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ABSTRACT

The AMC Inventory Research Office (IRO) has been involvcd

in the developmenr of multi-echelon inventory mdels for Army

applications for the past several years. During research for

a study for the Joint Logistics Review Board (JLRB) by IRG,

several significant advancements were made in multi-echelon

modelling. Subsequen~tly, several more were noted by TRO in

the literature and were put to use. This thesis summarizes

the multi-echelon work done at IRO with particular emphasis

on the efforts which originated w th and followed the JLRB.

study. Philosophy of onrlysis is emphasized moire than

mathematical derivation. The iechniques are eArcr-w.rere

possible.



"~. introduction

In the past several years the AMC Inventory Research Office

'IRO) hab been involved in the development and application of

multi-echelon inventory models. During that time, several

reports were printed describing some of the multi-echelon urwk,

but until now much if the recent efforts had not been published.

This thesis is a summary and reference for all of IRO's rele-

vant multi-echelon work.

Emphasis will be placed on the aaialytical phiiosophy be-

hind the develcp-ent of tne models with the intention of

stimulating interest in the mu]ti-echelon area. Those models

docum,•onted elsewhere ate given only cu±fsory treatmient, while

updocumented models are developed choraugtily.

Models of continuous review inventory systems uill be the

only ones cc.nsidered. since periodic models have littl. applica-

tion within the Army. An appropriate beginning is with the

coincident bu.: independent deveiopment of two identical models

the ANIF ,od-! at IRO and the METRIC model az RANrD. A

chronological history from this point is developed in this

report which leads to a description of all of iRO's current

multi-echelon models.

Sections 2 and 3 cover the initial multi-echelon work

which was done in the mid to late sixties. Sections 4 and 5,

which are more detailed than the others, cover some of the

more rece!nt work which originated from IRO research during a

?I



study for the Joint Logistics Review Board. A model developed

at RAND in which an error was noted and corrected at 1RO is

briefly covered in section 6, since the analysis itself is

a significant development. In section 7, a discussion of a

heuristic multi-echelon model for the SAFEGUARD ABM is given.

2. The AMIP-METRI C Model

The term "AVM!iP-METRIC mode!" will be used to signify that

the two are essentially identical models and can be discussed

as one. The MTRIC model has been formalized at RAND into

a marketable computer Frogram package, while !RO has kept

the associated c-cnputational techniquesin-house. Neverthe-

less, apart from ccmputational techniques, the two models

have remained identical.

The best references are [10) and [1l]. From a

theoretical viewpoint 1II1 is superior, and would be more

valuable to one wanting to learn about the model.

2.1 Basic Methodole2-

A queuing theorem due to Palm is the basis of ATi;P-

NETRIC. Palm derived the distribution of the number of

customers in an M/G/- queue. His theorem states that if T

is the average service time, and X the customer arrival

race, then the number of customers in the queue is Poisson

distributed with parameter XT, independent of the form

of the service time distribution.

2



A clear and concise proof of Palm's theorem is given in

[7] as a sidelight to another theorem.

Often, inventory systems are studied by analogy with

queuing systems. The infinite channel system is frequently

used. Demands are analogous to quete customers, and lead

times are analogous tc queue service times.

in the jiulti-echelon context, a lower echelon stockage

location requisitions from the er:helon above (queue customer

arrives) and receives his stock a lead time later (queue

service time). Now the lead time may be thought of as two

segments - a nor-mal Lime to respond and a delay incurred

if no stock is available. The lead time is the imi of these

two. In general, the delay due to stockout will depend upon

the demand pattern and the stockage policy at tne above

echelon. But, using the queuing analogy, Palm's theorem

says that provided demand on tne above echelon is Poisson

distributed, the number of requisitions from the lower

echelon unit which have not been filled -in the queuing

system) is Poisscn and depends only on the average lead

tima, including stockout delays. Thus, if T is the average of the
0

n, rmal time to satisfy a requisition when there is no stockout delay

and W is the stockout delay, the average lead time is T = T + E(W).0

At this point, yet another queuing analogy is used. in

simple terms, for sake of discussion, when the lower echelon

3



requisition arrives at the above echelon, it is processed

and sent to the stock room for shipment. At the stock rootr,

it is serviced and shipped without delay if stock is available,

but waits at the stock room as a backorder to be serviced

in a FIFO priority if stock is not available. Here the well

known L = ýW queuing relation applies. Thus, E(W) = expected

backorders (L) divided by the demand rate (O.

