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COMPOSITE DESIGNS AND THEIR OPTIMIZATION

1.1 Introduction

An important problem in industry is the improvement (which

will hopefully lead to the optimization) of a process. This report

attacks a problem in this area.

To improve an "ongoing process" often it is desired to examiné

the relationship between variables in a process, say between a y

variable when y represents a "response" variable and Xys Xgp eees Xy
where the x's represent "input" or "control" variables. In this

. report we develop optimum composite designs for fitting a quadratic
response surface under the standard regression assumptions, and
solve some related design of experiments problems. The optimization
criterion we use is the minimization of the generalized variance

(the |X'X| criterion).

To clarify the concept of an ongoing process we may appropriately

. think of a production process in a chemical plant producing a target

output y of a chemical., It is commonplace that this output will depend

on "plant conditions", i.e., factors characterizing the process such

as the temperatures at which stages of the process are run, the

concentrations at which chemicals are input, the concentrations at

A o S St S e

which catalysts are used, etc., In order to "improve" such a process,

it is desirable to estimate the functional dependence of the target

s A

output y on the plant conditions denoted by Xys Koy eeey Xoo The data

i T A s

- available for such an improvement may be of essentially two kinds:

it
I

(a) We may have "plant data" in which the target output y
is observed along with measured records of the plant
conditions X179 X9y eees Xy OT

4
]

At i

(b) We may have data from planned experiments usually us

i e

using a "pilot plant" in which the plant conditions
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x, are deliberately determined by the experimenter

in accordance with an experimental plan, after which

ittt

the associated target output y of the pilot plant is

measured,

- The concept of using an esperimental design to estimate the

mathematical relationship between the target output and plant condie

tions is normally restricted to case (b) above.
This report will be exclusively concerned with case (b). More
specifically, this report is concerned with choosing the set of

plant conditions, x,, at which the pilot plant is to be run,

Plodh, st i

called the experimental design,in such a manner that certain
features of the mathematical relationship can be estimated with

"optimum" precision., We shall confine our study to a situation in

which the mathematical relationship is postulated to be of ''second
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order", i.,e,, what is known as a "quadratic response surface".

It will be assumed that the expected yield of the pilot plant will

be given by such a response surface and that the observed target

outputs will differ from their expectations by independent equal

variance residuals., These assumptions are the standard ones in

"regression analysis", Using the estimation procedures appropriate

gl

to such assumptions will result in estimates of the so-called
regression coefficients, i.,e,, effect coefficients of the Xe9

their products, and squares. An estimate of the individual

it

. varianzes of such estimates as well as of the so-called generalized
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variance of the coefficients can also be obtained.

The magnitude

of this generalized variance will depend on the experimental

design chosen, The objective of the optimization of the design
will be the minimization of this generalized variance,

The problem of the optimization of experimental designs by
the minimization of the generalized variance can be reduced to

a mathematical programming problem which is solved on a high speed

computer. This approach was taken by Hartley and Ruud [1969]

and by Crowell [1971]., The disadvantage of this attack is the

complexity of the programming problem; it is generally a non-

linear nun-convex programming problem, Thus a global optimum

cannot be guaranteed,

By restricting our attention to composite designs we will

- —
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be able to avoid formulating a programming problem, We will

attack the problem directly and will minimize the generalized

variance for composite designs restricted to an n dimensional

hypercube where n is the number of variables under study. The

2 Sl A0 o 120

minimization of the generalized variance is equivalent to the

maximization of |X'X| where X is a N x p "expanded" design watrix

having N rows and p columns, one column for each coefficient to

]

be estimated, The xpr matrix is expanded from the design matrix
XD, a N x n matrix, which has one column for each variable under
study. For a full quadratic model p = (n¥l)(n+2)/2 = 1 + n + n + (2).

In the X matrix there is one column for the constant term, n for




the linear terms, n for thz guadratic terms, and (g) columns

for the interaction terms,
Four types of composite designs will be examined:

(1) A "syrmatric'" composite denign (a "symmetric" composite

desip: -zs "suar" »oint distance equal to + a).

(2) A "symrotric” smaitest composite derign (a saturated
design for which & = p = (a+l) (n+2)/2).

(3) An unsymme::ic composite design (an unsymmetric composite

design has "star" point distance equal to (+1, ~-a)).
(4) An unsymmetric smallest composite design.

Composite desizns are used primarily in "response surface

analysis". Box and Wilscr's [1951] paper opened this important

and practical field, and Box and Draper's [1959] paper discussed

some optimization problems in this area., Hartley and Ruud [1969]

and Crowell [1971] give a good introduction to the field of

optimal experimental designs and contain additional references,

1.2 Optimization of Symmetric Composite Designs

1.2.1 Alias structure I = ABCDE

A symmetric composite in n variables which is used to estimste

all terms in a quadratic response surface consists of:

T - .




