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ABSTRACT

The short time response of a cylindrical, elastic segment
to shock-wave engulfment is treated. The exact equations of the
linear theory of elasticiiy are used instead of the usual integrated
equations of ring theory. Using a relatively new mathematical
technique, described in the report, we easily identify the focusing
effects due to the curved geometry. This work explains some
anomalous results obtained while subjecting curved aluminum

specimens to loads produced by shock waves,
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A, B, C, D Integration constants
§
] Z Cp, Cs a, B
B
3 ; E Young's modulus
F‘L’ ? f(s, v) See equation (15).
: ; Fi(x), Gi(x)’ Hi(x) See pages 9 and 10.
3
3 g(v, x) See equation (21).
£ 7
£ h(v, x) w2+ x4
P k,k, See equation (42).
b P, Applied pressure
r, t T, af't\/r1
r T Outer radius, inner radius
£, 6, t Plane polar coordinates, time
tp, tg (r1 - ro)/cp, (r1 - ro)/cs
Ui’ UZ’ Vi’ V2 See equation {23).
u, v Radial displacement, tangential displacement
vV, v Load velocity, V/«
1/2
@ B, 7 (O +vw /a2, /)2, arp
Y
Tl
€, 0 See equation (24),
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I. INTRODUCTION
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. Recently, a facility was developed to measure the short time effects
of the response of materials to a step-function pressure pulse [1]. This

has proven efficacious in the measurement and prediction of the dispersive

T LR el ARG & et

properties of materials [10]. Loading is applied to the specimen® by means
of a shock tube and provides a clean step function of up to 70 psi with a rise
‘ time of less than 15 nsec. The back-face velocily of the specimen is measured
by a capacitance gauge, and, in the usual case, the one-dimensional theories
used are good for a few reverberations. A flat aluiminum specimen is used
for calibration since it is quite dispersion free. A typical oscilloscope trace
. of the back-face veloci‘y ig shown in Fig. 1.
In order to e»i«w-. this technique to geometries other than flat specimens,
recently, some cylindrical segments wzre tested. The results for an aluminum
specimen (Fig. ) show, instead of the usual ""staircase' response (Fig. 1),
a juinp followed by a rise and then a downward slope. It was easily ascer-
tained that this phenomenon was not due to malfunctions of the test apparatus.
Thus, this cffect must come from the curved geometry.
It is the purpose of this work to explain these phenomena. Two major
assumptions were used in order to simplify the problem. The {irst was to

idealize the ring segment to that of a full ring. This was a valid approxima-

. tion since only short times were of intexest, and the experiment was normally

. :':Although the specimen can vary in size, the usual sample is a flat specimen
1.25in. X 1.25 in. X 0.25 in,
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Curved Specimen Trace




E .

-

3G T &;“*’.’Mh v ;?\'“
AN 1

™ T
A St AP
wo—

considered finished when cffects from the boundaries of the specimen arrived °

\.

at the point where the back-face velocity was measured, in this case, at

TR
-~

0 = 0 (Fig. 3). The second assumption was that the effects of shock diffrac-

tion were negligible, und that the shock wave acted as a pressure pulse,

TR IR
$

unchanged in pressure as it engulfed th» specimen. This assumption was

LY

: made on the basis of preliminary calculations and the fact that the theory

oo

23 g

compared well with experiments.

The results of the present analysis show that the {irst ramp is due to

successive P wave arrivals as the engulfment ensued and to the focusing
effects of curved media. The downward ramp is shown to be due to S wave
arrivals. Rather than the usual modal approach, we proceed with the tech-
i nique used by Friedlandcr [4], in which the solution is taken as a wave sum,
each term of which is identificd with one sheet of an infinite-sheeted Riemann
surface over the propagation coordinate (circumfercntial 6 here).

The problem of the engulfment of a ring has been trcated by several
authors of which Bleich and Mindlin [2] and Payton [3] are the most germane
to the present work. These authors are primarily interested in the structuial
response of a ring rather than the wave propagation through the thickness as
in the present work. The equations of the linear theory of elasticity are the
equations pertinent to the present problem and not the integrated ring

equations used in references [2] and [3].