Now suppose that all stockage locations foltow S-l,S

policies and that all exogenous demands are Poisson dis-

tributed. The S-I,S policy has two ramifications. First,

S-I,S policies merely pass on demands to the above echelons

with no modification to their distribution. Thus, S-I,S

policies insure Poisson demand at all iucations in the multi-

echelon system. Secondly, with S-I,S policies, the net

stock at a stockage point is S minus the number on order.

Knowledge of the number of units on order is, therefore,

equivalent to knowledge of net stock, which is useful in

forming cost or performance expressions.

Consider the two echelon situations previously discussed.

A stockage location in the above echelon sees some average

response to its requisitions and by Palm's theorem the

number on order by the stockage location is Poisson. On the

average it backorders (net stock less than zero)

SB = E n'p(n)
n=1

4



where

n net stock on hand - backorders

p(n) = probability net stock equals n

probability on order equals S-n

Then E(W) = Bi/ where X is the demand rate on the above

echelon location. This is then added to the normal response

time provided to the lower echelon and Palm's theorem is used

again to get the distribution of net stock at the lower

echelon location.

Note that the use of Palm's theorem is only an approxi-

mation. Delay at the upper echelon is conditional on the

demands occurring on the lower echelon. The model does not

recognize this dependence and assumes that delay is inderendent

of lower echelon demands. Also, it does not recognize thc:*

backordered requisitions are not likely to crcss over in the

real world as the use of Palm's theorem implies, i.e.,

lead times are assumed indeiendent. Despite these faults,

the model has been found to provide good approximations for

the low demand items for which it was designed.

2.2 Optimization Using AWIP-METRIC

There are at least three types of objectives for which

an optimization procedure is required. One might wish to

minimize a total cost expression, or minimize the investment

required to achieve a performance target, or achieve the

best per:'rmance subject to an investment constraint.

5



Optimization using the ANMIP-METRIC model is made difficult,

however, because, in general, the objective functions are

not convex as are those of most single echelon inventory

models. Often there are small bumps in the objective

function surface which prevent common optimization techniques

that rely on convexity from proceeding to proper termination.

Moreover, these bumps can arise with small changes in para-

meters with the result that dramatically different alloca-

tions occur even though the parameters differ by only a

little. This was observed to occur on a heuristic algorithm

developed by IRO. This being a very undesirable property,

IRO developed two algorithms, both of which are considered

satisfactory.

The first algorithm is described in [3]. It was

designed to minimize total cost equal to the sum of inventory

and backorder costs in a two echelon system. The algorithm

-roduces exact optimal solutions, but its lack of applicability

to other than minimum cost objectives led IRO to develop a

flexible heuristic algorithm which does not hang up because

of non-convexity, and which can solve either of the three

objectives listed above.

The algorithm operates by adding one unit of inventory

at a time to the location where the greatest improvement

in total backorders occurs. In the terminology of search

procedure, it is a steepest ascent method. Termination occurs

6



when either tota, inventory, stOck availability, or total

backordcrs meet or eceec. their targets. Establishment of

an availability goal iE equivalent to mini),izing 'Cs. (inventory

;l:s baekorder coso sin,ýe a necessary condition for minimum cost is

that availability equal I-C H/CB where

Ci = holding cost per unit per unit time

CB = backorder cost per unit per unit time

In most cases, this procedure .eads to the opti'mal

sulution, Mere it did not in the cases examined, the

solution differed from optimum by no more than one unit

at any single stockage locatiin. This degree of error is

acceptable.

3. Raal Time Multi-Echelon Models

"Real Tima" as used here denotes a stockage deci-Dsi•L

process which relies on real time system information to

allocate available assets as opposed to allocation by a pre-

determined decision rule such as a reorder point, reorder

quantity rule which does not depend on any other system

conditions. There are two models of interest which are of

this type. Both will be treated casually.

0.i Real Time MTRIC

Reference 101 provides a complete description of Real

Time METRIC. This model provides a decision rule for shipping

depot stock to the bases which is geared to the occurrence

7



of an event in the system. Stated in it,, simplest form the

rule affirms a shipnient to base j if hasý j3 s "need" is

greater than the depot's "teluctance" to ship. "Need" is

defined in terms of base backorders. but "reAuctancs" is

an abstract concept defined by a paraimetric equation, whose

parameters have been set to yield the best results.

