
-We f h-jksine(x-x,) t t d e

M4l X

Inn

2m r
+e.-t jf(U9)+ sgn(y -y1) +

+ fj ft(x') +jsgn(y -Y?) cot {- ~(X X,)+jl l-~ y'jl +

"-f'(x')+Jsgn(y-y) co{(-x')+j.H (2.36

2 L (2.36) Y'

In spite of the obvious complexity of the Green's function G its form

.2'

is~ directly analogous to G 1In consisting of certain explicit terms, a pair of

cotangent functions representing the true behavior of G 2 in a neighborhood of

its singularity, and two series which are themselves differences of two con-

vergent series. Once again, therefore, the singularity of the Green's function

has been separated out.

We further note that the integral equations (2.28) and (2.35) have been

derived without approximation. In consequence, the formulation so far is
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exact for any two dimensional perfectly conducting periodic surface which is

smooth in the sense of having a continuous first derivative.

2.3 Comments on the Green's Functions of the Integmr. E'uations

Before we discuss the numerical procedures of solving the integral

equations shown in Eqs. (2.28) and (2.35), it is appropriate to examine their

kernels (modified Green's functions) with some care. Equation (2.28) for E

polarization is a Fredholm integral equation of the first kind with a weakly

singular kernel. Very little is known about equations of this type, and even the

uniqueness of the solution is not assured. On the other hand, Eq. (2.35) for H

polarization is a Fredholm integral equation of the second kind with a weakly

singular kernel. The advantage of this equation over that for E polarization is

that we can use an iterative scheme (Neumann series) to obtain the solution.

This has been done by Pavagean and Bousquet (1969) using the geometric optics

expression for the surface field as a first approximation. As shown in Appendix

B, however, the integral equation for E polarization can be converted from one

of the first kind to one of the second kind, so the successive approximation

method can be applied here as well.

If we examine the C-reen's function for E polarization, Eq. (2.29), it is

found that the surface slope dependence of the kernel occurs explicitly only in

the terms V1 +f'(x)2. For surfaces of gentle slope such that If'(x)I << , it is

now obvioas that the surface current will be relatively insensitive to slope. The

second term of the Green's function has a logarithmic singularity which repre-

sents the correct singular behavior for E polarization in two dimensions. The} i +

last two terms consist of infinite series. Whenever X or X is purely
mi m

imaginary, the corresponding terms are exponentially damped. Hence, in a

numerical solution of the integral equation, these series can be terminated at

a term somewhat beyond that where the exponential decay starts. On physical

grounds, it would appear that as functions of K, the values of these series could
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change abruptly when an individual mode becomes cut-off. This could then

lead to an abrupt change in surface field distribution. However, for surfaces

ot small periods (d/X < 0.2), the contribution of the infinite series is insig-

nificant, and the first two terms dominate.

For H polarization, the Green's function is much more complicated and

more dependent on angle of incidence and surface slopes, but its qualitative be-

havior is not too different from that for E polarization. If f'(x) = 0, the surface

is a flat sheet and it can be shown that G2 vanishes. The current distribution

is now given by the explicit term alone, and this is just the geometrical optics

value. Again the correct singular behavior for H polarization in two dimensions

is represented by the last two cotangent functions.

2.4 Numerical Procedures

Methods for the numerical solution of integral equations have been

extensively discussed in the literature (see, for exan•iple, Harrington, 1968).

The general procedure consists of reducing the equation to a finite set of alge-

braic equa. ions, i.e. to a matrix equation, and can be illustrated by considering

G(x,x')K(x')dx'= F(x), 0 < x < d. (2.37)

0

We assume that the unknown function K(x') can be expanded in terms of linearly

independent base functions 0n(X') such that

N

K(x') n--an(X') (2. 38)

where the a are the associated constants. Substitution of (2.38) into (2.37)
n

gives

=nx Fx (2.39)
n=1
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and the solution of the integral equation has now been reduced to the determination

of the constants, a, n = 1, 2,..., N.Vn$
There are several possible ways of finding the a , e.g. least squares fit,

Galerkin's method, and the collocation method, and it is the last of these that

we shall employ.

The collocation method converts (2.39) into a system of N linear

equations by forcing the two sides of (2.39) to be equal at N sampling points in

the interval (0, d). This is simply a point-matching procedure and results in the

matrix equation
N d

E aF(x )0 m m, 0 <x m-<d, m 1,2,..,N. (2.40)

There now remains the problem of choosing the base functions (XW), and here

again there are several possible choices, e.g. rvtangular, quadratic and

sinusoidal. By appropriate choice, we can economize in the number of sampling

points requred for an "accurate" approximation to the solution K(x), and exper-

ience hs shown that a rectangular function is not in general a good choice,

whereas sinusoidal interpolation often works rather well.

The particular form of sinusoidal interpolation that we have adopted is

predicated on the use of sampling points which are uniformly distributed in

0 < x < d. The range of integration is therefore broken up into N increments

of length A 'N (see Fig. 2-2). Furthermore, let x' be the midpoint of the
1 n

ntth cell, i.e. x' (n- I )A, and let Ax, denote the interval
n 2 nSxA A

xn --<x'-< x+-- We assume that<x 2 x- -n
2--

SA + B sink(x'-x )+C cosk(x'- x ifx'C Ax'n n n n n n

K(x'1) (2.41)

0 otherwise
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and specify the constants A n B and C by continuing the form appropriate ton n

x e Ax' out to the centers of the adjacent cells and imposing continuity. Defining
n

Kn K(xn )and K n+1 = K(x n+ ), we have

K =A +C
n n n,

Kn+1 = A +B sinhA+C coskA,n1 n ii n

K = A -B sin cA-+ C coskA,n-i n n n

from which we obtain

-K +2K coskA-K
n+1 n n-iA =

n 2(cos kA - 1)

K -K
B = I2.42)

n 2 sinkA

Kn+1 - 2K +Kn+ Kn-i

n 2(cos kA - 1)

Substitution of (2.41) and (2.42) into (2.40) now gives

G(x .x') co k4s -cos k(x-xn
n=I im n cos kA- 1

n

"-sinkA+("oskA- l)sink(x -x )+ sin kA cos k(x' - x
+ Kn+1 2 sin kA(cos kA- 1)

-sinkA-(coskA- I)sink(x'-x )+sinkAcosk(x'-x ) In n d'
+Kn-1 2 sinnkA(cos kA - 1)

F(x ), (2.43)
mn
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where x = (mi- )A, m = 1,2 ..., N. We acte in passhug that when n = 1
m 2

or N the periodicity of the problem must be used to determine the constants

K or K requiredin(2.43).

The above procedure is immediately applicable to the integral equations

for E and H polarizations on inserting the appropriate values for the Green's

function and the forcing function, but a brief comment is desirable concerning

* the treatment of the singular cell. The Green's functions of concern to u. are

singular when x = x', the singularity being logarithmic for E polarization, and

a first order pole for H polarization, and it is therefore necessary to modify

the numerical scheme when Xm = xn. In line with the usual practice, we divide

the singular cell into three portions:

i" :(x- x-) (xn xn ) (x + )

n 2 n 2' n' n n

with 0 < E <A. The first and third segments are handled by the standard

numerical technique, whereas the central portion Is treated analytically by

means of a limiting process (Andreasen, 1964).

It must be mentioned here that the sinusoldal interpolation by no means

assumes that the surface current distribution is sinusoidal. In fact other methods

based on quadratic or flat-top functions can be used just as well. However,

numerical results indicate that good convergence is obtainerd by using sinusoidal

interpolation in this case.

In order to make the computer program applicable to periodic surfaces

of arbitrary shape, it is convenient to represent the surface by its Fourier series.

If y (= Ax) is a periodic function of period d, then

' 0 + r2n x b sn4x

acX) 2 a n cos 7d , +bsin (2.44)
nn-
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where

d

a d = Afx) Cos d x dx: (n = 0, 1, 2,..

0

d

bn d )in0f(x)sin( dx (n = 1,2,3,...)

It is known from the theorems of Fourier series that if f(x) is a periodic,

continuous and piecewise continuously differentiable function, then the Fourier series

(2.44) will converge ',niformly to f(x). Subject to these rest~rictions on Ax),

we can therefore synthesize an arbitrary periodic surface to any desired degree

of accuracy. In general, more Fourier terms are needed for H polarization

than for E polarization to obtain the same degree of accuracy because the Green's

function in the former case involves more terms with the first derivative.

2.5 Convergence and Accuracy of the Numerical Solutions

The numerical solution of the integral equations for both polarizations

has been programmed for an IBM/67 computer in Fortran IV language. In solving

an integral equation numerically it is always desirable to carry out a convergence

test for the following reasun .5

a) to determine the number of sampling points necessary to achieve

the required accuracy, and

b) to test whether or not the numerical solution approaches a stable

value as the number of sampling points is increased.

Although it has not been shown mathematically that the accuracy can be

improved by increasing the number of sampling points, it would appear reason-

able to believe so on physical grounds. In general it is considered that a

numerical solution is "satisfactory" if it remains essentially unchanged when

additional terms or modes are included in the computation, but there are ex-

ceptions to this (see, for example, Lee, Jones and Campbell, 1971).
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The accuracy of the numerical solution in this work has been checked

using the following criteria:

a) Energy conservation. This furnishes a common check on the

accuracy of the solution in electromagretic scattering from perfectly

conducting surfaces. This is essentially the check employed by Petit

and Cadllhac (1964), Neureuther and Zaki (1968) and Green (1970) as

well as many others. However, as pointed out by Amitay and Galindo

(1968), energy conservation does not provide a measure of accuracy of

F: a solution found by the Ritz or other related methods, and hence, in

i• L order to use energy conservation to check other than computational

round-off errors, care must be exercised in choosing the method of

solving the integral equ.ation numerically.

The method that has been adopted in this work is a subsection and

sinusoidal interpolation scheme, and since the solution does not auto-

matically satisfy energy conservation, we are able to use this as a

check. The relation that must be satisfied is

N

m A m1 2 Re(Xm) = kcosG (2.45)

where N is the number of propagating modes and the.A 's are the
m

scattered field amplitudes. These are derived in Chapters IV and VI

for E and H polarizations respectively.

b) Convergence test. The numerical solution is found for the same

surface using different numbers of sampling points. As shown later,

the numerical solution approaches a stable value as the number of

sampling points increases, which value can be considered as the solution.

It is found that the number of sampling points necessary to yield accurate

results depend on many factors, such as the angle of incidence, the ampli-

tude and period of the profile, the smoothness of the profile as well as

polarization of the incident fields. In general, for both polarizations
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better convergence is obtained for normal incidence or when the

incidence angle is small. The computer program adopted in this work

is based on uniform sampling cells, but it may be true that a nonuniform

sampling scheme would live faster convergence for the same number of

cells. Because the Green's functions are sensitive to a change in the

surface slope, particularly for H polarization, it is necessary for us to

insert more sampling points into those regions where the surface slope

changes most.

c) Flat surface check. A very simple and useful check on the numertaal

solution is to let the surface become flat. We should then obtain the geo-

metrical optics value for a flat sheet, and this is indeed the case.

d) Check with thr result obtainc•d by other authors. It is always

desirable to be able to check the results obtained with these obtained

by other workers (and other methods). The numerical results obtained

here will be compared with those obtained by Zaki and Neureuther.. and

by Green. Good agreement is indicated.

2.6 Computational Time

Perhaps one of the most serious restrictions imposed on numerical work

is the computational time involved. Although the computer programs have been cast

in a general form applicable to surfaces of any size, economics dictate that only

reasonable sizes (say from 0.2 ) to 2?X in period) are explored. It is understood

that most of the computational time consumed is used in filling up the matrix

elements. The rest is used in the matrix inversion process. In general, the

program for H polarization takes more computational time than for E polarization,

because of its more complicated Green's function. To save computational time,

separate programs have been written for the special case of sinusoidal surfaces.

However, in spite of the fact that for tne case of normal incidence symmetry can

be used to reduce the matrix size by a factor of two, and hence to reduce the



27

computational time by a factor of four, separate programs were not written

to take advantage of this, since most emphasis will be given to the more

interesting case of oblique incidence. Examples of the computational time

involved are given later.

i-



Chapter III

SURFACE FIELD FOR E POLARIZATION

In this chapter surface field distributions obtained by numerical

solution of the integral equation for E polarization are presented. The par-

ticular profiles considered are sinusoidal, full-wave rectified, inverted full-

wave rectified, and triangular (see Fig. 3-1) with various periods and angles of

incidence. In each case the physical optics approximation is also presented as

a basis for comparison.

The physical optics method is a widely-used technique for estimating

the scattered field. Basically, it is an extension of geometrical optics in

which the surface field is approximated by its geometrical optics value, thereby

reducing the determination of the scattered field to quadratures. Consequently,

the physical optics method is a high frequency approximation technique, and it

is suitable only when the "effective" dimensions of the scatterer are large

compared with the wavelength, and there is no shadowing involved. How much

shadowing affects the solution is still unknown, and a matter that is then of some

debate is whether shadowing should be taken into account, and if so, how.

According to the physical optics method the current induced on the surface

is

A
K = 2n AH1 in the illuminated region, and (3.1)

= 0 in the geometrical shadow (3.2)

A
where n is the outward normal to the surface, and for a two dimensional sur-

face this is given by

28
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A (b) inverted full-wave rectified
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Fig. 3-1: Profiles of Periodic Surfaces.



30

A (3.3)
n - f -f(x)x+. ]

Thus, using Eqs. (2.20), (3. 1) and (3.3) we obtain for E polarization

1 -l -jk(x sinO - ycos 9) ^
K= ;f'(x)sine +cos0 e z (3.4)607T ill + f x)2 L

in the illuminated region.

By comparison with the exact solution, it is found that in general the

physical optics method fails to give accurate results. However, if we consider

a "smooth" surface with sufficiently large ratio of period to surface height,

we can then rely on the physical optics method.

3.1 Surfaces of Small Period (d/X • 0.2)

Figures 3-2 through 3-13 represent the current distributions on

periodic surfaces of four different profiles (see Fig. 3-1). Each surface has

a period d = 0. 2X, and a maximum amplitude a = 0. 1X. The angles of inci-

dence considered are 9 = 0 (normal incidence), 9 = 300 and 0 = 600. In each

figure, the exact computed values are shown as circled points, and are joined

by a broken line only to guide the eye; the physical optics approximation is

shown as a solid line.

