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1. INT".ODUCTION

Ford and Fulkerson (1956) observed that an easy way to find the
value of tﬁe maximal possible flow through an undirected source-sink
planar network* is to construct the dual graph, assign the capacities
cf the intersected primal arcs as lengths of the undirected arcs in
the dual, and then find the shortest route through the dual. The
length of this shortest route will be equal to the value of the mini-
mum cuf set of the primal network and hence is equal to the value of
the maximal flow because of the min-cut max-flow theorem.

Extension of this idea to directed networks began with de
Ghellinck (1961). He developed a convention for constructing a dual
of a directed source-sink planar network but was not concerned with
arc lengths. 1In a paper written 1n 1969, Doulliez and Rao (1971)
provide the dual construction and the arc length conventions for
directed capacitated flow networks when zero lower bounds ;xist on
arc flows. This convention was apparently the result of conversations
with de Ghellinck.

Because of a need for dual graphs of directed network in studies
of network interdiction models, the author (1970) independently devel-

oped tt:: same convention as Doulliez and Rao but went one step further

and provided a convention for handling problems where the lower bound

on arc flow could take any negative value or any positive value not

excceding the upper bound capacity. This paper also observed that for

*

Fo:d and Fulkerson (1956) defined source-sink planar networks as planar
networks which remain planar after an arc connecting the source and sink
is added to the network.




flow networks having positive lower bounds on arc flows, an infeasible
primal problem is indicated by a cycle of negative length in the dual
network. In a later paper (1971) the author proved that a cycle of
negative length was a necessary and sufficient condition for infeasi-
bility. In addition, a proof was provided that the value of the minimal
feasible flow could be obtained by changing the sign on the arc length
of the dual and finding the longest route from thz destination back

to the origin,

During 1970, M. F. Sakarovitch was also working on these same
pgoblems. His research (1970) was motivated by some conversations
with de Ghellinck. He also proved that a cycle of negative length was
a necessary and sufficient condition for infeasibility. In addition,
he proved that an optimal flow in a primal arc of a maximal flow net-
work is equal to the difference between the dual shortest distances
from the origin to the two nodes at opposite ends of the dual arcs
intersecting the primal arc. This important prcperty will play a
major role in the algorithm to be presented below for non-planar
directed networks.

All of the work just summarized 1is restricted to those networks
which are source-sink planar. The main purpose of this paper is to
extend these ideas to general flow networks.

In the sections to follow, we will first review the "state of
the art" for source-sink planar directed network flow problems. We
will then turn to the problem of non-planar networks. A pseudo dual
will b: defined and tha special form of the dual shortest route problem

will be stated. The details of the algorithm for solving this problem




will then be presented followed by an example, and the proofs which
validate the algorithm. The final section presents a brief discussion

of the usefulness of the algorithm.
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2. MAXIMAL FLOW IN A PLANAR NETWORK

ainahior i skt

} The original flow network will be called the primal network.
A mesh of a planar primal network is any region surrounded by nodes
and arcs but containing neither in the plane on which the network is ?
constructed. The region of the plane completely surrounding the

primal network will be called the external mesh.

The construction of the dual of a source-sink planar directed

s &

et

network consists of the following steps (McMasters (1970)):
1. Connect an artificial arc between the sink and source
of the primal and position it below the network such that it i
crosses no other arcs. The resulting network will te referred
to as the modified primal network.
2. Place a node in each mesh of the modified primal in-
cluding the external mesh. Let the origin of the dual be the

node in the mesh involving the artificial arc and the destina-

tion be the node in the external mesh.

3. For each arc in the primal (except the artificial arc)
construct two oppositely directed arcs that intersects it and
join with nodes in the meshes adjacent to it.

4. Assign the value of the upper bound capacity of the
primal arc as the length of the intersecting dual arc having
the same direction that the primal arc would have if it were
rotated 90 degrees counterclockwise. Assign to the oppositely
directed dual arc a length equal to the negative of the lower

bound capacity of the primal arc.

