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ABSTRACT

A design study has been carried out for a general-

purpose signal processing computer which incorporates

arithmetic parallelism in a microprocessor structure.

The study indicates that the processor (Advanced Signal

Processor, ASP) would be faster, smaller, simpler, and

less costly than its predecessor, the Fast Digital Pro-

cessor (FDP). In addition, the ASP would have a more

sophisticated in-out system than the FDP. These gains

are achievable partially because of newly available fast

hardware and partially due to the architecture of the ASP.
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DESIGN STUDY OF THE ADVANCED SIGNAL PROCESSOR

I. INTRODUCTION

Applications such as radar, speech analysis and synthesis, and sonar,

require a great number of signal processing operations to implement a sys-

tem. The advantages of carrying out these operations digitally in real time

have become well established in recent years. This design study describes

the Advanced Signal Processor (ASP), a fast programmable signal processor

that can be integrated into a real-time system for these and other applica-

tions. It is emphasized that this report is a design study and does not de-

scribe a machine that has been built. Plans for construction of the ASP are

indefinite at this time.

Speed is the prerequisite in a real-time system. The key features of

the ASP are speed, programmability, communications, and compactness.

The ASP will be slightly faster than the Fast Digital Processor (FDP), a

Laboratory computer that has speed enough for real-timge radar and speech

applications. Like the FDP, the ASP is a general-purpose processor so

that rapid spectral analysis and other signal processing functions such as

windowing, magnitude taking, and thresholding can be implemented by

programming.

The ASP will differ from the FDP in communications capability and

size. The FDP was designed as port of a Laboratory computing facility; the

ASP has been designed to serve as part of a real (though perhaps experi-

mental) system. The FDP was given only minimumn (input-output) commu-

nications capability. Complicated communications is handled by the nearby

Univac 1219 computer. Experience gained in integrating the FDP into a

real radar system has indicated that a more sophisticated in-out system

would have been quite desirable. Such a system will be incorporated into

the ASP to facilitate communications with external rn.emrories, other com-

puters, and various other devices, Also, the FDP is large and immobile,

but the ASP will fit into a medium sized airplane while retaining and actu-

ally surpassing the FDP' s processing power.
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I' 4
As orientation to a description of the ASP, this design study begins by

2
noting the relationship of the ASP to the FDP and the LX-1 microprocessor,

two general-purpose processors built at the Laboratory. Then the main in-

struction classes and their execution times are described. (Detailed de-

scriptions of the instructions appear in the Appendix. ) The programming

features of the ASP, which make it attractive for signal processing applica-

tions, are illustrated by ex-

amples. Important hardware

* features of the ASP are also niS'DO"a8-I]I

described.

II. A!,.P STRUCTURE

The ASP' s structureE, E

was motivated largely by a

consideration of the assets

and liabilities of the FDP and

the LX-.M (right)

A. Features of the FDP
and LX.- I

The FDP was designed

as a general-purpose proces-

sor which could perform sig-

nal processing operations 1024 Ma

such as spectral analysis and

digital filtering about 100
times faster than with stand-

ard computers. The FDP,

whose structure is shown in

Fig. 1, derives its speed AE3

from three basic factors -

arithmetic parallelism, in-

struction cycle overlap, and Fig. 1. Structure of the Fast Digital
Processor.
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fast hardware. The four arithm'tic elements (AEs) can operate in parallel

under independent control. Each contains an 18 x 18 array multiplier in ad-
c

dition to adder and logic function hardware. The program memory M is

separate from the data memories Ma and M b, and a three-level overlap of

instructions is carried out. While a typical instruction is being executed,

the next instru-tion is being decode6:, and a third instruction is being fetched.

The FDP was built from Motorola MEGL II integrated circuits, the fastest

logic line available at the time of design. The speed of the FDP is such that

Doppler processing for 2048 range gates, including a 64-point fast Fourier

transform (FFT) and various other operations for each range gate, could be

performed in about two seconds. These operaticns are being carried out by

the FDP in a real-time demonstration radar system.

This speed is the key asset of the FDP and ought to be retained, and if

possible, augmented in a new processor. However, an important liability

of the FDP is its great complexity and associated large size and cost. The

physical construction of the FDP was designed for engineering accessibility

rather than small size, but even with repackaging the FDP would remain too

large for, say, an airborne radar application. A desirable goal is to retain

or augment the FDP' s speed in a significantly smaller and less complex ma-

chine. Three important aspects of the FDP, which contribute to its large

size, have been modified in the ASP. First, the basic word length of 18 bits

was found to be more than necessary for the demonstration radar and simi-

lar applications. The ASP will use a basic 12-bit word length but will allow

fast 24-bit operations when desired. Second, the number of arithmetic units

in the ASP is cut down to allow only two-fold arithmetic parallelism. Third,

the FDP has very complex control (for example, all AEs are controlled in-

dependently) and a large number of specialized data paths such as those be-

tween AE' s and those between the various special registers internal to each

AE.

The in-out capability of the FDP was made quite limited since it was

expected that the UNIVAC 1219 would handle much of the required 1-0. Ex-

perience with implementation of an actual range-gated Doppler radar has

3



indicated that a slightly more sophisticated 1-0 system would be desirable,

and such a system will be included -in the ASP.

The LX-1 microprocussor is a.general-purpose computer whose pres-

ent chief application is to display processing; it was not designed especially

for signal processing. However, the LX-l is an inherently simple and small

machine yet has some features which are quite attractive for a signal pro-

cessing computer. In Fig. 2 the LX-l is shown to contain a set of general

Instruction
Register

S..... IAddress

Ii r"

Fig. 1A. LX-1 microprocessor.

registers Ri, a set of function boxes Fi, a data memory Ms, and three

busses A, B, and D which interconnect these parts. The basic data word

is 16 bits long. The control resides in the program memory Mp. In a

typical function instruction, two registers, say R 3 and R 7 , are read onto

the A and B busses, an operation such as multiplication is performed in one

of the function boxes, and the result is written from the D-bus into another

general register, say R 5 . For a memory instruction, Ms is addressed from

the contents of a register placed on the B-bus, and reads from the A. bus or

writes onto the D-bus. Machine control is quite simple, since all instruc-

tions cause data to flow through the busses in a similar way and there are

no specialized paths between certain special registers. Also programming

of the LX-1 is quite simple because it is a serial machine.
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A key feature of the LX-l, which differentiates it from the FDP as

well as from standard computers, is the set of general registers. These

genera' regi~ters have great flexibility, being useful,for example, as index

registers or arithmetic accumulators. The fact that all general registers

are a,:cessible in the same way to the busses and the function boxes serves

to minimize the data shuffling necessary during a computation. For ex-

ample, in an FFT butterfly programmed on the FDP a number of instruc-

tions must be dlevoted to shuffling data between the various specialized I, Q,

and R registers.

The LX-l however, is significantly slower than the FDP in signal

prot essing applications. The LX-I has fast hardware, but since it lacks

pa rallelism is only about one-fourth as fast as the FDP for an FFT butterfly.

B. ASP Architecture

The ASP archaitecture represents a synthesis of some of the speed-

producing parallelism of the FDP into a• LX-I type structure featuring

general registers, simplicity of arch,: .t-,re and control leading to a small

size potential, and simplicity of programming. A new line of hardware,

faster than was available for the earlier machines, will be used.

The structure of the ASP, depicted in Fig. 3, features like the LX-l

a set of general registers Mr, function boxes, a data memory Ms, a bussing

structure, and a program memory M . However, several key departuresp
from the LX-I zre to be noted. The busses carry 24-bit words that may be

separated into twL' 12-bit bytes. The function boxes have dual sets of 12-bit

arithmetic hardware so that, for example, in the adder function box, two

simultaneous 12-bit adds or one 24-bit add can be carried out as a single

instruction. With the conf-guration box, which allows swapping of the two

12-bit bytes of a word, and an inhibition option, which allows nullification

of either of the two dual operations, completely flexible manipulation of the

bytes is possible.

The ASP will have 64 24-bit general registers (compared to 16 for the

LX-l). This large numLer of general registers provides a very high-speed

temporary storage, whit.k as will be illustrated later, can be used to speed



I [ 1 24

Instruction
Register

12 1
,12 1 12 1 12

64 g + + X A S nction r.
I Mr M

r 1024

IXFLI

Fig. 3. Structure of the Advanced Signal Processor.

up signal processing programs. The large number of general registers are

feasible because of the ava.lability of very fast integrated circuit memories

which permit the general registers to be realized as a memory, rather than

as a set of separate flip-flop registers, with negligible loss in speed. Since

two operands must be read from M in each instruction, the two physicalP
memories, Mr and M' r, will contain identical contents and be read

simultaneously.

The program and data memories are each 1024 x 24 integrated circuit

memories. Some overlap between reading of Mp and execution of instruc-

tions will be incorporated.
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The function boxes of the ASP will include: (1) an adder-logic com-

plex capable of performing two 12-bit or one 24-bit add, subtract, or logic

operation per instruction; (2) a multiplier b6x containing two 12 x 12 array

multipliers; (3) a special function box Io facilitate shift and normalization

operations; and (4) an array divider. Like the LX-I, the ASP has a highly

modular structure so that different versions of the machine could include

new function boxes or leave out some of those just listed.

The in-out system of the ASP will include a pair of 24. .it direct mem-

ory access channiels each of which can provide data flow to •,nd from M in

parallel with the main program. There will be six additional auxiliary chan-

nels to allow control signals (but not data) to be transmitted to, and received

Irom, other devices.

III. INSTRUCTION REPERTOIRE

The main instruction classes available in the ASP are now introduced.

Instruction word formats will be presented, and some examples of particular

instructions and their execution times will be given. A detailed listing with

definitions of the instruction set, as it currently stands, is provided in the

appendix.

A. Arithmetic and Logical 18-6-145031
Ope rations

6 6 6 6

In this class are included all F 0P A B D7

the instructions which are executed (a)

in tCe adder-logic function box. All

arithmetic in the ASP is 2' s comple- 6 6 6 6

n-ent. Three different instruction 0OP SLJBOP 8 D

formats are utilized to control the (b)

adder-logic functions, as indicated 6 12 6

in Fig. 4. OP D~

In the 3-field instructions, A (c)
selects one of b4 operands from Mr Fig. 4. Three instruction formats
for the A bus, B selects one of 64 to control adder-logic functions:
operands for the B bus, and D (a) 3-field format, (b) 2-field for-

t bmat, (c) 1-field format.
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selects one of 64 destinations in M for the result. All operands are 24 bits,r
but the options of configuration and inhibition allow fl.-lble operation on 12-

bit bytes. For example a typical instruction can perform the operations:

Au + B-Du ; AI + Bu--D•

where the subscripts u and I refer to upper and lower 12-bit bytes, re-

spectively. Such an instruction, consisting of two 12-bit adds, can be per-

formed in 65 nsec. In addition to various manipulation of the bytes, some

scaling provision is included.

The pair of operations

(I/2) (Au + Bu)- Du ; (1/2) (Al + B,)-* D,

can be executed in 65 nsec. The option for 24-bit arithmetic is included,

and the 24-bit add

A+ B->D

can be executed in 75 nsec. Also included among the 3-field format instruc-

tions are the bit-by-bit logic operations AND, XOR, and IOR, each of which

takes 65 nsec. The FDP cycle time is 150 nsec for all instructions except

the multiply, which takes 450 nsec.

In the 2-field format, which is included to allow more option codes

than would be otherwise possible, the A-field is ostensibly missing, but the

A operand is taken as the same general register as th. D destination. This

group consists of various other adder-subtractor options which are differen-

tiated according to configuration, inhibition, scaling, and single or double

precision. An instruction type of interest is the sign extended add which

permits, for example, Bý to be sign extended to 24 bits and added to the 24-

bit A operand. Another noteworthy instruction is the zero inject instruction,

which shifts B, right one place and unconditionally forces a zero into the

sign bit. This instruction is quite useful in programming a 24 x 24 bUt m•l-

tiply. Finally, a bit reversed add instruction similar to that in the FDI-, is

included.

The 1-field format is used for operations with 12-bit constants y

which comprise part of the instruction word. The constant can be inserted

8



in or added to either half of the M register addressed by the D-field.r

B. Multiplication

The two array multipliers in the multiplier function box each perform

signed 12 x 12 bit multiplies yielding 24 bits of product. All multiply in-

structions are cxecuted in 120 nsec. Various options are provided as to the

configuration of the input bytes and the possible inhibition of writing either

of the two multiplier outputs. Also options are provided to select those bits

of the 24-bit products that are to be transmitted to the two 12-bit output bytes.