Let us examine the sinusoidal surface. We observe that for this

relatively small period most of the current is concentrated in the vicinity of

the surface peaks, with the current almost zero in the troughs. There is,

indeed, almost an exponential decrease in the current modulus away from the

peaks, and the main effect of increasing the incidence angle is to scale the

curves, leaving the general shape unchanged. In spite of shadowing due to

large angles of incidence, the curve for the modulus still retains its symmetry.
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The phase is somewhat more sensitive to 0, and whereas the curve is almost

flat for 6 = 0, the shape changes noticeably with increase in 0.

Since kp = 0.064 (p is the minimum radius of curvature) for
min min

the surface, it is not surprising to find that the physical optics approxiration

bears no :resemblance to the exact data. According to physical optics the

current within the shadow region should be zero, but exact results prove this

is not so, and this is natural because the current must be a continuous function

along the surface. The physical optics phase is also poor for 0 = 0, but agree6

better for large 6, at least in an average sense. In general it is true that the

physical optics approximation shows best agreement with the exact data in

regions where the radius of curvature is largest. That is, in all cases the

maximum discrepancy occurs at the surface peaks and troughs where the radius

of curvature is a minimum.

Examination of the remaining profiles show that the shape of the modulus

curve is very similar, except in small details, to the corresponding one for the

sinusoidal surface, and the phase still remains relatively constant for 0 = 0.

In general, the above remarks for the sinusoidal surface apply also to these

profiles, but each profile has, because of its own. geometry, some particular

characteristics. For example, in the case of the inverted full-wave rectified

profile with 0 = 600 (Fig. 3-7), we can see a small standing wave pattern in the

phase just outside the shadow. This is probably due to multiple scattering of the

incident field by the surface. Another example is the "edge effect" which is

clearly evident in the results for the triangular profile.

In order to ibtain a better understanding of the surface field, let us go

back to the integral equation. If we look at Eq. (2. 29) carefully, we observe

that for a sufficiently small period we can approAimate the kernel by the first

two terms, and of these two terms only the first term, which has no singularity,

contains the incidence angle. Thus the approximate integral equation becomes
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Cxy;xIc, ')K z(x') ejxsn 1 +f2Xdx ý d ejky cos 0 (3.5)

where

1 -Jkly-y'Icose
G (x, y; X"y') =kcosO e

(3.6)

Since the integral equation is singular, a rough estimate of the solution

to the integral equation may be obtained by examining the equation in the neigh-

borhood of the singularity. Thus

lim, G (x, y; x',y') -1- -L limlg[] (3.7)

where

27T-X

lim log -7lY-Y'i + (x-x~

=i lm; log jI1 -2e L

IX y..yo J x l.> 021
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Using the following expression,

2 3

~~12 eX3!++~

we obtain

lira log[ ] lirn log E (3.8)

Ix-xY-->o
I

L where

127r 2

d

Thus in the neighborhood of singularity, Eq. (3.5) becomes

d1 d-kx'slnOlfU92 d d ejkycos0
S :kcos - 2 r 0uX K(xI)e rsq/-tx)dxe

where ix-x'i < 6. 6>0 is an arbitrarily small number. If we assume that the

factor K (x') e - in +f(x') remains constant in this small region, we
z

can solve Eq. (3.9) to get

+ i 'L ý 6KW.jxsn0F - (3.10)
LkcosO 2j z z

It now follows immediately that If the period d is sufficiently small, the

first term in the square bracket dominates, and so the modulus of the surface

field is seen to be proportional to cos 0, a scaling factor. This is consistent

with the numerical results.
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The effect on the surface field for a sinusoidal profile due to change in

the amplitude as the period is kept constant, and 0 = 0 is shown in Figs. 3-2,

f 3-14 and 3-15. It is observed that as the height decreases, so does the current

concentration near the peaks; the phase, on the other hand, is much more nearly

constant, and is more akin to that for a flat surface than a sinusoidal one.

3.2 Surface of Slightly Larger Period (0.2.ý< dLX 0. 6)

Figures 3-16 and 3-17 show the surface field for a sinusoidal profile

with d = 0.4X, a =0.2X and 6 = 0, 60° respectively. Comparison with Figs.

3-2 and 3-4 indicates that doubling both d and a has little effect on the modulus

of the current, but has a marked effect on the phase. For normal incidence the

phase curve still has a small sag at the surface trough region. Results for

d = 0.6X, a = 0.3X and 0=600 are shown in Figs. 3-18 and 3-19 for the inverted

fuli-wave rectified and full-wave rectified surfaces respectively. Although the

overall shape of the modulus curves bears much resemblance to the previous

cases of small period (Figs. 3-7 and 3-10), there is evidence (small undulations

along the curves) of stronger multiple scattering here. Again, the physical

optics method fails to give satisfactory results in all cases.

3.3 Surfaces of Larger Period (d/X '40.6)

Let us now consider surfaces of larger period for which the requirements

of physical optics are more nearly satisfied. Referring to Eq. (2.30) it is seen

that as d becomes larger, the number m which makes X and X purely
m m

imaginary increases (implying more propagating modes), and the infinite series

of the kernel therefore becomes more important. One consequence of this is

that the surface current distributions for surfaces of large period are much more

complicated and quite different from those for surfaces of small period.

Figures 3-20 and 3-21 represent two cases of a sinusoidal surface at

normal incidence with d = 0. 95X and a = 0. 25X; d = 1.90X and a = O. 25X

respectively. In the first, the modulus displays a strong oscillation having a
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standing wave ratio of about 6 and a period of 0. 6A. Maxima occur at a

distance of 0. 17A from the peaks while a minimum exists at the trough of the

surface. The exact phase is still characterized by the familiar almost-constant

value. The physical optics approximation gives no agreement with the exact
; solution, but in the second example for which the period has been doubled while

keeping the height coastar, th physical optics approximation is better, though

there are some noticeable discrepancies. The maxima of the modulus still

occur at the surface peaks, but minima appear where the surface slope changes

sign, that is, where the surface crosses the x axis. The minimum radii of cur-

vature for these two cases are kp = 0.572 and 2.30, respectively.
min

A case showing better agreement between the exact solution and the

physical optics approximation is given in Fig. 3-22, where the surface is a

sinusoidal one with d = 1.6X, a 0. l (kP = 4. 07), and 0 = 450. There is
min

no obvious explanation for the apparent shift between the exact and physical

optics curves.

To examine the effect on the surface field of a gradual increase in the

surface height when the period and angle of incidence are kept fixed, we select

the sinusoidal surface with d = 1. 155), 0 = 600, and a varying from 0. 05X to

0. 7. The minimum radii of curvature for these oases are as follows:

Amplitude a (D kpXmin

0.05 4.260

0.1 2.130

0.2 1.065

0.3 0.710

0.4 0.533

0.5 0.426

0.6 0.355

0.7 0.304
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The numerical results are illustrated in Figs. 3t-23 through 3-30.

It is seen that the agreement between the physical optics prediction and the

exact solution deteriorates gradually as the amplitude is increased. If we

examine the phne curves with a little care we find that the physical optics phase

agrees better with the exact phase in the illuminated region, and both of them

are relatively constant there. In contrast to the situation for surfaces of small

period, the field is very sensitive to a change in surface height, and it is there-

fore very difficult to accurately predict. The undulations in the modulus curves

are evidence of multiple scattering which is particularly noticeable when a = 0. 3.

If the surface height is sufficiently large (a > 0. 5A), the surface field near the

region of a surface trough is relatively small.

Since the field is so small over moat of the concave portions of the

surface, it is of interest to see how much the surface field as a whole is

affected by the actual geometry of the concavities. We examnili this by replacing

the concave part (d/4 < x < 3d/4) of a sinusoidal surface by a flat part, and the

results are presented in Fig. 3-31 for a = 0. 5X and 0 = 600. Comparison with

Fig. 3-28 shows that the replacement has little effect on the surface field in the

illuminated region, but does have a marked effect in the shadow.

Adcmtimal data are presented in Figs. 3-32 and 3.-" for a full-wave recti-

fied profile where d = 0. 75X, a = 0. 6R and 9 = 41.80, and a triangular profile

where d =1.75X, 0 =200, 02=660 and 0 =12.20. For the rectified profile
12

(Fig. 3-32), the current modulus no longer has a maximum at the surface peaks

where kp is a minimum. In Fig. 3-33, the current modulus shows clearly the

"edge effect" in the neighborhood of the edge, and the physical optics phase

agrees relatively well with the exact phase, except near the trough region. In

both cases the modulus is zero at the center of the surface trough. Fig. 3-34

represents the case of an inverted full-wave rectified profile with d 0. 95X,

a = O.25X and 0 = 0.
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3.4 Coupling Among Cells

One aspect which has not beeni looked into so far is the effect on the

surface field of a gradual increabe in the separation between cells while the

other parameters are kept constant. To examine this, we selected a full-wave

0
rectified surface with a = 0.3X, d = 0.3X, 0 = 60 (kp = 0.0304) and allowed

the distance e between two neighboring periods to increase from 0. 3X to 0. 7X

in 0. IX steps. The results are shown in Figs. 3-35 through 3-39. In the first

two figures the modulus curve has the shape characteristic of small periods,

while the physical optics phase oscillates about the exact phase. As i gets larger,

noticeable changes appear in the modulus curve. One reason for this can be seen

from iZqs. (2.29) and (2.30): as R increases, the terms in the infinite series

corresponding to higher ni's (or higher orders of propagating modes) become

more significant, and have a greater effect on the surface current distribution.

As 2 passes through the value 0.535X, XI changes from purely imaginary to

zeal, implying that the m = -1 mode becomes propagating. We therefore expect

a rather rapid change in the surface field for 2 near 0. 535X, and this indeed

occurs as can be seen by comparing Figs. 3-37 and 3-38. Further increases in

2 can again produce large changes in the surface field, especially in the shadow

region (see Fig. 3-39), but it is worth noting that throughout the illuminated

region *he modulus is not very sensitive to 2.

In ali oases considered, the physical optics predictions bear no

resemblance to the exact results, although the estimate for the phase is some-

what better than that for the modulus. Examination of the plots also reveals the

important fact that the coupling among cells is not very strong even for small

periods, and this leads us to conjecture that as regards the surface field the

infinite surface can be appe'oximated by a finite surface consisting of only a few

cells.

3.5 Accuracy Checks and Computational Time

As mentioned in section 2.5, the numerical results were checKed by

considering 0) 'it. convergence of the numerical solution, b) the limiting approx-
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imation of a flat surface, and c) a comparison with results obtained by previous

authors. All these will be discussed in this section.

Figure 3-40 shows the result of a convergence test applied to the case

of a sinusoidal profile with d = 0.2X, a = 0. lX and 0 = 0. It can be seen that

the solution does appear stable, and that surprisingly good results are obtained

even with so few as four sampling points. The limiting approximation of a flat

surface is demonstrated with a sinusoidal profile where d = 0. 2X, a = 0. 05.

and 0 = 0, and the results are shown in Fig. 3-41.

Note that in spite of this relatively small amp%.'tude the modulus still

shows significant deviations from the value 2.0 for a flat surface. This is

probably due to the rather slow convergence of the infinite series of Eq. (2.29)

when the surface height is very small. However, the phase agrees exceptionally

well with the exact phase, 0, for a flat surface.

Comparison of the numerical results with those obtained by previous

authors is given in Figs. 3-42 and 3-43. In Fig. 3-42, comparison is made with

those by Zaki (196J) for a sinusoidal surface where d = 1.9X, a = 0.25X and

0 = 0, and in Fig. 3-42 with Green (1970) for a triangular profile where d = 1. 75X,

01 20", 02 X 660 and O=: 12. 2 . In both ca6 s good agreement is obtained.
S- The computational (CPU) time used in each computation depends on the

following factors: a) the number of sampling points, b) the number of Fourier

ter-(" used to represent the periodic surface, c) the number of terms used in

H e infinite series summation and d) the accuracy of the numerical integration

required. In each case the accuracy of the numerical integration u3ing the

Newton-Cotes method was restricted to I per cent. A summary of the compu-

tational times for various cases is shown in Table III-1.

It should be pointed out that this CPU time includes the computation of

the diffracted mode amplitudes, the physical ;ptics approximation, as well as

the energy check. In general most of tbe CPU time is Used in filling up the
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Number N Number M , Number Q CPU Time (sed)l
of Sampling of Terms in of Fourier (IBM 360/67)
Points the Infinite terms used to

Series represent the
periodic surface

8 3 1 34.55
10 3 1 47.87
12 3 1 65.55
10 5 1 96.39

8 2 10 49.12
6 2 10 34.58

20 5 15 399.22

12 8 1 168.37

6 1 1 17.13
4 3 i 14.49

18 6 1 199.39
12 3 10 109.03

TABLE III-1: Computational Time for E Polarization

matrix and performing the matrix inversion. For the former operation, theN23

CPU time varies as N while for the latter operation it is proportional to N3.

To see exactly how the CPU time is distributed among the various steps of the

computation, let us consider a typical example where N = 12, M = 3 and Q = 1.

The distribution of the CPU time is

1. Computation of matrix elements 44. 0 sec.

2. Matrix inversion 8.3 see.

3. Physical optics approximation 5.2 sec.

4. Energy conservation check and diffracted 8. 0 sec.
mode amplitude calculations

is



Chapter IV

SCATTERED FIELD FOR E POLARIZATION

In Chapter III we were primarily um, 'em..ned %,ith the presentation of

numerical data for the surface field. In gr'-ýq-al, however, the far field is of

more direct interest, and the solution of . integral equation for the surface

field is then only an intermediate step. this chapter we will limit our

attention to the scattered field, the scai red energy and some interesting

K physical phenomena known as anomalies 'ssociated with the diffracted energy.

Comparison is also made with the phy,.vial optics approximation, and an approx-

imate technique adequate for predi-7,,,1, the field backscattered by a sinusoidal

surface at oblique incidence is given

4.1 Diffracted Mode Amplitudes

When a plane wave is incider! on a periodic surface, the scattered field

can be represented as an angular spectrum of plane waves, which spectrum is

discrete by virtue of the periodic nature of the boundary coLition at the surface.

Each of the infinity of waves mrk-.'ng up the spectrum has associated with it a

diffraction angle which may be real or complex and is determined by the grating

law. Whereas the amplitude of the wave is a function of the profile size and

shape, and the directions of incidence and diffraction, the diffraction angle

depends only on the value of d/X and the direction of incidence.

