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1.  INTRODUCTION. 

In two previous reports ([1] and [2]) a rather detailed 

examination of some of the aspects of exponential smoothing as a 

demand forecasting tool was presented. In particular, special atten- 

tion was paid to the manner in which reorder levels are affected in a 

variety of forms using models presently employed by NavSup and 

originally generated by R. G. Brown [3]. 

In the case of a normal demand with constant mean and variance 

(high mover, low value items) the results of setting reorder levels 

using exponential smoothing were compared with chose obtained using 

classical maximum likelihood techniques. Because of the intractability 

of the probability distributions involved using exponential smoothing, 

simulation techniques had to be used for comparing these methods. 

While such methods fail to produce absolutely conclusive results, the 

overwhelming evidence favoring maximum likelihood over exponential 

smoothing in every case examined can hardly be taken lightly. The 

results really were not surprising. As previously pointed out, when- 

ever the Gauss-Markov assumptions apply, as they do in these models, 

almost any departure from maximum likelihood methods is doomed to be 

second best, at most. Yet, on the practical side, one can ask, 'How 

bad off is second best?" and, "Is there a trade-off perhaps between 

optimality and some other desirable facets such as reduced computation 

time or perhaps ease of understanding?" Again, attempts were made 

to answer thest duastions by having NavSup personnel choose the criterion 

-/- 



and then draw comparisons on that criterion. For the models studied, 

very little beyond the intuitive appeal of weighting previous demands 

with the highest weight going to the n:ost recent demand could be said 

for exponential smoothing. 

To be more specific, previous studies focused on the case where 

demand in a period is normally distributed with mean u and standard 

deviation a. From period to period, such demands are independent 

but always with this same probability distribution. If u and o 

were known, then it would be a relatively simple matter to set a 

reorder level to apply period by period in order to achieve a specified 

stockout risk. Indeed, if X represents random demand in the period 

to come and a stockout risk of p is specified, then the reorder 

level should be set at y + ka where the constant k is determined 

from the simple relationship, 

(1.1) p - P(X>y+ka) 

Since this can be inanedlately translated into 

(1.2) p = P(r^L> k) 

and    —^    is the standard or tabled normal random variable-,  it is a 
o 

X=1L 
o 

trivial task to match k with p by means of a normal table. For 

example, if p = .05, then k = 1.645, while if p = .10,  then 

k = 1.282 and so on. Obviously, choosing larger and larger values 



of k guards against being out of stock, but only at the expense 

perhaps of holding excessive stock on hand. The difference in the con 

sequences of these two standard undesirable conditions will have to 

guide one's choice of p hence k. 

The difficulty is that even if the model applies, the param- 

eters \i    and a    are rarely known. This means that they will have 

to be estimated and when these estimates are used to set the reorder 

level, there is no longer any guarantee that the specified value of 

p In (1.1) is satisfied. This is true regardless of how U and a 

are estimated and is just one of those statistical facts of life. 

The true risk that is faced thus depends upon the joint probability 

distribution of the estimators involved and may or may not depart 

significantly from the Intended risk. Or if you prefer, the actual 

costs of being out of stock will eventually be observed to depart 

from what was supposed to be the case because of the fact that the 

estimated reorder level is not the theoretical one specified by (1.1). 

This being the case, the precision with which JJ and o are 

estimated becomes an extremely important factor. And here is pre- 

cisely where exponential smoothing begins to lose contests, at least 

in the normal models that have been examined. The numerical results 

in all of those cases, coupled with some theoretical results to be 

reported presently, indicates that exponential smoothing always seems 

to be more variable than classical maximum likelihood. What is worse, 

that variance does not improve with time, is a function of the 



smoothing constant and, In that regard, can only be reduced at the 

expense of destroying the most compelling reason for employing it, 

namely, reducing the weight assigned to the most recent observation 

to zero. 

It has been brought to the writer's attention that exponential 

smoothing really was never "invented" for the constant mean model in 

the first place. Perhaps so, but it is, nevertheless, presently used 

In precisely those cases and hence must stand on its own merit under 

scrutiny, particularly when alternatives are available that appear to 

do a better job for an equal amount of effort. Of even more signi- 

ficance, however, is the fact that exponential smoothing was found to 

be second best even in one case where the mean value of the demand 

process is allowed to change In time. These results are reported in 

Section 3. 

