
STANFORD ARTIFICAL INTELLIGENCE PROJECT 
MEMOAIM-167 

STAN-CS-72-282 

EFFICIENT COMPILATION OF LINEAR RECURSIVE PROGRAMS 

10 

^H 

BY 
.-,r 

^ 

ASHOK K. CHANDRA 

FrTlf 

'   AUG Zh 1972 

SUPPORTED BY 

ADVANCED RESEARCH PROJECTS AGENCY 

AR PA ORDER NO. 457 

IbliDtbLi U Lb lU 

APRIL 1972 
Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Department of Commercp 
Springfield VA 22151 

COMPUTER   SCIENCE  DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

' 

^1 



M 

Unclassified 
Spiurilv Classification 

DOCUMENT CONTROL DATA - R & D 
(5.-<-iirify classiticalion of litlo, body ol nbslracl and indexing nnnolelian must be entered when Ihe averall report Is classitlrd) 

i    ORIGIN* TING  Ac TIVITV fCorporafe omnor) ' '"" ——   —— '■—~~--~—  

Stanford University 
Computer Science Department 
Stanford,   California   01+305 

t     BE.POR T    TITLE 

2«.  REPORT   SECURITY    CLASSIFICATION 

Unclassified 
?.b.   G-ROUP 

EFFICIENT C0MPLIATI0N OF LINEAR RECURSIVE PROGRAMS 

4    DESCRIPTIVE N o T E S f Type of repofl and inc/usive dales; 

STAN-CS-72-282      technical 
5    AUTHORISI fF/rs( name, middle initial, last name) 

Ashok K.   Chandra 

6     REPOR T   DA TC 

April 1972 
«a.    CONTRACT   OR   GRANT   NO 

SD183 
b.   PROJEC T  NO. 

10     DISTRIBUTION   STATEMENT 

7a.   TOTAL  NO.  OF PAGES 

45 
7b.   NO.   OF   ^EFS 

11 
9a.  ORIGINATOR'S  REPORT NUMBERIS) 

STAN-CS-72-282 

9fc.  OTHER REPORT NOIS) (Any other numbers that may be ars/dned 
rriiS report) 

Reieaseable without limitation or dissemination. 

11.   SUPPLEMENTARY   NOTES 
12.   SPONSORING   MILITARY    ACTIVITY 

13.    ABSTRACT -—- 

We consider the class of linear recursive programs. A linear recursive program is a 
set of procedures where each procedure can make at most one recursive call. The 
conventional stack implementation of recursion requires time and space both proportionll 
to n , the depth of recursion. It is shown that in order to implement linear recursii n 
so as to execute in time n one doesn't need space proportional to n : ne  for 
arbitrarily small e will do.  It is also known that with constant space one can 
implement linear recursion in time n2 . We show that one can do much better: n1+e 
for arbitrarily small e . We also describe an algorithm that lines between these two 
it takes time n.log(n) and space log(n). 

It is shown that several problems are closely related to the linear recursion problem, 
for example, the problem of reversing an input tape given a finite automaton with several 
one-way heads. By casting all these problems into a canonical form, efficient 
solutions are obtained simultaneously for all 

DD FORM     I47O 
1   NOV   6S  I "T   /   «J 

S/N   0101-807-6801 

(PAGE   1) 
Unclassified 

Security Classification 



«curity CUMification 

KEY   WONp» j, 

DD rotm 
• Nov.. 1473   (BACK) 

(PAGE  2) 

LINK   C 

ROLE 

Security Claasiflcation 



■v.        1 

STANFORD  ARTIFICIAL  INTELLIGENCE  PROJECT JUNE  l^Tfc 
MEMO AIM-16? 

COMPUTER SCIENCE DEPARTMENT 
REPORT CS-282 

EFFICIENT COMPILATION OF LINEAR RECURSIVE PROGRAMS 

by 

Ashok K.  Chandra 

ABSTRACT:     We  consider  the class of  linear  recursive programs.     A 
linear  recursive  program  is  a  set  of procedures where each 
procedure can make at most  one  recursive call.     The 
conventional  stack  implementation of recursion requires 
time  and  space both  proportional  to n,   the depth of recursion. 
It   is  shown that  in order  to  implement   linear  recursion  so  as 
to  execute in time    n    one  doesn't  need  space proportional   to 
n:     n€     for arbitrarily  small    €    will do.     It  is  also known  that 
with constant  space one can  implement  linear recursion in  time 
n^ .     We  show that  one  can do much  better:     n-*-"^     for  arbitrarily 
small e.    We also describe  an  algorithm  that  lies between 
these  two:     it  takes  time    n.log(n)     and space     log(n). 

It   is  shown that  several  problems  are closely  related  to  the 
linear recursion problem,   for example,  the problem of 
reversing  an input  tape given  a  finite automaton with 
several  one-way heads.     By casting  all  these problems  into 
a canonical  form,  efficient   solutions are obtained  simultaneously 
for  all. 

This  research was  supported  by  the Advanced  Research  Projects Agency, 
Department  of Defense  (SD-I83),  U.S.A. 

The views  and  conclusions contained  in  this document  are  those  of the  author 
and  should  not  be  interpreted as  necessarily  representing  the official 
policies,  either expressed or  implied,   of  the Advanced Research  Projects 
Agency  or  the  U.S.   Government. 

Reproduced  in  the USA.     Available   from  the National Technical  Information 
Service,  Springfield,  Virginia 2P151. 

tt 



TABLE OF CONTENTS 

PAGE 

1. Introduction  1 

2. Translation of the Linear Recursion Problem to the 
Schema Problem  5 

2 .1    A Definition of the Schema Problem 3 

2.2 Reduction of the Linear Recursion Problem to the 
Schema Problem  5 

? .3 An Example  9 

;;.  Solutions for the Schema Problem Ij5 

3.1 Introduction 13 

3.2 Linear-time Algorithm 16 

3.3 Log(n) Algorithm 23 

3 .h    Constant -space Algorithm 2^ 

k .     Conclusions 30 

5 .  Appendix 1 33 

5 .1    The Automaton Problem 35 

5.2     The List  Problem.... 3'! 

6 .     Appendix II 3^ 

6.1 The Linear-time Algorithm. ...    36 

6.2 The Constant-space Algorithm 38 

»f 



» 

1.  Introduction 

We consider the following two problems. 

(1)  The linear recursion problem 

A linear recursive program is a set of ALGOL-like procedures 

each of which contains at most one procedure call. All parameters are passed 

by value. There is one specified procedure that is evaluated with certain 

given inputs.  The problem is to compile a given linear recursive program into 

an efficient program without recursion. The reader may wonder at this point 

what is wrong with the conventional stack implementation of recursion since 

that represents about as fast as one can hope to go. The problem is that it 

takes a great deal of space.  In this context efficiency refers to space 

efficiency.  On the other hand, most compiler writers are aware of an 

implementation that requires space for just one or two values but takes a 

great üv.al  of time - proportional to the square of the recursion depth.  On 

comparison with this algorithm efficiency refers to time efficiency. 

For a treatment of some problems related to the linear 

recursion problem see Chandra [1972]. 

('>)    The schema problem 

A schema is a program in which the base functions and predicates 

are left uninterpreted.  A schema along with a given interpretation 

characterizes a computation. The following recursive definition specifies 

a schema: 

Compute F(a) where 

F(y) - if p(y) then h(y) else g(y ,F(f (y))). 

