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SUMMARY

The present review contains a description with comments of the
three main Monte Carlo methods which have been used to date in solution
of the full Boltzman equation of kinetic theory - namely

1, Test particle method of J. K. Haviland.

2. Simulation method of G. A. Bird.

3. Integral Evaluation method of A. Nordsieck and B. L.
Hicks.

A chapter containing the necessary formulas from kinetic theory
and one on probability theory.is included at the beginning. The author's
first hand experience with the simulation method has made possible the
inclusion of some new material in Chapter 4.
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1. PRELIMINARY-NOTATION-'AND-'THEORY

11 Elastic Collision of T-o'Molecules Having Equal Mass.

1.1.1 Classical. Description

A Collision between two such molecules M and M' is adequately
described'in this setting whenever-two pre-collision velocity vectors
v, v-and-twopostt.coliision velocity vectors V, V' are given.- The
terms'pre;-collision and post-collision are only meaningful when the
molecules move freely before and after collision, that is when the forces
between them act only when they are close together. This assumption is
necessary to even speak of a collision process.

The theory shows that V, V' are functions of. v, v' and two other
parameters b, e whose geometrical meaning is explained in Fig. 1 (b is
called the miss distance and e specifies the orientation of the collision
plane). Figures 1-3 refer to a coordinate system moving with velocity v
in which M is initially at rest at the origin. The pre-collision and
post-collision relative velocity vectors are denoted by yr v-v and
Vr = V\-V'respectively and X is the deflection angle of M. It can be
shown that Vr lies in the collision plane (Tr lies in this plane by
definition, so Vr, v r are coplanar), and that X = X(b,g) (g +i~rl)
where the function X is determined by the collision interaction. For
purposes of kinetic theory it is convenient to assume that there is a'
value bm such that X = 0 for b > bm as would be the case for a purely
local interaction. It is still a very good approximation in cases of
physical interest.

The collision vector e in Fig. 3 is a unit vector in the direction
of momentum transfer during collision and is completely determined in the
collision plane by b and vr, and in three dimensions by v, ýr and e

(e = e_(r,b,e). Figure 4 is the analogue of Fig. 3 for an arbitrary
coordinate system in which M and MA have pre-collision velocity vectors
v and v' respectively. The following formulas for the functions V and
V' are useful for subsequent work:

= + (Vr (e))

V 1/2(v•+v•r- (2)

S= l/2(v + Vr

1.1.2 Statistical Description - Scattering Cross-Section

The basic element in the statistical des,'ription of the collision
process is the conditional probability density (differential cross-section)
G(-, g) having the property that G(*, g) d9 is the probability that the post
collision velocity vector of M' has direction within a solid angle d0 about
the unit vector 0 given that a collision has taken rasC
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G can be obtained in terms of X by first observing that the
distribution ior .(b,e) given b <-bm has the density fAnction b/7Tb 2 .
The calculation is simple if we assume that an inverse function m

b(x,g) can be found with the property that

X(b(X,g),g) = X

Then the probability that X lies in the range (X,X+dX) and e lies in the
range (e,e+de) is given by

b. Ob
-(b TX(,g) dXde

m

Since the range (X,X+dX) x (e,e+de) corresponds to a solid angle sin XdXde,
it follows that

G(w,g) = bin b(X,g) (3)

where w (cosXcose, cosxsine, sinX)

1.1,3 'The Hard Sphe• Model

This mode? :oistitutes one of the rare cases for which X and G

have explicit expressions and is the one most often used in Monte Carlo

calculations, The key formula for our purposes, evident from Fig. 5 is

b cos X = b.m

It followsthat

db = -b sinXdX,m

and the probability that (X,e) lies in (X,X+dX) x (c,s+de) is

b cosX-b sinx dX dE
m m

Ifb 2
m

sin 2X d(2x) de

4W

Referring again to Fig. 5, we see that if the deflection angle is X then
the change in direction of the relative velocity vector is 2X, Now the
solid angle corresponding to the range (2X, 2X + d(2X) (s,c + de) is

sin 2x &(') de.

2 20
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IFIGURE 1: LONG BEFORE COLLISION

FIGURE 2: PATHS OF M AND M' IN THE COLLISION PLANE

FIGURE 3: VELOCITY VECTORS OF .FIGS. 1 and 2



FIGURE 4: RELATIONSHIP BETWEEN VELOCITY VECTORS IN GENERAL

bHE

FIGURE 5: HARD SPHERE MODEL



From the preceeding two facts we deduce that Vr is uniformly distributed
on the surface of the anit sphere, and most surprisingly, distributed
independently of1 Vr. This fact makes the calculation of post-collision
velocities very simple in the hard sphere model.

1.2 The 'Boltzman Equation

1.2.1 The Distribution Functi6n f

Suppose we wish to give a non-detailed description at time t
of a gas of like molecules in some region Z of three dimension Euclidean
space E3 . One way of doing this is to specify a positive function
f(5,V,t) for Re b , VeE3 such that f(5,V,t) dR di yields the expected

numb6r of molecules in the small six-dimensional rectangular cell about
the point (RV) whose sides have lengths given by (dR,dV). The set of
all pairs (R,V) is known as phase space and is denoted by Q =0 x E3 .

1.2.2 The Equation for the Classical Description

The Boltzman equation is a conservation equation foi- f. Its
basic form is

k ~,v +(xvf)vX-t)

bm 21T
=fd 6~" bdbf dfdJVjf(R'V'01f(XV't) (4

fo 0o

0 0

where V and V are functions of b, ,, e as 4escribed in the foregoing
section, The three terms which have been displdyed in the above equation
are known respectively as the convection term, the gain term, and the loss
term.

Because the expressions involved are lengthy ones, certain
conventions have been adopted in order to shorten the amount of writing
involved, Let f denote f(x,v_,t), f" denote f(xv't), F denote f(x,V,t),
and FP denote f(x,V',t). Then (4) can be written as

S+ . = - fbm bdbf de: I(;F-F-f'f) (5)

0 0

An examination of the loss term reveals that f(xv,t) is independent of
the variables of integration and can therefore be taken outside the
integral sign. Accordingly the gain term is often denoted by A and
the loss term by Bf . Thus

3



-+-. Vf A -Bf (6)at

The combination A-Bf is often referred to as the collision integral and
written C(f)" to emphasize that it is an operator on f.

The mathematical representation of a physical problem requires
that, in addition to equation (4) initial and boundary conditions on the
function f must be satisfied. If the representation is complete it is
then-expected that the solution f will exist and be unique.

1.2.3 Simplification for Hard Spheres

If we recall that b = bmcosx (see Fig. 5) where X is the angle
between vr and 10, it follows that

Ivrlb db de = bi2 (I • :r) d0

Consequently (5k) becomes

+ v Vf = bm2f d O ("0 ) (F'F-f-f)
W r >0

and by making a minor extension in the definition of V and V' this can be
written as

+ v Vf 1/2 bm2 d f d-0, 1 r0 (F'F-f'f) (7)

1.2.4 The Equation in Terms of G(W,g)

The Boltzman equation can also be written in terms of the
:fferential cross-section G(C,g). The expressions in this case are

+ vf) (i, V, t)

dIG(( t)-f(•, 1 (8)

where now, of course, V, V must be given as functions of v, v, 0, instead
of v, v, b, e. The integral over 1 in this equation is non-zero only over
the forward hemisphere 0 < X < 4/2 since G =0 for 7/2 < X < I to allow
conservation of momentum.

r4



1.2.5 CYlindrical Coordinates in Velocity Snace

In problems requiripg only ons s_-ace dimension to describe, nhe
distribution function f often bas -.he form

f 2x= f-zV-v ,t) (9)x Y z

x-I

where v, (v2  +v2 )/2

In this case the left side of (4) has the form

a af

a5t x ax

Although no reduction in the dimension of the collision integral follows,
it is fairly easy to show that for any f of this form, C(f) has the same
form.

To this end it is useful to introduce the representations

(vx,, vCcosp, ~sir), " = (v-, v" cosy , vj -sinp),

and Sw ( cos, wsinv)ý, (10)

where
(wxWv) = (cos 0, sin 0),

and to write the collision integral with respect to dv- dvm d" dO d,.
It turns out that the integrand in C(f) depends only on the difference5
(so-v) and (V--v) and not on the individual angles. Since the integra1;
with respect to do' and dv are over the interval (0, 2v), a simple changr
of variables yielas the result that C(f) is independent of r . The Boltzr ln
eauation using cylindrical coordinates in velocity space is then

af .b 2  O IO21

at Tx ax 2 Lj d xj f -v ., dv 1 dw a-;rF-f

where the " have been omitted for convenience.

1.3 Invariance Properties

1.3.1 Normalization of f

If f satisfies equation (8) with differential cross-section
G(w,g) and a > 0 then af satisfies (5) with differential cross-section
SG(wlg)/a, This makes it possible to work with a normalized distribution

5



functLon f having the property that

-,t) di
f 3  02 0SE 3

at sore reference _oint x and tire t That is,
0 0

4£,•,t) = fli,•,t)Ino

where
n f(J £zTv,t-)d6.

0 v.3 0 0

The new differential cross-section is then

C-(@S) =n G(-{r,g)
n0

and can be interpreted as a dif-arential cross-section density because of
the eouation

fG(C-i,g) dO = n0 •f-(i',g)df- = n0A(g).

The quantity (1-2 n A(g)) 1 is the mean fr7ee path at speed g. In the
case of hard sphere collisions both A and the mean free -ath are indepen-
dent of g. In this case, if L is a characteristic dimension in the
problem,

L (nA)-'

constitutes a useful dimensionless matching parameter co=orly known as
the Knudsen number.

1.3.2 Change of Scale

In theoretical work it is frequently convenient to express
the basic equations in terms of time and length units characteristic
of the problem at hand. To this end let

t = Ttl,

i = A1 ,

and a X /Ts

from which it follows that

V = Iv

6



Put

The--,(,I,, .) = (A) 3f(A ,c&itt3 )-

ffl f(•'1 ,t1 ) a" a, =~[ f(;,t) ,R CiV.

FTurthermore, if f(x,v,t) satisfies equation. (I) with

= + ( -e) e

- '- ( :i )
V~~~~ e be)

then a straightforward calculation reveals that f(x,v,t) satisfies.

b /X

here + V1 -Vjf fa f m bldblf delI:; (F-F-f-f) (12)
,0 0

, where

F f(iVi,t 1 )

F f(X ,Vj ',t 1 )

v I•r' 'bj')=;(a•iIr'•Xble)

That is, the ,faxwell-Boltzman equation is invariant under scale changes
if the proper change is made in the collision vector e and the miss
distance b).

1.4 The Boltzman Equation from a Computational Standpoint

Any attempt to solve the Pull Boltzman equation by computational
means must offer a solution to two basic problems - a feasible evaluation

7



of the collision integral and a convergent strategy for obtaining a

solution to the first order nonlinear partial differential integral
equation which constitutes the Boltzan equation. A straightforward
resolution of these problems fails because both the fast access storage
capacity and the computing speed of even our fastest machines are
inadequate for dealing with even simple problems. There are, of course,
other questions to be considered such as boundary conditions, but they
pose difficulties of a lesser order of magnitude.

Even the storage requirements for the distribution function
f(x,v,t) at fixed time t are considerable, for suppose that f were
tabulated by storing its values at 10 grid points for each degree of
freedom. Then in the general case of 3-dimensional x and v, 106 fast
access storage locations would be required which is beyond the capacity
of present day computers. in a highly sy=.etrical problem such as the
normal plane shock, one can get by using one dimension for x and two
dimensions for v by making use of the symmetry. In this example only
lO3 values are required under the assumption of 10 grid points per
degree of freedom. Since l03 is well within the range of most computers,
this particular problem has been done by several authors.

The evaluation of the collision integral by numerical quadrature
is considerably more intractable. To gain an appreciation of the diff-
iculties involved it is sufficient to consider a typical calculation.
Since x and t remain fixed during one evaluation of the collision integral,
the distribution function will be written f(v); and since it is expected
that f decreases very rapidly (like exp(-cl-1 2 )) for large v, consider
f only in a subregion S of velocity space with the property that the
integral of f outside of S is negligible. Suppose, furthermore that S
is subdivided into bins denoted by Sk 1 < k < n, and that f will be
renresented in computer memory by storing thý n numbers f k fSf(v)dv
1 <k < n. That is, the actual f used in the computation wilt be an
approximation given by

n
f(v n & fkXk(v) (13)

where Xk(V) is a function taking the value 1 for v e Sk and 0 otherwise.
Then

b 27r

C(f) = E fifj 6- f mbdb.f de [Xi(V')xj (V)-Xi(V')Xj(V)] (i)
0 0

and the resultant contribution to bin k is given by

CW(f) = EPij flffik 13 (15)

8



where b

Pk F 6a fa;- f0 bdb f 0d. [xVi V)x(vi) x(V)
'~k.o o

Even under the course assumption that there be 10 bins in each of three
directions in velocity space, n has to be 103. This means that the
evaluation of C requires 2 x 106 multiplications and 106 additions
at each point k or 2 x 109 multiplications and l09 additions altogether.
Since even the fastest present-day computers have multiplication times
of the order of 10-6 sec., it is evident that capabilities fall short
of reauirements even without considering the colossal task of computingand/or storing the coefficient array Pkii.

The problem of finding the best strategy for solving the

nonlinear differential equation

H V f = C(f)

is at least partially a theoretical one and presumably'solvable even
in the absence of a satisfactory means for evaluating the collision
integral. Regretably, very little theory is known concerning equations
of this type. At least two methods have been tried in the case when C
is replaced by a s.mpler approximation C The first is concisely
described by the following formula for fxx,v,t+At) in terms of f(x,v,t):

f(x,V,.t+At) = f(x,V,t) + [-V • Vf + C (f)] At. (16)a

In the case of time dependent problems (16) yields a sequence of
approximations to the distribution function at intervals of time At.
In the case of time independent problems, it is expected that the
sequence of approximations will converge to a solution of the equation

v Vf = C (f) (17)

in much the same way as v. non-equilibrium distribution function relaxes
to its equilibrium steady state value in a physical situation. This
has been found 'o be a fairly slow method and greater speed is achieved
by solving (17) directly by means of a finite difference scheme.

