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ABSTRACT

This research describes one of several alternatives being explored
to establigh advanced guidance techniques for the Army's long range
tactical missile, the PERSHING. The analysis is given for estimating
the inertial measurement unit's error states in an aided terminal
guidance mode. Position observations measured by a radar area correla-
tion system and a radar altimeter are processed in an extended Kalman
filter to yield the suboptimal estimates of the inertial measurement
unit's errors,

The dynamics of the inertial system are modeled in four coordinate
systems to &4llow the choice of the least complex mechanization. To
minimize on-board computer requirements, an analysis of the filter's
performance is made by comparing the optimal filter geins with a filter
formulated with fixed gains chosen a posteriori from thoze computed
optimally.

Several variations of the problem are simulated. The observations
are modeled as discrete time measurements obtained once per s2cond and
then once every two seconds in the terminal guidance phase of the
flight., Also, conditions are varied to simulate optimistic as well as
realistic radar imagery processing time and its effect on the accuracy
of the filter.

Results indicating filter error and root mean square values of the

state estimates obtained in a Monte Carlo computer simulation are shown
graphically to validate the conclusions.
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CHAPTER I. INTRODUCTION

1.1 BACKGROUND

Studies are being conducted by various elements of the U.S. Army
Missile Command and teams of radar and guidance contractors to estab-
lish advanced guidance and reentry techniques for the Army's tactical
ballistic missile, the PERSHING. These wide ranging studies are
considering the feasibility of modifying the reentry body configuration
and guidance trajectories, updating the inertial sensors, digitizing
the control system, changing the vehicle's aerodynamic characteristics,
and augmenting the guidance system. The objective of these studies and
follow-up development work is to improve the missile's basic figure of
merit which is the target miss distance at impact.

This report summarizes a study of only one of those alternatives,
in particular, the analysis and simulation is performed for an inertial
guidance system augmented by » radar area correlation device. Aiding
an inertial measurement unit (IMU) with position and velocity measuring
devices is not a new idea. The literature abounds with techniques and
methods of maintaining inertial equipment within acceptable error
bounds, Papers by Broxmeyer [1], Duncan [2], Dworetsky and Edwards [3],
and Friedman (4] are only a few which are reprcsentative of the early
work in this area. However, the use of additional external measure-
ments, optimal in a sense, is much more recent and has never been

applied to the PERSHING.
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1.2 PREVIOUS INVESTIGATIONS

Of the many attempts to improve inertial system performance by
using exteranal information, one of the earliest was that of damping the
84-minute and 24~hour natural periods of the vertical and gyrocompass
heading loops, vespectively. The primary purpose of damping the :
inertial system was to reduce the amplitude of the oscillations caused ;
; by offsets and gyro drifts, or at worst, to reduce the oscillations to
a fixed constant value., Attention was focused on various damping con-
figurations or equalizers which led to concepts such as second-order
(velocity) and third-order (acceleration) tuning [3]. The need for an

evternal source in damping the IMU was apparent when it was observed

dblobiboduloli Jit bt

that errors caused by vehicle motion would result if only information
from the inertial system were used [5]. However, if external speed
information was properly introduced into the inertial system, there
would be no error caused by the vehicular ipduced motion provided that
the external information which was used matched the inertially derived
information in accuracy.

Another way of using external information to obviate inertial

errors was found not in the literature but in practice. In that
method external measurements were used directly to update the inertial

system rather than implement a damping scheme. Inertial system posi-

tion indication was changed to agree with the results of a position i

fix and inertial system velocity indication was changed to agree with

the results of a velocity measurement update. Although it may

‘have been expedient, this approach ignored the fact that the inertial

-2-
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system errors were primarily caused by random time varying inertial
sensor errors and that the external measurements also contained random
errors which may have been significant compared to the inertial system
errors.

The use, by practicing navigators, of measurement updates in this
manner, however, led systems designers to consider more viable alter~
natives in using the external fix information when it became available.
Consequently, within the framework of inertial systems analysis, the
problem evolved of finding the optimal estimate of the system error
(a random variable) when a linear function of that variable was
corrupted b& additive noise.

The earliest published study of this class of problems (1809) was
Gauss's Theoria Motes Corporum Coelestium in which astronomical
parameters were estimated. Legendre independently invented the method
of least squares estimation and publighed it in 1806. (According to
Sorenson [6], Gauss claimed to have invented the method of least
squares in 1795 but did not publish it until 1809.) R. A. Fisher
introduced the maximum likelihood method in 1912. In 1942, Kolomogorov
and Weiner independently developed a linear minimum mean-square estima-
tion technique. The key result of these studies was an integral
equation called the Weiner-Hopf equation in the U.S. The solution of
this equation was a weighting function which, when convolved with the
corrupted linear measurement, produced the unbiased minimum variance
estimate of the random signal. The application was limited initially

to statistically stationary processes and provided optimum estimates
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only in the steady state. Kolomogorov and Weiner's work was expanded 3

during the next 20 years to include discrete, nonstationary, and multi-

2i

port systems, but in a way which required cumbersome calculations. 1In
the 1950's, the idea of generating least-squares estimates recursively
was introduced by several investigators: Carlton and Follin; Swerling;
Blum, Robbins, and Mundo; and Kiefer and Wolfowitz, all noted in
Sorensen's paper [6]. Kalman [7] (1960) and Kalman and Bucy [8] (1961)
generalized the results of Weiner and Kolomogorov to nonstationary

E random processes and developed the problem based on a state-space and ]

time-domain formulation. The recursive nature of the filter developed
by Kalman made it ideally suitable for solutions on the digital j
computer.

Since then, there has been a veritable explosion of iavestigations
applying the estimation technique, commonly called the Kalman filter,
to a host of aerospace oriented problems. The study by Gelb and
Sutherland [9) alone lists over 40 such references. Yet, in all of
this literature, there was interestingly enough no unclassified
reference to the particular optimal combination of systems described in
this report, i.e., radar area correlation and inertial guidance

systems, 3

1.3 PROBLEM MOTIVATION

In this application, the IMU on the PERSHING must perform two
functions: (1) provide data to allow the missile to be guided during

boost accurately enough to reach a terminal acquisition basket during

reentry and (2) provide the attitude reference for the terminal




guidance device. Prior to the terminal guidance phase, the reentry
body follows a ballistic trajectory determined by the launch-phase
guidance system. At a particular altitude, in the case of PERSHING
30,000 feet, the reentry body must be in a specified position if the
terminal guidance scheme is tn be of any value. Without terminal
guldance tle reentry body would continue on its ballistic patﬁ into
impact with a miss distance representing the accumulation of all
errors of the launch phase, mid-course Qhase, and terminal phase of
the flight. This covers the entire range of possible error sources
including atmospheric perturbations on the intended trajectory, errors
in the guidance and propulsion systems, false targeting, etc. To
minimize the effects of these errors and consequently the miss
distance, use of a radar area correlation terminal guidance system will
be studied.

The map-matching function, as it is sometimes known, is to deter=
mine the difference between the desired position and actual position of
the vehicle at various altitudes by use of radar correlation detectors.
Knowledge of position error is sufficient to determine the necessary
trajectory correction because the velocity vector of the reentry body,
within certain bounds, is precisely known (as determined by the IMU).
To obtain the position error, an image of an area near or ideally
including the target, is obtained at a specified altitude using a side=
looking airborne radar. This area is mapped by a beam scan. The radar
image obrained is compared with previously stored reference imagery to

determine the position error. To accomplish this objective, in the
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presence of errors in the image formation and radar noise, the images
are matched for that displacement which results in the highest correla«
tion between radar and reference:

Conceptually, this external data could be used to update the
inertial system because the position and velocity indicated by the IMU
would be in error. Unfortunately, these data are too imperfect to be
used directly because of measurement errors and other effects such as
intensity quantizing errors, scale factor errors, resolution effects,
etc. Thus the discussion returns to the general class of problems
described earlier, i.e., given measurements Zl, ZZ’ "'Zn’ determine

the best estimate of the states X ...Xn. With certain restrice

1> X920
tions, criteria that define the optimal state estimate introduce

the formulation commonly referred to as the Kalman filter.

1.4 PROBLEM STATEMENT

The problem is to optimally estimate the inertial guidance system
errors using the position measurements obtained from a radar area
correlation system and a radar altimeter during the terminal phase of
the PERSHING missile flight and to consider suboptimal mechanizations

which would simplify the hardware.

1.5 OBJECTIVES

There are several objectives to be fulfilled in the course of
seeking a solution to the problem. Representation or modeling of the
inertial system will require a decision on the mechanization to be
used, i.e., wandering azimuth, local level north-east, tangent plane or

space-fixed tangent plane mechanizations.
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There is time enough in the terminal guidance phase to permit as

]
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few as 5 or as many as 15 observations of position. The second objec-

tive will be to determine the optimum number of measuremant observa-

tions to be made by the radar system and their spatial timing.

It is conceivable that an on-board digital computer will be

utilized to do a variety of command and control tasks. To simplify its
computational burden, the third objective will be to discard systemati-
cally error variables from the complete mathematical model for a mini-
mum Kalman filter mechanization. i

The optimal gains applied to the updating of the state variable

estimate are typically time varying. The fourth objective, consistent

with reducing the computation burden, will be to determine the extent
fixed gains or other simplifications such as programmed gains can be

utilized in the model.

The fifth objective is to define a set of specifications on the

IMU and radar sys ems suitable for real world system synthesis.

ST I
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CHAPTER 1I. DYNAMICS OF THE INERTIAL SYSTEM

2.1 GENERAL

Detailed descriptions of inertial sensors and systems are availe
ablc in standard texts by O'Donnell [10], Pitman [1l], and Fernandez
and Macomber [12]. It is assumed that the reader is generally knowl=
edgeable with their works., For completeness however, the following
paragraph summarizes the essentials.

The inertial guidance system consists of sensors that measure
specific force (the accelerometers) and sensors that measure angular
motion in a coordinate system fixed in the IMU (the gyros). The
gimballed platform, shown schematically in Fig. 2.1, is typical of
those that have been used on the PERSHING. It permits isolation of the
instruments from the angular mntion of the vehicle by using the gyros
as sensors of orientation change. Through gimbal servos, the platform
is returned to its proper attitude permitting the accelerometers to
measure changes in specific force. To obtain velocity, position, and
attitude information from the instruments and the platform, sets of
equations are mechanized in the conputer. Additionally, the mechaniza-
tion equations provide the information for tordues needed to precess
the gyros.

In the sections which follow, mechanization equations will first

be developed in ideal invariant vector form. Because system-state

.8-

|
]




P e — G T

TYTP PP

T o ” b ity i L e
YAW AXIS
HEADING OUTPUT — e
ROLL AXIS é
\ GIMBAL TORQUER
ROLL OUTPUT ——» 'ﬂ
2 &
3
GYRO —— .
ACCELEROMETER ~
PITCH OUTPUT ———s A3 \j
PITCH AXIS t
P T — P! GIMBAL TORQUER
/J

' AZIMUTH GIMBAL
ekl “TORQUER "~ 17—

FIG. 2.1. SCHEMATIC DIAGRAM OF A THREE GIMBALLED INERTIAL
GUIDANCE SYSTEM'S MU

variables are sought for use in the estimation problem, inertial system

error equations will be developed as well as a comment on their appli-

cability in the problem.

2.2 INVARIANT VECTOR FORMULATION OF THE IMU MECHANIZATION EQUATIONS

It is meaningful at this point to briefly explain the differences

among the various coordinate bases which will be used in the develop-
ment and indicate why one may be preferred over the other. In deriving
the ideal mechanization equations in text (and the error equations in

the appendices), the following bases are important:

(I) - The inertial basis defined as fixed in "space" and nonmoving

(E) - The earth fixed basis which rotates with respect to the
inertial basis at earth's angular velocity

Bdantirs b it farxat,
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(L) - The local basis defined by the true position on the earth

(C) - The computer basis defined to be the same as the local basis
except it also is defined by the indicated position

(P) - The platform basis defined as equal to the computer basis
but rotated from it by some small angle.

It is desirable to derive the equations in the local basis because

navigation is done in the basis which is defined by the true position

of the vehicle on the earth. In the historical development of the art

of dead reckoning navigation, the local level or "plumb bob" level

(described later) was the most easily realizable vertical. Thus the

local basis, in many cases, tends to be similary mechanized, i.e.,

locally level. That practice will be followed in the sequel.

The computer basis, used in the development of the error

equations, is the basis in which the navigation variables are computed

and output. Thus, this is the basis in which indicated position is

given. It is also convenient to think of it as the realizable mechani-

zation of the local basis.

The platform basis, used in the error equations, 1s the basis in

which the inertial instruments are considered fixed. It is in error

with the computer basis in an amount contributed by the gyro and
accelerometer instrument errors as well as several other error sources.

These bases are shown in Fig, 2.2 which defines their relative

orientations. The mass center of the earth, represented by 0, is

D - =
also the center of the inertially fixed basis, XI’ YI, ZI'

subscripts E and L refer to unit vectors fixed in the rotating earth's

The

basis and local basis, respectively*.

*J. R. Streeter discusses using the center of the earth rather than the

sun as the origin of coordinates fixed in inertial space in
0'Donnell's book |10].

-10-
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FIG. 2.2. COORDINATE SYSTEM ORIENTATIONS

The following notations are in the development which follow: ;
- ]
rA vector expressing position from earth's center E
- of mass to the vehicle :
- :
d(r A E A vector expressing velocity of vehicle with
dt =Tt = respect to earth fixed basis ;
a e A E) A vector expressing velocity 'of vehicle with
dtlr=r = respect to an inertially fixed basis which is
nominally time invariant
d 5 L vector expressing velocity of vehicle with
= &2 4 respect to a local basis
at L= r = P : ;
E Also let
> 5
VAar
and
N
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é By the Coriolis law,
1‘., E’) —E-L - J
; r=r+4+uw Xr ?
|
- - g |
Vol ? . (2.1) |

1 Also,

.I.> E; —E-1 - |
r=r+w r |
=V+wh-1><? . 2.2)

The specific force meter (SFM), as described by Markey and Hovorka

{13), can be idealized as follows:

o, s
3 r=f+G |, (2.3)

where
f 4 specific force

-3
G A gravitational field intensily vector at the center
~  of mass of the SFM mass elemeut

2,
Y= d.(x) A vector expressing the acceleration of the specific
- force meter's case with respect to the inertial
basis.

