AD 745757

y

FEASIBILITY STUDIES OF

MULTISPECTRAL MOSAIC IMAGE

CONVERSION PANELS

FOR PERIOD 1 FEBRUARY 1971 TO 31 JANUARY 19

OFFICE OF NAVAL RESEARCH

CONTRACT N00014-71-C-0188 TASK NO. NR 215-165

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

DR. D. E. ANDERSON, PRINCIPAL INVESTIGATOR

MR. R. L. SWISHER, CO-INVESTIGATOR

30 MARCH 1972

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springheld VA 22151

	ONTROL DATA - F	R&D			
(Security classification of fille, body of abstract and indi 1. ORIGINATING ACTIVITY (Corporate author)	exing annotation must be	20. REPORT SI	CURITY CLASSIFICATION		
G T Schieldahl Commany		linclas	linclessified		
Northfield. Minnesota 55057		26. GROUP	<u>BILION</u>		
Attn: Advanced Programs Divisic	on		· ·		
J. REPORT TITLE			······································		
Feasibility Studies of Multispec	tral Mosaic	Image Con	version Panels		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Technical Report for Perio	d 1 February	<u>, 1971 to</u>	31 January 1972		
Donald E. Anderson & Richard L.	Swisher				
. REPORT DATE	78. TOTAL NO.	OF PAGES	7b. NO. OF REFS		
30 March 1972	120				
Sa. CONTRACT OR GRANT NO.	98. ORIGINATO	R'S REPORT NUM	BER(\$)		
N00014-71-C-0188 6. Project No.					
Task No. NR 215-165		•			
с.	9b. OTHER REP this report)	ORT NO(S) (Any of	ther numbers that may be ession		
permitted for any purpose of the United States Government.	Depart Office	ment of t of Naval	he Navy Research		
A development program is describ mosaic EL/PC image conversion pa X-rays, and visible light was so are electroded in a regular arra on centers. These arrays are con arrays forming the back pads of array through the use of microg film EL and thin film (TFEL) lag	bed in which anels sensit tudied. This ay with unit nnected to of an electrol lass spacer mp arrays we	the feas: ive to UV n Film pho cells 0.0 paque elec uminescent sheets. I re prepare	ibility of , near IR, otoconductors)20" ctrode t (EL) lamp Both thick ed and studied.)-6 w/cm ² .		
Useful near IR response was obtau Useful visible light response was input. Peak optical gains of 50 film EL and optical gains of 300 The combinations of materials us form, electrically and optically simulations were performed to deneeded for a successful assembly the transient or steady state op with simple sinusoidal power app forms. All computer programs us	as obtained for in as obtained in 00 were achie 00 using TFE sed were pre- y parameteria etermine the y. The comp- ptical stimum plied or more sed are docum	puts of 10 for 5 x 10 eved with L output. pared in 1 zed, and 1 range of uter mode: lation of e complica mented.)-4 ft-cd thick test sample then computer parameters ls simulate EL/PC cells ated wave-		

Unclassified Security Classification

	LIN	KA	LIN	K B	LIN	кс
	ROLE	WT	ROLE	WT	ROLE	ΨT
Electroluminescence						
Photoconductors Mosaia Imaga Conveysion Panala						
Electronic Assembly Simulation						
Infrared Image Conversion						
Displays UV Image Conversion						
				1		
· · ·						
· · · ·						
				<u> </u>		
			ĺ			
			1		[
			ł		i	
X Contraction of the second seco						
τ.						
$\sim \infty$						

٠

.

Security Classification

FEASIBILITY STUDIES OF

MULTISPECTRAL MOSAIC IMAGE

CONVERSION PANELS

FOR PERIOD 1 FEBRUARY 1971 TO 31 JANUARY 1972

OFFICE OF NAVAL RESEARCH

CONTRACT N00014-71-C-0188 TASK NO. NR 215-165

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

> Details of illustrations in this document may be better studied on microfiche.

- DR. D. E. ANDERSON, PRINCIPAL INVESTIGATOR
- MR. R. L. SWISHER, CO-INVESTIGATOR

30 MARCH 1972

III

Reproduction in whole or in part is permitted for any purpose of the United States Government. This research was sponsored by the Office of Naval Research under ONR Contract Number N00014-71-C-0188, ONR Contract Authority Identification Number NR 215-165/10/30/70 (461).

