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ABSTRACT

In disc laser amplifiers, the achievable inversion (and thus the gain and
energy output) is limited by fluorescence amplification and parasitic
oscillation. In this paper, analytic results and Monte Carlo calculations

of both these effects are presented for spheres, circular discs, and
elliptical discs. The effects of gain, fluorescence line profile, refractive
indices, and disc thickness on fluorescence amp ification are presented. -
The loss rate is seen to increase rapidly above an across-diameter gain of
exp (5) or so, independent of thickness. Parasitic oscillation is analyzed
as a function of edge and face index ratios, and of edge roughening. Above
exp (3) gain, parasitic suppression is difficult, even with a rough edge.
Parasitics thus appear to present more difficulcies than fluorescence

amplification. The effects of both processes on peak inversion achieved
during a pumping pu.5 are also presented. In conclusion, the maximum
practical size of Nd glass laser discs is estimated to be about 30 cm
due to the effects of parasitic oscillation and fluorescence amplification.

Authorization

NRL Problem K03-08.502

Project No. ARPA Order 2062

This is a final report on one phase of the problem; work is continuing on other
phases.
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I. INTRODUCTION

Multi-disc laser amplifiers are presently of interest in the production

of high-energy light pulses for the generation of dense, high-temperature

plasmas for x-ray generation and controlled thermonuclear reactions. Disc

amplifiers, as compared to rod amplifiers, have the advantages of more

uniform pumping, easy heat removal, small size of individual glass pieces,

and less susceptibilit.- to self-trapping. However, the design of these

amplifiers must be carefully carried out if costly and time-consuming mis-

takes are not to be made.

One of the problems which must be understood before disc amplifier

design is undertaken is that of fluorescence amplification (1-9 ) (sometimes

called amplified spontaneous emission, superfluorescence. or - incorrectly
(1 0 )  I

- superradiance). Fluorescence amplification makes energy storage in

lasers more and more difficult as the inversion level rises. Section II

of this paper is a discussion of analytical and Monte Carlo calculations

of the limitations due to fluorescence amplification in various geometrical

shapes relevant to the disc laser problem, and of the effects of varying

size, shape, gain, refractive index, and line profile.

Another problem which arises in disc amplifier design is parasitic

oscillation. Such oscillation sets a sharp upper limit to the achievable

inversion, and often is a more serious problem than fluorescence ampli-

fication. In Section III of this paper, parasitic oscillation limits to

achievable gain in a single disc will be calculated as a function of the

reflections due to the refractive indices of a disc and its surroundings,

and as a function of the edge roughness of the disc.
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Both fluorescence amplification and parasitic oscillation act to limit

the maximum practical size of the discs in a disc amplifier, since both pro-

cesse. get worse as a disc becomes larger (assuming constant inversion density).

Accurate analyzis of both effects is therefore required to determine the exact

limitations on size and gain.

II. FLUORESCENCE AMPLIFICATION

' 4nv materials, when properly pumped, exhibit fluorescence (the sponta-

neous emissi.:n of photons). The fluorescence arises when the upper level of

the fluorescent transition is populated by the pumping process, and

radiative transitions to the lower level take place. Once the pumping is

turned off the fluorescence usually decays exponentially with a time

constant called the fluorescent lifetime T. An exponential decay implies

that the process is linear - that is, that the fluorescence is linearly

proportional to the population in the upper level.

Suppose, however, that the pumping was so intense that an inversion

exists; the population in the upper level is greater than the population

in the lower level. The pumped material then exhibits optital gain at the

transition frequency, and may be used to amplify light in a laser amplifier

or oscillator. However, the fluorescence continues under conditions where

gain exists; in fact, the processes of spontaneous emission (fluorescence)

and stimulated emission (gain) are inextricably interconnected. This means

that fluorescent light, once emitted within the volume of the material,

will be amplified before it reaches the edges. This increases the effective

fluorescence loss rate, which is the same as decreasing the instananeous

2



fluorescent lifetime. Because the gain, and thus the added loss, now depends

on the inversion level, the fluorescent decay process is no longer linear.

Instead, the decay rate becomes faster as the inversion level increases.

This fluorescence amplification problem is especially severe in large laser

systems, since the long path lengths available lead to large total gain and

thus large amounts of fluorescence amplification.

So far we have considered what happens when the pumping is over.

However, the fluorescence and gain processes also exist during the pump

pulse. If the fluorescence amplification is negligible, so that the system

is linear, then doubling the pumping amplitude will double the inversion.

In general, the peak inversion will be linearly proportional to the pump

pulse amplitude. This proportionality will be destroyed if gain exists in

the material. In the presence of fluorescence amplification, equal incre-

ments of pumping will yield smaller and smaller inversion (and gain)

increases, because the decay rate per unit of inversion will increase with

the in'ersion. The details of pumping in the presence of fluorescence

amplification are studied in Section IV.

In this section we will consider only single-pass fluorescence

amplification. That is, the edges of the discs will be assumed to be

totally absorbing, so that once the fluorescent light hits an edge it is

not reflected back into the disc again. This is the best possible edge

condition for an amplifier, since if the disc edge is not perfectly black

the light will be reflected back into the disc and excite further stimulated

emission, thus increasing the fluorescence loss rate. We are therefore

3
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calculating an 2pper bound on gain due to the effects of fluorescence

amplification, since any actual disc will return some reflected light, thus

increasing the loss rate and decreasing the gain. We here limit ourselves

to the black-edge case because once light is reflected from the edges

oscillation will occur at some gain level and a different method of analysis

must be used to find this level (see Section III).

A. Fluorescence Amplification in a Sphere

We first calculate the stimulated emission in a sphere, not because

sphere lasers (11) are of interest but because an exact analytical calculation

is possible in this case. In addition, the sphere forms a simple system in

which to demonstrate the effects of line shape.

1. Single-Wavelength Calculation

Consider a laser material in the shape of a sphere. We will assume that

a spatially uniform inversion exists throughout the sphere, and make a

calculation of the instantaneous rate of fluorescence amplification. The

inversion causes the material to have a gain coefficient C, such that the

intensity of a pencil of light rays increases as P = P exp (ct ), where to

is the path length along the ray direction. Suppose that spontaneous emission

releases a power of I per unit volume. If the sphere has a diameter D, the

total spontaneous emission is I -t D 3/6. We will calculate the amount by

which this spontaneous emission is amplified.