The left side of Bq. (2.3) is given as

1
o
=U

II
=
r , (2.4)

E-1

] -
1 Substituting Eq. (2.2) into Eq. (2.3) and noting w , the earth's

spin rate, is a constant for practical purposes,




= ‘—I;-*-JE'I X U
=$+3b1x3+3&1x: (2
Substituting Eq. (2.2) into Eq. (2.5) for u gives
2,20 R B G EIE) L e

Combiuing and rearranging yields
}-) - - - —E-I -

- - =L~ - -
v—f+c-(_<f)EI+wLI)xv-wEIx(w xr) , (@D
where the gravity field intensity vector can now be defined as

- =9 F- “E- -
zéG-wEIX(wEIXr)

This is the vector which is the vector sum of the gravitational field
intensity vector and the centrifugal acceleration vector caused by the
earth's rotation relative to an inertial basis. More commonly, it is

the apparent specific force caused by gravity which acts along a plumb

5
H
3
i
5
i
-
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bob suspended to the point considered (Fig. 2.3). This is an important
consideration because most of the tactical maps in use today ar. based
on the concept of a local, plumb bob level. Even though more and more
use is made of cartographic satellites whigch map earth's imagery
relative to the 8 gravity, the former is still more commonly used by
the Army. Thus, Eq. (2.7) simplifies to the following ideal invariant

vector form:

- 9 - - -
=f +g -(ZJ)E I +(T;L I) XV (2.8a)

L - | .
T=vauaby? (2.8b)
{
2E

,-N

FIG. 2.3. GEOCENTRIC AND MASS ATTRACTION PARAMETERS

R




Equations (2.8a) and (2.8b) are the ideal position state equations

in convenient form for hardware implementation. The left side of
Eq. (2.8a) is the derivative of velocity relative to a local basis
oriented near the earth's surface. The term }i the specific force, is
provided directly by the accelerometers, and the last two terms are
calculated from knowledge of position and the angular velocity of the
local basis which are instrumented and computed on-~board the vehicle.
It remains to choose the local basis for coordinatizing Eq. (2.8a)
E explicitly. Several are common, including the wander azimuth, local
level north-east, tangent plane, space-fixed tangent plane, free
azimuth, latitude longitude, and relocated pole latitude longitude.
These various mechanizations differ basically in the way the vector
4 .SL'I is prescribed.

For purposes of this study, the free azimuth, the tangent plane,

the space-fixed tangent plane, and the local level north-east mechani-

zations will be investigated.

Laia

2,3 THE IMU ERROR EQUATIONS

Ideally, Eq. (2.8a) may be implemented in any of the coordinate
systems previously mentioned. Realistically however, it is impossible
to instrument the equations without errors because of such factors as
gyro drift, erroneous gyro and accelerometer scale factors, accelerom-
eter bias, etc. Consequently for reasons that will be discussed later,
the ideal equations will not be used in the filter. Instead, standard

perturbation techniques will be applied so that the effects of the
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errors on the navigation computations can be determined. The inertial
system errors are estimated in the filter and not the states of the
vehicle nor of the navigation problem directly.

The inertial system errors are described by the following error

vector differential equations:

L -3
T=-alIy v +}Zg 2T L2 (platform error) (2.9)
and
II 4 ~ A =3 - -
&7 + mi(’f -3 rr)’ 5T = -ﬁ)f . ? +b - E) x £ (position error) (2.10)

where

._’
§ A vector representing the small angular misalignment
" between a basis fixed in the computer and a basis fixed
in the platform (Fig. 2.4)

A Schuler angular frequency given by ./ 1(/r3

A tensor representing the gyro scale factor errors on the
8 ** principal diagonal and misalignments on the off-diagonal

1<£ A tensor representing the SFM scale factor errors on the
principal diagonal and misalignments on the off-diagonal

vector representing gyro-drift rate as an error

l;/—} vector representing SFM bias as an error

rr A dyad of unit vectors in the ? direction.
Equations (2.9) and (2.10) are derived in Appendix A in a manner
following that of Lange [14]. It differs from derivations shown in

the standard texts mentioned earlier.

- 16-




FIG. 2.4. EULER ANGLE ROTATIONS OF PLATFORM ERROR ANGLES, V

Expanding Eq. (2.10) by the Coriolis Law yields

1 L
1 -~ L~ -
sre o+ ol Ix or (2.11)
and
11 L
- - -L-I > Hl=1 —»
8r = dr + W X dr + w X BT
L-1 -1-3 -L-1 -
+ 3 % &r + W X ®r |} « (2.12)

-_’
Substituting Eq. (2.12) into Eq. (2.10) for b7 gives

If-‘i' —L-1 I-:' I-‘)LI - L1 ->L-1 -
srm=20 X BT = W X ST = W x(m X OF

- -
- ~ o~ -
-w§[1-3rr]' s?+f<’f-?+5’-i,’”xf . (2.13)

i wind,
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The results shown in Eqs. (2.9) and (2.13) are important. They imply
that if;? is used as a basic characterization of platform angles, a
differential equation exists for ﬁ’which is independent of position
errors. Thus, the decoupled.y equation, Eq. (2,9), can be solved inde-
pendently and the result used as driving variables in the position
error equation, Eq. (2.13).

Now coordinatize the two sets of equations into a local basis

(L-basis). Beginning with Eq. (2.9) and noting vector and dyadic

operators,
\Lx
V= b , (2.14) ;
Y2 |
(.\L-I xV=1uw W, w, , (2.15)
L L | y z
heoob
ARy My ™3 ]
Kg = | my AKgZ myq , (2.16)
L 5
| ™31 M A3 |
" A K . - -
’ L-I O
)\g . (.In = m21 /Sl(gz m23 ny (2.17)
L 4
may Mgy AK83 W
N .y L




T T —— g =

and

Ho
<

(2.18)

Thus Eq. (2.9), the platform error angles, coordinatized in the local

basis is given by

R -
. [ 71 f [ ]
1l’x 6)'\1’2 - ("z‘yy) (AKglwx + lewy + mlB“"z) €x
AEE («)Z\Vx - wx\lfz) 4 (mzlwx +AK m23wz> & . (2.19)
L\lf z xwy - wywx) (m31wx + m32‘*’y + AKngz\) fz
Coordinatizing Eq. (2.13) in the local basis gives
ox 5% Bx
5r = |5y ,  &or = |8y . sr=|syl , (2.20)
L L L
Y Bz 52
L-1
w X a5t = | W, W R (2.21)
L L x y 2
Lafc By 5z
wL-I X wL-I X dr] = lw w w
L L ) | * y 2 ’
wy’éz = w,dYy wzt‘mx - wxﬁz wxﬁy - wyﬁx
e J
(2.22)

e
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3 and

the L-basis:

-~

£%

ry

.*'Z'J

"3;; -E-r
L L

e
X

(

™ rh

XN '~<"N

(.)xmz?)x + (.\ymzﬁy - ((.\ + W )52

1 0 O 0] {0 0 1]
o 1 ol -31o
0 0 1 1
Pb -
X
b=1|b ,
/
A ‘
b
ey z~
- - -
= Yy .
bfx fy fz—

AN [
(o £2Z - mzhy (yfxz - 8}')
2 6.) fX - (.)xﬁz) - ( BX = @ ?»z)
(u &y = my?x) L( by - ny?\x)
-y

2
4 . A b a
W )8)( t Wt )y 3y + (\xmz'r\z

N

N

<N

+ (.\Z)Fy + mym HZ + mxv,y )

pax-
syl, (2.23)
52
(2.24)
(2.25)

Carrying out the indicated operations and substituting into Eq.

(2.13) yields the following position error equations coordinatized in

-

il
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- f y
& | (AKfl fe tomppfy  +mpg z)

- 252, GnBIfx + u"E)ny + BKgq fz)

bx wyfz - wzfy

Sl LY I (X SRR S : (2.26)
b £f -V £
| 2] .‘Vx y \l’y x.

2.4 THE SCALAR FORM OF THE TORQUING EQUATIONS

-5
2.4.1 Coordinatization of Vector w in the Tangent Plane
Mechanization

The IMU equations of error angle between the platform and
computer, Eq. (2.19), and the position error, Eq. (2.26) can be made
more explicit through one more expansion on the vector Z; Recall, that
Z;is the angular rate at which the platform is torqued or rotated, rel=
ative to inertial space, about its nominal X, Y, and Z axes. Regarding
the local basis, L, 53 ;he true or computer basis, C, (the basis in
which the computations are performed to update velocity, position and
angular velocity terms) the vector Z;can be coordinatized in any of the
bases previously mentioned. If the tangent plane mechanization is
chosen, the platform angular rates are constant rather than time
varying as in all of the oéhers. Thus, the platform is held fixed
relative to the fixed point on the earth, regardless of the vehicle

position. Fig. 2.5 displays the geometry and shows the tangent plane

i = S,
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FIG. 2.5. TANGENT PLANE MECHANIZATION GEOMETRY

eminating from the fixed point passing through the launch site. By

inspection, the components of the gyro torquing signals gF-

computer basis are given by

W 0
X
wC’I = W, =] Q cos N\
c y °
w, Q sin Ko

The following analysis is performed as a check.

tion begins with

«22a

I in the

(2.27)

The coordinatiza=-

(2.28)

Clat s
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To keep the requirement that only constant gyro torques are

mechanized,
= 0 . (2 029)

I -
Now wE 1 is best coordinatized in the earth's fixed basis in which it

is known and nominally constant, i.e.,

o

(2.30)

€
I
fe)

Thus, to express Eq. (2.28) in the common basis given, a transformation

is required on Eq. (2.30),

E-~I E-1 -
w =T W (2.31)
c C/E E ’

where Tb/E is defined as the direction cosine matrix representing the
coordinate transformation from the earth's basis (E) to the computer's
basis (C).

The summary of the transformation is shown in Table 2.1,

Table 2.1
TRANSFORMATION SUMMARY

Angle Axis
Transformation of Rotation of Rotation Basis Name
T Earth
C/E g ?E \
/ E'
A 3N
o e //’
‘TEL Computer

=23

e mandh il 3. a8
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This results in the following:

r 17T - -
1 0 0 cos Ao e sin Ao
= - 1 0 , (2.32)
TC/E = |0 cos xo sin xo 0 (
-0 sin xo cos xo ] Lsin Ay 0 cos Ao_
because
Wy
Fat N P B (2.33)
c y
W%J
then
Wy 0
wel = Q cos A (tangent plane mechanization). (2.34)
mz Q sin )\.o

In this case, the base point or fixed point latitude, A o is used
throughout the mission and the torquing rates applied to the gyros
are shown in Eq. (2.34).

-3
2.4.2 Coordinatization of Vector w in the Space Fixed Tangent
Plane Mechanization

For completeness, the following discussion concerns
another mechanization scheme that is simple enough to be competitive
with the tangent plane mechanization. For lack of a more widely

accepted terminology, it is called the space-fixed tangent plane

«2l
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mechanization. It was, in fact, used on some versions of the PERSHING
guidance system. The local level is established via IMU mounted
pendulums or precision accelerometers and there is no‘torquing of the
azimuth gyro. This mechanization is identical to the tangent plane
scheme described in detail earlier. However, in the space~fixed
tangent plane mechanization, the computation of earth's rate is
terminated immediately before launch so that the horizontal and verti-
cal components of earth rate torquing to the level gyros are also

zero. That is, in this mechanization

W, 0

X

wy | = 0| (space fixed tangent plane mechanization). (2.35)
w, 0

The obvious advantage to mechanizing a scheme that does not torque
the gyros is more than a simplification in the on-board comnuter. The
entire inertial instrumentation package is made at least an order of
magnitude less precise in terms of manufacturing tolerances. Torquer
linearity, precision pickoffs, voltage and current supplies, and pulse
and analog circuits benefit from this consideration.

The burden of the simplified on-board hardware, in the case of
PERSHING, is placed on the ground based level and alignment hardware.
Though the earth's rate components are not calculated nor used to
torque the two level gyros, a set of firing tables are required to
offset the missile's trajectory to the primary target to compensate for

the Coriolis acceleration. (The laws of nature still remain fixed
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regardless of the mechanization chosen.) Consequently, it is a matter

of choice, based on the preceding alternatives, as to which of the two

simplest mechanizations one is willing to instrument. For purposes of

this study, the more self-contained version, the true tangent plane

mechanizavion will be used. In the simulation results which are pre-

sented later, there is practically no difference in using this choice

other than replacing by zero the constants in the system's F matrix.

2.4.3 Coordinatization of Vector Z;in the Free Azimuth
Mechanization

The utility of using a northern reference, per se, is

susceptible to questioning in the case of a missile terminal guidance

scheme. That it is of fundamental importance in terrestial navigation

or terrestrial dead reckoning is, however, gospel. This derivation of
a mechanization scheme and the next two that follow are north
referenced because they are considered in the framework of a navigation

problem. That 1s, the missile terminal guidance scheme is based upon

maps that have been generated in the context of local earth coordinates

which include a precise reference to north. Anticipating the results

however, makes the argument somewhat academic because the additionmal

state variables required to define a north reference preclude these

mechanizations on economic grounds. These arguments are discussed

more fully in later chapters.
This mechanization eliminates the torquing error associated with
the Z-gyro, i.e., the gyro with its input axis vertical, because it

does not provide a torquing command about the vertical axis. Instead,
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The angle, o, shown in Fig. 2.6 is the angle between the horizontal

platform Y axis and the true north,

FIG. 2.6.

FREE AZIMUTH MECHANIZATION GEOMETRY

As in the previous case, the local basig (L) is considered to be

the computer or true basis. Equation (2.28) is repeated for

convenience,

Again the argument for a transformation on the earth's rate is valid,

i.e,,

E * E-I
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However, this direction cosine matrix, TS/E’ differs from T, . of the

tangent plane mechanization. It is summarized in Table 2.2,

Table 2.2

TRANSFORMATION SUMMARY

Angle Axis
Transformation of Rotation of Rotation Basis Name
- Tx Ea¥th
C/E A ?I N\
/ El
A -)'{’I AN
/ EN
o Z; \\\ K
< Computer
cosa sina O]l O 0 cosp O =sinyp
%
= =g - 0 1
TC/E sina cosa 0] 10 cos A sin A 0

0 0 110 sinA . cos A} |sinjp
\
As before
0
ME.I =1Q ’
E
0

so that Eq. (2.36) may be expanded to yield

0 sin o cos \
=|Q cos @ cos A .