A finite number of diffracted waves represent propagating modes and

these are the impo.tant ones far from the boundary. The remaining modes are

evanescent and though these do not serve to carry energy away from the surface,

they do play a vital role in affecting the amplitudes of the propagating modes.

The number of modes that propagate can be determined from the expressions

for X given in Eq. (2.30): if X is real, the corresponding mode propagatesm T
without attenuation, whereas if X is pure imaginary, the mode is evanescent.

m
To find the (complex) amplitudes of the diffracted waves we proceed as follows.

82
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Let b = f(x) be the profile of the surface. Assuming the incident plane
wave to be

EI -jk(xsin-ycose) (4.1)

(see Eq. (2. 20)), and by invoking the peri odicity of the surface, the scattered

field can be written as
O _-(0 X+XmY)

Esz =kAm e (4.2)
z M.Jm=-OD

for y>maxf(x), where

Pd2r__.• + ksin 0

and

X = tk2-32

m m

The field arising from the currents induced on the surface is given by

s W
E(xY) P1+{f'(x'} K (x')dx' (4.3)

20

where P. is as shown tn Eq. (2.24). In particular, this is valid for y ? max f(x),

and hence, by combining Eqs. (2.22), (2.24), (4.2) and (4.3) we have

-J(P3+X Y)
Ame M.=

d co

S(/3m- M " (x')dx'
2dX
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from which we obtain

dJl X'+X y')

m 2X 1 Kz (x')dx' (4.4)
m'0

th
Notice that the angle of diffraction 0 for the m mode is given by

m

tan0m = /X (4.5)

which, after a little mathematical aanipulation, can be reduced to the grating

law formula

mXtsin0 = d- + sin0 (4.6)
m d

Having determined the current distributions K (x) it is therefore a trivial
z

matter to compute the amplitudes ,,f all the diffracted modes, both propagating

and evanescent, and the amplitudes of the propagating waves for several dif-

ferent values of d/X, a/X and 0 for a sinusoidal surface are given in Tables

1V-1 through n7-4. As a basis for comparison, the physical optics approxima-

tions are included. In general, the physical optics values, with or without

shadowing included, tend to be too small, and we further note that if shadowing

is excluded (or is not present), the physical optics estimates are the same for

both polarizations (see Appendix A).

TABLE IV-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface

(d 0.2X, a = 0.l1X).

0 =00 0 3 o0 . 60

Mag. Phase Mag. Phase Mag. Phase

IA01 00o() IA0! 00(0) 1 A ~ ( ) ,

Numerical
Sution 1.0050 50.81 0.9940 44.33 1.0000 25.90
Solution

• W/ shadow
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TABLE IV-2

Amplitudes of Diffracted Wames for a Sinusoidal Surface
(d= l.9X, a-0.25X. 0 00)

r. .- Pae Mg. I Phase

A V01 00(o) ~JAj 01(0)o
Numerical, 0.4920 -160.27 0.6630 107.05
Solution

Physical 0.3042 0 0.4389 90
uOptics ... i

TABLE IV-3

Amuplitudes of Diffracted Waves for a Sinusoidal Surface
(d = 0.4,X, a 0.2X).

e e 0° = 60°

. . . . .... . ha.e "-'A.. Phase

0. 9998 -80.81 1.0230 49.89
Solution 0 } 8.i
Physical Optics i

w/ hdw 0.0549 0 0,6450 0w/o shadow, '

Physical Optics
wshadow 0,0I49 0 0.750 60.37

TABLE IV-4

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d =0.2X, a=0.03X, 0 =00).

Mag. PhaseT1 0o0°0
Numercl1. 0000 8, 12

Solution
Phsia!0.9^047 0
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4.2 Diffracted Energy and Wood Anomalies

4.2. 1 Discussion

As mentioned in Section 4. 1, when a plane wave is incident on a periodic

surface, the scattered field forms a discrete spectrum of plane waves, either

propagating or attenuated away from the surface. Only the propagating modes

can carry energy away from the surface and are responsible for the iar field.

Since the surface is perfectly conducting, the diffracted energy as a whole must

equal that carried by the incident fiel,.

The problem of determining how the incident energy is distributed among

the diffracted waves of various orders is a re.,tively old one, and has been the

subject of numerous theoretical and experimental investigations, many of them

motivated by the desire for more efficient optical diffraction. This subject is

particularly important in the design of diffraction gratings for use as mono-

chromators in -pectroscopy because of their superior properties, such as higher

powers of resolution and lower absorption of light, in comparison with prisms.

If we examine the spectrum of light resolved by optical diffraction gratings,

we often find rapid variations in the intensity of some diffracted modes over a

small range of incidence angles or over a narrow frequency band. These

phenomena are termed the Wood anomalies. Unlike ghosts (Rowland or Lyman),

anomalies are not caused by errors in the spacing of the rulings, but are due

to a type of resonant interaction among the diffracted modes scattered from

different periods. An anomaly may appear as a bright or dark band in an other-

wise normal spectrum.

Historically, grating anomalies were first observed in reflection grating

spectra by Wood in 1902. Since these effects could not be explained by means

of ordinary grating theory, Wood termed them "anomalies". At that time, how-

ever, he reported that anomalies could occur only if the incident field was H-

polarized (S-type anomalies), and there were no anomalies for E polarization

(P-type anomalies). Later, experiments by Ingersoll (1920) and Strong (1936)

also showed no evidence of P-type anomalies in grating measurements.
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The first theoretical treatment was given by Rayleigh (1907). His

approach was based on an expansion of the scattered field in terms of outgoing

waves only. (Details of this will be given in a later chapter.) Using this

assumption, he found that the scattered field was singular at wavelengths for

which one of the diffracted modes emerges from the grating at the grazing

angle. These wavelengths are now known as the "Rayleigh wavelengths", XR:

dR+-+ (t-sin9) m = 1,2,3, (4.7)

He also observed that the occurrence of such singularities corresponded to the

appearance of the Wood anomalies. Furthermore, these singularities appear

only when the incident field is H-polarized, thereby accounting for the S
ano:malies, and if the incident field is E polarized, the theory predicts a regular

behavior near XR"

It should be noted that although Rayleigh's theory correctly predicts the

major features experimentally observed at that time, it does not give the sh'ipe

of the bands associated with the S anomalies because of the indicated singularity

at the Rayleigh wavelength.

In his later publications, Wood (1935) suggested the existence of the P

anomalies, but it was Palmer (1952) who succeeded in detecting these anomalies

experimentally, thus proving their existence beyond doubt. Furthermore,

Palmer pointed out that the P anomalies (unlike the S-type) occur only for

gratings with deep grooves. Since Rayleigh's assumption (chapter VII) is valid

for shallow grooves only, no inconsistency is present, but Rayleigh's theory is

incomplete. Recent, more sophisticated theoretical treatments by Hessel and

Oliner (1965), Wirgin (1969), Itoh and Mittra(196 9 ) and many others also indi-

cate the existence of P anomalies.

The numerical results whioh we have obtained can also be used to

explore the Wood anomalies, and this we shall now do.
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4.2.2 Computed Data for the Diffracted Energy

a) Two Radiating Modes. Figure 4-1 shows the plot of normalized

diffracted energy versus surface height for a full-wave rectified profile having

d = 0. 75X with 0 = 41.80. Since an equivalent plot for a sinusoidal surface

was obtained by Zaki (1969), it is included here for comparison purposes. For

this particUlar choice of parameters, the diffracted modes corresponding to

m =0 and m =-1 can propagate.

Examination of the curves show that the diffracted energy for either mode

displays a standing wave behavior. At a certain value of a/X depending on the

profile shap&., there is a complete exchange of energy between the two modes,

indicating the existence of a P-type anomaly. When this happens, the total

diffracted energy is carried by the m -1 mode, and thus there will be a bright

band in the diffraction grating spectrum for the m = -1 mode. The value of a/X

for which it occurs is (Fig. 4-1) 0.8 for a sinusoidal surface, but just over 2.4

for the full-wave rectified surface. Note, however, that the actual peak-to-

trough depth for the sinusoidal surface is 2a, so that as a function of the total

depth the change is not quite so dramatic.

The above data clearly demonstrate the P anomalies are deep-grooved

phenomena and dependent on the shape of the grooves. These are consistent

with Palmer's experimental observations. Furthermore, the curves show that

the band for the full-wave rectified profile is broader than that for the sinusoidal

surface, and hence for the former surface the diffracted energy in both modes

is less sensitive to a change in surface height.

Note that these P anomalies differ from the classical S anomalies in

that they are broader and need not occur near the Rayleigh wavelengths. Under

certain 3onditions, a total (ICO per cent) energy conversion takes place between

the incident plane wave and the n = -1 mode, width the amplitude of the specularly-

reflected wave becoming zero at this point. These phenoxmena were also investi-

gated by Tseng, Hessel and Oliner (1968), irdi they termed ,hem Brewster-angle
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interface between two different, homogeneous, isotropic media. Furthermore,

they pointed out that at the first P anomaly we must have the following condition

(Bragg condition):

kdsine 7r (4.8)

Therefore, if we substitute this relation into Eq. (2.21), we obtain

K (r+mdA) = K (r) e-j m = +I, +2,...

Kz(ri if m = even (4.9)

S-Kz(r) = odd

which shows that at this anomaly the current distribution over any chosen cell

(or period) must be in or out of phase with that over the reference cell (m = 0)

depending on whether the chosen cell is displaced an even or odd number of

periods, respectively, from the reference cell. But this is only a necessary

condition for the existence of an anomaly. There does not appear to be any

rule for predicting the exact depth of groove for an anomaly to occur since this

depth is different for different profiles. However, using the condition (4. 8), we

can derive some information about the nature of the current distribution when

the first anomaly occurs. This is done as follows.

From Eqs. (4.2) and (4.8), for the m = 0 mode:

0= ksinO = 

(4/d,
(4. 10))

X0 kcosO;0

and for the m =-I mode:

X (4.11s)

X_ = -kcose.
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Substituting Eq. (4.10) into Eq. (4.4) we get

d Y d x+kcos0y)

A0  e ed V1+X f(x)2 Kz(x)dx. (4.12)
2dkcos9 V1f(xK

0

Similarly, using Eq. (4. 11).
~?:

A-1~ = 2dkcos0 e f'() 2

Ae *fW2 K (x)dx (4.13)

0

which can be written as

b ^d 2? r

A £d - -•- x j(H x+kcos8y)r rf' (x) dA-1=2ko0• e e 4]1+X Kz(X)dx. (4.14)

-1 2dkcos0 z1f(~K

Furthermore, at the first P anomaly:

1A01:- I, 1A_1 1 1 (41.15)

Observe that Eqs. (4.12) and (4.14) differ only by a factor exp(-j !x)

in the kernel, but their magnitudes differ by unity. To show that this is also

true if we replace exp(-j k x) by its conjugate 2xp(j- , change the
dx- Itp~ Tt x).'chne h

variable x to -x to get

A_, d, x+,kylcos0) (1+f'(-x) K (-x)dx. (4.16)
-1 2dkcos0 zJ0

If it Is assumed that f(x) is an even function then

SJ( x+kycos 0),.
A- 1  2dkeosO e I +f'(x)2 Kz(-x)dx, (4.1'7)p J0



and using Eq. (2.21)

K (-x) -K (x)ej 2ksnlnx
z Z

. 27

-K(x)e W (4.18)
z

Thus Eq. (4.17) becomes

d j-T-x J( x+kcos0y)

A W pe
-1 2dkcosO e e F f'x)2 K z(x)dx (4.19)

0J

which differs from Eq. (4.14) only in sign. Moreover, if we add Eqs. (4.14)

and (4.19), we have

d
d ~j(Ix+kcosey) r~-

A = I-A sin 2 e d1+f (x)2 K (x)dx (4.20)
1 dkcose 7 z "

0

whereas if we subtract Eq. (4.19) from Eq. (4.14),

dp J/2• I x + k cos 0y)

0 dkos Cos" 0 2° 7 e d x+ox) 2 K(x)dx (4.21)

Therefore from Eqs. (4.12), (4.20) and (4.21) and the orthogonality

property of the trigonometric lunction, we can conclude that

7r

K (x)W=,x) sin(7x e , (4.22)

which describes the behavior of the surface field at the first P anomaly. In

particular, if we consider a sinusoidal surface, then the modulus of the surface

field will exhibit a standing wave pattern showing the propagation of unattenuated

surface waves along the x-axis. Once again this phenomenonn is seen to be
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analogous to the Brewster angle effect which is used in launching a surface

wave along an interface of two homogeneous, isotropic media. For a perfectly

conducting flat sheet, this Brewster angle is of course equal 1o 900 (with the

normal to the surface)l, but since the surface is corrugated, it can be modelled

by an appropriate reactance surface (see, for example, Hessel and Oliner, 1965),
A 0

whose Brewster angle can now assume values other than 90

Another illustration for two radiating modes is shown in Fig. 4-2 for a

f ull-wave rectified profile at oblique incidence with 0 = 600. The parameters

of the-profile are a = 0. 3k d = 0. 30k and the period varies from 0 to 0. 7X.

The plots show that there is a gradual exchange of diffracted energy between the

m = and m = -1 modes when d > 0. 535XL, which is a Rayleigh wavelength.

b) Three Radiating Modes. As the period becomes larger, more radiating

modes are possible. A case of three radiating modes is shown in Fig. 4-3 for a

sinusoidal surface at oblique incidence, 0 = 60 . The parameters of the surface

are d = 1. 155X, and a varies from 0.05 to 0.7X. The three radiating modes

are the m = 0, m = -1 and m = -2 modes, and as computed from the grating

law, their diffracted angles are 600 (m = 0), 0 (m = -1) and -60° (m = -2).

Thus, the m = 0 mode is the specular mode, radiating in the foreward scattered

direction, the m = -1 mode radiates in the normal direction, and the m = -2

mode is the backscattered mode, radiating in the reverse direction of incidence.

The plots show a gradual exchange of the diffracted energy among the

three radiating modes. For a < 0. 05X, the dominant mode is the m = 0 mode,

which carries almost all the diffracted energy. Thus from the far field point

of view, the surface is similar to a flat surface. As the amplitude increases,

the other two modes come in, and play an important role in sharing the radiated

energy. Since no single mode is observed to carry the whole (or none) of the

energy (except, of course, when a << 0.05X), even for a as large as 0.7U,

it is unlikely that the P a,.omalies will occur with three radiating modes when

the surface height is not very deep (of order X or less); and if they do occur, it

will only be for groove depths much greater than those for two radiating modes.
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The same kind of plots were also obtained using the physical optics

approximation, either with or without shadowing, and they are shown in Figs.