Before turning to specific results, perhaps a remark or two 

regarding random demand would be In order. Generally speaking, if 

demand is truly random and the values of these random variables are 

used to set reorder levels, or In general estimate parameters, it Is 

inherently part of the model that the resulting values will fluctuate 

in a random fashion also. There is no way around this point and usually 

the best we can hope for is that these random fluctuations eventually 

dampen about some ideal or hope-for value. First, we usually try to 

establish that at least these resultant processes will converge to a 

target value in the mean. Thus, It Is desirable certainly to be able 
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to establish that random reorder levels will eventually converge in 

expected value to p + ka whatever y and a    happen to be.  But, 

such convergence is not enough. Unless the variance of that process 

goes to zero In time there is no assurance that the process is in any 

sense close to the required value regardless of how long the system 

may have been operating. It is this examination of variance proper- 

ties of exponential smoothing that is notably lacking in the published 

literature. In this report, such considerations are Included In a 

detailed examination of several models currently in vogue. 

2.  NOTATION AND SUMMARY PREVIOUS RESULTS. 

Perhaps it is unfair to indict exponential smoothing as being 

the fundamental problem in the models tested. In a previous report 

[2], it was pointed out that it is a combination of exponential smooth- 

ing with the use of mean absolute deviation (MAD) as a means of esti- 

mating variability that appears to create the major difficulty. To 

summarize this point and report additional results, the following 

notation is adopted. 

Let X-^X ,X ,,..,X  be a demand record through time t. We 

assume for this section that these are mutually independent normal 

random variables each with mean u and standard deviation a.    Follow- 

ing Brown [3], we let X , denote the forecast at time t - 1 of 

the demand in the t— period using exponential smoothing of the data 

to compute its value. 



^../■-^.V./f... ..l-.-p^t* '-.,.- ^ 

,: 

t;2  k f-1 
(2.1) Xt>.1 = a ^ ß" xt_i-k 

+0xo    0 < o < 1;  S-l-a 

By using this basic formula, it can be shown [1] that E[X i] " P 

for all t so that we may view (2.1) as an unbiased estimator of 

mean demand y from period to period. If we then define a forecast 

error at time t by means of the formula 

(2.2) et - Xt - X^ 

then it follows that E(e ) =0. 

However, as previously remarked, the variance of any estimator 

must also be examined. In a previous report, we established that 

(2.3) VarUt-1) = " 
+ * *^      o1 

Asymptotically then, 

(2.4) Var(X^ ..)-•■-r-2—a2 as t -•■ « 
t-1   2 - a 

Now this is a positive constant and it must be recognized then that, 

as an estimator for y, X - can never be more precise than this 

limiting variance allows. In other words, no matter how long the 

system has operated, the forecast will fluctuate about y with a 

variance whose size depends upon the unknown variance a2 as well as, 

of course, the choice of the smoothing constant a. 
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The same remarks can also be made about the forecast error e . 

Although its expected value vanishes for all t,  it too has a limiting 

variance bounded away from zero and given by the formula 

2t-l 
(2.5)    a2 = lim Var(eJ « lim 2 t 23    = ~^— a2 

e
       t^a, t t^co      2  " a 2  " a 

This result also allows us to write    a,    an unknown parameter, in terms 

of the limiting standard deviation    o      as, 

(2.6) a = /^ae 

The main reason for noting this relationship is to comply with the 

NavSup procedure for estimating a by means of estimates of a . 

These are in turn found by smoothed estimates of MAD.  In the normal 

case, which is the only one we are treating, c  is related to MAD, 

A  by means of the formula, e  ' ' 

Combining this with (2.6) yields. 

(2.8) o =  =  Ae 

Exponentially smoothed estimates of    A      are obtained by 

smoothing forecast errors.    By formula. 