Q sin )\
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Unlike the previous case, where it was considered zero,

- -3
2C-E Z

° . - o - 2
=Qq 2+ A zE + A YE . (2.39)

- -
Here, ZI is the unit vector about the Z axis of the platform, and ZE

and ;; are the unit vectors, respectively, about which small rotations
of angles A and A are made in the intermediate Euler sequence. To
coordinatize all the vectors into the computer basis, the o rotation
needs no transformation, the » term is transformed through the angle ¢
to determine its components in the computer basis, and the A term is
transformed into the computer axes through the angles ¢ and A. The

coordinatization is given by

0 A 0
C-E K% .
a 0 0

The minus sign on N indicates that the platform is maintained locally
level by torquing the X-gyro to produce the precession rate -X [15].
The transformation T37E is summarized in Table 2.3,

Table 2.3

TRANSFORMATION SUMMARY

Angle Axis
Transformation of Rotation of Rotation Basis Name
Kok
T Larth
C/E - N\
b -XE J//
Ei
—)
. 7 >
Computer
\ P

A h MmO



The result is

- [cosa sina © 1 0 0 i
; T:;E =|l=sina cosa O 0 cosAN ~sin . (2.41)
0 0 1 0 .sini cos A\
A
1 TC/ZE is a simple transformation resulting from a small rotation of

2 ~
] angle ¢ about the ZL axis., Thus,
cosa sina O ]

T PPN

0 0 1

T T

Substituting Eqs. (2.41) and (2.42) into Eq. (2.40) yields

T

-): cos O + 1{ sin @ cos’ )J

oLE o N sin G+ A cos a cos A . (2.43)

c 1
a+ A sin 5

Substituting Eqs. (2.38) and (2.43) into Eq. (2.28) gives the following

coordinatization result:

- - o . . ey
W (Q+ A) sin @ cos A\ =\ cos O
1
wy = (D + 1{) cos acos A+ N sina| . (2.44)
f |
w, (Q+ A) sin\ + O

As previously mentioned, one of the main advantages of the free
azimuth mechanization results in not having to torque the azimuth or

Z-gyro, i.e., it is free to rotate. (Another similar mechanization,
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called the wander azimuth mechanization, results when the Z component

—=C-E =E-I
of w is constrained to equal the Z component of 0 .) Thus, w,

is made zero by forcing

a=-(0+ A) sin @ (2.45)

which results in

-

wa- r(fz-i- /() sin ) cos \ - A cos O

_ . . (free azimuth
w | = (@+ A) cos @ cos A+ \ sin & mechanization)
o 0 (2.46)

-
2.4.4 Coordinatization of Vector w in the Local Level,
North~East Mechanization

Another coordinate mechanization widely used for naviga-

tion which has potential for this application is the local level,

north-east system. The usefulness of this system is important when the

system's outputs are desired corresponding to map data or when an
explicit vertical is desired to drive auxiliary equipment, This basis

is also observable in Fig. 2.7, but with the angle, @, now kept

constant at the value of zero.

The platform torquing rate is again repeated

Now

= TC/E ;} s (2.47)

X




where Tm is

of the same form as the transformation 'I‘c JE of Eq. (2.32)

i.e.,
- a9 1
1 0 0 cos A 0 sin A
o 0 i 0
TC/E = cos A -sin A 1 0 . (2.48)
0 sin A cos A\ sin A 0 co8 A
3 Again, the earth rate components are
F 0
E-I
w = |q ’ 2,49
' (2.49)
0 k
{
so0 that ]
o ]
o=t 2 g cos a . (2.49)
C

Q sin A\ y

The term mC-E is similar to its counterpart in the free azimuth
C

system; only here it is less complex, i.e.,

0 -\
C-E . ]
; (3 = TC/E Al +]0 . (2.50) %
0 0 ]
1 0 0 o] [ '
C-E . . ;
w = |0 cos A sin), Al +]0 . (2.51) /
C
0 -sin A cos\] |0 0

st 8 i bt mea
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Adding Eqs. (2.49) and (2.51) gives the final result

Wy =\
ugl = (@ + A) cos A (local level north-east mechanization) . (2,52)
W, (¢ +A) sin A

Notice that it is a special case of the free azimuth mechanization

given by Eq. (2.46) but with @ set equal to zero in this case.

Sufficient analysis has been performed to display the coordi-

natization of the IMU's rate of rotation or torque rate, Zﬁ in four

mechanizations. The rationale for the specific choice best suited to

this application is discussed in more detail in Chapter III.
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CRAPTER III, MATHEMATICAL MODELING OF THE SYSTEM

3.1 IDENTIFICATION OF THE INERTIAL SYSTEM MECHANIZATION

The first step in applying the Kalman-Bucy theory is to identify
the system on which the filter is to be based. In the case of
improving the guidance of a reentry vehicle, it may seem that the most
direct choice would be a system that estimated the desired parameters
of the vehicle. The filter would then be based on the equations that
describe the motions of the vehicle itself. This approach is function-
ally visualized in Fig. 3.1. Though appealing for an orbiting space=
craft guidance problem where the position and velocity could be pre-
dicted for any future time with accuracy, it is not easily implemented

for a rapidly varying dynamic system.

DISTURB -
ANCES VEHICLE MEASURE ~

OUTPUT
MOTION

— 1 REeNTRY |  sensors MENTS _ .| FiLTER }——r
VEHICLE

FIG. 3.1, FUNCTIONAL DIAGRAM OF A DIRECT FILTER

Instead, an indirect filter is implemented based on kinematic con-
siderations. Tt is worthwhile to diverge at this point for a brief
discussion relating the notions of dynamics, kinematics, and measure-
ments in the context of this problem.

Dynamics is expressed by some as the study of the motion of a

particle (system of particles) from the knowledge of the external

3
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forces acting on it. Kinematics is sometimes expressed as the study
of the motion of a particle (system of particles) disregarding the
forces associated with the motion. Simply, it is the study of the
geometry of the motion relating time, displacement, velocity, accelera-
tion, etc., both translational and rotational.

Confusion may arise because control engineers use the terminology
"dynamic systems' to describe a plant by equations which vary as a
function of time. This is often done to emphasize that the system
under discussion is not static. An analytical dynamicist, however,
uses the Eerminology "dynamic equations" to define the set of
equations describing motion of a particle acted on by forces as previously
summarized. Thus to a dynamicist, the Euler equations of rigid body
mechanics, for example, are dynamic expressions while the equations
relating angular velocity among reference bases are kinematic
expressions.

Measurements can be thought of as one of the three types of inputs
for a Kalman-Bucy filter. In a navigation or guidance problem, the
measurement may be a doppler radar measuring velocity components, it
may be a Loran receiver measuring time differences in radio wave propa-
gation, or it may be a radar area correlator as in this problem. The
second input is the driving noise associated with gyro drift, SFM bias,
etc. The third input is the main forcing variable of the differential
equation which may be a torque, a force, or other driving function.

Thus, in the expression for a plant gziven by

x(t) = F(t) x(t) + G(t) u(t) + w(t) ,




B

with a measurement given by
Z(t) = H(t) x(t) + v(t) .

The variable u(t) is the forcing variable, the variable w(t) is the

driving noise, Z(t) is the measurement of x(t) with a corruption of

additive noise v(t).

In a direct filter formulated for a vehicle carrying an IMU, the
dynamic system (control's sense) on which the filter is based is the

system of equations that describe the motions of the vehicle itself

(dynamicists' sense). The filter would use all measurements, including

those of the IMU, to produce estimates of the position and velocity of
the vehicle directly. The dynamic equations describing the systew

requires a statistical dynamic model for the vehicle to be incluc.. in

the state space formulation (16]. However, the model used to describe

these random motions is difficult to obtain for a vehicle rapidly

varying in velocity and position as a function of time. In fact,
measurements of vehicle acceleration and angular velocity are much

better data to process than to model the disturbances or forces which

cause them.

The indirect filter is a completely different way of formulating
the navigation problem which avoids most of the practical problems of

the previous method if in.addition to the inertial navigation system

there is included some other source of navigation data. Instead of

estimating the state of the vehicle directly, the filter is used to

estimate the error state of an inertial navigation system. The

«36=

P S

e et St



Ll

ey T

inertial system follows the high frequency n;otions of thé vehicle very
accurately but has low-frequency errors which grow with time. The
dynamic system on which the filter is based is the set of error
equations for the inertial system which are relatively well known,
well behaved,' low frequency, and essentially linear. The sample period
can range from several seconds up to a minute without greatly
influencing the effectiveness of the filter. For these reasons, this
method is used for virtually every practical terrestrial referencéd
IMU Kalman filter mechanization. 1In the particular case of navigating
the reentry body, the time of flight under this condition is so short

that the indirect scheme can be functionally implemented, as shown in

Fig. 3.2.

DISTURB- VEHICLE ERRONEOUS CORRECTED

ANCES MOTION OUTPUT + OUTPUT

«————{ REENTRY |——@——+{INERTIAL — > —_
VEHICLE SYSTEM =3

1

ESTIMATES OF

INERTIAL SYSTEM
OUTPUT ERRORS
\ A
EXTERNAL
RADAR | RADAR | MEASUREMENTS
ALTI- | ™AP ';"\Ll-rﬂg:
TUDE |MATCHER

FIG. 3.2, FUNCTIONAL DIAGRAM OF AN INDIRECT FILTER

Note that the outputs from the inertial system are not the

measurements in the Kalman-Bucy theory. Rather, they are the forcing
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function or driving input in the dynamical equatioms déscribing the
system. The radar area correlation system and the radar altimeter are
the measurement kinematics as far as this estimation problem is
concerned,

The error equations in inertial systems position and velocity,
given as Eqs. (2.19) and (2.26) are logical choices for the inertial
system states. Rewriting them in a manner more amenable to manipula-
tion as state variables follows. From Eq. (2.26),

A 2 2 2 0 O
5x = Bx L(wy + wz) - wSJ + Sy[wz - wxmy] + Sz[-my - wx(')z]

+ By sz] + 82 [-Z(oy + bx - wyfz + \lfzfy

-l

+ Al(ﬂfx + mlzfy + m13fz , (3.1)

i - o - 2 2 2 .
&y = bx sz wxwy + 6y[mx + “)z - '”s] + 52 [wx mymz]

+ 5% -2mz] + 82 2mx] + by + llfxfz - \I;zfx
o

+rn.12fx +AKf2fy +m23f-Z , (3.2)

82 = 88X (Z)y - wxmz] + &y [-dsx - my.'nz] + S,z[(mi + mi) + zmi]

+ BX% L2my:| + By [-Zu\x} + bz - \L’xfz + \szx

tmgpfe +mgpfy +AKLE, (3.3)
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From Eq. (2.19),

\i’x = \lfywz - szy + AKgl‘*’x + lewy + g0+ €, . (3.4)

{y}’ = -wxwz + szx + My g +AKg2("’y tmygw, * ey ? (3.5)
and

\ifz = \lfxwy - Wywx + Myaw m32wy +AK83wZ +e, . (3.6)

3.1.1 State Vector for the Tangent Plane Mechanization

From Eqs. (3.1) through (3.6), part of the state vector is

chosen to be

T
X" = [st 3y, Bz, SVX’ Svys 5V29 ‘Vx’ ‘l’y’ \,fz] s 3.7)

where

(o4
B
n

vaéerror in IMU x-velocity

o
]
]

svyéerror in IMU y-velocity

o4
N
]

széerror in IMU z-velocity,
and other variables are as previously defined.

The gyro torquing rates Wy s wy, and W, implicit in Eq. (3.7) were
shown to differ according to the mechanization scheme. The tangent

plane mechanization torquing rates are constants given by

w =0

X

wy = c?s )"o

W, "= Q sin >"o . (3.8

Because there are no additional states required to define the torquing

rates for this mechanization, the state vector would remain as given

by Eq. (3.7).
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3.1,2 gstate Vector for the Space-Fixed Tangent Plane
Mechanization

The torquing rates in the space-fixed tangent plane mecha-
nization are equally as simple and also constant. To be exact, the
constant is zero. However for the reasons previously described, the
space-fixed tangent plane mechanization is rejected in favor of the
true tangent plane mechanization.

3.1.,3 State Vector for the Free Azimuth Mechanization

The free azimuth torquing rates as described in Eq. (2.46)
are complicated by the additional explicit dependence on latitude and
longitude rates, » and A, respectively, Also the wander angle, «, is
seen as an independent variable., For consistency then, the error in
these three variables must be derived and included in the state vector.
The perturbation in these variables may be rationalized as follows.
Until now the assumption was used that the local basis (L) was equal
to the computer or true basis (C). Generally, the possibility exists
that the computer is in error by some small amount in its calculation
of the actual position as given in the local basis. The development
which follows depicts the effect by way of perturbations on the ideal
cquations.

Refer to Fig. 2.6 to visualize the ideal, errorless rates given by

v v

s N A N

N=s ’ 3.9)
r RN + h

or

. Vx sin ¢ + Vy cos O
A = R - . (3.10)




Also,
.V v
- E E
A=A (3.11)
r - (RE + h) cos A
and
. chosa-V sin ¢
A= el (3.12)
(% + b)
where:

VN A vector representing velocity in northerly direction

VE A vector representing velocity easterly direction

h A altitude above the reference ellipsoid

RE A radius of curvature of reference ellipsoid in

“ easterly direction

RN A radius of curvature of reference ellipsoid in
° = northerly direction

<3

x O component of velocity along platform's x-axis

component of veloclity along platform's y-axis .

<
(LR > |

y
A perturbation on the latitude and longitude rate equations yields

the differential equations for the latitude and longitude errors,

Thus, from Eq. (3.10)

(Vx + an) sin (@ + 50) + (Vy + SVy) cos (Q+ 8Q)

d
e™ + BN = R+ R .
(3.13)
Noting that
cos Ba= 1 |, (3.14)
sin 5a= 5 ’ (3.15)
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and expand!ng the sine and tvsine functions by their trigonometric
identity results in

Vx cos adU + SVx sin @ - Vy sin ad a + 5Vy cos Q¢

R+ B

8N =
(3.16)
Similarly, from Eq. (3.12)

d (v + oV ) cos (O + 5Q) = (v + &V ) sin (@ + 5Q)
T+ BA) = = = (RE+h) cos (x-bs’-*csx)J

(3.17)
T~ result is

. -V sinada+ dV cosa-V_ cos adx -~ dV. sin «
BA = —= X s z
(RE + h) sin A\OM\

(3.18)
The variation in the wander angle, Q, is obtained from Eq. (2.45)

viz,
== (Q+4K) sinn . (3.19)
Again, to first order
5Q = (Q+ A) cos ABA = sin k&l{ . {3.20)

Substituting Eq. (3.12) into Egq. (3.20) yields

Ao - px_cos O = By sin O - .
da <n + (RE T h) co8 )cos ABM sin A\BA .
(3.21)

These three error differential equations, required to extend the
state vector when they appeared in the torquing equations, have in turn

generated the requirement for the inclusion of the true or idealjized

w2
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velocity components Vx and Vy‘ Both are obtained from Eq. (2.8a) but

must be coordinatized in the free azimuth basis, That is, nominally

<3e

X
(3.22)

<.
n
<Je

<.

and from Eq. (2.8b)

= |r . (3.23)

.
<

For this mechanization, the state vector would be

T
X" = {st dy, b2z, va’ BV, s sz’ \sz ‘l/y: \Vz’ A\, BA, 50’] (3.24)

y

The increased number of states required to mechanize this scheme is
evidence by comparing this state vector with the state vector described
by Eq. (3.7).