(1) A proper fraction (say a 1/2k fraction) of a 2"

it S

factorial array. This array of Zn-k oints will be
p

placed on a hypercube having sides of lengih two

L U

centered at (0, 0, .4, O)IXn'

(2) r center points,

(3) Two "star" points, one at +a and one .t -o, for each
variable; 2n points in all,

Thus, the design consists of N = Zn-k + 2n + r points to estimate

p = (ntl)(n+2)/2 terms, Table 1.1 lists the composite designs
for n < 11,

We are now ready to state and prove Theorem 1,2,

Theorem i_&: For a "symmetric" composite design the generalized
variance decreases with increasing o where o is the star point
distance, In this section we prove the result for alias structure
such that two factor interactions are aliased with three or higher
order interaccions (I = ABCDE), and in the next section we

indicate the changes necessitated by other alias structi.res.

Method of Proof:

Step 1. Indicate the structure of the xpr matrix,
Step 2, Write out the X'prpmatrix.

Step 3. Solve for |X'X| and show |X'X| is an increasing

function of a,




Variables

Common Symmetric Composite Designs

Terms
Quadratic
Model

10
10
15
15
21
21
28
28
28
36
36
36
45
45
45
55

55

Table 1,1

Points in
Design
(With one center point)

15
11
25
17
43
27
77
45
29
143
79
47
273
145
81
531
275

Star and
Center
Point

11
11
13
13
13
15
15
15
17
17
17
19
19

Fractional
Factorial

32
16
64
32
16
128
64
32
256
128
64
512

258
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Table 1,1 (Continued)

Common Symmetyic Composite Designs

Terms in Points in Star and

Quadratic Design Center Fractional

Variables Model (With one center point) Point Factorial
9 55 147 19 292 - 128

*9 55 83 19 2973 < 64
10 66 1045 21 210 - 1024
10 66 533 21 2201 o spp
10 66 277 21 21072 . 56
10 66 - 149 21 21073 . 128
11 78 2071 23 211 = 2048
11 78 1047 23 2171 o a024
11 78 535 23 22 . 512
11 78 279 23 213 . 2s6
11 78 151 23 2174 . 128

*
The starred designs will have some three character words in an

alias set (I = ABC). For all other designs it is possible to
pick the alias structure so that all words in an alias set have
at least five characters (I = ABCDE),
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Step 1. By showing the structure of the X matrix for the ith
and jth variables we indicate its general structure
Number of 2 2
Points u Xy x5 x:l xj xixj
(1 1 1-c 1 1l-c 1]
1 1 1~c -1 l-c -1
zn-k J
: 1 -1 l-c 1 l-c -1
L {1 -1 l-c -1 l-c 1
(|1 a o2=c 0 -c 0
1 -0 az-c 0 ~C 0
4 4 2
1 0 -C o o =c 0
L] 1 0 -C - az-c 0
r+2n -4 1 0 ~C 0 -c 0
o w 22E 4 2e? \
2n-k +2n+r
¢ is chosen to simplify the X'X matrix. Substracting a constant
from a variable does not change the value of the generalized
variance as we show in Section 1,6,1 when we extend a result
due to Kartiey and Ruud [1969],
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Step 2, By showing the structure of the X‘prp matrix for the
same variables that we used in showing the structure

of the xpr matrix we indicate its general structure,

Structure of X'X Matrix
pxp

2Ko,2 0 0 0

where

hk = Zn-k(l—c)2 + 2(a2—c)2 + (r+2n-2) c2

* = Zn-k(l—c)2 - 4c(u2-c) + (r+2n-4) c2

i+ qWWlﬁd«ﬂw.W“"“““‘ o
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Step 3. The XX
P pXp

n¥n matrix which has the structure

[al + bJu'] = [M]

where

aa= 2(¢:z2--c)2 + 2<:2 + Ioc(az—c) = 2«4

b = 2" %(1-0)% + (o42n4) 2 = be(ad=c)
I is an nxn identity matrix, and

J 48 a n vector of ones ,

Thus

n-K n=k,, 2.n,.n-k (121)
x| = @ 2ntr) @M 420500 ¢ M|
We show in the Appendix, Theorem [4], that

M| = a® + 0™ b = a"L(atub) .

Substituting a, b, and ¢ in [M[ we find

matrix is a diagonal matrix except for an

10
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M| = 00 S SRS Py L

Thus

n—k

(27 “42nr)

<)
Ix,xl - 22n-1(2n-k) 2 (2“ k-l

a -n)2 + 2ra

+ nr2

b omkt2 2

n-k }

i1

o2y (o (1))

To gshow that this is an increasing function we take the logarithm,

differentiate it, and show that the derivative has no positive

zeros, This will show that |X'X| is a product of increasing

functions, and so is an increasing function of a.

