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Chapter 1
INTRODUCTION

Periodic structures find 4 variety of applications in fields ranging from
acoustics and electromagnetics to optics. Typical examples are the diffraction
gratings used in optical spectrometers and as resonator components in sub-
optical lasers, the slow-wave structures in microwave tubes, and for micro-
wave lenses and broadband sbsorbers. They are also important to oceanograph-
ers in the study of acoustic or low-frequency radio wave scattering from atu
idealized sea.

Mathematically, the problem of the scattering of waves by a periodic
surface is one which is easy to formulate but difficult to solve. It consists
of solving the wave equation subject to boundary conditions imposed at a sur-
face whose shape can be very complicated. For this reason, an exact analytical
treatment of the problem is seldom possible, and it is only recently, with the
advent of the high speed computer, that reliable results have been obtained.

Prior to this time, a variety of approximate analytical treatments were
developed, most of them based on an approach originated by Lord Rayleigh
(1878). Assuming the surface to be infinite in extent and making use of the
periodicity in (say) the coordinate x, Rayleigh expanded the scattered field in
a discrete spectrum of outgoing plane waves, which representation was assumed
to hold right down to the surface. Application of the boundary condition leads
to an infinite set of linear algebraic equations, valid for all x, from which to
determine the complex amplitudes of the scattered waves, infinite in number.

The crucial and unjustified step (see Lippmann, 1953) in this procedure
is the assumption that the representation of the scattered field hoids every-
where above and on the boundary. This has ever since been a subject of con-
troversy (see, for example, Lysanov, 1958). Thus, for a perfectly conducting
sinusoidal surface, Rayleigh (1878) obtained a solution by successive approxi-

mation based on the initial neglect of all attenuated waves and assuming that




the amplitudes of the corrugations are small irregularities compared to the
wavelength. Later, for the small surface, Tai (1948) proceeded via an
orthogonal mode expansion, followed by matrix truncation, and others have
pursued essentially the same path. An analogous treatment for a corrugated
interface between two homogeneous media was developed by Rayleigh (1907), and
applied tc a sinusoidal profile by Pavageau (1963) and to a triangular profile by
Bousquet (1963).

A refinement of Rayleigh's method was developed by Uretsky (1965).

His method starts in the same way as Rayleigh's, but instead of merely assuming
that the scattered field can be expanded as an infinite set of plane waves, Uretsky
proved that this is possible for observation points not too close to the boundary.
To avoid Rayleigh's assumption that the representation holds right down to the
surface, Uretsky used Green's theorem to express the scattered field as an
integral over the elernentéry gources induced on the boundary by the incident
wave. Numerical results were obtained for a sinusoidal surface with a Divichlet
boundary condition.

Methods of small perturbations similar to Rayleigh's were used by
Miles (1954) and Katsenelenbaum (1955). The typical procedure is as follows:
the boundary conditions specified c;n the uneven surface y=f(x) are trans-
formed to the plane y =0 by expansion in a2 power scries with respect to f(x).
Thus the problem of scattering from an uneven periodic surface is reduced to
solving the wave equation subject to specified boundary conditions on a plane.

At best, all such solutions are valid only for corrugations whose height
is much smaller than the free space wavelength, and in an attempt to overcome
this restriction,Meecham (1956a) used a variational method to find the angular
distribution of scattered energy for a perfectly conducting grating. The scat-
tered field was represented'as a linear combination of known solutions of the
wave equation whose coefficients were obtained by a least square fit o the
boundary condition at the surface, and the procedure was then applied to a tri~

angular (or sawtooth) profile.
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A somewhst different approach waa teken by Eckart (1953, He expressed
the scatterad field as a Helmbhoitr integral involving the scaitsred fleld itself and
its normal derivative on the boundary. The integral was then evaluated after
asauming that the reflection took picce at ap equivaient flat surface, and approxi-
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mating the scattered fisid and its norms! derivative on the boundary by the
incident field alone. Ancther meinud also baged on variations on the Kirchhoff
approximsiicn was used by Brekhovslkikh (1952). The method assumed that the
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i field at the un®ven surfece was local in nature and could be specified in terms
t of the l1aws of gacmetrical optics. The field at each point on the surface was
v assumed to be the same as if the reflection from that point were to occur from

an infinite piane tapgent to the surface at the apecified point.

A method based on physical optics was used by Senior (1959). Once
again the determination of the field is reduoced to quadratures, and Senfor showed

R
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that for a plane wave at normal incidence on a sinusoidal grating, the physical

optics integral can be evaluated exactly to give the complex amplitudes of the

scattered waves., As indicated in Appendix A, the same is true (if shadowing is
. ignored) for both polarizatious, and for oblique incidence as well as normal. It

should be emphasized, however, that the solution is still approximate by virtue
of the poetulated surface field distribution, and the failures of the physical optics
estimate of the surface flolde are examined in Chapters III and V of this work.

A method which is quite distinct from all of the above was developed
by Sivev (1964) who used conformal transformation and a considaration of the
static limit to analyze reflactions from periodic surfaces with shallow and deep
corrugations. The procedure ia similar to that recently employed by Millar

S < S e SR A

_y" (1969, 1971) to investigate the inherent limitation of Rayleigh's method (see

E Chapter VII). As first noted by Lippmann (1953), it is not in general valid to
i assume that the expansion of the scattered field as a discrete spectrum of out-
going waves alone holds over the entire scattering surface, and this fact was
later verified by Petit and Cedilhac (1964) in the case of a sinuaocidal grating.

N
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In any general treatment of the grating problem it ie therefore necessary to
allow "ingoing" waves in the immediate vicinity of the surface.

All of the methods consideved so far are very limited (satisfactory only
for certain classes of structures) and have little success in predicting certain
characteristics of periodic structures (for example the P-type Wood anomalies).
In the desire for a better understanding of Wood anomalies (see Chapters IV and
V1), a different point of view was proposed by Hessel and Oliver (1965). They
used a guided wave approach and replaced the uneven surface by a pldne which
had a modulated surface reactance. Their theory is more general than the pre-
vious theories and predicts the general locaticn and shapes of the anomalies.
Since the surface geometry and the modulated plane reactance cannot be related
quantitatively, information about the performance of a specific structure cannot
be obtained.

Recently, another approach based on function theoretic techniques was
used by Tseng, Hessel and Oliner (1968), and Itoh and Mittra (1969). Unfor-

tunately structures for which such methods are possible are very few.

Without exception, all of these analytical attempts to determine the fields
scattered by periodic surfaces are subject to approximation, either implicit or
explicit, and it is only with the use of high spe'aed computers permitting the
direct digital solution of the integral equations that reliable restlts have been
obtained.

Most of the initial work in this area was carried out by the French
investigators, such as Petit, Cadilhac and Wirgin, and was motivated by the
desire for more efficient optical diffraction gratings. In his early papers Petit
(e.g. 1963) followed Rayleigh's approach in expressing the scattered field as a
discrete spectrum of outgoing waves alone, leading to a matrix equation for the
determination of the spectral amplitudes., Since the matrix was then truncated
and inverted numerically, it will be appreciated that the method is no more than

a digitization of that originated by Rayleigh. However, in later papers (Petit,
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1967), the Rayleigh assumption was circumvented by using &n integral equation
formulation. Series expansions were adopted for the fncident and scattered
fields and the integral equation converted to & matrix equaiion which was solved
numerically. Specific results weee ohtalned for plane wave incidence on gratings
with triangular profiles, and the efficiencies computed. A rather differemt
approach was taken by Pavageau (1967) who dérived the integral equation direct-
ly in terms of the unknown surface curreat. The equation was cagt in the form
of a honhomogeneous Fredholm equation of the second kind and solved by itaration.
Methods which are very similar to that which we shall use have recently
been employed by Neureuther and Zaki (1968, 1971a,b) and by Green (197G). The
former considered scattering by perioedic astructures, cither dieleotric or per-
fectly conducting. The integral equation was obtained from Green's theorem
and the modified Green's function expressed in either of two ways depending on
the parameters of the surface. The first (space harmonic) representation is
analogous to that used by Petit; the second consiste of an infinite series of Haitkel
functions, and was computed using a Mellin transfoim and an asymptatic com~
parison scheme. Numerical data were obtained for sinusoidal profiles, and very
recently data were obtained also for triangular profiies by Kalhor and Neureuther
(1971). Green (1970) also uséd the spacs harmonic representation, but improved
its convergence by summation techniques. Data were jresentsd for the surface
field and diffraction efficiencies of perfactly convducting gratings with triangular
profiles.
The present work also employs the numerical spproach, and i8 concerned
with the scattering of electromagnetic waves by infinite, porfectly conducting,

two-dimensional periodic surfaces of arbitrary but cortiniious profile.
wave incidence is assumed, with either E

Plane

or H polariuuntion, and both normal
and oblique incidence are considered. A representation of the sreen's function

{8 employed which is similar to that used by Green (1970), and the convergence
ie improved still furthor by eubtracting the dc terms. 7This has the added ad~
vantage of making explicit th¢ behavior of the Green's function in a neighborhood

o —



of its singularity. The integral equations are forimulated on the basis of the
Green's theorem, and the range of integration is reduced to a single period
by application of Floquet's theorem. Using the moment method and an inter-
polation scheme, the iategral equations are converted into a matrix equation
which is solved to yield the unknown surface current.

Chapter II is concerned with the formulation of the integral equations
and the de- ~*~nment of numerical procedures for solving them. Numerical data
for E polarization are presented in Chapters IIl and IV. Chapter III is concerned
with the surface field while Chapt:r IV is devoted to the scattered field. Numer-
ical results are obtained for a variety of surface profiles such as sinusoidal,
full-wave rectified, inverted full-wave rectified and triangular, having various
combinations of amplitudes, periods and for various incidence angles. In pre-
senting the numerical data in Chapter IV, particular attention is given to the
Wood anomalies (P-type), and in both chapters, the data are compared with the
physical optics predictions.

The numerical results for H polarization are presented in Chapters V and
VI and the S-type Wood anomalies discussed. The results support Palmer's
experimental observation that the S-type anomalies are generally stronger
than the P-.type and can occur on structures with relatively sha-l'mw grooves,

Chapter VII is devoted to Rayleigh's method. After a brief historical
survey of the assumption, numerical data are obtained for the scattered field
using the exact representation as well as Rayleigh's.

Lastly, in Chapter VII, the knowledge gained from the study of periodic
surfaces is applied to an investigation of scattering from roygh surfaces. The
rough surface is treated as a small scale roughness superimposed on a periodic
base (large scale roughness) with the small scale roughness represented by a

random variable having a Gaussian distribution.
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Chapter I

FORMULATION OF THE INTEGRAL EQUATION
FOR NUMERICAL SOLUTION

We consider bere an infinite, perfectly conducting periodic surface
illuminated by a plane electromagnetic wave. Since the surface is assurnud
two dimensional in the sense of being independent of a Cartesian cooriiiaate z,
the entire problem is two dimensional, and the most general solutiun can be
deduced from the particular solutions appropriate to incident plsue waves having

eithsr E or H inthe z direction, i.e. paralle] to the corrugations. In either
case, the problem is essentially scalar.

2.1 Formulsation

1t is convenient to develop first the integral eguation in the somewhat
simpler case of a scattering surface of finite extent. Let S (see Fig. 2-1) be
this surface, and surround it by another closed surface S;. Let Y{(xr) and G{r |z
be two scalar functions which are continuous, together with their first and second
derivatives, on S and SR and throughout ti= volume V enclosed by them. Assume,

moreover, that y(r) satisfies the homogsneous wave equation

%

i

i TSR

(V2 + i) = 0

(2.1)
‘ inside and on the boundaries of V, wharaas
% (v + 1A el) = -&p-10 . (2.2)
? Applyiog Green's theorem to the volume V, we obtain
2}{
% G( v)...?... ‘l/ :) w( .).§_G( l)’} das’
? E‘E an' =L sa’ _l_‘_\}‘_ j
S5y
i
i .
i = {G(g |27 ) g ()7 +k2)G(_1j£')} av' = plr)

v (2.3)
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Fig. 2~1: Geometry for the Application of Green's Theorem,
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Illustration of the interpolation procedure.
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by virtue of the properties of the deltn function. We now identify yAr) with a
total fleld

o = v+
where wi(_x;) is an incident plane wave originated by a source at infinity (and
therefore outside V), and ws(_x;) is the field scattered by the surface S. Since
¢®(z) must satisfy a radistion condition at infinity, its contribution to the inte-
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gral over SB decreases to zero as the surface SR recedes to infinity, whereas

wi(g_) contributes itself, Equation (2.3) then becomes

\,‘,
37:“‘”. =
e

o

TR
¥

;l/ (r) W(r)+ [G(rlr') — WUr")- w(r')-'— G(r[_)} as'  (2.4)
8

o Sy
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A ) and in spite of the assumptions of an incident plane wave and a surface of finite

SRS e

extent, Eq. (2.4) is also valid for an arbitrary incident field and for a surface

e iEE
S 5 Ne S £
>

S extending to infinity. J:  he latter case, how=ver, the proof is by no means
trivial (Jones, 1952).

The particular situation of concern to us is that in which S is doubly
infinite und divides space into two regions. It is then sufficient to integrate
over only the upper (''illuminated') side of the surface. We also assume that
S is independent of the coordiaste z, aund this allows uz to distinguish two par-

ticular cases acocrding to the polarization of the incident field. Mks units are
employed and a time factor eM suppressed throughout.

2.1.1 E (or horizontal) Polarization

If gf = E; £, the electric vector in the scattered field will also be

confined to the z direction, and we can make the identification
Wr) = EXY) . (2.5)

Since the normal derivative of E:)t

Kz by the equation

is related to the suvrface current density
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o (r’) =-juK (&), (2.6)

where u is the permeability of free space, Eq. (2.4) can be written as

() = BLm)-jum | { G| )+ B e e} as

S - 2.7

tot tot(

At the perfectly conducting surface S the boundary condition is

tot
(r

E =0 (2.8)

and hence, on allowing r to approach the surface, Eq. (2.7) gives rise to the

integral equation

' ngst = ——g!
G(_I;lr)Kz(g )ds =3 E(r) . (2.9)
S

For « two dimensional problem the free space Green's function is
Glr|r) = -+ (klr ) (2.10)

(2)

where HO is the zero order Hankel function of the second kind. The final

integral equation is therefore

n(2) R . |
K (x)H " (Kr-x |)dt =5 E,(x) (2.11)
S

from which Kz has to be determined.

2.1.2 H (or vertical) Polarizatio:

If _I_{_l = Hiz%, the total magnetic field is likewise in the z direction, and

on making the identification
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o) =1, (2.12)

Eq. (2.4) becomes

H (r)=H(r)+ {G(rl_ )—-Htct( - H (r') G(r‘r'}dS' (2.13)

The boundary condition at the perfectly conducting suriace S is

5% B %x) =0 (2.14)

i) R 5
e SR~ S SN

e SpAi v (R o

and on allowing r to approach the surface, Maue (1949) has shown that (2.13)
reduces to

SHM =m0 | BN 5k ot as' (2.15)

The quantity H:)t is the induced current density, aud since this curient flows

tangential to the surface in a plane perpendicular to the z direction, we can
write

5
AR AN
e Yo - e s apc w8 S ns i  nben  AlAmckls o el S SA S

tot,
K(r) =H ()t (2.16)

v et dat

A
where t is a unit vector tangential to S. Inserting finally the expression (2. 10)
for the free space Green's function, we have

o

K (r)
8

2 52 - r'l)dl'=4j{H -3 K0} . (2.17)

¥ i.e.
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(2 . L 1
K (o)H, )(kl_r_-_g' D cos(B, |z-x'aer = 4 d H;(_g)- 3 Kt(-l:)f . (2.18)
S

This is an integral equation from which to determine Kt'

2.2 Reduction of the Integral Equations for the Periodic Surfaces

We now make use of the fact that the incident field is a plane wave and

that the surface y = f{x) is periodic with period d, i.e.
fix+md) = f{x) , m=711, ¥2, ¥3,... . (2.19)

As before, it is convenient to consider separa®ly the cases of E and H polari-
zation.

2.2.1 E Polarization

Let us assume that

-jk{x 8in6 - y cos )

E(x) =e (2.20)

where 0 is the angle of incidence with respect to the normal to tbe mean sur-
face. The integral equation is as shown in Eq. (2. 11), but since the integration
extends from ~oo to o, this is not appropriate for ~ numerical solution. How-
ever, by invokirg the periodic property of the surface, the integral can be reduced

. to one over a single period alone at the expense of a more complicated form for
the kernel.

From Floquet's theorem, we have that

-jkmdsine' m=*

K (r+mdX) = K (r)e t1, Yo, t3,... . (2.21)

Moreover,

det = \fl _:{fl(xt)}z dx’

where f'(x) is the derivative of f with respect to x. This allows us to express

the integral as one along the x' axis, and since
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r-r' = Vix-x - md+ (y-y)2,

we obtain

d o
-t Ty TTTTTT T g -
mZ-m ng) ky(x-x'- md)2+ (y- ,',r')2 > e Jkmd sin6 \f 1+ { f'(x')} 2 Kz(x')dx'
0 ) .

3 e-jk(x 8in6 -y cos6)

(2.22)

valid for 0 <x<d with y = f(x), y' = f(x').

