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SUMMARY

The present review contains a description with comments of the
three main Monte Carlo methods which have been used to date in sclution
of the full Boltzman equation of kinetic theory - namely

1, Tast particle method of J. K. Haviland.
2, Simulation method of G, A. Bird.

3. Integral Evaluation method of A. Nordsieck and B. L.
Hicks.

A chepter containing the necessary formulas from kinetic theory
and one on probability theory.is included at the beginning. The author's
first hand experience with the simuiation method has made possible the
inclusion of some new material in Chapter L.
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1. PRELIMINARY-NOTATION-AND-THEORY

1.1 Elastic Collision of Two Molecules Having Equal Mass.

1.1.1 Classical Description

A Collision between two such molecules M and M” is adequately
described-in this setting whenever-two pre-collision velocity vectors
v, v~ and-two post-collision velocity vectors V, V” are given.- The
terms pre=collision and post-collision are only meaningful when the
molecules move freely before and after collision, that is when the forces
between them act only when they are close together. This assumption is
necessary to even speak of a collision process.

The theory shows that V, V° are functions of. v, v~ and two other
parameters b, € whose geometrical meaning is explained in Fig. 1 (b is
called the miss distance and e specifies the orientation of the colllslon
plane). Figures 1-3 refer to a coordinate system moving with velocity v
in which M is initially et rest at the origin. The pre-c011351on and
post-collision relative velocity vectors are denoted by vy = v’-v and
Vf = V¥ 1~espectlvely and ¥ 1is the deflection angle of M. Tt can be
shown that ¥V, lies in the coIlision plane (vy lies in this plane by
definition, so V,, vy are coplenar), and that x = x(b,g) (g =|%p])
where the function X is determined by the collision interaction. For
purposes of kinetic theory it is convenient tp assume that there is a-
value by such that x = 0 for b > b, as would be the case for a purely
local interaction. It is still a2 very gocd approximetion in cases of
physicel interest.

The collision vector e in Fig. 3 is & unit vector in the direction
of momentum transfer during collision and is completely determlned in the
collision plane by b and vy, and in three dimensions by v, vr and €
(e = e(vy,b,e). Figure b is the analogue of Fig. 3 for an arbitrary
coordinate system in which M and M” have pre-collision velocity vectors
v and v~ respectively, The following formulas for the functlons V end
¥~ are useful for subsequent work:

V=74 (5, )3

(1)

V= v'- (vp * €)e

V o=1/2(v" + v - V)

- - (2)
Vo= 1/2(v" + v r V)

1.01.2 Statistical Description - Scattering Cross-Section

The basic element in the statistical deseription of the collision
process is the conditional probebility density (differential cross-segtion)
G(%, g) having the property thet G(%, g) A% is the probability that the post
collision velocity vector of M’ has direction within a solid angle 4% about
the unit vector % given that a collision has teken pluce.




G can be obtained in terms of X by first observing that the
distribution for (b,ec) given b <.by has the densgity function b/mb2,
The calculation is simple if we assume that an inverse .function
, b(X,g) can be found with the property that

: X(v(X,g),8) = X
Then the probability that X lies in the range (X,X+dX) and ¢ lies -in the
range (e,e+de) is given by

b. b
;S;z Sy(x,s) dXde

Since the range (X,X+dX) x (e,etde) corresponds to a solid angle sin ydxde,
it follows that

j Ty b ?b a
| Glw,g) = ;3;2;55; aX(X,g) (3)
J where W= (cosxcose, cosysine, siny)

] 1.1;3 " The Hard Spher» Medel

This mode? coustitutes one of the rare cases for which x and G
have explicit exprasgions and is the one most often used in Monte Carlo
calculations, The key formula for our purposes, evident from Fig, 5 is

bm cos ¥ = b,
It follows,that
ab = « bm sinydy,

and the probebility that (x,e) lies in (x,x+dx) x (e,et+de) is

bm cosx*bm siny dx de

b 2 -
m

sin 2x d(2x) de
by

Referring again to Fig. 5, we see that if the deflection angle is y then
the chang: in direction of the relative velocity vector is 2y, Now the
solid sngle corresponding to the »ange (2x, 2x + d(2x) (e,e + de) is

sin 2y a¢g%) de.

2
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FIGURE 1: LONG BEFORE COLLISION
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FIGURE 4: RELATIONSHIP BETWEEN VELOCITY VECTORS IN GENERAL

FIGURE 5: HARD SPHERE MODEL
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From the preceeding two facts we deduce that Vf is uniformly distributed
on the surface of the unit sphere, and most surprisingly, distributed
independently of ¥p. This fact makes the calculation of post-collision
velocities very simple in the hard sphere model.

1.2 ‘The “Boltzman Equation

1.2,1 The Déstribution Function . f

Suppose- we wish to give a non-detailed description at time t
of a gas of like molecules in some region of threze dimension Euclidean
space E3, One way of doing this is to specify a positive function

£(%,¥,t) for Xe O , ¥<E3 such that £(X,v,t) dX dv yields the expected
numbér of molecules in the small six-dimensional rectangular cell about
the point (X,¥) whose sides have lengths given by (d%,d¥). The set of
aell pairs (x,v) is known as phase space and is denoted by @ = D x E3,

1.2,2 The Equation for the Classical Desgcription

The Boltzmen equation is a conservation equetion for f. Its
basic form is

(%% + 7.98) (%,7,t)

- (Pm ar - =
=fdv‘f bdbf 1e|v [£(x,770)2(x%,V,t8) (1)
) ) o T
_ bm ar o o
_J‘dv’j‘ bdbj‘ de}vrlf(x,v’,t)f(x,v,t)
o o

vhere V* and ¥ are functions of v°, v, b, ¢ as deseribed in the foregoing
section., The three terms which have been displdyed in the above equation
are known respectively as the convection term, the gain term, and the loss
term,

Because the expressions involved are lengthy ones, certain
conventions have been adopted in order to shorten the amount of wrltlng
involved, Let f denote £(x,v,t), £* denote £(kx,v",t), F denote £(x,V,t),
and F* denote £(x,V°,t). Then (i) can be writ.en as

b a2n
3f - -
4y ur= fdv fo‘“ bdbfo del¥ i (FP-£°1) (5)

An examination of the loss term reveals that f(X,v,t) is independent of
the variables of integration and can therefore be taken outside the
integral sign. Accordingly the gain term is often denoted by A and
the loss term by Bf, Thus
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X2y .ve=4-~Bf (6)
G .

The combinestion A-Bf is often referred to as the collision integral and
written C(f) to emphasize that it is an operator on f.

The mathemstical representation of & physicel problem requires
that, in addltlon to equation (%) initial and boundary conditions on the
functlon ' must be satisfied. If the representation is complete it is
then- expected théat the solution f will exist and be unique.

1.2.3 Simplification for Hard Spheres

If we recall that b = bpcosy (see Fig. 5) where x is the angle
between vy and %, it follows that

[vp]b a@b de = b2 (% - ¥p) an

Consequently (5) becomes
af = - 2 =, . o - -
Ve Ey? ) av a_ (® - v,) (FF-£°1)
ﬁ .

and by making a minor extension in the definition of V and V° this can be
written as

' 8f ‘ ap) = » »
S F VU =1/2 bm?-f av fdﬁ'lﬁr - V| (FP-£°1) (7)

1.2.% The Bquation in Terms of G(¥%,g)

The Boltzman equation can also be written in terms of the
_fferential cross-section G(%,g). The expressions in this case are

(—+v - V) (%, v, t)

(8)
fav Jéﬁlvrl(}(ﬂ [7¢]) (f(x ¥, t)r(x, ¥, t)-r(x, v°, t)e(x,v, t))

where now, of course, V ¥ must be given as functions of v, v”, #, instead
of v v®, b, €. The 1ntegra1 over ¥ in this equation is non-zero only over

the forward hemisphere 0 < x < /2 since G = 0 for 7/2 < ¥ < 7 to allow
conservation of momentum.

B



i.2.5 Cylipidricai Ccordipates in Velpecily Spaee

In problems rezuiripg only 4ng space dimension to describe, the
distribution function € offen has the form

St

. = A )
£lx0,7-2,7,,¥ ¥, ) = 2z (v 2ev 2/ 9 -
= 2{x,¥_,% )

vhere v, = (vyz + ?72)1/2

In this case the lefi side of (&) hss the form

of of
9% * vx ox

Although no reduction in the dimension of the collision integral follows,
it is fairly essy to show that for eny £ of this form, C(£f) has the same
form.

To this end it is useful tc introduce the representations

v = (vx, v,eos g, v sinp), 7 = (vx" v, " cosp 7, v, “sinp 7),
and .
;= (wx,w_Lcosv, , sinv), (10)
where

(wx,w_!_) = (cos 6, sin 0), R

end to write the collision integral with respect to dvy dvy dp” @9 dv.

It turns out that the integrend in C(f) depends only on the differences
(p-v) end {p”-v”) end not on the individuel engles. Since the integrai;
with respect to dp” end dv ere over the intervel (0, 27), a simple chang-

of veriables yields the result thet C(£) is independent of . The Boltzzin
equation using cylindrical coordinates in velocity space is then

2 e

af . of m I G (A S
RTVXS;C-:—E—f_deX . YLdYL . d({) dwlw-vrlFF-ff)

(11)

where the s have been omitted for convenience.

1.3 Inveriance Properties

1.3.1 Normelizetion of f

R If f satisfies equation (8) with differential cross-section
G(w,g) end o > O then of satisfies (5) with differential cross-section
G(w,g)/e, This maekes it possible to work with e normalized distribution
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funcizon £ kaving the property that

2(z 7,6 ) 6 =
J; . _(xo,v,to) v =1

at sorme reference point Eo and tice to. Thet is,

ix,v,8) = 2(x,v,t)/n
2 o

wWhere I'd
n = 2x v,©.) dv
i) _'?3 ( o’ "'o) ’

The new Gifferential cross-section is then
c(w,8) = ) c(4¢,2)

- -

and can be interpreted as a diffgrentiel cross-section density because of
the equation
f e(4,6) @@ = n_ f &(#,8) a¢ = n_a(8).
The quentity (W2 n_ A(g)f! is the nean f£ree path at speed g. In the
case of hard sthere collisions both A and the mean free path are indepen~
dent of €, In this case, if L is a characieristic dimension in the
problem,
% (n A)?
(,2)
constitutes a useful dimensionless matching parameter commorly known as

the Knudsen number.

1.3.2 Change of Scale

In theoretical work it is frequently convenient to express
the besic equations in terms of time and length units characteristic
of the problem et hand. To this end let

t = rtl,
X = M_:l,
.y
and a="/1,
from which it follows that
v = cﬁl.
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Put )
2(%3,71,51) = (Ae)3200%; .07, ,781)-
rnev
f 2(xy,v3,t;) @x; dvy = f £(x,v,t) dx dv.
Ql “Q

Furthermore, if £(x,v,t) sstisfies eguatior (%) with

V= (v -e) e
7 p

= v’—(v&-e) e

e=e (;r,b_,e),

then & streightforward celculation reveals thet £(X,v,t) setisfies

v /A

- . _ B
-a-%—l +vy-Vf = fdvl’ j bldblf ée lvlr{ (?’F’f’f)
[o} (o]

wnere
£ = 2(%,7;,t1)
£z £(x1,v175%1)
F = £(%,7;,t)
F = £(%,97,t)

Vq= vl-(vlr-el)el
\71 ’5171 ’+(171r 'El )El

51 (;lr’bl 35)=-é(a;lr:)tb1 s€ )

(12)

That is, the Maxwell-Boltzman equation is invariant under scale changes

if the proper change is made in the collision vector & and the miss

distance by.

1.4 The Boltzman Equation from a Computational Standpoint

Any attempt to soive the full Boltzman equation by computationel
meens must offer a solution to two basic problems -~ a feasible evaluation
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of the collision integral and a2 convergent sirategy for obtaining a
solution to the first order nonlinear partial differential integral
eocuztion wkich constitutes the Boltzman equation. A straightforward
resolution of these problems fails because both the fast azccess storage
cepacity end the computing speed of even our fastest machines are
inadequate for dealing with even sinmple problems. There are, of course,
other questions to be considered such as boundary conditions, but they
pose difficulties of a lesser order of magnitude.

Even the storage requirements for the distribution function
£(x,v,5) et fixed time t are considersble, for suppose that f were
tabulated Dy storing its values at 10 grid points ?or each degree of
freedom. Then in the general case of 3-dimensional x and v, 10° fast
access storage locations would be reguired which is beyond the capacity
of present dey computers. 1In a2 highly symmetrical problem such as the
normel plane shock, one can get by using one dimension for % and two
dimensions for v by raking use of the symmetry. In this example only
103 velues are required under the assumption of 10 grid points per
degree of freedom. Since 103 is well within the range of most computers,
this particular problem has been done by several authors.

The evaluation of the collision integral by numerical quadrature
is considerebly more intractable. To gain an appreciation of the diff-
iculties involved it is sufficient to consider a typicel caleulation.
Since X and t remain fixed during one evaluation of the coilision integral,
the distribution function will be written f£(v); and since it is expected
that T decreases very rapidly (like exn(—clvlz)) for large v, consider
T only in a subregion S of velocity space with the property that the
integral of f outside of S is negligible. Suppose, furthermore that S
is subdivided into bins denoted by S, 1 < k < n, and that f will be
represented in computer memory by storing the n numbers f —jé £(v)av
1l <k < n. Thset is, the actual f used in the computetion w11§ be an
epproximation given by

~ n
£ = 5, £,%(® (13)

where xk(v) is a function teking the value 1 for v ¢ S and 0 otherwise,
Then

c(f) = £52; dev j’ bdb « _f de [xi(V')xj(V)—xi(V’)xJ(G)] (1k)

and the resultant contribution to bin k is given by

. i
C(f) = E,ka T35 (15)
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Even under the course essumption that there be 10 bins in each of three
directions in velocity space, n has to be 103. This means that the

“ evaluation of C reguires 2 x 108 nultiplications and 105 additions
et each point  or 2 x 109 multiplications and 10° additions altogether,
Since even the fastest present—-day computers have multiplication times

- of the order of 10™® sec., 1t is evident that capabvilities fall short
of reauirements even without considering the colossal task of computing
and/or storing the coefficient array Pkid.