4
+ log {(a -n) + B2
2n

log |X'X| = K + n log(2® ¥ 1442

+ 4(n-1)

d log |x'x| _ 2na
da zﬁ:k"l *az a

4 gg -n)+r

+a”) + 4(n-1) log &

nr}

+ 2
(a -n) + ra /2

n=k

+ nr/2j) °

2™ K (2ntr) .

o Ml e
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Combining fractions using the last two terms only, we obtain

a numerator greater than;

' b “ 2 y
e
b« oY Lt g L v s e e
L e e P N

2n{2a4 - (4n-2) az + 2n2 -n-1]

The discriminant of the term in  brackets is 4(~2n+3), Thus

for n>1, d log |X'X|/ds is nowhere negative, and |xx| 1s

s S B A

increasing with o, n=l1 is an easy special case for which it is
trivial to show that lxtxl is increasing with a so the result
holds for all n,

The preceding shows that the optimal symmetric composite
design on a hypercube with sides of length two centered at the
origin has o = 1,0,

In Section 1.6.1 we show that expanding the hypercube by
3 factor k introduces a multiplying factor k2n(n+2) to the
determinant., A £ increase in the size of the hypercube gives
a multiplying factor of (1 + 2n(n+2) £) to the determinant when
we consider only first order terms, For an £ increase in o
from 1 to 1+f a multiplying factor for the determinant of
(1 + 6ng) is obtained., Thus, for optimal composite designs on
a hypercube we need only consider fractional factorials with
points at the extremes of the hypercube, Similar considerations
hold for the fractional factorial portion of all designs considered

in this chapter., The above result can be found in Box and
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Draper [1971].

obtained the same result., They do not note that this form of

[X'X| does not hold for all alias structures, We discuss this

in the next section of our paper.

1.2.2 Other alias structures

This publication came out after we had independently

With other alias structures it may not be possible to estimate
all terms in a quadratic model, The estimable terms can be found

using Theorem 1 of Hartley [1959] which we discuss and extend

in Section 1,6.

through exactly as given except that three of the product terms
cannot be estimated.

The I = ABC alias structure is a good one in that it allows
the estimation of all coefficients of a quadratic response st .:ace.
For a six row, six column minor of the determinant with alias

structure I = ABC we obtain:

a
a 27 %4242
b 0

c 0

be 2"k
ac 0

ab 0

For alias structure I = ABCD the proof goes

E|
;_E;i
5
El
3
El
=
el
E

b c be ac ab

- 3
0 0 ok 0 0
2" %4242 0 0 ok 0
0 2" k442 0 0 K
0 0 ok 0 0
2k 0 0 ok 0

0 ok 0 0 2" |

bl




With alias structure I = ABCDE the off-diagonal elements
would not be obtained, For this minor the determinant is

(Zn-k+1 az 3. This increasing function of o substitutes for
2 %4202)3 230K Ghratned with alias structure I = ABCDE,

Otherwise, the argument is unchanged,
For the I = A alias structure we choose a subtraction constant
b to make the Xa column orthogonal to the xi column and note that

this choice of b makes the xa column orthogonal to every column

except the column for the constant terms,

b= 2“‘¥gg-q)
2% ¥ (1me) + 202 = @2ndr)

and the changed minor in the X'X matrix is

u X
. a
u 1224 on 4y 2"k L 2™ Kyon4r)b
X, 22k 2™ konirb @ Ki2nir)p? 4 20Ky 4 0k 5,2
L J

This minor has determinant

2" 2ntr) + 2™ Fi2ntr) 202

an increasing function of a,
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The T = AB alias structure is not recommended for n > 2
since all terms in a quadratic model cannot be estimated, I = AB

implies AC = BC and only one of the pair of interactions can be

e

i

included in the model, Two minors are changed by this alias

structure, They are:

u X% Xa %

4 2 Kionte 2K x| 22420° gk
xa?b znﬂk zn-k xb Zn-k 2n—k+2a2
with determinants

Zn-k(2n+r) and 2°Hkt2 (2 .04 .