3.1,4 Sstate Vector for the Local Level North-hast Mechanization

The local level north-east mechanization would have gyro
torquing rates given by Eq. (2.52),
o = X
my = (Q+ A) cos A

wz=(9+1§) sinn .

Again, there is a need for the error differential equation describing
N and A. However, without the need for (¢, the state vector is simpli-

fied by one state over the previous mechanization as

b3
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T
X = [ox, b7, 82, 8V, 8Ty, 87, ¥y ¥ys ¥y BN, B4 | (3.25)

3.1.5 State Vector Augmentation

Jn addition, there is a possibility that gyro and accel=
rometer errors are correlated requiring six more augmented states to

be included by addition to each model mechanized, i.e.,

x;f = [Lx, vgr g0 Bgr Ay Az] .

Therefore, a fully mechanized inertial system, with 6 augmented
gyro and accelerometer states a possibility, can be modeled with as few
as 15 states in the tangent plane or as many as 18 states in the free
azimuth., The local level north~east mechanization is a compromise
requiring 17 states. It is therefore reasonable to choose a mechaniza-
tion based on the constraint that the airborne computer will have only
limited capability to accommodate the filter implementation. Because
the optimal filter requires computation of the Riccati error covari-
ance equation, it alone requires n(n + 1)/2 equations based on n number
of states. The minimum number of equations that must be solved,
including the number of states required to model only the inertial

system, are seen in Table 3.1.

Table 3.1

COMPARISON OF MECHANIZATION COMPLEXITY

Mechanization No. of Equations
Tangent Plan 135
Space~-Fixed Tangent Plane 135
Local Level North~East 153
Free Azimuth 171
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To obtain a torque-free azimuth gyro in the free azimuth mechanization,
a 27 percent increase in computer capability compared to the tangent
plane is required. The tangent plane mechanization requires 12 percent
less computer capability than does the local level north-east. For
this initial analysis, the tangent plane mechanization is chosen and

the first objective of this study is met.

3.2 CHOICE OF THE MODEL'S TRAJECTORY

Additional considerations simplify the state space lescription of
the total system even more. For purposes of this report, the PERSHING
trajectory can be represented as a parabolic arc with the baseline
reaching a maximum of 400 nautical miles and a maximum height of 120
miles from the earth's surface. Results of previous studies have
dictated that the terminal guidance phase be initiated at an altitude
of 30,000 feet above the earth's surface. The trajectory is shown in
Fig. 3.3 in the IMU X-Z plane. The velocity of the reentry body at the
30,000-foot level is approximately 3000 feet per second in the negative
Z direction (down). Also, the veloéity is almost constant from this
altitude to impact, Actually, it will vary according to the vehicle's
ballistic drag coefficient, air density, exact altitude of the target,
specific reentry angle of attack, etc. However, the model is simpli-
fied by not including the vehicle's aerodynamic characteristics.
Previous flights have shown the time to impact from this altitude
varies from approximately 7 to 12 seconds. For convenience, a flight
time of 10 seconds is used in the model's simulation.

An additional comment is necessary concerning the simulation of

the trajectory. Although a constant velocity of -3000 feet per second
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FIG. 3.3. TYPICAL PERSHING FLIGHT PROFILE

in the Z direction is reasonable, there could be an additional Y or X
component. To eliminate one state the trajectory is constrained to the
(- plane, with no loss in generality, because the Y component could be
eliminated choice of axes. Thus, the fZ and fx specific force terms in
the [MU mechanizations are initialized at zero because their corre-
sponding velocities are constant. As will been seen, however, this is
only of academic interest because additional simplifications eliminate
even those terms. The result is a free trajectory, i.e., there is no
state modeled representing actual vehicle position, velocity, or accel-
eration as was discussed previously. The system states are IMU errors
in these domains and are driven by IMU error inputs. When the specific
force terms are neglected there is no physically meaningful trajectory
generated, not to imply that it cannot be dome. However, in this

model, there is ample justification to neglect them.
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3.3 FORMULATION OF THE IMU ERROR MODEL

The terminal guidance phase is only l0-seconds long for the appli-
cation in which the filter will be implemented. The effect of correc-
ting the gyro and accelerometer errors, which propagate with an 84-
minute period, is negligible over this short time span. 1In addition,
their effect on system error buildup is known from extensive flight
test and analytic data (Martin-Marietta Report [17]).

Instead of modeling error sources which propagate at negligibly
low frequency, i.e.,, the platform tilts, Eﬁ and the gyro and accelerom-
eter scale factor errors, axg, and Aiz, respectively, their random
errors, Ei and the accelerometer bias, i; their effects on the system
are included as driving noise in the IMU error equations. Because gyro
or accelerometer errors are not modeled, the six states can be elimina-
ted, as given in Eq. (3.26). Three more states are eliminated by not
modeling the tilt equations. It should be noted that to assume.$ is
zero is not excctly true. The argument is that V and i}are zero
because the effect of the tilts on IMU performance at initiation of the
terminal guidanze phase can be included as a forcing term in the IMU
error equations; i.e., the total.i?error accrued during the flight is
mechanized in the filter as an initial condition. Its buildup and
additional contribution to the IMU error is considered negligible in
this application during the 10-second period. Lonéer flights, even in
the order of minutes in other applications for example, and in cases
where the data are not available to permit this alternative treatment

would invalidate the simplification.
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With -\]})and i? zero, Eqs. (3.1) through (3.6) simplify to the degree
of excluding the specific force terms fx’ fy, and fz, as was alluded
to previously. With no other means to propagate a physical trajectory,
the IMU error equations are seen in a free trajectory for 10 seconds in
which the accumulated system errors to that point drive the system as
initial conditions.

The BVy state is excluded because the model is constrained to the
X-Z plane for this analysis. This is not to imply that because 5y is
initialized equal to zero, 6Vy can be neglected. The converse is
true. There is every reason to believe that the error state pairs 5x
and Ly as well as avx and SVy will be nearly equal for this applica~
tion. llowever, to save computer memory and operating time, only one of
the velocities will be estimated, in this case 6Vx. The results,
shown later, should be interpreted to mean that the estimates for be
are equally likely to be representative of avy.

With so much emphasis on eliminating state variables, it is almost
incongruous to justify keeping two states that are most often elimina-
ted, The vz and &Vz states are, in every reference source, shown to be
in a divergent or unstable mechanization and are thus not instrumented,
{n mogt terrestrial navigators, the Z accelerometer is not even physi-
cally mounted on the IMU. It was observed by Kayton [18] that the
error in the altitude channel grows exponentially and doubles in the
amplitude in approximately 28 minutes. However, the total PERSHING
flight is less than 7 minutes and the terminal guidance phase is almost

two orders of magnitude smaller than that. Consequently, the Zechannel
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safing, and fuzing,

case, given reasonable initial conditions.,

instability will not cause a catastrophically large

r error in this

Because the Z-channel

information is very desirable for on~board function

imagery and gains in one configuration of a subop

included in the IMU error mechanization equations.

As a consequence of these decisions,

follows:
21 o o o
&Y 0 0 0
52 - 0 0 0
5\’7x F41 F42 F43
LBVZ F51 F52 F53
- b

where
F4l =

F42 =
F43 =

F51
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F52 =

F53
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s such as arming,
and because it could be useful in scheduling

timal filter, it is

the IMU is modeled as

’ (3.27)
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with
N = constant (earth's rate of rotation)
A = constant (launch site latitude),

_’
so that w = 0 and is thus omitted from the F-matrix.

3.4 FORMULATION OF THE RADAR AREA CORRELATION SYSTEM

The description of the radar area correlacion system application
to terminal guidance is discussed in Appendix B. The radar system is
used as an additional external measurement device (external to the IMU)
to measure position in the X-Y plane defined by the IMU. The observa-
tions or measuremeats for the Kalman filter are actually differences
between system-indicated and externally measured information. As is
common practice [9], the measurement errors are attributed to inaccu-
racies in the external indications only. Thus, by forming the differ-

ence between the externally indicated and inertially indicated

positions
Z = Pind (external) - Pind (IMU)
=(Ptrue + ep)- (P rye * BP)
= ep - SP Y (3 028)
where
Pind = position indicated
P = true position or errorless position
true
8P = inertial position error
ep = external device position error .

Equation (3.28) is equivalent to expressing the observation

equation as

o
NS H
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Z(t) = H x(t) + v(t) (3.29)

z2(t) = [-1 o] [er(e)] + eP(t) ’ (3.30)

sv(t)

where 5P and 5V are inertial errors in position and velocity for this

exploratory example.

The available unclassified information on radar area correlators

did not delve into the possible statistical correlation in position

errors from fix to fix. Although the fix to fix correlation seems a

distinct possibility, the first cut at a model excluded that considera=-

tion. In terms of the state variables defined for the IMU, the radar

area correlation system's observation is modeled as

z(t) = |1 0 0 0 0 5% + vx(t) . (3.31)
0 1 0 0 0 8y vy(t)
52

BVx

sV
[ 2

The values for the radar system errors are chosen as typical state-of-

the-arv. Stauffer [19] considers that to be planar resolution or, for

this model, v, = vy = 50 feet RMS.

Another consideration for the radar position measurement model is

the effect of processing time on the filter's performance. It was

learned that the time delay, as it may be considered, in matching the

reference imagery to the radar's projected real time imagery is
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approximately 0.2 second. This indicates that by the time a position

fix has been processed by the typical radar system, the information is

0.2-second old, i.e., the vehicle has moved on. In the case of the
PERSHING, reentry at 3000 feet per second the radar processing time

alone will require a 600-foot measurement compensation in the filter

mechanization. Intuition suggests that such an error would eventually

be a source of filter divergence if not properly addressed.

This problem was treated in the model in two ways. First it was
neglected. This is not as startling a choice as might first appear.
There is very little mention of this delay phenomenon in the literature
and its effect on filter performance. It is often mentioned as an

existing problem but is quickly discarded with the statement that

future studies will be conducted in that area. The best justification

for not implementing it in this filter application is that the time
duration is so short (10 seconds) that filter divergence will not
accrue a meaningful error. The results seem to verify this, at least
in the case where optimal gains are used.

Meaningful fixes to this problem have been proposed. DeBra [20]
has suggested that the measurement model incorporate the time delay as
a nonlinear exponential function with a time constant comparable to the
best guess at the time delay. For example, instead of the linear
measurement in the variables §x and &y given by Eq. (3.31), a model

in the frequency domain is given by

2,(8) = e px(s) + v, (8)

e T ay(s) + v (3.32)

Zz(s)

B e P

e ki
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where the time delay is chosen by the value T. In the time domain, two
additional state variables are required, one to define the time delay
for each channel. Thus, the F-matrix would require a two-~state
augmentation.

Bryson {21] has suggested the following methods, particularly
applicable when the time delay is not well known:

a) Increase the magnitude of appropriate variance elements in

the covariance error equations

b) Increase the amplitude of the measurement noise

¢) Combination of a) and b).
The effect is to decrease the knowledge of the system from the filter's
point of view.

The model for the reentry vehicle was simulated alternatively in
the manner of Bryson. The 600-foot error was caus2d by processing time

was included as additional error in the measurement error covariance

matrix R. Its effect was, therefore, directly observable in the cal-

culation for the optimal filter gains. These results are described

in Chapter IV.

3.5 FORMULATION OF THE RADAR ALTIMETER MODEL

The radar altimeter carried on the PERSHING will be used to obtain
vertical position measurements above the earth's surface. It is

mechanized in the Kalman filter formulation in exactly the same way as

the radar area correlator, i.e.,

Z= SPZ + ePZ . (3033)

«53-
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Thus, the radar altimeter is modeled as the Zechannel observation

z26) =0 0 1 o0 o0} [sx] PV () . (3.38)
&Y
oY1

&V
X

AV
z

From data on previous PERSHING flights, the radar altimeter error is
known to be approximately 10 percent of altitude indication. So that
an additional state would not be required, it was considered for
several cases in this study to be constant at 100 feet and for several

cases, constant at 1200 feet. The effect of the change is discussed in

Chapter IV.

3.6 A FILTER MECHANIZATION FOR NONLINEAR SYSTEMS

The filter equations developed by Kalman and Bucy and an extension
to correlated input--measurement noise (derived in Appendix C) were
developed under the assumption that the system disturbances and the
measurement errors were random variables described by Caussian statis~
tics, zero means, and that the plant was describable by linear
equations. The resulting filter then was shown to give the optimal
estimate of the states. Numerous researchers inthis area have expanded
the ideas to the more useful and practical case of systems described
by nonlinear dynamical equations. For example, Bryson and Ho [22],

in addition to their own contributions, have a rich bibliography on

rrese and related topics.,
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The filter equations used in this model are of the form most
applicable to the navigation problem at hand, i.e., a mixture of dis-
crete and continuous equations. The discrete form is used at a time
when a new measurement is introduced and the continuous form is used
to extrapolate between measurements. Also, the equations are a mixture
of linear and nonlinear expressions. The ncnlinear describe the sys-
tem, i.e., the navigation system error equations, and the linearized
equations are uced for the covariance error propagation. These
equations are linearized about the current estimate because in a
navigator, in general, and in this model, in particular, there is no
convenient nominal path about which to linearize. These equations,
developed in Section 12.6 of Bryson and Ho [22] are summarized in

Table 3.2.

