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ASSTRACT

This research describes one of several alternatives being explored

to establish advanced guidance techniques for the Army's long range

tactical missile, the PERSHING. The analysis is given for estimating

the inertial measurement unit's error states in an aided terminal

guidance mode. Position observations measured by a radar area correla-

tion system and a radar altimeter are processed in an extended Kalman

filter to yield the suboptimal estimates of the inertial measurement

unit's errors.

The dynamics of the inertial system are modeled in four coordinate

systems to Allow the choice of the least complex mechanization. To

minimize on-board computer requirements, an analysis of the filter's

performance is made by comparing the optimal filter geins with a filter

formulated with fixed gainb chosen a posteriori from thoze computed

optimally.

Several variations of the problem are simulated. The observations

are modeled as discrete time measurements obtained once per second and

then once every two seconds in the terminal guidance phase oi the

flight. Also, conditions are varied to simulate optimistic as well as

realistic radar imagery processing time and its effect on the accuracy

of the filter.

Results indicating filter error and root mean square values of the

state estimates obtained in a Monte Carlo computer simulation are shown

graphically to validate the conclusions.
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CHAPTER I. INTRODUCTION

1.1 BACKGROUND

Studies are being conducted by various elements of the U.S. Army

Missile Command and teams of radar and guidance contractors to estab-

lish advanced guidance and reentry techniques for the Army's tactical

ballistic missile, the PERSHING. These wide ranging studies are

considering the feasibility of modifying the reentry body configuration

and guidance trajectories, updating the inertial sensors, digitizing

the control system, changing the vehicle's aerodynamic characteristics,

and augmenting the guidance system. The objective of these studies and

follow-up development work is to improve the missile's basic figure of

merit which is the target miss distance at impact.

This report summarizes a study of only one of those alternatives,

in particular, the analysis and simulation is performed for an inertial

guidance system augmented by P radar area correlation device. Aiding

an inertial measurement unit (IMU) with position and velocity measuring

devices is not a new idea. The literature abounds with techniques and

methods of maintaining inertial equipment within acceptable error

bounds. Papers by Broxmeyer [1], Duncan [2], Dworetsky and Edwards [3],

and Friedman [4] are only a few which are representative of the early

work in this area. However, the use of additional external measure-

ments, optimal in a sense, is much more recent and has never been

applied to the PERSHING.



1.2 PREVIOUS INVESTIGATIONS

Of the many attempts to improve inertial system performance by

using external information, one of the earliest was that of damping the

84-minute and 24-hour natural periods of the vertical and gyrocompass

heading loops, respectively. The primary purpose of damping the

inertial system was to reduce the amplitude of the oscillations caused

by offsets and gyro drifts, or at worst, to reduce the oscillations to

a fixed constant value. Attention was focused on various damping con-

figurations or equalizers which led to concepts such as second-order

(velocity) and third-order (acceleration) tuning [3]. The need for an

external source in damping the IMU was apparent when it was observed

that errors caused by vehicle motion would result if only information

from the inertial system were used [5]. However, if external speed

information was properly introduced into the inertial system, there

would be no error caused by the vehicular induced motion provided that

the external information which was used matched the inertially derived

information in accuracy.

Another way of using external information to obviate inertial

errors was found not in the literature but in practice. In that

method external measurements were used directly to update the inertial

system rather than implement a damping scheme. Inertial system posi-

tion indication was changed to agree with the results of a position

fix and inertial system velocity indication was changed to agree with

the results of a velocity measurement update. Although it may

have been expedient, this approach ignored the fact that the inertial

-2-



system errors were primarily caused by random time varying inertial

sensor errors and that the external measurements also contained random

errors which may have been significant compared to the inertial system

errors.

The use, by practicing navigators, of measurement updates in this

manner, however, led systems designers to consider more viable alter-

natives in using the external fix information when it became available.

Consequently, within the framework of inertial systems analysis, the

problem evolved of finding the optimal estimate of the system error

(a random variable) when a linear function of that variable was

corrupted by additive noise.

The earliest published study of this class of problems (1809) was

Gauss's Theoria Motes Corporum Coelestium in which astronomical

parameters were estimated. Legendre independently invented the method

of least squares estimation and published it in 1806. (According to

Sorenson [6], Gauss claimed to have invented the method of least

squares in 1795 but did not publish it until 1809.) R. A. Fisher

introduced the maximum likelihood method in 1912. In 1942, Kolomogorov

and Weiner independently developed a linear minimum mean-square estima-

tion technique. The key result of these studies was an integral

equation called the Weiner-Hopf equation in the U.S. The solution of

this equation was a weighting function which, when convolved with the

corrupted linear measurement, produced the unbiased minimum variance

estimate of the random signal. The application was limited initially

to statistically stationary processes and provided optimum estimates

-3-



only iii the steady state. Kolomogorov and Weiner's work was expanded

during the next 20 years to include discrete, nonstationary, and multi-

port systems, but in a way which required cumbersome calculations. In

the 1950's, the idea of generating least-squares estimates recursively

was introduced by several investigators: Carlton and Follin; Swerling;

Blum, Robbins, and Mundo; and Kiefer and Wolfowitz, all noted in

Sorensen's paper [6]. Kalman [7] (1960) and Kalman and Bucy [8] (1961)

generalized the results of Weiner and Kolomogorov to nonstationary

random processes and developed the problem based on a state-space and

time-domain formulation. The recursive nature of the filter developed

by Kalman made it ideally suitable for solutions on the digital

computer.

Since then, there has been a veritable explosion of investigations

applying the estimation technique, commonly called the Kalman filter,

to a host of aerospace oriented problems. The study by Gelb and

Sutherland [9] alone lists over 40 such references. Yet, in all of

this literature, there was interestingly enough no unclassified

reference to the particular optimal combination of systems described in

this report, i.e., radar area correlation and inertial guidance

systems.

1.3 PROBLEM MOTIVATION

In this application, the IMU on the PERSHING must perform two

functions: (1) provide data to allow the missile to be guided during

boost accurately enough to reach a terminal acquisition basket during

reentry and (2) provide the attitude reference for the terminal
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guidance device. Prior to the terminal guidance phase, the reentry

body follows a ballistic trajectory determined by the launch-phase

guidance system. At a particular altitude, in the case of PERSHING

30,000 feet, the reentry body must be in a specified position if the

terminal guidance scheme is to be of any value. Without terminal

guidance tl~e reentry body would continue on its ballistic path into

impact with a miss distance representing the accumulation of all

errors of the launch phase, mid-course phase, and terminal phase of

the flight. This covers the entire range of possible error sources

including atmospheric perturbations on the intended trajectory, errors

in the guidance and propulsion systems, false targeting, etc. To

minimize the effects of these errors and consequently the miss

distance, use of a radar area correlation terminal guidance system will

be studied.

The map-matching function, as it is sometimes known, is to deter-

mine the difference between the desired position and actual position of

the vehicle at various altitudes by use of radar correlation detectors.

Knowledge of position error is sufficient to determine the necessary

trajectory correction because the velocity vector of the reentry body,

within certain bounds, is precisely known (as determined by the IMU).

To obtain the position error, an image of an area near or ideally

including the target, is obtained at a specified altitude using a side-

looking airborne radar. This area is mapped by a beam scan. The radar

image obrained is compared with previously stored reference imagery to

determine the position error. To accomplish this objective, in the
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presence of errors in the image formation and radar noise, the images

are matched for that displacement which results in the highest correla-

tion between radar and reference;

Conceptually, this external data could be used to update the

inertial system because the position and velocity indicated by the IMU

would be in error. Unfortunately, these data are too imperfect to be

used directly because of measurement errors and other effects such as

intensity quantizing errors, scale factor errors, resolution effects,

etc. Thus the discussion returns to the general class of problems

described earlier, i.e., given measurements ZI, Z2 ... Zn. determine

the best estimate of the states XI, X2 , ... X . With certain restric-n •

tions, criteria that define the optimal state estimate introduce

the formulation commonly referred to as the Kalman filter.

1.4 PROBLEM STATEMENT

The problem is to optimally estimate the inertial guidance system

errors using the position measurements obtained from a radar area

correlation system and a radar altimeter during the terminal phase of

the PERSHING missile flight and to consider suboptimal mechanizations

which would simplify the hardware.

1.5 OBJECTIVES

There are several objectives to be fulfilled in the course of

seeking a solution to the problem. Representation or modeling of the

inertial system will require a decision on the mechanization to be

used, i.e., wandering azimuth, local level north-east, tangent plane or

space-fixed tangent plane mechanizations.
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There is time enough in the terminal guidance phase to permit as

few as 5 or as many as 15 observations of position. The second objec-

tive will be to determine the optimum number of measurement observa-

tions to be made by the radar system and their spatial timing.

It is conceivable that an on-board digital computer will be

utilized to dQ a variety of command and control tasKs. To simplify its

computational burden, the third objective will be to discard systemati-

cally error variables from the complete mathematical model for a mini-

mum Kalman filter mechanization.

The optimal gains applied to the updating of the state variable

estimate are typically time varying. The fourth objective, consistent I
with reducing the computation burden, will be to determine the extent

fixed gains or other simplifications such as programmed gains can be

utilized in the model.

The fifth objective is to define a set of specifications on the

IMU and radar sys' ems suitable for real world system synthesis.
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CHAPTER II. DYNAMICS OF THE INERTIAL SYSTEM

2.1 GENERAL

Detailed descriptions of inertial sensors and systems are avail-

abic. in standard texts by O'Donnell [10], Pitman [11], and Fernandez

and Macomber [12]. It is assumed that the reader is generally knowl-

edgeable with their works. For completeness however, the following

paragraph summarizes the essentials.

The inertial guidance system consists of sensors that measure

specific force (the accelerometers) and sensors that measure angular

motion in a coordinate system fixed in Lhe 324U (the gyros). The

gimbailed platform, shown schematically in Fig. 2.1. is typical of

those that have been used on the PERSHING. It permits isolation of the

instruments from the angular mntion of the vehicle by using the gyros

as sensors of orientation change. Through gimbal servos, the platform

is returned to its proper attitude permitting the accelerometers to

measure changes in specific force. To obtain velocity, position, and

attitude information from the instruments and the platform, sets of

equations are mechanized in the computer. Additionally, the mechaniza-

tion equations provide the information for torques needed to precess

the gyros.

In the sections which follow, mechanization equations will first

be developed in ideal invariant vector form. Because system-state
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FIG. 2.1. SCHEMATIC DIAGRAM OF A THREE GIMBALLED INERTIAL
GUIDANCE SYSTEM'S IMU

variables are sought for use in the estimation problem, inertial system

error equations will be developed as well as a comment on their appli-

cability in the problem.

2.2 INVARIANT VECTOR FORMULATION OF THE 14)U MECHANIZATION EQUATIONS

It is meaningful at this point to briefly explain the differences

among the various coordinate bases which will be used in the develop-

ment and indicate why one may be preferred over the other. In deriving

the ideal mechanization equations in text (and the error equations in

the appendices), the following bases are important:

(I) - The inertial basis defined as fixed in "space" and nonmoving

(E) - The earth fixed basis which rotates with respect to the
inertial basis at earth's angular velocity
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(L) - The local basis defined by the true position on the earth

(C) - The computer basis defined to be the same as the local basis

except it also is defined by the indicated position

(P) - The platform basis defined as equal to the computer basis
but rotated from it by some small angle.

It is desirable to derive the equations in the local basis because

navigation is done in the basis which is defined by the true position

of the vehicle on the earth. In the historical development of the art

of dead reckoning navigation, the local level or "plumb bob" level

(described later) was the most easily realizable vertical. Thus the

local basis, in many cases, tends to be similary mechanized, i.e.,

locally level. That practice will be followed in the sequel.

The computer basis, used in the development of the error

equations, is the basis in which the navigation variables are computed

and output. Thus, this is the basis in which indicated position is

given. It is also convenient to think of it as the realizable mechani-

zation of the local basis.

The platform basis, used in the error equations, is the basis in

which the inertial instruments are considered fixed. It is in error

with the computer basis in an amount contributed by the gyro and

accelerometer instrument errors as well as several other error sources.

These bases are shown in Fig. 2.2 which defines their relative

orientations. The mass center of the earth, represented by 0, is

also the center of the inertially fixed basis, X1, YIP ZI. The

subscripts E and L refer to unit vectors fixed in the rotating earth's

basis and local basis, respectively*.

*J. R. Streeter discusses using the center of the earth rather than the
sun as the origin of coordinates fixed in inertial space in
O'Donnell's book [101.
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The following notations are in the development which follow:

r A vector expressing position from earth's center
of mass to the vehicle

d(-r)I E vector expressing velocity of vehicle with
dt 4 r = respect to earth fixed basis

-I vector expressing velocity of vehicle withd Cr). ZS
dt r respect to an inertially fixed basis which is

nominally time invariant

d L vector expressing velocity of vehicle withd (r4)1
dt L respect to a local basis.

Also let

E
V r

and

_+ I -I
uA V +-iW



By the Coriolis law,

L E-+ -4 -. E-L -.

r r+w xr

-4 -4E-L -L
=V + x r . (2.1)

Also,

r=r+w xr

E-I -4
V + x r . (2.2)

The specific force meter (SFM), as described by Markey and Hovorka

1131, can be idealized as follows:

III

r = f + G , (2.3)

where

f Z specific force

G A gravitational field intensILy vector at the center
of mass of the SFM mass elemeiit

r =A vector expressing the acceleration of the specific
I- force meter's case with respect to the inertial

basis.

The luft side of Eq. (2.3) is given as

II I

r = U , (2.4)

-+E- I
Substituting Eq. (2.2) into Eq. (2.3) and noting w , the earth's

spin rate, is a constant for practical purposes,
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f + G = + w X r

r

V 4E- -r=V +W Xr

L (2.5)

V+W x V +• W XU

Substituting Eq. (2.2) into Eq. (2.5) for u gives

f+G= + XV+ XV +--- )E- (2.6)

CombiLing and rearranging yields

L

-4 -4-I xýE-I(2.7)V f +G-w + W x V -W r) ,

where the gravity field intensity vector can now be defined as

This is the vector which is the vector sum of the gravitational field

intensity vector and the centrifugal acceleration vector caused by the

earth's rotation relative to an inertial basis. More commonly, it is

the apparent specific force caused by gravity which acts along a plumb
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bob suspended to the point considered (Fig. 2.3). This is an important

consideration because most of the tactical maps in use today aro based

on the concept of a local, plumb bob level. Even though more and more

use is made of cartographic satellites which map earth's imagery
--)

relative to the G gravity, the former is still more commonly used by

the Army. Thus, Eq. (2.7) simplifies to the following ideal invariant

vector form:

L -• -• E-I L-

+ ×(2.8a)

Rewriting Eq. (2.1) for completeness,

r V + ul x r (2.8b)

FIG. 2.3. GEOCENTRIC AND MASS ATTRACTION PARAMETERS
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Equations (2.8a) and (2.8b) are the ideal position state equations

in convenient form for hardware implementation. The left side of

Eq. (2.8a) is the derivative of velocity relative to a local basis

oriented near the earth's surface. The term f, the specific force, is

provided directly by the accelerometers, and the last two terms are

calculated from knowledge of position and the angular velocity of the

local basis which are instrumented and computed on-board the vehicle.

It remains to choose the local basis for coordinatizing Eq. (2.8a)

explicitly. Several are common, including the wander azimuth, local

level north-east, tangent plane, space-fixed tangent plane, free

azimuth, latitude longitude, and relocated pole latitude longitude.

These various mechanizations differ basically in the way the vector
-4L-IW is prescribed.

For purposes of this study, the free azimuth, the tangent plane,

the space-fixed tangent plane, and the local level north-east mechani-

zations will be investigated.

2.3 THE IMU ERROR EQUATIONS

Ideally, Eq. (2.8a) may be implemented in any of the coordinate

systems previously mentioned. Realistically however, it is impossible

to instrument the equations without errors because of such factors as

gyro drift, erroneous gyro and accelerometer scale factors, accelerom-

eter bias,, etc. Consequently for reasons that will be discussed later,

the ideal equations will not be used in the filter. Instead, standard

perturbation techniques will be applied so that the effects of the
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errors on the navigation computations can be determined. The inertial

system errors are estimated in the filter and not the states of the

vehicle nor of the navigation problem directly.

The inertial system errors are described by the following error

vector differential equations:

L -4-. = . -•L-Ic0 " • -LI -

X • + K • 9 + C (platform error) (2.9)

and

II /4-
Fr + T- 3 r) b =Kf • f + b - f (position error) (2.10)

where
-4

i A vector representing the small angular misalignment
between a basis fixed in the computer and a basis fixed
in the platform (Fig. 2.4)

s 1% Schuler angular frequency given by K/r3

g, tensor representing the gyro scale factor errors on the
"g principal diagonal and misalignments on the off-diagonal

Kf A tensor representing the SFM scale factor errors on the
principal diagonal and misalignments on the off-diagonal

-4
, vector representing gyro-drift rate as an error

b A vector representing SFM bias as an error

r r Aý dyad of unit vectors in the r direction.

Equations (2.9) and (2.10) are derived in Appendix A in a manner

following that of Lange (14). It differs from derivations shown in

the standard texts mentioned earlier.
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Expanding Eq. (2.10) by the Coriolis Law yields

I L
-• -• -*L-I -4 (2.11)
S5r = s + w X br

and
II LL L L

--L-I -( -4L-I -4 (2.12)+ X ( br + W x E8r •

Substituting Eq. (2.12) into Eq. (2.10) for br gives

LL LI L L
-4 -+ L- I -+ L-I -+ -+L-I L-1

2-C X- (2.13)

1s 3 r •r
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The results shown in Eqs. (2.9) and (2.13) are important. They imply
-4

that if * is used as a basic characterization of platform angles, a

differential equation exists for f which is independent of position

errors. Thus, the decoupled u equation, Eq. (2.9), can be solved inde-

pendently and the result used as driving variables in the position

error equation, Eq. (2.13).

Now coordinatize the two sets of equations into a local basis

(L-basis). Beginning with Eq. (2.9) and noting vector and dyadic

operators,

S.x

L •(2.14)
L y'

L-I
X (A y (2.15)

fix y ýz

J AKgI m1 2  m1 3

K= 2 1  A K m (2.16)

g 21 g2  1f 23

L
m3 1  m3 2  g3

".A Kg I m1 2  m 1 3  '(X(

K (A) L-I it (2.17)Lg • , 21 AKg2  m'23 "(.7
L L

m 3 1  m 3 2  A Kg3  (dz

-18-
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and

x

rz 6 (2.18)
L

z

Thus Eq. (2.9), the platform error angles, coordinatized in the local

basis is given by

'x (,Y*z "•wz•Y) (AKgIwx + ml2wy + m13wz) 6x

S z*- - +x*z) (m2 1wx +AK K y + m2 3 wz) ey (2.19)

( Y- W x)] [(m3 1wx + m32 y + A Kg3wz) 6z

Coordinatizing Eq. (2.13) in the local basis gives

br by 3= b (2.20)

L L L

L L- Lf [ W w] (2.21)

b--9

L L

L L z z

(2.22)
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[1 0 0] [ 0] o 11 [b X]

lo i l-1 3 0y (2.23)
L L

O 0 0 1LjL)z

bx

b= b (2.24)
L

b
L ZJ

and

x [ f x ty z (2.25)
L L

rf f y f z

Carrying out the indicated operations and substituting into Eq.

(2.13) yields the following position error equations coordinatized in

the L-basis: ]

F~~~x ()F )zFý (:,.j~z - zF )

-2 , c- F - 5:x - ýZ)j

2 2)F •x + (" I.,,yy + wx(,zIZFi
y 0

( 1 4(rt2)Fx _ C_ (,I F_ + (,I I.'