C. Division

The divide box contains an array divider and is capable of dividing a

24-bit dividend by a 12-bit division and proving a 12-bit quotient in 220 nsec.

D. Scaling

The scaling functions are designed to be used in conjunction with the

multiplier to yield efficient programming of normalization and shifting. For

example, to left justify a number, one would use the scale function (SF)

instruction to determine the necessary number of places to shift, the scale

factor positive (SFACP) instruction to set up a multiplier to effect the shift,

and a multiply instruction to actually carry out the shift. The entire normali-
zation would take 65 + 65 + 120 = 250 nsec and could be used in floating

point operations as well as in block normalization. The scaling operations

included are quite simple and require much less hardware than that needed

in a complete shifting matrix. The fast multiply permits shifting to be ac-

complished quite -ickly without such a matrix.

E. Memory

The memory reference instructions have the 2-field format of Fig. 4b.

The B-field points to the Mr location, which contains the M address of in-

terest, and the D-field points to the source for writing or the data destina-

tion for reading. The various memory instruction options permit the M

address to come from Bu or B, and the data source or destination to be

either Du or Di for a 12-bit transfer, or D for a 24-bit transfer. The time

9



for a memory read instruction, which includes the required accesses to Mr
and M , is 100 nsec. The time for a memory write instruction is 80 nsec.

F. Branching

The branching instructions in the ASP include arithmetic jumps, over-

flow jumps, unconditional jumps, a jump conditional on in-out activity, and

a skip make instruction.

Arithmetic jumps are conditional on the contents of selected Mr reg-

isters. For example, one may jump on the condition that the upper byte of

some M register is positive, or on the condition that the full 24-bit word inr

a specified M location is zero. The arithmetic jumps may be used with orr

without a skip on jump (SOJ) like that in the FDP. if the SOY bit in the jump

instruction word is not set, the instruction after the jump will be executed

even if the jump condition is met. If the SOJ bit is set, the instruction after

the jump will be nullified if the jump condition is met. The "SOJ not set"

option would save time in a tight loop since one instruction cycle time is ef-

fectively lost in killing the next instruction. The format for arithmetic

jumps is indicated in Fig. 5. 18- 6-145041

D selects the M register to ber 6 1 1 10 6

tested and B selects upper or OP a D
lower byte; y selects theM 7loctot byte; jumedect to; Fig. 5. Format for arithmetic jumps.location to be jumped to; and

e specifies the SOY option.

The overflow jumps are similar to the arithmetic jumps except that

the format is different (since a D-field is not needed) and the jump conditions

are the various types of overflow that can result from arithmetic operations.

The in-out activity jump tests various activity conditions on an in-out chan-

nel. The skip make instruction is patterned after that in the FDP and allows

skipping of any combination of the next four instructions according to the con-

ditiu,-: in one of the 16 flags in the ASP.

10



G. Input-Output and Block Transfer

The I-0 system of the ASP includes two 24-bit direct memory access

data channels and six control channels, each of which can be monitored on an

interrupt basis.

Each data channel provides 24 input data lines, 24 output lines, and

several control lines to carry request signals and mode information. Data

transfers are initiated by a DMA instruction, which transmits to the 1-0

hardware such parameters as block size and starting M address. The I-0s

channel hardware then carries out all operations needed to effect the trans-

fer, slowing down the main program only when both require access to Ms at

the same time. When the buffer is complete a monitor interrupt (if desired)

then causes the main program to jump to a service routine whose location

was also specified in the DMA instruction.

The six control channels are identical to the data charnels except that

the data lines are omitted. The control signals could synchronize the ASP

with other computers in a real-time system.

The block transfer instruction (BLK) transfers a list of words from M s

into M and is quite similar to the corresponding instruction in the FDP.

Like DMA, BLK must specify a block size and starting addresses. But un-

like DMA, the BLK causes all other operations to cease during its execution.

IV. PROGRAMIMIING FEATURES

Some examples of the ASP' s programming features:

A. Double Precision and Floating Point

The ASP was designed so that 24-bit, fixed point arithmetic could be

performed quite efficiently. A 24-bit add or subtract is performed in a

single 75-nsec instruction, and a 24-bit memory access is accomplished

with one memory instruction. Of course the machine' s dual parallelism is

lost for 24-bit operations. A 24 x 24 bit multiply must be programmed.

Using the formula

AB; A B + 2 A + B A'

u AuB B A



where N, or B,' is formed by shifting the lower byte of A or B right one

bit and forcing the sign bit to zero (the ZINJ instruction), a result accurate

to 22 bits can be obtained in six instrictilons or 520 nsecý

There are no hardware floating point instructions on the ASP, and

floating point .rithmetic must be programmed. However, Lhe scaling func-

tions mentioned above facilitate the shifting and normalizations needed for

floating point. A single precision (12-bit fraction, 12-bit exponent) floating

point multiply can be executed in about 0. 7 psec, while a double precision

(24-bit fraction, 12-bit exponent) multiply takes about 1. 1 1lsec. Single

precision floating add takes about 1. 6 psec while double precision requires

2.7 psec. These times seem slow in comparison to fixed point operations,

but compare favorably with other computers. For example, the IBM 360

Model 67, which has hardware floating point takes about 5 psec for a multi-

ply and 2.5 psec for an add. Standard computers without floating point hard-

ware take significantly longer.

B. FFT Butterfly

The basic computation in an FFT is the so-called butterfly computa-

tion which, as indicated in Fig. 6, operates on two complex numbers to

118-DO-7976-1I

a + jb a + (ccose -dsin6) + jib + (dcos8 + csin 0)]

eio ,

c + jd Z a - (ccosG - dsin8) + ji[b - (d cose + csin 0)]
-eio

Fig. 6. Butterfly computation: FDP--10 instructions, 1.5 psec;
LX-1--30 instructions, 4.5 PIsec; ASP--12 instructions, 1. 0 psec.

12



yield two new complex numbers and requires a complex multiply and two

complex adds. A standard N-point radix 2 FFT requires (N/Z) log2 N butter-

fly computations. A butterfly can be programmed on the ASP with 12 instruc-

tions, including 4 memory accesses, 3 add instructions, 12 multiply instruc-

tions, and 3 index and branch instructions. The execution time is about

1. 0 psec. For comparison, a butterfly on the FDP, as programmed for the

demonstration radar, takes 10 instructions or 1. 5 psec.

Thus the ASP will be somewhat faster than the FDP for standard FFT

programs. This speed-up comes chiefly from the faster instruction execu-

tion resulting from the faster hardware, and the fact that 12-bit operations

take less time than 18-bit operations.

C. Radix 8 FFT

The foregoing discussion indicated the speed of the ASP in carrying

out a standard radix 2 FFT. By means of slightly more sophisticated FET

programming, advantage can be taken of the large number of fast general

registers to achieve significant speed-up. 115_0D-7774_11

The technique can be illustrated by Data as 2-D Array

the example of a 64-point FFT, pro-

grammed in radix 8. The input data in

Ms is thought of as organized in a two- fo f8 " f56

dimensional array as depicted in Fig. 7.

The FFT is begun by bringing the first f1 f9 57
row into M and computing an 8-point

r

FFT of this row without additional ac-

cess to Ms. The 8-point FFT is imple-

mented as efficiently as possible; for
je If ffexample, when the coefficient e in the L7 15 63

butterfly is 1 or j (more than half the Fig. 7. 6 4-point FFT, radix 8.
cases), no multiplications are executed. Computational steps: (1) eight

8-point discrete Fourier trans-
Each of the eight outputs. is multiplied forms (DFT) on rows, (2) twiddle

factors (64 complex multiplies),
by a com plex twiddle factor, and the () it 8- poin DF ts n l ums .

(3) eight 8-point DFTs on columns.

13



results are stored back in place in Ms. This procedure is repeated for all

the rows. Then each column is brought into M , transformed (no additional

twiddle factors are necessary), and stored back in M . This completes the

64-point FFT.

In this implementation of a 64-point FFT, only two exchanges of the

array between data memory and the general registers are necessary. This

saves two-thirds of the memory access time of a zadix 2 algorithm, which

requires log2 64= 6 such exchanges. Also the 8-point FFTs may be coded

more efficiently by eliminati.ng unnecessary multiplications. The result is

that, with radix 8, a 64-point FFT can be computed in about 60%o of the time

necessary for a radix 2 program. This saving is possible only because there

are enough general registers to provide all the necessary storage for an 8-

point FFT.

This technique can be extended to FFTs of other sizes, and implemen-
tation with other radixes. Also the general technique of using M as high

r
speed temporary storage can speed up a wide variety of programs.

D. Large FFT with External Core Storage

The high-speed data memory of the ASP will be initially limited to 1024

words because of size and cost considerations. However, it is often desired

to perform an FFT where the number of samples is too large to be accommo-

dated in Ms, and it would be advantageous if such a transform could be car-

ried out with only small speed loss caused by shuffling the data in and out of

an external core memory. The direct memory access capability of the ASP

makcs this possible. The technique will now be illustrated by a 2 048-point

FFT example.

Consider the data (stored sequentially in core) as a two-dimensional,

32 x 64 array where the rows consist of samples spaced by 32 sampling inter-

vals and the columns contain sequential samples. A 64-point FFT on each

row is computed, and the results are multiplied element-by-element by a set

of complex constants (called twiddle factors, and which are also stored in

core) and stored back in core. Then 32-point FFTs on each column are

performed and the computation is corrplete. The transform will be ordered
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in core with rows and columns interchanged.

While the processor is computing the FFT of a row, the next row of

data and twirldle factors is flowing into data memory and the last computed

row is being sent to core by means of direct memory access block tran'sfers

which are controlled by in-out hardware and slow down the FFT computation

only negligibly. Associated with the core memory must be an address box,

which, after initiation from the processor, can sequence through an arbi-

trary number of core locations with an aibitrary spacing between locations.

With the scheme just sketched out, the 2048-point transform can be

computed essentially as fast as if sufficient fast memory were available to

store the entire array.

V. HARDWARE FEATURES

This section describes the processor' s logical design and its method

of construction as now envisioned. Changes can be expected as the design

progresses.

The treatment begins by explaining why MECL 10K integrated circuit

logic units were selected for building the processor. The general registers,

function boxes, timing, input-output, remote console, and construction are

then described. The processor' s control circuitry is not yet defined.

A detailed description of the processor' s instructions is given in the

Appendix and a familiarity with them is assumed.

A. MECL 1OK

The basic ground rules for choosing an integrated circuit logic line for

the processor were that using it we could produce a machine with an instruc-

tion cycle time less than 100 nsec that could be packaged in a 6-ft relay rack.

The machine' s speed and physical size were estimated by studying designs

of multipliers, general registers, and memories. Three logic lines were

considered: Schottky T L, l-nsec Emitter Coupled Logic (ECL), and 2-nsec

ECL. Schottky T ZL was eliminated because of speed; its gate delay is 3 nsec

which is 50 percent slower than the 2-nsec ECL. The l-nsec ECL line,

Motorola MECL III has a limited number of logic functions, must be

-* 15



packaged on muitilayer boards, and its gates dissipate almost twice the

power of 2-nsec ECL circuits. The 2-nsec ECL was selected.

Two 2-nsec 7CL lines are commercially available at this time:
Motorola MECL 10K and Fairchild 9500. Both lines are equal in. speed and
contain, or will contain, equivalent circuit functions. Tentatively, the new

processor will use Motorola MECL 10K because: (1) Requires less power,

30- vs 75-mw/gate when driving a 2-lII load. (2) Compatible output voltage

levels with the voltage levels of Advanced Memory Systems (AMS) memory

element over the temperature range 0 to 70 C. The processor' s memo-

ries and general registers are to be built from the AMS circuit. (3) Four-

bit arithmetic logic element, vital for array multipliers and dividers, is

currently available in quantity.

Some of the MECL 10K line' s more important features are:

(1) 2-nsec propagation delay and 3-n~ec rise and fall times

The 3-nsec rise and fall times are slow enough to permit un-

terminated lines up to 4 in. long without worrying about reflec-

tions. The 1. 2-nsec rise and fall times of MECL III restrict

line lengths to less than 1 1/4 in.

(2) 50 Q drive capability

For lines longer than 4 in.where reflections are a problem, the

lines can be terminated in 50 £ or greater to negate reflections.