NOTICE

Change of Address

Organizations receiving Reports on the initial distribution list should confirm correct address. This list is located at the end of the report. Any change of address or distribution should be conveyed to the Office of Naval Research, Code 461, Arlington, Virginia 22217.

Disposition

When this report is no longer needed, it may be transmitted to other organizations. Do not return it to the originator or the monitoring office.

Disclaimer

The findings in this report are not to be construed as an official Department of Defense or Military Department position unless so designated by other official documents.

V

PREFACE

This document covers research as to the feasibility of multispectral mosaic image conversion panels carried out at the G. T. Schjeldahl Company, Inc. during the twelve months from 1 February 1971 to 31 January 1972.

The research was directed by Dr. Donald E. Anderson; co-investigator was Richard L. Swisher. The research staff during all or part of the period covered by this report included Robert Mracek, Eugene Hildreth, Lloyd Schultz and John Rooks.

VI

A Development program is described in which the feasibility of mosaic EL/PC image conversion panels sensitive to UV, near IR, X-rays, and visible light was studied. Thin Film photoconductors are electroded in a regular array with unit cells 0.020" on centers. These arrays are connected to opaque electrode arrays forming the back pads of an electroluminescent (EL) lamp array through the use of microglass spacer sheets. Both thick film EL and thin film (TFEL) lamp arrays were prepared and studied. Useful near IR response was obtained for inputs of 10^{-6} w/cm². Useful visible light response was obtained for 5 x 10^{-4} ft-cd input. Peak optical gains of 500 were achieved with thick film EL and optical gains of 3000 using TFEL output.

The combinations of materials used were prepared in test sample form, electrically and optically parameterized, and then computer simulations were performed to determine the range of parameters needed for a successful assembly. The computer models simulate the transient or steady state optical stimulation of EL/PC cells with simple sinusoidal power applied or more complicated waveforms. All computer programs used are documented.

ABSTRACT

TABLE OF CONTENTS

SEC	<u>rion</u>	PAGE
1.0	GENERAL INTRODUCTION	1
	1.1 General Description of Construction and Operation of EL/PC Image Conversion Panels	1
	1.2 Philosophy of This Program	7
2.0	THIN FILM EL FABRICATION AND TESTING	7
	2.1 Introduction	7
	2.2 TFEL Fabrication Techniques and Results	8
	2.3 Interesting Anomalies of TFEL	18
3.0	UV-TO-VISIBLE IMAGE CONVERSION PANELS	21
	3.1 Introduction	21
	3.2 Results	21
4.0	X-RAY TO VISIBLE IMAGE CONVERSION PANELS	22
	4.1 Introduction	22
	4.2 Results	22
	4.3 Recommendations	22
5.0	VISIBLE-TO-VISIBLE IMAGE CONVERSION PANELS	25
	5.1 Introduction	25
	5.2 Sensitive Light Amplifiers	25
	5.3 Assembly Techniques	26
	5.4 Assembly Test Results	29
	5.5 Feasibility of Stacking Visible-to-Visible Image Conversion Panels Onto Other Panels	32
6.0	IR-TO-VISIBLE IMAGE CONVERSION PANELS	40
	6.1 Introduction	40
	6.2 Results	40
7.0	GENERAL CONCLUSIONS AND RECOMMENDATIONS	44

LIST OF ILLUSTRATIONS

٠

•

FIGURE NO.		PAGE
1	Photomicrograph of PC Layer	2
2	Interface Layer of Mosaic EL/PC Device	3
3	Self-Illuminated Photomicrograph of EL Output Mosaic	5
4	Simple 3D Geometry of Image Conversion Panel	6
5	Extremely Simplified Schematic of Operation of EL/PC Image Conversion Panel	7
6	Co-Planar TFEL Electrodes	9
7	"Moated" Drive Electrodes for TFEL Output Cell	10
8	Thin Film EL Lamp	12
9	Diagram of ZnS, CdSe, PbS, PbSe Deposition Fixture	13
10	Trends in B vs V for Different TFEL Construction Parameters	15
11	Brightness vs Voltage of Laboratory Sample Lamp Compared with Avaliable TFEL Lamps	16
12	TFEL Lamp with CdS Layer Included	19
13	Low Voltage TFEL Output Brightness	20
14	Heterojunction Configuration for Carrier Injection Transverse to E Field	23
15	Typical Conductivity of PC Cells Vs Green Light Stimulation	27
16	Cross Section of EL/PC Image Conversion Panel Using Thick Film EL	28
17	Interconnection Technique for TFEL/PC Structure	30
18	TFEL Visible-to-Visible Image Conversion Panel	31
19	Performance of Thick Film EL Visible-to-Visible Image Conversion Panel	33
20	Calculated Overall IR/Visible Performance of Two-Stage Cascaded Image Converter	34

LIST OF ILLUSTRATIONS Cont.

