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In this paper, the numerical solution of the basic problem of mathematical proirauming
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1 AAR-94

Comparison of Several Gradient Algorithms
For Mathematical Programming Problems1

by .

A. MIELE?, J.L. TIETZE®, and A.V. LEVY?

Abstract, In this paper, the numerical solution of the basic problem of mathematical
programming is considered., This is the problem of minimizing # function {x)
subicct to a constraint ¢(x) = 0. Here, fis a scaiar, X an n-vector, and ;n a
g-vector, with q <n,

Six variations of the sequential gradient-restoration algorithm nnd the
combined gradient-restoration algorithm are considered, and their reiative
efficiency (in terms of number of {terations for convergence) is evaluated.

The vartations belng considered are as fcllows:
(1) SGRA-CR, sequcntial gradient-restoration algorithm, complete restoration,
(1) SGRA-IR, sequential gradient-restoration algorithm, incomplete restoration,

%

(iil) SGRA-OR, sequential gradient-restoration algorithm, optional re<ioration,
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4

(iv) CGRA-NR, combined gradient-restoration algorithm, no restoration,

(v) CGRA-AR, combined gradient-restoration algorithm, alternate restoration,

(vi) CGRA-OR, combined gradient-restoration algorithm, optional restoration.
Evaluation of these algorithms is accomplished through eight numerical

examples. The first two examples pertain to quadratic functions subject to

linear constraints, The remaining examples pertain to nonquadratic functions

subject to nonlinear constraints, The results indicate that (a) the inclusion of

a restoration phase is necessary for rapid convergence and (b) the algorithms

with alternate restoration or optional restoration are the most efficient among

those considered here,
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1.  Introduction

In previous papers (Ref, 1-3), two basic algorithms for the minimization
of constrained functions were developed: the sequential gradient-restoration
algorithm (SGRA) and the combined gradient-restoration algorithm (CGRA). The
former is an iterative algorithm which consists of the alternate succession of
gradient phases and restoration phases; the latter is an iterative algorithm in
which the gradient phase and the restoration phase are combined in a single
phase,

In the gradient phase of SGRA, one generates a displacement Ax lowering
the value cf the function, while avoiding excessive constraint violation; in the
restoration phase of SGRA, one generates a displacement Ax restoring the
constraint 1o a predetermined accuracy, while avoiding excessive change in the
value of the function. On the other hand, in the gradient-restoration phase of
CGRA, one generates a displacement Ax lowering the value of the augmented
function, while simultanevusly reducing the constraint violation.

In this paper, six variztions of the sequential gradient-restoration
algorithm and the combined gradient-restoration algorithm are considered, and
their relative efficiency (in terms of number of iterations for convergence) is
evaluated through eight numerical examples, The variations being considered
are indicated below:

(i) SGRA-CR, sequential gradient-restoration algorithm, complete restoration,
(iiy SGRA-IR, sequential gradient-restoration algorithm, incomplete restoration,

(iif) SGRA-OR, sequential gradient-restoration algorithm, optional restoration,

(iv) CGRA-NR, combined gradient-restoration algorithm, no restoration,

SRR SRR e AR 9nd Gt o
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CGRA-AR, combined gradient-restoration algorithm, alternate restoration,
CGRA-OR, combined gradient-restoration algorithm, optional restoratior.

v
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2,  Statement of the Problem
We consider the problem of minimizing the function
f = £(x) (1)
subject to the constraint
ox) =0 (2)

where f is a scalar, x an n-vector, and ¢ a q-vector, with g <n. Here, all vectors
are column vectors, It is assumed that the first and secund partial derivatives

of the function f(x) and ¢(x) exist and are continuous and that the constrained

minimum exists,

2. 1.

First-Order Conditions, From theory of maxima and minima,

it is known that the above problem is equivalent to that of minimizing the

augmented function

F(x, \) = () + ) (%) 3)

subject to the constraint (2), Here, the g-vector A is the Lagrange multiplier

and the superscript T denotes the transpose of a matrix, If

Fx(x, 2 = fx(x) + mx(x))‘ (4)

denotes the gradient of the augmented function, the optimum solution for x and A

must satisfy the relations

«x)=0 . F&NH=0 &)
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6 AAR-9%4

which are a system of n + q equations in the n+ q components of x and A. In

Egs. (4)-(5), the gradients fx and Fx denotes n-vectors and the matrix P, is

nxq.