This schema has been considered in some form or the other by 



»/ 

*    I 

several  authors e.g.,   Paterson and Hewitt  [1970] ,  Hewitt  [1970],  Garland     and 

T.uckham  [1971],  Strong  and Walker  [I972].     The  base   functions  f,g and h, 

the  individual constant  a,   and the predicate p are  not   interpreted.     In this 

schema  there  is  some  implicit  storage  allocation,   i.e.,   the value of y  is 

stored while    F(f(y))   is  computed,  and  the  two  are  then used to obtain 

g(y,F(f(y))).     The problem  is to translate   (or  compile)   this recursive 

schema  into  an efficient   flowchart  schema  that  does  its  storage allocation 

explicitly. 

We  solve  the  linear  recursion problem by  first converting  xt  to 

the  schema problem  and  then  solving  that.     In  some  sense  the  schema problem 

looks  like  a simplified version of the   linear  recursion problem where  there 

is  just  one procedure which consists of a  single  if-then-else statement. 

However,   the use  of a  schema as an intermediate  step  in  the  solution has   some 

other  bonuses  stemming  from the   fact  that  the base   functions  and predicates 

of  the  schema are uninterpreted.    Hence,  by specifying appropriate  inter- 

pretations  one   immediately obtains  solutions  for  several different  problems 

that  can be modelled  by  the  schema  (as  shown  in Appendix  l). 

Section 2  defines  the schema problem  and  the  linear recursion problem 

in somewhat  greater detail  and  shows how  the  latter  can be reduced  to  the 

former.     The  reader may   safely omit  this  section,   though  it may be desirable 

to read  subsections 2.1  and  the  first  part  of 2.2,  which  define  the  schema 

problem and  the  linear  recursion problem.     Section 3  presents  the main  results 

of this  paper.     Efficient  solutions  for the  schema problem are given,  and  space- 

time  tradeoffs  are  considered.     Section k  demonstrates  some practical  aspects 

of these  results.     In Appendix I  (Section 5)  we mention two other  problems  that 

can be  reduced  to the   schema problem.     Most  of the detailed algorithms  are  nut 

inserted  in the mainstream of the  paper  to  allow  for  ease  in reading.     These 

are given  in Appendix  II   (Section 6). 

,, 



I 

2 • Tjrans 1 ation of the Linear Recursion Problem to the Schema Problem 

;'■ • 1 A Definition of the Schema Problem 

A fiovvchait schema has a finite number of variables. We use the 

symbols y|.y?,y ,... to represent variables.  The schema we consider has a 

. zero-ai    action a ('i.e., an individual constant), a unary predicate p, 

^ary functions fand h and the binary function g.  Statements in the schema 

are ot uiu following types: 

I Start statement: START 

Halt statement: HAI,T(y) 

Assignment statement:       y - a 

yi -g^j-yk) 

^ Predicate  test: if p(y)   then goto L    else Roto L0 

where  L^^  and L    are  arbitrary labels.     Any  statement may be  labelled,   and 

unconditional goto  statements  are  allowed.    While  the  schema is called  a 

I "flowchart  schema"  for  the reason that  it  can be represented as a  flowchart, 

we use  the more  compact  and  convenient ALGOL-like notation.    We also  allow the 

use of block  structures  and   "while-statements" with  the understanding  that 

I these  features may be  translated by using goto  statements  to get  a  "legal" 

schema. 

A flowchart   schema with arrays has  the   following additional   features: 

| ^^p'C7 » • ■ • counters  that  can have nonnegative 
integer values 

A-^A^A.,... one-dimensional,   semi-infinite  arrays 
that may be  subscripted with counters. 

j For convenience we will   frequently use  identifiers  other  than those  given 



above for counters, variables and arrays.  For this reason the artifice of 

declarations can be used to clarify the meaning of identifiers, where 

necessary. The type data  is used to identify variables,  counter  for 

counters, and array for arrays. The following operations on counters and 

arrays are allowed: 

Counter operations:        c •- c + 1 

c *- c - 1 

c . <- c . 
1  J 

if_ c = 0 then goto L..   else goto L 

Array operations: y <- A[c] 

A[c]  - y 

The execution of each  statement  is  assumed  to  take  a unit  amount  of 

time.    The  space  required  is  the number of variables,  counters  and the 

number of array  locations   from  zero to  the maximum ever  referenced. 

We may consider  the use  of additional  statements  that may be assumed 

to  take unit  amounts  of time  each.     An example  is  the  test  of equality 

between two variables.     This  case  is briefly considered  by Chandra and Manna 

[197'-]-    Other examples  include  the comparison of  the values of two counters, 

halving and  doubling the values of counters, multiplying  two counters  etc. 

While  the.ie operations  are  certainly useful,   their direct  application  in the 

algorithr.s  to be described  results only  in a  factor  in time efficiency 

(though equality tests can also detect  looping). 

The given recursive  schema  is 

Compute  F(a) where 

F(y) - il P(y)   then h(y)   else  g(y,F(f(y))). 

The  problem  is  to  translate  this   into an efficient  equivalent   flowchart 



1 

Schema (with and without arrays). 

For any interpretation, if the ; s  an integer n such that: 

P(fn(a))    is true, 

and     Vk < n        p(f (a))    is false, 

then the term to be computed is 

g(a.g(f(a),g(f(f(a)), .. . g^Ca) ,h(fn(a)) ) ... ))). 

If, for any interpretation, no such  n exists then the schema diverges for 

that interpretation.  The time and space bounds will be considered in terms 

of n. 

i' .2    Reduction of the linear recursion problem to the schema problem 

A linear recursive program is a set of ALGOL-like procedures 

having the following features: 

(a) There are no global variables. This imposes no constraints 

because we allow procedures to return a vector of arguments. 

(b) Each procedure is loop-free.  Loops can be eliminated by 

using recursive calls instead (McCarthy [I962]). However, 

standard techniques exist for implementing iteration; and 

we do not wish to complicate matters by considering this 

case as well. 

(c) Each procedure can call at most one other procedure. This 

is the crucial reason why the program is called "linear". 

Now, given a linear recursive program we will first "erase" the 

definitions of the base functions and predicates to get a linear recursive 

schema. The reason for this is that we are not interested in the detailed 

implementation of the basic operations like addition, multiplication, cons 

(in LISP), test for zero, etc. 

» 

tmmfitimmmmmlmtt* 



A linear recursive schema is a set of non-looping procedures. 

The first statement of each procedure is the start statement.  Subsequent 

statements may be assignment, test, or return statements.  As mentioned 

earlier, we will use ALGOL-like notation to represent the flow of control. 

The variables used in the procedure body may be formal parameters (called 

by value) or local variables.  No global variables are allowed.  The "type" 

of a variable may be data or boolean . Data variables may take values 

from some domain Dl (to be specified with the interpretation) , whereas 

boolean variables take values from the domain B = [true .false) .  Further, 

procedures may return a vector of values. This is important because side 

effects are not allowed.  The sme  effect could be achieved (very inefficiently) 

by calling several procedures in sequence each of which returns a single value; 

but even this mechanism is not available to us since linear recursive schemas 

can have at most one procedure call in every path from the start statement 

to a return statement.  It is assumed that the given linear recursive schema 

S1 has no illegal reference, i.e., no variable is referenced unless it has 

been assigned a value. This assumption is not strictly required for we 

can augment the domains D1 and B by adding one "undefined element" to each. 