- (,)9 4 o w + + (I2z

x "y z ( - +
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[8K 1 (eKf 1 f x+ m12fy + m13 fZ)
2 2j by + m21 '. + AKf 2 fy +m2 3f)

L2  (M3 1fx + m3 2fy + AgCf f2

b X 'f - *zfy

+ b z " xz (2.26)

LxUy yx

2.4 THE SCALAR FORM OF THE TORQUING EQUATIONS

2.4.1 Coordinatization of Vector w in the Tangent Plane
Mechanization
The IMU equations of error angle between the platform and

computer, Eq. (2.19), and the position error, Eq. (2.26) can be made

more explicit through one more expansion on the vector w. Recall, that

W is the angular rate at which the platform is torqued or rotated, rel-

ative to inertial space, about its nominal X, Y, and Z axes. Regarding
- 1

the local basis, L, as the true or computer basis, C, (the basis in

which the computations are performed to update velocity, position and

angular velocity terms) the vector w can be coordinatized in any of the

bases previously mentioned. If the tangent plane mechanization is

chosen, the platform angular rates are constant rather than time

varying as in all of the others. Thus, the platform is held fixed

relative to the fixed point on the earth, regardless of the vehicle

position. Fig. 2.5 displays the geometry and shows the tangent plane
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FIG. 2.5. TANGENT PLANE MECHANIZATION GEOMETRY

eminating from the fixed point passing through the launch site. By

C-I
inspection, the components of the gyro torquing signals W in the

C

computer basis are given by

lxi
W c- Cos% 0  (2.27)

LuZJ sin

The following analysis is performed as a check. The coordinatiza-

tion begins with

C-I C-E E-I(,d = I +~ . (2.28)

C C C
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To keep the requirement that only constant gyro torques are

mechanized,

WC-E 0 (2.29)
C

-+E- I

Now W is best coordinatized in the earth's fixed basis in which it

is known and nominally constant, i.e.,

W (2.30)
E

Thus, to express Eq. (2.28) in the common basis given, a transformation

is required on Eq. (2.30),

E-I E-I -

W - C/E W - (2.31)
C E

where TC/E is defined as the direction cosine matrix representing the

coordinate transformation from the earth's basis (E) to the computer's

basis (C).

The summary of the transformation is shown in Table 2.1.

Table 2.1

TRANSFORMATION SUMMARY

Angle Axis

Transformation of Rotation of Rotation Basis Name

TC/E Eart

Computer
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This results in the following:

"1 ""00cosA 0  0 -sin A°0

SCos -sin 7, 0 1 0 (2.32)TC/E 0 co0k

0 sin k0  cos %0  sin A° 0 cos A°0

because

•x I
C-I
CtI =(2.33)

C

then

w "0x

(y = 9 cos Xo (tangent plane mechanization). (2.34)

10.) 0 sin k

In this case, the base point or fixed point latitude, k is used

throughout the mission and the torquing rates applied to the gyros

are shown in Eq. (2.34).

2.4.2 Coordinatization of Vector wo in the Space Fixed Tangent
Plane Mechanization

For completeness, the following discussion concerns

another mechanization scheme that is simple enough to be competitive

with the tangent plane mechanization. For lack of a more widely

accepted terminology, it is called the space-fixed tangent plane
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mechanization. It was, in fact, used on some versions of the PERSHING

guidance system. The local level is established via IMU mounted

pendulums or precision accelerometers and there is no torquing of the

azimuth gyro. This mechanization is identical to the tangent plane

scheme described in detail earlier. However, in the space-fixed

tangent plane mechanization, the computation of earth's rate is

terminated immediately before launch so that the horizontal and verti-

cal components of earth rate torquing to the level gyros are also

zero. That is, in this mechanization

{y = (space fixed tangent plane mechanization). (2.35)

The obvious advantage to mechanizing a scheme that does not torque

the gyros is more than a simplification in the on-board computer. The

entire inertial instrumentation package is made at least an order of

magnitude less precise in terms of manufacturing tolerances. Torquer

linearity, precision pickoffs, voltage and current supplies, and pulse

and analog circuits benefit from this consideration.

The burden of the simplified on-board hardware, in the case of

PERSHING, is placed on the ground based level and alignment hardware.

Though the earth's rate components are not calculated nor used to

torque the two level gyros, a set of firing tables are required to

offset the missile's trajectory to the primary target to compensate for

the Coriolis acceleration. (The laws of nature still remain fixed
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regardless of the mechanization chosen.) Consequently, it is a matter

of choice, based on the preceding alternatives, as to which of the two

simplest mechanizations one is willing to instrument. For purposes of

this study, the more self-contained version, the true tangent plane

mechanization will be used. In the simulation results which are pre-

sented later, there is practically no difference in using this choice

other than replacing by zero the constants in the system's F matrix.

2.4.3 Coordinatization of Vector w in the Free Azimuth

Mechanization

The utility of using a northern reference, per se, is

susceptible to questioning in the case of a missile terminal guidance

scheme. That it is of fundamental importance in terrestial navigation

or terrestrial dead reckoning is, however, gospel. This derivation of

a mechanization scheme and the next two that follow are north

referenced because they are considered in the framework of a navigation

problem. That is, the missile terminal guidance scheme is based upon

maps that have been generated in the context of local earth coordinates

which include a precise reference to north. Anticipating the results

however, makes the argument somewhat academic because the additional

state variables required to define a north reference preclude these

mechanizations on economic grounds. These arguments are discussed

more fully in later chapters.

This mechanization eliminates the torquing error associated with

the Z-gyro, i.e., the gyro with its input axis vertical, because it

does not provide a torquing comand about the vertical axis. Instead,
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the indicated north direction is computed by calculating the angle
between the north given in a level plane and the level platform axes.
The angle, a, shown in Fig. 2.6 is the angle between the horizontal
platform y axis and the true north.

1W

yo

X,

tnt

FIG. 2.6. FREE AZIMUTH MECHANIZATION GEOMETRY

As in the previous case, the local basis (L) is considered to be
the computer or true basis. Equation (2.28) is repeated for

convenience,

C-I C-E +E-I'0 W +CA°

C C C
Again the argument for a transformation on the earth's rate is valid,
I.e.,

E-I E-I
CEc 

(2.36)
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However, this direction cosine matrix, T*/E, differs from T of theC/V C/E
tangent plane mechanization. It is summarized in Table 2.2.

Table 2.2

TRANSFORMATION SUMMARY

Angle Axis
Transformation of Rotation of Rotation Basis Name

T•/E -- Earth
T6/E A+A Y

I+E

k ~-X
Ell

a L
Computer

rCos a sin a 0 1 r0Cos A 0 -sin,&
Tý /E =-sin a cos a 0 0 cos X -sink 0 1 0

0 0 sink cos. sinA 0 cos A.

(2.37)

As before

E-I []
E

so that Eq. (2.36) may be expanded to yield

0 sin a cos\

(J E Cos a Cos (2.38)

sin J
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Unlike the previous case, where it was considered zero,

-4C-E "") ""• ' "

W aZL+ %ZE+A YE (2.39)

Here, ZL is the unit vector about the Z axis of the platform, and

and are the unit vectors, respectively, about which small rotations

of angles X and A are made in the intermediate Euler sequence. To

coordinatize all the vectors into the computer basis, the & rotation

needs no transformation, the X term is transformed through the angle a

to determine its components in the computer basis, and the A term is

transformed into the computer axes through the angles a and X. The

coordinatization is given by

0 0

+--.E /Z+ 0 +TCE + (2.40)

The minus.sign on . indicates that the platform is maintained locally

level by torquing the X-gyro to produce the precession rate -. [15].

The transformation T*E is summarized in Table 2.3.

Table 2.3

TRANSFORMATION SUMMARY

Angle Axis
Transformation of Rotation of Rotation Basis Name

T ** Larth
C /E S-X 

EL
El

a Z'LL

Computer
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The result is

rcos a sin a 01 1 0 0

T/E =-sin a cos a Cos ]-sin (2.41)

0 0.sin X Cos -

TC/ZE is a simpýe transformation resulting from a small rotation of

angle a about the ZL axis. Thus,

cos a sin a 0

T C/ZE -sin a Cos a 0I (2.42)

E40 0 1
JI

Substituting Eqs. (2.41) and (2.42) into Eq. (2.40) yields

-x cos a+ a sin a cos- X

C-E sin a + cos a cos j (2.43)
C

a+ A sin%

Substituting Eqs. (2.38) and (2.43) into Eq. (2.28) gives the following

coordinatization result:

[ (n + sin acos X- cosa"

y [ +A) cos a cos % + sin a (2.44)

+ A sinx+ aa

As previously mentioned, one of the main advantages of the free

azimuth mechanization results in not having to torque the azimuth or

Z-gyro, i.e., it is free to rotate. (Another similar mechanization,
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called the wander azimuth mechanization, results when the Z component

C-E- I
of W is constrained to equal the Z component of "E- Thus, )

is made zero by forcing

&=-(n +A) sin a (2.45) A

which results in

W x (W+b )sin ncosk- cos a"

(free azimuthW1 (n + b) cos a cos % + sin a ehnlaln
coy o5+ mechanization)

[2z 0 (2.46)

2.4.4 Coordinatization of Vector w in the Local Level,
North-East Mechanization

Another coordinate mechanization widely used for naviga-

tion which has potential for this application is the local level,

north-east system. The usefulness of this system is important when the

system's outputs are desired corresponding to map data or when an

explicit vertical is desired to drive auxiliary equipment. This basis

is also observable in Fig. 2.7, but with the angle, a, now kept

constant at the value of zero.

The platform torquing rate is again repeated

C-I C-E E-I
W0 . W + W
C C C

Now

E-I *** E-I
S= C/•T , (2.47)

c C/EEC E
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where TM is of the same form as the transformation TC/E of Eq. (2.32)

i.e.,

[1 0 0 0] [oA 0 SinA]
TC/E =10 cos X -sin 0 1 0 (2.48)

0 sin % cos J sin A 0 cos A

Again, the earth rate components are

[01
E-I

"" = (2.49)
E

bo that

1
W ' Cos (2.49)
C

P sin

C-E

The term W is similar to its counterpart in the free azimuth
C

system; only here it is less complex, i.e.,

C-E ElTC/E + (2.50)C

rl 0

CO Cos . sin %. . (2.51)

L tO -sin > cos %J LO+ 0
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Add'ing Eqs. (2.49) and (2.51) gives the final result

Wy + A cos . (local level north-east mechanization) (2.52)

W f + sin

Notice that it is a special case of the free azimuth-mechanization

given by Eq. (2.46) but with a set equal to zero in this case.

Sufficient analysis has been performed to display the coordi-

natization of the IMU's rate of rotation or torque rate, wl in four

mechanizations. The rationale for the specific choice best suited to

this application is discussed in more detail in Chapter III.
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CHAPTER III. MATHEMATICAL MODELING OF THE SYSTEM

3.1 IDENTIFICATION OF THE INERTIAL SYSTEM MECHANIZATION

The first step in applying the Kalman-Bucy theory is to identify

the system on which the filter is to be based. In the case of

improving the guidance of a reentry vehicle, it may seem that the most

direct choice would be a system that estimated the desired parameters

of the vehicle. The filter would then be based on the equations that

describe the motions of the vehicle itself. This approach is function-1

ally visualized in Fig. 3.1. Though appealing for an orbiting space-

craft guidance problem where the position and velocity could be pre-

dicted for any future time with accuracy, it is not easily implemented

for a rapidly varying dynamic system.

DISTURB-ANCES VEHICLE MEASURE- [ UTPUT
------ REENTRY MOTION MENTS

SSENSORS - ITR-
VEHICLE

FIG. 3.1. FUNCTIONAL DIAGRAM OF A DIRECT FILTER

Instead, an indirect filter is implemented based on kinematic con-

siderations. It is worthwhile to diverge at this point for a brief

discussion relating the notions of dynamics, kinematics, and measure-

ments in the context of this problem.

Dynamics is expressed by some as the study of the motion of a

particle (system of particles) from the knowledge of the external
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forces acting on it. Kinemtics is sometimes expressed as the study

of the motion of a particle (system of particles) disregarding the

forces associated with the motion. Simply, it is the study of the

geometry of the motion relating time, displacement, velocity, accelera-

tion, etc., both translational and rotational.

Confusion may arise because control engineers use the terminology

"dynamic systems" to describe a plant by equations which vary as a

function of time. This is often done to emphasize that the system

under discussion is not static. An analytical dynamicist, however,

uses the terminology "dynamic equations" to define the set of

equations describing motion of a particle acted on by forces as previously

sunmmrized. Thus to a dynamicist, the Euler equations of rigid body

mechanics, for example, are dynamic expressions while the equations

relating angular velocity among reference bases are kinematic

expressions.

Measurements can be thought of as one of the three types of inputs

for a Kalman-Bucy filter. In a navigation or guidance problem, the

measurement may be a doppler radar measuring velocity components, it

may be a Loran receiver measuring time differences in radio wave propa-

gation, or it may be a radar area correlator as in this problem. The

second input is the driving noise associated with gyro drift, SFM bias,

etc. The third input is the main forcing variable of the differential

equation which may be a torque, a force, or other driving function.

Thus, in the expression for a plant given by

(t)= F(t) x(t) + G(t) u(t) + w(t) ,
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with a measurement given by

z(t) H= t X(t) + v(t) .

The variable u(t) is the forcing variable, the variable w(t) is the

driving noise, Z(t) is the measurement of x(t) with a corruption uf

additive noise v(t).

In a direct filter formulated for a vehicle carrying an IMU, the

dynamic system (control's sense) on which the filter is based is the

system of equations that describe the motions of the vehicle itself

(dynamicists' sense). The filter would use all measurements, including

those of the flU, to produce estimates of the position and velocity of

the vehicle directly. The dynamic equations describing the syst-'i

requires a statistical dynamic model for the vehicle to be incluc... in

the state space formulation (16]. However, the model used to describe

these random motions is difficult to obtain for a vehicle rapidly

varying in velocity and position as a function of time. In fact,

measurements of vehicle acceleration and angular velocity are much

better data to process than to model the disturbances or forces which

cause them.

The indirect filter is a completely different way of formulating

the navigation problem which avoids most of the practical problems of

the previous method if in addition to the inertial navigation system

there is included some other source of navigation data. Instead of

estimating the state of the vehicle directly, the filter is used to

estimate the error state of an inertial navigation system. The
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inertial system follows the high frequency motions of thi vehicle very

accurately but has low-frequency errors which grow with time. The

dynamic system on which the filter is based is the set of error

equations for the inertial system which are relatively well known,

well behaved, low frequency, and essentially linear. The sample period

can range from several seconds up to a minute without greatly

influencing the effectiveness of the filter. For these reasons, this

method is used for virtually every practical terrestrial referencad

IMU Kalman filter mechanization. In the particular case of navigating

the reentry body, the time of flight under this condition is so short

that the indirect scheme can be functionally implemented, as shown in

Fig. 3.2.

DISTURB- VEHICLE ERRONEOUS CORRECTED
AESMOTION OUTPUT OUTPUTANC REENTRY INERTIAL

ESTIMATES OF

INERTIAL SYSTEM
OUTPUT ERRORS

EXTERNAL [| -

RADAR RADAR MEASUREMENTSALTI - MAP KLA

TUDE MATCHER

FIG. 3.2. FUNCTIONAL DIAGRAM OF AN INDIRECT FILTER

Note that the outputs from the iaertial system are not the

measurements in the Kalman-Bucy theory. Rather, they are the forcing
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function or driving input in the dynamical equations describing the

system. The radar area correlation system and the radar altimeter are

the measurement kinematics as far as this estimation problem is

concerned.

The error equations in inertial systems position and velocity,

given as Eqs. (2.19) and (2.26) are logical choices for the inertial

system states. Rewriting them in a manner more amenable to manipula-

tion as state variables follows. From Eq. (2.26),

2 2) 2 + gy - +, + -. -

w _Kl + 12 + mby (.1

5:y= 5x y + WOz ")] + FJ z W G)

+5 '2[Oz] +5 2 [,x] + by +xf -'z +z

13 (3.1)

+ F' 2z + E)i2, + b x *yfz+ *-

+ AK2f + mf + m f (3.2)

-23y 23z

F -x + 5 Y - + (1) 2 + + 2.

+ F~ ( + 8 2u + b - + 4

+ m3 f +AK f + m ff (3.3)

.12 x 2 y-38-



From Eq. (2.19),

=* w - w + AK wJ+ m t,+ (3.4)y z z y glix + ml2wy + m13wz + Ex

y~ ~ +m z z lwx + AK
4y "*x'z+ + + ml 2+ x + g2wy + m2 3wz + Ey (3.5)

and

iz =*x wy * -ywx + m 3 1 W + m3 2 wy + AK g3wz + G . (3.6)

3.1.1 State Vector for the Tangent Plane Mechanization

From Eqs. (3.1) through (3.6), part of the state vector is

chosen to be

xT= [bx , by, 5z, 5Vx , Wz, b 'x, 1 9z] , (3.7)

where

bx = 5V Aerror in IMU x-velocity

ry = 5V Aerror in IMU y-velocity

Fz = 5V Lerror in IMU z-velocity,

and other variables are as previously defined.

The gyro torquing rates wx wy, and w z implicit in Eq. (3.7) were

shown to differ according to the mechanization scheme. The tangent

plane mechanization torquing rates are constants given by

Wo =0
x

Wy n Cos %o

WzI= 0 sin % 0 (3.8)

Because there are no additional states required to define the torquing

rates for this mechanization, the state vector would remain as given

by Eq. (3.7).
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3.1,2 State Vector for the Space-Fixed Tangent Plane

Mechanization

The torquing rates in the space-fixed tangent plane mecha-

nization are equally as simple and also constant. To be exact, the

constant is zero. However for the reasons previously described, the

space-fixed tangent plane mechanization is rejected in favor of the

true tangent plane mechanization.

3.1.3 State Vector for the Free Azimuth Mechanization

The free azimuth torquing rates as described in Eq. (2.46)

are complicated by the additional explicit dependence on latitude and

longitude rates, % and A, respectively. Also the wander angle, Ce, is

seen as an independent variable. For consistency then, the error in

these three variables must be derived and included in the state vector.

The perturbation in these variables may be rationalized as follows.

Until now the assumption was used that the local basis (L) was equal

to the computer or true basis (C). Generally, the possibility exists

that the computer is in error by some small amount in its calculation

of the actual position as given in the local basis. The development

which follows depicts the effect by way of perturbations on the ideal

equations.

Refer to Fig. 2.6 to visualize the ideal, errorless rates given by

VN VN

r N+h(3.9)

or

V sin ¢e + V cos (1S=x x .(3.10)
RN+h
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Also,

V E VE
r - %- + h' A (3.11)T = (RE + hCos

and

V cos a - V sin (.S =x Y -(.2

(RE + h) cos

where:

VN A vector representing velocity in northerly direction

VE A vector representing velocity easterly direction

h Ax altitude above the reference ellipsoid

RE A radius of curvature of reference ellipsoid in
easterly direction

RN A radius of curvature of reference ellipsoid in
= northerly direction

V A component of velocity along platform's x-axisX =

V A component of velocity along platform's y-axis

A perturbation on the latitude and longitude rate equations yields

the differential equations for the latitude and longitude errors.

Thus, from Eq. (3.10)

d (vx + av.) sin (a+ bc) + (VY + •v•,) Cos (ax+ ba)d- + • ) = + h"
(3.13)

Noting that

cos ba5• 1 , (3.14)

sin 5a ý,5• , (3.15)
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and expanng the sine and csine functions by their trigonometric

identity results in

V cosabca+5V sina- V sinaba+bV cosa
RN+ h

(3.16)

Similarly, from Eq. (3.12)

d (N + bv ) cos (a + a) - (V y+ 5V ) sin (a+ Fa)
d( R + h cos =+b)

(3.17)

T£:.'- result is

-V sin aFcr+ 5V cos a-V s c aa - BV sina

R- E+nh) sin•X+.