(2.9) A    -a    l    ßk  |e       | 
6        k=0 t k 



If this result is substituted ad hoc into (2.8) one then obtains the 

estimate 

(2.10) o-^|z2lA 
l e 

consistent with formulas established by Brown. We are then but a 

step away from the formula for setting a reorder level using smoothed 

estimates.  First, the constant mean is estimated. After t periods 

of demand have been observed, mean demand Is estimated by means of 

the formula, 

~    t-1 . 
(2.11) w - a I    r X,. . 

k=0    C~* 

The formula Ignores initial conditions which are rendered ineffectual 

in time anyway.    Since the claims for smoothing properties are asymp- 

totic in the first place,  this represents no serious modification and 

yields at least an asymptotic unbiasedness wherein    £(;,) ■* p.    When 

this estimate    is combined with (2.10), a smoothed estimate of the 

reorder level becomes 

(2.12) R = y + k o 

where   k    is chosen to satisfy a required s cock-out risk    p    as deter- 

mined by (1.1). 

As previously noted, however, the true risk that is achieved 

by using (2.12), or indeed any formula involving only estimates of 



p    and    a,    will depend on how well those parameters are estimated. 

Of special Interest is the comparison of smoothed estimates with 

maximum likelihood methods wherein, 

A A A 

(2.13) R = y + k o 

1    r 
with ^ = 7   2,    xf      

and      a 

i«l 

being the ordinary maximum likelihood estimates of u and o. This 

point was the subject of some of the discussion in [2].  It was pointed 

out there in several ways that (2.13) was superior to (2.12) in case 

after case. Subsequent examinations by Ornek [A] and Coventry [5] 

reveal the same consistent behavior. 

While all of these results continue to be based on simulations, 

the consistency with which exponential smoothing tends to produce more 

variable results than maximum likelihood cannot be ignored. Moreover, 

there Is now some theoretical basis for this claim. Ornek has been 

able to establish an exact formula for the asymptotic variance of A 

which is of course a fundamental quantity used in the computation of 

a reorder level. The expression is complicated and is not duplicated 

here; details roay be found in [4]. For all practical purposes approxi- 

mate values with a high degree (within 10  ) of accuracy were computed 

for various choices of the smoothing constant a. A summary appears 

in Table 2.1. 
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Var(A /o2)   S.D. of a/a 

.10 .0204 .1745 

.15 .0325 .2173 

.20 .0461 .2553 

.25 .0614 .2905 

.30 .0785 .3239 

.35 .0979 .3561 

.40 .1196 .3876 

.45 .1440 .4187 

.50 .1716 .4495 

.55 .2026 .4802 

.80 .4267 .6341 

Table 2.1. Variability of A and a. 

The table amply demonstrates how asymptotic variability increases 

with the choice of a    but more importantly perhaps, no matter how long 

the system runs, the variance of a' never approaches zero and is 

bounded away by a positive quantity. This means that estimates of a, 

and hence of R, the theoretical reorder level, are doomed to fluc- 

tuate forever. Not so for maximum likelihood. It is well known that 

the variance of a goes to zero with increasing t (as does the 

variance of JJ of course) so that eventually, R and R coincide 

for all practical purposes. Put another way, the intended risk p 

and the actual risk attained will be the same, whereas the same state- 

ment simply cannot be made about R. 
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All of this merely supports what was already observed la 

simulation results.  Extending those results already established in 

the pilot study of [2], simulations were run for various parameter 

pairs and the risk levels coinpared at the 1,000  observation. For 

each of several such parameter pairs, five risk levels were chosen. 

Then actual risks fT for smoothed estimates were compared with actual 

risks p using maximum likelihood techniques.  These results are 

reported in Table 2.2 and they pretty well speak for themselves» The 

attained risks, as measured by p, are consistently nearer the target 

value p than are those determined by p*. What this means is that 

even after the system has operated for a long, long time» with initial 

conditions and other factors stabilized, the actual risk attained 

when reorder levels are set using (2.12) may in any period be signi- 

ficantly different from the value that presumably was being attained 

by the choice of k. 

Another way to view the greater variability involved when 

smoothing is used to set reorder levels over a long period of time 

was devised by Coventry. For this experiment parameter values, of 

M ■ 100 and a - 10 were chosen. Using a risk level of .05» the 

theoretical reorder level would be 116.45. Demands were generated 

for 1,000 periods and the reorder level using R and S* was checked 

at the 1000  period. This experiment was then replicated 100 times 

and the various values of R and HT were checked and plotted against 

the theoretical reorder level. The results are displayed in Figure 2.1 
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and once again the strikingly larger variability in R" may be noted. 