This represents only minor modifications of the discussion below. 

The given linear recursive schema S- is to be reduced to the 

standard form 

S:  Compute F(a) where 

F(y) - if p(y) then h(y) else g (y ^(f (y))) . 

The reduction to the standard form is effected in two steps: 

1.  If the given recursive schema S has d distinct procedure 

definitions, combine them into one procedure by adding  log (d)  boolean 

- 

• 

.. 



variables which are tested at  the  start of the new procedure.    Also,  the 

vector of arguments and the vector of values returned are padded with arbitrary 

constants  so that they both have the  same type,  say    D1
s x Bt;   i.e.,  the 

vector may be represented as ^ ,y2 ,. . .ys .z^ ,.. .zt>    where all the y's 

are  of  type data and all  the  z's  are of type boolean.     The  single procedure 

obtained  in this manner will  be called F   ,  and the schema  (the procedure F 
^ 2 

along with the initial values) will be called S . 

2. Now, given the schema S and the interpretation I, for its 
d 1 

functions and predicates (over the domain D^ it is our objective to produce 

an interpretation I (over some domain D) for the constant a,  the functions 

f,g,h and the predicate p such that the schema in standard form effectively 

computes the same value as S0.  It is a requirement that the time taken to 

compute the new base functions a,f5g,h and the predicate p be dependent 

only on the schema Sp and not on the number of recursive calls required for 

its computation under ^ (with the usual assumption that the base functions 

and predicates in ^ take unit time to compute).  If this requirement is 

satisfied then the assumption (in the schema problem) that each basic 

statement takes a unit (or bounded) amount of time, is justified. 

S    t 
The domain D is Dj^ x B, i.e., each element in the new domain 

is a vector of data and boolean values. 

The zero-ary function a is defined to be that element of D 

which is the vector corresponding to the arguments initially supplied to 

the procedure F in the schema S0 . 

The predicate p  is defined as follows:  for any vector 

| V £ D, v = <y1 y^z^...,^, if  F2(y1,...,ys,z1,...,2t)  executes 

a recursive call then p(v) is false, else p(v) is true. 

7 



The function h is defined as follows:  for any vector 

v e D, v = <y■■,•.• »Zx. >j if p(v) is false then h(v)  is arbitrary, but if 

p(v) is true (i.e., there is no recursive call) then h(v) is the vector 

returned on execution of F (y.. ,. .. ,z ) . 

The function  f is defined as follows:  for any vector 

v e D, v = <y , . . . ,z >, if p(v) is true then f(v)  is arbitrary, else it 

is the vector argument of the recursive call to •V . 

The function g is defined as follows:  for ary v.. ,v £ D, 

v, = <y1,...,z >, if pCO is true then g(v1 ,Vp)  is arbitrary, else it 

is the value that would be returned by F (y..,...,z ) if v0 were substituted 

for the value of the one recursive call executed. 

For somewhat greater detail the reader is urged to examine the 

example presented below. 

The interesting thing about the translation presented above is 

that it is reversible.  Given I and the schema S,  or a schema equivalent 

to it, one can substitute the values of the constant a, the functions f,g,h 

and the predicate p to obtain a schema equivalent to the original schema 

S1.  In this manner, once we have an efficient, non-recursive flowchart 

program equivalent to S, on substitution we obtain an efficient program 

equivalent to S1 . 

It should be noted, however, that the word "efficient" as used 

above denotes only the order of space-time dependence ou n -the number of 

recursive calls.  Blind substitution for the constant a, the functions l,g,h 

and the predicate p would result in some redundant computations, for examp.e, 

in a computation of f(v) immediately following p(v)  (see the example 

below). A practical compiler based on this method would find it relatively 

simple, however, to avoid this duplicated effort. 

8 



'•■ 

2 «3    An Example 

The given linear recursive  schema S..   has  the  following base  functions: 

a1       a zero-ary function   (an individual constant), 

f1       a binary function, 

f0       a ternary  function,  and 

Pj,p0       unary predicates. 

The  schema S     is: 

Sj^: Compute y1 where <y1.y2> - Fih(ai)> 

F1a(yl.y0)  *-    START      data y   ;   boolean z   ; 

yi^ h^v^'' 

then begin <y7/z1> ~  Flb(y2); 

if z 

then RETURN(y) 

else RETURNCf^y^y^)); 

end 

else if P2(y2) 

then RETURN(y0) 

else begin y^ - Fla(y1Jy2); 

RETURN(y ); 
end   .      ^ 

F-.u(yi) •-    START  data y. . boolean z • l^s^^/   ■'2'    1' 

if P2 (yj 
then begin <y?)z1> - ^bCy^ 5 

RETURN(y0)true); 

end 

else begin y? - ^3^1^].); 

RETURN(y0,false); 

end 



Step  1:  a boolean variable z,^  is added,  z = true signifies a call 

to F1 , zn  =  false signifies a call to F,. .  The boolean variable z  (below) 
13, ID X 

plays the role of z, in the above definitions of F,  and Fni .  A 
1 la     lb 

"redundant" data variable y, is added to match the padded data element in 

the vector returned. Both the argument vector and the return vector have 

type D1 x D1 x B. The resulting schema S  is: 

S2:  Compute y1 where <y1 ,y2 .z^ - F2 ^ ^ , false) : 

1'" , (YI >y., J
5
'-')) *-    START  data yv, .y, ; boolean z ; 

(1)         then begin y1 - ^(yj^.y^); 

(2)  then begin <y,y]+,z^ »-F2(y2,a1,false); 

if z 

(3) - - - then RETURN(y.,a ,true) 

else RETURN(f0(y y0 ,y ) ,a ,true) ; 

end 

else if py(y0) 

then RETURN(y0,a1,true) 

CO - - - else begin <v .y, .z^ - F, (^ .y, ,true) ; 

IETURN(y ,a ,true); 

end; 

(5)  end 

(6) - - -        else begin if p0(y1) 

then begin <y2,y^,zp - F2(y1,a1,false); 

(j)   _ . _ RETURN(y0,a ,true); 

end 

10 



w 

else  begin <y2,y^,z1>    ^    F^Xi »Y^true) i 

RETURN (y2,a1,f a l»e); 

end 

(8) end. 

Lines (l) - (5) effectively define F. , and lines (6) - (8) define 

Flb'  Line ^   invokes a call to F  .  Since F  takes only one argument, 

the value a, is padded.  Line (k)   is a call to F. .  F,  really returns 
j. x ' la   la 

just one value. So return statements such as in line (3) are padded with 

two elements:  a., and true. F... returns 2 values, so only one value needs 

to be padded when F^. returns: e.g. a in line (7) is the padded element. 

Step 2:  the standard schema is : 

S:  Compute F(a) where 

F(y) - if P(y) then h(y) else g(y,F(f(y))). 

The required interprecation I for S follows. The definitions of p,h and g 

below can be simplified. We choose not to do so for the sake of clarity. 

