
^     ■■■!» NnnRPVMmpiKIPV ■ mmmmmtimmmm m 

NPS55LW71122A 

o 

Q 

United 
Naval Postgraduate School 

SIMULTANEOUS ESTIMATION OF LARGE NUMBERS OF 

EXTREME QUANTILES IN SIMULATION EXPERIMENTS 

by 

A. S. Goodman 
IBM Research Lab 

P. A. W. Lewis 
Naval Postgraduate School 

H. E. Robbins 
Columbia University 

December 1971 

Approved for public release; distribution unlimited. 

R.-P.   .Wrlt.v 

      NATIONAL TECHNICAL — 
INFORMATION SERVICE 

l! S O-pminuM.I of Comm»«» 
Spnngfmld VA 21151 

t 

li.imii-i iJHiiiiiniifiiiiinrii inniir nnrir lanm^mag^gg^^g^^n^gmyg 
mmmmmtatmmmmmttmimmmmtkt ^A 



40 

UNCLASSIFIED 
Si . tint*   I   l.l^sl III .111'»!» 

DOCUMENT CONTROL DATA .R&D 
>i . urifi   . /.is *ifu .ifnm itf ttitt',  lutih- ttl .ihstrntl unit inilrxitit* iinfutttithtn mit*t hv untrrrtJ iv/rcn f/ic nvfrull ri'jutft is clii^^tlit'tfj 

I tj IN 4 t I NO    A <   1 I V I t v   fi't\ri*ntilte 4tllthltr) 

Naval Postgraduate School 
Monterey, California  93940 

Unclassified 
2b.   GROUP 

t-i I POH 1  n T I I 

Simultaneous Estimation of Large Numbers of Extreme Quantiles in Simulation 
Experiments 

*   DESCRiPTivf  NOTES fTVpc of rfporl «id,inc/iuive c/»(ejj 

Technical Report 
j   »u THORISI fA-irsr namr, middle initial, laal name) 

Peter A. W. Lewis 

0     «t^ORT   DATE 

December 1971 

7«.   TOTAL   NO    OF  PAGES 

37 

76.   NO.   OF   HEFS 

13 
8«.   CONTRACT   OR   GRANT   NO. 

b. PROJEC T NO 

9a.  ORIGINATOR'S REPORT NUMBERIS) 

9fc. OTHER REPOKT NO(SI (Any other numbers that may be a*signed 
(hi» report) 

10    DISTRIBUTION   STATEMENT 

Approved for public release; distribution unlimited, 

II     SUPPLEMENTARY   NOTES 12.   SPONSORING  MILITARY   ACTIVITY 

13     ABSTRACT 

The large random access memory and high internal speeds of present 
day computers can be used to increase the efficiency of large-scale simu- 
lation experiments by estimating simultaneously several quantiles ofi each 
of several statistics. In order to do this without inordinately increas- 
ing programming complexity, quantile estimation schemes are required which 
are simple and do not depend on special features of the distributions of 
the statistics considered. We discuss limitations, when the probability 
level    is very high or very low, of two basic methods of estimating 
quantiles. One method is the direct use of order statistics; the other 
is based on the use of stochastic approximation. 

Several modifications of these two estimation schemes are considered. 
In particular a simple and computationally efficient transformation of the 
simulation data is proposed and the properties (i.e. bias and variance) of 
quantile estimates based on this scheme are discussed. 

r 
DD,FNrJ473   <PAGE ^ 

'N   0101 -807-681 I 

UNCLASSIFIED 
Security Classification 

A-3140» 

■      - -       --..^a-, ■   ii iiirua-»». 



H"!!?!""^"^1^'!? iiijipii^niiiiiiiii.i  i i,   i. viii!.ujiiifj>mmmnmpi<BPwfiiMRmiff^?T.#^RLwjiii<i wimm* m**i*mm "mjmm 

41 
UNCLASSIFIED 

Scurltv ClHKRtfication 

KCV   WOROt 
H^LC WT MOLt 

LINK   C 

NOLB 

Computers 
Simulation 
Estimation 
Quantlles 
Stochastic approximation 
Order statistics 

DD FORM 
I  NOV •• 1473 (BACK, 

S/N   0101-807-1(2! 
UNCLASSIFIED 

Security CUtiiricatlon *-ll40t 

           -     1     I   ^Ma - -- - ■ --'■ -..-.  .--. i««_ i   mm - ■- --■      i      a i I^II 11 amg^'^-'-^^-^-' 



mn^mmumommm **.<•*<***,§ 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral A. S. Goodfallow, USN 
Superintendent 

ABSTRACT 

M. U. Clauser 
Provost 

The large random access memory and high internal speeds of present 
day computers can be used to increase the efficiency of large-scale simu- 
lation experiments by estimating simultaneously several quantiles of each 
of several statistics. In order to do this without inordinately increas- 
ing programming complexity, quantile estimation schemes are required which 
are simple and do not depend on special features of the distributions of 
the statistics considered. We discuss limitations, when the probability 
level a is very high or very low, of two basic methods of estimating 
quantiles.  One method is the direct use of order statistics; the other 
is based on the use of stochastic approximation. 

Several modifications of these two estimation schemes are considered. 
In particular a simple and computationally efficient transformation of the 
simulation data is proposed and the properties (i.e. bias and variance) of 
quantile estimates based on this scheme are discussed. 

