AD0747297

Technical Publication TP-72-25

01

WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION?

By

A. C. BITTNER, JR. Systems Integration Division

3 April 1972

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NAVAL MISSILE CENTER

Point Mugu, California

2004 0205113

NAVAL MISSILE CENTER

AN ACTIVITY OF THE NAVAL AIR SYSTEMS COMMAND

E. E. IRISH, CAPT USN Commanding Officer

> **D. F. SULLIVAN** *Technical Director*

CDR W. H. Nelson, Head, Human Factors Engineering Branch; Mr. E. P. Olsen, Head, Systems Integration Division; and Mr. J. J. O'Brien, Associate Laboratory Officer, have reviewed this report for publication.

Technical Publication TP-72-25

Published by	Editorial Branch
	Technical Publications Division
	Photo/Graphics Department
Security classification	UNCLASSIFIED
First printing	

CONTENTS

																											Page
SUMMARY .	•	•		•	•	•	•	•		•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	1
GLOSSARY .	•	•			•		•			•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	3
INTRODUCTION		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	5
APPROACH .	•	•				•	•	•		•		•	•		•	•	•	•	•					•	•	•	6
DERIVATIONS .					•	•		•			•	•	•	•	•	•	•		•	•	•			•	•	•	6
DISCUSSION .					•							•	•	•	•	•	•	•	•	•	•	•		•			10
REFERENCES .		•		•		•	•	•	•	•	•	•	•	•		•			•		•	•	•	•			10
APPENDIX Two Workin	ıg โ	Гh	eor	en	15		•				•				•	•	•		•	•	•	•	•	•			11

1

NAVAL MISSILE CENTER Point Mugu, California

WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION?

By A. C. BITTNER, JR.

SUMMARY

Once a researcher has determined that a multivariate observation \underline{x}_0 is different from an estimated population, he still has an unanswered question. He wants to know, "How is it different?" A method for answering this question is considered in this report.

Two results are shown and both involve the estimated population parameters \overline{x} -the estimated mean, an \hat{z} -the estimated covariance matrix. The first result answers the question "Which linear combinations of the elements of the difference $\underline{x}_0 - \overline{x}$ are significant?" The second answers the question "Which elements of the difference $\underline{x}_0 - \overline{x}$ are significant?" Both results are derived using S. N. Roy's Union-Intersection Principle; hence, one can set an overall *a*/significance/type-1 level for the totality of tests.

A brief discussion of an application is also presented.

Publication Unclassified.

Approved for public release; distribution unlimited.

GLOSSARY

<u>x</u> o	A p-component (p by 1) vector observation, "o", independent of the vectors $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$
n	The number of independent observations which are independent of the vector \underline{x}_{o}
$\overline{\underline{\mathbf{x}}} = \frac{1}{n} \sum_{i=1}^{n} \underline{\mathbf{x}}_{i}$	A p-component (p by 1) estimate of the population mean vector $\underline{\mu}$
<u>µ</u>	A p-variate (p by 1) population mean vector
¥	A p by p population covariance matrix
Ź	An unbiased estimate of the population covariance matrix based on m degrees of freedom
⋩ -1	The inverse of the matrix $\hat{\Sigma}$
a	The probability that the (null) hypothesis H_0 will be rejected when it is true
H ₀	The hypothesis that the vector \underline{x}_0 and the set of vectors $\underline{x}_1, \underline{x}_2, \ldots, \underline{x}_n$ are from the same population
H ₁	The negation of the hypothesis H_0
N(<u>μ</u> , Σ)	The multivariate normal population with parameters μ and Σ
m	The number of degrees of freedom of the matrix estimate $\hat{\Sigma}$
t	A "students" t-test statistic
<u>c</u>	A (1 by p) p-variate vector of constant coefficients

<u>c</u> ^t	The p by 1 transpose of the vector \underline{c}
<u>č</u>	The (1 by p) p-variate vector which maximizes the function $T^2(\underline{c})$
<u>e</u> i	A 1 by p vector which has a 1 as the i-th element and zeros elsewhere
$\frac{\partial T^2(c)}{\partial (c)}$	A p-variate (p by 1) vector of partial derivatives whose i-th component is $\frac{\partial T^{2}(c)}{\partial (c_{i})}$
<u>0</u>	A p by 1 vector which has zeros for all the elements
s ² _i	An unbiased estimate of the i-th variate from $N(\mu, Z)$
D	A matrix conformal with \underline{x}

