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ABSTRACT

Mathematical models describing the changes in system reliability

during a development program are called "reliability growth" models.

The intent of this report is to familiarize the reader with reliability

growth modeling and to discuss its usage as a tool for program managers.

The discussion is supplemented by numerical examples illustrating

several models. Also, a review o'7 a number of reliability growth models

currently available and a biblioography on reliability growth are given.
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*. To establish a logical basis for projecting reliability growth

so that this consideration may properly 0e included in the decision

making process.

Most often there is not a meeting of the minds as to the stage of

development where the requirements stated in Materiel Needs (MN's)

documents are to be met. It is believed that most of the requirements

are generated with the thought in mind that they represent what the

user desires of the materiel at the time it is fielded or during field

use. Current practice seems to overlook this and assumes that the

requirement is to be m~t at all stages of the materiel acquisition and

test process. Frequently, decisions at all levels are affected while

these anomalies exist., It is therefore quite important that management

tools be designed to recognize the transi.tion, in'reliabilfiy growth

throughout the materiel acquisition and test process and that interim

goals be established accordingly. This should be of considerable

assistance in achieving a sounder management and decision process

during the materiel acquisition life cycle. The other aforementioned

points are, also, of great importance because the failures to quanti-

tatively track materiel reliability most often leads to appalling

surprises, consternation and costly, untimely decisions. Management's

degrees of freedom, quality of decision, and alternatives are highly

dependent on quantitative measures of where we are and where are we

going as often as practicable throughout the life cycle. Corrective

actions must be based on adequate knowledge of the reliability and

performance of tho materiel systems during milestones of the materiel

acquisition process and the timely reorientation of resources can be

an important ingredient in effective management.

5 Next page is blank.
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1. INTRODUCTION AND) SUMiARY

A topic of considerable interest in current reliability studies is

that of accounting for the changes in system reliability that result

from design and engineering modifications during a development program.

A development program is generally recognized as being a necessity for

most syetems since they usually exhibit initial design and engineering

deficiencies. Attempts are made during the development program to

find and remove these deficiencies to a point whore certain levels of
performance with respect to reliability and other requirements are met.

It is usually assumed that the system reliability will increase
during the development program and, thus, mathematical models describ-

ing this phenomenon have come to be called "reliability growth" models.
The purpose of this report is to acquaint the reader with the benefits
of reliability growth modeling as a tool for program managers and to

familiarize him with some of those models and their applications.

Specifically, in Section 2 reliability growth modeling is discussed
as a management tool for program managers. Some background on the

general area of reliability growth modeling is given in Section 3 and
in Seotion 4 several models are illustrated by numerical examples.

Section 5 discusses briefly certain practical considerations which
should be taken into account when choosing a reliability growth model.
Appendix A presents a review of a number of reliability growth models

currently available and Appendix B is a bibliography on reliability

growth.

L.
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2. RELIABILITY GROWTH MODELING - A MANAG;EMENT TOOL

Although the ptUrpose of a development program for a system is to

increase the system's reliability to a level acceptable to the user,

it is unfertunatoly true that many programs fail to achieve this goal

within initial cost, manpnwer and time limitations. The major cause

for these failures is associated with the complexities of many of

today's systems which make it extremely difficult to determinc before

devolopment the relationships botween the required final reliability,

the system's basic design and the total development effort. As a result,

thi program manage~rs may be faced with the responsibility of planning a

development program without firm rationale as to how to allocate the

various resources and how to determino the project milestones.

The purpose of the project milestones is to set goals which will

gi•ide the development program stop by stop so that the reliability

requirement will bo met at least within the final stage of development,

1, owove-, if the necessary dovolopmnent effort is not known beforehand

then the program managers must try to determine whether or not the

milestones are being mot as the development program progresses. If,

for example, the reliability of the system at the present milestone is

found to be below a specified level then additional development effort

may be necessary to moot the required level at the next milestone.

Furthermore, given the results of the development program up to the

present time the program maagers may question the realism of meeting

the reliability requirements of future milestones with present

resources.

Therefore, in light of various uncertainties the program managers

must try to estimate thu progress of the doveJopment program up to the

present time and relate this by some means to the future development of

the system. In general, however, it is often a difficult task for one

to obtain good estimates of the progress of the development program and

project future progress. For example, to directly estimate the system's

10



reliability at some time during development, a certain number of systems,

which are homogeneous with respect to the design configuration at that

time, must be tested. The number of systems tested would depend on

the precision desired in the estimate. In many cases this approach is

extremely costly and may even be impossible if the needed prototypes

cannot be produced. Also, it should be remarked that the proportion

of successful tests of the system up to the present time measures only

the average reliability of past tests and does not measure the present

reliability or aid in predicting the future reliability of the system.

The average reliability will lie between the initial and final reli-

ability of the system in most cases.

If the progress of the developmnnt program cannot be reasonably

estimated then it is clear that the program managers may have difficulty

plaining and conducting the program to insure that the required

reliability will be met as schodulhd. It is apparent, too, that program

managers generally need specializcd techniques and methodology in this
regard. The area of reliability growth modeling is a management tool

directed toward this need of the program managers.