In arriving at (2. 22) we have implicitly assumed that interchanging the
order of integration and summation is valid (a fact which is by no means obvious),
but even so Eq. (2.21) is not a very promising equation for numerical purposes

because of the extremely ppor convergence of the i=finite series constituting the
kernel. To rectify this situation, consider

o)
p1 = Z Hg?) @\/(—x_-—x'—md)2+(y-y')2>e-jkmdsme . (2.23)

m=~m

Using the Fourier integral representation of the Hanke! function, the Poisson
summation formula (see, for example, Morse and Feshbach, 1953) applied to
(2. 23) gives

2 3 ZBT Ly sinO)x-x") -jly-y'X
p =2 Lo d o m (2.24)
174 £ X ' .
m=-0 m
where - R
2 <§m1r 2
x_=yk°- (BT +ks’m6) (2.25)

and the chosen branch of the square root is that for which

ImX <90
m-=

in order to satisfy the radiation condition,
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The expression (2.23) for P1 has been used by Yen (1962) and Green
(1970), and is equivalent to that obtained by Neureuther and Zaki (1968) using
a space harmonic expansion. The features that should be noted are that if

y #y' the successive terms decrease exponentially with increasing |m, for all

! kd kd
m+ or sin@| > or

and that in addition there is an algebraic decrease (proportional to m_l) pro~
vided by the factor Xm in the denominator,

We can produce still a further improvement in the convergence properties
of the series by separating out the zero-frequency (k = 0) terms, and this has
the added advantage of making explicit the behavior of P1 in the vicinity of the
singular point x' =x, y' =y. Putting k = 0 in (2.24), we have

2 2
x° _j__gl_z_r (x-x") -0 |m(y-y')|
2 1 d d
Pll- =-3 e e (2.26)
k=0 m=-00 j|m| <~
and since
E—“"’ g (xex) - By
=4 log - 1~e d d -
- j T
m=1 2mj .
— _2_7_1’ S | - L B
_d Jg x-x)-Try-y
c==—1log l-e
& 8rj
m=-a -

(see, for example, Collin, 1960), provided y' # y, it follows that
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on
-5 [[y-yFix-xY)
P1 =(m=0 term)-j-log ‘1{1-8 d [l | ]}
hao 4

{l-e‘-zdl Dy-y'l-j(x~x'—)_]}] . (2.27)

Hence, by subtracting the zero frequency value of each term of (2.24) and then
adding (2.27), the integral equation (2.21) takes the form

d

kx'sin@ 0
G, (x,y; x',y')l(z(x')ej g \/1+ {f'(x’)} dax' s%‘.;.‘ Jiyeost
0
0<x<d, (2.28)

where

1 e-jk[y—y'lcoso

! oY) =
G, lx, y;x',¥") = 12358

2 ' t . -2._ 4 '
m r{l-e_..é.’ [ly-y|+j(x-x2‘} 2 - guy-y\-j(x-xﬂﬂ

log | l-e 1
27 L (S J_J
(.. -yt + ...2_13.27. !
IR A y-y'lx + 1v-v'
+ 2 + 2
e
2; X+ J2m7r
m ) d
2mn N

2m7

o a x-x) |,
+ Z o + 2 ? (2.29)
m=1 X

with

+ 2 2m7m 2 - 2 2mn7 2
x! = - (BT geme? ,  x= I (BT keme? . (2.50)

y S
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We observe that the Green's function has now been expressed as the sum of

a term involving explicitly the amplitude and the angle of incidence, a logar-
ithmic function representing the true behavior of G in a neighborhood of its
singularity, and two series which are themselves differences of two convergent
series.

2.2.2 H Polarization

The incident field in this case is taken o be

-jk(x sin6 - y cos 6)

Hiz(_g) =e (2.31)

and the reduction of the integral equation (2.17) to a form suitable for numerical
solution proceeds in much the same way as for E polarization. Since
3 _ -1 9|

= —k f'(x’) —-— o — ,
on' ‘Y’I’l +J f'(x') r2 i ox! a3y’ f

Eq. (2.17) can be written as

d
P K (x)ax = 4y { Bl (- 3 X Ko} (2.32)
0
where
- w
m=-00
o)
j 2
= ,2(-]1- -Z- -}-(-1—- .f'(x')(-—r—g--ﬂ +ksin0)—Xmsgn(y~y') X
m=-m m -« -
_j(2m7r +k 8in@)(x - x*) -j|y-y';Xm
A€ e (2.33)

in which sgn(7) is the signum function and Xm is given in (2.25). The zero

frequency (k = 0) limit of P2 is
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le 1) 2m
5 - - -J-—d—(x x') -"- Im(y v'h
P2 =3 i—-— f'(x') +j sgn(y-y')} e
1k =0 m=- J
9 _j?:_fM (x x') - ly y‘
=3 {f'(x')+j sgu(y - y')} +27  £'(x') +j sgaly - y'); Z
o] 2mr r X
j «(x«x')+j|y~y'|'
+-§ -f’(x’)+jsgn(y-y')} Z e ¢ ° J ,
m=1
and since
o)
ZejmT = - % +% cot-;- ,
m=1
we have
2
P2 e =3 i'(x')+‘1&{f'(x')+j sgn(y-y')f cot {- g(x-x')'*'j g ly-y ].‘{

B

1 .
+q L -fx") + sgnly - y')} cot (x x')+j L q Y-y ]( . (2.34)
Hence, by subtracting the zero-frequency value of each term of (2.33) and then
adding (2.34), the integral equation (2. 32) takes the form

d
G (%, ¥; ¥, y)K (x")dx' = jdi 2H (0 -K(x)- , 0<x<d, (2.35)
2 t { Z t . - =
0

where
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Gg(X.y;X',y')

Pl -3 3 —w!y_3 | ST
= sgn(y-y')-jJLf'(x')tane-sgn(y-y')_;re jksin@(x-x')-jkcosBiy-y',

@® 5 2m7 (x-x) r‘jIY'Y'[X:n

. -jksinf(x-x") d e

-je —2- :e —— A
m=1

+
X
m
: 2L 1y y] i
2 + N -
~ - fi(x") \—%‘l+ksin(2)—xmsgn(y—y')3 e ¢ {jfv(xv)-sgn(y_yv)j -
©_ . 2mn7 . Hly-y| X -

. -jksin@(x - x") ) (x-x) ie m

-je e . - A
m=1 ' X
i m

) 2m7 - ;
A < {1y o 2 z _ -y +

\f(x)\ r +ksm@) Xmsgn(y y):

2m7n . .

AR A .

te fx) +sgaly -y ¢+
- J

+ i{.f'(x')+jsgn(y—y')} cot [_Z.T(X_X,szly_y.lﬁ +

21 L d d §

10 piye 7 T '
+ 5 -filx )+ngn(y—y')} cot{d(x-x')ﬂ qly-vir . (2.36)

In spite of the obvious complexity of the Green's function G2, its form
is directly analogous to Gl in consisting of certain explicit terms, a pair of

cotangent functions representing the true behavior of G, in a neighborhood of

2
its singularity, and two series which are themselves differences of two con-

vergent series. Once again, therefore, the singularity of the Green's function
has been separated out.
We further note that the integral equations (2.28) and (2. 35) have been

derived without approximation. In consequence, the formulation so far is
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exact for any two dimensional perfectly conducting periodic surface which is

smooth in the sense of having a continuous first derivative.

2.3 Comments on the Green's Functions of the Inlegrs! Ilguations

Before we discuss the aumerical precedures of solving the integral
equations shown in Eqs. (2.28) and (2. 35), it is appropriate to examine their

kernels (modified Green's functions) with some care. Equation (2.28) for E

polarization is a Fredholm integral equation of the first kind with a weakly
singular kernel. Very little is known about equations of this type, and even the
uniqueness of the solution is not assured. On the other hand, Eq. (2.35) for H
polarization is a Fredholm integral equation of the second kind with a weakly
singular kernel. The advantage of this equation over that for E polarization is
that we can use an iterative scheme (Neumann series) to obtain the solution.
This has been done by Payagean and Bousquet (1969) using the geometric optics

expression for the surface field as a first approximation. As shown in Appendix

t B, however, the integral equation for E polarization can be converted {rom one
of the first kind to one of the second kind, so the successive approximation
method can be applied here as well.

If we examine the Creen's function for E polarization, Eq. (2.29), it is

s~
e
v g sy,

found that the surface slope dependence of the kernel occurs explicitly only in

.

f 2 i .
the terms \1+f(x) . For surfaces of gentle slope such that ,f'(x)l <1, it is
now obvious that the surface current will be relatively insensitive to slope. The

second term of the Green's function has a logarithmic singularity which repre-

-
o
B e e o - R T

sents the correct singular behavior for E polarization in two dimensions. The

s

“ last two terms consist of infinite series. Whenever X:n or X:n is purely
imaginary, the corresponding terms are exponentially damped. Hence, in a

; numerical solution of the integral equation, these series can be terminated at

b a term somewhat beyond that where the exponential decay starts. On physical

grounds, it would appear that as functions of K, the values of these series could

T IS O TII PO T MG A PSR IE 430 A - o T — o moen T
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change abruptly when an individual mode becomes cut-off. This could then
lead to an abrupt change in surface field distribution. However, for surfaces
ot small periods (dfX <0.2), the contribution of the infinite series is insig-
nificant, and the first two terms dominate.

For H polarization, the Green's function is much more complicated and
more dependent on angle of incidence and surface slopes, but its qualitative be-
havior is not too different from that for E polarization. If £f'(x) = 0, the surface
is a flat sheet and it can be shown that G2 vanishes. The current distribution
is now given by the explicit term alone, and this is just the geometrical optics

value. Again the correct singular behavior for H polarization in two dimensions

is represented by the last two cotangent functions.

2.4 Numerical Procedures

Methods for the numerical solution of integral equations have been
extensively discussed in the literature (see, for example, Harrington, 1968).
The general procedure consists of reducing the equation to a finite set of alge-

braic equations, i.e. to a matrix equation, and can be illustrated by considering

d
G{x, x"K(x")dx'= F(x) , 0<x<d. (2.37)
0

We assume that the unknown function K(x') can be expanded in terms of linearly

independent base functions ¢n(x') such that

N
K(x') = a_h (x) (2.38)
n’ n
n:
where the an are the associated constants. Substitution of (2, 38) into (2.37)

gives
N vd

Za G(x,x")§ (x")dx' = F(x) (2.39)
=’ . n
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and the solution of the integral equation has now been reduced to the determination
of the constants, an, n=12,...,N.

There are several possible ways of finding the a, e.g. least squares fit,
Galerkin's method, and the collocation method, and it is the last of these that
we shall employ. '

The collocation method converts (2.39) into a system of N linear
equations by forcing the two sides of (2. 39) to be equal at N sampling points in
the interval (0,d). This is simply a point-matching procedure and results in the

matrix equation

d

N
E a G{x ,x" (x)dx'=F(x ), 0<x <d, m=1,2,..,N. (2.40)
cy o m n m -"m-

0

There now remains the problem of choosing the base functions ¢n(x'), and here
again there are several possible choices, e.g. rectangular, quadratic and
sinusoidal. By appropriate choice, we can economize in the number of sampling
points requred for an "accurate' approximation to the solution K(xj, and exper-
ience hes shown that a rectangular function is not in general a good choice,
whereas sinusoidal interpolation often works rather well.

The particular form of sinusoidal interpolation that we have adopted is
predicated on the use of sampling points which are uniformly distributed in
0 <x'<d. The range of integration is therefore broken up into N increments
of length & 'N (see Fig. 2-2). Furthermore, let x‘n be the midpoint of the

n'th cell, 1i.e. x;l =(n- ';- )4, and let Ax;‘ denote the interval

A A
X' -—=<x'<x'+— ., We assume that
n 2-" —-"n 2

A +B sink{x'-x )+C cosk(x'-x ), if x"e Ax’
n o a o n n n

\ (2.41)
- otherwise




22

and specify the constants An’ Bn and Cn by continuing the form appropriate to
x'e Ax;l out to the centers of the adjacent cells and imposing continuity. Defining
Kn = K(xn) and Kn:‘-‘l = K(xn i‘l)‘ we have

K =A +C ,
n n hn

K =A +B sinkd+C coskA,
ntl n n n

K =A ~B sin:A+C coskd,
n-1 n n n

from which we obtain

- + -
Kn + 2KncoskA K

n o 2(coska-1)

n-1

K -K
_ ntl "n-l
Bn ~ 2sinkA (2.42)
- +
- Kn-i-l 2Kn Kn—l
n 2(coskA-1) .

C

Substitution of (2.41) and (2.42) into (2.40) now gives

N

Z : [cos kA - cos k(x' - xn) K
1 ’
G(xm’ x') Kn coskA -1
n=1 - - -
Ax
n
“-sinkA+{cos kA - 1)sink(x' - xn) +sinkA cos k(x' - xn)
+ o
Kot 2 sinkA(cos kKA~ 1)
-sinkA - (cos kA~ 1)sink(x' - xn) +sin kAcos k(x! - xn) '
O . ]
+hn—1 2s8inkA(cos kA -1) dx

- =

=Flx ), (2.43)
m




23

, 1
where xm ={m- 3 A, m=1,2,...,N. We ncte in passiag that whenn =1
or N the periodicity of the problem must be used to determine the constants

required in (2.43).

K_1 or Kn+

The ;bove procedure is immediately applicable to the integral equations
for E and H polarizations on inserting the appropriate values for the Green's
function and the forcing function, but a brief comment is desirable concerning
the treatment of the singular cell. The Green's functions of concern to us are
singular when x = x', the singularity being logarithmic for E polarization, and
a first order pole for H polarization, and it is therefore necessary to modify
the numericsl scheme when xm = xn. In line with the usual practice, we divide

the singular cell into three portions:

)

€ €
(x - xn—z), (x -

A
,,x+§'), (x +5, x +
n 2 n 2 n n

2’ " 2
with 0<e <A, The first and third segments are handled by the standard
numerical technique, whereas the central portion is treated analytically by

means of a limiting process (Andreasen, 1964).

It must be mentioned here that the sinusoidal interpolation by no means
a1ssumes that the surface current distribution is sinusoidal. In fact other methods
based on quadratic or flat-top functions can be used just as well, However,
numerical results indica*c that good convergence is obtaine< by uaing sinusoidal
interpolation in this case.

In order to make the computer program applicable to periodic surfaces
of arbitrary shape, it is convenient to represent the surface by its Fourier series.

If y = f(x) is a periodic function of period d, then

QQ

ao . 207 nmw 1
fx) = — + § 1 a_cos <—a~x +bnsm<‘-a~)9§ (2.44)

n=i -
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where
¢ \
- 2 2nm A -
a =3 f(x)cos(d X, dx (n=0,1,2,...)
0 /s
d
=2 2n7 =
bn- 3 f(x) sin d x) dx (n=1,2,3,...)
0

It is known from the theorems of Fourier series that if {x) is a periodic,
continuous and piecewise continuously differentiable function, then the Fourier series
(2.44) will converge niforinly to f(x). Subject to these restrictions on f(x),
we can therefore synthesize an arbitrary periodic surface to any desired degree
of accuracy. In general, more Fourier terms are needed for H polarization
than for E polarization to obtain the same degree of accuracy because the Green's

function in the former case involves more terms with the first derivative.

2.5 Convergence and Accuracy of the Numerical Solutions

The numerical solution of the integral equations for both polarizations
has been programmed for an IBM/67 computer in Fortran IV language. In solving
an integral equation numerically it is always desirable to carry out a convergence
test for the following reasovns:
a) to determine the number of sampling points necessary to achieve
the required accuracy, and
b) to test whether or not the numerical solution approaches a stable

value as thie number of sampling points is increased.

Although it has not been shown mathematically that the accuracy can be
improved by increasing the number of sampling points, it would appear reason-
able to believe so on physical grounds. In general it is considered that a
numerical solution is '"satisfactory" if it remains essentially unchanged when
additional terms or modes are included in the computation, but there are ex-

ceptions to this (see, for example, Lee, Jones and Campbell, 1971),




The accuracy of the numerical solution in this work has been checked
using the following criteria:

a) Energy conservation. This furnishes a common check on the

kb accuracy of the solution in electromagretic scattering from perfectly
3 conducting surfaces. This {8 essentially the check employed by Petit
and Cadilhac (1964), Neureuther and Zaki (1968) and Green (1970) as
‘i well a8 many others. However, as pointed out by Amitay and Galindo

(1968), energy conservation does not provide a measure of accuracy of
a solution found by the Ritz or other related methods, and hence, in

order to use energy conservation to check other than computational

round-off errors, care must be exercised in choosing the method of
solving the integral equation numerically.
The method that has been adopted in this work is a subsection and

sinusoidal interpolation scheme, and since the solution does not auto-

g AT T »

matically satisfy energy conservation, we are able to use this as a

check. The relation that must be satisfied is

N

ZIA |2Re(X ) =kecos6 (2.45)
m m

m=0

where N is the number of propagating modes and the Am's are the
scattered field amplitudes. These are derived in Chapters IV and VI
for E and H polarizations respectively.

b) Convergence test. The numerical solution is found for the same
surface using different numbers of sampling points. As shown later,

the numerical solution approaches a stable value as the number of
sampling points increases, which value can be considered as the solution.
It is found tlat the number of sampling points necessary to yield accurate
results depend on many factors, such as the angle of incidence, the ampli-

tuda and period of the profile, the smoothness of the profile as well as
polarization of the incident fields, In general, for both polarizations




better convergence is obtained for normal incidence or when the
incidence angle is small. The computer program adopted in this work
is based on uniform sampling cells, but it may be true that a nonuniform
sampling scheme would zive faster convergence for the same number of
cells. Because the Green's functions are sensitive to a change in the
surface slope, particularly for H polarization, it is necessary for us to
insert more sampling points into those regions where the surface slope

changes most.

c) Flat surface check. A very simple and useful check on the numerical
solution is to let the surface become flat. We should then obtain the geo-

metrical optics value for a flat sheet, and this is indeed the case.

d) Check with thr result obtained by other authors. It is always
desirable to be able to check the results obtained with thcse obtained
by other workers (and other methods). The numerical results obtained
i here will be compared with those obtained by Zaki and Neureuther. and
by Green. Good agreement is indicated.

2.6 Computational Time

Perhaps one of the most serious restrictions imposed on numerical work

C
TR
A SR

LEais
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is the computational time involved. Although the computer programs have been cast

N
abeka

in a general form applicable to surfaces of any size, economics dictate that only
reasonable sizes (say from 0.2X to 2X in period) are explored. It is understood

that most of the computational time consumed is used in filling up the matrix

elements. The rest is used in the matrix inversion process. In general, the
program for H polarization takes more computational time than for E polarization,
because of its more complicated Green's function. To save computational time,
separate programs have been written for the special case of sinusoidal surfaces.
However, in spite of the fact that for the case of normal incidence symmetry can

be used to reduce the matrix size by a factor of two, and hence to reduce the
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computational time by a factor of four, separate programs were not written
to take advantage of thig, since most emphasis will be given to the more
interesting case of oblique incidence. Examples of the computationsl time

involved are given later.
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Chapter I
4 SURFACE FIELD FOR E POLARIZATION

In this chapter surface field distributions obtained by numerical
solution of the integral equation for E polarization are presented. The par-
ticular profiles considered are sinusoidal, full-wave rectified, inverted full-
wave rectified, and triangular (see Fig. 3-1) with various periods and angles of
incidence. In each case the physical optics approximation is also presented as
a basis for comparison.