3.7 EQUATIONS USED IN THE DIGITAL COMPUTER SIMULATION

This section summarizes the equations in the model which were
used in the Monte Carlo simulation. The inertial system is modeled by
five error states; the observation matrix (H), models the IMU position
error in three coordinates as measured by a radar area correlation
system (5%, dy); and a radar altimeter (5z). The initial conditionms,
error covariances and constants are summarized in Tables 3.3 through

3.5.
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Table 3.2

EXTENDED KALMAN FILTER FOR NONLINEAR SYSTEMS MODELED IN

CONTINUOUS ~ DISCRETE FCRM

Message model

x(t) = f(x, u, t)

{nonlinear)
Observation model z(t) = h(x, t) + v(t)

{nonlinear)
Linearization about the ooy L OF o of _oh

current estimate F(t) = ox » G(E) du » H(t) o

X-"—‘i{ x=§ x'}’e
A priori statistics Efu(t)} =0
T Process noise
efuce), @} = @ -0

E{v(t)}) =0

E{v(t), VT(Tﬁ

]

RE(t -1)

Measurement noise

= Correlated process and
E{u(t), v(r)) = 0 } measurement noise

Filter algorithm
between measurements

2(t) = £(x, t)

Error variance algorithm
between measurements

P(t) = F(t) P(t) + P(t) Fr(t) +G(t) Q(t) GL(t)

Filter algorithm at a
measurement update

7,(8) = % (0) + k©O[z0) - G, O]

Error variance algorithm
at a measurement
update

P,(t) = [T - K(t) H(t)] P_(t)

Optimal gain algorithm
at a measurement
update

1
k(t) = p_(&) K (®)[He) () #(e) + R(e)]

Initial conditions

% (o)

el

¥ ‘0)

n

x (o)

(%)

E [x(to)- x to)] [x(to) - :?(to)]] = 5 (o)
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Table 3.3

SYSTEM MODEL: x(t) = Fx(t) + Gu(t)

~ b o - ud = -
&% 0 0 0 1 0 1 F?xx 1 0 0 O 0-1 u,
&y o o0 ¢ 0 o0 Ay 0 1 0 0 offu
82 0 0 0 0 1 £z 0o 0 1 0 Ofju

= + Z
BVX F41 F42 F43 0 -?.'ny SVx 0o 0 0 0 O Uy
_sz‘ -F51 F52 F53 2f.>y 0 J L" VZ- ‘0 0 0 O© 04 _qu_
F4l1 = - wg * ws + m: , F51 = - w0
£42 = - wxwy . F52 = - wyh‘z 3

2 2 ]

F43 = - 0, , F53 = 2ws + o my
I.\x = O 9 {.ls =\/ Ge/Re
vy = 0 cos A
w, = Q sin A
¢ = 15.04107 degrees/hour, G, = 32,172 feet/second’
A = 45 degrees north latitude, R, = (6,378,388 meters) (3.281 feet/meter)
u, = 1253 feet , W, = 1,2 feet/secord
ug = 1317 feet , uy, = 1.4 feet/second
u, = 1500 feet
¢x(0) = 1253 feet . svx(O) = 10 feet/second
&y (0) = 1317 feet , SVZ(O) = 10 feet/second
82(0) = 1500 feet
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Table 3.4

OBSERVATION MODEL: 2z(t) = Hx(t) + v

LI od - - -

z1 =11 0 0 0 Offox | + vx
z2 0 1 0 0 0] | 8y vy
:z 3- .0 0 1 0 0~ o} E’z.
6Vx
havzu
Case 1 (lo) Case 2 (lg)
v = 50 feet v = 650 feet
X x
v._ = 50 feet v = 650 feet
y y
v, = 100 feet v, = 1200 feet
Table 3.5

ERROR VARIANCE MODEL:

B(t) = FR(t) + P(t)F" + GQGT

10,000 feet2
2

P, ©)

PZZ(O)

10,000 feet

P33(0) = 10,000 feet2

1074 (feet/second)2

. 2,0

. PSS(O) 10-4 (feet/second)2

*Initial conditions were obtained from reference [23].

adiiadnd Sin
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CHAPTER IV, SIMULATION RESULTS AND DISCUSSION

4.1 OVERVIEW

The simulation of the complete system modeled in the preceding
sections was performed on Stanford's IBM 360/67 digital computer.
Several variations were incorporated in the simulation to provide data
in meeting the objectives discussed in Chapter I.

Initially, runs were made with ten discrete measurement updates
equally spaced in time (one every second). The equi-time spacing
between updates was chosen based on results of Aoki and Li [24]. The
Case I configuration used the best information available; i.e., radar
measurement noise was limited to 50-feet 1 sigma in the X and ¥
channels and to 100-feet 1 sigma in the Z channel. These results are
shown in Figs. 4.1 through 4.5. The optimal time varying gains were
then observed from this data, Figs. 4.6 through 4.10, and were used to
mechanize a suboptimal filter with fixed gains., Those results were
shown in Figs. 4.11 through 4.14.

Then a simulation was performed, similar in every respect to the
previous one except that radar measurements were decreased to 5; i.e.,
there was a measurement update once every 2 seconds in the 1Q-sccond
simulated reentry., Again, the optimal gains were computed and then the
results were used to mechanize a suboptimal fixed gain filter. These

results are shown in Figs. 4.15 through 4.25,

=59




Additionally, a set of data wereobtained from the Case II configu-
ration with five measurement updates. Recall Case II used the degraded
measurement information in terms of increased covariance errors and
measurement noise. The values of 650-feet 1 sigma in the X and ¥
channel and 1200-feet 1 sigma in the Z channel were used as measurement
noise. These results are show : Figs. 4.32 through 4.38.

There were other semsitivity checks made in this study. Although
no graphs were plotted they represent additional results. A case of
twenty updates with fixed gains was simulated and several cases with
interchanged elements in the Case I and Case II configurations were
also obtained and shown as Figs. 4.39 and 4.40. These results are

discussed in the following paragraphs of this chapter.

4.2 TEN MEASUREMENT UPDATES, OPTIMAL GAINS, CASE I STATISTICS

The results indicating performance of the filter for this case
are shown in Figs. 4.1 through 4.5. Each figure plots the value of
+1 standard deviation from the indicated covariance matrix value.
That is, each graph representing one error state of the IMU has
the square root of the term in the diagonal of the covariance matrix
plotted as a positive and negative 1 sigma value. Because Gaussian
statistics are used with zero mean values, the positive standard devia-
tion (plus 1 sigma value) may be interpreted as the root mean square
(RMS) error in estimating the applicable state variable. Additionally,
each figure shows the difference between the actual state and the best
estimate of it (6x - 5x) which is, in fact, the estimation error of the

filter. One way of interpreting the results is to observe that the
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error (the irregular or "noise-like'" trace) should be within the +1
sigma curves approximately 63 percent of the time if the filter is
performing properly.

The time optimal gains generated by the filter are shown in Figs.
4.6 through 4.10, These are displayed so that the fixed gains chosen

for the suboptimal filter can be readily compared.

4.3 TEN MEASUREMENT UPDATES, FIXED GAINS, CASE I STATISTICS

The fixed gains are chosen to closely approximate the optimal

gains. They can not be properly selected without having computed the

optimal solution first. For display purpcses, the optimal gains are
shown with the fixed gains so that a visual comparison can bhe made.

These are also shown in Figs. 4.6 through 4.10.
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The error in the filter in attempting to estimate the IMU error,
is shown in Figs. 4.11 through 4.14. It is evident that the filter
with fixed gains does not estimate the states as well as the filter
with optimal gains. It is, in fact, divergent in some c¢2:'s. Several
reasons are available to explain this phenomenon., These are discussed

more completely in Chapter 4.9,

4.4 FIVE MEASUREMENT UPDATES, OPTIMAL GAINS, CASE I STATISTICS

The format of the graphical data is similar to the case for ten
measurement updates. To minimize data presentation which may appear

repetitious (it is not) and to enhance the comparison, the covariance

error data represcnted as the positive standard deviation is plotted in

Figs. 4.15 and 4.16. The same comparison is done for the filter's
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er-or in the estimate of the IMU error states in Figs. 4.17 through

4.20. As can be seen, there is better performance from the filter in

the case vhere ten updaves are used.

4.5 FIVE MEASUREMENT UPDATES, FIXED GAINS, CASE I STATISTICS

The fixed gains compared to the optimal gains are given in Figs.
4.21 through 4.25. Because of the change in the graphs' ordinate
scale the direct comparison to the ten measurement case is not possi-
ble to display. However, again it is noted that the filter perfor-

mance is poorer when ithe number of measurements is decreased.
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The filter errors are shown in Figs. 4.26 through 4.29. They are also
seen co diverge and for the same reasons as in the ten measurement

fixed gain case.
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4.6 FIVE MEASUREMENT UPDATES, OPTIMAL GAINS, CASE II STATISTICS

The filter errors for this case are shown plotted against the
filter errors for optimal gains, Case I. Case II differs from Case I
in measurement noise parameters. In Case II, Vx and Vy are 650-foot

root mean square compared to 50-feet PMS for CASE I. Also, v, is

larger at 1200-foot RMS compared to v, of Case I which is 100-foot RMS.

The increase in measurement error parameters reflect the attempt to

e kb

t include the error caused by radar area correlator time delay that

E occurs while obtaining a position measurement. The 1100-foot increase

Lakaciad

in v, measurement error is used to obtain another set of results by

using a fixed error in altitude. In reality, the actual radar altim~

; eter error is 10 percent of the indicated value. i
The results shown in Figs. 4.28 and 4.29 verify that the filter

errors are smaller without consideration of the time delay; however,

an

care must be taken. The truer more realistic case is given by the
larger filter error. There can not be enough emphasis placed on the
statement that the filter is only as good, at best, as the model used
to describe the real system. Because the model used for this study can
never be completely defined to represent an actual system, the fil:ter's
performance will vary according to the information mathematically

included in .ts wake up.

The #1 sigma values c¢f the expected error are shown in a compara-
tive display of the Case I and Case II results. Again, as expected, i
a larger measurement error yields a larger standard deviation. These

are shown in Figs. 4.30 and 4.31.
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4.7 FIVE MEASUREMENT UPDATES, FIXED GAINS, CASE II STATISTICS

The gains of the optimal filter are shown with the fixed gains
chosen to mechanize the suboptimal filter of Case II. These are given
as Figs. 4.32 through 4.36. The Case II optimal gaing are shown with
them. The results of the Case II fixed gains are plotted with the
standard deviations and the filter errors in Figs. 4.37 and 4.38.
These errors in estimating the states are larger than the Case I
results seen earlier.
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4.8 ADDITIONAL RESULTS

During the course of this study, several changes were made to the
model. As was mentioned earlier, the problem of the negative definite
error covariance matrix was investigated and corrected with a method
that proved successful in obtaining the plots. In one instance,
however, a different method of fix was used. The particular simulation
was performed with fixed gains obtained from the optimal ten measure-

ment update results. (Recall that only in the fixed gain runs did the
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ance matrix become positive semidefinite.
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negative definite covariance appear.) To overcome the divergence, a
smaller integration step size was chosen, 0.05second compared to 0,2
second, and the number of measurement updates was increased from 10 to .

20. Though not displayed here, the results indicated that the covari-

The filter error was approx-

imately 10=-percent smaller than the fixed five and the fixed ten update
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cases. However, this filter also began to diverge near the last
gseveral seconds in much the same manner as the other fixed gain cases.
From the trend observed on several states, a simulated flight of
larger than 10 seconds may have eventually resulted in all of the
error state estimates diverging.

Another case was run in which the measurement noise was increased
to reflect a Case II situation but the R-matrix values were the reduced
values of the Case I situation. This was for a five measurement update
fixed gains simulation with gains chosen from the Case I results.
There was virtually no noticeable change from the straight Case I
results in the plots. The results were exactly the same as those
displayed in Figs. 4.11 through 4.14.

Pursuing this one more step; additional runs were made but the
R-matrix vaiues were increased to fully reflect the Case II situation.
Once again, however, the fixed gains were chosen from Case I. Again,
the results obtained were almost exactly thcse of Case I, The conclu-
sion is inescapable, the filter is not sensitive to measurement error
and measurement error covariance matrix changes when the gains are
fixed. The filter is a function of the gains alone in the fixed gain
mode. Different results are obtained when the same simulation is run
with the exception that fixed gains, more accurately reflecting Case
II, are chosen. Those results are in Figs. 4.39 and 4.40 and are

different from the Case I fixed gains with Case II statistics.

4.9 DISCUSSION OF RESULTS

-

The error of the filter in estimating the IMU error states was

shown to be larger in every case where the fixed gains were used. 1In
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some instances, there were divergent estimates whereas the optimal

gains did not exhibit this behavior. Qualitatively, the following

argument seems reasonable.

The estimate of the IMU error state depends on the difference in
the actual measurement vector (Z) and the knowledge of the measurement
matrix (H) with the estimate of the state vector (ﬁ) at the instant the
measurements are taken. This difference is multiplied, or weighted,
by the optimal gain (K) which, in turn, is a function of terms computed
from the covariance differential equation (). In the case where the
optimal gains are used, the value of K is computed at every measurement
update and is a functicn of the measurement noise, observation matrix,
and more importantly, the old covariance values (P_). The covariance
P_ is obtained from a continuing propagation of P between measurements.
The optimal gain (K) then utilizes all the measurement noise informa-
tion, as well as process noise information, and may grow or decrease as
the equations dictate. The gain values (K) are essentially the ratio
between statistical measures of uncertainty of the state estimate and
uncertainty in a measurement. If measurement noise is large and state
estimate errors are small, the error in the measurement vector is
caused chiefly by noise and, therefore, only a small change in the
state estimate would be made; i.e., K will be small. However, small
measurement noise and large uncertainty in the state estimate
indicates that the measurement vector contains a large quantity of
information on the errors in the estimates. Thus, the value for K will
be large because the difference between the actual measurement and
that predicted from HX would be used as the basis for a heavily

weighted correction to the estimates,
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Simply stated, when fixed gains are used, the previously described
rationale does not occur. The covariance differential equation is not
propagated between measurements (the single most important reason for
choosing a set of fixed gains) so that all process noise statistics
are ignored. Because XK is fixed, there is no dependence update to
update, on the measurement matrix (H) nor on noise statistics
contained in the R matrix., Little significance is placed on the new
incoming data, via the measurements Consequently, when the measure-
ment vector has good data, it may be ignored and the error in the
estimated states continues to grow or diverge.

It should be emphasized that om an actual on-board computer
utilizing the fixed gains to implement the filter, the covariance
matrix Riccati equations (f) would not be computed. That they are not
to be computed on board is the motivation for studying the effects of
using fixed gains. In this study however, the plots of the standard
deviation calculated from the covariance matrix were computed with
fixed gains for comparison purposes. This was done to reinforce the
arguments of defining a filter with good performance versus one which
tended to diverge. As can be observed from the results presented, as
the covariance increases, the filter's error increases.

A final comment on the fixed gain results is worthy of mention.
The covariance matrix, which theoretically will be positive semidefi-
nite, became negative definite in the P33 or 5z term. This is the
classic effect of filter divergence discussed in much of the

literature. Because there was a need to obtain the square root of

-91-
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this matrix in the plot subroutine, termination of the program occurred

before all the plots could be made. The problem was overcome by not

plotting the filter error covariance in the estimate of 5z. This
occurred in every fixed gain simulation except one when another method
was used to correct the problem. This particular case was discussed

in Chapter 4.8.
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CHAPTER V., CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

5.1 CONCLUSIONS

In terms of the objectives specified in Section 1.5, the following
conclusions are stated as having been verified during the course of
this study.

a) The simplest inertial system mechanization which fulfills
the constraint of minimum on-board computer capacity is the tangent
plane mechanization.

b) The comparison between resuits of filters using five measure-
ments updates and ten measurement updates indicate the filter error is
smaller wiivh more updates in estimating the state variables. The
choice of ten measurement updates giving better results is shown con-
clusively. Indications are that the maximum of 15 measurements allow=-
able would be the best. The measurements must be equally spaced in
time for this application to allow time for processing.