The problem of finding the best strategy for solving the
nonlinear differential equation

of
3t

is at least partially a theoreticel one and presunably solvable even

in the absence of e satisfactory means for evaluating the colllslon
integral. Regretably, very little theory is known concernlng equations
of this type. A% least two methods have been tried in the case when C
is replaced by a s mpler approximation C,. The first is concisely
described by the following formula for T{x,v,t+At) in terms of £(x,v,t):

+v - VT =0(f)

£(x,v,e+8t) = £(x,v,t) + [-v - vf + ca(f)] At. (16)

In the case of time dependent problems (16) yields a sequence of
approximstions to the distribution function at intervals of time At.
In the case of time independent problems, it is expected that the
sequence cof approximations will converge to a solution of the equation

v . vt = (£) ) (17)

in much the same way &s o non-eguilibrium distribution function relaxes
to its equilibrium steady state value in a physical situation. This
has been found o be a fairly slow method and greater speed is achieved
by solving (17) directly by mesns of a finite difference scheme.

In spite cof the major hurdles that must be overcome, a tremen-
dous amount of work has been dene adding to our knowledge of the Bolizman
equation. A whole volume would be far from sufficient to desecribe it,
The major cetegories of solution methods include the moment methods, use
of the BGK collision integral, and most recently, the Monte Carlo methods.

In this review we describe the Monte Carlo methods cf J. XK.
Havilland, G. A. Bird, and A. Nordsiek. An attempt has been made to
include a large number of related worxs in the bibliography.

In order to make the discussion as self contained as possible,
a chapter on ithe probabiiity theory relevant to Monte Carlo calculations
is included et the beginning.
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vx,vy,vx,v 1.2.5
v1,v17 %77, ,Vlr 1.3.2
v 1.1.2
x 1.1.2
3} 1.3.2
v, 1.2.5

P/ 1.2.5
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Greex: First Occurrence

o . 3.1
€ . 1.1
: | (p,ig’ ’ 2.5
E s XsX(b,g) 1.2
' A : 3.2
) v, v* _ 2.5
0 2.5
T 3.2
Q 2.1
9 3.2
Other First Occurrence
9 ' 2.1
V= (a a_, 3 ) 2.2
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2. BASIC STATISTICS AND PROBABILITY THEORY

2.0 Introduction

The purpose of this chapter is to assewble some of the ideas
end concepts from probability theory which the author has found useful
in dealing with Monte Carlo methods. No attempt shall be made to lay
down a precise enough structure to permit rigorous proofs. The
definitions are more complete.than the remainder of the discussion to
permit the reader to easily find additional information in a probability
theory textbook, but in most cases we do not take the space to fully
explain 211 the hypothesis mentioned in e definition if they are commonly
satisfied in the usual examples of probability- spaces. The notation in
this section is characteristic of probability theory and independent of
that used up to this point.

2.1 Probability 8pace

2.1.1 Definition

The central notion in statistics and probability theory is
that of a sample space or probability space, and wz begin by describing
this entity in very general abstract terms. Real understanding, of course,
comes from seeing how the concept is used in a number of familiar situat-
ions and we shall get to that immediately afterwards. We assume for the
purposes of the next paragraph that the reader is familiar with the
concepts of set, element, subset, union and intersection.

Let Q he a set and ¥ be a o-field of subsets of . The
subsets in ¥ will turn out to represent events. The term o-field
requires that ¥ contain the empty set ¢ and that it be closed undex
the operations of countable union and set difference. Suppose, in
addition, that we are given a function P whose domain is ¥ and whose
range is the intervel [0,1] satisfying P(¢) = 0, P(Q) = 1 and P(\A'__:L a)
= %.IP(Q ) whenever the A , n =1, 2,.... are disjocint. This 1
128t cofdition implies that P(AUB) = P(A) + P(B) - P(ANB) as well as a
certain continuity property for P. We call the triple (Q,¥,P) a
probability space.

2.1.2 Coin Tossing

We will try to show that the abstract structure of the last
paragraph provides us with a model fitting all sorts of situations
which according to our intuition are of a probabilistic nature, Take,
for example the common coin tossing experiment.

Consider first a single toss of a fair coin. We claim that

G) ? P) W1th Q = H ,T}, where H denotes heads and T denotes tails,

Xr i , {1} ana P(6) = 0, B( {H} ) = B( {T}) = 1/2,
P( {H 1 1 mode] for this experiment. The reason it is suitable
is based upon the fact that if we toss the co.in many times then roughly
half of the tosses yield heads and haif yield tails. In addition, there
are two analogous theoretvical results proved on the basis of our model,
the week law of large numbers and the strong la. of large numbers which
strengthens the bond between intuition, experiment, and theory.

12
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The common model for two independent tosses of a fair coin is
almost as simple. The probebility space can be taken to be as follows:

@ = {mHM, HT, TH, 7t} , ¥ consists of all subsets of @ end if
Ae("e" meening "an element of") then P(A) = (Number of elements of A)/b.
Suppose we ask now "what is the probability of obtalining both a head and
a tail?" In our model this means “what subset A corresponds to 'both a
headhand a tail' and what is P(A)?" The answer is A = {HT, TH} eand P{A)
= 2/4 = 1/2,

Similar examples can be given for dealing cards, drawing
marbles out of urns and meny other real life situations where there is
an element of chance involved. We refer the reader to a book on
probability theory such as (2, Vol.l) if his interest moves him to find
out more about them. It is important for an understanding of the subject
to discuss one example which is essentially different from the coin
tossing experiment,

2.,1.3 Dart Throwing

The coin tossing example had the property that P(A) > 0
whenever A contained only a single element of €. If this were always
true it would be unnccessary to introduce the collection ¢ into the
model. We now describe a situation where it isn't., Suppose a dart is
tossed at an infinite dartboard equipped with a cartesian coordinate
syste.. It is aimed at the origin. As any enterprising dart thrower
realizes, the chances of hitting exactly the origin, or exactly any
oth~r point is zero. On the other hand, the probability -of hitting a
nonzero area on the dartboard is generally non zero.

For this example Yet Q cons’st of all the points on the
dartboard, or better yet, all pairs of real numbers (x,y) which will
be coordinetes of points on the dertboard (bull's eye at the origin).
Let ¥ be the smallest o-field of sets containing all rectangles. The
satisfying this description turns out to be quite large and contains,

for example, gll regions whose boundaries are continuous curves. Finally
we let

, (x24v2) /a2
B

Then P(¢) = 0, P(Q) = 1, and P satisfies the additivity condition because
of the properties of the integral. Furthermore, P(A) = O whenever A is

a single point in the plane or, for that metter, even a smooth curve.

The function is called the probability density or distribution density
function. The constant ¢ is related to the skill of the dart thrower
(the smaller c the better). It has been found that this particular type
of density function describes an actual dart throwing experiment part-
icularly well. That is, if the dart is thrown N times, where N is large,
and the number of times a hit is made inside & given set A is N,, then
Ns/N approximates plA) and the approximation improves as N ancreases.

13




2.1.4 Conditional Probability and the Urn Model

The machinery of sample spaces is ideally suited to deal
with problems involving what is known as conditional probability. Lei
us consider a problem where this concept is involved. Suppose we have
two urns numbered 1 and 2 and each contains a red ball and a black ball.
A ball is drawn from urn 1 and placed (without looking et the colour)
into urn 2, Then a ball is drawn from urn 2 and.it is black., What is
the probability that the ball originelly drawn from urn 1 was black?
To solve this problem notice first that there are two possible compps-
itions for urn 2, each equally likely RjRpBrand BjRyB, (to clarify
matters we have used subseripts to denote the urn of origin of the various
balls)., Let € = {Ry,Ry,By,B{,R3,B5} , ¥ consist of all subsets of 2 and
P be defined by P(A) = (number of clements in A)/6. This assignment of
probabilitiec is consistent with our intuitive prejudice that each ball
in a given urn has an equal chance of being drawn. The subset of &
correspondlng to the event "a black ball is drawn from the second urn'"
is A =. {By,B{,B5} . Since we know this event has occurred we restrict
our attontlon to & ney sample space (Q, ¥ j,P;) where ; = A, ¥, consists
of all subsets of @; and, since each single element set has equal
probability in (Q, ¥ ,P), we ask for the same property in (Ql,T’l,Pl
This means Py(B) = (# elemeats in B)/3 whenever B ¢ §;. Such a
definition leads to the conclusion that the probability of a black ball
on the first draw, which corresponds to the primed letters in A, is
2/3. Experience shows 2/3 is correct, in support of the usefuluness of
this definition of sample space.

In general if (Q,¥,P) is a sample space and Q;, with
P(Qy) > 0 is a subset specifying a condition known to be gatisfied,
then the conditional sample space is defined to be (Qy,%;, Py) where
= {onA : Ac¥ }and Py(B) = P(B)/P(A) when B ¢ ¥;.

2.2 Random Variables

2.2.1 Definition and Examples

Having described what is meant bv a sample space, we are now
ready to discuss random variables, a concept wiich is indispensible in
the study of Monte Carlo simulators. A random variable X on & prob-
ability space (9, ¥ ,P) is a function whose domain is the set @ and
whose range is in the real numbers such that {w : & < X(w) < B} ¢
for all real numbers o < B, In prectice it is useful to deal with random
variables whose range is an n-dimensionel Euclidian space, but we shall
avoid this complication for the moment. The probaebility that a random
verisble assumes s value in an interval (a,B) is denoted by P(a < X < B8)
and given by P(A) where A is the set f{w : a < X (w) < B8}, i.e. the set
of elements of Q which lead to a value of X between o and B, It is clear
now why we assumed such sets were in ¥ since ¥ is the domain of the
probability function P,

"Natural" examples of random veriables abound in resl exper-
iments where chance is involved. If a coin is tossed N times the total
number of heads 1s a rundom variable. In the dart throwing experiment
the x coordinate of a hit is a random variable, so is the y coordinate

14




and thé distance from the origin (x% + y2)1/2. There will be many more
examples in the Monte Carlo methods we are gbout to discuss,

2,2,2 Distribution and Denuity Functions

In working with a single .random variable X it is ocecasionally
useful to devise a new sample space (2 , ¥ , P ) which is simpler in
meny cases than the original one.and yéet lekds To the same conclusions
as far as probability theory is concerned, This sample space is defined
as follows: Q_ is the resl numbers; ¥_consists of all the Borel-
measurable subSets of the real numbers and P is completely specified
by giving its value on every interval (a, B)¥

P ((a, B)) = Pl < X < B)

Px called the probability distribution function for X.

In many cases it is Possible to find a real valued function
¢(x) with the property that

8
P ((a, 8)) = f ¢(x) ax
[

for all (o, B), 'Then ?’is called the probability density function for
the random variable X,

2.3 Expectation and Variance

We now come to an exceedingly useful concept. The expectation
of' & random variable corresponds to the answer we obtain if we make
many observations of the random variable and take their average. It
is defined most generally as follows:

E(x) = X(w) P(dw).
J

The expression on the right is an integral over the probability space
and is defined to be the limit of finite sums of the form

L s, Pla)

k
where Ak is & disjoint decomposition of @ and the s, are chosen in such
a way %hat the step function with constant value s, on A (k =1, 2,,.,)
approximates X in a certain sense, The theory we "have “deslt with so
far is not equal to the task of making this definition precise.

We shall therefore give another definition which is equivalent

to the above one but epplies only in the case where the random variable
X possesses a density function 99. Then

15
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Une of the annoying facts of the business is that the integral in either
definition mway feil tc exist. There is nothing that can be done about
this, and we shull not déal with tundom variables whose .expectation
fails to exist in the sequel. Exnectations and random variables have a
number .of useful algebraic properties; we now state & most basic one,
iet X;-and X, be any two random variables wuose exnectatlon exiets and
¢ be a real nuMber. Then oX; + X; is again a random variable whose
expectation exists and

E(eX; + X3) = oB(Xy) + E(Xp)

The expectation E(X) is often called the mean of X. This is
because if we perform an experiment whose outcome is X N times in such
a way that each repetition is independent of the previous ones and take
the average of the values of X we obtain in this way, this average turns
out to get closer and closer to E(X) as N gets large. This process of
repeating an experiment is emensble to a much more careful analysis
which we postpone momentarily.

Instead we pursue another idea. Just as it is useful to know
the mean of a random variable X, it is useful to have & measure of how
much the values of X can be expected to deviate from the mean. The
concepts which have been introduced for this purpose are the variance
and the standard deviation of X. The variance is defined to be the
expectution of the random veriable

(X - B(X))2 = X2 - 2 X B(X) + (B(X))?
That is,
Var (X) = B(X2) - 2 (E{¥))2 + (E (x))2 E(X2) « (B(X))?

In case X bas a probability density function ﬁ)(x
o«
Var (X) = Jﬁ (x - B(x))2 {0 (x) ax
-C0

The standard deviation of X is defined to be the square root of the
variance, i.e.

o (X) = (Var (X))1/2
In order to make our statement that the variance and standard devistion
g1 2 us gn idea of how much the values of X can be expected to deviate

from the mean, we state & result known as the Chebychev inequality
{1, Prop. 1.7, p. U4}:

P ({w t | ¥w) ~ E(X)|/0 _>__e} ) <72

16




2,k Indegendence' r \
2;1&.1 ‘Product . Spaces

In-order to build a model to handle such sitvations as
repeating a chance expériment we introduce¢ the concept of product of
independent probebility spaces. To this end let (Qk,* ,P)k=1,
<50 be probability spaces. Let 2 be the semple space whose elements

" are n-tuples of elements of @ k=1,....N. That is,

g? = {’.mlw?_.,...wN) Py er,k = 1,_”’1\;}
or equivalently

9=S?,1x92:.c...x9N.

We let ¥ be the smallest o-field containing all sets of the form

A = Aq x.AQ:x see X AN’

vwhere

A € ?‘—’k, X = 1,...,N,

We define P first on sets of the form A = Ay .0 X AN by setting
P(A) = PI(AI) Pz(AZ) ) PN(AN)

and then extend it to all of ¥ by meking use of the addition axiom

and of continuity properties of the P, . It can be checked that

(, ¢, P) is a probability space. W}é shall call it the product of

the probability svaces (Qk’ ¥ Pk)’ k=1,..., N, and denote it

occasionally by
¥ N

I (@ 40 7).

We shall also have occasion to make use of an infinite product

o«

I (@, ¥,,P)

k=1 k k’> "k

of sample spaces. The concept and definition are analogdus but .too
complicated to attempt here.

2,4,2 Motivation and Definition

L3

Setg of the form ; x ... x Q % ka X e X QN which
we denote by Ak exhibit a very importanl‘é property ~=- nemely,

P(I\kln nkaz) = P(kal) P(kaz)

17
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whenever k; #Xy # .... # k,. Tt is importept enocugh tc kave a defipitiorn
all its own, Events By, By, ... B, ere szid to be independeni of

P (3in... nB) =P (3} P {By) ... P (B,)

The notion of independence in our model-is a rigorcus statement of the
notion as derived from experiments imvolving chence. ¥e shail make much
use of its conseguences for rendom variables, end@ we proceed to derive
soue of them presently.

