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ABSTRACT

The short time response of a cylindrical, elastic segment

to shock-wave engulfment is treated. The exact equations of the

linear theory of elasticity are used instead of the usual integrated

equations of ring theory. Using a relatively new., mathematical

technique, described in the report, we easily identify the focusing

effects due to the curved geometry. This work explains some

anomalous results obtained while subjecting curved aluminum

specimens to loads produced by shock waves.
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I. INTRODUCTION

Recently, a facility was developed to measure the short time effects

? of the response of materials to a step-function pressure pulse [ i]. This

has proven efficacious in the measurement and prediction of the dispersive

properties of materials [ 10]. Loading is applied to the specimen" by means

of a shock tube and provides a clean step function of up to 70 psi with a rise

time of less than f5 nsec. The back-face velocity of the specimen is measured

by a capacitance gauge, and, in the usual case, the one-dimensional theories

used are good for a few reverberations. A flat aluminum specimen is used

for calibration since it is quite dispersion free. A typical oscilloscope trace

of the back-face veloci;1 r is shown in Fig. 1.

In order to e ihij technique to geometries other than flat specimens,

recently, some cylindrical segments were tested. The results for an aluminum

specimen (Fig. 2) show, instead of the usual "staircase" response (Fig. 1),

a jump followed by a rise and then a downward slope. It was easily ascer-

tained that this phenomenon was not due to malfunctions of the test apparatus.

Thus, this effect must come from the curved geometry.

It is the purpose of this work to explain these phenomena. Two major

assumptions were used in order to simplify the problem. The first was to

idealize the ring segment to that of a full ring. This was a valid approxima-

tion since only short times were of inteiest, and the experiment was normally

Although the specimen can vary in size, the usual sample is a flat specimen
1.25 in. X 1.25 in. X0.25 in.

-i -
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Fl ]considered finished when effects from the boundaries of the specimen arrived

at the point where the back--face velocity was measured, in this case, at

8 = 0 (Fig. 3). The second assumption was that the effects of shock diffrac-

tion were negligible, and that the shock wave acted as a pressure pulse,

unchanged in pressure as it engulfed thr specimen. This assumption was

made on the basis of preliminary calculations and the fact that the theory

compared well with experiments.

The results of the present analysis show that the first ramp is due to

successive P wave arrivals as the engulfment ensued and to the focusing

effects of curved media. The downward ramp is shown to be due to S wave

arrivals. Rather than the usual modal approach, we proceed with the tech-

nique used by Friedlandor [41, in which the solution is taken as a wave sum,

each term of which is identified with one sheet of an infinite-sheeted Rieniann

surface over the propagation coordinate (circumferential 0 here).

The problem of the engulfment of a ring has been treated by several

authors of which Bleich and Mindlin 121 and Payton [3] are the most ger:-nane

to the present work. These authors are primarily interested in the structul al

response of a ring rather than the wave propagation through the thickness as

in the present work. The equations of the linear theory of elasticity are the

equations pertinent to the present problem and not the integrated ring

equations used in references [2] and [3].

-3-
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II. ANALYSIS

As was mentioned in the Introduction, a cylindrical specimen is hit by

a shock wave that is, to a close approximation, a step-function pressure

input. The problem considered in the present work is the calculation of the

velocity of the back surface directly behind the specimen at e = 0. The times

of interest are those necessary for the first few reverberations. Accordingly,

a solution valid for small times is sought.

Consider an elastic ring of inner radius r 0 and outer radius r 1 . It

has a flat pressure pulse of strength po impinging on it with velocity V

(Fig. 3). The elastic parameters are X, .t, and p, and the problem is treated

as that of plane strain. Time is denoted by t, and polar coordinates by

and 0. Setting

r =t = a
r ~r

where a and 3 are the dilatational and equivoluminal speeds given by

a2 
- (X + Zpi)/p and Z pi/p, respectively, one gets the equations of elasto-

dynamics

~'t VtP 1L t, (2)

r + rtrlu :" 'r q, 0  r-~ '~' (3)

S+rI' rv= ~• •

-.,



r2

ra 2 2( + 0-2vz

1rr = (=_ - 2)V + (4)

II

I rl(ar + a0")= 2(1I2 - 1)V2 (4)

where V = aZ/ar 2 + r- I/ar + r- 2 a/ao2 , u and v are the radial and circum-

ferential displacements, respectively, and 'rr, I 8o. and (-r8 are the usual stress

components. The initial and boundary conditions are

t=0 y :sr 51 t =O Y = (5)

t r0

-r =-PH(vt- r cos e) C- 0 r = 1 t > 0r 0 rO

T =( 0 r =y t> (6)Cr CrO

where v V /a.