4-4 and 4-5. Comparison with Fig. 4-3 indicates that neither version of the

physical optics method gives satisfac.o,,y agreement with the exact solution

except for the range a < 0. lX. For such surface heights, there is no shadow

region.

4.3 Conservation of Energy

One criterion that we have used to check the accuracy of the numerical

solution is conservaticn of energy. The numerical results do indeed satisfy

this condition, as can be seen from F*gz. 4-1 and 4:2 for the two radiating mode

case, and from Fig. 4-3 for the three radiating mode case. The results for a

single radiating mode are given in Table IV-5.

TABLE IV-5

Conservation of Energy for a Sinusoidal Surface

.. .Physical Optics

a Numerical w/o Shadow w Shadow

d/X a/_ 0(°) Energy Error(°/o) Energy Error(°/o) Energy Error(O/o)!
0.2 0.1 0 10.9970 -0.70 0.4128 -58,72 0.4128 -58.72
0.2 0.1 30 0.8564 -. 8 0.4553 -4"/.50 0..5075 -41.45;
0.2 0.1 60 0.5013 0.26 0.4084 -18.32 0.6172 23.44

0.2 0.01 0 0.9990 -0.10 0.9921 - 0.79 0.9921 - 0.79
0.2 0.03 0 1.0042 0.42 0.9308 - 6.92 0. 9308 - 6.92
0.4 0.2 0 0. 9976 -0.76 0. 0030 -99.76 0. 0030 -99.70

S0.4 0.2 60 10.5068 1.36 10. 2061 -58.78 0.1147 -76.47
1.9~~~•79 0.50.099 00

O0O.4202 -57.98 0.4202 -57. 9

From Table IV-5 and Figs. 4-4 and 4-5, we see that the physical optics

approximations in general do not satisfy the condition of energy conservation.

Another plot showing the relation between the diffracted energy and the

minimum radius of curvature (at the surface peak or trough) is shown in

Fig. 4-6. It indicates that for kp > 4. 5, most of the diffracted energy is
min
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Fig. 4-4: Diffracted Energy for a Sinusoidal Surface (d 1. 155X and
00 = 60 ), Computed Using Physical Optics Method (with

shadow), for E polarization.
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ca••ied away by the m = 0 mode so that as far as the radiated field is concerned,
the sinusoidal surface can be considered a flat surface If kpmin >4.5.

4.4 Approximate Techniques

Although the main purpose of this work is to develop numerical procedures

for solving the integral equations for scattering from periodic surfaces, a sub-

sidiary objective is to use the understanding gained from our results to treat back-

scattering from rough surfaces, with particular reference to oblique angles of

incidence. A desirable step in this process is to find more simple methods for

predicting the field back-scattered by a periodic surface without resorting to

the integral equation.

The method that naturally comes to mind is the physical optics method, but

as we have alrendy seen, the predictions are rather poor in the far field and even

worse as regards the near field. One reason for this is that the approximation

is a local one only, taking no account of the coupling between cells and of the

interactions among the diffracted energy.

If we examine the curves shown in Figs. 3-26 through 3-30 for the

sinusoidal surface, we notice that over the illuminated portion of the surface

and particularly near the surface peak, the current is primarily determined by

the local profile shape, and is affected relatively little by the other part of the

surface. Furthermore, in most cases the surface field is largest over this

region, and the phase does not show the rapid variation which it does in the

shadow region. These facts reinforced with some reasoning based on ray optics

suggest that it may be possible to estimate the back scattered field with reason-

able accuracy using only a knowledge of the current in the illuminated region.

This is indeed the case, as was shown by applying the stationary phase method

to Eq. (4.4) over the illuminated region and using the exact values for the surface

field. The results are presented in Table W-6 and compared with the exact

results.
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TABLE IV-6

Comparison of the energy backacattered by a sinusoidal surface:
d = 1. 155X, e = 690, computed asing the exact and stationary
phase methods.

Surface I Normalized Backscattered Energy
Amnplitude (a/>,) Exact Method Stationary Phase

, 0.3 0.176 0.152

0.4 0.280 0.320

0.5 0.320 0.360

0.6 0.272 0.344
L 0.7 pa0.200 ove0.216 te

Since the above computation requftres a knowledge of the true surface
field, albeit over only a limited portion of the surface, we cannot avoid solving

the integral equation unless we can find an approximate method for est',mating

the surface field in this region. Because of the relatively good agreement be-

tween the physical optics phase and tkie exact phase over the illuminatea region,

the phase in this region can be simpi taken as the incident phase. As for the

current modulus, we can approximate, it in either of two different ways.

a. Circular cylinder approxjll;s¢.on.

For an E-polarized plane wavew iLcident on a circular cylinder of radiub

a, the modulus of the current induced at the point P(x, y) isiOi
2.- nnu(x)mod *K(X)ý =-- 1 ' (4.23)

n=-oo II '("ka)
YJ

V• where u(x) obtuse angle between the normal at P(x, y) and the incident ray.

Let us now identify a with the local radVus of curvature, p(x), at the point

P(x, y) on the surface (see Fig. 4-7). For a .Antwoidal surface, p(x) is given

by



j 102

Iy

IE

Fig. 4-7: Approximation of the Surface Current Modulus Over the
Illuminated Region of the Sinusoidal Surface by that on a
Circular Cylinder.
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I3/2
p(x)= 1 +(a K snKx)2I (4.24)

aK21cos K I

and

u(x) =L + tan (4.21)
4 \,aKsinKx} 4.5

To take account of the deviation of the incident r•.,, from the normal

at P(x, y), we multiply Eq. (4.23) by a factor cos u tv give

mod .ýK (x)= Hn CosU (.26zo• pA =_ H(2)(p
n=-orp (2p) ou .(2)

This equation can now be used to compute 'he current modulus in the illuminated

region of the surface.

b. Parabolic cylinder approximation.

Another way of approximating the current modulus over the lit region of

the sinusoidal surface is to us', our knowledge of the current induced on a per-

fectly conducting parabolic cyfinder whose vertex coincides with the peak of

the sinusoidal surface (see Fig. 4-8), and both surfaces have the same radius

of curvature at this point. Beause of the mathematical complexity of the ex-

pression when the cylJder is at oblique incidence, we use instead the normal

incidence results and modify it by the factor cos u defined above.

At normal tncidence, the current induced on a parabolic cylinder is

1 2 2

"Kx - k F (4.27)
z LP~ \j2 2 F(nVk)

where Y1, rz are parabolic cylindrical coordinates related to the rectangular

I' • Cartesian coordinates by the transformation
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Fig. 4-8: Approximation of the Surface Current Modulus
over the Illuminated Region of the Sinusoidal Surface
by that on a Parabolic Cylinder.
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l 2_ 77 2 g z (.8

and F(n•Vh) is the Fresnel integral which can be computed using

. -"

12\i1 2
= fJ~ ~ -cos~ 7tdtl +j [7 ~ sin( 7rt)d (4.29)

0 01
Thus, multiplying Eq. (4.27) by cos u, we get

1 2 2

K 2+(x) = e jM +n Cos u ) (4.30)

and

jkl 2 +72

= g2 F (-nrk- 1 e cosu (4.31)!•• +'72

which is the equation used to compute the current modulus in the illuminated

region of a sinusoidal surface at oblique incidence.

Frtr experience, it has been found that the parabolic cylinder

approximati,"- ý venerally gives results slightly less than the exact values,

whereas the circular cylinder approximation gives slightly larger values.

The rebults are shown in Table IV-7, and also compared with the exact values.

I Ii
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TABLE IV-7
Comparison of Normalized Current Modulus over the Illuminated
Region for the Sinusoidal Surface with d 1. 155X and 9 = 600.

Sur ace e Ioati•On of Point J fr u3ar N Ta. UoTii j
Amplitude; On the Surface, Exact Cylinder Cylinder

a/X x Coordinate 00) Results Approx. Approx.

0.82 0.90 1.66 0.7040.3 0.92 1.45 1.87 1.20
1.01 1.88 2.06 1.75-. 1.11 1,88 2.10 1.83

- " .. . .- -Jt .. . . .

0.92 1.26 1.50 1.00
0.4 1.01 1.75 1.94 1.50

1.11 1.92 2.15 1.96

0.92 1.14 1.60 0.960.5 1.01 1.15 1.86 1.25
1.11 2.08 2.20 2.12

0.92 1.00 1.50 0.70
0.6 1.01 1.33 1.99 1.18

2.25 2.30 2.20
I. ....i. ...... .



Chapter V

SURFACE FIELD DATA FOR H POLARIZATION

In this chapter surface field distributions obtained by numerical solution

of the integral equation for H polarization are presented. The particular

profiles considered are sinusoidal, full-wave rectified, inverted full-wave

rectified, and triangular (see Fig. 3-1) with various periods and angles of

incidence. In each case the physical optics approximation is presented as a

basis for comparison, and comparison : also made with analogous results

for E polarization. Many of the remarks made in Chapter III for E polarization

hold for H polarization as well, but the surface field now is generally more

complicated and unpredictable evea over a small region of the surface.

According to physical optics, the surface current induced on the surface
is

Kt(x) = 2 e-Jk(x sin0 - f(x) cos6) (5.1)
t

in the illuminated region, and

Kt(x) =0

in the shadow.

As in the case of E polarization, however, this approximation is inadequate

for many purposes.

5.1 Surfaces of Small Period (d/I.)< 0.2)

Figures 5-1 through 5-12 represent the surface fields on periodic surfaces

of four different profiles, each having a period d = 0. 2X and a maximum ampli-

tude a = 0.1 X. The angles of incidence are 0 = 0, 300, and 600.

51' Let us first examine the results for a sinusoidal surface (Figs. 5-1 through

5-3). The current modulus now has a maximum at the surface trough and a

minimum at the peak, and in contrast to the case for E polarization, it remains

107
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Fig. 5-1: Normalized Surface Field for a Sinusoidal Surface (d =0. 2X,
• a = 0. 1X and 0 = 0) for H polarization, -- o-- exact, -- physical

S~optics.
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Fig. 5-2: Normalized Surface Field for a Sinusoidal Surface (d = 0. 2X,
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a = 0. IX and 0 = 30°) for H polarization, -- o-- exact,

-physical optics.
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Fig. 5-3: Normalized Surface Field for a Sinusoidal Surface
(d = 0.2k, a = 0. 1X and 0 = 600) for H polarization
-- o-- exact, - physical optics.
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substantially unchanged as the angle of incidence is varied. The physical optics

approximation is somewhat like the mean of the exact solution. For e = 0, the

phase is almost constant (as for E polarization), but there is more variation,

especially near the surface peak, when 0 f 0.

Figures 5-4 through 5-9 show the surface fields for full-wave rectified

and inverted full-wave rectified profiles. Except that there is a slight improve-

ment in the agreement between the exact modulus and the modulus of the physical

optics, the general behavior is rather similar to that for a sinusoidal surface.

Shadowing has little effect on the current modulus.

The last three figures (Figs. 5-10 through 5-12) are for triangular

profiles, and we note only the absence of any "edge effects".

A point worth mentioning is that for all the profiles considered, the

exact phase at normal incidence is close (in a mean sense at least) to the

physical optics phase. In order to see why the modulus of the surface field is so

insensitive to any change in the angle of incidence, let us go back to Eq. (2.35).

As in the case of E polarization, if the period is sufficiently small, we can

approximate the modified Green's function, Eq. (2.36), by the first two and

the last two terms. Thus, the approximate integral equation becomes

G2(x, y; x', y') Kt (x')dx' % jdj2H (W - K (x) (5.2)

0

where

G2(x, Y; x', y') = -j sgn(y - y') -j {f'(x')tan9 - sgn(y- y') A

e-jksinO(x-x') -jkcosOly-y'I +

fI(x.)+jsgn(y-y' cot -I(x-xl) lY-Y'2+
•;1 I½•f1(x9)+jsgn(y-y1)t cot d(X-X,)+jd2 ly-y'l) (5.3)
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Fig. 5-4: Normalized Surface Field for an Inverted Full-Wave Rectified
Surface (d = 0. 2X, a = 0. IX and 0 = 0) for H polarization,
-- o-- exact, - physical optics.
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Rectified Surface (d = 0. 2X, a = 0. 1X and 0 = 300) for H
polarization, -,-o-- exact, - physical optics.
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Surface (d = 0.2X, a = 0. L and e= 600) for H polarization,
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Fig. 5-7: Normalized Surface Field for a Full-Wave Rectified Surface
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- physical optics.
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Note that of the four terms in G only the second contains the angle
of incidence explicitly. Since the integral equation is singular, a rough picture

of the solution may be obtained if we consider the integral equation in the neigh-

borhood of the singularity. Thus

*Ix G sgn(y-y').j ( n sny-y')j +lir G v-- 2(x, y; x", y') = sn -Y)-jf

xy-y x'---.O +y yW--• + V-y lý 1M cot - (x-xl)+J. 7r y-y,!l +
2 Ix'x+ g~ -y'•x_ x-..0 -d

Iy-y'I -10

+1 t.(xI)+Jsgn(y-y')} lim cot fd(x- x') +j ruly- Y'. (5.4)

IY- y']->o

Using the relation

,. ej + e-jg
cot, (

we obtain for the cotangent terms

whe -a+jbj+e2b+j2a 2b-j2a
2b+Ja and cot(a+jb) = j (5.alb)a

2 a 2b - j2a 5.a1 -e 1 -e

where a= E(x-x') ,b= -ElY-Y'l

Therefore,

lira cot • • '! (1+2b+j2a)
[ l- '[ -> cot (x- X') +j 21y - [ = lim e~ b + e

xy - y' "> b-->o a 0 1e2~

2• lia -(a+jb) (5.6)
lal">O a a+b2

b-- 0
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Similarly, for the other term

lim cot {(x-x) +Jrn lim (5.7)Ix-x'l->o I1-->o a2+b2

Iy-y']-->o b -->0

Substituting Eqs. (5.6) and (5.7) into Eq. (5.4), we obtain, after some mani-

pulation,

lim G2lx, y;x, y') = -j sgn(y- y') - J f'(x')tan 0 - sgn(y- y1]j +Ix -x, -->o
lY-Y''->°21 + lim 22 _bsgn(y-y')+aft(x'ý (5.8)

la-->o d(a +b2)
b -->0

Thus, in the neighborhood of the singularity, YEq. (5.2) becomes

X-E:i§-j sgn(y -y') -j[f'(xt~tan - sgn(y-y')] +

+ lira 2 _ [bsgn(yy,)+af,(.1]4 K (x)dx,
IaI--o d(a +b2) t
b ->0

Sjd { 2 Hi(X) - Kt(x)} (5.9)

where x - x'I < e with E (> 0) an arbitrarily small number.