J
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The convention described in step 4 is 1llustrated in Figure 1

where the arc (i,j) 1s the primal arc having its flow xij constrained

between two values Lij and Mij such that Lij < Xij < Mij' The

adjacent dual nodes are u and v. Arc (u,v) 1s assigned a length

equal to Mij while arc (v,u) 1s assigned a length equal to -Lij'

We assume Mij 2 0 but place no restriction on L

cannot exceed Mij'

13 except that it

’uv=Mij

0, O

dyu=-Lij

Figure 1.

Figure 2a is an example of a flow network having node 1 as its source
and node 4 as its sink. The numbers on each are represented Lij’

Mij' Figure 2b shows the initial phase of the construction of the
dual. The dual nodes are designated as A, B, C and D. Each
dashed arc corresponds to the location of each pair of dual arcs. Fig-
ure 2¢ 1s the completed dual with its associated arc lengths.

Ford and Fulkerson (1962) defined the generalized value of a

primal cut set when lower bounds are positive by equation (1) where

Lt e Al i e N i
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Figure 2a. Figure 2b.

Figure 2c.

the set S contains the primal source node and the set S contains

the primal sink node. :

v(s,5) = ¥ M. = I_L, (1

tes 13 qe5 M
jes JesS
They then extended the min-cut max-flow theorem to include

this definition of the value of a cut set; namely, if a feasible flow

can be found for a network with nonnegative lower bounds on arc flows
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then the maximal possible flow through the network is equal to the

minimal generalized value of all possible cut sets of the (s,S) type.

,g Later Fulkerson (1962) dropped the restriction that the lower bound

be nonnegative.
The relationship between the convention of Figure 1 and the
generalized value of a primal cut set is described by the following i

theorem:

Theorem 1: Any dual chain without cycles directed from ;
the dual source to the dual sink has a Length equal to A

Lire generalized value of the primal cut set intersected

by the ancs of the chain.

Proof: Each path without circuits through the dual of a source-
I sink planar undirected graph intersects a cut set of the vrimal network
such that the primal source and sink are separated by the cut and
there is a separate path corresponding to each cut (Ford and Fulkerson
(1956), Whitney (1933)). This is still true if the primal and dual
arcs are replaced by directed arcs. Further, because th:o dual graph ﬁ
under the Figure 1 convention has two oppositely directed arcs between

every pair of nodes in adjacent primal meshes it is also true that a

separate chain exists directed from the dual source to the dual sink

corresponding to each primal cut.

Suppose we select an arbitrary cut set of the primal network

such that the source is in a set S and the sink is in set S. Any

such cut set can be illustrated as shown in Figure 3 for planar graphs.




Notice that this set contains both arcs directed from S to S and

from S to S. Let the chain directed from the dual source to the

dual sink which intersects the cut set arcs be a~b ~-c-4d ~e - f.

p DUAL SINK

@ DUAL SOURCE

Figure 3.

Using the convention of Figure 1 we assign a length of -Lt
to dual arc (a,b) which crosses primal arc t, a length of MS to
arc (b,c) which crosses arc s, a length of Mr to arc (c,d),

a length of -Lq to arc (d,e), and a length of Mp to arc (e,f).

The chain directed from a to f would therefore have a length of
M +M +M -L -1
s r P t q

which we see immediately corresponds to the form of the right-hand
side of (1) for this arbitrary cut set (the arcs p, r and s have
ieS and js§ while arcs q and t have ieS and jeS). Because
our cut was arbitrary we realize that if we analyze any cut set of the

(S,§) type in this manner we will get the length for its dual chain

R —




being described by this general form. Therefore, each chain without
cycles from the dual source to the dual sink will have a length equal
to the geuneralized value of the primal cut set it intersects.

As a consequence of Theorem 1 and the generalization of the

min-cut max-flow theorem we get the following corollary:

Conollany 1: The value of maximal fLow in a feasible
directed sounce-sink planar network 4is equal to the
Length of the shontest noute through the dual network.

