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COMPOSITE DESIGNS AND THEIR OPTIMIZATION

1.1 Introduction

An important problem in industry is the Improvement (which

will hopefully lead to the optimization) of a process. This report

attacks a problem in this area.

To improve an "ongoing process" often it is desired to examine IS

the relationship between variables in a process, say between a y

variable when y represents a "response" variable and x0, x2 , .,x

where the x's represent "input" or "control" variables. In this

report we develop optimum composite designs for fitting a quadratic

response surface under the standard regression assumptions, and

solve some related design of experiments problems. The optimization

criterion we use is the minimization of the generalized variance

(the jX'XJ criterion).

To clarify the concept of an ongoing process we may appropriately

think of a production process in a chemical plant producing a target

output y of a chemical. It is commonplace that this output will depend

on "plant conditions", i.e., factors characterizing the process such

as the temperatures at which stages of the process are run, the

concentrations at which chemicals are input, the concentrations at

which catalysts are used, etc. In order to "improve" such a process,

it is desirable to estimate the functional dependence of the target

output y on the plant conditions denoted by xl, x2 , ... , x.. The data

available for such an improvement may be of essentially two kinds:.

(a) We may have "plant data" in which the target output y

is observed along with measured records of the plant

conditions X1 , x2 , . Xn, or

(b) We may have data from planned experiments usually us

using a "pilot plant" in which the plant conditions
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x are deliberately determined by the experimenter

in accordance with an experimental plan, after which

the associated target output y of the pilot plant is

measured.

The concept of using an e':perimental design to estimate the

mathematical relationship between the target output and plant condi-

tions is normally restricted to case (b) above.

This report will be exclusively concerned with case (b). More

specifically, this report is concerned with choosing the set of

plant conditions, xi, at which the pilot plant is to be run,

called the experimental design,in such a manner that certain

features of the mathematical relationship can be estimated with

"optimum" precision. We shall confine our study to a situation in

which the mathematical relationship is postulated to be of "second

order", i.e., what is known as a "quadratic response surface".

It will be assumed that the expected yield of the pilot plant will

be given by such a response surface and that the observed target

outputs will differ from their expectations by independent equal

variance residuals. These assumptions are the standard ones in

"regression analysis". Using the estimation procedures appropriate

to such assumptions will result in estimates of the so-called

regression coefficients, i.e., effect coefficients of the xis

their products, and squares. An estimate of the individual

variances of such estimates as well as of the so-called generalized
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variance of the coefficients can also be obtained. The magnitude

of this generalized variance will depend on the experimental

design chosen. The objective of the optimization of the design

will be the minimization of this generalized variance.

The problem of the optimization of experimental designs by

the minimization of the generalized variance can be reduced to

a mathematical programming problem which is solved on a high speed

computer. This approach was taken by Hartley and Ruud [1969] j
and by Crowell 11971]. The disadvantage of this attack is the

complexity of the programming problem; it is generally a non-

linear non-convex programming problem. Thus a global optimum

cannot be guaranteed.

By restricting our attention to composite designs we will

be able to avoid formulating a programming problem. We will

attack the problem directly and will minimize the generalized

-variance for composite designs restricted to an n dimensional

hypercube where n is the number of variables under study. The

minimization of the generalized variance is equivalent to the

maximization of JXtXJ where X is a N x p "expanded" design matrix

having N rows and p columns, one column for each coefficient to

be estimated. The XNp matrix is expanded from the design matrix

, a N x n matrix, which has one column for each variable under

study. For a full quadratic model p m (n+l)(n+2)/2 - 1 + n + n + (n).

In the X matrix there is one column for the constant term, n for
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the linear terms, n for tha quadratic terms, and (n) columns

for the interaction terms.

Four types of composite designs will be examined:

(1) A "sy!%m;.tric'< composite design (a "symmetric" composite A

desi;:;. .s "s'•ar" -. )int distance equal to + a).

(2) A "symz,;tric" smaltes.. -omposite der-!gn (a saturated

design for which 1i' p = (n+l)(n+2)/2).

(3) An unsymme•: :'r composite design (an unsymmetric composite

design has "star" point distance equal to (+1, -a)).

"(4) An unsymmetric smallest composite design.

Composite deslans are used primarily in "response surface

analysis". Box and Wilsorts [1951] paper opened this important

and practical field, and Box and Draperts [1959] paper discussed

some optimization problems in this area. Hartley and Ruud (1969]

and Crowell [1971] give a good introduction to the field of

optimal experimental designs and contain additional references.

1.2 Optimization of Symmetric Composite Designs

1.2.1 Alias structure I - ABCDE

A symmetric composite in n variables which is used to estimate

all terms in a quadratic response surface consists of: Il

- 21
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nI
(1) A proper fraction (say a 1/2& fraction) of a 2 U

n-kfactorial array. This array of 2 points will be

placed on a hypercube having sides of lengi:h two

centered at (0, 0, .. o, 0)lXn*

(2) r center points.

(3) Two "star" points, one at +a and one at -a, ior each

variable; 2n points in all.