D = D x D x B 

a = <a1 ,a ,false> 

p(<y1.y2.z2>) = if 32 

then if p1(f1(y1>y2)) 

then false 

else if P2(y2) 

then true 

else false 

else if P2(yl) 

then false 

else false 

11 



h{<yvy2,z2>)  = if 22 

then if P1(f1(y1,y2)) 

then arbitrary 

else if P2(y2) 

then <y ,a1,true> 

else arbitrary 

else if P2(y1) 

then arbitrary 

else arbitrary 

i(<yl,y?,z2>) = if z2 

then if P1(f1(y1.y2)) 

then <y ,a ,false> 

else if P2(y2) 

then arbitrary 

else <f1(y1,y2),y2,true> 

else if P0(y1) 

then <y .a ,false> 

else <y ,y ,true> 

g^yj.yp.Zj-^' <w1,w2,x1>) = 

if Z2 

then if P1(f1(y1,y2)) 

then if x1 

then <w1,a ,true> 

else <f2(f1(y1,y2),y2,w1),a1,true) 

else if P2(y2) 

then arbitrary 

else <w1,a ,true> 

12 

. 

.. 



;»V»PI-I 

else xf ?2(yl) 

then <w ,a , true> 

else <M.,a.,false>. 

12.1 



3• Solutions for the Schema Problem 

5.1 Introduction 

in the previous sections it was shown that the linear recursion 

problem can be reduced to the schema problem. Appendix I presents two 

other problems that can be converted to the schema problem.  Algorithms 

for this problem are now described, and the other problems can be solved 

by substituting the appropriate interpretations for the functions and 

the predicate of the schema. 

The schema is: 

Computer F(a) where 

F(y) -  Ü P(y) then h(y) else g(y,F(f(y))). 

Let n be the depth of recursion i.e.,  n is the smallest integer 

for which  p(f (a)) is true. Then the computation may be represented by 

the following: 

Define t(n) to be h(fn(a)). 

Vi<n define t(i) to be g(f^(a),t(i+l)). 

Then the desired output is t(0)  - assuming, of course, that  n exists, 

for if n does not exist then the schema loops forever.  Essentially this 

rule is used in all algorithms below. They differ only in the way they 

compute  f (a). 

The standard implementation uses a stack: 

START 

counter c; array A; 

c - 0; 

x •- a; 

13 



(1) 

(?) 

(5)  - 

GO 

while -i p(x)   do 

begin 

A[c]  - x; 

x - f(x) ; 

c »- c + 1; 

end; 

Y - h(x); 

while c  ^ 0 do 

begin 

c «- c - 1; 

y - g(A[c],y); 

end; 

HALT(y). 

L 

- 

. 

, 

The array A acts as push-down stack.  The first loop (lines (l) - (2)) 

implements recursive calls, and the second loop (lines (3) - (1+)) pops the 

.stack "-o compute the final value. 

This implementation takes time and space both proportional to 

n - the number of recursive calls. 

Jt is also well known that the recursion can be implemented using 

o 
only a constant amount of memory and time proportional to n (see for 

example Garland and Luckham [I97I]).  One program that avoids even the use 

of counters is presented below.  In this program the variables w, and w0 

cfrectively play the role of counters.  Counters are implemented by letting 

the term  f (a)  (i < 'i)  represent the value n - i.  A counter, e.g., w , 

can be set to its maximum value n by an assignment statement w1 «- a, the 

lit 

 . , „.   



counter can be decremented by v^ - f(v^) , and it can be tested for zero by 

START 

x - a; 

while -, p(x) do x <- f (x) ; 

y - h(x); 

wl  - a; 

while -, p(w1) do 

begin 

w1 - ffw^; 

x ►- a; 

w2 -w^ 

while -i p(w ) do 

begin 

x - f(x); 

w2 *- f(w2)' 

end; 

y - g(x,y); 

end; 

HALT(y). 

It is shown in this paper that with a constant amount of memory 

the time can be brought down to nl4€  for any arbitrarily small positive £. 

This answers in the negative, a conjecture due to Hewitt [I970] that n2  is 

the best one can hope to do.  Further, to solve the problem in time proportional 

to n one does not need space proportional to n as in the stack implementation, 

just n .  It is also satisfying that there exists an algorithm whose 

15 



space-time tradeoff falls ''midway" between these two algorithms;  it takes 

space proportional to  log(n) and time proportional to n.log(n). 
-.. 

Time 

n log n 

1+e 

Space 

stack implementation 

n      linear-time algorithm (sec. 3.2) 

log n  log(n) algorithm     (sec. 3.3) 

constant-space 
algorithm (sec. 3.4) 

conventional constant space 
program  

,.. 

>. 

.. 

3.2 Linear-time algorithm 

The main problem encountered in flowcharting the given recursive 

schema is that of inverting the function f i.e., given a value  f  (a) , 

to find  f (a).  This cannot be done directly because the function f is 

not invertible.  The stack implementation solves this problem by storing all 

the values 

a, f(a)) r (a), ..., fn(a), 

and picking them off in reverse order. The constant-space algorithm above, 

on the other hand, doesn't really save any values as such, but rather computes 

a> f(a), f (a),...,f  (a),f (a).  A control mechanism is used to keep the 

count. 

Between these two extremes of saving all values, and saving none, 

there exist schemes for saving an intermediate number of carefully spaced 

,. 

. 

16 



values. We first informally describe an algorithm that is linear in n 

lA3 

but requires space proportional to n '-  (order-2  algorithm). We then 

present a generalization of this algorithm which takes space n '  (order-lf 

algorithm). Details are given in sec. 6.1 of Appendix II. 

Order-2 algorithm 

We use the notation v(i) to stand for the term f1(a). Thus v(o) 

stands for the constant a itself. 

Let  n be a perfect square and let m denote /nT la the 

initialization phase the following values are calculated and saved: 

v(0), v(m), v(2m),...,v((m-2)*m), 

v((m-l)*in), v((m-l)%i+l),...,v((m-l)*m-Kn-l). 

Now the first m values (right to left) can be picked off and used in the 

computation of the final output. Each step takes a constant amount of time. 

The following values are left: 

v(0), v(m), v(2m),.,.,v((m-2)%i). 

A redistribution can now be performed to compute and save the values 

v((m-2)*m+l), v((m-2)*m+2),..., v( (m-2) *m-hn~l) , 

Another set of m values can now be picked off before a second distribution 

is required; and so on. 

The following are the contributions to the computation time: 

1. The first initialization phase - takes time proportional to n. 

2. Picking off values - n steps, taking constant time each - 

total proportional to n. 

5-  Redistribution - /n~ steps, each taking time proportional 

to /n - total proportional to n. 

Thus the overall algorithm is linear, and takes space 2^ /a~ .    We 

17 

""■li'l!"" — --     --n» <l^il»liritoltf— 



call the above an order-2 linear-time algorithm.  It can be generalized 

to an order-k linear-time algorithm as follows. 

Order-k algorithm 

Let n > 0 be a power of k, and let m denote n1//k. 

(l) The initialization phase:  compute and save the values 

v(0). vCn-Cra-l).^'1). vOWir^).^-1),...^^-1), 

v(n-rn.mk"2) , v(n-(m-l).mk"2) , ..., vfn^"2) , 

v(n-m), v(n-Cm-l)), ..., v(n~2), v(n-l), 

Set counters ^ - cp - ... - c ^ m-i. 

