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ABSTRACT

In disc laser gmplifiers, the achievable inversion (and thus the gain and
energy output) is limited by fluorescence amplification and parasitic
oscillatien. In this paper, analytic results and Honte Carlo calculations
of both these effects are presented for sphercs, circular discs, and
elliptical discs. The effects of gain, fluorescence line profile, refractive
indices, and disc thickness on flucrescence amplification are presented.

The loss rate is seen to increase rapidly above an across-diameter gain of
exp {5) or so, independent of thickness. Parasitic oscillation is analyzed
as a function of edge and face index ratios, and of edge roughening. Above
exp (3) gain, parasitic suppression is difficult, even with a rough edge.
Parasitics thus appear to present more difficulcies than fluorescence
ampiification., The effects of both processes on peak inversion achieved
during a pumping pulgs are alsc presented. In conclusion, the maximum
practical size of Nd™' glass laser discs is estimated to be about 30 cm
due to the effects of parasitic oscillation and fluorescence amplification.

Authorization

NRL Problem K03-08.502

Project No, ARPA Order 2062

This is a final report on one phase of the problem; work is continuing on other
phases.
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I. INTRODUCTION

Multi-disc laser amplifiers are presently of interest in the production
of high-energy light pulses for the generation of demse, high-temperature
plasmas for x-ray generation and controlled thermonuclear reactions. Disc
amplifiers, as compared to rod amplifiers, have the advantages of more
uniform pumping, easy heat removal, small size of individual glass pieces,
and less susceptibilit - to self-trapping. However, the design of these
amplifiers must b2 carefully carried out if costly and time-consuming mis-
takes are not to be made.

One of the problems which must be understcod before disc amplifier

(

-9
1-%) (sometimes

design is undertaken is that of fluorescence amplification
called amplified spontanecus emission, superfluorescence, or - incorrectly(lo)
- superradiance). Fluorescence amglification makes energy storage in
lasers more and more difficult as the inversion level rises. Section II
of this paper is a discussion of analytical and Monte Carlo calculations
of the limitations due to fluorescence amplification in various geometrical
shapes relevant to the disc laser problem, and of the effects of varying
size, shape, gain, refractive index, and line profile,

Another problem which arises in disc amplifier design is parasitic
oscillation. Such oscillation sets a sharp upper limit to the achievable
inversion, and often is a more serious problem than fluorescence ampli-
fication. In Section III of this paper, parasitic oscillation limits to
achievable gain in a single disc will be calculated as a function of the
reflections due to the refractive indices of a disc and its surroundings,

and as a function of the edge roughness of the disc.
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Both fluorescence amplification and parasitic oscillation act to limit -
the mexinum practical size of the discs in a disc applifier, since both pro-
cesse: get worse as a disc becomes larger (assuming constant inversion density).
Accurate analysis of both effects is therefore required to determine the exact

limications on size anrd gain.

IX. FLUORESCENCE AMPLIFICATION

Mgsay materials, when properly pumped, exhibit fluorescence (the sponta-
neous emiss).n of photons). The fluorescence arises when the upper level of
the fluorescent transition is populated by the pumping process, and
radiative transitions to the lower level take place. Once the pumping is
turned off the fluorescence usually decays exponentially with a time
constant called the fluorescent lifetime 7. An exponential decay implies a
that the process is linear ~ that is, that the fluorescence is linearly
proportional to the population in the upper level.

Suppose, however, that the pumping was so intense that an inversion
exists; the population in the upper level is greater than tne population
in the lower level. The pumped material then exhibits optical gain at the
transition frequency, and may be used to amplify light in a laser amplifier
or oscillator. However, the fluorescence continues under conditions where
gain exists; in fact, the processes of spontaneous emission (fluorescence)
and stimulated emission (gain) are inextricably interconnected. This means
that fluorescent light, once emitted within the volume of the material,
will be amplified before it reaches the edges. This increases the effective

fluorescence loss rate, which is the same as decreasing the instananeous

2
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fluorescent lifetime. Because the gain, and thus the added loss, now depends

E . on the inversion level. the fluorescent decay process is no longer linear.
Instead, the decay rate becomes faster as the inversion level increases.

This fluorescence amplification problem is especially severe in large laser

A
3
9

] systems, since the long path ieangths avzilable lead to large total gain and

L

thus large amounts of fluorescence amplification.

rh i

So far we have considered what happens when the pumping is over.

However, the fluorescence and gain processes also exist during the pump
pulse. If the fluorescence amplification is negligible, so that the system
is linear, then doubling the pumping amplitude will double the inversion.
In general, the peak inversion will be linearly proportional to the pump
pulse amplitude, This proportionality will be destroyed if gain exists in

the material. In the presence of fluorescence amplification, equal incre-

i ottt S i bl b0

ments of pumping will yield smaller and smaller inversion (and gain)

increases, because the decay rzte per unit of inversion will increase with

the inversion. The details of pumping in the presence of fluorescence

amplification are studied in Section IV,

A Ciarss wa DD s

In this section we will consider only single-pass fluorescence

Wi,

amplification. That js, the edges of the discs will be assumed to be

Syt

totally absorbing, so that once the fluorescent light hits an edge it is

not reflected back into the disc again. This is the best possible edge

ATy L

.

condition for an amplifier, since if the disc edge is not perfectly black

the light will be reflected back into the disc and excite furtuer stimulated

emission, thus increasing the fluorescence loss rate. We are therefore
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calculating an upper bound onr gain due to the effects of fluorescence .
amplification, since any actuzl disc will return some reflected light, thus

increasing the loss rate and decreasing the gain. We here limit ourselves

to the black-edge case because once light is reflected from the edges

oscillation will occur at some gain level and a different method of analysis

must be used to find this level (see Section 11I).

2. Fluorescence Amplification in a Sphere

We first calculate the stimulated emission in a sphere, not because
(11) . Tors .
sphere lasers are of interest but because an exact analytical calculation
is possible in this case. In addition, the sphere forms a simple system in

vhich to demonstrate the effects of line shape.

1. Single-Wavelength Calculation

Consider a laser material in the shape of a sphere. We will assume that
a spatially uniform inversion exists throughout the sphere, and make a
calculation of the instantaneous rate of fluorescence amplification. The
inversion causes the material to have a gain coefficient g, such that the
intensity of a pencil of light rays increases as P = Po exp (of), where £
is the path length along the ray direction., Suppose that spontaneous emission
releases a power of I per unit volume, If the sphere has a diameter D, the

total spontaneous emission is I x D3/6. We will calculate the amount by

e oo e L M BN I e £23 v B

which this spontaneous emission is amplified.

e

Introduce a system of spherical coordinates centered on the surface of

the sphere (Fig. 1). The angle ¢ is measured from the sphere diameter,

Lok canarnd S0 s

and 6 gives the rotation around the diameter, The distance r is meas.ced
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Fig. 1 - Coordinate system for the analysis of fluorescence
amplification in a sphere of diameter D. The origin is at the
sphere's south pole,
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aleng the direction defined by 9 and ¢. The element of volume in these

coordinates 1s r2 sing dx d§ d¢, and the fluorescence from this volume is
1 r2 sing dr d9 d¢. We assume that this fluorescence is emitted isotropically.