Thus, the design consists of N = 2 + 2n + r points to estimate

p - (n+l)(n+2)/2 terms. Table 1.1 lists the composite designs

for n < 11.i

We are now ready to state and prove Theorem 1.2.

Theorem 1 : For a "symmetric" composite design the generalized

variance decreases with increasing a where * is the star point

distance. In this section we prove the result for alias structure

such that two factor interactions are aliased with three or higher

order interaccions (I = ABCDE), and in the next section we

indicate the changes necessitated by other alias strucL.res.

Method of Proof:

Step 1. Indicate the structure of the XNxp matrix.

Step 2. Write out the XIX matrix.

Step 3. Solve for JXtXJ and sbow IXtXI is an increasing

, * function of a.
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Table 1,1

Common Symmetric Composite Designs

Terms in Points in Star andQuadratic Design Center Fractional
Variables Model (With one center point) Point Factorial

2 6 9 5 22 =4

3 10 15 7 2 8
*3 10 11 7 231 4

44 15 25 9 2 =16
*4 15 17 9 2 =8

5 21 43 11 2 5 32

5 21 27 11 251 =16

6 28 77 13 26 =64

6 28 45 13 2 = 32

6-2*6 28 29 13 2 16

7 36 143 15 27 =128

7 36 79 15 27-1 =64

*7 36 47 15 272 =32

288 45 273 17 2= 256

8 45 145 17 281 128

8 45 81 17 282 64

9 55 531 19 29 f512

9 55 275 19 29-1 256
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Table 1.1 (Continued)

Common Symmetric Composite Designs

Terms in Points in Star and
Quadratic Design Center Fractional

Variables Model (With one center point) Point Factorial

29-2
9 55 147 19 2 =128

*9 55 83 19 29-3 =64

10 66 1045 21 210 1024

10 66 533 21 210"1 512

10 66 277 21 2102 =256

10 66 149 21 2103 = 128

11 78 2071 23 211 f 2048

11 78 1047 23 211-1 =1024

211-211 78 535 23 2 = 512

11 78 279 23 2113 = 256

11-411 78 151 23 2 =128

S*
The starred designs will have some three character words in an
alias set (I - ABC), For all other designs it is possible to
pick the alias structure so that all words in an alias set have
at least five characters (I - ABCDE)o



Step 1. By showing the structure of the X matrix for the ith

and j variables we indicate its general structure

Number of 2 2
Points u x x x x xix

[1 1 1-c 1 1-c 1

2 n-k 1 1 1-c -1 1-c -1

1 -1 1-c 1 1-c -1

1 -1 1-c -1 1-c 1

1 a a 2-c 0 -c 0

1 -a a 2-c 0 -c 0

1 0 -c a a -c 0

1 0 -c -a a-c 0

r + 2n -4 1 0 -c 0 -c 0

2 + 2Q
n-k

2 + 2n+r

c is chosen to simplify the X*X matrix. Substracting a constant

from a variable does not change the value of the generalized

variance as we show in Section 1.6.1 when we extend a result

due to Hartiey and Ruud [19691.

EiMY



9/

Step 2. By showing the structure of the XtX matrix for thePxp

same variables that we used in showing the structure

of the X matrix we indicate its general structure.

Nxp

Structure of XIX Matrix 4
PXP

2 2uxi xj xx xt xj
xi Xj i

n-kIu 2 0+2n+r 2 0 0 0 0
xI 0 2 n-k+2a 2 0 0 0 0 i

x 0 0 2 n-k+2 a 2  0 0 0

xjxj 0 0 0 2 0 0
2

x 0 0 0 0 ** *

x 0 0 0 0 * **

where

- n-k 2 2 2 2
2* (1-c) + 2(a -c) + (r+2n-2) c2

n- 2 2 22 (1-0 4c(c -c) + (r+2n-4) c
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Step 3, The XIX matrix is a diagonal matrix except for an
pXP

nxn matrix which has the structure

[al + bJJ] nxn [M]

where

2 2 +2 2  2 4a 2(a2-c) + 2c + 4c(32-c) 2(x

b s 2n-k(l-.c)2 + (r+2n-4) c - 4c(a 2 -c)_

I is an nxn identity matrix, and

J is a n vector of ones *

Thus

JIXi (2 +2r) (2. +2a (2 IMI

We show in the Appendix, Theorem (4], that

fIMI n n + nan-.b n-l( b

Substituting a, b. and c in IM! we find



i-ki
(2' ({ 2 ) n 2 n

Thus

X 2 2n-1 ( 2 n-k) ( ( 2n-k-l+ 2)n (o4(n-l))

{2 n-k+l(a-2n)2 + 2ra4 + nr2 n-k

To show that this is an Increasing function we take the logarithm,

differentiate it, and show that the derivative has no positive

zeros, This will show that lxtxl is a product of increasing j
functions, and so is an increasing function of (.

log IXtXI = K + n log(2 n +k-l-u ) + 4(n-l) log a

4
2 2 4

+ log{((a -n) +-+ 1
in-k 2

d lo0g IX'X 2na 4(n-1)
"dm 2nlkl-.+a 2 + a

14 a2n) + m3 /2n-k 2

2 { 2 4nk
(a-n) + rm/ 2a- + nr/2j
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Combining fractions using the last two terms only, we obtain

a numerator greater than;

4 2 2 n
2n[2a -(4n-2) a + 2n -n- .