Introduce a system of spherical coordinates centered on the surface of

the sphere (Fig. 1). The angle 0 is measured from the sphere diameter,

and 0 gives the rotation around the diameter. The distance r is meas-red

4
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Fig. 1- Coordinate system for the analysis of fluorescence
amplification in a sphere of diameter D. The origin is at the
sphere's south pole.
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along the direction defined by 9 and 0. The element of volume in these

coordinates is r2 sin0 dr dO do, and the fluorescence from this volume is
: 2

I r sino dr dG do. We assume that this fluorescence is emitted isotropically.

I An element of sphere surface of area dS at the origin of coordinates will

intercept a fraction of the fluorescence equal to the projected area of dS in

the direction of the volume element (dS o o) divided by the area of a sphere

centered on the volume element and passing through the origin (4 ;1 r2).

However, the fluorescence will be amplified by a factor exp (ar) before it

reaches dS. Thus dS will intercept a total radiation (spontaneous plus

stimulated) of

L exp (ox) wo sino dr dO do dS.

Now integrate this expression over the volume of the sphere to find the

total flux on the area dS:

2- it/2 Dw 0

dP = IdS Jdefdo fdr ea r -WO sin

,t/2 Dco 0

I dS d o dr e r  .vs sin o2ff

o 0

;/2

I dS fdA (eD C sine
2 a

6
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With the change of variable u = , the flux becomes

By symmetry, all elements of the sphere surface receive the same flux, so the

total emission hitting the sphere surface isI

2a(o) 2

0I

To find the amount M by which the original spontaneous emission has been T
multiplied, divide by the total spontaneous emission i ic D3/6 and find

1:

_i where we have introduced the variable 8 = D. Note that is the log of the

gain straight across the sphere. The ratio of stimulated to spontaneous

tlemission htigteshr fc is

7 +

A 3 A-2e- +- . -

2$ 7i



Our calculation has been for a single value of a. However, in actualIlaser materials the fluorescence and gain are distributed in wavelength
according to some line profile, with values from zero to the peak value being

represented. The effective values of the spontaneous emission multiplier M

and the stimulated-spontaneous ratio A are therefore found by averaging the

single wavelength values over the line. From the viewpoint of fluorescence

amplification, the worst possible case would be a flat-topped or rectangular

line profile, since in that case the line average is equal to the peak value.

For more realistic line profiles, in which values less than the peak are

represented, the line average is less than the peak a by an anount which

depends on. the line shape.

It should be noted that M = I + A for any line shape, since by definition

M = (J + K)/J = I + JiK and A = J/K, where J is the spontaneous radiation

and K is the stimulated radiation.

2. Lorentzian Line Profile

Let us, for example, calculate the values of M and A for a Lorentzian

line profile. The gain (and the fluorescence, which has the same line

shape) have the form

CII2

i+

where ap is the gain at the peak of the line, X 0 is the center wavelength and

W is the full width at half maximum.
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Since all that matters when averaging over a line is the fraction of the

line representing different values of ,. we need to find a function which gives

this amplitude weighting. For any symmetric shape of a. we have

M dX

a d cx%]Sof da

cM - d

fda
0

Introducing the variable x = o /a, we have

1

M= M (a.) OL(x) dx

0

where the Lorentzian weighting function pL(x) is given by

dX

PLCX) = -

a'Ct - dcLda
0

i1

/~x(l-x)

17
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Since the integral in the denominator is the beta function B( , ) = i,

we have

PL(XW
, .jx(l-x)

The line-averaged value of the stimulated/spontaneous ratio is given by

1

AL=f A (Cix) PLx ) dx

01

3 2ex 2 1 1

=2 'o x[ 2 x( -- /l- + x(1-x)

where = %D. Unfortunately, the various terms of the integrand lead to

(cancelling) infinities. We therefore calculate AL by a less direct method.

Firstly, we determine the power series expansion of A by expanding the

exponential and combining terms. We find

3
RA _ e2 _ %3 _ PA- P +-i +) .- - .......

A 8 + 10 +48 280

CO 3p, n

n=l (n+3)(n+l)'

where = D.
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Then the line average is

AL = -dx ~ (~)0 n7! (!-x)- (n+3) (n+l) :

We reverse the order of summation and integration, and use the fact that the

integral over x is a beta function to find

AL 3 2 583 +

AL =16 80 768 1024

(n+3) (n+l)' 11 2r

Since the series must be summed numerically to find the AL corresponding to

some specific $, the error due to truncating at any n must be known. Let

the relative error due to ignoring terms beyond m be y so that

AL an n) (i+Em)

n-- I
where

3 n (2r-
an (n+3)(n+l) r= 2r

II
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Then we have

Sa)!( am n

As m becomes large, the ratio of successive coefficients of in the expansion

of AL becomes

a___I (ni-3)(2n+-) - 1__I

a (n+4) (n+2) (2n+2) 7r. n-r z

We therefore have an upper limit to the truncated part of the series:

Co a( )n aa~ ~ n am+ -9/29/

Therefore

Eam 1 _j~

m Ml

Ill
m

where m a .

3. Gaussian Line Profile

We may find the effect of a Gaussian line profile having the form

-4-- )

c=ap 2

12
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PG(x)

and term-by-term integration of the series expansion of A yields

-2 3 4
2= - .G - 30 96 +280

= (n+3)(n+l)! 1
n=l

In this case, as in the Lorentzian one, the ratio of successive coefficients

approaches n + 7/2 as n -. w, and so the truncation error limit given for the

Lorentzian line profile also applies to the series expansion of A for a

Gaussian line profile.

4. Summary of Analytic Sphere Results

Table I gives numerical values of the ratio of stimulated to spontaneous

radiation A as a function of P (the log of the across-sphere gain at the

line peak) for flat-topped, Gaussian, and Lorentzian line profiles of the gain

coefficient. For small values of B, we see that A is linearly dependent on

$ with a coefficient which depends on the line shape. The rise of A with P

becomes faster as $ approaches unity, and is very fast for values of P much

greater than one. We shall see later that this behavior is typical of any

shape of laser material. The fact that decay rates rise sharply for > I

means that pumping becomes more and more difficult in this region.

13
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TIABLE I

Ratio of stimulated to spontaneous radiation A in a sphere as a function of

the log of the across-sphere gain at the line peak 0 for flat-topped, Gaussian,

and Lorentzian line profiles.