An element of sphere surface of area dS at the origin of coordinates will

At

intercept a fraction of the fluorescence equal to the proiected area of dS in

the direction of the volume element (dS ws¢) divided by the area of a sphere

(Y4

centered on the volume element and passing through the origin (4 st r2),

ety

However, the fluorescence will be amplified by a factor exp (or) before it
reaches dS. Thus dS will intercept a total radiation (spontaneous plus

stimulated) of

%; exp (or) as¢ sing dr d9 d¢ dS.

Now integrate this expression over the volume of the sphere to find the

total. flux on the area dS:

2n w/2 Dwso
dp:%/defd¢/dreqrm¢81n¢
o] [o] (o]

/2 D¢ g
=—13(1§/d¢/dre°xms¢sin¢ §
(o] (o] g
7/2 ‘ 8
- 248 /dqs (e“ D‘w¢-1> 25¢ sing . :
o
(o]
6 i
]
i
£
1
1
i
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With the change of varisble u = a5, the flux becomes

1

v mﬁmwymmpmm
{
i
|
l

o

A fire /ooy

1 ds
2a

A st
N
s

ol

total emission hitting the sphere surface is

T AP T T T T IR

Aty

| e TaM e L s n e

- 7
28 | B
where we have introduced the variable 8 = gP.

gain straight across the sphere.

emission is

dp—l-is-fduu
2a

=)

By symmetry, all elements of the sphere surface receive the same flux, so the

2 ap
Iz D e fp LYV, 1
, i Eod B e ] .

To find the amount M by which the original spontaneous emission has been

multiplied, divide by the total spontaneous emission 1 x D3/6 and find

L 2
l——‘>+-?-1 s
( B) ¢ }

Note that R is the log of the

The ratio of stimulated to spontaneous

K 1
h-3 [.2.9_ f-3)ed-a] -

B

Al

© e
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Our calculation has been for a single value of . However, in actual

:
]
i

laser materials the fluorescence and gain are distributed in wavelength

according to some line profile, with values from zero to the peak value being

O

represented. The effective values of the spontaneous emission multiplier M

St 3l b

and the stimulated~spontamecus ratio A are therefore found by averaging the

g i

single wavelength values over the line. From the viewpoint of fluorescence
amplification, the worst possible case would be a flat-topped or rectangular

line profile, since in that case the line average is equal to the peak value.

For more realistic line profiles, in which values less than the peak are 3

represented, the line average is less than the peak & by an amount which

depends on. the line shape.

GadlEnes,

It should be noted that M = 1 + A for any line shape, since by definition
M= @+ K)/J =1+ J/K and A = J/K, where J is the spontaneous radiation

arnd K is the stimulated radiation.

2. Lorentzian Line Profile

0 b bt o ek Sk o e

Let us, for example, calculate the values of M and A for a Lorentzian

XTIy
»

IR T

line profile. The gain (and the fluorescence, which has the same line

"

‘ shape) have the form

st

a
P

2
2(x - )\0)
W

seviae f Buvie g

1+

where ap is the gain at the peak of the line, ko is the center wavelength and

W is the full width at half maximum.

Ry Ty e

. o . N . g ., 5 " i e N e R C TN -
ol e Py . e i b A L s i o M A b 1 7, 37,88 30 m £ 5T . PRSP RN
i it s e e




Lok (Lidd oo

AR ot s

- - - e — e e e e e - m e e iy

Since all that matters when averaging over a line is the fraction of the
line representing different values of g, we need to find a function which gives

this amplitude weighting. For any symmetric shape of g, we have

_ 0
a : ]
f o 9d o 3
a do. .‘]
o 2
Introducing the variable x = of L we have 3
) :
:
=f M (ap) _oL(x) dx %
o E
3
where the Lorentzian weighting function pL(x) is given by k
dl 3
G.'TI !
p (x) = 3
f Clpa ‘_;l\ da 3
04 3
o B
3
—_— 4
_ o/x(1-%) .
= ¥ ]
f dx
S Jx(1-%) k
9
J
#
]
1
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Since the integral in the denominator is the beta function B{%,%) = =,

we have )

DL(X) -1 .
% fx(1-x)

The line-averaged value of the stimulated/spontaneous ratio is given by

AL =/ A (q_px) pL(x) ax

]
30 2e_9“(1_1_\+2_1__1__
Bx/ B3x3 S x(1-%)

where § = opD. Unfortunately, the various terms of the integrand lead to
(cancelling) infinities, We therefore calculate AL by a less direct method.
Firstly, we determine the power series expansion of A by expanding the

exponential and combining terms. We find

A='—8" +—E‘ +—7&8_+-2§6+“"'"
= T
=1 (n+3) (n+l) !
where B)\ = aD.
10
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Then the line average is

il

g%

n=1 (1-x)% (nt3) (n+1)!

We reverse the order of summation and integration, and use the fact that the

i il el

A

integral over x is a beta function to find

2 .3 4
_38.38 .58 .8
AL, =678 T768 10T e

_ i 38" ; 2r-1
N (n+3) (nil) ! 2r v
n=1

Since the series must be summed numerically tc find the AL corresponding to
some specific B, the error due to truncating at any n must be known., Let

the relative error due to ignoring terms beyond m be En’ so that
L n
AL = E: a B (1-+ € )
1 n \ m

n=

where

2 Lk im’

_ 3 g 2r-1)
T )@ g\ '
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1
9
2
3 Then we have
‘E i 0 / o n

€ = a B /E: a B . . 4

o (n=m+1 n )/ \n=1 n 3

]

] 3
1 As m Decomes large, the ratio of successive coefficients of B in the expansion 3
. of AL becomes
F

i (e3)(2mtl) 1

a (n+4) (i 2) (20+2) .7 °

=8 n-rz
F We therefore have an upper limit o the truncated part of the series:

1
©
2 a6n<§a 3::&-1 B nzam}é"+ .
- n — “ml m-9/2 _B ’
n=mt1 n=0 1l -
n9/2
Therefore

i a B\'m-l
* mtl ;
1 §H'<-————§———~——
3 - = :
] (1 m)Zm ;
f‘ o . j
4 where E:m = };Ll ap.

ad B o

3. Gaussian Line Profile

We may find the effect of a Gaussian line profile having the form

2 ’ p
£
W .

p 3

4

12 :

3

“

3
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by the same method used for the Lorentzian line. In this case, the amplitude

Lak e[ g diar iy

weighting function is

i g

i leg

1

p.(x) =
G - nX

TOPTIT

and term-by-term integration of the series expansion of A yields

TSP,

CCan

i A-38 B . g, 8
A = +t%35 togt — = teu.n
82 280,/5

e 3g" .
=2 (nt3) (1) ! /ol

n=1

IR

)

In this case, as in the Lorentzian one, the ratio of successive coefficients

apprcaches n + 7/2 as n = », and so the truncation error limit given for the

™t
.

Lorentzian line profile also applies to the series expansion of A for a

YT

Gaussian line profile.

4., Summary of Analytic Sphere Results

Table I gives numerical values of the ratio of stimulated to spontaneous
radiation A as a function of B (the log of the across-sphere gain at the

g line peak) for flat-topped, Gaussian, and Lorentzian line profiles of the gain

coefficient. For small values of 8, we see that A is linearly dependent on
B with a coefficient which depends on the line shape. The rise of A with R
becomes faster as B approaches unity, and is very fast for values of B much

greater than one., We shall see later that this behavior is typical of any

b

shape of laser material. The fact that decay rates rise sharply for g > 1

means that pumping becomes more and more difficult in this region.

pa i
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TABLE I

Ratio of stimulated to spontaneous radiation A in a sphere as a function of

the log of the across-sphere gain at the line peak B for flat-topped, Gaussian,

and Lorentzian line profiles.