In theory, one can solve this problem by expanding all quantities in a

Fourier series in 0, taking a Laplace transform in time, solving the resulting

ordinary differential equation, and inverting the transform by residue theory.

* Such a process, however, is not well suited to short times or to discontinuous

-olutions [2]. A method that appears to be particularly well suited to pro-

blems of this type is that based on the work of Friedlander [4]. In this method,

At
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solutions are sought of the form

0, + Zn=y,t) (7)

Instead of summing the "modes" of the solution, the form of equation (7)

replaces the ring by a fictitious series of Riemann sheets spiralling over each

other to provide. an analytical continuation of 0 to *c. Longer times mean

that more Riemann sheets must be looked at. However, until the disturbance

reaches 0 = *Tr, only the first sheet, n = 0, needs to be considered. In the

present analysis, this is ideal, since only small times are of interest. Either

' Iof the preceding techniques, when carried to completion, yields the exact solu-

tion. The method of Friedlander is used here to provide the information

i: desired in the easiest manner.

Supplanting the Fourier series by the su-ccessive infinite sets of Riemann

sheets, we extend consideration of E) from [-Tr, T1] to (-cD, co). Accordingly, an

exponential Fourier transform is indicated. If F(0) is a function and F(v) its

transform, then the pair can be defined as

F~v "0 iv0

(v) F(0) e dO

F(O) = o F(v) e-'v dv (8)

For a more complete explanation of this method, see references [3] - [6].

-7-



Performing this operation, and at the same time taking a Laplace transform

in time on equntions (2)-(4), one has

r-= - (vIr l s2S+ "r 6
Srr r

- ~ j -2 2 2
q0, + r 6, , (v r + 5)9s 0

,=rr +r-a" -(vZr- +T1 2s 2 )Ip=0 (9)

r u - ivr-

-Vr i r
rr

r: (1 s + 2t) t -2 + z

rlr

2rO 0 (2zz 2  V 2 -

In equations (9)-(1I), s denotes the VIaplace transform variable and a bar

I denotes a Laplace transform.

The solution to equation (9) is

: AIv(sr) + BKv(sr)

C =I v(qsr) + DKv(ilsr) (12)

-8-
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- where Iv and K v are modified functions of the first and second kinds, and A,

B, C, and D are constants of integration. Equations (10) and (i1) yield

[ rlu= s (sr) + BK'(sr - ivs[ i(sr) + D Kl(qsr)

s+ Il vs sr sr qs Ti

rI(sr) K,(s r)1I
r•= -i-s[A + B ls I"s(qsr) + DK' (sr

Z2 2 2
r -

.r s [AF (sr) + BK (sr)] + Zivij s [CG (-qsr) + DG (2 isr)]

r Zivs [AG (sr) + BG (sr)] - Ts2 CH (Tjsr) + DH (71sr)] (13)
1i

where

-Fp~x)=(2 2+ I I(x) Zv

F2 (x) ( + K I (X) 2 v
- x

K W
GFx = W 2K x)

x

-9-
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HW(x) (2 +.• )Ix 2Iv:C)

Hz(x) = 1 +T2K(x) - 2 ) (14)

The boundary conditions, in general terms, are

r = -f(s, v) 0r = 0 (at r =1)

r =a'r= 0 ( =trY =- (15)

Thus, the boundary conditions yield

FI(S)A + F 2 (s)B + Ziv1 Z[G 1(ris)C + G2 (T1S)D] - 12

ZiV[G 1 (S)A + G 2 (s)B] - n2[Hpiis)C + H2 (rjs)D] = 0

F (ys)A + F 2 (ys)B + 2iv [ [G 1 (i s)C + G (ijys)D]= 0

Ziv[G( (ys)A + G (Ys)B] - il 2 [HI(,iys)C + H2 (,ys)Dj = 0 (16)

Ideally, equation (13) can be solved for A, B, C, and D, and then explicit

expressions can be obtained for the double transform of all pertinent quantities.