Ii



3. BACKGRIOUND

The development of a system generally evolves as a repeated-process

of system examination and testing, determination of system failure

modes, and design and engineering changes as attempts to eliminate

these modes. The problem of accounting for the resulting changes in

the system's reliability during a development program by mathematical

models has been of interest for a number of years. Much of the

research on this subject, however, has not been published in the open

literature and is often difficult to obtain.

The central purpose of most reliability growth models includes

one or both of the following objectives:

. Inference on the present system reliability;

• Projection on the system reliability at some future
development time.

Most of the reliability growth models considered in the literature

assume that a mathematical formula (or curve), as a function of time,

represents the reliability of the system during the development

program. It is commonly assumed, also, that these curves are non-

decreasing. That is, once the system's reliability has reached a

certain level, it will not drop below this level during the remainder

of the development program. it is important to note that this is

equivalent to assumir• that any design or engineering changes made

during the development program do not decrease the system's reliability.

If, before the development program has begun, the exact shape of

the reliability growth curve is known for a certain combination of

system design and development effort, then the model is a deterministic

one. In this case the amount of development effort needed to meet the

reliability requirement could be determined, and the sufficiency of

the design would, also, be known.

In most situations encountered in practice, the exact shape of

the reliability growth curve will not be known before the development

program begins. The p-ogram manager may, however, be willing to

12



assume that the curve belongs to some particular class of parametric

reliability growth curves. This is analogous to life testing situations

when the experimenter assumes that the life distribution of the items

is a member of some parametric class such as the exponential, gamma, or

Weibull families. The analysis then reduces to a statistical problem of

estimating the unknown parameters from the experimental data. These

estimates may be revised as more data are obtained as the development

program progresses. Using these estimates, the program manager can

monitor and project the roliability of the system and make necessary

decisions accordingly.

Some Bayesian reliability growth modi¶s !ave, also, appeared in

the literature. This approach assumes that the unknown parameters of

the growth curve are themselves random variables governed by appropriate

prior probability distributions. Cenerally, the form if the prior

probability distributions are assumed to be known, and the unknown

parameters of the relir 'lity growth curve may be estimated wi,%h the

aid of Bayes Theorem.

Other models considered in the literature may be classified as

nonparametric. This approach allows for the estimation of the present

system reliability from experimental data without attempting to fit a

particular parametric curve. The estimates are usually conservative

and projections on future system reliability are generally not possible.

A review of 3ome reliability growth models which have appeared in

the literature are given in Appendix A and a bibliography on reliability

growth is given in Appendix B.

13



4. EXAMPLES

To acquaint the reader with the practical applications of reliability

growth modeling, several numerical examples shall be presented in this

section. The models illustrated by these examples are, also, discussed

in Appendix A and appropriate reference to this Appendix will be given

for each model considered.

Example 1. The Duane Model (see Appendix A, Model 7) will be illustrated

by this example. Briefly, this model assumes that

X(T) - KT-',

where X(T) is the cumulative failure rate of the system at operating

time T and K > 0, 0 < a < 1 are parameters to be determined before the

start of the development program. The example is from "Reliability

Planning and Management - RPM" by J. D. Selby and S. G. Miller (see

Appendix B, Reference 34).

A customer generates a requirement to design, develop, and deliver
a new avionics equipment which violates no laws of physics, is expected

to be within the state of the art, has a lead time of 36 months, and

an apportioned MTBF from a higher level system requirement of 150 hours.

The reliability 
program is to be in accordance 

with MIL-STD-785 
with

testing per MIL-STD-781 test level F; First Article Configuration

Inspection (FACI) and configuration control are required on the first

Viewing these requirements, a contractor first determines a

functional implementation plan and equipment schedule based on the

technical exhibits, previous experience, equipment complexity, and

program planning judgments. Let us assume the case of a responsible

contractor who assesses the requirement as being within the state of

the art and represents an equipment cf IlK parts complexity. Using

MIL-STD-217A as a departure point, a prediction of 220 hours is calculated,

14



made possible by use of screenied parts, applied under exacting application

and derating criteria. This prediction meets the first RPM criteria by

exceeding the minimum 125% of specified requirement.

The schedule milestones are established, based on past development

experience, resulting in 15 months for design, 6 additional months for

initial hardware manufacture and ambient test, 12 months for evaluation

testing, and 3 months for final change documentation and incorporation

prior to production FAI and configuration control constraints.

The second and third cziteria of the model state that for a new

design the initial hardware MTBF will be 10% of that predicted, and

reliability growth will follow the Duane postulate. Employing these

criteria, a reliability initial estimate and growth requirement based

on the specifics of the selected implementation now can be structured.

The initial capability for this new system is thus dimensioned as

22 hours, 10% of the pred zted MTBF. A growth rate of .5 is planned

based upon a comprehensive reliability program executed through com-

petent implementation of MIL-STD-785 and MIL-STD-781. The growth

requirements, Figure 1, indicate that compliance can be achieved at

4800 hours of te6t time.