B AppaT Acauss AL oRENT
.01 .003760 .002657 .001879
.02 .C07560 .005326 .003765
.05 .01900 .01340 .009470
1 .03852 .02710 .01913
.2 .07917 .05543 .03905
.5 .2153 .1634 .1040
1. .5000 .3252 .2326
2. 1.396 .8790 .5980
5. 12.97 6.497 4.153
10. 593.6 206.8 123.4
20. 3.457 x 10° 8.097 x 10° 4.670 x 10°
50. 6.097 x 108 8.778 x 107 4.992 x 10V
100. 7.98 x 10°° 8.055 x 10°° 4.562 x 10°°

5. Monte Carlo Calculation

The amount of fluorescence amplification in a sphere was also calculated

by means of a Monte Carlo optical power flow program,

Since analytical

results are available in the case of a sphere, it may seem pointless to

duplicate the results with an approximate method.

PR N T e
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However, the Monte Carlo
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program can be used with geometric shapes of arbitrary complexity. Thus it

e

is much more general in its application than analytic methods, but of course
any such program should be checked in a geometry where the results are known.

This is the reason for its use in the case of a sphere.

AL AR ey A it Ko

The Monte Carlo program is called ZAP. It traces optical power flow in

systems which are made up of segments bounded by planes, spheres, cylinders,

T T T RN A U TR R A
'

cones, conic surfaces, and so forth, or in combinations of such segments. The

material in the segments is specified by its refractive index and absorption

TR T

(or amplification) coefficient. The system surfaces may have constant or

T AT/ O e

3 angle-varying reflection, both specular and scattering. Each optical ray

carries with it up to two hundred wavelength intervals. The bulk and

surface properties of the system may vary with wavelength, and the optical

power in each wavelength interval will change according to the system

properties at its particular wavelength. Rays are started at random from

TR TR AT

specified sources (surface or volume) with given initial wavelength

} §
4 distributions of power, and traced through the system to find the deposition :

or extraction of power in all the system elements. A ray cut-off scheme is
used which assures that ray truncation error is small without wasting time
following weak rays. ZAP was designed for accurate modelling of laser pump
cavities (a job it does well)}, but it is also well suited to the calculation E
of fluorescence amplification in arbitrary geometries.

The sphere geometry was specified to ZAP, and runs of 2500 rays were made
for various values of B to achieve an accuracy of two or three percent.
The rays were started at random throughout the sphere, to correspond to

uniform inversion., All rays hitting the sphere surface were totally absorbed.
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Runs were made for a flat-topped line (one waveiength), for a line with a

Gaussian profile, and for a line with a Lorentzian profile., The Gaussian and

Lorentzian lines were modelled by dividing a line profile into equal intervals

of wavelength. The gain coefficient and starting power in each wavelength

intervalwere then taken proportional to the value of the gain coefficient at

the center of the interval. It is necessary to go a large distance out on

the tail of the Lorentzian line in order to get a proper weighting of low
values of the gain (recall that the Lorentzian amplitude weighting function
approaches infinity as the amplitude approaches zero). The final result,

with the above number and spacing of wavelengths, is about 1% high for a

sphere when the calculation is exact. To this systematic error, the

Monte Carlo method adds the previously mentioned random error of 2 or 3%.

A comparison of the analytic and Monte Carlo results for a sphere is

shown in Fig. 2. The agreement is quite satisfactory, since the exact

result lies within the Monte Carlo error limits in all cases.

B. Circular Disc

We will now consider the case of a circular disc, which is of considerably

greater practical interest, We will first perform an approximate analytic

calculation which is exact for infinity thin discs at low gain, and then
find the results for thick discs and/or high gain by the Monte Carlo method.

1. Analyvic Approximation: Thin Disc, Low Gain

Consider the spontaneous fluorescence emitted from a small element of
volume in a circular disc with a totally absorbing edge. Some of the radia-

tion will strike the edge directly, while the rest will hit the faces. Both

components will be amplified as they travel. The radiation which goes to

16
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Fig. 2 - Analytic and Monte Carlo values for the ratio A of 3
stimulated to spontaneous loss as a function of the product
B of the gain coefficient and diameter for a sphere, Curves are g

shown for three different line profiles of the gain coefficient.
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the faces can be further separated into two parts. Some will strike at less

than the critical angle for tctal internal reflection, in which case most

Ralieet ) ekl

will be transmitted and a small fraction (~ 5%) reflected back into the disc.
Some will strike at more than the critical angle, and will be totally

reflected back into the disc., This totally reflected component will continue

-~

s

to bounce back and forth between the faces until it finally strikes the black
edge. The path length for this process is the same as if the radiation had
gone straight to the continuation of the edge beyond the faces (Fig. 3).

Thus there are two parts of the circular disc gain calculation: the

radiation below the critical angle, and that above the critical anmgle.

o. Radiation below the critical angle

TR v

Consider a circular disc of diameter D and thickness L. A volume element

at a distance r from the disc center emits a pencil of radiation at an angle .

et AV S bbbl

TR TR o T ey

¢ from the normal to the disc (Fig. 4). The distance from the point of

T

e emission to the edge is 4; the ray travels a distance 4 csc ¢ before it hits
the edge. Note that this result is independent of the position along an

axis normal to the disc faces (the z-position) of the emitter. The distance

T =
e Mt SR JAX Il

1 depends on the angle § from a disc radius through the emitting element to 3

the emitted pencil, From Fig., 5 we see that

P

¥

2 N
1= (g)-(rsine)z-rmye. :

The radiation is multiplied by a factor of exp {a 4 csc ¢) as it travels to

the edge; we recall that ¢ is the gain coefficient in the material. . 3

18

£z ; \ " p . . et Smvasc B P P
e o i ki s v S N ki i s o L et St b M el e st PR O - IR 1 NSO, 2 SO U S ST UBURE N5 - - ST IS. b T PSS




< TR T TR e e
¥ I i At e A A ek ek e PR M SRR * R

3
m
*§90B3 S3IT UT OSIP Y3 JO SUOTIOVIFSa dTdIlTnw
£q powxoy ‘I9puildo ITUTFUT ue ur syjed suTTIYSTRIIS 03
JuoteAnbo 2a8 syjed syl °OSTP ABINOATO B UT UOTIOD[ISI [EUIDIUT ;
18303 £q poddeaz aae yoTym sdex yo syzed yo maTA opI§ - € 813 ‘
S ‘,
3 :
: 1S01
: dlL dll 3
3 W ]
'3 ' #
ko 2 H
i 7\ ;
1 M 4 w .u
3 ] m
| T ull :
s . 3
] | )
S A
K,
4 '
y f ”
2 “
w i
. ;
2 ‘w,
| i
E b
f ~
4 ' 1
S ;
3 .m
o g
E .
3 s
L 3
4
4 . .
v
G " T VO T Py L Py SO o cios o st Rada L i i da k3R S LA il Bl i Vina D B 2 ot ot A " -