(3) Balanced twisted pair line interface

Signals can be transmitted and received over balanced twisted

pair, a good way to distribute the system clock because it is

easy to control the transmission delays by changing line lengths.

(4) Compatibility with MECL II and III

Compatibility with high speed MECL III and slow speed, 4-nsec

propagation delay MECL II provides the MECL 1OK line added

flexibility.

A semiconductor memory is necessary to realize the proposed ma-

chine. Unfortunately, neither Motorola nor Fairchild have an off-the-shelf

memory element whose speed is compatible with the rest of the circuits in

16



their respective lines. Fortunately, Advanced Memory Systems (AMS) isI producing a 64-bit memory element that is compatible with MECL 1 OK,

though not compatible with Fairchild 9500. The element is organized as 64

words, I bit per word, and has a 7-nsec read time and a 7-nsec write time.

MECL 10K was selected instead of Fairchild 9500 because of the avail-

ability of MECL 4-bit arithmetic logic circuits and compatibility with the

AMS memory circuits.

B. General Registers

Reviewing how the processor' s structure works (Fig. 8), assume that

a 12-bit add instruction has just been transferred into the instruction regis-

ter from the program memory. The 6-bit A address selects a 24-bit gen-

eral register whose output is transferred onto the A bus, and the 6-bit B

address selects a second 24-bit general register whose output is transferred

onto the B bus. The 12-bit add is executed in the adder function box, using

the A and B operands which are available at its inputs. The result is stored

in the general register specified by the 6-bit D address.

The whole operation has three distinct parts: (1) read the general

registers, (2) execute instruction in a function box, and (3) write result back

into general registers.

It is apparent from this review that an instruction' s speed is highly

dependent on how fast the general registers can be read and written. Even

if an add or multiply could be executed in zero time, a complete add or

multiply instruction would still require time to read and write the general

registers.

The general registers can be realized in two ways. In both designs,

the A and B operands will be read from the general registers simultaneously

instead of serially to increase the speed at which instructions can be

executed.

The logic needed to build the general registers from flip-flops (FF)

and gates is indicated in Fig. 8b. This design has two major problems

besides requiring 64 separate FF registers: (1) One bit of the bus is ob-

tained by multiplexing together 64 FF outputs, and this must be done for
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Fig. 8. General registers.
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each of the 24 A and 24 B bus bits; (2) Each of the 24 D bus lines must be

distributed to 64 loads.

This design would use over 2000 MECL 10K packages -- an excessive

number for a small machine.

The general registers (Fig. 8c) for this processor contain two 64-

word, 24 bits/word image memories, which word-for-word always contain

identical data. The A operand is read from the A image, and simultaneously,

the B operand is read from the B image. Both operands are stored in bus

registers before sent to the function boxes.

Results are written into the two memories by storing them temporar-

ily in the D register. When the memories are not busy, e.g., when an add

or multiply is actually being performed in a function box, the contents of the

D register can be written into both memories. The write operation does not

affect the other function boxes because they are isolated from the memories

by the bus registers. This method of writing the memories permits "bury-

ing" or hiding the time needed to write them, a minimum of 7-nsec of mem-

ory element write time.

It takes 150 integrated circuits that include 48 64-bit memory elements

to build these general registers, which is considerably less costly than the

previous solution (Fig. 8b).

When the Next Instruction Pulse (NI Pulse) is generated by the pro-

cessor t s control circuitry, which is not shown in Fig. 9, a ne'v instruction

is transferred into the instruction register. Simultaneously, contents of thei D bus, which is the result of the last instruction and may or may not have

meaning, are transferred into both the DA and DB registers. Also, the 6-

bit D address portion of the instruction register, which specifies the address

at which the contents of the D bus will be stored in the image memories, is

transferred to the Store Address Register.

Data are now read from the A and B image memories by addressing

them with the new A and B addresses, which are in the instruction register.

In parallel, the two addresses are compared with the store address. If

either address is equal to the Store Address, and if the last instruction
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produced a result that must be stored in the general register memory, a

one level is produced at the appropriate comparator output indicating that

nth neede opratnd isntored inthe DAores and DBnegisthers andphas, asuytu

a one, the outputs of the image memories are switched through the bus in-

put gating circuitry and transferred into the bus registers when the control

logic generates a bus pulse. When an operand address is equal to the store
address, the appropriate address comparator output will be a one and this
will switch the correct data storage register, DA or DB, through the bus in-

put gating logic and into the bus register when the bus pulse occurs.

The outputs of the bus registers go to all function boxes and they are

transformed in the particular function box, which is specified by the opera-

tion code of the current instruction. In parallel, data in the DA and DB

registers are written into the image memories, which are not now involved

in the function box operations at L'le location specified by the Store Address

Register. wp, and wpu are the memory write commands; wp, initiates a

write operation in the lower 12 bits of a storage location, and wpu initiates

a write operation in the upper 12 bits. If the last instruction produced a 24-

bit result, both wpj and wpu will be enabled. if the last instruction produced

a 12-bit result, either wp, or wpu will be enabled; the choice between wp,'

or wp depends on whether the 12-bit result appears in the lower or the up-

per half of the 24 -bit word. If the result is in the lower 12 bits of the word,

wp, is enabled; if it is in the upper 12 bits, wpu is enabled.

Read time is defined as that interval which begins when new data are

transferred into the instruction register anr, which ends when the A and B

operands arrive at the function box inputs. Thus read time for the image

memory realization is 30 nsec.

The component propagation delays for the logic in Fig. 9, that result

in a 30-nsec read time, as defined, are shown in Fig. 10, a simplified

general register timing diagram. The actual time to read the image mem-

ories, -nsec, is ±ess than 25 percent of the 30-nsec general register read

time.
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n 5 nsec: A a B BUS DISTRIBUTION

15, t / ---- WRITE IMAGE MEMORIES

Fig. 10. General register memory timing.

C. ALU Functioh Box

The arithmetic logic unit (ALU) function box contains logic to imple-

ment the following types of instructions:

(1) Single 12-bit, and double 24-bit precision additions and

subtractions

(2) Double-precision logical operations

(3) Modification of general register by constants

(4) Special functions: bit-reversed add, scale function, scale

factor positive, scale factor negative, zero inject

(5) Branching.

These instructions are explained in detail in the Appendix and in Section H.

The logic needed to implement these instructions except for the special

scale functions can be realized with a versatile adder -subtractor-logic unit,

which has two nearly identical halves called 12-bit adders (Fig. 11). The

basic adder element is the MG 10181, the 4-bit ALU. Two 4-bit numbers

and a carry are entered into each ALU element and four sum bits and a

carryout as well as some irnp,-tant auxiliary functions are produced. When

the A and B inputs to an ALU element change, it takes 7 nsec for the ele-

ment' s sum outputs to stabilize and 5. 4 nsec for its carry output to stabilize.

When an element' s carry input changes while its A and B inputs are static,
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Fig. 11. 12-bit adder.

.it 
takes 5 nsec for the element1 s sum ouputs to settle down and 3 1 nsec

• ,:for its carry output to settle down. Using the ALIU, it takes 13. 5 nsec to
add two 12-bit numbers.

Although not shown in Fig. 11, each ALU has five control inputs,

which choose which one of 32 possible functions (16 logical, 16 arithmetic)

the ALU will perform. Examples of the logical functions are the logical

product, A B, the logical "Or", A+B, A itself, or B itself. Examples of

the arithmetic functions, besides addition and subtraction, are the function

2A and A plus A • B. All of these functions are performed in a time equal

to or less than an add.

Double-precision operations are performed in a 24-bit adder, built by

interconnecting two 12-bit adders. The input to the second 12-bit adder is

C 1 2 , the carry out of the first 12-bit adder. C 1 2 is generated in 7.3 nsec

in the fast carry circuit (Fig. 12b) instead of taking it directly from the

carry out of the first 12-bit adder. The fast carry circuit uses the ALU

element' s PG and GG functions, which are defined in Fig. 12a. It takes

5 and 3 nsec for G-G and P respectively, to stabilize after an input vari-

able change. The complete 24-bit add requires 20. 7 nsec: 7. 3 nsec to

generate C 1 2 , 2.2 nsec to gate C 2into the carry input of the first stage of

the second adder, and 11.2 nsec for the second adder to produce its 12-bit

result.
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Fig. 12. Carry look ahead.

Both adders have input and output gating that adds an additional 8. 3

nsec to the time it .takes for data to flow through the adder function box.

Thus, all 12-bit operations will take 21.8 nsec or less, and all 24-bit
operations will take 2.9. 0 nsec or less.

J 24
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D. Timing

A simplified timing diagram for two consecutive add instructions

(Fig. 13) will aid calculation of the time to execute 12-bit add instructions.

If:0
SOnsec READ MR

60rnise READ

5nw WRITE MR PROGPAM 5nsne
MEMORY

-7 21.3 nset EXECUTE 12-BIT ADD

, 5 s.. noc 0-Bus OISTRIBUTION

S15% SAFETY FACTOR

30 nstc READ MR

60 nseC READ
PROGRAM 65 n.ec

MEMORY
15nsec WRITE MR

21.3nsec EXECUTE 12-BIT ADD

5 nec O-BUS OISTRIBUTION

15% SAFETY FACtOR

Fig. 13. la-bit add instruction timing.

At t 0 the first add instruction is transferred into the instruction register

from the program memory, and the program address register that had pre-

viously contained the address P is incremented by I so that its new value

is P + 1. From the section on general registers, it takes 30 nsec to read

the two operands from the general registers and to transfer them to the ALU

function box. It then takes 21.8 nsec to add the operands and an extra 5 nsec

to send the result from the function box back to the general registers via the

D bus. The sum of these three times is 56. 6 nsec. A 15 percent safety

factor is added to cover delay variations due to temperature changes, power

supply variations, and noise giving a total of 65 nsec when rounded to the

nearest 5-nsec increment.
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While the first add is executed, the next instruction (the second addi-

tion) is read from address P + 1 of the program memory. A program mem-

ory read, as explained in the next section, requires 60 nsec; this is the

interval beginning when a new address is clocked into the program memory

address register and ending when a new instruction arrives at the input of

the instruction register. The second add instruction is, therefore, avail-

able at the input to the instruction register when the first add is complete,

and a new add instruction is begun by transferring the new instruction into

the instruction register. Simultaneously, the 12-bit result of the first add

is clocked into the DA and DB registers (Fig. 9) from which it will be writ-

ten into the general registers after operands for the current add instruction

are read from the general registers. It is easy to see that the second add

instruction and all subsequent add instructions taken from concurrent pro-

gram memory locations are executed in 65 nsec.

When executing 24-bit additions, the timing diagram (Fig. 13) re-

mains unchanged except that the addition time changes from 21.8 to 29. 0

nsec. There is a corresponding change in the 15 percent safety factor re-

sulting in a 75-nsec, 24-bit add, instruction time.

In general, the time required to complete any of the processor' s in-

structions has four components: (1) 30 nsec to read the general registers;

this time increment is included in all instructions even those few for which

it is not required such as JPS, an unconditional jump; (2) X nsec to perform

an operation in a function box: (3) 5 nsec to transmit a result from a func-

tion box back to the general registers, if this is required by the instiuction;

and (4) a 15 percent safety factor.

There are two exceptions to this rule: (1) when the computed instruc-

tion time is less than 65 nsec, and (2) when certain program jumps are

performed.

Some instructions such as 12- and 24-bit logic function require less

time than a 12-bit addition because no carry has to propagate through the

adder. Other instructions such as JPS require no more than 10 or 15 nsec[ to execute. Unfortunately, this speed cannot be taken advantage of because
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the read of the next instruction from the program memory takes 60 nsec,
which is only 5 nsec less than the 65 nsec needed for a 12-bit add. The

speed of these fast instructions could be increased by 5 nsec, but there is

little gain in doing so.

When a jump instruction located at address P in the program memory

is executed, there is the option, under the control of the instruction' s c bit,

and explained in the Appendix, to skip or execute the instruction located at

address P + 1. This assumes, of course, that the jump instruction com-

mands that the program branch to a location Z not equal to P + 1. If the

program is going to skip the instruction following the j:unp, then the pro-

cessor cannot use the instruction which was read out of the program mem-

ory while the jump was in progress and must wait for the new instruction

located at address Z to be read. This requires at least 60 nsec; waiting

65 nsec is proposed. The net effect is that this type of jump takes an addi-

tional 65 nsec. On the other hand, if the instruction located at address

P + 1 is performed, no extra time is needed.