The discriminant of the term in brackets is 4(-2n+3). Thus

for n> 1, d log IXIXI/dc is nowhere negative, and IXtXI is

increasing with a. n-i is an easy special case for which it is

trivial to show that lXtXI is increasing with a so the result

holds for all n.

The preceding shows that the optimal symmetric composite

design on a hypercube with sides of length two centered at the

origin has a - 1,0.

In Section 1.6.1 we show that expanding the hypercube by

a factor k introduces a multiplying factor k2n(n+2) to the

determinant. A 9 increase in the size of the hypercube gives

a multiplying factor of (1 + 2n(n+2) 9) to the determinant when

we consider only first order terms. For an 9 increase in a

from 1 to 1+9 a multiplying factor for the determinant of

(1 + 6ng) is obtained. Thus, for optimal composite designs on

a hypercube we need only consider fractional factorials with

points at the extremes of the hypercube, Similar considerations

hold for the fractional factorial portion of all designs considered

in this chapter. The above result can be found in Box and

_ j
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Draper (1971]. This publication came out after we had independently

obtained the same result. They do not note that this form of

IX'Xf does not hold for all alias structures. We discuss this

In the next section of our paper.

1.2.2 Other alias structures

With other alias structures it may not be possible to estimate

all terms in a quadratic model. The estimable terms can be found ]
using Theorem 1 of Hartley [1959] which we discuss and extend

in Section 1.6. For alias structure I - ABCD the proof goes

through exactly as given except that three of the product terms

cannot be estimated.

The I - ABC alias structure is a good one in that it allows

the estimation of all coefficients of a quadratic response su .ace.

For a six row, six column minor of the determinant with alias

structure I - ABC we obtain:

a b c bc ac ab

n-k 2 -a 2 +2a 0 0 2 nk 0

b 0 2nk+2a2  0 0 2n-k 0o

c 0 0 2n.k+2a2 0 2n-k

bc 2n-k 0 0 2nk 0 0

ac 0 2nk 0 0 2n-k 0

ab 0 0 2nk 0 2 n-k
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With alias structure I - ABCDE the off-diagonal elements

would not be obtained. For this minor the determinant is
(2n-~ a23 This increasing function of a substitutes for

( 2n-k+2c4
2 ) 3 

2 3(n•t ) obtained with alias structure I - ABCDE.

Otherwise, the argument is unchanged.

For the I - A alias structure we choose a subtraction constant J

b to make the Xa column orthogonal to the Xa column and note that

this choice of b makes the Xa column orthogonal to every column

haa

except the columnn for the constant terms,

2n'k(1-,c) + 2a 2 - (2n+r) c

and the changed minor in the XtX matrix is

u Xa

[ 2n-k +2n + r 2 nk (2nk+2n+r)b

i -k - 2 n-kk a22n-k (2n+2n+r)b ( 2n-k+2n+r)b 2 + 2nk + 2n-k +a

This minor has determinant

2n'k(2n+r) + (Z n-k+2 n+r) 2a 2

an increasing function of a,
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The 1: AB alias structure is not recoinended for n > 2

since all terms in a quadratic model cannot be estimated, I = AB

implies AC - BC and only one of the pair of interactions can be

included in the model, Two minors are changed by this alias

structure, They are:

u XXb X Xba a
2 2 nk+2 2 2 n-k

LXb[ ' 2-kl [ 2n-k 2n+2cs

with determinants

2n k(2n+r) and 2 nk+2 a2 + 4a

So an increasing function of a is obtained.

1.3 OptimIzation of Smallest Composite Designs

Symmetric in the Star Points

By using an Improper fraction of a 2n factorial array we can

estimate all terms in a quadratic model using fewer experimental

points than we need if we use a proper fraction of a 2 factorial

array. A smallest composite design is obtained when we have a

saturated design, i.e., when we have exactly as many points in
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the design as we have regression coefficients to be estimated.

To estimate all terms in a quadratic response surface in n

variables we need p = (n+l)(n+2)/2 points to estimate the p terms

in the model. Small designs like this are used when experimentation

is expensive, experimontal error Is small, an independent estimate

of experimental error is available, and a quadratic model is

adequate to explain the phenomena under study. These designs

have a variance structure for the regression coefficients that

is worse than the variance structure for balanced designs; they I
give no estimate of the experimental error; and they can give no
test of the adequacy of the model. For smallest composite designs

symmetric in the star points, we now follow exactly the same

procedure used in Section 1.2. 2

A smallest composite design symmetric in the star points

consists of:

1. An edge point having the structure

(0 .. 010 q 010 0, )ln!

It is a vector having l's in the Ith and jth location

and zeros elsewhere. This point enables the estimation

of the xixj (two factor interactions) term in the

quadratic model. We need one edge point for each inter-

action term desired in the model. If all interaction
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terms are to be estimated there will be (n) n(n-1)/2

points of this type.