The physical optics method is a widely-used technique for estimating

the scattered field. Easically, it is an extension of geometrical optics in

which the surface field is approximated by its geometrical optics value, thereby
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reducing the determination of the scattered field to quadratures. Consequently,
the physical optics method is a high frequency approximation technique, and it

is suitable only when the "effective' dimensions of the scatterer are large

S,
b2

compared with the wavelength, and there is no shadowing involved. How much

o

shadowing affects the solution is still unknown, and a matter that is then of some
debate is whether shadowing should be taken into account, and if so, how.
According to the physical optics method the current induced on the surface
is
K =20A g_i in the illuminated region, and (3.1)
= () in the geometrical shadow (3.2)
where 3 is the outward normal to the surface, and for a two dimensional sur-

face this is given by

28
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Fig. 3-1: Profiles of Periodic Surfaces.
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A 1 AN
n = —/——=—= |-f'(x)x+y . (3.3)
\";+f'(x;2 [ ]

Thus, using Egs. (2.20), (3.1) and (3. 3) we obtain for E polarization

_ 1 r . -jk(xsin8-ycos8) A ,
K= ——— Lf'(x)sm9+cos 9:' e z (3.4)

607 \[1+£(x)

in the illuminated region.

By comparison with the exact solution, it is found that in general the
physical optics method fails to give accurate results. However, if we consider
a ""smooth" surface with sufficiently large ratio of period to surface height,

we can then rely on the physical optics method.

3.1 Surfaces of Small Period (d/A £ 0.2)

Figures 3-2 through 3-13 represent the current distributions on
periodic surfaces of four different profiles (see Fig. 3-1). Each surface has
a period d = 0.2X, and a maximum amplitude a = 0,1A. The angles of inci-
dence considered are 8 = 0 (normal incidence), 6 = 300 and 6 = 600. In each
{igure, the exact computed values are shown as circled points, and are joined
by a broken line only to guide the eye; the physical optics approximation is
shown as a solid line,

Let us examine the sinusoidal surface. We observe that for this
relatively small period most of the current is concentrated in the vicinity of
the surface peaks, with the current almost zero in the troughs, There is,
indeed, almost an exponential decrease in the current modulus away from the
peaks, and the main effect of increasing the incidence angle is to scale the
curves, leaving the general shape unchanged. In spite of shadowing due to

large angles of incidence, the curve for the modulus still retains its symmetry.
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Fig. 3-7; Normalizec Surface Field for an Inverted Full-Wave Rectified

Surface (d 0.2\, a=0, 1A and 9 = 60°) for E polarization,
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(d=0.2x, a =0.1x and 0 = 60°) for E polarization. ~-o--
exact — physical optics.
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The phase is somewhat more sensitive to 6, a2nd whereas the curve is almost
flat for 8 = 0, the shape changes noticeably with increase in 6.

Since kpm = 0.064 (pmin is the minimum radius of curvature) for

the surface, it is izl:ot surprising to find that the physical optics approximation
bears no resemblance to the exact data. According to physical optics the
current witain the shadow region should be zero, but exact results prove this

is not 80, and this is natural because the current must be a continuous function
along the surface. The physical optics phase is also poor for 6 = 0, but agrees
better for large 8, at least in an average sense. In general it is true that the
physical optics approximation shows best agreement with the exact data in
regions where the radius of curvature is largest. That is, in all cases the
maximum discrepancy occurs at the surface peaks and troughs where the radius
of curvature is a minimum,

Examination of the remaining profiles show that the shape of the modulus
curve is very similar, except in small details, to the corresponding one for the
sinusoidal surface, and the phase still remains relatively constant for 6 = 0.

In general, the above remarks for the sinusoidal surface apply also to these
profiles, but each profile has, because of its own geometry, some particular
characteristics. For example, in the cage of the inverted full-wave rectified
profile with 6 = 60° (Fig. 3-7), we can see a small standing wave pattern in the
phase just outside the shadow. This i8 probably due to multiple scattering of the
incident field by the surface. Another example is the "edge effect' which is
clearly evident in the results for the triangular profile.

In order to “btain a better understanding of the surface field, let us go
back to the integral equation. If we look at Eq. (2.29) carefully, we observe
that for a sufficiently small period we can approiimate the kernel by the first
two terms, and of these two terms only the first term, which has no singularity,

contains the incidence angle. Thus the approximate integral equation becomes




d
* 3! — 9 3
: Gl(x, y; x', y')Kz(x') eka Sme\ll +f'(x'? dx' f—% eJky cos 6 (3.5)
' 0
where
* 1 -jkly - y'|cos 6
oyt 1y = 1 -
Gl(x:y:x :Y) kcos 6 e

27 -€

27 27 . -
. I -—l—y-y‘]ﬂ(x-x') - [y—y';-j(x—x'ﬂ- ’
-El@:{l-e d l_l ]}{1 d [ ..:é_

o
-—

(3.6)

Since the integral equation is singular, a rough estimate of the solution
to the integral equation may be obtained by examining the equation in the neigh-
borhood of the singularity. Thus

?
3 z . * 1 Jd
'} ‘ lim G, (x,y;x',y") = - lim log[ ], (3.7
J | | X=x'|—> 0 1 koosf 27|, xil—>0
e |y -y'i—>0 ly-y'l—>0
- ; where
E M -%r*fly-y'lﬂ(x-@-
E: t lim log[ 1= lim log {l-e ] X
! |x-x']—>0 Ix-x!]—>0 L o |
| ly-y'F>0 ly-y'l—>0 - & y-y] - 3tx-x)]

Ril-e I

J i

—~y

- -Tyey) - Hlyoy
= lim logl(l-*e d -2e d cots[-zé-r (x-X'_)ﬂ(

|x~xj—>0 - J
IY"Y"""‘>O
4r 2n )
c -3 lv-yl -FHly-vi
= lim logﬁl+e -2e

y-y—>0
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Using the following expression,

2 3

X
—1+x+§-,-+-§,—+ ..,

we obtain
lim log[ 1¥ lim Ioge , (3.8
|x-xt]—>0 € —>0
v -y'l—>0
where
127 2
e =~ |y-y
d

Thus in the neighborhood of singularity, Eq. (3.5) becomes

x+6
/7

/1 i , o oJkx'sing [T 02 ~2d fkycosf
\Koosd " 2r log:a Kz(x)e 1+£(x")” dx w

x-6 (3.9)

where [x-x'| < 6. 6>0 is an arbitrarily small number. If we assume that the

factor Kz(x’) e-jkx s1nd Jl +f'(x‘)2 remains constant in this small region, we
can solve Eq. (3.9) to get

M1 )_g" -jkx 8in 6 v d jkycusf
t—— + 1 = eme—
chose 27, 6K (x)e f (x) w € . (3.10)
It now follows immediately that if the period d is sufficiently small, the
first term in the square bracket dominates, and so the modulus of the surface

field is seen to be proportional to cosf, a scaling factor. This is consistent
with the numerical results,
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The effect on the surface field for a sinusoidal profile due to change in
the amplitude as the period is kept constant, and 6 = 0 is shown in Figs. 3-2,
3-14 and 3-15. It is observed that as the height decreases, so does the current
concentration near the peaks; the phase, on the other hand, is much more nearly

constant, and is more akin to that for a flat surface than a sinusoidal one.

3.2 Surface of Slightly Larger Period (0.2 <d/Xx.£0.6)
Figures 3-16 and 3-17 show the surface field for a sinusoidal profile

with d =0.4x, a=0.2x and 8 =0, 60° respectively. Compar’son with Figs.

3-2 and 3-4 indicates that doubling both d and a has little effect on the modulus
of the current, but has a marked effect on the phase. For normal incidence the
phase curve still has a small sag at the surface trough region. Results for
d=0.6\, 2a=0.3) and 0 = 60° are shown in Figs. 3-18 and 3-19 for the inverted
full-wave rectified and full-wave rectified surfaces respectively. Although the
overall shape of the modulus curves bears much resemblance to the previous
cases of small period (Figs. 3-7 and 3-10), there is evidence (small undulations
along the curves) of stronger multiple scattering here. Again, the physical

optics method fails to give satisfactory results in all cases.

3.3 Surfaces of Larger Period (d/\ 20.6)

Let us now consider surfaces of larger period for which the requirements
of physical optics are more nearly satisfied. Referring to Eq. (2.30) it is seen
that as d becomes larger, the number m which makes X; and X;n purely
imaginary increases (implying more propagating modes), and the infinite series
of the kernel therefore becomes more important. One consequence of this is
that the surface current distributions for surfaces of large period are much more
complicated and quite different from those for surfaces of small period.

Figures 3-20 and 3-21 represent two cases of a sinusoidal surface at
normal incidence with d = 0.95X and & = 0.25)1; d = 1.90X and a = 0,25\
respectively. In the first, the modulus displays a strong oscillation having a
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standing wave ratio of about 6 and a period of 0.6A. Maxima occur at a
distance of 0.17A from the peaks while a minimum exists at the trough of the
surfacs. The exact phass is still characterized by the familiar almost-constant
value., The physical optics approximation gives no agreement with the exact
solution, but in the second example for which the period has been doubled while
keeping the height constamt, ihe physical optics approximation is better, though
there are some noticeable discrepancies. The maxima of the modulus still
occur at the surface peaks, but minima appear where the surface slope changes
sign, that is, where the surface crosses the x axis. The minimum radii of cur-
vaturs for these two cases are kpmin = 0.572 and 2.30, respectively.

A case showing better agreement between the exact solution and the
physical optics approximation is given in Fig. 3-22, where the surface is a
sinusoidal one with d = 1.6, & =0.1x (ko =4.07), and 6 = 45°. There is
no obvious explanstion for the apparent shift between the exact and physical
optics curves.

To examine the effect on the surface field of a gradual increase in the
surface height when the period and angle of incidence are kept fixed, we select
the sinusoidal surface withd = 1,155, 4 = 600, and a varying from 0,05 to

0.7:x. The minimum radii of curvature for these cascs are as follows:

Amplitude a (A) ko

min
0.05 4,260
0.1 2.130
0.2 1.065
0.3 0.710
0.4 0.533
0.5 0.426
0.6 0.355

0.7 0.304
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The numerical results are illustrated in Figs. 3-23 through 3-30.
It is seen that the agreement between the physicai optics prediction and the
exact solution deteriorates gradually as the amplitude is increased. If we
examine the phase curves with a little care we find that the physical optics phase
agrees better with the exact phase in the illuminated region, and both of them
are relatively constant there. In contrast to the situation for surfaces of small
period, the field is very sensitive to a change in surface height, ard it is there-
fore very difficult to accurately predict. The undulations in the modulus curves
are evidence of multiple scattering which is particularly noticeable when a = 0. 3A.
If the surface height is sufficiently large (a >0.5}), the surface field near the
region of a surface trough is relatively small.

Since the fisld is 80 small over most of the concave portions of the
surface, it is of interest to see how much the surface field as a whole is
affected by the actual geometry of the concavities. We examime this by replacing
the concave part (d/4 < x < 3d/4) of a sinusoidal surface by a flat part, and the
results are presented in Fig. 3-31 fora = 0,51 and 6 = 60°. Comparison with
Fig. 3-28 shows that the replacement has little effect on the surface field in the
illumineted region, but does have a marked effect in the shadow.

Additional data are presented in Figs. 3-32 and 3--"" for a full-wave recti-
fied profile where d = 0.75A, a = 0.6\ and 8 = 41, 80, and a triangular profile
where d = 1,751, 6, =20°, 6, = 66° and 6 = 12.2°. For the rectified profile
(Fig. 3-32), the current modulus no longer has a maximum at the surface peaks
where ko i8 a minimum, In Fig. 3-33, the current modulus shows clearly the
"edge effect’ in the neighborhood of the edge, and the physical optics phase
agrees relatively well with the exact phase, except near the trough region. In
both cases the modulus i8 zero at the center of the surface trough. Fig. 3-34
represents the case of an inverted full-wave rectified profile with d = 0,954,
a=0.25x and 68 =0,
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3.4 Coupling Among Cells

One aspect which has not been looked into so far is the effect on the
surface field of a gradual increase in the separation between cells while the
other parameters are kept constant. To examine this, we selected a full-wave
rectified surface with a = 0.3, d = 0.3, 8 = 600 (kpmin = (0.0304) and allowed
the distance { between two necighboring periods to increase from 0.3X to 0.7A
in 0.1x steps. The results are shown in Figs. 3-35 through 3-39. In the first
two figures the modulus curve has the shape characteristic of small periods,
while the physical optics phase oscillates about the exact phase. As £ gets larger,
noticeable changes appear in the modulus curve. One reason for this can be seen
from £qs. (2.29) and (2.30): as £ increases, the terms :n the infinite series
corresponding to higher m's (or higher orders of propagating modes) become
more significant, and have a greater effect on the surface current distribution.
As { passes through the value 0.5352, X:l changes from purely imaginary to
ceal, implying that the m = -1 mode becomes propagating. We therefore expect
a rather rapid change in the surface field for £ near 0.535), and this indeed
occurs as can be seen by comparing Figs. 3-37 and 3-38. Further increases in
£ can again produce large changes in the surface field, especially in the shadow
region (see Fig. 3-39), but it is worth noting that thraighout the illuminated
region *he modulus is not very sensitive to £.

In ali cases considered, the physical optics predictions bear no
resemblance to the exact results, although the estimate for the phase is some-
what bettzr than that for the modulus. Examination of the piots also reveals the
important fact that the coupling among cells is not very strong even for small
periods, and this leads us to conjecture that as regards the surface field the
infinite surface can be approximated by 2 finite surface consisting of only a few

cells.

3.5 Accuracy Chocks and Computational Time

As mentioned in section 2.5, the numerical results were checked by

congidering 1) ‘i convergence of the numerical solution, b) the limiting approx-
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imation of a flat surface, and c) a comparison with results obtained by previous
authors. All these will be discussed in this section.

Figure 3-40 shows the result of a convergence test applied to the case
of a sinusoidal profile with d = 0.2X, a = 0.1x and 6 = 0. It can be seen that
the solution does appear stable, and that surprisingly good results are obtained
even with so few as four sampling points. The limiting approximation of a flat
surface is demonstrated with a sinusoidal profile where d = 0.2, a = 0. 051
and 6 = 0, and the results are shown in Fig. 3-41,

Note that in spite of this relatively small amplitude the modulus still
shows significant deviations from the value 2.0 for a flat surface. This is
probably due to the rather slow convergence of the infinite series of Eq. (2.29)
when the surface height is very small. However, the phase agrees exceptionally
well with the exact phase, i)o, for a flat surface.

Comparison of the numerical results with those obtained by previous
authors is given in Figs. 3-42 and 3-43, In Fig. 3-42, comparison is made with
those by Zaki (196Y) for a sinusoidal surface where d = 1.9, a = 0.25X and
0 =0, and in Fig. 3-42 with Green (1970) for a triangular profile where d = 1.75A,
0, = 20°, 6, 86° and #=12.2°. Inboth cas s good agreement is obtained.

- The computational (CPU) time used in each computation depends on the
following factors: a) the number of sampling points, b) the number of Fourier
terms used to represent the periodic surface, c¢) the number of terms used in
tve infinite series summation and d) the accuracy of tue numerical integration
required. In each case the accuracy of the numerical integration using the
Newton-Cotes method was restricted to 1 per cent. A summary of the compu-
tational times for various cases is shown in Table III-1,

It should be pointed out that this CPU time includes the computation of
the diffracted mode amplitudes, the physical cptics approximation, as well as

the energy cneck. In general most of the CPU time is Used in filling up the
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Fig. 3-43: Surface Field for a Triangular Surface (d = 1,754, 91 =20,

62 = 66° and 6 = 12, 20), for E polarization.
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C Number N ' Number M : Number Q 'CPU Time (sec)'
C : of Sampling of Terms in of Fourier .(IBM 360/67)
: k " Points the Infinite terms usedto
e Series represent the
A i periodic surface |
e 8 3 1 34.55
10 3 1 47,87
12 3 ] 65.55
10 5 1 96.39
8 2 10 48,12
6 2 10 . 34.58
20 5 15 399. 22
12 8 1 168.37
6 1 1 17.13
4 3 1 14,49
18 6 1 199.39
12 3 10 109. 03

L 1 ' { |
TABLE 1II-1: Computational Time for E Poiarization

matrix and performing the matrix inversion. For the former operation, the
CPU time varies as N2 while for the latter operation it is proportional to N3.
To see exactly how the CPU time is distributed among the various steps of the
computation, let us consider a typical example where N =12, M =3 andQ = 1.

The distribution of the CPU time is

1. Computation of matrix elements 44.0 sec.
2. Matrix inversion 8.3 sec.
3. Physical optics approximation 5.2 sec.
4, Energy conservation check and diffracted 8.0 sec.

mode amplitude calculations
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Chapter IV
SCATTERED FIELD FOR E PGLARIZATION

In Chapter III we were primarily vui cerned v.ith the presentation of
numerical data for the surface field. In gr~2ral, however, the far field is of
more direct interest, and the solution of {. integrai equation for the surface
field is then only an intermediate step. :'. this chapter we will limit our
attention to the scattered field, the scaf: s red energy and some interesting
physical phenomena known as anomalies “ssociated with the diffracted energy.
Comparison is also made with the phy«1~al optics approximation, and an approx-
imate technique adequate for predic:..., the field backscattered by a sinusoidal

surface at oblique incidence is given

4.1 Diffracted Mode Amplitudes

When a plane wave is incider! <n a periodic surface, the scattered field
can be represented as an angular spactrum of plane waves, which spectrum is
discrete by virtue of the periodic nature of the boundary cowndition at the surface.
Each of the infinity of waves m»aking up the spectrum has associated with it a
diffraction angle which may be real or complex and is determined by the grating
law. Whereas the amplitude of the wave is a function of the profile size and
shape, and the directions of incidence and diffraction, the diffraction angle
depends only on the value of d/A and the direction of incidence.

A finite number of diffracted waves represeni propagating modes and
these are the important ones far from the boundary. The remaining modes are
evanescent and though these do not serve to carry energy away from the surface,
they do play a vital role in affecting the amplitudes of the propagating modes.

The number of modes that propagate can be determined from the expressions
for an given in Eq. (2.30): if Xi is real, the corresponding mode propagates
without attenuation, whereas if X m is pure imaginary, the mode is evanescent.