If Xj is a randcm varigble on (Gl,'§ 1> P1): thep it can be
treated as a random. varigble on

¥
(9) :F‘) PS) = n ( 3* 3'P ')
k=1 e T, ;

a natural way.by letiing
Xi{wys vy mﬁ) = Xy {m)
We find then that
Pa<X <B) =7 (0 <X <B8)

so that as far as probabilities are concerned X; and.X; are identical.

Suppose Xi is & random variable on (9, , ¥k’ Pk) and Xk is the correspording
random variable on the product space, k =1, ... , E.” Then

™

-, , = P (
ie(xk.1 €J,& ... & sz ed,) =P (xkl € J31)...F (xkz 3,)
where ky #kp # ... ¥k, and 3., i =1, ..., & are Borel sets of resl
numbers. This follows easily Trom the independence property of .events
vhich we discussed in the preceding paragraph. Hence we define the
notion of independence for any & random verigbles Xj, ..., X, defined

on & common probability space by the stetement: L
L
P(Xy € Ty & vvus & X, € Ji) =_§ P (xi € Ji).
i=1
2.4.3 Independence and Expectation
. . D i PR Y v e 3 - N

If X1y eees Xg are random veriables, then so is R X, If
they are in addition independent it can be proved that k=1

Y

N
E(MX)=1 E{(x),
k=lxk k=1 Ak'

For our purposes this property is not as important as one or its consequences
~== namely
N N
Var (2 X ) =t Var (X )
k=1 Xk k=1 Tk

18
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S¢ e we kave deait Witk 2 lsrpe mwler of definitions =ps
. In opder to rmzke uss of this theory we need to heve zose mors
specific knoviedge zbout Drovwbility spaces shich recur freguently in
tuilding stetistical models for vezl situetions. ¥a shell desceribe

¥vo such spaces now.
The first of these is known as thza wniform distribution and
4 is defined as foilows: Iet be the interval {a.t et ¥ eonsist

- -

of gil the Borel measurable subsets of (a.b). The probebility funeiion

is defined to be
dx
P - ——
r(a) 4: s

B
where :=—-is the density funciion. We then celcuigte the meen

b-2
'ﬁ"{:{) = ® _J_cg_._*g___g._-_i-_’p_ =
e a b-&a 2

»

b 5 2
{ { as Ye
E( ‘X“U)z) = J‘ %}c-:—a:s- - }:2 = _————(312)
{{ - .

and the variance

end remember these facts for future roference.

The second space we must menticn is the normel distribution
vwhich is defined as follows: Let @ be the whole reel line (-«,») and
let ¥ consist of all the Borel measursble subsets of the real line.
We fix values of the persmeters i and ¢ end define the probability of

2 set A by
v 3 (x-u)2/20% .
P{4) = P-4 j};e dac

so thet the density function is

\ 1 e~{x—u)2/202
o \!2? ‘
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Tre mezn then is given by

I i ayfes?
z(z‘h=f =g e LA

d&x = g2

e (xu)2 . a5
%) = — =i
szt = [ g 8

from waick the stenderd dgwiztion is o. TRe mreea@ing integreis cammoto
e evzlusied B3 tery mezps 223 oze usuzlly tramsfcrms them imts

.
|

f Jz-zax- = z_-féx=0,f e _ ¥z
—= - ex= 3z

This pretty well ccrpleies the outlire of the rost essential
statistical

s
idezs peeessary o plunge inito 2 siudy of Horite Caxlo meihods.
There receins unrenticned, however, & fupderentel and far reachin

theorem which proves invzluabdle in understanding the answers & Monie
Carlo czalouniation cranks out. The certral iimit theorem assumes we

keve en uniimited mumber of indevendent random varizbies X {k=1,2,...)
end ezch has the same distribution; thet is, given (a,B8), “then

Ple < X_ < 8) is the same for 211 k=1,2,... leeding to 2 meen it and

2 stapdZrd deviation g. Then we can conclude that for W suificiently
large, the random verigble

2|
™

%

ol
f

hes an epproximately normel distribution with mean u and standerd
deviation

g

Vi
Strietly speakang, the ter. "approximately" above requires more precise
definition. We therefore refer the reader to [1, p. 170] wheve the
following precise statement ran be found:

Theoren

Let X;, X;, ... be independent, identically distributed random variables
each of mean p and variance o. Then
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_xl"fr}:zé...éx D
5= 2 - m{0,2)

G Jo

The symool @ X (0,1) stex?s for comverges in @istribution
to the norme=l distribution of mezn zero znd stznferd deviaztion 1. It
means tiet if B, (e) = B(S, < ) is the distribution fenetion of S, then

[+ =2
. 3 -5 Iz -
j | 14 = =
A3 -n(a) f ?z e QL

e -2

e we aere given 2 device which is gble 7o generate
er froz a2 @istribution with @ = (2,p) ard density
seection we discuss the problen of obizining en zpprox—
irziion to  o(x) by piciiing 2 histogren from mrber § of rzndon
DUESEKS (rg,_...arn) produced by our generaior.
Firsy we state whai
cea € X =T

is meant by 2 histogran. Iet z partiticn
% of the inierval (z2,b) be fixed. Thus
} into ¢el1s By = (xp 3, x3) X =1,..., n. The epprox-
i to be the step fuzction whose constant value
cerval £ is ooteined by counting tThe nusiver of the rx wnich
£831 into this initeryal and dividing the resuli by Zi(xk - % 5 ).
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There is another wey of describing thz histogren which is
rore uzseful foxr theoretical purposes. Let Xyg be the characteristic
functicn of the cell 2, thet is,

k’
() = l1 x¢ Qk
xk 0 otherwise

Then ¥, is e rendom varieble on {Q,¥, P). We can imagine Xk to be
a random varisble on the i-th factor of the product space

N

1(Q,¥,P)

1
and denote its extension to the whole product: space by i j. For
tixed k thep x, . i = 1,..., N are identically distributed independent
random veriabl€d> Furtkermore, if we let @ denote the value of

. H,k
Pﬂ(x) on , , we obtain >
N
1
? = =7 _ E X, v 2
H,k Nix, xk-l) P 35

o ig also a random varisble on the product space. We calculate
the’mean and variance of X}
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Var (X)) = ‘/r 2 Pp(x)éx-p2-= B0 -)
2 o 3

Tt follows then tkzt

ver () = n (1 ol x, )2

end
. 1/2 12
o - = g T (= _.x_.--._
© g = (g} K )
. \

If N is large thep we can us¢ the cenirzl 1linmit theorem to conciude
tln.atﬁg‘k will be zuproxirstely pormzlly distrivuted implying thet
it will £211 within {wo standerd deviations of Mi/(xx-xx 3) ebout

9875 of the tire. It is perhaps rore illumipsting to look et the
“relative deviation”

ol g 2P 5 ) = Q1) o2

Then if m.<<1, which must be the case if the pertition
poinits are finely spaced in order to meke the histogrem show detail,
the reletive devietion is approxiretely (Hm)-2/2 or (exvected number
of counts in cell Qk)-l /2. This is e useful rule of thumb to remember
when designing Monte Carlo algorithms. It is heavily dependent, of

course, on the assumptions of indevendence and smell .
3 - - )

¥We have worked out the histogram theory for a distribution
with @ = (a,b) and probebility density . The theory is not really
restricted to these assumptions. DMore generally we can start from
en arbitrery probability space (2,¥, p) and choose a partition

N
= U Qk R
k=1

Ok disjoint and &- e:te k=1,2,...n of the set Q. Again we choose a

samp}loe (wy, wps-.. ,mN) of N rendom points from the distribution
{0 P).

Since P may not be given by a density function it is not
possible to define the histogram as a stepfunction approximation to
the density function. Instead we let py ,k equal the fraction of
the w; falling into §i and consider it an approximation ‘o
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: wkose pean turns ouc to be yk end stznd=rd deviation turns ocut To be
» "1/’2
: l:.'-*:“--’:.)Ei
3 Azzin the relsiive siznderd deviatior is
j 12 -1f2
(1/p,-2) 251
4

and cur rule of thurd thai relztive stendard devietion = (expecied
nurber of counts in Qk)-1/2 still epplies.

4 2.8 Algorithms ané Monte Cerl

2.8.1 Generel Siructure

We shell not define precisely what is meent by an algorithm.
It is sufficient for our puwrposes to sey that an elgorithm is e finite
seqguence of operstions ard of things to be operated on, imnstructions
giving the order in which the operations are to be performed and
when the exscution is to stop, together with e guarantee that the
operations can always be carried out under stated conditions. A
computer program, of course, fits the description we have just given
and it is in this context that we shall be discussing elgorithms from
now on.

Since we shall not be discussing any particular algorithm
in the next few paragraphs and consequently shall not be concerned
with the internal details of how a particular algorithm is put together,
it is. appropriate to use ‘the well known function notation as a
shorthand for an arbitrary given algorithm. That is, let U be the
vector of numbers which the algorithm uses as initial parameters and
V be e vector whose components are the numbers which it produces. Then
we write

V=29 (U)

to denote the action of the algorithm.
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Cenoraliy 2igorjih-s zre devised so that we cam use &
computer ©o cgiziizie soze femction which is a2t least theoreticelly
Engwn. For exzzple, let A be an » x n mabrix of cozpiex mushers.
Frhep it is known that A hes n complex eigenvelues. Alternatively
%2 eonid say thst there exisis a function F{2) whose veiue is 2
vestar ©F p ecomponents —~ the eigenvalues of A in soze order. I
2z zn izgorSant problem to devise an zlgoritkm §(4,k) whichk prodvees
& cioss zpproxiraiion to the eigenvelues of A. Ve ask thet the
glzorithm st ieast sstisiy

s us that such an 2lgorithn would utilize some
ve method end thaet the time T{k) reauired to execute the
glgorithm worid go to « as k #+=, Thsi is something one rmust live

With this prezrible we now turn our aitention to what we
shz13 cgli z Monte Carlo gigorithm. We describe it et first in &
somewhat idezlized form in order to clarify what is meant.

Suppase that our computer has ettached to it a source of
rendom nurmbers whose distribufion is known so that in addition to
the usuzl slate of ipstructions there is one which enebles us to
introduce & number from the random source into the computetion. ZIf
an zlgorithm makes use of these random numbers, we should intuvitively
expect that the answer will also be described by e probability distr-
ibution. .¥e cen describe & Monte Carlo elgorithm in terms of our
function notetion if we imagine thet instead of having e random
number generstor duilt into the computer we ellow the computer to
hava access to any finite part of an infinite sequence of numbers
produced separately by a random number genersior. Let such a
sequence be denoted by r = (r;, rp...). The words "finite part"
in the second to last sentence deserve emphasis., We wish to exclude
such functions es

"Compute the mean of the sequence r"

oY

t———

"IP 1im r, is greater than 10 commence step 3".

Fortunately in most algorithms it is possible to place an upper bound
N on the length of the_sequence required by the algorithm. Then it
suffices to work with r = (r;, rz,...rN).

For theoretical purposes we let (Qo, ¥;, P_) be the prob-
ability space describing the random number generator. Then r may be
treated as & draw from the probability space

N
(@,%,P) =1 (8,%,P),
2=1
or o
1 (93 an ’P)
2=1 o o 0

2l




as the pase ©=y be. %re Monte Cario =2lgoriithm is denoted by

v = ¢(u,r,x).

The parermeier k has been introduced to a2llow for comvergence
properties. I -is evident that for fixed U, V is a vector valued
randon varieble on (2,¥ ,P). It is therefore reasoneble tc ask for

1 the probebility distribution of V. GCeneraily, tnis is too difficult
' e guestion to answer, end for practical purposes certzin properties
£ this distribution suffice.
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2.8:2- Monte Carlo Integration

s <A

It is time now to describe en algorithm which is, historically
1 speeking, .e .prototyne for 211 Monte Cerlc celculations. The purpose
' of . this .algorithm will be to epproximate the integral of a given
funetion £(x) on the interval (0,1). It is presumed thet £ is given
to us by specifying 4 parameters - they could be the coefficients of
; a2 polynomiel of order d - 1, or they might be the values at d points
in the interval (C,1) if £ is essumed precisewise linear. The exact
method of specification is of no direct concern to us. Let us simply
, assume .that once the d paremeters are given, we know how to calculate
£(x) for any x e-(0,1).

T

Uit

P

The actual computetion of the integral proceeds as follows.
Given N, choose ¥ independent randcm numbers r = (rl, r2,...,r ) from
the uniform distribution on (0,1) and then compute
N
=4 (f,r,N) = Ly 2(x)

Nk-l k

we claim that I in an approximation to

fz £{x) ax

in the following sense:

1l
=

1
£(I) =,%- $ E(f) = E(f) fjno £(x) dx
k=1

1
Var (I) = -%I-Var () %‘I-(fo £2(x) ax - u?)

1
s (1) = w2/2 (f £2(x) ax - p2)Y/2 = ¢ /2
0

We summarize: The mean of ¢(f,r,N) is the required integral and its

- standard deviation tends to mero as N+», Furthermore, ¢ is an average
of random variables that for sufficiently large N we can assume it
will be approximately normally distributed with mean p and standard
deviation C N-1/2, 1n particular the probability ‘E,hat

je-nl|l<2c yL/2

as




is :DDdu-O.QB-frv_1ithB we can conclude thet with nrobabwllty 0.98
will arproxinczte j (x) dx to witkin e if ¥ > (2¢/=)2.
(4]

Before lezving this exampie, it is importuwst o notice
that_the .nurber of cemputations of £ arnd hence the time teken to
exscute.the algorithm increases as N but the standerd devietion
enly.decreaseé as H-1/2, 1ifwe ccmpere this with a guadraticelly
convergent standard -algorithm, we-can .see that Moente Carlo is a
preposterousiy-expensive way to get accureacy.

We can 21so use this example as & guide to formlate a
criterion for convergence of a Monte Cerlo algorithm. We say thet
the algorithm

¢ (U, r, n)

converges to F(U) es nmo= if

n, = E(e{U, °,n)) » F(U)

Var (#(U,-,n)) + 0.

Unrfortunately, neither this eriterion, nor any alternative
has been proved for the Monte Carlo algorithms proposed to date in
Kinetic Theory. We state it here primarily to throw light on the
navure of the answer a Monte Carlo algorithm produces.