One way to view these results is as follows. Think of 100 supply 

centers all operating under the same reorder rules for a given item. 

After 1,000 periods (far in excess of the number of periods for which 

records are typically kept) the graph may be viewed as showing the 

actual reorder levels that would be set at the various centers, first, 

all using R and, secondly, all using fT. Again the results speak 

for themselves. 

3.  LINEAR MEAN MODEL. 

As previously remarked, it may be unfair to indict exponential 

smoothing on the basis of a constant mean model since it appears to 

be designed more for models which are more time-dependent.  Indeed, 

at the very heart of smooching techniques is the idea that the most 

recent demands are more indicative of the true demand pattern than 

are the earlier ones. For a constant mean demand of course, that is 

not true and all demands reflect the true pattern equally well. But 

even when the mean Is changing in time, this idea of weighting the 

most recent demand heavily must not be carried too far. For determin- 

istic demands there can be little argument, but when demands are truly 

random, sudden increases or decreases in demand are to be expected 

even with a stable mean and there is a question of just how much 

weight should be assigned these random fluctuations. In any event 

the system can be studied to see what such effects are. 
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Perhaps the simplest time-dependent model that can be Investigated 

Is the case where demand Is random with linear mean but a constant 

variance. This Is the familiar linear regression model and with 

normality further assumed leads to standard maximum likelihood esti- 

mates of the parameters Involved and once again presents itself as an 

alternative to exponential smoothing. To be more specific, suppose 

demand In period t is given by 

(3.1)      X = a + bt + £  where 5  is N(0,o2) 

Again Brown [3]  recommends forecasting demands by means of exponentially 

smoothed estimates.    This time,  since two parameters are Involved, a 

combination of single and double smoothing is required.    More specifi- 

cally. Brown advocates estimates 

(3.2) xt = 2 St(x)  - S2(x) 

^ = 1 [St(x)  " St(x)] 

Since    u  ...  = a + b(t+l)  = M    + b,    it follows that    JT   + F   is a 
t+i t t 

reasonable way of estimating    v  . i •    In these formulas,    S  (x)    stands 

for single smoothing applied to the demand record    X_,X.. »X-,.. .,X 

t ,k S(x) » a   ][    ß   X. .;     ß = l-a 
t k=0 t_K 

s2(x) on the other hand represents smoothing applied to the sequence 

S0(x),S1(x),S2(x) St(x) so that 
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£  k S2(X) = a I    f St Ax) 
c    k=o  *'*■ 

It should be noted that x  Is not an estimate of a but 

rather of a + bt. With b given however, one can estimate a by 

the formula 

(3.3) a - xt -St 

The reason for this observation is that usually in regression models 

of this type, estimates of the separate parameters are given.    Indeed, 

in this notation,  the maximum likelihood estimators of    a    and    b    are 

given by, 

t 
I (k-k)(X.-X) t 

(3.4) b=_  . ^ — ^    1=_ 

I  (k-k)2 i=0 

k=0 

a = X - bit 

There are standard formulas that may be found in almost any standard 

textbook on the subject. In these terms, an estimate of u ,. = 

a + b(t+l) would be given by a + b(t+l) = a + bt + b. 

This leaves the unknown parameter a to estimate.  In the 

theory of maximum likelihood, this estimate is easily derived and is 

given by considering average squared deviations about the fitted 

regression line. We thus have. 
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(3.5) '"/all ^r l (va-bk)' 

Not surprisingly (In terms of Section 2) the parameter a Is estimated 

In exponential smoothing by looking at weighted absolute deviations 

about the fitted line. Thus we first let 

et " Xt " *t-l * 

be the difference between what was observed and what was forecast and 

then define 

t-1 

1 k=0     t: ^ 

With normality assumed we may then use 

~      /Tr(2-a)  r 
^-z       At 

as before to estimate a. 

Once we have estimates of the various parameters of course we 

may use these to set reorder levels once again. In the spirit of the 

preceding section, two methods will be compared again. First, maximum 

likelihood estimates are used in each period to define 

(3.6) R » a + b(t-KL) + k a 

This would be the reorder level set at time t based on the fact that 

the "best" estimate of the next demand would be a + b(t+l)  the 
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estimate of the mean    W,..-, •    It exponential smoothing is employed, 

then the reorder level would be set at 

(3.7) R=xt+b+ka 

based on the same kind of reasoning. 