So an increasing function of a is obtained,

1,3 Optimization of Smellest Composite Designs

Symmetric in the Star Points

By using an improper fraction of a 2" factorial array we can
estimate all terms in a quadratic model using fewer experimental
points than we need if we use a proper fraction of a 2" factorial
array. A smallest composite design is obtained when we have a

saturated design, i.e,, when we have exactly as many points in
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the design as we have regression coefficients to be estimated.
To estimate all terms in a quadratic response surface in n
variables we need p = (n+l)(nt+2)/2 points to estimate the p terms
in the model., Small designs like this are used when experimentation
is expensive, experimontal error is small, an independent estimate
of experimental error is available, and a quadratic model is
adequate to explain the phenomena under study. These designs

have a variance structurc for the regression coefficients that

is worse than the variance structure for balanced designs; they

give no estimate of the experimental error; and they can give no
test of the adequacy of the model. For smallest composite designs
symmetric in the star points, we now follow exactly the same

procedure used in Section 1.2,

A smallest composite design symmetric in the star points

consists of:

1. An edge point having the structure

(o (XX ] 010 (XX 010 (X N ] 0)lxn

) P ST J eeen .

It is a vector having 1l's in the ith and jth location
and zeros elsewhere, This point enables the estimation
of the xixj (two factor interactions) term in the
quadratic model. We need one edge point for each inter-~

action term desired in the model, If all interaction

i
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A
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terms are to be estimated there will be (2) = n(n=-1)/2

points of this type,

2, One center point,

3. Two star points, one at +u and one at -a, for each

variable.

Theorem 1.3: For a smallest composite design symmetric in
the star points that is used to estimate a quadratic response
surface, the generalized variance decreases with increasing a.

The method of proof follows the same three steps used in

Theorem 1,2,

Step 1, We write down the Nxn design matrix X, vhich is "expanded"

to give the X matrix,

e

ol

1 B 2 P A

3
=
3
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|
I
3
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1 x2 x3 “ o x Number of Points

XD = rl 1 0 ¢ o = o-l ]
1 0 1 « o @ 0
0 1 1 .« o 0
) - $< ()
0 0 0 “ e 1 J
[+ ) 0 0 o e o 0 ]
- - 0 0 e o o 0
0 [+ ] 0 « e o 0
o -a 0 e @ o 0 9 2n
0 0 0 « o u o
0 0 0 “ e s =0 J
_0 0 0 e & e OJ 1

= We first prove the result for the case S = (g), when all inter-

actions are to be estimated,
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Step 3, Solve for the determinant of the X'X matrix. We know that

D B!
B C

|xtx| = = |c]|p - Btc ™8]

Using the above with C = I

(g)x(g) so lcl = 1, we obtain

o i b ) i, it
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(20-+1) % (2n+1)
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I N,
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Thus

|x*x| = |p - Bt ¢! B| =

[ 142n 0 0

T L
L M L e T Ly
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- vhich upon using Theorem [1] again is :

a2 2?1 + 20 - 2 nbol] = 220 460
20

A R

vhich is an increasing function of a,

If § < (;) interactions are to be estimated, exactly the

same determinant is obtained, This can be seen by induction,

i o A oL 1 e

If one interaction vector is removed from the X matrix, we can

use exactly the same proof and note that the determinant does
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not change. Siuilarly, we can note that if (k-1) interaction
vectors are removed, the value of the determinant will not be
changed by the removal of the kth vector. This procedure
enables us to remove all undesirable interactions terms until we
have left only the S interaction terms which we wish to estimate.
If the design is restricted to a h}percube having sides of
length two centered at the origin, the above immediately gives

the optimum value of o as o = 1,

1.4 Optimization of Smallest Composite Designs

Unsymmetric in the Star Points

A smallest composite design unsymmetric in the star points
differs from a smallest composite design symmetric in the star
points in that the star points are placed at +1 and -a in the
unsymmetric design rather than at -+ as is the case for the

design symmetric in the star points,

Theorem 1,4: For a smallest composite design unsymmetric in the

star points, the generalized variance decreases with increasing «.
When the design is restricted to a hypercube having sides of
length one (which makes the star point distance af(l+a)), the optimum
star point distance is 1/(n+l).

The first part of the theorem is proved following the same

steps used previously.
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vhere J, A, and I are the same as they were in Section 1.3,
Using

-1

= |c| |p-Bc™ B

We use the same breakdown we used before letting D1x1 = 142n

so C is a 2nx2n matrix, Using Theorem [6] withb = d = £ = 0

we obtain
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Iq-l. 1

] = [Q4e?) Wty - AmaDHH"

- c‘Zn(m_‘)‘)Zn

(ha?) Qo) = (1ma2) 2

then

ID-B*C B| =1+ 2a-

1
o2 (ha®)

4
(14+a7) Inxn

3
~-(1=a") Inxn

-(1—a3) I

[(l-a) J;xl

4
A+ T

nxn

3
-(1=a") Inxn

4
(+ah) T

-

3
-(1-a”) Inxn

2
(1+a”) L vn

2
o) 31|

(1-a) Jnxl

2
A+ T

So |X'X| = azn(1+a)2n. By the same type of argument used in

Section 1,3, the determinant has the same value for all S 5.(2).