Set y - h(v(n)). 

(.?) The main computation phase;  "pick off" the last m values, i.e., 

for m steps do y - g(x,y), where x takes on the saved values 

from right to left. 

(,;') Redistribution phase: 

(■3.1)  Level 1 redistribution: 

If c = 0 then goto step J;.2. 

Redistribute m-1 new values by steps of 1 using the latest 

saved value. 

c1 .c1 -1. 

Goto step 2. 

(3.?) Level 2 redistribution: 

If c = 0 then goto step 3.3. 

Redistribute m-1 new values by steps of m    using the 

latest saved value. 

c2 - c2-l. 

c,«- m. 

Goto step 3.I.    ig 



(JO) Level 3 redistribution: 

If c = 0 then goto step 3.I+. 

Redistribute m-l new values by steps of m using the latest 

saved value, 

c3 . c5 - 1 

c2 *- m. 

Goto step 3.2, 

(3.k-l)  Level k-1 redistribution 

If ci(_i
= 0 then goto step k. 

GO 

k-2 Redistribute m-l new values by steps of m   using the latest 

saved value. 

Vi-Vi "1- 
Ck-2 *-m' 

Goto step 3.k-2. 

HALT(y) 

v(o) ... v(n) 

t t 
__„.! 

tm 
h n(k-2)/k 

,(k-l)/k U 

Figure  1 

19 



Figure 1 shows the values saved on the initialization phase. 

Figure .'1 shows the computations in somewhat greater detail for the order-1, 

the order-;1, and the order-i+ algorithms with n = 16.  In Figure 2, adjacent 

squares represent values a,f(a),...,f  (a).  Squares marked X represent 

values that have already been used in building up the final output. Up-arrows f 

denote values that are saved at that stage of the algorithm.  Note that 

the order-1 algorithm is precisely the conventional stack implementation of 

recursion. 

0  1 ?.    -j   h 16 

D-il I I I I I I I I I I I I kJ 
tttftttttttttttt AH  values  are  saved 

Ordcr-l   linear-time  algorithm 

Figure J'a 

V. 

. 

|    j i                            1   |x 
t t t                         t      t      T      t 

i XXX     X Xj 

r T t     T     T     t 

i xxxxjxxxxx 
t t      r t T 

| 1,    x ix. X X X    X    XjXJXX    X'XX 
1 i 1       1 i  

t     T     f     T 

Order-2   linear-time  algorithm 

Figure 2b 

After first redistribution 

After second redistribution 

After last redistribution 

 ' 

1 1 1 X 

t   t  t     Initialization 

X i X 

t    t After  first   level-1  i.ed.-st 

20 

. 



■ 

X X x X 
■   ' 

X 

c 

D 

t   t 

iA x 

X 

r      t   t t 

Order-I| linear-time algorithm 

Figure 2c 

Figure 2 

After first level-2 redist, 

After first level-_5 redist. 

After subsequent level-2 
and level-1 redistributions 

The discussion above is a simplified version ignoring the 

important case when n is not the k-th power of any integer. The 

total algorithm is described in Appendix II. The main differences from 

the simplified algorithm are: 

(1) the initialization phase is somewhat more complex, 

(2) level-k redistributions too are called for. 

Nevertheless, the space-time considerations below remain valid. 

Space requirements 

The maximum number of saved values in the simplified algorithm 

is  (k-l),n ' +1.  For the general algorithm the number of saved values is 

at most 

(k-1).     ,n1/k |   + 

r J 
A small  amount  of extra  storage  is  required   for counters   (proportional  to k) 

and  some variables   for manipulating values   (constant  number). 

Thus,   asymptotically,   the data-space  requirement  is  proportional 

to 1/k k. n '    . 

1 



Time requirements 

The main components contributing to the running time are the 

following; 

1. The initialization phase: proportional to n. 

2. The computation phase:  n steps, each taking constant 

time - total proportional to n. 

1-l/k 
3. Level 1 redistribution:  n  '  steps, each taking time 

1/k 
n '  - total proportional to n. 

k.    Level 2 redistribution:  n  '  steps, each taking time 

2/k 
n '  - total proportional to n. 

l/k 1-l/k 
k+1. Level k-1 redistribution:  n '  steps, each taking time n  ' 

total proportional to n. 

Thus the total running time is proportional to k.n. 

In summary 

There exist linear-time algorithms that take space significantly 

l/k 
less than the conventional stack algorithm - merely n '  where k is the 

order of the algorithm.  It is interesting to note that the constant of 

proportionality increases linearly with k. The running time too increases 

linearly with k.  It is for this reason (i.e. the constants of proportionality 

do not increase too rapidly with k) that high-order algorithms can be 

appealing in practice. 

^ 

r 



3 . J)    The  lofifn)   algorithm 

I Before we go on  to    describe a class  of constant-space 

algorithms we mention an algorithm  lying between the  linear-time  and 

the constant-space algorithms.     It can be approximately described  in terms 

I of  the  class of linear-time algorithms as  follows:     if    n    is  the depth of 

recursion and    p =  logg(n)    then execute the order-p linear-time algorithm. 

The idea behind  the method is the  following.    We  convert  the 

p given  linear recursive  program  into  a  "nonlinear" recursive program which 

is  then  implemented  by the usual  stack methoi.    T is  significant 

savings   in space at  the expense of extra ccmputat. .e algorithm is 

% given  below.     As  before we use  the  notation   v'i)   to    represtn.       ^(a)- 

Main program: 

(1) Compute n, v(n). 
f 

(2) Set  y - h(v(n)). 

(5)     Y - G(v(0),   n,  y). 

[h)     HALTry). 

Recursive procedure G(x,i,y): 

(local counter j), 

(1) If i = 0 then RETURN(y). 

(2) If i = 1 then RETURN(g(x,y)) . 

(jj) Set  j »- i/2       (integer division) . 

(M y - G(fj(x),  i-j,y). 

(5) y - G(x>  j,  y). 

(6) RETURN(y). 

The procedure    G    works  by dividing the given  "interval" into 

two parts,   and calling  itself recursively on the  second half,   and  then on 

23 



the first half of the interval. The algorithm takes space proportional to 

log(n) and time proportional to n.log(n). 

3-h    Constant-space algorithm 

We would like to implement constant-space algorithms using only 

a finite control, i.e. we do not wish to use arrays or counters.  It has been 

shown (sec. 3.1) however, that bounded counters in the range 0-n can be 

implemented without the use of an explicit counter. We will thus allow 

ourselves the liberty of using bounded counters. We have to be a little 

careful because incrementing a counter is no longer a unit operation, but 

makes time proportional to n.  Decrementing a counter and testing for zero, 

however, remain unit operations. 

As before, we will first informally describe the. order-? 

algorithm and then generalize to the higher order case, leaving the 

details for sec. 6.2 of Appendix II. 

Order-? algorithm 

Let n be a perfect square and let m denote /h .  In the 

initialization phase n.m are evaluated and two values are saved - v(o) 

and v(n-™).  The latter is now used as the base for computing v(n-l), 

v(n-:')...., v(n-m) in that order.  The advantage obta.iaed by using v(n-m) 

as the base as against v.O) is that the average computation time for each 

term is only /n instead of n.  Now after the m values ^ ^ ^^^ 

it is time to reset the base to v(n-?m).  This, of course, takes time n, 

but then these resets have to be done quite infrequently - /n  times.  The 

main contributors to the computation tune are (1) the initiali.ation which 

takCStime n'V::' W     the actual computation:  n steps taking n1^^^. 

tütal ^l'   and W     resets of the base value - n1^ steps averaging n _ 

total n^5.  Thus the total coniputation t.me   is .usc ^  ^^   ^^^ 

are saved. 