¢) The filter should be formulated with no less than five state
variables. If the on-board computer has the capacity, the additional
three states describing a constant inertial platform tilt would be
desirable provided statistics describing IMU tilt can be obtained so
that initial conditions can be properly chosen.

d) The complete five state filter studied here should not be

formulated with fixed gains in each of the state estimates. The
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results do indicate however, that the IMU position errors in X and

Y are estimated with only modest filter error. Thus, the X and ¥
position errors can be derived in a fixed gain formulation. The
savings in computer capacity needed to estimate three states with
optimal time varying gains, while using fixed gains in estimating the
other two states, alone yield a savings of 40 percent in computing the

covariance matrix Riccati equation.

e) An excellent reference [17] was obtained which gave a compre=
hensive table of IMU characteristics required for performance with the

statistics used in this study. It is used to specify the IMU and por-

tions of the IMU computer for physical realization. Table 5.1 summa-
rizes the IMU specifications. Specification for the radar area corre-
lation system and radar altimeter are more general. The figure of
merit used for the radar area correlation system was its resolution
and for the altimeter, its accuracy. These are summarized in

Table 5.2.

5.2 RECOMMENDATIONS FOR FUTURE STUDY

There are several problems related to this application which
could be pursued further. The first of these would be to include more
states in the filter formulation. This would more closely represent
the physical situation, though it would require more computer capacity
than may be allowed. The purpose would be to investigate the filter
error relative to the number of states modeled. It would not imply a

priori that additional states need be used in the actual system. The
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Table 5.1
SPECIFICATIONS FOR THE IMU
Gyros Magnitude
Component Constant drift rate
Specifications (degree/hour) 0.3
Mass unbalance
[ (degree/hour)/g] 0.2
End plate drift
[ (degree/hour)/g] 0.15
Anisoelasticity
[ (degree/hour)/g"] -
Accelerometers Magnitude
Bias (g) 1074
Scale factor (g/g) 81 x 10°°
Nonlinearity (g/gz) --
Allowable Misalignment 1 Sigma Error
Placform X-Y plane level
Specification (arc seconds) ) 26.7
Azimuth (arc seconds) 32.4
Error Source 1 Sigma Error
Guidance In-flight errors
Computer (meter/second) 0.15
Displacement error
(meter) 10.0
Velocity error
(meter/second) 0.4

following consideratioas should also be investigated to observe the

effects on the filter error:

a) The radar area correlation system is considered to have

measurement noise correlated with the input noise

b) The radar area correlation system's time delay is modeled

as a true transport lag

-95-
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Table 5.2

SPECIFICATIONS FOR THE RADAR

Error Source T 1 Sigma Error
Radar Area X channel resolution (feet) 50
Correlation
System Y channel resolution (feet) 50
Correlation processing time of 0.2 seconds
Error Source 1 Sigma Error
Radar Inaccuracy of output 10%
Altimeter of indicated
altitude

¢) The platform tilt errors (33 are modeled

d) The IMU sensors are modeled as an input process noise
which is:

1) A random constant
2) A random walk
3) A random walk plus a bias

e) The mechanization of the other two nontangent plane IMU
coordinate systems,

The sensitivity of the model to changes in the noise statistics
should be investigated for the optimal gain cases with all of the
previously listed formulations.

Initially, the purpose of the study was to pick one value of K to
be fixed constant throughouﬁ the teirm.nal flight phase for each state
in a suboptimal filter formulation. However, the results of the
optimal filter directed the decision to pick, in some cases, at least
two levels of gains. The obvious extension is to investigate the

mechanization which uses the optimal values of the gain at each update
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without computing the covariance matrix Riccati equation. That is,

instead of choosing a two level value of K, choose it to be five level
for the five update case and ten level for the ten update case. In the
latter for example, storing 50 values of K, 10 for each of the 5
states, would be a savings on the computer required, presuming the
filter does not diverge.

An analysis should be performed to determine the sensitivity of
the filter to the simplification of using fixed or precomputed gains.
It was observed that the accuracy of the filter degraded when the fixed
gains were used. This analysis would give the bounds and structure of
the error covariance as a function of gain using fixed noise statis~
tics. It would lend some confidence to the greater use of fixed or
precomputed gains stored a priori.

A complete trajectory study is characterized by its higher come
plexity relative to the case presented in this thesis. It includes a
full aerodynamic description of the flight vehicle, its inertia proper-
ties, autopilot mechanization, and targeting information in addition
to the measurement kinematics considered. Then, by appropriate mani=-
pulation of initial conditions, the truest figure of merit, the
vehicle's miss distance, could be established and compared in cases
with and without the filter implemented. The concept would be simu-
lated with a complete inertial system, radar area correlation system,
and radar altimeter in the autopilot mechanization. The estimator
would still be used to feed back error states to the inertial system
for correction of its output to the autopilot actuators. In proper
perspective, it should be noted that this entire report would be the

basis of only one subroutine (the estimator) in such a simulation.
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Needless to say, this type of study is a quantum step up in the
hierarchy of analysis and simulation. But by the very virtue of its
complexity, it represents the best tool closely approaching actual
hardware flight test. The only additional realism would be to include
a hardware-in-the-loop simulation. However, the obvious disadvantages
of hardware acquisition (caused by high cost and lack of availability)

and maintenance, preclude it from serious consideration at this time.
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APPENDIX A
DERIVATION OF THE IMU POSITION AND PLATFORM

MISALIGNMENT ERROR EQUATIONS

A.l1 PLATFORM MISALIGNMENT ERROR EQUATION

It is assumed that the computer mechanization is perfect, i.e.,
that the equations of motion are solved with accuracy. Thus, the
guidance system would operate perfectly if the initial conditions were
correct and if there were no component errors. Realistically, there
are a host of errors contributed by the gyros, accelerometers,
resolvers, torquers, pick-offs, etc., However, this analysis will only
consider two major errors that the gyro and accelerometer propagate.
The predominant sources of error for the gyro are the drift rate and
scale factor, and for the accelerometer the bias and scale factor.

Three coincident coordinate axes are of interest. Each is defined
by a set of orthogonal unit vectors in a right handed triad. For a
perfectly operating, errorless guidance system, all three bases would
coincide. For small angulér rotations, a pseudovector may be defined

which is the vector angle relating one basis to another. It can there-

fore be defined by the following:

5V, |

X

Si?= 5V, A the vector angle between the computer basis and the
y platform basis.
SWZ

3 -
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Bb = qu 2 the vector angle between the local basis (which may
be in any mechanization) and the platform basis,
Pae -
-y
80 = |86 _| & the vector angle between the local basis and the
Y| = computer basis.
%

As mentioned previously, ideally all the bases would coincide; but by

the definitions given, it is concluded
56 = 88 + 8V . (A.1)
In terms of the notation used throughout this thesis,

80’ 4 Wt

58 A oC L

 {og

s7 o OP-C

1>

Thus, Eq. (A.l) is rewritten as
O S - Sl O (a.2)
Ideally, it is desired that the platform rotate with the local
coordinate basis in inertial space, 1i.e,,

PR i (Ideal)

% =W . (A.3)

However, because the gyros are measuring this platform rotation with
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respect to the inertial basis and because the gyros are additionally

being torqued by signals from the computer to maintain a particular

mechanization, the platform conforms to the following actual matrix

equation:
o T (B, +k) 0" T 4e , (Actual) (A.4)
P IR P
where
1 0 0
E3 A 0 1 0 .
t? 0 1

To get all terms in the same basis, note that the following transforma-

tions hold:

W = T [V} (A.S)
P P/C c
and
T .
TP/C = TP/C ~Ey + ¥ s (A.6)
where
- -
0 N, Y
v=ly, 0 eul .
- 0
oo |
Thus,

. A.7)
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Putting Eq. (A.7) into Eq. (A.4) yields

wP-I = (E3 + K )<wC:-I + ¥ wC-I) + €
] P &/\pr P P
: =Tk STy T ) (A.8)
P g€ p P P
P
Now,
- 3 b r T
[0 b ] fe
F C-I _ - s
¥ = \yz 0 \Ifx Wy , 4.9
P
-‘Ify Ve 0 w,
- - =
thus,
2E-T 0T, Ky R et S-S (A.10)
But
] —Pel oC-I -P-C
3 W - W = >
1 where from the earlier definitions ,
2C Ay .
It is also noted that
(A.11)
Combining Eq. (A.10) afd Eq. (A.11) yields the following:

- q -
=l§ -'J)CI+WXT:)CI+

o}

. (A.12)
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Finally, as a minor modification, let 56 = 0; i.e., let the ideal local
frame equal the ideal computer frame., The resulting local frame sym-

bols are

L
> SL-I o5 ? -»L-I = . (4.13)

Eq. (A.13) is the same as Eq. (2.9) in the text.

A.2 POSITION ERROR EQUATION

Beginning with the set of equations in invariant vector form given
as Eqs. (2.8a) and (2.8b), assume that 80 = 0; i.e., that the local

basis is aligned with the true or computer basis. Thus,

c
P=V+bCxy? (A.14)
and
- - -
%=?+§’-(7?)EI+?)C I)><v . (A.15)

Equation (A.1l5) which is in terms of the gravity field intensity vec-
tors is, when rewritten in terms of the gravitational field intensity

vectors,
c - - - T\ - - -
VoTae QT aCT) 7B T (25 xF) . @as

Now defining the indicate quantities in the preceding ideal equation
composed of a nominal component and an error component, the following

variation to first order is resolved:

—>C-E _ = —C-E

C
? =-‘?+6 -w XT=w XB? s a4.17)

S
+ 8T
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where
Z’)CQE - _—(:)E"C
—C«E 4C-I E-I
w = W * W ’
4 3C- hmd L .
3 and wc I and wE L are known exactly (no perturbation is needed).

Subtracting Eq. (A.14) from Eq. (A.17) yields

tcrariiadis

c - -
s¥ =5V ~ ol E w87 (A.18)
rewritten as
3 C
E 8V = 5% + T x 57 (A.19)

whi~n is recognized as the Coriolis Law if the following definition is

used:
, E
8V A 6T :
Thus,
E C
8V =8F =8F + o B wBr . (A.20)

Now by straight forward application of the Coriolis Law

8T = 6r + OC T X 8T (A.21a)
=5V + 35T x 87 . (A.21b)
Taking another derivative,
1 G I
8T =5V + - L x 67 (A.22a)

=104~




or
57 = 67 + 25T (s? +25 T x o7 . (A.22b)
Repeating the same process with Eq. (A.16) yields,
& g 3 = 2 EeI Eel 2, o2
V+sV = £ +B3E +C +8G -0 x[‘u’s x (r +5r)]
@ ) (Ts7) a2
Subtracting Eq. (A.16) from Eq. (A.23) yields
8% =5 +5G -@- T x(B?E'I X 63?)
T T (a.24)
Again, the Coriolis Law is
G BRIV 4.25)

Substituting Eq. (A.24) into Eq. (A.25) gives
I
5V = 6F + 86 - WE T x(BE'I X 5?)-TJE“I X8 . (A.26)

-
Now derive the terms in 5G, which is a function of ? and of

time t.

=G(T, t) = - 5; +o(T, t) + (T, t) , (4.27)

r

oL
|

where

-
e(r, t) A oblateness of earth and sun-moon effects

-
1(r, t) A randomness effects.
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Thus,
-3 - - T T g Py o
C 480 = (K + 8K)(r +8r) 3 +e +5e + 1 (A.28a)
[(r +8T) . (r +5?)]2
-
_ B KT 4 87) 5 + T4BE+T . (A.28b)
r 2 2 -2-
(f} +§2° + 27 5?)
Now,
br =;X5? ;

i.e., 3r is a scalar and r is a unit vector in the r direction given by

=}

A
T =

A

Consequently, performing a binomial expansion on the denominator and

neglecting higher order terms yields

- _ _ —>. -
¢ + 56 = ?gK --%(?Hsr’) (1 -ér—-féﬁ)+?+6?+ﬁ'. (A.29)
r v r

Subtracting Eq. (A.27) from Eq. (A.29),

= =4 =
= -TdK Ksr 3KT o e = =
86 = —3— - T+ % (T X BT) +B€ + 7, . (A.30)
T T r
Now defining
2 K
Wg é 3
r

to be a constant when r =~ Rearth’-and more precisely

se &

Eay

. 5%,
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then
3 A~ 2 pog
5a=-m2 1 - rr-—l—és- .5?-£§—ls+ﬁ’ . (a.31)
2 64 3
w_, o r
s
-
Deriving the terms in 5f and using a basis viewing that which the
computer 'sees" from the platform-mounted instruments yields
f +5f = E3+Kf f+Db . (A.32)
C C P P
P
Using the transformation
- - A03
Tpfe (E3 \y) , (A.33)
gso that
£ = (133 - \y) £, (A.34) |
P C
then |
|
f+8f=(E -q')f+(E - v\K f+(E -\;‘)b (4.35)
C C 3 C 3 £ C 3 C
C
Subtracting Eq. (A.32) from Eq. (4.35), the matric form is
&f = Kf f+b-¢xf s (A.36)
C C C C C
C
or in vector form
=2 —_— -—
g?:'ﬁ‘f.fn?’-wx? . (A.37)
Substituting Eqs. (A.31) and (A.37) into Eq. (A.26) for &C and of and
neglecting the oblateness and random terms, the result is
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(A.38)
Finally, substituting Eq. (A.38) into Eq. (A.22b) yields
E:‘ 1T 2:)) - - S = -
82 -uwg (L ~3FF) 8F =K. «+£+b-Vyx £ |, (4.39)

which corresponds to Eq. (2.10) in the text.

T P T I A
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Appendix B

AN OVERVIEW OF RADAR AREA CORRELATION NAVIGATION

B.l GENFRAL

This is a short compendium abstracted primarily from the following
authors: Wiley [18], Stauffer [19], Eppler and Willstadter [25],
Develet [26], and Diamantides [27]. It is not intended to be a trea-

tise on the subject but rather a convenient, self-contained reference

on radars in the navigation application as compared to radar
transmitter-receiver design.

It is possible to use an airborne radar to obtain completely auto-
matic navigation by comparison of the image generated by the vehicle's
radar in flight with a series of stored reference radar images made by
previous recomnnaissance. The comparison is made by finding the auto-
correlation or -cross correlation between the live image and the
reference image; this process is called radar area correlation or
simply radar map matching.