2. One center point.

3. Two star points, one at +a and one at -a, for each

variable.

Theorem 1.3: For a smallest composite design symmetric in

the star points that is used to estimate a quadratic response

surface, the generalized variance decreases with increasing a.

The method of proof follows the same three steps used in

Theorem 1.2.

Step 1. We write down the Nxn design matrix XD which is "expanded"

to give the X matrix.

IA
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x 2  x3  • • xn Number of Points

XD = 1 1 0 ••° 0
1 0 1 *. 0

o 1 1 *•• 0

o 0 0 •.. 1

a 0 0 * .. 0

-u 0 0 **. 0I

o at 0 ,.. 0

o -a 0 .,. 0 2

*0 
0

2n

0 0 0 0
a 0 0 0

0 0 0 0., 0

actions are to be estimated0

0\ 0
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where

A- 1 1 0 0 .,, 0
1 0 1 0.., 0o

0 1 1 0.,, 0

1 0 0 1 .. , 0

0 1 0 1 ,,, 0

0 0 1 1,, 0

* . q S

0 0 0 0 4 0 6 1
u
(2xn

Step 3, Solve for the determinant of the X'X matrix. We know that

IX'xl -D B' - ICIID - Btc-BI
lB cI

UJsilng the above with C - I so ICI = 1, we obtain
(2)x(2)

2
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BCIB [AJ [C] [J IA I A]

) n n-I , n-l n-I n-i .. , n-I
n-1 n-i 1 •.. 1 n-I 1 ,,, 1

n-i 1 n-i .o 1 1 n-i .. 1

* 0 * * 0 q 
I

n-1 1 , -i 1 1 .. n-i
n-i n-i 1 * 1 n-i 1 • 1
n-i 1 n-1 •,, 1 . n-i ... 1

n-i 1 1 ,,, n-1 1 1 ... i-1

(2n+l) x(2n+l)
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Thus

Ix'X - ID- B' C" BI

1+2n 0 0 ., 0 2C2  2ot2  *,. 2a 2 1

0 2*2 0 0 , 0 0 0 .. 0

0 0 2az . 0 0 0 . .. 0

2o 0 2a 0 0 02c2 0 0 *, 0 0, 2.2

2a2  0 0 0 0 2 0 0

0 2 4  0

0 0 .0 0 0 0 2a

which upon using Theorem [1] again is

21 22n 6n

(2a2 )n( 2a 4 )n1 + 2n - 1 n4ac4] 2 2 a

which is an increasing function of a.

If S <() interactions are to be estimated, exactly the

same determinant is obtained. This can be seen by induction.

If one interaction vector is removed from the X matrix, we can

use exactly the same proof and note that the determinant does
I
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not change. Siiailarly, we can note that if (k-i) interaction

vectors are removed, the value of the determinant will not be

changed by the removal of the kth vector. This procedure

enables us to remove all undesirable interactions terms until we

have left only the S interaction terms which we wish to estimate.

If the design is restricted to a hypercube having sides of

length two centered at the origin, the above immediately gives

the optimum value of a as x - 1

1.4 Optimization of Smallest Composite Designs

Unsymmetric In the Star Points

A smallest composite design unsymmetric in the star points

differs from a smallest composite design symmetric in the star

points in that the star points are placed at +1 and -a in the

unsymmetric design rather than at _-a as is the case for the

design symmetric in the star points.

Theorem 1.4: For a smallest composite design unsymmetric in the

star points, the generalized variance decreases with increasing c.

When the design is restricted to a hypercube having sides of

length one (which makes the star point distance a/(l+u)), the optimum

star point distance is 1/(n+l).

The first part of the theorem is proved following the same

steps used previously.
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Step 1.

x, x x Number of Pointsn

X D= I 1 0

1 0 1 00

0 1 1 .. 0 S <()

0 0 0 ,. 1

1 0 0 0*, 0

0 0 ., 0

1-4o 0 1.. 0
n

a -1Q

o • 0 0 .

0 0 *., 0
0 0 0 , 0

0o 0 -~,~ 0
n

0 0 0 4k k 2

0 0 0'* ,
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where J, A, and r are the same as they were in Section 1.3.

Using

jD Btj ICI ID -BC-1 BI
B C;

we obtain

[D- Bt C B]

1+2n 2 2 2 I2
1-ct 1.*2  0 *., 0 1-a 3  0 *.. 0

2 3

i-ct 0 0 0

1 0 - 0 0 1-3 0

0 "0 " * 0 0 0

I+a2 1--M 0 .. 0 I+•4 0 too 0

1+(2  0 0 .. 1- 0 0 ... 1+

We use the same breakdown we used before letting Dix1 - 1+2n

so C is a 2nx2n matrix. Using Theorem [6] with b - d - f 0

we obtain
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C- [(1+ 2 )(1+ 4 )- (1 -03)2]