Thus, the determinant is an increasing function of a.

To complete this proof we show that if this design is
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restricted to a hypercube having sides of length one, the optimum
star point distance is 1/(n+l), For this proof we need an extension
of a result due to Hartley and Ruud [1969], which we discuss

in Section 1,6, Restricting the design to a hypercube having

sides of lengths one introduces a multiplier for the determinant

of k2n(n+2) where k = 1/(1+a), Thus the determinant of the

restricted X'X matrix is

2n

lx‘x'restricted = W o (140 = W
thus
a|2%| _ 2002t 40) 20D - gnen) )BT 20
da L4y B ()
=> (1+a) - (ntl) a = 0
= o =1/n %

where 0 < a < », We must transform tkis to the proper units,
Since the length of the design 1 + a is restricted to be one,

the optimal star point distance is

a __1/n |
140 1+l/n  ndl °

!mi;!4lﬂlhmIlI|mlehl|||I;;;;lI|;||lrx>;\|||||‘||s‘;):y‘ :,.

[l ;;]‘ Mm‘m




To obtain the optimum star point distance by another method,
. we reprove the second part of the theorem by rescaling the deter-
minant before we differentiate to solve for the optimum star

point distance., Let § be the star point distance, then

L

2a
1 1-8

80
1+o = 1/(1-B)
k = (1-8)
and
|x|x| - |8 Zn _;_zn(l_B)Zn(nH) - 82“(1-3)2“
restricted 1-8 1-8
d|xx| 2n2 on2-1
sgstricted Zn 1 (1- B) 2 Zn(l 8) =0
= (1-8) ~ng = 0

= B = 1/(ntl) .

b Lo v =

s
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A third method of finding the optimum star point distance is to

rescale the design matrix, then optimize it following the three

steps indicated previously.

Step 1. We show the structure of the design matrix an
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Reusing

p Bt = |c| [D~Btct s

witlis ™ = 142n obtain
Ip-Btctal a1
and
6] = [Ca-6)46% (a-8)2482) - (836D
- 82n(l__8)2u

80

n
4(,) 2

[X*X| = (1=8) a20(1-8) 2" = %P 1-8) "

which reduces the result to that of the determinant in the second

alternative proof; thus B = 1/(n+l) is optimal.
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1.5 Optimization of Composite Designs

Unsymmetric in the Star Points

A composite design unsymmetric in the star points consists

of a proper fraction of a 2" factorial array, and n star points,

Theorem 1.5: For a composite design unsymmetric in the star
points that is used to estimate a quadratic model the generalized
variance decreases with a, the star point distance. When the
design is restricted to a hypercube having sides of length one,
the optimal star point distance is 1/(n+l),

Thus even though there are many more points in the cube
part of the design, the optimal star point distance is the same
as that obtained for smallest composite designs unsymmetric in
the star points, The proof will follow the same three steps
used in the previous proofs though the algebra is more involved
and more involved matrix results are used,

To prove the theorem, we reduce the determinant to a constant
(independent of o) times the result for Theorem 1.4,

Possible composite designs unsymmetric in the star points
for estimating a quadratic model for n < 11 are listed in

Table 1.2,

o AT




- 36

] Table 1,2

Common Ungymmetric Composite Designs

S e e ki by

Terms in Points in F.actional
Variables Quadratic Modei Design Factorial

il

i

e

10
15

g

21

21

28

R oRaPe T ]

28

36
36

NN Y Y W

g T

36

45
45
45
55
35
55

T
O w L. O -} [« (-]

35

-
(=]

66

pary
[~]

66

UL T Ry

~N
[+

11
20

21
70
38
135
71
39
264
136
72
521
265
137
73
1034

522

2% = 4
3=

2" =16

wm W

2" = 32
2 = 16

2° = 64

2 = 32

2" =128

2 = 64

2 = 32 %

27 = 256

Z = 128

2 = 64

2° = 512
9-1

2 = 256

9-2 _ 128

9-3 64 *

10

27" = 1024
210-1

= 512
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Variables

10
10
10
11
11
11
11
11

Table 1,2 (Continued)

Terms in
Quadratic Model

66
66
66
78
78
78
78

78

Common Unsymmetric Composite Designs

Points in Fractional
Design Factorial
266 210-2 _ 756
138 210-3 _ 128
74 2104 L 64 %
2059 211 - 2048
1035 2111 1024
523 2112 510
267 2113 _ 256
139 2114 o 128

See Section 1,6.2.