INTRODUCTION

In a previous report by the author (reference 1), a probability density/distribution function was developed for an observed (p by 1) vector (\underline{x}_0) from a multivariate normal distribution with estimated parameters (see A-1)* This result enables a researcher to ask the general question "How unlikely is it that the observation \underline{x}_0 arose from $N(\underline{\mu}, \overline{\lambda})$ where $\underline{\mu}$ is estimated by $\overline{\underline{\lambda}}$ and $\overline{\lambda}$ is estimated by $\overline{\underline{\lambda}}$?" Specifically the statistic:

$$T^{2} = \frac{n}{n+1} \left(\underline{x}_{0} - \overline{\underline{x}} \right)^{t} \stackrel{\text{A}}{\Sigma}^{-1} \left(\underline{x}_{0} - \underline{x} \right)$$
(1)

which is distributed as $\frac{mp}{m-p+1}$ F with p and m-p+1 degrees of freedom (df), can be compared with tables of the F distribution for probability of occurrence. If the probability of occurrence is less than some specified amount (a), then the hypothesis (H₀) that \underline{x}_0 is from the same population that generated \underline{x} could be rejected. In other words, the hypothesis (H₁) that the populations which generated \underline{x}_0 and \underline{x} are not the same would be accepted.

The rejection of the hypothesis that \underline{x}_{o} and $\overline{\underline{x}}$ are from the same population (H_0) doesn't show which of the variates of \underline{x}_{o} were significantly different. Although individual tests of significance could be constructed (e.g., t-tests), there is no control of the overall a level for the set of comparisons. The reasons for this are twofold; there are p such tests, and the variates are generally correlated. Hence an approach is needed for testing the individual variates of \underline{x}_{o} while controlling the overall a-level. The purpose of the present development is to delineate such a procedure.

5

*The results A-1 and A-2 are working theorems which are given in the appendix.

APPROACH

The approach employed here uses S.N. Roy's Union-Intersection Principle (reference 2, and reference 3). This principle allows one to fix the overall significance level for the totality of tests of linear compounds of the difference $\underline{x}_0 - \overline{\underline{x}}$. Operationally, this is accomplished by employing the same (a-level) criterion required for the test of the most unlikely linear compound, $\underline{\tilde{c}}(\underline{x}_0 - \overline{\underline{x}})$, to all particular tests of linear compounds. Since the individual variates $x_{0i} - \overline{\underline{x}}_i$ (i=1, ..., p) can be tested by the linear compounds $\underline{e}_i(\underline{x}_0 - \overline{\underline{x}})$ (i=1,..., p), this procedure will yield a solution to the problem posed in the Introduction.*

Let us define the statistic $T^{2}(\underline{c})$ as follows:

$$T^{2}(\underline{c}) = \frac{n}{n+1} [\underline{c}(\underline{x}_{o} - \underline{\overline{x}})]^{t} [\underline{c} \stackrel{A}{\Sigma} \underline{c}^{t}]^{-1} [\underline{c}(\underline{x}_{o} - \underline{\overline{x}})]$$
(2)

where \underline{c} is a fixed 1 by p vector. This equation is a special case of equation (1) with the p-variate terms $\underline{x}_0, \overline{\underline{x}}$, and $\hat{\underline{z}}$ replaced by the corresponding univariate terms $\underline{c}\underline{x}_0, \underline{c}\underline{x}$, and $\underline{c}\hat{\underline{z}} \underline{c}^t$. These univariate terms are those appropriate for linear compounds of the respective variates (see A-2). Under the hypothesis (H₀) that \underline{x}_0 is from the same population that generated $\overline{\underline{x}}$, equation (2) is distributed as F with 1 and m degrees of freedom. Hence, the most unlikely $T^2(\underline{c})$ value would occur for that \underline{c} which maximizes (2).

DERIVATIONS

In the following, a theorem will be stated which contains both the conditions for maximizing $T^2(c)$, and a procedure for testing the significance of the totality of linear compounds with a fixed overall significance level. Consider the following:

Theorem 1.0. If $T^{2}(\underline{c})$ is defined as in equation (2), then its maximum value is

$$T^{2}(\tilde{c}) = \frac{n}{n+1} (\underline{x}_{o} - \overline{\underline{x}})^{t} \hat{\underline{X}}^{-1} (\underline{x}_{o} - \overline{\underline{x}})$$
(3)

which is distributed as $\frac{mp}{m-p+1}$ F with p and m-p+1 degrees of freedom when H₀ is true. This value of T²(c) is obtained for

$$\underline{\widetilde{c}} = (\underline{x}_{o} - \underline{\overline{x}})^{\dagger} \underline{\widehat{\lambda}}^{-1}$$
(4)

* \underline{e}_i (i=1, ..., p) is a 1 by p vector with a 1 in the i-th entry and zeros elsewhere.