AFLAT A GAUSS ALORENT

.01 .003760 .002657 .001879

.02 .C07540 .005326 .003765

.05 .01900 .01340 .009470

.1 .03852 .02710 .01913

.2 .07917 .05543 .03905

.5 .2153 .1484 .1040

1. .5000 .3352 .2326

2. 1.396 .8790 .5980

5. 12.97 6.497 4.153

10. 593.6 206.8 123.4

20. 3.457 x 10
6  8.097 x 105 4.670 x 105

50. 6.097 x 1018 8.778 x 1015 4.992 x 1017

100. 7.984 x 10 8.055 x 10
38  4.562 x 1038

5. Monte Carlo Calculation

The amount of fluorescence amplification in a sphere was also calculated

by means of a Monte Carlo optical power flow program. Since analytical

results are available in the case of a sphere, it may seem pointless to

duplicate the results with an approximate method. However, the Monte Carlo

14
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pregram can be used with geometric shapes of arbitrary complexity. Thus it

is much more general in its application than analytic methods, but of course

any such program should be checked in a geometry where the results are known.

This is the reason for its use in the case of a sphere.

The Monte Carlo program is called ZAP. It traces optical power flow in

systems which are made up of segments bounded by planes, spheres. cylinders,

cones, conic surfaces, and so forth, or in combinations of such segments. The

material in the segments is specified by its refractive index and absorption

(or amplification) coefficient. The system surfaces may have constant or

angle-varying reflection, both specular and scattering. Each optical ray

carries with it up to two hundred wavelength intervals. The bulk and

surface properties of the system may vary with wavelength, and the optical

power in each wavelength interval will change according to the system

properties at its particular wavelength. Rays are started at random from

specified sources (surface or volume) with given initial wavelength

distributions of power, and traced through the system to find the deposition

or extraction of power in all the system elements. A ray cut-off scheme is

used which assures that ray truncation error is small without wasting time

following weak rays. ZAP was designed for accurate modelling of laser pump

cavities (a job it does well), but it is also well suited to the calculation

of fluorescence amplification in arbitrary geometries.

The sphere geometry was specified to ZAP, and runs of 2500 rays were made

for various values of to achieve an accuracy of two or three percent.

The rays were started at random throughout the sphere, to correspond to

uniform inversion. All rays hitting the sphere surface were totally absorbed.

15
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Runs were made for a flat-topped line (one wavelength), for a line -ith a

Gaussian profile, and for a line with a Lorentzian profile. The Gaussian and

Lorentzian lines were modelled by dividing a line profile into equal intervals

of wavelength. The gain coefficient and starting power in each wavelength

intervalwere then taken proportional to the value of the gain coefficient at

the center of the interval. It is necessary to go a large distance out on

the tail of the Lorentzian line in order to get a proper weighting of low

values of the gain (recall that the Lorentzian amplitude weighting function

approaches infinity as the amplitude approaches zero). The final result,

with the above number and spacing of wavelengths, is about 1% high for a

sphere when the calculation is exact. To this systematic error, the

Monte Carlo method adds the previously mentioned random error of 2 or 3%.

A comparison of the analytic and Monte Carlo results for a sphere is

shown in Fig. 2. The agreement is quite satisfactory, since the exact

result lies within the Monte Carlo error limits in all cases.

B. Circular Disc

We will now consider the case of a circular disc, which is of considerably

greater practical interest. We will first perform an approximate analytic

calculation which is exact for infinity thin discs at low gain, and then

find the results for thick discs and/or high gain by the Monte Carlo method.

1. Analytic Approximation: Thin Disc, Low Gain

Consider the spontaneous fluorescence emitted from a small element of

volume in a circular disc with a totally absorbing edge. Some of the radia-

tion will strike the edge directly, while the rest will hit the faces. Both

components will be amplified as they travel. The radiation which goes to

16
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SPHERE

1.0

LINE PROFILE:
-0! FLAT

(ni GAUSSIAN ..

LORENTZIAN

0.1

• '--EXACT

, * * MONTE CARLO

0.01 III I I I I I LI L
1 0.1 1.0 10.0

Fig. 2 - Analytic and Monte Carlo values for the ratio A of
stimulated to spontaneous loss as a function of the product

of the gain coefficient and diameter for a sphere. Curves are

shown for three different line profiles of the gain coefficient.
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the faces can be further separated into two parts. Some will strike at less

than the critical angle for total internal reflection, in which case most

will be transmitted and a small fraction (- 5%) reflected back into the disc.

Some will strike at more than the critical angle, and will be totally

reflected back into the disc. This totally reflected component will continue

to bounce back and forth between the faces until it finally strikes the black

edge. The path length for this process is the same as if the radiation had

gone straight to the continuation of the edge beyond the faces (Fig. 3).

Thus there are two parts of the circular disc gain calculation: the

radiation below the critical angle, and that above the critical angle.

a. Radiation below the critical angle

Consider a circular disc of diameter D and thickness L. A volume element

at a distance r from the disc center emits a pencil of radiation at an angle

* from the normal to the disc (Fig. A). The distance from the point of

emission to the edge is L; the ray travels d distance t, csc 0 before it hits

the edge. Note that this result is independent of the position along an

axis normal to the disc faces (the z-position) of the emitter. The distance

t, depends on the angle e from a disc radius through the emitting element to

the emitted pencil. From Fig. 5 we see that

=- (r sine) - r =6

The radiation is multiplied by a factor of exp (a t, csc ) as it travels to

the edge; we re,.all that a is the gain coefficient in the material.

18
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We must integrate over the disc volume (i.e., over r) and over solid

angle. The fractional disc volume at radius r is 8r D- 2 dr, and the fraction

of solid angle at 0, 0 is (4n)-1 sin 0 dO do. The angle 0 varies from 0
c

to r'-c, where 0c is the critical angle, but by symmetry we can take twice

the integral from 8 to 4/2. Likewise we may take twice the integral fromc

0 to A for 8. The above-critical-angle integral for the ratio M of total to

spontaneous emission is then

D/2 a/2 i n e (xD - r sin2 0 - r IG
= 8 2 drfdofdO r sin C exp 4

D 0 6 0 sin
C

This is somewhat clarified by use of the dimensionless variable u = 2 r/D,

whence

1 f 2 [nD 1 - u-2 sin2 U u"

= - u 0 u sin 0 exp N
0 0 02si

C

For the low gain condition LD << I, we can expand the exponential in its

power series and produce a simpler integral:

I~ fd /2fd n21
ooLD

1 42 u sin [1+ +(1-M, f d do +2 sin
0 6 0 L

c

The first term in the series yields the simple result acas , but the second term

is more difficult. Sin 0 cancels in numerator and denominator, so the integral

is just (T/2- e ) leaving
c

22



-( -o.)+ -uave
+ (- f d u( l- u sinA 2- u0 0)

O0

In the 6 integral, the au 6 portion integrates to zero, leaving twice the

complete elliptic integral of the second kind

2E (.2)_-fde (Il-,, u .sin .