Ring Geometry

Fig. 3
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II. ANALYSIS

As was mentioned in the Introduction, a cylindrical specimen is hit by
a shock wave that is, to a close approximation, a step-function pressure
input. The problem considered in the present work is the calculation of the
velocity of the back surface directly behind the specimen at © = 0. The times
of interest are those necl:essa.ry for the first few reverberations. Accordingly,
a solution valid for small times is sought.

Consider an elastic ring of inner radius o and outer radius r,. It
has a flat pressure pulse of strength p  impinging on it with velocity V
(Fig. 3). The elastic parameters are \, i, and p, and the problem is treated
as that of plane strain. Time is denoted by E, and polar coordinates by T
and 0. Setting

rei t=2E - (1)
1 1

where « and B are the dilatational and equivoluminal speeds given by

ozz = (N + 21)/p and [32 = 1/p, respectively, one gets the eqguations of elasto-

dynamics
2 - e
v ¢ - Sb? tt Y l‘p"' n "!J! tt (2)

-1
1'111=¢,r+1' 4”6 r1v=r 9”:@"’!’: (3)




riar - (nZ - 2)v2¢ + 2(‘é, rr T r- lp, re - T V,e)
i
1'20'
1 l'e_ -1 . -1 "?4;
I -2(1' ¢’re'¢1e)'¢;rr7r 4’11.'*'1‘ ‘r’:ee
2
r (o +04,)
Lr 8 om? - 1vPs )

B

where VZ = 82/29r2 + r_1 df/or + r'za/aez, u and v are the radial and circum-

ferential displacements, respectively, and T Og and oo 2re the usual stress

components. The initial and boundary conditions are

r
$p=0¢.. . =¢=¢, =0 ysrsi t=0 vy=2 (5)
t t ri
¢, = -p H(vt -rcos8) o =0 r=1 t>0
(rr=o-l_e=0 r=vy t>0 (6)

where v = V/a.

In theory, one can solve this problem by expanding all quantities in a
Fourier series in 0, taking a Laplace transform in time, solving the resulting
ordinary differential equation, and inverting the transform by residue theory.
Such a process, however, is not well suited to short times or to discontinuous
solutions [2]. A method that appears to be particularly well suited to pro-

biems of this type is that based on the work of Friedlander [4]. In this method,
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solutions are sought of the form

(-]
8,0(r, ,t) = Z 8%,0%(x, 0 + 2nm, t) )

n=-oo

Instead of summing the "modes"* of the solution, the form of equation (7)
replaces the ring by a fictitious series of Riemann sheets spiralling over each
other to provide an analytical continuation of 6 to +@. Longer times mean

that more Riemann sheets must be looked at. However, until the disturbance
reaches 6 = %w, only the first sheet, n = 0, needs to be considered. In the
present analysis, this is ideal, since only small times are of interest. Either
cf the preceding techniques, when carried to completicn, yields the exact solu-
tion. The method of ¥riedlander is used here to provide the information
desired in the easiest manner.

Supplanting the Fourier series by the succcessive infinite sets ¢f Riemann
sheets, we extend consideration of ¢ from [-7, 7] to (-o, @), Accordingly, an
exponential Fourier transform is indicated.* If F(0) is a function and F(v) its
transform, then the pair can be defined as

Fv) wa(e) 9 40

F(6) 3‘;/‘ Fw) e VO gu (8)

-0

“For a more complete explanation of this method, see references [3)] - [6].
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Performing this operation, and at the same time taking a Laplace transform

in time on equctions (2)-(4), one has

S, ot r‘1$, - (uzr-2 3 52)‘" =0
E, + r-lz, - (vzr-2 + nzsz)@ =0 (9)
rr
= = -1=
rlu =¢, -ivr "¢
A 3
r,v ivr "0 L (10)

(0‘ + 0 ) ~
2 I 2m? - 1)s% (11)

In equations (9)-(11). s denotes the Laplace transform variable and a bar

denotes a Laplace transform.