In implementation planning, optimization of the reliability program

about individual program priorities is desirable and reqvired. In this

example, the conitractor elects to consider ortimization in three cases

of program structuring: minimum assets, compliant time, and least risk.

The objective is clearly to dimension and evaluate the alternatives and

activity necessary to achieve required equipment reliability during

development and prior to the production and user constraints. Based on

a review of test experience with complex systems, it has been established

for GE/AES products that 200 hours of test operate time can reasonably

be achieved per system month of effort.

15
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Operating within these bounds, let us now consider the test plan

options open to the contractor to develop a compliant product. The

first option, minimum assets, requires one system tested continuously

for 24 months representing the least number of systems. The second

option, a time compliant test, requires two systems tested continuously

and concurrently for 12 months. The third option, least risk, requires

three systems tested continuously and concurrently for 8 months,

accommodating additional time for reaction to contingency iRcluding

growth of up to 25% in product complexity. This growth reflects the

case where an IlK part original estimate grows during detail implementation

to a 14K part system.

From these optimizations, the magnitude of the program, kinds of

disciplines, and available tradeoffs bounding a successful program are

now clear to management.

17



Example 2. This example and the following two examples illustrate the

use of the Gompertz equation considered by Virone (see Appendix A,

Model 6). These examples are from Virene's paper entitled, "Reliability

Growth and Its Upper Limit" (see Appendix B, Reference 38).

The Gompertz equation is

t
R = abc

where a is the (unknown) upper limit approached by the reliability, R,

as time t -> 3, and 0 < b < 1, 0 < c < 1 are parameters to be estimated

from test data.

The following steps are necessary for estimating a, b, c by Virene's

method.

A. Arrange the currently available data, values for t and R, in

columns.

B. Calculate values for log R.

C. Divide the column of values for log R into three equal-size

groups, each containing n items.

D. Add the values of log R in each group, obtaining sums identified

as SIX S2, and S3, starting with the lowest values of log R.

E. Calculate the value for c.

F. Calculate the value for a.

G. Calculate the value for b.

11. Set a value for t, the point to which the projection is to be

extended, e.g., 100,000 hours, 30 months, etc.

I. Substitute the values for a, b, and c into the Gompertz equation

to obtain the value for R at point t.

The ceiling value of R is a. That is, at any point in ti me the

currently available data can be used to calculate a value for a, which

is the highest value that R is likely to reach. Values for a, b, and c

are calculated by the following equations:

18



1

S 1 S $2

log a = (si - 1 -cn)

(S1 - s2) (1 - c)
log b a

1 - cn) 2

Where:

SI * Summation of log R in group 1.

S2 a Summation of log R in group 2.

S3 a Summation of log R in group 3.

n - Number of previously determined reliability values in a

group.

Suppose that it is contractually required that a certain device

have an assessed reliability of 0.90 at the end of a 10-month design
and development period. Wh'at will be the assessed reliability at the
contract completion date, and the maximum achievable reliability without
major redesign?

Starting with the available assessment data at the end of five
months, convert the reliabilities t:o percentages and calculate the log

R values:

1{ 19



Reliability
Converted

Time to %
(t) (R) log R

Group 1 0 56.0 1.748
1 1 64.0 1.806

Group 2 2 70.S 1.848G 2 76.0 1.881

Group 3 f4 80.0 1.903
83.0 1.919

1.748 1.848 1.903
1.806 1.881 1.919

1 1
s= s s3.82.29- .22

(ýs2 S3  i--.7293- 82) 0.729.

log .° (s1  )= 1.964

a = 92.0, the upper limit for reliability.

(S1 - S2) (1 - c)
log b & n 0.784 - 1(1 - c)

b = 0.608

Ct
R = ab

R - 92.0 (0.608)0.729t

20



Conclusions:

The upper limit for achievable reliability is indicated by a, which

was found to be 92 percent.

When:

t - 10 months, as in this ccntract

.08 0729I0
R = 92.0 (0.608)

log R = log 92.0 + 0.72910 log 0.608

= 1.964 + 0.0427 C-0.216)

- 1.955

R = 90.2, assessed percent reliability

at the end of 10 months.

Since the required reliability is 90 percent, the calculations

indicste that the requirement .ill be met, hut just barely. Unless

there is a possibility of making a significant improvement by a design

change within the remaining 5-month period of the contract, the

achievable reliability should be safeguarded by such means as the use

of extreme care in material and process controls, inspection procedures,

handling methods and transportation arrangements.

Goodness of Fit

Use of the Gompertz equation should depend on its suitability in

describing the present data. To determine the goodness of fit of the

equation

R = 92.0 (0.608)0.729t

calculate reliability values for t - 0, 1, 2, 3, 4, 5 and then compare

these values with the presently available reliability values.

21



r{
If T R R

calculated from data
equation available

0 56.0 56.0
1 64.1 64.0

2 70.6 70.S

3 75.9 76.0

4 80.0 80.0

5 83.2 83.0

The Gompertz curve is a good fit for the data used, since the

equation reproduces the available data with less than 1% error.