2n la2n

I- 1

2)(l~a(l_(c 3I -('3) "nxn (+)Inxn

then

ID - Bf C- BI 1 + 2n - 2(-0) 21 (1+0 •

(1+04) 1 3

( n+a4) -(i--a 3 ) Inxn (1--a) nxl

"(la3 nxn (a) nxn (l2)Jl

2n 2n- 1 o

So lxtxI a a2n(1+0) 2no By the same type of argument used in

Section 1.3, the determinant has the same value for all S < (•)o

Thus, the determinant is an increasing function of a,,

To complete this proof we show that if this design is
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restricted to a hypercube having sides of length one, the optimum

star point distance is 1/(n+l)4 For this proof we need an extension

of a result due to Hartley and Ruud [1969], which we discuss

in Section 1.6. Restricting the design to a hypercube having

sides of lengths one introduces a multiplier for the determinant

of k2n(n+2 ) where k - 1/(14u). Thus the determinant of the

restricted XtX matrix is

1 a2n
-XX 1 a2n (a)2n a x~

IXXlrestricted (l 4 )2n(n+2) an(la) (l_,)2n(n+l)

thus

2n-l 2n(n-l) - 2n(n+l4(l+u) 2n(n+l)-l 2n
d (l+a)4n(n+l)

40- (+) -(n+l) a ,0

a 1/n

where 0 < a < •. We must transform this to the proper units,

Since the length of the desf.gn 1 + a is restricted to be one,

the optimal star point distance is

a 1/n 1
I-; 1+1 n+l "
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To obtain the optimum star point distance by another method,

we reprove the second part of the theorem by rescaling the deter-

minant before we differentiate to solve for the optimum star

point distance. Let 8 be the star point distance, then

ct 8-

so

140 1 /(1-0)

k * (1-0)

and

f_2
I~tX~~td (~ 3n(T~2~182n(n+2) - 2n(18 2iI I ,xXx restricted -,).2n L _S

drestrcted 2n-1 2n2 2 2n(-)2n21

• 2nO (1-0) - 2n 2(o

(1-0)-n -O0

- - 1/(n+1)
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A third method of finding the optimum star point distance is to

rescale the design matrix, then optimize it following the three

steps indicated previously.

Step 1. We show the structure of the design matrix XD:

Sx x , , x Number of Points
1 3 xn

XD= 1-8 1-0 0 . . . 0

1-0 0 1-8... 0

0 * -0 1-0 . . . 0 V

0 0 0

1-0 0 0... -G00

o 1-0 0 .0. 0

0 0 1-80 .. 0 nn

0 0 0 10

0 0 0

0 0 0

0 0 o ... 1-8

-0 0 0 ... 0

S0 -8• 0 ... 0

0o 0 .• ... 0 n
O 0 0 0

0 0 00

0 0 0 0

0 •:=-- 0 0.00-
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•I

using

D .jICI ID Bk C'~' BI

with

C (i-) x I
we -:educe the problem to:

_-1

-1
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Reusing

I D Bt- IC ID -BW C"1 BI

B C

wit& L . 1+2n obtain

ID - Bt C" BI 1

and

I C =I{ (I-) 4+04)((1_8)2+2) - ((18)3-'3)2}1

02n(i.2n

() 2n, 2n 82n (1)2n 2[x'x{- (1-0) 0 "(1-0) 8 1-

which reduces the result to that of the determinant in the second

alternative proof; thus 8 = 1/(n+1) is optimal.
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1.5 Optimization of Composite Designs

Unsymmetric in the Star Points

A composite design unsymmetric in the star points consists

of a proper fraction of a 2n factorial array, and n star points.

Theorem 1.5: For a composite design unsymetric in the star

points that is used to estimate a quadratic model the generalized

variance decreases with a, the star point distance. When the

design is restricted to a hypercube having sides of length one,

the optimal star point distance is 1/(n+1).

Thus even though there are many more points in the cube

part of the design, the optimal star point distance is the same

as that obtained for smallest composite designs unsymmetric in

the star points. The proof will follow the same three steps

used in the previous proofs though the algebra is more involved

and more involved matrix results are used.

To prove the theorem, we reduce the determinant to a constant

(independent of a) times the result for Theorem 1.4.

Possible composite designs unsymmetric in the star points

for estimating a quadratic model for n < 11 are listed in

Table 1.2.
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Table 1, 2

Common Unsyimetric Composite Designs !

Terms in Points in F.actional
Variables Quadratic Model Design Factorial

2 6 6 22=4

3 10 11 23 =8

4 15 20 24 -16

521 37 2 -32

5 21 21 251 = 16

6 28 70 26 = 64

6 28 38 261 = 32

7 36 135 27 =128

7 36 71 2 = 64

7 36 39 27-2 =32 *

8 45 264 2 -256

8 45 136 2 128

8 45 72 282 64

9 55 521 2- 512

9 55 265 291 256

9 55 137 292 - 128

9 55 73 2 = 64*

"10 66 1034 210 - 1024

"10 66 522 210-1 - 512
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Table 1,2 (Continued)