How do these two methods compare? Again, we were forced to 

resort to simulation for reasons that are even more pronounced in 

this case. Generally speaking, and not too surprising perhaps, the 

two methods compared quite favorably with each other when attained 

risks were examined. The variability in the smoothing technique was 

not nearly so noticeable as it was in the constant mean case. Never- 

theless, it was still present and never was reduced to an extent 

where it could be labeled superior to maximum likelihood in any of 

the cases examined. 

First of all, many different cases (choices of a, b and o) 

were examined by Coventry. For each parameter choice, estimates of 

the parameters were calculated by both methods after 100 periods of 

demand generated to satisfy the model of (3.1). The experiment was 

then replicated 100 times and results were then averaged over these 

cases, it was noted that the results appeared to be independent of 

parameter choices and so attention was focused on Just a few special 

cases. 

Typical of the results are those shown in Table 3.1 for the 

choice a = 50, b = 2 and a = 5. The attained risks are displayed 
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for various periods and for this case averaged over 1,000 replications 

of the experiment. While the attained risks,  p" using smoothing and 

p using maximum likelihood, are both reasonable close to the theoret- 

ical risk p,  it should be noted once again that fT does tend to be 

more variable with no consistent pattern of change. In nearly every 

case p does exceed p however and that in itself is noteworthy. 

Number of Periods 

m 10 20 50 100 

p P P P P P P P         P 

0.01 .036 .007 .027 .014 .024 .011 .029    .008 

0.05 .103 .045 .070 .045 .078 .049 .068    .053 

0.10 .155 .092 .124 .098 .137 .103 .114    .110 

0.25 .306 .233 .264 .256 .274 .249 .249    .256 

0.50 .516 .482 .519 .521 .526 .510 .517    .505 

Table 3.1. Attained Risks Compared to Theoretical Risk 

With these results and the many other cases examined, it is now 

reasonably safe to conclude that exponential smoothing is not a superior 

estimating technique for normal demands whether constant or linear in 

time. At least this is so when stock-out risk is the major criterion 

(as it often is) and when the methods presently employed by NavSup as 

advocated by Brown for setting reorder levels are compared to classical 

techniques.  Indeed, depending on the consequences of facing an attained 

risk that is not the intended one, this method may be inferior to 

ordinary maximum likelihood techniques.  This just about leaves computing 
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ease as the only criterion offered by smoothing advocates of any merit. 

But we found no  evidence In any of our tests that smoothing resulted 

in any significant savings in computer time either. In most cases, 

the difference, if measurable, was negligible. 

4. A BAYES PROCEDURE. 

In actual practice it was found that neither the constant 

mean model nor that of the linear mean adequately reflects the true 

nature of demand even when the assumption of normality is acceptable. 

The model that comes closest to reflecting what most people involved 

really believe in (at least for some items) is that demand is normal 

with constant mean for a time, perhaps several periods, and then 

shifts to a new mean level which again remains constant for a time. 

For example, in times of conflict there may be a sudden increase in 

demand for an item and that demand has a mean value that remains 

fairly constant for the duration. But, as hostilities cease, the 

mean demand drops to a lower level and remains there while the circum- 

stances remain stable. Then neither of the preceding models apply 

exactly although, subject to the general remarks previously made, 

exponential smoothing should be a good candidate for such a model. 

The reason is the often quoted property of responding to changes in 

demand more quickly than classical methods. 

There is yet another technique which would seem quite appro- 

priate for a model of this type and that is to apply Bayesian methods 
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sequentially to predict or forecast demand. The basic idea is to use 

posterior information in each period as prior information for the next 

period. Starting with some initial subjective judgment as to the 

parameters involved in the model, one can then proceed to use the 

information in each period to update one's guess as to the parameters 

to come and forecast accordingly. After all, if parameters such as 

mean demand are truly changing, possibly from period to period, then 

this basic Bayesian approach is tailored to fit precisely that kind 

of situation. 

To be more specific, let us suppose that demand is still normally 

distributed but the mean is changing possibly from period to period. 