Example 3. Data from the Lunar Orbiter is tabulated below in Table

I. What will the reliability be in January 1965, and what will be

the upper reliability limit without redesign?

The data in Table I were based on successive design analysis only,

because no test or use data were available at the time the predictions

were made. The increase in predicted reliability reflected the increase

in detailed knowledge about the design.

Table 1

Reliability
Converted

Time to V

(t) (R) log R

Group 1 June 1964 51.0 1.708
1 July S9.4 1.774

2 2 August 63.8 1.80S

Group 13 September 66.6 1.823

14 October 68.8 1.838
Group 3 5 November 65.5 1.816

1.708 1.805 1.838
1.774 1.823 1.816

S1 = 3.482 S 2 - 3.628 S3 = 3.654

22
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1 1

.628 - 36)4 0.422
S 1  S2 " 3.482 43.6281

log a ( SI I -

- 1.830.

a a 68.1, the upper li.nit for reliability.

It was found on the basis of the first six month's data and the

Gompertz Model that the reliability predicted in January 1965 would be

0.680 (which it was) and that the upper limit to the predicted reli-

ability would be 0.681, unless thore was a redesigzn of some modification

in the evaluation technique.

Example 4. In the Aerospace Program, the Launch Vehicle History of

the Blue Scout indicated 15 successes in 22 trials. Determine the 90%

and 80% confidence limits of the reliability of the Blue Scout.

The data at the end of 22 launches are indicated in Table 2.

23



TABLE 2

Pt. Est. •0% 90%
No. of Launch Success Failure Rol. in % Confidence Confidence

I - x 0

2 X 0

3 X 0

4 X 25.0

S X 20.0

6 X 16.7

7 X 28.6

8 X 37.5 19.9 14.7

9 x 44.4 26.8 21.0

10 X 50.0 32.7 26.7

11 X 54.5 37.8 31.8

12 X 58.2 42.2 36.2

13 X 61.7 46.0 40.2

14 X 64.2 49.4 43.7

15 X 66.7 52.4 46.8

16 X 68.7 55.1 49.6

17 X 6S.0 51.5 46.3

18 X 66.7 54.0 48.8

19 X 63.0 50.9 45.9

20 X 65.0 53.1 48.2

21 X 66.7 55.1 50.3

22 X _ 68.1 57.0 52.3

24



To determine the lower 90% confidence limit of the reliability of the

Launch Vehicle, look at the excerpt from a binomial reliability table

for 15 successes in 22 trials and confidence level 0.90. We find that

the lower 90% confidence limit of the Launch Vehicle is 0.523. There-

fore, we are 90% confident that the true population reliability is at

least 0.523. The lower 80% confidence limit is determined in the same

way and gives a reliability of at least 0.570.

Based on data from the first iS launches, we could estimate, using

the Gompertz Model, the reliability, with say 80% confidence after 22

launches. (This would be a projected reliability if data beyond 15

launches were not available.) Using data from Table 2, Table 3 is

obtained.

Table 3

No. of Launch L u X + 4 Reliabitity in %
L X R log R

2 0

3 0

4 0 25.0 1.398
Group 5 1 20.0 1.301
1 6 2 16.7 1.223

7 3 28.6 1.456
8 4 3 .5 1.574

Group 9 5 44.4 1.647
2 10 C 50.0 1.699

11 7 54.S 1.736
12 8 58.2 1.765

Group 13 9 61.7 1.790
3 14 10 64.2 1.807

iS 11 66.7 1.824
16 12 68.7 1.837
17 13 6S.0 1.813
18 14 66.7 1.824
19 15 63.0 1.799
20 16 65.0 1.813
21 17 66.7 1.824
22 18 68.1 1.833
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It is assumed that there is no reliability growth until the 4th

launch

1.398 1.574 1.765
1.301 1.647 1.790
1.223 1.699 1.807
1.456 1.756 1.824

S1 =5.378 S2 u6.656 S3 7.18&

1 1

S' 2 S3 n (6.656-7.186~ .0C •,•-• - M7 V. -6. -- 0.802

log a = 1 1 2) 1.890

a 77.6, the upper limit for reliability.

(s1 - s2) (1 - c)
log b n2 = -0.740 = 0.260 -1

01 - c n)2

b = 0.182

x
R = abc

R = 77.6(0.182)0.802x-

After 22 launches, L = 22 and, since L - X + 4 in Table 3, X = 18.

(Reliability growth starts when L = 4 or X = 0.)
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Then:

R= 77.6(0.182)0'802 77.6(0.182)0.802

log R = log 77.6 + 0.802 log 0.182

- 1.886

R = 76.9%

After 22 launches, the reliability, based on the Gompertz equation,

is 76.9%. The actual value in Table 3 is 68.1%.

Example 5. This example illustrates a nonparametric reliability growth

model introduced by Barlow and Scheuer (see Appendix A, Model 5). In

this model each failure must be classified either as inherent or

assignable cause and the development program is conducted in K stages
with similar systems being tested within each stage. Further, it is

assumed that the probability of an inherent failure, qo, remains

unchanged throughout the development program and the probability, qi,

of an assignable cause failure in the i-th stage does not increabo from

stage to stage. The example is from "Reliability Growth During a

Development Testing Program" by Richard E. Barlow and Ernest M. Scheuer

(see Appendix B, Reference 3).