Further, the totality of linear compounds of the form $\underline{c}(\underline{x}_{0} - \overline{\underline{x}})$ could be tested for significance at the overall *a*-level by the test:

Here H_1 is accepted if $T^2(c)$ is greater than the product of (mp)/(m-p+1) and the *a*-level F for p and m-p+1 degrees of freedom and H_0 is accepted otherwise.

Proof. Let is first rewrite equation (2) as follows:

$$T^{2}(\underline{c}) = \frac{n}{n+1} \frac{\underline{c}(\underline{x}_{0} - \overline{\underline{x}}) (\underline{x}_{0} - \overline{\underline{x}})^{t} \underline{c}^{t}}{\underline{c}^{2} \underline{c}^{t}}$$
(6)

To obtain the condition for maximizing $T^2(\underline{c})$, let us take its partial derivative with respect to \underline{c} and set the resulting system equal to $\underline{0}$. From the rules of differentiation, it can be seen that

$$\frac{\partial T^{2}(\underline{c})}{\partial \underline{c}} = \frac{n}{n+1} - (\underline{c} \overset{A}{\Sigma} \underline{c}^{t})^{-2} \left[\underline{c} \overset{A}{\Sigma} \underline{c}^{t} \left[2(\underline{x}_{o} - \overline{\underline{x}}) (\underline{x}_{o} - \overline{\underline{x}})^{t} \underline{c}^{t} \right] - \underline{c} (\underline{x}_{o} - \overline{\underline{x}}) (\underline{x}_{o} - \overline{\underline{x}})^{t} \underline{c}^{t} \left[2 \overset{A}{\Sigma} \underline{c}^{t} \right] \right]$$

$$(7)$$

Setting this system equal to $\underline{0}$ and solving, one can obtain the condition:

$$\left[\hat{\boldsymbol{\Sigma}}^{-1}(\underline{\mathbf{x}}_{o}-\underline{\mathbf{x}})(\underline{\mathbf{x}}_{o}-\underline{\mathbf{x}})^{t}-\lambda\mathbf{I}_{p}\right]\underline{c}^{t}=\underline{\mathbf{0}}$$
(8)

where

$$\lambda = \frac{\underline{c}(\underline{x}_{0} - \overline{\underline{x}})(\underline{x}_{0} - \overline{\underline{x}})^{t} \underline{c}^{t}}{\underline{c}^{\underline{\lambda}} \underline{c}^{t}}$$
(9)

It is apparent upon comparison of (9) with (6) that the maximum $T^2(\underline{c})$ would be obtained for the transposed eigenvector which corresponds to the largest eigenvalue of the matrix:

$$\frac{n}{n+1} \hat{\Sigma}^{-1} \left(\underline{x}_{0} - \underline{\overline{x}} \right) \left(\underline{x}_{0} - \underline{\overline{x}} \right)^{t}$$
(10)

(5)

There will be one nonzero eigenvalue of (10) since the rank of $(\overline{x}_0 - \overline{x}) (\underline{x}_0 - \overline{x})^t$ is one and the product of it and any conformal nonsingular matrix (e.g., $\hat{\Sigma}^{-1}$) would have the same rank.^{*} Since the trace (tr) of (10) equals the sum of its eigenvalues (of which there is exactly one, $T^2(\underline{c})$, that is nonzero), it follows that

$$T^{2}(\underline{\widetilde{c}}) = tr\left[\frac{n}{n+1}\hat{\Sigma}^{-1}(\underline{x}_{o} - \underline{\overline{x}})(\underline{x}_{o} - \underline{\overline{x}})^{t}\right]$$
(11)

This can, by the commutative laws for traces, be rewritten

$$T^{2}(\underline{\tilde{c}}) = \left(\frac{n}{n+1}\right) tr \left[(\underline{x}_{o} - \underline{\bar{x}})^{t} \underline{\tilde{\lambda}}^{-1} (\underline{x}_{o} - \underline{\bar{x}})\right]$$
(12)

$$= \left(\frac{n}{n+1}\right) (\underline{x}_{o} - \overline{\underline{x}})^{t} \stackrel{A}{\Sigma}^{-1} (\underline{x}_{o} - \overline{\underline{x}})$$
(13)

which is the first result (3) of Theorem 1.0.* The distribution of (3) or (13) is given by A-1; hence, the first result of the theorem is completed.