The solution to equation (9) is

¢ = Al (sr) + BK,(sr)

Q

= CI,(nsr) + DK, (nsr) (12)

S
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z
where Iv and Kv are modified functions of the Iirst and second kinds, and A,
3 ! B, C, and D are constants of integration. Equations (10) and (11) yield
3 ; ) N ) . ) I, (nsr) K, (nsr)
ru=s [AIv(sr) + BKv(sr)] - ivys|C P + D re
S
]
: { _ I (sr) K (sr) l-
7 7=ivs|A = +B — - 3s,CI’ (nsr) + DK/ (nsr)
E ' Fgv=12 ST ST L 7v v
:
u rz T . sZ[AF (sr) + BK,(sr)] + ZiVnzsz[CG (nsr) + DG, (nsr)]
: 1 p 1 2 1 2
i
§ =
H r20'_r9_ = Zivsz[AG (sr) + BG,(sr)] - nZSZ[CH (nsr) + DH,(nsr)] (13)
¢ 1 p | 2 1 2
|
. where
.. 2 1’ (x)
v _ (.2 2v v
‘ I‘l(x)-<n + 2)Iv(x)—Z -
: X
2y K/ (x)
_ {2, 2v v
Fz(x) = ('r] + XZ )Kv(x) -2 ”

I,(x) I"} (x)

G =" %
K (x) K/(x)
\4 v
GZ(X) = 2 T x

X




2 I (x)
Hi(x) = (1 +'2—‘%">IV(X) - Z-VT' -
p.<
2 K x) . -
H,(x) = (1 +-‘:’{L2)Kv(x) -2 ‘;{ (14)

The boundary conditions, in general terms, are

5= -fls,v) ‘?re =0 (at r = 1)
-~ ~ ro
5r=6r0=0 (atr:yEr—l-) (15)
Thus, the boundary conditions yield
5 -£(v, s)ri‘
F,(s)A + F,(s)B + 2ivn [Gi(ns)C + Gz(ns)D] = ——
ps -
2iv[G, (s)A + G, (s)B] - n[H, (ns)C + H, (ns)D] = 0
Fi(ys)A + Fz(ys)B + Zian[Gl(nys)C + Gz(nys)D]= 0
Ziv[Gi(ys)A + Gz(ys)B] - nZ[Hi(nys)C + Hz(nys)D] =0 (16)

Ideally, equation (13) can be solved for A, B, C, and D, and then explicit
expressions can be obtained for the double transform of all pertinent quantities. -

These transforms then lead to the formal solution (inversion integrals) in the

usual way. Since the present work deals only with short times and a cifferent

method is used, the resulting expressions are not given. f
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i In order te apply this present method, the input ¢r pressure function
) must be expanded in a series of the form given by equation {7). This can be
¥ .5

done directly [ 6} by applyi

: ) =)
; S~ ey

- o munvy -
y 5 Fin) = Z jF(v)e" i (17)
: mn=-o

"

The applied stress at r = i is given by the first equation of equation (6j. Thus,
|
§ - “Pg ~{x/v) cos O
& .=—e t (18)
|
2

Following reference [6] and using equations (17) and {16), one gets

2wp .
— (W, s) = _ oIlv{(E) e-(S/v)

v

(19)

It will be seen later that the absolute value sign on I vl can be dropped.

If one applies the Laplace transform theory, the behavior of a function
for small values of t is associated with large values of s [7]. However, for
the present problem, in order to invert the Fourier transform, an integration
with respect to v must be made over the entire range vé(-o, o). One is thus
led to consider asymptotic expansions of I, and K, uniformly valid in v

for large values of s. Such asympotic expansions have been investigated by

-11-




Olver [8,9] and are [10]:

s ST

0= VF S

L 6x) z-é_l— %ﬁ 8(V:X)

K;(x) =Y \/'—: %x_)e-g(v,x) (20)

where
h(v,x) = (v2 + x2)1/4
glv,x) ("2 * "2)1/2 - Vln[ﬁ +(1 +2’§')1 /2] (21)
x

These are uniformly valid in v for x > 1. Since all quantities of interest
always depend upon v, the explicit notation for dependence is dropped for
convenience. Thus, h(v,x) and g(v,x) are denoted by h(x) and g(x) in the
following. Using equations (20) and (21) in the boundary conditions [ equation

{16)], for large s, one has

2
2 2iv -f(v, s)r1
A (U, sinh ¢ + V, cosh ¢ - —— h(ns) (U, sinh 6 + V, cosh §) =
h(s) 1 i 22 2 2
n s s
(22)
(cont.)