(3.18)

The variation in the wander angle, a, is obtained from Eq. (2.45)

viz,

= 0- (n+b) sin% • (3.19)

Again, to first order

6a= (n$+ j) cos - sinA • (3.20)

Substituting Eq. (3.12) into Eq. (3.20) yields

5• = (•+x cos a" -5y sin a
+ xco+ ) ysin. cos %.5- sin k.i
-(RE h)Cos% (3.21)

These three error differential equations, required to extend the

state vector when they appeared in the torquing equations, have in turn

generated the requirement for the inclusion of the true or idealized
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velocity components Vx and Vy. Both are obtained from Eq. (2.8a) but

must be coordinatized in the free azimuth basis. That is, nominally

V V (3.22)
L ]

and from Eq. (2.8b)

r
x

r= r . (3.23)
L Y

r

For this mechanization, the state vector would be

KT = [bx, 6y, 5z, 5Vx, 8Vy, 6z, , ,y z X, 5A, 5] (3.24)
x Lx' y,5z'bVx , Vy z 5VZ x, y s z$ ~ A

The increased number of states required to mechanize this scheme is

evidence by comparing this state vector with the state vector described

by Eq. (3.7).

3.1#4 State Vector for the Local Level North-Last Mechanization

The local level north-east mechanization would have gyro

torquing rates given by Eq. (2.52),

WX . -'%

Wy = (fl+ A) cos x

W = 0+j)sin Xz

Again, there is a need for the error differential equation describing

X and A. However, without the need for a, the state vector is simpli-

fied by one state over. the previous mechanization as
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XT I [xb, 8z, 5Vx, 5Vy, rVZ, *x) yI *z' 5%., 5AA] (3.25)

3.1.5 State Vector Augmentation

In addition, there is a possibility that gyro and accel-

rometer errors are correlated requiring six more augmented states to

be included by addition to each model mechanized, i.e.,

X A [x, z, v A~ x A3? , Az]

Therefore, a fully mechanized inertial system, with 6 augmented

gyro and accelerometer states a possibility, can be modeled with as few

as 1.5 states in the tangent plane or as many as 18 states in the free

azimuth. The local level north-east mechanization is a compromise

requiring 17 states. It is therefore reasonable to choose a mechaniza-

tion based on the constraint that the airborne computei will have only

Limited capability to accomnnodate the filter implementation. Because

the optimal filter requires computation of the Riccati error covari-

ance equation, it alone requires n(n + 1)/2 equations based on n number

of states. The minimum number of equations that must be solved,

including the number of states required to model only the inertial

system, are seen in Table 3.1.

Table 3.1

COMPARISON OF MECHANIZATION COMPLEXITY

Mechanization No. of Equations

Tangent Plan 135

Space-Fixed Tangent Plane 135

Local Level North-East 153

Free Azimuth 171
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To obtain a torque-free azimuth gyro in the free azimuth mechanization,

a 27 percent increase in computer capability compared to the tangent

plane is required. The tangent plane mechanization requires 12 percent

less computer capability than does the local level north-east. For

this initial analysis, the tangent plane mechanization is chosen and

the first objective of this study is met.

3.2 CHOICE OF THE MODEL'S TRAJECTORY

Additional considerations simplify the state space lescription of

the total system even more. For purposes of this report, the PERSHING

trajectory can be represented as a parabolic arc with the baseline

reaching a maximum of 400 nautical miles and a maximum height of 120

miles from the earth's surface. Results of previous studies have

dictated that the terminal guidance phase be initiated at an altitude

of 30,000 feet above the earth's surface. The trajectory is shown in

Fig. 3.3 in the IMU X-Z plane. The velocity of the reentry body at the

30,000-foot level is approximately 3000 feet per second in the negative

Z direction (down). Also, the velocity is almost constant from this

altitude to impact. Actually, it will vary according to the vehicle's

ballistic drag coefficient, air density, exact altitude of the target,

specific reentry angle of attack, etc. However, the model is simpli-

fied by not including the vehicle's aerodynamic characteristics.

Previous flights have shown the time to impact from this altitude

varies from approximately 7 to 12 seconds. For convenience, a flight

time of 10 seconds is used in the model's simulation.

An additional comment is necessary concerning the simulation of

the trajectory. Although a constant velocity of -3000 feet per second
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FIG. 3.3. ViPICAL PERSHING FLIGHT PROFILE

in the Z direction is reasonable, there could be an additional Y or X

component. To eliminate one sitate the trajectory is constrained to the

X-Z plane, with no loss in generality, because the Y component could be

eliminated choice of axes. Thus, the f and f specific force terms in
z x

the IMU mechanizations are initialized at zero because their corre-

sponding velocities are constant. As will been seen, however, this is

only of academic interest because additional simplifications eliminate

even those terms. The result is a free trajectory, i.e., there is no

state modeled representing actual vehicle position, velocity, or accel-

eration as was discussed previously. The system states are IMU errors

in these domains and are driven by IMU error inputs. When the specific

force terms are neglected there is no physically meaningful trajectory

generated, not to imply that it cannot be done. However, in this

model, there is ample justification to neglect them.
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3.3 FORMULATXON OF THE IMU ERROR MODEL

The terminal guidance phase is only 10-seconds long for the appli-

cation in which the filter will be implemented. The effect of correc-

ting the gyro and accelerometer errors, which propagate with an 84-

minute period, is negligible over this short time span. In addition,

their effect on system error buildup is known from extensive flight

test and analytic data (Martin-Marietta Report [17]).

Instead of modeling error sources which propagate at negligibly

low frequency, i.e., the platform tilts, *, and the gyro and accelerom-

eter scale factor errors, LSKg, and AKf, respectively, their random

errors, c, and the accelerometer bias, b, their effects on the system

are included as driving noise in the IMU error equations. Because gyro

or accelerometer errors are not modeled, the six states can be elimina-

ted, as given in Eq. (3.26). Three more states are eliminated by not
-4

modeling the tilt equations. It should be noted that to assume i is

zero is not exactly true. The argument is that r and f are zero

because the effect of the tilts on IMU performance at initiation of the

terminal guidanze phase can be included as a forcing term in the IMU

error equations; i.e., the total i error accrued during the flight is

mechanized in the filter as an initial condition. Its buildup and

additional contribution to the IMU error is considered negligible in

this application during the 10-second period. Longer flights, even in

the order of minutes in other applications for example, and in cases

where the data are not available to permit this alternative treatment

would invalidate the simplification.
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With and * zero, Eqs. (3.1) through (3.6) simplify to the degree

of excluding the specific force terms fx' f y and f as was alluded

to previously. With no other means to propagate a physical trajectory,

the IMU error equations are seen in a free trajectory for 10 seconds in

which the accumulated system errors to that point drive the system as

initial conditions.

'_The F5V state is excluded because the model is constrained to the
y

X-Z plane for this analysis. This is not to imply that because by is

initialized equal to zero, 65V can be neglected. The converse is

true. There is every reason to believe that the error state pairs ax

and i;y as well as Fx and 5Vy will be nearly equal for this applica-

tion. However, to save computer memory and operating time, only one of

the velocities will be estimated, in this case bVx. The results,

shown later, should be interpreted to mean that the estimates for bV

are equally likely to be representative of 6Vy'

With so much emphasis on eliminating state variables, it is almost

incongruous to justify keeping two states that are most often elimina-

ted. The cz and 6Vz states are, in every reference source, shown to be

in a divergent or unstable mechanization and are thus not instrumented.

In most terrestrial navigators, the Z accelerometer is not even physi-

cally mounted on the EMU. It was observed by Kayton [18] that the

error in the altitude channel grows exponentially and doubles in the

amplitude in approximately 28 minutes. However, the total PERSHING

flight is less than 7 minutes and the terminal guidance phase is almost

two orders of magnitude smaller than that. Consequently, the Z-channel
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instability will not cause a catastrophically larger error in this

case, given reasonable initial conditions. Because the Z-channel

information is very desirable for on-board functions such as arming,

safing, and fuzing, and because it could be useful in scheduling

imagery and gains in one configuration of a suboptimal filter, it is

included in the If4U error mechanization equations.

As a consequence of these decisions, the 124U is modeled as

follows:

b 0 0 0 1 0 bx

0 0 0 0 0 BY

0 0 0 0 1 8z , (3.27)

x F41 F42 F43 0 -2y 5V x

z F51 F52 F53 2wy 0 5Vz
L ,

where:
2 2

F41 = -w s + toy +•Wz

P42 = "wey

F43 = -viz

F51 = -wxwz

F52 = "yz
2 2

F53=2ws + Wx + y

and

Wx= 0

(y = Q COS

Wz = a sin
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with

S= constant (earth's rate of rotation)

X = constant (launch site latitude),
-4

so that w = 0 and is thus omitted from the F-matrix.

3.4 FORMULATION OF THE RADAR AREA CORRELATION SYSTEM

The description of the radar area correlation system application

to terminal guidance is discussed in Appendix B. The radar system is

used as an additional external measurement device (external to the IMU)

to measure position in the X-Y plane defined by the IMU. The observa-

tions or measuremeats for the Kalman filter are actually differences

between system-indicated and externally measured information. As is

common practice [9], the measurement errors are attributed to inaccu-

racies in the external indications only. Thus, by forming the differ-

ence between the externally indicated and inertially indicated

positions

Z = Pind (external) - Pind (IMU)

=(tru + ep)- (Ptrue + 8P)

=e -81P , (3.28)
p

where

Pind = position indicated

Ptrue = true position or errorless position

8P = inertial position error

e = external device position error

Equation (3.28) is equivalent to expressing the observation

equation as
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Z(t) = H x(t) + v(t) (3.29)

z(t) = [-1 0] [P(t)1 + ep(t) (3.30)

I I
where 6P and 6V are inertial errors in position and velocity for this

exploratory example.

The available unclassified information on radar area correlators

did not delve into the possible statistical correlation in position

errors from fix to fix. Although the fix to fix correlation seems a

distinct possibility, the first cut at a model excluded that considera-

tion. In terms of the state variables defined for the IMU, the radar

area correlation system's observation is modeled as

Z(t) = [i 0 0 0 0 x + (t)1 • (3.31)

10 1 0 0 y Vy(t)

bz

5Vx

8Vz

The values for the radar system errors are chosen as typical state-of-

the-art. Stauffer [19] considers that to be planar resolution or, for

this model, v = v - 50 feet RMS.x y

Another consideration for the radar position measurement model is

the effect of processing time on the filter's performance. It was

learned that the time delay, as it may be considered, in matching the

reference imagery to the radar's projected real time imagery is
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approximately 0.2 second. This indicates that by the time a position

fix has been processed by the typical radar system, the information is

0.2-second old, i.e., the vehicle has moved on. In the case of the

PERSHING, reentry at 3000 feet per second the radar processing time

alone will require a 600-foot measurement compensation in the filter

mechanization. Intuition suggests that such an error would eventually

be a source of filter divergence if not properly addressed.

This problem was treated in the model in two ways. First it was

neglected. This is not as startling a choice as might first appear.

There is very little mention of this delay phenomenon in the literature

and its effect on filter performance. It is often mentioned as an

existing problem but is quickly discarded with the statement that

future studies will be conducted in that area. The best justification

for not implementing it in this filter application is that the time

duration is so short (10 seconds) that filter divergence will not

accrue a meaningful error. The results seem to verify this, at least

in the case where optimal gains are used.

Meaningful fixes to this problem have been proposed. DeBra [20]

has suggested that the measurement model incorporate the time delay as

a nonlinear exponential function with a time constant comparable to the

best guess at the time delay. For example, instead of the linear

measurement in the variables 5x and by given by Eq. (3.31), a model

in the frequency domain is given by

-sT
Z (s) = e bx(s) + v (s)

x

-STZ2 (s) = e ny(s) + v (s) , (3.32)
2 -y
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where the time delay is chosen by the value T. In the time domain, two

additional state variables are required, one to define the time delay

for each channel. Thus, the F-matrix would require a two-qtate

augmentation.

Bryson [21] has suggested the following methods, particularly

applicable when the time delay is not well known:

a) Increase the magnitude of appropriate variance elements in

the covariance error equations

b) Increase the amplitude of the measurement noise

c) Combination of a) and b).

The effect is to decrease the knowledge of the system from the filter's

point of view.

The model for the reentry vehicle was simulated alternatively in

the manner of Bryson. The 600-foot error was caused by processing time

was included as additional error in the measurement error covariance

matrix R. Its effect was, therefore, directly observable in the cal-

culation for the optimal filter gains. These results are described

in Chapter IV.

3.5 FORMULATION OF THE RADAR ALTIMETER MODEL

The radar altimeter carried on the PERSHING will be used to obtain

vertical position measurements above the earth's surface. It is

mechanized in the Kalman filter formulation in exactly the same way as

the radar area correlator, i.e.,

Z 6P + e (3.33)
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Thus, the radar altimeter is modeled as the 2-channel observation

Z (t) [0 0 1] 6x + v (t) . (3.34) I'

gz

8zx

6 j

From data on previous PERSHING flights, the radar altimeter error is

known to be approximately 10 percent of altitude indication. So that

an additional state would not be required, it was considered for

several cases in this study to be constant at 100 feet and for several

cases, constant at 1200 feet. The effect of the change Is discussed in

Chapter IV.

3.6 A FILTER MECHANIZATION FOR NONLINEAR SYSTEMS

The filter equations developed by Kalman and Bucy and an extension

to correlated input-measurement noise (derived in Appendix C) were

developed under the assumption that the system disturbances and the

measurement errors were random variables described by Gaussian statis-

tics, zero means, and that the plant was describable by linear

equations. The resulting filter then was shown to give the optimal

estimate of the states. Numerous researchers in this area have expanded

the ideas to the more useful and practical case of systems described

by nonlinear dynamical equations. For example, Bryson and Ho [ 22],

in addition to their own contributions, have a rich bibliography on

(.,oese and related topics.
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The filter equations used in this model are of the form most

applicable to the navigation problem at hand, i.e., a mixture of dis-

crete and continuous equations. The discrete form is used at a time

w hen a new measurement is introduced and the continuous form is used

to extrapolate between measurements. Also, the equations are a mixture

of linear and nonlinear expressions. The ncnlinear describe the sys-

tem, i.e., the navigation system error equations, and the linearized

equations are used for the covariance error propagation. These

equations are linearized about the current estimate because in a

navigator, in general, and in this model, in particular, there is no

convenient nominal path about which to linearize. These equations,

developed in Section 12.6 of Bryson and Ho [22] are summarized in

Table 3.2.

3.7 EQUATIONS USED IN THE DIGITAL COMPUTER SIMULATION

This section summarizes the equations in the model which were

used in the Monte Carlo simulation. The inertial system is modeled by

five error states; the observation matrix (H), models the IMU position

error in three coordinates as measured by a radar area correlation

system (bx, by); and a radar altimeter (bz). The initial conditions,

error covariances and constants are summarized in Tables 3.3 through

3.5.

-55-



Table 3.2

EXTENDED KALMAN FILTER FOR NONLINEAR SYSTEMS MODELED IN

CONTINUOUS - DISCRETE FC4IM

Message model k(t) f(x, U, t)
(nonl inear)

Observation model z(t) h(x, t) + v(t)
(nonlinear)

Linearization about the F )f ýf
current estimate G u t)=

iXx --- X^ X-ý

A priori statistics Efu(t)j = 0

Eju(t), u T(T4l =)(t -T Process noise

Efv(t)) = 0
t Measurement noise

E(u(t), v(r)) = 0 Correlated process and
I measurement noise

Filter algorithmbetwen easremnts x(t) = f(x, t)
between measurements

Error variance algorithm P~)= F(t) P(t) + P(t) FT~t ~)Qt GT~
between measurements pt t ~)Qt t

Filter algorithm at a xx)Kt)zt
measurement update Y (t)= x + K(t)[z(t) - h(x., t)

Error variance algorithm
at a measurement P+(t) = [I - K(t) H(t)] P_(t)
update

Optimal gain algorithm T-
at a measurement K(t) = P(t) H (t)[H(t) P.(t) HT(t) + R(t)J
update

Initial conditions x (o) Eo> = Eto)

P to) E x ] [ t] (o)

A x (o) xTO)
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Table 3.3

SYSTEM MODEL: x(t) - Fx(t) + Gu(t)

0 0 0 1 0 1 0 0 0 0 o U

0 0 0 0 0 0 1 0 0 0 u

0 0 0 0 1 z 0 0 1 0 0
+ Z

_ x 41 F42 F43 0 -2.,, FVx 0 0 0 0 0 uVx

0V F51 F52 F53 2.jy 0 ov 0 0 0 0 0 Uvzj
Lz J L .ULzU z

2 2

F41 = - w + , F51 = - w. wz

F42 = - wxwy , F52 = - wx iyz

F4 -2 2F43 =- ,w w, F53 = 2w + r2+ +62
Yx Ws s x
" 0 , S =. Ge/Re

' = Q COS %

Wz = Q sin %

o = 15.04107 degrees/hour, Ge = 32.1724 feet/second2

% = 45 degrees north latitude, Re = (6,378,388 meters)(3.281 feet/meter)

ux = 1253 feet , u = 1.2 feet/secord

I = 1317 feet , = 1.4 feet/second

uz = 1500 feet

;x(O) = 1253 feet , FV (0) = 10 feet/second

Fy(O) = 1317 feet , PzV (0) = 10 feet/second

F•z(O) = 1500 feet
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Table 3.4

OBSERVATION MODEL: z(t) m Hx(t) + v

z 1 1 0 0 0 0 x + vx

z 2 0 1 0 0 0 by vy

z 3 0 0 1 0 0 o z vz.

bVx

V U

Case 1 (lo) Case 2 (la)

v = 50 feet v = 650 feetx x

v = 50 feet v = 650 feet

v = 100 feet v = 1200 feet

Table 3.5

ERROR VARIANCE MODEL: P(t) = FP(t) + P(t)FT + GQGT

Pll(O) = 10,000 feet 2  , P44 (0) = 10-4 (feet/second) 2

P2 2 (0) = 10,000 feet 2  P55 (0) = 10 (feet/second) 2

P33(0) = 10,000 feet 2

*Initial conditions were obtained from reference (23].
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CHAPTER IV. SIMULATION RESULTS AND DISCUSSION

4.]. OVERVIEW

The simulation of the complete system modeled in the preceding

sections was performed on Stanford's IBM 360/67 digital computer.

Several variations were incorporated in the simulation to provide data

in meeting the objectives discussed in Chapter I.

Initially, runs were made with ten discrete measurement updates

equally spaced in time (one every second). The equi-time spacing

between updates was chosen based on results of Aoki and Li [24]. The

Case I configuration used the best information available; i.e., radar

measurement noise was limited to 50-feet 1 sigma in the X and Y

channels and to 100-feet 1 sigma in the Z channel. These results are

shown in Figs. 4.1 through 4.5. The optimal time varying gains were

then observed from this data, Figs. 4.6 through 4.10, and were used to

mechanize a suboptimal filter with fixed gains. Those results were

shown in Figs. 4.11 through 4.14.