In spite of the major hurdles that must be overcome, a tremen-
dous amount of work has been done adding to our knowledge of the Boltzman
equation. A whole volume would be far from sufficient to describe it.
The major categories of solution methods include the moment methods, use
of the BGK collision integral, and most recently, the Monte Carlo methods.

In this review we describe the Monte Carlo methods cf J. K.
Havilland, G. A. Bird, and A. Nordsiek. An attempt has been made to
include a large number of related works in the bibliography.

In order to make the discussion as self contained as possible,
a chapter on the probability theory relevant to Monte Carlo calculations
is included at the beginning.
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2. BASIC STATISTICS AND PROBABILITY THEORY

2.0 Introduction

The purpose of this chapter is to assemble some of the ideas,
and concepts from probability theory which the author has found useful
in dealing with Monte Carlo methods. No attempt shall be made to lay
down a precise enough structure to permit rigorous proofs, The
definitions are more complete~than the remainder of the discussion to
permit the reader to easily find additional information in a probability
theory textbook, but in most cases we do not take the space to fully
explain all the hypothesis mentioned in a definition if they are commonly
satisfied in the usual examples of probability- spaces. The notation in
this section is characteristic of probability theory ,iid independent of
that used up to this point.

2.1 Probability Space

2.1.1 Definition

The central notion in statistics and probability theory is
that of a sample space or probability space, and we begin by describing
this entity in very general abstract terms. Real understanding, of course,
comes from seeing how the concept is used in a number of familiar situat-
ions and we shall get to that immediately afterwards. We assume for the
purposes of the next paragraph that the reader is familiar with the
concepts of set, element, subset, union and intersection.

Let 9 be a set and V be a a-field of subsets of 2. The
subsets in Vwill turn out to represent events. The term a-field
requires that Y contain the empty set * and that it be closed under
the operations of countable union and set difference. Suppose, in
addition, that we are given a function P whose domain is F and whose
range is the interval [O,1] satisfying P(4) = 0, P(Q) = 1 and P(0- At)

n~l n= KkP(A ) whenever the A , n = 1, 2,.... are disjoint. This
n~l n

last condition implies teat P(AUB) = P(A) + P(B) - P(ANB) as well as a
certain continuity property for P. We call the triple (2,4 ,P) a
probability space.

2.1.2 Coin Tossing

We will try to show that the abstract structure of the last
paragraph provides us with a model fitting all sorts of situations
which according to our intuition are of a probabilistic nature. Take,
for example the common coin tossing experiment.

Consider first a single toss of a fair coin. We claim that
(, ýf ,P) with Q = £H,TL, where H denotes heads and T denotes tails,

= H { , (T}, (JT) and P(4) = 0, P( {H} ) =P( T1 ) = 1/2,
P( , 1 model for this experiment. The reason it is suitable
is based upon the fact that if we toss the coin many times then roughly
half of the tosses yield heads and half yield tails. In addition, there
are two analognus theore-cical results proved ot. the basis of our model,
the weak law of large numbers and the strong la., of large numbers which
strengthens the bond between intuition, experiment, and theory.

S!0
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The co=.on model for two independent tosses of a fair coin is
almost as simple. The probability space can be taken to be as follows:

!a= {EH, HliT, TI!, TTI ,1 f cons4ists~of all subsets of fl and if
AeSl("s" meaning "an element of") then P(A) = (Number of elements of A)/4.
Suppose we ask now "what is the probability of obtai.ning both a head and
a tail?" In our model this means "what subset A coi'responds to 1both a
head and a tail' and what is P(A)?" The answer is A = {HT, THI and P(A)
= 2/4 = 1/2.

Similar examples can be given for dealing cards, drawing
marbles out of urns and many other real life eituations where there is
an element of chance involved. We refer the reader to a book on
probability theory such as (2, Vol.1) if his interest moves him to find
out more about them. It is important for an understanding of the subject
to discuss one example which is essentially different from the coin
tossing experiment.

2.1.3 Dart Throwing

The coin tossing example had the property that P(A) > 0
whenever A contained only a single element of P. If this were always

true it would be unnecessary to introduce the collection * into the
model. We now describe a situation where it isn't. Suppose a dart is
tossed at an infinite dartboard equipped with .a cartesian coordinate
syste.a. It is aimed at the origin. As any enterprising dart thrower
realizes, the chances of hitting exactly the origin, or exactly any
oth,-r point is zero. On the other hand, the .proba'ility -of hitting a
nonzero area on the dartboard is general y non zero.

For this example let D cons 4 ,t of all the points on the
dartboard, or better yet, all pairs of real numbers (x,y) which will
be coordinates of points on the dartboard (bull's eye at the origin).

Let V be the smallest a-field of sets containing all rectangles. The
satisfying this description turns out to be quite large and contains,

for example, all regions whose boundaries are continuous curves. Finally
A we let

eA) (x 2 +Y2)/C 2 dxdy

Then P(4) = 0, P(PN) = 1, and P satisfies the additivity condition because
of the properties of the integral. Furthermore, p(A) = 0 whenever A is
a single point in the plane or, for that matter, even a smooth curve.
The f'unction is called the probability density or distribution density
function. The constant c is related to the skill of the dart thrower
(the smaller c the better). It has been found that this particular type
of density function describes an actual dart throwing experiment part-
icularly well. That is, if the dart is thrown N times, where N is large,
and the number of times a hit is made inside a given set A is NA, then
NA/N approximates p(A) and the approximation improves as N increases.



2.1.4 Conditional ProbabilitZ and the Urn.14odel

The machinery of sample spaces is ideally suited to deal
with problems involving what is known as conditional probability. Lt:L

us consider a problem where this concept is involved. Suppose we have
two urns numbered 1 and 2 and each contains a red ball and a black ball.
A ball is drawn from urn 1 and placed (without looking at the colour)
into urn 2. Then a ball is drawn from urn 2 and.it is black. What is
the probability that the ball originally drawn from urn 1 was black?
To solve this problem notice first that there are two possible compps-
itions for urn 2, each equally likely R1 R2 B2 and BIR 2 B2 (to clarify
matters we have used subscripts to denote the urn of origin of the various
balls). Let 2 = fR 1 ,R2 ,B2 ,Bj,Rj,B' , J consist of all subsets of S1 and
P be defined by P(A)= (number of elements in A)/6. This assignment of
probabilities is consistent with our intuitive prejudice that each ball
in a given urn has an equal chance of being drawn. The subset of Q
corresponding to the event "a black ball is drawn from the second urn"
is A. =. JB 2 ,Bf,B' . Since we know this event has occurred we restrict
our attention to a new sample space (P, I 1 ,Pl) where 91 = A, 'I consists
of all subsets of Qi and, since each single element set has equal
probability in , we ask for the same property in (Q1, Is,P1 )0
This means PI(B) = (# elements in B)/3 whenever B e If,. Such a
definition leads to the conclusion that the probability of a black ball
on the first draw, which corresponds to the primed letters in A, is
2/3. Experience shows 2/3 is correct, in support of the usefulness of
this definition of sample space.

In general if (Q, 1,P) is a sample space and 21, with
P(Q) > 0 is a subset specifying a condition known to be satisfied,
then the conditional sample space is defined to be ( PI) where
Y = {r\A : l and P1 (B) = P(B)/P(A) when B e*.

2.2 Random Variables

2.2.1 Definition and Examples

Having described what is meant by a s~tmple space, we are now
ready to discuss random variables, a concept which is indispensible in
the study of Monte Carlo simulators. A random variable X on a prob-
ability space (Q, • ,P) is a function whose domain is the set Q and
whose range is in the real numbers such that tw : a < X(W) < B e *
for all real numbers a < ý. In practice it is useful to deal with random
variables whose range is an "-dimensional Euclidian space, but we shall
avoid this complication for 'he moment. The probability that a random
variable assumes a value in an interval (a,ý) is denoted by P(c < X < 6)
and given by P(A) where A is the set [w : a < X (M) < B , i.e. the set
of elements of Q which lead to a value of X between a and 0. It is clear
now why we assumed such sets were in I since '- is the domain of the
probability function P.

"Natural" examples of random variables abound in real exper-
iments where chance is involved. If a coin is tossed N times the total
number of heads is a random variable. In the dart throwing experiment
the x coordinate of a hit is a r'andom variable, so is the y coordinate
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and the distance from the origin (x 2 + y2)I/2. There will be many more
examples in the Monte Carlo methods we are about to discuss.

2.2.2 Distribution and Denuity Functions

In working with a single ,random variable X it is occasionally
useful to devise a new sample space (Q , *,.P ) which is simpler in
many cases than the original one.and yet leads fo the same conclusions
as far as probability theory is concerned, This sample space is defined
as follows: Q is the real numbers; ? consists of all the Borel-
measurable subsets of the reat numbers and P is completely specified
by giving its value on every interval (a, B):

Px' B)) ( P(a < X < B)

P called the probability distribution function for X.
x

In many cases it is 4ossible to find a real valued function
(9(x) with the property that

B

P xa B)) = (x) dx

a

for all (a, B). Then is called the probability density function for
the random variable X.

2.3 Expectation and Variance

We now come to an exceedingly useful concept. The expectation
of a random variable corresponds to the answer w. obtain if we make
many observations of the random variable and take their average. It
is defined most generally as follows:

E(x) = f X(w) P(dw).

The expression on the right is an integral over the probability space
and is defined to be the limit of finite sums of the form

E sk k
k

where A k is a disjoint decomposition of S and the sk are chosen in such
a way Nhat the step function with constant value sk on Ak (k = 1, 2,...)
approximates X in a certain sense. The theory we have dealt with so
far is not equal to the task of making this definition precise.

We shall therefore give another definition which is equivalent
to the above one but applies only in the case where the random variable
X possesses a density function (P. Then

15



EMx) x I(x) dx.

(ne of the annoying facts of the business is that the integral in either
definition may fail to exist. 7here is nothing that can be done about
this, and we shall not deal with random variables whose.expectation
fails to exist in the sequel. F.ectatiors and rahdom variables have a
number .of usef-,, algebraic properties; we now state a most basic one,
Let X, -and X2 be any two random variables v'oae expectation exists and
a- be a real number. Then cX, + X2 is again a random variable whose
expectation exists and

E(aX1 + X2 ) = VE(X 1 ) + E(X2)

The expectation E(X) is often called the mean of X. This is
because if we Derform an experiment whose outcome is X N tiraes in such
a way that each repetition is independent of the previous ones and take
the average of the values of X we obtain in this way, this average turns
out to get closer and closer to E(X) as N gets large. This process of
repeating an experiment is amenable to a much more careful analysis
which we postpone momentarily.

Instead we pursue another idea. Just as it is useful to know
the mean of a random variable X, it is useful to have a measure of how
much the values of X can be expected to deviate from the mean. The
concepts which have been introduced for this purpose are the variance
and the stan.dard deviation of X. The variance is defined to be the
expectation of the random variable

(X - E(X))= - 2 X E(X) + (E(X)) 2

That is,

Var (X) =E(X2) - 2 (E(XY)) 2 + (E(X))2 =E(X
2) (E(X))2

in case X has a probability density function W (x)

Var (X) = (x - E(x))2 0 (x) dx

"The standard deviation of X is defined to be the square root of the
variance, i.e.

S(x) M(Var (x)) 1 /2

In order to make our statement that the variance and standard deviation
ge us an idea of how much the values of X can be expected to deviate
from the mean, we state a result known as the Chebychev inequality
[1, Prop. 1.7, p. 4]:

P wý W yfW) - E (X)I'/a '> e ) e2

16



2.4 Independence"

22.4.1 'Product Spaces

In-order to build a model to handle such situations as
repeating a chance experiment we introduct the concept of product of
independent probability spaces. To this end let (f k,'k -P ) k = 1,
...,n be probability: spaces. Let Q be the sample space whose elements
are n-tuples of elements of Rk k = 1,....N. That is,

WW2,...N k ,..,Nl

or equl valently

= x R2 x ... x I'll

We let • be the smallest a-field containing all sets of the form

A =A 1 x A2 x ... x AN,

where
Ak *k9 k = I,...N.

We define P first on sets of the form A = A1 i .. , k AN by setting

P(A) = PI(Al) P2 (A2 ) .... PN(AN)

and then extend it to all of -1 by making use of the addition axiom
and of continuity properties of the P.. It can be checked that
(0, 'W , P) is a probability space. We shall call it the .product of
the probability s, aces (nk' k' Pk)' k 1,..., N, and denote it
occasionally 

by

* N
IT (•k' • k' P')

k=l
We shall also have occasion to make use of an infinite product

=1 f•k' k' Pk)

of sample spaces. The concept and definition are analogous but.too

complicated to attempt here.

2.4.2 Motivation and Definition

Sets of the form R, x ... x 0 xk x... x N which
we denote by Ak exhibit a very important property --- namely,

SP(Akn ... OAn£) = P(Ak) P(A k

17



whenever k, #6 2 # - - k . -it important enou-h to have a defiufttior,
all itBown.E...t.B 1 ,

all its o. Events B, B2 ,. ... B. are said to be independen. of

P (Bin .. , nB£) = P (B1 ) P (B2 ) ... 2 (BO)

The notion of independence in our fdel- is a _±igorous stateatent of the
notion as derived from experiments involving chance. WVe shal! nake much
use af its consequences for random variables, emd we proceed to derive
some of them presently.