The second result of this theorem ($\underline{\widetilde{c}}$) follows upon substitution of the value of $\underline{\widetilde{c}}$ given in equation (4) for <u>c</u> in equation (6). This yields a $T^2(\underline{c})$ value of

$$\frac{\binom{n}{n+1}}{(\underline{x}_{o}-\underline{x})^{t}\underline{\lambda}^{-1}} \underbrace{(\underline{x}_{o}-\underline{x})(\underline{x}_{o}-\underline{x})^{t}}_{(\underline{x}_{o}-\underline{x})^{t}\underline{\lambda}^{-1}} \underbrace{(\underline{x}_{o}-\underline{x})^{t}}_{(\underline{x}_{o}-\underline{x})} \underbrace{(\underline{x}_{o}-\underline{x})^{t}}_{(\underline{x}-\underline{x})} \underbrace{(\underline{x}_{o}-\underline{x})^{t}}}_{(\underline{x}-\underline{x})} \underbrace{(\underline{x}-\underline{x})^{t}}_{(\underline{x}-\underline{x})} \underbrace{(\underline{x}-\underline{$$

or equivalently

$$\left(\frac{n}{n+1}\right)\left(\underline{x}_{o}-\overline{\underline{x}}\right)^{\dagger} \stackrel{A}{\Sigma}^{-1}\left(\underline{x}_{o}-\overline{\underline{x}}\right)$$
(15)

Because this corresponds to the maximum value of $T^{2}(\underline{c})$, equation (5) gives the desired vector.

The last portion of the theorem can be seen when one recalls the nature of the Union-Intersection principle. Specifically, by employing the significance criterion (a - level) of $T^2(\overline{c})$ for each test of the type $T^2(c)$, one is assured that the totality of such tests has a joint significance level of a. Since $\frac{\text{mp}}{\text{m} - \text{p}+1}$ $F_{a:p,m-p+1}$ is this criteria, as indicated by the first part of the theorem and A-1, the general test (5) follows directly.

^{*}See reference 4 for discussion of the rank of the product of two matrices.

^{**} Reference 4 also contains a discussion of various results concerning the traces of matrices.

Tests for the individual components can be derived from specialization of equation (5). Since testing a specific component for significance (i-th) is equivalent to testing $T^2(\underline{e}_i)$ for significance, one could substitute \underline{e}_i for \underline{c} in equation (5) and obtain a specialized result. This will be considered in the remainder of this section.

Substitution of \underline{e}_i for \underline{c} in equation (5) yields

which by equation (2) is equivalent to

$$\left(\frac{n}{n+1}\right)\left[\underline{e}_{i}\left(\underline{x}_{o}-\overline{\underline{x}}\right)\right]^{t}\left[\underline{e}_{i}\ \hat{\underline{x}}\underline{e}_{i}^{t}\right]^{-1}\left[\underline{e}_{i}(\underline{x}_{o}-\overline{\underline{x}})\right]\underset{H_{0}}{\overset{H_{1}}{\underset{m}{\overset{mp}{=}}}\frac{mp}{m-p+1}\ F_{a:p,m-p+1}$$
(17)

Multiplying out each of the bracketed terms,

$$\left(\frac{n}{n+1}\right)\left[x_{oi} - \overline{x}_{i}\right]\left[\overset{\wedge}{\Sigma}_{ii}\right]^{-1}\left[x_{oi} - \overline{x}_{i}\right]\overset{H_{1}}{\underset{H_{0}}{\overset{mp}{=}}}\frac{mp}{m-p+1}F_{a:p,m-p+1}$$
(18)

where x_{oi} is the i-th entry of \underline{x}_{o} , \overline{x}_{i} is the i-th entry of $\underline{\overline{x}}$, and $\hat{\overline{z}}_{ii}$ is the i, i-th entry of $\underline{\overline{z}}$. Since in general the diagonal entries of $\hat{\overline{z}}$ are variance estimates, $[\hat{\overline{z}}_{ii}]^{-1}$ can be written as $\frac{1}{s_{i}^{2}}$ where s_{i}^{2} is the estimated variance of the i-th variate. Thus equation (18) can be written:

$$\left(\frac{n}{n+1}\right)\frac{\left(x_{oi}-\overline{x}_{i}\right)^{2}}{s_{i}^{2}} \stackrel{H_{1}}{\leq} \frac{mp}{m-p+1} F_{a:p,m-p+1}$$
(19)

which is a considerable simplification of the test equation of the theorem. This result is summarized in the following corollary:

Corollary 1.1 Let x_{oi} be the i-th entry of \underline{x}_{o} , \overline{x}_{i} be the i-th entry of \underline{x} , and s_{i}^{2} be the i, i-th entry of \underline{X} . Then the set of p-variates of \underline{x}_{o} can be individually tested for difference from $\underline{\mu}$ by

$$T^{2}(\underline{e}_{i}) = \left(\frac{n}{n+1}\right) \frac{(x_{0i} - \overline{x}_{i})^{2}}{s_{i}^{2}} \stackrel{H_{1}}{\leq} \frac{mp}{H_{0}} \frac{mp}{m - p+1} F_{a:p,m-p+1}$$
(20)

with assurance that the overall significance level for the entire set of p tests is less than a.