Prepared by: 

P. A. W. Lewis 
Department of Operations Research 

and Administrative Sciences 

Approved by; 

.I 
//] 

/ß.  Bor sting. 
n/v^V 

J/yR. Bor sting, Ch^rfYman 
E^artment of Operations Research 

, / and Administrative Sciences 

Released by: 

e^ > 
C. E. Menneken 
Dean of Research Administration 

P. A. W. Lewis is on leave of absence from the IBM Research Center. 

NPS55LW71122A 

 " —j   
MHlaMHMHIkl 



1^^^^^f^^^mf^mw^'^^m^^^miM.m\iimßßmmi"w    i  um LIM i «■ ■■■wm.^.n.i.^r-.—v .■!■! „-.■—.!.,....■ ll-.,F»......-.-,f-      ^-.—„mmmm^r- 

INTRODUCTION 

Consider a situation in which we have a collection of random 

variables   X     X   , ...,X     with joint distribution   F{x, ,,,..x  ),  and 
1       ^ n '' In 

several statistics (functions of these   n   random variables),   sa/ 

S(n) - g.lX       . . ,X  ),   T(n) «= g-(X  ,, ,,,X  ),   etc.    It is required to 
11 n d.     \ n 

estimate the distributions   F (s),  FJt), ,.,   of these statistics (or some 

characteristics of the distributions) by obtaining   m   samples 

x     .,  x     .,..„,  x     .,    i = 1 , .,. ,  m,  from   F(x  ,.,. , x )   and hence   m 
l,i6,i J^»1 1 n 

values for each of the statistics   ^n),   T(n),  ...   .    Two examples of this 

N 

type of situafion are as follows: 

i)      In testing for independence in a time series    {X.},  many test 

statistics have been proposed.     These are functions of finite sets of the 

{X.},  namely X   , ,,,,X   ,  and the hypothesis is that   F(x  , ,.,,x  ) 
i I                ii                                                                  In 

n 
- T\.  Fv (x). Typical statistics are the sample serial correlation co- 

l=l       A.      l '' 
1 

efficients with various delays (lags),  i, e. 

1    n-i 
  .2 , (x.  - x)(x.       - x) 

Pi(n)   =       1      n      "2    • ' =1'2 n"l. 
n    ii^^"^ 

where   x = (x +... + X  )/n,   statistics based on the finite Fourier trans- 
1 n 

form of the   x 's   which test essentially that the spectrum of   {X.}   is 
i i 

flat, and several non-parametric test statistics such as those based on 

runs. The distributions of most of these statistics are known for inde- 

pendent,  normally distributed   X.'s,   but not when the assumption of a 

1»M i  ■ ...^w^.    i^d^jngyy^g^^ 
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normal distribution is reraoved.      In testing for a renewal hypothesis 

in series of events (Cox and Lewis,  1966, p.  164)   an exponential distri- 

bution for the   X.'s   may be reasonable.    The null distributions of the test 

statistics are then unknown,  as arc the rate of convergence to the limit- 

ing   (n-*oo)   distributions (some of which are known). 

In examining and tabulating the finite sample distributions,  it may 

be required to estimate the distributions of several of these test statistics 

for many different values of   n. 

ii)      There is much interest in analyzing very complex queueing 

and congestion systems, particulady those that arise in computing and 

communication contexts.    Here one might be interested in estimating by 

simulation the distributions of the waiting times at several points in the 

system at several different times during its evolution. 

In looking at the problem of estimating these distribiitions from 

m replications of the statistics, several general problems arise which 

need to be considered. 

First,  it is neither practical nor desirable to save all of the in- 

formation generated on a statistic by the simulation    in the form of the 

empirical distribution function or,   equivalently,   in the form of the com- 

plete set of   m   order statistics.    Some compact characterization of the 

distribution is required.    In situations such as that of the first example 

given above, out of which this present study in fact arose, the character- 

istics of the distribution function chosen were the first four moments 

"' ■ M 
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and sixteen quantilea of the distribution.    (A quantile   x     of a distribution 
o 

F(x)   is defined as the solution of the equation 

.= F(xa). 0. 0 < o < 1. 0r 

and we shall be assuming throughout this paper that   x     is unique). 

The probability levels chosen for the quantiles were   a = 0, 001,  0, 002, 0. 005, 

0.010, 0.020,  0.025,  0.050,   0.100, and a » 0.900,  0.950,   0.975,   0.980, 

0.990,  0.995, 0.998,   0.999.    The choice of some of these   a's   is based 

on the levels customarily used in testing statistical hypotheses; the more 

extreme values have been chosen rather arbitrarily to characterize the 

extreme tails of the distributions.    In many queueing situations it is these 

extreme values,  rather than moments, which are of interest. 

Another possible characteristic is the probability of the statistic 

being less than a given value.    These percentiles are clearly important 

in studies of the power of test statistics against non-null hypotheses. 

Their estimation is fairly straightforward and will not be considered here, 

A second point concerns the measurement of statistical efficiency 

by either the variance or the mean square error of the estimator.    The 

mean square error is the variance of the estimator plus its bias squared. 

In large scale applications of simulations, as treated in this study, it is 

important to obtain internal assessments of the variability of the estima- 

tion procedures by, for instance,  estimating a quantile as the average of 

r   estimates from samples of size   m   . where   r m    = m.    The sample 

■•■ -—-'■'- -■■■- ■ ■---  i— — aaouBM^n 
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1 ^2 standard deviation calculated from the   r   estimates, divided by (r ) '    , 

then estimates the sampling standard deviation of the quantile estimator (see 

Mosteller and Tukey,  1968, for more details).    In order to assess the 

internal variability of the estimation in this way the bias of the estimator 

must be small compared to the standard deviation of'the estimator. 

Otherwise   we obtain, from one point of view,  a significant bias component 

in the mean square error,  or from another point of view,  an estimate 

with very small sampling variance of the wrong quantity,   i, e. ,  true 

quantile plus bias. 