Then a simulation was performed, similar in every respect to the

previous one except that radar measurements were decreased to 5; i.e.,

there was a measurement update once every 2 seconds in the 10-sccond

simulated reentry. Again, the optimal gains were computed and then the

results were used to mechanize a suboptimal fixed gain filter. These

results are shown in Figs. 4.15 through 4.25.
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Additionally, a set of data were obtained from the Case II configu- /i

ration with five measurement updates. Recall Case II used the degraded

measurement information in terms of increased covariance errors and

measurement noise. The values of 650-feet 1 sigma in the X and Y

channel and 1200-feet 1 sigma in the Z channel were used as measurement

noise. These results are show;- -, Figs. 4.32 through 4.38.

There were other sensitivity checks made in this study. Although

no graphs were plotted they represent additional results. A case of

twenty updates with fixed gains was simulated and several cases with

interchanged elements in the Case I and Case II configurations were

also obtained and shown as Figs. 4.39 and 4.40. These results are

discussed in the following paragraphs of this chapter.

4.2 TEN MEASUREMENT UPDATES, OPTIMAL GAINS, CASE I STATISTICS

The results indicating performance of the filter for this case

are shown in Figs. 4.1 through 4.5. Each figure plots the value of

±1 standard deviation from the indicated covariance matrix value.

That is, each graph representing one error state of the IMU has

the square root of the term in the diagonal of the covariance matrix

plotted as a positive and negative i sigma value. Because Gaussian

statistics are used with zero mean values, the positive standard devia-

tion (plus I sigma value) may be interpreted as the root mean square

(RMS) error in estimating the applicable state variable. Additionally,

each figure shows the difference between the actual state and the best

estimate of it (bx - 5x) which is, in fact, the estimation error of the

filter. One way of interpreting the results is to observe that the
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FIG 4.5. FILTER ERROR FOR OPTIMAL ESTIMATION OF THE IMU'S
V VELOCITY ERROR WITH CASE I MEASUREMENT STATISTICSz

AND TEN UPDATES

error (the irregular or "noise-like" trace) should be within the ±1_

sigma curcies approximately 63 percent of the time if the filter is

performing properly.

The time optimal gains generated by the filter are shown in Figs.

4.6 through 4.10. These are displayed so that the fixed gains chosen

for the suboptimal filter can be readily compared.

4.3 TEN MEASUREMENT UPDATES, FIXED GAINS, CASE I STATISTICS

The fixed gains are chosen to closely approximate the optimal

gains. They can not be properly selected without having computod the

optimal solution first. For display purposes, the optimal gains are

shown with the fixed gains so that a visual comparison can be amde.

These are also shown in Figs. 4.6 through 4.10.
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The error in the filter in attempting to estimate the IMU error,

is shown in Figs. 4.11 through 4.14. It is evident that the filter

with fixed gains does not estimate the states as well as the filter

with optimal gains. It is, in fact, divergent in some c, 's. Several

reasons are available to explain this phenomenon. These are discussed

more completely in Chapter 4.9.

4.4 FIVE MEASUREMENT UPDATES, OPTIMAL GAINS. CASE I STATISTICS

The format of the graphical data is similar to the case for ten

measurement updates. To minimize data presentation which may appear

repetitious (it is not) and to enhance the comparison, the covariance

error data represented as the positive standard deviation is plotted in

Figs. 4.15 and 4.16. The same comparison is done for the filter's

-66-



+/

150-

120

60-•

S30

0 STANDARD DEVIATION

•-30-

ERROR NN.

1100 1 2 3 4 5 6 7 t to I0 I

TIME (sec)

FIG 4.11. FILTER ERROR FOR SUBOPTT14AL ESTIMATION OF THE
IMU'S X POSITION ERROR WITH CASE I MEASUREMENT
STATISTICS AND TEN UPDATES

60 - STANDARD DEVIATION

40 -

20
ERROR

0

-80

-100-000 1 2 3 4 5 6 7 8 9 10 11

TIME (sec)

FIG 4.12. FILTER ERROR FOR SUBOPTDIAL ESTDIATION OF THE
IMU'S Y POSITION ERROR WITH CASE I MEASUREMENT
STATISTICS AND TEN UPDATES

-67-



240
STANDARD DEVIATION

1809

120

0

> -120

-ISO

-120 •, RO

-240 ---

-300 I I I I I I I I I0 1 2 3 4 5 6 7 8 9 10 11

TIME (sec)

FIG 4.13. FILTER ERROR FOR SUBOPTIMAL ESTIMATION OF THE IMU'S
V VELOCITY ERROR WITH CASE I MEASUREMENT STATISTICS

x
AND TEN UPDATES

120--

90 - STANDARD DEVIATION

o

x _30. . ERROR

-60- \

-150 ! ! ! . - I
0 1 2 3 , 5 6 7 8 9 10 11

,'IME (sec)

FIG 4.14. FILTER ERROR FOR SUBOPTIMA! ESTIMATION Or THE IMU'S

V VELOCITY ERROR WITH CASE I MEA•SUREMENT STATISTICS
z

AND TEN UPDATES

-68-



,//

200 FIVE UPDATES

ISO[ TEN UPDATES

'120

c 8 0  I,-, I

40 If i II

0 1 2 3 4 5 6 7 8 9 10 11
TIME (sec)

240• FIVE UPDATES

200

~160-
9-0

~,120 I t EN UPDATES

>. 80 ,,

40

0 1 2 3 4 5 6 7 8 9 10 11

TIME (sac)

F80VE UPDATESS/ .- TEN

%40 -

N OL a I I I I I I iS0 1 2 3 4 5 6 7 8 9 10 11

TIME (sac)

FIG. 4.15. COMPARISON OF IMU'S RNS POSITION ERROR HISTORIES
USING OPTIflAL GAINS WITH 10 POSITION FIX ERRORS
OF 50-FOOT RMS IN X ANT) Y AND 100-FOOT RMS IN Z

-60-

j



/

240-

180 FIVE UPDATES

x> 120

60 TEN UPD-AT El ,

0 1 2 3 4 5 6 7 8 9 10 11
TIME (sec)

FIVE UPDATES

S~TEN UPDATES

J&120-

0 1 2 3 4 5 6 7 8 9 10 I"
TIME (sec)
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er:or in the estimate of the IMU error states in Figs. 4.17 through

4.20. As can be seen, there is better performance from the filter in

the case -here ten updates are used.

4.5 FIVE MEASUREMENT UPDATES, FIXED GAINS, CASE I STATISTICS

The fixed gains compared to the optimal gains are given in Figs.

4.21 through 4.25. Because of the change in the graphs' ordinate

scale the direct comparison to the ten measurement case is not possi-

ble to display. However, again it is noted that the filter perfor-

twince is poorer when Lhe number oi measurements is decreased.
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The filter errors are shown in Figs. 4.26 through 4.29. They are also

seen co diverge and for the same reasons as in the ten measurement

fixed gain case.
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4.6 FIVE MEASUREMENT UPDATES, OPTIMAL GAINS. CASE II STATISTICS

The filter errors for this case are shown plotted against the

filter errors for optimal gains, Case I. Case II differs from Case I

in measurement noise parameters. In Case II, V x and Vy are 650-foot

root mean square compared to 50-feet PMS for CASE I. Also, vz is

larger at 1200-foot RMS compared to vz of Case I which is 100-foot RMS.

The increase in measurement error parameters reflect the attempt to

include the error caused by radar area correlator time delay that

occurs while obtaining a position measurement. The 1100-foot increase

in v measurement error is used to obtain another set of results by

using a fixed error in altitude. In reality, the actual radar altim-

eter error is 10 percent of the indicated value.

The results shown in Figs. 4.28 and 4.29 verify that the filter

errors are smaller without consideration of the time delay; however,

care must be taken. The truer more realistic case is given by the

larger filter error. There can not be enough emphasis placed on the

statement that the filter is only as good, at best, as the model used

to describe the real system. Because the model used for this study can

never be completely defined to represent an actual system, the fil;..er's

performance will vary according to the information mathematically

included in .ts make up.

The ±1 sigma values cf the expected error are shown in a compara-

tive display of the Case I and Case II results. Again, as expected,

a larger measurement error yields a larger standard deviation. These

are shown in Figs. 4.30 and 4.31.
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4.7 FIVE MEASUREMENT UPDATES, FIXED GAINS, CASE II STATISTICS

The gains of the optimal filter are shown with the fixed gains

chosen to mechanize the suboptimal filter of Case II. These are given

as Figs. 4.32 through 4.36. The Case II optimal gains are shown with

them. The results of the Case II fixed gains are plotted with the

standard deviations and the filter errors in Figs. 4.37 and 4.38.

These errors in estimating the states are larger than the Case I

results seen earlier.
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4.8 ADDITIONAL RESULTS

During the course of this study, several changes were made to the

model. As was mentioned earlier, the problem of the negative definite

error covariance matrix was investigated and corrected with a method

that proved successful in obtaining the plots. In one instance,

however, a different method of fix was used. The particular simulation

was performed with fixed gains obtained from the optimal ten measure-

ment update results. (Recall that only in the fixed gain runs did the
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negative definite covariance appear.) To overcome the divergence, a

smaller integration step size was chosen, 0.05second compared to 0.2

second, and the number of measurement updates was increased from 10 to

20. Though not displayed here, the results indicated that the covari-

ance matrix become positive semidefinite. The filter error was approx-

imately 10-percent smaller than the fixed five and the fixed ten update
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cases. However, this filter also began to diverge near the last

several seconds in much the same manner as the other fixed gain cases.

From the trend observed on several states, a simulated flight of

larger than 10 seconds may have eventually resulted in all of the

error state estimates diverging.

Another case was run in which the measurement noise was increased

to reflect a Case II situation but the R-matrix values were the reduced

values of the Case I situation. This was for a five measurement update

fixed gains simulation with gains chosen from the Case I results.

There was virtually no noticeable change from the straight Case I

results in the plots. The results were exactly the same as those

displayed in Figs. 4.11 through 4.14.

Pursuing this one more step, additional runs were made but the

R-matrix values were increased to fully reflect the Case II situation.

Once again, however, the fixed gains were chosen from Case I. Again,

the results obtained were almost exactly thcse of Case I. The conclu-

sion is inescapable, the filter is not sensitive to measurement error

and measurement error covariance matrix changes when the gains are

fixed. The filter is a function of the gains alone in the fixed gain

mode. Different results are obtained when the same simulation is run

with the exception that fixed gains, more accurately reflecting Case

II, are chosen. Those results are in Figs. 4.39 and 4.40 and are

different from the Case I fixed gains with Case II statistics.

4.9 DISCUSSION OF RESULTS

The error of the filter in estimating the IMU error states was

shown to be larger in every case where the fixed gains were used. In
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some instances, there were divergent estimates whereas the optimal

gains did not exhibit this behavior. Qualitatively, the following

argument seems reasonable.

The estimate of the IMU error state depends or the difference in

the actual measurement vector (Z) and the knowledge of the measurement

matrix (H) with the estimate of the state vector (R) at the instant the

measurements are taken. This difference is multiplied, or weighted,

by the optimal gain (K) which, in turn, is a function of terms computed

from the covariance differqncial equation (P). In the case where the

optimal gains are used, the value of K is computed at every measurement

update and is a functicn of the measurement noise, observation matrix,

and more importantly, the old covariance values (P). The covariance

P is obtained from a continuing propagation of P between measurements.

The optimal gain (K) then utilizes all the measurement noise informa-

tion, as well as process noise information, and may grow or decrease as

the equations dictate. The gain values (K) are essentially the ratio

between statistical measures of uncertainty of the state estimate and

uncertainty in a measurement. If measurement noise is large and state

estimate errors are small, the error in the measurement vector is

caused chiefly by noise and, therefore, only a small change in the

state estimate would be made; i.e., K will be small. However, small

measurement noise and large uncertainty in the state estimate

indicates that the measurement vector contains a large quantity of

information on the errors in the estimates. Thus, the value for K will

be large because the difference between the actual measurement and

that predicted from HX would be used as the basis for a heavily

weighted correction to the estimates.
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Simply stated, when fixed gains are used, the previously described

rationale does not occur. The covariance differential equation is not

propagated between measurements (the single most important reason for

choosing a set of Zixed gains) so that all process noise statistics

are ignored. Becduse K is fi-ed, Lhere is no dependence update to

update, on the measurement matrix (H) nor on noise statistics

contained in the R matrix. Little significance is placed on the new

incoming data, via the measurements Consequently, when the measure-

ment vector has good data, it may be ignored and the error in the

estimated states continues to grow or diverge.

It should be emphasized that on an actual on-board computer

utilizing the fixed gains to implement the filter, the covariance

matrix Riccati equations (i) would not be computed. That they are not

to be computed on board is the motivation for studying the effects of

using fixed gains. In this study however, the plots of the standard

deviation calculated from the covariance matrix were computed with

fixed gains for comparison purposes. This was done to reinforce the

arguments of defining a filter with good performance versus one which

tended to diverge. As can be observed from the results presented, as

the covariance increases, the filter's error increases.

A final comment on the fixed gain results is worthy of mention.

The covariance matrix, which theoretically will be positive semidefi-

nite, became negative definite in the P3 3 or bz term. This is the

classic effect of filter divergence discussed in much of the

literature. Because there was a need to obtain the square root of
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this matrix in the plot subroutine, termination of the program occurred

before all the plots could be made. The problem was overcome by not

plotting the filter error covariance in the estimate of bz. This

occurred in every fixed gain simulation except one when another method

was used to correct the problem. This particular case was discussed

in Chapter 4.8.
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CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

5.1 CONCLUSIONS

In terms of the objectives specified in Section 1.5, the following

conclusions are stated as having been verified during the course of

this study.

a) The simplest inertial system mechanization which fulfills

the constraint of minimum on-board computer capacity is the tangent

plane mechanization.

b) The comparison between results of filters using five measure-

ments updates and ten measurement updates indicate the filter error is

smaller wiih more updates in estimating the state variables. The

choice of ten measurement updates giving better results is shown con-

clusively. Indications are that the maximum of 15 measurements allow-

able would be the best. The measurements must b. equally spaced in

time for this application to allow time for processing.

c) The filter should be formulated with no less than five state

variables. If the on-board computer has the capacity, the additional

three states describing a constant inertial platform tilt would be

desirable provided statistics describing IMU tilt can be obtained so

that initial conditions can be properly chosen.

d) The complete five state filter studied here should not be

formulated with fixed gains in each of the state estimates. The
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results do indicate however, that the IMU position errors in X and

Y are estimated with only modest filter error. Thus, the X and Y

position errors can be derived in a fixed gain formulation. The

savings in computer capacity needed to estimate three states with

optimal time varying gains, while using fixed gains in estimating the

other two states, alone yield a savings of 40 percent in computing the

covariance matrix Riccati equation.

e) An excellent reference [17] was obtained which gave a compre-

hensive table of IMU characteristics required for performance with the

statistics used in this study. It is used to specify the IMU and por-

tions of the IMU computer for physical realization. Table 5.1 summa-

rizes the IMU specifications. Specification for the radar area corre-

lation system and radar altimeter are more general. The figure of

merit used for the radar area correlation system was its resolution

and for the altimeter, its accuracy. These are summarized in

Table 5.2.

5.2 RECOMMENDATIONS FOR FUTURE STUDY

There are several problems related to this application which

could be pursued further. The first of these would be to include more

states in the filter formulation. This would more closely represent

the physical situation, though it would require more computer capacity

than may be allowed. The purpose would be to investigate the filter

error relative to the number of states modeled. It would not imply.!

priori that additional states need be used in the actual system. The
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Table 5.1

SPECIFICATIONS FOR THE 324U

Gyros Magnitude

Component Constant drift rate
Specifications (degree/hour) 0.3

Mass unbalance
[(degree/hour)/g] 0.2

End plate drift
[(degree/hour)/g] 0.15

Anisoelasticity 2
[(degree/hour)/g ..

Accelerometers Magnitude

Bias (g) 10-4

Scale factor (g/g) 81 x 10-6

Nonlinearity (g/g 2

Allowable Misalignment 1 Sigma Error

Placform X-Y plane level
Specification (arc seconds) 26.7

Azimuth (arc seconds) 32.4

Error Source I Sigma Error

Guidance In-flight errors
Computer (meter/second) 0.15

Displacement error
(meter) 10.0

Velocity error
(meter/second) 0.4

following considerations should also be investigated to observe the

effects on the filter error:

a) The radar area correlation system is considered to have

measurement noise correlated with the input noise

b) The radar area correlation system's time delay is modeled

as a true transport lag
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Table 5.2

SPECIFICATIONS FOR THE RADAR

Error Source 1 Sigma Error

Radar Area X channel resolution (feet) 50
CorrelationCorrel Y channel resolution (feet) 50
System

Correlation processing time of 0.2 seconds

Error Source 1 Sigma Error

Radar Inaccuracy of output 10%
Altimeter of indicated

altitude

c) The platform tilt errors (•) are modeled

d) The IMU sensors are modeled as an input process noise

which is:

1) A random constant

2) A random walk

3) A random walk plus a bias

e) The mechanization of the other two nontangent plane IMH

coordinate systems.

The sensitivity of the model to changes in the noise statistics

should be investigated for the optimal gain cases with all of the

previously listed formulations.

Initially, the purpose of the study was to pick one value of K to

be fixed constant throughout the tetilnal flight phase for each state

in a suboptimal filter formulation. However, the results of the

optimal filter directed the decision to pick, in some cases, at least

two levels of gains. The obvious extension is to investigate the

mechanization which uses the optimal values of the gain at each update
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without computing the covariance matrix Riccati equation. That is,

instead of choosing a two level value of K, choose it to be five level

for the five update case and ten level for the ten update case. In the

latter for example, storing 50 values of K, 10 for each of the 5

states, would be a savings on the computer required, presuming the

filter does not diverge.

An analysis should be performed to determine the sensitivity of

the filter to the simplification of using fixed or precomputed gains.

It was observed that the accuracy of the filter degraded when the fixed

gains were used. This analysis would give the bounds and structure of

the error covariance as a function of gain using fixed noise statis-

tics. It would lend some confidence to the greater use of fixed or

precomputed gains stored a priori.

A complete trajectory study is characterized by its higher com-

plexity relative to the case presented in this thesis. It includes a

full aerodynamic description of the flight vehicle, its inertia proper-

ties, autopilot mechanization, and targeting information in addition

to the measurement kinematics considered. Then, by appropriate mani-

pulation of initial conditions, the truest figure of merit, the

vehicle's miss distance, could be established and compared in cases

with and without the filter implemented. The concept would be simu-

lated with a complete inertial system, radar area correlation system,

and radar altimeter in the autopilot mechanization. The estimator

would still be used to feed back error states to the inertial system

for correction of its output to the autopilot actuators. In proper

perspective, it should be noted that this entire report would be the

basis of only one subroutine (the estimator) in such a simulation.
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Needless to say, this type of study is a quantum step up in the

hierarchy of analysis and simulation. But by the very virtue of its

complexity, it represents the best tool closely approaching actual

hardware flight test. The only additional realism would be to include

a hardware-in-the-loop simulation. However, the obvious disadvantages

of hardware acquisition (caused by high cost and lack of availability)

and maintenance, preclude it from serious consideration at this time.
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APPENDIX A

DERIVATION OF THE IMU POSITION AND PLATFORM

MISALIGNMENT ERROR EQUATIONS

A.1 PLATFORM MISALIGNMENT ERROR EQUATION

It is assumed that the computer mechanization is perfect, i.e.,

that the equations of motion are solved with accuracy. Thus, the

guidance system would operate perfectly if the initial conditions were

correct and if there were no component errors. Realistically, there

are a host of errors contributed by the gyros, accelerometers,

resolvers, torquers, pick-offs, etc. However, this analysis will only

conside:r two major errors that the gyro and accelerometer propagate.

The predominant sources of error for the gyro are the drift rate and

scale factor, and for the accelerometer the bias and scale factor.