= Es e TSR T T Y T )
Y sl S ol ) M e SaE D ¥ «

St

Eahala o

Sioda

T

M *JX921 99§ °*OSIP ABINOIATO B UT UOTIOS[FOI TBUIDIUT
_ 12303 Aq poddeas sT yotym Lex © jo ysed syz jo syreleq - H *814

e e

S

—

20

TR

-
.|

-
-—

R NN S N 2
St

zY m

R i e e e 4

J 3 it P
s g dAKS s s S ovt g gy A as Ol pl sl s Ko i LS b AL N st i ENALs TR rRE 8 By




i (ool i L ik Dt i U T T Y

}

; ‘umoys se /% < § PuB Z/x > g 103 WS ;

., 93 ST BTNWIOF ©9yjy °o3pe OSTpP dY3 03 UOISSTWd JO autod ayl !
; W13 9OUBISTP °Y3l JO UOTIBINOTED 2yl 103 AI39W0d) - ¢ ‘313 1
' “q
§S00 4~ 5(guIsd) - 5(2/Q) ' =7

2(2/Q) = 5(g uis 4) + {7+ §S004)

]
]

_ ]

M _,

i "
. : 3
; ; ”
| ;
| :
A

w k.

_ :

| w
- N
4 E

N TN 0 | VI UTORTT Y WLTT N TV SETTRN WY | SIS T Vo P YRy ack el st Do, iab a2 i b




4 T ———— e e P ) mauions My :',v:.., —— T R sttt 3 20 S o o b i e T T —— .».-«:\'1?_ -

Lt A >l

We must integrate over the disc volume (i.e., over r) and over solid

angle. The fractional disc volume at radius r is 8r D-2 dr, and the fraction

Rkt w0 Ut 4

of solid angle at 8, ¢ is (lm)“l sin ¢ dO d¢. The angle ¢ varies from SC 4

L teh

to n-Gc, where 9c is the critical angle, but by symmetry we can take twice

il it oy

PYTIVETY

the integral from Bc to %/2. Likewise we may take twice the integral from

(i)

0 to x for 8. The sbove-critical-angle integral for the ratio M of total to 2

spontaneous emission is then

ik S’ ks A o

PN

.

D/2 n/2 = D2 2 .2
% - ¢ sin 6 - r a8

8 l-“( )
};1=——ﬁrfd¢ dersin¢exp[ .
Bc 0

B ot

b14 DZO sin ¢

This is somewhat clarified by use of the dimensionless variable u = 2 r/D,

S e d i itz nie B vt N

whence
Lowlzox T2 s
2 ~ aDil4y 1l - u” sin"6 - u a8
; M, =2 ﬁujd¢ /;9 u sin ¢ exp .
< 0 9 6 2 sin ¢
4 c
: For the low gain condition gp << 1, we can expand the exponential in its —‘
power series and produce a simpler integral: ;
1 3
9 Y2 2 qD(Jl - u? sin’ 0 - (&SG) :
M =—fdr:/d¢fd9usin¢ )+ t ... .
LI 2 sin ¢
0 Gc 0

The first term in the series yields the simple result cwec, but the second term
is more difficult. Sin ¢ caucels in numerator and denominator, so the ¢ integral
is just (/2 - ec), leaving
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}11=¢w6 +-G—D (E-G)fdti/-dSu(Jl-uz sinze-umfe).
c n 2 c
0 O .

In the 9 integral, the av O portion integrates to zero, leaving twice the
complete elliptic integral of the second kind

b1

2E (u2> =fd9 (Jl - u2 sin2 9).

0

so that

1
M. = 6 +la_D_ (E-Q)fdqu(uz)
1 [ n 2 c
0

which by the change of variable q = u2 becomes

1
. oD (x ) [
= me O o (x _ E
I"ll [£79) “c + - (2 ec/ dq -(q)

thus yielding the final resuslt

where G = ,9159656 -+« is Catalan's constant,
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8. Radiation above the critical angle

Let us follow the radiation emitted at above the critical angle for

total internal reflection by a2 volume element at distance b from the disc face
(Fig. 6). Starting at angle ¢ from the normal to the face, the ray travels

a distance b sec ¢ before it hits the face. The relative strength is now

VA RERES Oy

. exp (o b sec ¢). A fraction T is transmitted through the face and (for our

purposes) lost, while (1-T) is reflected and crosses the disc. The path length

to the opposite face is L sec ¢ (recall that L is the disc thickness), and

AU

so the reflected ray is amplified by exp (oL sec ¢). It then again loses

a fraction T to the outside, and (1-T) recrosses the disc, is amplified, and

is partially transmitted and partially reflected. The bouncing process

continues until the ray hits an absorbing edge. Let the relative strength

at the first encounter of the face be P = exp (o b sec ¢), and define the

gain on a pass all the way across the disc to be K = exp (a L sec ¢). Then 2
the ray strength is as follows (Fig. 7): ?
1 at the start
P at the initial face intercept %
‘ P(1-T) after the first reflection 5
P(1-T)K after crossing to the opposite face %
P(1-T)2K after the second reflection §
P(l-'I‘)ZK2 after the second full crossing %
P(l—T)3K2 after the third reflection ;
P(l-T)3K3 after the third full crossing 3

and so forth. The total amount radiated is then PT + PT(1-T)K + PT(l—T)2K2

+ P'I‘(l-T)3K3 4+ ... which sums to PT/[l - (1-T)K] if we take an infinite number

24 %
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of terms.

Of course, the actual ray will terminate after a finite number of

.
3
F bounces, but the error in the infinite-bounce approximation is small as long

ATt

as the gain across the disc times the reflectivity is small, in which case

the ray strength is reduced to a negligible value in just a few bounces. This

37
"

14

small-gain case is exactly the one we are calculating, so we will use the
; infinite-bounce approximation above, which overestimates the actual result.

We must integrate over angle and position to find the overall average

an

gain. The fractional solid angle at angle ¢ is sin ¢ d@¢/2, and the fractional

volume is db/L (note that the r and 9 integrals have vanished because there is

no r or 9 dependence in the infinite-bounce approximation). Then the above-

Lla

"R

critical-angle radiation contributes approximately

il

I
.
e

Lyt

ec I}‘ . :
y =1 4 T exp(ag b sec ) sin ¢ B
2 —Lﬁé‘} ® T (1-T) expla L sec @)

0 0

T
e

where we have (by symmetry) taken twice the ¢ integral from 0 to ec rather

5l i

than the integral from 0 to Gc plus the integral from = - Bc to . For

i s S

ol << 1 we expand the exponentials in the integrand and divide to get

T

6 L ;
c r E
. 1 f . o . (1-T) oL ‘
1 == d d * ...
3 M2 L ¢.) bsing {1+ o f Tas o
F 0 O
]
c 1 1 k
. al\7 -~ 3 3
= fdp sin ¢ {1+ — ...
0 ® 9 j
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which integrates to

. \ {1 1 1
EIZ—(I-WBC)TQL\E-E% ﬁ'i... .