0

so that

+ _fduuE 2)

MI = j"ec+ 2d) c u u E u2

0

2

which by the change of variable q = u becomes

MI a + aDl) 0 .
C +,x \2 /fdqEq)

thus yielding the final result

Ml = u c + +G ...

where G = .9159656 -.. is Catalan's constant.

23



. Radiation above the critical angle

Let us follow the radiation emitted at above the critical angle for

total internal reflection by a volume element at distance b from the disc face

(Fig. 6). Starting at angle 0 from the normal to the face, the ray travels

a distance b sec 0 before it hits the face. The relative strength is now

exp ( b sec 0). A fraction T is transmitted through the face and (for our

purposes) lost, while (l-T) is reflected and crosses the disc. The path length

to the opposite face is L sec 0 (recall that L is the disc thickness), and

so the reflected ray is amplified by exp (QxL sec 0). It then again loses

a fraction T to the outside, and (1-T) recrosses the disc, is amplified, and

is partially transmitted and partially reflected. The bouncing process

continues until the ray hits an absorbing edge. Let the relative strength

at the first encounter of the face be P = exp (CL b sec 0), and define the

gain on a pass all the way across the disc to be K = exp (a L sec 0). Then

the ray strength is as follows (Fig. 7):

1 at the start

P at the initial face intercept

P(I-T) after the first reflection

P(I-T)K after crossing to the opposite face

P(I-T) 2K after the second reflection

P(-T) 2K2 after the second full crossing

P(I-T) K after the third reflection

P(I-T)3K3  after the third full crossing

and so forth. The total amount radiated is then PT + PT(l-T)K + PT(I-T)2 
K2

3 3
+ PT(I-T) K + ... which sums to PT/[l - (I-T)K] if we take an infinite number
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of terms. Of course, the actual ray will terminate after a finite number of

bounces, but the error in the infinite-bounce approximation is small as long

as the gain across the disc times the reflectivity is small, in which case

the ray strength is reduced to a negligible value in just a few bounces. This

small-gain case is exactly the one we are calculating, so we will use the

infinite-bounce approximation above, which overestimates the actual result.

We must integrate over angle and position to find the overall average

gain. The fractional solid angle at angle 0 is sin 0 do/2, and the fractional

volume is db/L (note that the r and 9 integrals have vanished because there is

no r or 9 dependence in the infinite-bounce approximation). Then the above-

critical-angle radiation contributes approximately

9 L
c

1 fIdb T exp(cc b sec 0) sin
I2 LJ 0 J 1 - (l-T) exp(a L sec 0)

0 0

where we have (by synmmetry) taken twize the 0 integral from 0 to 9 rather
c

than the integral from 0 to 8 plus the integral from c - to it. Forc c

al << 1 we expand the exponentials in the integrand and divide to get

9 L
c

~-fb + e-T) Ca LM 2: 1 J b sin 0 1 --+ Tt ....

=f.,d sin 0 1 +- +L( . .

27

I



which integrates to

N2 -- (i - 9) L - , ) ±

While performing this calculation we have made another approximation: we have

assumed that the transmission T is independent of angle, and have ignored the

fact that T depends on polarization. In actual fact, T decreases as 0

approaches the critical angle, and more radiation returns to the disc to be

amplified. If we use the normal-incidence value for T, this approximation

underestimates the actual result, and (hopefully) tends to offset the over-

estimate due to the infinite-bounce approximation. In any case, both

approximations get better as the disc gets thinner, since then even a ray

starting near the edge takes many bounces to get to that edge, and the

across-disc gain is low so even if a ray takes more bounces to exit than

we calculate (due to greater reflectivity) the added radiation is small.

y. Total Result

Adding together the results above and below the critical angle, we find

that for low gain (aD << I and aL << 1) and thin discs we have

M Rl +cxPa .S)(2 TcL( ~2( 8

This result is for one value of a, and thus corresponds to a flat line

profile. Values of m corresponding to other line shapes may be calculated

as in the sphere case.
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With a Lorentzian line profile, the amplitude weighting function is

PL(x) = [IT/x(l-X) ] - . We can write M in the form M= 1+ Bcx(X), where

B is independent of X. Then

I

L fd x B q x

I i+ B x

0

= 1+ B- _1
t 2'

where ( is now the gain coefficient at the line peak.

We thus have

ML-1 + 2aB,

or

ML a I+ a D (-4 -2,c) (,2 G) + aLL

With a Gaussian line profile, 9G = ( ea x and we get

G

MG~ dx + B a x

0
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i+i

= i + B-C -  x -

We thus have

orG.: +(4) +) j2~(~ C~;)
N ~l

Since the low-gain result in any geometry will always have the form

M I + CCr or A = CCL (where C is a constant depending on the geometry), the

flat-topped, Gaussian, and Lorentzian lines will always have the low-gain ratios

2:j2:1 exhibited for the sphere and cylinder.

2. Monte Carlo Calculation

ZAP was used to find the stimulated-spontaneous ratio A in circular

discs. Again the inversion (and thus the gain coefficient) was assumed

spatially uniform. The reflection at the face was taken as the average over

polarization. In Fig. 8, we see the results for flat, Gaussian, and

Lorentzian line profiles in discs whose thickness is 20% of their diameter.
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10.0

CIRCULAR DISC
I x 0.2

INDEX RATIO 1.56

1.0- LINE PROFILE:
- FLAT
- GAUSSIAN "

21Z -LORENTZIAN

0 __(

LOW-GAIN, THIN-DISC
APPROXIMATION

0.01 0.1 1.0 10.0

Fig. 8- Monte Carlo values of the ratio A of stimulated to

spontaneous loss as a function of the product 0 of the gain
coefficient and diameter for a circular disc of thickness equal

to 20% of its diameter. The ratio of the refractive index
inside the disc to that outside the faces is 1.56. Curves are
shown for three different line profiles of the gain coefficient.
The low-gain, thin-disc approximation is shown for comparison.
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The refractive index inside the discs was 1.56 times the index outside and the

circular edge of the disc was totally absorbing. The A ratios are shown as a

function of r -D, where a is the gain coefficient at the line peak and D

is the disc diameter. Also shown is the small-gain, thin-disc approximation.