2.9 Random Number Generstors

2.9,1 The Uniform Distribution

We stated at the beginning of the preceding section on
Monte Carlo algorithms that the random number generator attached
to our computer was an idealization. In practice a substitute is
used.

There are several standard algorithms known which have the
property that they produce a sequence of numbers which as far as its
statistical properties are concerned could have been produced by
sempling.from.the uniform distribution on (0,1) (there is nothing
basic about this interval, it has been adopted by convention mainly).
The algorithms must be given a starting value r_ so that we could
write a typicsal one as °

R(r n)
Qs

which gives the n-th pseudo random number if the starting number is
T, Among the statistical properties, we demand that histograms
b3ilt from the sequence R(r ,n) be statistically ifidistinguishable
from a Listogram built from the same number of samples from a uniform
distribution,




It is tempting, but inconsistent with our goals, to go into
detailed descriptions of the tests which are used in this connection.
We refer the reader instead to [3, Ch.12].

The best methods known to date for generating uniformly

distributed random nurmbers are known as the recursive congruential
generators (5). The n-th pseudo~random number R(ro ,n) is given by

n _
br = = R(r.,n)(modulo m)
o o
for a suiteble choice of the. parameters (b,m). This choice requires a
considerable amount of number theory to make properly. The congruential

rethods are both fast and pass the statisticel tests with flying colours.

There .are two basic methods for devising an algorithm to
generate rendom numbers from a distribution given by en arbitrary
density function@(x) on (-»,») which make use of a source cf uniformly
distributed random numbers.

2.9.2 Method I

Let

X
a(x) = f b(g)at

® is a nondecreasing continuous function which assumes every value
in the interval (0,1). Consequently, there exists at least one
nondecreasing inverse function %! on the domain (0,1) such that

8(e Uy)) =y.

L

¢! is a random variable on the uniform probability space with
Q= (0,1). Since

x1 < ¢ Hy) < %
implies

o(xy) <y < o(x3)
it follows that

P(x) < ¢! < xp) = P(o(xy) <y < 8(x2)) = &(xp) - &(x3)
Hence ¢ ! is distributed according to the density function@(x), and
if R(ry,n) is a random number generator for the uniform distribution
on (0,1) then
¢-I(R(ro,n))

is a random number generstor for the distribution with density P (x).

a7




Method I, though completely general in theory, is ot always
useful from & przctical point of view.- hhe problem arises when there
is no.easily.computable expression for $ 1 or, even worse, if we are

iven ¢ eand.there is no easily computeble expression for either ¢ or
& 1, In such cases Method II may be preferable.
2.9.3 Method II

Let fJ be -2 given function not identically zero on the interval
{(a,b) and satjsfying the inequality

0 < p(x) <ec.

We shall describe a mei..u for obtaining a random number from the
distribution defined by the ‘density

b
@(x)/ f o(x) ax
a

Let x be a random number from the uniform distribution on
(a,b) and y be-a random number -drawm from the uniform distribution on
(0,c). Then

b
900 5 3) - f o) ax/(b-a)c

and the disiribution for x ngen that the condition P(x) < y is
satisfied is

Pla < x < B on the condition P(x) < y)

B b o (P b
= fa @(x) dx/c(v-a) (fa ?(x) ax/c(b-a)) 1 = fa p(x) dtx/féL P{x) ax

That is, the above conditional distribution for x is the distribution
we seek to compute.

On the basis of the theory Jjust derived, we devise the random
number algorithm as follows:

A. Choose r; and rp from t° niform distribution on (0,1). Then
x=a+ (b-a) ry, and y = cry
will be uniformly distributed on (a,b) and (0,c) respectively.

B. If @(x) < y then x is the required random number and We are finished,
Otherwise return to A to repeet the process.

One of ‘the interesting features of this algorithm is that the
number of steps necessary to generate & random number x is itself a
random varisble, Some further analysis is in order. The probability
that x is accepted on the first pass is

b ,
= f @(x) dax/ec(v-a).
&
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The probability.of,acceptance on exactly the n-th pass is the same
as the probability of-non-acceptance on the first (n-1) passes and
acceptance on ‘the n~th pass, or . .

(1-p)"2p.

Since
(o]

: (1-p)™p =1
n=1
the .probability of eventual acceptance is one, On the cther hand,
the expected waiting time is
z 1.1
:  n(l-p)*p= >
n=1l

From.this it is clear that the speed of Method ITeis improved by
increasing p. This can be done by first of all choosing

c= 9

max

Secondly, (b-a)-can be decreased by truncating any long thin tails

of @(x).

Under any circumstances Method II has the serious disad-
vantdge that no useful upper bound -on its running time can be given.

2.9.4. Generating- the -Normal Distribution

Fortunately Methed I and Method II do not -exhaust the
possibilities for designing random number generators. As -an example
of the exception we shall now describe a unique method for generating
random ‘numbers from the normel distribution with mean 0 and standarad
deviation.l. In this -case Method I is not easily applicable because
there is no simple formula for the function ®(x), and Method II is
undesirable for the reasons we have already mentioned.

First of all, let us note that Method I yields an efficient
random number generstor for the distribution with density function

Here

and
- 1/2
"1 y) = (n(2-y)M2.

Furthermore, if we chooge r from the above distribution and © from the

uniform distribution (0,2n), the distribution density function for the
pair (r,0) is given by

29
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Now suppose that (r,0) are the polar coordinates of a point, in the
plan=. Then if we change to Cartesian .coordinates

XxX=rcos O, y=1r sin 0

the density function becomes

o €

;n Stz ((2ﬂ)-1/2e_x2/2)((2n)-l/2e-y2/2)

Because the density factors in this wsy, we: conclude that x and y
ere independent and each is normally distributed.

2.9:5 Uniform on.-the Unit Sphere

A variant of Method II is often used to sample from the
uniform distribution on the unit sphere using the following procedure

A. Choose three independent random numbers rj, rp, rz from the
uniform distribution on (0,1). ‘

B. Retain if 0 < & ri2 < 1; otherwise go to A.

C. The required unit vector is (r12+r22+r32)~1/2(r1,rz,rg).

2.9.6° Effusive Flow

Finally, we describe a modification of Method II for
generating random numbers from & distribution with a density function

proportional to
(e 2
X e (x xo)/’c2 on (0,b).

Ideally we would like to consider this function ou (0,»), but the

cut-off at b-must be introduced to control the -expected waiting time.
This particuler distribution is important because it occurs frequently .
in dealing with boundary conditions for the Bonltzman equation.

The slgorithm is as follows:

A, Choose r from the normal distribution with mean zero and standard
deviation one. Then

x=x_ +vr c/21/2
()
hes density function
X 2/a2
2 (xex )2e
e
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- : B:- If:x-£.(o b) we reject this value of x and repea:b step 1.
i . Othemse we-proceed to C.

A A

-@.- Cheose & random numlger ¥ from the.-uniform -distribution on (0;b).

o
3 It x"_g ¥-we -accept x-as-the required -random number. Othérwise,
3 the. program-goes. to, A -to-repeat-the: ’grqqess .
- . ‘We 'shall omit ‘the =dgtai1’s=-of the theory ‘in this case since
3 they ‘follew:clesely our ‘discussion-of-Method-II. The -algorithm has
an.unregsonably-large-expected- weiting time if ¥ < -c. The waiting
i time. can be reduced: if-x < 0 by -using-only the ‘positive part of the
3 - ‘normal distribubtion-in: s%ép 1, i.e.
1 X =x,+ |1~|'c/_21/2

If x_is:large-and-negative then the 'standard Method ‘II is more
ﬂ‘ ’ efflgient ~then this one.
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3~ TEE.TZEST PARTICIE METHOD

-3.0 _introduction

J. K. ¥avilaend in 1961 introduced a Monte Carlo method for
obtaiping tixe -independent solutions of the Boltzrman equation which
is .now ‘descriptively -called the "test perticle method”. This method
requires.enough-storage-for two epproximations to the distribution
funetions to .be in memory ‘at -any one time and has therefore been

Jdimited to problems which could be reduced to one space and two

velocity. dimensions: The computing times are of the order of & helf
hour on the ‘T.B.M:-709 to -obbain -2 density profile with a standard
deviation. of.theorder 'of 1/20 :0f the -density at eny given point.

In this case -the ‘density-histogram was accumulated in 10 ceils each
having. a ‘width-of “the order of 1/10 mean free path.

3.1 Prelimipary Theory
3.X.1 OQutline

The basic idea in Haviland's method is as follows: In
order to compute the distribution function f(x,v) satisfying a
given Boltzman equation, and/or some of its moments in a given
3-dimensional region § with given boundary conditions on the boundary
3 of D. -Denote the phase space for this problem by @ = D X E3.
Since the computation is designed to only produce a histogram approx-
imeting the distribution function, divide the phase space into a
finite number of cells & (in practice k will represent a vector of
3 integers).

Initially one makes an educated guess (usually an appropriate
linear combination of Maxwellians) for an approximate distribution
function, This is considered the target distribution for the first
iteration. The target distribution is then used to statistically
compute trajectories in Q of a molecule having the same collision
cross—-section with the target molecules as sppears in the given
Boltzmen equation. As the trajectories are computed, their contrib-
ution to an incident distribution function is recorded., Clearly, if
the initial guess was an exact solution to Boltzman's equation, one
should find that as the number of trajectories increased the partially
accumulated incident distribution function would tend to the target
distribution function, Otherwise, the incident distribution approx-
imation is different from the target distribution even after a large
enough number of the trajectories have been computed to reduce the
variance to an acceptable level.

Nevertheless, it has been found by experience that the
incident distribution is a better approximation to the correct answer
in the sense that if the process is repeated with the target distribution
replaced by the previously computed incident distribution then eventually
the incident distribution will tend to the target distribution. This is
interpreted as convergence of the iteration scheme to the correct dist-
ribution (= finel incident distribution = final terget distribution).
The required number of iterations depends on the initial guess and the
error tolerances., Haviland used fewer than 5 in his calculsations.

35




3.1.2 Tregjectories to Distribution Function

To eyplain and motivaete Haviland's procedure for accuruleting
the ircident @istribution function, suppose that D, 2, 9, have the
same meening as before. Imagine that the molecules in D ere numbered -
with an index a (a = 1,2,...,H), and have trajectories given by -

v (t)

t
% (t) =% (0) + f OGG(T) ar.

At this point it is worthwhile to remark that each v (t) must closely
approximate a stepfunction (piecewise constant func¥ion) in order
thet the Boltzman equation be valid for this system.

The first task is to define what is meant by the statement
2f is the distribution of the dynamical system whose trajectories are
Xa(t)’ o =1,2,...,N":

N
L@ f £(%,7) axav = I 8, (% (£),7 (¢)) + B (1)
k Qk. o=l
vhere 8, is a function having the property that 6x(x,v) = 1 when
(x,v) belongs to the cell @ and 6 (x,v) = O otherwise; and R is a
random variable having mean zero and variance tending to zero as
the volume of & and therefore N becomes large. Strictly speaking,
one should define the probability space underlying R but it is best
to avoid such a project at this point for the sake of brevity. In
fact, in order to elucidate the essentials R shall be omitted
henceforth -and = replaced with ® to indicate the omission.

Since (1) is true for all t it follows that

1 (T 1 N e
L fodt(w fQ kf(x,v)dxdv) R f REXORAGILNO
It is easy to see, however, that
T
[RCRORACLE

is nothing otlier than the transit time t .,k that the trijectory of
the a~th molecule spends in the k-th cel¥. The factor = is the 'same
for each cell, and it is more efficient in actual computation to
simply accumulate the v ,-s in a suitable array and then divide by
the normalizing factor &2 the end of the computation. Finally, there
is a very important observation to be made at this point. It is not
really necessary to compute the actual trajectories of N molecules

in order to apply the preceding formula. It suffices to generate
trajectories which have the same probability distribution as the
actual ones. It must be noted that to precisely specify this
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distrioution would entail a certair emcunt of basic work which does not
vet appear in.the literature. One rust be satisfied with describing e
generation procedure which minmics statisticelly ihe one occurring in.
paiure and arguing by analogy rather than proof.

3.1.3 Computation of Trejectories

Suppose a molecule starts at (Eb,? ) in phese space at time
t = 0. Then the prccavility that the molecuie will undergo its first
collision in the time interval (t,t+dt) is given by

e—tZ)

P(io, 170, t) = (2 dt
wWhere
- _ bm 2n - ,
Z(xo,vo) = ﬁiv fo bdb jo de g t (xo, v) (3)

is the collision rate with the target .molecules. As is customary,
g = Ivrl, and V.SV -V,

Let t be chosen at random from e distribution with density
P(x ,v ,t). The position at time of collision is then X3 =X + v _.
In 8ra8r to obtain a post collision velocity for the molecule reasofl
as follows: The collision partner has a velocity chosen from a dist-~
ribution with density

20 () = [o(z,5) &) ()

The probability that the collision paremeters b,c fall into the intervals
(b,b + avb), (e,e + de) is given by

bdbd
Raode (5)
b2
m
Let them be chosen accordingly. Then the post collision velocity Vo

may be computed using (see 1.1.3)

ACEA (;r-é) e (6)

3.1.4 Specialization to One Space and Two Velocity Dimensions

Haviland considered two problems which require only one space
dimension and two velocity dimensions for representing the distribution
function: <the flow between infinite parallel walls at two different
temperavures and a plane shock extending to infinity in both directions.
In both these problems the distribution function can be immediately
written f(x,vx,YL) (see 1.2.5).