Recalling Figur: 2a we know that the value of the primal cut

set consisting of ares (1,2), (2,3), and (3,4) is

M12+M34—L23=5+3-1=7. (2)

The route through the dual network which corresponds to this cut set

is the chain [(A,C),(C,B),(B,D)] which has a length given exactly

by equation (2). This chain happens to be a minimum route of Figure

2¢ so that the maximum possible flow through the primal network is,

in fact, 7 units. As we will show below, the fact that we found a

shortest route of finite length means that the primal problem is feasible.
The extension of the min-cut max-flow theorem involving the use

of the generalized value of a cut set as given by (1) is contingent

on the existence of a feasible flow. Feasibility requires that a set

of arc flows can be found which satisfy the flow conservation equations

at each node as well as the upper and lower bounds on individual arc

flows. When the lower bound is nonpositive then we know that a flow
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problem will always be feasible since Xij = 0 1is a feasible solution

under the Mij > 0 assumption. If, however, the lower bounds on some
arcs are positive then we cannot claim such problems will be aiways
feasible. An example of an infeasible problem can be obtained by

changing the lower bound on arc (1,3) 1in Figure 2a to a value of

3.

The answer to the feasibility question is provided by Theorem 2.

ot e A,

Theornem 2: A necessary and Aufficient condition gon an
infeasible {Low problem associated with a directed
sounce-sink planar network 44 that a cycle of negative
Length exists in the dual network.

The proof of Theorem 2 depends upon the circulation theorem of
Hoffman (1960) which is addressed to networks having a sourceless-
sinkless structure. Such a network is easily created from any flow
network by connecting a directed arc from the sink to the source and

specifying the appropriate upper and lower bounds on its arc flow.

The circulation theorem states that a network flow problem will

be feasible if and only if

) M. =2 § L. (3)
gy Hoogef M
jeY jeY

for all cut sets (Y,Y) of the network after it has been converted

to the sourceless-sinkless form.
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Suppose we define the value of the cut set (Y,Y) as
viY,Y) = § M - ] L,,. (4)
ieY 1] ieY 1]
jeY jey

If we do this then the feasibility condition given by (3) is equiva-

lent to V(Y,Y) > 0 and infeasibility corresponds to some V(Y,Y) < O.
An interesting correspondence between dual cycles and V(Y,Y)

is described by Theorem 3. We will prove this theorem before proving

Theorem 2 since it will be useful in the proof of the latter.

Theonem 3: There 44 a separate dual cycle intersecting
ancs of each puimal cut set (Y,Y). This cycle has a
Length equal to V(Y,Y).

Proof: Any circuit in the dual corresponds to a cut set (Y,Y)
of the primal (Whitney (1933)). Because of our convention of having
two oppositely directed dual arcs intersect each primal arc we know
that two cycles exist (oppositely directed) in the dual corresponding
to each cut set of the (Y,Y) type in the primal. Suppose the set
Y is circumscribed by these dual cycles. The convention of Figure 1
will then result in the cycle directed clockwise having a length
corresponding to V(Y,Y). If Y 1is the set circumscribed by the
cycles then the counterclockwise cycle has a length V(Y,Y).

Figure 4 is an example of an arbitrary cut set of the (Y,Y)
type with its associated dual cycles. Primal arcs e, f, h and j

are directed from Y to Y; arcs g, 1, k and & are directed

from Y to Y. The convention of Figure 1 will result in the cycle

p-q-r-s-t-u-v-w-p having a length of
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M +M, +M +M -L -L_.~-L -
g TH *M +M -L -1 -1 -L,

which is the right hand side of (4).

k
[T
Figure 4.

We will now prove Theorem 2. Suppose that the primal problem
is infeasible. From the circulation theorem we know that there will

be some cut set (Y,?) of the sourceless-sinkless primal which has

z M,, < X_ L,.. (5)
ieY 13 ieY 1
jeY jey

We can rewrite (5) in the following form:

] M, - )_L. <O. (6)
tey 3 g7 B
jeY jex

From (4) we know that the left-hand side of (6) is the value of the
cut set (Y,?). It is also the length of a cycle in the dual because
of Theorem 3. Therefore, an infeasible primal problem results in a

cycle of nezative length in the dual.
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fo show sufficiency, we consider a cycle of negative length in
the dual. Let its length be represented by D. Because of Theorem 3,
p=§ M, -7 L. o=vQED),
fey g7 U
jeY jeY
and D being negative means that the value of some cut set (Y,Y) in

the primal is negative. For a cut set (Y,?) to have a negative value

(5) must be satisfied and the primal will be infeasible.
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3. MINIMAL FLOW IN A PLANAR NETWORK

It is sometimes useful to also know the minimal feasible flow
for a network having positive lower bounds on arc flows. The following

theorem provides an easy way of deiermining such a flow.