To find the (complex) amplitudes of the diffracted waves we proceed as follows.
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Let y = f(x) be the profile of the surface. Assuming the incident plane

wave to be

i_ e-—jl—;(xsine -ycos0)
z

E (4.1)

(see Eq. (2.20)), and by invoking the pex odicity of the surface, the scattered

field can be written as
w
-iB x+X y)
ES = E Ae ™ W (4.2)
m
m=-0

for y > max f(x), where

2mm
= === +
Bm r ksiné ,
and
2 2
Xm =Vk _Bm

The field arising from the currents induced on the surface is given by

d

2
Sy =2 | P \1+ {F} K (e (4.3)
0

where P.i is as shown in Eq. (2.24). In particular, this is valid for y > max f(x),
and hence, by combining Eqs. (2.22), (2.24), (4.2) and (4. 3 we have

©

Z A e‘j(BmX+me) =
m

m=-m

1. ) .:"? 3 ;x, dX'
2dX A A
[0 0] m
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fron which we obtain

d
iB_x+X y') ———
A =2 Ve ™ TV e} K (e (4.4)

Notice that the angle of diffraction 9m for the mth mode is given by
tan()m = Bm/Xm (4.5)

which, after a little mathematical aanipulation, can be reduced to the grating

law formula

2inf = mA + sinf . (4.6)
m d

Having determined the current distributions Kz(x) it is therefore a trivial
matter to compute the amplitudes . f all the diffracted modes, both propagating
and evanescent, and the amplitud=s of the propagating waves for several dif-
ferent values of d/A, a/X and 6 for a sinusoidal surface are given in Tables
IV-1 through IV-4. As a basis for comparison, the physical optics approxima-
tions are included. In general, the physical optics values, with or without
shadowing included, tend to be too small, and we further note that if shadowing
is excluded (or is not present), the physical optics estimates are the same for

both polarizations (see Appendix A).

TABLE IV-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=10.27, a =0,10),

l 6 = 0° } 6 = 30° 6 = 60°
Mag. ‘Phe.se . Mag. | Phase Mag. !' Phase
, o (o] oo
; 14, ; 9@ g | A | [4) 1 ¢9_<_)J:
Numerieal | 4z ' 50.81 - 0.9940 | 44.33 . 1.0000 , 25.90
Solution | ! \
Phys.Optics | | c,0c | 0.7251 | 0 | 0.9037 ' 0
w/o shadow . ‘ :
Phys. Optics; ) g405 g | 01253 | 15.96 | 0.1770 | 19.41

| wshadow | |
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TABLE IV-2

Amplitudes of Diffracted Wayes for a Sinusoidal Surface
(d—l gx a =0.25x, 6 =09

' Mag. ; Phase |  Meg. 'l' " Phase |
0 {]|A = Q) — o
lAOI ( ) 4l -l_l !All ¢ ( ) ¢( )
Numerical 4090 _160.27i 0.6630 ' 107.05
Solution i . .
| ? ‘ e
Physical 0.3042 | 0 . 04389 ., 90 J
L Optics | 1. | oo —
TABLE IV-3
Anplitudes of Diffracted Waves for a Sinusoidal Surface |
(d = 0.4x, 2 =0,2)).
I I - P e
é=0 6 = 60 !
. '_"—B/Ta*i~ | Phase | i‘fiﬁ } ‘ﬁﬁigé" T
(o}
' ST !An | Ao ) i le__ { ﬂo() _ :
Numerica 0.9998 | -80.81 | 1.0230 | 49.89
. Sclution | . i
h | ; ' H
. Physical Optles 5 o545 i o g 8450 | 0 |
. w/o shadow ! |
| Physleal Opties a9 - o ' 4150 60.37 ;
Lw shadow i !
C e e . i JY L — ;
|
|
i
TABRLE V-4 :
Amplitudes of Diffracted Waves for 2 Sinusoidal Surface %
(d"027t a=0,03, 8=0°). ]
! - 3
-l— ’ Mag. i Phage w.| ;
) ) 1
; . x L I T ]
Numericai ' ; . ;
| Solution 1.0000 8.12 ‘ f
f ' Phyeical 0. 9847 _ 9 ! :
, | Optics i | _
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4.2 Diffracted Energy and Wood Anomalies

4.2.1 Discussion

As mentioned in Section 4. 1, when a plane wave is incident on a periodic
surface, the scattered field forms a discrete spectrum of plane waves, either
propagating or attenuated away Irom the surface. Only the propagating modes
can carry energy away from the surface and are responsible for the iar field.
Since the surface is perfectly conducting, the diffracted energy as a whole must
equal that carried by the incident fiels.

The problem of determining how the incident energy is distributed among
the diffracted waves of various orders is a reiatively old one, and has been the
subject of numerous theoretical and experimental investigations, many of them
motivated by the desire for more efficient optical diffraction. This subject is
particularly important in the design of diffraction gratings for use as mono-
chromators in vectroscopy because of their superior properties, such as higher
powers of resolution and lower absorption of light, in comparison with prisms.

If we examine the spectrum of light resolved by optical diffraction gratings,
we often find rapid variations in the intensity of some diffracted modes over a
small range of incidence angles or over a narrow frequency band. These
phenomena are termed the Wood anomalies. Unlike ghosts (Rowland or Lyman),
anomalies are not caused by errors in the spacing of the rulings, but are due
to a type of resonant interaction among the diffracted modes scattered from
different periods. An anomaly may appear as a bright or dark band in an other-
wise normal spectrum,

Historically, grating anomalies were first observed in reflection grating
spectra by Wood in 1902. Since these effects could not be explained by means
of ordinary grating theory, Wood termed them "anomalies'. At that time, how-
ever, he reported that anomalies could occur only if the incident field was H-
polarized (S-type anomalies), and there were no anomalies for E polarization
(P-type anomalies). Later, experiments by Ingersoll (1920) and Strong (1936)

also showed no evidence of P-type anomalies in grating measurements,




The first theoretical treatment was given by Rayleigh (1907). His

approach was based on an expansion of the scattered field in terms of outgoing

waves only. (Details of this wiil be given in a later chapter.) Using this
assumption, he found that the scattered field was singular at wavelengths for

which one of the diffracted modes emerges from the grating at the grazing

S 4 " R
aarts Mok WA oot A AT

angle. These wavelengths are now known as the "Rayleigh wavelengths", A_:

] R :
% =—§-(+1—sin9) m=1,23 (4.7)

Fg’ )ﬁRi. _i_ m - ] 2y e . .

%

2 ile also observed that the occurrence of such singularities correspcnded to the

:

N appearance of the Wood anomalies. Furthermore, these singularities appear

g only when the incident field is H-polarized, thereby accounting for the S

anomalies, and if the incident field is E polarized, the theory predicts a2 regular
behavior near )"R

! It should be noted that although Rayleigh's theory correctly predicts the

g major features experimentally observed at that time, it does not give the shupe

; of the bands associated with the S anomalies because of the indicated singularity
at the Rayleigh wavelength.

j In his later publications, Wood (1935) suggested the existence of the P
anomalies, but it was Palmer (1952) who succeeded in detecting these anomalies

experimentally, thus proving their existence beyond doubt. Furthermore,

BT

Palmer pointed out that the P anomalies (unlike the S-type) cccur only for

gratings with deep grooves. Since Rayleigh's assumption (chapter VI) is valid

for shallow grooves only, no inconsistency is present, but Rayleigh's theory is
incomplete. Recent, more sophisticated theoretical treatments by Hessel and
Oliner (1965), Wirgin (1969), Itoh and Mittra(13969) and many others also indi-

cate the existence of P anomalies.

S S AT

The numerical results whick we have obtained can also be used to

A

explore the Wood anomalies, and this we shall now do.
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4.2.2 Computed Data for the Diffracted Energy

a) Two Radiating Modes. Figure 4-1 shows the plot of normalized
diffracted energy versus surface height for a full-wave rectified profile having
d = 0.75) with 6 = 41.8°. Since an equivalent plot for a sinusoidal surface
was obtained by Zaki (1969), it is included here for comparison purposes. For
this varticular choice of parameters, the diffracted modes corresponding to
m =0 and m = -1 can propagate.

Examination of the curves show that the diffracted energy for either mode
displays a standing wave behavior. At a certain value of a/\ depending on the
profile shape, there is a complete exchange of energy between the two modes,
indicating the existence of a P-type anomaly. When this happens, the total
diffracted energy is carried by the m = -1 mode, and thus there will be a bright
band in the diffraction grating spectrum for the m = -1 mode. The value of a/x
for which it occurs is (Fig. 4-1) 0. 8 for a sinusoidal surface, but just over 2.4
for the full-wave rectified surface. Note, however, that the actual peak-to-
trough depth for the sinusoidal surface is 2a, so that as a function of the total
depth the change is not quite so dramatic.

The above data clearly demonstrate the P anomalies are deep-grooved
pvhenomena and dependent on the shape of the grooves. These are consistent
with Palmer's experimental observations. Furthermore, the curves show that
the band for the full-wave rectified profile is broader than that for the sinusoidal
surface, and hence for the former surface the diffracted energy in both modes
is less sensitive to a change in surface height.

Note that these P anomalies differ from the classical S anomalies in
that they are broader and need not occur near the Rayleigh wavelengths., Under
certain ~onditions, a total (1C0 per cent) energy conversion takes place between
the incident plane wave and the in = ~1 mode, with the amplitude of the speculariy-
reflected wave becoming zero ai tnis point., These phenom:ena were also investi-

gated by Tseng, Hessel and Oliner (1968), 254 they terme.j .hem Brewster-angle
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effects in an analogue to the well~known Brewster-angle effect for the case of an
interface between two different, homogeneous, isotropic media. Furthermore,
they pointed out that at the first P anomaly we must have the following condition
(Bragg condition):

kd sin@ = 7 (4.8)

Therefore, if we substitute this relation into Eq. (2.21), we obtain

K7(£+ mdk) = KZ(E) s T =ty ta
Kz(y if m =even (4.9
-K (1) = odd

which shows that at this anomaly the current distribution over any chosen cell
(or period) must be in or out of phase with that over the reference cell (m = 0)
depending on whether the chosen cell is displaced an even or odd number of
periods, respectively, from the reference cell. But this is only a necessary
condition for the existence of an anomaly. There does not appear to be any

rule for predicting the exact depth of grocve for an anomaly to occur since this
depth is different for different profiles. However, using the condition (4. 8), we
can derive some information about the nature of the current distribution when
the first anomaly occurs. This is done as follows.

From Eqs. (4.2) and (4.8), for the m = 0 mode:

B() = ksinf = 7/d,
XO = kcos8 ;

and for the m = -1 mode:

-1 (4.11)

= -kcosf .

b
i

(4. 10}

et
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Substituting Eq. (4.10) into Eq. (4.4) we get

w d j(%‘ x+k cos6y) —
e Ay = —Z_Ldk coso | © 1+£(x)" K (x)dx. (4.12)
0
Similarly, using Eq. (4.11),
d -j(-§x+kcosey)
R/ " S (o2
A-l 2dk cos 6 e \/'1-+f(X) Kz(x)dx ) (4.13)
0
which can be written as
W (\d -gd‘“‘x j( x+kcos8y) - -~ —
A =2—d‘,;%5g53 e e VI+P(7 K (x)dx . (4.14)
0
Furthermore, at the first P anomaly:
=0, =1, (.19

Observe that Eqs. (4.12) and (4. 14) differ only by a factor exp(- j 2 x)

1 the kernel, but their magnltudes differ by unity. To show that this is also
D,

true if we replace exp(- j—- x) by its conjugate exp(j 2r x), , change the
variable x to -x to get
d
o i(—'x+kycose) - 3
= i1 +f1(- - .
A ~_&~2dkcose e vi+f(-x)" K ( x)dx. (4.16)
Jo
If it is assumed that f(x) is an even functicn then
o ‘ j(—x+kycose) g
A_1 = ’——E-_—decose 1+f(x) K (-x)dx, (4.17)

Jo




9z

and using Eq. (2.21)

K (-x) = K (x) ej2ksln6x
Z P4
. 2m
J _d— X
=K (xle : (4.18)
Thus Eq. (4.17) becomes
d . 27 T
i=—x (5 x+k cosfy)
= - —ﬂ.y_—- d d 2
Ay 2d% cos 6 € e \/;rf'(x) Kz(x)dx (4.19)
0

which differs from Eq. (4.14) only in sign. Moreover, if we add Eqgs. (4.14)
and (4.19), we have

d
j( x+kcos fy) r--
A-l = —M_dkcose sin<-2d—7r'x> Vl+f'(x)2 K (x)dx (4.20)
0

whereas if we subtract Eq. (4.19) from Eq. (4.14),

d
" j( x+kcosby) -
0= Fcooss °°"\£d7£’96 S 1 8(? K (dx  (4.21)

0

Therefore from Eqs. (4.12), (4.20) and (4.21) and the orthogonality

property of the trigonometric function, we can conclude that

e x+ k cos 6y)
kd 2oy 9 1 sin( ) s (4.22)

K (x) =
” Yo ‘vll+f'(x)

which describes the behavior of the surface field at the first P anomaly. In
particular, if we consider a sinusoidal surface, then the modulus of the surface
field will exhibit a standing wave pattern showing the propagation of unattenuated

surface waves along the x-axis. Once again this phenomenon is seen to be
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analogous to the Brewster angle effect which is used in launching a surface
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wave along an interface of two homogeneous, isotropic media. For a perfectly
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conducting flat sheet, this Brewster angle is of course equal *o 90° (with the

4

normal to the surface}, but since the surface is corrugated, it can be modelled
by an appropriate reactance surface (see, for example, Hessel and Oliner, 1965),
whose Brewster angle can now assume values other than 900.

Another illustration for two radiating modes is shown in Fig. 4-2 for a
3 full-wave rectified profile at oblique incidence witk 6 = 600. The parameters

oftheprofile are g = 0,31, d=0.30), and the period varies from 0 to 0.7x.

The plots show that there is a gradual exchange of diffracted energy between the
m = C and m = -1 modes when d >0.535A, which is a Rayleigh wavelength.

Joals & Sl a eI I

b) Three Radiating Modes. As the period becomes larger, more radiating

modes are possible. A case of three radiating modes is shown in Fig. 4-3 for a

sinusoidal surface at oblique incidence, 6 = GOO. The parameters of the surface
are d = 1,155, and a varies from 0.05 to 0.7A. The three radiating modes
arethe m =0, m = -1 and m = -2 modes, and as computed from the grating

law, their diffracted angles are 60° (m =0), 0(m = -1) and -60° (m = -2).

PR o S - e Mgt ol o A

Thus, the m = 0 mode is the specular mode, radiating in the foreward scattered

direction, the m = -1 mode radiates in the normal direction, and the m = -2

mode is the backscattered mode, radiating in the reverse direction of incidence.
The plots show a graduai exchange of the diffracted energy among the s

three radiating modes. For a <0.05), the dominant mode is the m = 0 mode,

P S A s s el i b ol A Ny

which carries almost all the diffracted energy. Thus from the far field point
of view, the surface is similar to a flat surface. As the amplitude increases,

the other two modes come in, and piay an important role in sharing the radiated

PO A i

energy. Since no single mode is observed to carry the whole (or none) of the

2 energy (except, of course, when a << 0.05)), even for a as large as 0.7),

it is unlikely that the P a..omalies will occur with three radiating modes when
the surface height is not very deep (of order A or less); and if they Jdo occur, it

will only be for groove depths much greater than those for two radiating modes.
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The same kind of plots were also obtained using the physical optics
approximation, either with or without shadowing, and they are shown in Figs.
4-4 and 4-5. Comparison with Fig. 4-3 indicates that neither version of the
physical optics method gives satisfactosy agreement with the exact solution
except for the range a <0.1A. For such surface heights, there is no shadow

region.

4.3 Conservation of Energy

One criterion that we have used to check the accuracy of the numerical
solution is conservaticn of energy. The numerical results do indeed satisfy
this condition, as can be seen from Figs. 4-1 and 4-2 for the two radiating mode
case, and from Fig. 4-3 for the three radiating mode case. The results for a

single radiating mode are given in Table IV-5.

TABLE IV-5
Conservation of Energy for a Sinusoidal Surface
A [ 17 physical Optics |
L i Numerical w/o Shadow w Shadow
d/x a/x ﬂo) | Energy Error(®/o)| Energy Error(®/o) Energy Error(°/o)
0.2 0.1 O i 0.9970 -0.70 | 0.4128 -58.72 0.4128 -58.72
0.2 0.1 30 ’0.8564 -1,18 0.4553 -41.50 0.5075 -41.45 .
0.2 0.1 60 |0,5013 N.26 0.4084 -18.32 0.6172 23.44
i
0.2 0,01 0 }0.9990 -0.10 +0,9921 - 0,79 0.9921 -0.79
| 0.2 0.03 0 |1.0042 0.42 0.9306 - 6.92 0.9308 - 6.92 !
0.4 0.2 0 |0.,9976 -0.76 ;0,0030 -99.7¢  0.0030 -99,70
]
- 0.4 0.2 60 ;0.5068 1.36 i0.2061 -58,78 0.1147 -16.47
'l_l.9 0.25 0 |0,9996 0.04 10.4202 -57.98 0.4202 -57.9C y

From Table IV-5 and Figs. 4-4 and 4-5, we see that the physical optics
approximations in general do not satisfy the condition of energy conservation.

Another plot showing the relation between the diffracted energy and the
minimum radius of curvature (at the surface peak or trough) is shown in

Fig. 4-6. 1t indicates that for kpmin > 4,5, most of the diffracted energy is
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.1 .2 .3 .4 .9 .6
Surface Amplitude (a/))

Diifragted Energy for a Sinusoidal Surface (d = 1, 155\ and
6 = 60), Computed Using Physical Optics Method (with
shadow), for E polarization.
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Normalized Diffracted Energy
I NN

Surface Amplitude (a/X)

Fig. 4-5: Diﬁravted Energy for a Sinusoidal Surface (d = 1, 155A and
9 = 60°), Computed Using the Modified Physical Optics
Method (without shadow).
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ceryied away by the m = 0 mode so that as far as the radiated field is concerned,

the sinusoidal surface can be considered a flat surface if kpm in >4,5.

4.4 Approximate Techniques

Although the main purpose of this work is to develop numerical procedures
for solving the integral equations for scattering from periodic surfaces, a sub-
sidiary objective ie to use the understanding gained from our results to treut back-
scattering from rough surfaces, with particular reference to oblique angles of
incidence. A desirable step in this process is to find more simple methods for
predicting the field back-scattered by a periodic surface without resorting to
the integral equation.

The method that naturally comes to mind is the physical optics method, but
as we have alrepdy saen, the predictions are rather poor in the far field and even
worse as regards the rear fleld. One reason for this is that the approximation
is a local one only, takiug no account of the coupling between cells and of the
interactions among the diffracted energy.