DISCUSSION

In the above, two results were derived which answered the question "How does the observation \underline{x}_{o} differ from the population which generated $\overline{\underline{x}}$?" The first of these, Theorem 1.0, allows one to ask if any particular linear combination of variates (\underline{cx}_{o}) distinguishes \underline{x}_{o} from the population which generated $\overline{\underline{x}}$. The second result, Corollary 1.1, allows one to ask if any particular variate distinguishes \underline{x}_{o} from the $\overline{\underline{x}}$ generating population. Both of these results have obvious practical application. Let us briefly consider one.

In a multiple criteria experiment, an unforseen (random) event occurs which makes suspect a single observation \underline{x}_{o} . The first question which faces the research is, "Is \underline{x}_{o} from the same population as the set of other observations $(\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{n})$ from the same condition?" This question can be answered by employing the statistic:

$$T^{2} = \frac{n}{n+1} \left(\underline{x}_{o} - \overline{\underline{x}} \right)^{t} \stackrel{\Lambda}{\underline{\lambda}}^{-1} \left(\underline{x}_{o} - \overline{\underline{x}} \right)$$
(21)

where
$$\underline{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n} \underline{x}_{i}, \quad \underline{\lambda} = \frac{1}{n-1} \sum_{i=1}^{n} (\underline{x}_{i} - \underline{\overline{x}}) (\underline{x}_{i} - \underline{\overline{x}})^{t}$$
, and T^{2} is distributed as $\frac{(n-1)p}{n-p}$ F with

p and n-p degrees of freedom.* Given that this statistic (21) is significant, the next question is, "Which variates of \underline{x}_0 differ from the population which generated $\overline{\underline{x}}$ and $\overset{\wedge}{\underline{\lambda}}$?" This could be answered by applying Corollary 1.1 with m equaling n-1. Guided by the costs of observations and their number, the results of these tests would be useful for decisions regarding the inclusion of \underline{x}_0 as part of the data of the experiment.

The above does not exhaust the set of possible applications. Hopefully this application will suggest others to the reader.

REFERENCES

- Naval Missile Center. Probability Density When an Independent Observation is From an Estimated Multivariate Normal Population, by A. C. Bittner Jr. Point Mugu, Calif., 15 Jul 1971. (TP-71-33) UNCLASSIFIED
- 2. Morrison, D. F. Multivariate Statistical Methods, San Francisco, McGraw-Hill, 1967.
- 3. Roy, S. N. Some Aspects of Multivariate Analysis, New York, Wiley, 1957.
- 4. Marcus, M. and Minc, H. Introduction to Linear Algebra, New York, Macmillian, 1965.
- 5. Anderson, T. W. An Introduction to Multivariate Statistical Analysis, New York, Wiley, 1958.

*The statistic shown in (21) is a variation of A-1. A proof for its distribution was shown in reference 1.

APPENDIX

TWO WORKING THEOREMS

The first theorem (A-1) was shown in reference 1 by the author. The second theorem (A-2) was shown by Anderson (reference 5) in 1958.

A-1

If \underline{x}_{o} is an observed p-variate vector from $N(\underline{\mu}, \mathbf{X})$,

$$\overline{\underline{x}} = \frac{1}{n} \sum_{i=1}^{n} \underline{x}_{i}$$

is a mean vector also from $N(\mu, \vec{\lambda})$ based on n independent observations, and $m \vec{\lambda}$ is the sum of the matrix products of m independent $N(\underline{0}, \vec{\lambda})$ p-variate vectors $(\underline{Z}_1, \underline{Z}_2, \dots, \underline{Z}_m)$; i.e.,

$$\mathbf{m}\hat{\boldsymbol{\Sigma}} = \sum_{i=1}^{m} \underline{Z}_{i} \underline{Z}_{i}^{t}$$

then

$$\mathbf{T}^2 = \frac{\mathbf{n}}{\mathbf{n+1}} \left(\underline{\mathbf{x}}_{\mathbf{o}} - \overline{\underline{\mathbf{x}}} \right)^{\mathsf{t}} \stackrel{\wedge}{\Sigma}^{-1} \left(\underline{\mathbf{x}}_{\mathbf{o}} - \overline{\underline{\mathbf{x}}} \right)$$

is distributed as:

$$\frac{mp}{m-p+1} F$$

where F has p and m - p + 1 degrees of freedom.

If x is distributed according to $N(\underline{\mu}, \underline{\lambda})$, then $Z = D\underline{x}$ is distributed according to $N(D\underline{\mu}, D\underline{\lambda}D^{t})$.