-12-
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2

2y 2L h(s)(U, cosh e +V, sinh o +

s2 hns

nZ 2iv
T(ys) 1 ° 222 h{nys)V,
2
_2iv_ 7
s — g nyslU +gos U
where, for convenience, one has set
U1 = A eg(ys) - B\/-lzTTe-g(ys) UZ =
Vv 2w 2T
Voo A elye) g Fevs)

1 \/Zr- 2 2 o

and where

m
H

g(s) - glys)

(=]
I

g(ns) - glnys)

In order to assess magnitudes of terms, il is ne
the properties of ¢ and 6 before solving equation

consider ¢ alone.

2,1/2 2 2 2.1/2

)(U cosh 6 +V

> sinhé&) = 0

(22)
LEMys) D\/; o-8nys)
8MYs) _ D\/%T o~8nys)

(23)

(24)

cessary for one to examine

(22). 1t suffices for one to

vt (V2 s5y1/2

e(v,s):(v) ) -(v +Y7sT) -vinyY

-13-

v+ (v2 + Y2 2)1/2

(24.1)




B i e g —— e . - e e -

ot
g ESHOUN §

It can easily be seen that

€(0,8)=s(f -y)>0

€(v,s) --viny >0 (as v - @) {24.2)
also
2 2.1/2
de¢ _ vi{v +5)

vi (v +Y¥7s)

Thus, €(v,s) is always positive and increases mondcconically.
The solution of equation (22) is now routine. As u, t at the back face

and at © = 0 is all that is required, only U1 and U2 will be solved for, since,

1}

=1

Y14 _ h(ys) v
2 ¥s Uy - ys h(nys) Us (25)

Solving for U1 and UZ’ one gefs

f(v, s)r] ~ [ 4 sinh 6 42

U, = - - h(s)h(nys) sink e

1 p.SZA h(nys) h(ys)h(ys) ﬂ2Y254
2
f(v, s)r . 2 1
1 2v 4 sinh 6 4v wal ai

U2 = 5 > h(ys) [n h(ys)h(ns) ~ 2 2.4 h(s)h(nys) sinh eJ (26)

ps"A  y's Ny s

-14-
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where A is the system determinant given by

8 sinh ¢ sinh g . 4 4v® h%(s)h%(ns) + v h%(ys)hi(nys)

-n
b= h(s)h(ys)h(ns)h(nys) ' A~ h(s)h(ys)h(ns)h(nys)
16 4
X cosh & cosh € + —— h(s)h(\ s)h{ r,s)h(qys) sinh € sinh &
y s
8\'2 4
+ —2——9—4 (27Y
Y's

The procedure now is to substitute equation (27) into equation (26),
integrate on v on an appropriate path to invert the 0 transform and evaluate
for large values of s. As it stands, this is difficult because of the form of
A and h, and because the saddle path in the v plane is not yet defined. In

order to proceed, one recasts A into

€ &
e ¢ 7

4h(s)h(ys)h{ns)h(nys)

L 2 2 2
x(-fl . [hz(s)hz(ns) + o lys)h (‘Ws)];

( n454 A
2
+{1 + 4 [nBsimPms) - N ‘l———-ﬂls“‘ )‘| o™ %%
ns v
+-—2ﬂ- h(s)h(ys)h(ns)h(nys) e” (e-é) (28)
ny

-15-
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or, retaining only powers up tos °, into