Initially, we also assume that the variance o2    in the initial period 

is known. In each period we will set a reorder level at a value 

y* + k a* where ]i*    and a* are estimates of y and o for that 

period with k selected again in order to achieve some nominal risk 

p. To put these assumptions into the Bayesian framework, we initially 

assume that the conditional distribution of demand X given a value 

of the mean \i    is normal with that mean and a known variance of a2. 

As to the mean y, we suppose that the prior distribution on \i    is 

normal with some mean ii» and variance a2. With this kind of normal 

on normal assumption, it is easy to show (see [6] for example) that 

the posterior distribution for y, given an observed demand x., is 

again normal with mean y. and variance o2 given by, 
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Vl + a\ 

(4.1) 

a 
Ooo2 

2  -       0 

2 4.  «2 1      a^ + a 

As a bonus, if we take loss to be squared error,  then the mean 

\i.    of this posterior distribution is the Bayes estimator, meaning 

that it minimize the Bayes risk for the problem.     (See  [6] again for 

details.)     As such,     y1     and    a      are the best estimates—best from 

a Bayesian point of view—of the parameters that exist in nature at 

that point,  namely,  after one observation.    Consequently, a logical 

Bayesian reorder level would be set at    p.. + k o..     and the correspond- 

ing stock-out risk    p1   = P(X>M1+ko )    may or may not be the target 

value    p    depending on whether or not the mean and standard deviation 

of demand in the second period are or are not    \i.     and    a.,    respectively. 

Before proceeding to the next period it might pay to pause and 

analyze the significance of the estimates in (4.1).    Re-writing    y. 

as 

fa° ^ x1 + f o2    1 [afro* Wfr2. Ul =   ^7 xl +   ^7 Mo 

we see that the updated estimate of the mean based on the first observed 

demand    x..     is just a weighted average of    x..    and    iJn,     the initial 

estimate of the mean.     In this way,  the weight attached to the observa- 

tion    x1     is like a smoothing constant and may be used to reflect one 's 
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desires or beliefs In the Initial states. By choosing a^ small, 

very little (relatively) weight Is attached to x. compared to y^. 

This is as it should be for if a? is small, then the prior distri- 

bution is concentrated heavily about its mean u*    and reflects a high 

degree of credence in that initial choice \i-..    On the other hand, if 

one's Initial belief in vi0 Is somewhat weak, this can be reflected 

by making  a? relatively large, whence more relative weight is 

attached to what is actually observed in x.. . 

Fortunately, this same basic scheme continues from period to 

period as follows. By taking the prior for the mean in period 2 to 

be the posterior from period one, the posterior distribution for 

period 2, based on observing x„,  the actual demand during that period, 

is again normal with mean IJ_ and variance o^ given by the formulas, 

gg(xl+x2) + a\ 2    
o0 g2 M2 2a§ + a*    '  a2 = 2aJ + a^ 

Proceeding by Induction in this manner, it is easy to show that the 

posterior distribution at the end of the poriod t based on having 

observed x ,x„ x  is once again normal with mean u  and 

variance o^ given by 

t 
O0 * xk + a\ k=l 

(4.2) 

Mt tag + a^ 

\     tai + a2 
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As previously remarked, the reorder level for this period is then set 

at y + k a . 

Once again it may be seen that the Bayes estimate of mean 

demand, as given by the mean of the posterior distribution,  is a 
t 

weighted sum.    This time the total observed demand      I    x.     is weighted 
k=l    "*• 

against the initial estimate    y0.    It is significant to note, moreover, 

that    lim o^ = 0    so that,  as time goes on,   this posterior distribution 
t-KO 

is becoming degenerate at u . Consequently, as a prediction of mean 

demand, the chosen value is subject to less and less fluctuation as 

time goes on. 

So much for theory. To determine just how much the estimate 

of mean demand is affected by various combinations of y« and a^ 

and to see how it compares with exponential smoothing, a pilot study 

using simulation was conducted. No attempt was made at this point to 

examine the behavior for the case of a shifting mean. Rather this 

study was confined to testing the procedure for internal consistency. 

For the case of a constant mean value of y = 100 and a choice of 

a = 10, random demand was generated for 100 periods. The Bayes 

estimate was then computed for various a priori combinations of y ■ 

0,y,y/2,y/3,y/4,y/5 and o* = 02,a2/2,a2/3,a2/4,a2/5,2a2,3a2,4a2,5o2. 