E. 4-Quadrant Array Multiplier

The ASP will have two 4-quadrant array multipliers that may be oper-

ated separately or in parallel at the behest of the programmer. Each multi-

plier function box is comprised of a network of interconnected 4-bit ALUs,

specifically, the Motorola MC 10181 ALU package. A given multiplier will

accept two signed, 12-bit, 2' s complement operands, one from the.A bus

(upper or lower byte) and one from the B bus (upper or lower byte). The

output (product) consists of 24 bits, the two most significant of which are

considered sign bits. These are always equal except when squaring the

largest negative number. All 24 bits of product may be placed on the D bus,

if desired. If both operands are considered integers, only bits 1-12 of the

product are retrieved and placed on either the upper or lower D-bus byte,

depending on the multiplier in question. If the operands are considered to

be binary fractions (binary point to the right of the sign bit),then the product

is considered to be a fraction with the binary point to the right of the least

significant of the two sign bits. Thus bits 12 through 23 of the output are
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retrieved and placedon either D-bus byte, so that the product can be con-

sidered a binary fraction represented in exactly the same fashion as the

operands.

The overflow flags associated with the upper and lower D-bus bytes

can be set by the multipliers depending on the destination of the opted prod-

uct bits. The rules governing overfloware:

(1) An integer multiply will set the appropriate overflow flag if

bits 12 through 24 of the product are not identical. This implies

that the product is not representable in 12 bits.

(2) A fraction multiply will set the appropriate overflow flag if

bits 23 and 24 of the product (the two nominal sign bits) are not

identical.

(3) A multiply involving a 24-bit product transfer cannot set the

overflow flag on the lower D-bus byte, but will set the upper byte

flag if bits 23 and 24 of the product are not identical.

Overflow conditions may be tested via the overflow jump (JOV)

instruction.

The operation of the multipliers is most easily visualized by under-

standing 2 s complement number representation where a number is defined:

SN-1 N-2
X=-X 2 + T X. " 2
- s i=O 1

Here, an N-bit binary word is considered to be the sum of two polynomials,

one negative and one positive. Xs, the binary coefficient of 2 N-1 is the

sign bit. The binary coefficients X. are the rest of the bits of the word.

A signed N bit by N-bit arithmetic product may be written as follows in

terms of this definition:

is multiplication, + is addition, - is subtraction.

[ 28



p

N-2 N-2

Z X" Y = [Xs + MD X." 2 [Y - N1 + 2 Y."z3 (1)
i= 0 j= 0

or
-- N-2 N-2

Z-X y -Y N-2 + 2 N [Y 5 ._Z X.-2 1 )+ Xs (-E Y.2)i• - s si=0 s j=0

N-2 N-2 (2)
2~XY~i+jS+ E. z X." Y." 2i

j=O i=O

This expression can be further rewritten by observing a simple impli-

cation of the 2' s complement definition: the sign of a given number may be

chenged by complementing all coefficients and then adding 1. Mathematically

speaking

N-Z N-2

- z x.2 ( 2 . 2i + 1 (3)i=0 i=0

N-2 N-2

and z y. J= (23 -5, Z, 2 2J + 1 (4)
j=0 J j =0 J

Using Eqs. (3) and (4) to rewrite Eq. (2)

• 2N_-2 + N_-1 N-2 . i N-2 ]
Z X* *2 z 2. + x z 2..:Z s Yst. s i-o I s j=o jN-2 N-2

(Xs + YS) • 2 N-I + X. Y.. 2 (5)
i=O j=0 1 3

Four-quadrant (all sign options) multiplication thus seems to involve a series

of coefficient additions with proper weighting conventions observed. Given

that X. and Y. are binary digits, their arithmetic product is simply a logical
1. 3,

product (AND)"

x." Y. = X. 0% Y.

"" A 0 B is logical "AND, " AUB is logical inclusive "OR."

29



Thus Eq. (5) can be rewritten once more as

z= (XsYs) 2 2N2 + 2 N-If z l .1i + x n z 2
- . s i=o I s j=0

N-2 N-2+(Xs +Ys) 2N-1 + Z Z (X n'Yj)- 2 i+j 6
j=0 i=O '

Notice that the last term of Eq. (6) can be expanded in the form

N-2 N-2 N-2 N-2
2; Z (Xny jj) =Y 0 f n X."2 +2Y n?, X."2

j=0 i=0 i=0 I i=O
N-2

+........+ N-2_ Z X" 2 (7)
i=O

If the multiplicand is assumed to be the binary word

X s XN-2 XN-1 ..... XI X 0 (N bits)

and the multiplier is assumed to be the binary word

--Y = Ys YN-2 YN-1 ..... Y 1 Y0 (N bits)

then Eqs. (6) and (7) lead to Fig. 14. Here is illustrated the array of

weighted multiplicand coefficients to be conditionally summed, depending

on the multiplier coefficients. Notice how Eq. (7) is implemented i*i the

upper 11 rows of the array. The first three terms of Eq. (6) are incor-

porated as the bottom rows of the array.

There are any of a number of ways to effect the actual summing of the

entities in this array, some optimized for speed, others to conserve hard-

ware. One obvious way is to explicitly form all the logical products

X.flY. (called partial products) and do a straightforward addition of the

resulting partial product array as it stands. Carry and sum paths can

be arranged to optimize speed performance with regard to the relative

carry and sum delays inherent in the adder elements used.
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Another method of summing the partial product array is to group the

rows in pairs and add them separately, but in parallel. The results of the

first stage of adds are also grouped into pairs and in turn added. The pro-

cess continues until all partial sums have been combined to yield the de-

sired product. In general, if there are N multiplier bits (including sign)

* the number of adder stages necessary is given by

S = log?(N+ 1), -- unded to next highest integer,

which includes the extra rows due to sign correction. For N = 12, as in the

ASP, the number of stages necessary is 4. Figure 15 shows the coefficient

array for the ASP case grouped for parallel summing. This method is some-

times called the "binary tree" algorithm.

Irrespective of the actual summing mechanism used for the partial

product array, it should be noticed that some simplification of the rows in-

volving Xi and Y. can be effected. Theoretically these rows represent nega-
3

tive entities and thus must be assigned sign bits equal to 1. In order to in-

corporate them correctly into the summing operation, the sign bits must be

extended as far as is necessary to derive the requisite number of product

bits. The sign extension is clear in Figs. 14 and 15. When the partial

product array is formed, the "south west" corner of the ari-ay appears as

in Fig. 16a. Some Boolean algebraic manipulations show that the right most

0 0
0

Ys Ys o RIO% 1 RON% .

Xs Xs xs lofnXs*'" Xs Xs 0 T5nXs.s 0 0 Yj0ns.o

0 0 XsnYs 0 Xs0Ys XsUYs xsnYsXsUYs XsuYs

Z24 Z23 Z22 Z21 •" Z24 Z23 Z22 Z21 """Z24Z23 Z2? Z21 " •

(a) M) (0)
Fig. 16. Simplification of high order end of coefficient array.

column can be reduced to produce the situation shown in Fig. 16b. The

center column can be similarly reduced giving rise to Fig. 16 c. Clearly,
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the process could be extended indefinitely. The net result is that the sign

bits may be dropped off the X. and Y. rows if the columns containing X sn Y1 3 s 5

and beyond are replaced by Xs U Ys. Clearly, this process need only con-

tinue as far as necessary to produce the last product bit, Z 2 3 for the ASP

case. The proof is as follows:

Using an adder unit, 3 bits of equal weight can be reduced to a net sum

and a carry:

SUM = A 0 B @ C; (E = exclusive "OR")

CARRY = (AnB)U(A E) B)nC.

For the case at hand, let

X = A

Y =Bs
XflY = C.

S S 1

then
SUM = Xs @ Ys ®(XslYs) = XsU Yssu X0Y ED (X Ys)X U Y )

CARRY = (Xs nls)U(Xs s Y5 )n(XsfYs5  Xsny5

Therefore the sum of Xs, Ys and X sY s reduces to a sum equal to X sU Ys

and a carry into the next column equal to Xs Y s" The next column is now

identical to the first and the process is repeated. Clearly, this can continue

ad infinitum.

The actual algorithm implemented for the ASP multipliers is basically

of the tree type and requires four adder stages. However, it is not neces-

sary to explicitly form the partial product array due to the nature of the ad-

der element used. The MC 10181 is a programmable ALU in that it can be

made to perform myriad operations on the input operands in response to

commands from control, or programming inputs. In the multiplier, the

first stage of units is controlled by pairs of multiplier bits, the other stages

are hard wired as adders. The inputs to the first stage are the multiplicand

34



bits, arranged for appropriate weighting. The 10181 package can be caused

to add its 2 operand inputs, or gate either (cr neither) through singly.

These operations are all that are necessary to, in effect, form and combine

the partial products.

Figure 17 illustrates the grouping of a coefficient array for a signed,

6 by 6 multiply, as an example. Three stages of adders are necessary.

STAGE Ill STAGE 12 STAGE I

/ L I L (X4  X3 X2  X, x o)nY,
M/ M6 M5  A44 M3 MAM1  M / Il AO

I I/ I IC(X4 X 3 X2  Xl X o)nY 2

I N I NX4 X3 X2  x x o)nY 2

Z~jZp Z Z8 Z7 6 Z -5 Z 2 86 B5. 84 03 020 BJ B 0' 1~2' %

/

/-(X X3 X2 X1 cxoq~ " yx

(X X3 X2 XI XO) flY4

I~~0 0 ( o o InYs
N, N6 N5 N4 N3 N2 N, No J "7

ý ~ I III F (X4 R3 R2 RI Ro) nys
Z11 ZIo Z9 Z8 Z7 Z6 Z 5 Z4/ D5 D4 D3 D2 DI 00 (4Y Y !Yý~

/ I

ry Y L XS

Fig. 17. Evolution of interconnections for 6 by 6 multiplier adder array.

The grouping and combining of partial sums is depicted as the process

evolves from right to left. The attendant hardware realization is shown in

Fig. 18. The various stages and intermediate variables labelled reference

Fig. 17. Notice the manner in which the multiplicand (X) is distributed to

the first stage. The A input is equal to X, the B input is equal to X left

shifted, one place or 2 X. Thus the relative weighting of subsequent rows

in the array is preserved. The appropriate relative weighting of all partial

sums is observed when combining !1,;.m, in the subsequent stages. Notice

also that the control rules for each first stage unit are included in Fig. 18.
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Extension to the full 12 by 12 bit case is somewhat complex, but con-

ceptually straightforward. Figure 19 'shows the basic arrangement of 10181
units for this case.

A minor modification of the array illustrated in Fig. 19 can be shown

to require only 38 of the 10181 packs, and about 25 assorted 16 -pin support

logic packs. The basic multiplier, exclusive of control setup and operand

shuffling overhead, is expected to operate in 42 nsec.

F. 4-Quadrant Array Divider

The ASP divider function box is comprised of a combinational array of

adder and subtractor logic elements. The network accepts a 24-bit word

from the A bus as a dividend (or numerator). The word is interpreted as a

signed, Z' s complement entity with one sign bit and 23 information bits. The

divisor (or denominator) is a 12-bit word that may come from either the up-

per or lower byte of the B bus. it is interpreted as a signed, 2' s comple-

ment number consisting of one sign bit and 11 information bits. The array

produces a 12-bit quotient and a 12-bit remainder, both consisting of one

sign and 11 data bits. The quotient is entered on the upper byte of the D bus,

the remainder on the lower byte. The divisor and dividend may be con-

sidered to be integer, fractional, or mixed numbers. In most instances,

however, it seems reasonable that the entities will be considered to be frac-

tions with the binary point situated to the right of the sign bit. The divider

overflow logic is designed to be most consistent with this interpretation.