If we assume Kt(x) to remain constant over this small region of

integration, then by the property of sgn(y - y'), all integrations involving

sgn(y- y') vanish. Hence

x+C

ý-f~la lim 2L2 t ~ d)2xt -Kýx)
-jf'(x')tan+ ia2jaf'(x') (x,)dx• H( Kt(x) (5.10), x -e ("I a 1-->0 d(a2 + b')

b --->0
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If the surface amplitude is relatively small, a and b can be assumed

to be of the same order of magnitude, in which case Eq. (5. 10) becomes

S ~ x~tn+ jf (k)1 Kt(x*)dxl 'J i.2H i(x) - Kt x)~ (5.11)7r(x-x') x
X-E

which can be solved by treating Kt(x) and f(x) as constant over the range of

integration. We thus obtain

-jf'(x)tan9 K (x) 2E -f jd {2Hi(X)W- Kt(x)I, (5.12)

and since e is an arbitrarily small number, the left hand side can be neglected

in comparison with the second term on the right hand side. Equation (5.12) now

reduces to

K (x) = 2Hiz(X) , (5.13)
t z

which is just the geometrical optics value. This is consistent with the numerical

results.

For a sinusoidal profile, the effect on the surface field produced by a

change in the surface amplitude as the period is kept constant is shown in Figs.

5-1, 5-13 and 5-14. As the surface height is increased, the numerical results

approach those for a flat sheet.

5.2 Surfaces of Slightly Larger Period (0..2 d/? < 0. 6)

Figures 5-15 and 5-16 show the surface field for a sinusoidal profile

with d = 0.4X, a = 0.2X and 9 = 0, 600 respectively. By comparing these

with Figs. 5-1 and 5-3 it is seen that doublirg both d and a has a somewhat

larger effect on the current modulus than was the case for E polarization. In

particular, there is a noticeable change of shape, with minimum no longer
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occurring at the surface peak. Once again, the e is no agreement bet'e en

the exact data and physical optics, either in modulus or phase.

Results for a fall-wave rectified profile with d = 0. 6X, a = 0. 3X and

0 = 600 are given in Fig. 5-17. The undulations of the modulus clearly indi-

cate strong coupling among cells (or multiple snattering among ce"-). Most

of the surface current concentratee in the illuminated region. As the angle of

incidence is further increased to 0 = 75 (Fig. 5-18), the modulus undergoes

a marked change, whereas the phase remains constant over most of the surface.

5.3 Surfaces of Larger Period (d/A I,0.6)

Surface field distributions for surfaces of large period are generally

more complicated than those for surfaces of small period, primarily because

of the greater number of radiating modes.

Let us first consider the results for two sinusoidal surfaces whose

periods are near the Rayleigh wavelength. The first one (Fig. 5-19) has

d = 0. 95X, a = 0. 25X and 0 = 0. It is seen that the current modulus curve

has a maximum at the surface trough and minima at the places where the

surface crosses the x axis. The phase, however, remains fairly constant over

the lower part of the concave portion of the surface, but changes rapidly from

positive to negative where the modulus has its minimum. The second one is

given in Fig. 5-20, where d = 1.90X, a = 0.25X and 0 = 0. Here the modulus

has a marked oscillation, quite distinct from that found for E polarization. One

of the maxima is at the surface trough, and the current is again a minimum at

the surface peak. The agreement with physical optics is poorer than for E

polarization, with neither modulus nor phase being approximated to any real

extent.

A careful study of Figs. 5-19, 5-20 and the corresponding ones for E

polarization (Figs. 3-20 and 3-21) leads us to conjecture that there are strong

surface waves propagating along the x-axis when d is close to 2X for H

polarization, and when d is close to the wavelength for E polarization.
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Another case also showing a marked oscillation in the modulus is given

in Fig. 5-21 where the surface is a sinusoidal with d = 1. 6X, a = 0. 25X and
00 = 45 (kp = 1.63). The physical optics phase is in better agreement w!'.h

min
the exact phase except, in the region where fhe surface is most likely to receive

shadowing.

To examine the effect on the surface field due to a gradual increase in

the surface height when the period and angle of incidence are kept fixed, we

select a sinusoidal profile with d = 1. 155X, 0 = 600 and allow a to increase

from 0. 05 to 0. 7X. The numerical results are shown in •'igs. 5-22 through

5-29. Again as in the case of E polarization, the agreement between the exact

results and physical optics deteriorates as a is increased. Unlike E polarization,

however, this agreement remains exceptionally good for the phase even when

the amplitude becomes as large as 0. 2X. Furthermore, the exact phase in the

illuminated region is very close to that of the incident field in all cases con-

sidered, but physical optics overestimates the modulus.

To see how much of the surface field depends on the concavity of the

surface, we replaced the concave portion (d/4 < x < 3d/4) of the sinusoidal

surface (a = 0. 5X) by a flat part. The results are presented in Fig. 5-30.

Comparison with Fig. 5-27 shows that this replacement has a marked effect on

the surface field in the shadow region, but little effect elsewhere.

Additional data for a full-wave rectified profile (d = 0. 85, a 0. 30k and
0000 = 36 ), and a triangular profile (d = 1.75X, 01 = 200 .2 = 660, and

0
e = 12.2 ) are given in Figs. 5-31 and 5-32. In the former case, the exact

modulus and phase are in good agreement with the physical optics values over

the left hand portion of the surface, but the agreement (particularly for the

modulus) is less good on the right. For the triangular profile, the exact

modulus shows an oscillatory variation not predicted by physical optics, and

this oscillation is most pronounced on the far right hand portion of the surface.

The physical optics phase is again a good approximation to the exact phase.
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5.4 Coupling Among Cells

Figures 5-33 through 5-37 illustrate the effect on the surface current

distribution produced by a progressive change in the period of the surfacB while

the other parameters are kept fixed. The surface selected is a full-wave

rectified surface with a - 0. 3k d = 0. 3k, 0 = 600 and I (the distance between

two neighboring periods)varying from 0. 3R to 0. 7X in 0. 1X steps. For the

first two figures, where I • 0. 4k the modulus shows very good symmetry in

spite of shadowing, and over the central portion of the surface at least the

phase is almost constant. The physical optics estimates are rather unsatis-

factory. As d becomes larger and approaches the Rayleigh wavelength (equal

to 0. 535M, according to Eq. (4.7)), the surface field experiences a marked

change as shown in Fig. 5-35, but the modulus still preserves its symmetry.

Fuither increase in d again brings noticeable changes in the shape of the

modulus (see Figs. 5-36 and 5-37), and in spite of the fact tftt the radius of

curvature is a minimum at the surface peak, the physical optics estimate of

the modulus is most accurate in that region. Compared with the analogous

results for E-polarization, the surface fields for these relatively small separ-

ations between cells are more sensitive to the change in period, suggesting

that the coupling between cells is stronger.

3.5 Accuracy Checks and Computational Time

Figure 5-38 shows the results of a convergence test applied to a sinusoidal

surface with d = 0.2X, a = 0. Vi and 0 = 0. An indication of the accuracy

achieved with an almost flat surface can be had from Fig. 5-14, and because of

the nature of the integral equation, this limiting case works better here than it

did for E polarization.

Comparison of the results with those obtained by Zaki (1969) for a

sinusoidal surface (d = 1.90X, a = 0.25X and 0 = 0) is shown in Fig. 3-39,

and with those of Green (1970) for a triangular profile (d = 1. 75X, eI = 200,

0 = 600, and 0 = 12.20) in Fig. 5-40. Good agreement is obtained in both
2

instances.
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As in the case of E polarization, the time consumed in each

computation depends on several factors (see section 3.5 of Chapter II), but in

general the CPU time is larger now because of the more complicated (modified)

Green's function. A summary of the CPU times for various combinations of

parameters is given in Table V-1.
The distribution of the CPU time for a typical computation where N = 12,

M =3 and Q = 1 is given below:

1. Computation of matrix elements 50.3 sec.

2. Matrix inversion 8.4 sec.

3. Physical optics approximation 4.3 sec.

4. Energy conservation check and calculation of
diffracted mode amplitudes 9.0 sec.

TABLE V-1
Computational Time for H Polarization

Number N of Number M of Number Q of CPU Time
Sampling Points Terms in the Terms in the (sec)

Infinite Series Periodic Func- IBM/67
tion Representation

4 3 1 13.00
6 2 10 35.58
6 3 10 41.67
8 3 1 42.47

8 3 10 52.07
8 3 12 61.71
8 8 1 71.87
8 6 1 60.46

10 3 1 67.13
10 8 1 104.84
12 3 1 73.10
12 3 10 120.38

16 6 1 180.21
16 5 1 167.36

20 5 15 424.75



Chapter VI

SCATTERED FIELD FOR H POLARIZATION

In this chapter we consider the scattered field, scattered energy and

such associated physical phenomena as the S anomalies. Numerical data are

presented to illustrate the discussion, and comparisons are made with the

physical optics approximation as well as the results for E polarization.

6.1 Diffracted Mode Amplitudes

Using a procedure directly analogous to that for E polarization, and

assuming the incident magnetic field shown in Eq. (2.31), we can write

5H y) = A' en (6.1)

with

A' e j($x'+Xy) j2X- gm3f(x') Kt(x')dx' (6.2)

where Xm and 0m are as given before.

The dependence on X and 0rm is rather heavier than that displayed by

Eq. (4.4).
Once the unknown K (x') has been found, it is a simple matter to compute

the amplitudes of all the diffracted modes, both propagating (Xm real) andS~+
evanescent (X- purely imaginary), and the amplitudes of the propagating waves

for several different values of d/X, a/. and 9 for a sinusoidal surface are

given in Tables VI-1 through VI-4. It is observed that the physical optics

approximation, with or without shadowing included, tends to underestimate

the amplitudes, and we further note that if shadowing is excluded (or is not

present), the physical optics estimate is the same for both polarizations (see

Appendix A).

156
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TABLE VI-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d 0.2X, a =0. l).

S=00 0=300 0=600
Mag. Phase Mag. Phase Mag. Phase

11 010
______JAI_ _ 1A1 01 0) All 0'(0)

NumericalI
o0.9830 -12.45 0.9910 -23.82 1:0640 -67.24Solution _

Physical Optics ' 0.6425 0 0.7251 0 0.9037
w/o shadow

PhysicalOptics 0.6425 0 0.1550 -65.17 0.5440 -166.31
w/ shadow 0.61.

TABLE VI-2

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d = 1.90X, a = 0.25), e = 0).

Mag. Phase Mag. Phase
Numeril A 00o) J 11 = IAU - 01() =01(0)

Numerical 0.9040 -80.50 0.3350 52.55
Solution

Physical 0.3042 0 0.4389 90
Optics

TABLE VI-3

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d = 0.4X, a = 0.2T).

0-00 0 = 60°

Mag. Phase Mag. Phase

umerica 0.9350 -107.19 1.0140 -145.28
Solution
Physical Optics 0.0549 0 0.6450 0
w/o shadow 0

Physical Optics
y• shadow_ 0549 0 0.1290 -131.32



158

TABLE VI-4

Amplitudes of Diffracted Waves for a Si.nusoidal Surface
(d=0.2X, a=0.03X, 0=0).

M .Phase
A 10 Ob(0)

Numerical 0.9986 -0.55
Solution

Physical 0.9647 0
Optics________

6.2 Diffracted Energy and Wood Anomalies

6.2.1 Discussion

The diffracted energy is the field quantity most frequently measured.

It is, of course, directly related to the diffracted mode amplitudes, and the

general remarks concerning energy and the Wood anomalies made in section

4.2.1 also apply here. Unlike the P anomalies, however, the S anomalies

(which were discovered earlier) have been more widely studied and are more

"completely understood. According to Rayleigh's theory, the occurrence of

the S anomalies corresponds to the singularity of the scattered field at Ray-

leigh wavelengths. At these wavelengths, a new spectral order appears at

grazing angles, and thus causes a sudden rearrangement in the diffracted

energy among the other modes. But it should be noted that there are S

anomalies other than tiiose which occur at the Rayleigh wavelengths, and

these are similar to the "Brewster angle" type discussed in section 4.2.2. A

comparison with the P anomalies reveals that the S anomalies are generally

much stronger and can occur with structures having relatively shallow grooves.
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6.2.2 Computed Data for the Diffracted Energy

a) Two radiating modes. The fields scattered by surfaces of very small

(electrical) period are of relatively little interest. Anomalies are observed

only when more than one radiating mode is present, and, of course, the sim-

plest cases (also the ones most investigated) are ttz.Fe where there are just two
radiating modes.

Figure 6-1 shows a plot of the normalized diffracted energy versus

the surface height for a full-wave rectified profile for which d = 0. 85X and
0e = 36°. Since an equivalent plot for a sinusoidal surface was obtained by

Zaki (i969), it is included here for the sake of comparison. With this choice

of parameters, orly the m = 0 (specular) and the m - 1 (back scattered)

modes can propagate. The diffracted energy exchange is continuous,

exhibiting maxima and minima in an almost standing wave pattern. The rate

of conversion of the diffracted energy is more rapid for the sinusoidal sur-

face than with the full-wave rectified surface. Anomalies occur in both cases,

however, with the first appearance being at a = 0. 16X for the former surface

and at a = 0. 36X for the latter. Note that this type of anomaly is different

from the classical (Rayleigh) type in that they do not occur at the Rayleigh

wavelengths.

Anoti,.r example for two radiating modes is shown in Fig. 6-2 for a

full-wave rectified profile with a = 0.3 X, d - 0. 30k 0 = 600 and I varying

from 0 to 0. 7. We note the abrupt exchange of diffracted energy between

the m = 0 and m = -1 modes near the Rayleigh wavelength, XR = 0. 535X.