2

A-1s _ 4h(s)h(ys)h(ns)h(nys) {1 . 4[h2(s)h2(qs) ] hZ(YS)hZ(‘QYS)H
n

ee eE 118 S y4
2 2 2
X (1 + {1 +-———2v4 [hz(s)hz(ns) + B (Ys)h4 (Ws)]z(e'ZE + e'26)
: $
ns Y
sz -¢ -8
+ =57 h(s)h(ys)h(ns)h(nys) e " e (29)
nys '

Using equations (26) and (29) in (25), one gets

~ f(V,S)rl e-6 e-6 ZVZ
§ & -4h(s)h(ys) — V5 (‘ S22 2)
vy s )

2 5 2 2
x‘1 +—41—[h2(s)h2(ns)J + B (Ys)h4 (‘Wi)}
s’ \

, 4
X|sinh § - le_c} h(s)h(YS)h(nS)h(nYS)]

2 2, .2
X(l + {1 +—‘7z;-}-—4-[h2(s)h2(qs) + b lys) +4h (IF'}LS)])(e“Z‘E + e'26)
n s Y

2
+’7r1@7:—4 h(s)h(ys)h(ns)h(nys) e € e 4« - ) (30)
nys

where, for repetition,

) s /v o8IV Is/v)
f(v,s)--—g—-e W (31)
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In order to invert equation (30) with respect to 8, one takes the inverse

Fourier transform

w -
3= f Sw,s)e VO g (32)

This means that integrals of the form
0 -
I= f otk - BtV [ s m-ve g (33)
-

must be evaluated for large values of s. p(h) represents the polynominals

in the various h functions. The integrals are evaluated by finding the saddle

points of

~e(v,s) + g(lv],s/v) - ive (34)

However, in the present case, interest is centered only on the point 0 = 0.
This simplifies matters considerably. Further, the h function cannot be
simplified vuntil the appropriate sarddle point paths are determined.

Some general considerations can be inferred from equation (30), before
inversion. The quantity < is associated with dilatational effects as can be
scen by putting ¢ in a dimensional form; similarly, 6 is concerned with
equivoluminar effects. In order to arrive at equation (29), a seriecs of terms

with higher powers of e and e-6 is terminated with the term (e-z€ + 6—26)

~-€ -6 . . . .
and e e ~. These terms represeni reverberations. Further, in equation

(30) the terms ¢ and e”® represuat the time delay necessary for the P and

17-




S waves to reach the back face. This becomes clearer as the analysis pro-
ceeds. For simplicity, only the first reverberations are considered and

the terms containing e ¢ e-ﬁ, etc., are dropped, It is obvious how

to treat them. Since we are only interested in 0 directly behind the pressure

front, only the case of 8 = 0 will be treated. For other values of 6, the saddle

path becomes much more complicated.




III. INVERSION

From the above remarks, one can see that during the first

reverberation

o~ flv, s)r 2 2 2

T = i h(s)h(Ys) 1+ 4v‘ (hz(s)hz(ns) L h™(Ys)h (an)-l
2 Y¥s 4-4 4
N s’ Y 1

4:v2 -e -6
X |e® - —%— h(s)h(Ys)h(ns)h(n¥s) efje " e (35)
nY s

where f{v, s) is given by equation (31).

Thus, integrals of the form

I =f p(h)vke‘S/"'”g”"" s/ g, (36)

where p(h) is a polynomial function of h, must be evaluated. First consider

¢, which, from equation (27.2), increases monotonically with v. Next con~

sider

This function starts out at v = 0. Since g(v, x) is monotone, decreasing with

v, then g(v, s/v) - s/v is always negative. Thus, the argument of the

-19-




exponential in equation (36) is maximum at v = 0. A simple expansion shows

it hac a saddle point at v = 0. After some algebra, one has, for s> v,

_ 2

, 6-gLv, (%)]-.—%=ns(1~‘f) T_Z‘Ls-[%(%(- )-.—v] (37)
‘ i syl . s _ .v2 1 .