If X1 is a random variable on (Pit, 1, -P-;) then it can be
treated as a random- variable on

E- N

•(a,',-# P,) = 11 (Slk *tk,-'R")

[ a natural way-by letting

x(,-..., to x) ( )
N

We find then that

P (a < X, < =-P < < <

so that as far as probabilities are concerned X1 and,X1 are identical.
Suppose Xk is a random variable on (P, •k' ) and is the corresponding
random variable on the product spaceK = 1, . , N. Then

P(Xk I Jl)& ... & Xk P Je£) = P (Xk e J 1 )... (- J)

where ki # k2 # ... # k and J., i = 1, ... , k are Borel sets of real
numbers. This follows easily from the independence property of events
which we discussed in the preceding paragraphi. Hence we define the
notion of independence for any k random variables X1 , ... , X defined
on a common probability space .by the statement:

P(x &, ... , e& x j = P (X. e 3.).
i=l 1 1

2.4.3 Independence and EibectationN

If X1, ... , XT are random variables, 'then so is R Xk. If
they are in addition independent it can be proved that k=l

N N

k=l kil

For our purposes this property is not as important as one of its consequences
--- namely

N N
Var OZ X) =Z Var ()

k=l k=l



Vailea Ve nrow-e h~ere wbezi n 2 for tLe Se- ~~srtci

Var XI X-.l ax!+ 102) - lslv- ]E~2 )1 2

9 1F. + 2•{( X2) ÷ E(Y-) - '2 2 -)

,- X -. {{i) 2 ÷ •{22) - {z{•})2 = Ey2 ÷V% 2xo)_

2.5. The Ui--ifb::- sz-a !ior-l Bst-2baions
So far we have deat -wth a large m=Ober of definitions

theory. in order to rake use of this th•ory we =-ea to have . --- ore
s~mecLf1c knowede abo~ft "grob£,bi!J.i" s• es w-hich recur fr-eipently in
ail ding statistica•. od-els for re•l situations. We sha3.l descrbe

two sugh s-aces naw.

The first of these is knoum as the uifor= distribt--ion and
is defined as foillows: Let 9 be the interva! (a•b) •n• let -r consist
of all the Bore! =easurable si1bsets of (ano). .he roba.i•iy f-netion
is defined to be

P(A) =

where b- -is the- density- function. We then calculate the mean

E(X) Idb cx L_ b _
-b a+b

b-a 2

and the variance

E((X-) 2) b x2dx
b-a 12

and remeffber these facts for future reference.

The second space we must mention is the normal distribution
which is defined as follows: Let S be the whole real line (-•,•) and
let T consist of all the Borel measurable subsets of the real line.
We fix values of the parameters u and a and define the probability of
a set A by

1(A - •£ e(x-p) 2 /20Z d2P(A) =

so that the density function is

1 _ e-(X-p) 2 /2a 2
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= z .(z.,,)2f•2

E(I-)2 = =2anl. the vTari ane 'b-

= -=__- ,2

str= nsich stdasznee dq~ z: ct 2;gs a The a uecedio i.nte Crals caneths.
be evr.ans ated, b• eneanes•, -ee ane untiaeny tanf--na thra hinto

f f

vtich are con -:h founde in -tuaboles of intdergralese

2.6- r oentral Thett theorl a

'This ore-tt;y well cc--letLes the outline of the =ost!- essential
st.atisticall ideas neces-sary to plunge in-to a Study of M!onte Carlo m-ethods.
Trhere remains u~-'-entioned, however, a funda-mental an;! far- rea.ching
theorer. Vhich poroves iinvaluable in understzanding the answers a !ýbnte
Carlo calculation cranks out. The centranl limit theorem ass.=es we
ave an unlimited nsmder of indeendent random variables X (k=1,2,...)

and each has the sam-e distribution; that is, given (a,$), R then.
P(a < 3. < 6) is the same for all k=l,2,... leading to a mean p and
a szand-rd deviation a. Then we can conclude that for H sufficiently
large, the random variable

N

k=l

has an approximately normal distribution with mean p and standard

deviation

a

Strictly speaking, the ter.•i "approximately" above requires more precise
definition. We therefore refer the reader to [1, p. 170] where the
following precise statement man be found:

Theorem

Let X1, X2, ... be independent, identically distributed random variables
each of mean p and variance a. Then
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Sr-- syzz~al 2) - (0,11) sten-s for- ccnver-ges in distrian-tian-
tote nml iszribhution- of =ez-" zero r-- stndad de-wiation 2. It

me~ that if Fn (oa) = P'(Sm, < a) is tbe- distri-buation fu~cticn of SýM the

! n -Ja 0ý1/-

Sz:_mse vee sare givenn a deviw-ce -which is able lto gennerrate
[raonda zurzer~s chosean fr-om a distlribution with fi = (a,bD) and den-si~ty-

1-z)- thi~is secttion we discuss the uroblen Of obat-aining an appnrox-
k--ation to V'(z) bZ p~lotting a histaora'-- f-Cr- M'i=nber-N o-randonu
n ers (ri -- , produced by our generator.

-is;we 5tate vbat is me-ant by a histogram. Let a Dpartltl-on
{a = X 4X1 <.. X "' D off the intuerval (a~b) be fixed. *Thus
issifue-Vided int.o cel]Z, Rk = (xk-I,, xkl k 1..,n. The atmroxw-

17FItO!1 -is defined to be the step function -whose constaxt, value
on the interval 9l, is crbtailned by counting the num-ber of the -~Which
fal-1 iinto this intverval and dividing the result by Ni( - xk<)

There is an0t~her way of describing tha histogram which is
more usefla f'or theorettical puirposes. Let x. be~ the characteristic
funct-ion of -the cell alky thatu is,

Xk(x) (1 "fk
loothervi se

Then Xk is a random va-riable on (fl,T, P). We can imagine X~k to be
a randokm variable on the i-th factor of the product, space

and denote its extension to~ the whole product- space by Xk i. For
fixed k then X k i i = l,.~N are identically distributed independent
random variable . Further-more, if we let 501Hk denote the value of
pHx) on Qk., we obtain

NxFk.xkl1) i=l X;

thki also a random variable on the product space, We calculate
the mean and variance ofXk
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"It follo-s then thet

and

if N is large then ve can us t-e central limit theorem to conclude
t1 hatAH1k -0w11 be approxrately nor-m'!!y distributed i--lying that
it will fell within two standard deviations of Ik/(Xk-x-!) about
98% of the ti__e. it is perhaps rore iluminating to look at the
"relative deviation"

cy(foH,k)/7'(P' H1,0)=(/kl.)..P•7/

The if m<<!, which iast be the ,"ince= if t partition
points are finely spaced in order to make the histogram show detail,
the relative deviation is anproxivately (NPk)-1/ 2 or (exuected number
of counts in cell fk)-/ 2 . -This is a useful rule of thumb to remember
when designing Monte Carlo algorithms. it is heavily dependent, of
course, on the assumptions of independence and small

We have worked out the histogram theory for a distribution
with 9 = (a,b) and probability density The theory is not really
restricted to these assumptions. Mbre generally we can start from
an arbitrary probability space (f, , p) and choose a partition

N
= U k,

k=l

Ilk disjoint and :S e, k=l,2,...n of the set fl. Again we choose a
sample (W1 , W2 ,- ,. ,wN) of N rendom points from the distribution
(I, I,P).

Since P may not be given by a density function it is not
possible to define the histogram as a stepfunction approximation to
the density function. Instead we let PH k equal the f1raction of
the wi falling into fik and consider it an approximation to

22



[We def ine )ras c efcre ani :finn. Vha

s5 a randzm variable on the suace

whose mean turns o• to be •kane standr deviation turns out to b

Again the relative standard deviationl is

(/1/ vg-)l/rl2 1/2

and our rule of zhu-_b that relative standard. deviation (expected
nu=ber of counts in )-1/2 still applies.

2.8 Algorithms and I4onte Carlo

2.8.1 General Structure

We shall not define precisely what is meant by an algorithm.
Iz is sufficient for our -purposes to say that an algorithm is a finite
sequence of operations and of things to be operated on, instructions
giving.the order in which the operations are to be performed and
when the execution is to stop, together with a guarantee that the
operations can always be carried out under stated conditions. A
computer program, of course, fits the description we have just given
and it is in this context that we shall be discussing algorithms from
now on.

Since we shall not be discussing any particular algorithm
in the next few paragraphs and consequently shall not be concerned
with the internal details of how a particular algorithm is put together,
it is-appropriate to use the well known function notation as a
shorthand for an arbitrary given algorithm. That is, let U be the
vector of numbers which the algorithm uses as initial parameters and
V be a vector whose components are the numbers which it produces. Then
we write

v : (U)

to denote the action of the algorithm.
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Czenera'lly aIgrjth~s; are devised so thati -we can use a
..=atea 1r-r so calo-n1 te so'-e ?u-zio hich is at least theoretically
knzown. Par exz-:--le, let A bee an n x n maturix of ccomi ex znumoers.
r••r•n t 5 kr--um- that A has n cc_=lez eigenvalues. Alternatively
ve couild Say tha=t there exists a function F(A) whzse value is a
-7sczzr of n ccDonents - the eigenvalues of A in some order. it

aortst oroblem to devi'se an algorit__ O(A,k) thich prad-nes
a closes an-roximaticn to the eigenvalues of A. We ask that the
a lgoritbm at least satisfy

Exrerience tells us that such an algorith__ would utilize same
Iterasive _me-th•d and that the time T(k) reuired to execute the
algorithm would go to - as k -+. "The-+ _s soething one must live
with.

With this nreamble we now turn our attention to what we
s•' call, a 1ronte Carlo algorithm. We describe it at first in a
somewhat idealized form in order to clarify what is meant.

Suppose that our computer has attached to it a source of
random num'nbers whose distribution is known so that in addition to
the usual slate of instructions there is one which enables us to
introduce a number from the random source into the computation. If
an algorithm amakes use of these random numbers, we should intuitively
expect that the answer will also be described by a probability distr-
ibution. We can describe a Monte Carlo algorithm in terms of our
function notation if we imagine that instead of having a random
number generator built into the computer we allow the computer to
have access to any finite part of an infinite sequence of numbers
produced separately by a random number generator. Let such a
sequence be denoted by r = (r 1 , r 2 ... ). The words "finite part"
in the second to last sentence deserve emphasis. We wish to exclude
such functions as

"Compute the mean of the sequence r"

or

""If urn rk is greater than 10 commence step 3".

Fortunately in most algorithms it is possible to place an upper bound
N on the length of the sequence required by the algorithm. Then it
suffices to work with r = Cr1, r2,...rN).

For theol.etical purposes we let (, Q , P ) be the prob-
ability space describing the random number generator. Then r may be
treated as a draw from the probability space

N
(G•P) = H (0 oIfoPo0),

Z=i

or
If (n, o,Po)

0 0 0
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V

as the case a=-y be. The Monte Carlo algoriti-m is denoted by

V = O(U,r,k).

The izarameter k has been introduced to allow for convergence
properties. i- is evident that for fixed U, V is a vector valued
iandom variable on (f, f ,P). it is therefore reasonable to ask for
the prdbability distribution of V. Generally, tnis is too difficult
a aJuestion to answer, and for practical pn-poses certain properties
of this distribution suffice.

2.8;2- Monte Carlo Integration

It is time now to describe an algorithm which is, historically
speaking, .a prototype for all Monte Carlo calculations. The purpose
of this -algorithm will be to approximate the integral of a given
function f(x) on the interval (0,1). It is presumed that f is given
to us by specifying d parameters - they could be the coefficients of
a polynomial of order d - 1, or they might be the values at d points
in the interval (0,1) if f is assumed precisewise linear. The exact
method of specification is of no direct concern to us. Let us simply
assume that once the d parameters are given, we know how to calculate
f(x) for any x e-(0,1).

The actual computation of the integral proceeds as follows.
Given N, choose N independent random numbers r = (rl, r2,...,rN) from
the uniform distribution on (0,1) and then compute

1 NI = ý (f~r,N) = Z f(r

.fN) N- k

we claim that i in an approximation to

f f(x) dx
0

in the following sense:

1 N
E(I)=- Z E(f) = E(f) f(x) dx -

N k=l

Var (I) Var (f) = L(f f2(x) dX- _ 1)
0

-1/ _2)/ N-1/2

(fC) = N2/2 f 2 (x) dx- p2)1/2 = N
0

We summarize: The m'ean of D(f,r,N) is the required integral and its
standard deviation tends to zero as N4)- Furthermore, 4 is an average
of random variables that for sufficiently large N we can assume it
will be approximately normally distributed kith mean 1 and standard
deviation C N-l/ 2 . In particular the probability that

i - I < 2 C N-1/2
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is -about. 0.98. fr•ich we can conclude. that -w-ith probability 0.98
v12l a__roxna te f- f(x) d to within e if N > (2CfE) 2 .

0
Before leaving this examp•e, it is in•oortub to notice

that-the-.ni-ber of ecm__utations of f' and hence the time taken to
execute.the algorithm increases as N but the standard deviation
enly.decreases as BI-1/2. If -we compare this with a quadratically
convergent standard algerithm, we-can see that Monte Carlo is a
preposterously-expensive .way to get accuracy.

We can also use this example as a guide to formulate a
criterion for- convergence of a Monte Carlo algorithm. We say that
the algorithm

0 (U, r, n)

converges to F(U) as n--if

pn = E(4(U, ",n)) - F(U)

and

Var (4(U,-,n)) -) 0.

Unfortunately, neither this criterion, nor any alternative
has been proved for the Monte Carlo algorithms proposed to date in
Kinetic Theory. We state it here primarily to throw light on the
nature of the answer a Monte Carlo algorithm produces.

2.9 Random Number Generators

2.9.1 The Uniform Distribution

We stated at the beginning of the preceding section on
Monte Carlo algorithms that the random number generator attached
to our computer was an idealization. In practice a substitute is
used.

There are several standard algorithms known which have the
property that they produce a sequence of numbers which as far as its
statistical properties are concerned could have been produced by
samplingfrom.the uniform distribution on (0,1) (there is nothing
basic about this interval, it has been adopted by convention mainly).
The algorithms must be given a starting value r so that we could
write a typical one as

R(r n)

0,

which gives the n-th pseudo random number if the starting number is
r . Among the statistical properties, we demand that histograms
built from the sequence R(r ,n) be statistically ifdistinguishable
from a histogram built from the same number of samples from a uniform
distribution.
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It is tempting, but inconsistent with our goals, to go into
detailed descriDtions of the tests which are used in this connection.
We refer the reader instead to [3, Ch.12].

The best methods known to date for generating uniformly
distributed random numbers are known as the recursive congruential
generators (5). The n-th pseudo-random number R(r ,n) is given by

0

br n = R(r ,n)(modulo m)
0 0

for a suitable choice of the~par-ameters (b,m). This choice requires a
considerable amount of nimber theory to make properly. The congruential
methods are both fast and pass the statistical tests with flying colours.

There .are two basic methods for devising an algorithm to
generate random numbers from a distribution given by an arbitrary
density functionlb(x) on (-Oo) which make use of a source of uniformly
distributed random numbers.