Suppose that a development testing program yielded the results

shown in Table 4. Each stage of sampling, except the last, was

terminated when an assignable cause failure occurred. A redesign effort

was undertaken to eliminate the cause of failure, so that the test units

in the succeeding stage were different from the earlier units but

homogeneous in any given stage. It is remarked that this is the defining

property of a stage, namely the homogeneity of all test units therein.
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Table 4

Assignable b
Inherent Cause i

Stage Failures Failures F Successes Trials
S a. b. c. a. b. + c b. +c

1 0 1 0 1 1
2 0 1 0 1 I
3 0 1 0 1 1
4 1 1 1 3 1/2
5 0 1 4 5 1/S
6 0 1 0 1 1
7 0 1 0 1 1
8 0 1 3 4 1/4
9 9 1 27 37 1/28

TOTALS 10 9 35 54 -

The maximum likelihood estimate of an inherent failure qo is

K K
qo = E aiZ (a+ b. + ci

i=l i=1 1

and the maximum likelihood estimate of qi, an assignable cause failure

in the i-th stage, is

q= (-qo) bi/(bi + c i)

i=l,...,K. The qi's are the maximum likelihood estimates of the qi's I
in general. Let q4P2, ... ,qK denote the maximum likelihood estimates

of ql,q2,...,qK subject to the condition that

q -> q 2 > qK

I£I
ql L '12 8 P
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iA

then

q, qi,

icl,,...• . If

for some j (3=l,...,K-1), then combine the observations in the j-th

and (j+l)-st stages and compute the maximum likelihood estimates of
the qi's using again the definition of qi given above for the K-I

stages thus faomed. This procedure is continued until the estimates

of the qi's form a non-increasing sequence. These estimates are the
maximum likelihood estimates of the q.'s subject to

ql•2 "" qK"

For this example it is found that

qc= .1852

q, q2 3  .3148,

q= .4074,

=S q6 = i7 ~' .34020

.2037, and

= .0291.
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Further, the maximum likelihood estimate for r9, the reliability of

the system in its final test configuration, is

r. - l-.q0  - .7857.

If no assumption of reliability growth were made - that is, if all test

units were (incorrectly) supposed to be homogeneous and if no distinction

were made between inherent and assignable cause failures - the estimate

of reliability would be

9 9
r 9 =iE c. i l (ai + b. + c) = .6481.

To find a conservative 100(l-a) percent lower confidence bound

for r., it is not necessary to distinguish between inherent and

assignable cause failures. The procedure is to treat the data as

though they were homogeneous, that is, as if no reliability growth

were taking place, and use the standard technique to obtain a one-sided

lower confidence limit on a binomial parameter having observed s

successes in n trials. Using the data in Table 4 it is found that a

lower 95 percent confidence bound on r 9 is .53. This is a conservative

bound and is the same estimate that would be obtained if no reliability

growth was assumed.

Example 6. Barlow, Proschan and Scheuer (see Appendix A, Model 9)

considered a reliability growth model similar to the one illustrated

in the previous example. The main distinction is that in their model

one need not classify failures as inherent or assignable cause.

Specifically, their model assumes that a system is being modified

during K stages of development. Lot Pi be the system reliability at1I
the i-th stage. Barlow, et al, obtained the maximum likelihood

estimates of plP2,...*pK, under the restriction that

PI 1 2 PY-
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Also, a conservative lower confidence bound on PK was obtained assuming

PK 2 max Pi"
i<K

Data consist of xi successes from ni observations in stage

i, jul ,. .,K.

To obtain the maximum likelihood estimates of pl*... pK subject

to the restriction that Pi 1 P 2  1 "'. PK, first form the ratios

xl/nlx2/n 2 ,...,xK/nK. If xl/n1 <x 2 /n 2  ... /n, then xi/n.

is the MLE Pi of pi. If for some j (jml,.o.,K-l), x./n > xj+./nj~l,

combine the observations in the j-th and Cj + 1)-st stages and examine

the ratios,

x1 /n,...,xi-/n J1., (x. + X.+l)/(nj + nj.1 ),

Xj 2 j+2/n2,...,xK/nK,

for the (K, - 1) stages thus formed. If these ratios are in nondecreas-

ing order, they constitute the MLE's of Pl,..*,pK with pj = Pj+I -

(xj + XJ+,)/Cn + nj+l). If not, continue the process of combining

stages until the ratios are in nondecreasing order. This process need

be repeated at most (K - 1) times, and the result is independent of

the order in which stages are combined to eliminate reversals in the

sequence of ratios.

The example is from '"aximum Likelihood Estimation and Conservative

Confidence Interval Procedures in Reliability Growth and Debugging

Problems" by Barlow, et al, (see Appendix B, Reference 2).
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The procedure is illustrated by the data in the following table.