Three coincident coordinate axes are of interest. Each is defined

by a set of orthogonal unit vectors in a right handed triad. For a

perfectly operating, errorless guidance system, all three bases would

coincide. For small angular rotations, a pseudovector may be defined

which is the vector angle relating one basis to another. It can there-

fore be defined by the following:

8*

S5 4 5*y A the vector angle between the computer basis and the
y platform basis.
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x

FA,= F AYl Z the vector angle between the local basis (which may
be in any mechanization) and the platform basis.

8 0 x

60 = 60 A the vector angle between the local basis and the
y computer basis.

z

As mentioned previously, ideally all the bases would coincide; but by

the definitions given, it is concluded

+ b- (A.1)

In terms of the notation used throughout this thesis,

-4 -)P-L

• -p-c

Thus, Eq. (A.1) is rewritten as

()-L = oP-C + oC-L (A.2Y

Ideally, it is desired that the platform rotate with the local

coordinate basis in inertial space, i.e.,

G) W (Ideal) (A.3)

However, because the gyros are measuring this platform rotation with
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respect to the inertial basis and because the gyros are additionally

being torqued by signals from the computer to maintain a particular

mechanization, the platform conforms to the following actual matrix

equation:

P =(E 3 +Kg C +-I
E w + e ,(Actual) (A.4)

PgPP p C P

where

"1 0 0

E3A 0 1 0

L0 0 1i

To get all terms in the same basis, note that the following transforma-

tions hold:

S=p/C (A .5)

P C

and

Tp/C / TpEC E 3 + T (A.6>

where

"0 "•z *y

'I! *z 0 -*,

Thus,

C = (E3 + )C = + T W • (A.7)

C P P P
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Putting Eq. (A.7) into Eq. (A.4) yields

= (E3 + .I +) +€

P P

= + Kg W + T W + c (A.8)
P p P P P

Now,

"o -,i i
*z .y WX

lYC-I= *Z 0 " • (A.9)P

" -y zx 0 Oz

thus,

PI - I -C-I C
(A,+I -I w +1$rXt + e (A.1O)

But

-•-I -C-I --•P-C
(0 - tO =

where from the earlier definitions,

-*P-C

It is also noted that

C

(A.11)
Combining Eq. (A.10) aird Eq. (A.11) yields the following:

C

1/ =Kg .w + x + e (A.12)
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Finally, as a minor modification, let be = 0; i.e., let the ideal local

frame equal the ideal computer frame. The resulting local frame sym-

bols are

[ L
=-w X V+ K . W +e

Eq. (A.13) is the same as Eq. (2.9) in the text.

A.2 POSITION ERROR EQUATION

Beginning with the set of equations in invariant vector form given

as Eqs. (2.8a) and (2.8b), assume that be = 0; i.e., that the local

basis is aligned with the true or computer basis. Thus,

C
-4E-C -(A.14)

r=V + w r

and

?' + g- ( + xV (A.15)V=

Equation (A.15) which is in terms of the gravity field intensity vec-

tors is, when rewritten in terms of the gravitational field intensity

vectors,

_ =-. E +,C ×V- (A.16)

Now defining the indicate quantities in the preceding ideal equation

composed of a nominal component and an error component, the following

variation to first order is resolved:

C Cr - +• V~s - r •r- -ýC-E -+C-E -4 A.7

Sr(A.17)
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where

•-44 -C-I -ýE-I
(A) W "W

and w and w are known exactly (no perturbation is needed).

Subtracting Eq. (A.14) from Eq. (A.17) yields

C ---C-E 
( )br EX W Xr 5V (A.18)

rewritten as

C
-• -4 -C-E

5V = br + W X (A.19)

whE.n is recognized as the Coriolis Law if the following definition is

used:

E
5='

Thus,

E C C-
5V = br = 5r +w x br (A.20)

Now by straight forward application of the Coriolis Law

85 = 5r +w X br (A.21a)

= 5V +VE-I X r4 (A.21b)

Taking another derivative,

5r 5V + 5I (A.22a)
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or

6£++ =VXX r (A.22b)

Repeating the same process with Eq. (A.16) yields,

V +8V + f +G +8G- x x (r

Subtracting Eq. (A.16) from Eq. (A.23) yields

8V = bf + 5G - (V x E-I

E-1 + OE-I +(•EI x

Again, the Coriolis Law is

FV = 5V + W x 8V (A.25)

Substituting Eq. (A.24) into Eq. (A.25) gives

I + 5 - I E-I x -8 E-I -)) _ CE-I x 5V ) (A.26)
6V B f +G• r- V(.6

Now derive the terms in 5G, which is a function of r and of

time t.

-4 _. -4-4

G = G(r, t) =- + e(r, t) + 11(r, t) (A.27)r

where

e(r, t) A oblateness of earth and sun-moon effects

71(r, t) _s randomness effects.
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S••: , .. .. .•- j • • - "• t" • - f flrW'-• ' = " • • • •f<" ••=. .- - - -• -[ i•

Thus,

-+ -+ -(K + F K)( + + e ) - e + -A.28a)G + 8G = 3+e+e+'(A2a

[(r + 5ir) . (r +B•)l

+ " e3 +e e+ (A.28b)

Now,

8r=rx5r

i.e., br is a scalar and r is a unit vector in the r direction given by

Consequently, performing a binomial expansion on the denominator and

neglecting higher order terms yields

-4 -4 -VbK K r U
G + 8G -i3 -- (r0 + 5 2 1+e+ e++ (A.29)

r rr /

Subtracting Eq. (A.27) from Eq. (A.29),

-4 -?BK K 5? 3K- 'r
3 -- + -5-" ( r x 8r) + e +, (A.30)

r r r

Now defining

2 A K: •s =
r

to be a constant when r • Rearth' .and more precisely
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then

K2 ^^ K (A.31)
bG = "[-3rr^ 6 brr+s Ws r

Deriving the terms in 5f and using a basis viewing that which the

computer "sees" from the platform-mounted instruments yields

f +8f ~3 + Kfj f +b .(A.32)

C C P P P

Using the transformation

TP/C (E3" (A.33)

so that

f = (E3 - Y) f 
(A.34)

p C

then

f + Ff E3 Fyf + (E 3 - Y)\Kf f +E 3 -Ab (A.35)

C C C C C c

Subtracting Eq. (A.32) from Eq. (A.35), the matric form is

5f = Kf f + b - X f (A.36)

C C C C C

or in vector form

-.Kf • f + b - 'x f (A.37)

Substituting Eqs. (A.31) and (A.37) into Eq. (A.26) for tZ and 57 and

neglecting the oblateness and random terms, the result is

-107-



-4 -4 - 4 -- 2
Kf * f + b - × Xf - &S - 3r x

-X . X V (A.38)

Finally, substituting Eq. (A.38) into Eq. (A.22b) yields

5 sI - 3r% V -= I + b - x (A.39)

which corresponds to Eq. (2.10) in the text.
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Appendix B

AN OVERVIEW OF RADAR AREA CORRELATION NAVIGATION

B.1 GENURAL

This is a short compendium abstracted primarily from the following

authors: Wiley [18], Stauffer [19], Eppler and Willstadter [25],

Develet [26], and Diamantides [27] . It is not intended to be a trea-

tise on the subject but rather a convenient, self-contained reference

on radars in the navigation application as compared to radar

transmitter-receiver design.

It is possible to use an airborne radar to obtain completely auto-

matic navigation by comparison of the image generated by the vehicle's

radar in flight with a series of stored reference radar images made by

previous reconnaissance. The comparison is made by finding the auto-

correlation or cross correlation between the live image and the

reference image; this process is called radar area correlation or

simply radar map matching.

The radar map-matching process determines the displacement of the

live radar image with respect to the position of the reference image.

By "position" of an image is meant the geographical location of the

radar that will create the image in question. The displacement data,

in geographic coordinates, is then fed back to the navigation computer

to update computed position. Figure B.1 shows the geometry of the
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problem. Because the map matcher can deliver almost continuous error

data, it is conceivable that these signals could be used to steer the

vehicle directly. However, the area correlation data, although free

of error that accumulates with time, contain high-frequency noise

resulting from t1-e continuous fluctuations in the radar image.

Attempts to smooth out this noise by integration result in area corre-

lation time constants that are too long to control the vehicle in a

stable manner. The solution is one of combining a fast-responding,

low-noise device that has the disadvantage of accumulating errors

causing long-term drift (such as an inertial platform) with a slower,
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noisy device without drift, the area correlator. By proper allotment

of time constants between the two devices, it is possible to produce

a fast-responding system with little noise and no drift.

B.2 PRINCIPLES

The basic principle of an active radar ground mapping '4ystem is

that it transmits energy and detects the part of it scattered back

from a target. However, instead of the usual point target, the target

in this case is the ground, which can be considered as an extended

array of scatterers. The radar map is obtained by scanning or painting

the ground and displaying the return on a cathode ray tube or photo-

graphic film. Because the scattering characteristics of the ground

will vary from point to point, the cap will be in the form of a varying

brightness pattern. Variations of intensity in this brightness pattern

can be interpreted in terms of the topographical and man-made features

of the terrain. For example, the energy back-scattered from a smooth

surface such as calm water will be much less than that from a rough

surface such as the ground. The degree of correspondence between the

brightness pattern and the features of the terrain depends on the

characteristics of the antenna beam pattern used to paint the ground.

The antenna beam pattern usually employed in ground mapping sys-

tems is narrow in one dimension and has wide angular coverage in the

other dimension. This type of beam is known as a fan beam. It is

usually oriented so that the narrow dimension is horizontal, thus

illuminating a long narrow strip of ground from beneath the vehicle to

some maximum range. Thus, for a given pointing direction, the radar
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beam illuminates targets at many different ranges and depression

angles. Variations in the brightness are therefore functions of range

and the angle at which the ground is viewed as well as the reflective

properties of the terrain. This condition, if not corrected, would

complicate the correlation between the radar image and terrain. To

compensate for the effects of range and viewing angle, the vertical

gain pattern of a radar ground mapping antenna is designed to be a

function of the depression angle at which a given patch of ground is

viewed. This type of pattern is as a cosecant-squared beam.

Scanning of the antenna beam is usually accomplished either by

rotating the antenna about a vertical axis or by positioning the

antenna along the vehicle so that its motion provides the scanning.

When the beam is rotated a full 360 degrees about the vertical axis,

the image is usually in the form of a plan position map with the

vehicle at the center. Most systems employing this type of scan use

a sector scan, i.e., less than the full 360 degrees. When the sector

is directed forward of the vehicle, the system is known as a forward-

looking area correlation radar. Systems employing the velocity

scanning technique, where the beam is directed to the side of the

vehicle, are known as side-looking radars. The images obtained with

this system are in the form of strip maps along each side of the

vqhicle's track and are especially adapted to the use of photographic

techniques to obtain a permanent record. This permanent record or

signal storage has led to the consideration of the correlation process

as an integral part of radar image matching.
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B .3 RADAR IMAGE MATCHING - CORRELATION /
Imagery matching is, in essence, a way of measuring the similarity

between two displays; its outcome conveys information not only about

the displays' structures but also about their relative positions. The

former is of value to the problem of quantifying displays of scenes or

objects anu, subsequently, to the problem of attaching meaningful

characteristic numbers to the scenes or objects in question for the

purpose of classification. The latter lends itself to position fixing

and therefore, if the displays are maps, to automatic navigation and

homing guidance.

The study of display matching is essentially a study of the corre-

lation function and inasmuch as a figure, map, or other subject is

displayed in two dimensions. The correlation function under consider-

ation is for two dimensions,

Y x

0(•, n) Q f-f T(x, y.)T(x + •, y + 1)dxdy , (B.1)

-Y -X

where T(x, y) is the display brightness at (x, y) and t, T1 the relative

displacements.

In display matching, there is generally a current image which is

compared to a memory image, the output of this comparison being the

input to a detection system. If the two images are different, the

resultant output is mutual property of both image functions and can be
/

ascribed no more to one of the images than to the other. The process,

then, is called cross correlation. If, however, an image is correlated

with a duplicate of itself, the output is wholly a property of that
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image and the process is called autocorrelation. Where cross correla-

tion is executed for functional purposes, autocorrelation is performed

for purely analytic reasons. According to one school of thought, the

pattern recognition process that occurs when a pilot observes a target

scene or when a photo interpreter examines an aerial photograph is

similar to the correlation process previously described. The principal

difference between the two is that memory and detection are contained

within the physiological equipment of a human being.

In some early mechanizations, area correlation was done by projec-

ting the live radar image onto the stored reference image and measuring

the total light emerging from the back of the reference image (Fig.

B.2). If the two signals are statistically alike, 0(Q, i) is largest

when the images are in register and • = = 0. As the images move out

of register, so that ý and il are not zero, 0(Q, y) becomes smaller,

decreasing asymptotically to zero for very large displacements,

completely destroying any statistical similarity between the image

elements in the product.

If one image is rapidly scanned over the other in a small circle,

the output light will fluctuate. The major component of this fluctua-

tion will be at the nutation rate because, in the general case, the

nutation circle will be closest to the correlation peak at one point in

the circle and furthest away (180 degrees) in nutation phase from the

instant of maximum light. The phase of the fluctuation will change

with respect to the nutation drive if the nutation circle moves around

the correlation peak at •, • = 0. One can synchronously demodulate the

light fluctuation with respect to the in-phase and quadrature nutation
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FIG B.2. IMAGE MATCHING MECHANIZATION

drive signals and integrate the demodulator outputs. The integrator

outputs are servo-error signals, changing in algebraic sign at •, 7i = 0

in the correct manner to register the images, when they are applied to

servoamplifiers, which move one of the images with respect to the

other. In this manner, displacement of one image with respect to the

other can be measured. If the radar-image signals were identical, and

if the correlator could operate on infinitely large samples of the two

signals, then the cross correlation function 0 (Q, ý) would be a

noiseless smoothly varying function of ý and T, and would have a per-

fectly defined maximum. The correlation tracker could then determine

the correlation peak position and, hence, the register point, to any

desired accuracy. However, the signals are not identical and the

correlator must work with finite samples of the image signals. In

general, the two images are not made at the same location; as a result,

scintillation, moving shadows, and the like destroy identicality. In

addition, there is receiver noise in both images. Even if the signals

were identical, the finite signal sample size would produce

fluctuations from correlation to correlation.
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From both of the previously mentioned cases, then, the value of

the cross correlation function generated for a given g, T, varies

unpredictably from one correlation to the next, as does the location

of the maximum value. Because the location oa the maximum value

Q = 71 = 0) is the output quantity of interest, its variation from

correlation to correlation is a fluctuating error in the displacement

measurement, which determines the accuracy of the map-matching process.

As a rule of thumb, experience has shown that a well-designed system

can measure g and T, to approximately one-half the radar-range resolu-

tion if areas ahead and to the side of the vehicle are simultaneously

used in the match process. This placement of the matched areas insures

reltative motion of the images in the range direction, which is the

narrow dimension of the target elements for changes of g and t.

B.4 SYSTEM'S CONSIDERATIONS

Some of the most important system considerations for ground image

referencing radar systems involve resolution, accuracy, range and

operational altitude, and all-weather capability.

As accuracy is the basic measure of navigation systems per-

formance, resolution is the basic measure of performance for radar

ground area correlation systems. Resolution, a measure of the system's

ability to distinguish between closely spaced objects or to u.lineate

the details of a large area, is usually defined in terms of range

resolution and transverse or azimuth resolution. While the ultimate

resolution attained by the system is a function of many parameters, the

single criterion most commonly used to judge it is the pulse packet

size as projected on the ground. The system parameters which determine
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the pulse packet size are antenna beamwidth and pulse length, as

measured at the half-power points.

Beamwidth is a function of the tranemitted wavelength and the

dimensions of the antenna being expressed approximately by

-- , (B.2)

where

e = beamwidth defined by the half-power points

% = transmitted wavelength

D = pertinent dimension of the antenna aperture

K = constant dependent on the particular aperture. A typical
value for this constant is 70 where e is expressed in degrees
and X and D are measured in the same units.

The system designer is confronted at once with a compromise in the

selection of the transmitted wavelength and the dimensions of the

antenna. To narrow the beamwidth, either the wavelength must be

decreased or the dimensions of the antenna must be increased. In

decreasing the wavelength, the problems of atmospheric attenuation and

the generation of large amounts of power become increasingly difficult.

The maximum size of the antenna obviously will be limited for airborne

installations.

Range resolution may be improved by decreasing the pulse length.

Again, there is a minimum limit because the average power trans-

mitted is a direct function of pulse length. Also to be considered in

this connection is the altitude at which the system will operate

because the length of the pulse, as projected on the ground, is a

function of the radar altitude.

-117-



Another important area with regard to system resolution concerns

the receiver. Here, one of the basic considerations is its dynamic

range, i.e., the range of signal amplitudes which it can accommodate

without distortion. Because a radar image is a brightness pattern,

variations of intensity within the image contribute to the resolution

of certain features. The range of signal amplitudes encountered in a

given correlation operation may be large. If the receiver or display

system cannot accommodate such a range of signal amplitudes without

distortion, loss of much detail within the image will occur. If the

gain or intensity is set at the noise threshold, strong targets will

"bloom", thus obscuring nearby weaker targets. If the gain or inten-

sity is set too high, the weaker targets will not be mapped.

System accuracy is as equally important in many respects as system

resolution. Distorted or "smeared" images make it difficult to obtain

a true measure of ground distances or to resolve details within the

impge. Types of errors that can occur are altitude errors, drift

errors, and stabilization errors. Errors in the measurement of the

altitude of the mapping vehicle can cause distortions in the image

because in most systems altitude is used to set in the range scan

factor. Angular distortion of the image can occur also if there is no

compensation wade for drift.

Stabilization errors occur when the antenna is not stabilized for

pitch and roll displacements. Such errors produce distortion and

smearing of the image. The degree of distortion or smearing that will

occur is difficult to define analytically. However, related studies on
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airplane motions in turbulent air have indicated that displacements of

as little as 1 degree in pitch occur with such frequency as to make

stabilization desirable.

B.5 SIGNAL PROCESSING AND A MECHANIZATION SCHEME

The procedure starts with the acquisition of a reference image by

e.g., a recor"-issance satellite. The image correlation process is

concerned with determining the position offset, with respect to this

stored reference image,of terrain whose radar return is scanned by the

reentry body. To process the data digitally, the radar and reference

images must be sampled in space and quantized in intensity.

By space sampling, it is meant that the radar signal is sampled at

particular instants of time and these samples are used to represent

areas on the ground. The size of these areas depends on the radar

resolution and the signal processing. Intensity quantization means

that the amplitude of the radar signal at the sampling instant is rep-

resented by one of K discrete values. For the binary case, (K = 2), a

sample is stored as a "1" or "0" depending on whether or not its

amplitude exceeds a specified threshold.

As a result of space-sampling and amplitude quantization, the

radar and reference images can be represented as a matrix in which

each element represents the radar return from a particular area of the

image. In the binary case, the condition for correlation of an element

of the reference image with an element of the radar image is that

both elements are alike, i.e., both have the value "1" or both have the
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value "0". The image area correlation system must compare reference

and radar images element by element and count the nuter of places in

which they agree.

In the correlation process, the radar image is in effect super-

imposed in each of a matrix of discrete positions over the reference

image and a measure of the resultant correlation is obtained for each

superposition. Provided it exceeds a predetermined correlation thres-

hold level, the sampled superposition yielding maximum correlation is

taken as the best estimate for the true superposition region. The

precise best estimate of position within this region is then made by

employing interpolation techniques.

To be able to locate the match point with an error less than one-

half the distance between samples, it is necessary to use an interpola-

tion procedure. If this were not done, it would be necessary to

decrease the distance between samples, thus requiring higher radar

resolution, larger computer memory, and longer computation time.