The approximation is seen to be good below 0 2 .1, even for discs this thick.

The A curves have the same general shape as the curves for a sphere,

except for a faster rise when A is greater than one (this faster rise is due

to the longer path available in the cylinder due to total internal reflection

from the faces).

The amount of fluorescence amplification in a disc depends on the disc

thickness and on the ratio of refractive indices inside and outside the

sphere, as well as on the gain coefficient. As the cylinder index approaches

the index of its surroundings, less and less of the light inside it under-

goes total internal reflection, and A becomes lower. For exact index matching,

no light returns into the disc and A has its minimum value. The variation of

A with index ratio is shown in Fig. 9 for various values of $. The low-

gain, thin-disc approximation is also shown in Fig. 9, and is seen to match the

Monte Carlo results well except at low index ratios, where the angle for

total internal reflection increases and the infinite-bounce approximation

breaks down.

The Monte Carlo results for the variation of A with relative disc

thickness are shown in Fig. 10. The values for = .1 are compared to the

low-gain, thin-disc approximation. The approximation is seen to be good to

at least 80% disc thickness. The most interesting feature of these results
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= .1 result, which it fits exactly except at low ratios.
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disc thickness to its diameter. The increase is slow because the
principal contribution is from rays undergoing total internal
reflection, and this contribution is independent of thickness. The
low-gain, thin-disc approximation is compared with the = .1 result.
Note broken vertical scale.
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is the very slow increase of fluorescence amplification with disc thickness.

This slow increase arises because much of the fluorescence amplification in a

disc is due to rays which are totally reflected at the faces of the disc, and

the contribution of such rays is independent of disc thickness. Since useful

laser gain is roughly proportional to disc thickness, discs should be as

thick as possible within the constraints of pumping uniformity, thermal

distortion, self-trapping, and fabrication difficulty. There is also an

obvious advantage in trading a thick, weakly-doped disc for a thin, highly-

doped disc, since fluorescent lifetime usually decreases with doping.

C. Elliptical Disc

Analytical computation is difficult in the case of an elliptical disc,

and unnecessary in light of the good fit of the Monte Carlo results to the

sphere and circular disc cases. Therefore only Monte Carlo calculations

were made in this case. The computations were for discs whose major and minor

axes were in the ratio 1:0.5, which is typical of laser glass tilted at

Brewster's angle in air if the beam is round. The thickness was 1/7 of the

major axis, since this corresponds to an actual disc in use in a multidisc

laser amplifier in our laboratory. Once more, the inversion was uniform,

the inside-outside refractive index ratio was 1.56, and the curved edge was

totally absorbing.

The ratio of stimulated to spontaneous radiation, A, is shown in Fig. 11

as a function of a = D, where D is the disc major axis. The results are

about 70% of those for a circular disc of diameter equal to the ellipse

major axis, for low values of 8. As 8 increases, this fraction decreases.
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10.0

ELLIPTICAL DISC
I xO.5 xO.143

INDEX RATIO = 1.56

1.0 LINE PROFILE:

FLAT
- ~~GAUSSIAN ///
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-

II
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Fig. 11 - Monte Carlo values of the ratio A of stimulated to

spontaneous loss as a function of the product P of the gain
coefficient and major axis for an elliptical disc of minor axis
50%, and thickness 14.3%, of its major axis. The inside-outside
refractive index ratio is 1.56. Curves are shown for three
different line profiles of the gain coefficient.
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The radiation absorbed by the disc edge and that exiting from the disc

face were found separately in the elliptical disc calculations. These values

are shown in Fig. 12 as a function of . We see that the greater part of the

stimulated radiation increase at high goes to the disc edge, rather than

to the disc face. in high energy systems, the edge absorber may thus have

to withstand large loadings.

D. Discussior

We have studied the problem of fluorescence amplification, in which the

fluorescence emitted by a material with optical gain is amplified by stimulated

emission as it passes through the material, thus increasing the natural

fluorescent loss rate. We have defined the ratio of total loss to fluorescence

M and the ratio of stimulated to spontaneous loss A.

Fluorescence amplification causes pumping to become more and more difficult

as the stored energy (and thus the gain) increases in a material. In effect,

the energy decays with an instantaneous fluorescent lifetime given by /M,

where T is the natural or low-gain lifetime. This means that as the pump

strength is increased, inversion will not increase in proportion. The resulting

pump efficiency decrease is a slow function of the pump energy, rather than

the abrupt upper limit due to parasitic oscillation (Section III). The exact

details of the process depend on the geometry of the material and the

fluorescent line shape, but in general pumping is quite difficult when the

gain across the longest dimension of the material is about exp (5) 2 150

or more (we assume that the natural lifetime is not extremely Long, so that

its decrease by a factor of 10 is a serious problem). The effect of fluore-

scence amplification on pumping will be considered in detail in Section IV.
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The line shape of the fluorescent emission (and gain) is important because

a line with broad, low wings has less fluorescence amplification than a more

rectangular line, for the same peak value of the gain. For low gain, we

have shown that the ratio A has the relative values 2:12:1 for flat (rectangular),

Gaussian, and Lorentzian gain profiles; Monte Carlo calculations show that

these relations are roughly maintained at higher gains. Actual laser

materials often have complicated, multi-peaked line profiles, but in principle

we could find the single-wavelength value A for the geometry we are using

and then (perhaps numerically) integrate this with the amplitude weighting

function corresponding to the laser material we are using. In practice, it is

undoubtedly sufficient to estimate where in the flat-Gaussian-Lorentzian

family the actual line shape lies and to interpolate to find A for that

line shape.