Theorem 4: 14§ the anc Lengths of the dual of a geasible
primal glow netwonk have thein signs nreversed then the
Longest chain directed f§iom the dual destination back

to the dual sounce will have a Length equal to the value
of the minimum feasible fLow through the network.

The proof of this theorem is based on the min-flow equivalent

of the max-flow min-cut theorem (Ford and Fulkerson (1962)); that is,

min Q = max z L,, - z_ M, , (7
ieS 4 ieS 13
jes$ je$s

where Q represents the total flow leaving the network.

The combination of our convention of allocating dual arc lengths
and the sign reversal just described will cause each chain from the
destination back to the origin in the dual nefwork to have a length

equal to

Y L. - 1 M.
tes 3 g5 1
jes jes
The proof of this property parallels that of Theorem 1. Therefore,
we get the right-hand side of (7) when we find the longest chain back

through the dual.
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i 4. OPTIMAL ARC FLOWS IN PLANAR NETWORKS

\
§ The final aspect of the source-sink planar network analysis is
the determination of the optimal arcs flows of the primal network.
These flows are available from the solution to the dual network shortest
route or longest route problem depending on whether we want maximal or
minimal flow through the network.

Consider the maximal flow problem. Let A be the set of all
dual arcs associated with a given primal flow network. Then the dual

network shortest route problem can be stated as follows:

minimize ] }, Ry5 Ugyo

-1 (1=1),
N :
subject to jZl [uji - Uij] ={ 0 (i=2,3,...,N-1), (8)
+1 (1 = N),
and Uij 20 ((1,3)eA).
If we think of U,, and 2 as representing respectively a

1j 1)

flow and a unit flow cost through a dual arc (i,j) then we realize
that (8) corresponds to a minimal cost network flow problem for a
total flow out of one unit. The optimal solution will yield a chain
flow of one unit over the cheapest route from the origin to the desti-
nation of the dual network. This route obviously corresponds to the
shortest route through the dual network. The dual linear programming

problem associated with (8) can be written as
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maximize V., -V

9)
subject to V, -V, <2 ((1,1)zA).

If we apply any of the current algorithms (see Dreyfus (1969))

for determining the shortest routes from node 1 to every other node

we will obtain a number fi associlated with the length of the shortest

route from node 1 tc node 1i. If we let V1 = fi then we will have

an optimal solution to (9).

The relationship between the Vi values and the optimal arc

flows in the originai primal network is described by Theorem 5 (Sakaro-

vitch (1970)).

Theorem 5: Consider a primak ance (a,B) directed grom

node o Lo node B which has a §Low X, Let the

8
intersecting dual ancs be (1,j) and (j,1) with the

Length of (1,j) bedng M and the Length of (j,1)

B
being Log’ 14 X8 satisfies

X _ =V, -V (10)

for every anc (a,B) Lhen an optimal feasible solution

has been found to the primal maximal §Low problem.

Proof: Because Vj - Vi is a feasible solution to (9) we

know that

L,<V, -V sM
2z a

af b B

under our convention for assigning dual arc lengths. Thus

i i

. e
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LaB < XQB < MaB'

and therefore X,q 1s a feasible flow through arc (a,B8).

B
To check for flow conservation at the primal nodes we first
introduce a new primal arc (n,l1) connecting the sink to the source
and set its upper and lower bounds as well as the arc flow from the
sink to the source at the value of VN = Vl. We then have a source-

less-sinkless structure and the flow conservation equations can be

written as

g [%ap ™ %ea] = © (LD

for o« =1,2,...,n.