While philosophically appealing, Real Time MTRIC is somewhat

lacking in rigor.

3.2 IRO Allocation Model

In contrast to real time METRIC, this model, which is

described in [2], operates only when a stock imbalance orI scarcity occurs. A short term horizon is defined and a

decision for allocation of available assets is produced

which minimizesdelay to customers. The model is !"athe-

matically sound, but is limited to a three area depot, one

wholesale depot system.

4. Delay Due to S:ock-out at a Supplier With an R,Q Inventory
Policy

The importance of delay due to stockout in multi-echelon

models can be appreciatec irorm the discussion of the AN!P-

METRIC mo6el in section 2. This section describes two

approaches to stockout delay for the more general continuous

review R,Q model.

4.1 Expected Stockout Delay

The reference for this section is (13] in which Simon



developed an expression for average delay using these assump-

tion'•

a. The demand process on the supplier is Poisson with

parameter X.

b. The supplier's lead time is either deterministic or

exponential. For each lead time case, the delay expressions

were found from the basic relationrhip

E(T) = Z E(T'b)-Pr[B=b] 4.
b=O

where

T = customer delay due to stockout

E(Ttb) - expected customer delay given b

backorders at his arrival.

Pr[B=b]= probability backorders equal b

at the customers arrival (for

Poisson customer arrivals this

is the same as the probability

that backorders equal b at random

point in time).

Using complex reasoning involving order sta':istics,

Simon was able to find E(4jb). Since Pr[B=b] has been derived

in other works (see cI], Chapter 4) he was n1le to find

E(T).
His finel expressions unfortunately provided little

9



insight into the delay process. I1o-ever, for deterministic

iead times, it was shown in [81 that his result simplifies

to E[Bi/X which, of course, then agrees with the intuitively

R appealling L = X•. However, Simon indicates that chis

r relationship is not correct for the exponential lead timea.

He cites Lcoputationai experience in which as much as 537.

difference was observed i rem E.B ]A. This is somewhat

surprising in view of thte general applicabiiit.y cf L

4.2 Probability Distribution of Cu;m.opmer Dela'y

A requirement for understandin? this section is an under-

standing of chapter 4 of Hadley and Whicin e,1 in which

the probabilistic properties of an R,Q inve.rory Policy are

given. A thorough description of the contents of this
section is in [4].

If the demand process on the supplier i5 Poisso:a and if

his lead time is determirnistic, then the probability that

a customer arriving at tite 0 iwaits longer than -, isI 0
= " Prd(T-T,0)Ž R+j] 0 < T 5 T 4.2

j=1

where d(i--T,O) = demand in the interval [i--T,O)

T = suppliers deterministic lead tire

This follows scmplv from the fact that the suppliers aseats

at T-T, all of which will be availpbl= for issue no later

the- T, and the demand in the interval Jr-T,0) determines

i0



if the customer waits lcnger than T. If d\i--T.O) is greater

than assets at ,-T, the cistomer will wait loner than i.

While equation (4.1) is strictly valid conly for a

Poisson demand process, intuition indicates that it should

- be a good approximation for activE items provided T-T is larrw-

enough so that the effect of residence time of assets at T -

is negligible.
The finding of expected values requires intergratLon

over T from 0 to T. For 7 closc to T, i-7 will be small,

and thus only a Poisson demand process c:an be used.

To find E(T) we -se

T
E(T) = H(x)dx

0"'

For a Poissou demand process

iQ w
E(-,) Z .-• Z PfR+.j+k.,XI) .43

i=l k=1

where

= exp(-XV XT M

Since
i .. P.R+j+k,\T) is --ae Drobability that ba.luorders

j•i

are &rearer than k, we see that E(7) reduces to E(-*.)-=E

which agrees with the resultrs in section 4.1.

irn a similar rianner

E(i- 2 ) ,,2

=-4---X .. tk-R•---l),b-,AT) , (4.4)

I!
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Then
22

Var(T) E(- - (4.5)

4.3 Probabilitv Distribution of Customer Delay for Order
Size Ž 1

Again a complete reference for thic section is [4].

When customer demand is always for one unit, there is no

problem in defining custo-mer delay. But if a demand can be

Ž I unit, then it is possible that al', part, or none of

the demand will bedelaytddue to stockout. As such, several

possible definitions of delay can be made.