2.9.2 Method I

Let

fx• •4(.x) =11 )

4) is a nondecreasing continuous function which assumes every value
in the interval (0,1). Consequently, there exists at least one
nondecreasing inverse function P on the domain (0,1) such that

-'(y)) = y.

•-.I is a random variable on the uniform probability space with

S= (0,1). Since

x,< 4'- 1 (y) < X2

implies

4,(xi) < Y < 4)(x2)

it follows that

P(XI <_ •-I < x2 ) = P(D(X1 ) < Y <_ (x2)) - 4(x 2 ) - O(Xl)

Hence 0-1 is distributed according to the density function@(x), and
if R(ron) is a random number generator for the uniform distribution
on (0,1) then

olR~ 0n))

is a random number generator for the distribution with densityP(x).
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Method I, though completely general in theory, is :not always
useful from a practical point of view. The- problem arises when there
is no-easilycomputable expression for 4_'l or, even worse, if we are
given f and-there is no easily computable expression for either 0 or
0-1. In such cases Method II may be preferable,

2.9.3 Method II

Let 9) be a given function not identically zero on the interval
(a,b) and satisfying the inequality

0_< P(x) < c.
We shall describe a met..-, for obtaining a random number from the
distribution defined by the 'density

b
(x)/f P(x) dx

•a

Let x be a random number from the uniform distribution on
(a,b) and y beta random number drawn from the uniform distribution on
(0,c). Then

) b dx/(b-a)c
P( C(x) _y) =a ?(x:)

and the distribution for x given that the condition ?(x) < y is

satisfied is

P(a < x < 8 on the condition ('(x) < y)

P(x) dx/c(b-a) (fb ) dx/c(b-a)) V=X dxf j~)
a a aa

That is, the above conditional distribution for x is the distribution
we seek to compute.

On the basis of the theory just derived, we devise the random
number algorithm as follows:

A. Choose r, and r 2 from t' ,niform distribution on (0,1). Then

x = a + (b-a) rl, and y = cr 2

will be uniformly distributed on (a,b) and (O,c) respectively.

B. If ((x) _ y'then x is the required random number and we are finished.
Otherwise return to A to repeat the process.

One of the interesting features of this algorithm is that the
number of steps necessary to generate a random number x is itself a
random variable. Some further analysis is in order. The probability
that x is accepted on the first pass is

p f (x) c(b-a).
a
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The probability, of, acceptance on exactly the n-th pass is the same
as the probability ofnon-acceptance on the first (n-1) passes and
acceptance on the n-th pass, or

(p)n-l

Since

_ (l-p)n-lp =
n=l

the probability of eventual acceptance is one. On the other hand,
the expected waiting time is

Z n(l-p)n- p -. 1

n=l P

From.this it is clear that the speed ofMethodIlois improved by
increasing p. This can be done by first of all choosing

c = Tmax

Secondly, (b-a).can be decreased by truncating any long thin tails
of (x)

Under any circumstances Method II has the serious disad-
vantage that no useful upper bound on its running time can be given.

2.9•.h Generating-the Normal Distribution

Fortunately Method I and Method II do not exhaust the
possibilities for designing random number generators. As -an example
of the exception we shall now describe a unique method for generating
random numbers fromthe normal distribution with mean 0 and standard
deviation~l. In this case Method I is not easily applicable because
there is-no simple formula for the function 4(x), and Method II is
undesirable for the reasons we have already mentioned.

First of all, let us note that Method I yields an efficient
random number generator for the distribution with density function

x e

Here

P(x) x te-t 2 /2dt = 1 - x2/2

and 0

1/2
-l(y) = (-ln(l-y))

Furthermore, if we choose r from the above distribution and 0 from the
uniform distribution (0,21), the distribution density function for the
pair (r,0) is given by
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-r2/2r e
21r

Now suppose that (r,e) are the ,polar coordinates of a point, in the

plane. Then if we change to Cartesian coordinates

x = r cos 0, y = r sin 0

the density- function becomes

1 e-(X2 +y 2 )/2 = ((2,r)-1/2e-x2/2)((2n)-1/2e-Y2/2

Because the density factors in this way, we' conclude that x and y
are independent and each is normally distributed.

2.9.5 Uniform on.the Unit Sphere

A variant of Method II is often used to sample from the
uniform distribution-on the unit sphere using the following procedure

A. Choose three independent random numbers rI, r 2 , r 3 from the
uniform distribution on (0,1).

B. Retain' if 0 < Z r. 2 < 1; otherwise go to A.
1

C. The required unit vector is (r 1
2 +r 2

2+r 3
2 )-/2 (rl,r 2 ,r 3 ).

2.9,6S Effusive Flow

Finally, we describe a modification of Method II for
generating random numbers from a distribution with a density function
proportional to

x e(XXo)/2 on (o,b).

Ideally we would like to consider this function ozi (0,-), but the
cut-off at b-must be introduced to control the expected waiting time.
This particular distribution is important because it occurs frequently-
in dealing with boundary conditions for the Boltzman equation.

The algorithm is as follows:

A. Choose r from the normal distribution with mean zero and standard
deviation one. Then

x x x + r c/2l/2

has density function

1 e-(X-x ) 2 /c 2
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B; If:X.O-'(o,b) we reject'this value of x and repeiat step 1..
Othdrwds'ejzye-proceed to C.

C*.- Choose a;. random, number y from th..unifork -distribution on (Oib).Iif xc vywaeacept x-;as-j-be required-rhndom number. Oth~rwise,
the. p~rogram-goeg. to, A --4P- epeat. the-process.

WThe ýshall omit *the ~details-~of the ~theory -in: this- case since
they ýfollow.-cl~osely our 'discussion ~ofK-Method-II. The -algorithm has

-an-unrea~son6,bly1.large'ý-expected-.wait~ing time-if x< -c. -The waiting
time. can- be_-reduced- if-.x < 0 by -using,-only the ~positive part of the

:normal distrilbutiobn in -s~p 1, i.e.

x = X.- Irl'cI?1/2

If x is' l'arge -and-,nbgative- then- the 'standard -Method 11 is more

- ~eff#i~int" than' this one.
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3-. E±i M-HRV PARTEICLE! M1HOD inodcda!otealo ehd r

-3.0 -Introduction

J. K; ]ý_viland in 1961 introduced a Mnte Carlo method for

obtaining-time -independent solutions of the -Boltzran equation which
is .now descriotively called the "test particle method". This method
requires.enough.storage-for two approximations to the distribution
funetions 4o.be in memory at .any one time and has therefore been
.linited to problems -which could be reduced to one space and t-wo
velocity dimensions; The comuuting times are of the order of a half
hour on the-1.B.M:Tg09-to obtain-a density profile with a standard
.deviation of.the-,order 'of 1/20 sof the ,density at any given point.
in this case-the-density-histogram-was accumulated-in 10 cells each

having, a-width-oof'the order of 1/10 mean free path.

3.1 Preliminary Theory

3.1.1 Outline

The basic idea in Haviland's method is as follows: In
order to compute the distribution function f(x,v) satisfying a
given Boltzman equation, and/or some of its moments in a given
3-dimensional region 0 with given boundary conditions on the boundary
9 of Z. Denote the phase space for this problem by S = Z X E3 .
Since the computation is designed to only produce a histogram approx-
imating the distribution function, divide the phase space into a
finite number of cells Rk (in practice k will represent a vector of
3 integers).

Initially one makes an educated guess (usually an appropriate
linear combination of Maxwellians) for an approximate distribution
function. This is considered the target distribution for the first
iteration. The target distribution is then used to statistically
compute trajectories in Q of a molecule having the same collision
cross-section with the target molecules as appears in the given
Boltzman equation. As the trajectories are computed, their contrib-
ution to an incident distribution function is recorded. Clearly, if
the initial guess was an exact solution to Boltzman's equation, one
should find that as the number of trajectories increased the partially
accumulated incident distribution function would tend to the target
distribution function. Otherwise, the incident distribution approx-
imation is different from the target distribution even after a large
enough number of the trajectories have been computed to reduce the
variance to an acceptable level.

Nevertheless, it has been found by experience that the
incident distribution is a better approximation to the correct answer
in the sense that if the process is repeated with the target distribution
replaced by the previously computed incident distribution then eventually
the incident distribution will tend to the target distribution. This is
interpreted as convergence of the iteration scheme to the correct dist-
ribution (= final incident distribution = final target distribution).
The required number of iterations depends on the initial guess and the
error tolerances. Haviland used fewer than 5 in his calculations.
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3.1.2 Trajectories to Distribution Function

To explain and motivate Haviland's procedure for accuMulating
the incident distribution function, suppose that b), !0, k, have the
same meaning as before. Imagine that the molecules in D are numbered-
with an index a (a = 1,2,...,N), and have trajectories given by

Tra (t)

and
t

a (t a (0) + fTra(rId-r.

At this .point it is worthwhile to remark that each v (t) must closely
approximate a; stepfunction (piecewise constant function)'in order
that the Boltzman eauation be valid for this system.

The first task is to define what is meant by the statement
"f is the distribution of the dynamical system whose trajectories are

(t), a = 1,2,...,N":

1 f N
vol(• ) f(x,v) dxdv =aZ 6 ((t),•(t)) + R (1)k kl k

where 6 is a function having the property that 6k(xV) = 1 when
(x,v) belongs to the cell Rk and Sk(X,V) = 0 otherwise; and R is a
random variable having mean zero and variance tending to zero as
the volume of Rk and therefore N becomes large. Strictly speaking,
one should define the probability space underlying R but it is best
to avoid such a project at this point for the sake of brevity. In
fact, in order to elucidate the essentials R shall be omitted
henceforth .and = replaced with to indicate the omission.

Since (1) is true for all t it follows that

1flt(v- n f(fv)difl) £v T 6k(xa(t),va(t))dt (2)
o k k acl o

It is easy to see, however, that

f 6k(xa(t) ,va(Vt) )dt

is nothing other than the transit time T ,k that the trqjectory of
the a-th molecule spends in the k-th celY.. The factor - is the same
for each cell, and it is more efficient in actual computation to
simply accumulate the T _-s in a suitable array and then divide by

the normalizing factor at he end of the computation. Finally, there
is a very important observation to be made at this point. It is not
really necessary to compute the actual trajectories of N molecules
in order to apply the preceding formula. It suffices to generate
trajectories which have the same probability distribution as the
actual ones. It must be noted that to precisely specify this
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I distribution would -entail a certain amount of basic work which does not
yet appear in the literature. One m-ust be satisfied with describing a
generation Drocedln-e Vhich mimics statistically the one occurring in-nature and arguing iy analogy rather than proof.

3.1.3 Comiutation of Trajectories

Suppose a molecule starts at (xc ,T ) in phase space at time
t = 0. Then the mrodbability that the mol°cude will undergo its first
collision in the time interval (t,t+dt) is given by

0 0z
P (T, :, t) = (z e-t dt

where

E (Fx V) f 7vf b m abdf 27rdeg f (3)
0 0

is the collision rate with the target molecules. As is customary,
g = Vr, and v v - v

Let T be chosen at random from a distribution with density
P(x ,v ,t). The position at time of collision is thenx 1 = x + TV v
In Krder to obtain a post collision velocity for the molecule0 reason
as follows: The collision partner has a velocity chosen from a dist-
ribution with density

(P(R) = ff(i-,;)a)
The probability that the collision parameters b,e fall into the intervals
(bb + ab), (e,e + de) is given by

bdbde (5)

Trb
2

m

Let them be chosen accordingly. Then the post collision velocity V
may be computed using (see 1.1.3) 0

V =0 + (Vr e) e (6)

3 .1.4 Specialization to One Space and Two Velocity Dimensions

Haviland considered two problems which require only one space
dinension and two velocity dimensions for representing the distribution
function: the flow between infinite parallel walls at two different
temperaivures and a plane shock extending to infinity in both directions.
In both these problems the distribution function can be immediately
written f(x,v vL) (see 1.2.5).

Let the (x,u,v)-space be partitioned into cells having dimen-
sions

Ax, Av AV
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The number of molecules in a typical cell is

x+Ax vx+Avd . L+Al ir2,.v fx d
d .x . xav; J2dv f •of (x,v~,i (6

X 0 (6 )
--27, f(Xx,V.v,.) v. AxAV.,"x.x

molecules per unit area where (x,vx,v.) is some interior ,point of the
cell. We now define

F(x,v v) = 2 VL f(XV vL).7)

Suppose each cell in phase space is now indexed with subscripts (i,j,k)
giving the coordinate numbers of the cell in the x,vxand yvdirections
respectively, and (x.,v v , ) gives the midpoint coordinates of the
i J k-th cell. If .F d.kXives 'the accumulated trajectory residence time
in the ijk-th cell,,% •n

~ C

F(xivv )z F (8)
ixj ,.k AxAvAV Fijk

where C is a normalization factor chosen so-that the distribution function

predicts the correct average number, density of-molecules. In order to
compute collision rates and moments of the distribution, the foliowing
formula given by Haviland .is very useful

ff(x.v.Vy.vz) 4, (xv)dv dvydvz

f• x,- Y .2 xy

f dv.JodV.f 21rj vdef(xvx)v.LcosOGLsine) ) (xvv cosev sinO)

0 0 (xdv v v k cosOv L sinO) (9)

= J,kiik f , ,

L where xi is the closest cell midpoint to x.

3.1.5 A Finite Velocity Range is Sufficient

Since it is expected that for large values of v ,vy the
distribution function will decay like exp-[(vx/c )2+(v.L/ciX)2], only
the cells near the mean velocity should contain any significant num, •r
of molecules. This leads to the very important simplification of working
with only a finite number of cells in velocity space. Haviland (p.151,
table IV) has studied the effects of restricting the velocity distribution
to a rectangle of the form

(-Uxaco,ux+OCco) X (uL-acoU.,+aco)
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(where (ux,uj) is the mean velocity andco is the most probable deviation
from-the mean) for various values of a. He points out that if a = 2.0
then• one is assured of including over 99% of the mclecules of an equil-
ibrium distribution. Any molecules found outside the rectangle are simply
assigned to the closest cell on the boundary of the rectangle.