These transforms then lead to the formal solution (inversion integrals) in the

usual way. Since the present work deals only with short times and a O'ifferent

method is used, the resulting expressions are not given.

-10-



- In order to apply this present methud, the. input or pressure function

must be expanded in a series of the form given by equation {7). This can be

- done directly [6] by applying the Poisson summation formula

F(n} "(V) e dv7

The applied stress at r 1 is given by the first equation of equation (6). Thus,

! -Po -r/v) cos 0

Following reference [6] and using equations (17) and (16), one gets

0, 2S e- (s/v) (9f(v,'s = s ivl(Ae(V (19)

It will be seen later that the absolute value sign on I iv can be dropped.

If one applies the Laplace transform theory. the behavior of a function

for small values of t is associated with large values of s [73. However, for

the present problem, in order to invert the Fourier transform, an integration

with respect to v must be made over the entire range v1(- c, ). One is thus

led to consider asymptotic expansions of I, and Kv uniformly valid in v

for large values of s. Such asympotic expansions have been investigated by

-11-
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Olver [8, 9] and are J[10:

I eg(V x)
V. -2 • h(v,x)

K' e-g(V ,x)K' (x) a 4•
v 22 h (v, x)

1 h(v, x) eg(V, X)

V x

K' (x)• • h(vx) e-g(v'x)Kx(x (20)

where

h(v,x) = (2 +x 2 )1 /4

hg(v,X) ( 2 +2X1/2 /4

) ' X xv+ -- (21)

These are uniformly valid in v for x >> 1. Since all quantities of interest

always depend upon v, the explicit notation for dependence is dropped for

convenience. Thus, h(v,x) and g(v,x) are denoted by h(x) and g(x) in the

following. Using equations (20) and (21) in the boundary conditions [equation

(16)], for large s, one has

2 f (v, s)r1z

(U sinhE + V cosh j 2h 2 s) Usinh6+V coh 1
h(s) I 1 2 s 2o2h )s

(22)
(cont.)

-12-



Sh(s)(UZ cosh e + V sinh E) + h S (U 2  cosh 6 ÷ V sinh ) = 0

+ V2 s h h (i s) + 2

1 2 ______

h(ys) 1 2 2 2 2 =

2i_22 h(ys)U 1 + 'n = - (22)
2i 4h h(tl/ys)Ys

where, for convenience, one has set

u = oeg(,Ys) - B[e,-g(ys) U og( e •) + D/H e-g(-ys)

V1= A eg(y/s) + BV-fe-g(Y/s) V=C: eg(rlys) -Dy'• e-g(T1Ys)

(23)

* and where

A g = g(s) - g(ys)

6 = g(s) - g(-ys) y 24)

In order to assess magnitudes of terms, it is necessary for one to examine

•. the properties of E and 6 before solving equation (22). It suffices for one to

Sconsider 2 alone.

e(v,s)= (vs)/2- (+y~s 2 )/ 2 
- vlng v+(+s21/2

v+ (v 2 + Y2 s 2 )1 /2

(24.1)

-13-



It can easily be seen that

f(0, s))= s(i - 0)>0

c(v, s) --- vln y > 0 (as v co ) (Z4.2Z)

also

aE + ( (2 + s÷2)1/Z
S Y -v1n ( / >(0 (Z4.3)

av ~ V+(v2 + Y s )

Thus, E(v, s) is always positive and increases moncoconically.

