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THEORY OF A RADIAL GAS BEARING WITH
CIRCULAR SUPPLY GROOVES

[Article by A. I. Snopov; Moscow, Doklad na Soveshchanii po
Gazovoy Smazke Podshipnikov, Russian, 12-14 February 1900,

pp ©3-T70]

It is known that an essentlial increase in the load-
bearing capacity of a self-generating gas bearing may be
achieved only with a corresponding increase of gas pressure
on“the bearing face. Structurally, thi$ may be accomplished

.-1f the gas inblow into the bearing is done through two circu-
lar grocves on the bushing, situated close to the end faces,
and if the pressure of feeding gas is maintained stable and
constant. In this case, the middle portion of the bearing
between the grooves will work as a self-generating bearing,
and the end segments will work under conditions of axial
pressure drop.

Given is a method of solving Reynolds equation - pzh2
which determines pressure distribution in the lubricating
layer. This method permits obtaining a relatively simple
solution of the problem in high approximations. For the
middle part of the bearing, an analytical solution of the
equations of consecutive approximations may be structured,
and the determination of pressures at the end sections re-
quires, in a general case, numerical integration of the
ordinary differential equations appearing at each iteration
stage.

1. Formulation of the Problem and Basic Equations

Design computation of a radial bearing with several
circular supply grooves requires the determination of pressure
distribution both in the sections between grooves and at the
end sections. We shall examine one such section. Let L be
the sectidn length, r, the shaft radius, rq the bearing ra-
dius, ¢J the angular veloclty of shaft rotation, and py and
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Figure 1.

Pxx the pressures maintained af the section ends (py, > p,,)-
We consider the gas to be isothermal, movement as stabilized,
and the axes of the shaft and the bushlng to be parallei. We
shall make use of a Cartesian system of coordinates, with the
z axis corresponding to the shaft axis and the x axis in the
cross-section with pressure p, and intersecting the bearing
axis. Together with this, we shall use cylindrical coordi-~
nates in which Reynolds equations describing movement of the
Jubricant have the form

320’ a0’ 9% /
9 = ~(- -8 Vi /J z zs _a_’i » -Z—p- = 0

3/' 5 é@p ébu 2z 7 or
ar P 89 oz =0, pl=cp’

Solution of these equationg in the investigated case srould
satisfs the conditions

.-t
zf z’ @
A T, = % re=py
at
% = = Us'o = r=rreccsy (2)
1
PP, B xp s, B, Z
Ve £ - =
(e -~ eccentricity).
For convenience, we shall convert to nondimensional
variables, which we shall introduce in the following manner:
/'-/'
4; = ’ //o -;/O//D, y -/0‘/9 /c: ‘/3 , A=
/ 5 (3)
=/,;c”, =l 4 cd&( -///'(/9,,2/ DGy,
¥ = _{?._‘.. 4 /e‘(,\ y; e
J b F oo /:: — .
f} /uou/’ g
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With this, equations and boundary conditions assume the form

3 Uso 52(/? 3,0
ciﬁ é? éﬂgz ) —ET ’ dk; =7, (4)
_20Py) 0"//”50) IPuy) 0
£ a¢ o
aﬁ - Uy o , U é a7,
Y = Uy = 09 o é--}msgo, (5)

P/ atza/:,y'z--f.

We shall introduce new variables
’ B . X4
5= furso)h a=/a/5 h=r*feosg. (6)

With these variables, equations (4) and boundary condit1ons
(5) are written thus

'azu _z 2

7 -(7/4 f(??;&ﬂy, 5:2 5532 ;;% o,
A34) _

9,/6 = f?;s'mg))*?é // ;/,? ?;54/750*6 i

% y » Uz » 0 at { 0 —g ag

U = Uy =0, 119=-/ at ;’ 7, (8)

at

2=4 Z= 0;-3% Z-f.

From the first two c¢juations (7) taking into account (8) we
find that

‘19’;* }Z”/(z‘(/. ‘Q=é',g/¢'2";/:

vhere

-5, 92 : o
a-= &6‘?9 *5?/&050, &= &A;ﬁ- . (9)

We shall multipgly the, third eguation (7) by ‘72’ and
we shall integrate it for ;' within the limits from O to 1.
After some simple computations taking into account (8) we
obtain equation

_3-
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_ 9% ga)  2(96)
ay a9 2E

2., (10)

which, upon substitution into it of the values of magnitudes
a and b, we shall convert to the form

742, d%* 99, 2 0,9% .0 (11)
6‘-3-2-5‘ #A-;—s-;—a‘* ;;;86090*2?}6059 2 59 0)
where A= 6 _ 69 sl )3.
T8 e g/

2. p’n? - Method

The form of equation (11) naturally suggests accepting
q2 = pzh‘ as the unknown magnitude and substituting it and
the magnitude q in the form of series according to the deg-ee
of the relative eccentricity

2 oo n E n
=S . g 2 . (12)
? =0 ”ﬁ ’ , ﬂco/,’p
From the condition , & 212 & n
(Z 2,0") = Z 50
we find that $hid 70
nef
Vs o=L-fs -
Jo= ¥ % % 290/30 E,?A‘?o-r)- (13)
In agreement with (11), functions s, are determined
sequentially from squations
2
5, 2% 42 (%), 38 /15
R P2 —J=A5"( 5 o._Q -/..
dzc o¢ o919, 99 [ 9%, 7% 77, (14)

- 825,,,, 6?25/"/ : 35,,,, .
922 + 992 )ms:y-— 39 smp-,es”./cosy,

wnere functions sy should satisfy conditions

T
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Sy=1, §,=2cos¢p, $2=;*§co:29, $=0(r23)°" 220,
2 , 3t
S,=02 s,=25%ssg, sz-ﬁfjms.e.(;/&'f $,°0(23)°" #:8. (15)

Assuming that s, = so(z), we find easily

/"5" (/- -—) , E=r-y% (16)

At n =1, equation (14) assumes the form
azs, %, A 9%,
22 a? - ;; -—a-;- = = 28,c08¢. (17)
We assume

a,(2)sin g + & (2)cos g . (18)

On the basis of (15) and (17), we have
” . :
a/ 7 g 0 f g - - = zso »

,/o/ %(f)=0, ¢(0)=2, e’/t’/ =2x%.