While performing this calculation we have made another approximation: we have
assumed that the tramsmission T is iIndependent of angle, and have ignored the
fact that T depends on polarization. In actual fact, T decreases as ¢
approaches the critical angle, and more radiation returns to the disc to be
amplified. If we use the normal-incidence value for T, this approximation
underestimates the actual result, and (hopefully) tends to offset the over-
estimate due to the infimite-bounce approximation. In any case, both
approximations get better as the disc gets thinner, since then even a ray
starting near the edge takes many bounces to get to that edge, and the
across-disc gain is low so even if a ray takes more bounces to exit than
we calculate (due to greater reflectivity) the added radiation is small.
Y. Total Result

Adding together the results above and below the critical angle, we find

that for low gain (aD << 1 and gL << 1) and thin discs we have

9
1 1 1 1 1
M=1+ oD 2 ;2 5 FG) + ok \7 -3 &z'———a— .
c

This result is for one value of a, and thus corresponds to a flat line

profile. Values of m corresponding to other line shapes may be calculated

as in the sphere case,
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With a Lorentzian line profile, the amplitude weighting function is

kAl St Mar b ¥ SRS o i) 4

pL(x) [%Jk(l-x):]_l. We can write M in the form M = 1 + Bg()), where

B is independent of A. Then

1
L "Bax

ML = fJdx —————

3 0 ﬂ;\/X( l-X)

1 _—
1+§Q'fdx JE—
b1t 1-x

0

M i it Pt ikl L L
1}
ot
+
= E?
IEY
-

g

where ¢ is now the gain coefficient at the line peak.

We thus have

or

M=

'—l
+
(=]
(o]
P S
=
1
Rle®
N
N
+
-~ @ ,
+
R
=
P S
N [
N
1
e
g
s
P
8 |-
D
o)
S’
Sl e padesd )

-1
With a Gaussian line profile, p, = (;Ln zn}c> and we get

Al 2

1
M gfdx.]i.B_q_g_
G
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We thus have

or

8) (

ab 1 clf1 aLfl 1 1

M =1l+—={s-—N5+G] +—|=-7) Wl -7 .
G- 2 (2 7 (2 2 (T 2) avec)

Since the low-gain result in any geometry will always have the form
M =14 Cq or A= Co (wvhere C is a constant depending on the geometry), the
flat-topped, Gaussian, and Lorentzian lines will always have the low-gain ratios
2:J§:1 exhibited for the sphere and cylinder.

2. Monte Carlo Calculation

ZAP was used to find the stimulated-spontaneous ratio A in circular
discs. Again the inversion (and thus the gain coefficient) was assumed
spatially uniform. The reflection at the face was taken as the average over
polarization. In Fig., 8, we see the results for flat, Gaussianm, and

Lorentzian line profiles in discs whose thickness is 20% of their diameter,
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Fig. 8 - Monte Carlo values of the ratio A of stimulated to
spontaneous loss as a function of the product B of the gain
coefficient and diameter for a circular disc of thickness equal
to 20% of its diameter. The ratio of the refractive index
inside the disc to that outside the faces is 1.56. Curves are 7
shown for three different line profiles of *he gain coefficient. ;
The low-gain, thin-disc approximation is shown for comparison.
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The refractive index inside the discs was 1.56 times the index outside and the
4 circular edge of the disc was totally absorbing. The A ratios are shown as a

3 function of B = ¢ D, where g is the gain coefficient at the line peak and D

is the disc diameter. Also shown is the small-gain, thin-disc approximation.

The approximation is seen to be good below B = .1, even for discs this thick.

The A curves have the same general shape as the curves for a sphere,

ixd

except for a faster rise when A is greater than one (this faster rise is due

AT

to the longer path available in the cylinder due to total internal reflection

Nt

from the £faces).
% The amount of fluorescence amplification in a disc depends on the disc
E thickness and on the ratio of refractive indices inside and outside the

sphere, as well as on the gain coefficient. As the cylinder index approaches

the index of its surroundings, less and less of the light inside it under-

goes total internal reflection, and A becomes lower. For exact index matching,

no light returns into the disc and A has its minimum value. The variation of

A with index ratio is shown in Fig. 9 for various values of B. The low-

2t
o diibaia o A il

Ny

gain, thin-disc approximation is also shown in Fig. 9, and is seen to match the

7

Monte Carlo results well except at low index ratios, where the angle for %
é total internal reflection increases and the infinite-bounce approximation ]
7 breaks down. ]
E The Monte Carlo results for the variation of A with relative disc %

thickness are shown in Fig. 10. The values for B = .1 are compared to the

low-gain, thin-disc approximation., The approximation is seen to be good to

at least 80% disc thickness, The most interesting feature of these results
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FRACTIONAL THICKNESS

Fig. 10 - The fluorescence amplification in a disc of 1.56 inside-
outside refractive index ratio as a function of the ratio of the
disc thickness to its diameter. The increase is slow because the
principal contribution is from rays undergoing total internal
reflection, and this contribution is independent of thickness. The
low-gain, thin-disc approximation is compared with the B = .1 result.
Note broken vertical scale.
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is the very slow increase of fluorescence amplification with disc thickness.

Ll v ks ity

This slow increase arises because much of the fluorescence amplification in a

disc is due to rays which are totally reflected at the faces of the disc, and

the contribution of such rays is independent of disc tnickness, Since useful

SR AU £ ) o e

laser gain is roughly proportional to disc thickness, discs should be as

il

thick as possible within the constraints of pumping uniformity, thermal

it

distortion, self-trapping, and fabrication difficulty. There is also an
obvious advantage in trading a thick, weakly-doped disc for a thin, highly-
doped disc, since fluorescent lifetime usually decreases with doping.

C. Elliptical Disc

Analytical computation is difficult in the case of an elliptical disc, 1

and unnecessary in light of the good fit of the Monte Carlo results to the

TR YL T

sphere and circular disc cases. Therefore only Monte Carlo calculations

were made in this case. The computations were for discs whose major and minor

axes were in the ratio 1:0.5, which is typical of laser glass tilted at

4 Brewster's angle in air if the beam is round. The thickness was 1/7 of the

E: major axis, since this corresponds to an actual disc in use in a multidisc

E laser amplifier in our laboratory. Once more, the inversion was uniform,

b

the insidewoutside refractive index ratio was 1.56, and the curved edge was

ok

totally absorbing. 4

L

The ratio of stimulated to spontaneous radiation, A, is shown in Fig, 11

I T TR RS

as a function of R = o D, where D is the disc major axis. The results are

about 70% of those for a circular disc of diameter equal to the ellipse

el

major axis, for low values of B. As B increases, this fraction decreases.

£k
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?s Fig. 11 - Monte Carlo values of the ratio A of stimulated to

spontaneous loss as a function of the product R of the gain
coefficient and major axis for an elliptical disc of minor axis
50%, and thickness 14.3%, of its major axis. The inside-outside
refractive iadex ratio is 1.56. Curves are shown for three
different line profiles of the gain coefficient.
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The radiation absorbed by the disc edge and that exiting from the disc
face were found separately in the elliptical disc calculations. These values
are shown in Fig. 12 as a function of B. We see that the greater part of the
stimulated radiation increase at high B goes to the disc edge, rather tham
to the disc face. 1Inm high energy systems, the edge absorber may thus have
to withstand large loadings.

D. Discussion

e have studied the problem of fluorescence amplification, in which the
fluorescence emitted by a material with optical gain is amplified by stimulated
emission as it passes through the material, thus increasing the natural
fluorescent loss rate. We have defined the ratio of total loss to fluorescence
M and the ratio of stimulated to spontaneous loss A.