The underlying operating principle of the array is that of nonrestoring

binary division. The procedure is most easily- understood by considering the
divisor and dividend to be positive fractional quantities wherein the divisor

is larger than or equal to the dividend. The quotient will be a positive frac-

tion in this instance. To obtain the first quotient data bit, a trial divisor

equal to half the actual divisor is subtracted from the dividend yielding a

partial dividend. If the partial dividend is positive, then a 1 is entered as

the quotient bit. If negative, however, the trial divisor did not "go into" the
dividend and a 0 must be entered as the quotient bit. In normal (restoring)

division it would be necessary at this point to add the trial divisor to the
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partial dividend. This would restore the original dividend before an attempt

is made to subtract a new trial divisor. Nonrestoring division makes use of

the fact that each successive trial divisor is half the preceding one. Thus

the addition (or restoration) of a trial divisor followed by subtraction of one

half that very same trial divisor is nothing more than a net addition of half

the trial divisor. Returning to the example, if the first data bit of the quo-

tient is a 1, the previous trial divisor is halved and subtracted from the par-

tial dividend to produce the next quotient bit. If the first quotient bit is a 0,
the trial divisor is halved and added to the partial dividend to produce the
next quotient bit. This procedure continues until all desired quotient data

bits have been produced. The algorithm has the distinct advantage of being

realizable as an unclocked array. There are no feedback loops; the process

flows unconditionally from beginning to end without any "back-up" steps.

Realizing this division procedure in practice, for the 4-quadrant case

(all sign combinations of-divisor and dividend possible), requires some

manipulation. The heart of the divider array consists of a series of adder/

subtractor stages. Each of the stages will either add or subtract the appro-

priate divisor from the appropriate partial dividend depending on the sign bit

of the partial dividend in question, and the sign bit of the divisor proper.

The array will accept any combination of dividend and divisor signs. How-

ever, the set of quotient data bits produced by the array must be corrected

at the end for certain sign combinations.

The topmost portion of a diagram for the procedure (Fig. 20) depicts

generation of the quotient data bits. The bottom section depicts the end cor-

rection. The rules for generating a quotient bit at any given stage of the

array are:

(1) If the present partial dividend is positive, enter a 1 as the

concomitant quotient bit. If not, enter a zero.

(2) If the divisor and the present partial dividend have the same

sign, subtract the next trial divisor.

(3) If the divisor and the present partial dividend have differing

signs, add the next trial divisor.
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The above conventions imply two interesting facts: First, a positive

dividend with eithex a positive or a negative divisor will yield the proper

quotient magnitude. Second, a negative dividend with either a positive or

a negative divisor will yield the complement of the magnitude of the quotient.

A correction based on the actual signs of the operands must be applied to de-

rive a correct 2, s complement quotient representation. For example, sup-

pose the divisor is positive and the numerator is negative. The quotient bits

generated will turn out to be a 1' s complement representation of the correct

negative result. Thus the result must be incre:anented by 1 to yield the proper

21 s complement representation. As a further example, suppose both the

divisor and dividend are negative. Clearly the quotient ought to be positive.

The array produces, however, the complement of the correct results and a

pur'e inversion of the quotient bits is r.ncessary. All of these cases are

dealt with via an extra adder/subtractor stage at the very bottom of the ar-

ray which performs the actual correction. Only one case needs no correc-

tion: positive divisor and positive dividend. The correction rules are:

(1) if both the divisor and dividend are positive, assign the

quotient sign bit the value 0 and do nothing to the quotient data

bits.

(2) If both the divisor and dividend are negative, assign the

quotient sign bit the value 0 and complement the quotient data

bits.

(3) If the divisor is positive and the dividend negative, assign

the sign bit the value 1 and increment the quotient data bits by 1.

(4) If the divisor is negative and the dividend is positive, assign

the sign bit the value 1. Complement the quotient data bits and

increment by 1.

Conceptually, all array additions and subtractions involving an N bit

signed divisor can be carried out on an N + 1 bit basis. The difference (or

sum) between any given partial dividena and its trial divisor should also be

representable in no more than N bits (really N - 1 bits plus sign). Thus,

for this case, bits 12 and 13 of any partial dividend, being both presumably
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sign bits, ought always to be in agreement. If not, an overflow indication

is rendered. This indication implies, in terms of fractional operands, that

the dividend was greater in magnitude than the divisor. The condition is il-

legal because the quotient would have to be greater than 1 and, hence, could

not be represented as a signed fraction. Since the quotient appears on Du,

the overflow flag for that byte is set.

The overflow condition can also be interpreted in the context of integer

operands. In such an instance an overflow will occur if the magnitude of the

dividend is greater than 212 times the magnitude of the divisor. In such an

instance the quotient would be on the order of 212 which cannot be repre-

sented in 11 data bits plus sign.

If operating with mixed operands, it would be incumbent upon the pro-

grammer to ascertain the implied overflow conditions appropriate to his own

representation conventions.

Note that to generate the N-1 bit quotient and a sign from an N-1 bit

divisor plus sign, only 2(N-l) bits of dividend plus a sign are necessary.

This implies that the least significant bit of the 24-bit dividend operand

(A-bus input), never enters the calculation of the quotient.

The partial dividend that determined the last quotient bit (i. e., the re-

sult of the last add/subtract stage) is considered to be the remainder. It is

a 12-bit entity (11 bits plus sign) and is related to the other operands by the

equatie.n:

DIVIDEND = (QUOTIENT) X (DIVISOR) + REMAINDER

It can be used in conjunction with more dividend bits to derive an ex-

tended precision quotient. The actual formation of the extended dividend it

involved, but it can be done and the signed remainder is necessary.

Figur-e 21 shows an actual hardware realization of a divider that ac-

cepts a 4-bit divisor and an 8-bit dividend yielding a 4-bit quotient and a 4-

bit remainder. The realization can be extended in a straightforward manner

to the 24-bit/12-bit case. The adder"subtractors represented can be real-

ized with the MECL OK, 4-bit, ALU package (MC 10181). The unit can be

programmed to either add or subtract in response to a control. The actual
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NUMERATOR 8 BITS
DENOMINATOR 4 BITS [IS-6 -145181

-UOTIENT 4 BITS
REMAINDER 4 BITS

-N8 NN7 D4 N 6 D 3 N5 02 N4 DI

A4  84 A 3  83 A 2  62 Al Bi

Co ADDER/SUBTRACTOR SUB

S4 S 3 S S ? Si.ADD

D4 03 D2N3D

SA4  84 A3  83 A 2  82 A, B B

Co A ODERE/SUBTRACTOR SUBC,

0VRLO 4 03 D2 N2 D,

A4 8, A3 B3 A2 82 A, B cc
Co ADDER /SUBTRACTOR SUB

S4 S3 S2 Sl- ADD•
0

A3 B3 A B2 l 81 ,ADDER/SUBTRACTOR SUB-

04 03 02 R 4  R3  2 R,

Fig. 21. 4 by 8 nonrestbring divider array
with overflow detection and end sign ýorrection.
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subtraction is accomplished by changing the sign of the B input and adding.

This operation, in effect, requires that the B input be inverted and incre-

mented by 1. The package does the complementation internally but the I

must be supplied at the C.i (carry "in" 0) input wherever a subtraction is to

occur.

It might be expected that since the divisor is a 4-bit entity, all add/

subtracts ought to be done on a 5-bit basis as was inferred earlier. It can

be shown via some manipulation, that the N+ Ist bit can be simply realized

as nothing more than the carry out of the Nth bit with a slight change in

rules. The simplified rules now can be stated succinctly:

(1) 1 st Stage - If the sign bits of the divisor and dividend differ,

then add. If not, subtract.

(2) All Subsequent Stages - If the carry out (C ) of the Nth bit
of the previous adder/subtractor is a 1, enter 1 as the quotient

digit. Also, if the carry out ;.s different from the divisor sign

bit, set the present stage to subtract. Add otherwise.

(3) Overflow - If the carry out of the Nth bit for any given
thstage is the same as the N bit out of that stage, signal an

overflow.

(4) End Correction - can best be summarized in tabular form:

Sign of Sign of Quotient Sign of Carry
Divisor Dividend Correc- Quotient inC

(SD) (SN) tion (SQ) Add Subtract (.p.)

+ + (None) +/

+- Q+ 1 / V/
+ Q+l - V
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Logic equations are easily derived:

S Q = Ci = N D SD

SUB= SD

ADD= SD

These are seen as the controls implemented in the figure for the end cor-

rection stage. Notice that the "A" input to this stage is necessarily a hard-

wired zero.

The actual 24-bit/12-bit divider is realized using ]2, 12-bit stages.
The first 11 derive the quotient bits, the last does the correction. Each

stage requires three MC 10181 packages with a look-ahead carry generator

arranged to feed bit 9. Thus 36 MC 10181 units are required. Each stage

is capable of producing all necessary partial dividend bits in 13 nsec.

Therefore the entire operation will require 12 x 13 = 156 nsec. The

number of packages required to synthesize controls, overflow functions,

and perform data distribution, is incidental. Thus, the entire unit is smaller
in terms of packages than the multiplier function box. The actual net divide

instruction execution time will be greater than 156 nsec due to overhead as-

sociated with control decoding, operand fetch, and deposition of the quotient.

G. Square Root Function Box

The ASP square root function box, an optional extra feature, is com-

prised of a combinatorial array of adder/ subtractor logic in much the same

manner as the divider function box. The input to the array consists of a

signed, 24-bit, 2' s complement number from the A bus. It is interpreted

as a positive fraction, the binary point situated to the right of the sign bit.

The output is a 12-bit, positive, 2' s complement fraction that is placed on

the upper byte of the D bus. If the input should happen to be negative, a
fault condition is signalled by setting the overflow flag associated with the

upper byte of D. No remainder is provided since normally more than 12

bits are necessary to properly represent it.
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In analogous fashion to the divider, the square root algorithm used is

one that lends itself to realization, as an unclocked, combinatorial array of

logic. The procedure is termed the nonrestoring square root algorithm.3

The array is built up as a series of adderisubtractor stages. No back-up

steps are required; the process moves irrevocably forward from start to

finish.

To see how the procedure evolves, assume a 10-bit radicand, R, of

the form:

R = 0. R R R3R4R5R6RRR

The root is to be expressed as a positive fraction of the form

F = 0. f If 2 f 3 f4

In straightforward fashion, a series of tests can be tabulated, which should

be performed on R:

2
(1) Is R (.> ? If yes, f, = 1; otherwise f= 0.

Z(2) Is R _(.fl1) ? If yes, f 2 = 1; otherwise f -0

(3) Is R >(.flf2 1) ? If yes, f 3 = 1; otherwisef3 = 0.

2
(4) Is R (.flf2 f 3 1) ? If yes, f4 = 1; otherwise f 4 = 0.

Implicit in the foregoing is the undesirable process of squaring trial radi-

cands. By some manipulation these tests can be arranged in a more manage-

able form. Notice the following:
(.2 - 01

('fl1 ) 2 ('fl +.Ol)2 = 'f 2 + .0001 + .0f = .f12 +. 0f01

2 2 2 2(.fl f2 l) = (.flf2 + .001) = (.flf2 ) + 000001 + .00flf 2 = (flf2 ) +

similarly + • fl01

(. flf 2 f 3 1)2 = (I f2ff3)2 + . 000fIf 2 f3 01

etc.
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Clearly, the following tests may be substituted for the originals:

(1) Is R >(.1) ? If yes, f1 = 1; otherwise fl = 0.

(2) Is R - (.fI) z O .0fl01? If yes, f2 = 1; otherwise f2 = 0.

(3) Is R - (.flf 2 ) z> .00flf 2 01? If yes, f3 = 1; otherwise f3 = 0.

(4) Is R -(. lff3)f . 000flf f3 019 If yes, f4 = 1; otherwisef = 0.

It would appear that some squaring is still necessary. However, the

squared terms can be easily formed. For simplicity, define the partial

radicands and associated test values as follows:

SR0 = R 0 = . 01

R I = R - 0fI= f1 01
2.R1R 2 = R - .flIf 2)Z a2 = .00flIf 201

R3 = R -(.fIf 2 f3 ) , 3 =. 000f ff301

Now the followinr, zet of observations can be made:

~R, if f1 0
R=

R -R 01, if fl = 12 if f -1
4 R-(.fi) =Rl, ifz=

SR2= IR - (f) = R1- • 0fl01 = R1- a'1, if f2 = 1
2

R - (.ff) = Rif if f 3 = 0R -3 =.l1 I Of10) api

= R1 2 -(0flf 
= ) = R2' 

if f = 1

3 R-(.f f 2 1)2 = R 1 Of f01 R a'2 iff

The pattern seems well established and the procedure for obtaining the ith

root bit can be stated succinctly: subtract a. from R If the result isSi-I Ri-l"

positive, enter f. = 1. If not, enter f. = 0 and add back (restore) aI.