If we examine the curves shown in Figs. 3-26 through 3-30 for the
sinusoidal surface, we notice that over the illuminated portion of the surface
and particularly near the surface peak, the current is primarily determined by
the local profile shepe, and is affected relatively little by the other part of the
surface, Furthermore, in most cases the surface field is largest over this
region, and the phase does not show the rapid variation which it does in the
shadow region. These facts reinforced with some reasoning based on ray optics
suggest that it may be possible to estimate the back scattered field with reason-
able accuracy using only a knowledge of the current in the illuminated region.
This is indeed the case, as was shown by applying the stationary phase method
to £q. 4.4) over the illuminated region and using the exact values for the surface
field. The results are presented in Table IW-6 and compared with the exact

results,
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TABLE IV-6

Comparison of the energy backeacattered by a sinusoidal surface:
d =1,155, 6 = 69°, computed asing the exact and stationary
phase methods.

Surface i Normalized Backscattered Erergy _!
Awplitude (a/))__: _Exact Method Stationary Phase .
' 0.3 ' 0.176 0.152
0.4 0.280 0.320
! 0.5 0.320 0.360
0.6 0.272 0.344
L 0.7 | 0.200 0.216 F

Since the above computation requires a knowledge of the true surface
field, albeit over only a limited portion of the surface, we cannot avoid solving
the integral equation unless we can find an approximate method for estimating
the surface field in this region. Because of the relatively good agreement be-
tween the physical optics phase and tie exact phase over the illuminatea region,
the phase in this region can be simpl, taken as the incident phase. As for the
current modulus, we can approximate it in either of two different ways.

a. Circular cylinder approximation.

For an E-polarized plane wave {ncident on a circular cylinder of radius

a, the modulus of the current induced »i the point P(x,y) is

2. -n jnu(x)
e

|
mod{Kz(x)j =i- &2‘”—; ZL...

n=- H;i(ka) I

(4.23)

where u(x) = obtuse angle between the normal at P(x,y) and the incident ray.
Let us now identify a with the local rad!us of curvature, p(x), at the point
P(x, y) on the surface (see Fig. 4-7). Fey a zinusoidal surface, p(x) is given

by
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Fig. 4-7: Approximation of the Surface Current Modulus Over the

Illuminated Region of the Sinusoidal Surface by that on a
Circular Cylinder.
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[ Js/z
o(x) = 1+(a K sinKx) ) (4.24)
ak lcostl
and
-1
u(x) = (aKsinKx/ -0 . (4.25)

To take account of the deviation of the incident riy from the normal

at P(x,y), we multiply Eq. (4.23) by a factor cosu tc give

jnu
mod{K (x) =i-wpzvrp E : 2;3(kp) 1.«08“] . (4.26)
n

This equation can now be used to compute *he current modulus in the illuminated
region of the surface.

b, Parabolic cylinder approximation.

Another way of approximating the current modulus over the lit region of
the sinusoidal surface is to uze our knowledge of the current induced on a per-
fectly conducting parabolic zylinder whose vertex coincides with the peak of
the sinusoidal surface (s¢= Fig. 4-8), and both surfaces have the same radius
of curvature at this point. Beecause of the mathe'mzitica.l complexity of the ex-
pression wher the ¢yiinder is at oblique incidence, we use instead the normal
incidence results and modiiy it by the factor cosu defined above.

At normal incidence, the current induced on a parabolic cylinder is

192 2
1 [k p g IETEN)

K(x)
\/g+2 F(nVk)

(4.27)

where &, n, 2 are parabolic cylindrical coordinates related to the rectangular

Cartesian coordinates by the transformation
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Fig. 4-8: Approximation of the Surface Current Modulus

over the Illuminated Regicn of the Sinusoidal Surface
by that on a Parabolic Cylinder,
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x=%(§2—n2), y=nt, z=z |, (4.28)

and F(n\ﬁ;) is the Fresnel integral which can be computed using

CN2 T V2/7 w
Fly= (7]2 E% - cos(-é— 7rt2>d§ +j %- sin(—% ntZ)dt‘l {4.29)

/
0 L 0 --

Thus, muitiplying Eq. (4.27) by cosu, we get

Lor e g - e
Kz(x) = o "' §2+n2 F e cosu, (4.30)
and
RN '%jk(ng’"Z)
le(x)\ = :5; \jg2+n2 T8 e cosu (4.31)

which is the equation used to compute the current modulus in the illuminated
region of a sinusoidal surface at oblique incidence.

Frumr experience, it has been found that the parabolic cylinder

approximatl.- ; zenerally gives results slightly less than the exact values,
whereas the circular cylinder approximation gives slightly larger values.

The results are shown in Table IV-7, and also compared with the exact values.

A S R
R e A T O e S PR Ty,
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TABLE 1IV-7

Comparison of Normalized Current Modulus over the Illuminated
Region for the Sirusoidal Surface with d = 1,155) and 6 = 60°,

[Surface | Tocation of Poink Circular’ T i’a?EBbTiE'!
Amplitudei  On the Surface, ! Exact Cylinder = Cylinder |

afx x Coordinate () ' Results ; Approx. i _Approx. |
I T T e s s e oy T \ f
i 0.82 ' 0.90 ! 1.66 0.70
" o3 0.92 1.45 1.87 . 1.20
Lo 1.01 1.88 2.06 1.75
t i .
[ - 1.11 . L.ss 210 1.8 |
; 0.92 1.26 @ 1,50 1.00
0.4 1.01 175 1,94 1.50
. 1.11 1.2 | 2.15 1.96 .
' 0.92 C 1,14 1.60 0.96 |
. 0.5 1.01 1.15 1,86 1.25 !
: 1.11 2,08 2,20 2,12 !
0.92 1.00 | 1,50 0.70 !
j 0.6 1.01 1.33 | 1.99 1.18 ¢
L‘ ! 1.11 2.25 | 2,30 | 2.20
B - | DO |
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Chapter V
SURFACE FIELD DATA FOR H POLARIZATION

In this chapter surface field distributions obtained by numerical solution
of the integral equation for H polarization are presented. The particular
profiles considered are sinusoidal, full-wave rectified, inverted full-wave
rectified, and triangular (see Fig. 3-1) with various periods and angles of
incidence. In each case the physicai optics approximation is presented as a
basis for comparison, and comparison i- also made with analogous resuits
for E polarization. Many of the remarks made in Chapter II for E polarization
hold for H polarization as well, but the surface field ncw is generally more
complicated and unpredictable even over a small region of the surface.

According to physical optics, the surface current induced on the surface

is

Kt(.x) - Ze-jk(x 8in6 - f{x) cos 6) (5.1)

in the illuminated region, and
Kt(x) =0

in the shadow.

As in the case of E polarization, however, this approximation is inadequate

for many purposes.

5.1 Surfaces of Small Period {d/>..<0.2)

Figures 5-1 through 5-12 represent the surface fields on periodic surfaces
of four different profiles, each having a period d = 0.2% and a meximum ampli-
tude a = 0.1A, The angles of incidence are 6 =0, 300, and 600.

Let us first examine the results for a sinusoidal surface (Figs. 5-1 through
5-3). The current modulus now has a maximum at the surface trough and a

minimum at the peak, and in contrast to ihe case for E polarization, it remains

107
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substantially unchanged as the angle of incidence is varied. The physical optics
approximation is somewhat like the mean of the exact solution. For 8 = G, the
phase is almost coustant (as for E polarization}, but there is more variation,
especially rear the surface peak, when 8 # 0.

Figures 5-4 through 5-9 show the surface fields for full-wave rectified
and inverted full-wave rectified profiles. Except that there is a slight improve-
ment in the agreement between the exact modulus and the modulus of the physical
optics, the general behavior is rather similar to that for a sinusoidal surface.
Shadowing has little effect on the current modulus.

The last three figures (Figs. 5~10 through 5-12) are for triangular
profiles, and we note only the absence of any "edge effects".

A point worth mentioning is that for all the profiles considered, the
exact phase at normal incidence is close (in a mean sense at least) to the
physical optics phase. In order to see why the modulus of the surface field is so
insensitive to any change in the angle of incidence, let us go back to Eq. (2.35).
As in the case of E polarization, if the period is sufficiently small, we can
approximate the modified Green's function, Eq. (2.36), by the first two and

the last two terms. Thus, the approximate integral equation becomes

d
G;(x, yix', y) K, (x)dx' = jd{ZHi(x) -, (x)} , (5.2)
0

where
G:(X, y;x'Ly") = -j sgn(y-y') -j {f’(x')tane - sgn(y - Y')} X
,~Jksinf(x-x") - jkcosbly-y|
+Jz- {f'(x')+ j sgn(y-y')} cot {- %(x -x")+j g |Y’Y']} +

flz- {-f‘(x’)+jsgn(y-y')}~ cot{g (x—x')+J"7(§r IY‘Y'I} . (5.3)
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x
Note that of the four terms in G_, only the second contains the angle

2

of incidence explicitly. Since the integral equation is singular, a rough picture

of the solutior may be obtained if we consider the integral equation in the neigh-

borhood of the singularity. Thus

lim G (x, BxLy

|x-x'|->0
{y-y'l—=>0
x'l~>0
Iy y' |-
x x']—->0
y-y'}->0

Using the relation

") = -jsgnly -y') - j{f'(x')tane—-sgn(y y')} +

{f'(x)+]sgn(y y')} Em cot{ d(x-x')+j-§[y-y'!‘§+

cot {g (x-x')+j -g ‘y-—y'%. (5.4)

) = o5 46738
cot (& -j‘——“'—"jg Y
e’ -e
we obtain for the cotangent terms
2b+j2a 2b-j2a
g ite _lte
cot(-a+jb) =] rjea ’ and cot(a+jb) = j %b-32a (5.5)
1-e l1-e
= I -yt = I -y!
where a d(x x), b d{y vyl .
Therefore,
2b+324)
, (l+e
lim cot{——(x x")+]j |3’ Y|}
- x1]—>0 d d Ia\—go 1. 2bti2a
ly -y'}>0
e (5.6)
{al—=>0 a +b

b—>0
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Similarly, for the other term

im cot{ (x- x')+j—'y y']}“‘ lim _a_j%) . (5.7
lx-x'l—>0 lal~>0 a“+b
Iy y]—90 b-—>0

Substituting Eqs. (5.6) and (5.7) into Eq. (5.4), we obtain, after some mani-
pulation,

lim G, (x,y, Ly =-j sgn(y-y')-j[f'(x')tane-sgn(y-Y'ﬂ +

x-x1|—>0 2
ly y |->0
+ lim [bsgn(y y')+af'(le . (5.8)
laF>0 d(a®+b%
b —0
Thus, in the neighborhood of the singularity, Ilq. (5.2) becomes
X+e
{-j sgn(y ~y') -j [f'(x')tane - sgn(y-y'ﬂ +
X-€
+  lim [bsgn(y -y" Faf’(:l]} K (x')dx!
lal>0 da®+pd)
b —>0
= ja{ 2m)00- K00 } (5.9)
Lz t ’

where |x-x'| <e with € (>0) an arbitrarily small number.

If we assume K (x) to remain constant over this small region of
integration, then by the property of sga(y-y'), all integrations involving
sgn(y - y') vanish, Hence

x+e
[etxtane+ 1im Blalle) }x( ')dx""]d{ZH (0-K®}  (5.10

L laj=>0 d(a®+b?)

X-¢€ b —>0
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If the surface amplitude is relatively small, a and b can be assumed

to be of the same order of magnitude, in which case Eq. (5.10) becomes

x+e
{—jf’(x')tan9+ﬂ’£-)—-} Kt(x’)dx' 2’jd{2H;(x) - Kt(X)} s (5.11)
e m(x -x")

which can be solved by treating Kt(X) and f(x) as constant over the range of

integration. We thus obtain
-jf'(x)tan6 Kt(x)2€ ~jd { 2H;(x) - Kt(X)} » (5.12)

and since € is an arbitrarily small number, the left hand side can be neglected
in comparison with the second term on the right hand side. Equation (5.12) now

reduces to
P |
Kt(x) = 2Hz(x) , (5.13)

which is just the geometrical optics value. This is consistent with the numerieal

results,

For a sinusoidal profile, the effect on the surface field produced by a
change in the surface amplitude as the period is kept constant is shown in Figs.
5-1, 5-13 and 5-14. As the surface height is increased, the numerical results

approach those for a flat sheet.

5.2 Surfaces of Slightly Larger Period (0.2.§d/A£0.6)
Figures 5-15 and 5-16 show the surface field for a sinusoidal profile

with d = 0.4A, a =0.2X and 6 =0, 60° respectively. By comparing these
with Figs. 5-1 and 5-3 it is seen that doublirg both d and a has a somewhat
larger effect on the current modulus than was the case for E polarization. In

particular, there is a noticeable change of shape, with minimum no longer
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Fig. 5-13: Normalized Surface Field for a Sinusoidal Surface (d = 0.2),
{ a = 0,03x and 6 = 0) for H polarization, --o-- exaoct,
— physioal optics,
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occurring at the surface peak. Once again, there is no agreement between
the exact data and physical optics, either in modulus or phase.
Results for a full-wave rectified profile with d = 0.6, a = 0.2\ and
= 60° are given in Fig. 5-17. The undulations of the modulus clearly indi-
cate strong coupling among cells (or multiple seattering among ce’*~). Most
of the surface current concentrases in the illuminated region. As the angle of
incidence 18 further increased to 6 = 75° (Fig. 5-18), the modulus undergoes

a marked change, whereas the phase remains constant over most of the surface.

5.3 Surfaces of Larger Period (d/A 2,0.6)

Surface field distributions for surfaces of large period are generally
more complicated than those for surfaces of small period, primarily because
of the greater number of radiating modes.

Let us first consider the results for two sinusoidal surfaces whose
periods are near the Rayleigh wavelength. The first one (Fig. 5-19) has
d=0.95\, a =0.251 and @ = 0. It is seen that the current modulus curve
has a maximum at the surface trough and minima at the places where the
surface crosses the x axis. The phase, however, remains fairly constant over
the lower part of the concave portion of the surface, but changes rapidly from
positive to negative where the modulus has its minimum. The second one is
given in Fig, 5-20, where d = 1.90A, a = 0.25X and & = 0, Here the modulus
has a marked oscillation, quite distinct from that found for E polarization. One
of the maxima is at the surface trough, and the current is again a minimum at
the surface peak. The agreement with physical optics is poorer than for E
polarization, with neither modulus nor phase being approximated to any real
extent.

A careful study of Figs. 5-19, 5-20 and the corresponding ones for E
polarization (Figs. 3-20 and 3-21) leads us to conjecture that there are strong
surface waves propagating along the x-axis when d is close to 2A for H

polarization, and when d is cicse to the wavelength for E polarization.
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Another case also showing a marked oscillation in tae modulus is given

in Fig. 5~-21 where the surface is a sinusoidal with d = 1.6x, a = 0,25 and

R PPIE AERETIER
TR

Daineae
CafPak Lo e D L e

6 = 45° (kpmin =1,63). The physicai optics phase is in better agreement wi:h
the exact phase excep* in the region where the surface is most likely to receive
shadowing.

¢ Kowr

T o examine the effect on the surface field due to a gradual increase in
the surface height when the period and angle of incidence are kept fixed, we
select a sinusoidal profile with d = 1,155, 6 = 60° aud allow a to increase
from 0,05\ to 0.7r. The numerical results are shown in Tigs. 5-22 through

5-29. Again as in the case of E polarization, the agreement between the exact

DUl LS s " "/ i e '
AR s St i MO L)

results and physical optics deteriorates as a is increased. Unlike E polarization,

however, this agreement remains exceptionally good for the phase even when

o - R
>

et S e

the amplitude becomes as large as 0.2X. Furthermore, the exact phase in the
illuminated region is very close to that of the incident field in all cases con-
sidered, but physical optics overestimates the modulus,

To see how much of the surface field depends on the concavity of the
surface, we replaced the concave portion (d/4 <x <3d/4) of the sinusoidal
surface (a = 0,51) by a flat part., The results are presented in Fig. 5-30,

W e

Comparison with Fig. 5-27 shows that this replacement has a marked effect on

N A o~ o e

the surface field in the shadow region, but little effect elsewhere.

Additional data for a full-wave rectified profile (d=0.85), a =0,30), and
6 = 36°), and a triangular profile (d = 1,751, 6, = 20°, 6, = 66°, and
6= 12.20) are given in Figs. 5-31 and 5-32, In the former case, the exact
modulus and phase are in good agreement with the physical optics values over
the left hand portion of the surface, but the agreement (particularly for the
modulus) is less good on the right. For the triangular profile, the exact
modulus shows an oscillatory variation not predicted by physical optics, and
this oscillation is most pronounced on the far right hand portion of the surface.
The physical optics phase is again a good approximation to the exact phase.
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Normalized Current Modulus
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Fig. 5-21: Normalized Surfa'ge Field for a Sinusoidal Surface (d = 1. 6A,

a = 0,25\ and € = 45) for H polarization, =--o0-- exact,
— physical optics,
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Normalized Current Modulus
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Fig. 5-22; Normalized Surface oField for a Sinusoidal Surface {d = 1, 155A,
a=0,05\ and 6 = 60°) for H polarization, ~-o-~ exact,
— physical optics,
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Normalized Current Modulus
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Fig. 5-24; Normalized Surface Field for a Sinusoidal Surface (d = 1, 155X,

a=0,2\and 6 = 60°) for H polarization, --o-- exact,
- physical optics.
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Normalized Currasnt Modulus
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"lg, 5-26: Normalized Surface Field for a Sinusoidal Surface (d = 1, 155X,
a=0,4x and 6 = 60") for H polarization, --o-- exact, — physical
optics.
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Normalized Surface Field for aoFull-Wave Rectified Surface
(d=0,85\, a=0,3\and 6 =36) for H polarization, ~-o--
exact, — physical optics,
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5.4 Coupling Among Cells
Figures 5-33 through 5-37 illustrate the effect on the surface current

distribution produced by a progressive change in the period of the surfacz while

the other parameters are kept fixed. The surface selected is a full-wave
rectified surface with a=0.3}, d=0.3)\, 6= 60° and £ {the distance between
two neighboring periods)varying from 0.3X to 0.7X in 0. IX steps. For the
first two figures, where £ < 0.4), the modulus shows very good symmetry in
spite of shadowing, and over the centrai portion of the surface at ieast the
phase is almost constant. The physical optics estimates are rather unsatis-
factory. As d becomes larger and approaches the Rayleigh wavelength (equal
to 0.535), according to Eq. (4.7)), the surface field experiences a marked
change as shown in Fig. 5-35, but the modulus still preserves its symmetry.
Further increase in d again brings noticeable changes in the shape of the
modulus (see Figs. 5-36 and 5-37), and in spite of the fact tsat the radius of
curvature is a minimum at the surface peak, the physical optics estimate of
the modulus is most accurate in that region. Compared with the analogous
results for E-polarization, the surface fields for these relatively small separ-
ations between cells are more sensitive to the change in period, suggesting

that the coupling between cells is stronger.