2,2, Approximate Solutions. Since the system (5) is generally nonlinear,

approximate methods must be employed. Inthis connection, we introduce here

the scalar performance indexes

T
P =0 (ox) QXN = F (5D () (©

which measure the errors in the constraint and the optimum condition, respectively.
Then, we observe that P = 0 and Q = 0 for the optimum solution, while P >0 and/or

Q >0 for any approximation to the solution. When approzimate methods are used, they

must ultimately lead to values of x and A such that

P(x) < € Qx, \) < €, (7)
Alternatively, (7) can be replaced by
R(x,}) < €s (8)
where
R(x, }) = P(x) + Q(x, }) (9

denotes the cumulative error in the constraint and the optimum condition. In
(7)-(8), €pr €y €gare small, preselected numbers. Note that, if one

chooses € = €y = €q satisfaction of Ineq, (8) implies satisfaction of Inegs. (7).

B

D e




- s B o L T ey oA Tt s st T s
R TR A g AL o ghifzevy B e S T e R €5 e R AR i Ay SN A SR
s S AT £ e (A TE R o

LR 5T R A S e
NN T A3 R S PN T G SR L BN

7 AAR-94

i
3.  Description of the Algorithms g
In this section, the algorithms being investigated ..re described.

(i) SGRA-CR: Sequential gradient-restoration algorithm, complete

restoration, This algorithm consists of the alternate succession of gradient

phases and restoration phases,

The gradient phase is started providing

P(x) €1 (10)

1

It involves a single iteration, in which the augmented function is reduced subject

X 3 or g S {72k R
GRS i

. -
to an vpper limit for the constraint error, that is,

FX, N <Fx,\) , K%< €, (11)

The restoration phase is started providing

P(x) > € (12)

It involves several iterations, In each of which the constraint error is reduced,

that is,

P(X) < P(x) (13)

The restoration phases is terminated whenever Ineq, (10) is satisfied,

o LA

3
The symbol x denotes the nominal point, X the varied point, and A the ;
Lagrange multiplier,

3 20 fai
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B_i@g_r}_(. The algorithm is started with a gradient phase if Ineq, (10)
is satisfied or a restoration phase if Ineq. (10) is violated, Normally, a gradient
phase is followed by a restoration phase, Occasionally, the gradient phase is
followed by another gradient phase, that is, the restoration phase is bypassed:
this is precise'y the case whenever Ineq. (10) is satisfied.

(ii) SGRA-IR: Sequential gradient-restoration algorithm, incomplete
restoration, This algorithm consists of the alternate succession of gradient
phases and restoration phases,

The gradient phase is started regardless of whether Ineq. (10) is satisfied,

It involves a single iteration, in which the augmented function is reduced subject

to an upper limit on the constraint error, that is,

FX W <F(x,)) , PX)sPX)+e 4 (14)

The restoration phase is started ounly if Ineq. (12) is satisfied, It
involves a single iteration, in which the constraiut error is reduced in accordance

with Ineqg, (13).

The start’ ¢ condition and the bypassing condition for SGRA-IR are
identical with tadse of SGRA-CR (see Remark).

(iif) SCRA-OR: Sequential gradient-restoration algorithm, 'optional
restoration, ‘[his algorithm consists of the alternate succession of gradient

phases and restoration phases,

The gradient phase is started providing

ZUx, ) < 1 (15)

AAR-94

Bivoa ¢




e
3

[}

¥

e

R NS G st

i

"

N
5
T
x

. : &

I
B a0
:

kY
s ‘;‘
e A,

]
B ALY )
b vt \{,\}‘ =

S LY

e SRR

T

N,
e i B
gosos o Byt Tt e s

e
&4

AR AR \m,:‘ TR

o on ¥
S

it
e

st hos e

rEe—
SRS

I

RN

e

v
fe

—————
[

9 AAR-94
where the parameter Z is defined by
Z = eP(x)/Qx, 1) (16)
with
€= e2/ € (17)

It involves a single iteraticn, in which the augmented function is reduced ia

accordance with Ineqs. (14).

The restoration phase is started providing

Z(x,2) > 1 (18)

It involves several iterations, in each of which the constralat error is reduced in

accordance with Ineq. (13). The restoration phase is terminated whenever Ineq. (i5)

is satisfied,

The bypassing condition for SGRA-OR is identical with that of SGRA-CR

(see Remark),
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(iv) CGRA-NR: Combined gradient-restoration algorithm, »o restic-wion.