Bias thus becomes a very important factor in assessing the 

quantile estimates discussed in this paper, 

A third consideration is that in some cases one can find particular 

properties of a statistic whose distribution is to be estimated that allow 

one to obtain estimates that are more "efficient" than those obtained by 

straight synthetic sampling.    By "efficiency" here we mean statistical 

efficiency,  or the relative variances or mean square errors of different 

estimating procedures.    However there are other less tangible costs in- 

volved in simulation.    One is the time involved in deriving a particular 

procedure for a given statistic,  another the time involved in programming 

and debugging such a procedure and the delay in obtaining results.    Still 

another cost is the actual computing time involved though this is seldom 

mentioned in the statistical literature,    (This latter point will become 

clearer later in the paper. )   These less tangible costs are an important 

■*'—'■'■          ^-^..^.-m^iaaa^ 
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component of overall computational efficiency.    The point of view taken 

in this paper is that the rapidly accelerating availability of large memory, 

high internal speed computers makes it usually more "efficient",  in the 

general computational sense,  to forego using special techniques for each 

particular statistic and to use very simple straightforward simulation 

techniques.    Thus a criterion for the quantile estimation techniques dis- 

cussed here is programming and computinfi simplicity. 

We do not mean to imply by this that all sophisticated statistical 

and Monte Carlo techniques are not useful or applicable.    Global techniques 

such as jackknifed estimates (Quenouille,  1956) or the use of variance 

reduction techniques such as control variables (Gaver,   1969) can be used 

with the quantile estimation methods discussed in this paper.    The jack- 

knife technique will be discussed in the next section and the use of the 

quantile estimat'on techniques in the context of sophisticated Monte Carlo 

will be discussed elsewhere. 

Finally,  it is perhaps worthwhile to give some idea of the numbers 

envisioned in connection with the estinnation procedures.    Clearly no 

scheme involving only raw simulation will work satisfactorily in estimat- 

ing a   0,001      quantile   (x )   unless the number   m   of replications 

involved is substantially greater than   1000.      Typically in the COMPSTAT 

program (Goodman and Lewis,  197Z),  for which these techniques were 

developed,  replications of 100, 000 or more are common.     These are not 

excessive on the IBM 360/91 on which the runs were made.    In addition, 

 ■ ^-.1; .., -. i...irij..i-.t.««»- 
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the large core memory of this machine enabled us to run sampling experi- 

ments on up to 31  statistics simultaneously. 

The following discussion uses as examples,  for the most part, 

the extreme   0o 001    and   0.999   quantiles.    The techniques are still 

useful,  though not as much so,  for the inner quantiles.    Some discussion 

of the simultaneous estimation of,  for example, all sixteen quantiles 

listed above is given.    The dependence of the utility and efficiency of the 

various quantile estimation schemes on the particular quantile or set of 

quantiles plus,  for example, variations in the complexity of computation 

of the series   X  , ,,.,X     and the statistics   S(n),  T(n),,.,    indifferent 

problems make it difficult to be dogmatic about the relative utility of 

various quantile estimation schemes.    In addition,  most of the results 

required are finite sample results.    These are difficult to obtain analytic- 

ally and expensive,  as yet, to obtain computationally, 

II.     QUANTILE ESTIMATION 

a) Overall Considerations 

Two general methods of quantile estimation are considered,  one 

based on the order statistics of the sample,  the other based on stochastic 

approximation (Robbins-Monro) t  chniques   (see,  e.g., Robbins and 

Monro [1951],  Hodges and Lehrru i [1956],  Cochran and Davis [1965]). 

For simplicity we drop the notation which indicates de- 

pendence on   n   and write   S(n)   as   S   aad write its distribution 

function simply as   F{s).    A collection of   m   independent random 

ini-MIMIMMlUlMltoH        ■' -"    |||M|M|||||jtji(it||<tM|gjggj||B^ggg^ 
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variables with distribution   F(s)   will be denoted by   S    ,., , S.,,. , , S 
i i   m 

and the corresponding order statistics by   S.   . < S    . < ,,.  <S. ..<,., <S       , 
(1)       (c) (i) (m) 

The order statistic estimator of the   a-quantile   s   , where 
Of 

or = F(8   ),  is 
a 

7a   =   S([am])' ^^ 

where   [or m]   denotes the integral part of   a m.    Thus for   a = 0,999   and 

m = 10.000,    ^,,,.5^^. 

The stochastic approximation estimate   s  (m) is defined to be t>'e 

m th   value in the sequence defined by 

1 - sgn 
s   (i)  «« (i-D- 7 

o or i 
2  - aj      (i = 1,2,... ,m),      (2.2) 
2 

where   sgn x » 1   if  x > 0   and   -1    if   x < 0, and   s (0)   is an arbitrary 

initial value.     If the constant C   is chosen to be   l/f(s  ), where   f{s   )   is 
Of Of 

the density associated with   F(s)   evaluated at the quantile   s   ,  then the 
Of 

asymptotic variance   (m-'-oo)   of   s  (m)   is minimized.    In fact, 

E {Ijm)}" Ha (2.3) 

and 

rA /    » ■> -^    Of(l -a) ,„   ,, var    {s(m)>^ '- '—    . (2.4) 
mf (s  ) 

Of 

Remarkably, the estimate    »     has the same asymptotically normal 
Of 

distribution as does   s (m).    Results on rates of convergence are known 
a 

for   s      but not for   s (m).    This will be discussed later,  but significant 

 i ' — ■■■■■- -^-^-M-^J—.^^-^^M^^^-aiMM»^—^M^I.1.,,,,,,. , ^p^jyugmumgim 



comparisons can be made on the basis of the asymptotic results and on 

known computational results. 

Order Statistics,  a 
 — «——a 

- computation time (to order the   m   realizations of   S)   is pro- 

portional to   m ln(m); 

- computer memory required for the sorting process is proportional 

to   m.    (Actually, to   am   if   a<—       (l-a)m   if  <*> — ); 

- no initial values or knowledge of   F(s)   is required; 

- the rate of convergence of the estimate is known. 