The results are displayed in Table 4.1 the entries being the 

Bayes estimates or posterior means after 5 and 100 periods of observa- 

tion. Obviously, the closer that y.. is to the true value of y 

(100 in this case) the better the resulting estimate is. For large 
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values of the ratio a?/a2, It should be noted that the convergence 

to 100 Is fairly rapid even for poor Initial guesses. For example, 

with M0 = 0 but a* = 5o2, p_ - 96.6 even after only 5 periods of 

observation. 

Having thus tested the Bayes technique for Internal stability, 

simulations were further used to compare the technique with exponen- 

tial smoothing. For this comparison, mean demand was estimated by 

smoothing techniques using the formula, 

t ,k 7= S (x) = a I    r X 
C      k=0    ,: K 

allowing for Initial conditions S..(x) other than zero. Once again 

parameter choices y ■ 100 and a = 10 were adopted. As a first 

comparison, the least favorable initial conditions, y« ■ 0 and 

Sn(x) ■ 0, were selected. Estimates of mean demand over various 

periods were then made for a variety of choices of the weighting 

factor  a£ and the smoothing constant a. The results are reported 

in Table 4.2 where it may be seen that Bayes estimates are typically 

better than those given by exponential smoothing when roughly the 

same relative weight Is attached to the observations. Thus, small 

values of a^ should be compared with small values of a. If we take 

a = 0.2 as presently used by NavSup as a guide, then almost any choice 

of a2 will do better in the early stages and about as well in later 

periods. 
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W » 100 

o »    10 S0(x) - 0 
Number of Periods 

Estimator 1   Parameter 
Values 5 10 15 50 100 

,    °2o'°2 83.7 91.0 93.7 97.9 99.1 

1 2o2 91.3 95.4 96.8 98.8 99.5 

|       BAYES 3a2 94.1 96.9 97.8 99.2 99.7 

4o2 95.6 97.7 98.3 99.3 99.8 

5o2 96.6 98.2 98.7 99.4 99.8 

a = 0.1 41.1 65.1 79.3 99.2 100.4 

0.2 67.3 89.1 96.4 99.8 100.6 

SMOOTHING 0.3 83.2 96.9 99.5 99.9 100.8 

0.4 92.1 99.0 100.0 99.9 100.9   j 

0.5 96.5 99.5 100.3 99.9 100.9 

Table 4.2.    Estimates of    w = 100 
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To assess the effect of initial conditions or risk, the same 

basic model was used to generate demands for 100 periods. Reorder 

levels were then set on the basis of a k-value to achieve a theoretical 

risk of p = .05 using both techniques and the actual attained risk 

was then recorded. The experiment was then replicated 1,000 times 

and the attained risks averaged over these replications. The results 

are reported In Table 4.3 for the worst initial conditions un = 0 = Sn(x) 

and in Table 4.4 for the best initial conditions u0 ■ 100 - S0(x) . 

The results are quite remarkable. Except for a few cases the 

Bayes method provides a sample risk closer to the theoretical one than 

does exponential smoothing even for poor Initial conditions. In both 

cases, when a small value of a    Is chosen the long term results are 

fairly accurate, but the results in the early periods are far from 

satisfactory. For large values of a    the results in the early periods 

are better but only at the expense of weaker results in later periods. 

By comparison, the Bayes technique produces about the same results 

in any case. For large weighting constants (a^ ■ 5a2),  the Bayes 

method adjusts quite rapidly and the long term results are all fairly 

accurate. 

Of course, all of these results are average values, averaged 

over the replications. How badly they vary from one replication to 

another is important also. To check on variability, the sample 

standard deviations of the estimates of \i    for the 1,000 replications 

were computed. Those values are reported in Table 4.5 for the case 
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V  = 100 Uo-o 
Number of Periods 

a = 10 S0(x) - 0 

Estimator 
Parameter 
Values 

5 10 15 50 100 

a* -a* .634 .294 .187 .079 .071 

2az 
.310 .159 .107 .068 .062 

BAYES 3(T2 .211 .128 .090 .066 .061 

4a2 .168 .109 .084 .065 .061 

5a2 
.146 .097 .080 .065 .060 

a  = 0.1 1.000 .992 .737 .067 .063 

0.2 .995 .390 .145 .061 .069 

SMOOTHING 0.3 .761 .137 .080 .070 .079 

0.4 .365 .088 .080 .076 .083 

0.5 .187 .084 .083 .084 .091 

Table 4.3. Sample Risks with Worst Initial Conditions 
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U - 100 