3;2 The Algorithm

3.2.1 Storage .Requirements

The largest arrays are the target distribution function FT;
the incident distribution function FI each of dimensions I,J,K, a cross-
section array XSECT of dimensions K, (.2J - 1), K and a collision rate

array SIGMA of dimensions I,J,K. Both the cross-section and collision
rate arrays are used to save time by storing functions which would
otherwise have to be recomputed a large numberoof times. Haviland used
I = 10, J = 24, K =.12 in all of his calculations.

3.2.2 Data and Formulas

In the case of flow between parallel plates at different
temperatures with perfect accommodation at the walls, there are two
non-dimensional parameters - the temperature, ratio of the walls and
the distance between them in mean free paths. This is also the stage at
which any constants which will be used frequently during the program
should be r2ee.d in or computed. They include the number rmax of iterations
necessary to get convergence of the distribution function, the number
nmax of cell transits necessary to accumulate the next approximation
to the distribution function, and the array XSECT. In Haviland's
calculations r 3 and n ~ 50,000-100,000.

max maý

The formulas for both XSECT and SIGMA are derived from

E(x~v v,= 1/2 f v fdv; F(x,v',vý) (10)2x f f x. f"O
/ - 0 -o 0 (10)

which is obtained by using (3), (7), and (9). The evaluation of

27r
fdegb2

fo

at the cell midpoint values (v ,v ) and (vj ,v') yields
xi .1 k xji1k

XSECT (k,J -J+J,k)

1/2fb2 [(vx -v 12+(V kco1Sksine)2+(VAksine'-vksine)2]l/2

A couple of remarks pertain to the preceding formula. Firstly,
since

(kCOSQ-VkcosO) 2+(v~sinO-v ksino)2-- 2+v ±k2-2v'±kvcos(O' -O)
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and the integration is over a full period of the cosine function, the
integral is independent of e'. Secondly, since the -ells in the vx
direction are.equally spaced, Vx-Vxj will depend only on J'-J. This
is the Justification for writing'XSECT_(k,j'-j+J,ki) instead of XSECT
(k,jJ',k'). The 'J has been thrownuin for the .sole.purpose of keeping
indices-positive-- a requi3ement of the FORTRAN language in which this
program was originally written. It is also worthwhile to note that
SIGMA should be computed-after FT which changes with each iterate.

Initially, the starting target distribution function is stored
in FT. -For this purpose, .it •is a good idea to use the best analytical
auproximation which is known and reasonably simple. Haviland used the
free molecule. solution for the heat transfer problem and the bimodal
Mott-Smith distribution in the shock problem. If

f(x,v j .cose,v!sine) = f(x,vx,vL

is the initial analytic approximation, we begin by setting
xi+Ax/2 Jv -Av /2 Xv k+AV

ixj x ./
FT(i j,k) = 2Jx i,.Ax/2 dxJ fvxjAV x /2 dVxJ V~kAV l/2 dv v f(x,v xV.

for the interior cells. For boundary cells, the tail of the distribution
must be included. For example, if J J above then

J v+Av /2

x x

is replaced by f -Av'2
3.2.3 Normalization

The normalization constant C is computed from the formula
F

n Ax-- C Z F(i,j,k)
m Fijijk

where nm is the mean number density. Note that the left side of this
formula is nothing other than the total number of molecules per "nit
area (since the system is supposed to extend tc - in the y and z
directions). Any moments which one wishes to compute and output can be
dealt with simply once the normalization constant for the distribution
function is known.

3.2.4 Trajectory Initialization

The first task which must be performed even before any
trajectories are considered is the computation of the array SIGMA
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according to the formula

SIGMA (i,j,k) = (CF/AX) Z FT(i,j-,k-) XSECT (k,j'-J+J,k-).
J ',kA

The actual comrputation of a trajectory starts with the molecule
at either the left boundary or right boundary~having velocity (Vx,Vi)
chosen according to the boundary conditions and is repeated every time
the molecule crosses a boundary. For many kinds of boundary condition
the vx,v.j are chosen from an appropriate probability distribution. The
matter of boundary conditions is a study in itself, and the present
discussion is restricted to equilibrium flow normal to a plane and to
emission from a perfectly accommodating wall.

Let

-((u,c;vx,V) = C•V exp(- ((vx-U)2 + V1 )/c')

where CD is chosen so that fý dvx dv1= 1, and c is the most probable
speed after the mean is subtracted out. In the case of a flow in the
x direction of speed u, the probability that a molecule which crosses a
fixed plane normal to the flow has velocity in the range Vx,Vx+dvx;
v±,v.+dv, is given by ¢(u,c; vx,v1 ) dvxdv.L. In the case when the molecule
is emitted from a perfectly acc6mmodating wall the probability is
¢(0,c;vx,v±) dvx dv±. Efficient procedures for choosing Vx,V at random
from a distribution with density function ¢ have already been described
(2.9.6).

3.2.5 Cell Coordinates

Once the velocity components of the test molecule are chosen,
its cell indices i,j,k, are computed for future reference, but the actual
coordinates are not changed to the cell midpoint values. The molecule
now has two choices: to cross a cell division, (crossing the calculation
field boundary is a subcase of this) or to undergo a collision within its
cell. In order to decide which occurs, the program computes Tc, the time
to next collision and Td the time to cross a cell division. The expression
for Td follows from a simple geometrical exercise.

As a basis for discussing the computation of Tc refer to (10).
The array SIGMA has already been computed and the indices i,j,k are
computed in this section. Choose Tc from the distribution whose density
is

SIGMA (i,j,k) e-t SIGMA (i,j,k)

using Method I.

If Tc T Td, 2.6 is applied to move the molecule into the next
cell. Otherwise, 2.7 is used to compute a collision.

3.2.6 Translation

The x coordinate of the molecule is changed to the appropriate
cell division value and Td is added to FI (i,j,k). If the molecule
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happened to end up at the edge ofthe x interval 2.5 is applied to start
anew trajectory. Otherwise, the collision/transit calculation is-repeated
in the new-cell.

3.2.7 Collision

To start with, T. is added to FI(i,j,k).- Then the cell

(indices J'-k') where-the collision partner-will-originate is chosen in
accordance with the unnormalized brobability function

FT(i,j',k) XSECT (k,j'-J+J,k').

Although Haviland used Method I to make his choice of J',k' it seems
that in this case Method II would be faster, even though it would entail
finding the maximum values of FT and XSECT in 2.4 in order to determine
a suitable range for the second random number.

Ohce the choice of J'k' is made, the collision partner is
assumed to have velocity components (v',vl) equal to the cell midpoint

xvelocity coordinates. In order to obtain cartesian components, choose
0' from the uniform distribiution on (0,2v) and let

v' = vjcosO', v' = v! sineO

The most efficient way to compute the post collision velocity
V of the incident molecule depends to a large extent on the intermolecular
interaction, In the case of hard spheres, where it is known that the
post-collision relative velocity (1.1.3) has direction uniformly dist-
ributed on the surface of the unit sphere, it is fastest to choose a
unit vector * according to 2.9.5 whereupon

V v- -w
r

and (see 1.1.1)

V 1 l/2( + ?r)

In general, when the distribution of w is not explicitely known,

the general theory of Chapter 1 must be used to compute collisions.

3.2.8 Exit Criteria

The collision-transit computation (2.5, 2.6, 2.7) is repeated
until the total number of collisions plus transits reach a preassigned
number sufficiently large for the required standard deviation in the
results (see 3.3). The attainment of this number signals the end of the
iteration and the beginning of the next one or the completion of the
calculation.

In proceeding to the next iteration FT is stored in FI. The
need for an actual storing operation can be eliminated by a suitable
arrangement of the program and it is blt to refer to Haviland's original
flow diagrams to see how this is done.
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This completes the description of the algorithm.

3.3 Variances

3.3.1 Varianbe of FI (i•jjk)

Haviland's method lends itself easily to a theoretical estimate
of the variance of the answers it produces. In order to obtain this
estimate, Haviland did not analyse his alg6rithm directly but instead
assumed a model which is supported by the conclusions it produces Ahen
the distribution function is Maxwellian. The model -is along the following
lines: Suppose that each FjI,(i,j,k) is the sum of N independent random
variables Xa each taking hie value T with probability Fijk and 0 with
probability 1 - Fijk where

ijk Fijk =1.

Then
E(X) = TFijk

and
Var (X) E (X2 ) - (E(X ))2 = T2 F (i F

ýa a a(()~= 2  (1-F i

It follows that

Ef.F(i,j,k)) = E(ZXM) = NTFijk

and 
a

Var (MXa)= NT2 Fijk (1 -F ij)
aik

(See 2.2.7)

In practice

Fijk = FP(i,j,k)/ E FI(-i,j,k)
ijk

is used as an estimate of Fijk. For reasons of simplicity however,
suppose T is knowm and one can therefore use

i 1 FI(i,j,k)

Then

E(Fijk) ijk

as required and

Var (Fijk) = Fijk - FiJk)

3.3.2 Variance of the Moments

If t(x,vx,vj)(or p(vx,vk) is a given function, then the moment
of ' with respect to the distribution F(x,vx,v.Lj) is defined to be

.•, 43



J(P(x,v ,v_) F(xv ,Vj) dxydv dd

(or Jp(vxva) F(,xv•,i) dvx dvI respectively)

Censider only the first -case which, in its discrete version,
wilM turn out to contain the second. The discrete approximation for the
rsoment of 0 is given by

i,j,kk uk

and is again a random variable. Then

E(j) =ijk ijk

and

var E i2  F, (1-Fi)
NJ ,k Fjk uk

This is not the same formula for the variance of as derived
by Haviland, because the initial model was slightly different. It has
the advantage of predicting a larger variance th'an Haviland's formula;
this seems to be dasirable in view of the fact that Haviland's theoretical
variances turned out to be smaller than his experimental (computed) ones.

3.4 Conclusion

Haviland's method was the first attempt to solve the Boltzman
equation by a Monte Carlo technique and consequently has played an
important role in the •development of the subject. Its storage and
computing time requirements pretty well limit its applicability to the
two types of problem originally treated by Haviland. It does have the
advantage, however, of being amenable to a close mathematical analysis
(which at the time of writing has not been fully carried out) yielding
a proof that statistically computed quantities have the required mean,
and estimates of the-variances of these quantities. It is fairly
reliable as such methods go, and so far the only unexplained predictions
have been regular density fluctuations in the high temperature high
density regions of a flowfield.
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MO. INTE -CARLO SIMULATION METHOD

4.1 General Description

The normalizability (1.3.1) of the Boltzman equation suggests
that an actual flow involving in the vicinity of 1020 molecules could
be studied by means of a model using a small number of molecules, each
of proportionally larger cross section. There are a number of diffic-
ulties which arise from such a trade-off. The higher probability of
multiple collisions must be dealt with in the model and the statistical
fluctuations arising from the small sample size necessitate averaging
a large number of observations to obtain a useful approximation to the
distribution function.

Nevertheless, G.A. Bird and others have had considerable
success using a model with as few as 1000 molecules in conjunction
with ,a Monte Carlo procedure for obtaining post collision velocities
consistent with the cross-section function.

Bird's method is an algorithm in which ,each iteration
operates on a sample of N (of the order of a thousand) molecules
from a distribution with distribution f'unction

f(x,V-,t)

to generate a sample from a distribution with density function

"where f satisfies the Boltzman equation and suitable boundary conditions.
Although the foregoing statement has never been precisely proved, the
method has found extensive application in the study of problems in
the transition regime wher. the mean free path is of the same order of
magnitude as the flow properties under study. In almost all cases, the
results are quite reasonable. The method is applicable in both time
dependent and time independent problems. In the case of time dependent
problems it is necessary to repeat the calculation using different
random number sequences a sufficient number of times to reduce the
standard deviation of any sampled quantities to an acceptable level.
In the case of time independent problems the usual procedure is to
start with an arbitrary distribution function f(x,v,o) and to run the
iteration without sampling until f has converged sufficiently to its
steady state value f(x,v,•). Then sampling is done at regular inter-
vals until a sufficient sample size is reached.

4.2 The Algorithm

4.2.1 Storage Layout and Initialization

Each molecule is represented in computer memory by storing
its velocity and position coordinates. This requires 3 + 3 = 6
locations but in many cases geometrical, symmetry allows a reduction
in the number of position coordinates which must be stored. Many
physically interesting problems (for example, the flow around spher-
ically of cylindrically symmetrical obstacles) require only two
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position coordinates; and some studies on the relaxation of the distribution
require no position coordinates. Space is assigned in the fast access
memory of the computer to accommodate the coordinates of up to N simulatormolecules. max

There remains the problem of referencing the molecules in such
a way as to make those in an arbitrary region of position space easily
accessible. This is accomplished by dividing position space into cells.
Some notation will be helpful later. Let the flow region under study be
denoted by D) and subdivided into a finite number ýK of subregions bk
which will be called cells. The cells must be small enough so that the
velocity distribution function is approximately constant on each one;
This judgement must be made before the solution to the problem is known,
but experience has shown that intuition is an adequate guide in setting
up the cell size. Factors affecting the choice of cell size are considered
in Section 3.3.

Once the cell boundaries have been decided the programming
problem of easily referencing the subset of molecules in each cell can
be tackled. There are several well known ways of doing this (refer to
any work on list processing) of which one possibility is to set up K
auxiliary tables in such a way that the k-th table contains the add-
resses or sequence numbers of the molecules in the k-th.cell. The method
described presently combines access speed with storage economy.

Suppose cell k contains nk molecules, 1 < k < K. Then the
molecules from cell 1 are stored in locations 1 to n1 of the molecule
list, from cell 2 in locations nj + 1 to n2 etc. A vector MAP with K
entries containing the numbers nj, nj + n2 ,..., nI + n 2 + ... + nk
is also stored. Whenever an addition, deletion or move occurs, only
the last molecule in each cell section is moved and MAP is updated to
describe the new configuration.

Preliminary to starting the iteration, a number No < Nmax
of molecules is chosen from an appropriate starting distribution and
stored in~the molecule table of the programme. Any additional information
necessary to reference the molecules, a table of cell volumes, cross-
section constants, boundary condition parameters, etc. must also be
assembled at this stage. The appropriate starting distribution depends
on whether the algorithm will be applied to a steady qr unsteady flow
probJlsii and is discussed in Section 3.1.