Clearly R. i =i- if f.i = 1, or R = if f. = 0. Thus the process

can continue until all desired f bits have been extracted.
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Clearly, the following tests may be substituted for the originals:

(1) Is R > (.1) ? If yes, fl = 1; otherwise fl = 0.

(2) Is R - (.fI) 2 .0fI01? If yes, f2 = 1; otherwise f2 = 0.

(3) Is R - fIf2) 2 .Of f l01? If yes, f3 = I; otherwise f3 = 0.

(4) Is R - '.fIf f3) > . 000fIf f 3019 If yes, f 4 = 1; otherwise f4 = 0.

It would appear that some squaring is still necessary. However, the

squared terms can be easily formed. For simplicity, define the partial

radicands and associated test values as follows:

R0 = R a0 = . 01

R 1 = R - G(.fl)2 IaI =Ofl301

R 2 = R - G.flIf 2) z a2 = "o I0ff 201

R 3 = R - (. fIf 2f 3)Z , a 3 = •000flIf2f 3 01

Now the followinqg zet of observations can be made:

,= R ' iff - 0

R - .01, iffI = 1

R - (f1)= Ri if f2 -0

= =R al
-(.fl) = R1- .0f01 = R 1- if f2  1

R R - (.f 1 f2 )2 = R2, if f3 = 0

3 R - .flf21)2 = R 2-.00flf2 01= R- if f

The pattern seems well established and the procedure for obtaining the ith

root bit can be stated succinctly: subtract ce. from R. If the result is

positive, enter f. = 1. If not, enter f. = 0 and add back (restore) a. 1l

Clearly R. = - if f.=, or R = R. if f. = 0. Thus the process
1if ' . i -I I

can continue until all desired f bits have been extracted.
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"ifR.> 0, If R. < 0,
1Step 1

Number R =R. - ( ) Ri+1 = R +( ) RootStatus

1 .01 X 0.

2 . 1Ol .0011 O.f
1

3Of1101 .00f I0Oi 0.f If 2

4 .000f If 2 101 .000f If 2 Oil 0.f If 2 f 3

5 00. IQOf 2 £ 101 .0000f If 2 f3 Oil 0. f If 2 f 3 f 4

The process has been reduced to one of subtracts or adds of the ap-

propriate test values (ai). The test values to be added or subtracted at any

given stage are in fact identical except for the second and third from least

significant bit. Whether an add or a subtract is to occur at any given stage

is wholly a function of che sign of the partial radicand (Ri) at that point.

Figure 22 depicts a conceptual flow chart of a nonrestoring realization

of the example posed earlier. Figure 23 illustrate- a hardware formulation

based on adder/subtracter elements. The specific case shown is one of an

8-bit radicand. It should be clear that to generate N bits of root, only 2N

bits of radicand are necessary. This implies, in like fashion to the division

case, that the least significant bit of the radicand never enters the calcula-

tion. In the case of the ASP, only 11 bits of root (plus a sign) are necessary.

Hence only the 22 bits of radicand after the binary point are used.

Figure 24 is a practical hardware realization of the case shown in

Fig. 23, using the MC 10181 ALU unit. It can be shown, through detailed

manipulation, that the lengths of the adder/subtracter stages can be abbre-

viated somewhat to conserve logic (specifically MC 1018Is). In the case of

the ASP realization this savings is sizable. The ASP square root function
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box is realizable with 2Z of the MC 10181 units, approximately half those

necessary for a multiplier or a divider. The heart of the array should

operate somewhere in the vicinity of'100 nsec* if look-ahead carry blocks

are used in the last four stages. There is, of course, the additional fixed

[ overhead delay of operand fetch, op code setup, and the like.

R, R2  R 3  R4i

ft
VRý.RiR 2 R3 R4 R5 R6 R 7 O.fYf2 f3

0~

A4  B4 A3  B3 A2  B2 A, BI

f2 <v" Co MC 10181SU

s4 s-4 9; AD

2-52

R5 R 6

f3 A4 B4 A 3 B3 A2 B2 AI 1 0 Ci

f3 • --- Co MC 10181lSUBsPi-

FA L SS4 S3 S2 S, D1P' -

F ig. 24. Equivalent realization of 8-bit square root.
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H. Special Functions

The ASP has been provided with several special function instructions

to facilitate the programming of scaling operations, floating point arithmetic,

double-precision multiplication, and bit-reversed counting (for FFT imple-

mentation). These features are included in the arithmetic/logic function

box hardware but are sufficiently specialized to be discussed separately.

1. Bit-Reversed Add

The bit-reversed add (BRA) requires that the lower byte of a speci-

fied general register be bit-reversed (bit 1 and bit 12 interchanged, bit 2

and bit 11 interchanged, etc. ) and added to the lower byte of a second gen-

eral register. The carry is to propagate from bit 12 to bit I (left to right)

and the sum replacing the contents of the lower byte of the second general

register. This task is most easily effected by bit reversing the contents of

the second general register, performing a normal add, and then bit revers-

ing the sum:

[A + BRV (B) =BRV [BRV (A) + B1

LCarry Left Carry Right
to Right to Left

The operation requires some additional gating on the inputs and out-

put of the adder.

2. Zero Inject (ZINJ)

This operation involves simply a right shift of the contents of the
lower byte of a selected general register. However, bit 12 does not re-

circulate as is the case in normal, signed right shifts. A zero is uncon-

ditionally shifted into bit 12. Implementation involves the normal shifting

hardware with a special inhibit on the bit 12 recirculate loop. The shift is

necessary to kill interference from the sign bit when combining cross prod-

ucts in a programmed, double-precision multiply.

3. Scale Function (SF)

The scale function operation yields a positive, 12-bit number whose

magnitude is equal to one less than the number of leading Is or Os in the
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contents of the upper byte of a selected general register. This entity corre-

sponds to the number of left shifts that would be required to normalize the

contents of the selected general register. If converting to floating point,

the negative of the scale function output corresponds to the actual associated

exponent of the shifted quantity. If operating in floating point, the scale

function output must be subtracted from the expone oatin ontof the o be

shifted to yield net exponent of the normalized r-esult.

The hardware necessary to perform the SF operation is shown in

Figs. 25 and 26. Figure 25 depicts a network which accepts 11 bits of input

and produces a series of 10 outputs. The number of the outputs in the "true"

state corresponds to the number of left shifts necessary to normalize the

number (x = Xlx 2 ... x 5 ). The network of Fig. 26 is simply an interconnec-

tion of full adders (FA) to sum the number of Is in the output of the previous

network. Only four outputs are produced since the maximum number of

shifts that can be required is 10 = 128 which is representable in four bits.

Bits 5 - 12 of the output are always zero. The hardware necessary to real-

ize the SF operation involves only about a dozen IC packages.

4. Positive Scale Factor (SFACP)

The SFACP operation involves the transformation of a 4-bit number N,

into a 12-bit number, 2N. A subsequent integer multiply of 2 N, and the con-

tents of a selected general register byte, will result in a net left shift of the

selected quantity N places. This permits use of the multipliers in perform-

ing shift operations. The shifts might be involved as part of normalizing or

straight scaling operations. For example, three steps are involved in

normalizing:

(1) SF find number of left shifts necessary

(2) SFACP translate N 2-N

(3) MUL do actual N place left shift with an integer multiply.

The 4-bit input is actually the low order four bits of the appropriate

12-bit general register byte.
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Fig. 26. Network to map left-shift count into 4-bit binary number.
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The hardware realization of the SFACP operation is depicted in Fig.

21. It accepts four input bits and yields 12 output bits, the most significant

of which is always a zero. Thus the multiplier can effect at most a 10-
place left shift at one time. A simple 4 to 10 decoder plus a few gates are

all that are necessary to realize the mapping network. The hardware is

thus negligible.

5. Negative Scale Factor (SFACN)

The SFACN operation maps a 4-bit number, N, into a positive 12-bit
11-Nnumber, 2 , such that a subsequent fraction multiply with the contents

of a selected general register byte will effectively shift those contents N

places to the right. This permits the multiplier to be used as a right shifter

for scaling operations. The 4-bit input, which is actually the low order 4

bits of an appropriate general register byte, may represent any integer
11

number in the range 0 < N <_ 11 Since 2 cannot be represented without
8*

overflow into the sign bit, a right shift of zero places is not permitted.

This implies, for instance, that in the case of coefficient alignment for

floating point operations, the possibility of equal exponents must be ex-

plicitly tested.

Figure 28 illustrates a hardware realization for the SFACN operation

much akin to that for SFACP. It can be realized with exactly the same

hardware except that the outputs (Y) are bit reversed.

I. Scratch and Program Memories

Although the machine' s architecture has been designed to accommo-

date 4096-word program and scratch memories, two identical 1024-word

memories, one for '.he program memory and one for the scratch memory,

are proposed to reduce the machine' s cost. The word length for both

memories will be 24 bits organized as two 12-bit bytes, and the read and

write cycle times will be 30 nsec where the time measurement begins when

the address signals at the input to the memory settle down.

The basic building block for the memories is the AMS 512-word, 6-

bits-per-word, bipolar semiconductor card. Nine address signal, are de-

coded to choose one of 512 words, In addition, there are six input data
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The hardware realization of the SFACP operation is depicted in Fig.

27. It accepts four input bits and yields 12 output bits, the most significant

of which is always a zero. Thus the multiplier can effect at most a 10-

place left shift at one time. A simple 4 to 10 decoder plus a few gates are

* all that are necessary to realize the mapping network. The hardware is

thus negligible.

5. Negative Scale Factor (SFACN)

The SFAGN operation maps a 4-bit number, N, into a positive 12-bit
1l-Nnumber, 2 , such that a subsequent fraction multiply with the contents

of a selected general register byte will effectively shift those contents N

places to the right. This permits the multiplier to be used as a right shifter

for scaling operations. The 4-bit input, which is actually the low order 4

bits of an appropriate general register byte, may represent any integer
1i

number in the range 0 < N <. 11 Since 2 cannot be represented without

overflow into the sign bit, a right shift of zero places is not permitted.

This implies, for instance, that in the case of coefficient alignment for

floating point operations, the possibility of equal exponents must be ex-

plicitly tested.

Figure 28 illustrates a hardware realization for the SFACN operation

much akin to that for SFACP. It can be realized with exactly the same

hardware except that the outputs (Y) are bit reversed.

I. Scratch and Program Memories

Although the machine' s architecture has been designed to accommo-

date 4096-word program and scratch memories, two identical 1024-word

memories, one for the program memory and one for the scratch memory,

are proposed to reduce the machine' s cost. The word length for both

memories will be 24 bits organized as two 12-bit bytes, and the read and

write cycle times will be 30 nsec where the time measurement begins when

the address signals at the input to the memory settle down.

The basic building block for the memories is the AMS 512-word, 6-

bits-per-word, bipolar semiconductor card. Nine address signals are de-

coded to choose one of 512 words, In addition, there are six input data
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signals, two card select signals, and a write signal that are sent to the card.

Six data output signals are produced when the card is read. The six output

signals settle down 25 nsec after the'nine address signals arrive at the card

if both the card select ,ines are low. If either select signal is high, the

memory vutpurs will be low; thus, the select signals act as card enables

and can be used to control the interconnection of memory cirds to build a

large memory. New data are written into the card, after the six new data

signals and the address at which they are to be stored have settled down, by

generating a 10-nsec write signal. The total time for the write operation is

25 nsec.

Eight AMS cards are interconnected (Fig. 29) to form a 1024 word,

24-bit memory. The cards are arranged in two groups of four cards, each

J 18-D)O-1830(I) J
WPu WPu WP/. WPI DATA IN

£ 44

ADDRESS

52 r 65 512 X6

DATA OUT

Fig. 29. Program memory/scratch memory.
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group containing 512 24-bit words. Ten address signals are brought to the

memory, the signals that represent the nine least significant bits of the

address are sent to all eight cards. The tenth signal is used to choose

which 512 word half of the memory will be read or written. Control is

achieved by sending the tenth signal itself to the select inputs of one row

of four cards and its complement to the select inputs of the other row of
four cards. The data outputs of the two rows of cards are connected to-

gether as indicated. Once the input data and address signals have set-

tled down, a memory write is accomplished by enabling the write signals

U' p, and wpu. A 12-bit byte is written into the memory by forcing either

Wp• or wp to be true, the choice depending upon write instructions; a 24-

bit word is written into the memory by enabling both Wpu and w p,

simultaneously.