"" ' No." o f
Stage Successes Trials

(i) (X ) (i) x i/n i

1 2 5 .400
2 3 7 .429
3 3 8 .375
4 2 6 .333

S 6 6 1.000

The process of combining stages to get a sequence of non-decreasing

ratios is summarized below:

First Second iThird
i x ni x/ni Combination Combination Combination

1 2 5 .400 .400 .400
2 3 7 .429 1
3 3 8 .375 6 - .400 30
4 2 6 .33 17 .333 121 1:2-00-= .385
5 6 6 11.000 1 .00 1.000 1.000

Thus, we obtain the maximum likelihood estimates

P = P2 c P3 = P4 .385, PS = 1.000.

A conservative 10 0 (1-a) percent lower confidence bound on PK' the

reliability of the latest version of the system, is found by treating

the data from the K stages of the development program as though they

were homogeneous, then applying the standard binomial approach to get a

lower confidence bound on a binomial parameter having observed

x = E K x successes in n = E K n. trials. Thus, to obtain the conserv-1 = 11 1.

ative lower confidence bound on PK' the stage-by-stage history of the

development program is not needed; only the total number of successes

and the total number of trials.
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In this example, a total of 16 successes were observed in a total

of 32 trials. A 95 percent lower confidence bound for a single binomial

parameter based on these data is found from binomial tables to be .344.

Thus, a conservative 95 percent lower confidence bound for p5 is .344.

Example 7. The reliability growth model illustrated by this example

was, also, considered by Barlow, Proschsn, and Scheuer (see Appendix A,

Model 10). It is assumed, again, that a system is being modified during

K stages of development. Let Fi be the distribution of system life

length at the i-th stege of development. Because of reliability growth

the maximum likelihood estimates of FI(t),F 2 (t),...,FK(t) are obtained

assuming that

P 1(t)_< P 2(t) _< .. W_

for a fixed t > 0, where Pi(t) = 1-Fi(t).

Data consist of independent life length observations Xi,,...,

i

The maximum likelihood estimates (MLE) of F1(t),...,FK(t) are

obtained as follows. For j=l,2,...,K, obtain the empirical

dist. bution function Fin. (t) from Fin (t) = m i(t)/ni, where m.(t)
1 1

nui; of observations among XilXi 2 ,.*..Xin. not exceeding t.
1

If Fln It) > F2n2 (t) > --- > FK (t), then these constitute MLE's of

F1(t),F 2 (t),...,FK(t) respectively. Suppose, on the contrary, the

reversal,

mi (t) mi 1 (t)
ni ni.1
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occurs. Then the MLE is obtained by assuming a common value for

Fi(t) and Fi+l(t). Under this assumption the MLE of this common value

is obtained by pooling the observations from the two distributions to

obtain

mi(t) + mi+l(t)

ni + ni+l

as the MLE of the common value F.i(t) = Fi+ (t). Then examine

m1 (t) **,m.. j(t) mi(t) + mi (t) m.(t) + M t)
mi '..,i- i i1 i+l

nl ni-i ni + ni+1 ni +ni+l

mi.2(t) mK(t)

n i+2 n K

If these are in decreasing order, they constitute MLE's of F

Fi (t),F i(t),Fi+l(t),F i+2(t),...,FK(t). If on the other hand, a

reversal exists, pool as before to eliminate the reversal (adding the

various mi (t) involved in the reversal to obtain a new numerator and

adding the corresponding ni to obtain a new denominator). After each

reversal has been eliminated, we test the resulting sequence of ratios

to see if they are in decreasing order. When finally a sequence of

decreasing ratios is obtained, these constitute the MLE's Fl(t), F2 (t),

,FK(t).

The example is from "Maximum Likelihood Estimation and Conservative

Confidence Interval Procedures in Reliability Growth and Debugging

Problems" by Barlow, et al, (see Appendix B, Reference 2).
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A development program has two stages of development with four

observations in Stage 1 and six observations in Stage 2. The data are:

X m 91 hours X 96 hours11 21

X 54 hours X 49 hours

X 120 hours X , 105 hours

13 23

X 75 hours X24 " 125 hours
124

S25 = 101 hours

X2 6  =115 hours

The MLE's of F (t) and F2 (t) are given by

0 t < 49

1/10, 49 <t < 54

1/4 , 54 < t < 75

F(t) 1 /2 , 75 < t < 91

3/4 91 <.t < 115

8/10, 115 < t < 120

t > 120

and

0 , t < 49
1/10, 49 < t < 54

1/6, 54 < t < 96

1/3 , 96 < t < 101

= 1/2 ,01-< t < 105
2/3 lOS < t < 115

8/10, 115 I t < 120

6/6 , 120 < t < 125

1 t > 125
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Note, again, that the procodure illustrated above yields the MLE
I for any one, fixed, predetermined value of t, not for the entire

distribution function.

I6

Ir
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S. COMMENTS ON CHOOSING A MODEL

So far the need for reliability growth modeling has been discussed

and some background and examples on this subject have been given. The

next area of interest is naturally the practical aspects of choosing

an appropriate model. Because of the lack of published research in

this area, the present section will necessarily address the problem

in generalities.