Let the (x,u,v)-space be partitiored into cells having dimen-
sions

Ax, Avx, Av,
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The number of molecules .in a typical cell is

X+Ax v};!»Av)-c v, +Ayg 2n
f dx~ f av f d\_rff vJ_’de(x,vx,\_r,_)

X v, v, o

= om £(x,v 5V, ) vy AxAv AV,

molecules per unit area where (x,v >Vy ) is some interior point of the
cell. We now define -

Fx,v,,v) = 2n vy £(x,v v, ). 1)

Suppose each cell in phase space is now indexed with subseripts (i,J,k)
giving the coordinate numbers of the cell in the x,vxand vy directions
respectnely, and (x ,v é,v ) gives the midpoint coordinates of the

i J k~th cell. If Fr ives ‘the accumulated trajectory res:.dence time
in the ijk-th cell,

F, (8)

where C is & normalization factor chosen so-that the distribution function
predicts the correct average number density of.molecules. In order to
compute collision rates and moments of the dlstrlbutlon, the followmg
formula given by Haviland is very useful

ff(x,vx,vy,vz) ¢ (x,vx)dvxd.vydvZ

® 2n
=f°° dv}.{fod\if YLdOf(x,vx)vlcosO,YLsinO) ¢ (x,vx,\:LcosO,vJ~ sino)
- o

®. ® on
= J:wdvxjﬂedv ?(x,vx,YL) jﬁo ae ¢ (x,vk,Yicose,YL51no) (9)

27

-~ L
- jszi'jk f ae ¢ (xl,v J,V:chose A
R

where Xy is the closest cell midpoint to x.

ks1nG))

3.1.5 A Finite Velocity Range is Sufficient

Since it is expected that for large values of vV the
distribution function will decay like exp—[(vx/c )2+(YL/QL)2], only
the cells near the mean velocity should contain. any significant num’.r
of molecules, This leads to the very importent simplificetion of working
with only a finite number of cells in velocity space. Haviland (p.151,
table IV) has studied the effects of restricting the velocity distribution
to a rectangle of the form

- u - +
(ux aco,ux+aco) X ( L -ac suy aco)
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(where (ux,qL) is the mean velocity and.c, is the most probable deviation
from-the mean) for various values of a. He points out that if a = 2.0

* then. one- is assured of including over 99% of the mclecules of an eguil-

ibrium distribution. Any molecules found outside the rectangle are simply
assigned to the closest cell on the boundary of the rectangle.

3:2 The Algorithm

3.2.1 Storage Requirements

The lsrgest arrays are the target distribution function FT;
the incident distribution function FI each of dimensions I,J,K, & cross-
section array XSECT of dimensions K, (2J - 1), K and a collision rate
erray SIGMA of dimensions I,J,K. Both the cross-section and collision
rate arrays are used to save time by storing functions which would
otherwise have to be recomputed a large number of times. Haviland used
I=10,J =24, K=12 in all of his calculations.

3.2.2 Data and Formulas

In the case of flow between parallel plates at different
temparatures with perfect accommodation gt the walls, there are two
non-dimensional parameters - the temperature' ratio of the walls and
the distance between them in mean free paths. This is also the stage at
which any constants which will be used frequently during the program
should be retd in or computed. They include the number rpgy of iterations
necessary to get convergence of the distribution function, the number
npax of cell transits necessary to accumulate the next approximation
to the distributior function, and the array XSECT. In Heviland's
calculations rax * 3 and noox 50,000-100,000,

The formulas for both XSECT and SIGMA are derived from

© ) on
t(x,v_,v, ) =1/2 f av” f avy F(x,v2,v)) r d0gb2
x? X o X Jo °m (10)

which is obtained by using (3), (7), and.(9). The evaluation of

an )
Jr d@gbm
o

at the cell midpoint values (vxj’g.k) and (vxj’YLk) yields
XSECT (k,j -3+J,k”)

an
- 2 - 2 » . 2 2 - . : 2 1/2
1/2Jﬁobm [(vxj vkjﬁ +(Ychose YLk81n0) +(Ylksin® YLRSIne) ]

A couple cof remarks pertain to the preceding formuls. Firstly,
since

(v, Zcos6r~v, cos(0°-0)

Ly _chose)2+(Y£sin®‘-

s 21y-2 2.
YLkSIne) =v %4V,

Vi ik )
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and the integration is over a full -period of the cosine function, the
integral is independent of ©°. Secondly, since the :ells in ‘the vy
direction are.equally spaced, vxj-Vxj Will depend only on j°-j. This
is the justification for writing XSECT.(k,j’-j+J,k”) instead of XSECT
(x,3,3°,k”). The'J has been throwa in for the sole .purpose of keeping
indices-positive ~ a requirement of the FORTRAN launguasge in which this
program was or1g1nally written. It is &lso worthwhile to note that
SIGMA should be computed -after FT which changes with each iterate.

Initlally, the startlng target distribution function is stored
in FT. -For this purpose, it.is a good idea to use the best analytical
azproximation which is known and reasonably simple. Hav11and used the
free molecule. solution for the heat transfer problem and the bimodal
Mott-Smith distribution in the shock problem. If

f(x,vx,vlgose,fLsinO) = f(x,vx,YJ)
is the initial analytic approximation, we begin by setting

xi+Ax/2 va+Avx/2 k+Aw{,_/2
FP(i;j,k) = 2n ax av dv;ylf(x,vx,vL)
ximAx/Q va—Avx/Q va-AvL/2

for the interior cells. For boundary cells, the tail of the distribution
must be included. For example, if j = J above then

j vx+AVx /2
vx—Avx/2

®
f vy J—Av}'{'/2

3.2.3 Normalization

is replaced by

The normelization constant CF is computed from the formule

n Ax = C, I F(i,J.k)
n F i

where n, is the mean number density. DNote that the left side of this
formula is nothing other than the total number of molecules per umit
area (since the system is supposed to extend t¢ « in the y and z
directions). Any moments which one wishes to compute and output can be
dealt with simply once the normalization constant for the distribution
function is knowm.

3.2.4 Trajectory Initialization

The first task which must be performed even before any
trajectories are considered is the computation of the arrsy SIGMA
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sccording to the formula

SIGMA (i,j.k) = (CF/Ax) T FP{i,}",k”) XSECT (k,3"-j+J.,k").
J7.k7

The actual corputation of a trajectory starts with the molecule
at either the left boundary or right boundary. having velocity (anYL)
chosen according to the boundary conditions and is repeated every time
the molecule crosses a boundary. For many kinds of boundary condition
the vy ,vy sre chosen from an appropriate probability distribution. The
matter of boundary conditions is a study in itself, and the present
discussion is restricted to equilibrium flow normal to a plane and to
emission from a perfectly accommodating well.

Let
Q(u?c;vk,YL) = ngvx exp( - ((vx-u)z + vf )/cz)

where C¢ is chosen so that j§ dvy dvy= 1, and ¢ is the most probable
speed after the mean is subtracted out. In the case of a flow in the

X direction of speed u, the probability that a molecule which crosses a
fixed plene normal to the flow has velocity in the range vy,vy+dvy;

vy ,Vytdyy is given by ¢(u,c; vx,vL) dvyxdvy . In the case when the molecule
is emitted from & perfectly accommodating wall the probebility is
®(0,c3vx,v; ) vy dv,. Efficient procedures for choosing vx,v at random
froa a distribution with density function ¢ have already been described

(2.9.6).

3.2.5 Cell Coordinates

Once the velocity components of the test molecule are chosen,
its cell indices i,j.k, are computed for future reference, but the actual
coordinates are not changed to the cell midpoint values., The molecule
now has two choices: to cross a cell division, (crossing the calculation
field boundary is a subcase of this) or to undergo a collision within its
cell. 1In order to decide which occurs, the program computes t,, the time
to next collision and ty the time to cross a cell division. The expression
for tq follows from a simple geometrical exercise.

As & basis for discussing the computation of tc refer to (10).
The array SIGMA has already been computed and the indices 1,j,k are
computed in this section. Choose 1, from the distribution whose density
is

STGMA (4, k) o~ SIGMA (i,3.k)
using Method I.

If 1¢ > 19, 2.6 is applied to move the molecule into the next
cell. Otherwise, 2.7 is used to compute a collision,

3.2.6 Translation

The x coordinate of the molecule is changed to the appropriate
cell division value and 1g is added to FI (i,3,k). If the molecule
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happened toend up at the edge of the x interval 2.5 is applied to start
a .new trajectory. Otherwise, the colllslon/tran51t caleulation is ‘repeated
in the new-cell.

3.2.7 Collision

To start with, 1, is added to FI(i,j,k). Then the cell
(indices §~ R4 )} where the colllslon partner will -originate is chosen in
accordance w1th the unnormelized probabllity function

FP(i,j",k”) XSECT (k,j -j+J,k*).

Although Haviland used Methed I to meke his choice of j”“,k” it seems
that in this case Method II would be faster, even though it would entail
finding the meximum values of FI and XSECT in 2.4 in order to determine
a suitable range for the second random number.

Once the choice of j°k” is made, the collision partner is
assumed to have velocity components (v~ ,vL) equal to the cell midpoint
velocity coordinates. In o;der to obtain cartesian components, choose
©° from the uniform distribution on (0,2m) and let

v& = v cos@”, v; = vy sin0” .

The most efficient way to compute the post collision velocity
V of the incident molecule depends to a large extent on the intermolecular
interaction. In the case of hard spheres, where it is known that the
post-collision relative velocity (1.1.3) has direction uniformly dist-
ributed on the surface of the unit sphere, it is fastest to choose a
unit vector ¥ according to 2.9.5 whereupon '

T =7 v

and (see 1.1.1)
= 1/2(v + v*- Vr)
In general, when the distribution of w is not explicitely known,

the general theory of Chapter 1 nust be used to compube collisions.

3.2.8 Bxit Criteriea

The collision-transit computation (2.5, 2.6, 2.7) is repeated
until the total number of collisions plus transits reach a preassigned
number sufficiently large for the required stenderd deviation in the
results (see 3¢3). The attainment of this number signals the end of the
iteration and the beginning of the next one or the completion of the
calculation,

In proceeding to the next iterstion FT is stored in FI. The
need for an actual storing operation can be eliminated by a suitable
arrangement of the progrem and it is éff to refer to Heviland's original
flow disgrams to see how this is done.

k2




This completes the description of the algorithm.

3.3 Variances

3.3,1 Variance.of FI (i,3.k)

Haviland's method lends itself easily to a theoretical estimate
of the varisnce of the answers it produces. In order to obtain this
estimate, Haviland did not analyse his algorithm directly but instead
assumed a model which is supported by the conclusions it produces when
the distribution function is Maxwellian. The model is along the following
lines: Suppose that each FI,(i,J,k) is the sum of N independent random
variables X, each teking the value T with probability Fj sk and 0 with
probability 1 = Fjjx where

T F =1,
13k ijk
Then
E(Xa) = TFijk
and 2 2 2
Var (;a) =B (xa) - (E(xa)d =T Fijk (1 - Fijk)
It follows that
E(F(i,].k)) = E(ZXa) = NTFiJk
and o
= Nt2 -
Var (2Xa) Nt Fijk (1' Fijk).
(see 2.2.7)
In practice
F = FI(i,j.k)/ £ FI(i,),.k)

1k i3k

is used es an estimate of Fijkx. For reasons of simplicity however,
suppose T is known end one can therefore use

=1
Fin = FI(i,3 k)
Then
B(Fyyi) = Pygx
as required and
~ _ .]; -
Var (Fijk) =5 Fijk (1 Fijk)

3.3.2 Veriance of the Moments

If Y(x,vg,va)(or ¥(vy,v,) is a given function, then the moment
of ¢y with respect to the distribution F(x,vy,va) is defined to be
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ft,-')(x,v:';,vl_) F(X;"-X’V.L) ax _dvx v,
(orilﬁ(vk,qL) F(x,vk,vg) dv, avy respectively)
Censider only the first -case which, in its discrete version,

will turn out iv contain the second. The discrete approximation foxr the
rozent of Y is given by

anG is again & rendom veriable. Then

E(Y) = = P, .. F.
3 5 Tag ag
and
Ty L 2 -
Ver (9) =F T iy Fyg (F5)
15511{

This is not the same formula for the variance of as derived
by Haviland, beceuse the initial model was slightly different. It has
the adventege of predicting a larger variance than Haviland's formula;
this seems to be desirable in view of the fact that Haviland's theoretiecal
variances turned out to be smaller then his experimentel (computed) ones.

3.4 Conclusion

Haviland's method was the first attempt to solve the Boltzman
equation by a Monte Carlo technique and consequently has played an
importent role in the .development of the subject. Its storage and
computing time requirements pretty well limit its epplicability to the
two tyves of problem originally treated by Haviland. It does have the
advantage, however, of being amengble +to s close mathematical anglysis
(which at the time of writing has not been fully carried out) yielding
a proof that statistically computed quantities have the required mean,
and estimates of the wvariances of these quentities. It is fairly
reliable as such methods go, and so far the only unexplasined predictions
have been regular density fluctuations in the high temperature high
density regions of a flowfield.
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x? > "o

£(x,7)
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FT, FI
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N
n

m
P(:’co ,i"o,t)
SIGMA
SIGMA(i,J,k)
T
vd(t), vol(Q)
v

o
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Var

A

w
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%, MONT: -CAREO SIMULATION METHOD

4.1 General Description

The normelizebility (1.3.1) of the Boltiman equation suggests
that an actuval flow involving in the viecinity of 1029 molecules could
be gtudied by means of a model using a small number of molecules, each
of propertionally larger cross section. There are a number of diffic-
ulties which arise from such a traje-off. The higher probability of
multiple collisions must be dealt with in the model and the statistical
fluctustions grising from the small sample size necessitate averaging
& large number of observations to obtain a useful approximation to-the
distribution function.

Nevertheless, G.A. Bird and others have had considerable
success using a model with as few as 1000 molecules in conjunction
with a Monte Carlo procedure for obtaining post collision velocities
consistent with the cross-section function.

Bird's method is an algorithm in which each iteration
operates on a sample of N (of the order of a thousand) molecules
from a distribution with distribution function

£(x,v,t)
to generate a sample from a distribution with density function
£(x,vyt+bt)

‘where f setisfies the Boltzman equation and suitable boundary conditions.
Although the foregoing statement has never been precisely proved, the
method has found extensive application in the study of problems in

the transition regime wher. the mean free path is of the same order of
magnitude as the flow properties under study. In almost all cases, the
results are quite reasonable. The method is applicable in both time
dependent and time independent problems. In the case of time dependent
problems it is necessary to repeat the calculation using different
random number sequences a sufficient number of times to reduce the
standard deviation of any sampled quantities to an acceptable level.

In the case of time independent problems the usual procedure is to
start with an arbitrary distribution function f(x,v,0) and to run the
iteration without sampling until f has converged sufficiently to its
steady state value f(x,v,»). Then sampling is done at regular inter-
vals until & sufficient sample size is reached.

4.2 The Algorithm

4,2.1 Storage Layout and Initialization

Each molecule is represented in computer memory by storing
its velocity and position. coordinates. This requires 3 + 3 =6
locations but in many cases geometrical, symmetry allows a reduction
in the number of position coordinates which must be stored. Many
physically interesting problems (for example, the flow around spher-
ically of cylindrically symmetrical obstacles) require only two
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position coordinates; and some studies on the relaxation of the .distribution
require no position coordinates. Space is assigned in the fast access
memory of the computer to accommcdate the coordinates of up to Nmax simulator
molecules.