ŧ

1

FIGURE NO.		PAGE
21	Simulation of EL/PC Panel Operation at 70 V rms	35
22	Simulation of EL/PC Panel Operation at 100 V rms	36
23	Simulated Operation of CdSe 494-95-8 With Thick Film EL Using 3 Frequency Drive	38
24	Simulated Operation of CdSe 494-95-8 With TFEL 494-79-2, 5A Using 3 Frequency Drive	39
25	Thick Film EL/PC IR Image Converters Present and Previous	42
26	TFEL IR-to-Visible Image Converter	43

1.0 General Introduction

1.1 <u>General Description of Construction and Operation of EL/PC</u> Image Conversion Panels

A solid state electroluminescent-photoconductor (EL/PC) image converter is a device which responds to radiation of a certain intensity and wavelength distribution by emitting radiation of higher intensity and/or different spectral distribution. Our studies have concentrated on image conversion panels having a structural geometry consisting of layers of mosaic patterned cells. All photoconductors studied were deposited as thin films with mosaics of patterned electrodes. Input radiation is incident normal to the PC film and photocurrent flow is in the plane of the PC film. Figure 1 is a back-lighted photomicrograph of a mosaic electroded PC layer fabricated in our laboratory. The opaque material is the molybdenum electrodes.

To connect the small square electrodes of the PC layer in Figure 1 to individual EL lamps in a layer above the PC layer, we need an interface layer. One type of successful interface layer that we have previously developed is shown in Figure 2. In this photomicrograph, the round dots are "posts" of solder alloy. Each of these posts are bonded to one of the small square electrodes of the PC layer in Figure 1. The light colored matrix is 0.003" thick glass. This is used for dimensional stability of the sheet.

The forward or upper ends of the conductive posts are connected to an array of rear electrode pads for the EL output layer. If thick film EL is used, it is sprayed onto the electroded interface layer and a continuous semi-transparent front electrode is applied. Figure 3 is a photomicrograph of the light emitted by an array of thick film EL lamps fabricated in this manner. An opaque dielectric layer is usually applied behind the output EL layer to prevent light feedback to the PC layer. If thin film EL (TFEL) is used as an output media, then it must be prepared on a separate substrate and electroded and then bonded to the interface layer.

Figure 4 is a vertically exaggerated drawing of a section of an EL/PC image conversion panel using thick film EL. The operation can be visualized by tracing the flow of electrical power from the conductive lattice across and modulated by a stimulated PC cell, up a conductive post, and by means of capacitance, through the EL layer to the continuous front electrode. Figure 5 is a schematic of how one EL/PC cell operates. As radiation impinges upon the PC, its resistance decreases. This switches an increasing fraction of the applied voltage onto the EL capacitor. In response to this voltage, the EL material emits light. The image conversion panel can be thought of as an array of photoresistive voltage dividers.

Schjeldahl Company

Figure 1 -2-

Schjeldahl Company

Figure 3 -4-

٩.

FIGURE 5

....

1.2 Philosophy of This Program

Under a previous contract (N00017-70-C-0213), it was shown that mosaic EL/PC infrared image converters could be simulated by computer modeling and the operating characteristics of a completed test assembly agreed with the predictions. This type of simulation makes possible many economies in the search for useful combinations of photoconductors and electroluminescent materials.

In this program, we were to continue studies of infrared (IR) photoconductors used with thick film EL and to extend this work to photoconductors sensitive to ultra-violet, visible, and X-ray radiation. Also, we were to further investigate the possibility of using thin film EL(TFEL) in image conversion panels. If the computer simulations indicated that a combination of materials could function properly, then test assemblies were to be fabricated, if possible, and compared with the simulations. In addition, we were to investigate the possibility of placing a visibleto-visible image conversion panel on top of any other type of image conversion panel to boost the conversion gain of the pair.