Fluorescence amplification causes pumping to become more and more difficult
as the stored energy (and thus the gain) increases in a material, In effect,
the energy decays with an instantaneous fluorescent lifetime given by 1/M,
where 7 is the natural or low-gain lifetime, This means that as the pump
strength is increased, inversion will not increase in proportion. The resulting
pump efficiency decrease is a slow function of the pump energy, rather than
the abrupt upper limit due to parasitic oscillation (Section III)., The exact
details of the process depend on the geometry of the material and the
fluorescent line shape, but in general pumping is quite difficult when the
gain across the longest dimension of the material is about exp (5) = 150
or more (we assume that the natural lifetime is not extremely long, so that
its decrease by a factor of 10 is a serious problem). The effect of fluore-

scence amplification on pumping will be considered in detail in Section IV.
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The line shape of the fluorescent emission (and gain) is important because
a line with broad, low wings has less fluorescence amplification than a more

rectangular line, for the same peak value of the gain., For low gain, we

have shown that the ratio A has the relative values Z:VE:I for flat (rectangular), é
Gaussian, and Lorentzian gain profiles; Monte Cario calculations show that 3

these relations are roughly maintained at higher gains. Actual laser ;

materials often have complicated, multi-peaked line profiles, but in principle ;

we could find the single-wavelength value Al for the geometry we are using

and then (perhaps numerically) integrate this with the amplitude weighting

function corresponding to the laser material we are using. In practice, it is

undoubtedly sufficient to estimate where in the flat-Gaussian-Lorentzian

family the actual line shape lies and to interpolate to find A for that

o gh

line shape.

Dahar

"

The geometry of the amplifying material strongly influences the amount of

fluorescence amplification. In the simple case of a sphere, A and M depend

{
only on the product of the gain coefficient ¢ and the disc diameter D, and

of course on the line shape. When we consider a circular disc, we find that

A and M depend not only on gD, but also on the refractive index ratio between

the inside and outside of the disc, and on the ratio of thickness to diameter

of the disc. An index match between inside and outside is desirable since it

leads to the least possible fluorescence amplification, However, in short-

pulse high-power lasers the index-matching mateirial may cause problems due to

self-focusing damage, so this remedy is not always available. The fluorescence

amplification is also least for vanishingly thin discs, but of course such

discs have insufficient gain along the path of the actual laser pulse to even
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overcome their own surface losses. Since the increase of fluorescence
amplification with thickness is slow, it is not harmful to increase the disc
thickness until it is limited by other considerations. For example, the

deposition of pump energy changes with disc thickness, but this question is

beyond the scope of this paper. An elliptical disc has the same type of index
and thickness behavior as a circular disc, but the fluorescence amplification
is somewhat less than in the circular case. Elliptical discs have the addition-
al advantages of smaller size and hence lower cost (when compared to circular
discs tilted at Brewster's angle to a circular beam) and closer coupling to

the pump sources.

ITII. PARASITIC OSCILLATION

Parasitic oscillation takes place when a material with optical gain has
in it (or through it) a light path which returns on itself. Under this
condition, the material will break into oscillation when the gain is large
enough to overcome the path losses. Such undesired oscillation will make
it impossible to increase the stored energy in the oscillating volume, since
once oscillation begins all further pumping is immediately converted into
oscillating power and lost. If the mode of oscillation fills an appreciable
fraction of the laser volume, it thus sets a sharp upper limit to the available
stored energy, and therefore the gain. If the mode gain does not vary greatly
with frequency across the gain line profile (or if it oscillates so rapidly
as to effectively sample all values of gain in the line), then the place

where oscillation will begin is the line peak. This means that the maximum

P P
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gain coefficient ¢ determines the oscillation threshold, so that rectangular

line profiles are the best from the view point of parasitic oscillation,
since they maximize the available laser output at the onset of oscillation.
Parasitic oscillation cannot be calculated by ordinary Monte Carlo
methods, since the power in oscillating modes typically flows in precise
directions at zny point in space. Unless the Monte Carlo algorithm is
lucky enough to start a ray at exactly the correct position going in exactly
the correct direction, it will not find the mode at all., Imagine, for
example, the simple case of two reflecting plane mirrors 1 cm in diameter
spaced 10 cm apart, with a laser material between them. In the case of
such large mirrors, we con ignore diffraction and do a simple ray-tracing
analysis. The mode occupies the whole volume between the mirrors, so the
Monte Carlo method just has to get the angle right. In fact, however, there
is only one exactly correct direction - the direction perpendicular to the
mirrors. Rays at a small angle from the correct direction will bounce between
the mirrors a number of times before they miss a mirror and exit from the
system. On the average, a ray at an angle € from the system axis will

bounce N times, where N is given by

where d is the mi.ror diameter and {4 is the inter-mirror distance. If the
Monte Carlo method starts rays at random in angle, the probability of getting

N or more bounces from a ray is
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The rapid decrease of p as N increases means that a very large number of rays

must be started to get a ray with many bounces. For our 1 cm by 10 cm
resonator, we must start 16,000,000 rays (on the average) to get one with
100 or more bounces. Clearly, random-starting ray-tracing methods are not
suitable for mode finding unless considerable modification is made to them.
Without such modification, a Monte Carlo algorithm may give what seem to be
perfectly reasonable results even in the presence of an oscillating mede
above threshold.

Since our Monte Carlo program is unsuitable for the analysis of
parasitic oscillation, a simplified analytic method was used iastead.

The method uses a simple ray-tracing viewpoint which ignores diffractien
effects. 1In addition, phase is ignored and only amplitude is considered.

Both these simplifications are justified on the basis that typical discs used
in large lasers are very much larger than a wavelength, so that modes have low
diffraction loss and close spacing in waveleng-h.

We will first consider lossless modes which rely on total internal
reflection, then modes which have some loss and thus require gain in the
laser material to achieve threshold, and finally the effects of a rough
disc euge on the mode threshold.

A. Lossless Modes in a Circular Disc

It is possible for a mode which is totally lossless to exist in a
circular cylinder because all reflections are by total internal reflection.
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Consider, for example, the disc shown in Fig. 13. The disc faces are in
contact with a medium with refractive index n, the disc itself has index
n,, and the (smooth) edge of the disc is clad with an absorbing material

of index ng (we ignore any imaginary component of the absorber indexj.

If the edge coating index n, is less than n,, then total internal reflection
is possible off the inside of the disc edge, and a ray can bounce losslessly
around the disc perimeter in a plane parallel to the faces (Fig. 14). In
addition, if the outside index n, is less than the disc index n,, a ray

can bounce from face to face of the disc by total internal reflection

(Fig. 15).