The scratch memory, Ms, for all memory instructions except for

block transfers and those involving input and output from the machine, ob-

tains its address from the B bus, its input data from the A bus, and it

sends its output data to the D bus. For input-output instructions, the ad-
dress and input data come from the I-0 function box, and the memory out-

put is sent to the 1-0 function box. On block transfer instructions, the ad-

dress and input data come from the B and A buses, respectively, as they

do for most other instructions, but the output data go to the program Tuem-

ory where it is stored, thus, giving us the capability of writing programs

that modify themselves.

When a program is running, the program memory' s address comes

from the processor's program address register, and memory's input

data come from the output of scratch memory. The current processor
architecture has the output of the program memory only going to the in-

struction register, but the addition of a path from the program memory
output to the input of the scratch memory is being considered. The path

will allow us to easily check the dynamic operation of the program memory.

The memory can be checked dynamically without this path, but only in an

awkward manner by forcing a test program to relocate itself in the memory.
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The only scratch and program memory address and data paths not

mentioned are those associated with the console. These paths allow a user

or another computer to specify a data word and write the word into a spe-

cific address in either memory, or to specify an address in either memory

and to examine the data word stored at that address.

A scratch memory read instruction requires approximately 100 nsec

and a write instruction approximately 80 nsec. The reason for the time
difference -is that a memory write instruction has one less data transmission

path than a read instruction. When the memory is read, an address is sent

from the general registers to the memory and data are returned from the

memory to the general registers; whereas, when the memory is written an

address and input data are sent to the memory from the general registers

but no data are returned to the general registers. The 100-nsec read in-

struction time breaks down in the following way: 30 nsec to read an address

from a general register, 10 nsec to transmit the address from the B bus to

the memory assuming that the memory is in a different enclosure from the

general registers, 30 nsec to read the memory, 10 nsec to send the mem-

ory output back to the D bus, 5 nsec to get the data to the general register

via the D bus, and a 15-nsec safety factor. The time breakdown for a write

instruction is the same except that it does not include the 15 nsec to send

data back to the general registers.

It takes approximately 60 nsec to read the program memory assuming

that the read time spans the interval beginning when a new instruction is

clocked into the instruction register and ending when the iew instruction

signals arrive back at the input of the instruction register. The 60 nsec

breaks down in tht following way: 3 nsec for the program memory address

register outputs to settle down, 10 nsec to send the address signals to the

memory assuming it is in another enclosure, 30 nsec to read the memory,

10 nsec to send the memory output back to the instruction register input,

and a 7-nsec safety factor.

To build a 1024-word memory, approximately six auxiliary printed

circuit cards, besides the eight AMS cards will be needed. The auxiliary
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cards will be used for mounting line receivers, line drivers, and address

drivers. A complete memory will require approximately 600 integrated

circuits and dissipate approximately 300 Watts.

J. Input-Output Capability

The ASP has eight input-output channels, two of which are full duplex,

DMA data channels capable of handling 24-bit data words (Fig. 30), and a:e

equipped with two pairs of input and output control lines. The remaining six

"control" channels have no data handling capacity, but are equipped with the

same control facilities as the DMA channels.

11864I, 5261

Z24 s- DATA OUT
a ODR

ODA OUTPUT CHANNEL
SEFR

EFA
ASP

S /24 DATA INip IDR

IDA INPUT CHANNELDo• ISR

S~SRA

Fig. 30. Direct memory access channel.

The input side of one of the two DMIA channels (channels 6 and 7) con-

sist of 24 lines of data input, two control lines, and two acknowledge lines.
Controls are named:

IDR input data request

IDA input data acknowledge

ISR input status request

SRA status request acknowledge.

If an input is desired, the ASP raises either the IDR line or the ISR, which
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are presumably attached to the addressed peripheral. When the requested

data are on the input lines, the peripheral raises the appropriate acknow-

ledge line and the ASP samples the data. IDR and ISR are logically equiva-

lent controls that provide extra flexibility: the addressed peripheral might
place different types of data on the lines depending on which control line is

raised. If the peripheral sees IDR, it will place a piece of data to be pro-

cessed on the lines. If it sees an ISR, it will place a data word on the lines

relative to its present operating condition.

Similarly, the output side of a DMA channel is equipped with 24 lines

of data output, two control lines, and two acknowledge lines. Controls are

named:

ODR output data request

ODA output data acknowledge

EFR external function request

EFA external function acknowledge.

If the ASP desires to output a data word, it raises either the ODR or EFR

lines. When the addressed peripheral has sampled the lines, it raises the

appropriate acknowledge line. ODR and EFR are logically equivalent sig-

nals. EFR might signal the addressed peripheral to interpret the incoming

datum as a control word intended to establish an operating mode rather than

as a simple piece of information.

These channels are termed DMA in the sense that, once a data buffer

has been initiated by an appropriate program instruction, i. e., control

* parameters passed from Mr to the 1-0 handling logic, the channel automatic-

ally accesses M as necessary, calculates M addresses automatically, and
s 5

signals the control processor when the entire buffer has been transmitted.

The "done" signal can engender an interrupt to the user program, or can

simply set a flag that can be explicitly tested by programmed instructions

at the option of the user.

Input and output buffers may be active on both sides of a given DMA

channel, simultaneously. It is also possible for both DMA channels to be

active simultaneously with input, output, or both. In such instances,
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conflicts may arise between channels for access to Ms. In fact, the pro-
sgram running in the CPU may also desire use of Ms at any given point.

When conflicts arise between channels, M access will be apportioned such
5

that channel 6 is given priority over channel 7. When conflicts arise be-

tween the input and output sides of the same channel, access will be inter-

leaved, input being served first. In conflicts with the CPU, the CPU will

be permitted to finish the instruction in progress. As soon as the CPU is

finished with Ms, the highest priority I-0 commitment outstanding will be

serviced. Any subsequent CPU Ms accesses will be deferred until the queue
of pending I-0 related accesses has been processed.

The six control channels (0 through 5) (Fig. 31) are basically identical

in terms of control lines to the DMA channels. The essential difference is

op, ODR
4 ODA

OUTPUT CHANNELso• EFR

4 EFA
ASP

p IDR

IDA
bISR INPUT CHANNEL

SRA

Fig. 31. Control channel.

in the absence of data handling paths eliminating the need to access M .

This simplification greatly reduces the hardware necessary to realize a

given channel. Except for the lack of data, the control channels operate

githe same way as the DMA channels, even to the point of interrupt generation,

if desired. These channels are designed for use in computer networks

where synchronization and simple control paths between processors are

of value, but full duplex data links are an unnecessary luxury.
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Priority issues with regard to M access, clearly do not arise with

the control channels. However, two channels programmed to interrupt when

they have completed their assigned tisks may try to signal the CPU at the

same time. This situation can occur with the DMA channels, too. In such

cases, the input side of a particular channel is given priority over the out-

put side; and channel priority is determined by the channel number, i. e.,

the lower the channel number, the higher its priority. This implies that the

control channels have priority over the DMA channels.

The 3-bit afield in the instruction, format to program the I-0 system

(Fig. 32a) selects the channel to be actuated. The p (or'nmonitor") bit, if set,

causes an interrupt to be issued when the selected channel has finished its

assignment. The interrupt will cause a program branch to a prescribed

subroutine.. If P is not a 1, a flag will be set when the channel is done, which

can be explicitly tested. The y field specifies the nature of the operation to

be performed and is interpreted as follows:

0 input request

1 input status request

2 ou+nut request

3 e._•ernal function request.

1 B- -1 52 8
OP CODE A T i (

(a) INSTRUCTION FORMAT

BLOCK SIZE ,INTRPT. SERVICE ROUTINE ENTRY PT.

(b) A REGISTER

. INCREMENT STARTING Ms ADDRESS

(c) 8 REGISTER

Fig. 32. 1-0 format conventions, (a) instruction format,
(b) A register, (c) B register.
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The A and B fields specify general registers that are interpreted as shown

in Figs. 33b and c, respectively. These registers supply the necessary

1186;14529

OP CODE A B

(a) INSTRUCTION FORMAT

I BLOCK SIZE J STARTING Mp ADDRESS

(b) A REGISTER

INCREMENT STARTING Ms ADDRESS

(c) B REGISTER

Fig. 33. Block transfer format conventions, (a) instruction format,
(b) A register, (c) B register.

control parameters to the I-0 logic to effect the desired task. The upper

byte of A contains a number corresponding to the number of data words to

be transferred. The lower byte points to the M location to which program

control is to be transferred when the channel is done (if p = i). The upper

byte of B contains a signed number that defines the displacement between

locations successively accessed in M . For example, if equal to +1, suc-S

cessive M locations will be accessed in order of increasing address. The

lower byte of B points to the M s location to be accessed by the first transfer.

Implied by the foregoing is that only one side of one channel may be acti-

vated by a given instruction. Also, in the case of control channels, the B

register is irrelevant since no data are actually transferred.

When an I- 0 precipitated interrupt occurs, the return point (P +2) is

written into the lower byte of the A register after the service routine en-

trance point has been read into P. This technique saves on the number of

general registers necessary to service the 1-0, bat requires that the lower

byte of A be restored in some fashion when the service outine terminates.

The RJP instruction was designed with this purpose in nlnd and is
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documented in the Appendix along with the I-0 jumps intended to explicitly

test for completed I-0 transactions.

Figures 33 b and c show, respectively, the instruction format and the

two control parameter register formats for the block transfer instruction.

The block transfer is not an I-0 operation in the strict sense, but rather in-

volves an internal two-way data transfer path between M and M . The con-Ss p
trol parameter register formats are similar to those of genuine 1-0 opera-

tions (the lower A byte designates the first M location to be accessed) as is
p

the necessary hardware.

No interrupts are involved with block transfers. Program execution

essentially halts while the transfer is in progress and resumes upon buffer

completion. If the block transfer modifies Mp, the first instruction exe-

cuted on resumption of normal operation is that to which control normally

would have been transferred prior to the M modification. If no M modifi-
p p

cation occurred, no question arises. This instruction permits dynamic

alteration of the running program and facilitates maintenance of the program

memory (Appendix).

K. User Console

The ASP is equipped with a console to monitor and control the operat-

ing status of the machine, interact with and debug user programs, and to

supplement standard engineering maintenance. The ASP console design is

consistent with these ground rules:

(1) Preservation of Machine Status

Machine status interrogations will not alter the state of the computer:

Examination of the contents of a selected M location will not alter the con-

tents of the Ms address register. The same is true of data entry. The only

permissible status change is that engendered by the deposition of inputted

data.

(2) Complete Examination of Machine Status

Every possible useful register or group of registers viewable, and

where applicable, alterable.

68

VV



(3) Minimum Interconnections

Minimum signal paths connect the console and the ASP. This re-

striction simplifies the console, enhances cable and connector reliability,

reduces required connector parts, and diminishes noise pickup that might

be injected into the ASP. Noise and cable complexity are important if the

console is remote from the computer. If so, a modem set for data trans-

mission might be desirable. The amount of multiplexing required will have

been drastically reduced at the outset.

(4) Possibility of Automatic Control

To permit the user to interface with the ASP via a general-purpose

computer and associated I-0 devices, a computer (possibly mini-computer)

whose resident software can be written to simulate the presence of the con-

sole, might be installed. The monitor software could perform powerful

sequences of console operations at high speed:

(a) The entire state of the ASP could be dumped on command,

(b) An entire buffer could be dumped into Mp or Ms,

(c) A particular program loop could be executed a prescribed

number of times.

The possibilities of such a scheme are legion.

Tentative inputs and outputs for the console include:

I. Indicator Outputs

A. General
1. Instruction register IR

2. Program memory M
p

3. Program counter P

4. Scratch memory M
s

5. Scratch memory address M ARs
6. General register memory Mr

7. Bus address registers A, B, D

B. Control
1. Machine stop

2. Machine run

3. Timing generator status
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C. 1-0

1. Direct memory access channels

a. Request status IR, OR, ISR, EZ'R

b. Data input M address
s

c. Data input increment

d. Data input

e. Data output Ms address

f. Data output increment

g. Data output

2. Inter-computer channels

a. Request status IR, OR, ISR, EFR
1. Switch Inputs

A. General

1. Program memory toggle

2. Program counter toggle

3. Write program memory push button

4. Read program memory push button

5. Scratch memory toggle

6. Scratch memory address toggle

7. Write scratch memory push button

8. Read scratch memory push button

9. General register address toggle

10. Read general register push button

B. Control

I. Stop machine push button

2. Cycle machine push button

3. Step machine push button

4. Resume execution push button

5. Start execution at program counter
switches push button

6. Stop when program counter equals
switches toggle

7. Programmed stop switches toggle

8. Programmed skip switches toggle
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The console consists of several light registers, switch registers, and

a command keyboard. The light registers permit continuous monitoring of

certain machine conditions (P register, machine run/stop, timing generator

4 status) and provide optional interrogation of others. Internal conditions may

be observed on command via a general light register.