The geometry of the amplifying material strongly influences the amount of

fluorescence amplification. In the simple case of a sphere, A and M depend

only on the product of the gain coefficient a and the disc diameter D, and

of course on the line shape. When we consider a circular disc, we find that

A and M depend not only on aD, but also on the refractive index ratio between

the inside and outside of the disc, and on the ratio of thickness to diameter

of the disc. An index match between inside and outside is desirable since it

leads to the least possible fluorescence amplification. However, in short-

pulse high-power lasers the index-matching mateiial may cause problems due to

self-focusing damage, so this remedy is not always available. The fluorescence

amplification is also least for vanishingly thin discs, but of course such

discs have insufficient gain along the path of the actual laser pulse to even
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overcome their own surface losses. Since the increase of fluorescence

amplification with thickness is slow, it is not harmful to increase the disc

thickness until it is limited by other considerations. For example, the

deposition of pump energy changes with disc thickness, but this question is

beyond the scope of this paper. An elliptical disc has the same type of index

and thickness behavior as a circular disc, but the fluorescence amplification

is somewhat less than in the circular case. Elliptical discs have the addition-

al advantages of smaller size and hence lower cost (when compared to circular

discs tilted at Brewster's angle to a circular beam) and closer coupling to

the pump sources.

III. PARASITIC OSCILLATION

Parasitic oscillation takes place when a material with optical gain has

in it (or through it) a light path which returns on itself. Under this

condition, the material will break into oscillation when the gain is large

enough to overcome the path losses. Such undesired oscillation will make

it impossible to increase the stored energy in the oscillating volume, since

once oscillation begins all further pumping is immediately converted into

oscillating power and lost. If the mode of oscillation fills an appreciable

fraction of the laser volume, it thus sets a sharp upper limit to the available

stored energy, and therefore the gain. If the mode gain does not vary greatly

with frequency across the gain line profile (or if it oscillates so rapidly

as to effectively sample all values of gain in the line), then the place

where oscillation will begin is the line peak. This means that the maximum
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gain coefficient CL determines the oscillation threshold, so that rectangular

line profiles are the best from the view point of parasitic oscillation,

since they maximize the available laser output at the onset of oscillation.

Parasitic oscillation cannot be calculated by ordinary Monte Carlo

methods, since the power in oscillating modes typically flows in precise

directions at any point in space. Unless the Monte Carlo algorithm is

lucky enough to start a ray at exactly the correct position going in exactly

the correct direction, it will not find the mode at all. Imagine, for

example, the simple case of two reflecting plane mirrors 1 cm in diameter

spaced 10 cm apart, with a laser material between them. In the case of

such large mirrors, we can ignore diffraction and do a simple ray-tracing

analysis. The mode occupies the whole volume between the mirrors, so the

Monte Carlo method just has to get the angle right. In fact, however, there

is only one exactly correct direction - the direction perpendicular to the

mirrors. Rays at a small angle from the correct direction will bounce between

the mirrors a number of times before they miss a mirror and exit from the

system. On the average, a ray at an angle E from the bystem axis will

bounce N times, where N is given by

d
N at d_2-tE

where d is tke mi=or diameter and t is the inter-mirror distance. If the

Monte Carlo method starts rays at random in angle, the probability of getting

N or more bounces from a ray is
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p (N) R!(

The rapid decrease of p as N increases means that a very large number of rays

must be started to get a ray with many bounces. For our 1 cm by 10 cm

resonator, we must start 16,000,000 rays (on the average) to get one with

100 or more bounces. Clearly, random-starting ray-tracing methods are not

suitable for mode finding unless considerable modification is made to them.

Without such modification, a Monte Carlo algorithm may give what seem to be

perfectly reasonable results even in the presence of an oscillating mode

above threshold.

Since our Monte Carlo program is unsuitable for the analysis of

parasitic oscillation, a simplified analytic method was used instead.

The method uses a simple ray-tracing viewpoint which ignores diffraction

effects. In addition, phase is ignored and only amplitude is considered.

Both these simplifications are justified on the basis that typical discs used

in large lasers are very much larger than a wavelength, so that modes have low

diffraction loss and close spacing in wavelength.

We will first consider lossless modes which rely on total internal

reflection, then modes which have some loss and thus require gain in the

laser material to achieve threshold, and finally the effects of a rough

disc ejgo on the mode threshold.

A. Lossless Modes in a Circular Disc

It is possible for a mode which is totally lossless to exist in a

circular cylinder because all reflections are by total internal reflection.
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Consider, for example, the disc shown in Fig. 13. The disc faces are in

contact with a medium with refractive index nl, the disc itself has index

n2 and the (smooth) edge of the disc is clad with an absorbing material

of index n3 (we ignore any imaginary component of the absorber index).

If the edge coating index n3 is less than n2, then total internal reflection

is possible off the inside of the disc edge, and a ray can bounce losslessly

around the disc perimeter in a plane parallel to the faces (Fig. 14). In

addition, if the outside index nI is less than the disc index n2  a ray

can bounce from face to face of the disc by total internal reflection

(Fig. 15).

In general, a ray may bounce off both the faces and the edge, and the

ray path will be complicated (Fig. 16). We can describe such a path in terms

of two angles: T measurea the angle of the ray from a disc diameter (Fig. 14),

and 8 measures the angle from a normal to the faces (Fig. 15). The angle of

incidence on the faces is thus 9, and the angle 0 of incidence on the edge

obeys caso = aVs sin 6. Thus as 9 becomes smaller, 0 becomes larger. For a
-l~n/2

ray to be lossless, we must have both 9 > 8c = sin (nI/n2 ) and

0> c = sin-1 (n3/n2). This dual condition sets a lower bound on T, since

we must have cosT < cosc/sin ec. Thus we must have

n- n2 /n 3 2

which implies that the lossless oscillation exists only outside a center

portion of the disc of radius R = D/2 sin To0 where T is the minimum value of .
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Fig. 13 - The disc configuration considered in the parasitic
oscillation calculation. A circular disc of index n2 is
embedded in a material of index nI. The edge of the disc is
clad with an absorbing material of index n3.
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Fig. 14 - Typical lossless ray path possible if the disc index is

greater than the edge-coating index. Total internal reflection

takes place at the reflection points.
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We conclude that if the edge coating refractive index is less than the

disc index lossless modes can exist in a circular disc. This means that

as soon as there is any gain at all in the material oscillation will commence

and further gain rise will be inhibited. The actual mode volume depends on

the edge/disc and outside/disc refractive index ratios. It is clearly

desirable to have the coating index larger than the disc index, since then

lossless modes do not exist.

B. Lossy Modes in a Circular Disc

Even if there are no lossless modes in a disc, it will still oscillate on

lossy paths if the gain is high enough. We wish to find the maximum gain

achievable without parasitic oscillation, so we must find the mode with the

least loss.