There remains the problem of referencing the molecules in such
a way as to make those in en arbitrary region of position space easily
accessible. This is gccomplished by dividing position space into cells.
Some notation will be helpful later. Let the flow region under study be
denoted by L and subdivided into a finite number K of subregions
which will be called cells. The cells must be small enough so that the
velocity distribution function is approximately constant on each one:
This judgement must be made before the solution to the problem is known,
but experience has shown that intuition is an adequate guide in setting
up the cell size. Factors affecting the choice of cell size are considered
in Section 3.3.

Once the cell boundaries have been decided the programming
problem of easily referencing the subset of molecules in each cell can
be tackled. There are several well known ways of doing this (refer to
any work on list processing) of which one possibility is to set up K
auxilisry tables .in such a way that the k-th table contains the add-
resses or sequence numbers of the molecules in the k-th.cell. The method
described presently combines access speed with storage economy.

Suppose cell k contains nyp molecules, 1 < k < K. Then the
molecules from cell 1 are stored in locations 1 to nj of the molecule
list; from cell 2 in locations ny + 1 to ny ete. A vector MAP with K
entries containing the numbers nj, ny + ng,..., ny + 0y + ... + ng
i3 also stored. Whenever an addition, deletion or move occurs, only
the last molecule in each cell section is moved and MAP is updated to
describe tbe ney configuration.

Preliminary to starting the iteration, a number Ny < Nygx.
of molecules is chosen from an appropriate starting distribution and
stored in.the molecule table. of the programme. Any additional information
necessary to reference the molecules, a table of cell volumes, cross-
section constants, boundary condition paremeters, etc. must also be
assembled at this stage. The appropriate starting distribution depends
on whether the algorithm will be applied to a steady or unsteady flow
problzis and is discussed in Section 3.1.

b2 Steps ‘Comprising One Iteration

A. Collision Innrementvto the Distribution Function

The following procedure is repeated to each cell k, 1 <k <K,
A peir of molecules is chosen at random from those in cell k in such a
way that the probability of choosing a given pair is proportional to the
relative velocity. To avoid computing 1/2nk (nk-1) relative velocities,
it is convenient to estimate the largest relative velocity Spgx which
can cceur with any frequency and to mehe the choice as follows: Choose
two indepgadent integers from the uniform distribution on
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k-1 k
(1+2n,ZIn),
1 1 1 1

rejecting the pair and repeating the choice if the two integers turn

out to be equal, and compute the relative speed lv l = g of the
aecepted pair. Choose & randnom number r from the uniform distribution
on (o,smax), accept the pair for collision if r < g and otherwise
reject, repeating the procedure from the choice of two random integers.
As 'soon as a pair is accepted for collision the collision aprameters are.
chosen at random and the velocity vectors of the pair in question are
replaced with post collision velocity vectors computed on the basis of
the collision parameters. Details of this calculation are given in

Ch. 1.1 (see also Ch. 2.9.5).

After each collision a time counter t is advanced according
to the formula :
2 volk

A nkzg

where A is the cross-section per simulator molecnle, and vol. is the
volume of -cell k., Collisions are computed until the total time advance
exceeds s preset value Aty. Both the time advance formule and the
velue of Aty raise a number of delicate questions and are discussed in
sections 3.5 and 3.3 respectively. Once the collision calculation has
been completed, the programme proceeds to B.

At

B. Convection Incrgment to the Distribution Function

Each molecule ig moved to a new location corresponding to
the time intervel Atp,. This means, of course, that its position
coordinate x is replaced with x + vAty in case of cartesian coordinates.
1t may heppen that this displacement of the molecule takes it outside
the region Q, across a cell boundary, or across the boundary of some
obstacle in the flow. 1In each of these cases an appropriate strategy
must be applied. For instance, crossing an exterior boundary entails
deletion of the molecule from the list; crossing a cell boundary
necessitetes appropriate changes in the bookkeeping tables; and coll-
ision with an obstacle entails replacement with a molecule chosen from
a distribution appropriate to the boundary condition (see Section 3.6).
For example, the molecule may be reflected, emitted diffusely, or it
may choose one of these fates with probability a. When the whole
molecule list has been dealt with, the programme proceeds to C.

C. Influx of Molecules

Facilities must be provided in the programme for introducing
molecules into the calculation which enter the region because of the
flow, These are usually introduced with their position coordinates
consigstent with entry into the region at some random time in the
interval (t, t + Aty), and velocity coordinates appropriate to the
incoming distribution. The boundary point of entry is chosen at random
when no better criterion is available and the number of molecules
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introduced in this way is derived from the theoretical input flux and
the elapsed time At (details in Section 3.6).

D. Data Collection

The description to this point constitutes one iteration.
References to data collection have been omitted purposely in order to
make the description of the main steps as conecise as possible,
Basieally, data collection falls into two categories; estimation of

-various transfer rates across specifies bounderies in the flow, and

estimation of moments-of the distribution function at fixed time.
Sampling for the first category is most easily carried out as part of
step B, and for the second category at this point in the program. The
latter is.not normally done after every iteration and the actuel
strategy is-dependent upon whether.a steady or unsteady flow is being
simulated as described in Section 3.1.

E. Exit Criterion

When the programme has reached this point, two slternatives
are possible: commence another iteration at A or prepare and output
final data. The decision can be made either on the basis of the totsal
number of iterations or the accumulsted time advance. The number of
iterations necessary to accumulate the required data depends on the
acceptable standard deviation of the answer (see Section 3.T).

4.3 Analysis
4.3.1 Steady and Time Dependent Problems

The treatment of steady and time dependent problems differs
in the choice of the initial distribution function and in the sampling
strategy. iIn the case of steady problems a good approximation to the
actual distribution function is seldom known. Consequently the initial
distribution function is seldom known. Consequently the initial dist-
ribution for the iteration is usually teken to be a dArifting Maxwellian
of approximately the right velocity, temperature, and-density. This
initial distribution is expected to converge to the final steady state
distribution fairly quickly. An early study done by Bird [.3 ] suggests
that convergence takes three to four collision times., Sampling is
deleyed until convergence has occurred and then carried out at regular
intervals until a sufficient number of observetions has been made.

If the sempling interval is too short then the successive observations
are not independent and consequently little is gained in the way of
reduced standard deviation. On the other hand, if the sampling inter-
val is too long, there is a waste of computer time. The proper choice
of interval depends on many factors (see 4.3.7) but generally speaking,
it has been found that 1/4 to 1 collision time is a satisfactory range.
In the case of time dependent problems, the initial distribution function
is assumed known and can therefore be used as a source distribution for
the initial sample of molecules. Sampling is done at those times when
a snapshot of the flowfield is desired, and the iteration is continued
until the flow has developed sufficiently. In order to reduce the
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standard deviation of the results to an acceptable level it is nec~
essary to repeat the calculation a large number of times using a
different random number sequence each time, and to average corres~
ponding results,

4.,3,2 Cell Size and Atm

From comments in the literature [.6, Fig. 2. ]and from the
author's own experience it seems that a wide range is available for
both the cell diameters and the time advance intervel without signif-
icantly altering the results. There are extremes, however which
should be avoided. Since the method treats.the distribution function
as if it were constant over each cell, the cell must be small enough
to accommodate steep gradients in the flow properties such as occur
in & shock wave. Similarly Aty must be small enough to avoid gross
changes in the distribution functioa caused by either the collision
or the convection increment over the time interval Aty. There is
also a rough lower bound on the cell size and on Atp. This is because
enough collisions must be computed in each cell during Aty to assure
that the computed time increment is fairly close to Atpy. If cell k
contains ng molecules then approximately 1/2 nk collisions will be
computed per collision time. Thus, if Aty = 1/3 collision times and
ng = 30, 5 collisions will be .computed during each time interval.

The applications of this method thus far carried out have used 30

or more molecules per cell, although Bird reports in one of his papers
[ 6 ]that satisfactory results are obtained with as few as six molecules
per cell.

4,3.3 Storage Requirements

The fast access storage capacity of the computer limits
the number of molecules that can be used in the simulation. The
programs designed by the suthor have used 500-T00 Fortran instructions
leaving space for close to 4000 S5-coordinate molecules when run on
the University of Toronto IBM TO9% II computer. A typical program
divides naturally into an initialization, iteration, and output section
of which only one needs to be in fast access storage at one time,
thereby reducing further the storage requirements for program.

A genersl principle is that the larger the number if simulator
molecules, the more reliable the results. In the case of time independent
problems there is also a disadvantage in using a large number of molecules
because computing time per collision time inereases linearly with the
number of molecules and & fixed number of collision times is required
to achieve convergence to the steady distribution. This unproductive
computing time can be minimized in a series of runs where the paremeters
are incremented only & small amount each run by using the final sample
from one run as the initial sample for the next run, thereby reducing
the convergence time.
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4.3.% Computing Time Reguirements

For purposes of estimating the actual running time of
& given progrem, the basic parameters are 1o, the time required .
to compute one collision, 1p, the time required to move one
molecule and -check bounderies, and u.the number of Atp-s.per
collision time, Since approximately 1/2 N collisions must be
computed per collision time (N is the total .number of -molecules

‘and -each collision computatlon accounts for two molecules), it is

easy to see that an approximate formula for the running time of
the algorithm is

time = 1/2 Nte + Ny 1p =1/2 N (1, + 2 u 1)

Since the number of observations of a given variable varies as the
product of the number of molecules in the flowfield and the number
of collision times involved, it ‘follows that the computing time per
observation i constant for a fixed variable.

Unfortunately, the best data available in the literature
gives only the computing time necessary to compute a certain number
of collisions. Consequently it is only possible to determine an
approximate value for the combination Te + 2 # Tq rather then for
the individual parameters The table below yields a rough idea of
the times involved.

Reference lo., Computer Used Computing time/1000 collisions
(3) Silliac, U. Sidney 60 x 1000/30000 =2  min.
(8) IBM T040/32K " 900 x 1000/2 x 106 = .45 min.

(12) cDC 6600 20 x 1000/6 x 10° = .03 min.
Author IBM 360/65 3 x 1000/10000 = .3 min.

4,3,5 The Time Increment Formula

It is essential in a simulator of the type we have been
discussing that collisions occur at the right rate relative to the
motion of the molecules, and that each pair of molecules have the
correct probability of undergoing collision. To be more specific,
consider a cell Qx in position space of volume vol (Qy) and
containing nj molecules. This means that Qy contains 1/2 ny(my-1)
distinet pairs of molecules. Let &;j denote the relative speed of
molecule i and molecule j. If the collision cross~section is A,
the pair must be found in a volume &, AAty for a collision to
occur during time Aty. Since it is aigeady known thet the pair
is found in vol (Qk) the probability that the pair i,J undergoes
collision during time Aty is

g., A At
= i m
iJ vol Qk
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and the probability of a collision is

I P,

i<j i,
where trere are L = 1/2 nk(nk-l) terms -in the sum. Let the probabilities
above be renumbered from 1 to L so that given i,J there exists-an -2 such

that Py = Plj, and let yg = 1-pg. This means that the probability hy of

exactly m collisions is the sum of all products of-thé form

I‘l r2 Ry I‘L,

where rg = pg -or q¢ and there are exactly m pg-s in each term.

On the basis of the foregoing theory, the choice of collision
partners could proceed in one of two ways:

4, Accept pair ¢ for collision with probahlllty Py end repeat
for all possible pairs £ = 1,...,L. Since in practice there are sbout
100 molecules per cell yielding roughly 50,000 pairs of which only a
small fraction collide during time Atp, this procedure would turn out
to be prohibitively time consuming.

B, Decide the number of collisions at the start by choosing
a positive integer m from the distribution h, and then choose m
successive pairs from the distribution

R L
p, = leipz

This -method, too, is unfeasible because it requires the computation of
both py and h, which is out of the question.

The method proposed by Bird is to choose £ at random in the
range (o,L) and r from the uniform distribution on (o,bpg) where ppg is
any number larger than all the pg-s. The integer & is accepted if
r < p; otherwise another choice is made, Once & is chosen, a counter
¢ is advanced by 1/Lp and the collision computation is complete as soon
as ¢ surpasses 1.

It will be shown ;resently that this procedure gives the
correct expected number of collisions, but in general the wrong
distribution. To derive the expectation, let Xy £ = 1,...,L be
random variables defined by

1l when pair £ coliides

0 otherwise.

Then

gives the totael number of collisioans in cell k during time Atm.
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E(s) =% E(X,) = ¢ P,
1 1

which is the actual expectation. In order to find the Bird expectation,
observe that the criterion for ending thé collision computation is a
first passage in a random walk with nonzero mean (see Ref.2,2.10)In
such a process the expectation of the time to first passage is given

by

E(t at time of first -passage)
E(each increment)

3

Since in practice the increments are much smaller then 1, it is safe
to assume that the numerator will be very close to 1. In order to
compute the denominator, note that the Bird procedure ro> choosing

% yields an integer from the distribution (p,). Then

M
1l - L 1
E(increment) = I =——p, 6 = == <
g=1 P "% Lip,  Ip,
from which it follows that on the average

L

Ip

1 L

choices are required to advance the parameter ¢ by one unit. In order
to show that in general the Bird technique does not produce the correct
distribution for the number of collisions it is sufficient to display
a counter example. Consider a hypothetical extreme case in which

Pe =p £ =1,...,L. Then the probability that m collisions occur is

( L) pm qL—m

n b

(L) being the binomial coefficient, whereas the Bird method would
aﬁvance ¢ by 1/Lp for each collision leading to the probability

1 ifm = [Lp] +1
P(m):{
0 otherwise

vhere [Lp] denotes the greatest integer less than or equal to ILp.

4.3.6 Boundary Strategies

There are two commonly occurring boundary situations which
must be handled in a Monte Carlo simulation.

a) An imaginary boundary in e drifting Maxwelliasn flow. That
is, a flow whose distribution function at each point x is given by

.