2^ 

d 

; 



■i 

Order-k algorithm 

Generaliz.lng this  to an order-k constant-space  algorithm 

let    n > 0    be a power of k,  and  let    m    denote    n1^. 

(1)     The  initialization phase: 

Xk-1 - v^0)' 

Xk-2  - V^"m       )' 

compute  and  save  the values 

»0  ^v(n-m). 

Set counters c-, .- Cp .- -^^ ^m-l, 

Set y -  h(v(n)). 

(2) The main computation phase: "pick off" the m values to the 

right of x0 (including x0 itself) using x0 as the base, 

and apply to y. 

(3) The reset phase: 

(.5.1)  Level 1 reset ; 

If Cj^ = then goto step 3.2. 

Reset x0 to a position m steps to the "left" using x  as 

the base. 

c1.c1-l. 

Goto step 2. 

(3-2)  Level 2 reset: 

If C2 = 0 then goto step 3.3. 

2 
Reset x to a position m" steps to the left using 

as the base. 

x. 

c2-c2 - 1, 

C  <- IT) 

Goto step 3.I, 

25 



(■i.k-l)  Level k-1 reset: 

If c, ,, = Ü then goto step k. 

k-1 
Reset x,   to a position m  " steps to the left using 

x. n as the base. 
k-1 

Ck-1 *" Ck-1 "1• 

Ck-2 ^^,• 

Goto step 3,k-2. 

(h)     HALT(y). 

Figure 3 demonstrates the order-1, order-2 and order-l+ algorithms 

lor n = 16.  Note that the order-1 algorithm is precisely the conventional 

n    constant space algorithm. 

0   1        3 ■'■ 16 

f Only one value  saved, 

Ofder-1  constant-space algoritlim 

Fig.     5a 

,. 

1 
t t After  initialization 

x   xjx   x   a 
T t After  first  reset 

| xl X X    X    X   X   X   X   X 
t T After  second  reset 

X    X    X xxxxxxixxx 
t 

t 

After  last  reset 

Order-2  constant-space algorithm 

Fig.     ;b 

- 



u T t                 r      t 

T t                 t 

t 

xx x |x   X 
t t 

t 

! 
—i  xxlxxxxxxx 
t                                      ~--—'   '   '   '—' 

T 

x   x   xx   x   xxx|x 
t                          t 

t 

t 

Initialization 

After  first   level-1  reset 

After  first   level-2  reset 

After  first   level-3 reset 

After subsequent   level-2   and 
level-1 resets 

Order-i|  constant-space algorithm 

Fig.    3c 

Figure 5 

The above description deals with the simplified case where n 

is a k-th power.  The general case is given in Section 6.2 of Appendix II, 

and differs from the above only in technicalities. 

Space requirements 

The algorithm saves k values.  Strictly, v(o)  does not have 

to be saved as it is simply the constant  a.  In addition, there are a fixed 

number of bounded counters and additional variables for manipulation of 

values.  Thus the data-space is constant (with respect to n) , and 

proportional to k.  The size of the program (the number of states of the 

automaton for the automaton problem - see Section 5-1) grows linearly with  k, 

Time requirements 

The running time can be divided into 

27 

, -■■-■-' :■'■■■ 



1. The initialization phase:  proportional to n  ' 

,. „ ,    1+1/k total n      ' 

1/k 2.     The  computatioa phase:     n    steps  averaging    n '     each  - 

,      ,        T   -, 1-1/k . 2/k        u ,     l+l/k 3.     Level   1  resets:     n      '      averaging  n /     each  - total n      '    . 

k.    Level 2  resets:     n      '      averaging n^'     each  - total n      '    . 

k+1.    Level k-1 resets:    n '     averaging time n-total n1+1/k. 

Thus  the  total  running time grows  as     n       '     and the constant 

of proportionality  is   linear with k. 

In summary 

Given  a  fixed  amount of space one can do  significantly better 

than    n'  ;   in  fact   the  running  time can be made    n      '      for arbitrarily 

large k.     Storage  space  grows  linearly with k,   as  does  the complexity  (size) 

of the program  (or  finite  state automaton). 

Constant   space algorithms  can be quite  attractive because  all 

values used  in the  computation  could be  stored  in  the registers of a 

computer,   and  in any case  the addressing  is  easier  than the  log(n)   and  the 

linear-time  algorithms. 

It  is   fascinating  to note  that  if we  let     p    represent     logp(n) 

then the  effect  of   the  order-p  linear-time,   the order-p constant-space,  and 

Mie  log(n)   algorithms   is   (approximately)   the  same with  regard to  the running 

time and  storage  requirements. 

The relationships between  the  algorithms  described above  is 

shown in Figure h . 

28 



Space 

Stack 
algorithm 

linear time 
algorithms 

constart   spac^ 
algoritu.,,) 

-O conventional 
constant-space 
algorithm  

Time 

Algorithm time/n space 

Linear-time order-k k k.n1^ 

Log(n) log(n) log(n) 

Constant-space order-k k.nVk k 

Figure h 

29 



k.    Conclusions 

Solving a problem by first converting it into a problem-schema is an 

interesting concept that merits a greac deal more study. The advantage 

gained is that the solution of the schema can be used to solve several seemingly 

unrelated problems.  An associated advantage is that conversion to a schema 

usually helps to formalize the problem too. An example of this is the 

delineation of the kind of statements allowed in a schema.  Because of this, 

however, some care has to be exercised when optimal solutions are required 

because in this case conversion to a schema requires more stringent conditions: 

for each construct in the schema there should exist a corresponding base 

problem construct, and vice versa.  Also, simple changes in the ground rules 

ot the base problem can significantly alter the corresponding schema problem. 

It was not our objective in this paper to give optimal solutions, just 

to give good solutions and observe the space-time tradeoffs one can expect. 

It nay have been obvious to the reader that the constant-space algorithms, 

for example, are not optimal. The number of base operations required (other 

than the control mechanism) for the order-k constant-space algorithm is 

1+1/k 

whereas 

k.' 1/k 1+1/k 

1+1/k 

is feasible with the same space, representing a 6^ improvement for the 

order-2 algorithm,  9^ for order-3 and 18^ for order-10; and even in the 

limit our simple algorithm does not become arbitrarily bad compared with 

the other.  The price paid for the improvement is the somewhat greater 

complexity of the control, structure, and an increased number of counter 

30 



operations  (which were neglected) . 

It  is reasonable  to ask whether the algorithms described can have any 

real  practical  significance.     Exact machine times  for  the algorithms  are 

difficult  to evaluate owing  to machine dependent questions  like register 

allocation,   indirect  addressing machinery,  cache  allocation,  parallelism and 

swapping  (in a time  shared  system).    We can approximate  times,  however, by 

using  reasonable assumptions.     In  the program we assume  that  each of the base 

routines   (the  functions   f,g  and h,   and  the predicate p)  takes hO micro- 

seconds  to evaluate  and that operations on counters entail negligible cost. 