Stochastic Approximation,    s   = g (m) 

- computation time (binary comparison) is proportional to m; 

- computer memory required is proportional to 2j 

- initial values   s  (0)   and values for   f(s  )   are needed, presumably 

previous estimates or guesses based on prior knowledge; 

- no reliable results known on the rate of convergence of  s   , or 

even of   E(8  ); 
or 

- it is not necessary to know   S,   exactly, only that it is greater 

than or less than  s  (i).    This can be very advantageous   if com- 

putation of   S   is time-consuming. 

In summary,    s     has very definite advantages over    s    in terms 

of computational considerations.    One might say that the asymptotic 

relative efficiency of   s      compared to s  ,  in terms of real time and not 
o a 

sample size   m,   is zero.    However,  initial values are needed for   s   ,   so 
a 

■      ■ •     --in    I     -  -■^■sa^» 



P^W BBIUIHH       ■>.<    mmmmmmmmmmmm  >>«>*     

that the asymptotic results really beg the question. Further differences 

appear in terms of finite sample properties of the estimators, and these 

are discussed next. 

III.    QUANTILE ESTIMATION     - Finite Sample Considerations for   "s 
a 

It is well known (David,   1971 ) that for the ordered sample 

(1)       (2) (i) (m) 

Fs    (s) = prob {S(i) ^ O - kf.   (k)^8^ [l-F(s)]m-k . (3.1) 

f       (s) = F'     (s) = |.  ji[F(s)]i"1 [l-F(s)]m-if(s). (3.2) 
S(i) S(i) 

var (T ) . var {S      m   } -^1   + 0 (-^.) . ,3. 4) 
L        J mf (s ) \ m    / 

Asymptotic expansions for   E {s    }   are known (David and Johnson 

[1954] ai:d Clark and Williams [1958]),  the first terms In the expansion 

being 

{S° °'7t\7T'   "** 6f5(s) •   (n*2)(n»3)       •••• 
(3. 5) 

where derivatives are denoted by primes and powers by arable numerical exponents. 

No precise conditions for these asymptotic expansions seem to be known, and 

they must be used with care.    For example, if   S is uniformly distributed be- 

tween   0   and   1, s   ■« and, using (3, 2),   E (S   . }»i/(n^l) 5<i/m)-i/[(mHm+lJ]. 

.-    ..-■..    :...., .-    .        .      ■ ,..,..,...„,,-.    -L..   ^.....      -^. — ■:.   ■■.■.■..■.._-■■.. ,... gj^jl 
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Thus if   amis the integer  i,   we have 

E {s    }   =   a -     & 

a' (mf 1) ' 

but the second term of the expansion   (3. 5)   is zero.    Similarly,  in the 

extreme but computationally useful case   S =     — ■ , where   U   is unj- 

form, we have 

FC)-^. (3.6) 

a distribution with an infinite mean.    Surprisingly, however,   ¥     can be 
or 

shown,  using (3, 2) to be an unbiased estimator of   s ,    In thxs case the 

expansion (3,5 ) does not. even converge. 

An important consequence of (3, 3) is that the jackknife technique 

(Quenouille  [1956],   Mosteller and Tukey [1966]) for eliminating an   O(-) 

term in the bias can be applied to the order statistic estimate  T  ,    By 

way of illustration consider the technique being applied with just a simple 

splitting of the data.    Thus, assume   m   is even ajid  7(1)   is the order 

statistic estimator from the first   m/2   S.'s,    s  (2)   the estimator from 
i a 

the second   m/2   S.'s.    The "typical values" are defined to be 

T (1)   «   27   -7(1), 8(2)   -   2s    -s(2), (3.7) 
or a       a a a       or 

and the jackknifed estimate is 

7(1)+7 (2) 7(1) 7(2) 
8      «  _  «2s   - —r    . (3, 8) 

or 2 a 2 c 

• - - — 
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The   0(—)   term in   EPs]   is zero.     There is no appreciable 
ni L  or rr 

computing cost involved in obtaining the jackknifed estimate. The two 

halves of the sample can be sorted in place to obtain T (1) and a" (2), 

and then these sorted halves are merged to obtain the complete,  sorted 

sample   S    . < ... <S       •    This in fact is just the usual binary sorting 
(1) "       (m) 

procedure which results in     m In (m)   sorting time. 

The main drawback to the jackknife procedure is that it may in- 

crease the variance of the estimator,   and this variance is difficult to 

obtain analytically.    We have 

var fs   } = 5 var {T  } - 2 cov -Ts    7 (1) } < 5 var (T   } .,  «» 1 a' a K  a    a      ' a, (3,9) 

The covariance term involves the covariance between the   [af(m/2)] order 

statistic in half the sample,  and the   [o m]   order statistic in the whole 

sample.    If in fact  ¥ (1)   and   s  (2)   are approximately uncorrelated, then 
a a 

there is no increase in variance.    Even if the variance is inflated enough 

to make the mean square error of the estimates approximately equal, 

there is a gain in that the smaller bias of the jackknifed estimator allows 

for sectioning the complete sample of size   m   into   r   smaller sections 

of size     m     ,     This gives a more precise empirical variance estimate 

and smaller computation time, the latter following since shorter sections 

are sorted. 

Unfortunately, there is some evidence   (Miller,  1964)    that jack- 

knifing is a poor technique to use with estimators involving extreme order 

—  ■■      ggi^m^n^^i^^ng^^^,   i 
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statistics.    We give now an illustrative example. 

Example - The exponential diatribution 

Consider the estimation of the   0, 999 quantile   s for a unit 
0, 999 

exponential distribution.    For simplicity   we  assume that the sample 

size   m   is such that   0,999 m  is an integer   k.    We have 

y   -   F(8) -   1 - e"8 , 

s   -   F'^y)  -   - ln(l-y)t (3. 10) 

s     =   - In (1-a), 
a 

By direct methods (Cox and Lewis, 1966)    one gets 

12m   I    (l-ar)       J       Vm   / 

1    , a   . 1      liL' 

var {s   }   = —-—r- 
a m(l-a) ^-b-j-t) 

(3.11) 

(3.12) 

These results are used to give Table 1,    The ratio (column 8) of 

the standard deviation   ( a, column 7) of the estimate to the bias of the 

estimate (column 3) indicates roughly how feasible it is to use averages of 

estimates   i". -__, from samples of size   m   to estimate  T more pre- 
0.999 0.999 

cisely, along with an estimate of the sampling variance of that estimate. 