The work and this report was divided into five tasks:

- Develop Thin Film EL lamp arrays compatible with possible assembly techniques
- Investigate UV sensitive photoconductors to find possible candidates for use in test assemblies
- Investigate X-ray sensitive photoconductors to find possible candidates for use in test assemblies
- . Investigate PbS-TFEL combinations and improve the CdSe device fabricated under previous contract.
- . Improve CdS, Se visible-to-visible image conversion panels and investigate possibility of cascading with similar panels or any of the image conversion panels above.

2.0 Thin Film EL Fabrication and Testing

2.1 Introduction

Thin film EL (TFEL) has these advantages over thick film EL:

- . Higher brightness
- . Better brightness maintenance characteristics
- . More uniform appearance. It is microscopically uniform in brightness within a cell.

TFEL has these major disadvantages:

- . It is much more difficult to fabricate consistent lamps from sample to sample. Many vacuum deposition processes are involved. The heat treatments necessary to form a good lamp limit the possible assembly procedures of an EL/PC device.
- . Its brightness is a very steep function of applied voltage which results in very little gray scale range in an EL/PC image conversion panel.
- . Its capacitance per unit area is much larger than thick film EL and hence, its impedance per unit area is lower. This requires that PC cells be fabricated with a lower range of impedances than those necessary for thick film EL.

Despite the above shortcomings and difficulties, TFEL is still a desirable light output media because of its high brightness and excellent life if made properly. These characteristics are especially important for aircraft displays.

During this program, we improved upon the performance obtained from TFEL fabricated under the previous contract.

2.2 TFEL Fabrication Techniques and Results

2.2.1 <u>Co-Planar Electrodes</u>

It was originally planned that we try to increase the impedance of the TFEL cells by using a co-planar electroding scheme as shown in Figure 6. Experimental trials indicated that such a configuration held little promise for success because of extreme demands on electrode edge smoothness and electrode spacing of less than 0.001". This electrode spacing is impractical for large area panels.

2.2.2 Series TFEL Lamps

Another impedance raising approach was then tried. This electroding technique is shown in Figure 7. The technique used a "moated" rear electrode for the TFEL cell and a "floating" semitransparent front electrode. If the area of the region common to the power grid and floating electrode and the area common to the "island" and the floating electrode are equal, then the impedance of the TFEL lamp is quadrupled over a simple sandwich electrode structure. The total operating voltage of the TFEL lamp is doubled but the electric fields in the material remain the same as for a simple sandwich cell. We abandoned this approach because the lamp could

•

!

CO-PLANAR TFEL ELECTRODES FIGURE 6

•

"MOATED" DRIVE ELECTRODES FOR IFEL OUTPUT CELL

FIGURE 7

not be fabricated as in Figure 7. Because the TFEL needs high temperature baking, the front semitransparent electrode has to be SnO_2 or InO_2 deposited on a substrate first. The moated rear electrode had to be deposited last and we could not find an etching technique for the metals used (Au, Ni, or Al) that didn't damage the lamps in some unknown way. All lamp samples suffered from voltage breakdown problems.

At this time we decided to concentrate on the simple sandwich cell of TFEL and try harder to adjust the impedance range of the photoconductors.

2.2.3 Sandwich Style TFEL Cells

Concurrent with the unsuccessful attempts at using novel TFEL cell geometries, we were attempting to improve the performance of "simple" sandwich style TFEL cells. Figure 8 is a cross-section through such a cell. The transparent substrates we used were typically borosilicate glass. We tried two types of semitransparent front electrodes: SnO_2 and InO_2 . The phosphor was ZnS doped with manganese. The dielectric is GeO_2 . The rear electrode is typically Au.

At the beginning of the program, we performed an abbreviated matrix study using:

- a) Three types of SnO_2 coated substrates.
- b) Three types of GeO_2 evaporation sources.
- c) Two types of ZnS:Mn phosphor evaporation sources.

The plan was to abbreviate the matrix by building lamps using all types of processes in (a) above with a standard set of processes from (b) and (c) above. The best (a) process was then used with all types of (b) processes and the same (c) standard. This optimization was carried through each successive layer of the lamp structure. The types of substrates included commercially obtained substrates and SnO_2 and InO_2 coated substrates prepared in our laboratory.

All ZnS:Mn depositions were made in a bell jar vacuum system using an internal chimney deposition system as shown in Figure 9.