While the designs indicated with a * have more experimental
points than there are parameters in a full quadratic model, the

alias structure is such that all parameters in a quadratic response
surface cannot be estimated,

e
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J n = 2n—k-2 J n i
(o9t ()%
A has the same structure as A in Theorem 1.3 with %
20k=2 4 stead of 1 and 2°°¥3 instead of 0 %

M(2n+1)x(2n+l) will be used to represent the submatrix

in the upper left-hand corner,

and B and B™T have the pattem
GIx() %)
27722 2772 :
B gL
2n—k—2 n3-9n+12 if the column and row have two 3
(n3+2n2—5n+2)2n-k-4 E
subscripts in common E
2n--k-3 -nz-n+8 if the column and row have one %
(n>42n2-5n42)27 K4 :
subscript in common 3
2n-k—4 2 (n+3) if the column and row have zero %
(no42n2-5n+2) 207K
subscripts in common , E

For the six interactions obtained with four variables, the

pattern of B is:
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13

i o L o O

24
34

12

2n-k—3

2u--k~-3

13

2n-k-3

2n-k-3

2n--k--3
2n~-k-3

2n-k-3

2n-k—3
2n—k—3

2n—k—4

2n-~k.--2

2n--k--3

: 14 23 2 34 3
? 12 [- gn=k=2 k-3 gh=k=3 gt=k=3 ofi~k=3 g=k4

n-k-3

NN

: 14 k=3 k3 k-2 neked nk-3  nk-3
E 23 2n-k-3 2n-k-3 2n—k-4 2n—k—~2 2n--k-3 2n--k---3 :

n-k~3

2n-k-2

=

Simplifying, we obtain

i s L

LErg

J
M At J
ol = Bl |m- 4
A'

B17 waa

NIRRT S e e

JY4A B

e 50 A S

o el ) )

where M(z n+1)x(2nH) is a matrix whose elements are a function

of a, B does not contain a and
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where €15 Cp» Cqo and ¢, are constants independent of a. Thus,

the |X'X| reduces to

Kl T

(s~a)J

(s-l-az)J

Use

to reduce |X'X]| to:

l(z al + bJJ!

cI + dJJ?

(s=a)J?
(o%4m) T+qaa

(—a3m)1+qJJ'
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dI - £33¢
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having determinant:

xcz(m-cz)“‘1 ((atnb) (etnf) ~ (ctnd)?)

where

as= az +m b= _23.+ 220~ §£-+
T T T 1

c=0a +m d = EL_-,E.QZ 5 8

e==a +m f= ~%—-—2-

which upon substitution and multiplying out reduces to
X%} = K o®® Qa)?®

where K is independent of a,

Thus the determinant is reduced to a constant times the
result for a smallest composite design unsymmetric in the star
points; so we have proved that the generalized variance decreases

with increasing a, and that thz optimal star point distance when

the design is restricted to a hypercube having sides of length
one is 1/(n+l).
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1.6 Related Mathematical Results

1,6.1 Effects of linear trausformations

In the xpr matrix if any column is multiplied by a constant

k then the determinant will be multiplied by kz. This is easily

geen as the modified X matrix can be written as XNXP prp

where
P=] X 0 0
0 k 0
0 0 I
and

|ptxx p| = |p*] x| |p| = k® |x'%]| .

Multiplying a column in the design matrix XD by k causes the
following changes in the X matrix, The linear term is multiplied
by k, the quadratic term is multiplied by kz and (n~1) interaction
temms (for a full quadratic model) are multiplied by k; so this
multiplies the determinant by k2(n+2). A result due to Hartley

and Ruud [1969] is Theorem 1.6.1,

Theorem 1.6.1: If the n vectors Xt, are transformed to vectors
Zt by

=5
4
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where Xt is a row vector in the design matrix XD or a row vector

Zt - Xt + &

in the X matrix with 61 = 0, then

Proof:

where

80

thus

|xex| = [2°2] .

Z can be written as

szp = xpr Apxp

|| =1

|z'z] = a*] |x*x| [a] = [x'x]
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By combining the aboye results we can see how the determinant is
changed by the usual linear transformations, Por a particular
example if each element of the design matrix '{D’ for a quadratic

model, is transformed by Zi j = kxi 3 + 6 3 then the determinant

becomes

1.6.2 The estimable terms in the model

Hartley [1959] discusses the terms in a model that can be
estimated using a composite design. We will extend his result
slightly using estimability considerations., We define estimability,

give a standard theorem on estimability, then extend Hartley's

result,

Definition: A linear function A'f is said to be linearly

estimable $<=> I a vector a1 such that E(a'y) = A'8.