In order to overcome this definition problem, the

delay distribution is derived for all individual units cf

the demand. If a d•r..and is for U 1units, each is identified

by an index j. Using arguments similar to those in section

4.2, the probability that the j th unic waits less than 7 is

G j.(T) 0 , j > R + Q,0 S T '. T

R-+Q
G. = PrFA(T-T)=a1I'r[d(--T.0) _ a-j] (4.6)

a-max(j ,R+I)

I • j RNRQ, 0 < T < T

G (T) = I for all i

Here again, as with equation 4.2, CGj(T) is strictly valid only

for a zompound Poisson demand process.

Derivation of the pdf by individual units provides

12
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flexibility in developing measures of delay. For example,

to get the expected value of the average wait of the demand

taken over all units use

uO U
E u(T) = Z f Uu E(•j)

ur-I u j=l

where

E(.Tj) = expected delay of the jth unit

f(u) = probability the order size is u.

An alternative measure might be

E (T) Z E(- U.)f(u).

u=l

i.e. the expected delay until satisfaction of the entire

demand.

5. A Two-Echeion R,Q Model

Again for this section, familiarity with Hadley and

Whitin [1i, Chapter 4 is required. As yet, there are no

other references for this section.

Based on the results of the previous section, several

approximations are used to model a two-echelon inventory

system. The policies at both echelons are of the general

continuous review R,Q type. The items must be either

completely consumable or completely reparable.

5.1 A Single Echelon RQ Model

if a supply point uses an R,Q itkvenicory policy and is

13



replenished in a deterministic lead time, L, the probability

distribution of its net stock position can t. dcrived.

Defining net assets at time t, A(t), as on hani, + ,n order

- due out, and noting that all on orders at t-L witl hiave

been received iato on band stock by time L we -,ve

N(tiL) = A(t-L) - d(t-L,t)

where

N(r-L) = net stock at time t with lead time L

d(t-L,t) = dema.id in the interval [t-L,tj.

Exact solutions for the steady state pdf of net stock have

been fouid only for compound Poisson demasd ?roce~rsirs, but

successful appioximations have beer used. For example,

approximating the pdf of assets as uniform equal to l/Q

which is true only when all demands are of unit order size,

or using a normai distribution for lead time demand.

Except for exponetlealy distributed lead Limes, no

exact method exists for finding the pdf of N for random

lead times. Hadley and Whitin, however, suggest as an

approxim•a'ion

P n= PrN(tL)=n g(L)dL (5.2)
L=O

where g(L) is the pdi of the leadtime. This will be a good

approximation,provided the chances of more than one order

outstanding are negligible. Equivalent to (5.2) is the use

14
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of the marginal lead time demand distribution directly in

• (5.1).I: If the marginal distribution of demand caanot be found

in tractable form, it might be necessary to hypothesize a

reasonable form for the distribution and set its parameters

appropriately. In this light a useful result is found in

Parzen 'i03 where it is shown that

Var[X = E[Var(X|Y)] + Var[E(XIY)1. (5.3)

Using lead time demand, dL2 in place of X, and L in plaue

of Y in (5,3) yields

Var(dL J= E[Var(dIL)j + Var[Et d•IL)] (5.4)

Yaz•: comoo-nd Pciason de-and distributions where Var [dlL] = UL V

and as an apprcxiniatiou for others, (5.4) car be changed to
9

VaridL] V= A S E(L) + (4S)Y Var(L) (5.5)

where

= demand rate

S average order size

M = variance to mean ratio of lead time demand
quantity

Along with the 2wpected lead time denand, 4 S E(L), Var(&)

can be used to set i.he parameters of the hypothesized dis-

tribution (provided of course it i., a tlzo pa-eaerer distribution).

The military services plan to determine their Iead time

15



demand in this manner using a convenient approximation to

the normal distribution which gives closed form expressions

for the optimal parameters.

5.2 A T•o-Echelon, R•O Model

The logic behind .nis model is much the same as the

ANMIP-NETRIC model, although a Zew more approximations must

be .made. Recall that AýM~P-MTRIC developed measures for

the tgp echelon independent of the lower echelons, and

then used these "o determine the effect of top echelon

stock on Lhe lower echelon. In this sense, the two-echelon

F.,Q model is like AMMIP-METRIC.

In this case the mean and variance of custco-mer delay

due to stockout at the top echelon are determined as a

function of its srockage policy. Then the3e are related to

the marginal lead time demand distribution to determine the

pdf of net sLock at the lower echelon locations.