3.5 Accuracy Checks and Computational Time

Figure 5-38 shows the results of a convergence test applied to a sinusoidal

surface with d = 0.2, a = 0.1x and 8 = 0. An indication of the accuracy
achieved with an almost flat surface can be had from Fig. 5-14, and because of
the nature of the integral equation, this limiting case works better here than it
did for E polarization.

Comparison of the results with those obtained by Zaki (1969) for a
sinusoidal surface (d = 1.90x, a = 0,25\ and 6 = 0) is shown in Fig. 3-39,
and with those of Green (1970) for a triangular profile (d = 1,752, 61 = 200,
6, = 600, and @ = 12.20) in Fig. 5-40. Good agreement is obtained in both

2
instances,
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/A A — 4 sampling points )\\
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Fig. 5-38: Normalized Surface Field for a Sinusoidal Surface (d = 0, 2X,

a =0, 1A and 6 = 0) computed using 4, 6 and 8 sampling points,
H polarization
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As in the case of E polarization, the ime consumed in each
computation depends on several factors (see section 3.5 of Chapter ), but in
general the CPU time is larger now because of the more complicated (modified)
Green's function. A summary of the CPU times for various combinaticns of
parameters is given in Table V-1,

The distribution of the CPU time for a typical computation where N = 12,

M =3 and Q = 1 is given below:

1. Computation of matrix elements 50.3 sec.
2. Matrix inversion 8.4 sec.
3. Physical optics approximation 4.3 sec.
4, Energy conservation check and calculation of
diffracted mode amplitudes 9.0 sec.
TABLE V-1
Computational Time for H Polarization
Number N of Number M of | Number Q of CPU Time
Sampling Points | Terms inthe | Terms in the (sec)
Infinite Series | Periodic Func- IBM/67
tion Representation
4 3 1 13.00
6 2 10 35.58
6 3 10 41,67
8 3 1 42,47
8 3 10 52.07
8 3 12 61.71
8 8 1 71.87
8 6 1 60. 46
10 3 1 67.13
10 8 1 104. 84
12 3 1 73.10
12 3 10 120,38
16 6 1 180.21
16 ) 1 167.36
20 5 15 424,175
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Chapter VI
SCATTERED FIELD FOR H POLARIZATION

In this chapter we consider the scattered field, scattered energy and
such associated physical phenomena as the S anomalies. Numerical data are
presented to illustrate the discussion, and comparisons are made with the

physical optics approximation as well as the results for E polarization.

6.1 Diffracted Mode Amplitudes

Using a procedure directly analogous to that for E polarization, and
assuming the incident magnetic field shown in Eq. (2.31), we can write

o0

-J(B_x+X y)
8 _ . m T m
with
1 ‘ j(Bmx'+me)
Am = iak-;n- e {Xm- Bmf'(x )} Kt(x )dx (6.2)

0

where Xm and Bm are as given before.

The dependence on Xm and Bm is rather heavier than that displayed by
Eq. (4.4).

Once the unknown K (x') has been found, it is a simple matter to compute
the amplitudes of all the diffraoted modes, both propagating (X real) and
evanescent (Xm purely imaginary), and the amplitudes of the propagating waves
for several different values of d/A, a/X and 6 for a sinusoidal surface are
given in Tables VI-1 through VI-4, It is observed that the physical optics
approximation, with or without shadowing included, tends to underestimate
the amplitudes, and we further note that if shadowing is excluded (or is not
present), the physical optics estimate is the samza for both polarizations (see
Appendix A),
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TABLE VI-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d =0.2x, a=0.1)).

) T T g=0° 6 = 300 6 = 600
Phase Phase Mag. Phase
1{O (O 1 0
|A I Aot |A I P SERAL
Numerical .
! 0.9830 -12.45 | 0.99i0 -23.82 | 1.0640 -~67.24
Solution i L
Physical Optics | o c10c 0.7251 0 0.9037 0
_ w/o shadow R R
Physical Opties | , 00 0.1550 -65.17 | 0.5440 -156.31
w/ shadow

TABLE VI-2

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=1.901, a =0,251, 6 =0).

[ | Mag.” Phase | = Mag. ~ Phase
i 1 o - t (Oy = 1 (O
Bo] A 1| IAI ¢_1<> A©
Numerical 0.9040 -80.50 0.3350 52.55
Solution o B -
Physical
opties __ | 3% 0 | o®® | % |
TABLE VI-3

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.4x, a=0.,2)).

| " g = (° 6 =60°
]
Mag.  Phase |Mag.,  Phase

. . Bl 8O lapl 8

umerice 0.9350 -107.19]1.0140 -145.28
 Solution ]
Physical Optics | o9 0.6450 0
w/o shadow | " N |
Physteal Optics | o 6549 0 |0.1200 -131.32
{w/ shadow ]
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TABLE VI-4

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.2\, a=0,037, 6 =0).

Mag. Phase
iA?j ¢(')(°)
Numerical
Solution 0.9986 -0.55
Physical
Optics 0.9647 B 0

6.2 Diffracted Energy and Wood Anomalies

6.2.1 Discussion

The diffracted energy is the field quantity most frequently measured.
It is, of course, directly related to the diffracted mode amplitudes, and the
general remarks concerning energy and the Wood anomalies made in section
4,2.1 also apply here. Unlike the P anomalies, however, the S anomalies
(which were discovered earlier) have been more widely studied and are more
completely understood. According to Rayleigh's theory, the occurrence of
the S anomalies corresponds to the singularity of the scattered field at Ray-
leigh wavelengths, At these wavelengths, a new spectral order appears at
grazing angles, and thus causes a sudden rearrangement in the diffracted
energy among the other modes. But it should be noted that there are S
anomalies other than ti.ose which occur at the Rayleigh wavelengths, and
these are similar to the '""Brewster angle' type discussed in section 4.2.2. A

comparison with the P anomalies reveals that the S anomalies are generally

much stronger and can occur with structures having relatively shallow grooves.
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6.2.2 Computed Data for the Diffracted Energy

a) Two radiating modes. The fields scattered by surfaces of very small

(electrical) period are of relatively little interest. Anomalies are ohserved
only when more than one radiating mode is present, and, of course, the sim-
plest cases (also the ones most investigated) are tnace where there are just two
radiating modes.

Figure 6-1 shows a plot of the normalized diffracted energy versus
the surface height for a full-wave rectified profile for which d = 0. 85X and
6 = 36°. Since an equivalent plot for a sinusoidal surface was obtained by
Zaki (1969), it ie included here for the sake of comparison. With this choice
of parameters, oprly the m =0 (specular) and the m =~ 1 (back scattered)
modes can propagate. The diffracted energy exchange is continuous,
exhibiting maxima and minima in an almost standing wave pattern. The rate
of conversion of the diffracted energy is more rapid for the sinusoidal sur-
face than with the full-wave rectified surface. Anomalies occur in both cases,
however, with the first appearance being at a = 0, 16A for the former surface
and at a = 0.361 for the latter. Note that this type of anomaly is different
from the classical (Rayleigh) type in that they do not occur at the Rayleigh
wavelengths,

Ancthicr example for two radiating modes is shown in Fig. 6-2 for a
full-wave rectified profile with a = 0,31, d=0.30A, § = 60° and ¢ varying
from 0 to 0.7r. We note the abrupt exchange of diffracted energy between
the m = 0 and m= -1 modes near the Rayleigh wavelength, XR = 0,535,

This exchange is, however, not complete, but about 50 per cent. A stronger
anomaly showing complete conversion of energy is observed at d = 0,7A.

The changing division of diffracted energy between two radiating modes
as a function of the angle of incidence is illustrated in Fig. 6-3 for a full-wave
rectified profile with d = 0.6A and a = 0.3A. It is seen that there is a dis-
continuity in the diffracted energy for both modes at 6 = 41, 8° corresponding
to a Rayleigh wavelength, and for incidence angles greater than 41. 8° most
of the energy is carried by the m = -1 mode.
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Diffracted Energy for Two Radiating Modes, for

H polarization.
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Diffracted Energy for a Fuli-Wave Rectified Surface
(d =0.6A and a = 0, 3\), for H polarization.
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b) Three radiating modes. As the period of the surface is increased,
higher order modes come in, and the distribution of diffracted energy among
the radiating medes becomes more complex. This is clearly demonstratedin
Fig. 6-4 for a sinusoidal surface where d = 1,155, 6= 60° and a varies
from 0 to 0,72, With this choice of parameters there are three radiating modes,
with the m =0 mode radiating in the specular direction (90 x 600), the m = -1
mode radiating in the normal direction (6_1 = () and the m = -2 mode radiating
in the back scattered direction (9__2 = —600). The curves show no resemblance
to those for the case of two radiating modes. For a <0.05) the m = 0 mode
is the dominant one, carrying at least 80 per cent of the total energy. Once
again, we see that the diffracted energy for each mode is more sensitive to a
change in the surface height than was the case for E~polarization, and a strong
anomaly is observed for even the relatively shallow groove depth, a =0, 3A.
For this depth, all of the energy is carried by the m = -2 mode which produces

a correspondingly strong back scattered field.

The same kind of plots were also obtained using the physical optics
approximation, eitherwith or without shadowing, and they are shown in Figs.
4-4 (the same for both polarizations) and 6-5. By comparing thase with Fig.
6~4, it is appa- ent that neither version of the physical optics approximation
gives satisfactory agreement with the exact solution except perhaps whea
a < 0.05A.

A plot showing the relation between the diffracted energy and the
minimum radius of curvature (at the surface peak or trough) of a sinusoidal
surface for which d = 1,155\ and 6 = 60° is shown in Fig. 6-6. As in the
case of E polarization, the dominant mode for kpmin 24.5 isthe m=0

(specular) one. Thus, as far as the scattered field is concerned, the surface

with kpmin > 4.5 can be treated as flat,
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Surface Amplitude (a/))

Diffraco:ted Energy for a Sinusoidal Surface (d = 1. 155\ and
6 = 60°), for H polarization,




Goiclit wikar sy

L

LA

S A

N N M L AT 4t T Aot i NS Ao

. g e

1.0

.
—~
<N

Normalized Diffracted Energy
e =

IYie.

b=

o

165

Surface Amplitude (a/A)

l)iﬁ'mgtcd Energy for a Sinusoidal Surface {d = 1. 165X and
0 607). Computed Using the Physical Optics Method (with
shadow), for U polavization,
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Normalized Diffracted Energy
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Fig, 6-6: lefragted Energy for a Sinusoidal Surface (d = 1, 155A and
6 = 60"), for H polarization,
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6.2.3 Blazed Gratings

The diffracted energy for various orders of radiating mode can be
computed from Eq. (6.2) and used as a basis for the design of biazed gratings
(gratings whose profiles are so shaped as to maximize the diffracted energy in
a given direction or a given mode).

Blazed gratings find important applications in spectroscopy where the
spectrum is observed in only one order at a time, the energy going into the other
order modes heing completely wasted. It is therefore desirable to have the
observed spectrum as luminous as possible, and one way of achieving this is
to reduce the number of propagating modes by using smaller periods. Another
way is to minimize the amount of energy carried by the other modes, and
according to Eq. (6.2) and neglecting the contribution due to the perpendicular
side of the surface, the diffracted energy of the mth mode for a right-angled
triangular profile will be zero if

Xm— Bmf'(x) =0
or fiix) = Xm/Bm . (6.3)

Eq. (6.3) is particularly useful when there are only two radiating modes.
However, since this applies only to H polarization, the echelette grating so
designed is polarization dependent.

6.3 Conservation of Energy

One feature that is common to perfectly conducting, periodic surfaces
regardless of the number of radiating modes involved is the condition of
energy conservation, and this can be used as a check on the accuracy of the
numerical solution, The results of this check are shown in Table VI-5 for
a sinusoidal surface sustaining, in most cases, only one radiatiug mode.
Results for two and three radiating mcdes are shown in Figs, 6-1 and 6-3. In
all cases considered, the numerical results satisfy the condition cf energy
conservation, but the physical optics approximation, with or without shadowing

included, does not.




168

TABLE VI-5

Conservation of Energy for a Sinusoidal Surface

Physical Optics
Numerical w/o Shadow w/ Shadow
d/x a/x 6(°)| Energy Error(°/o)|Energy Error{®/o){Energy Error(°/o)
0.2 0.1 0 | 0.9848 -1.52 0.4728 -58,72 (0.4728 -58.72
0.2 0.1 30 { 0.8532 -1.43 0.4554 -47.30 ;0.0208 -898.00
0.2 0.1 60 | 0.5075 1.50 0.4083 -18.34 10.1479 -70.42
v.2 0.01 G | 0,998 -0.20 0.9921 - 0.79 10.992: - 0.79
0.2 0.03 0 | 0.9987 -0.13 0.9308 - 6,92 10.9308 -~ 6.92
0.4 0.2 0 ] 0.9823 -1.77 0.0030 -99.70 10,0030 -99,70
§ 0.4 0.2 60 | 0.5042 0.84 0.2061 -58.78 10.0083 -98.50
1.9 0.25 00,9974 -0.26 0.4202 -57.98 N 0.4202 -57.98

6.4 Approximate Techniques

¢ As in the case of E polarization, an attempt has been made to use the
knowledge obtained from the numerical results to develop a simple method for
estimating the field back scattered from surfaces at oblique incidence. Were

it possible to arrive at a valid approximation technique, it would be very use-

! ful in such practical problems as sea surface or terrain scattering.

Naturally the physical optics method was tried, but was abandoned
because of its rather poor agreement with exact results. As we have seen in
previous sections, the scattered field, involving the conversion of energy among
radiating modes, is a very complicated quantity which offers little prospect
of simple approximation in any general situation. However, in particular cases
such as back scattering by a sinusoidal surface at oblique incidence (Figs. 5-25
through 5-29), there iv some hope o1 developing an approximate technique. In
a procedure directly analogous to that for E polarization, the field back scat-

tered by a sinusoidal surface at oblique incider.ce was computed by the stationary
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phase method using the exact surface field over only a restricted portion of ;

the iluminated region of the surface. The results are shown in Table VI-6.

TABLE VI-6

Comparison of the Energy Backscatteged by a
Sinusoidal Surface: d = 1.155), =60, Computed ,
Using the Exact and Stationary Phase Methods. . ;

Normalized Back Scattered Energy

Surface Stationary |
Amplitude (a/)) Exact Method Phase Method

0.3 0.98 1.06

0.4 0.64 0.69

0.5 0.75 0.70

0.6 0.60 0.64

0.7 0 0.16

Although the agreement with the exact values is excellent, the
approximate method still requires a knowledge of the true surface field over
a small region of the surface, and in order t- avoid solving the integral equa-
tion numerically, it is necessary to find some other means for estimating this
field. As regards the phase, the physical optics value turns out to be adequate;
unfortunately, the modnlus is a much more complicated quantity and, unlike
E polarization, is not dependent on the local surface properties. Many different
methods using combinations of ray optics and surface wave theory have been
tried. For example, one method considered the interaction of two rays: the
incident ray and the ray reflected from the opposite face of the surface; another
method considered forward and backward traveling waves whose amplitudes
we sought to choose to fit the exact data. However, neither of these methcds
alone (or even in combination) was satisfactory, though it was noted that a
rough estimate for the modulus was provided by the imaginary pzit of the
physical optics approximation. Though there is no physical basis for this
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whatsoever, the corresponding estimates of the back scattered field were

computed, and a comparison with the exact values is given in Table VI-7.

TABLE VI-7

Cemparison of the Current Modulus over the Illuminated Region
Of a Sinusoidal Surface, Computed Using the Exact Method and
The Imaginary Part of the Physical Optics Approximation.

(d = 1.1551, 6 = 60°).

t

!

o T T Normalized Current Modulus !
Location Approximation Using }
Surface of Point, Exact The Imaginary Part of
Amplitude (a/A) | x Coordinate (A) Method | The Phys. Optics Values
: 0.915 1.75 2.00
0.3 ! 1.010 2.05 1.92
: 1,109 bo2.30 1.84
04 . 0.938 1.84 1.96
: ! 1,082 1.9 2.00
. 0.915 L 2.00 1.97 |
0.5 ; 1.010 P 1.42 1.90 }
; 1.109 i 1.84 1.96 !
0.915 L 1.85 1.92 |
0.6 , 1.010 P17 1.70 i
1.109 C 1,84 1.70 !
1,010 | 1.04 1.43
0.7 |
| 1.109 | 0.9 1.37
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Chapter VII
RAYLEIGH'S METHOD

As mentioned in Chapter IV in connection with Wood anomalies,
Rayleigh's work was one of the early attempts to theoretically investigate
scattering (electromagnetic or acoustic) by a periodic surface. His approach,
now termed ""Rayleigh's method'', is indeed an importrnt one, and has been
used, with or without refinement, by many subsequent investigators. We
shall now examine his method in some detail and compare exact data with

data obtained using his assumption.

7.1 History

In 1807 Lord Rayleigh studied the scattering of sound waves by corru-
gated surfaces and sought to solve the wave equation in combination with the
appropriate boundary condition. His method is an intuitive one that has been
used by many investigators and is based on the following two assumptions:

a) the scattered field may be represented by a linear ¢combination of discrete
plane waves, either propagating or attenuated [rom the surface, and b) this
representation holds everywhere above and on thke boundary. A simple and
straightforward description of the Rayleigh method for a periorlic boundary is
given by Beckmann and Spizzichino (1963). The second assumption, which is
often termed the '"Rayleigh assumption, " has been a controversial subject for
many years,

As first observed by Lippmann (1953), a choice of scattered field
consisting only of outgoing waves is not the most general, and may not com-
pletely represent the field within the grooves; at any point in this region, one
would expect the field to include waves propagating (or exponentially damped)
in both directions, since there are currents on those parts of the grating above
and below the given point. Meecham (1956b) studied reflection from irregular

surfaces with a method based on Fourler transforms, and obtained numerical

e
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resuits for the distribution of energy reflected from a sinusoidal sucface. By
comparing these with experimental results and also with the ones obtained using
Rayleigh's method, he concluded that errors were of the same order as those
in the physical optics approximatior.