This exchange is, however, not complete, but about 50 per cent. A stronger

anomaly showing complete conversion of energy is observed at d = 0. 7X.

The changing division of diffracted energy between two radiating modes

as a function of the angle of incidence is illustrated in Fig. 6-3 for a full-wave

rectified profile with d = 0. 6X and a = 0. 3X. It is seen that there is a dis-

continuity in the diffracted energy for both modes at 0 = 41.80 corresponding

to a Rayleigh wavelength, and for incidence angles greater than 41. 80 most

of the energy is carried by the m -- -1 mode.
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L: b) Three radiating modes. As the period of the surface is increased,

higher order modes come in, and the distribution of diffracted energy among

the radiating modes becomes more complex. This is clearly demonstrated in

Fig. 6-4 for a sinusoidal surface where d = 1. 155X, 0 = 600 and a varies

from 0 to 0.7X. With this choice of parameters there are three radiating modes,

with the m = 0 mode radiating in the specular direction (0 = 600), the m = -1
0

mode radiating in the normal edrection (0 0) and the m = -2 mode riadiatingS(_1

in the back scattered direction ( = -60) The curves show no resemblance

to those for the case of two radiating modes. For a < 0. 05k, the m - 0 mode

is the dominant one, carr~rlng at least 80 per cent of the total energy. Once

again, we see that the diffracted energy for each mode is more sensitive to a

change in the surface height than was the case for E-polarization, and a strong

anomaly is observed for even the relatively shallow groove depth, a = 0. R.

For this depth, all of the energy is carried by the m - -2 mode which produces

a correspondingly strong back scattered field.

The same kind of plots were also obtained using the physical optics

approximation, either with or without shadowing, and they are shown in Figs.

4-4 (the same for both polarizations) and 6-5. By comparing these with Fig.

6-4, it is appa- snt that neither version of the physical optics approximation

gives satisfactory agreement with the exact solution except perhaps wheai

a < 0.05X.

A plot showing the relation between the diffracted energy and the

minimum radius of curvature (at the surface peak or trough) of a sinusoidal

surface for which d = 1. 155X and 0 = 60 is shown in Fig. 6-6. As in the

case of E polarization, the dominant mode for kpmin >.4.5 is the m = 0

(specular) one. Thus, as far as the scattered field is concerned, the surface

with kp min > 4.5 can be treated as flat.
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0 = 60 ), for H polarization.
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0 = 60 ), for H polarization.
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C 6.2.3 Blazed Gratings

The diffracted energy for various orders of radiating mode can be

computed from Eq. (6.2) and used as a basis for the design of blazed gratings

(gratings whose profiles are so shaped as to maximize the diffracted energy in

"a given direction or a given mode).

Blazed gratings find important applications in spectroscopy where the

spectrum is observed in only one order at a time, the energy going into the other

order modes being completely wasted. It is therefore desirable to have the

observed spectrum as luminous as possible, and one way of achieving this is

to reduce the number of propagating modes by using smaller periods. Another

way is to minimize the amount of energy carried by the other modes, and

according to Eq. (6.2) and neglecting the contribution due to the perpendicular
th

side of the surface, the diffracted energy of the m mode for a right-angled

triangular profile will be zero if

X -0 f'(x)=0
m m

or f'(x) = X/1m. (6.3)

Eq. (6.3) is particularly useful when there are only two radiating modes.

However, since this applies only to H polarization, the echelette grating so

designed is polarization dependent.

6.3 Conservation of Energy

One feature that is common to perfectly conducting, periodic surfaces

regardless of the number of radiating modes involved is the condition of

energy conservation, and this can be used as a check on the accuracy of the

numerical solution. The results of this check are shown in Table VI-5 for

a sinusoidal surface sustaining, in most cases, only one radiatLig mode.

Results for two and three radiating modes are shown in Figs. 6-1 and 6-3. In

all cases considered, the numerical results satisfy the condition of energy

conservation, but the physical optics approximation, with or without shadowing

included, does not.
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TABLE VI-5

Conservation of Energy for a Sinusoidal Surface

Physical Optics

Numerical w/o Shadow w/ Shadow

d/X a/X 00() Energy Error(O/o) Energy Error(°/o) Energy Error(°/o)

0.2 0.1 0 0.9848 -1.52 0.4728 -58.72 0.4728 -58.72
0.2 0.1 30 0.8532 -1.43 0.4554 -47.30 0.0208 -98.00
0.2 0.1 60 0.5075 1.50 0.4083 -18.34 0.1479 -70.42

0.2 0.01 0 0.9980 -0.20 0.9921 - 0.79 0.9921 - 0.79
0.2 0.03 0 0.9987 -0.13 0.9308 - 6.92 0.9308 - 6.92
0.4 0.2 0 0.9823 -1.77 0.0030 -99.70 0.0030 -99.70

0.4 0.2 60 0.5042 0.84 0.2061 -58.78 0.0083 -98.50
1.9 0.25 0 0.9974 -0.26 0.4202 -57.98 i0.4202 -57.98

S6.4 Approximate Techniques

• As in the case of E polarization, an attempt has been made to use the

knowledge obtained from the numerical results to develop a simple method for

estimating the field back scattered from surfaces at oblique incidence. Were

it possible to arrive at a valid approximation technique, it would be very use-

ful in such practical problems as sea surface or terrain scattering.

Naturally the physical optics method was tried, but was abandoned

because of its rather poor agreement with exact results. As we have seen in

previous sections, the scattered field, involving the conversion of energy among

radiating modes, is a very complicated quantity which offers little prospect

of simple approximation in any general situation. However, in particular cases

such as back scattering by a sinusoidal surface at oblique incidence (Figs. 5-25

through 5-29), there if some hope ot developing an approximate technique. In

a procedure directly analogous to that for E polarization, the field back seat-

tered by a sinusoidal surface at oblique incidernce was computed by the stationary
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phase method using the exact surface field over only a restricted portion of

the illuminated region of the surface. The results are shown in Table VI-6.

TABLE VI-6

Comparison of the Energy Backscattered by a
Sinusoidal Surface: d - 1. 155k, e = 600, Computed
Using the Exact and Stationary Phase Methods.

Normalized Back Scattered Energy
Surface Stationary
Amplitude (a/?) Exact Method Phase MethoJ

0.3 0.98 1.06

1 0.4 0.64 0.69

0.5 0.75 0.70

0.6 0.60 0.64

0.7 0 0.16

Although the agreement with the exact values is excellent, the

approximate method still requires a knowledge of the true surface field over

a small region of the surface, and in order t, avoid solving the integral equa-

tion numerically, it is necessary to find some other means for estimating this

field. As regards the phase, the physical optics value turns out to be adequate;

unfortunately, the modidus is a much more complicated quantity and, unlike

E polarization, is not dependent on the local surface properties. Many different

methods using combinations of ray optics and surface wave theory have been

tried. For example, one method considered the interaction of two rays: the

incident ray and the ray reflected from the opposite face of the surface; another

method considered forward and backward traveling waves whose amplitudes

we sought to choose to fit the exact data. However, neither of these methods

alone (or even in combination) was satisfactory, though it was noted that a

rough estimate for the modulus was provided by the imaginary part of the

physical optics approximation. Though there is no physical basis for this
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whatsoever, the corresponding estimates of the back scattered field were

computed, and a comparison with the exact values is given in Table VI-7.

TABLE VI-7

Comparison of the Current Modulus over the Illuminated Region
Of a Sinusoidal Surface, Computed Using the Exact Method and
The Imaginary Part of the Physical Optics Approximation.
(d = 1.155X, 0 = 600).

NTormalized Current Modulus *
Location Approximation Using

Surface of Point, Exact The Imaginary Part of
Amplitude (a/70 x Coordinate G() Method The Phys. Optics Values

0.915 1.75 2.00
0.3 1.010 2.05 1.92

1.109 2.30 1.84

0.938 1. 84 1.960.4
1.082 1.99 2.00

0.915 2.00 1.97
0.5 1.010 1.42 1.90

1.109 1.84 1.96

0.915 1.85 E.I9C
0.6 1.010 1.17 1.70

1.109 1.84 1.70

1.010 1.04 1.430.i. 109 0. 90 1. 37



Chapter VH

RAYLEIGH'S METHOD

As mentioned in Chapter IV in connection with Wood anomalies,

Rayleigh's work was one of the early attempts to theoretically investigate

scattering (electromagnetic or acoustic) by a periodic surface. His approach,
now termed "Rayleigh's method", is indeed an importnnt one, and has been

used, with or without refinement, by many subsequent investigators. We

shall now examine his method in some detail and compare exact data with

data obtained using his assumption.

7. 1 History

In 1U07 Lord Rayleigh studied the scattering of sound waves by corru-
gatcd surfaces and sought to solve the wave equation in combination with tile
appropriate boundary condition. His method is an intuitive one that has been

used by many investigators and is based on the following two assumptions:

a) the scattered field may be represented by a linear combination of discrete

plane waves, either propagating or attenuated from the surface, and b) this

representation holds everywhere above and on the boundary. A simpl- qmd

straightforward description of the Ra• leigh method for a periodic boundary is

given by Beckmann and Spizzichino (1963). The second assumption, which is

often termed the "Rayleigh assumption, " has been a controversial subject for

many years.

As first observed by Lippmann (1953), a choice of scattered field

consisting only of outgoing waves is not the most general, and may not com-

pletely represent the field within the grooves; at any point in this region, one

would expect the field to include waves propagating (or exponentially damped)

In both directions, since there are currents on those parts of the grating above

and below the given point. Meecham (1956b) studied reflection from irregular

surfaces with a method based on Fourier transforms, and obtained numerical
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results for the distribution of energy reflected from a sinusoidal surface. By

comparing these with experimental results and also with the ones obtained using

Rayleigh's method, he concluded that errors were of the same order as those

in the physical optics approximation.

Heaps (1957) attacked the validity of the "Rayleigh assumption" in

another way. He studied the reflection of plane acoustic waves at a sinusoidal

surface of zero pressure and investigated the least possible value of the sur-

face pressure consistent with the assumption that all the reflected radiation

is in the form of undamped plane waves. After comparing his results with

the experimental data of LaCasce and Tamarkin (1956), he concluded that

"if all reflected energy has the form of undamped plane waves then the surface is

necessarily sound absorbing and of pressure significantly different from zero.

Thus, in the neighborhood of the corrugated surface of zero pressure, it is

necessary to take into account other forms of radiation and such forms play a

significant part in satisfying the boundary condition. " Murphy and Lord (1964)

have also criticized the Rayleigh assumption. By making a direct comparison

of the results obtained from an exact representation of the field with those based

on Rayleigh's formulationý. they concluded that the latter is inadequate.

On the defense side, , -ire aie people who support Rayleigh's

assumption. Marsh (1963) has generalized Rayleigh's method, and considered

"the scattering of acoustic waves from a sinusoidal surface (y = a cos Kx) with

a Dirichlet boundary condition. He showed that the boundary condition can be

satisfied using only outgoing waves. !;umerical data were obtained for the

amplitudes of diffraction which, upon substitution ihco the energy relation, in-

dicated conservation of energy. However, it must be noted that the values of

Ka used were relatively small, and as shown later, the Rayleigh assump-

tion is indeed valid in this case. Additional support of Rayleigh's assumption

comes from Millar (1963), who argued from the viewpoint of analytic continu-

ation. He k-emarked that if the boundary values are analytic, "the exterior
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I field may be continued into the grating from above, and that the exterior plane

wave representation will converge everywhere above a plane parallel to y = 0.

Likewise aLe interior field may be co)ntinued into the upper half-space from

belc w, and the interior plane wave representation will be convergent below a

plane parallel to y = 0. If the two half-spaces of convergence so defined con-

tain a common layer which, in turn, completely contains the reflecting surface

y a cos Kx, then the two representations, each outgoing or attenuated in its own

half-space, may be matched on the reflecting surface where both are valid.

This remark seems very reasonable.

4,i Possibly the most significant step toward the resolution of the contro-

versy (with Dirichlet condition) was taken by Petit and Cadilhac (1966). They

demonstrated (using analytic continuation) that for the profile y - a cos Kx

(-co < x < co) Rayleigh's assumption could not be valid if Ka > 0. 448; for

Ka < 0. 448, the question remained open. Recently Millar (1969) used a tech-

nique developed to locate singularities of solutions to the Helmholtz equation.

By applying this to the sinusoidal prcfile, he was able to show that Rayleigh's

assumption is indeed valid if Ka < 0. 448 and is not valid if Ka > 0. 448.

In order to shed sone light on this remark, let us compute the scattered

field using the exact representation and under the Rayleigh assumption.

7. 2 Numerical Results by the Exact and Rayleigh Methods

For E polarization we have, from Eq. (2. 22),

d

5E (x, y) ~ P 1+ f'(x) K (i')dx . (7.1)
z 4 z• 0

Using the exact representation we can expand the field in terms of incoming and

outgoing waves, thus
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s OD -J(PmX+XmY) -0Ji( X"..XvY)
E '-Ce y) 2] (7.2)

From Eqs. (7. 1) and (7.2) we get

B W9 e j(P inX+X ny) -

S - K J (x)dx y(7.3)

C =s+e = 1+f,(x)V Kz (x)dx (7.4)

tS

where S and S represent the portions of the surface above and below a plaz1e

through the point P(x, y) (see Fig. 7-1). Of course, when y is above the grating,

i.e. y _> max f (x) , then

B i=A and C =0 ,m m m

where A is defined by Eq. (4. 4)
m

On the other hand using Rayleigh's assumption, we can expand the field

everywhere in terms of outgoing waves alone, viz.

OD(x, y) B= e (in x+XmY) 
(7.5)

If we now substitute

i int E 7[)in, wie ge

into Eq. (7. 1), we get
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a O 1 0m7 Jxl)+Ax nIi7 C T

z'Y2d T- zJ0

(7.6)

In order to make Eq. (7.5) equal to Eq. (7.6) everywhere on the surface, we

must remove the modulus sign in the kernel. Thus, equating Eqs. (7.5) and

(7.6), we obta-in

jvm x+x y) 2
B e -!+f(x)2 K(x)dx

+w z

.'MXXýv 2, {m XY
e Vlr~x)K (x)dx

i(13 x+X y)
+ e m m l+f(x)2 K (x)dx. (7.8)

SS

Intuitively we expect the discrepancy between Eqs. (7.2) and (7.5) to be greatest

when S =0, that is when the point P(x, y) is in the surface trough. Thus, let-

ting S =0, we get from Eq. (7.2)

E" d/2, -a) C e 2 (7.S)

m=--O:D

he re

Cd j(I3m-XY),-.~

C W-'.-"- U e )lt+f'(x) K (x)dx,
Cn 2dX z

Sar0

aind from Eq. (7. 5)
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- = In (7.10)
z zM

* where

j(P3Mx Xmy) f(

Inz

Using EqE. (7.9) and (7. 101, numerical results for the scattered field were

computed for a sinusoidal and an inverted full-w-ave rectified strface, and

these are shown in Table VII-1.