We shall introduce a complex function
= Lo - 0,2, ' - 20
w;-a,u.{;_,eyo; y E=f~1 . (20)

This function, in agreement with (19) satisfies conditions
: »

Y- PR
S g e, wlo)s w(é)=0. ()
o

Assuming that in (14) n = 2, we obtain

A 2 p2).
-ei}'*fg;/@‘gx’)

(19)

222 992 9, 0
% 9 Vi4

(22)

A

2
, a . , .I.?—- 4 '~g 0052 .
-39 - Js.m?;*/z%; ’ 2 ’ 4
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If it is assumed
@, (3)cin 20 + &, (2)cos 2 #Cp (23)

then 22 2 /
o -hoyr 242 L (of-6f)- " a, 5
ro ?,,
24 . A 7 o0
8 ~48,-FLa,s - =06, -58"-6 , ()
2 R ?0 2?03 4 2
7 pu
Qé - 3.4; ; 4 4
0,(0) = @y (&)= 0, §10)=F 1 6(0)= F 5%, c:(0)F 5
We shall introduce the function

oy w0 iby- F92C 5 (25)

evidently, it is determined in relation to (24) from condi-
tions:

2A¢ A 2 33:
-4z -—-—-_'__//: L w2 ), *39, , W) &//4=
My g e 3 23,4 Fo1 % (26)
We find easily also that

We shall limit ourselves by the indicated two approxi-

mate values. Knowing wy and wy we may determine ¢1 and qj.

As the result we find that

4 .
?l-:;;".s/ = 5(0?*86'039 FY
79 /
7
2, = Ky S
2 ] !
s 2/0,0 2?0
P /v -~ / I’ % /
/q,fug,-:;df*?ol ’ ”2*41.-- SRR - "
where ‘ /o e 77 %
C/-_: —i-/(/..ﬂ_/. -...L.wg"’ = Vs 2
H % 'f ""',_' ;e .
2 470 7 /) /676"/ 7 Ny TEyT fRdye
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In the general case when 57‘ 4 5 1t will not be pos-
sible to obtain an analytical solution of equations (21) and
(26) in a closed form, and for practical application one may
take advantage of their numerical integration. 1In the case

,» the solution may be presented in the hyperbolic func-
ons of a complex argument [2], at which point we shall stop.
We should note that in its first approximation it is in agree-~

ment with Osman's sclution [1].

3. Lubrication Effect on the Shaft and Gas Consumption

The main vector of forces of pressure applied to the
examined section of shaft has the following components

--/'/a/a/Z/ ety Ydp, A /'/o/a(a'/&om o (@)

and ve shall represent it in the following complex form
,3*( 7424 = 2174"/9,;’-//:}?/2/%_* 2]~
(4,46, )4(1-V1-0% )28, )+ [z =
-ﬁﬁ/’*/'—ﬂ—'}////;q/, /
// ;//-_;7 o -—/—-w)f..fa'./z.

@y * /
’8? 4%, ,

(30)

The moment of the forces of friction applied to the
shaft along section L, with respect to the z axis may be, as
usual, represented by a formula

20 L ew e

At ot TS

(31)
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Computing the consumption of lubricant per second in
the examined section from the formula

i’ 1y #2008
0:// vy rdrdy
9 7

we find that it is independent of the angular velocity of 3
shaft rotation and equals

7587p°-R2) A 2
@= =34z 2 (7" 5%). &

Since at A = 0, wy = wy =0, then, in agreement with
(30) and Py = = 0, consequently, in a bearing with a circu-~
lar inblow, oag ~bearing capacity 1s produced by the shaft
rotation.

4, case of High Velocities of Shaft Rotation g

In the case of high velocities of shaft rotation, a
is large and it is possible to construct an asymptotic solution
of equations (21) and (26). It will contain the functions
which are solutions of equations at 3= oo and boundary layer
functions of the form 'I’th -}*ﬂﬂapey When computing

the integral (30), in the first approximatlon one may neglect
the squares of boundary layer functions and retain only the
integrals of threshold functions corresponding to 2 = oo .

Assuming in (21) and (26) A = oo, we easily find
that the threshold solutions have the form

. , {
wj=- 2093, wh=-4g2 . (34)

At the same time

N Ty T15lp (1- V1 1° £
@H;/_/zgzé’f/ ,;// /;)/*f;%.)é/%oﬁ{f (35)

But

/ fa/ 2. /7 /-6}%/
2"0/‘/’0 e 3&/-/ A
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consequeﬁfly, in the case of high velocity of the shaft rota-
tion

2””2Z;%/7“ 1’ /k?* A ’ /f?’ ) /) =0,

c , 07 /7-0% (36)
M= - 275 RIGLfe.
T

where 2 3@ /9‘
/(£)=-—- /-7~ & , &=7-/2%
( 3&// )/ (,0*

K(o)=17, fr///=§~?.

while
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