2(v) = (e A7) (e B, (vimu)) (1)
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where the vector u with couponents u; i = 1,2,3 specifies the velocity-
4 of the flow, ¢ is a constant related to the temperature of the gas,

and ny is the local nuwber density. Any molecules reaching such a

4 boundary from the interior of the region are simply abandoned, At

1 the end of eech time interval Atp, it is necessary to introduce a.
number of molecules representing those that have crossed the boundary
into the region during this time, To be specific, consider.an area
element SA with interior normel I in such a flow. Let (I,J,K) be an

3 orthonormal frame such that J lies in the plane of I and the velocity

; vector u of the flow. Then u can be resolved as follows

: ) = + . z

. u=ul+ud (2)

; The molecules crossing SA into the region have velocity compr ents in
) the I,J,K directions which are independently distributed and have
density functions

gLl o S

(1/e x H?) vy exp(—(vl-ul)z/cz)
(/e 1 M) expl-(vymu))2/e2), (3)

and (/e « 1/2) exp(—(vk-uk)zlcz)

D st

ol s

respectively, modulo normalizing factors., The total flux across 8A
is given by

t ke o]

$ = nxfo (v/e © /3 exp(-(v—ul)z/cz)dv (4)

In practice, n can be determined from the formula

= -1

n = ()7, (5)
where 2_1/2A is the local mean free path, and A, is the cross-section
per simulator molecule. Then

¢6AAtm

gives the total number of simulator molecules entering the region
through §A during time At,. In practice, a time of entry is chosen
from the uniform distribution on (0,Atp), & point of entry is chosen
from the uniform distribution on SA, and velocity components Vs Vys
vi. are chosen from the distribution described in (3) (Sec. 2.9.5).
The molecule is then stored with the position coordinates it would
have at the end of the time interval Atp.

b) Surface interactions. The most common surface interaction
models to date have been specular and diffuse reflection. In the case
of specular reflection, a molecule which collides with a boundary during
tine Aty, has its velocity vector replaced with the reflected vector at
tire of collision and moves with the new velocity for the remainder of
the time interval. The reflected velocity ¥V* is given in terms of the
incident wvelocity v by

vo=y-2(v - I)I
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where I is the normal at point of'imnact In the case of diffuse
reflection, the velocity vector is repla»ed ‘by one chosen from the
distribution (3) (2.9.6) in which u =.0 and. ¢ is characteristic of
the surface temperature.

4.3.7 Standard Deviation and Limitations

The basic theorem relevant to the discussion of the standard
deviation i any Monte Carlo method asserts that the standard deviation
of an average of independent random variables decreases as the inverse
square root of the number of variables. The hypothesis of independence
is essenticl for it is even intuitively clear that in the .simulation of
a sample of 1000 molecules for one colliision time with regular observ-
ations of the distribution function during this time there comes a point
after which nothing more is gained by increasing the frequency of
observations. This is because eventually successive observations will
cease to be independent of one another. This issue only arises of course
in sampling moments of the distribution function at regularly spaced
intervals. It does not arise in the accumulation of information on
boundary croésings for the purposes of estimating fluxes because
successive boundary crossings are automatically independent.

There are as yet no studies in the literature of how the
standard deviation of a typical moment depends on the sampling inter-
val. The only work remotely relevant is an early publication by Bird
(3) on the time teken for the distribution function to relaex to a
Maxwellian form. It was of the order of 3 collision times. This is
longer than the sampling interval used by most authors in the field
where 1/4 to 1 collision times has appeared to be satisfactory for most
moments. The price paid for the wrong sampling interval is the wrong
theoretical estimate for the standard deviations and wasted computer
time. If the interval is too short, time is wasted in taking needless
samples, and if too long, time is wasted in computation between samples.

At present state of development, Bird's Monte Carlo method
cannot cheaply yield a satisfactory approximation to the complete
distribution function of even a simple practical problem. To see this,
consider the flow around a cylinder at Knudsen number 1 and meke the
modest demand thaet the distribution function be accumulated on a grid
having 10 points in each direction, leading to 105 grid points -
altogether. In order to achieve a relative standard deviation of 1/10
at each grld point, roughly 100 observations per cell are required,
which is 107 observations 1n 2ll. On the assumption of a computer
memory capacity of 5 x 103 molecules, 107/5 x 103 = 2 x 103 independent
observations on the flowfield are necessary. On the basis of sampling
interval of one collision time, it is found that the program would have
to run for 2000 collision times. In the author's experience, the
calculation requires about one minute of IBM TO94 II or IBM 360/65
computer time per collision time. Therefore more than 30 hours of
computer time would be needed.

The method is at present adequete for finding certain moments
of the distribution function. In order to obtain a density field with
10% relative standerd deviation at 102 grid points using the hypothetical
program of the last paragraph would require gbout 20 minutes of computer
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time which is well within reason. Of course, a relative standard
deviation of 10% is rather large, leading to numbers in each cell
which are within 20% of their mean value with probability 0.95, or
within 30% with probability 0.997. Results of such coarseness are
usuzlily of iittle interest. In order to improve then by a factor of
TN reanires a tenfold increase in computing effort, producing

& relative standard Geviation of 0.036. Then one is assured numbers
within 7.2% of the mean with probability .0.95 or 9.5% with probability
0.997. Such accuracy is acceptable for many practical applications.

.l Veriesnts and Refinements

4.,4.1 Weighted Cells

In the simulation technigue described thus far it has been
understood that the cross-section per molecule was the same for each
mclecule in the flowfield. Another way of looking at it is that .each
simmalator molecule represented a fixed number of physical molecules.
There are many situations where such a representation is unsatisfactory
because it is desirable to obtain more detuil about the flow in some
subregion c¢f the flowfield, or in the case of spherical and cylindrical
coordinates, to obtain information near the origin or near the axis
where there are few molecules because of the small cell volumes.
Consequently a weighting scheme has been tried by both G. A. Bird
and the author.

in this scheme the collision computation and the time advance
formule remain unchanged, escept that the cross-section per molecule
becomes dependent on the cell. Difficulties arise, however, when a
molecule crosses a cell boundary during the convection phase of the
iteration. To be specific, let the cross-section per molecule in cell
k be A = A/wk k =1,..., K where wgx is g given positive cell weight,
and A is a constant dependent on the desired total number of simulator
molecules and the average cross-section density. If a molecule moves
from one cell to another having twice the wcight, it is reasonable to
expect that & satisfactory strategy would be %0 replace it with two
copies of itself. The dilemma arises when the molecule moves in the
opposite direction. A resolution which has been found satisfactory by
the author makes use of & random integer function defined as follows:

Intr(x) = [x] + i,

where [x] is the greatest integer which is less than or equal to x,
and i is & random variable with the distribution

(0 with probability 1-(x)-[x])
l:
\l with probability x-[x]

Then, when a molecule moves from a cell with weight w, to a cell with
weight wg , 1t is replaced with

intr(wy/vwg)

molecules having the same coordinates.
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A value for the constant A compatible with the molecule
capacity can be.obtained as follcws: Suppose it is given that the
cross~section density Cl/ﬁg'x reciprocal mean free path) at some point
and time in the flow is Aj. A useful first approximation can be based
on the assumption that the .average cross-section density in the whole
flowfield will also be A,. Then cell k will contain

-1
Abv°1k/AMk

simulator molecules, where vol; is the volume of cell k. Then the
total number of molecules in thé flowfield will be

K
N,= % AW volk/A ()
k=1
where N v depends on the memory capacity of the computer. Solving
(6) it ¥§ found that
K
A= (A/Nav) kzlwk vol,

L. 4,2 Mixtures of Gases

The Monte Carlo simulation method has also been extended by
Bird to deal with binary mixtures of gases. Aside from minor complice
ations arising from the labelling of the molecules in compubter memory,
the biggest modification that must be made is in the time advance
procedure in order to ensure that the correct number of each of the
four possible types of collision is computed. Let the molecule types
be numbered 1 and 2, and denote the collision types by (1,1), (1,2),
(2,1), and (2,2). The basic idea is to compute (1,1) collisions until
the time parsmeter has been advanced by 1/4 At , (1,2) collisions for
another 1/4 At etc., using the same time increment formulas as before
with the appro%riate cross-section for each collision type. The
somewhat more refined procedure adopted by Bird entails keeping a
separate time counter for each collision type and using the formula

=1 2 vol

B AaBnant

At
o

to increment the (o,8) counter. At each step in the coilision comput-
ation, & collision corresponding to the counter with the lowest value
is computed and computation ceases when each counter has surpassed
At,. The formulas for computing post collision velocities for molecules
of unequal mass are commonly found in textbooks and present no more of
a problem than do those for like molecules.
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4.6 List.of Symbols

Roman

A

A, A
m’> o

c, giJ

L, 4, m
MAP

Nd’ Nmax.’ n, oY

n
X .

p’ Pbd’ Pr’ pg’ piJ
)
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4.7 Definitions

dx..

E(X)

£(x,v,t)

¥olume differential in 3-dimensional space
(= axjdx,dxj, where x;, Xy, X3 are comporents
of the vector x)

Expectation of -the random variable X.

A function such that-f(x,v,t) dX-d¥- is the
average number .of molecules in a cell of 6-
dimensional space contdining the point .and having
6~dimensional volume "dx rdv.

Inner product of the vectors X and y.
'Belongs to'

b

Interval with endpoints a and B.

o L(L-1) ... (I-m+1)
l.2.” .. m

the greatest integer less than or .equal to x.

Length of the vector v.
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5. MONTE CARLO EVALUATION OF THE COLLISION INTEGRAL

5.1 Introduction

The last method to be discussed in this review has been developed
almost exclusively by Nordsieck, Hicks, and their coworkers at ‘the Univ-
ersity of Illinois, and described reasonably completely in a series .of
reports of the Coordinated Science Laborstory. Its essential features
include Nordsieck's proposal from as early as 1957 (2, p.l) for choosing
a random sample of points in the region over which the collision integral
is to be taken, a conventional finite difference scheme for obtaining a
distribution function satisfying the .Boltzman equation once the collision
integral is known, and a series of refinements designed to overcome approx-
imation and random errors.

The method has so far only been applied to problems described
by the hard sphere model and requiring only one space dimension such as
the plene normal shock wave and certain relaxation problems. For such
problems the method takes about one hour of CDC 1604 time for the iteration
to converge. Each iteration yitelds a statistical epproximation to the,

iterate one would obtain with an exact evaluation of the collision integral,

The approximation has a standard deviation of about 3% at each of 10 x 226
= 2260 histogram bins (10 position cells and 226 velocity bins).

Extension of the method to problems requiring higher space
dimension seems difficult because of computer storage and time require-
ments and also because of the problems involved in devising a successful
finite difference scheme in more than one dimension.

The discussion presented here will also deal exclusively with

problems requiring one space dimension and will treat as an example
Hick's and his coworkers' calculations of the plane normal shock wave.

5.2 Theoretical Preliminaries

5.2.1 Nordsieck's Units

Hicks and his coworkers have made use of special units.derived
basically from the standard procedure for nondimensionalizing the Boltazman
equation. The units are based on conditions in some reference region of
the flow (in the shock wave problem, the far upstream conditions are
convenient).

If b,, m are the molecular diameter and mass respectively, k
is Boltzman's constant, and T,n are the reference temperature and number
density respectively, the Nordsieck units for length, velocity and time
are respectively & = 1/2m by?, ¢ = (2 kT/m)l/2, and %/c, and the
distribution function is given in terms of n/c3.

If the substitutions

V=X, V. SCV_, vx’=cvx’, v =cvy “, t=(2/c)t, £=(n/c3)f,

£°=(n/e3)F*, F=(n/c3)F, and F’=(n/c3)F”
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are made in BoLtzman's -equation; ﬁheniaftéfsdﬁbppih@ftheﬁ7as3:iﬁ(becomes
(See"011X:112.5) et manie TN
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In their calculations, Nordsieck, Hicks, et” al make use of a further
velocity scale change in order to allow the use of velocity bins of a
size convenient for computation. Since this change is not necessary for
explaining the essential featurés of the method, it will be omitted here.

2T 2 d; -“_
wrens [ e [ b e
(1)

5.2.2 The Discrete Analogue

In the computational algorithm, both velocity and position
spece are quantized. TFurthermore, in the case of velocity space, some
means is needed to represent infinite two dimensional space using only
a finite number of cells. This last problem is handled in the Nordsieck
-Hicks method by restricting attention to a semi-circular region in (v_,
v, ) space which is still large enough to include 99% of the molecules
under conditions expected in the flow,

With regerd to quantization, Nordsieck and Hicks have reported
good results with a non-uniform net of about 10 points in the x-direction
and an arrey of 226 square-bins in (v,, v, )-space covering the semicircular
region with 2 bins along the diameter. The net in the x-direction is,
non-uniform because if varying density gradients. In fact, in their
later work on the shock problem, Hicks and Smith found that x was not &
good variable to work with because of the problems in making the x-cells
fine enough to take care of the large flow gradients in the shock itself.
After some experimentation with various monotonic transforms of x, it
was found that the best variable to use was the density n itself.

Since it is beyond the scope of the present work to go into the
details of a particular solution it will henceforth be assumed for seke
of simplicity that there are jy position cells with partition points xj
3=l, ... , Jp, and s square velocity bins with midpoints (vxs, v,g),
8=l, «vs , Sp. The values of the distribution function will be corres-
pondingly indexed as £(j,s). Then, if

S(s,s”,n) and S°(s,s”,n)

denote the cells containing the post-collision velocities arising out
of a collision between molecules having velocities vs and vg” with
collision vector n, the discrete approximetions to F and F” are

£(3,S) and £(3,5")
respectively.

The discrete approximation to (1) suggested by Nordsieck for
the time independent problem where

of

--.—:0

at
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is then

vksf(i+l,i;-f(373)
bt

= 1/2 [(4-Bf) p +(a-Bf) 1 (2)

J+lss

where (a'bf)j,s is an gpproximation to. the collision integral given by

s

By A A L qu A@’
- Ls” . xs7 As
s’=1 a=1

m o1 (= - =
z T = |nr-(vs-vs,)lx

(a-bf)
J r=1 "m

S q

X [£(3,8)£(3,8°)-£(3,8)£(3,57)]

where ﬁr r=l, ..o 4 r is an equidistant array of points on the unit
sphere and

z Ap’ =27,
es1 ¢

5.2.3 The Monte Carlo Estimate

The evaluation of the discrete approximation to the collision

integral in (6) (a sum repeated Jpmsp times) is still beyond the capabilities

of the present-day computer. To date, the only resolution of the diffic-
ulty is the Monte Carlo method proposed by Nordsieck. Nordsieck's method
is based on conventional Monte Carlo evaluation of the sum approximating
the collision integral and not:of the integral itself., The essence of the
procedure is as follows: In order to eveluate the sum at fixed (3,s), a

" rendom sample .of N values of the quadruple

(VX,’ V_L‘a ?’s ﬁ)

is chosen, ‘where (vx’, v,”) is uniformly distributed over the cell centres
of velocity space, @~ is uniformly distributed over an equally spaced set
of points in (0, 2m), and n is uniformly distributed over an equally
spaced set of points on the surface of the unit sphere. The Monte tarlo
approximation to (a-bf)J’s,is then given by

1

T sample 11;; v_L;IFl'(\_rs '-\75) [[£(3,8)£(3,8)8(3,87)-£(3,8)E(3,87)]
(3)

The method as it is presently used differs from the above in
& way which takes advantage of certain symmetry,’exchange and reflection
properties of the collision process in order to expand the effective size
of the sample at a considerable saving in work. In order to make this
possible it is necessary to evaluate v, times the collision integral

0 [ 21T =
Lo dv;{fo v_LvJ_’de‘f 8 ue (7 9| (Fre-pe?) (k)

(o]
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instead of the collision integral itself.