| N T PP 76 s R

w pAb s e st g aa b

The second terms in equations (37) and (38) are positive so that v = 0 is

always a saddle point. Since the saddle point is at v = 0, the h(v, s) functions

i e

must be expanded arcind v = 0 for large values of s. By expanding and

collecting terms, one gets

E ‘2; = 4r1 (2—)1/2 B)I_/Z
3 A+ 2 P, \&m (S)I/Z

et s s

—  —— ———t— —_—
- - -

-t
X
Py
-=N
o
JN““
JN
< ™
™~
Ny P
\-‘——/
N
o
“|
N
]
“

2)]e~e+g(s/v) -s/v )

{39)

In cequation (39) terms of order less than 1/s2 are dropped. Equation

(39) is now multiplied by dv/27% and integrated from -o to +o. This yields

> the velocity at 8 = 0. The result is

_20-




' -4r

- s LY W 0 2%
MEZe s qgy -1y 5 2
) 2
<1+ 1 4/‘]2 - 2/Y21‘i2 + 1/4 +1/4y - \r2/4
s (/Y- = v
-s(1-y) _1 4
X Ts 2.
ny
[l -+ ,]1/2
X {1/Y -1)+ v e_s.q(l_y) (40)
3/2
[A/a(1/y - 1) +v)
Now, e'(i—\’)s, in nondimensional terms, represents the time delay

. " (i-Y)s
necessary for 2 P wave to travel across the specimen. Similarly, e (i-v)

represents the time for the S wave to traverse the specimen. With these

times denoted by tp and tes respectively. Then, equation (40) inverts to

- give
-4r.p 1/2
< 1 (yv) i
8 WEzg UW/V-D {[‘ -t tp)l\l] Hle -t) - (& -tk Hit - ts>}
(41)
where
2 i i i 2 1 -1
kL, =l512~=5)+5x 1+ -v I +
e R -2 [ RO I
. 4 (1/Y-1)+v
ky = (42)
2 nzv [1/‘1(1/Y-1)+v]3/2
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It is thus seen that the predicted response, equation (41), has the
same form zs that shown in Fig, 2; namely, a step function iollowed by a
ramp associated with the P wave, and then followed by 2 downward ramp
associated with the S wave. An interesting feature cf the P wave ramp is
that it is possible for it to be negative or downward. If vz can be neglected

(v 0. 1 in most practical cases), then, for zn upward ramp to occur,

2 N
2 2/ - 1/4 3-T7v
Y >— =9 15v (43)
am® +1/a

where v in this instance is Poisson's ratio. The physical meaning of this is
not clear. The negative slope for low values of Y could imply that a spreading
out process of P waves is occurring. The possibility also exists that the
approximation is poor in this region. It is more likely that a downward slope -
is due to the spreading out process. It is worth recalling that Y ¥ 1 corre-
sponds to a thin ring, while Y = 0 corresponds to a thick cylinder,
During the next reverberation, additional terms due to the neglected
powers of e~ ¢, e %, and e %€ + ¢ 72 enter in. Qualitatively speaking, these

result in steeper slopes and additional delays. The actual analysis is

not gone into here, but experimental results bear this out (Fig. 4).
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Fig. 4. Multiple Reverberation Trace
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f ’ IV. NUMERICAL RESULTS AND CONCLUSIONS

T

L2z i

. Since this paper 1s concerned with the results of 2 particular

fat bk ot
e

experiment only that case was treated in the numerical studies. A para-

metric study was not carried out.

Ciado kil

The specimen was made of aluminum, with an inner radius of 4.0 in.

and a thickness of 0.40 in. It was 2 in. in the axial direction and 2 in. across

in the circular direction. The material properties were taken fzom hand-

books as well as inferred from the oscilloscope traces. The results follow:

=
n

10.4 X 106 psi

v =0.33

_ 6 .
p=3.90X 10" psi
w = 0. 101 1b/in.”

2.45 X 10° in. /sec

O
"

1.22 x 10° in. /sec

]
n

The maximum rise above the initial discontinuous jump is the quantity
of greatest interest and occurs att = ts - tp. It is calculated from equations
(41) and (42) to be a 24.42 percent rise. Although numerical values taken

from oscilloscope traces are difficult to obtain accurately, a sample of four

gives values of 20.7, 20.5, 21.6, and 22.9 percent. This is an excellent )
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