As in any mathematical model, reliability growth models are

idealizations and are based on a number of assumptions which vary with

the models. With parametric and Bayesian models it may be very

difficult or, in fact, impossible to verify the underlying assumptions

in practice. Therefore, a problem of prime importance is the robustness

of the statistical procedures for the parametric and Bayesian models;

i.e. how well will these procedures represent the actual growth process

when the underlying assumptions are not entirely satisfied. Unfortun-

ately, sufficient research to answer this question has not been performed.

In light of this lack of research, one should be careful when choosing

a parametric or Bayesian model since any results obtained from the

model may be crucial and expensive to both the user and developer if

it does not reasonably represent the growth process.

Another related factor when choosing a parametric reliability

growth model is whether statistical procedures are available for

estimating and/or determining confidence statements on the unknown

parameters. For examnle, in the simple Lloyd and Lipow model (see

Appendix A, Model 1) it is easily shown that a "good" estimator of the

failure probability does not, in 7-ne-rn, exist.

With little knowledge about the characteristics of the growth

process one may wish to use a nonparametric reliability growth model,

Of course, one must pay a price for this scarcity of knowledge. The

major shortcoming of the nonparametric models is that lower confidence
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bounds tend to be overly conservative. The rcsult of this could be

unnecessary development cost since important decisions concerning the

reliability of the system would usually be based on the lower confidence

bound.

One should keep in mind, too, that the growth process is a function

of ti,e development effort. If the development effort changes then one

,.'ay wish to examine the reliability growth model being used to see if

it is still realistic. If it is possible that the development effort

will change in the future, then one should be cautious when projecting

the! future reliability based on the present model and past data.

The proper application of reliability growth models may often

require a close, continuing relationship between the user, developer

and all other interested parties. Everyone involved should realize

from the outset that reliability growth modeling is more than a

statistical exercise of fitting experimental data to arbitrary

mathematical functions. If properly understood and used, reliability

growth modeling can be a very important management tool. Othcii:;c,

it may be useless and harmful.
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APPENDIX A

A REVIEW OF SOME RELIABILITY GROWTH MODELS

This appendix describes a number of rel:Lability growth models which

are currently available. Each model is briefly described including the

basic assumptions that were made in deriving the models. Technical

references are given for each of these models where a more complete

discussion of the model may be found.

Model 1. Lloyd and Lipow (see Appendix B, Reference 28) introduced a

reliability growth model for a system which has only one failure mode.

For each trial it is assumed that the probability is a constant that

the system will fail if the failure mode has not been previously

eliminated. If the system does not fail, no corrected action is per-

formed before the next trial, If the system fails, then an attempt is

made to remove the failure mode from the system. The probability of

successfully removing the failure mode is also assumed to be a constant

for each attempt. They show that the system reliability, Rns on the

n-th trial is

R - I-Ae=C(n-l)
n

where A and C are parameters.

Model 2. Another reliability growth model was considered by Lloyd and

Lipow (see Appendix B, Reference 28) where the development program is

conducted in K stages and on the i-th stage a certain number of systems

are tested. The reliability growth function considered was

R. - R -a/i,

where Ri is the system reliability during the i-th stage, R. is the
ultimate reliability as i-->- and a>0 is a parameter. Maximum likelihood

and least squares estimates of R. and a are jiven by Lloyd and Lipow
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along with a lower confidence limit for RK.

Model 3. Weiss (see Appendix B, Reference 41) considered a reliability

growth model where the mean tire to failure of a system with exponential

life distribution is increased by removing the observed failure modes.

In particular, he showed that when certain conditions hold, the increase

of the mean time to failure is approximately at a constant percent per

trial. That is, if 9(i) is the mean time to failure of the system at

trial i then 0(i) may be approximated under certain conditions by

Ci0(i) = Ae

where A and C are parameters. Note that

@Ci+1) = e C0(i).

The maximum likelihood estimates of A and C are given by Weiss.

?!odel 4. Wolman (see Appendix B, Reference 42) considered a situation

where the system failuris are classified according to two types. The

first type is termed "inherent cause" and the second type is termed

"assignable cause". Inherent cause failures reflect the state-of-the

art and may occur on any trial while assignable cause failures may be

eliminated by corrective action, never to appear again. Wolman assumed

that the number of original assignable cause failures is known and that

whenever one of these modes contribute a failure, the mode is removed

permanently from the system. Wolman uses a Markov-chain approach to

derive the reliability of the system at the n-th trial when the failure

probabilities are known.

Mlodel 5. Barlow and Scheuer (see Appendix B, Reference 3) considered

"a nonparametric model for estimating the reliability of a system during

"a development program. They assumed that the design and engineering

changes do not decrease the system's reliability, but, unlike some

other models, they do not fit a prescribed functional form to the
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reliability growth. Their model is similar to Wolman's in that each

failure must be classified either as inherent or assignable cause.