In general, a ray may bounce off both the faces and the edge, and the
ray path will be complicated (Fig. 16). We can describe such a path in terms
of two angles: Y measures the angle of the ray from a disc diameter (Fig. 14),
and 6 measures the angle from a normal to the faces (Fig. 15). The angle of
incidence on the faces is thus 8, and the angle ¢ of incidence on the edge
obeys as¢ = axsY¥ sin 6. Thus as O becomes smaller, ¢ becomes larger. For a

ray to be lossless, we must have both 6 > Gc = sin—l(nlln and

2)
¢ > ¢c = sin-l(nB/nz). This dual condition sets a lower bound on ¥, since

we must have as¥ < av¢C/sin GC. Thus we must have

which implies that thie lossless oscillation exists only outside a center

portion of the disc of radius R = D/2 sin Yo’ where Wo is the minimum value of V¥,
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Fig. 13 - The disc configuration congidered in the parasitic
oscillation calculation. A circular disc of index n, is
embedded in a material of index ny. The edge of the disc is ]
clad with an absorbing material of index nj. 4
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We conclude that if the edge coating refractive index is less than the
disc index lossless modes can exist in a circular disc. This means that
as soon as there is any gain at all in the material oscillation will commence
and further gain rise will be inhibited. The actual mode volume depends on
the edge/disc and outside/disc refractive index ratios. It is clearly
desirable to have the coating index larger than the disc index, since then
lossless modes do not exist.

B. Lossy Modes ian a Circular Disc

Even if there are no lossless modes in a disc, it will still oscillate on
lossy paths if the gain is high enough. We wish to find the maximum gain
achievable without parasitic oscillation, so we must find the mode with the
least loss.

Consider a path which reflects off the disc faces by total internal
reflection, but which has only partial reflection at the edge. We will use
the same angles Y, 0 as we used in the previous section to describe the ray.
Let us assume that the edge reflection is given by RO’ the larger of Fresnel's

reflection coefficients. Then
. 2
R = sin(g-x
sin(gtr)

where r = sin-1 (n2/n3 sin ¢) and ¢, as before, is given by ¢ = zw-l(nlln2
osY) when B is equal to Sc. The path length between edge bounces is
D asY/ sin ec =D n2/n1 asY, where D is the disc diameter. To oscillate, the

net gain must be equal to unity, or
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sin{(¢-r 2 nl
sin(@+r) e

where ¢ is the gain coefficient at the line peak, ¢ = azy-l(nlln2 5Y) and

it
[

. -1 . . . . .
r = sin (n2/n3 sin @¢). We could now vary VY in this expression to find the
minimum  required for oscillation, but it is sufficient to examine the

behavior at ¥ = 0 and Y = nt/2. Solving for gD, we have

sin(gtxr
2nl%lrsin(qs—r)]

n b4
26‘&5‘.

B(v) =aDd=

and

2, 2
i o214+ o
8(0) = 2 p fn \19‘212‘1'+
VoPp'-1 - P

h = = i
where p nl/n2 and ¢ n3/n2, while

:

B(x/2) =

~

£
Qh1
; Il

Ve have again used the variable R = gp.

The calculation is only valid for n, < n, snd Ry >mn,, or p < 1 and

2
o > 1. 1In this region B(0) is always less than B(n/2), so we find that the
lowest threshold modes are those in which the ray proceeds across a diameter 3

of the disc, bouncing from face to face at the maximum angle which will

EYRNY T A

produce total internal reflection. Such modes obviously fill the entire
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disc volume. The threshold condition may be written

e .

2n \lnz-nz-i-nz-i-n

_ __}:zq 1 2 3 1
scarr‘nz ’ \[nz_n2+n2,n :

T "2 3 1

Since the worst-case rays are those that travel diametrically across a
circular disc, we expect the threshold for an elliptical disc of major axis

equal to the disc diameter to be essentially the same as the circular threshold,

since the same path is available., The surface curvature at the reflection

points is of course larger in the elliptical case, but this should raise the

threshold only slightly, since all it does is make the resonator somewhat

more unstable,

In addition to the modes involving reflection off the edges, a relatively

thicrx disc may also oscillate between its faces. The threshold for this process

is easily calculated, since the face reflection at normal incidence is

and the gain from face to face is just exp (gL), where L is the disc thickness.

We must have R exp(cl) = 1, or

n2 + n1
n, - n ¢

1

(L) gy = 2
Of course, this result also applies to elliptical discs.
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C. Combined Oscillation Diagram

We may show the effects of both lossless and lossy modes on a single

diagram in the p, ¢ plane (recall p= n1/n2 and g = n3/n2). When lossless

modes fill the disc from a radius R outward, we use

3

14 2
v== 41-
0 ag

and
sin ¥V =

to derive
2

Thus the locus of constant R in the p, ¢ plane is an ellipse. This result

applies if p <1 and g<1l; if p > 1 then there is no total internal reflection
off the faces and the answer becomes independent of p, since the oscillations
lie in planes parallel to the disc faces and ignore the condition at the

faces.

Lossy modes obey

I

B,

U c2+Q2—1 + 0

S W s
ctp-l-p

oy

]
so we may draw loci of constant B in the p, g plane to show how much gain

may be achieved before oscillation commences. The lossy mode calculation is
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valid if ¢ > 1 and p > 1, and again if p > 1 the expression becomes independent
of p.

The diagram showing lines of constant oscillation-free radius R and lines
of constant across-disc gain log 8 is shown im Fig. 17. From the view point
of oscillation suppression, the best place to operate is with both edge and
face index-matched, since oscillation is impossible under these circumstances.
If other considerations make such operation undesirable, the degree of
oscillation difficulty encountered with other choices of refractive indices
is easily evaluated from the diagram.

D. Parasitic Oscillation with a Rough Edge

Since the oscillatory modes considered above rely on rays which follow
specific paths, one method of reducing oscillation tendency would seem to
be the roughening of the disc edge, so that an initially parallel beam would
be smeared out in angle. This ought to remove much of the energy from iiie
mode, thus increasing the loss. However, energy will also be scattered into
the mode from rays initially not involved. Clearly, a quantitative analysis
of this situation is required. Again s Monte Carlo approach is inapplicable,
since a ray which is randomly scattered at the edge has the same low
probability of getting into the high-gain region of the mode as was the
case with specular modes. Of course, we expect the active mode volume in
space and angle to be larger with a rough edge than in the specular case,
but the amount by which this helps the Monte Carlo method is hard to estimate.
The rough-edge oscillation was therefore analyzed by a method related
to the well-known method of analyzing modes in an optical resonator. An
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Fig. 17 - Combined diagram of lossless and lossy parasitic
oscillation as a function of the index ratios of a circular
disc. In the lower part of the diagram(n3/ny < 1), the
fraction of the disc free of lossless oscillations is shown.
In the upper part (n3/n2 > 1), the B required to commence
oscillation along lossy paths is shown. See text,
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initial angular distribution of optical power was assumed at the disc edge,
and the power was then transported across the disc (with gair), reflected
with loss, and scattered in angle. In general, the distribution after this
process was different, in both amplitule and shape, from the original
distribution. The gain coefficient was adjusted after each iteraticn to
keep the amplitude constant, and the process was reiterated until che
angular distribution of power had reached an equilibrium state. Aiter
mary such iterations, the gain had the value appropriate to the oscillation
threshold, and the angular power distribution was that of the oscillating
mode. Once again, diffraction and phase were ignored.

Since radiation which is totally internally reflected from the disc
faces has much higher gain travelling across the disc than radiation which
is only partially reflected, the power was assumed totally lost when it
was partially reflected, With this assumption, all points on the disc
edge are equivalent, and only the angle of the optical power is important
(as opposed to its position). The hemisphere of possible angles was
divided into sectors of equal solid angle, and the resulting matrix of
powers was iterated as above. The edge roughening was simulated by taking
the unit vector along the direction of the reflected ray, and adding to it a

random vector with uniform distribution throughout a sphere of radius

F ais9, where F =1 and § is the angle from the reflected ray to the normal.

oy e

The resulting vector was then renormalized to unity. Various amounts of
surface roughening were simulated by varying F from zero (specular reflection)

to one (very rough). The edge reflectivity R was independent of angle.