Consider a path which reflects off the disc faces by total internal

reflection, but which has only partial reflection at the edge. We will use

the same angles Y, 9 as we used in the previous section to describe the ray.

Let us assume that the edge reflection is given by R the larger of Fresnel's

reflection coefficients. Then

[sin(o-r)] 2R [ sin(&+r)J

where r sin (n2/n sin ) and , as before, is given by 0 = (n/n
2 3 1 2

cosY) when 0 is equal to 8 . The path length between edge bounces isc

D cosY/sin 8 = D n /nI  , where D is the disc diameter. To oscillate, the
c 21

net gain must be equal to unity, or
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a Dn 2L2
sin(-r) 2  n I
sin(O+r)] e = 1

where a is the gain coefficient at the line peak, 0 = co (n1/n2 cosY) and

r = sin-1 (n2 /n3 sin o). We could now vary Y in this expression to find the

minimum a required for oscillation, but it is sufficient to examine the

behavior at Y = 0 and Y = n12. Solving for aD, we have

2 F ,,sin(drFr)l
a 2Dl='I -sin((b-r)]

and ~~ V = azD = _______

n 2 CO.T

and

8(0) = 2 p O ( 2+ 2_

where p = n1/n2 and o = n3 /n2, while

2

We have again used the variable a = D.

The calculation is only valid for nI < n2 and n3 > n2, or p < I and

a > 1. In this region P(0) is always less than $(i/2), so we find that the

lowest threshold modes are those in which the ray proceeds across a diameter

of the disc, bouncing from face to face at the maximum angle which will

produce total internal reflection. Such modes obviously fill the entire
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disc volume. The threshold condition may be written

CRIT n 2-

Since the worst-case rays are those that travel diametrically across a

circular disc, we expect the threshold for an elliptical disc of major axis

equal to the disc diameter to be essentially the same as the circular threshold,

since the same path is available. The surface curvature at the reflection

points is of course larger in the elliptical case, but this should raise the

threshold only slightly, since all it does is make the resonator somewhat

more unstable.

In addition to the modes involving reflection off the edges, a relatively

tbick disc may also oscillate between its faces. The threshold for this process

is easily calculated, since the face reflection at normal incidence is

R = (n nl

n2+ n)

and the gain from face to face is just exp (cL), where L is the disc thickness.

We must have R exp(L) = 1, or

n2  n 1\
(a)CRIT = 2 n - n1)

Of course, this result also applies to elliptical discs.
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C. Combined Oscillation Diagram

We may show the effects of both lossless and lossy modes on a single

diagram in the p, a plane (recall p = n /n2 and a n3 /n2 ) . When lossless

modes fill the disc from a radius R outward, we use

and

s 2R
D

to derive

[l ( 2 OR 2 2 i

Thus the locus of constant R in the p, a plane is an ellipse. This result

applies if p < I and a < 1; if p > 1 then there is no total internal reflection

off the faces and the answer becomes independent of p, since the oscillations

lie in planes parallel to the disc faces and ignore the condition at the

faces.

Lossy modes obey

;P)

so we may draw loci of constant in the p, a plane to show how much gain

may be achieved before oscillation commences. The lossy mode calculation is
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valid if c > I and p > 1, and again if p > I the expression becomes independent

of p.

The diagram showing lines of constant oscillation-free radius R and lines

of constant across-disc gain log 0 is shown in Fig. 17. From the view point

of oscillation suppression, the best place to operate is with both edge and

face index-matched, since oscillation is impossible under these circumstances.

If other considerations make such operation undesirable, the degree of

oscillation difficulty encountered with other choices of refractive indices

is easily evaluated from the diagram.

D. Parasitic Oscillation with a Rough Edge

Since the oscillatory modes considered above rely on rays which follow

specific paths, one method of reducing oscillation tendency would seem to

be the roughening of the disc edge, so that an initially parallel beam would

be smeared out in angle. This ought to remove much of the energy from the

mode, thus increasing the loss. However, energy will also be scattered into

the mode from rays initially not involved. Clearly, a quantitative analysis

of this situation is required. Again a Monte Carlo approach is inapplicable,

since a ray which is randomly scattered at the edge has the same low

probability of getting into the high-gain region of the mode as was the

case with specular modes. Of course, we expect the active mode volume in

space and angle to be larger with a rough edge than in the specular case,

but the amount by which this helps the Monte Carlo method is hard to estimate.

The rough-edge oscillation was therefore analyzed by a method related

to the well-known method of analyzing modes in an optical resonator. An
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Fig. 17 - Combined diagram of lossless and lossy parasitic
oscillation as a function of the index ratios of a circular
disc. In the lower part of the diagram(n3 /nq < 1), the
fraction of the disc free of lossless oscillations is shown.
In the upper part (n3 /n2 > 1), the P required to commence
oscillation along lossy paths is shown. See text.
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initial angular distribution of optical power was assumed at the disc edge,

and the power was then transported across the disc (with gair. reflected

with loss, and scattered in angle. In general, the distribution after this

process was different, in both amplitude and shape, from the original

distribution. The gain coefficient was edjusted after each itcration to

keep the amplitude constant, and the process was reiterated uxtil the

angular distribution of power had reached an equilibrium state. After

mary such iterations, the gain had the value appropriate to the oscillation

threshold, and the angular power distribution was that of the oscillating

mode. Once again, diffraction and phase were ignored.

Since radiation which is totally internally reflected from the disc

faces has much higher gain travelling across the disc than radiation which

is only partially reflected, the power was assumed totally lost when it

was partially reflected. With this assumption, all points on the disc

edge are equivalent, and only the angle of the optical power is important

(as opposed to its position). The hemisphere of possible angles was

divided into sectors of equal solid angle, and the resulting matrix of

powers was iterated as above. The edge roughening was simulated by taking

the unit vector along the direction of the reflected ray, and adding to it a

random vector with uniform distribution throughout a sphere of radius

F au, where F 1 and e is the angle from the reflected ray to the normal.
The resulting vector was then renormalized to unity. Various amounts of

surface roughening were simulated by varying F from zero (specular reflection)

to one (very rough). The edge reflectivity R was independent of angle.
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The increase in threshold due to increasing F is shown in Fig. 18

for various values of the edge reflectivity. There is obviously improvement

over the specular case, but it is not as great as might be expected. From

a practical viewpoint, it is very hard to reduce the reflectivity of a rough

surface to the low values achievable by index-matching a smooth surface,

because of the many pits and cracks in a rough edge. Therefore one should

be cautious when attempting laser improvements by edge roughening.