Heaps (1957) attacked the validity of the "Rayleigh assumption' in
another way. He studied the reflection of plane acoustic waves at a sinusoidal
surface of zero pressure and investigated the least possible value of the sur-
face pressuve consistent with the assumption that all the reflected radiation
is in the form of undamped plane waves. After comparing his results with
the experimental data of LaCasce and Tamarkin (1956), he concluded that
"if all reflected energy has the form of undamped plane waves then the surface is
necessarily sound absorbing and of pressure significantly different from zero.
Thus, in the neighborhood of the corrugated surface of zero pressure, it is
necessary to take into account other forms of radiation and such forms play a
significant part in satisfying the boundary condition." Murphy and Lord (1964)
have also criticized the Rayleigh assumpiion. By making a direct comparison
of the results obtained from an exact representation of the field with those based
on Rayleigh's formulation, they concluded that the latter is inadequate.

On the defense side, ¢ 3re aie people who support Rayleigh's
assumption. Marsh (1963) has generalized Rayleigh's method, aad considered
the scattering of acoustic waves from a sinusoidal surface (y =acos Kx) with
a Dirichlet boundary condition. He showed that the boundary condition can be
satisfied using only outgoing waves. *wumerical data were obtained for the
amplitudes of diffraction which, upon substitution iuto the energy relation, in-
dicated conservation of energy. However, it must be noted that the values of
Ka used were relatively small, and as shown later, the Rayleigh assump-
tion is indeed valid in this case. Additional support of Rayleigh's assumption
comes from Millar (1963), who argued from the viewpoint of analytic continu-

ation. He remarked that if the ooundary values are analytic, 'the exterior
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field may be continued into the grating from above, and that the exterior plane
wave representation will converge everywhere above a plane parallel to y = 0.
Likewise e interior field may be continued into the upper half-space from
belcw, and the interior plane wave representation will be convergent below a
plane parallel to y =0. If the two half-spaces of convergence so defined con-
tain a common layer which, in turn, completely contains the reflecting surface
y = acos Kx, then the two representations, each outgoing or attenuated in its own
half-space, may be matched on the reflecting surface where both are valid. "
This remark seems very reasonable.

Possibly the most significant step toward the resolution of the contro-
versy {with Dirichlet condition) was taken by Petit and Cadilhac (1966). They
demonstrated (using analytic continuation) that for the profile y = a cos Kx
(-0 <x < m) Rayleigh's assumption could not be valid if Ka > 0. 448; for
Ka < 0. 448, the question remained open. Recently Millar (1969) used a tech-
nique developed to locate singularities of solutions to the Helmholtz equation.
By applying thie to the sinusoidal profile, he was able to show that Rayleigh's
assumption is indeed valid if Ka <0.448 and is not valid if Ka > 0. 4483.

In order to shad some light on this remark, let us compute the scattered

field using the exact representation and under the Raylejgh assumption.

7.2 Numerical Results by the Exact and Rayleigh Methods

For E polarization we have, from Eq. (2.22),

d
B,y =2\ P V1+()°2 K (i’ . (7.1)
0

Using the exact representation we can expand the field in terms of incoming and

outgoing waves, thus

s ‘e
B RN £}
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®

-i(B_x+X_y) -i(B x-X_y)
E:(x,y)= Z ’:Bme m m +Cme m m :l (7.2)

m=-Qo

From Eqgs. (7.1) and (7. 2) we get

i(B_x+X y)
- m m 2 .
Bm 5aX e V1i+f(x) Kz(x)dx, ' (7.3)
m -
S
B x-X_y)
- e M m \/1+f’(x)2 K (x)dx (7.4)
m 2de + Z
S

+ -
where S and S represent the portions of the surface above and below a plane
through the point P{x,y) (see Fig. 7-1). Of course, when y is above the grating,

i.e.y >max f(x) , then

B =A and CcC =0,
m m m

where Am is defined by Eq. (4.4)

On the other hand using Rayleigh's assumption, we can expand the field

everywhere in terms of outgoing waves alone, viz.

o
. B _x+X_y)
?(x,y)= E Be ™ m . {7.5)
z m

ms=-Q m

into Eq. (7.1), we get
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E (x,y}— od

(03] f g
-i[B_{(x-x*}+X_|y-v| .
Z —}f— Eom m_ ]\/1+f'(x')2 Kz(i)dx‘-

m=-m m

(7.6)

In order to make Eq. (7.5) equai to Eq. (7.6) everywhere on the surface, we
must remove the modulus sign in the kernel. Thus, equating Egs. (7.5) and
(7.8), we obtain

d

iB x+X y)
g m m . 2 v
Bm e \/ 14+1(x) Kz(‘-.)dx

0

-~
=)
)
-)

[

B x+¥X ¥)
= e @™ 7 \,11 +f’(x)2 Kz(x)éx

£

(B x+X v}
+3 e T Tt K (x)ix . (7.8)

~

D

Intuitively we expect the discrepancy between Egs. {7.2) and (7. 5) to be greatest
when S =0, that is when the point P{(x,y} is in the surface trough. Thus, let-
ting S =0, we get from Eq. (7.2}

= HEB_+ax !
E‘s(d/2, -a) = E C e m m {7.9)
z m
m=-»
where
wr rd J(B x-X y)
cm=,,—d§— e Y1 f()-QK(x)dx

0

and frem Eq. {(7.5)
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5 ~ . —{5B_-2X )
1 £5(df2, -a) = E B e 2'm m (7.10;
A 1;: Zz m
§... m=m
s where
. :
e 5o iB_x-X_y) :
4 P g 9 %
B =\e " ¥ firr60” K (xlax . .
= ~
- 0 ‘
Using Eq:. (7.9) and (7. 10}, numerical results for the scattered field were ‘
! ‘
. : computed for a sinusoidai and an inverted full-wave rectified surface, and
. these are shown in Table VI-1.
B
i
' 'E-
A TABLE Vi-1
= g- E-polarization. Comparison of S~attered Fields at the Surface
: %; Trough Obtained by the Exact and Rayleigh Methods.
:»— b
. Type of Scattered Field
: Surface Ka Fxact Representation Rayleigh's Methed
0.314 2.27440 - §0. 22657 2.27420 - j0. 22664
. Sinusoidal | 0.942 1.96310 - jO. 48310 1.95450 ~ jO. 48166
,, 1.884 1.86610 -~ jO. 52445 1.75170 - j0.54162
3
Tnverted
) Full-wave 0.314 2.42170 - ;0. 18443 2.42180 - j0.17913
Rectified 0.942 2.22550 - j0.49810 2.22720 - j0. 46485
i

Table VII-1 shows that, for sufficiently small values of Ka, the

e,

scattered fields based on the exact and Rayleigh methods agree extreme.y

g“
3;7 well for a sinusoidal surface. This is consistent with Millar's remark. In

Symen -
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the case of the inverted full-wave reciified surface, agreement is not so gond
for the same values of Kza. This i probably due to the fact that the irented
fuli-wave rectified profile is not an analytic functon as is requii=d i Litllar's
analysis.

Turning now to H-polarization, we have

d
= (x)ix (7.1
H (x y)= 4j Pth.x,dx . {7.11)
0
Using the exact representation we get
~j(£’ x+X y) -iB_x-X_y)
3 . . m m”
HO(x, ) = z [B e +Cl e ] (1.12)
where
i{B_x+X y)
1 { ] m m
L - '
Bm % J e {Xm Bmf (x)} Kt(x)dx s (7.13)
m -
S
and
| J(B x-X y) 1
1 = e T T s
Cm Y e {X -B f(x); I‘t()\)dx , (7.14)
m +
S
and when
y> max[f {x)]
then B' =A' and c =0 |
m m ™

where A' is defined by Eq. (5-2),
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On the cther hand, using Rayleigh's assumption, we have
s = - -j(ﬁmx-!-me)
Hx,y)= _S_ B'e (7.15)
4 m
m—m

I we now substitute the expression

m

5 {f'(r) (—— + ksméﬁx 8g,'n(v y") }

m—-oa

)
Il

o 2mT 8 3
ity *ksino)x-x") 'Jiy“yilxm
x e ©

into Eq. {7.11) we get

d o
] 1 2m7a
Hz(x, y) Y E {f'( ) \aram +ksin9\}-X sgn(y -y )}
m m==00
0
-j( Zm” +1s8in 9)(x ~x') -—j{y-—y‘lx
m )
e e Kt(x)dx.
(7.16)

Again, in order to make Eq. (7.15) equal to Eq. (7. 16) everywhere on the
surface, we require the modulus sign in the kernel to be removed, Thus,
equating Eqs. (7.15) and (7. 16),

v (0B x+x_y) c

Vo= m’ .
B =\ e 1 X Bmf'(x)} K, (x)dx (7.17)
0]

(: i(B_X+X_y)
= e {Xm- Bmf'(x)} Kt(x)dx +

)s*”

+ €

J‘(Bmx+me)
_ {Xm-ﬁmf (x)} K (x)dx ; (7.18)

S

Rl T SN

oy
Lt
R U S W

ORI

[

N

Ve
Ll o et ey

il %

. -

2 e P Ao e PR




= | 180

and if we examine the field at the surface trough (so that S = 0), then

s = —j( gBm+aXm)
H {d/2, -a) = E C' e {7.19}
z m
m=—
where
1 ¢ ie mx -me )
! = e -8
e =5\ e {xm ,bmf’(x)} K (x)éx ,
m
0
and from Eq. (7.15)
= o~ -j(g.B m-xma)
Hs(x, y)= E B! e (7. 20)
z m
m=-0
where
o (0 HB_x+x_y)
B! = e {X -B f‘(x)} K (x)dx .
m m ' m t

0

Numerical values computed using Eqs. (7.19) and (7. 20) for a sinuscidal
surface and an inverted full-wave rectified surface with d=0,2), =0 and

different values of Ka are shown in Table V-2,

TABLE VII-2

H-polarization. Comparison of Scattered Fields at Surface
Trough Obtained by the Ex:>ct and Rayleigh Methods

Type of Scattered Field
. ___S_uxia_c_e_ } -_Ke_l__ N _E_xact Representation Rayleigh's Method
Sinusoidal | 0314 0. 74072 - j0. 63363 0. 75254 - 0. 62012
nu 0.157 0. 87126 - j0, 31756 0. 87870 - §0. 31196
;f‘:ﬁffve:ve 0.314 0. 79608 - §O. 34601 0.92741 - §0. 34870
0,942 | -0,07901 - j0.90223 1.07230 - §1. 00060
Rectified
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It is interesting to note that the critericn under which the Rayleigh
assumption holds seems different for H-polarization, wita all data sugyesting
that Ka must be smaller than the value 8.448 appropriate to E-~-polarization.
However, the exact figure for H-polarization is unknown, Again the agree~
ment between the exact representation method and the Rayleigh method be-
comes worse if the periodic surface is pot an analytic funcifon {suck 2= an
inverted full-wave rectified profile).

From the above computed data for E and H polarizaticns, we there-
fore conciude that Rayleigh’s method can be used, with sufficient accuracy,
for estin.:ting the fleld scatiered by 2 periodic surface provided that it is
analylic and has a emall value of Xa {say less then 0.5). If the suriace is not
an analytic curve (in practice, a grating profils cannot be shaped to coincide
with an analytic curve), Kayleigh's method provides us bettexr results if the
incident field is E-polarized.

RS atcaminart- R




Chapter VI
APPLICATION TO ROUGH SURFACE SCATTERING
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8.1 Discussion

Although the main purpose of this work is concerned with scattering

e .\l"'
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by a periodic surface of arbitrary shape, it is appropriate to consider the
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application of our results to scattering from rough surfaces.

In the past decade or so, a great number of papers have heen published
dealing with this type of scattering. A few of the more important referexcus
are Rice (1951), Hoffman (1955), Beckmann (1963) and Fung and Ch in {1839),
and if there is one feature that almost all such theoretical treatments have

in common, it is their reliance on the physical optics approximation which, in

effect, reduces the determination of the scattered field to quadratures. Of

Ry course, there exist many differences of detail, both conceptual and analytical,

! depending, for example, on whether the perturbed surface is defined specifically
E or statistically, the nature of the statistical variations assumed, the stage at
which averaging is performed, the method of evaluating the remaining surface
integral, whether shadowing is taken into account, etc. However, the results
obtained are still limitad by the physical optics approximation, which takes no
account of any multiple scattering, is invalid for surfaces of curvature small
compared to the wavelength (small scale roughuess), and provides a false esti-
mate of shadowing.

If the surface is iliuminated near normal incidence, these deficiencies

are of little consequence, primarily because the base surface provides a strong
return. As we depart from normal incidence, the surface concentrates the
return in the forward (specular) direction, where the estimated scattering
from the perturbed surface may remain valid, but in other directions (e.g.
back scattering) all of the observed return is a consequence of roughness, and

any perturbation based on physical optice is of doubtful accuracy.

182
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In order ic treat adequately the case of oblique incidence on a rough
surface, it is desirable to postulate a base surface whick will itself generate
a back scattered return at these angles; to devise a means for accurately
estimating this scattering; and then to handle by a perturbation technique such
small scale roughness as it may be desirable to include. In order to simulate
actual rough surfaces, the small scale roughness will he assumed statistical
in character. From the viewpoiat of optical gratings, the effect of this kind of
roughness is equivalent to degrading a diffraction grating with emali random
errors. For this reason, the results obtained here are also applicable fo the
study of grating imperfections wlich may cause phenomena such as ''ghosts"

and wave-front aberrations.

8. 2. Perturbation of the Surface Field

Consider a plane wave of either polarization incident in a direction
making an angle 6 with the positive y axis, as shown in Fig. 8-1. We repre-
sent the rough surface by a small scale roughness superimposed on a sinusoidal

base simulating large scale roughness. The surface neight is then
- = 2n
y = f{x) = acos Tl + 8x) , ~-o<x <o (8.1)

with a > |&x)|.

Furthermore we agsume that §x) is a random variable cbeying a

Gaussian distribution with zero mean, such that

f)
- L x)~
ceefs)

<gx)>=0

where o is the standard deviation, and the bracket sign <> represents a statis-

tical average process.
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Fig. 8-1: Geometry of a Rough Surface Consisting of a Periodic Base
and a Small Scale Random Roughness,
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3 In accordance with the boundary conditions, the wave induces on the ,;
43 A surface a current density F(r) which is the actual source oi the scattered ;i
e L
%’f field. Application of Green's second identity and the appropriate boundary :
f conditions then yields the following uxpressions for the scattered field: :
z;i 5
E(r) = ju | Gz, ))F (x)at i
i S L LY L :
S :
| (8.3)
4 1 .
S H:(g) = - ?_G_(_’-"’_-Il_) Ft(_l_‘_')dt'
; A

'
S on

for E and H polarizatic. respectively, where :

(2)
0

o
\

ol =-LH |- x)
and ﬁ' is the unit vutward noxrmal to the surface.

If the observation point is far from the nearest point on the surface,

y -, e peg i ALy o AR
S b T s ST B g e S 5 R o
A : AR S SNy =, S Ay ¥R
" R
<l i v e 9 U A e e ARSI i 04
. etm

the asymptotic form of the Hankel function may be intreduced; viz.

H§)2)(RR) ~ -7%%; e‘j‘{r exp {jk(x cos @ + ysin ¢)} (8.4)

where
i/2
R={x-x) + F-502}
and ¢ is the angle of diffraction, made with the positive x axis. :{
Combining Eqs. (8. 3) and (8. 4) we get

WLy
ek kW =

Ity

a
Ex) = o2} Ikl cos B+ ysin ¢)\/1 +f1(x)° F_(xdx (8.5)

-
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for E-polarization and

(V)
Hi(g) = -%ﬂ ejk(x cosf+ysinf) cos(h, r) \1 1+£%x)" F t(x)d:\:
-0
@ - P
= --%ﬁﬂ ejk(x °°8¢+y8m¢){f'(x) cos ¢~aln¢} Ft(x)dx
-0 (8.6)
for H-polarization
/2
where qir) = <‘;%l{'; e-jkr .

Since the perturbation is, by assumption, small, the perturbation on
the periodic base is equivaient to a perturbation oi the surface current. More-~
over, by using the fact that the modulus of the surface field is less sensitive
to a sinall change in the surface height than the phese, we can agsume that the
perturbation on the surface field produces only a2 small change in the phase of

the unperturbed surface fleld. This allows us to replace the rough surface by
its periodic base. Let

y = f{x) = a cos 'Z-Ex\)

d ]
and

Fz(x) = Kz(x)ejkd,‘) (8.7)
for E~-polarization,

F(x) = K (x)e/* % (8.8)

for H~-polarization, where Kz(x) and Kt(X) are the.aurfaca fisids for the unjer-
turbed surface.
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Substituting Eq. {8.7) into Eq. (8.5) we get

[¢3]
Ez(r,m*q(r)Y (Jilxcosprysind) [0 2 K 0" ax  (3.9)

-0

Q*

The intensity is then

8 2__8 -
[, O =EX=. - E] (r, )

® L0
jki(x. -x )eos P+{y -y, )einf| x
=§<§(I‘)? R [ 172 1 72 ]
J-m J-
jk|§(x y-dx ]
Viep6)” (1+86c,)° K x K ix,) e dx .,
{§.10)

which has the average value

jk[_x1 X )coz~:‘¢+(y1 yz)sin

2 2
\/1 +f'(xl_. J1+f'(x2) X

< JESe, o —l\ l

jk j&lx, ) - dx,)
?iz(xl)K:(}cZKe [ 1 2] > dx, dx (8.11)

172
From our knowledge of statistics it is known that if a(xl) and a(xz) are two
random variables of normal distribution with zero mean, variance 02 and
correlation coefficient c{7), their joint probability function is (see, for example,

Middleton, 1960Q)
[ )%~ 20st ot )+ o )
f{&x 1, ox )} 212 exp ?-— 5 5
2ra (1 -c’) . 207(1~¢")

(8.12)
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The factsr < > in Eq. (8. 11) can now be evaluated and is (Beckmsann and

Spizzichiac, i963)

jk[“xz) 'a"zﬂ 22,
<e >xaxpl-ka(l-c) . (8.13)

and when this is subsudtited inio Eq. {8.11), we obtain

O (N0

ik Exl-xz)cos ¢+(y1- yg)sm@

\F +f'(x1)2 J;f'(xz)2

.

<[EXe, > =tofelf

Lk 22,
1K {x,)K {x Jexp [ (1-cﬂdx1dx2 (8.14)

For convenience, the ncrmalized correlation coefficient will be used

T wmmummmm‘mmm

olr) = expl~1* /T°) (8. 15)

where 7= X=X, (assuming stationary process) and T is the correlation distance.