		1	
 Multivariate Multivariate analysis Population (statistics) Statistical 	I. Bittner, A. C. Jr. UNCLASSIFIED	 Multivariate Multivariate analysis Population (statistics) Statistical Statistical analysis Bittner, A. C. Jr. 	UNCLASSIFIED
Naval Missile Center, Point Mugu, Calif. 93042 WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION? 3Apr72 12p. TP-72-25	UNCLASSIFIED UNCLASSIFIED Unlimited Includes 5 references	Naval Missile Center, Point Mugu, Calif. 93042 WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION? 3Apr72 12p. TP-72-25 UNCLASSIFIED UNCLASSIFIED Unlimited Includes 5 references	
 Multivariate analysis Population (statistics) Statistical analysis 	I. Bittner, A. C. Jr. UNCLASSIFIED	1. Multivariate 1. Multivariate analysis 2. Population (statistics) 3. Statistical analysis 1. Bittner, A. C. Jr.	UNCLASSIFIED
Naval Missile Center, Point Mugu, Calif. 93042 WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION? 3Apr72 12p. TP-72-25	UNCLASSIFIED Unlimited Includes 5 references	Naval Missile Center, Point Mugu, Calif. 93042 WHAT DISTINGUISHES AN INDEPENDENTLY OBSERVED VECTOR FROM AN ESTIMATED MULTIVARIATE NORMAL POPULATION? 3Apr72 12p. TP-72-25 UNCLASSIFIED Unlimited Includes 5 references	

INITIAL DISTRIBUTION

EXTERNAL	Copies	EXTERNAL	Copies
Commander		Chief of Naval Research	
Naval Material Command		Navy Department	
lleadquarters		Washington, DC 20360	
Washington, DC 20360		Attn: Code 455	1
Attn: NMAT-0313	1	Code 461	1
NMAT-0325	1		-
	-	Director	
Commander		Office of Naval Research	
Naval Air Systems Command		Branch Office	
Headquarters		495 Summer St.	
Washington, DC 20360		Boston, MA 02210	1
Attn: AIR-604	2	boscon, MA 02210	1
AIR-104	1		
AIR-303B		Director	
AIR-3035 AIR-3034C	1	Office of Naval Research	
AIR-340D	1	Branch Office	
	1	New York Annex	
AIR-510	1	207 West 24th St.	
AIR-5313	3	New York, NY 10011	1
AIR-533B1	1		
AIR-5337	1	Director	
AIR-53371	1	Office of Naval Research	
		Branch Office	•
Defense Documentation Center		San Francisco Annex	
Cameron Station		1076 Mission St.	
Alexandria, VA 22314			-
Attn: TIOG	12	San Francisco, CA 94013	1
Chief of Naval Operations		Director	
Navy Department		Office of Naval Research	
Washington, DC 20350		Branch Office	
Attn: OP-507	1	219 South Dearborn St.	
OP-701II	1	Chicago, IL 60604	1
Commander		Director	
Naval Ship Systems Command		Office of Naval Research	
Headquarters		Branch Office	
Washington, DC 20360		Box 39	
Attn: Librarian	2	FPO New York 09510	1
	-		
Commander		Director	
Naval Electronics Systems		Office of Naval Research	
Command Headquarters		Branch Office	
Washington, DC 20360		1030 E. Green St.	
Attn: Code 0532	1	Pasadena, CA 91101	1
	*	rasadona, or still	T

EXTERNAL	Copies	EXTERNAL	Copies
Director Naval Research Laboratory Washington, DC 20390 Attn: Technical Informatio Office	n 2	Superintendent Naval Posgraduate School Monterey, CA 93940 Commander	2
Commander Naval Air Development Cent Warminster, PA 18974 Attn: ADLR (Technical Libr		Naval Command Control Communications Laboratory Center San Diego, CA 92152	1
Commander Naval Air Test Center Patuxent River, MD 20670 Attn: Technical Library	2	Office, Secretary of the An Assistant Secretary for R&I The Pentagon, Room 3E383 Washington, DC 20360	
Commander Naval Weapons Center China Lake, CA 93555 Attn: Code 3513	1	Chicf of Research and Devel Department of the Army Washington, DC 20315 Attn: CDR/R	lopment 1
Commanding Officer Naval Avionics Facility 21st and Arlington Ave. Indianapolis, IN 46218	1	Commanding General Army CDR Fort Belvoir, VA 22060 Attn: Technical Library	1
Naval Safety Center Naval Air Station Norfolk, VA 23511	1	Commanding General U.S. Army Research and Development Activity Fort Huachuca, AZ 85613	1
Commanding Officer Human Factors Support Bran Naval Personnel Research Activity San Diego, CA 92152	ch 1	Commanding Officer Army Human Engineering Laboratories Aberdeen Proving Ground, MD 21005	
Commanding Officer and Dir Navy Marine Engineering Laboratory Annapolis, MD 21402		Attn: Technical Library Commanding General U.S. Army Laboratory Fort Eustis, VA 23604	1
Attn: Librarian Commanding Officer and Dir Naval Training Devices Cen Orlando, FL 32813	ter	Attn: Technical Library Commanding General TRECOM Fort Eustis, VA 23604	1
Attn: Library (Technical)	1	Attn: Library	1