) Bises s piesdit.
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2 . The increase in threshold due to increasing F is shown in Fig. 18

for various values of the edge reflectivity. There is obviously improvement

over the spacular case, but it is not as great as might be expected. From

a practical viewpoint, it is very hard to reduce the reflectivity of z rough
surface to the low vslues achievable by index-matching a smooth surface,

because of the many pits and cracks in a rough edge. Therefore one should

be cautious when attempting laser improvements by edge roughening.

Hach) vr\"‘v\‘,AF"”" R

E, Discussion

We have shown that lossless modes exist for certain refractive index

i ratios between the inside, outside, and edge of a circular disc. Even if
these modes are suppressed by proper choice of the indices, lossy modes
will still exist. Such mcdes place an upper limit on gain, since once the
gain reaches the mode threshold for oscillation, no further gain increase is
possible in the mode volume. Highest gain is achieved for close index
matching between the disc and the material in contact with its faces, and
between the disc and the absorbing coating on its edge. We have shown
what gain is possible if proper matching is not feas:ble for reasons not
connected with oscillation.

Even if the absorbing material on the edge is ¢ good index match to the
disc, there may be areas of less-than-perfect adhes.on, or chips and cracks
in the disc edge. Such flaws will have reflection larger than the coating-
disc interface, aud in practice will make the achievement of very high

absorption at the edge difficult. If the higher-reflectivity flaws are small,
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Fig. 18 - The moderate improvement in oscillation threshold

achieved by various amounts of edge roughening,

F is proportional

to the amount by which the reflected rays are smeared out in

angle about the specular direction,




diffraction will spread the reflected energy, but we have seen that such
spreading causes only small threshold improvements. Thus a well-index-~
matched materizl must be applied extremely well to a flawless surface if

a high parasitic oscillation threshold is to be achieved.

IV. EFFECTS ON PUMPING

Our Giscussion so far has been confined to an instantaneous snapshot
of the fluorescence amplification and parasitic oscillation processes.
Lasers are usually pumped by relatively slow pump pulses, and we are
interested in knowing what decrease in efficiency is caused by the loss
processes we have calculated during such a pulse. We will first find the
effect of fluorescence amplification, and then the effect of parasitic
oscillation.

A. Fluorescence Amplification

In the low-gain case, when fluorescence amplification is negligible,
the stored energy decays with the fluorescent lifetime 7. The gain has the
same behavior, and so we may write a differential equation for the across-

disc gain log B in the form

]
B=p(t) - /7

where p(t) is the pump pulse (in appropriate units), At higher gain,

fluorescence amplification increases the loss by a factor M, and so we have

8= pt) - BM (B
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If we normalize to 7= 1, and assume a hzlf-sine approximation to the pump

pulse, we get
o B
B—_--—?; sin (-,’rt—t) - (B 0<t<T

where ﬁo is the area of the pump pulse and T jis the base width of the pump
pulse (in uvnits of the fluorescent lifetime). In the range 0 <M <5, we

may make a good approximation to M for any of the geometries and lineshapes

studied by using the form

M = exp (f R+ G 82 + H 63) .

Note that F may be found from the low-gain value of A, since A =F { when
B << 1, We may then find G and H by fitting a straight line to
(GnM/B - F)/B = G + HB.

Oncz M is approximated, we may integrate the differential equation for
B until it reaches its peak value. A plot of such maximum values is shown
in Fig. 19 as a function of the pumping Bo’ for various valuves of the pump
pulse width. We see that fluorescence amplification is more serious for
slow, large-area pump pulses while faster or smaller pulses suffer less
loss. 1In the design of a flashlamp-pumped laser, the effects of current
density on the pumping efficiency of flashlamps, and the effects of energy
input on flashlamp iife, should be integrated with this decay information
in order to choose the optimum operating point,

Spatially uniform gain has been assumed in all our calculations of
fluorescence amplification., However, the removal of energy due to
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fluorescence amplification will be spatially non-unjform in general. Thus the

:

gain will become non-uniform during a pumping pulse even if the pumping is
uniform. The analysis of this problem is beyond the scope of this paper, but
it is clear ti.at proper tailoring of the spatial distribution of the pump
energy can reduce or eliminate the difficulty.

B. Parasitic Oscillation

Parasitic oscillation causes a rapid limitation of stored energy, rather
than the slow limitation we have seen above for fluorescence amplification.
This is because a mode below its oscillation threshold contributes little
to the loss rate, but once the mode is over threshold the loss rate is equal
to the energy input rate. Thus the gain is sharply limited at the oscillation
threshold. Figure 20 shows again the curve of gain versus pump area for a
pump pulse of base width equal to the fluorescent lifetime, and also shows
the type of gain saturation expected from the onset of oscillation. The
oscillation threshold is shown for various ratios of the refractive index
of the disc edge coating to the refractive index of the disc; this ratio
determines the reflectivity at the edge. We have again assumed a disc-to-
environment index ratic of 1.56. This diagram illustrates that unless
very good index matching (or other reflection suppression) is used, parasitic
oscillation will limit available energy storage well before fluorescence

amplification losses become appreciable.

250zt e R

V. CONCLUSIONS

The effects of fluorescence amplification and parasitic oscillation on

advioes balell e

laser energy storage and pumping efficiency have been analyzed. Fluorescence
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amplification sets no definite upper limit on stored energy, but instead

makes pumping more and more difficult as the energy density rises. Parasitic .

Pt Tt

oscillation, on the other hand, sets an abrupt upper limit to stored energy

1 at the oscillation threshold.

e

Fiuorescence amplification is minimized by index-matching the material

in contact with the faces of a laser disc to the refractive index of the

o

4 disc. Increasing the disc thickness causes only a slow increase in the amount
; of fluorescence amplification, so thicker discs are of value if pump uniformity
and thermal distortion limits are not exceeded.

Parasitic oscillation will occur at very low gain levels if the edge
cladding material has a lower refractive index than the disc material. If
this error is avoided, the level at which oscillation occurs will be
maximized if the cladding index is as close as possible to the disc index.

In addition, index-matching the faces raises the oscillation threshold.
Roughening of the edges does not cause a great increase of the oscillation
threshold, and may increase the average reflectivity of the edge, thus
doing more harm than good,

What limitations do fluorescence amplification and parasitic oscillation
place on glass laser amplifier disc size? Figure 20 shows that parasitic
oscillation is the worst problem. Unless stringent precautions are taken,

oscillation will set in at an across-disc gain of exp(3) or less, assuming the

disc is in air to avoid self-focusing problems, With .5 J cm-3 stored, the

line-peck gain will be on the order of .1 cm-l. This implies a 30 cm disc

at most, This value will vary with stored energy and the amount of gain per a
g
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unit stored energy, but values much smaller than those quoted increase

oo

hc"

the amount of energy lost to the fixed loss coefficient in the glass.

Thus operation with discs of dimension larger than about 30 cm will be

AR RIS s

very Gifficult, and operation in the 30 cm region will require great care

in edge’ treatment to suppress parasitic oscillations.
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