The solution of equation (22) is now routine. As u,t at the back face

and at 0 = 0 i' all that is required, only Ui and U2 will be solved for, since,

'Ii h(ys)u V I)
Ys I ys h(vys) U2 (5)

Solving for U1 and U2 , one gets
=2

f(vIs)rl (hys) r4 sinh 6 4v 2

U2 = A [i2 h(ys)h(ys) - 2 4 h(s)h('qys) sinh

f (v, s)r Zi' 4 sinh 6 -4v hshry)snh (6
u2 -I "'n I h(-ys)h(ijs) 2 z K

•s ys s

-14-



where A is the system determinant given by

8 2 42 h(h2(s •4h2(sh2y)8-1 sinh E sinh g + 71 ---- h h(s)h ('9s)+Yh (ys)h (flys)
h(s)h(y/s)h(r]s)h(rjys) s4 h(s)h(ys)h(fls)h(rqys)-

10~X cosh 6 cosh E + - h(s)h(ys)h(fls)h(qys) sinh E sinh 5

2 4yy s

The procedure now is to substitute equation (27) into equation (26),

integrate on v on an appropriate path to invert the e transform ant' evaluate

for large values of s. As it stands, this is difficult because of the form of

A and h, and because the saddle path in the v plane is not yet defined. In

order to proceed, one recasts A into

6 8A e e .qj
4h(s )h(ys )h(1s )h (-qy s)

[ - 4)h-(ns) + '!

2 2r) 2
+h +Ih'~~(S)h Ons) i~~

41 V h(s)h(ys)h(n1s)h(1•ys) e-e (28)S÷ 4 3 4 ( 8

1 ,-'5-



-4or, retaining only powers up to s , into

I 4h(s)h(sh() s)h(ns) 1 - e-hZ26(ys)h 2

X I+ i+V -- (s,4 s 4l~ (Iy

-• -6)i14s 4Y

42v4 h(s)h(ys)h(rls)h(qys) e 6) (29)

Using equations (26) and (29) in (25), one gets

f(vs)re e 2vC e
u -4h(s)h(ys) 2 2 2

TI ti '! 1 2 S 2
r)j h (-s~h(y

x 1 + s h2(s4h2 hh(2s(61s+ Y4

× IS4inh 6 - )42 h(sqs+ 4)h(iyS)

i sV

'x v I )Ih2() 7s +h2(s -h2(-Z -2

F 16
t),,,- 4 - 42

+ h(s)h(ys)h( Yjs)h(qys) e"n e- + ' •(30)

iys

11Ys4 hY~ ~ Sh(shis e + )
where, for repetition,

Sf(v, s) 2,p 0  -s/v eg( Iv 1, s/V)
S= -- e (31), s h(s/v)

l -16-



In order to invert equation (30) with respect to 0, one takes the inverse

Fourier transform

U T- u v,s) e dv (32)
-CD

.1 This means that integrals of the form

I= f pjh)vk e d+g( [ s/v)-iva dv (33)

must be evaluated for large values of s. p(h) represents the polynominals

in the various h functions. The integrals are evaluated by finding the saddle

points of

-(V, s) + g( vI 1, s/v) - iv0 (34)

However, in the present case, interest is centered only on the point 0 0.

This simplifies matters considerably. Further, the h function cannot be

simplified until the appropriate saddle point paths are determined.

Some general considerations can be inferred from equation (30), before

inversion. The quantity c is associated with dilatational effects as can be

seen by putting E in a dimensional form; similarly, 6 is concerned with

equivoluminar effects. In order to arrive at equation (29), a series of terms

with higher powers of e and e is terminated with the term (e- + e-

-E -6
and e e These terms represent reverberations. Further, in equation

-E -6
(30) the terms e and e represuhnt the time delay necessary for the P and

-17-



S waves to reach the back face. This becomes clearer as the analysis pro-

ceeds. For simplicity, only the first reverberations are considered and

the terms containing e- e -6, etc., are dropped. It is obvious how

to treat them. Since we are only interested in Ai directly behind the pressure

front, only the case of e = 0 will be treated. For other values of e, the saddle

path becomes much more complicated.



III, INVERSION

From the above remarks, one can see that during the first

reverberation

f(v, s)ri h(s)h(Ys) 2 2.2 h2 (Ys)h 2 (Tlys}
us-4  +hys + - j h (s)h (qs) +u1 2 -4 Ys 4 "4 4

< [e 4Z 4 uh(s)h(Ys)h(1 s)h(7jYs) e] e (35e -
Y s

where f(v, s) is given by equation (31).