Using the expansion

o)
2 2 2n 2,2
exp Ekzﬁz(l'- cﬂ =0k Shol e /T

n

L]

n=0

a little mathematical manipulation is sufficient to convert Eq. (8. 14) into

® . 2,.2
8 2 2 2 =« /T" 2
< }Ez(r, ¢)l > = y{r)T/ko) ulx, Pdax| +2vir)| % wx, @xe dx
- oo
o
¢ 2,2 12
+ 2v(r) u(x, séi)x?‘e-x /T dx! +... (8. 16)

~Q0

X
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v/here

2 2
v{r) =§q(r)? e’ k (ka'/T)2 ,

ulx, P) = SHXKCOS BT YSIIN} L r 2 K (x) .

To evaluate Eq. (8. 16) numerically, we must reduce the limit of

ANkt - CiAN

Slol )

T e

et

< Ak o B

integration from infinity to a finite value. This can be done by noting that
Kz(x) is a periodic function. Thus, using Eq. (2.21),

LR Al s AN

d 0 9

‘? < |BSte, 92> = vt /Kol \ ulx, 9) {eimifcosﬁf-sinm} d"l

. Z

; 0 m=-

’ > 2 2

] +2v(r)| \ ulx, ) Z {;kand(cosf?’-einfb) (x+ma)e-K+ M)/ T } dxr
0 m=-00
! (E" 2,2 2

+29(r)] \ ulx,#) l {eikmd(cossﬁ-sinsb) (et ma)2 oK A /T } dx}

0 m=-00

1

i

4

: e ' (8.17)

which can be evaluated by truncating the infinite series. On examining Eq.

(8. 17), it is observed that for small values of ¢ the first term dominates ard

PRI IO X oot AR A

o~

represents contributions coming mainly from the periodic base, while the

- hgwrn,

second and higher order terms are the contributions frem the perturbations.
Numerical results showing the scattered field pattern for a sinusoidal
profile (d = 1,155, a=0,3xand 8 = 60°) are shown in Figs. 8.2 through 8. 4
with ¢ = 0,051 and T varying from 0.5d to 3d. It is seen that the diffracted
energy spectrum has broadened slightly into a shape like a pencil beam around
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the discrete (unperturbed) spectruza. In all cases considered, there is a
decrease of diffracted energy in the specular and normal directions when the
surface is perturbed. There is also some evidence of surface wave radiation
for small . In the back scattered direction, however, the energy is relatively

unaffected.

In an analogous way, using Eq. (8. 6) we get for H-polarization

8 2 2 2
<,Hz(r, ¢), > =y (r)T/ko)

d 00
K o(x, B) {ejkmd(cos f#~sin ¢)} dx
Jo m=—o

| > jkmd(co ;b- in ) -4 +md)2/T2‘ 2
+2vi(r)| \ utx,P) e COSP=8inP (x+md)e™* %dx!
i

m=-00
0

m==-Qo

d Y
2,2 2
ravi(o)] | w'x, 9 z {ejkma(“g P-sinf) s ma)?e KM /T } dx i
0

o0 _ : (8.18)

where

vi(r) = (k/w}2 v(r)

aix, ) = ejk(x cos P+ysin f) {f’(x) cos f~sin ¢} Kt(x) ,

in which the first term represents the dominant contribution from the periodic
base surface, and the second and higher order terms show the effect of the
small scale roughness. Numerical results for the scattered field pattern for
a sinunoidal surface (d=1.155%, a=0.4x and 6= 600) are presented in Figs.
8-5 and 8-6, where o = 0.05x and T varies from 0.5d toc d. It is seen that
they bear the same features as those for E-polarization; however, we observe

now there i8 a decrease of diffracted energy in the back scattered direction.

—_
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In the above study we have assumed an unlimited illumination ares which
means that the entire infinite rough surface is exposed to the incident wave
(whether there is shadowing involved is another matter). However, in a more
practical situation, it is likely that not all of the rough surface will be illuminated
(limiting illumination area) because of the finite aperture of the illuminating source.
Thus let us assume the incident wave to be a plane wave whose amplitude is given

by a Gaussian distribution as

EIZ(E) = 1(x) o ~Jk(xsin6-ycos 6) (8. 19)
for E-polarization, and
Hiz(x) - I(x)e—jk(xsin 6 -ycos6) (8. 20)
for B-polarization, where
1 2, 2
I(x) = Nz exp(-x_/2p") (8.21)

and p is the standard deviation. _
Rigorously speaking, in order to find the current distributions. on the
rough surface due to the finite source illuminations Eq. (8.19) or (8.20),

it is necessary to solve two other problems whose integral equations are

(2)

K (x')H,

S

(kl_l_'_“_l:', )dl' - i I(x)e"jk(x Bine"ycose) (8 22)

| for E-polarization, and

C a_ ..(2)

"0 -jk(xsin6-ycos6) 1
J K (z') 5 H,
S

(k|r-x'])at =4) {x)e 5

xt(_x;)} (8.23)

for H-polarization.
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But if the amplitude of the incident wave do23 not decrease very rapidly with
respect to X, the current distribution for the firite source llumination can be
approximated by the current distribution fer the non-limiting source itlumination

after multiplication by the factor given in Eq. (8.21). Thus irnm Eqg. (8. 16)

(8.0

2
< ] E:(r, ¢>|2 > v(r)(T/ko)ZI Wx, B)de
-
2,.2 2
+ 2v{r} Ux, Pixe ™ /T dxt
{
-0

©
2,2
r fl'(x,ﬁ)xze-x /T dx

o

Eq. (8. 24) can be computed numerically by considering only that part

2

+ 2v(r) +. .. (8.24)

where ulx, #) = u(x, P)I(x).

of the surface where the araplitude of the incident wave is significant. The
numerical results for a sinusoidal surface (d =1.155%, a=0.3)\, and 0= 600)
with p = 3d and the limit of integration varying from ~10d to +10d are shown
in Fig. 8+7. 1t is seen that the results are very similar to those obtained
previously for an infinite illumination area.

In an analogous way, we obtain for H-polarization
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8 2 2 ~ 2
<[z, 9> = (KT ko) l W, flax

2,2 2
+ 2v!(r) Wx, P e > /T dx'

-Q0

2:m2 2
x/de

W(x, Prce ... (.25

+ 2v'(r)

where Wix, #) = u'(x, P)i(x).

The numerical results are shown in Fig. 8.8 {(using the same parameters
as sor E-polarizaiion). Again it is seen that the scattered field intensity pattern

has the same characteristics as the pattern for an infinite illumination source.
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Chapter IX
CONCLUSION

We have here considered the problem of a plane electromagnetic wave
incident on a perfectly conducting, two dimensional ;eriodic surface, and have
developed numerical procedures for the direct digical solution of the integral
equations for the surface " 11s. By using special summation techniques fol-
lowed by the subtraction of the dc term to improve the convergence of the
series for the modified Green's function, a relatively efficient procedure has
been arrived at, aid this has been programmed for a computer.

For both polarizations (E and H), daia have been obtained for the surface
fields on a variety of profiles representing sinusoidal, full-wave rectified,
inverted full-wave rectified and triangular surfaces having different periods,
amglitudes and angles of incidence. In each case the physical optics approxi-
mation is included for comparison and to aid in developing a simpler method
for predicting scattering from a periodic surface. It was found that the polari-
zation has a marked effect on the surface field, and the current distribution is
strongly dependent on the number of radiating modes. In general the physical
optics method fails to give an accurate prediction. ‘

Knowing the surface field, the amplitudes of the diffracted waves in the
discrete angular spectrum representation of the scattered field can be computed,
and this has been done uaing the exact surface fields as well as the physical
optics estimates with shadowing either included or ignored. Here again the
physical optics predictions are deficient, and whereas the results derived from
the numerical program satisfy the conservation of energy law, the physical
optics values do aot.

The numerical results have been used to explore the physical phenomena
associated with the diffracted energy of the radiating modes and known as Wood

anomalies. Both the S and P anomalies were observed. It was found that there
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are anomalies which do not occur at the Rayleigh wavelengths, and the S-type
anomalies are generally stronger than the P-type and can occur on structures
having relatively shallow grooves.

Conalderation has also been given to the Rayleigh assumption. Numerical
data for the scattered field were obtained for surfaces of different profiles using
the exact and Rayleigh methods. The results are consistent with Millar's re-
mark, and indicate that the criteria under which the Rayleigh assumption holds
are different for different polarizations.

Laetly the knowledge gained from the study of periodic surfaces was
applied to a study of rough-surface scattering. The rough surface was con-
sidered as a small scale roughness superimposed on a sinusoidal pe:iodic base
(large scale roughness), the small scale roughness hdving a Gaussian distribu-
tion. The numerical results obtained show that the main effect of a small per-

turbation is to broaden slightly the dis crete (unperturbed) spectrum.
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Appendix A
PHYSICAL OPTICS APPROXIMATION

ﬂ'm«"’\m el

Although the main purpose of this work is the development of a numerical

£ technique for the determination of exact values for the suriace and, hence, scat-
tered fields, we have found it desirable to compare the results obtained with
those provided by the physical optics approximation. This approximation is

a physically-based one which postulates an explicit form for the suriace field
arrived at by assuming each element of the surface to bear that current which

it would carry were it part of the local tangent plane. The calculation of the

[ TN AR

scattered field is then reduced to quadratures.
In many instzaces, however, and a periodic sheet is one, an analytical

evaluation of the physical optics integral is a difficult procedure, particularly

[Ty

in such cases where part of the surface is shadowed, and some of the short-

JERTRPEN

comings of physical optics estimates in general certainly arise from sloppiness
in the evaluation of the integral. In still other cases the physical optics result
proves to be more accurate if shadowing is 1gnored (see, for example, Adachi,
1965} 2nd it is of interest to observe that for a sinusoidal sheet it is then pos-
sible to produce an exact evaluation of the integral. Neediessto say, however,
the resulting scattered field ig stili subject o the unknown errors icherent in

the use of the physical optics approximation, and fo the neglect (if present) of

P X Tok 1 SN TN WP

all shadowing eflects.

w3

The procedure is directly analogous to that given by Senior (1959) for the
particular case of an H nolarized plare wave at normal incidence on 2 sinusol.al
sheet and consists of three steps:

(i) writing down the physical optics integral for the scattered field
without acy shadowing included;

Thlq maddified msthod i5 sometimes cajled  extended pivysical optics”.
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(ii) asymntotically evaluating this expression appropriate to an
observation point at large distances from the sheet; and
(iii) matching this expression to a discrete angular spectrum of waves
to obtain their amplitudes. Since these amplitudes are independent of the field
point we have, in effect, produced an exact evaluation of the integra: valid cer-
tainly in the half space above the sheet.
Let us take the equation of the perfectly conducting sheet to be

y =acos Kx (A1)

where a is the amplitude of the corrugazons and 27 /K=d is the period. If

the incident field is E-polarized, we write

Bl ge—}k(x sin 8-y cos 6) (A.2)

(cf. Eq. 2.20), implying

H' = -Y(cos 9% +sing) e klxsin8-yeos 6) (A.3)

where Y is the intrinsic admittance of free space.
By virtue of the periodicity of the sheet and, hence, of the problem as
a whole, the scattered field can be expressed as a discrete spectrum of waves

which waves are certainly outgoing as regards y >a. Thus, we have

Q
< -jk(x8inf +vcos8 )
E=% )  A_e = m (A.4)

where

k sin Gm = mK+ksing,
‘ (A.5)

kcosf = \/l—<:-(mx+ksin9)2

<3
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and that branch of the square root is chosen having imaginary part non-positive.
Application of the physical optics approximation, followed by steps (i) through

(iii) above now gives

A

m k mKa
m > {cose- p sine} Jm(um) {A.6)

-j
‘!kz- (mK+ksin8) m

where

Ho= a@cos o+ \lkiz-(mKH{sin 9)2) . (A.7)
In particular,

A 0= -J O(Zak cos8),

andas a —90,
—> A —>
A>1, a0, m #90,
in agreement with the known golution for a fiat sheet.

If the incident field is H~polarized, we take

ﬂ1__2Qe--jk(xsine-ycose) ‘ (A.8)
implying
g_’ = % (cos 6% +5in 6Y) enjk(}'i sing -y cos 6) , (A.9)
and expand the scattered magnetic field as
@
-jk(x8in8_+ycos8_)
Ho=2 § A e ™ m (A.10)

m=-0

where Bm is as before. On evaluation of the physical optics integral, we now

ohtain
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A' =A (A.11)
m m

The equivalence of the results for the two polarizatione 18 consistent with the
known fact that the physical optics approximation for a perfect conducter is
inherently polarization insensitive.

Results compuied from Eqgs. (A.6) and {A.11) agree with those given
in the appropriate columns of Tabies Ifi-1 through -4, Tables V--1 through
V~4, and obtaized from a numerical evaluation of the integrais in Eqs. (4.4)
and (6.2).

e n e & e
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APPENDIX B
An Alternziive Integral Equation for E Polarization

: Another integral equation for the suriface current on a periodic

' conducting surface can be derived. 1t is different from Eq. (2.11), and since
e 1 it is a Fredholm equation of the second kind with a weakly singular kernel, it
can be solved using ar iterzive scheme suck as a Neumaznn series.

E i Consider the perfectly conducting cylindrical surface of Fig. B-1. The
} equation of the surface is y = f{x), where f{x) may or may not be a periodic

function of x at this stage of the discussion. The incident planz electromag-

netic wave propagates in the direction of the unit vector

A

k=sinfx-cosfy |, (B.1)
and the incident electric ficld is parallel {o the generators of the surface:

Ez =e-jk(xsin¢—ycos )] . (B.2)

i The time dependence factor ewt is comitted.

The scattered field is (Stratton, 1941)

A 8 n 1 e 1
+ = —— 31,32
E(r+z2) juong I R;_

dv (B.3)

47
v

where R =|z-r'+ (z-2")% , (B.4)

F{x,y,2z) and P'{x’,y',z ;. are he field and integration points respectively,
1 is the volume current density. and v is a volume containing both the field

point and the scattering surface. The vectors r and r' lying in the plane z=0

W
ST O O - L e

are shown in Fig. B-1 and are given by

N I V4 A
L=XX+yy, r'=x'x+y'y . (2.5)

g 209




210

0 @/2 ‘X

Fig. B-1: Scattering by a Cylindrical Surface,

Fig. B-2: Geometry of Orthogonal Vectors.
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If K is the surface current density, then

Kds=1dv , {8.86)
and therefore
s A jwﬂ (‘ e-ijl
Er+z8)= -— 3 —— K ds
1
S
Jup ® e.ijI
= - 1] 1 1
yps Kz(}; )dx R dz (B.7)

St -0 1

where S' is the scattering surface, and S is its profile in the z =0 plane.

Now
200 -jkR
e 1 (2)
- dz' = jrH (kR) (B.8)
Rl 0
-
2 2
where R=\(x-x")"+(y-¢')" . (B.9)

Substitution of Eq. (B.8) into Eq. (B.7) jlelds

(2)

Wy
Ert22) =)= -—2 \ H
z - 2z 4 0

S

where ds' = \/1+i'(75)2 dx' . (B.11)

The kerael H(Oz)(kR) \/ 1+f'(x32 is nonsymmetric and weakly singular at R =0,
due to the logarithmic singuiarity of Hf,)z)(kR).

Let the normal n to the surface S' at the fixed point P be as shown
in Fig. B-2; differentiating both sides of Eq. (B. 10) with respect to n, as P

approaches the surface S', we obtain

(KRIK (x')ds' (B. 10)

TR

R Ay
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9E>(x) w
{ =z } =22 ngz’(kn)x (r')ds' . (B.12)
PonS S 2 '

To evaluate the left-hand side, observe that with the three basis vectors

A

t,  and Z of Fig. B-2, Maxwell's equation VXE=-juy H with E ~E_ gives

(H_=0 on 8"
n
8Ez A BEZ A n ~
reu t = > &= -jwuo(Htt+ sz) , (B.13)
and therefore,
BEZ
Hz =0, I 0
BEZ
o —jw,uOHt . (B. 14)

Since K= n XxH and E, = Eiz + E:, Eq. (B. 14) becomes ‘

6E: 8Eiz
m— T e S——— 3 !
. P +]wu0Kz , on8S. (B. 15) |
Now
o
z _ . (2% _ 8y -jk(x sin  ~y cos )
ry jk (an sin @ o €08 ¢> e . (B. 16)

and making use of the relations

%=Wx)°ﬁ=§-ﬁ, X - (vy)-h=hn, {B.17)

and Eq. (B.1), Eq. (B. 16) gives




prabens oz 0 ol

Ry

S T R T

o e

aE‘z
prevh ]kk . (. 18)

A —Jk(x sin -y cos §)

Substitution of Eqs. (B. 15) and (B. 18) into Eq. (b. 12) yields

€ .
K (r)=- /—0 R-fetxsin-yeosh, LB\ yl2py (pasr .
z "‘O 4 on

8 (B. 19)

Since the integrand in Eq. (B. 19) is singular, when P = P’, particular
care must be taken in interchanging the differentiation with respect to n and
the integration with respect to x'. This difficulty was previously encountered
by Maue (1949) and Riblet (1952), among others, and can be overcome in the
manner that they adopted. The procedure consists of interchanging 3/on and

SS’ but in replacing K (r) on the left-hand side with -;'K (r): for a detailed

justification of this step, see Maue (1949). The result is

€ .
éK (r) =~ U k.ne-jk(xsinﬂ-ycos ¢)+ L { 9 (2)(kR)} K (r')ds' .
2 2+ uo 4 on
S

(B. 20)

It now remains to evaluate the partial derivative in the integrand, viz.

(2)
oH
(2 0 3R
a (kR) ) k = (B.21)
(02)““” (z)
where TAKR) (kR) , (B.22)
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- - {rt-r). D
R _OR X  OR 3y _ x X'§g+u'§.3:=- =
am o on Oy on R R R
=-Rn, (B.23)
A_I-r
with R==— (B. 24)

which is a unit vector directed from the fixed point P towards the integrand
- point P'. When Egs. (B.21), (B.22) and (B. 23) are inserted into Eq. (B.20),

we have

€
K ()= -2 / 0 g Idxotnf-yeosh), ( - DEPRK (rast (8. 26)
o
s
which is a weakly singular one-dimensional Fredholm integral equation of the

second kind for the unknown surface current density K .

As a simple check, let us take f(x) =0, Then R-n=0 and

€
K =2 }—Q cos¢e_jkxsm¢ s (B.26)
z Hy

which is the expected geometric optics result.
Equation (B. 25) ie valid for any cylindrical surface and thus can be
applied to the case of a periodic surface.