4.2.2 Stmes-Cumlrsing One Iteration

SA. Collision Increment to the Distribution Function

The following procedure is repeated to each cell k, 1 < k < K.

A pair of molecules is chosen at random from those in cell k in such a
way that the probability of choosing a given pair is proportional to the
relative velocity. To avoid computing 1/2nk (nk-1) relative velocities,
it is convenient to estimate the largest relative velocity Smax which
can occur with any frequency and to make the choice as follows: Choose
two indepenadent integers from the uniform distribution on
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k-1 k
(1 + Z n., :n

1 1

rejecting the pair and repeating the choice if the two integers turn
out to be equal, and compute the relative .speed i g of the
accepted pair. Choose a random number r from the uniform distribution
on (o,smax), accept the pair for collision if r < g and otherwise
reject, repeating the procedure from the choice of two random integers.
As -soon as a pair is accepted for collision the collision aprameters are.
chosen at~random and the velocity vectors of the pair in question are
replaced with post collision velocity vectors computed on the basis of
the collision parameters. Details of this calculation are given in
Ch. l1l (see also Ch. 2.9.5).

After each collision a time counter t is advanced according
to the formula

2 volk
At 

=
A nk2g

where A is the cross-section per simulator molecele, and vol. is the
volume of cell k. Collisions are computed until the total time advance
exceeds a preset value Atm. Both the time advance formula and the
value of Atm raise a number of delicate questions and are discussed in
sections 3.5 and 3.3 respectively. Once the collision calculation has
been completed, the programme proceeds to B.

B. Convection Increment to the Distribution Function

Each molecule is moved to a new location corresponding to
the time interval Atm. This means, of course, that its position
coordinate R is replaced with x + VAtm in case of cartesian coordinates.
It may happen that this displacement of the molecule takes it outside
the region n, across a cell boundary, or across the boundary of some
obstacle in the flow. In each of these cases an appropriate strategy
must be applied. For instance, crossing an exterior boundary entails
deletion of the molecule from the list; crossing a cell boundary
necessitates appropriate changes in the bookkeeping tables; and coll-
ision with an obstacle entails replacement with a molecule chosen from
a distribution appropriate to the boundary condition (see Section 3.6).
For example, the molecule may be reflected, emitted diffusely, or it
may choose one of these fates with probability a. When the whole
molecule list has been dealt with, the programme proceeds to C.

C. Influx of Molecules

Facilities must be provided in the programme for introducing
molecules into the calculation which enter the region because of the
flow. These are usually introduced with their position coordinates
consistent with entry into the region at some random time in the
interval (t, t + Atm), and velocity coordinates appropriate to the
incoming distribution. The boundary point of entry is chosen at random
when no better criterion is available and the number of molecules
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introduced in this way is derived from the~theoretical input flux and
the elapsed time Atm (details in Section 3.6).

D. Data Collection

The description to this point constitutes one iteration.
References to data collection have been omitted purposely in order to
make the description of the main steps as concise as possible.
Basically, data collection falls into two categories; estimation of
various transfer rates across specifies boundaries in the flow, and
estimation of moments of the distribution function at fixed time.
Sampling for the first category is most easily carried out as part of
step B, and for the second category at this point in the program. The
latter is not normally done after every iteration and the actual
strategy is:dependent upon whether.a steady or unsteady flow is being
simulated as described in Section 3.1.

E. Exit Criterion

When the programme has reached this point, two alternatives
are possible: commence another iteration at A or prepare and output
final data. The decision can be made either on the basis of the total
number of iterations or the accumulated time advance. The number of
iterations necessary to accumulate the required data depends on the
acceptable standard deviation of the answer (see Section 3.7).

4.3 Analysis

4.3.1 Steady and Time Dependent Problems

The treatment of steady and time dependent problems differs
in the choice of the initial distribution function and in the sampling
strategy. In the case of steady problems a good approximation to the
actual distribution function is seldom known. Consequently the initial
distribution function is seldom known. Consequently the initial dist-
ribution for the iteration is usually taken to be a drifting Maxwellian
of approximately the right velocity, temperature, and~density. This
initial distribution is expected to converge to the final steady state
distribution fairly quickly. An early study done by Bird [,3 suggests
that convergence takes three to four collision times. Sampling is
delayed until convergence has occurred and then carried out at regular
intervals until a sufficient number of observations has been made.
If the sampling interval is too short then the successive observations
are not independent and consequently little is gained in the way of
reduced standard deviation. On the other hand, if the sampling inter-
val is too long, there is a waste of computer time. The proper choice
of interval depends on many factors (see 4.3.7) but generally speaking,
it has been found that 1/4 to 1 collision time is a satisfactory range.
In the case of time dependent problems, the initial distribution function
is assumed known and can therefore be used as a source distribution for
the initial sample of molecules. Sampling is done at those times when
a snapshot of the flowfield is desired, and the iteration is continued
until the flow hbs developed sufficiently. In order to reduce the
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standard deviation of the results to an acceptable level it is nec-
essary to repeat the calculation a large number of times using a
different random number sequence each time, and to average corres-

ponding results.

4.3.2 Cell Size and At
m

From comments in the literature [,6, Fig. 2.] and from the
author's own experience it seems that a wide range is available for
both the cell diameters and the time advance interval without signif-
icantly altering the results. There are extremes, however which
should be avoided. Since the method treats-the distribution function
as if it were constant over each cell, the cell must be small enough
to accommodate steep gradients in the flow properties such as occur
in a shock wave. Similarly Atm must be small enough to avoid gross
changes in the distribution function caused by either the collision
or the convection increment over the time interval Atm. There is
also a rough lower bound on the cell size and on Atm. This is because
enough collisions must be computed in each cell during Atm to assure
that the computed time increment is fairly close to Atm. If cell k
contains nk molecules then approximately 1/2 nk collisions will be
computed per collision time. Thus, if Atm = 1/3 collision times and
nk = 30, 5 collisions will be computed during each time interval.
The applications of this method thus far carried out have used 30
or more molecules per cell, although Bird reports in one of his papers
[6 ] that satisfactory results are obtained with as few as six molecules
per cell.

4o3.3 Storage Requirements

The fast access storage capacity of the computer limits
the number of molecules that can be used in the simulation. The
programs designed by the author have used 500-700 Fortran instructions
leaving space for close to 4000 5-coordinate molecules when run on
the University of Toronto IBM 7094 II computer. A typical program
divides naturally into an initialization, iteration, and output section
of which only one needs to be in fast access storage at one time,
thereby reducing further the storage requirements for program.

A general principle is that the larger the number if simulator
molecules, the more reliable the results. In the case of time independent
problems there is also a disadvantage in using a large number of molecules
because computing time per collision time increases linearly with the
number of molecules and a fixed number of collision times is required
to achieve convergence to the steady distribution. This unproductive
computing time can be minimized in a series of runs where the parameters
are incremented only a small amount each run by using the final sample
from one run as the initial sample for the next run, thereby reducing
the convergence time.
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4.3.4 Computing Time Requirements

For purposes of estimating the actual running time of
a given program, the basic parameters are Tc, the .time required.
to compute one collision, TT, the time requiied to move one
molecule and check boundaries, and Vthe number of Atm-s.per
collision time. Since approximately 1/2 N collisions must be
computed •per collision time (N is the total number of-molecules
'and-each collision computation accounts for two molecules), it is
easy to see that an approximate formula for the running time of
the algorithm is

time = 1/2 N Tc + N TT = 1/2 N (Tc + 2 p TT)

Since the number of observations of a given variable varies as the

product of the number of molecules in the flowfield and the number
of collision times involved, it follows that the computing time per
observation iti constant for a fixed variable.

Unfortunately, the best data available in the literature
gives only the computing time necessary to compute a certain number
of collisions. Consequently it is only possible to determine an
approximate value for the combination T. t 2 v TT rather than forthe individual parameters. The table below yields a rough idea of

the times involved.

Reference Ro. Computer Used Computing time/l000 collisions

(3) Silliac, U. Sidney 60 x 1000/30000 = 2 min.
(8) IBM 7640/32K 900 x 1000/2 x 106 = .45 min.

(12) CDC 6600 20 x 1000/6 x l05 = .03 min.
Author IBM 360/65 3 x 1000/10000 = .3 min.

4.3.5 The Tiie'Inckement Formula

It is essential in a simulator of the type we have beeh
discussing that collisions occur at the right rate relative to the
motion of the molecules, and that each pair of molecules have the
correct probability of undergoing collision. To be more specific,
consider a cell Qk in position space of volume vol (Qk) and
containing nk molecules. This means that Ok contains 1/2 nk(nk-1)
distinct pairs of molecules. Let gij denote the relative speed of
molecule i and molecule j. If the collision cross-section is A,
the pair must be found in a volume g. AAtm for a collision to
occur during time Atm. Since it is already known that the pair
is found in vol (Sk), the probability that the pair i,j undergoes
collision during time Atm is

=gij A At m
Pij Vol0

k
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and the probability of a collision is

E P..i<j iJ,

where t1are are L = 1/2 nk(nk-1) terms in the sum. Let the probabilities
above be renumbered from 1 to L so that given ij there exists an-k such
that Pt = Pij, and let qg = 1-pg. This means that the probability hm of
exactly m collisions is the sum of all products of-the form

rl r 2 ... rL,

where rg = pg or qt and there are exactly m pt.rs in each term.

On the basis of the foregoing theory, the choice of collision
partners could proceed in one of two ways:

A l Accept pair £ for collision with probability pg and repeat
for all possible pairs £ = 1,...,L. Since in practice there are about
100 molecules per cell yielding roughly 50,000 pairs of which only a
small fraction collide during time Atm, this procedureywould turn out
to be prohibitively time consuming.

B. Decide the number of collisions at the start by choosing
a positive integer m from the distribution hm and then choose m
successive pairs from the distribution

L
pk =Pt/Ep k

S= 1

This method, too, is unfeasible because it requires the computation of
both pk and hil which is out of the question.

The method proposed by Bird is to choose £ at random in the

range (o,L) and r from the uniform distribution on (O,Pba) where Pbd is
any number larger than all the pp-s. The integer £ is accepted if
r < p; otherwise another choice is made. Once £ is chosen, a counter
c is advanced by 1/Lp and the collision computation is complete as soon
as c surpasses 1.

It will be shown Dresently that this procedure gives the
correct expected number of collisions, but in general the wrong
distribution. To derive the expectation, let Xk £ = 1,...,L be
random variables defined by

I when pair £ collides
Xk =

0 otherwise.

Then L
S = EX£

1 k

gives the total number of collisions in cell k during time At ,
m
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Furthe:Imore
L L

E(S) = Z E(X) = p
1 1

which is the actual expectation. In order to find the Bird expectation,
observe that the criterion for ending the collision computation is a
first passage in a random walk with nonzero mean (see Ref.2,2.10.)n
such a process the expectation of the time to first passage is given
by

E(T at time of first -passage)

E(each increment)

Since in practice the increments are much smaller than 1, it is safe
to assume that the numerator will be very close to 1. in order to
compute the denominator, note that the Bird proordure fo- choosing
2 yields an integer from the distribution (pk). Then

E(increment) = M i L p 1
=1Lp2 UZLp2  Ep2

Z=1 Zp•P LZp Zp

from which ii follows that on the average
L

1

choices are required to advance the parameter c by oneunit. In order
to show that in general the Bird technique does not produce the correct
distribution for the number of collisions it is sufficient to display
a counter example. Consider a hypothetical extreme case in which
pt = p k 1,...,L. Then the probability that m collisions occur is

L) m L-m
mP q ,

(L ) being the binomial coefficient, whereas the Bird method would
a'vance c by 1/Lp for each collision leading to the probability

(1 if m = [Lp] +1

k~O otherwise

where [Lp] denotes the greatest integer less than or equal to Lp.

4.3.6 Boundary Strategies

There are two commonly occurring boundary situations which
must be handled in a Monte Carlo simulation.

a) An imaginary boundary in a drifting Maxwellian flow. That

is, a flow whose distribution function at each point x is given by

-2 3
f(v) = nx (ci )-3 exp(-c Z =l (vi -ui)
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where the vector u with coii.ponents ui i = 1,2,3 specifies the velocity-
of the flow, c is a constant related to the temperature of the gas,
and nx is thelocal number density. Any molecules reaching such a
boundary from the interior of the region are simply abandoned. At
the end of each time interval Atm, it is necessary to introduce a
number of molecules representing those that have crossed the boundary
into the region during this time. To be specific, consider.an area
element SA'with interior normal I in such a flow. Let (I,J,k) be an
orthonormal frame such that J lies in the plane of I and the velocity
vector u of the flow. Then u can be resolved as follows

u = uII + ujJ ()

The molecules crossing 6A into theregion have velocity compr tents in
the I,J,K directions which are independently distributed and haire
density functions

(1/c 7 1/2) vI exp(-(v 1 -ui) 2 /c 2 )

(1/c T 1/2) exp(-(vj-uj) 2/c 2 ), (3)

and (1/c I 1/2) exp(_(vkuk)2/c2)

respectively, modulo normalizing factors. The total flux across 6A
is given by

nxf (v/c 7r 1/2) exp(-(v-ul) 2 /c 2 )dv (4)
o

In practice, n can be determined from the formula
x

n = (XAm'- (5)

where 2-1/2 X is the local mean free path, and Am is the cross-section

per simulator molecule. Then

06AAt

gives the total number of simulator molecules entering the region
through 6A during time Atm. In practice, a time of entry is chosen
from the uniform distribution on (0,Atm), a point of entry is chosen
from the uniform distribution on SA, and velocity components vi, vj,
vK are chosen from the distribution described in (3) (Sec. 2.9.5).
The molecule is then stored with the position coordinates it would
have at the end of the time interval Atm.

b) Surface interactions. The most common surface interaction
models to date have been specular and diffuse reflection. In the case
of specular reflection, a molecule which collides with a boundary during
tv-e Atm, has its velocity vector replaced with the reflected vector at
ti-e of collision and moves with the new velocity for the remainder of
the time interval. The reflected velocity ý" is given in terms of the
incident velocity v by

= V-2(• I)I
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where I is the normal at point of impact, In the case of diffuse

reflection, the velocity vector is replaced by one chosen from the
distribution (3) (2.9.6) in'which u =O and c is characteristic of
the surface temperature.