Thus 36 samples of size   m ■ 10,000   produces an estimate with a standard 

deviation approximately equal to the absolute value of the bias, clearly an 

undesirable situation.    Moreover the bias is   -0, 051,   so that this estimate 

gives us accuracy of at best two decimal places.    This would not be acceptable 

in many cases. 
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The leading term of the bias of the jackknifed estimate   (3. 8) 

is shown in Table 2 (column 2)   as a function of   m.    Column 3 

shows the ratio of the standard deviation of the unjackknifed esti- 

mator to this bias.    Clearly,  sectioning and averaging is much more 

feasible.    However, as indiated in column 4 an increase by only a 

factor of   1. 03   in the variance of   T    QQQ    makes the mean square 

error of this estimate as large as that of   s at   m   « 10,000. 

Clearly,   jackknifing is of greater utility in the range of m   from about 

1, 000   to   5,000, if the variance does not blow up and moreover, it 

is desirable to use sections as short as this if possible, to reduce 

computation time. 

Estimates of the variance of   ^ QQQ obtained by synthetic 

sampling are given in column 5 of  Table 2.    The quantities in paren- 

theses are estimates (63 degrees of freedom) of the standard deviation 

of these variance estimates.    There is enough increase in the vari- 

ance over the unjackknifed situation to characterize the gain 

from using the jackknife as being marginal rather than categori- 

cal with this type of quantile estimate.    For the exponential case, 

however, detailed calculations on computation time«,  bias, etc. , 

show that in large simulations there would be an advantage in 

using  T with sections of length approximately   m« 5,000. 
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An alternative scheme is to use as a "typical value" an 

order statistic estimate,    s* ,    from a small independent sample 

of size   m/i.     Then the estimate   (s*  - i T )/(l-i)   has a mean 
o a 

value free of the   1/m   term and a variance decreasing to 

var fS" }    as   i    increases.    For   i = 10   the variance is 
a 

1. 36 var   {5  };    for   i »= 20   it is   1. 13 var    (T },   an in- 
a a 

crease smaller than that found for  T    QQQ«    However, this 

technique is difficult to use for an   m   much less than 10,000 

in estimating a   0. 001   quantile. 

IV.    QUANTILE ESTIMATION - Finite Sample Considerations for   ^ 
a 

Experience shows that for extreme quantiles, convergence 

of    s (m)   is so slow as to be unacceptable.    Though problems 

might be anticipated in the tails of extremely skew distributions, 

e. g. , the distribution   F(s) » s/(l+8)    discussed above, they 

occur elsewhere too, as can be seen roughly in the following 

example. 

i  ■ • i i _.. u *u* .*_>» —.  —...    «i i ■■■!   am■     -■'-  
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Example -  The unit exponential distribution 

Consider again the unit exponential and the   a = 0. 001   quantile. 

This is 

8o.ooi = - in^ " 0»001) Ä o.ooi. 

We have 

/■/ \ -0.001 _ , v o. oor 

Assume the initial estimate is   s (0)= 0,001, and that   S     is less 

than   0.001.    This has probability   0.001.    Then 

80>001{1)«-1x0.999 *   -1. 

Clearly successive   S.'s   are greater than the estimates until the esti- 

mates get back to zero.    After   i    steps the estimate will have moved 

i       . 
0.001x1 x .JL 1/i   in the positive direction and since 

t     1 1 
.Z.  -~ 0.5772+ in(|)+ —  , 
1—1    1 fax 

* 408 the return to the origin takes about   i = 10       steps.    By following through 

this example it can be seen that the estimate is almost sure to become 

negative and take an enormously long time to return to zero. 

The jackknife technique is not suitable as a means of overcoming 

this difficulty, partly because the order of the leading term in the 

m itmumM yitimmaattätM ttttältm itMi^üitttiiilmiämmaMlA 
• --   ■       -    -           ■—- -       -     ^^^^^ 
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asymptotic expansion for the bias is not known,  but also because if the 

correct jackknifing technique was applied (possibly,  for am term) the 

example makes it clear that the estimator would still be unsuitable. 

Two other techniques suggest themselves,    Kesten [1958] seems 

to be one of the few authors to have noted the problem of long runs occur- 

ring in the stochastic approximation scheme.    He suggested higher-order 

memory schemes,     for example, not increasing the divisor of  C   in  (2, 2) 

by one if all   p    previous differences of sample values and estimators 

were of the same sign.    Although this would clearly help in the example, 

it violates the need for simplicity.    In fact,  the divisors in the estimators 

of different quantiles for different statistics become different, and this 

creates very complex and time consuming programming procedures. 

Another technique is to bound the estimator    s   (i).    Thus requir- 

ing   s (i) > 0   in the example would have obviated the problem, but uses 

specific information about the statistics.    Empirically derived bounds 

can be obtained at the same time that initial values    s (0)   and   f(s ) 
or or 

are obtained.    For example a small pilot run using order statistics 

will give these initial estimates and bounds for outer quantiles 

{, 001   and   ,999)   from the known properties of the order statistics. 

Inner quantiles are bounded by outer quantiles.    Thus it has been found 

empirically that if    A = | bound - s" (0)|,then when   C/A > 100, the 

stochastic convergence scheme works reasonably well.    It is, however, 

ponderous when compared to the quantile estimation scheme discussed 

in the following section. 