As previously mentioned, the use of equation (5.2) on

(5.1) is identical to using

N(t) = A(t-L) - dL (5.6)

where dL has the probability function

-0

Prrd L=X] = 1 Pr[d(t-L,t)=X] g(L)dL
L =LG

Consider a two echelon supply system with several

atockage locations in the bottom echelon and only one in the

16



too echelon from whom the bottom echelon points order.

As with the AMMIP-METRTC model, the bottom echelon lead

time is thought of in terms of a normal response plus

a stockout delay at the top echelon. In the simplest

case, the normal response is deterministic, with all

randomness coming from the stockout delay. Clearly, if

g(L) can be found in terms of stockout delay, the basis

for a two-echelon model is created.

If the lower echelon lead time, L, is equal to

C-+W

where

C = deterministic normal response

W = delay due to stockout

then g(L), L Z C is equal to the stockout delay density

function h(o) at the point L-C, i.e. g(L) = h(L-C).

However, even in the simplest situation we were unable to

obtain a closed form expression for the marginal distribution

of lead time demand. This was tried by using a Poisson

distribution to represent both demand on the top echelon (it

cannot be if the bottom echelon locations order quantities

greater than 1), and demand on the bottom echelon.

We decided, therefore, to assume a form for the marginal

distribution and set its parameters as discussed in Section

5.1. The negative binomial distribution was selected since

17



it is gaining acceptance within the military services to

represent demand likelihood. Of course, any other distribu-

tion can be used in place of the negative binomial.

With L = C4W we have

E(L) = C+E(W)

Var(L) = Var(W)

Using equation 5.5
Var[dL] = VMR AYD (C+E(W)) +(AYD)2 Var(W)

L

E[dL] AYD (C+E(W)) (5.7)

where AYD is annual yearly demand and C and W are expressed in

years.

Demand on the top echelon will depend on the demands

on the lower echelon stockage points and their reorder

quantities as well. In section 4 it was indicated that, at

best, measures of the mean and variance of stockout delay

could be obtained exactly only for compound Poisson demand

distributions. Moreover, we have been unsuccessful in finding

tractable expressions for anything but a pure Poisson demand

process. (Equations 4.3 and 4.5) By tractable expression

is meant one which can be quickly evaluated by computer.

We decided, therefore, on the following intuitive approach.

In order to limit the number of computations, the

reorder quantities at the bottom echelon were assumed to

be Wilson Q's. This eliminates searching for the optimum Q's

18



Since the optimum will be larger than the Wilson, and since

the tendancy within the services is to keep order quantities

small, this is not felt to be a serious limitation.

Establishing the Q's establishes the demand pattern

on the top echelon. We will assume that the demand process

on the bottom echelon is Poisson. Then demands on the top

echelon from a particular lower echelon unit occur with

Gamma distributed inter arrival times.

That is if

X = demand rate on location i

Qi = reord-ir quantity of location i

= time between placement of orders on top

echelon by location i

then is distributed as

Sf(•z) =X. e
1

F(Qi) (5.8)

Pelczynski [9] has derived relationships for the mean and

variance of the number of order placements in a random time

interval. n.(t), for Giamna distributed time between order1

placements. In terms of the parameters of (5.8) then

A.

The expression for Var[n.i(t)] is not as simple, but without

much difficulty it can be evaluated o. a computer. However,

the limiting form as t -. >o is simply
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lim Var[nL(t)] =- t + 6 I]
t->- L Qi2 6

which can be used for some two echelon systems. In general,

the appropriateness of .is form depends on the magnitude

of exp(-Ai•); the smaller the better. In particular, if

the top echelon is the wholesale level, then t would be its

procurement lead time. For any but the most inactive items,

the approximation will be good. Assuming that demands

from the lower echelon units are independent of one another,

then the mean of the quantity demanded on the top echelon

in a random period t is

N Qi.i N
E[d(t)] = = E k t (5.9)

i=l i= 1

and the corresponding variance is
N 2

Var[d(t) = E Q Var[n.(t)] (5.10)
i=l i 1

where N is the number of stockage locations in the lower

echelon.

Here a critical assumption is used. While neat forms

for expectation and variance of stockout delay were obtained

for the Poisson only, we assume the form of the expression

is valid for any probability distribution. Thus, wherever

a Poisson probability function appears in the expression,

the corresponding function for another distribution is used.