In this algorithm, the gradient phase and the restoration phase are cembized

together in a single phase. It involves a single iteratioa, in whick the axgnesced

function is reduzed in accordance with Inegs. (14).
) CGRA-AR: Comkined gradient-restoraticn algorithm, altermate
restoration. This algorithm consists of the alternate succession of combized

gradient-restorztion phases and restoration phases,

The combined gradient-restoration phase is started regardicss of whether

Ineq. (1) is satisfied. It involves a single iteration, in which the aupmested
functicn is reduced in accordance with Inegs. (14).

The restoration phase is started only if Ineq. (12) is salisfied. &t
involves a single iteration, in which the constraint error is reduced in
accordance with Ineq. (13).

The starting ‘condition and the bypassing condition for CCRA-AR aze

identical with those of SGRA-CR (see Remark).

(vi) CGRA-OR: Cembined gradient-restoration algorithm, oxions:

restoration, This algoxizum consists of the alternate succession of combinzd
gradient-restoration phases and restoration phases.

The combined gradient-restoration phase is started providing Ineq. (15)
is satisfied. 1t involves a single iteration,in which the augmented function is
reduced in accordance with Inegs. (14).

The restoration phase is started providing Ineq. (18) is satisfied, It

involves several iterations, in each of which the constraint error is reduced

-
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I accondce with leeg. (13). The restoration phase is terminated whenever
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e, (15) is satisfied.
2 ~ The: bypassing condition for CGRA-OR is identical with that of SGRA-CR
* (see Remark).

: Remark. For the algorithms with optional restoration, the multiplier )

b - appearivg in (15)-(18)is computed as follows. For SGRA-OR, Eq. (19-1)

Asast be: soived wick C, = 1 aed C, = 0. For CGRA-CR, Eq. (19-1) must »e
pe -~
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4,  Generalized Algorithm
Let x denote the nominal point, X the varied point, Ax tl.. displacement
leading from the nominal point to the varied point, and o the stepsize, With ‘
this understanding, the previous algorithms can be represented in the following 51
generalized form: ]
T (X, (01 + Ceon (DE.(%) - Corl) = 0 }
o, (X, (I + C 0 ()L (%) - Corlx) = (19-1) y
{
p= lex(x) + cpx(x)x (19-2) .
L
&x = -op (19-3) '
!
X=X+ 4% (15-4) )
by
For given nominal point x and constants C1 and Cz, Egs. (19) constitute a
"
complete iteration leading to the varied point ¥ providing one specifies the

stepsize a. The constants C_ and C2 depend on the particular algorithm and

take the values given in Table I, The detailed derivation of Egs, (19) is

presented in Refs, 1-3 and, hence, is not repeated here,
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Characteristic constants.

Gradient-restoration

Phase
Gradient
Restoration
Resteration

Tabie 1,

Algorithm
CGRA

SGRA
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5.  Stepsize Determination

For all of the previous algorithms, the position vector at the end of any

step can be written as

X=x-ap (20)

where p denotes the search direction, which is given by (19-2), This is a
one-parameter family of varied points X, for which the augmented function (3) ,

the constraint error (6-1), and the error in the optimum condition (6-2) take

the form

F(%,\) = F(x - op, )) = F(a) (21)
P(X) = P(x - ap) = P(a) (22)
Q% M) = Qx - ap, ) = Qo) (23)

For the gradient phase of a SGRA-algorithm or the combined gradient-

restoration phase of a CGRA -algorithm, Inegs. (11) and (14) can be written

in the general form

By <FO , HosKO+e, (24)

Their satisfaction can be ensured by employing a bisection process, starting

from a suitably chosen reference stepsize

a=a (25)
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For the determination of the reference stepsize, see Section 6,

For the restoration phase of a SGRA-algorithm or a CGRA -algorithm,

Ineq. (13) can be written as

Bo) <P(0) (26)

Its satisfaction can be ensured by employing a bisection process, starting from
the reference stepsize
a=1 (27)

This value reduces the constraint error P(x) to zero, if the constraint function

@(x) is linear in x.
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6. Reference Stepsize

The search technique outlined in Section 5 for the gradient stepsize
employs a bisection process, starting fromthe reference stepsize (25),
until satisfaction of Ineqgs. (24) occurs. A procedure useful to determine this

reference stepsize is outlined here and is based on a quadratic representation

of the augmented function associated with the one-parameter family of solutions (20),