If we next add dual arcs to intersect the primal (n,l)
arc we will create a dual network which has a cycle circumscribing
every primal node. If we assign arc lengths to these arcs according
to our convention, we will be adding two more constraints to (9).
However, the previous optimal solution to (9) is also optimal for
this modification.

If we sum the V, - Vi differences over all arcs of any of

i

these dual cycles we will get zero since each V, appears twice in

i

the summation, once with a plus sign and once with a minus sign.

Therefore, X , =V, -V, results in the sum of the flows entering

oB h| i
and leaving a primal node being equal to zero and (11) is satisfied.

Finally, the optimal solution to (9) will result in Vj - Vi

= zij for all arcs on the shortest route between nodes 1 and N

of the dual and equation (10) will result in the flows in the arcs

i
1
i
i
i
1
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of the primal minimum cut set (S,§) being MaB if aeS and Be§

and LaB if «eS and BeS. No flow augmenting paths will therefore
exist between the primal source and sink and hence the exist’ag flows
are optimal. This completes the proof cf Theorem 5.

The reader will recall from Theorem 4 that we also can get
the minimal flow if a problem is feasible by changing the signs on tle
arc lengths of the dual and finding the longest route from the sink

back to the source, The associated longest route linear programming

problem can be stated as

maximize z ZA zij Uij’

¥l (1=1N),
N
subject to ) [U,, -U, ] = 0 (1 =2,3,...,N-1), (12)
i=1 13 i1
-1 (1=1),

and Uij =2 0.

The corresponding dual linear programming problem is

minimize WN - Wl,

subject to wi - wj > zij ((1,3)eh). (13)

If we determine the longest route from each node to the
origin, we will have an optimal feasible solution to (13). The value
of WN - Wl is minimal feasible flow through the network (a negative
value means flow from the sink back to the source). The optimal
feasible solution to the original primal minimsl flow problem can then

be obtained from the results of Theorem 6. The proof of Theorem 6

parallels that of Theorem 5.




Theorem 6: Comsiden a primal are (a,8) dénected §rom

node o 4£o node B8 which has a §Low LI Let the

internsecting duak ancs be (1,j) andl (3,1) with the

Length of (1,3) being M and the Length of (j,1)

B
being Lyg® 14 Xy8 Ssotisfdies

Xyg = Wy = Wy

for every anc (a,B) then an optimal feasible solution
has been found to the primal minimal §Low problem.




20

5. AN EXAMPLE

The results of Theorems 1 through 6 will be illustrated by
the following example. Figure 5a is a network having node 1 as its
gource and node 2 as its sink. The numbers on the arcs represent the
lower and upper bounds on arc flow. The dual construction is shown
by the nodes A, B and C and the dashed arcs connecting them.

The resulting dual network for the maximal flow problem is shown in

Figure 5b. The maximal flow through the primal is 4 corresponding

5b having the hash marks. The primal minimum cut set is therefore

The dual shortest route is the chain of arcs in Figure

{1,2),(2,3)}.

(b)

Figure 5.

The flow through arc (1,2) of the primal is 6 as given by
the difference VC - VB since the dual arecs (B,C) intersect it.
The flow through arcs (2,3) and (3,1) are both 2 corresponding

to the difference VA - VB.

= . - " " ey ki
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1f L31 is changed to a value of 4 then the top (A,B)
arc of Figure 5b has a length of -4. A cycle of negative length
will exist consisting of the'top (A,B) arc and the bottom (B,A)
arc, The problem is infeasible according to Theorem 2, Inspection
of Figure 5a under this change shows that an infeasibility condition
has been created by arc (3,1) having a lower bound exceeding the

capacity of arc (2,3).

Figure 6 is the dual network for the minimal flow problem.

Figure 6.

The minimum feasible flow from the source to the sink of the primal

is WC = WA = 1, The arc flows creating this are X12 = WC - WB =4

and X23 = X31 = WA - WB = 3.
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6. MAXIMAL FLOW IN NON-PLANAR NETWORKS

We would like to make use of the ideas developed in the preceding
section for all networks and not just those which are source-sink planar.
The purpose of this section is to present a way of approaching such
problems.