Thus, integrals of the form

Ifp(h)v Cs Ed(v~''11v (36)

where p(h) is a polynomial function of h, must be evaluated. First consider

c, which, from equation (27. 2), increases monotonically with v. Next con-

sider

This function starts out at v = 0. Since g(v,x) is monotone, decreasing with

v, then g(v, s/v) - s/v is always negative. Thus, the argument of the

l -i9-



exponential in equation (36) is maximum at v 0. A simple expansion shows

it has a saddle point at v = 0. After some algebra, one has, for s >> v,

Z)g-vg [V, + • =S(Iv -s-Y) + (37)

C V +s(I - Y) (38)

The second terms in equations (37) and (38) are positive so that v = 0 is

always a saddle point. Since the saddle point is at v 0. the h(v, s) functions

must be expanded arcennd v = 0 for large values of s. By expanding and

collecting terms, one gets

4r1 (r) 1//2

=X+Z- 0 P0 (1/2
(s)

[ x2 - 142) ]-E+g("/V)-5---
2-s '12

4vz -6+g(s/v)-siv
2 2 e (39)

In equation (39) terms of order less than I/s are dropped. Equation

(39) is now multV.plied by dv/2Tr and integrated from -c to +c. This yields

the velocity at 0 0. The result is

-20-



:p•=-4re iP (Yv) i/

U X +21L S1/2

_1/414Y 2 ~v 2I4]
s +(sIY - 1) + V

Xe s 4

[(I /V - 1) + v]1/2" -sni( "j (40)
3/2

Now, e in nondimensional terms, represents the time delay

necessary for a P wave to travel across the specimen. Similarly, e

represents the time for the S wave to traverse the specimen. With these

times denoted by tp and ts, respectively. Then, equation (40) inverts to

give

-4rip 12(
(X + ) (/Y - 1) t - tp)k Ht - tp (t s)k2 Ht - ts)

(41)

where

k1 4 2Y 2 -+V+7 -v] Y

4 (ilY - I) + v
- 3 2(42)S= Y 11/[I (ilY -1) +v]3-
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It is thus seen that the predicted response, equation (41), has the

same form. z.s that shown in Fig. 2; namely, a step function followed by a

ramp associated with the P wave, and then followed by a downward ramp

associated with the S wave. An interesting feature of the P wave ramp is

Z
that it is possible for it to be negative or downward. If v can be neglected

(v 0 0. 1 in most practical cases), then, for an upward ramp to occur,

2 2/rq2 -1/4 3 -7tY 4/n z+ 1/4 = 9 - 15V (43)

where v in this instance is Poisson's ratio. The physical meaning of this is

not clear. The negative slope for low values of Y could imply that a spreading

out process of P waves is occurring. The possibility also exists that the

approximation is poor in this region. It is more likely that a downward slope

is due to the spreading out process. It is worth recalling that Y S I corre-

sponds to a thin ring, while Y • 0 corresponds to a thick cylinder.

During the next reverberation, additional terms due to the neglected
-E =8an e-2+ e 2 6

powers of e , e ,and e e enter in. Qualitatively speaking, these

result in steeper slopes and additional delays. The actual analysis is

not gone into here, but experimental results bear this out (Fig. 4).
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Fig. 4. Multiple Reverberation Trace
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V.NUMERICAL RESULTS AND COINCLUSIONS

Since this paper is concerned with the results of a particular

experiment only that case was treated in the numerical studies. A para-

metri:.c studv- was not carried out.

The specimen was made of aluminum, with an inner radius of 4. 0 in.

and a thickness of 0. 40 in. It was 2 in. in the axial direction and 2 in. across

in the circular direction. The material properties were taken fLom hand-

books as well as inferred from the oscilloscope traces. The results follow:

6
E= 10.4X10 psi

v = 0.33

[L= 3.90x 106 psi

w = 0. 101 lb/in. 3

c = 2.45 X 105 in./sec
p

c = 1.22 X 105 in. /sec

The maximum rise above the initial discontinuous jump is the quantity

of greatest interest and occurs at t = t - t . It is calculated from equationss p

(41) and (42) to be a 24.42 percent rise. Although numerical values taken

from oscilloscope traces are difficult to obtain accurately, a sample of four

gives values of 20. 7, 20. 5, 21.6, and 22.9 percent. This is an excellent

Preceding page blank -25-
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