1  a - 10 

U0 - 100 

S0(x) - 100 
Number of Periods 

I Estimator 
Parameter 
Values 

5 10 15 50 100 

'a»'2 .066 .056 .057 .057 .055 

2o2 .069 .057 .058 .057 .055 

BAYES 3a2 .072 .058 .058 .057 .055 | 

4a2 .073 .059 .058 .057 .055 

5a2 .074 .059 .058 .057 .055 | 

a - 0.1 .060 .051 .057 .057 .063 

0.2 .059 .061 .061 .061 .069 

SMOOTHING 0.3 .066 .073 .069 .070 .079 

0.4 .073 .077 .079 .076 .083 | 

0.5 .082 .082 .083 .084 .091 

Table 4.4. Sample Risks with Best Initial Conditions 
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V  » 100 

a - 10 

U0 - 100 

S0(x) - 100 
Number of Periods 

Estimator Parameter 
Values 

5 10 15 50 100 

o*.^ 3.95 3.26 2.84 1.95 1.69 | 

2a2 4.25 3.40 2.94 1.97 1.72 

BAYES 3o2 4.36 3.41 2.94 1.96 1.73 

4a2 4.46 3.47 2.95 1.95 1.72 

5o2 4.48 3.48 2.97 1.95 1.72 

a = 0.1 2.31 2.64 2.68 2.61 2.73 

0.2 3.41 3.68 3.63 3.60 3.65 

SMOOTHING 0.3 4.30 4.51 4.40 4.49 4.44 

0.4 5.10 5.27 5.17 5.30 5.16 

0.5 5.96 6.03 5.90 6.06 5.88 

Table 4.5. Sample Standard Deviations 
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ViQ - 100 - S0(x).  It may be seen that for early periods and small 

choices of a, the smoothing method Is less variable. But, as more 

and more periods are taken, the Bayes method produces less variable 

results, Indeed the standard deviation consistently decreases with 

time. On the other hand, smoothing yields results that appear to 

have about the same variance regardless of how many periods are 

observed, a phenomenon that has been noted before. The sample stand- 

ard deviations for the case p_ ■ 0 = Sn(x) were surprisingly about 

the same as the most favorable case and are not presented here. 

5.  CONCLUDING REMARKS 

Regardless of what else might be said about exponential smooth- 

ing as a forecasting tool, it now seems reasonably safe to say that 

the results tend to be more variable than some other alternative 

methods that are available. This same basic theme keeps recurring in 

model after model and case after case. Claims in this regard have 

repeatedly been made with due caution throughout this and earlier studies 

due to the simulation techniques employed. Yet the consistency of 

recurrence, coupled with the large sample sizes used, cannot be safely 

ignored. In some Isolated cases, we have supplied a theoretical basis 

for the observations. 

It is practically never the case that exponential smoothing 

dominates the alternatives studied regardless of the criterion used 

for comparison. One of the outgrowths of this study is to highlight 



r 

33 

the Importance of variance whenever random demand Is faced.    It is 

a quantity that must be reckoned with, for It Is of little comfort to 

the Individual Inventory manager to know that his technique does well 

on the average unless some Idea of the variability Is also known. 

Of the alternatives studied,  the Bayes method of Section 4 

seems admirably suited to a model where mean demand Is constant In a 

given period but subject to change from period to period.    The method 

supplies a natural and appealing method of  Incorporating Information 

on a prior basis to update estimates sequentially as Information is 

gathered.    More needs to be done with the method, however, before it 

can be endorsed over other alternatives.    This would be the basic 

recommendation of this study, which should be viewed only as an 

Initial pilot study of this technique.    Another recommendation would 

be to urge all users of exponential smoothing to give serious consid- 

eration to testing other alternatives in the particular context of 

their special application.    Special attention should be paid to at 

least replacing MAD as a method of estimating variance.    This much 

change alone may produce less variable results and thereby make a 

stronger case for exponential smoothing. 
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