4.3.7 Standard Deviation and Limnitations

The basic theorem relevant to the discussion of the standard

deviation 1A any Monte Carlo method asserts that the standard deviation
of an average of independent random variables decreases as the inverse
square root of the number of variables. The hypothesis of independence
is essential for it is even intuitively clear that in the simulation of
a sample of 1000 molecules for one collision time with regular observ-
ations of the distribution function during this time there comes a point
after which nothing more is gained by increasing the frequency of
observations. This is because eventually successive observations will
cease to be independent of one another. This issue only arises of course
in sampling moments of the distribution function at regularly spaced
intervals. It does not arise in the accumulation of information on
boundary crossings for the purposes of estimating fluxes because
successive boundary crossings are automatically independent.

There are as yet no studies in the literature of how the
standard deviation of a typical moment depends on the sampling inter-
val. The only work remotely relevant is an early publication by Bird
(3) on the time taken for the distribution function to relax to a
Maxwellian form. It was of the order of 3 collision times. This is
longer than the sampling interval used by most authors in the field
where 1/4 to 1 collision times has appeared to be satisfactory for most
moments. The price paid for the wrong sampling interval is the wrong
theoretical estimate for the standard deviations and wasted computer
time. If the interval is too short, time is wasted in taking needless
samples, and if too long, time is wasted in computation between samples.

At present state of development, Bird's Monte Carlo method
cannot cheaply yield a satisfactory approximation to the complete
distribution function of even a simple practical problem. To see this,
consider the flow around a cylinder at Knudsen number 1 and make the
modest demand that the distribution function be accumulated on a grid
having 10 points in each direction, leading to l05 grid points-
altogether. In order to achieve a relative standard deviation of 1/10
at each grid point, roughly 100 observations per cell are required,
which is l07 observations in all. On the assumption of a computer
memory capacity of 5 x 10 molecules, l07/5 x l0 = 2 x 10 independent
observations on the flowfield are necessary. On the basis of sampling
interval of one collision time, it is found that the program would have
to run for 2000 collision times. In the author's experience, the
calculation requires about one minute of IBM 709h II or IBM 360/65
computer time per collision time. Therefore more than 30 hours of
computer time would be needed.

The method is at present adequate for finding certain moments
of the distribution function. In order to obtain a density field with
10% relative standard deviation at 102 grid points using the hypothetical
program of the last paragraph would require about 20 minutes of computer
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t-"e which is wel! within reason. Of course, a relative standard
deviation of 100 is rather large, leading to numbers in each cell
which are within 20% of their mean value with probability 0.95, or
within 30% with probability 0.997. Results of such coarseness are
usually of little interest. in order to improve them by a factor of
%r1(7 reaqires a tenfold increase in computing effort, producing
a relative standard deviation of 0.036. Then one is assured numbers
within 7.2% of the mean with probability 0.95 or 9.5% with probability
0.997. Such accuracy is acceptable for many practical applications.

4.4 V-riants and Refinements

4.4..1 Weighted Cells

in- the simulation technique described thus far it has been
understood that the cross-section per molecule was the same for each
molecule in the flowfield. Another way of looking at it is that each
simulator molecule represented a fixed number of physical molecules.
There are many situations where such a representation is unsatisfactory
because it is desirable to obtain more detail about the flow in some
subregion of the flowfield, or in the case of spherical and cylindrical
coordinates, to obtain information near the origin or near the axis
where there are few molecules because of the small cell volumes.
Consequently a weighting scheme has been tried by both G. A. Bird
and the author.

in this scheme the collision computation and the time advance
formula remain unchanged, escept that the cross-section per molecule
becomes dependent on the cell. Difficulties arise, however, when a
molecule crosses a cell boundary during the convection phase of the
iteration. To be specific, let the cross-section per molecule in cell
k be Ak = A/wk k = 1,..., K where wk is a given positive cell weight,
and A is a constant dependent on the desired total number of simulator
molecules and the average cross-section density. If a molecule moves
from one cell to another having twice the wOght, it is reasonable to
expect that a satisfactory strategy would be to replace it with two
copies of itself. The dilemma arises when the molecule moves in the
opposite direction. A resolution which has been found satisfactory by
the author makes use of a random integer function defined as follows:

Intr(x) = [x) + i,

where (x] is the greatest integer which is less than or equal to x,
and i is a random variable with the distribution

(0 with probability 1-(x)-[xl)

I Ji with probability x-[x)

Then, when a molecule moves from a cell with weight w. to a cell with
weight wý , it is replaced with

intr(wa/w$)

molecules having the same coordinates.
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A value for the constant A compatible with the molecule
capacity can be.obtained as follows: Suppose it is given that the
cross-section density ('l/v x reciprocal mean free path) at some point
and time in the flow is A0 . A useful first approximation can be based
on the assumption that the.average cross-section density in the whole
flowfield will also be Ao. Then cell k will contain

A vol k/Aw k:1

simulator molecules, where volk is the volume of cell k. Then the
total number of molecules in the flowfield will be

K
N a = Z A wk volk/A ()

k=l

where N depends on the memory capacity of the computer. Solving
(6) it F found that

K
A = (A/N ) k•wk volk

av k=lkOl

4.4.2 Mixtures of Gases

The Monte.Carlo simulation method has also been extended by
Bird to deal with binary mixtures of gases. Aside from minor complic-
ations arising from the labelling of the molecules in computer memory,
the biggest modification that must be made is in the time advance
procedure in order to ensure that the correct number of each of the
four possible types of collision is computed. Let the molecule types
be numbered 1 and 2, and denote the collision types by (l,1), (1,2),
(2,1), and (2,2). The basic idea is to compute (1,1) collisions until
the time parameter has been advanced by 1/h At_, (1,2) collisions for
another 1/h At etc., using the same time increment formula as before

m .with the appropriate cross-section for each collision type. The
somewhat more refined procedure adopted by Bird entails keeping a
separate time counter for each collision type and using the formula

A 4 2 vol
A n n g

to increment the (a,$) counter. At each step in the collision comput-
ation, a collision corresponding to the counter with the lowest value
is computed and computation ceases when each counter has surpassed
Atme The formulas for computing post collision velocities for molecules
of unequal mass are cormmonly found in textbooks and present no more of
a problem than do those for like molecules.
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4.6 List!of Svmb61s

Roman 
First Occurrence

A. 
4.2.2A o0 
4.3.6

c, gij 
4.3.5

z ~k 
4.2.1' ~g 

,4.2.2

h
m

K, k 
4.2.1

L, A, m 
4.3.5

MAP 
4.2.1

N -, N, n,- n.42.
0 ma.^ 

4.2.1
n

Xý 4.3.6
P' Pbd' P"' P , Pij 

4.3.5

4.3.5r1, ... , rL 
4.3.5

max 
4.2.2

s

4.3.5
t

~m 
4.2.2

U

U 
4.3.6

S~volk

:• 
4 .1.oAA 
4.2.2

u

x V 
4.3.5

} Greek

a; 

4.2.24.3.6

Ai 

4.3.6
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4.7 Definitions

dx-- Volume differential in 3-dimensional space
dxldx2dX3, where xj, X2, X3 are cqmpoiients

of the vector.x).

E(X) Expectation of-the random variable X.

f (R,-7,t) A function such ýthat-f(x_,ýrt) d3ý-.dv_- is the
averagenumber-of molecules in a cell of 6-
dimensional space*contdining the point.and having
6-dimensional volume -dx i'6.

Inner product of the vectors R and y.

'Belongs to'

Interval with endpoints a and 0.

L L(L-1) ... (L-m+l)
m

1XI the greatest integer less than orequal to x.

Length of the vector ýr.

64



5. MONTE CARLO EVALUATION OF THE COLLISION INTEGRAL

5.1 Introduction

The last method to be discussed in this review has been developed
almost exclusively by Nordsieck, Hicks, and their coworkers at'the Univ-
ersity of Illinois, and described reasonably completely in a series of
reports of the Coordinated Science Laboratory. Its essential features
include Nordsieck's proposal from as early as 1957 (2, p.1) for choosing
a random sample of points in the region over .which the collision integral
is to be taken, a conventional finite difference scheme for obtaining a
distribution function satisfying the.Boltzman equation once the collision
integral is known, and a series of refinements designed to overcome approx-
imation and random errors.

The method has so far only been applied to problems described
by the hard sphere model and requiring only one space dimension such as
the ,plane normal shock wave and certain relaxation problems. For such
problems the method takes about one hour of CDC 1604 time for the iteration
to converge. Each iteration yl~lds a statistical approximation to the
iterate one would obtain with an exact evaluation of the collision integral.
The approximation has a standard deviation of about 3% at each of 10 x 226
= 2260 histogram bins (10 position cells and 226 velocity bins).

Extension of the method to problems requiring higher space
dimension seems difficult because of computer storage and time require-
ments and also because of the problems involved in devising a successful
finite difference scheme in more than one dimension.

The discussion presented here will also deal exclusively with
problems requiring one space dimension and will treat as an example
Hick's and his coworkers' calculations of the plane normal shock wave.

5.2 Theoretical Preliminaries

5.2.1 Nordsieck's Units

Hicks and his coworkers have made use of special units.derived
basically from the standard procedure for nondimensionalizing the Boltzman
equation. The units are based on conditions in some reference region of
the flow (in the shock wave problem, the far upstream conditions are
convenient).

If bm, m are the molecular diameter and mass respectively, k
is Boltzman's constant, and T,n are the reference temperature and number
density respectively, the Nordsieck units for length, velocity and time
are respectively k = i/2wn bm2 , c = (2 kT/m)l/2, and k/c, and the
distribution function is given in terms of n/c3 .

If the substitutions

v~kx, v=cv v vx=cvx -, v=cv 7, t=(Z/c)t, f=(n/c 3)f,

f=(n/c 3 )f7, F=(n/c 3 )F, and F=(n/c 3 )Fj
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are made in 161tzmans leýati:om, then Mfter ýddppi"hthe --s;i: itdecomes
(See.-(rll)*zl.42.oS). - ..... +:, ,

f f( O 27r 27 dv

Bf + dv f v, dv f d~ f -H(FF--ff-)
x(i)

In their calculations, Nordsieck, Hicks, et" al make use of a further
velocity scale change in order to allow the use of velocity bins of a
size convenient for computation. Since this change is not necessary for
explaining the essential features of the method, it will be omitted here.

5.2.2 The Discrete Analogue

In the computational algorithm, both velocity and position
space are quantized. Furthermore, in the case of velocity space, some
means is needed to represent infinite two dimensional space using only
a finite number of cells. This last problem is handled in the Nordsieck
-Hicks method by restrictifig attention to a semi-circular region in (vx,
vL) space which is still large enough to include 99% of the molecules
under conditions expected in the flow.

With regard to quantization, Nordsieck and Hicks have reported
good results with a non-uniform net of about 10 points in the x-direction
and an array of 226 square-bins in (v,, vL)-space covering the semicircular
region with 24 bins along the diameter. The net in the x-direction is,
non-uniform because if varying density gradients. In fact, in their
later work on the shock problem, Hicks and Smith found that x was not a
good variable to work with because of the problems in making the .x-cells
fine enough to take care of the large flow gradients in the shock itself.
After some experimentation with various monotonic transforms of x, it
was found that the best variable to use was the density n itself.

Since it is beyond the scope of the present work to go into the
details oý a particular solution it will henceforth be assumed for sake
of simplicity that there are Jm position cells with partition points xj

... , Jm, and s square velocity bins with midpoints'(vxs, v1 s),
s=l, ... , sm. The values of the distribution function will be corres-
pondingly indexed as f(j,s). Then, if

S(ssn) and 5(ssn)

denote the cells containing the post-collision velocities arising out
A of a collision between molecules having velocities vs and vs" with

collision vector E, the discrete approximations to F and F' are

f(JS) and f(j,S')

respectively.

The discrete approximation to (1) suggested by Nordsieck for
the time independent problem where

a= 0
at
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is then

Vs f-i+-ls)-f(j-'-- = -1/2 [(A-Bf'j +(A-Bf) (2)
x +1;_ iJ's +1 i'

where (a-bf)j,s is an approximation to. the collision integral given by

(a-bf) Z =s M v .Av ,v Z V A E q Em i - (is-•sA)IX
i's s=l Ls , XS, I S qq1 r=1 rm

X [f(J,s)f(j,s,)-f(J,s)f(J,sA)]

where nr r=l, ... , r is an equidistant array of points on the unit
sphere and m

71 qm W =27r.
q-l%

5.2.3 The Monte Carlo Estimate

The evaluation of the discrete approximation to the collision
integral in (6) (a sum repeated Jmsm times) is still beyond the capabilities
of the present-day computer. To date, the only resolution of the diffic-
ulty is the Monte Carlo method proposed by Nordsieck. Nordsieck's method
is based on conventional Monte Carlo evaluation of the sum approximating
the collision integral and not'of the integral itself. The essence of the
procedure is as follows: In order to evaluate the sum at fixed (J,s), a
random smnple of N values of the quadruple

S(vx, vLj K, R)

is chosen, where (vx", vAi) is uniformly distributed over the cell centres
of velocity space, • is uniformly distributed over an equally spaced set
of points in (0, 27r), and 1n is uniformly distributed over an equally
spaced set of points on the surface of the unit sphere. The Monte tarlo
approximation to (a-bf)j ,sis then given by

1 -
Zspl 1 Vs 1n' (vs -s) [f(J ,s)f(3 ,s)f(j ,s,)-f(J ,s)f(j ,s,)]

(3)

The method as it is presently used differs from the above in
a way which takes advantage of certain symmetry, exchange and reflection
properties of the collision process in order to expand the effective size
of the sample at a considerable saving in work. In order to make this
possible it is necessary to evaluate v.. times the collision integral

dvf v~v,-dvif - In.(• - )((FF -ffA) (4)
-O -0 0



instead of the collision integral itself.

The details are as follows: two three-dimensional precollision
vectors v, v' are chosen instead of only one. Each choice entails two
steps.

A. (Vx,V±') is chosen from among the, cell centres in velocity space.

B.. fois chosen from an equally spaced set of points in (O027r).