The best lamp obtained by this matrix of permutations was fabricated of:

- 1. Commercially obtained SnO₂ coated glass substrate.
- 2. 250Å of GeO₂; vacuum baked 2 hrs. at 500° C.
- 3. 18,000Å of ZnS (shot from charge containing 20% MnS); vacuum baked 2 hrs. at 500°C.

Thin Film EL Lamp

FIGURE 8

The Al₂0₃ Crucible is Heated by a Tungsten Coil. A Close Fitting Plug of $\sim \frac{1}{4}$ " thick Quartz Wool is Placed Over the Deposition Charge and Held in Place by a Simple Refractory Metal Split Ring.

Diagram of ZnS, CdSe, PbS, PbSe Deposition Fixture

FIGURE 9

9,000Å of GeO₂.
KarmaTM rear electrode.

This lamp would emit 1,000 ft-L when driven at 260 V rms and 5KHz. Lifetimes of this type of lamp were only ~50 hrs. at which time voltage breakdown at small spots would begin to destroy the test cells. Decay was very slight before failure. The voltage breakdown problem plagued us throughout the program.

Figure 10 is a representative sample of the brightness vs. voltage characteristics of the TFEL lamps fabricated in this matrix study. The results are typically that:

- 1. Increasing thickness of GeO₂ layer shifts the curves to increased operating voltage.
- 2. Increasing Mn concentration in the phosphor layer (No.3 above) shifts the curve to lower operating voltage and steepens the slope of the curve.
- 3. Post deposition vacuum baking of the phosphor layer is very important for maximum phosphor brightness and lifetime.

Figure 11 is a comparison of a lamp fabricated in the matrix study with a commercially available TFEL lamp (Sigmatron, Inc., Goleta, California). Our lamp was fabricated as follows:

- 1. Commercial SnO₂ coated glass substrate
- 2. 250Å GeO₂, unbaked
- 3. 15,000Å ZnS phosphor, shot from charge containing 20% MnS, vacuum baked 2 hrs. at 500°C.
- 4. 9,000Å GeO2

5. Au rear electrode

All dielectric and phosphor depositions were made with a substrate temperature of 200°C. The ZnS evaporation crucible has a quartz "wool" plug placed on top of the charge. A thermocouple encapsulated in quartz is used to monitor the temperature of the quartz "wool" plug. For this lamp, the temperature was 1150°C. The lamp operated for 249 hours at near 50 ft-L before voltage breakdown occurred.

The operating frequency was 5 KHz and the voltage was 209 V rms. The voltage was gradually increased to 218 V to compensate for aging. All good lamps exhibited excellent brightness maintenance. But at some time after approximately one hundred hours, they suffered a catastrophic breakdown which obliterated the entire cell.

٠

ويعاو ستحوظه بمدد التحجم

TRENDS IN B VS V FOR DIFFERENT TFEL CONSTRUCTION PARAMETERS

FIGURE 10

FIGURE 11

This catastrophic failure mode of the TFEL lamps which plagued us was traced to almost sub-microscopic pinholes in the phosphor layer. Very small defects in the surface of the finished lamps were observed to be the center of destruction of macroscopic areas that broke down in operation. We were already using a quartz "wool" plug in our phosphor deposition boat. If we increased the thickness of this plug or used a less porous plug, we expected deposition times to become very lengthy. Consequently, we began experimenting with thicker nucleating layers under the phosphor layer. Previously, if a GeO₂ nucleating layer of greater than ~250Å was used, the lamp surface crazed during vacuum baking. We changed the GeO₂ evaporation source from an Al_2O_3 crucible to a Pt resistance heated source of simple folded ribbon geometry. Much better adhesion of GeO₂ to the front electrode was then observed.

The catastrophic failure mode of the TFEL lamps was reduced. The deposition source for the GeO_2 layers and the increased thickness of the phosphor nucleating layer helped.

The best lamp fabricated since using a thicker nucleating layer was manufactured in cross grid matrix style with 0.016" wide InO₂ lines on 0.020" centers for the semitransparent electrode.

The lamp was fabricated of:

- 1. InO₂ coated substrate (etched into lines).
- 500Å GeO₂ unbaked, deposited from Pt boat. Charge is fused before opening shutter.
- 3. 20,000Å of ZnS, shot from a charge containing 20% MnS, vacuum baked two hours at 500°C. Source diffuser plug temperature is 1150°C.
- 4. 6,000Å of GeO₂ deposited from Pt boat. Charge is fused before opening shutter.
- 5. Al rear electrode (deposited as lines).