This we assume provides a good approximation.
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This is analogous to Hadley and Whitin [1] replacing

the Poisson by the normal in the net stock probability

equation even though the equations were exact only for the

Poisson. Moreover, it is reassuring to note that the Poisson

cumulative distribution appears explicity in the expressions,

and replacing the Poisson by another distribution does not

destroy the interpretation of the expression-.

Thus, expected delay will still be E[B]/A as equation

(4.3) was interpreted. While no intuitive interpretation

was made for the expression for variance of delay, any

interpretation of equation (4.4) will not change with a

substituted distribution.

All the ideas having been covered, the computational

aspects of the model will be summarized in instruction form.

I. Compute the Qi for each lower echelon location using

the Wilson formula and select reorder points, Ri.

2. Use equations (5.9) and (5.10) to dete-rmine mean

and variance of quantity demanded on the top echelon during

its lead time.

3. Assume demand on the top echelon in the lead time

is distributed as a negative binomial random variable and

compute its parameters using the results of step 2.

4. Assume a top echelon R and Wilson Q and use

equations (4.3) and (4.4) with the negative binomial of

step 3 to get expectation and variance of stockout delay.
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5. Use equation (5.4) to obtain mean and variance of

lower echelon lead time demand for each lower echelon unit.

6. Use expression (5.6) to determine probability

functions for net stock at each lower echelon stockage

location, and also for the top echelon.

7. Form an appropriate objective function and find the

optimum reorder points.

6. An Exact Two-Echelon Model

In [14] a two-echelon model was developed and was claimed

to be exact. However, there was an error in the development,

Nevertheless, the basic methodological approach was valid.

A corrected methodology was developed in [5].

6.1 Methodology

The model is developed from these assumptions:

a. The top echelon, or depot, uses an R,Q continuous

review replenisuiment policy and a repair as received repair

policy.

b. The lower echelon locations use S-l,S replenishment

policies and repair as received repair policy.

c. The demand process on the lower echelon is Poisson.

d. All repair and replenishment times are deterministic.

e. There are probabilities that a 2ailed item can b-- repaired

locally, or if not locally repaired then at depot.

It is beyond the scope of this report to reproduce the
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rs'.hematical expressions, but the ideas behind these are

interesting and will be presented.

When a stockage location uses an S-l,S inventory

policy, k.iowledge of the number of units on order plus

in repair is equivalent to knowledge of the net stock,

since net stock plus on crder plus in repair is always

equal to S. By assumptions c, d and e the number in

repair at time t is Poisson distributed. The number on order

at time t consists ef those orders which hae not had sufficient

time to be filled, plus those which have had sufficient time

but are unfilled because of stockout delay at the depot.

If t. is the order and ship tine for lower echelon locationJ

j, then any demands placea on the depgt in the interval

(t-tj,t) cannot be sacisfied by t and are, therefore, in the

on order quantity at time t. Again, these demands are Poisson

distributed by assumptions c, d, and e.

•_t-t -t. t-k 0-t. t-t. t

FIGURE 6.1

Figure 6.1 will be helpful for the remainder of the discussion.

Ro is the depot repai- time, and t is the depot lead time,0

where R < t (a similar development ip required for R > t 0).

Demands by location j on the depot prior to t-t. but later
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than t-. -t are potential candidates for on order at

time t, assuming that the depots reorder point is L- - I,

Now depot assets at t-t -t. plas any failed items returned

• ~to the depot i~n the interval (t-to-%•, L-Ro-t.) can .possibly

be made available to locatio)n -1 by time t. ifL, for, exampl!e,

these total to A. a demand from location j in (t-t -t.,t-t..3

will be satisfied by t if it is one of the first A demands

after t-t -t.. Thus, if total dam.nds on the depot Jn
0 3

(t-t -t., t-t.) are d > A, and those from io o j are

d. < d, the probability x of the d. are on order at time3 3

t is the probability that d,-x ci the first A demands on the

depot are from location j.

These are the :oncepts behind the model development.

Once they are understood, it is merely the use of the

probability calculus to produs the mathematical expressiuns

for the probaoiiity function of net stock at lozation j.

The final expres~ions are leu:gthy and involve quadruple

smimations; h.tvever, they are sim•lified when the item is

either all cousum.able or always able to be repaired.