Thus, the area correlation system must perform four operations:

a) Store the space-sampled, amplitude quantized radar signal as

a matrix representation of the mapped area.

b) Shift the radar and prestored reference images relative to

each other, conceptually as shown in Fig. B.2.

c) Determine the correlation between radar and reference images

for each possible offset. For the two-level system, for example, the

correlation is obtained by counting the number of elements in which the

radar and offset reference matrices coincide.

d) Interpolate between offsets to determine the match point.
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Appendix C

OPTIMAL ESTIMATION OF STATES IN A LINEAR SYSTEM

WITH CORRELATED PROCESS NOISE AND MEASUREMNT NOISE

C.A GENERAL

The idea is to estimate the state of a system x(t) from observed

or measured data z(t) where x and z are vector quantities. There is a

known relationship between the observation and state vectors and there

is additive noise present in the observation. These comments can be

expressed in the continuous case as

k(t) = F(t) x(t) + G(t) u(t) (C.l)

and

z(t) = H(t) x(t) + v(t) (C.2)

where

x(t) _ n x I vector of state variables

u(t) A n x 1 vector of input noise

F(t) A n x n matrix representing linear dynamics

G(t) A m x n matrix representing the effect of the input on
- dynamics

z(t) A p x 1 vector of system outputs (observations)

H(t) A p x n matrix relating x and z

V(t) A p x 1 vector of noise in the measurement.

Furthermore, u(t) and V(t) are Gaussian white noise random variables

with zero mean and auto-covariance matrices
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E fu(t) uT(t)} = Q(t) 5(t - T) (C.3)

E Iv(t) vT(t)} R(t) 8(t - T) • (C.4)

Also, for the case where the two noises are correlated, the cross-

covariance matrix is

E Iu(t), V(¶)} = S(t) b(t - T) (C.5)

The symbol Ef I denotes the expected value of the quantity in the

brackets, AT denotes the transpose of matrix A, and the quantity

8(t - r) is the Dirac 5-function.

C.2 PROBLEM AND PURPOSE

The problem is to derive the main results of the Kalman-Bucy

filter [8] with the extension, not originally considered in their paper,

that correlated input and process measurement noise is to be expected.

Tbc purpose is to develop familiarity with the techniques of their

classic paper, obtain useful results for further applications, and have

a basis for discussion of their work as a self-contained item in this

report.

C.3 SOLUTION

With no pretense of originality, the solution begins with the

results given in the paper by Kalman and Bucy [8] as Eq. (38). Their

Eq. (38) states, in essence, that the Weiner-Hopi equation yields a

necessary and sufficient condition for a minimum variance estimator of
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[ i.e.,

coy [X~i). Z(a)] = A(t1i ¶ cov[z(¶),z(cT)Jdr, V O<a<t .(C.6)

Continuing the development, let tI = t for simplicity in the development

and differentiate the left side of Eq. (C.6) with 0 < c < t.

Then,

d. OV[x(t)O' z()] = cov[P(t), z(O)] + cov~x(t), •(•)]

= Cov[F(t) x(t) + G(t) u(t), z(al

= Cov[F(t) x(t) , z(a)] + cov[G(t) u(t), z(o)J

= F(t) covIX (t), z W)] + G(t) cov[u(t) . H(a) XWa +v(G)

+ G(t)[cov u(t), V(G)] (C-7)

Now differentiating the right side of Eq. (C.6) using Liebnitz's rule,

0 A(t, r) cov[z(r), z(a)]dT = -0+ A(t, t) cov[z(t), z(c)]

0

+ ](-! A(t, T) cov[z(a), z(,r)]dT , (C.8)

0

where

cov[z(t), z(a)] = cov[H(t) x(t)+v(t), z(a)]

= H(t) cov[x(t), z(a)] +covlv(t), z(a)], (C.9)

and

t

H(t) cov[x(t), z(a)] = H(t) A(t,T) cov[z(T), z(a)] dT. (C.10)(C-6) J f

0
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From Eqs. (C.6), (C.7), and (C.8)

t

0

F(t) covfx(t), z(a)] + G(t) H(a) covfu(t) x(cr~)] + G(I-) cov[u(t), v(a)]

-A(t, t) H1(t) cov[x(t), z(a)] + A(ts t) cov[v(t), z(a)]

0

Noting also in Eq. (C.11) that

A(t, t) covfv(t), z(a)] = A(t, t) covfv(t), 11(a) x(a) + VWcr

=A(t, t) H(a) cov[v(t), x(a)] +A(t, t)

cov v (t) , v (a)] (C.12)
and putting it in the integral form of Eq. (C.6) where appropriate,

Eq. (C.11) becomes V 0 < (y < t

F(t:) !i(t,. ) covfz(a), z(,r)jd - A(t, t) H(t) JC A(t, Ti )COVr Z (), Z (T )]dT
11 0

-A(t, t) 11(a) Cov~v(t), x(<Y)J +A(t, t) covfv(t), v(cr) I = 0 (C.13)

The last four terms in Eq. (C.13) can be rationalized to zero as

follows:
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G(t) H(a) coy [u(t), x(a)] = 0 because present noise measurement is
uncorrelated with previous condition
of state

G(t) coy [u(t), v(a)] = 0 because present noise measurement is
uncorrelated with previous condition
of state

H(a) cov[v(j), x(o)] = 0 for the time a <T

cov[v(t), v(a)] = 0 because past noise does not influence
present noise measurement.

Thus Eq. (C.13) becomes,

]**[]t,)-Att ~) ~,T -L t cov [z (a), z(T)] dT = 0.(C .14)t6

This is satisfied if A(t, r) is a solution of the equation. Therefore,

(t, r) = F(t) A(t, T) - A(t, t) H(t) A(t, T) (C.15)

Deriving a differential equation for x(t) commences with

t.

x(tIt) = fA(t, r z (r) dT (C.16)
J0

Thus,

t
x(tlt)= A~A(t, r) z(r) d'r = A(t, t) z(t) + bt (r dr(.7

Putting Eq. (C.15) into Eq. (C.17) gives

S~t

x(t It) -A(t, t) z(t) + F(t) A(t, r) - A(t, t) H(t) A(t, T) Z(T) dT (C.18)

0

-[F(t) -A(t, t) H(t)] A ''')z r dT + A(t, t) z(t) (C.19)

-15

-125-



or finally,

x(tjt) = F(t) ^(tlt) + A(t, t) [z(t) - H(t) x(tjt)] , (C.20)

Now solve for the optimum gain, noting that k(t, t) 6 K(t), byusing

Eq. (C.6) again,

cov~x~t1 )f z() A(tl, r) cov[z(r), z(a)I d¶, V~ 0 < a <t
[t0 (C.21))

Rewrite by letting t1 = t to obtain

t

cOv[x(t), y(a) + v(a)J = r ) cov[y () + v(T), y(a) + v(a)]dT

(C.22)

Expanding the left side of Eq. (C.22) yields

cov[x(t), y(CO) + v(a)] = cav[x(t), y(a)i + cov x(t), vT (a)]

= cov IX(t), x T(a) HT(a)] +covIx(t), vT (or)]

=covIX (t), x T W] HT(y) + cov[x(t), v T(a)]. (C.23)

At time o = t,

coV[X(t), y(t) + v(t)] = COV[X(t), xT(t)]HT(t) + cov[x(t), vT(t)1

(C.24)

Now,

t

x(t) 0(t, 0) x(0) + j0(t, r) G(T) u(¶) dr (C.25)

-0
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therefore,

t

coii[x(t), vT(t)] [Of(t, -T G~r cov lu(-r, v T(t)] d¶ (C.26)

10

because x(O) is independent of v(t), t • 0

But,

cov[u(¶), vT(t)] = S(t) b(t - (C.27)

so that Eq. (C.26) is

coNud(t), ve(t)] = G(t) S(t)I , (C.28)

and finally the left side of Eq. (C.21) becomes

cov x(t), zT tj) = covx (t), x T(t] HT(t) +G(t) S(t) (C.29)

Now under the integral sign in Eq. (C.21),

Therefore,

cov [z (r) zT (a)] =OI~),Ht x(t) + v(r ](C.31)

= cov[z(,), xT(t)] HT(t) + coy [z(T), (),vT(t)]

=cov[z(,r), xT(t)] HT(t) + H()co [C X(T) , v(T(t)]

+ cov [v(-), VT(t)]

= coy [z(¶), xT(t) ] HT(t) + H(T) coy [x("r), vT(t)]

+ R(t) 5(t - r). (C.32)
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Putting Eqs. (C.29) and (C.30) into Eq. (C.21) gives

t

covIX (t), xT(0)]H T M + G(t) S(t) - JA(t, -T) cov[Z(¶r), x T(t)]HTJ(t) d'r

t t

A(t, Tr) H(T) cov x(¶r), v T(t)]1dr - A(t, r) R(t) F)(t -r) dT =0

0 (C.33)

Now,

fA(t, r) H(r) cov[x(r), vT(t)jd, 0 , (C.34)

because

0 ,t*eT

cov [X ('¶), vT (t)]=

Except for the infinitesimal instant when t = T, the integral in

Eq. (C.34) is zero. Also,

fJA(t, r) R(t) 8(t - r)dT = A(t, t) R(t) a K(t) R(t)

0

Therefore Eq. (C.33) becomes

Sov [x (t) ,xT (t)] HT (t) + G(t) S(t) - f A(t T) cov Iz(r) X T (t )]HT (t) dTt

•0

- K(t) R(t) = 0 . (C.35)
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Now appealing to mathematical formalities of continuity, differen-

tiality, etc., which are necessary to interchange tlhe integral and

covariance operations,

cov X(t) - JA(t, r) z(r)d'r, x T(t)]H T(t) + G(t) S(t) =K(t) R (t) ,

(C.36)

but from Eq. (C.16)

J A(tcT) Z(T) dr =x(t t) x(t)

0

Therefore, Eq. (C.36) becomes

cov[x(t) _(t), xT(t)]HT(t) + G(t) S(t) = K(t) R(t) (C.37)

or

cov[(ti), xT(t)]HT(t) + G(t) S(t) = K(t) R(t) (C.38)

Now,

cov[3i(t), xT(t)] . cov[134t), 'T(t) + ýT(t)

- cov N (t) -~T(t)] L- F(t) ,(C.39)

where the last covariance term is zero because the error is perpendicu-

lar to its estimate [7]. Now, putting Eq. (C.39) into Eq. (C.38),
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Z(t) HT(t) + G(t) S(t) = K(t) R(t) (C.40)

so that the optimal gain is

1 K(t) = [I(t) H(t) + G(t) S(t) R(t)'] J. (C.41)

For the covariance Riccati equation it is noted

i'(t) = cov[t 3Xt) (C.42)

=-t covlx(t), `x(t)J + covL'x(t), 'X(t)] (C.43)

Defining

X(t) x(t) - X(t) ,(C.44)

x(t) i= (t) - x(t) ,(C.45)

then,

Thus,

•(t) = fF(t) - K(t) H(t)] X(t) + G(t) u(t) - K(t) v(t) (0.46)

The solution to this differential equation is

t

i(t) = D(t, 0) 3(0) + f o(t, T)[G'(r) u(T) - K(T) v(.r)]dT (C.47)'

0

Next, put Eq. (C.46) and (C.48) into Eq. (C.43) noting again,
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cov4uMt)I u.T (')] Q(t) B(t - *r)

cav [v(t), vT(¶r)] -R (t) b (t - -T )

cov u (t) , v (r )] = S (t) b (t - '

To simplify the notation, drop the arguments henceforth

= cov[(F - KH)x + Gu - Kv, x] + cov[x, (F - KH)x + Gu - Kv]

=F cove, X] - KH cOv[x, x3 + G cov[u, il"K covyY, •]

+ 0v[x, il]FT - ,K iIHKT + covD, jlCT - ,y'i, V2KT (C.48)

FT - KHT, + 1 GQGT - KRK -FT- Y.HTKT+1GQGT-GS, -KSToG.

(C.49)

FE.+ .FT - K[Y.HT+GS]T - [E HT+GS]KT + KRKT + GQGT (",50)

Using Eq. (C.41) for K in Eq. (C.50),

F= FZ+ F. T.- [Z.H+ GS]IR- [Hy T + STGT] .[.HT+ GS]EZH + GS] R'I T

+ [.ZH + GS]RJ R{Z 'H + GS]Rl1}T + GQGT,

or

FT +* T H S -lFH OT+GG (C.51)

C .4 SUMRY

The results of the Kalman-Bucy paper have been extended to include
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the case wherein there is correlation between the input process noise

and the measurement noise. The equations of interest are shownr in

Table C.l.

Table C.1

SUMMARY OF KALMAN-BUCY ESTIMATOR WITH CORRELATED

INPUT-MEASUREMENT NOISE

Message model i(t) = F(t) x(t) + G(t) u(t)

Observation model z(t) = H(t) x(t) i v(t)

Apriori statistics Elu(t) •= 0 P s
LI 1 Process noise

Ejv(t4 J 0Measurement noise

Efv(t). vT) =n R(t _

Eju(t), v (¶J=S(t - ) Correlated process
and measurement noise

Filter algorithm X(t) = F(t) x(t) + K(t)[z(t) - H(t) xZ(t)]

Optimal gain K(t) = [7(t) HT(t) + G(t) S(t)lR' (t)
algorithm

Error variance 7'(t) = F(t) 7(t) + 7(t) FT(t) - [y(t) HT(t)
algorithm

+ G(t) S(t)]Rl(t)[ ?(t) HT(t) + G(t) S(t)]T

+ G(t) Q(t) G(t)

Initial conditions i^(O) E Ekxto)} IXo
7(0) = E{[x(to)- ^(to)] [X(to)- ^(to) T]}: O(O)

X(O) x x(to)
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Appendix D

COMPUTER PROGRAM LISTING AND SAMPLE OUTPUT

The listing is given for the five measurement, Case II, with fixed

gains. The program is written in Fortran IV using double precision

arithmetic.

The MAIN program defines the initial conditions on the states and

the constant values. It then establishes the covariance matrix Riccati

equation as well as temporary storage locations for the flow of data

when the program commences. The measurement matrix (H), is established

as a set of three row vectors to give a sequential updating. Though

not a savings in this case, it is established for future studies

wherein correlated input-measurement noise is to be investigated. After

the measurement update sequence is completed, the updated states and

covariances are used as new initial conditions for the differential

equations propagated in subroutineDIFFEQ. The output is formatted for

the printout and finally the plot routine is prepared to accept data for

storage on tape for later graphing off line.

Subroutine DIFFEQ is the subroutine which specifies the form of

the differential equations. It computes elements of the F matrix about

the current estimate rather than about a nominal trajectory because

the latter is undefined. The random noise injected into the system

equations is also defined in this subroutine. It uses random numbers
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generated with a uniform distribution in subroutine RANDU to obtain

random numbers with a Gaussian distribution using the Box-Muller

transformation.

Subroutine RUK is a fourth-order Runga-Kutta quaterature routine

which integrates the differential equations.

Subroutine SORT is a matrix conditioner to prepare the measurement

matrix for call into the update sequencing. Again, though it is not

necessary in this case, it is available for future studies when the

rows of H are no longer merely a single constant, unity, and a list

of zeros.

Subroutine RANDU is a random number generator. It generates

random numbers with a uniform distribution in the closed set [0, 1].

The subroutine BLOCK DATA sets up initial conditions throughout

the program prior to any computations in the algorithms. It is an

efficient way to initialize constants which are common to many

subroutines.

The computer printout shown in the last two pages of text are

representative of the data obtained. The last page is the printout

at time t = 10 seconds into the simulated flight. The page previous

to it indicates the initial conditions at time t = 0 second.
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21 C ESTIIATIS' OF INERTIAL SYSTEM ERRORS31 C USING TEfMINAL OU DANCE POSIT1O4 4tASUREMCSTS
C VIA A RADAR NAP MATCHING SYSTEM02 Ce*o*...***e..*.•

61 C THIS PROGRAM 3SS4ATES A CIVSTANT VELOCITY DESCENT TRAJECTORY,71 C COMMENCING AT 31),3o0 FT. FRQ A REtE4TRY BODY. Am !XTENSI14 0F THE
at C KALMANeSUCY FILTER ESTIMATES THE ERq9R 14 A4 14IRTIAL SYSTEM. THE9t C EQUATIONS MODELLING THE SYSTEM HAVE SEEN LINEARIZED A59UT THE CUR.101 C RENT ESTIMATE. A MONTE CARLO TEC442UE 1s USED Ta GENERATE THE1I C N|ISE IN THE MEASUREMENTS SIMULATED AS A RADAR MAP MATCHING SYSTEM.III C AND TO SIMULATE THE 4O1SE 14 THE I1PUT PROCESS. A PLST ROUTINE131 C LOCATED AT THE END SF MAIN PROGRAM SENERATES THE OJTPJT GRA4Sq,14: C****e********

t15 C DEFINITI4NS OF THE DIMENSIONED VARIASLES

171 C X(I) STATES OF THE SYSTEM
Is: C DX(I: DIFFERENTIAL$ OF THE STATES
191 C SAAV(I*J) A STATE ARRAY SAVE3 FOR EACH INCREMENT IF TWit208 C SAAVUP(I#J) TEMPORARY STSRE FSq ALL THE STATES211 C XSAAV(I) it of of JTHE INS STATES22: C PSAAVII) Of V:CTOR of Of THE COVARIA4CE ELEMENTS
231 C PfI*Jl it MiTRIX to ot , it of24* C HROW:(IaJI A ROW VECTOQ OF MEASUREMENT OBSERVATIONS
25: C HROWC(ZJ) to 99 of 'A '
2b C HROW3(IeJ) of o* to '' oA27: C H(I) THE MEASUqEMENT VALJES
Pat C ST9(I) STOqA3E Or O EASUREmenTS AND GAINS291 C RKSP(IJ) RTORA3RE O OPTIMAL iAINS FOR T4E ENTIRE qUN301 C PPLUR99) STORAGE Or COVARTAV:E AFTER A 4EASURS.4EET UPDATE31i C XMSAV(c) if It STATES it of of to
321 C ERRXII) DIFFERENCE BETWEEN ACTUAL AND ESTIMATED STATES AFTER331 C A MEASUREMEVT ULPAT•"341 C ERRXM(I) 5IFFERENCT 9ETWr•N ACTUAL AN4 ESTIMATED STATES
35: C BEFORE A #AEASJREM2NT JPDATE
261 C F(Isj) DYNAMIC SYSTEM F MATRIX371 C FP(I*J) MULTIPLjE, F A4D 0 4ATRICES381 C DODTtI#J) MULTIPLIEO DpOsAND 3 TRANSPOSE MATRICES
391 C......
401 C DEFINITI54S Or THE N94DI4NES154E3 VAIABLES
41t Co*...o***.***
421 C XI X-PqSITI3N ER45* OF 1yq AS A STATE
431 C Ye Y-00SIT!OM 99 of to to of441 C Z3 Z-OSSTITN4 It it It t
451 C XP6 Xl STATE PERTURE WT.Tq 411SE461 C YP7 ye of of $' to47: C ZPa Z3 of it of of482 C RX SPECTRAL DENStTY OF EASJREMENT NOISE I4 X492C RY o9 to to of t i y30: C RZ it it to 99 to ZSit C 2X It it Po5:rSS It of X
521 C OY to o9 of I9 to to y53: C 2z of it o f of i to ZSd: C OMEGA EART41S A4GJLAR VELOCITY IN A4 INtRTIAL BASIS551 C DES XE3REE
561 C GE EARTH'S ACCELERATIN I 3RAVITY
571 C RE EARTH4S RADIUS
581 C ELAT LATITUDE
591 C PI CONSTANT 14 RAD14AS
601 c IUPDAT THE NUMBER OF 4rASUREMENT O9SERVAT194S611 C IX RA4NDM NUMBER F)R THE 414TE CARLO SIMJLATION
621 C DT INTCGRATIO4 STEP SIZE
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631 C@*0000*000***
641 C NOSTE: ACL SThER VARIABLES ARE- USED TO IWORTEN THE
65$ C ALGEBRAIC EXPRESSIONS AND '4ENdCE' ARE SELF tXPLA~4ATSftYe
661 C*...'.....*Oo
671 C 4A1N PROGRAM FOLLOWS
fi5t C********O*****
691 IMPLICIT QZAL*A (A.14&Ow2)
700 REAL'S X(26)#DX(26)
711 COMMB4/ARRAYI/SAAV(26e5S)DSAAV~JP( 26). XSAAV(5).
721 1 PSAAV(15),P(5#51
73: CeMMS'4/ARRAY2/4RftWl(1a51a#4RSW2(la5).MRSWS(1e5).4(5).S9(5),l
71#12 RICSPTIS.58)*PPLUS(25)pX'ISAV(5f