       ,,immauaKii^aammmmmmammmmmmm^fmmm^^mmtmmm^m^mmmmimm^aammiat^mmmmmmtm^Kiimmmmmtm 
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V,      THE MAXIMUM (OR MINIMUM) TRANSFORMATION 

It is natural to look for a computationally simple transformation 

of the data to overcome some of the problems of estimating extreme 

quantiles, and the following transformation appears to solve most of the 

computational and statistical problems. 

Assume, e.g., that   a> 1/2, and consider the first  v   S's, i.e., 

S  ,,,,,S,    Then the distribution   7(B)   of the maximum of the   v   S's   is 

7(8) = prob {(   ™*v S.) <8}   =   {F(s) }V . (5. 1) 

Note that 

F(sft) = FV{8a) = aV= a« (5.2) 

and 

s     = s-.i   . (5.3) 

so that the   o-quantile of   F(s)   is the same as the   a' = or     quantiles of 

F(8).    If we assume that  v   divides   m,    and   m1 = m/v, taking maxima 

of successive groups of   v  S's   gives a reduced sample of size   m',  i, e. , 

bV  S2' ••"    m'   * 

Thus we have a reduced sample and have transformed the problem from 

estimating an extreme quantile (for level o) to estimating a more reasonable 

v 
quantile (for level   a ).   For example, one might take v large enough to re- 

duce the problem to estimating a median.    Since   a    =1/2   in this case, 

v= (In l/2)/(ln a).    The consequent values of v   are shown for eight   or's 

in Table 3. 

■II-'---'  ■ - ■ -  •  — 
 -—    n      | i nni mi t  -.-^■—.-..- MMB |MMMaMMMBjg|^gg^agBggj^| 
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Table 3 

v 
Size of   v   for   a    =1/2 

0.900       0.950       0.97 5        0.980       0.990     0.995       0.998       0.999 

6.6 13.5 27.4 34.3 69.0      138.3       346.2       692.8 

Some general points about the use of the tx'ansion.iation in quantile 

estimation follow, 

(1) The transformation of the original sample   {S. }   into the reduced 

sample    {S. }   is very efficient computationally since only   v 

binary comparisons and one memory cell are needed to obtain 

S     from   S    .. . ,S   . 

(2) The transformation uses no special information about the 

properties of   S,   e. g, ,  S > 0. 

(3) Although transforming to the median is not necessarily optimal, 

it is known that stochastic approximation estimates of the 

median work well (Ccchran   and Davist 1965), 

(4) If   a < 1/2 the minimum   S11   of the   v   S's   is used instead. 

VI.    THE MAXIMUM TRANSFORMATION:   ASYMPTOTIC VARIANCE 

Using (2, 4) we now compare the asymptotic variance of a quantile 

estimate (order statistic or stochastic approximation) s 1  from the re- 

duced sample with that of the quantile estimate s    from the original sample. 

We have,  from (5. 1), 

H8)-Vf(8)    {FCS)^"1 

■ I -■ -■-■ ---■ - ■■-■ -- I --■- 
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and,  therefore, using (5. 3) 

K8a,)=vf(8Ä|)    <F(Snt)} v-1 

= v£(8 ) {F(B )}V'1 

a a 

l{Sa,) = V{(Sa)a
V-1     =    Vf(8a)^. 

Using these expressions in (2. 4) we have 

Var < V > *     *   (   " )    2 

__oLn-a) (1 - aV) 

mf (s^) v(l-a)a v-1 

(6.1) 

(0. 5 < a < 1) 

(6.2) 

= var {s   }•  g(a;v) . 
(6.3) 

It can be shown that   g(a;v)   increases from   1   to infinity as   v 

increases from 1   to   infinity.    Moreover, for the median transformation, 

vstf (In l/2)/(ln a), we have, as   a   approaches   1 

S"^'* d93l " '• 443 • 

The function   g(ar;v)   at the value of  v   generating the median transforma- 

tion varies little with   a, as is shown in Table 4. 

Table 4 

Variation of   g(a;v)   with   a   at median transformation 

giaiy) 

0.9000 

7 

1. 4020 

0. 9990 

693 

1. 4426 

0.9999 

6931 

1. 4426 

 f...... ., .-   -- ^,.   ■■    ,    - n MM   .M.i    I -    -         I  -■'   '     •■- ■    ■ -   - ■   
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Thus the statistical efficiency of the estimate is decreased by 

approximately 1/(1,443),   but the speed of the maximum transformation, com- 

pared to the computations involved in, for example, the stochastic approximation 

estimate would probably make their computational efficiency about equal. 

By computational efficiency we mean the relative computing times required 

to achieve the same variance.    Both estimates (reduced and non-reduced 

samples) are asymptotically unbiased. 

The variation of    g(a;v)   with   v   for   a = 0.999 is shown in Table 5, 

Table 5 

Variation of g(o';v)   with   v   at   a = 0,999 

g(0o999;v) 

10 50 100 200 500 700 1000 

0,990        0.951 0.905     0.819       0.606     0.496     0.368 

1,005 1.025 1.051      1.107        1.297       1,448      1.718 

The choice of  v   in particular situations depends on computational 

considerations, particularly the meshing of estimates for various   o's 

for a given statistic, and although no global results can be given, we discuss 

these considerations in the next two sections. 

VII.   THE MAXIMUM TRANSFORMATION:   COMPUTATIONAL CONSIDERATIONS 

(i )    Order statistics 

The use of the maximum transformation with order statistic 

quantile estimates gives very little gain.    Bias is not an extreme considera- 

tion here, and computations for several examples with the asymptotic ex- 
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pansion (3. 5) show that there is very little change in small sample bias 

from one estimate to the other.    Memory size is not much affected.    For 

a= 0.999 we require   0, 001 m   memory cells with the original sample; 

using  v = 693   to give   a% # 1/2   and a reduced sample, we need    — m' = - - * . 

memory cells.     The slight advantage is lost when it is noticed (6, 2) that a 

larger sample size,    m,    is required to achieve equivalent variance. 