The several toggle switch registers are necessarr to permit inputting

* two or more pieces of information simultaneously, such as address and data

to load one of the memories. Some switches must also be available for con-

tinuous use: the program skip and program stop switches.

Commands are issued to the ASP via the keyboard. All command push

buttons are realized this way as well as are the status interrogation options.

A function code is transmitted to the ASP when each key is depressed. The

code causes the console multiplexing logic internal to the ASP to bring the

data desired onto the console lines. Keys corresponding to command push

buttons dispatch .ppropriately timed pulses along with the function code to

the ASP. The puLses are properly steered inside the ASP to effect the de-

sired exercise.

L. Construction

The dashed line in Fig. 34 indicates where the system will be parti-

tioned. The function boxes to the left of the line will be housed in a single

drawer called the processor drawer and those to the right of the line will be

housed in a second drawer called the memory drawer.

The circuits in the processor drawer will be mounted on either printed

circuit or wire-wrap boards which are 7 in. wide and 17 in. long and have

PC edge connector contacts for plugging in and out of back plane connectors.

The wire-wrap boards will have a ground plane, a voltage plane and a
terminating voltage plane and will use short 2-wrap pins for better card

packing density. Two types of wire-wrap boards will be used, one will hold

a mix of 96 16- and 2 4-pin dual-in-line integrated circuits, and the other

will hold approximately 130 16-pin dual-in-line circuits.

The complete processor drawer will contain approximately 1400 inte-

grated circuits mounted on 16 boards and will dissipate approximately 300
Watts.
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0.~.T /4 i !,/24 0AA,DT IN D " ATA°IN
REGISTER ADDER MULT. MULT. DIV. 2 DMA DATA 1/24 M

CHANNELS PORT_ /2 I
CONTROL j MEMORY 24

Fig. 34. System partitioning.

The memory drawer will contain the scratch memory and the program

memory. There will be 16 AMS memory cards in the drawer plus another 12

auxiliary cards. Approximately 1200 integrated circuits will be mounted on

the 28 cards and they will require 600 Watts.

Figure 35 shows a tentative outline drawing of the computer which re-

flects the desire to package the 16 processor cards in a 17 x 19 x 10 in.

enclosure, and the 28 memory cards in a memory drawer that is 17 x 19 x

12 in. Cool air will be forced through both drawers to insure a maximum

temperature rise of no more than 150 C. This permits operation in a 450C

ambient, which is 100C below the 70 0 C maximum operating temperature of

the AMS card logic and 15°C below the 75 0 C maximum operating temperature

of MECL 10K logic.

The processor and memory drawers will be built as black bo:es with

few, if any, external controls. A portable console will be provided to

troubleshoot programs and hardware.

The system will be powered by a bank of low voltage, high current

supplies.
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Fig. 35. Tentative system outline.
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APPENDIX

ASP PROGRAMMING INSTRUCTIONS

I. Adds/Subtracts 6 6 6 6I I
Format I 10p Code I A []B D

¢23 [A] +[B,] [D•]
V4,5 [A] +[Bj]-> [Dj]

V6, 7 [A] + [B ]-- [DI]

1¢', 11

12,13 [At] +[ [D ] ; [A] +[B ] •D ]

14,15 (Ap] +[B ]-*[D ] ; [A] + [B (D- [D 2]
16,17 j([Ap.] +[B .]I)-[D.] ; -!([A 2] +[B 2]I•[D 2]

2V,21 [A] +[B]- [D] , DOUBLE PRECISION

6 6 6 6

Format II Op Code Sub B D
Op Code

77 ¢¢,1 "([Dp] +[B 2 ]) (Dp.];-([D 2 ]+([B D]) 4D 2]
77 02,3 2([D ]+[B1 ]) - [D ]; 2.([ED] _+[B1])-) [DI]

77 P4,5 2([Dp] + [B1]) -• [Dp.]; ([D 2 ] +[B.])-> [D,]

77 '6,7 J[Bp]H -I [D•]; I[B ]1--)[Dj]

77 10,11 [D] +[B 2 ] -B [D]

77 12,13 2([D] +[B ])-[D]

77 1.4,15 [Di + [B]-I [D] DOUBLE PRECISION
77 16,17 -([D] " [B] [D]

77 Zý,21 2([DI] + [B]) [ D)

77 22,23 .([D] D+ [B])-) [D]

All arithmetic is 2' s complement.

t Subscripts lland2 refer to upper and lower bytes, respectively.

* [X] re(ers to "contents of X."
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II. Logical Operations 6

Format I Op Code A B D

2Z [A] .\ [B] -* [D]

23 [A] V [B] - [D] 24 bits

24 [A] @[B] -* [D]

6 6 6 6

Format 1 IOpSub B D1_ 02 Codel- I

77 24 [B]- [D], Z4 bit.

77 25 [B•]-[D•];[_BEj-- [D1]

77 26 [Bl-*[D]; [B 2 ]- [D2 ]
6 6 6 6

IF. Multiplication Operations IOp Coda A B D
25 (Ata X [B•] -• [ D]

26 [A] X [B] -•D

27 [A2 ] X [B2 ] -B [D,] Fraction multi-
3 (A, X [B ]-D[ plies: Bits 12 -

23 of product
31 [A] X [B1 -[D]; [A][ -X[D2 ] outputted.

32 (A X[Bp]- [Dp.]; [A] X F]J (D1

Integer multiply:
33 [Ap] X [Bp.] -I [Dp.]; [Al] X [B2 ]- [D] Bits I - 12 of

product outputted.

34 [A 2 ] X [B2 ] -I [D] Full multiplies: All product

35 (A,] X [BjI - [D] bits are outputted.

6 6 6 6

TV. Division Opcrations o A B D

•, 36 [A] + [B•] K [DI3 6 ( ] + [ B ~ - 1 ý) .L R e m a in d e r in D .(6 6 6 6

V. Square Roo, Function OpSubBD
lCode IOp Code

77 27 ([A])'/i -• [Dp]
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K6 12 6
VI. Constants [O oeYD

4 Y ([DF]

41 Y - D Y is 11 bits plus sign.

42 Y + [Dt,] - [D.,]

43 Y + [D 2 ]-[D 2 ] 6 6 6 6

k• VII. Special Functions Op Code OpBCode

77 30 [D,] +BRV([B2 ])-*[D,], Bit-ReversedAdd. Bit reverse

of [B2 ] added to [D ], carry propagates left to right.

77 31 (N - 1) -K[D], N = number leading Is or Os in [B ]

Scatle Function, for normalization.

77 32 2 [B] -[D,], Positive Scale Factor. Left shifting. (SFACP).

77 33 211 -[B 2 ]- [DI], Negative Scale Factor. Right shifting.

(SFACN).

S77 34 ([B.e] -• [D 2 ], Zero shifted into bit 12. For double-

precision multiplies (ZINJ).

6 6 6 6

VIII. Memory Reference Ops Op Code SuOp Code B D P
77 35 [M (B )]-[D ]

77 36 [Ms(Bj)] -• [DI

77 37 [Ms(B )] - [DI]

77 40 [Ms(BI)] -• [D ] 12-bit transfers.
""77 41 [D ] •[Ms(B )

S77 A.2 [D.]'" [Ms(B )

S77 43 DIIa -• [M s(B )]
77 44 [D1] - [Ms(Bý)]
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VIII. Memory Reference Ops (continued)

77 45 [M (B )]- [D]

77 46 [Ms(BI]-• [D] 24-bit transfers.
77 47 [D]-• [Ms(B )A
77 5V [D] - [M s(BI1]

6 1 1 10 6

IX. Arithmetic Branches Op Code a Y D

-Y: Jump destination

a: If set, skip next instruction if jump occurs (SOJ)

13: If set, test upper byte. Else test lower.

Return point: P + 2 -• RI

44 JPR: Jump if [D,,'] >

45 JNR: Jump if [D ,• <

46 JZR: Jump if [DI',2] =

47 JUZR: Jump if [D,] /

50 JPZR: Jump if [D.L,] >

51 JNZR: Jump if [DI',2] <

52 JZRD: Jump if [D] = 0. } Test both bytes always,

53 JUZRD: Jump if [D] / 0. f not used.

6 1 1 10 6

X. Unconditional Branches Op Code al1 Y I D

Y: Jump destination

a : If set, skip next instruction when jump o. ,urs.

54 JPS: Jump to Y and save P + 2 in [DI I] as specified

by 1.
55 XJP: Jump to Y + [D ,1 as specified by 1. Save

P + 2 in RlI
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6 12 6

Op Code YD

56 JP: Jump to Y and save P + 2 in RlP.

Skip next instruction.

57 RJP: Jump to [D.] and write Y into [D,].

Skip next instruction. Used for closing interrupt

service routines. Y is entry point.

6 6 12

XI. Overflow Branches Op Code Sub Y
O0p Code

Notes: 1) There is an overflow flag for each D-bus byte.

2) All overflow jumps save P + 2 in RIP1 .

3) Flags may be set by following singl precision ops:

a) Add or subtract

b) Magnitude function

c) Left shifts

d) Multiplies

e) Divisions (upper byte only)

f) Square root, if operand negative. (Upper byte.)

4) Upper byte flag only can be set by double precision ops:

a) Adds or subtracts

b) Left shifts

5) Control transferred to Y.

77 51 CLOV: Clear all overflow flags.

77 52 JOVL: Jump on lower byte overflow and clear flag. Next

instruction always executed.

77 53 JOVLS: Jump on lower byte overflow and clear flag.

Next instruction skipped if jump occurs.

77 54 JOVU: Jump on upper byte overflow and clear flag. Next
instruction always executed.
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77 55 JOVUS: Jump on upper byte overflow and clear flag.

Next instruction skipped if jump occurs.

77 56 JOVUL: Jump if either overflow set, do not clear flags.

Next instruction always executed.

77 57 JOVULS: Jump if either overflow set and do not clear

flags. Next instruction skipped if jump occurs.

6 6 6 2 1 3

XII. Input/output OCoe A B yp

69 DMA: Initiate automatic input/output sequence according

to the following rules:

a) a- selects 1 of 8 channels. Channels 6 and 7 are

direct memory access data channels. Channels

0 - 5 are control channels and have no associated

data paths.

b) y selects I-0 function desired:

0 - Input request

1 - Input status request

2 - Output request

3 - External fLnction request

c) jis the monitor interrupt. Main program is inter-

rupted when 1-0 buffer is complete.

d) A, B select general registers which are interpreted

as follows:

12 12
Size cf Interrupt

A: Data Block Service Return
Entry Point

12 12

B: r Increment Idr s S

80



6 12 33

Op Code Y y .
61 IOJP: Jump to Y if the condition specified by y is met

by the channel selected by (-. Save P + 2 in Ri

Skip next instruction if jump occurs.

yprovides for the following tests:

9• - Input inactive

1 - Input status request inactive

2 - Output inactive

3 - External function request inactive

4 - Input or output inactive

5 - Input status request or external function request

inactive

6 - Input active

7 - Output active

6 6 6 1 5

XIII. Block Transfer Op Codel A I B T~
62 BLOK: Transfer a list of words between M and Mp

Machine is effectively stopped. Program execu-

tion resumes after BLOK is complete with the

first instruction subsequent to the BLOK prior

to M modification. A and B select general
p

registers which are interpreted as follows:

12 12
Size of I Starting

A: Data Block M Address
p

12 12

B: Increment Address

a = V: Ms to Mp.
a = 1: Mp to Ms.
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6 6 8 11

77 77 Stop on switches - O Code Sub Not U +3 1

STPS: Stop the jpCd 1  NtUe

computer if the combination of stop switch settings

delineated by S1  , 34 is encountered. If all S bits

are set, computer halts unconditionally. Normally,

only one S bit is set.

Note: 1) 52 of the 64 6-bit Op Codes have been assigned.

2) 53 of the 64 12-bit Op Codes have been assigned.
3) These are only tentative assignments.
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