751 CBMM ,/ARQAY3/ERWX(5)*ERqKXI(5)
76: COMM191ARRAY#/P(5.5).FvP(5e5)aDODT(5,5)
771 IC&MSMI9/B1/X1, Y2.Z3.XP6. Y*7.ZPS. RX#eRYeRZ
753 COMM@4/IC1/SOIE0A.ELAT5DEG.GE.REDPIDT#DELTAT. ICSUHTe PAXa IUPOAT, 4J
791 COMMS@d/Ce/1K.Lt
g0: EXTERNJAL. RA4DU
a1l C
821 C Ce'JSTANTS 141TITALIZED IN TWIlS BLeCK.
831 C
841 eNEGAS15*04107b0
851 DEs09001745329~D
561 GE93P*172400
87: REvs6278358.00e3928D00
get ELAT@459DO
89: P1s3.141592653100
90t 1UPDAT410
91: LI~w5I
92: NSOP&
931 IX64000
948 DT@0*250
951 C
961 C THESE ARE ADDITI94AL N4ON ZE49 IC.
97: C '494INAL STATE '9N FIRST PASS*EST14ATE5 STATE Ti4EqEAFTER9
931 C
99; Do to11 J01e'JS

100$ 1011 X(J)wo*00
toll 0I 1012 J6104S
132: 1012 0X(J)'0.00
1031 C
134: C ACTUAL qTATE IC&
¶05t C
1361 X(6)@t253300
1371 X(7)v1317.03
1081 XCS)wt53090.
109: X(9)*toeoo
110: Xi1O10.P00D
II1: C
1121 C STATE ERR9R C9VARTANCE IC& JPPER TRIANG3LE'9S4LY*
1131 C
1141 X(I1810000.000
list X(13)@100000DO
116; X(16.1I0000.00
117: XIPO10)0000031DO
118t X(25)m0.0000100
1193 C
1201 C INTEGRAT13I 9F' MAINJ EQUAT114S
1211 C
1221 C RMAX Aql IMAX EQUAL T9TAL i' VLI34T.?.0IVI2ED BY 14rRTS
123: C STEP SIZE DELTA*T* K(10 AND 110 ARE VARIED ACCIR3IdS 19 T4E
1243 C %JU'BER Sv I'JTESRATI9'J STEP4 AND Or-LTA.T SIME
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125) C
1361 RMAX#90pDO
1273 IMAX*IDINT(RMAX)
1281 C ICI0aPIAX/1UBDAT
1292 Ma1il1
1308 ICoU'JTS
131S D Its 125 SIONS
1328 DO 125 45o1.56
1331 12Si SAAVeI5#NS)u00*D
1343 08 1000 110pt,6

135319 D,12 1L6
1372 120i SAAVU~cICOUNT)GX(Jl)

i~s: C@UNTOCSJ'JT4I
1398 C
1408 122 CALL RUK(~XsDT#N'I9)
1412 C
lila: IF C!C8U4T"'101 119#200#200

147:CGE EA) 200 CSMETPJUET :EMTM T UPDATE* T14C 4oMATRJX IS

14:CTREATED AS 3 SEPARATE ROWS IF 14 IN %RDER Tl SAVE O5J 44TRIX
141 ULTIPLICATI8OJ. EACI4 INTEGRAT!9N !1JTERVAL IS STSRED 14J ARRAY
15: A4IED SAAV9

1511 08 150 K#1#4S
152: 150 SAAVJPCK)60*D0
1532 DO 151 Iu1.*JS
15.41 151 SAAVJPUI)oSAAV(!.!CSUNTI
155: C
156t C XI4AT M14US IS TAKEN FROM SAAVUP A4JD *LACED 14 ?!M09ARY ST9RAGE.
1572 C
1583 Do 152 joI.5
159: 152 XSAAV(J)aOD*1
160: DO 153 Kwle5
161t 153 XSAAVCK)uSAAVUP(K)
1622 C
163t C P 4I!NUS IS TAK(EN~ PROM SAAVJD A45i OLACED 14J ANoT4ER TrE9,sARY STORAGE.
1643 C
165: DO 154 Jol.15
166? 154 PSAAV(J)*0.DO
1672 MimO
1682 DO 155 Koul.#25

1702 155 PSAAV(MI)OSAAVUP(K)
171: C
172t C PLACE P MPJUS 1419T SX5 MATRIX FSR ME-ASUREM1E'T UPDATE,
1731 C
174: DO 156 1.1.5
175t Do 156 J.1.5
1761 156 PU.oJ40.00
1772 '(1.0
1782 DO 157 P1.1.5
1793 DO 157 4ol..'
1303 K(1.1(1.
1813 P(4j,'.)*PSAAV('(1)
1a32 157 P(M.'j).Pf(JM)
183: C
184: C DEFINE 4 AS A SET qF ROw VTCTORS INSRTEAD IF A S14GLE 4ATqIXo
1853 C T'IESE ARE ITS Me.
1862 C
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I 117: HR9Wl1 1) .1.IDo

1099 14RSW3(1#3)oloO0

1911 C MPASUREM1E4TJ ERROR MATRIX 1'J COLJ44 r'9R~oI193: ERRORl4XP6+RXwl*D0*X1
1942 ERRfRQ20YP7+QY.1.*0OeY2
195: ERROQ38ZP8+RZo1 e')*Z3
1963 C
1973 C EXPECTEI VALJE OF MEASJREMW'JT 'JOISE.
198: C
199: SIGRX*50*)0
Poo: PR90oI SIGRX*SIGRX
201: SIGRYmS30.0
2323 PRO')PsSIGRY*SIGRY
20331 SIGRZOIO030.
P042 PRlD3sSISRZ*SIt3RZ
po53 C
P362 C THIIS 19 FIRST 1'.CREME'JT OF THE 4AqjqE4E'JT UIJATS SEUJENCtE
P372 C
2382 DO 105 LL1.1.5
209: 105 H(LLI)*0900
Plo: DO 101 Llul,5
Pit: 101 HCL1)u4R5vd1C1.L1)
P123 CALL SIRT(D.14.STS5s55#1v3*2*?5s5.,5)

P13: CALL SIRT(.4.STqI.P.4T#1,5,5e1l.5,5,~ol
P142 IF (.4P'T*E290) HP4P7Tu1.D.1
pis: HPHTu.4P'4T+PRl0
P16: DO 30 1.1.5
217: C ~FOR TE 71XED SAT1JS CASEa 4(l) IS RYOASSE) WITH4 A
P1g: C C04MENJT A'JO T4F C9NRTA'JTS &IS I'JSEqTrD* THE SA~r
P19: C 1S TRJF FIR T-Ir 2%10 A43) 3R" IkJCRE9E'-JTS IF Jc'ATr~S.
P20: C THE CASF 4JEqE IS FI N-E 5 JPDATS Sr2JEJCýEo
P213 C '4C1).ST9(1)/qP'4T
P2223 H(12a0.160D-3
?:?3: H(2)z-3*433.03
?24: H(3)v3#93D3
2253 W(4)**0.033w01
P26: IF(lqU'JT*3Ze.41) *4(4)a.0300031
P27: 300 H(5)m3*3830
P28: IF(lC4J'JT*3qs31) 4f5)u*3ol6l3
P293 310 C8'JTT4JJE

P31: 09 30 Jules
?32: 30 PCI*J)8P(I#J)..4(I)*STi(J)
P333 C
234: C TL41S 15 SEC9'J2 INCRE9E'JT IV TwF 'IEA;J~rMEqIT JPIATE Sr2)V~
2353 C
236: DO 102 Lau1.5
P137: 102 H4(L2)s4R5v42(l#L2)
238: CALL S9ITC(eh4*STI*5#5p1,5*?23#5#55)
239: CALL RIT4S9HA#15511351
2401IF (..4P4TvE2*0) WP4Ta1.).15
P41: PHcr...PHT+P0DP0

P423 DO 31 Ils.5
2433 C HCT)vRT9(I2/4P-4T
2442 '4(l)80#16>-33
2452 H(i')v.0.40).03
2462 '4(3)w3*9333
247: H(4)..0.05).01

2483 1F(Ir~q'J1'3rq41) 4(4)*.0.4').0¶
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P49: 323 H(5)vD*D8)0
250: IFCIClJ'JT#3Ee31) 4(5)z.0o16D3
PSI: 333 CONJTT'UE
P522 XSAAV(I)oXSAAV(I)H4(1)*r-qRSq2
253: 0O 31 Jm1.5
P54: 31 PCI#J)wP(I#J).'4(?)*ST5(J)
P552 C
256: C T41S 1S T4Iq) 1NCREME4JT OF TAE IrEASjIE9rNT UP'DATE 9E2Jr-4CEo
257: C
p58: DO 103 L3ul.S
P59: 103 H(L3)uv4R3v3(1.L3)

P6t CALL SR(..T.,..a.555
261: CALL RIRT(.e.ST9,HP..IT,1.35.5,11.s5.j*)
P62: IF C.4'4TeE~oC) '4P14Tol.)..15
2632 HP.4Ta.4P4T4R0D3
264: DO 3P Iwl#5
265: C H(?.*T9CI)/4P'4T
266: H(1)vD.16-:)3
267: H(2)m%0*403-03
268: H3..3
269: H(4)s-0*053-31
270: IFUIC5U4Te3Ee41) 4(4)uo0.4D.D1
271: 340 H(5)u3*083D
P72: IF(IClJ4JT93S@3I) 4(5)8+0916DO
P732 350 CONJTTIUE
P742 RK9PTclI.I5J'JT~ub(I)
P75: XSAAVcI)mXSAAV(I)..4(I)*!RR5q3
2762 00 3P J81#3
P772 32 PCI#J)uP(I#J)*4(I)*STOCJ)
P78: DO 106 K2w1.25
279: 106 PPLU9q(I2)v0#DD
2302 K3*10
2812 DO 104 13ul#S
P82: 00 104 J3nleI3

PR3: K3.13+1
P84: 104 PPLUSI(3)80DJ3#13)
pa52 C
P862 C AT THIS OSINT T~4E MVEASJRE'fl4T JPDATS SEQUE4CE IS COMPLETED*
P872 C THE VALUE FeR X HAT P'.JS IS STSRE') T4 TAE LAST XSAAV(I)# T'4E VALUES
2882 C 0 PLUS A4E STSRED 14 T4E LAST OPLVS(I)e AV3 T14E 9PTI9AL GAINS ARE
PA91 C IN KOPTCI~o
P902 C
291: C GET THE JPDATE3 STATES AND COVARIAVJCES BACK( 14TS A F9S'¶AT
292: C SLIITABLF AS TAE NEW ICIS FSR T14r- PRIPSATI9'J VIA INTE-3RAf194 9F THE
P93: C D)IFFERENTIAL E2UATI9NS9
P942 C
295: C THIS IS F9R XqAT PLUS.
296: C
297: DO 162 1(11.1.5
298: 162 XC(11I)$XSAAV(KIl)
2992 C
300: C THIS C9CCECTS X PFRTURSED
3311 C
332: DO 164 911.6.10o
3033 164 XCMII)VSAAVUP(MII)
3342 C
3052 C THIS IS CSVARIANCE PLiJSe
33062 C
33072 D 163 LIIwII.25
3082 163 X(LIJ)qPPLJS(LtI)
3392 C
3102 C THIS Is TIME
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312: 165 X(26)wSAAVJP(P6)
3013 C
314: C T'41S RLq~'( r9q4IATS ?'4-- OUT2JT*
315: C
3161 Mal
3171 IF (10.%JE.11) M.I(10-13
3181 701 FORMAT('1',/.5X, 'Ta'.DI'.4.2Xe *SAAV !1J5E2Cu.t4ol)
3191 WRTTF(6*701) SAAVC26#9)D9
3202 C
3~?12 702 FORMAT( l*3*,'THE ACTUAL ERROR 14 T4E 1%JEqTIAL NAVIGATSR #TE.'.
3221 1 'THF PERTJq8ED STATE :')
123: WRIYE(6#702)
3?41 C
3?5: 703 F~qMAT(' 'D5X#IXP s'.017.10#2X.'Y2 u*.~l7*l0.2X.'ZP w',017*10se~X
326: 1 'VXPs'.~l7.10.2X.'VZPu'.)17.lo.///)

3273 WRITT(6#733) SAAV(6.9).SAAV(7.s1).SAAVtSM).SAAV(9.u).oSAAV(00uM)

3291 704 FORMAT(' lo§X*'TIE SST!'4ATE3 14ER!TIAL %JAVIGATSR SRR (STAT!)'
3301 1 1 BEIR A MEASUR~E'E4T JPDATE :1)
331: WR!T!607O4)
3322 C
333: 705 F8QR1AT(' lo5X#'XE aljDl7.10*2XplYY- v*'517*1O.2X.t'Z!, o'a317.1se2Xe
334: 1 IV~t~~l#XIZG#190//
335: WRITF(6#705) SAAV(1.)o.SAAV(2.M).SAAV(3.M).9AAV(4eM?.SAAV(5,M)
3361 C
3373 5051 FOqMAW( '.SX,'THE EST14ATED 1'JEQTIAL %IAV!GATIR ERI (STAT!)'.
338: 1 1 AFTER A MEASUREMENT JODATE 3')
339: WR!TC(6*5051)
3401 C
341: 5052 FORMAT(' l*5XslXE v',017.10,2X.'YE m'.5i79l0*2X,'ZE af*517*l002X*
342: 1 'VXEs'uDI7.10.2Ke 'VZEUI'.317e13o,//)
343: WRITE(6*5052) XSAAV(1),XSAAV(2).XSAAV(3).XSAAV(4).XSAAV(5)
3443 C
3451 506 FORMAW( '.5xpoTb4E FILTTR ERO 14J EST14ATTO STATE gErSRE'.
3461 1 ' TW! MEASJRE'4ENT JPDATT! 2')
347: WRITF(6*506)
2481 C
3491 00 601 La1.5

3511 601 ERqX(C0eSAAV(L*M)sSAAV(4J.M)
352: 507 FORMAT(' '.5XIEqqXuI.~j7.o.32X.9!RRY.'.517.10.2X'!-QRZN',017.10s

354: WR!TP16e507) ERRqX(1),EK(2).*ER(3).!QqRX(4).!QRX(53
3355 C
3563 508 FORMAT($ '.5X.'T2E FITER! ERROR 14J ESTIMATED STAT!'.
357: 1 0 AFTER TI4E MEASUREE'4ET UPDATE :')
358: WR!TE(6#508)
3591 C
360: ~ a
361: 00 602 L*6#10
362: KK*KK41
3632 602 xmsAV(KK)oSAAVUPIL)
3641 DO 603 %du1,5
365t 603 RRQXMP4(')oSAAV(N)-XMSAV(.4)
3661 C
3673 509 FOqMAT( '.SX.9ERRX~t.017.o.~2X.9!RQYU'.0l7,lO,2X,'ERRZ.'.0l?171*
3683 1 2XIRVo*lo~2*IRVoo1*0//
3691 WR!TC(6e#509) ERX()ERM2*RXM3*RX()ERMS
3701 C
3711 710 FORMAT41 'e5X.THIE ERROR COVAR.A4JCE MIAT~tX B!6E'OEl
3721 1 1 A MEASUR[MtN? UPDATI MI

-140-



3732 WRIIT(6*710)
374t C
3751 711 FORMAT(' t*5X&IPI1 vl*017*l0*2Xe'12 ul*0l7.ole2.Xsl~l3 v1*017*10s
376: 1 2X#'P14 slaD17910#2X9'P13 ml'.17910)
3772 WRYTT(6#711) SAAV(11DMu*SAAV(12.'¶)DSAAV(14.#I)DSAAV(17e'1),
3782 1 SAAV(21D#I)
3792 C
3R02 712 FORMAT(' 1#29X*IW22 ml*ajI7*.0e~X*,P?3 wlo.j7o10*2X.'P?4 0D01791OD
3812 1 ?X*1025 81#017910)
3R2: WRITF(6o712) SAAVt13,?1).9AAV(l5.*t),SAAV(18.*1),SAAV(22,4)
3832 C
3842 713 78QR1AT(' 1#53X#IP33 wl*'J17*10*?X,'P34 v'9017@10.2Xe'P35 of9017*101
385: WRTTEC6.7131 RAAV(16D93DSAAV(19D*I)DSAAV(23Dj1)
3862 C
3R7: 714 FORMAT(' ',77X*IP44 *f'.017ol0*2XDIP45 99*517o10)
31882 WRITr(6#714) 9AAV(20sM)*SAAV(2d..')
3899 C
3901 715 FORMAT(' 1*1OIXotP55 81*117o10./M/
391: WR!TE(6#715) RAAV(25#M)
3921 C
3932 516 F@RMlAT(' $SX#'TI4E ERRSQ COVAR!A4J:E MATRIX AFTEq',
3942 1 1 A MESRM4 JPDATT :9)
395: WR!TC(6*5161
3962 C
3972 517 FORMATV ls5X.'PII vf*Dl?9l0*2X."12 *',017*10stX0"13 sl*017o10a
2982 1 2Xolp14 *'.0l717.I2Xp'Pi5 8,8017610)
3992 WR!TF(6r517l PPLUS(11).PPLUS(12).POLUS(14).PPIUS(17),PPLUS(21)
4002 C
4012 518 FeRPIAT(' 129X#'P22 f'a317o10*2X.'P?3 v*5.01?.0*2Xg'P24 u'.017@IO.
4022 1 2X.'P25 s'.D17910)
403: WR1TF(6*518) PPLUS(13).PPLUS(15),P91.US(18)ePPLUS(22)
4042 C
4051 519 FeRMAYC' 0,53X#'P33 m'a017910,2Xo'P34 wl*D1?.10e2Xa'P35 49.017.10)
4062 WRITT(6#519) PPLUS(16)&PPLUS(19)*P0LUS(23)
407: C
408: 520 FeRMAT(' 1#77X&IP44 vl*317o10p2Xh'P45 v1e0l7910)
4092 WR!TE(6#520) PPLUS(20)**PL.JS(24I
4102 C
411: 521 FeqMAT9' '.IOIX,9P55 61.017910a//)
4122 WRITT(6*521) PPLUS(25)
4132 C
414t 522 FeR'IAT(' ##SX*ITIE OPTI"AL T14EoVAqY14s FILTER BA1'4S 10)
4t52 WR!TEF(6*5221
416t C
4173 5P3 FeRMAT(' I#SX*#KX %l*D17.10*2X.9KY .'.017*10*2Xu'9Z 0'017o10u
4181 1 2Xa,(VXWI,017.10a2X,9KVZU9.017.10.")
4192 WR!Tg(6#5231 RKP(&)ROT24#R&T34#~P(#)
4202 1 RK9PT(5*4)
4212 KIO.KI0+10
49221 1000 Ce4JT1'UE
423: 500 CONT14UE
4242 C
4252 C TI.I NEXT BLOCK SETS UP THE PLOT R4UTINE F*5R GRAP4145o
4p62 C
4272 C
4282 C DATA FOR THE FIRST GRAPI4 (X*PeSIT194J) reLLeWS.
4292 C
4302 08 41 191.51
4312 XI!)sSAAV(26#11
4321 YG(9AAVfl*I)*SAAV(Sei*))
4332 CALL P81IJTlt1.X*Y)
4342 Y*DORqT(SAAV(l1.1))