Common Unsymmetric Composite Designs

Terms in Points in Fractional
Variables Quadratic Model Design Factorial

10 66 266 2 10-2 256

10 66 138 210-3 = 128

10 66 74 20-4 64*

11 78 2059 211 = 2048

11 78 1035 2Ii- 1024

11 78 523 211-2 - 512
11 78 267 211-3 = 256

11-3
11 78 139 2 1-4= 128

While the designs indicated with a * have more experimental
points than there are parameters in a full quadratic model, the
alias structure is such that all parameters in a quadratic response
surface cannot be estimated, See Section 1.6.2.
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Step 1, We indicate the structure of the Z matrix for a number

of selected variables.

u2 2 2

Xk Xe £ j 'k Aj X k ie

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 0 1 00

1 1 1 0 1 1 1 0 1 0 0

1 1 1 0 0 i. 3 0 1 0 0

1 1 0 1 1 1 0 1 0 1 1

1 1 0 1 a 1 0 1 0 1 0

1 1 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 2~-2n-k •

1 0 1 1 1 0 1 1 0 0 1

1 0 1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0

1 0 0 1 1 0 0 1 0 0 1

1 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

1 -• 0 0 0 9 o 0 0 0

1 0 -a 0 0 0 c2  0 0 0 0
n

1 0 0 -• 0 0 0 a2 0 0 0

1 0 0 o0 0 0 0 0 0

S
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whore

2 2n-k-2

2)x1 X

A has the same structure as A in Theorem 1.3 with

2n-k-2 instead of 1 and 2 instead of 0 L

M(2n+l) x(2n+) will be used to represent the submatrix ii
in the upper left-hand cornert

-1and B and B have the pattern
()x(2 M2x2

B B"I

2n-k-2 n3 -9n+12 if the column and row have two

( +2•n+2n 5n+2)2n-- subscripts in common

2n-k-3 -n2 -n+8 if the column and row have one

(n3+2n 2-Sn+2)2n'k' subscript in common

2n-k-4 2(n+3) if the column and row have 7.ero

2nk4 3 2 n-k-4
(a-+Zn2-5nr+2)2n subscripts in comnon

For the six interactions obtained with four variables, the

pattern of B is:



•= '___ : -- • : -~ - _ - • •-- = - - -• L :=••-• • • •
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12 13 14 23 24 34

12 2n-k-2 2n'-k-3 2n-'k-3 k-3 2n--k-3 2 n-k-4

13 2 nk-3 2  2  2n-k-3 2n-k-4 2 k3
14 2n-k-3 2 n-k-3 2 n-k-2 2 n-k-4 2n-k-3 2 n-k-3
23 2nk3 2n-k-3 2nk-4 2n-k-2 2n-k-3 n-k-3
24 2n'3 2nk' 2 n-k'3 2n-k-3 2n-k-2 2 n-k-3[ 34 2n-k4 2n-k-3 2 n-k-3 2 n-k-3 2 n-k-3 2n-k-2

Simplifying, we obtain

M A'
A " JBI M- At [, 8 [J AA]

At
T#AA B

where M(2n+l)x(2n+l) is a matrix whose elements are a function

of a, B does not contain a and

A' [ 9]- AA]
At

has the form
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C1  2J c23'

C23 c31 + C4jt c + c4JJý

C.) CI+ c Jj 1 c~i 4 J
3 4 X + ~jjt (2n+1) x(2n+1)

where cl, c 29 c39 and c 4 are constants independent of at. Thus,

the IxtxI reduces to

K, r (8--d)J'IWe2j

(s-Q)J c2 u I+qJJ1  -3.n I+qJJ'

2j _ 3_HR)IqJ (G4(s+ci )J (-a 4U) I+qJJ'

(2n+1) x(2n+1)

Use

* IDI IC B D71'Bv

to reduce JXIXI to:

K2  al+ bJJv cI dJJt

cl + dJJ' dl - Wit'

2nx 2n
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bAv$.g determinant:

K2 (ae-c )2-1 ((a+nb)(e+nf) - (c+nd) )

where

22 a 2a- a2+ m -E- .+ 21a -- + q
r r r

c 4 3 2+. A2+33 82 _ 8•

e -a +m f . .. -- - +q
r r r

which upon substitution and multiplying out reduces to

Ix'xI - K 2n (1+0)2n

where K is independent of a. i

Thus the determinant is reduced to a constant times the

result for a smallest composite design unsymmetric in the star

points; so we have proved that the generalized variance decreases

with Increasing a, and that the optimal star point distance when

the design is restricted to a hypercube having sides of length

one is 1/(n+l).
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lq6 Related Mathematical Results

1.6.1 Effects of linear trausformations

In the XNxp matrix if any column is multiplied by a constant

k then the determinant will be multiplied by k This is easily

seen as the modified X matrix can be written asX•xp Ppxp

where

Pm I 0 0I
0 k 0

0 o I

and

P'X'X ?l - IP'( Ix'x( I~l " k2 IX'Xl .

Multiplying a column in the design matrix XD by k causes the

following changes in the X matrix. The linear term Is multiplied

by k, the quadratic term is multiplied by k2 and (n-l) interaction

terms (for a full quadratic model) are multiplied by k; so this

multiplies the determinant by (n+2) A result due to Hartley

and Ruud [19691 is Theorem 1.6.1.