If the eight quantiles with   o's   given in Table 3 are required,  the 

unreduced sample ordering (done at one time for all eight quantiles) re- 

quires   0, 1 m   memory cells.    The eight quantiles require eight separate 

,       , i -iv 1ml     m 1   m 
reduced samples with memory requirements   — -rr— , — -r-rr ,..», ■r "T" > 

or a total roughly equivalent to   0. 1 m. 

The time gain from sorting smaller samples is again marginal, 

(ii)   Stochastic approximation 

The greatest gain in using the maximum (or minimum) scheme 

comes from the reduction of bias with the stochastic approximation esti- 

mator (2, 2\    There are other gains; the maximum operation is faster than the 

the computation (2,2),  and changing   v   and   a'   is very simple.    One could 

do the eight quantiles of Table 3 from eight reduced samples obtained from 

v's   of   7,   14,  28,  35, 70,   140,  350, 700,    These values are close to the 

v's   given in Table 3 and all divide 7 00,    Thus it is easy to compute the 

eight reduced samples simultaneously in nested loops. 

Again only a fixed number of memory locations is required. 

mmi.n „II  .in-, „■.„ .n.n.i.inKi   „ ■, ■ , tnii lliliiMlii|iwiliM|i|l||l||i||i|iM||il|MBa^^ 
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A possible scheme for selecting initial values for the stochastic 

approximation sstimator is the following.    Let   S1 , . . . , S     «   be the 

reduced sample.    Take the first three values,    S*    S* , S    and order 

them as   S*    , S' ., S.' . ,    If  v   is such as to make   a* »1/2, use   S 

as   T | (0), the initial value, and since   S1      and   S*  .   estimate th« 

1 3 —  and  —  quantiles of T(s),  estimate   f(s  ,)   as: 
4 4    ^ a* 

2. 
2 

.4(S,(i)-S(l)f   4(S(3)-S,(2) 
(7.11 

(This is the simplest of many density estimates. ) 

The stochastic approximation estimate 

^.(D-^i-i)   -T 

l-sgn {S! - V(i-l)} 
 —_ ^i 

uses   S      as the   S. ,  i=l,  in the equation. 

1,2,... ,mt (7. 2) 

The value of   C   is not critical and this  estimate should be well- 

behaved.    The jackknife technique (3. 8) can be applied, using alternate 

values   S.,.   for the sub-estimates, although it is not known if the leading 

term in the bias is 0(l/m). 

Analytical results for    s   ,   and the jackknifed estimate   s t, cannot a & 

be obtained and «ampling results are given in Tables 6, 7 and 8 for   S 

having a unit exponential distribution and   S  having the distribution 

F(s) - s/(l+s). 

-'■■■■■-■ — - —■'- -..J-.-.^. .-■■-      ,■   H r i i nniir^--   " ■•-- : ■     -  .     - -        - -  ■■■■■■ um——^a—>—fc—iT—■ 
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(iii)   Sampling results 

Results are given in Tables 6, 7 and 8 from an extensive 

simulation to investigate the properties of quantile estimates based on 

(7. 1) and (7. 2).    The columns in these tables show successively   m, 

the sample size; m1, the reduced sample size;  the expected values 

and standard deviations of the jackknifed estimator   t ,   based on  (7. 1) 

and   (7. 2)   and the expected values and standard deviations of the straight- 

forward estimator   s* ,   based on (7. 1)  and (7   2).     The last column 

in the Tables gives the asymptotic standard deviations from  (6. 2).    Note 

that   v ■ 7 00.    To indicate the precision obtained in the sampling ex- 

periment the quantities in parentheses in the last row of each table are 

estimates (7 degrees of freedom) of the standard deviations of the estimates. 

In Table 6, the minimum transformation gives estimates of 

■ ■ 0. 001001, the   0. 001   quantile    of the unit exponential distribu- 

tion.    The jackknifed estimator   s  i, where   a' ■= 1 - [1-0. 001]       , has 

converged by the time   m   reaches roughly 30,000.    There is still a 

small bias in the unjackknifed estimator   s  t , approximately one tenth 

of the standard deviation of the estimator at   m » 28,000.    There is a 

penalty paid in terms of a larger standard deviation for the jackknifed 

estimator ( ^ 20%)   and the standard deviation for   a t   is larger than 

predicted by the asymptotic formula (6. 2).    Thl s is due tc the added 

variability introduced by the density estimate (7. 1)   and the finite 

sample size   m. 

l^.^J.ll.T.I.H^lf. -^ -..^-.■■^-■...—^,.  ■ ... ■:.        -  ■......^.—^^.^^^W—^.L.   -,^~-..     , niiriW -i-   .--  . .^^^^^ 
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TABJLf. 6 

Estimation of   0. 001   quantile with minimum transformation 
and stochastic approximation, with   (s i)   and without   (s  >) 
jackknife.   a1 » l-[l-0.001]v> v700.     Unit exponential 
distribution. 

F(s) - 1 - e' F(8)-l  -[1-F(s)]v;     80001-0.001 001 

m m« 

| 

St. dev. (s^,) E(sal) st. dev. la  .) 
Asymptotic 

st. dev. 

4200 6 

I 

' 0. 00107 0. 00095 0.00111 0. 00065 0. 000587 

5600 8 0. 00106 0. 00081 0.00109 0. 00058 0. 000509 

7000 10 0. 00104 0. 00073 0.00108 0. 00053 0. 000455 

8400 12 0, 00103 0. 00067 0. 00107 0. 00050 0. 000415 

9800 14 0, 00103 0. 00062 0. 00106 0. 00047 0. 000385 

11200 16 0. 00102 0. 00058 0. 00106 0. 00045 0. 000360 

12600 18 0. 00102 0. 00055 0. 00105 0. 00043 0. 000339 

14000 ?0 0.00102 0. 00053 0.00105 0. 00042 0. 000322 

16800 24 0. 00101 0. 00049 0. 00104 0. 00040 0. 000294 

19600 28 0. 001008 0. 000456 0. 001034 0. 000378 0. 000272 

28000 40 0. 001003 0. 000400 0. 001025 0. 000344 0. 000228 

42000 60 0. 000999 

(0. 000001) 

0. 