Suppose we construct a two-dimensional representation of a non-
planar network such that all arcs are straight lines. 1f we do this,
then no two arcs will intersect more than once at points which are not
nodes. If we designated these extra arc intersection points as pseudo
nodes we will have created a network which is source-sink planar and
we can construct its dual network using the procedure and convention
of section 2.

Unfortunately, we have no guarantee that the shortest route
through this dual network will give the maximal feasible flow and that
the associated optimal feasible arc "lows can be determined from

Theorem 5. Consider Figure 7. Suppose arc (a,B) and (v,8) dintersect

C? 7SEUDO NODE

at pseudo node ¢.

0
o—]
®

Figure 7.
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If we hope to use the results of Theorem 5 to obtain the

values V \Y \Y

i’ jl

|
optimal feasible flows in these arcs, we must require that the
' K’ and Vm in (9) for the associated dual nodes

satisfy

E (14)
| Vj-vi=vm-vk.

Condition (14) is needed because an optimal feasible solution to the

original primal maximal flow problem must have
a¢ $8’
since arcs (a,8) and (Y,8) do not intersect in the original primal

network. Therefore, for Theorem 5 to be useful, condition (14) must

be added to the constraints of 9).

We note in passing that (14) can be consolidated into only one

equation which is

Vj + Vk - Vi - Vm = 0. (15)

|
Let the node group surrounding a primal pseudo node ¢ Dbe ,

represented by (i,j,k,m)¢. Let ¢ be the set of all pseudo nodes

in a given primal network. The incorporation of (15) into (9) then

results in the following problem:
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minimize V., -V

N 1
subject to Vj - Vi < Rij ((1,3)€A), (16)
Vj + Vk - Vi - Vm = 0 ((i,j,k,m)¢; ded)

Obviously, the optimal solution to (16) cannot always be deter-
mined using an algorithm for finding the shortest route from node 1
to each node 1. The following algorithm is, therefore, suggested as

a way of solving (16).

Algorithm:

; 1. Compute the shortest route lengths from the dual origin to all

| nodes. T1f, in the process, a cycle of negative length is detected,
terminate the algorithm. The primal flow problem is infeasible.

If no cycle of negative length exists then compute the value of

Vj + Vk - Vi - Vm for (i,J,k,m)¢ assoclated with each pseudo

node in ¢ and go to step 2.

2. Examine the set of Vj + Vk - Vi - Vm values obtained in step 1.

: (a) 1If Vj + Vk - Vi - Vm = 0 for all pseudo nodes in ¢ then
terminate. The optimal solution to the primal network
problem can be obtained by applying Theorem 5 to the planar

representation of that network.

(b) If V,+V -V, - Vm # 0 for any set (i,j,k,m)¢ then

LR R
compute a set of numbers Yi (i=1,2,...,N) where
YN = VN and

Yi = m;x (Yj—lij)

for 1 =1,2,...,N-1. Go to step 3.

L L
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For each set (i,j,k,m)¢ for which Vj + Vk - Vi - Vm $#0

compute the following numbers:
%,00) = min{RiJ,Vj—Yi,Vm-Yk},

2,(¢) = max{-g . ,Y -V X -V

ji! j i) k}'

If 21(¢) < 22(¢) for one or more sets then go to step 4;

otherwise go to step 5.

Determine that set (i,j,k,m); corresponding to
zz(é) - zl($) = max{2,(¢) - 2,(¢) l 2,(0) < 2,(8)}

and change ¢

[} and Qm of the arcs asso-

i3* *51° *km k

cilated with that set to

z;j = zim = 21($),
Rig = g = TR (0D

Return to step 1.

Select any set (i,j,k,m)¢ for which 21(¢) and 22(¢)

j1° Ekm and

values have been computed and change 1)

zij,
of the arcs assoclated with that set to

ka

z;j = Qﬁm 21(¢)

251 = nék = —21(¢).

Return to step 1.