Theorem 1.6,2: A'B is estimable <=> A' = a'X,

Proof: =>

A'8 is estimable > J a 3 E(a'y) = A'8 but
E(a'y) = aXg = A' = aX.
<-l
a'X = ) is a constant set of equations., Let a' be any

solution, then

E(a'y) = a'XB = A'8
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Theorem 1,643

(a) For a composite design symmetric in the star points
it is always possible to estimate the following
coefficients of a quadratic response surface:

The constant term, all linear coefficients,
all quadratic ccefficients, one of the
product coefficients (interactions) selected

from each of the alias sets.

(b) It 18 not possible to estimate more than one of the

product coefficients from each alias set,

This theorem is an extersion of Hartley's result in two

ways;
(1) We allow main effects to be used in the defining contrast
in the (1/2k)2n fracticnal replicate, and

(2) We consider there to be 2"k 11as sets by allowing

the defining contrast to be counted as an alias set,

Hartley allowed 2" _ 1 alias sets.

Two simple examples using this extension are:

(1) A two variable composite design having seven points,

This design uses a 22" fractional factorial with alias

structure I = AB,
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(2) A three variable design having nine points with a

23-2 fractional factorial with alias structure

I = A= BC=ABC. This design allows the estimation

of the constant term, three linear terms, three quadratic

terms, and two of the three interaction terms, the BC

interaction and either the AB or the AC interaction.

The experimenter must be careful when he is using highly

fractionated designs. From each alias set one interaction term

can be estimated, the choice of which interaction term to estimate

is that of the experimenter. This choice can change the interpreta-

tion of the experiment.

ot 4 L

Proof of Theorem 1.6.3.

AT e B 1

From the center point and 2n star points we can find a

vector such that E(a'y) = Bi for the constant term, n linear

o

terms, and n quadratic terms, 2nt+l terms in all. From the Zn'k

fractional factorial we can find 2% ¥ estimable functions; the

Yates algorithm will give us the estimable functions we desire.

UL e 8

These functions will contain some combination of the following:

up i e

The constant term, main effects, two factor interactions,
higher order interactions (which are not used in a

quadratic model).

Since, if AiB is estimable I Ai 8 is estimable, we can combine
i

the A's from the star with the A's from the fractional factorial

to estimate all terms in a model that picks only one interaction

w
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term from each of the Zn-k estimable functions of the fractional

factorial. Note that 2"X may be greater or less than (g)

the number of interactions so we may have a saturated design or
have many terms left over for estimating error. This completes
part (a) of the theorem.

After noting that the 2n+l star and center points make no
contributions to the estimation of the interaction terms (for
these points the row vector of the design matrix Xb has at most
one non-zero element, thus for these rows all interaction elements
of the X matrix are zero), we can immediately see that it is
impossible to estimate more than one interaction term from each
of the alias sets. This completes the proof of the theorenm.

For composite designs unsymmetric in the star points a very

similar theorems using the same method of proof is:

Theorem 1.6.4:

(a) For a composite design unsymmetric in the star points
it is always possible to estimute the following
coefficients o7 a quadratic response surface:

All quadratic terms and one coefficient from

each of the 2%°K alias sets.

(b) It is not possible to estimate more than one of the

product coefficients from each of the allas sets.
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A particular difference between composite designs symmetric
in the star points and those unsymmetric in the star points is
that an alias structure having *ords with three characters,
e.g., I = ABC, allows the estimation of all terms in a quadratic
response surface for the former design but not for the latter
design, For the latter design note that if you use the
principle block of the I = ABC alias structure the N design
points in n dimensions project onto seven distinct points in
three dimensions, With this alias structure the cxperimenter

would commonly choose to estimate:

{a) The constant term, three linear terms, and three

quadratic terms, or

(b) The constant term, three linear terms, and three

interaction terms,

In case (b) you would be using the star points to estimate
linear terms snd the factorial structure to estimate the constant
terms apd the interaction terms.

In general such an alias structure would not be recommended,
rather alias structures which have at least five characters for
each word in the alias set, i.e., I = ABCDE, which allow the estima-

tion of all terms in a quadratic response surface would be used.
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1.,6.3 Smallest fractional factorials - disproof of a conjecture

Using the alias structure I = ABC it is easy to construct
composite designs symmetric in the star points for estimating all

terms in a quadratic response surface, These designs use a Zn.k

fractional factorial with k < n/3. It has been conjectured that

k must be < n/3 for all n, if all terms in a quadratic response

surface are to be estimated. By enumeration of the possible alias

structures it can be seen that the conjecture is true for n < 10,
These are the designs witich are commonly used in practice. The
conjecture is not true for all n, however, We disprove this
conjecture by listing two different alias structures for n = 11,

k = 4 that enable the estimation cf all terms in a quadratic

regponse surface, The first design has one three character alias

word in the allas set, the second ¢cxample has five or more
characters for all words in the alims set, The second example

¢an be found in Box and Hunter [1961]), We have underlinz=d

the worda which we use to generate the aliass structure,

Example 1.