(0. 

000346 

000001) 

0.001016 

(0.000001) 

0. 000310 

(0. 000002) 

0. 000186 

-   — 
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TABLE 7 

Estimation of 0. 999 quantile with maximum transforma- 
tion and stochastic approximation, with (? t) and v/ithout 
(s   t)   jackknife.    a' = 0. 999v. v ■« 700.    Unft exponential 
distribution. 

F(8) - 1 - e 
-s 

F(s) = (F(8)f; 80. 999 ' 6- 908 

m rv,' m n\*) 

4200 6 6.946 

5600 8 6.942 

7000 10 6.931 

8400 12 6.929 

9800 14 6.926 

11200 16 6.923 

12600 18 6.920 

14000 20 6.919 

16800 24 6.919 

6.916 19600 28 

28000 40 6.91? 

42000 60 6.912 
(0.001) 

;     st. dev. (fa,) 
i 

E(V st.  dev.  (s^,) 
Asymptotic 

st.  dev. 

i 

0.970 6.962 0. 640 0.587 

0.825 6.957 0.569 0. 508 

0.736 6.949 0.522 0. 455 

0.670 6.946 0.488 0.415 

0.619 6.942 0.461 0.384 

0.581 6.940 0.440 0.359 

0.548 6.936 0.423 0,339 

0.520 6.934 0. 406 0.321 

0. 481 6.933 0.386 0.293 

0.448 6.929 0.365 0. 272 

0. 384 6.923 0.326 0. 227 

0.332 
(0.001) 

6.920 
(0.001) 

0.294 
(0.001) 

0. 186 
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TABLE 8 

Estimation of 0. 999 quantile with maximum transforma- 
tion and stochastic approximation, with (s ,) and without 
(s  ,)  jackknife.    g' » 0. 999v. v - 700. a 

F(s)- s/(l+s);    F(8)=[s/(l+8)]v; s * 999 
0. 999 

m m« E(?aI) st. dev. (sQt) E(sa.) st. dev. (s ,) 
a 

Asymptotic 

st. dev. 

4?,00 6 1048 2902 1233 1375 587 

5600 8 1196 1729 1217 1233 508 

7000 10 1076 2416 1197 1195. 465 

8400 12 1126 1412 1180 1042 415 

9800 14 1063 1422 1163 872 384 

11200 16 1076 1078 1148 802 359 

12600 18 1052 1082 1137 738 339 

14000 20 1060 1123 1127 753 321 

16800 24 1048 87 2 1112 685 293 

19600 28 

40 

1042 828 1103 698 27 2 

28000 1025 747 1077 624 227 

42000 60 1016 
(   1) 

551 
( 23) 

1055 
(  1) 

494 
( 28) 

186 

■»a. a^aaaaai 
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In Table 7 the maximum transformation gives estimates of 

s « 6. 908, the   0. 999 quantile of the unit exponential distribution. 

The bias is smaller    for the jackknifed estimator, and extrapolation of 

figures in column 3 gives convergence in the mean for most purposes 

by   m ■ 50,000.    Note, however, that the standard deviation/bias ratio 

is large   ( ** 100)   down the column.    Again, there is an inflation in the 

standard deviation of the jackknifed estimator. 

The bias is examined more closely in Figure 1 where the absolute 

value of the (estimated) bias is plotted on a log scale against   m  for both 

estimators.    The curvature indicates that higher order terms than   1/m 

are still important for these sample sizes.    Except for the   m ■ 42,000 

point, the bias in the jackknifed estimator appears to be falling off more 

rapidly than the bias for   s* ,   (here   or' « 0. 999       ).    No formal regression 

analyses of these sampling results have been done. 

Note that for both estimators the absolute value of the bias (except 

for the last point) i? less than the absolute value of the bias in the order 

statistic estimator.    This is given by (3. 1) and plotted as a sequence of 

crosses in Figure 1. 

Bias is more serious for the extreme case of the distribution 

F(8) ■ s/(l+8), as shown in Table 8.    The jackknifed estimator is ad- 

vantageous here where the standard deviation/bias ratio is smaller than 

for the exponential distribution and convergence is a little slower. 

...,   Mi.- lam—aai — i ■■ -■ ■- ■  
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• 0o 
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10,000 30,000 
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50,000 

Figure 1.    Exact bias for the order statistic estimator   S" |   of the 0. 999 quantile 
o' 

of the unit exponential distribution, and estimated bias for estimators   s   ,   and 
s   ,   using the maximum transformation   (a   = 0. 999   , v = 7 00)   and stochastic 
approximation. 
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Vm.    CONCLUSIONS AND FURTHER WORK 

The conclusion of this investigation is that the maximum trans- 

formation and the stochastic approximation scheme (7. 2) yields a 

quantile estimator for extreme quantiles (e. g. , x    QQQ)   which is fast 

and linear in sample size   m; requires a small, fixed amount of storage, 

and without using external information provides a virtually bias free 

estimate even in extreme cases (such as the   s/{l+8)   distribution) for 

sample sizes of   m « 50, 000.    In most cases smaller samples will be 

satisfactory. 

There are possibilities, based on the properties of extreme 

value distributions, of improving the quantile estimators performance 

even more. 

Note too that the estimator can be used to advantage for smaller 

a   than   0. 999, and it is completely suited for use with global variance 

reduction techniques such as the use of control variables   (Gaver,   1969). 

Uaru^^MMtel^Mittaa^MI 
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