Let the function F(a) be represented in the quadratic form

- 2
F(o) = k0 + k1a+ koo (28)

and let the coefficients of the quadratic be determined so as to match the values

of the oxdinate and the slope at o = 0 and the value of the ordinate ata =1,

This yields the relations

F(0)=k0 R Fa(O) k. , F(1)=k0+k1+k

1 2 (29)

which imply that

k=FO . k=-00 . k,=F1-F0+3o) (30)

With the coefficients known, the following possibilities arise:

(i) k2>0 or (ii) k2 <0 31)
In Case (i), the quadratic function (28) has a minimum for the following value
o1 the gradient stepsize:
a=- k1/2k2 (32)

I
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if k250

17

c7.o=-k1/2k2 if k2>0

In Case (ii), the quadratic function (28) decreases monotonically with a.
This suggests the use of the following reference values for the gradient stepsi
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7.  Experimental Conditions

In order to evaluate the previous algorithms, eight numerical examples
were considered, The first two examples pertain to quadratic functions subject
to linear constraints. The remaining examples pertain to nonquadratic functions
subject to nonlinear constraints, Each example was solved with the three
versions of SGRA and the three versions of CGRA outlined in Section 3. All of
the algorithms were programmed in FORTRAN IV, and the numerical results
were obtained using a Burroughs B-5500 computer and double-precision arithmetic,
Starting Point, For all of the examples, the nominal point chosen to

start an algorithm was defined by

X) =Xy = eees =X =2 (34)

w. i@ n denotes rhe dimension of the vector x.

Search Technique, The determination of the gradient stepsize and the

restoration stepsize was performed in accordance with Sections 5 and 6, For

the gradient phase, the stepsize g was subject to the inequalities
Fa) <F0) , Fo)<H0)+1 (35)
For the restoration phase, the stepsize was subject to the inequality

P(a) < P(0) (36)

Convergence, Convergence of an algorithm was defined through the inequalities
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P10, Qmns10 (37)

Nonconvergence, Conversely, nonconvergence-ofxan algorithm was

defined by means of the inequalities

(a) N > 100 (38-1)
or
(b) N, >20 (38-2)
or
(c) M >0.4 x 10%° (38-3)

Here, N is the iteration number, NS is the number of bisections of the stepsize o
required to satisfy Ineq, (35) or (36), and M is the modulus of any of the

quantities employed in the algorithm, Satisfaction of Ineq. (38-1) indicates
divergence or extreme slowness of convergence; satisfaction of Ineq. (38-2)
indicates extreme smallness of the displacement Ax; and satisfaction of Ineq. (38-3)

“

indicates exponential overflow. Each of these situations is undesirable.
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8. Numerical Examples

In this section, eight numerical examples are described. The first two

examples pertain to quadratic functions subject to linear constraints, The

remaining examples pertain to nonquadratic functions subject to nonlinear

constraints.,

Example 8,1. Consider the problem of minimizing the function

2 2 2 2
f—(xl-x2) +(x2+x3-2) +(x4-1) +(x5-1)

subject to the constraints

x1+3x2=0 s x3+x4-2x5=0 . xz-x5=0

This function admits the relative minimum f = 4,0930 at the point defined by

xl=-0.7674 » X,=0,2558 , x,=0,6279 , x,6 =-0,1162 , x

2 5

3 4 = (0, 2558

and

)‘1 = 2,0465 , )\2 =2,2325 , )\3 = =5,9534

Example 8,2, Consider the problem of minimizing the function
2 2 2 2
f= (4x1 - x2) +(x2+x3 -2) "+ (x4 -1)" + (xs -1

subject to the constraints

x1+3x2=0 , x3+x4-2x5=0 , xz-xs-O

This function admits the relative minimum f = 5,3266 at the point defined by

-
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(40)
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(42)

(43)

(44)
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-
x, = 09455 x 107, x, = 0.3151 x 107, x, = 0,5157, x, =0.4527, x_ = 0.3151x 10 (45)
and
L 11 =3.2779 , 12 = 2.9054 , l3 = -7,7478 (46)
X Example 8,3. Consider the problem of minimizing the function
! 2 2 4
L f= (x1 -1) + (x1 - x2) + (x2 - x3) (47)
subject to the constraint
x(1+x2 4--4~3A/2—0 (48
1+ x)+ %y = )

This function admits the relative minimum f = 0, 3256 x 10-1 at the poin¢ defined by