TABLE VII-I
11 E-polarization. Comparison of S-attered Fields at the Surface

Trough Obtained by the Exact and Rayleigh Methods.

I Type of Scattered Field
Surface Ka Exact Representation Rayleigh's Method

0.314 2.27440 - J0. 22657 2.27420 - JO. 22664
Sinusoidal 0.942 1.96310 -JO. 48310 1.95450 -jO.48166

1.884 1. 86610 - jO. 52445 1. 75170 - JO. 54162
FInverted
Inverted 0.314 2.42170 -J0.18443 2.42180 -jO.17913

{ Rectified 0.942 2. 22550 - jO. 49810 2.70- O468
Rectified2.22 J468

Table VII-l shows that, for sufficiently small values of Ka, the

scattered fields based on the exact and Rayleigh methods agree extreme.;

It !well for a sinusoidal surface. This is consistent with Millar's remark. In
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the case of the inverted full-wave r-ctified surface, agreement is rot so goad

for the same values of Ka. This is probably due to the fact that the jir.te.d-d

full-wave rectified profile is not an analytic function as is requir:d Ix LiVlar's

analysis.

Turning now to H-polarization, we have

d

11%,y) P1K ,. , "7-

Using the exact representation we get

-OD III x+XmY) -0J IlX-X Y)H.(x, y) [B e + C' e (7.12)
z M7--00 III

where

B' e - e X+Xm- y { 3f'(x K'(xb dx (7.13)

2 m i

and

C1 ( j(3m x- Xmy) Xm. ))
eC' - - m • f'(x)1 L( x)dx , (7.14)

-- 2dX in +Sm S

and when

y_? max If (7)

then BT =A' and C = 0
m m 171

where A' iL deflned by Eq. (6-2).
I
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On the othber haz$, using Rayleighs assuamption, we have

ii~()Z -j(6Xx+XY)15

$ ~ fwe owsubttt the exrsIn

m72m7

H enwsbsit h expese -

mm
j( 2 mT +sln)(xx')-j~ - iytyxIn1'x e e'dx

eqaingo Eq.(. (15) and (7e 16)

d c

(d j(Jx+ y)

2m~r +ks lnO (x-x) dx -y

Ce e~~~X Kt(x~dx +

+ .f -1 f'()3.(7.18)

5(1rX+Xx Y K1()d
InmmM
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and if v,•examine the field at he surface trough (so that S 0), then

H H d/2, -a) = dn e ( (7.19)

where

m 2d 1 e V - (xl Ktlx)dx,In 0

and from Eq. (7.15)

AtSx, y) - BI e 2m m (7.20)

Hz~y Z -M
where

•B' =Ifj j(P x+X Y)•X a)

BI eM- emf3l(x Kt(x)dx .

Numerical values computed using Eqs. (7.19) and (7.20) for a sinusoldal

surface and an inverted full-wave rectified surface with d =0. 2h, e=0 and

different values of Ka are shown in Table VU-2.

TABLE VII-2

H-polarization. Comparison of Scattered Fields at Surface

Trough Obtained by the Ex:.'ct and Rayleigh Methods

Type of Scattered Field
Surface Ka Exact Representation __Rayleigh's Method

S0.314 0.74072 - JO. 63363 0.75254 - JO. 62012
O 0. 157 0. 87126 - JO. 31756 0. 87870 - JO. 31196

"Inverted 0. 314 0. 79608 - JO. 34601 0. 92741 - JO. 34870
Full-wave 0.942 -0. 07901 - JO. 90223 1. 07230 - Ji. 000601 ~~~~Rectified __________

t I - _ _ _ _ _ _ _ _-



V 181

t It is interesting to note- that the criterion under which the Rayleigh

assumption holds seems different for H-polarization, with all data suggesting

that Ka must be smaller than the value 0. 448 appropriate to E-polarization.

I However, the exact figure for H-polarization is unknown. Again the 2gree-

p me-t between the exact representation method and the Rayleigh method be-

"comes worse if the periodic surface Is not an analytic function (such as an

inverted full-wave rectified profile).

From the above computed data for E and H polartzaticns, we there-

fore conclude that Rayle!g's method can be used, w.th sufficient accuracy,

for estinsitig the field scat';ered by P periodic surface provided that it is

analytic and has a small value of Ka (say less thaPn 0. 5). If the duetace is not

an analytic curve (in practice, a grating profile carnot be shaped to coincide

with an analytic curve), Raylelgh's method provldet us better results if the

incident field is E-polarized.

ft.

4~

* b ~

(/



Chapter VII

APPLICATION TO ROUGH SURFACE SCATTERING

8.1 Discussion

Although the main purpose of this work is concerned with scattering

by a periodic surface of arbitrary shape, it is appropriate to consider the

application of our results to scattering from rough surfaces.

In the past decade or so, a great number of papers have been published

dealing with this type of scattering. A few of the more important references

are Rice (1951), Hoffman (1955), Beckmann (1963) and Fung and Ch oi (1S39),

and if there is one feature that a!most all such theoretical treatments have

in common, it is their reliance on the physical optics approximation which, in

effect, reduces the determination of the scattered field to quadratures. Of

course, there exist many differences of detail, both conceptual and analytical,

depending, for example, on whether the perturbed surface is defined specifically

or statistically, the nature of the statistical variations assumed, the stage at

which averaging is performed, the method of evaluating the remaining surface

integral, whether shadowing is taken into account, etc. However, the results

obtained are still limited by the physical optics approximation, which takes no

account of any multiple scattering, is invalid for surfaces of curvature small

compared to the wavelength (small scale roughness), and provides a false esti-

mate of shadowing.

If the surface Is illuminated near normal incidence, these deficiencies

are of little consequence, primarily because the base surface provides a strong

return. As we depart from normal incidence, the surface concentrates the

return in the forward (specular) direction, where the estimated scattering

from the perturbed surface may remain valid, but in other directions (e. g.

back scattering) all of the observed return is a consequence of roughness, and

any perturbation based on physical optics is of doubtful accuracy.
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In order to treat adequately the case of oblique incidence on a rough

surface, it is desirable to postulate a base surface whieh will itself generate

a back scattered return at these angles; to devise a means for accurately

estimating this scattering; and then to handle by a perturbation technique such

small scale roughness as it may be desirable to include. In order to simulate

actual rough surfaces, the small scale roughness will be assumed statisticalV
in character. From the viewpobit of optical gratings, the effect of this kind of

roughness is equivalent to degrading a diffraction grating with small random

errors. For this reason, the results obtained here are also applicable to the

study of grating imperfections wlich may cause phenomena such as "ghosts"

and wave-front aberrations.

8. 2. Perturbation of the Surface Field

f• Consider a plane wave of either polarization incident in a direction

making an angle e with the positive y axis, as shown in Fig. 8-1. We repre-

sent the rough surface by a small scale .:,ughness superimposed on a sinusoidal

base simulating large scale roughness. The surface height is then

yf=x)=acos( -x) +(x)6 , -co<x<co (8.1)

with a >> J,9x)j.

Furthermore we assume that 4x) is a random variable obeying a

Gaussiaa distribution with zero mean, such that

g {x) I exp dx (8.2)•.a ,• 22
2ca

<6(x) > 0

where a is the standard deviation, and the bracket sign < > represents a statis-

tical average process.
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Fig. 8- 1: Geometry of a Rough Surface Consisting of a Periodic Base
and a Small Scale Random Roughness.
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In accordance with the boundary conditions, the wave induces on the

surface a current density F(r) which is the actual source oi the scattered

field. Application of Green's second identity and the appropriate boundary

conditions then yields the following oxpressions for the scattered field:

E (r) jw G(,rf)Fz(r')dt

(8.3)

H (r)=- 8_r'- F (r,)dI

for E and H polarizatic., respectively, where

7., r') - H (k rl)

A
and n' is the unit outwar.i normal to the surface.

If the observation point is far from the nearest point on the surface,

the asymptotic form of the Hankel function may be introduced; viz.

H02)(k2) . rklre-jnr exp {ik(x cos 0+ ysino (8.4)

' Iwhere

R _ f(x -_x,) 2 + ( -,)2 1I/2

and , is the angle of diffraction, made with the positive x axis.

iN4.Combining Eqs. (8. 3) and (8.4) we get

ACO

E (r) q() e +ls + f'( F (x)dx (8.5)
5k cn z
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for E-polarizatlon and

(r) ~Jk(xcosO+isinO) +f'(x) F(~

e co)( e) 'I

O-D
e Wq (xCos -sill Ft(x)dx

-O (8.6)

for H-polarization

•' where q(r)= ( ,/2e.jkr
,r krr

Sine thprtrbaio is

Since the perturbation is, by assumption, small, the perturbation on

the periodic base is equivalent to a perturbation on the surface current. More-

over, by using the fact that the modulus of the surface field is less sensitive

to a small change in the surface height than the phase, we can assume that the

perturbation on the surface field produces only a small change in the phase of'

the unperturbed surface field. This allows us to replace the rough surface by

its periodic base. Let

y =di)= o

arid

F ( ()K (8.K)

for E-polarlzation,

F t(x) K KtxWe Jkax) (8.8)

for H-polarization, where Kz (X) and KteWax)re theeurface fields for the uner-

turbed surface.
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Substituting Eq. (8.?) into Eq. (8.5) we get

ES(r, 0) - q(r) e1k(xces 0+ystn0)+ K (x)akj x). (8.9)z Z

'I

The intensity is then

K2E61+P(x, 1+f(x) (x)K x)e dX)dX2,

1r 2) 21 z212

(8.10)

which has the average value

0.. 0oo jk[ x1 -x 2 )cos 0+(yl-Y 2 )sin 0]

*. , jk x1 )-•x 2
Z (xl)K(X2) <e > dxldx2 (8.11)

From our knowledge of sta~stics it is known that if OxI) and 6(x) are two
2 2

2

random variables of normal distribution with zero mean, variance a and

correlation coefficient c('r), their joint probability function is (see, for example,

Mlddleton, 1960)

16 x 1)2-c )•(x )+(x 2 )2 +
f 1 16x 21 2 i2(1 21/2 exp 2a 2(1 - c2 ) (8.12)
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The factor < > in Eq. (8. 11) can now be evaluated and is (Beckmann and

Spizzichinc, 1963)

LI A> xp -k2 2 tI1J- . (8.13)

and when this is subsituted• into Eq. (8. 11), we obtain

< IO(U, 0)1, > =WOC e x-x,-)coso +(y, 1- 7 )ls FJ

JK 1x WK(x )exrpF-k a2 1-c dxd (8.14)

For convenience, the no.-mnalized correlation coefficient will be used

2 2
c(7) = exp(-!/T) (8.15)

where T= X1 -x 2 (assuming stationary process) and T is the correlation distance.

Using the expansion

r-22 2 22 (k 2)2n _n2 /T2
exp Lk-,W c - n! e

IFO

a little mathematical manipulation is sufficient to convert Eq. (8. 14) into

O 2 2m /Tx

< (r, 0) 2> v(r)(T/ka)2 u(x, )dx + 2v(r) &,kx, e d* 2

+ j )xd)x2e-x2/Txdx
+ 2v(r) Su(x, 0)2+""Td ". (8. 16)
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where

2 22
v(r)-=-q(rf e kcI/T2

u(x, e) eJk(xc+s '-ysin •)V+f'x)2 K z(x).

To evaluate Eq. (8.16) numerically, we must reduce the limit of

integration from infinity to a finite value. This can be done by notirg that

K (x) is a periodic function. Thus, using Eq. (2.21),z

< ,o"r,-0)12>_ v)/k)2S )jkmdu'cxs )-sin0)}dx

p+ 2vlr)~ • •x ) =-.ek1~(O55f0 (x+mid)e-(x+md)2/T 2 }~

+2r(r) dx+md)2 + d T% 2"
c2, 2

which ande 5 uaxt b E enin dcos sin 2•es . (xnminid) Eq/T.d

(817), it isosre htfrsalvle fatefirst term dominates ar~d

reprsens cotriutins cmin manly romtheperiodic base, while the

•. scondandhigher order terms are the contributions from the perturbations.

lI' Numerical results showing the scatte red field pattern for a sinusoidal
(d 1. 15r) a 0. 3) and 0 -Q0) are shown in Figs. 8.2 through 8.4

rer 0.e05t and T varying from 0.5d to 3d. It is seen that the diffracted

energy spectrum has broadened slightly into a shape like a pencil beam around
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Fig. 8-2: Scattered Intensity Pattern (T 0. 5d), for E polarization.
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Fig. 8-6: Scattered Intensity Pattern (T = d), for H polarization.
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Fig. 8-7: Scattered Intensity Pattern with Finite Source Illuminmi ion
(p = 3d, T = d), for E polarization.
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the discrete (unperturbed) spectrum. In all cases considered, there is a

decrease of diffracted energy in the specular and normal directions when the

surface is perturbed. There is also some evidence of surface wave' radiation

for small 0. In the back scattered direction, however, the energy is relatively

unaffected.

In an analogous way, using Eq. (8.6) we get for H-polarization

d O

+2v?(r)jSu 0) •Z {eimd(cos "1n ) (x+ md)eX+ md) 2/T .dx-<H(r I'` vfr ::ka) N,0 oý
Cd 00-x~d

+ 2v'(r) u'(x,0) {Jkmd(cos -sin0 ) (x+md) e md)2T2 2

+ .. . (8.18)

where

u'( ) ej~xco 0+ y sin 0) { f'(x) cos 0 -sin 0} Kt(x),

+20 u'(x, 0) :e(xmd x

in which the first term represents the dominant contribution from the periodic

• base surface, and the second and higher order terms show the effect of the

• small scale roughness. Numerical results for the scattered field pattern for

ii n sinun-oidal surface (d = i. l55k, a = 0. 4h and 0 = 600) are presented in Figs.