I = ABCDE = ABFGH = CDFGT = ADEFHIJK » CDEFGHE = ABEFGI = ABCDHI =

EHI = RCFHIJK = BDEGIJK = ACGIJX = ACEGHIK = BDGIiJK = BCEFJK =
ADFJK
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Example 2,

I = ABCGH = BCDEI = ACDFJ = ABCDEFGK = ADEGHI = BDFGHJ = ABEFIJ =

CEFGHIJ = DEFHK = AFGIK = BEGJK = BCFHIK = ACEHJK = CDGIJK =

ABDHIJK

1.6.4 Optimum design-optimum composite design comparison

Figure 1.6.1 compares the optimal six point design obtained
by Ruud [1969] with the optimal six point composite design. Both
designs are restricteu to a square with sides four units long.
Ruud's design for estimating a quadratic response surface has

175. x 10°

as the value of the determinsnt of the X'X matrix while
the composite design has 20.7 x 105. The ratio of these two values
is 8.45. A better comparison, perhaps, is the 2 x pth root of

this ratio which is a measure of the ratio of the average standard
deviation of a coefficient in the less efficient design to the
standard deviation of a coefficient in the more efficient design.

In this example with p = 6,(8.45)1/12

= 1.195. This increase in
standard deviation reflects the penality paid in less precise
estimates, for using the more easily cbtained composite design
rather than the optimal design obtained by solving a non-linear,
non-convex program,

Nnte that the optimum composite design requires only three

levels for each factor, while the Ruud design requires four levels

for each factor. In fact we can obuerve that all optimum composite
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Six Point Design Comparison
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Ruud's Six Point Design
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Optimal Composite Design

[X'x| = 175, x 105

[X*X| = 20,7 x 10°
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designs on a hypercube require only three levels for each factor.
This is extremely gratifying as in industrial experimentation

the implementation of a factor level is often costly. Economic
considerations might therefore indicate that an optimal composite
design should be used rather than a more precise optimal design
that requires more levels for each factor,

The use of an optimal composite design does not necessarily
incur any penality at all, For example a nine point optimal design
on a square is the same as a nine point composite design symmetric
in the star points. These are the same as Kennard and Stone's
[1969] and Box and Draper's [1971] optimal nine point design. All
the above designs are 32 factorial designs having determinant

340 x 106 when the sides of the square have length four.
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APPENDIX

Some useful results about Matrices and Determinants:

Theorem [1]

As

mxn
when A22 is square and non~singular.

Proof: Theorem 1.50, Graybill [1961].

Theorem [2]
(T + AB)Y = (1 - A(T+BA) 1B)

Proof: Multiply out to verify.

Theorem [3]

| + AB| = |1 + BA|

Proof: Coneider | I B

J

-A IK

A2 a1
Ay Ay = A2 [A11 - Ap2Aoahn|
2

and use Theorem [1] twice to obtain
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I. B

A LT IIKI |IJ + BI;('IAI - 'IJI lxK+ AI;]'B .

Theorem [4]

'81 + bJJ! lan - an-l(a + nb)

Proof:
a1 + baz| = &® |1 + Bt
= a" |1 4’§J'J| by Theorem (3]

25y = 2" L(a + nb)

n
= a (1+—8—

Theorem [5]

-1
' = ]
[al +b33'] . = [cI + dJs ) xn

=1 e__b
where c = 3 and d ahoy

Proof: Multiply out,
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Theorem [6]

al + bJJ!

cI + dJJt

Proof:

al + bJJ*

cI + 4t

el + d3J°

= (ae=c?)"™ [(atnb) (etns) = (ctnd)?]

L]
el + £JJ 2nx2n

eI + dJJ*

= an-l(a-i-nb) [eI + £33'] - [cI + dJJt]
el + £JJ¢\

1 b
[-;I -m JI' el + dJJ']

= an-l (atnb)

2 2
c 2cd be
(e - ?)I +{f " Ta_ a(atnb)

_ _hbed _nriz_+ bed + nbd2 } J.,
a(atnb) la a(atnb) a(a*nb)j"

2yn-1 2
n~1 c c 2ncd
= g (mb)[e--a—] {e -—a tnf-T%

2
nd nb 2 2,2
-5 + 2 (atnib) (c® + 2ncd + n“b )}

= (ae=c2)™L {(atnb) (etnf) = (ctnd)?)

il