Storing  a value   (all  data variables)   is assumed  to  take k machine words, 

and 6hK words of    ore  are  available  to  the user.    The  following table gives 

the running times  for the various  algorithms  for recursion depths of 16K, 

6kK, 256K,  anc'  IM. 

Linear  -  time Const-space 
n k=l k=? k=6 Log(n) k=6 k=2 k-1 

16K 1.97   sec 3.27   sec 5,71   sec 6.^5  sec 10.^   sec hh.2  sec 89.5 min 

&4K impos . 1J). 1  sec 22.8  sec 28.8 sec i+7.5   sec 5-75 min 59.7  hr 

256K impos . 52.1+   sec 86.5   sec 126     sec 3.67 min 1+5 «1+ min 20 days 

IM impos. 3.1+9 "in 6.51 min 9.09 min 21.3 min 15 hr 1 year 

It  is clearly  indicated  that   for  large recursion depths  the  stack 

implementation is not  attractive;     and  for very  large  recursion depths even 

the  order-2  linear-time  algorithm would  approach  the memory capacities if 

implemented on present  day minicomputers   (8K words required   for  IM recursion 

depth).     And  finally  it   should be  pointed out  that  even  for  relatively small 

51 

ii'iliriliiifViMiigiTi 



■ 

recursion depths higher-order linear-t:L.ie (and even some constant-space) 

algorithms may be preferred as background jobs in a time sharing system 

because they need not be swapped out as their core requirements are quite 

nominal. 

In the preceding discussion the model of computation assumes that the 

size of the data structure remains bounded as computation proceeds. Often, 

it is more reasonable to assume that the size of the data increases with 

the depth of recursion, as does the time for a unit operation on the data. 

The algorithms presented in this paper retain their significance under these 

conditions, and if anything, become more useful vis a vis the stack algorithm 

because space restrictions become more severe.  For example, if both time 

for a unit operation and the size of the data structure increase linearly 

with the depth of recursion, the stack implementation would take space and 

time n      whereas the so called "linear-time" algorithm would take space 

,      1+1/k j     . ,     2 ,     ,      „ 
k.n and  time    k.n   ,  and   the    constant-space     algorithm would take 

2+1/k space    k.n    and  time    k.n      '    . 

I   i 

52 



5 •     Appendix I 

';. 1    The automaton problem 

What  is  the time required  for a finite automaton, WJ^W 
in 

arbitrary number of reading heads, to output the symbols on its input 

tape from right to left? The heads can only read from left to right, but 

the automaton has the capability of taking some reading head and setting 

it to the same position on the input tape as some other head (note that an 

automaton without this capability cannot even perform the given task for 

arbitrarily long input tapes). 

To reduce the automaton problem to the schema problem the 

following correspondence between the finite state automaton and the schema 

may be net  up: 

Finite state automaton 

Head i 

Move read  i  to  the  right 

Set head  i  to the  same  position 
as head  j 

Test  if head  i  is on the  last 
character of the  tape 

The output   file 

Output  the   first  character  from 
head i 

Add  to the  output   file   from 
head  i 

Schema 

variable y. 

Yi - f(yi) 

p(yi) 

a special variable y 

y - My.) 

y - g(yi.y) 

On comparison with the recursive schema 

Compute F(a) where 
F(x) - lf.p(x) then h(x) else g(x,F(f(x))) 

I 33 



we see that if x represents a square on the input tape then F(x) 

represents the value of the output file with all characters on the right u 

of x  (and including it) written in reverse order. This is obtained by 

first writing all characters on the right of x, i.e. F(f(x)), and then 

appending x to it, i.e. g(x,F(f(x))) . 

Thus the automaton problem is reduced to the schema problem 

(without arrays), but with the constraint that the functions h and g 

can be used only in conjunction with the special variable y as in the (*.' 

statements described, and that the statement y *- h(y.) cannot be 

executed more than once. 

The reduction is one-way i.e. a solution of the schema problem 

(with the constraints) gives a solution of the automaton problem.  Of 

course, the automaton may do fancy things e.g., it may check if its 

entire tape contains just one character, repeated over and over again, and 

in this special case it could produce its output in time 2n. However, the 

flowchart schema cannot do this as equality tests are not allowed. 

It may be argued that the variable y requires not just a 

unit amount of space but space proportional to n. However, since the 

finite state automaton is not expected to remember the contents of its 

output file we may consider that y takes zero space-. Hence the 

assumption that all variables take unit space gives a value for memory 

requirement one greater than the number of heads required by the automaton. 

S.2 The list problem 

Given a one way list, to output the elements of the list in 

reverse order. We are not allowed to change the pointers of the list 

itself as in the case where the list structure is common to several 

3h 



, 

concurrent processes; and we ask what are the time-memory tradeoffs. 

0 >    0  5> 0  >  0  ...  >  0 

This problem is a generalization of the automaton problem because our 

random-access computer has several features not available to the finite 

automaton; the number of pointers into the list structure can vary with the 

size of the given list, two pointers can be tested to see if they happen 

to point to the same node, etc.  In the special case where we restrict 

our computer to have the capability of a finite automaton we obtain the 

automaton problem. 

The reduction of the list problem to the schema problem is 

analogous to the reduction of the automaton problem, except that in this 

case counters and arrays are allowed. Arrays can be used to hold pointers 

into the list.  Pointers are analogous to the heads of the automaton. However, 

as the arrays are semi-infinite, the number of pointers can increase with 

the size of the list structure.  As in Section 5,1, there is a special 

variable y representing the output cile and the only operations allowed 

on  y are y - h(yi), and y -  gfa^.y). 

35 

■ 



winMwumui 

6.     Appendix II 

6.1    The Linear-Time Algorithm 

START 

counter    i,m,n,c0,...,ck,d  ,...,dk; 

data x,y; 

arrav    A0«---.\5 

STEP1:     if p(a)  then HALT(h(a)); 

n ♦- 0;  x •- a; 

(1)   --- while -np(a) do begin x ♦- f(x);  n ♦- n + 1 end; 

Y - h(x); 

[P.)   --- m - n '    ; 

O 1 
(3)   --" dQ- 1;   d^m;  d?*- m";   ...;  dk*-m   ; 

i .- n;    x ^- a; 

c0 -cr ck*-0; 

Ak[0]   -   X  ; 

while i   > d,      do 
  k    — 

hegifl. ^ - ^  - dk; x - fdk(x);  ck - ck + 1; A^c^] - x end; 

A0[0]   .- x; 

while   I > d    do 

begin i ^  i - d0; x ^ fd0(x); 

STEK:     y -g(A[c0],y); 

LL co = 0 then SOtfl.. STEPJ; 

CG-C0   "  1; 

goto STEP2; 

c0 - c0 -»- 1; A[c ] - x end.; 

56 

.    . 



STEP3: 

STEPJ.l:     if c.  » 0 then goto STEP3.2; 

Cl-Cl~  1; 

A0[0] - x - A^CjJ; 

for  c    •-  1  step  1 until m-1  do A [c  ]  .- x •-  f 0(x) ; 

goto  STEP2; 

STEP3 .k:     if.   0.= 0  then .joto STEPil; 

Ck    -ck  "  1; 

Ak-i [0] -x-Vck]; 

for c.   •- 1 step 1 until m-1 do A.  [c. _1 ] »- x •- f k-l(x) ; 

STEP^:  HALT(y). 