X, = 1.1048 , X, = 1,1966 , Xy 1.5352

and

Ay = =0.1072% 107
Example 8,4, Consider the problem of minimizing the function

2 2 4 6
f=(x1~1)2+(x1-x2) +(x3-1) +(x4~1) +(x5-1)

subject to the constraints

2. . . 4.2 )
x1x4+sm(x4-x5) 2/2=0 , Xy + XX, 8-42=0

This function admits the relative minimum f = 0, 2415 at the point defined by

(49)

(50)

(51)

(52)
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X, = 1.1661 , X, = 1.1821 , x3 = 1,3802 , Xy = 1.5060 , Xg = 0.6109 (53)

and

1

A =-0.8553x 107 , A= -0.3187x 10° (54)
Example 8,5, Consider the problem of minimizing the function
2 2 2 4 4
f= (x1 -1) +(x1 - xz) +(x2 - x3) +(x3 - x4) +(x4 - xs) (55)
subject to the constraints
x+x2+x3-2-3J2=0 X -x2+x +2-2/2=0, xX.-2=0 (56)
1 72 73 72 T3 74 .

This function admits the relative minimum f = 0,7877 x 10-1 at the point defined'by

X, = 1.1911 , X, = 1.3626 , Xg = 1.4728 , X, = 1.6350 , Xg = 1,6790 (57)

and

A, = -0.3882 x 10!, M, = 0.1672 107!, Ag = ~0.2879 x 103 (s9)
Example 8,6, Consider the problem of mizimizing the function
f= 0.01(x1 - 1)2 + (x2 - xi)2 (59)
subject to the inequality constraint
X, € -1 (60)

Introduce the auxiliary variable x, defined by

3
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Introduce the auxiliary variables Xq and X 4 defined by

L
23 AAR B4
X
| 98]
U X +X4+1=0 {61)
1 73
'Lg Then, the previous problem can be recast as that of minimizing the function (5%)
U subject to the equality constraint (61). The function (59) admits the relative
minimum £ = 0,04 at the point defined by
L
x1=-1 , x2=1 R x3=0 (62)
i
- and
§ L
i xl = 0,04 (63)
L
- Example 8.7, Consider the problem of minimizing the function
% ! { é
L ;
," i= “Xl . (64) i
1 . 3
‘I 3
f ! subject to the inequality constraints %
; .
' | 3 2 8
2 = L
A x2 x1 , x2 sx1 (65) ’ 53

i gens
BTy
Siedsaes

3 2
Xg =X, =X =0 (66)

Then, the previous problem can be recast as that of minimizing the function (64)

SN subject to the equality constraints (66). The function (64) admits the relative

3

, minimum f = -1 at the point defined by

g

3

H% xl-l R x2—1 R x3=0 R x4=0 (67)
by |G -
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Example 8.8. Consider the problem of zyivimizing the Sevction:
f=1logx, - x, @,
subject to the equality constraint
2 2 ,
X, +x; - 4=0 m
and the inequality constraint
x32 1 &1

Introduce the auxiliary variable x, defined by
x,=1+ x2 G
3 1 )
Ther, the previous problem can be recast as that of minimiziag the function

f=1log(l+ xi) - X, €3)

subject to the equality constraint

22 2
(1+x1) +x2~4=0 G4)

Note that Xg has been eliminated from the problem and can be computed a posteriori

with (72). The function (73) admits the relative minimum f = -/3 at the point defined by
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9. Results and Conclusions

The examples described in Section 8 were solved with the three versions of
SGRA and the three versions of CGRA described in Section 3. The numerical
results are presented in Tables 2-3, where the number of iterations for
convergence N, is shown. For the eight examples considered, Table 4 shows '
the cumulative number of iterations for convergences IN,, Fromthe tables, i
the following f:onclusions arise: (a) a restoration of some form is necessary for }

rapid com'rergence; and (b) while SGRA-CR is the most stable among the

algorithms considered here, rapidity of convergence can be increased somewhat if

one employs algorithms with alternate restoration or optional restoration.
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Table 2. Number of iterations for convergence N,.

Example

SGRA-CR

SGRA-IR

SGRA-CR

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

18

56

8

15

9

11

14

51

7

12

15

11

16

42

16

10

Table 3. Number of iterations for convergence N,.

Example

CGRA-NR

CGRA-AR

CGRA-OR

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

17
65
22
36

7
>100
13

15

16

5¢

19

16

43

13

10
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