The radar map-matching process determines the displacement of the
live radar image with respect to the position of the reference image.
By "position" of an image is meant the geographical location of the
radar that will create the image in question. The displacement data,
in geographic coordinates, is then fed back to the navigation computer

to update computed position. Figure B.l shows the geometry of the

~109-




YT

HEADING DEVIATION
ASPECT ANGLE

BALLISTIC REENTRY
BODY

ALTITUDZ FIELD-OF-VIEW

FIG. B.1. TYPICAL PROBLEM GEOMETRY

problem, Because the map matcher can deliver almost continuous error
data, it is conceivable that these signals could be used to steer the
vehicle directly. However, the area correlation data, although free .
of error that accumulates with time, contain high-frequency noise
resulting from the continuous fluctuations in the radar image.
Attempts to smooth out this noise by integration result in area corre=
lation time constants that are too long to control the vehicle in a
stable manner. The solution is one of combining a fast-responding,
low~-noise device that has the disadvantage of accumulating errors

causing long-term drift (such as an inertial platform) with a slower,
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noisy device without drift, the area correlator. By proper allotment
of time constants between the two devices, it is possible to produce

a fast-responding system with little noise and no drift.

B.2 PRINCIPLES

The basic principle of an active radar ground mapping system is

that it transmits energy and detects the part of it scattered back
from a target. However, instead of the usual point target, the target
in this case is the ground, which can be considered as an extended
array of scatterers. The radar map is obtained by scanning or painting
the ground and displaying the return on a cathode ray tube or photo-
graphic film. Because the scattering characteristics of the ground
will vary from point to point, the rap will be in the form of a varying
brightness pattern. Variations of intensity in this brightness pattern
can be interpreted in terms of the topographical and man-made features
of the terrain, For example, the energy back-scattered from a smooth
surface such as calm water will be much less than that from a rough
surface such as the ground. The degree of correspondence between the
brightness pattern and the features of the terrain depends on the
characteristics of the antenna beam pattern used to paint the ground.
The antenna beam pattern usually employed in ground mapping sys-
tems is narrow in one dimension and has wide angular coverage in the
other dimension. This type of beam is known as a fan beam. It is
usually oriented so that the narrow dimension is horizontal, thus
illuminating a long narrow strip of ground from beneath the vehicle to

some maximum range. Thus, for a given pointing direction, the radar
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i beam illuwminates targets at many different ranges and depression
angles. Variations in the brightness are therefore functions of range
and the angle at which the ground is viewed as well asg the reflective
properties of the terrain. This condition, if not corrected, would

complicate the correlation between the radar image and terrain. To

e

compensate for the effects of range and viewing angle, the vertical

e

gain pattern of a radar ground mapping antenna is designed to be a
function of the depression angle at which a given patch of ground is
viewed. This type of pattern is as a coseécant-squared beam,
Scanning of the antenna beam is usually accomplished either by
rotating the antenna about a vertical axis or by positioning the
é antenna along the vehicle so that its motion provides the scanning.
When the beam is rotated a full 360 degrees about the vertical axis,
the image is usually in the form of a plan position map with the

vehicle at the center. Most systems employing this type of scan use

a sector scan, i.e,, less than the full 360 degrees. When the sector
is directed forward of the vehicle, the system is known as a forward-
looking area correlation radar. Systems employing the velocity
scanntag technique, where the beam is directed to the side of the

vehicle, are known as side~looking radars. The images obtained with

this system are in the form of strip maps along each side of the
vehicle's track and are especially adapted to the use of photographic
techniques to obtain a permanent record. This permanent record or
signal storage has led to the consideration of the correlation process

as an integral part of radar image matching.

L4
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B.3 RADAR IMAGE MATCHING - CORRELATION //
/

Imagery matching is, in essence, a way of measuring the similarity

between two displays; its outcome conveys information not only about
the displays' structures but also about their relative positions. The
former is of value to the problem of quantifying displays of scenes or
objects anu, subsequently, to the problem of attaching meaningful
characteristic numbers to the scenes or objects in question for the
purpose of classification. The latter lends itself to position fixing
and therefore, if the displays are maps, to automatic navigation and
homing guidance.

The study of display matching is essentially a study of the corre~
lation function and inasmuch as a figure, map, or other subject is
displayed in two dimensions. The correlation function under consider-

ation is for two dimensions,

Y X
6(t, ) = Z)la f j T(x, ¥)T(x + &, ¥y + n)dxdy , (B.1)
=Y <X
where T(x, y) is the display brightness at (x, y) and ¢, 7 the relative
displacements.

In display matching, there is generally a current image which is
compared to a memory image, the output of this comparison being the
input to a detection system. If the two images are different, the
resultant output is mutual property of both image functions and can be
ascribed no more to one of the images than to the other. &he process,

then, is called cross correlation. If, however, an image is correlated

with a duplicate of itself, the output is wholly a property of that
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image and the process is called autocorrelation. Where cross correla-
tion is executed for functional purposes, autocorrelation is performed

for purely analytic reasons. According to one school of thought, the

pattern recognition process that occurs when a pilot observes a target
scene or when a photo interpreter examines an aerial photograph is
similar to the correlation process previously described., The principal
difference between the two is that memory and detection are contained
within the physiological equipment of a human being.

In some early mechanizations, area correlation was done by projec-
ting the live radar image onto the stored reference image and measuring
the total light emerging from the back of the reference image (Fig.
B.2). If the two signals are statistically alike, ¢ (¢, n) is largest
when the images are in register and ¢ = y = 0. As the images move out
of register, so that ¢ and 3 are not zero, ¢ (¢, 7) becomes smaller,
decreasing asymptotically to zerc for very large displacements,
completely destroying any statistical similarity between the image
elements in the product.

If one image is rapidly scanned over the other in a small circle,
the output light will fluctuate. The major component of this fluctua-
tion will be at the nutation rate because, in the general case, the
nutation circle will be closest to the correlation peak at one point in
the circle and furthest away (180 degrees) in nutation phase from the
instant of maximum light. The phase of the fluctuation will change
with respect to the nutation drive if the nutation circle moves around
the correlation peak at ¢, 7= 0. One can synchronously demodulate the

light fluctuation with respect to the in-phase and quadrature nutation
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FIG B.2. IMAGE MATCHING MECHANIZATION

drive signals and integrate the demodulator outputs. The integrator
outputs are servo~-error signals, changing in algebraic sign at ¢, 5= 0
in the correct manner to register the images, when they are applied to
servoamplifiers, which move one of the images with respect to the
other. In this manner, displacement of one image with respect to the
other can be measured. If the radar-image signals were identical, and
if the correlator could operate on infinitely large samples of the two
signals, then the cross correlation function ¢ (¢, 7) would be a
noiseless smoothly varying function of ¢ and 7 and would have a per-
fectly defined maximum. The correlation tracker could then determine
the correlation peak position and, hence, the register point, to any
desired accuracy. However, the signals are not identical and the

correlator must work with finite samples of the image signals. In

general, the two images are not made at the same location; as a result,
scintillation, moving shadows, and the like destroy identicality. In
addition, there is receiver noise in both images. Even if the signals

were identical, the finite signal sample size would produce

fluctuations from correlation to correlation.
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From both of the previously mentioned cases, then, the value of
the cross correlation function generated for a given ¢, 7 varies
unpredictably from one correlation to the next, as does the location
of the maximum value. Because the location o/ the maximum value
(¢ = 3= 0) is the output quantity of interest, its variation from
correlation to correlation is a fluctuating error in the displacement
measurement, which determines the accuracy of the map-matching process.
As’'a rule of thumb, experience has shown that a well-designed system
can measure ¢ and n to approximately one-half the radar-range resolu-
‘tion if areas ahead and to the side of the vehicle are simultaneously
used in the match process. This placement of the matched areas insures
reltative motion of the images in the range direction, which is the

narrow dimension of the target elements for changes of ¢ and 1.

B.4 SYSTEM'S CONSIDERATIONS

Some of the most important system considerations for ground image
referencing radar systems involve resolution, accuracy, range and
operational altitude, and all-weather capability.

As accuracy is the basic measure of navigation systems per-
formance, resolution is the basic measure of performance for radar

ground area correlation systems. Resolution, a measure of the system's

ability to distinguish between closely spaced objects or to u.lineate
the details of a large area, is usually defined in terms of range
resolution and transverse or azimuth resolution. While the ultimate
resolution attained by the system is a function of many parameters, the
single criterion most commonly used to judge it is the pulse packet

size as projected on the ground. The system parameters which determine
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the pulse packet size are antenna beamwidth and pulse length, as

measured at the half-power points.

Beamwidth is a function of the transmitted wavelength and the

dimensions of the antenna being expressed approximately by

o= (8.2)
where
@ = beamwidth defined by the half-power points
A = transmitted wavelength
D = pertinent dimension of the antenna aperture
3 K = constant dependent on the particular aperture. A typical

value for this constant is 70 where ¢ is expressed in degrees
and A and D are measured in the same units.

The system designer is confronted at once with a compromise in the
selection of the transmitted waveiength and the dimensions of the
antenna. To narrow the beamwidth, either the wavelength must be
decreased or the dimensions of the antenna must be increased. In
decreasing the wavelength, the problems of atmospheric attenuation and
the generation of large amounts of power become increasingly difficult,

The maximum size of the antenna obviously will be limited for airborne

installations.

Range resolution may be improved by decreasing the pulse length.
Again, there is a minimum limit because the average power trans-
mitted is a direct function of pulse length. Also to be considered in
this connection is the altitude at which the system will operate
because the length of the pulse, as projected on the ground, is a

function of the radar altitude.
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Another important area with regard to system resolution concerns
the receiver. Here, one of the basic considerations is its dynamic
range, i.e.,, the range of signal amplitudes which it can accommodate
without distortion. Because a radar image is a brightness pattern,
variations of intensity within the image contribute to the resolution
of certain features. The range of signAI amplitudes encountered in a
given correlation operation may be large. If the receiver or display
system cannot accommodate such a range of signal amplitudes without
distortion, loss of much detail within the image will occur. If the
gain or intensity is set at the noise threshold, strong targets will
"bloom", thus obscuring nearby weaker targets. If the gain or inten-
sity is set too high, the weaker targets will not be mapped.

System accuracy is as equally important in many respects as system
resolution., Distorted or "smeared" images make it difficult to obtain
a true measure of ground distances or to resolve details within the
imege. Types of errors that can occur are altitude errors, drift
errors, and stabilization errors. Errors in the measurement of the
altitude of the mapping vehicle can cause distortions in the image
because in most systems altitude is used to set in the range scan
factor. Angular distortion of the image can occur also if there is no
compensation wmade for drift.

Stabilization errors occur when the antenna is not stabilized for
pitch and roll displacements. Such errors produce distortion and
smearing of the image. The degree of distortion or smearing that will

occur is difficult to define analytically. However, related studies on
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airplane motions in turbulent air have indicated that displacements of

as little as 1 degree in pitch occur with such frequency as to make

: stabilization desirable,

3 B.5 SIGNAL PROCESSING AND A MECHANIZATION SCHEME

% The procedure starts with the acquisition of a reference image by
e.g., & recorm~issance satellite, The image correlation process is
concerned with determining the position offset, with respect to this
stored reference image, of terrain whose radar return is scanned by the
reentry body. To process the data digitally, the radar and reference
r images must be sampled in space and quantized in intensity.

By space sampling, it is meant that the radar signal is sampled at

T

particular instants of time and these samples are used to represent
areas on the ground. The size of these areas depends on the radar
resolution and the signal processing. Intensity quantization means
that the amplitude of the radar signal at the sampling instant is rep-
resented by one of K discrete values. For the binary case, (K= 2), a

sample is stored as a "1" or "0" depending on whether or not its

amplitude exceeds a specified threshold.

As a result of space-sampling and amplitude quantization, the
radar and reference images can be represented as a matrix in which
each eiement represents the radar return from a particular area of the
image. In the binary case, the condition for correlation of an element
of the reference image with an element of the radar image is that

both elements are alike, i.e., both have the value "1" or both have the

:
3
e
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value "0". The image area correlation system must comparec reference
and radar images element by element and count the nuwer of places in
which they agree.

In the correlation process, the radar image is in effect super-
imposed in each of a matrix of discrete positions over the reference
image and a measure of the resultant correlation is obtained for each
superposition. Provided it exceeds a predetermined correlation thres-
hold level, the sampled superposition yielding maximum correlatio; is
taken as the best estimate for the true superposition region. The
precise best estimate of position within this region is then made by
employing interpolation techniques.

To be able to locate the match point with an error less than one~
half the distance betweern samples, it is necessary to use an interpola=
tion procedure. If this were not done, it would be necessary to
decrease the distance between samples, thus requiring higher radar
resolution, larger computer memory, and longer computation time.

Thus, the area correlation system must perform four operations:

a) Store the space-sampled, amplitude quantized radar signal as
a matrix representation of the mapped area.

b) Shift the radar and prestored reference images relative to
each other, conceptually as shown in Fig, B.2.

c¢) Determine the correlation between radar and reference images

for each possible offset, For the two~level system, for example, the

correlation is obtained by counting the number of elements in which the
radar and offset reference matrices coincide.

d) 1Interpolate between offsets to determine the match point.
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Appendix C
OPTIMAL ESTIMATION OF STATES IN A LINEAR SYSTEM

WITH CORRELATED PROCESS NOISE AND MEASUREMENT NOISE

C.1 GENERAL

The idea is to estimate the state of a system x(t) from observed

or measured data z(t) where x and z are vector quantities. There is a

known relationship between the observation and state vectors and there

is additive noise present in the observation. These comments can be

expressed in the continuous case as

x(t) = F(t) x(t) + G(t) u(t) (€.1)

and

z(t) = H(t) x(t) + v(t) , (€.2)

where

x(t) A n X 1 vector of state variables
u(t) A n x 1 vector of input noise

F(t) A n X n matrix representing linear dynamics

> 1>

G(t) A m x n matrix representing the effect of the input on

dynamics
z(t) A p X 1 vector of system outputs (observations)

H(t) A p X n matrix relating x and z

V(t) A p X 1 vector of noise in the measurement.

Furthermore, u(t) and V(t) are Gaussian white noise random variables

with zero mean and auto-covariance matrices
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E ‘u(t) uT(t)l = Q(t) 5(t - 1) (c.3)

E {v(t) vT(t)} = R(t) 8(t = 1) . (C.4)

Also, for the case where the two noises are correlated, the cross=

covariance matrix is

E {u(t), vT('r)] = S(t) 5(t - 1) . (C.5)

The symbol E{ } denotes the expected value of the quantity in the
brackets, AT denotes the transpose of matrix A, and the quantity

5(t - 1) is the Dirac §-function.

C.2 PROBLEM AND PURPOSE

The problem is to derive the main results of the Kalman-Bucy
filter [8] with the extension, not originally considered in their paper,
that correlated input and process measurement noise is to be expected.
Thz purpose is to develop familiarity with the techniques of their
classic paper, obtain useful results for further applications, and have

a basis for discussion of their work as a self-contained item in this

report ,

C.3 SOLUTION

With no pretense of originality, the solution begins with the
results given in the paper by Kalman and Bucy [8] as Eq. (38). Their
Eq. (38) states, in egsence, that the Weiner-Hop:t equation yields a

necessary and sufficient condition for a minimum variance estimator of

[x(t), x(tl)} ,
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cov [x(tl), z(o)] = A(tl, 'r) cov[z('r),z(c)Jd'r, ¥ 0<o<t . (C.6)

Continuing the development, let L=t for simplicity in the development
and differentiate the left side of Eq. (C.6) with 0 <o < t.