Theorem 1.6.1: If the n vectors Xt, are transformed to vectors

Zt by
tA
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Zt •t+

where Xt is a row vector in the design matrix XD or a row vector

in the X matrix with 6- 0, then

jxtxf- Iz'zl

Proof: Z can be written as

Z 3W XNxp A xp

where

A- 1
1 ,

0

so

IAI -1

thus

Iz'z - JA[' IX'XI IAI- Jx'xj
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By combining the above results we can see how the determinant is

changed by the usual linear transformations, For a particular

example if each element of the design matrix LD, for a quadratic

model, ig transformed by Z ij kxj + 6 then the determinant 9

becomes 4

2n(n+2) Ixx 4

1.6.2 The estimable terms in the model

Hartley [1959] discusses the terms in a model that can be

estimated using a composite design. We will extend his result

slightly using estimability considerations. We define estimability,

give a standard theorem on estimability, then extend Hartley's

result.

Definition: A linear function XIt is said to be linearly

estimable <-> 3 a vector aNxl such that E(a'y) A10.

Theorem 1.6.2: s estimable A' a'X.

Proof: -

A'O is estimable 4o 21 a a E(a'y) - A but

E(a'y) - aXO 1 A = aX.

a'X - A is a constant set of equations. Let a' be any

solution, then

E(a'y) atX. At
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(a) For a composite design symmetric in the star points

it is always possible to estimate the following

coefficients of a quadratic response surface:

The constant term, all linear coefficients,

all quadratic ccefficients, one of the

product coefficients (interactions) selected

from each of the alias sets.

(b) It is not possible to estimate more than one of the

product coefficients from each alias set.

This theorem is an extension of Hartley's result in two

ways;

(1) We allow main effects to be used in the defining contrast

in the (1/ 2 k)2 fracti.nai replicate, and

(2) We consider there to be 2 alias sets by allowing

the defining contrast to be counted as an alias set,

Hartley allowed 2 nk - 1 alias sets.

Two simple examples using this extension are:

(1) A two variable composite design having seven points.

2-1This design uses a 2 fractional factorial with alias

structure I - AB.
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(2) A three variable design having nine points with a

232 fractional factorial with alias structure

I A - BC ABC. This design allows the estimation

of the constant term, three linear terms, three quadratic

terms, and two of the three interaction terms, the BC

interaction and either the AB or the AC interaction.

The experimenter must be careful when he is using highly

fractionated designs. From each alias set one interaction term

can be estimated, the choice of which interaction term to estimate

is that of the experimenter. This choice can change the interpreta-

tion of the experiment.

Proof of Theorem 1.6.3.

From the center point and 2n star points we can find a

vector such that E(a'y) - 8i for the constant term, n linear

terms, and n quadratic terms, 2n+l terms in all. From the 2n-k

fractional factorial we can find 2i-k estimable functions; the

Yates algorithm will give us the estimable functions we desire.

These functions will contain some combination of the following:

The constant term, main effects, two factor interactions,

higher order interactions (which are not used in a

quadratic model).

Since, if A 0 is estimable E A 8 is estimable, we can combine
i

the A's from the star with the A's from the fractional factorial

to estimate all terms in a model that picks only one interaction
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term from each of the 2'k estimable functions of the fractional

factorial. Note that 2n-k may be greater or less than (n)

the number of interactions so we may have a saturated design or

have many terms left over for estimating error. This completes

part (a) of the theorem.

After noting that the 2n+1 star and center points make no

contributions to the estimation of the interaction terms (for

these points the row vector of the design matrix X has at most

one non-zero element, thus for these rows all interaction elements

of the X matrix are zero), we can immediately see that it is

impossible to estimate more than one interaction term from each

of the alias sets. This completes the proof of the theorem.

For composite designs unsymmetric in the star points a very

similar theorems using the same method of proof is:

Theorem 1.6.4:

(a) For a composite design unsynmetric in the star points

it is always possible to estimate the following

coefficients o! a quadratic response surface:

All quadratic terms and one coefficient from

each of the 2nak alias sets.

(b) It is not possible to estimate more than one of the

product coefficients from each of the alias sets.
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A particular difference between composite designs symmetric

in the star points and those unsymmetric in the star points is

that an alias structure having !:3rds with three characters,

e.g., I - ABC, allows the estimation of all terms in a quadratic

response surface for the former design but not for the latter H

design. For the latter design note that if you use the

principle block of the I - ABC alias structure the N design

points in n dimensions project onto seven distinct points in

three dimensions. With this alias structure the experimenter

would commonly choose to estimate:

%a) The constant term, three linear terms, and three

quadratic terms, or

(b) The constant term, three linear terms, and three

interaction terms.

In case (b) you would be using the star poinus to estimate

linear terms and the factorial structure to estimate the constant

terms and the interaction terms.