Sl s i b e b s sl i L e T e
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7. AN EXAMPLE

To illustrate the algorithm we will solve for max Q@ 1in the
example shown in Figure 8. This network, while being planar, is not
source-sink planar. Figure 8 is, in fact, the two dimensional repre-
sentation. We see that all arcs are straight lines and one pseudo
node has been created. The numbers on the arcs are the Mij values;
L,., = 0 for all arcs.

13

The dual network is shown in Figure 9. The Vi and Yi values

are shown next to their respective nodes. We see immediately that

v, + Ve -V, - Vg # 0 so the Y, values are needed. Next we obtain

f d i
E 11(¢) =5 and 22(¢) = 8, Therefore, we change L4f and leg to
. 5% Qfd and zge to -5 and recompute the shortest route.
The new set of Vi values are shown in Figure 10. We now have
i Vf + Ve - Vd - Vg = 0 so we are done. The maximal possible flow

through the primal network is 7 as indicated by the differerce

Vh - Va' The optimal solution to the maximal flow problem associated N
with the primal network is provided by Figure 11. The numbers on the
arcs represent xij/Mij' The minimum cut set is {(4,5),(4,2),(1,2),

(3,2),(5,3)}.
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Figure 9.



Figure 10,

Figure 11.
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8. PROOF OF THE ALGORITHM

When Vj + Vk - Vi - Vm $ 0 for some set (i,j,k,m)¢ we

must seek new values, Vi, V;, V&, V;, which will satisfy the
constraints of (16). In an attempt to avoid reducing the value of

VN - V1 and, therefore, the value of max Q we first compute the

Yi values. The differences YN - Yi (1 =1,2,...,N-1) are the

lengths of the shortest routes from each of the nodes to node N.

Now

v, -V, < YN -Y (17)

N i 1t

since VN = Vi will be less than or equal to the length of any

chain directed from node 1 to node N (equality holds only if

node i 1is on the shortest route from node 1 to node N). Because

YN = VN’ (17) reduces to
Y, <V,
Therefore, if we select Vi satisfying the constraints of (16) such
that
Y, < Vi =V, (18)
then we are assured that VN - V1 will not change.

Combining (18) with the inequality constraints of (16) results

vyt t_yt.
in the following ranges for Vj Vi and Vm Vk'

max{—lji,Yj—Vi} < V; - Vi < min{lij,vj—Yi},

(19)
}.

max{ lmk’Ym Vk} < Vm V' < min{zkm,Vm Y

k k
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Let us assume the ranges in (19) have some values in common.
We next combine the inequalities of (19) with the equality constraints

of (16). The result is (20). Notice that ka and zkm have been

omitted. This is due to the fact that lij = ng and zji = Rmk

for every (i,j,k,m)¢ as a consequence of the dual construction.

V-V = V' - V' < min{8 vV -Y

max{ -2 7Vt Y 132V Y Ve Nl

ji,Yj-Vi,Ym-Vk} <V

We realize that (20) reduces to the following form:

22(¢) < vj - Vi = v; - vé < 21(¢),

when we use the definitions of 21(¢) and 22(¢) from step 2 of the
algorithm.

Step 4 of the algorithm handles the problems where the ranges
of (19) have values in common for all ¢ which violate (15). It
changes the arc lengths of arcs (i,j) and (k,m) to zl(¢) and the
arc lengths of (j,i) and (m,k) to —21(¢).’ This forces the condi-
tions

VBRI R o = W zl(¢).

while satisfying (18). Note that one node of each pair, (i,j) and

(k,m), will have Vi = Vi after the new computations. Finally,

Vﬁ - Vi = VN - V1 so that the value of maximal flow has not been

affected by the new computations.

(20)
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If the ranges of (19) have no values in common for some set
(i,j,k,m)¢ then ll(¢) < 22(¢) and the current VN - Vl value

represents an infeasible value for max Q. Because VN must be

reduced by the amount
L,(8) - 2,(8) = m:x{zzw) = 200) | 200 < 2,(0))

before all sets (i,j,k,2)¢ can meet the constraints of (16), step 3
adjusts the appropriate arc lengths of the set or sets corresponding
to é to 21(;) and -21(;) to provide this reduction in VN
immediately. No further use of step 3 is necessary after this reduc-
tion. It is possible, however, that adjustments of the step 4 variety
will still be needed before an optimal solution 1s reached.