•" 8-5 and 8-6, where ur = 0. 05X and T varies from 0. 5d to d. It is seen that

;. : they bear the same features as those for E-polarization; however, we observe

S~now there is a decrease of diffracted energy in the back scattered direction.

M=-O
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In the above study we have assumed an unlimited illumination area which

means that the entire infinite rough surface is exposed to the incident wave

(whether there is shadowing involved is another matter). However, in a mors

practical situation, it is likely that not all of the rough surface will be illuminated

(limiting illumination area) because of the finite aperture of the illuminating source.

Thus let us assume the incident wave to be a plane wave whose amplitude is given

by a Gaussian distribution as

i = -jk(x sin 0 - y cos&) (8.19)

E =r)1W e (.9

for E-polarization, and

Hi W = Ixe-jk(xsin 0 - y cos 0) (8.20)

for H-polarization, where

1 2

I(x) - exp(-x /2p 2 (8.21)

and p is the standard deviation.

Rigorously speaking, in order to find the current distributions. on the

rough surface due to the finite source Illuminations Eq. (8. 19) or (8.20),

it is necessary to solve two other problems whose integral equations are

K ((2)(k r i(x)e-Jk(x sine-ycosO) (8.22)

[r ' S

for E-polarization, and

K Kr) a Ho2) (k M1rrd 4j Wix e-jxsine-ycosO), LKt (8.23)

for H-polarization.
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"But If the amplitude of the incident wave does not decrease very rapidly with

respect to x, the current distrIbution for the finite source Illumination can be

approximated by the current distribution for the non-limiting source ilhtrnination

after multiplication by the factor given in Eq. (8.21). Thus irom Eq. (8. 16)

< + 2v2r) >'~(x, O)xe-x/ dx

S-M
OD 2 2 2

+ 2v(r) u(x,)x 2 e x dx +... (8.24)

where u(x, 0) u(x, 0)I(x).

Eq. (8. 24) can be computed numerically by considering only that part
•= ~of the surface where t~he anmplitude of the incident wave is significant. The

numerical results for a sinusoidal surface (d = 1. 155N, a - 0. 3k and 0 = 60°)

with p = 3d and the limit of integration varying from -lOd to +lOd are shown
i in Fig. 8.-7. It is seen that the results are very similar to those obtained

previously for an infinite illumination area.

In an analogous way, we obtain for H-polarization

p ii
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¢" 2

+ 2v'(r) O u 0x, eX /T 2dx

2 22, i25 v~ ,)x dxj +.. (,.25

where W'(x, ) Uu'(x, 0)1(x).

The numerical results are shown in Fig. 8.8 (using the same parameters

as fr E-polarization). Again it is seen that the scattered field intensity pattern

has tht. same characteristics as the pattern for an infinite illumination source.

I9
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Fig. 8-8: Scatter'ed Intensity Pattern with Finite Source Illumina'ictn
(1) 3 :d, TF =d), fr101'I polarization.



Chapter M

CONCLUSION

We have here considered the problem of a plane electromagnetic wave

incident on a perfectly conducting, two dimensional iperiodic surface, and have

developed numerical procedures for the direct digital solution of the integral

equations for the surface: "'-s. By using special summation techniques fol-

lowed by the subtraction of the dc term to improve the convergence of the

series for the modified Green's function, a relatively efficient procedure has

been arrived at, and this has been programmesd for a computer.

For both polarizations (E and H), daza have been obtained for the surface

fields on a variety of profiles representing sinusoidal, full-wave rectified,

inverted full-wave rectified and triangular surfaces having different periods,

amFlitudes and angles of incidence. In each case the physical optics approxi-

mation is included for comparison and to aid in developing a simpler method

for predicting scattering from a periodic surface. It was found that the polari-

zation has a marked effect on the surface field, and the current distribution is

strongly dependent on the number of radiating modes. In general the physical

optics method fails to give an accurate prediction.

Knowing the surface field, the amplitudes of the diffracted waves in the

discrete angular spectrum representation of the scattered field can be computed,

and this has been done using the exact surface fields as well as the physical

optics estimates with shadowing either included or ignored. Here again the

physical optics predictions are deficient, and whereas the results derived from

the numerical program satisfy the conservation of energy law, the physical

optics values do aot.

The numerical results have been used to explore the physical phenomena

associated with the diffracted energy of the radiating modes and known as Wood

anomalies. Both the S and P anomalies were observed. It was found that there

198
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are anomalies which do not occur at the Rayleigh wavelengths, and the S-type

anomalies are generally stronger than the P-type and can occur on structures

having relatively shallow grooves.

Consideration has also been given to the Rayleigh assumption. Numerical

data for the scattered field were obtained for surfaces of different profiles using

the exact and Rayleigh methods. The results are consistent with Millar's re-

mark, and indicate that the criteria under which the Rayleigh assumption holds

are different for different polarizations.

Lastly the knowledge gained from the study of periodic surfaces wa3

applied to a study of rough-surface scattering. The rough surface was con-

sidered as a small scale roughness superimposed on a sinusoidal pe:iodic base

(large scale roughness)., the small scale roughness having a Gaussian distribu-

tion. The numerical results obtained show that the main effect of a small per-

turbation is to broaden slightly the dis crete (unperturbed) saectrum.
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Appendix A

PHYSICAL OPTICS APPROXIMATION

Although the main purpose of this work is the development of a numerical

technique for the determination of exact values for the surface and, hence, scat-

tered fields, we have found it desirable to compare the results obtained with

those provided by the physical optics approximation. This approximation is

a physically-based one which postulates an explicit form for the suriace field

arrived at by assuming each element of the surface to bear that current which

it would carry were it part of the local tangent plane. The calculation of the

scattered field is then reduced to quadratures.

In many inst.aces, however, and a periodic sheet is one, an analytical

evaluation of the physical optics integral is a difficult procedure, particularly

in such cases where part of the surface is shadowed, and some of the short-

comings of physical optics estimates in general certainly arise from sloppiness

in the evaluation of the integral. In still other cases, the physical optics result

proves to be more accurate if shadowing is ignored (see, for example, Adachi,

1965) and it is of interest to observe that for a sinusoidal sheet It is then pos-

sible to produce an exact evaluation of the integral. Needlessto say, however,

the resulting scattered field is still subject to the unknown errors inherent in

the use of the physical opti-s approximation, and to the neglect 'if present) of

all shadowing effects.

The procedure is directly analogous to that given by Senior (1959) for the

particular case of an H nolarized plane wave at normal incidence on a sinusof.al

sheet and consists of three ,steps:

(i) writing down the physical optics integral for the scattered field

without any shadowing included;

This mrfted .,tho! 'is doinetimineb called extended pihyaiuml l-G".
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(ii) asymptotically evaluating this expression appropriate to an

observation point at large distances from the sheet; and

(iii) matching this expression to a discrete angular spectrum of waves

to obtain their amplitudes. Since these amplitudes are independent of the field

point we have, in effect, produced an exact evaluation of the integral valid cer-

tainly in the half space above the sheet.

Let us take the equation of the perfectly conducting sheet to be

y = acos Kx (A.l)

where a is the amplitude of the corrugations and 24/K - d is the period. If

the incident field is E-polarized, we write

Ei . e-Jk(x sin 0- y cos )(A. 2)

(cf. Eq. 2. 20), implying

H -Y(cos exs-s uy) e (A. 3)

where Y is the intrinsic admittance of free space.

By virtue of the periodicity of the sheet and, hence, of the problem as

a whole, the scattered field can be expressed as a discrete spectrum of waves

which waves are certainly outgoing as regards y > a. Thus, we have

_ A e-jk(xsinO +ycos 0 )Es z2_ A Am. e (A. 4)

where

ksinO mK+ksinO
m " (A. 5)

kcosfl = •-i~(mK+kstnB)2
in
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and that branch of the square root is chosen having imaginary part non-positive.
Application of the physical optics approximation, followed by steps (i) through

(iii) above now gives

A In k mcosO-mKa sin iJn(g (A.6)
m k -(mK+ksinO) 2 {AM--sn 01 '

where

"r a (k cos e+ Ik2-(mK+ksino)2) (A. 7)

In particular,

I A 0 -J 0(2ak cos0),

andas a->0,

A->1, A ->0, m#O

in agreement with the known solution for a flat sheet.

If the incident field Is H-polarized, we take

_ 'e -jk(x sin f - y cosO) (A. 8)

implying

Ei I ^cos .+S,,, -jk(xsinO-ycos 0)-- yf OA )ce x s n y e ,(A. 9)

and expand the scattered magnetic field as

A o Ca -jk(x sin 0 + y cose )
_Huz Z A'm e (A. 10)

''mM=--03

where 0 is as before. On evaluation of the physical optics integral, we now

obta m
•-=- obtain
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A' -A (A. 11)
In In ~.L

The equivalence of the results for the two polarizationR. is consistent with the

known fact that the physical optics approximation for a perfect conductcr is

inherently polarization insensitive.

Results computed from Eqs. (A. 6) and (A. 11) agree with those given

in the appropriate columns of Tables rn-1 through 1I-4, Tables V-I throagh

V-4, and obtalaed from a numerical evaluation of the integrals in Eqs. (4.4)

and (6.2).I

! I

I\



APPENDIX B

An Alternative Integral Equation for E Polarization

Another integral equation for the surnace current on a periodic

conducting surface can be derived. It is different from Eq. (2.11), and since

it is a Fredholm equation of the second kind with a weakly singular kernel, it

can be solved using an iterative scheme such as a Neumann series.

Consider the perfectly conducting cylindrical surface of Fig. B-1. The

equation of the surface is y = f(x), where f(x) may or may not be a periodic

function of x at this stage of the discussion. The incident plane electromiag-

netic wave propagates in the direction of the unit vector

A A

ksinOx-cos y , (B. 1)

and the incident electric field is parallel to the generators of the surface:

Ei = e-J'kx sin 0 - y cos 0 ) (B. 2)

The time dependence factor ej-t is omitted.

The scattered field is (Stratton, 1941)

-JkR1

E ES(r ) + z- dv (B. 3)

where. R 1 _ __ l+ z-ZA (B. 4)

NPx, y, z) and P'(x', y', z , are i.he field and integration points respectively,

I is the volume current density, and v is a volume containing both the field

point and the scattering surface. The vectors r and r' lying in the plane z = 0

are shown in Fig. B-1 and are given by

I =X A 1^
r xx+yv, r' x+y' (B. 5)
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Fig. B-i: Scattering by a Cylindrical Surface.
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Fig. B-2: Geometry of Orthogonal Vectors.
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If K is the surface current density, Lben

Kds=idv (B. 6)

and therefore

-jkR1

E (r(+ z z)__P K ds
47-' R z

S

JW'POaD e-jkR i
= K z(r')dx' R dz' (B. 7)

NSo

where S' is the scattering surface, and S is its profile in the z 0 plane.
Now

\co (kR)
e d z' j•H (2)(kR) (B. 8)

-- 0D

where R (=x-x') +(y-y')2 (B.9)

Substitution of Eq. (B. 8) into Eq. (B. 7) welds

jjI (o2) _ j(

ES(r+z)=E S(x) - -(2 (B. 10)
_ z" H0 (kR)K (r')ds'z - z 4 0--

S

!~2
where d s l+f'(,v dx' I (B. 11)

The kernel H(2)(kR) T, + f'(x) 2 Is nonsymmetric and weakly singular at R = 0,

0 2)
due to the logarithmic singularity of H()(kil).

Lpproahet the normal n to the surface S' at the fixed point P be as shown

in Fig. B-2; differentiating both sides of Eq. (B. 10) with respect to n, as P

/approaches the surface S', we obtain
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P -00 a ( (kR)K (_ds. (B. 12)
S

To evaluate the left-hand side, observe that with the three basis vectors

t, n and 2 of Fig. B-2. Maxwell's equation VIE =-Jw#0 with E - E gives

(H -0 on S')n

8E aE
tl.-,i- n H H z) (B. 13)

and therefore,

aEE
Z CZ

z-= -jwpo0 Ht (B. 14)

Since K=nXH and E E +E z, Eq. (B. 14) becomes

aEs aE IZ Z

aE

.. : Jk (. sin 0 - cos e -jk(x sin 0-y cos 0) (B. 16)

and making use of the relations

ax A.x A A A AVy).-n_ = • = -n , (B. 17)=(n 8an

and Eq. (B. 1), Eq. (B. 16) gives
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aEi
z A A -jk(xsin -ycos0)

an -jk-ne(B. 18)

Substitution of Eqs. (B. 15) and (B. 18) into Eq. (b. 12) yields

E siOVo (2)
K (r)- H" n e-Jk(x 4 o- H 0 (r+ds

dS
(B. 19)

Since the integrand in Eq. (B. 19) is singular, when P - P', particular

care must be taken in interchanging the differentiation with respect to n and

the integration with respect to x'. This difficulty was previously encountered

by Maue (1949) and Riblet (1952), among others, and can be overcome in the

manner that they adopted. The procedure consists of interchanging a/an and

Sbut in replacing K (r) on the left-hand side with - K (r): for a detailed
S? _ 2 z

justification of this step, see Maue (1949). The result is

1K -jk(xsin 0- + (2)

z 0
'4~~ i Tf... 2

JS
(B. 20)

It now remains to evaluate the partial derivative in the Integrand, viz.

a..(2)
a ( 2) 0 aR

- kH kR)--•-p (B.21)
an 02(kR) - (kR) a n

aH (2) (R

where 0 . (2) (kR) (
a(B.2 I
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8R 3 NR8X + R 37 x-x_ ^ .A A W-0. n

an 8x n 8y n R R R

= -R'n, (B. 23)

A r'-r
with R= R (B. 24)

which is a unit vector directed from the fixed point P towards the integrand

point P'. When Eqs. (B. 21), (B. 22) and (B. 23) are inserted into Eq. (B. 20),

we have

A A -jk~xsin 0- ycos 0)~ +k £ A(2)

K (r) -2 - k n e-- 2 -(n)H I(kR)K (rl)ds' (B. 25)

FTs i

which is a weakly singular one-dimensional Fredholm integral equation of the

second kind for the unknown surface current density K

As a simple check, let us take f(x) = 0. Then R n 0 and

K =2 -7 cos e e sin0  (B. 26)
z FM0

which is the expected geometric optics result.

Equation (B. 25) is valid for any cylindrical surface and thus cap be

applied to the case of a periodic surface.