EXTERNAL	Copies	EXTERNAL	Copies
Headquarters, USAF (RTD/RTN Washington, DC 20332 Attn: Technical Library	F) 2	Human Resources Research Off Division No. 6 (Aviation) P.O. Box 428 Fort Rucker, AL 36360	ice
AMSMD-R Headquarters Mobility Comma		Attn: Librarian R. Wright	1 1
Centerline, MI 48015	1	Chief	
AFFDL Wright-Patterson AFB, OH 45433		Engineering Electronics Sect National Bureau of Standards Washington, DC 20360	ion
Attn: Technical Library	1	Attn: Library	1
Commander USAF 6570th Aero Medical Research Laboratory Wright-Patterson AFB,		Science and Technology Divis Library of Congress Washington, DC 20540	ion 1
OH 45433		Officer in Charge	
Attn: AMRL-MRHED	1	Naval Aerospace Medical Researcher Laboratory	
National Aeronautics and Space Administration 1520 H Street, N.W.		Naval Aerospace Medical Inst: Naval Aerospace Medical Cente Aerospace Psychology Division	er
Washington, DC 20546 Attn: Library	1	Pensacola, FL 32512 Attn: CDR T. J. Gallagher	1
National Aeronautics and Spa Administration Ames Research Center Moffett Field, CA 94035		Bureau of Medicine and Surger Aerospace Operational Psychol Branch Washington, DC 20390	ry
Attn: Librarian	1	Attn: CDR J. E. Goodson	1
National Aeronautics and Space Administration Ames Research Center Electronics Research Center 575 Technology Square Cambridge, MA 02139 Attn: Library	1		
Federal Aviation Agency Department of Transportation 800 Independence Avenue, S.N Washington DC 20553			
Washington, DC 20553 Attn: Information Retrieval Branch HQ-630	2		

INTERNAL	Copies	INTERNAL	Copies
Technical Director Code 51			
D. F. Sullivan	1		
Planning and Resources Management Office Code 51-1 R. W. Sexty	1		
Technical Consultant Code 530			
L. S. Marquardt	1		
Systems Evaluation Division			
Code 5110	4		
E. Q. Smith, Jr.	1		
Operations Research Division	n		
Code 5170			
Dr. W. M. Simpson	1		
Laboratory Department			
Code 5300			
T. P. Perry	1		
Reliability Office			
Code 5301-2			
R. A. Harmen	1		
Systems Integration Division	n		
Code 5340			
E. P. Olsen	1		
Code 5342			
CDR W. H. Nelson	20		
A. C. Bittner, Jr.	10		
Technical Publications Divi Code 5632.2	sion		
Technical Library	2		
iccinical biolary	~		

WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA D. DESCRIPTIVE NOTES (Type of report and inclusive dates) A DESCRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 a. CONTRACT OR GRANT NO. b. PROJECT NO. c. d.	76. TOTAL NO. OF PAGES 12 96. ORIGINATOR'S REPORT TP-72-25	RT SECURITY CLASSIFICATION UNCLASSIFIED P ROM AN 75. NO. OF REFS 5
(Security classification of title, body of abstract and indexing a ORIGINATING ACTIVITY (Corporate author) Naval Missile Center Point Mugu, California 93042 REPORT TITLE WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA DESCRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(5) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 a. CONTRACT OF GRANT NO. b. PROJECT NO. c. d.	28. REPOR 28. REPOR 28. REPOR 28. REPOR 28. COLOR 28. COLOR 70. TOTAL NO. OF PAGES 12 90. ORIGINATOR'S REPORT TP-72-25 90. OTHER REPORT NO(S) (A this report)	RT SECURITY CLASSIFICATION UNCLASSIFIED P ROM AN 7b. NO. OF REFS 5 NUMBER(S)
Naval Missile Center Point Mugu, California 93042 REPORT TITLE WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA DESCRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(S) (First name, middle initial, last name) AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 a. CONTRACT OF GRANT NO. b. PROJECT NO. c.	22. REPOI	RT SECURITY CLASSIFICATION UNCLASSIFIED P ROM AN 7b. NO. OF REFS 5 NUMBER(S)
Point Mugu, California 93042 REPORT TITLE WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA DESCRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(S) (First name, middle initial, last name) AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 a. CONTRACT OF GRANT NO. b. PROJECT NO. c. d.	70. TOTAL NO. OF PAGES 12 96. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	ROM AN 75. NO. OF REFS 5 NUMBER(S)
Point Mugu, California 93042 REPORT TITLE WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA DESCRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 a. CONTRACT OF GRANT NO. b. PROJECT NO. c. d.	70. TOTAL NO. OF PAGES 12 96. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	ROM AN 76. NO. OF REFS 5 NUMBER(S)
WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA A. DESCRIPTIVE NOTES (Type of report and inclusive dates) 5. AUTHOR(5) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 56. CONTRACT OR GRANT NO. b. PROJECT NO. c. d.	25. OTHER REPORT NO(5) (A	7b. NO. OF REFS 5 NUMBER(S)
WHAT DISTINGUISHES AN INDEPENDENTLY OF ESTIMATED MULTIVARIATE NORMAL POPULA A. DESCRIPTIVE NOTES (Type of report and inclusive dates) 5. AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 DATE ONTRACT OR GRANT NO. b. PROJECT NO. c.	TION? 76. TOTAL NO. OF PAGES 12 96. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(5) (A this report)	7b. NO. OF REFS 5 NUMBER(S)
A. DESCRIPTIVE NOTES (Type of report and inclusive dates) 5. AUTHOR(S) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 18. CONTRACT OR GRANT NO. b. PROJECT NO. c. d.	70. TOTAL NO. OF PAGES 12 90. ORIGINATOR'S REPORT TP-72-25 90. OTHER REPORT NO(5) (A this report)	5 NUMBER(S)
AUTHOR(5) (First name, middle initial, last name) Alvah C. Bittner, Jr. REPORT DATE 3 April 1972 Ba. CONTRACT OR GRANT NO. b. PROJECT NO. c.	12 98. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	5 NUMBER(S)
Alvah C. Bittner, Jr. REFORT DATE 3 April 1972 a. contract of grant no. b. project no. c. d.	12 98. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	5 NUMBER(S)
REPORT DATE 3 April 1972 a. contract or grant no. b. project no. c. d.	12 98. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	5 NUMBER(S)
3 April 1972 18. CONTRACT OR GRANT NO. b. PROJECT NO. c. d.	12 98. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	5 NUMBER(S)
a. CONTRACT OR GRANT NO. b. PROJECT NO. c. d.	90. ORIGINATOR'S REPORT TP-72-25 96. OTHER REPORT NO(S) (A this report)	NUMBER(S)
b. PROJECT NO. с. d.	TP-72-25	
z. 1.	95. OTHER REPORT NO(5) (A this report)	Iny other numbers that may be assigned
d.	this report)	iny other numbers that may be assigned
d.	this report)	iny oner numbers met may be assigned
0. DISTRIBUTION STATEMENT	1	
. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	
3. ABSTRACT		
Once a researcher has determined that a multi estimated population, he still has an unanswered of different?" A method for answering this question Two results are shown and both involve the est mean, and $\mathbf{\hat{z}}$ -the estimated covariance matrix. The combinations of the elements of the difference \mathbf{x}_{o} question "Which elements of the difference $\mathbf{x}_{o} - \mathbf{\hat{x}}$ using S. N. Roy's Union-Intersection principle; her type-1 level for the totality of tests. A brief discussion of an application is also principle	question. He wants to is considered in this stimated population particular e first result answers $- \overline{\underline{x}}$ are significant?" are significant?" Bo nce, one can set an or	whow, "How is it report. arameters \overline{x} -the estimated the question "Which linear The second answers the oth results are derived
D FORM (PAGE 1)	U	NCLASSIFIED
/N 0101-807-6801	Sec	curity Classification

UNCLASSIFIED

Security Classification								
	LINI				LINK C			
KEY WORDS	ROLE	wT	ROLE	w T	ROLE WT			
A pplications								
Multivariate normal								
Normal population								
Significance test								
Statistics								
Union-intersection principle								
		1						
					1			
	'	1			1			
	ļ							
					-			
	l				Į –	l		
	1				1			
	1					[
						ł		
						1		
					1			
		{						
	l							
	1	1			1	1		
	1				1			
					1	ľ		
					1	ļ		
	1				1			
]	1			1	1		
				l				
		ľ	l	1	I			
	l	l	l	l	l	l		
			1					
			1					
	ļ		l	l	1	l		
		1			ł			
	1			1	1	1		
	I							
	1				1			
	1							
	L		L	I	<u>t</u>	L		
DD FORM 1473 (BACK)			ASSIE					

DD FORM (BACK) (PAGE 2)

UNCLASSIFIED

Security Classification

.