7. SAFEGUARD rrovi•,ioning Model

This model was developed at IRO for the SAFCUARD

Logistics Command's lise in provisioning decisions. It is

Sincluded because it is a good eu2mple of how the tecbniqves

and ideas describei previously can be modified and coupled

with other models.
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7.1 The SAPECUARD Supply and MAinaeaance System

The SAFEGUARD Supply and ?iaintenance Syscem will be a

a.o echelon structure., tha sites at the bottom, and a

depot on topz RemOval and replacement of failed modules

(called ORU's ter On-Line Replaceable Units) is the basic

maintenance concept. Vqe failed ORU's, most of which are

reparable, are either repaired on site with probability, p,

or eiacuated to depot on a direct exchange basis. Of those

returning to depot, there is a probability q th• item cannot

be repaired at all.

The SAFEGU4LRD ICP will control the depot operations

of maintenance and supply. Depot stocks are replenished by

procurement of an amount Q when attrition reduces depot

assets to the reorder point R. Failed items returned to

depot enter the repair facilities immediately with no

batching. Likewise repair at the site is immediate also.

7.2 A Heuristic SAFEGUARD Stockage Model

A most important requirement of the SAFEGUARD ABM is

that a target availabi]ity be achieved. This objective precludes

"the direct use of a single item inventory model in which

performance is measured in terms of the item alone. At

least two system availability stockage modrls have been

developed to aid in provisioning ORU's to achieve the target.

But these are single echelon models and can only answer

the question of how many ORU's are required on site to
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achieve the target at minimum site spares cost. While it is

possible to conceive of these models being expanded to

handle the depot spares decision as well, it could not be

done without considerable effort and perhaps loss of

computational feasibility.

The output from one of these system availability

models is a list of spare ORU requirements such that the

system availability is achieved with the least investment

in ORU spares at site. In producing this list, of course,

the model had to measure the ?er dollar impact of a spare

on system availability. Spare ORU's affect system availability

through the replacemei-t time which is composed of a normal

segment that does not depend on spares plus a delay segment

that does depend on spares. The output of the availability

model can, therefore, be interpreted as a list of the most

economical tolerable delays due to ORU stockout on site.

Most important is that as long as these average delays due

to stockout are achieved, the system will meet its goal.

Now average stockout delay is a supply measure which

has been discussed throughout this report. In fact, all

the inventory models discussed are capable of approximating

average delay due to stockout at the site as a function of

site and depot stockage policies. All of this suggests a

heuristic multi-echelon optimization procedure which uses

a suitable multi-echelon inventory model to achieve at least
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cost the most economical tolerable delays produced by the

system availability model.

Recalling the description of the AI-M!P model in section

2, -alm's theorem was used to approximate the number of items

in the pipeline where demand for the item was Poisson

distributed. But at the SAFECUARD site, for a gi-ven ORU,

the number installed may be small. ConsequenLly, failures

cannot be approximated by a Poisson since they are state

dependent. However, there is a theorem analogous to Palm's

which gives the probability distribution of the number of

items in the pipeline when both failures and lead times are

state dependent. A derivation appears in [12]. If the

state of the system is denoted by m, demands are Poisson

with rate X m and lead times have an arbitrary distribution,

then the state probabilities depend on only the ý 's and

the average lead time.

As with the AIP-METIRIC model, average lead time is

computed from a normal lead time plus an average delay.

Then the site pipeline distribution is computed by the above

theorem. Thus if

T = the average time to return an unserviceable

ORU to serviceable condition on site =

average pipeline time.

f(x) = prcbability the number in the pipeline is x

27



then

f(x) = C X X2 .*.'x I/Tx (7.1)

where C is a normalizing constant.. Note thAt T = p t rr

(l-p)(ts 4W) where tr average si,-e repair time

t average replenishment time frýni depot

W average delay due to stockout at depot.

To determine depot delay, we are forced to return to assuming

ddepot demands ere Poisson. A single echelon model described

in r 151 is used to determine average depot back-'-ders for

a giver, depot R and Q. Depot delay is then cwputed as

average backorders divided by the depot demand rate. This

is an exact expression and has been derived in the swme

manner as was equatior. (4.3).

Usirg equation (7.1) the average number of site

bacizorders can be iound for any site spares level, Si, and

1.1
any depot policy, R,Q. otipi7stiOn over S. and eawith a

Wilson Q is accomplished by search.
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