The program follows the algorithm of Section 3*2 very closely. 

In the initialization phase (step 1) line (l) computes the value of n. 

Line (?) assigns to the counter m the largest value, such that m < n. 

Note that this can be done just with the operations of +1, -1 and test 

for zero in linear time.  Line (3) computes the relevent powers of m 

(these can be computed simultaneously while m is being computed).  The 

counters c„....,c, denote the number of values saved at each level.  There 
0     k 

is some overlap in values saved which could be avoided.  As shown the 

initialization phase involves two passes over the range of data values  a 

through  f (a). This can be done in a single pass for k=l since all 

increments are constant (one) independent of the value of n. 

- 

57 



r 
6.2    The Constant-space Algorithm 

START 

counter     i,infn,c0,...,ck,d  , ....d^; 

da.ta y,x0,... .Xj^; 

STEP1:    if.p(a)   then HALT(hfa)); 

n •- 0;    x •- a; 

while -ip(a)  do begin x •- f (x);  n ♦- n + 1 end; 

y - h(x); 

1/k m ►- n '    ; 

2 k d    «~1;     d-*-in;     d_»-ni;   ...   ;d.   *-in; 

; ^ n;    x ^- a; 

co -^ " '•• •"ck4-0; 

xk^x; 

while   -? > d,   de. 

begin   I *~  i ~ d.',    x^-f     (x);  c,   •- c.   + 1 end; 

x0^x; 

while   i > d    do 

bepin   £ -  I - d,;  x-fO(x);  c^c+1 end; 

STEP2:    y - g(fC0(x0),y); 

if_ c    = 0 then goto STEP^; 

co - co " lj 

goto STEP2; 

STEP3 : 

STEP3.1:   iLcj^ = 0 tlieil.8£tfl-STEP3-2; 

Cl -Cl   "  1; 

38 



X0 ^ f    ^1^ 

c0^m - 1; 

goto STEP2; 

. 

The initialization phase is shown here for the case where explicit 

counters are allowed.  It closely parallels the initialization phase in the 

linear-time program (Section 6.1). The rest of the program can be implemented 

using only the counter operations -1 and test for zero which means it can be 

directly implemented without any explicit counter (see Section ^.1). 

The initialization phase can be implemented without any explicit 

counters as follows.  Variables m,c . . . ,c ,d ,. .. ,d  are used to 
U      K  U       K. 

represent the corresponding counters in the rest of the program.  In addition, 

variables m',x'.c' , . .. ,c'  are used as temporaries. We make use of the 

following nonrecursive procedures for convenience in defining the operation 

of the program. 

procedure invert (c'); 

begin local c,d; 

c — a;     d - c'; 

while -ip(d) do begin c - f(c); d .- f(d); end; 

return(c); 

end; 
39 

. 

STEPj.k:     if c    = 0  then goto STEPl;; 

Ck^Ck  "  1; 

x _  fck*dkrx  )• k-1       r ^V' 

Ck-1  -m  "  ^ 

goco  STEP3.k-l; 

STEPh:     HALT(y) 

. 



» 

procedure multiply (c ,c ); 

begin local d ,d0, val; 

val .-a; d ♦- c, ; 
1   1 

while -ip(d1) do 

begin 

while.-ip(d) do 

begin 

val *- f (val) ; 

d2 - f(d2); 

end; 

d1 ^ fidji 

eüi; 

return_(invert (val)) ; 

end; 

procedure right (x,c); 

begin local d,val; 

val ►- x; d ♦- c; 

while -ip(d) A -ip(val) dp 

begin 

val ^ f(val); 

d - f(d); 

end: 

return(val); 

end; 

The initialization part can now be written as: 

STEP1:  ij; p(0) then HALT(h(a)); 

if p(f(a)) then_HALT(g(a)h(f(a)))); 

1+0 



m' ♦- a; 

y -  h(invert(m')); 

TRY: m'-^m'); m ^ invert (m') ; 

i - a; 

c^ *- m; 

TRY :  if. PCC-J) then goto TRY: 

tl - 
f(c1); 

c0 »- m; 

TRY,, :  if p(c ) then goto TRYj^; 

cp - f(c2); 

TRYk:  if p(ck) then goto TRY   ; 

if p(i) then goto FOUND; 

i - f(i); 

goto TRYk; 

FOUND:  m •- f (m) ;  comment: m has now been found; 

do *- invert (f (a)) ; 

d1 *- m; 

d? - multiply(dj^,^) ; 

d - multiply (d,d);  comment: d ,... ,d have been determined; 

x ^- a; 

cVc/i ^V"^ 

Ä 

>' 

1+1 



1 

x •- x; 
k 

while -ip(right (x.d.)) do 

begin x *- rightfx.d.); c' •- f(c'k) end; 

x0 ^x; 

while -ip(right(x,d)) do 

begin x - right(x,d0); c'0 - f(c'0)end; 

- ihvert(c'0); ... ; ck ►- invert(c'k); 

comment; this completes the initialization; 

This tompletp* t'ie description of the constant-space algorithm. 

Acknowledgement 

I am indebted to Zohar Manna for his helpful advice and many 

suggestions, and to Dave Plaisted for his careful reading of an earlier 

version of this paper and detailed connents. 

k2 

  



REFERENCES 

[1] Chandra, A.K., "On the Properties and Applications of Program Schemas", 
(I972), Ph.D. Thesis, Computer Science Department, Stanford University, 
(to appear). 

[2]  Chandra, A.K., Manna, Z., "Program Schemas With Equality", Proceedings 
of the Fourth Annual ACM Symposium on Theory of Computing, Denver, 
Colorado, May 1972, pp 52-6U. 

[5] Cocke, J., and Schwartz, J.T., "Programming Languages and Their 
Compilers", preliminary notes, Courant Inst. of Math. Sciences, 
New York University (1970). 

\k]    Constable, R.L., and Cries, D., "On Classes of Program Schemata", 
SIAM Journal on Computing, Vol. 1, No. 1, March 1972, pp. 66-118. 

[5]  Garland, S.J., and Luckham, D.C., "Program Schemes, Recursion Schemes, 
and Formal Languages", UCLA Report No. ENG-7151+, June 1971' 

[6]  Cries, D., "Compiler Construction for Digital Computers", John Wiley 
and Sons, Inc., New York, 197!• 

[7]  Hewitt, C, "More Comparative Schematology", Artificial Intelligence 
Memo No. 207, Project MAC, M.I.T., August I97O. 

[Ö]  Hopgood, F.R.A. ,'tompiling Techniques", American Elsevier, Inc., 
New York, I969. 

[9] McCarthy, J., "Towards a Mathematical Science of Computation", Proc. 
iciP, 1962. 

[10] Paterson, M.S., and Hewitt, C.E., "Comparative Schematology", 
Artificial Intelligence Memo, No. 201, Project MAC, M.I.T., 
November 1970. 

[11]  Strong, H.R., and Walker, S.A., "Properties Preserved Under Recursion 
Removal", pp 97-105 in the Proceedings of the ACM Conference on Proving 
Assertions about Programs, Las Cruces, January 1972. 

h3 