The details are as follows: two three-dimeansional precollision

vectors v, v~ are chosen instead of only one. Each choice entails two
steps.

A. (vx,vy) is chosen from among the cell centres in velocity space.
B, - @ is chosen from an equally spaced set of points in (0,27).

The unit vector n is then chosen at ‘random from.an equally spsced set
of points-cn the surface of the unit sphere, and the post-collision

velocities V, V- are computed. It is convenient to call a sample of
3-vector S-tuples

{(6, i, 5, 7, \7")}

admissible(AS)if the individual vectors ‘have the properties just described.
Then the .expression

26N s B B G e (5)
3 ® X8

vwhere s, s°, S, 8° are cell numbers of v, v°, V, V° respectively is an
approximation to, (k).

The advantages of this approach become sppaerent when it is

observed that if
{(-Tr, v, n, V, \7")}

is admissible then so is

{(\7’, v, n, V°, \7} (6)
Furthermore, if the velocity space is symmetricel with respect to
reflection about vx=0 and the subscript R denotes this reflection, then

(G 70 51 T 77) M

is also admissible.

Finally, if v, v°, n > V, V“.denotes a collision, then
vV, V/y =n >+ v, v~ also denotes a collision called the inverse collision.
In addition, since the Jacobian of the transformation

(vy v7) » (V, v°)

has -absolute value 1 for each n, it follows that if each of v, v* are
uniformly distributed over some region of velocity space, V, V° will be
uniformly distributed over the image region. The image region-in Nordsieck's
case is slightly different from the original region so that collisions
yielding V, V” outside if the original region must be discarded, The
discarded fraction is quite small (less than 0.16 [9]) and occurs on the
fringe of the finite velocity space where the distribution function f is
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also very small., It is expected that the error arising from this
discrepancy is insignificant so that

(_ _ o =z .
i(v, V’, -n, v, v’)} (8)
- . )
can also be considered admissible.

In view of the preceding discussion, it is clear that starting
any admissible sample, seven new -admissible samples can be constructed
by utilizing (6), (7), and (8), and the composite sample will be eight
times as large as the original one. It is equally clear, however, that
the composite sample will not consist of statistically independent
cheices, although it will be a fair sample.for purposes of evaluating
the collision integral. This lack of independence does not receive
comment in the literature on Nordsieck's method, but it seems likely
that if anything it is beneficial in reducing the variasnce of the
estimate for the collision integral. The actual sirategy for incorp-
orating the composite sample into the collision integral estimate is
described as part of the algorithm.

5.2.4 'The Corrections

Hicks, Yen, and Reilly have published a report dealing exclusively

with various technigues of error reduction and giving the formulas which
they have found through experience to be most effective, In most cases,
theoretical support for the correction procedures is lacking.

Errors enter into the collision integral .estimate from two
sources: the replacement of the collision integral by a discrete aspprox-
imation and from the statistical fluctuations inherent in the Monte Carlo
method. It was found very early that if nothing was done to normaslize f
after each iteration, a systematic drift in the values of f would lead to
an eventual violation of the laws of conservation of mass, momentum, and
energy. This difficulty is presently handled by the least squares (LS)
correction.

In the (LS) correction, corrected values ps s=l, ..., Sp, of
the collision integral ere chosen in such a way as to minimize the sum of
squares

S

m
2 [, - p 12/

subject to constraints erising from the conservation laws. In the shock
problem, mass momentum, and energy fluxes are conserved leading respect~
ively to the constraint equations

b v Vv = const
PeVigVxs

s

T pv, v 2 = const

s sdg xs

T 24 2)=
. psYstks(vxs Vis )= const

69




AT I AT T T AR TR RN

AT——————

e T T I T
A ey

The correction

A = P - (A—Bf)s, s = l,.-.., S (9)

] m

is split evenly between As and (Bf)e except in the case of velocity bins
where one of the corrected values would be negative, when it is split
in such a way as-to leave both terms positive.

An attempt is made to control the error arising from statistical
fluctuations by the Maxwell-Boltzman (MB) correction. In this correction,
the values of the collision integral are calculated in such a way that the
collision integral would be zero for a gas in equilibrium which has the
same values of density, temperature, and velocity as exist -at the given
point in the .non-equilibrium gas. In carrying out this correction, the
required moments of f must first be computed in order to obtain for each
position station j the local density nj, the mean speed uj and.a measure
of the deviation from the mean cs. Let fMB.denote the Maxweli-Boltzman
distribution function based on tﬂese parameters, i.e.

“ -1/2 -3
fMB(vx’vl) = 2n,m ¢y

J
The correction corresponding to a collision (v, v*, n, V, V*) is given
by

x{Lexp-[vx-uj)2 + vLZ]/cg

Mv,¥in) = 1/2 v, v, Vo (30-9) [ {55 (V)10 (V)-£(¥)2(9)] (10)

Then each time during the statistical computation of the collision
integral that (v, A)(v) and (v, Bf)(v) are incremented .as a consequence of
such a collision, each is immediately corrected according to the formulas

(v,8) () = (v,A)(F) - (¥, 7°,W)

(11)

(v, B£) (V) = (vyBE)(¥) + A(v,¥",%)

5.2.5 The Finite Difference Scheme

Nordsieck's proposal for a stabple finite difference scheme
(one in which old errors decrease from step to step) makes essential
use of the fact that the loss term Bf in the collision integral is
proportionsl to f and that Boltzman's equation in the one dimensionsal
time independent case is (see 1.3.I). .

of
X

(A-Bf) (12)

<li—'

X

The elementary theory of first order linear ordinary differential
equations says that a perturbation of the initial value for (12) will
decay as x increases if vy > O.

Consequently, the direction of integration in any finite
difference scheme for this equation should be to the left if fx < O
and to the right if vy > 0. In the case when x,-x = §x = const,
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a typical recursion formule for integration to the right based upon the
approximation to the derivative given in (6) is given by

s H Ml -
;77 BB

f =
i+B 341
where

Aj = Aj 6x/2vx, Bj = Bj Gx/zvx, j=l,.,.,jh

This simple formula did not prove satisfactory for shock wave
studies because of large gradients in flow properties near the centre
of the shock. Recent work by Hicks et al on this problem makes use of
n as an independent variable instead of x. To write Boltzman's equation
in terms of n requires knowing the function gg{n), In practice it is

dx

obtained at each step of the integration procedure by using a discrete
version of the formuls

dn _ av
= f(A-Bf)MC . (13)
X
where (A~Bf)Mc is the Monte Carlo approximation to the collision integral.

5.3 The Algorithm

5.3.1 Storasge Requirements and Initislization

The najor blocks of storage in this method must be assigned
to storing the current iterate of the distribution function f and the
two parts A, Bf, of the Monte Carlo estimate of the collision integral.
If Jm stations are used along the x-axis and sy bins are used in velocity
space, then jpsm locations are required for each of these functions. The
values of A and Bf must be stored separately (instead of the difference
A-Bf) because they are required in the stable difference scheme used in

integrating the s, ordinary differential equations (one for each velocity
bin).

In addition to these major blocks of storage, genersl workspace
is required as well as space to store certain function values which are
used repeatedly and which would take an excessive amount of time to
recalculate each time they are used.

The main part of initialization entails giving initial values
to the distribution function f, that is specifying the zeroth iterate.
Not unexpectedly, best results are obtained when the initial approxim-
ation is fairly close to the correct steady state distribution. In the

case of Hicks and coworkers shock wave studies, the initial distribution
was taken to be Mott-Smith,

5.3.2 Steps in One Iteration

A, Monte Carlo estimate for the collision integral. As has already
been mentioned in 5.2.3, it is convenient to first estimate vy A and vy Bf
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and then to divide by v, end v,f respectively, in order to obtain.A

and B. Also, the Maxwell-Boltzman correction, if it is used, must be
incorporasted here. Finally, it is worth pointing out that the estimation
procedure sbout to be deseribed must be repeated jy times, once for each
value of the positicn variable.

Before commencing eccumulestion of the integrals, it is necesssry
to zero the storage for vy A and v,Bf, and to compute the factor

W= 2n(jm/Ns) x (area of velocity space),

where Ng is the number .of collisions in the collision sample, which
according to the experience of Hicks must be about 213 or larger. Thus
the sampling procedure about to be described is repeated .Ng times.

In this procedure a velocity pair (vx, vl) is chosen at random
from the discrete two dimensional velocity space, and an angle is
chosen from an eguidistant set of values in (0, 2r). It must be remarked-
that since the actual value is not needed in the computation, it is time-
saving to store only the sets of values sin and cos( and to choose
the appropriate one of these at random when the need arises. 1In any case,
the triple (sz'TL’ 0 ) defines a velocity vector henceforth denoted by
V. The procedure is thus repeated to choose another velocity vector v~
independently or the first. Finally, the collision vector w is chosen
at rendom from an equally spaced set of points on the surface of the unit
sphere.

It is now possible to compute the function
X = vlvl‘|w'vrb(vr = V7av)

ené the post-coilision velocities V, V- (1.1.%1,Eq.1,2). Let s,87,5,8°
denote the cell numbers of the velocities v,v”",V,V~ respectively. Finally,
if v is any vector, let vy denote the reflection of v in the plane x=0, and
let sg,S“R>SR,S'R dencte the reflected subscripts corresponding to s,s”,S,S”
respectively. Ore further piece of rotation is convenient ir writing down
the subseguent formulas. That is:

£ £(J,s7)

£(j,s), £

F

£(3,8), Fro=1£(3,87), -
with fR, fr”, Fr, FR~ defined correspondingly.

Eight contributions to the collision integral are then computed
from the triple (v,v”,n) by adding

WEFF  to vy Ats), v A(s”), v,Bf(S), v B£(87),
wxff to v A(S), v A{S"), v, Bf(s), v, Bfis”),
WXFF” to V*A(SR)’ YLA(SE'), lef(SR), VLBf(SR’),

/).

WXELEo” to v A(Sp), viA(Sp7), viBi(s,), vyBf sy
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At the same time the MB correction can be applied according to the formulas.
(YLA)C<S) = v,A(s) - &(s,s74W); (Yubf)c(s)'= vy bf(s) + A(s,s”,%),
(le)c(s’) = v, A(s”) = A(s”,s,n); ete.

As soon as Ng sets of eight contributions apiece have been
computed, the whole Monte Carlo collision estimate is repeated at the next
position station. Hicks and his coworkers found that the properties of
the general iteration procedure were improved if the statistical fluc~
tuations between position stations were eliminated by making use of the
same collision sample at each position station. This can be simply
achieved by reinitializing the random number generator to the .same
value at the start of each integral computation. When all the collision
integrals have been computed, the program proceeds to B. .

B, The least squares correction. The LS correction is the smallest
modification of the sy values of the collision integral consistent with
conservetion of mass, momentum, and energy. The correction is made in
accordance with ‘the formulas given in 2.1k,

C. The numerical integration phase. Once the corrections have

been made, values of & and b suitable for use in the numerical integration
scheme can be calculated. The numerical integration itself involves a
solution of sp uncoupled .ordinsry differential equations, one for .each
fibre sy = const in the discrete phase space. The relevant recursion
relations are discussed in 2.1%. The jgsm values of 2 obtsined as a
result of the integrations constitute the next iterate.

D. Calculation of moments. Some or 2ll parts of this subprogram
are generally bypassed until the finsl iveration. Normally, only enough
information needs to be output from the intermediate iteration: to give
evidence that the iterations are in fact converging. It would be too
lengthy to give a complete list of what type of informetion about the
distribution function has or should be calculated. Nordsieck, Hicks, et
al have computed moments up to the fourth in the shock problem, graphical
displays of the idstribution function, and estimatec of standard deviation.

E. Exit criterion. The common criterial for convergence of an
iteration schems are applicable here. The simplest, of course, is a
test that subsequent iterations are close enough together. It has been
found that, starting with the Mott~3mith distribution in the shock
problem, around 12 iterations give satisfactory convergence.

5.4 Comments

The only aspect of this method which 1s rigorously understood
from the standpoint of theory is the Monte Carlo estimate of the collision
integrel. Here, standard resulis on evaluating integrals by means of a
random sample of points in the domain of integration apply. The fact
that the eight variants araising from each collision are dependent has
not been treated theoretically but presumebly comes under the heading
of the theory of entithetic variates. In addition, in Nordsieck's method
it is not the collision integral i1tself that is estimated, but only e
discrete approximation. The closeness of this approximation has only been
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investigated in an empirical sort.of way. 1In the numerical integration
phase, ‘the-recently opened study of differential and difference equations
with coeffiecients chosen from some distribution could conceivably throw
1ight on possible inaccuracies in Hordsieck's solution of the 226 dirf-

erence equations whose.coefficients,have been obtained from the collision
integral estimate,

Hicks and his coworkers did initiaily run into difficulties
on the numerical integration phase which they first tried to surmount
by.smeothing..the values of a and bf after they were,computed, and most
reeently by using a-fixed .collision sample for each position station.
The. latter has-suecceeded in stabilizing the calculetion, but does not

help in obtaining & measure of how far .the calculated solution is to the.
.actual one. A great deal of work remains to be done.

~ At the moment, faith in the method must rest on the exhaustive
empirical error studies that have been done for each of the problems

undertaken by the ‘Chicago team, and described in detail in their CSL -
.reperts. The care with which this work has been done evokes confidence
in the actual figures that have been published. Nevertheless, the
sparseness of theory dealing with the method, the intricacy of the
corrections which seem essential to its success, and the time required
to poth develop the progrem for a particular problem and for the comput-
ation itself, limit its usefulness as a genersl purpose tool for solving
kinetic theory problems. Finally, the method has been developeid ror

zero or one space dimension, whereas many of the more interesting
problems require at least two.
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5.6 List of Symbols

Roman
a

A, A
Aj’ (A—Bf)Mc
bm

b

T (Bf)s
B .

J

C

%

~ ~

o, £%, £; £°, F, ¥, F, F*
£(3,8), 1(§,8")

fMB

8, S S(s,s”,n), S(s, s”, n)
T

u
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