In general such an alias structure would not be recommended,

rather alias structures which have at least five characters for

each word in the alias set, i.e., I = ABCDE, which allow the estima-

tion of all terms in a quadratic response surface would be used.
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1,6.3 Smallest fractional factorials - disproof of a conjecture

Using the alias structure I - ABC it is easy to construct

composite designs symmetric in the star points for estimating all

terms in a quadratic response surface, These designs use a 2 nk

fractional factorial with k < n/3. It has been conjectured that

k must be < n/3 for all n, if all terms in a quadratic response

surface are to be estimated. By enumeration of the possible alias

structures it can be seen that the conjecture is true for it < 10.

These are the designs which are commonly used in practice. The

conjecture is not true for all n, however. We disprove this

conjecture by listing two different alias structures for n = 11,

k = 4 that enable the estimation of all terms in a quadratic

response surface. The first design has one three character alias

word in the alias set, the second example has five or more

characters for all words In the alias set. The second example

can be found in Eox and Hunter [1961]. We have underlined

the words which we use ro generate the alias structure.

Example 1.

I - ABCDE a ABFGH - CDFGI -,ADErPHJK P CDEFGH x ABEFGI - ABCDHI -

EIII = BCFHIJK - BDEGIJK A•CGIJK - ACEGHJK - BDGILJK - BCEFJK -

ADFJK
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Example 2.

I = ABCGH = BCDEI - ACDFJ - ABCDEFGK - ADEGHI - BDFGHJ - ABEFIJ =

CEFGHIJ = DEFHK = AFGIK - BEGJ - BCFHIK - ACEHJK = CDGIJK =

ABDHIJK

1.6.4 Optimum design-optimum composite design comparison

Figure 1.6.1 compares the optimal six point design obtained

by Ruud [1969] with the optimal six point composite design. Both

designs are restricteu to a square with sides four units long.

Ruud's design for estimating a quadratic response surface has

175. x 105 as the value of the determinant of the X'X matrix while

the composite design has 20.7 x 105. The ratio of these two values

this 8.45. A better comparison, perhaps, is the 2 x p root of

this ratio which is a measure of the ratio of the average standard

deviation of a coefficient in the less efficient design to the

standard deviation of a coefficient in the more efficient design.

In this example with p - 6, (8.45)1/12 - 1.195. This increase in

standard deviation reflects the penality paid in less precise

estimates, for using the more easily obtained composite design

rather than the optimal design obtained by solving a non-linear,

non-convex program.

N-te that the optimum composite design requires only three

levels for each factor, while the Ruud design requires four levels

for each factor. In fact we can objerve that all optimum composite
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Figure 1. 1

Six Point Design Comparison

x2

EO IX'xI - 175. x 10i

S- xl

Ruud's Six Point Design

x2

fx'xj - 20.7, 10 5

0

Ox

Optimal Composite Design
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designs on a hypercube require only three levels for each factor.

This is extremely gratifying as in industrial experimentation

the implementation of a factor level is often costly. Economic

considerations might therefore indicate that an optimal composite

design should be used rather than a more precise optimal design

that requires more levels for each factor.

The use of an optimal composite design does not necessarily

incur any penality at all. For example a nine point optimal design

on a square is the same as a nine point composite design symmetric

in the star points. These are the same as Kennard and Stone's

[1969] and Box and Draper's [1971] optimal nine point design. All

2the above designs are 3 factorial designs having determinant

340 x 10w hen the sides of the square have length four.

A
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APPENDIX

Some useful results about Matrices and Determinants:

Theorem [1]

All A12 ' t
-L~ A

IA2 Al A1A2AI1

A21  A2 2  22n

when A2 2 is square and non-singular.

Proof: Theorem 1.50, Graybill 11961).

Theorem f21

(I+A3V- (I -A(I+BA) B)

Proof: Multiply out to verify.

Theorem [31

I1 + A•[ II + BAI

Proof: Coneider I B and use Theorem (1) twice to obtain

-A IX

J
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I B

-A I - IK IIJ+ BIAI - IIJI IIK + AIj-I

Theorem "4i

IaI +Wb 'lnxn (a +nb)

Proof:

aI + bJJ'Il 1a b +TJ'1

"- an i11 bJtJI by Theorem [3]

a
an~ + ab• "a-(a + nb)

Theorem [5]

[al + bJjil - [cI + dJJ']

where c = and d ..... ba a(a+nb) o

Proof: Multiply out.
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Theorem 6]

al + UPJ cI + dJj'

(ae-c 2)n- [(a+nb)(e+nf) -(c+nd) 2
icl + dJJ' eI + f 2nx'

Proof:

aI + Wit --I + dJJ'
a(a~nb) '[eI l l N ~teal~ + Wi fJJ' +[c +Oil

bi +JIc dJJ e + J

a a(a4-nb) J'c

ma n1(a+nb) I(e )I +{ - i a~~be

a~anb f~+a4. a a(a.4nb)J

- ani ~.if - nc

nd 2 (db 22~nbc+2ncd nbd
aa(a+nb) a+ a;;n +-ab)

2a- 2 2-

(a- ) (-a+nb) (c+ nc) + (cnd b