This lamp was operated in a constant brightness mode. It exhibited a fast decay mode after initial turn-on. Its beginning operating parameters were 185 V rms at 5 KHz to emit 50 ft-L. Its "first" half life was ~10 hrs. At this time, the voltage was raised to 192 V rms. Its projected half life at this voltage was ~ 1125 hrs. After 800 hrs. running time, the lamp required 200 V to emit 50 ft-L. Small portions of the lamp did suffer catastrophic failures; final failure occurred at approximately 1200 hours. We feel that this particular phosphor fabrication technique does yield a useful phosphor layer but our substrate preparation procedures need further refining. At this stage of development, the TFEL effort was then directed toward methods of integrating TFEL cells into EL/PC test assemblies.

2.3 Interesting Anomalies of TFEL

While fabricating a test EL/FC assembly, a small portion of the assembly was coated with the following layers:

- 1. Glass substrate
- 2. Molybdenum base electrode
- 3. ~ 10,000Å of CdS, Se:C1
- 4. 3,000Å Ge02
- 5. 16,000Å of ZnS:Mn (shot from a charge containing 15% MnS)
- 6. 3,000Å Ge02
- 7. Semitransparent (~ 40%) KarmaTM electrode

This combination of materials produced a very low-voltage TFEL lamp. The operating characteristics of the lamp are shown in Figure 12. The lamp would not emit light under direct current stimulation. As circumstances permitted, we used scrap samples of TFEL lamps to try to determine what caused this behavior. Our best guess as a result of several loosely controlled experiments is that Cl doping from the CdS, Se layer caused the phenomena. As a check, we ran a ZnS:Mn TFEL layer through a photoconductor Cl doping cycle. After depositing the dielectric layer, we obtained a TFEL lamp having operating characteristics as shown in Figure 13. This was the lowest voltage lamp we fabricated (when operated at low frequencies). The lifetime of the lamp was only a few hours.

Volts rms

TFEL Lamp with CdS Layer Included

.

BRIGHTNESS, FT.-L.

LOW VOLTAGE TFEL OUTPUT BRIGHTNESS

FIGURE 13

3.0 UV-to-Visible Image Conversion Panels

3.1 Introduction

We originally proposed that ultra violet-to-visible mosaic image converters might be feasible if large band gap photoconductor materials, those greater than 3 ev, exist which are compatible with current EL/PC construction techniques and exhibit fast photocurrent rise and decay times. Such a candidate material is ZnO (band gap ~ 3.2 ev). The literature shows it to have a slow photocurrent rise and decay time. However, these reports do not clearly indicate its behavior in thin film form under the large signal voltage biases necessary for mosaic EL/PC image conversion. Thus, materials such as Al₂S₃, ZnO, ZnS, In₂O₃, SnO₂, Sb₂O₃, Bi₂O₃, and/or others, as indicated by brief literature search, were to be prepared in thin film form and doped according to the best information available. Photocurrent under near UV stimulation was to be measured while ac voltages of 50 to 250 volts rms at 400 to 4,000 Hz were applied. These measurements of photocurrent when used in the computer simulation of EL/PC devices would help determine the feasibility of a UV-to-visible image converter.

3.2 Results

The literature search turned up deposition techniques only for ZnO and of course, ZnS. ZnS has a very low conductivity. The few samples of pure ZnS that we prepared with 0.002" electrode spacings and thicknesses of 6,000Å to 20,000Å had resistance values > $10^9 \Omega$. We could not detect any photoconductivity when stimulated with intense .336µ radiation.

We then turned to ZnO as it is somewhat better documented as a photoconductor. It seems that most techniques for producing ZnO as a photoconductor are held as proprietary and little has been published on the subject. We first attempted to deposit ZnO by reactive sputtering in a partial atmosphere of O_2 . All attempts had very poor adhesion to the substrates. Next we used r-f sputtering and obtained clear, well adhering films. In thicknesses of 6,000Å to 18,000Å the films had a cell resistance (.002" electrode spacing, see Figure 1) of $1.5 \times 105\Omega$ to 103Ω . However, we could detect no photoconductivity under intense UV stimulation. We attempted to Cu dope the films by imbedding the substrates in doped powder and baking the container at 400°C for various lengths of time. The only result was cloudy, peeling films. Again, no photoconductivity was observed but the results are not conclusive since the films were very crazed and cracked.