The unit vwctor n is then chosen at -random from an equally spaced set
of points-¢,n the surface of the unit sphere, and the post-collision
velocities V, V' are computed. It is convenient to call a sample of
3-vector 5-tuples

, '-, ni, V,

admissible(AS)if the individual vectors have the properties Just described.
Then'the.expression

226 . ivvA 'JN S :i -TI V (5)

where s, s', S, S' are cell numbers of v, v*, V, V' respectively is an
approximation to,(!').

The advantages of this approach become apparent when it is
observed that if

is admissible then so is

((;, v, n,.V, V) (6)

Furthermore, if the velocity space is symmetrical with respect to
reflection about v =0 and the subscript R denotes this reflection, then

X(v R VR ' l V, VR)

is also admissible.

Finally, if E, •, n - V, V'.denotes a collision, then
V, V', -n -÷ v, v' also denotes a collision called the inverse collision.
In addition, since the Jacobian of the transformation

(v, vi -÷ (v, vi

has-absolute value 1 for each n, it follows that if each of v, v' are
uniformly distributed over some region of velocity space, V, V will be
uniformly distributed over the image region. The image region-in Nordsieck's
case is slightly different from the original region so that collisions
yielding V, V' outside if the original region must be discarded. The
discarded fraction is quite small (less than 0.16 (9]) and occurs on the
fringe of the finite velocity space where the distribution function f is
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also very small. It is expected that the error arising from this
discrepancy is insignificant so that

r (8)

can also be considered admissible.

In view of the preceding discussion, it is clear that starting

any admissible sample, seven new~admissible samples can be constructed
by utilizing (6), (7), and (8), and the composite sample will be eight

times as large as the original one. It .is equally clear, however, that
the composite sample will not consist of statistically independent
cheices,. although it will be a fair sample.for purposes of evaluating
the collision integral. This lack of independence does not receive
comment in the literature on Nordsieck's method, but it seems likely
that if anything it is beneficial in .reducing the variance of the
estimate for the collision integral. The actual strategy for incorp-
orating the composite sample into the collision integral estimate is
described as part of the algorithm.

5.2.4 The Corrections

Hicks, Yen, and Reilly have published a report dealing exclusively
with various techniques of error reduction and giving the formulas which
they have found through experience to be most effective. In most cases,
theoretical support for the correction procedures is 'Lacking.

Errors enter into the collision integral estimate from two
sources: the replacement of the collision integral by a discrete approx-
imation and from the statistical fluctuations inherent in the Monte Carlo
method. It was found very early that if nothing was done to normalize f
after each iteration, a systematic drift in the values of f would lead to
an eventual violation of the laws of conservation of mass, momentum, and
energy. This difficulty is presently handled by the least squares (LS)
correction.

In the (LS) correction, corrected values ps s=l, ... , sm, of
the collision integral are chosen in such a way as to minimize the sum of
squares

s

m
Z [(A-Bf)s - Ps]2/p2

s=l s

subject to constraints arising from the conservation laws. In the shock
problem, mass momentum, and energy fluxes are conserved leading respect-
ively to the constraint equations

Z PsV~sVxs = const

'S SZ P sVsVxs 2_ const

s

Z PSv v (v 2 +v" 2 )= const
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The correction

AS = pS - (A-Bf)s, s =,..,sm (9)

is split evenly between As and (Bf)! except in the case of velocity bins
where one of the corrected values would be negative, when it is split
in~such a way as.-to leave both terms positive.

An attempt is made to control the error arising from statistical
fluctuations by the Maxwell-Boltzman (MB) correction. In this correction,
the values of the collision integral are calculated in such a way that the
collision integral' would be zero for a gas in equilibrium which has the
same values of density, temperature, and velocity as exist at the given

point in the .non-equilibrium gas. In carrying out this .correction, the
required moments of f must first be computed in order to obtain for each
position station j the local density nj, the mean speed uj and a measure
of the deviation from the mean cj. Let fMB denote the Maxwell-Boltzman
distribution function based on these parameters, i.e.

f (vxv.) = 2n7-1/2 Cj-3 vexp-[v_-u )2 + v.L 2]i/c
MB x' j cx x j j

The correction corresponding to a collision (v, T1, T, V) is given
by

= 1/2 v.V /n'(•-)I[fMB(v)fMB(V")-f(v)f(•)] (10)

Then each time during the statistical computation of the collision
integral that (v.A)(;) and (vBDf)(;) are incremented as a consequence of
such a collision, each is immediately corrected according to the formulas

(vLA) (•) = (v.,A)(v) - A9'w

(11

(V, Bf ) = (v.Bf)(;) +^

5.2.5 The Finite Difference Scheme

Nordsieck's proposal for a stable finite difference scheme
(one in which old errors decrease from step to step) makes essential
use of the fact that the loss term Bf in the collision integral is
proportional to f and that Boltzman's equation in the one dimensional
time independent case is (see 1.3.1).

f 1 (A-Bf) (12)
ax v

x

The elementary theory of first order linear ordinary differential

equations says that a perturbation of the initial value for (12) will
decay as x increases if vx > 0.

Consequently, the direction of integration in any finite
difference scheme for this equation should be to the left if fx < 0
and to the right if vx > 0. In the case when x -x 6x = const,
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a typical recursion formula for integration to the right based upon the
approximation to the derivative given in (6) is given by

f f + A'A ~
j+l j A+ 'ij+B'

where
Aj = A. Sx/2v , B' = B 6./12vx, J=1,...,Jm

This simple formula did not prove satisfactory for shock wave
studies because of large gradients in flow properties near the centre
of the shock. Recent work by Hicks et al on this problem makes use of
n as an indebendent variable instead of x. To write Boltzman's equation
in terms of n requires knowing the function dn In practice it isý(n)°-

obtained at each step of the integration procedure by using a discrete
version of the formula

r(A-Bf)MC d6 (13)dx MCv x

where (A-Bf)MC is the Monte Carlo approximation to the collision integral.

5.3 The Algorithm

5.3.1 Storage Requirements and Initialization

The major blocks of storage in this method must be assigned
to storing the current iterate of the distribution function f and the
two parts A, Bf, of the Monte Carlo estimate of the collision integral.
If Jm stations are used along the x-axis and sm bins are used in velocity
space, then jmsm locations are required for each of these functions. The
values of A and Bf must be stored separately (instead of the difference
A-Bf) because they are required in the stable difference scheme used in
integrating the sm ordinary differential equations (one for each velocity
bin).

In addition to these major blocks of storage, general workspace
is required as well as space to store certain function values which are
used repeatedly and which would take an excessive amount of time to
recalculate each time they are used.

The main part of initialization entails giving initial values
to the distribution function f, that is specifying the zeroth iterate.
Not unexpectedly, best results are obtained when the initial approxim-
ation is fairly close to the correct steady state distribution. In the
case of Hicks and coworkers shock wave studies, the initial distribution
was taken to be Mott-Smith.

5.3.2 Steps in One Iteration

A. Monte Carlo estimate for the collision integral. As has already
been mentioned in 5.2.3, it is convenient to first estimate v±A and v±Bf
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and then to divide by v. and vjf respectively, in order to obtain.A
and B. Also, the M4axwell-Boltzman correction, if it is used, must be
incorporated here. Finally, it is worth-pointing out that the estimation
procedure about to be described must be repeated jm times, once for each
value of the position variable.

Before commencing accumulation of the integrals, it is necessary
to zero the storage for vGA and vLBf, and to compute the factor

w = 21r(j/Ns) x (area of velocity space),

where Ns is the-number.of collisions in the collision sample, which
according to the experience of Hicks must be about 213 -r larger. Thus
the sampling procedure about to be described is repeated Ns times.

In this procedure a velocity pair (Vx, vL) is chosen at random
from the discrete two dimensional velocity space, and an angle o is
chosen from an eauidistant set of values in (0, 2n). It must be remarked'
that since the actual value is not needed in the computation, it is time-
saving to store only the sets of values sinq and cos V and to choose
the appreopriate one of these at random when the need arises. In any case,
the triple (vx, !L, ) defines a velocity vector henceforth denoted by
v.. The procedure is thus repeated to choose another velocity vector v'
independently of the first. Finally, the collision vector w is chosen
at random fron an equally spaced set of points on the surface of the unit
sphere.

It is noi. possible to compute the function

x =v•kvL"' =07

and the pozt-nollision velocities V, V" (1-.il.,,Eq.l,2). Let s,s',S,S"
denote the cell numbers of the velocities v,v,V,V" respectively. Finally,
if v is any vector, let vR denote the reflection of v in the plane x=0, and
let SR,S'R,SR,S"R denote the reflected subscripts corresponding to s,s',S,S'
respectively. One further piece of notation is convenient ir writing down
the subsequent formulas. That is:

f = f(J's), f" = f(J's-)

F = f(J,S), F"` = f (jS',

with fR, fp', FR, FR' defined correspondingly.

Eight contributbions to the collision integral are then computed

from the triple (',v,n) by adding

wXFF to -¢vAts), v±A(s'), v.LBf(S), v.Bf(S'),

wX~ff to vjA(S), vjA(S'), vjBf(s), vBf(s'),

X 'FFR toR viA(sR), vA(sp),vBf(SR vBf(R'

wXfRfR to v.A(SR), v.A(SRI) v.Bf(sR), v±Bf SRA).
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At the same time the MB correction can be applied according- to the formulas

(v A) (s) = vLA(s) - A(ss-); (vxbf)c(s)= v bf(s) + A~ss",),

(vLA) (s-) = v-A(S - A(s,s,n); etc.

As soon as Ns sets of eight contributions apiece have been
computed, the whole Monte Carlo collision estimate is repeated at the next
position station. Hicks and his coworkers found that the properties of
the general iteration procedure were improved if the statistical f2uc-
tuations between position stations were eliminated by making use of the
same collision sample at each position station. This can be simply
achieved by reinitializing the random number generator to the •same
value at the start of each integral computation. When all the collision
integrals have been computed, the program proceeds to B.

B. The least squares correction. The LS correction is the smallest
modification of the sm values of the collision integral consistent with
conservation of mass, momentum, and energy. The correction is made in

accordance with 'the formulas given in 2.14.

C. The numerical integration phase. Once the corrections have
been made, values of a and b suitable for use in the numerical integration
scheme can be calculated. The numerical integration itself involves a
solution of Sm uncoupled ordinary differential equations, one for -each
fibre sm = const in the discrete phase space. The relevant recursion
relations are discussed in 2.14. The JmSm values of f obtained as a
result of the integrations constitute the next iterate.

D.- Calculation of moments. Some or all parts of this subprogram
are generally bypassed until the final iteration. Normally, only enough
information needs to be output from the intermediate iterationz to give
evidence that the iterations are in fact converging. It would be too
lengthy to give a complete list of what type of information about the
distribution function has or should be calculated. Nordsieck, Hicks, et
al have computed moments up to the fourth in the shock problem, graphical
displays of the i~stribution function, and estimates of standard deviation.

E. Exit criterion. The common criterial for convergence of an
p iteration scheme are applicable here. The simplest, of course, is a

test that subsequent iterations are close enough together. It has beenSfound that, starting with the Mott-Simith distribution in the shock
problem, around 12 iterations give satisfactory convergence.

5.4i Comments

The only aspect of this method which is rigorously understood
from the standpoint of theory is the Monte Carlo estimate of the collision
integral. Here, standard results on evaluating integrals by means of a
random sample of points in the domain of integration apply. The fact
that the eight variants arising from each collision are dependent has
not been treated theoretically but presumably comes under the heading
of the theory of antithetic variates. In addition, in Nordsieck's method

it is not the collision integral itself that is estimated, but only a
discrete approximation. The closeness of this approximation has only been
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investigated in an empirical sort.of way. In.the numerical integration
phase, othe-recently opened study of differential and difference equations
with coefficients chosen from some distribution could conceivably throw
light on possible inaccuracies in Nordsieck's solution of the 226 diff-
erence equations whose.coefficients,have been obtained from the collision
-integral estimate.

Hicks and his coworkers did initially run into difficulties
on the numerical integration phase which they first tried to surmount
by.smoothing.the values of a and bf after they were, computed, and most
reeently by using a,fixed-collision sample for each position station.
Tne, latter .has-succeeded in stabilizing the calculation, but does not
help in obtaining a measure of how far -the calculated solution is to the
.actual one. A great deal of work remains to be done.

At the moment, faith in the method-must rest on the exhaustive
empirical- error studies that have been done for each of the problems
undertaken by the 'Chicago team, and described in detail in their CSL

.reports. The care with which this work has been done evokes confidence
in the actual figures that have been published. Nevertheless, the
sparseness of theory dealing with the method, the intricacy of the
corrections which seem essential to its success, and the time required
to both develop the program for a particular problem and for the comput-
ation itself, limit its usefulness as a general purpose tool for solving
kinetic theory problems. Finally, the method has been developed for

zero or one space dimension, whereas many of the more interesting
problJems require at least two.
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5.6 List of Symbols

Roman First. Occurrence-

a 5.2.2

SA, As 5.2.4

SAj, (A-Bf)MC 5.2.5

b 5.2.1

Sb 5.3.2

:[•I; (Bfs 5.2.4

Bj 5.2.5

c 5.2.1

cj 5.2.4

"f, f', fi f', F, F' F, F' ..

f(, s, T , •S, 5.2.2

fie 5.2.4

Sf 5.2.5

ifi I• f•,. ' 5.3.2

IJ2, Jm 5.2.2
S£ 5.2.1

,m, 5.2.1

n, 5.2.1

Sn 5.2.2
i r

SN 5.3.2
i S

R 5.2.3

s, s, S(sis',3n), s(s, s', n) 5.2.2

T 5.2.1

uj 5.2.4
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Roman. First Occurrence
V_, v, V, V., V,

x X x X- 5.2.1

v V I V, 5.2.2XS .s S

(va)(•), (vzbf)(-), (vLa)(•), (v~bf)c() 5.2v4

VR 5M3.2

w" 
5.3.2

x, x 5.2.1

xs- 
5.2.2

Greek

5.2.5

Av xs', tl ", ,v' 5.2.2

A(•V, -, n) 5.2.4

5.2.1

x 
5.3.2
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