Then,

dd_t cov[x(t), z(c)] cov[fc(t), z(n)] + cov[x(t), é(n)]

cov [F(£) x(t) + G(t) u(t), 2(0))

cov[F(t:) x(t), z(c)] + cov[G(t) u(t), z(c)]

F(t) cov[x(t:), z(c;)] + G(t) cov[u(t), H(o) x (o) +v(o)]

]

F(t) cov[x(t), z(c)] +G(t) H(o) cov [u(t), x(c)]

+

6(6)[cov u(®), v(@)] . (c-7)

Now differentiating the right side of Eq. (C.6) using Liebnitz's rule,

t
% fA(t, T) cov[z(t), z(o)]dt = - 0+ A(t, t) cov[z(t), z(0)]
0

3

+ | 5t A(t, 1) coviz(o), z(r)]dr (c.8)

e

where

cov[z (t), z(0)] = cov[H(t) x(t)+v(t), z(o)]

= H(t) cov[x(t), z(o)] +cov[v(t), z(g)], (C.9)

and

t

H(t) cov[x(t), z(s)] = H(t)[ A(t,t) cov[z(1), z(g)] dr . (C.1l0)
(c-6)
0
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From Eqs. (C.6), (C.7), and (C.8)

t
Edf cov[x(t), z(g)] = fA(t, T) cov[z(n), z(r))dr @

0

S emen s coahrs e, St

F(t) cov[x(t), z(s)] + G(t) H(g) cov[u(t) x(0)] + G(¢) covlu(t), v(c)i

= A(t, t) H(t) cov[x(t), z(c)] + A(t, t) cov[v(t), z(o)]

t

+‘L/§;A(t, t) cov[z (o), z(r)ldr, ¥0<o<t . (C.11)
0

Noting also in Eq. (C.1l) that

AL, t) coviv(t), z(s)] = A(t, t) cov[v(t), H(o) x(o) + v(o)]

A(t, t) H(o) cov[v(t), x(0)] +A(t, t)

n

cov[v(t), v(o)], (C.12)
and putting it in the integral form of Eq. (C.6) where appropriate,

Eq. (C.11) becomes ¥ 0 < g « t,

t

t
p(t)[,x(c, 1)cov[z (o), z(1)|dr - A(t, t) H(t) jA(t, 1) coviz(a), z (1)} dr
0

t
-[—t A(t, 1) cavlz(a), 2()1dt + G(t) H(s) cov[u(t), x(0)1+G(t) covlu(t), v(t)]

- A(t, t) H(a) cov[v(t), x(n)] +A(t, t) cov[v(t), v(c) ] = 0 . (C.13)

The last four terms in Eq. (C.13) can be rationalized to zero as

follows:
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G(t) H(c) cov [u(t), x(c)] = O because present noise measurement is
uncorrelated with previous condition

of state

G(t) cov [u(t), v(g)] = 0 because present noise measurement is
uncorrelated with previous condition
of state

H(o) coviv(t), x(c)] = 0 for the time g <7

coviv(t), v(@)] = 0O because past noise does not influence

present noise measurement.

Thus Eq. (C.13) becomes,
t

[[F(t) A(t,t) - A(t,t) H(t) A(t, 1) --g% (t, 1-)] cov[z(o), z('r)]dr =0 (C.14)
This is satisfied if A(t, 1) is a solution of the equation. Therefcre,

3 (¢, 1) = F(E) AL, 1) - ACE, DR AT - (€.15)

Deriving a differential equation for §(t) commences with

t
}?(t[t) = fA(t, 7) 2(t) dt . (C.16)
00
Thus,
t t
x(t|t)= EdE[A(t’ t) z(r) dr = A(t, t) z(t) + IB—A%;—Q z(tr) dr.(C.17)
0

Putting Eq. (C.15) into Eq. (C.17) gives

t

x(tlt) =A(t, £) z(t) + fmt) A(t, t) - ACt, £) H(E) A(t, 1) z(r) dr (C.18)
0 .
= [F(t) - A(t, t) H(t)] jA(t’ T)Z(T) dr + A(t’ t)z(t) (C.lg)

0
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or finally,

R(t[t) = F(t) R(E|t) + A(t, t) [z(t) - H(E) x(t|t)] ,| (C.20)

¥0<o<t

Now solve for the optimum gain, noting that A(t, t) A K(t), byusing

Eq. (C.6) again,

t
covix(t,\, z() | = Alt,, 1) cov[z(zr), z(0)] dr, ¥ 0<o <t
[(1) ] ,[ (12 7) (C.21))
Rewrite by letting t:1 = t to obtain
t
cov[x(t), y(o) + v(o)] = [A(t:, 1) covly(r) + v(r),_y(o) + v(o)ldr .
0 (C.22)

Expanding the left side of Eq. (C.22) yields
cov[x(£), y(@) + V(o) = covlx(), y(@)] + eov[x(6), v'(0)]
= cov[x(t), xT(c) HT(O')] +cov[x(t), vT(a)]
= cov[x(t), x*@)]# (o) +cov[x(t), vV @)} ©.23)

At time ¢ = t,

cov|x(t), y(t) + v(t)] = cov[x(t), xT(t)] HT(t) + cov[x(t), VT(t)] .
(C.24)

Now,

t
x(t) = &(t, 0) x(0) + [¢(t. 7) G(1) u(r) dv (C.25)
0
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therefore,
t
cov[x(t), vT(t)] = f‘b(t, 1) G(1) COV[U(T): VT(t)] v,
0

because x(0) is independent of v(t), t = 0

But,
covfut), vV (®)] = s(®) 8¢t - 1)
so that Eq. (C.26) is
covfe(e), vT(0)] = c®) s(v)
and finally the left side of Eq. (C.21) becomes
cov[f(t), zT(tﬂ - cov[f(t), xT(tﬂ HY () +G(t) S(t)
Now under the integral sign in Eq. (C.21),

cov[z () zT (c)] = ¢cov [z ), zT(t)] at o=t

Therefore,

cov [z (t) zT (o)]

cov[z('r), H(t) x(t) + V(T)T]
coviz(t), xT(t)] HT(t:) + cov [z('r), vT(t)]

(C.26)

(C.27)

(C.28)

(€.29)

(C.30)

(€.31)

= cov[z('r), xT(t)] HT(t) + cov [H(’t) x(t) + v('r),vT(t)]

= cov[z(-t), xT(t:)] HT(t) + H(T) cov [x('r), vT(t)]

+ cov [v('r), VT(t)]

= cov [z(-r), xT(t)]HT(t) + H(T) cov [x('r), vT(t)]

+ R(t) B5(t = 1).
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Putting Eqs. (C.29) and (C.30) into Eq. (C.21) gives

t

covx(e), xT(t)]HT(t) + G(t) S(t) - ‘/.A(t, o) cov[z@), xT(e)] B (e) e
0

t

t
'/ A(t, 1) H(T)[COV X(T),VT(t)]dT -/ A(t, 1) R(t) B(t-7)dr =0
0 0 (C.33)

Now,

t

[A(t, 1) H(t) cov[x(T), vT(t)] dr =0 , (C.34)
(4}

because

0 tazt

cov[x('r), vT(t)] =
G(t) S(t), t=x

Except for the infinitesimal instant when t = 7, the integral in

Eq. (C.34) is zero. Also,

t

]A(t, ) R(t) &(t - 7)dr = A(t, t) R(t) & K(t) R(t)
0

Therefore Eq. (C.33) becomes

t

cov(x(t), T (03] KT (6) + 6(6) s(e) - [A(t, ©) cov[z(n), < (&) W (&) o
0
- R(E) R(t) =0 . (€.35)
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Now appealing to mathematical formalities of continuity, differen-

tiality, etc., which are necessary to interchange the integral and

covariance operations,

cov|x(t) - ]A(t, 1) z(r)dr, % (e) [HI(E) + G(t) S(t) = R(t) R(t),

0

but from Eq. (C.16)

t

[A(t,'r) z(t) dr = x(t|t) & x(t)
0

Therefore, Eq. (C.36) becomes
A T T
cov[x(t) - x(t), x (t)]H (t) + G(t) S(t) = K(t) R(t)
or

cov[?c(t), xT(t)] HE(t) + G(t) S(t) = K(t) R(t)
Now,

cov[%(t), xT(t)] cov[%(t), X (e) + :?T(t)]

cov[';c(t), ?cT(t)] - cov[;'c(t), }?T(t)]

cov[?:(t:), ;':T(t)] AT |,

(C.36)

(€.37)

(C.38)

(C.39)

where the last covariance term is zero because the error is perpendicu-

lar to its estimate [7]. Now, putting Eq. (C.39) into Eq. (C.38),
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T.(t) HE(t) + G(t) S(t) = K(t) R(t) , (C.40)
so that the optimal gain is
K(t) = [2(:) H(t) + G(t) S(t) R(t)'l] . (C.41)
For the covariance Riccati equation it is noted
T.(t) = cov[?':(t), ?’c(t)] , (C.42)
f‘.(t) = cov[i(t), ?’:(t)] + cov[?i(t), ?'t(t)] . (C.43)
Defining .
X(t) & x(t) - x(t) (C.44)
%(e) B k(e) - X@®) (C.45)
then,
X(£) = F(£) %(t) +6(t) u(t) - F(e) () - K(®) [z(t) - B(t) %()]

F(E) x(E) + G(E) u(t) - F(£) %(t) - R()[H(E) x(t) + v(e) - H(E) R(t)

F(t) [x(t) - ?c(t)]- K(t) H(t) [x(t) - }?.(t)] +G(t) U(t) = K(t) v(t)

Thus,
2(t) = [F(t) - K(t) H(E)] X(t) + G(t) u(t) - R(t) v(t) . (C.46)
The solution to this differential equation is

t
%(t) = o(t, 0) X(0) + [(b(t, D[66) uk) - K@) v@)]dr . (€.47)
0

Next, put Eq. (C.46) and (C.48) into Eq. (C.43) noting again,
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cov [u(t), uT('r): Q(t) 5(t - 1)

h

ccv[v(t), vT('r): R(t) 5(t = 1)

covfu(®), vi@)| = s st - 1) .

To simplify the notation, drop the arguments henceforth

Y = cov[(F - KH)X + Gu - Kv, ?c] + corv[?c, (F - KH)x + Gu - Kv]

F cov[;c, %] - xu cov[x, %] + G covlu, 3] - K cov[v, %]

~ O~ ..fv ~ T 'T ~ -
+ cov[x, x]FT - cov[x, x]H"K + covBc, u}GT - cov[x, v.KT , (C.48)

$ = FY - Ky, + %GQGT - KRK - ZFT-ZHTKT+%GQGT-GSKT-KSTGT.

(€ .49)
: T
Y = F'Z..;.Z.FT - K[Z.HT+GS]T - [Z HT+<;S]KT + KRK® + GQG . c.50)

Catac it

Using Eq. (C.41) for K in Eq. (C.50),

: T =FL+TF - [TH + g R'I[HZT + sTcT] - [ZHT+ cs][[ans] w1

T
+ [ +esr? R{[‘Z H + GS] R'll + GQGT,

or

T =FY 4+ T - (Z o+ GS)R'I(ZHT + GS)T + 66T . (c.51)

C.4 SUMMARY

The results of the Kalman-Bucy paper have been extended to include
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‘the case wherein there is correlation between the input process noise
and the measurement noise. The equaticns of interest are shown' in

Table C.1.

Table C.1
SUMMARY OF KALMAN-BUCY ESTIMATOR WITH CORRELATED

INPUT-MEASUREMENT NOISE

Message model x(t) = F(t) x(t) + G(t) u(t)

Observation model z(t) = H(t) x(t) + v(t)

Apriori statistics E{u(t)} =0
Process noise

E{u(t), UT(T)} = @t - 1) |

E{v(t)} =0

Measurement noise

Rp (t - T)J

E{v(t), vTCrﬁ

eluc), V')

Ss(t - t) Correlated process
and measurement noise

Filter algorithn | x(t) = F(t) R(t) + K(t)[z(t) - H(E) 2(¢)]

et v k@) = [P # () + 60 s@)]x e
Error variance i(t) = F(t) T(t) +T(t) F(t) - k?(t) HT(t)
algorithm

. T
+ 6 s RO © 1w + o s(0)]

+ G(t) Q(t) G(t)

Initial conditions | x(0) = E{x(tO» =;1x(0)

T(0) = E{[x (to) - :?(co)] [x(to) - :?(co) T]} = 6, (0)

x(0) = x(to)
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Appendix D

COMPUTER PROGRAM LISTING AND SAMPLE OUTPUT

1 The listing is given for the five measurement, Case II, with fixed
gains. The program is written in Fortran IV using double precision
arithmetic.

The MAIN program defines the initial conditions on the states and
the constant values. It then establishes the covariance matrix Riccati
equation as well as temporary storage locations for the flow of data
when the program commences. The measurement matrix (H), is established
as a set of three row vectors to give a sequential updating. Though
not a savings in this case, it is established for future studies
wherein correlated input~-measurement noise is to be investigated. After
the measurement update sequence is completed, the updated states and
covariances are used as new initial conditions for the differential
3 equations propagated in subroutine DIFFEQ. The output is formatted for
the printout and finaily the plot routine is prepared toaccept data for

storage on tape for later graphing off line.

Subroutine DIFFEQ is the subroutine which specifies the form of
the differential equations. It computes elements of the F matrix about
the current estimate rather than about a nominal trajectory because
the latter is undefined. The random noise injected into the system

equations is also defined in this subroutine, It uses random numbers
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generated with a uniform distribution in subroutine RANDU to obtain
random numbers with a Gaussian distribution using the Box-Miiller
transformation,

Subroutine RUK is a fourth-order Runga-Kutta quaterature routine

which integrates the differential equations.

Subroutine SORT is a matrix conditioner to prepare the measurement

matrix for call into the update sequencing. Again, though it is not
necessary in this case, it is available for future studies when the
rows of H are no longer merely a single constant, unity, and a list
of zeros.

Subroutine RANDU is a random number generator. It generates
random numbers with a uniform distribution in the closed set [0, 1].

The subroutine BLOCK DATA sets up initial conditions throughout
the program prior to any computations in the algorithms. It is an
efficient way to initialize constants which are common to many
subroutines.

The computer printout shown in the last two pages of text are
representative of the data obtained. The last page is the printout
at time t = 10 seconds into the simulated flight. The page previous

to it indicates the initial conditions at time t = 0 second.
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