As one last experiment we checked to see if the ZnS:Mn TFEL lamps would emit light at less than their normal voltage under UV stimulation. No effect other than simple fluorescence was observed.

As a consequence of the above negative results and lacking information as to proper ways to proceed in post deposition treatment of ZnO films, we discontinued effort on this task.

4.0 X-Ray to Visible Image Conversion Panels

4.1 Introduction

Past work on EL/PC mosaic structures showed that uncooled PbS photoconductive ceels appeared to not have a useful dynamic range of resistance for use in a PC-EL enfrared image converter. Very little has been done to investigate its use as an X-ray sensitive photoconductor, and it is judged that carrier lifetime is probably too short for this application.

However, a heterojunction device of PbS and CdS or PbSe and CdSe shown in Figure 14 was proposed as a possible X-ray sensitive photoconductor combination.

A sound theoretical justification for expecting useful performance from such a device couldn't be presented. The photoconductivity mechanisms for PbS are not well understood. However, work performed on a proprietary X-ray dosimeter utilizing thin films of Pb as X-ray to electron converters indicated that such a heterojunction device should be investigated.

4.2 <u>Results</u>

The first problem encountered with the structure of Figure 14 is that we could not prepare PbS with small enough dark conductivity to adequately turn off an EL cell.

The PbS layer would effectively short out the CdS layer. The only way we could decrease the conductivity of the PbS layer was to decrease the thickness to ~ 1000-2000Å and sinter it in an O_2 atmosphere for several hours. However, films that were this thin were obviously too thin to absorb enough X-ray photons to be useful. The only other thing we could try was to see what happened if the PbS layer was patterned so that it did not contact the electrodes. If a high resistance layer formed at the PbS-CdS junction, the CdS film could retain a smooth enough electric field across its electrode gap to function as a photoconductor. Experimental trials indicated that the opposite effect occurred. It appeared that the PbS-CdS interface became a very conductive region compared to either material. As an increasing voltage was applied to the electrodes, the CdS layer would begin to break down near the electrodes. It acted as if the PbS-CdS interface was a current shunt.

At this point in the program, it was decided to cease effort on this task as proposed.

We checked to see if the operating voltage of a TFEL lamp was reduced by X-ray stimulation. There was no observable effect.

4.3 <u>Recommendations</u>

Using thin film photoconductors to convert X-ray photons into photocurrents of a magnitude suitable for controlling the emission of electroluminescent lamps is most probably not practical.

HETERDJUNCTION CONFIGURATION FOR Carrier injection transverse to e field

. .

X-RAY PHOTON

1

-23-

As long ago as eighteen years, moderately successful X-rayto-visible conversion panels were fabricated of thick film EL and thick film CdS layers. These devices were never practical due to construction problems. Thick film CdS is very difficult to prepare in uniform layers of the necessary ~ 0.010" thickness for adequate X-ray absorption. Also, if the devices are prepared in a "sandwich" structure, which was the only practical process in the past, the shunting capacitance across the PC limits the useful range of the device. However, if TFEL instead of thick film EL could be used, the effective shunting capacitance across the CdS would be reduced significantly. If further work with direct conversion of X-rays is to be pursued, the TFEL and thick film CdS or CdSe sandwich structure should be investigated.

It should be noted that <u>indirect</u> conversion, using a conventional Patterson CB-2 phosphor screen to convert X-rays to visible light and then a visible-to-visible image intensifier panel to amplify the image, has been successfully developed under another contract*. In this way, reductions in radiation levels have been achieved which are quite significant. Optical gains in excess of 100 were achieved on 10" x 10" panels with 0.020" center-to-center cell spacing; image saturation can be obtained with less than 20 mR exposure to 70 KeV X-rays. This then constitutes a performance "yardstick" against which any <u>direct</u> conversion approach must be measured.

^{*}U.S. Army Electronics Command, Fort Monmouth, Contract No. DAAB07-71-C-0267.

5.0 Visible-to-Visible Image Conversion Panels

5.1 Introduction

Under this part of the program, we were to develop, if possible, two basic types of visible light amplifier panels. The first type was to be a very sensitive panel. This type was to be sensitive to as small an input light level as possible. The second type was to have as large an output brightness as possible with its sensitivity threshold possibly no better than 10^{-2} to 10^{-1} ft-cd. The high brightness panel was to be considered mostly for use as the second stage of an image conversion system. The first stage of such a system could be whatever type of image converter we developed (IR, UV, X-ray, or Visible Light sensitive). This high brightness second stage would be used as a "brightener" to overcome ambient light problems in viewing an image on the first stage panel by itself. To build such a high brightness panel, a TFEL output is virtually required if we were to have a chance of achieving many tens of ft-Lamberts output brightness.