E. Discussion

We have shown that lossless modes exist for certain refractive index

ratios between the inside, outside, and edge of a circular disc. Even if

these modes are suppressed by proper choice of the indices, lossy modes

will still exist. Such modes place an upper limit on gain, since once the

gain reaches the mode threshold for oscillation, no further gain increase is

possible in the mode volume. Highest gain is achieved for close index

matching between the disc and the material in contact with its faces, and

between the disc and the absorbing coating on its edge. We have shown

what gain is possible if proper matching is not feas:ble for reasons not

connected with oscillation.

Even if the absorbing material on the edge is E good index match to the

disc, there may be areas of less-than-perfect adheson, or chips and cracks

in the disc edge. Such flaws will have reflection larger than the coating-

disc 4nterface, and in practice will make the achievement of very high

absorption at the edge difficult. If the higher-reflectivity flaws are small,
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Fig. 18 - The moderate improvement in oscillation threshold
achieved by various amounts of edge roughening. F is proportional
to the amount by which the reflected rays are smeared out in
angle about the specular direction.
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diffraction will spread the reflected energy, but we have seen that such

spreading causes only small threshold improvements. Thus a well-index-

matched material must be applied extremely well to a flawless surface if

a high parasitic oscillation threshold is to be achieved.

IV. EFFECTS ON PUMPING

Our discussion so far has been confined to an instantaneous snapshot

of the fluorescence amplification and parasitic oscillation processes.

Lasers are usually pumped by relatively slow pump pulses, and we are

interested in knowing what decrease in efficiency is caused by the loss

processes we have calculated during such a pulse. We will first find the

effect of fluorescence amplification, and then the effect of parasitic

oscillation.

A. Fluorescence Amplification

In the low-gain case, when fluorescence amplification is negligible,

the stored energy decays with the fluorescent lifetime T. The gain has the

same behavior, and so we may write a differential equation for the across-

disc gain log $ in the form

0= p(t) - O/T

where p(t) is the pump pulse (in appropriate units). At higher gain,

fluorescence amplification increases the loss by a factor M, and so we have

= p(t) - M (P)IT.
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If we normalize to r = 1, and assme a half-sine approximation to the pump

pulse, we get

0
= 2T- sin A )- PIM 0 < t <TY

where 00 is the area of the pump pulse and T is the base width of the pump

pulse (in units of the fluorescent lifetime). In the range 0 M 1 5, we

may make a good approximation to M for any of the geometries and lineshapes

studied by using the form

M :1 exp (F P + G I2+ H 0 3)

Note that F may be found from the low-gain value of A, since A 2 F 0 when

<< 1. We may then find G and H by fitting a straight line to

Q -M/ F)I8 = G + HO.

Once M is approximated, we may integrate the differential equation for

until it reaches its peak value. A plot of such maximum values is shown

in Fig. 19 as a function of the pumping 8o, for various values of the pump

pulse width. We see that fluorescence amplification is more serious for

slow, large-area pump pulses while faster or smaller pulses suffer less

loss. In the design of a flashlamp-pumped laser, the effects of current

density on the pumping efficiency of flashlamps, and the effects of energy

input on flashlamp life, should be integrated with this decay information

in order to choose the optimum operating point.

Spatially uniform gain has been assumed in all our calculations of

fluorescence amplification. However, the removal of energy due to
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fluorescence amplification will be spatially non-uniform in general. Thus the

gain will become non-uniform during a pumping pulse even if the pumping is

uniform. The analysis of this problem is beyond the scope of this paper, but

it is clear tiat proper tailoring of the spatial distribution of the pump

energy can reduce or eliminate the difficulty.

B. Parasitic Oscillation

Parasitic oscillation causes a rapid limitation of stored energy, rather

than the slow limitation we have seen above for fluorescence amplification.

This is because a mode beloo its oscillation threshold contributes little

to the loss rate, but once the mode is over threshold the loss rate is equal

to the energy input rate. Thus the gain is sharply limited at the oscillation

threshold. Figure 20 shows again the curve of gain versus pump area for a

pump pulse of base width equal to the fluorescent lifetime, and also shows

the type of gain saturation expected from the onset of oscillation. The

oscillation threshold is shown for various ratios of the refractive index

of the disc edge coating to the refractive index of the disc; this ratio

determines the reflectivity at the edge. We have again assumed a disc-to-

environment index ratio of 1.56. This diagram illustrates that unless

very good index matching (or other reflection suppression) is used, parasitic

oscillation will limit available energy storage well before fluorescence

amplification losses become appreciable.

V. CONCLUSIONS

The effects of fluorescence amplification and parasitic oscillation on

laser energy storage and pumping efficiency have been analyzed. Fluorescence
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amplification sets no definite upper limit on stored energy, but instead

makes pumping more and more difficult as the energy density rises. Parasitic

oscillation, on the other hand, sets an abrupt upper limit to stored energy

at the oscillation threshold.

Fluorescence amplification is minimized by index-matching the material

in contact with the faces of a laser disc to the refractive index of the

disc. Increasing the disc thickness causes only a slow increase in the amount

of fluorescence amplification, so thicker discs are of value if pump uniformity

and thermal distortion limits are not exceeded.

Parasitic oscillation will occur at very low gain levels if the edge

cladding material has a lower refractive index than the disc material. If

this error is avoided, the level at which oscillation occurs will be

maximized if the cladding index is as close as possible to the disc index.

In addition, index-matching the faces raises the oscillation threshold.

Roughening of the edges does not cause a great increase of the oscillation

threshold, and may increase the average reflectivity of the edge, thus

doing more harm than good.

What limitations do fluorescence amplification and parasitic oscillation

place on glass laser amplifier disc size? Figure 20 shows that parasitic

oscillation is the worst problem. Unless stringent precautions are taken,

oscillation will set in at an across-disc gain of exp(3) or less, assuming the

disc is in air to avoid self-focusing problems. With .5 J cm stored, the

line-peak gain will be on the order of .1 cm . This implies a 30 cm disc

at most. This value will vary with stored energy and the amount of gain per
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unit stored energy, but values much qmaller than those quoted increase

the amount of energy lost to the fixed loss coefficient in the glass.

Thus operation with discs of dimension larger than about 30 cm will be

very difficult, and operation in the 30 cm region will require great care

in edge'treatment to suppress parasitic oscillations.
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