It is further assumed that the development program is conJucted in

K stages, with similar systems being tested within each stage. For

each stage, the number of inherent failures, the number of assignable

cause failures and the number of successes are recorded. In addition,

they assumed that the probability of an inherent failure, qo, remains

the same throughout the development program and that the probability of

an assignable cause failure, qi, in the i-th stage does not increase

from stage to 'stage of the development program. The authors obtained

the maximum likelihood estimates of qo0 and of the qi's subject to the

condition that they be nonincreasing. A conservative lower confidence

bound for the reliability of the system in its final configuration was,

also, given.

Model 6. Virene (see Appendix B, Reference 38) considered the suitability

of the Gompertz equation

t
R m abc

0 < b < 1, 0 < c < 1, for reliability growth modeling. In this equation

a is the upper limit approached by the reliability R as the development

time t-&-. The parameters a, b and c are unknown. Virene gave estimates

of these parameters and demonstrated by examples the application of this

model.

Model 7. Duane (see Appendix B, Reference 17) considered a deterministic

approach to reliability growth modeling. He analyzed data available

for several systems developed by General Electric in an effort to

determine if any systematic changes in reliability improvement occurred

during the development programs for these systems. His analysis revealed

that for these systems, the cumulative failure rate versus cumulative

operating hours fell close to a straight line when plotted on log-log
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paper. The cumulative failure rate appeared to decrease at approximately

the -0.4 or -0.5 power of cumulative operating hours.

The types of systems investigated were of the complex electro-

mechanical and mechanical nature. Duane concluded that a line with a

slope of -0.5 representing cumulative failure rate as a function of
cumulative operating hours on log-log paper would probably be suitable

for reflecting reliability growth for similar type systems developed at

General Electric.

Mathematically, Duane's failure rate equation may be expressed by

X(T) = KT-',

K > 0, 0 < a < 1, where X(T) is the cumulative failure rate of the
system at operating time T, and K and a are parameters. It

follows then that

X (T) E(T)
T

where E(T) is the expected number of failures the system will

experience during T units of operation. This yields

E(T) = KT1-

Furthermore, the instantaneous failure rate at T is given by

0(T) = (l-a)KT"'.

For a system with a constant failure rate the mean time between failure

(MTBF) of the system at operating time T is

M(T) = [Q(T)]- 1 = [(I-a)K]-IT ,

That is, the change in system MTBF during development is proportional

to Ta.
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With this notatiou a - 0.5 closely represented the types of systems

considered by Duane.

Model 8. Pollock (see Appendix B, Reference 32) considered a Bayesian

reliability growth model for a system undergoing development. The

parameters of the model are assumed to be random variables with

appropriate nrior distribution functions. Using his results, one may

project the system reliability to any time after the start of the

development program without deta and, also, estimate the system

reliability after data have been observed. He further gave precision

statements regarding the projection and estimation.

Model 9. Barlow, Proschan and Scheuer (see Appendix B, Reference 2)

considered a reliability growth model which assumes that a system is

being modified at successive stages of development. At stage i the

system reliability (probability of success) is pi. The model of

reliability growth under which one obtains the maximum likelihood

estimates of plP21...,pK assumes that

Pl < P2 L ... LPK'

That is, it is required that the system reliability be not degraded
from stage to stage of development. No particular mathematical form

of growth is imposed on the reliability. In order to obtain a con-

servative lower confidence bound on pK' it suffices to require only

that

PK > max pi.
i<K

That is, it is only necessary that the reliability in the latest stage

of development be at least as high as that achieved earlier in the

development program.

Data consist of xi successes in ni trials in stage i, iml,...,K.
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A variation of this model is treated in Barlow and Scheuer (see

Mo'el 5). In that model two types of failure, inherent and assignable

cause, are distinguished.

Model 10. Another reliability growth model considered by Barlow,

Proschan and Scheuer (see Appendix B, Reference 2) assumed that at

stage i of development the distribution of system life length is F..

The model of reliability growth under which the maximum likelihood

estimates of Fl(t),F 2 (t),...,FK(t) are obtained, writing

. (t) = 1-F (t)

is

Fl(t) <p 2 (t) _ "' (t)

for a fixed t > 0. In order to obtain a conservative upper confidence

curve on FK(t) and thereby, a conservative lower confidence curve on

FK(t) for all non-negative values on t, it suffices only to require

that

FK(t) > max F. (t)

i<K 1

for all t > 0. That is, the probability of system survival beyond any

time t in the latest stage of development is at least as high as that

achieved earlier in the development program.

Data consist of independent life length observations

Xil,.... ,Xinii~lo.°,K.

Model 11. Bariow, Proschan and Scheuer (see Appendix B, Reference 2),
also, considered a reliability growth model which assumes that the

system life at the i-th stage of development has increasing failure rate.
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Because of improvement from stsge to stage

rC(t)_> r 2 (t) _> ... >r(t)

for t > 0, where rI(t) is the failure rate at time t at the i-th stage

of development. That is, for each t > 0, the probability of system

failure in the interval (t, t+dt), given survival till time t, does not

increase from stage to stage of the development program.

Given life-length observations, Xil~li2,.".,Xin' the maximum

likelihood estimates of rl(tbr 2 (t),...,rK(t) art obtained.
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