4352 CALLP4114TIT(?X#Y)
436: YovY

437: rALL OS14T1(3#X#Y)
4382 41 CSeJT?1JJ
4392 CALL CLUqVEI(1.1,)
4401 CALL CJqVEI(2#1#0)

4411 CALL CJqVE1(3#1#0)
4421 CALL P91bITi(4#0*#2*E*)F 1+3: CALL P~IN4T1(4ol1...244)
4441 CALL CURVE14.,0e3)
4451 CALL TITLE2(43#'F!LTER 1'qRRR S VkqA41AIC~ X(PT) VS TIME(SECI)t
44*6 CALL 3RAPI41(11*olTT'4EI.139#l X t)
4473 C
448: C ')ATA F"Q Tb4E SSC8'D GRAPH4 (YoP9S!Ty?%I) P9LL5WS*
4492 C
4501 DO 42 tol#51
4511 X(l)UsAAV(26D!1)
4522 Ys(SAAV(2#!).SAAV(7.1))
433: CALL PSINTI(1.X#Y)
434t YwlS2QT(SAAVC13#!))
455: CALLPI0NTI(?#X.y)
4561 YomY
457: CALL P5!%JT1(3#X*Y)
4.582 4p C8%1TTN~UE
*592 CALL CURVEIC1,1.0)
4602 CALL eCqVE1(Pols0)
4612 CALL CURVEI(3viso)
4.6p2 CALL P9PJ14Tl4...2*[4.)
4.632 CALL 0! 44?1(4.,11.a.2oE*
4642 CALL CURVE1(4..3.3)
465:t CALL TITLE2(43#IFILTER !'QRfQ S VAq1A4IC~ Y(rT) VS TIMS(SEC)I)
4662 CALL GRAPHI(11*,'T14EIa10.,' Y ')
4672 C
4681 C DATA Feq TH4E Th4RD GRAPH4 (?*PeS!TTS%) FILLOWSs
*669: C
4702 60 TOt 430
*712 431 09 *3 219.51

4732 YS(SAAV(3#I)*SAAV(SoI))
4~74: CALL PSINT1(1gX.Y)
4752 YoDSORT(SAAVC16#1))
4761 CALLP1P1C:reK.Y)
4771 Yef.y
4781 CALL OSPJTI(3*X#Y)
*792 43 C8OJT14UE
4R02 CALL CVRVE1(1.1.0)
4812: CALL CURVEI(2#1e0)
4A2: CALL CURVE1C3*1e0)
4.83: CALL POPJT1(4#09#10.E3)
4841 CALL P914TI(4*11.e.~o.El)
4A52 CALL CJRVEI(4#0*3)
486t CALL TITLE2C43.'F!'.TC ERROR 5 VAIA~4CEI Z(FT) VS TIME(SECC)
487: CALL GRAPNI(11..ITPIEI,10s,' X 0)
4882 430 Ce'4TT'JJE
4592 C
490: C OATA FOR? ?14 FOURTH GRAPI4 (X.VELOCTTY) F9LLeWSo
46913 C
4921 08 44 141#51
4931 X(?)*SAAV(26#11
4941 Y*(SAAV(4#!)*SAAV(9#1))
4952 CALL 0914T1(toX#Y)
4962 YaOSOR?(SAAV(20,))
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4971 CACLPOINYI(2*X#Y)
4981 VumY
4599 CALL P51JTI13AXeY)
5001 44 COWJT'UE
soil CALL CURVE1(1.1.O)
S02: CALL CURVEI(2*1#0)
5033 CALL CURVEI(3#1#0)
5041 CALL P9z&JTI(4s0.3*E3)
Bo5t CALL P9!'J11(4.I11..3sE3)
5,061 CALL CURVE11000a)
5071 CALL ?ITLE2C45e'FILFER EqRROR VAqZA4JCE VX(rP3) VS T!'lE(9C)I)
BOB: CALL 3RAPI41(11.,IT14EI.10..' VX f)
5091 C
5101 C OATA FOR THE~ FIFTH GRAPH (ZoVIL5CIIY) PSLO.WSe
sill C
5121 be 45 !16151
5131 X(1)m9AAV(26#!)
5141 YmCSAAVCSI)wSAAV(10#1))
5151 CALL P51SICT(1X#Y)
5161 Y*DSQRTCSAAV(25#1))
5171 CALLP91NTI(eoXsY)
5181 yagy
5191 CALL 091lT1(3#X#Y)
5201 45 CW~TWJE
5211 CALL CURVEI(1.1.0)
5221 CALL CURVE1(2#1*0)
523: CALL CURVE1(3.1#0)
5241 CALL '9I'JT134#0..29E3)
5251 CALL P91JT134e11*#u2*E3I
526? CALL CJRVEI(4#0.3)
5271 CALL TITLE2(45,IFILTER rQROR VA~IA4JCf~ VZ(fW*S) VS T!14E(SEC)')
528? CALL 3RAP141(11..'T14I#IE'aOju VZ ')
5291 C
5301 C DATA FOR TH4E SITHT~ GRAPH4 ((X OPT14A.') "8LL9W
5311 C
532? DO 46 141051
5331 X(!)vAAV(26#1)
5341 Y*RKiPT(Is!)
5351 CALL P114IJl(1*A"Y)
5361 46 C04JT'J.IE
537: CALL CURVE1(1a1.0)
5381 CALL 0519I~Jl(.D.Oes E.04)
539? CALL P91NI'J12*11e*3*E0)
540O0 CALL CURVEIC2*0#3)
5411 CALL TjTLE2i32*fsUB9PT!"AL SA1J? <X V9 Ty~le(SEC)I1
542: CALL 3RAP4I1I1..TP¶Ef.10..' KX 0)
SI31 C
544? C. DATA FOR TH4E SEVENT'4 GRAPh4 (KY SPT!4AL) rILLOWS*
5452 C
546: 00 47 181031
5471 X(!)m9AAV(26#1)
5482 Yaqt(SPT(2#1)
5491 CALL *S1OI(JI*1X#Y)
5501 47 CW~TT'4E
5511 CALL CJRVEI(1.1,0)
552: CALL P9I1JT1(2,0...1,.90Eo04)
5531. CALL 0JTC1.0.)
5541 CALL CURVEIC2*0*3)
5551 CALL TITLE2(32#1SUBOPT!9AL SA14.U (Y VS ?TIM(SEC)'
5561 CALL 3RAP&41(11..,T1IlEI,10*I ICY 1)
5571 C
558t C DATA FOR TH4E EIGH4TH GRAPH W( SPT14IA'.) O9LL5WSs
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5591C
5601 08 148 lIDsio

5611 x(t).SAAV26#11
562t ODT31
5633 CALL bMpJTMO1XOY)
56141 148 cS'~JtPue
5651 CALL JV1.D)
5661 CALL
5;673 CALL 09Ih4TI1(2oloDiO0)
568: CALL CURVEI(2#0#31
569t CALL. TITLE2(32atSUMgPr1MA4 GAtI fZ VS TP1!(SEC)')

570: CALL 3RP1j9I1E*0# 
<Z 1)

57M1 C
572: C DATA vq THE '41'JTA GRAPH (gVX SPTtM&'-) FftLLsW99

5731 C.
5714t De 49 1.1.51
55751 x(I).S5AV1261t)

5771 CALL PS1NT1(1,o(,y)
579: 149 CIJT10JE
5791 CALL CURVEIIt#eOa)
SRO: CALL 01T
581: CALL D1T(*l#SO*Z
5.82? CALL CURVE-I(200D)

Ss3t CALLA TITLE2t33pI~SUB9PTI
tWkL G1034: My VS TIMS(SE)')

SW1 CALL qP11." 'h ' (?)

5951 C
596: C )ATA FOý TAS TENT4 GRAPI4 (<VZ WTI'i.) MO~WS*

RR7: C
Rs~~t OP 0 fo1eSt

589. XIT)OSAAV(261)
5901, YRITSl

591t CALL 0914JT1C.X#Y)
59a: 50 CBe4TT'VJL
593? CALL CNJVEl(1u1DD)

5446. CALL 0NI2l*3O-e

595: 'ALL 014121.OO
596! CALL :JRVEI(2p1#3)

597? CALL TjL23s98PTfl IA14J: <VZ V3 T14-r(SMI)'

5981 CALL 3RAP-41(11,.fT1'MEf#10* KVZI)
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31 C

51 C
61 SUBq"'JYJE 0IPQXDaT72 IMPLICIT REALOR (A-hIB.Z)

91 REAC.! X(e26)#DX 2 6)to: CBOMM t4/AqRAr~jSAAV(
26 ,sq,,sAAyjP 126, KSAAVI5),102 1pSAAV(15)Dfp(!s'5

13: 1 RKOPtC5f58)DPPLUS(2?S)t4SAVe
131 CM/A qAY3/fRqX(5)p~qqxm(

5)141 CAM1/QA4P5 Sp(,gsD!T55

is: C193 C THESE AR:- SIME CON~STANJTS Fr# T41S Rj~J,F201 C

231 l9MQDe0C(EAXG

261 C PffR SY'1P1CITY IN~ THIzS SIj.TIVc THE 940A VECT94 AYJ EL4T
271 C TO BE Ci4VSAV&~ LET ELAT 9r 45 DE -E 45T281 C THEY ARF AS PILOS?99 WX.WXI
30J WYawyl
31: WZuWZj
321 C
33: C TI4JS, lq] TI4E DtEfVrAT~Vr AREQ.-~gDTw)&sZ5x34: C PftR T4IS CASE*
as: C
36: F4l@.4S+4~.Y*WY.WZ*WZ)
37: 4**XW
381 PF43m%4X0WZ
19: F'SIS.wx*wz
401 F52fta~y*iZ
41t F53 s3Pe*4S+CWX*wXoYwwy)
42: X1sx(l)
43: Y2sxf2)
44: Z32X(3)
45: VX40X(4)
46? VZSOX((5)

48: C THESE Aqr 'J941VAL ST#P E0JA~tfIY W41C.4 AqE USE. AS r4f CJRq~*Jr
491 C ESTIMATF5 STATF EaULATItMS ACTER T14F rJlST PASS T4ROUB.A T4Er50! C Trf4E !4~rlGRATl' SE0UEY4CE*
51t C
52t 0X18%VX4*:,T
531 X2a*0T
541 DXC1)sVZ5*3T
55: DX(4)a(F41*XK1,F2,Y?+P..*Z

3 2*34sZ)D56: DX(B)uCF51#X1.I+FP*Y
2+5*Z352z 1*YVX1o

38: C %19# F59qJLATE TH4E RANJýSM NiISE GNER4!TED ?1J SUMONE~g RAN4~u
59: C THIS NJOISE IS OUTy t'.TS THE )qZVIV3 Yl9?SE TER49 2 A4JD IN q60: C 4EASUQF%¶-VTS NOISE~ TERMS 4961l: c
421 CALL RANDJ~tX#1YARN)MI)
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63: CALL QA~4DU~rYafX#R4DM21
64: CALL RA4DjJ(tXofY#qlDM3)

651 CALL R4D(YIXRD4
66: CALL RA4JDJ(?X*TYejR4M5)

671 CALL QA4JDJ(IY1YDXsqRJM6)
6st CALL QAD(XIYRD7
691 CALL QA4DJ(IYY.X*qRJ5MS)

701 CALL RA4JDJ(!X*!YsR4DM9)
711 CALL QA~4DJ(!Y*IX*.R4DM101
72: CALL qA'IDU(TX*Iy*qRJDM11)
73: CALL RANlDJ(?Y*yX,*%JT1~2)
74t CALL QA4IDJC!X*IY*qIDM13)
75: CALL RA'JDJ(IY*TX&R4)M14)
76: CALL QANDJ(TX*TYqNJDNI5)
77; CALL qA0(YI#4M6
78: C

Be: QVXu 1.2D0*OSgQT(-2030*ýL9S(RJ5M7)) CSP*3P*RD
83: 2VZm 1.4D .OSORTc.2*DO*!".G(R4M) CS(00plqmo
842' RXx ~

11: RYe
862 RZa 10*DDOT-00'LGR)MS)D9(*OP*NM6
871 C
881 C THESE A~r- T'4E PERTURBED VA41ABLESDT~, T4EY WILL !'JCLU)S 'lqIS9!

901 XPSNX(S)
911 YP70X(7)
92: ZPquXcR)
93: VXP98KC9)
94: VZPIO.X(10)
95: C
96: C THESE ARr 4CTJAL RTATE- EO'JATI~'str TH4EY ARE Pr-TJR5r- WIT4'41J1SE#
971 C
981 Dxt6)s(VXP9,QX)*DT
99: DXf7)o(O*D0+QY)*OT

1233 C
134: C T.41S IS '-IE VwMATRIX C9MP~qr- 9F OA4TIALS rVALJATED A3qUT
105: C TH4E CUQRr'JT ESTIMATE# TH4AT IS# XqAT a X'4"1,VAR1ATIOY~ XHAT*
136: C
107: DO 97 13u1*5
log: DO 97 J3m1p5
139: 97 F(13*J3)u3#10

2110: F11010 g

113: F(4*P)vF42
1142 F(4#3)nF43
115: FC4p5I;.2*)0*WY
1161 F(Sol)OF5l
117: F(S#P)NF52
jig: F(5*3)@F53
119: FC5*41m.2*)0*WY
120: C
IPI: C CiLLECT T~4E ý.5ARIA%4Cc MATV!X ELEmMJS rR9'I TH4E STATE VECT9q.
12P.: C
1231 Do 9A 12.105
1P4: Do 9R J2.1,5
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1252 98 P(l2sJ2)"0.0,3
1262 X1510
1271 08 12 18l85
1282 08 1a JojJ
1291 KIKti.
1302 P(J#T)*X('(1)
1312 12 P(1aJ)qP(JoT)
1322 C
1332 C VORM MATRIX PP*
134Z C

1351 DO 99 lilieS
1362 08 99 .31.1.5

142: C

1452 D8 96 14*1#5
1461 08 96 Apl*15
14.72 96 DODT(T4pJ4)s0*00

F 14.82 Q1.1253.00
14.92 011801*01
150: DODT(1e1)9211
1612 92*1317000
1522 92280?.02
1532 ODQT(2e2),l022
1542 03m210.00
1552 033P03403
156? DODT(3s3)m233
1572 0491.2DO

1591 DODT(494)m344
1602 25s19'00
1612 055*03*05
1622 D00T(5s5)s255
1631 C
1642 C CO'.LECT T,4E ERROR CSVARIANCE EGUAT!9'J P5R. 1NTEGRAT!BJ IN
1652 C THE STATE VARIABLE COLUMN#
1662 C
1672 K2wl0
168: 08 106 M*1*5
1692 Do 106 N.1.~I
1702 K2.1C241
1712 106 OXK)(P4N+P4M+GT44)O
1722 C
1732 C THE LAST STATE IS TIME 4JEEOED FSR T.4! !1JTEGRATI9N SUBROUTINJE*
1741 C
1752 0X(26)w1.o0D.T
1762 RETURNJ
1772 END
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It C

41 C

51 C
6: SUBRRJT1'4E RUIKCXRPDT,,N)
it IMPLICIT REALOR (AehI.Bo7)
8: DOURCE PREC!SIIN )T

to: CBMqARY SA(6S),SAAVJ0C26). KSAAVCS)D
I1: 1 PSAAVCIS)*0(5#5)
12:
I3V I RKSPT(5#58)*PPpLUSc5)#X4SAV(5)

is: COM9M/ARRAYa4/Fc5,sp
55 ),,F(35)D')( 5,5 ,161 cem48/lyo~x~v~ZBQOYR

Is: CeMM94'/C?/!XLyM
19: CALL 'J!VFEQ(XQ*DIpfT)
20: De 110 I10#4
Pit 110 U1(1I~mX(!),o.5 DO*)I(1 )22: CALL D!7PE2cUI*F#D0T)
P31 De II1 !sissi

25: 111 U1(IlsXRc!),O*5DO*F1(y)
26: CALL lIFP2(U1,FlsOTj
27t DO 112 I18104

e9l 112 UI(?)Uxqc!).p1(Il
30: CALL l!FFE2(Uj#Fj,5T)
311 Do 113 !I'
32s 113 X(*sR!a(lCJ41 )*60
331 RETUqRJ
34: END
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I3: C

2 C
4 C

7: IMPLICIT QEALOR (A-14,6-7)

8: IMEqIgS A(NA),8(NN~9),'C,(N4C,
90, COM q/ARRAYISAAV(26,54 )DSAAVJP(26) oXSAAV(5),
l0t t P3AAV(I5)**(S,5)

12t I RqPTrC5D8)*PPLUSc2S)*,MSVc3
13t OMVARY/:R()~q45
14: COM4i/ARRAY4/P(s

5*),r.(5, 5 ), )!iT5,5#S
is COMM9J/B1/X1:YpoZ3DXP6,vD7,,jP3,qXqY,

217 C 9MVC2I*f
22: c

P32 68 T4 (ID2D3bJi
24: 3 MAsNCA
25: mBsV4C3
?6: Ma)t
27: MD;!
ps: MEal
29: 30 T4 16
30: 2 MSR
31:. MDwkR3
32: 08 Tq 15
331 1 MBONC9
34: Moat
35: 15 MAwNQA
.46: MCwNcA
37: MEa*JRA
381 16 DO 2o 181#4A
39: ~ lM
40: NBUo
41: DO 23 K2a,99
42: NCnNCMA
43: Ct~vC~m3@D0
44: N4AmI.qA

46: IF (JeE3.2) VJ8WK-48
47: DO 20 L*1I*C
48: NAGNA+ME
49: NB.NB+MD
so: 20 C(JC)*CNCI)+AC'NA)*B(NB)8
s1t RETURY
52: END
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31 C

61 SUR~iJI"JE QANOUt(IX*1Y#YPL)
71 REAL*4 YFL

81 IYnTX.65539
9: IF (TY) 58606

to: 5 l~a!Y.2147493647+1
111 6 YFLOTY
12! YFLvYrL**46S66i3Ew9
13: RFTURV
141 EN3

41 C
51 C
61 11L'CK mATA

8: 1

III I R~P(pR#PUS2)YSVS
let Cn!e/QA3FR()rR4S
13: CAMON/ARRAY4/F(9,5),FP('3D5),DrnT(SDB)
14: CAmmON/Rit/XYIPPZ3,YP6,vP7DZP~aRXQYDR7
151 CpttNC/mGoLT'r-G#EP*#ETTleN&MXJ~ITN
161 (Cn"4dtf/CP/IX*L t4
17: !)ATA SAAV/15CA*tn DP/,P/PSe(%DO/P/P5O0.r0*D/,PP/25.0.0'a
181 I M¶IT/?5*flDO/,HH0:.-.j/5*C*DO/,I.ROW2/5*0O0C/D
19: 0 qAVP?**0*SA/*of/OAA/50M/PLS2*90*RX
20: 1 r)CD!P.OXIF*o)/#T#~P/0@n200D/HRSOOO
211 44 OMaCSAV/9*1.t9O/
22: ENOr
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