Changing the arc lengths of the arcs (i,j), (k,m) and (j,1i),
(m,k) to Rl(¢) and —21(¢) values or to 21($) and —Ql($) values,
respectively, results in the optimal solution to the primal having a
partial flow of 21(¢) or ll(;) in the intersected primal arc (y,6).

The arcs whose lengths have been changed either remain as members
of the tree of shortest routes from node 1 to all nodes (the early
tree) or become members in the next round of V calculations. Only

i

when all are members of an early tree will the condition V, -V, 6 =

j b
Vm - Vk be satisfied if it was not satisfied initially.
The forcing of the reverse arc of a pair to a value of —21(¢)
or -21(¢) does not create a primal infeasibility (that is, a cycle of

negative length in the dual) for the following reasons. Suppose arc

(i,j) was originally on the early tree. The condition Lyd < MyG
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means that the minimum possible value of jS will be -MYG. This
will occur only if LyG = Myé in the primal problem. 1If arc (1,j) ;
was originally in the early tree then the shortest route from node 1

to node j 1s over arc (1,j). Any other route in the dual network

will have a length at least as great as Rij = Myd' Thus, even

specifying lji = -MY6 does not create a negative cycle with any of 3
the routes. The worst that happens is that a cycle of zero length

exists consisting of the arcs (i,j) and (j,i). If arc (1,j) is

now shortened to a value of 21(¢) or 21(¢) then it remains on the

ji
than -MY6 so no negative cycle is created. 3

' . Next, suppose arc (i,j) was not originally in the early tree.

tree and ¢ will have a value -Rl(¢) or —21(¢) which is larger ;

There must, therefore, be some other route between nodes i and j

which is shorter (it might be arc (j,1i)). Reducing the léngth of

e

ERRTeS

(1,3) to 11(¢) or 21($) causes it to become an alternate member

of the early tree. Changing the length of arc (j,i) to a length of

BEvo

-21(¢) or —21($) creates a cycle of zero length with arc (4,j).
I1f the original shortest route between nodes i and j was not the i
arc (j,1i) but rather some other route directed from node 1 to

node J then its length 1s at least 21(¢) or 21(¢) or arc (1,j)

would not be the alternative shortest route after the new Vi computa-

tions. Therefore, at worst a cycle of zero length would be created by

setting gji at a value of -21(¢) or —%1(¢). 1f, instead, the
original shortest route was some route directed from node j to node
i then a change in lji has no effect since it is not a member of a

cycle containing the original shortest route. Reduction of lij to

the value of 21(¢) or 21(¢) will at worst create a cycle of zero

length when combined with this route.
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9. COMMENTS ABOUT THE ALGORITHM

The irvtent of the algoritbm of sectioa 6 is to provide a means
of solving dual networks for primal network optimal flows without the
worry of whether the network is source-sink planar. All that is required
is that the primal etwork be drawn such that no arc intersects any other
arc more than once. While the algorithm is designed only to solve
maximal flow problems, the necessary modifications for solving the
minimal flow problem are minor and obvious.

This algorithm may not be as efficient an approach as the maximal
flow algorithm of Fecrd and Fulkerson even if no pseudo nodes are needed
because the dual graph must be constructed. The existence of pseudo
nodes could reduce efficiency further since several iterations of the
algorithm may be required before an optimal flow is found or the primal
network is found to be infeasible. Careful construction of the two-
dimensional representation of the primal can, however, reduce pseudo
nodes to a minimum.

The algorithm ic quite useful and efficient for sensitivity
analyses and parametric studies of network flow as a function of primal
arc capacities and for problems involving capacity expansion and reduc-
tion (see, for example, Doulliez and Rao (1971) and McMasters and Mustin
(1970)). In such problems, the dual network needs to be constructed
only once. The changes in primal arc capacities then appear as arc
length changes in the dual and a new shortest route can be quickly

determined when necessary for each change.
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