The first type or sensitive panel would probably have to be one using thick film EL for output. Based on previous experience, thick film EL cells are a much better impedance match for sensitive CdS type photoconductors than are TFEL cells. Also, TFEL cells had not been successfully integrated into an assembly.

As was mentioned in Section 4.3 above, concurrent with this contract we were also working on a contract from Fort Monmouth (DAAB07-71-C-0267) to develop our existing light amplifier technology into the capability for fabricating 10" x 10" image conversion panels using 0.020" EL/PC cells. This excellent research mix involving an assembly technique development program greatly benefited both programs. We used the PC doping results of this program in fabricating 10" x 10" light amplifier panels for the Army and we used the improved assembly techniques in fabricating thick film EL devices in this program.

5.2 Sensitive Light Amplifiers

5.2.1 PC Materials Study

We began with three types of PC deposition material. The first type was CdS. In all doping experiments with Cu and Cl as dopants, the resulting films were sensitive to light levels of 5×10^{-3} ft-cd or greater but response times were very sluggish. Response time for a CdS:Cu,Cl cell to reach 90% of its final conductivity was typically minutes for a stimulation of 5×10^{-3} ft-cd. Also, this material was very history-sensitive. After an hour of light stimulation for testing, the PC cells typically had to be kept in the dark overnight to be able to duplicate the results of the testing.
We also tried using a mixture of 80% CdS and 20% CdSe as a deposition material. When doped with Cu and Cl, films of this material exhibit no long-term "history" effects. However, it was difficult to include enough Cu in the films. The only way we could Cu dope with any success was to imbed the films in a crucible filled with an overdoped (Cu₂S) CdS powder and fire the covered crucible in a N₂ atmosphere at 400° C for times of 15 minutes to 2 hrs. This method would increase the resistivity and sensitivity of the films. But the films are cloudy and have poor uniformity. Subsequent doping with HCl gas further reduced the uniformity but sensitivity was generally increased.

With the poor results of the previous two types of PC, we returned to the material we have used for several years. This is an 80% CdS, 20% CdSe finely divided powder already doped with Cu and Cl and quite photoconductive. Before depositing this material, it must be baked in vacuum at 600°C for at least sixty minutes to drive out the chlorides. The PC films will not adhere to the substrates if this is not done. By using this doped powder, the PC film received adequate Cu doping during formation. Prior to this contract, we had attempted to Cu dope the PC films by evaporating minute amounts of Cu during PC film deposition but the results were always erratic.

Figure 15 is a plot of the PC cell conductivities of a 2" x 2" PC array made with the pre-doped CdS,Se powder. The bars represent the ranges of conductivity observed by measuring 25 cells spaced uniformly about the substrate. The straight line drawn through the plot is the least squares fit to the data used in the simulation programs discussed in the Appendices.

This type of photoconductor can have its impedance values at a stimulation level of 10^{-1} ft-cd varied by almost two orders of magnitude by varying the amount of Cl doping. This feature allowed us to use this same type of photoconductor in assemblies having TFEL output layers.

5.3 Assembly Techniques

5.3.1 Thick Film EL Assemblies

Figure 16 shows a cross-sectional view of the structure we use for thick film EL assemblies. This structure is basically the same as we have successfully used for some time. The device is assembled from the PC layer forward. The thick film EL layer is simply sprayed on.

5.3.2 TFEL Assemblies

This proved to be a very difficult task. We were able to dope arrays of CdS, Se photoconductive cells to give us impedance ranges compatible with simple "sandwich" electroded TFEL lamps. We had great difficulty in successfully attaching our standard interconnect layer to the TFEL lamp array. The interconnect layer is a glass-epoxy composite

FIGURE 15

•

CROSS SECTION OF EL/PC IMAGE CONVERSION PANEL USING THICK FILM EL

FIGURE 16

layer 0.003" thick which contains solid conductive posts on 0.020" centerto-center spacing to connect the center electrode of each PC cell to the rear electrode of each TFEL cell. Our fundamental problem seemed to be that in the initial turn-on of the TFEL lamp array, there are always a number of pinhole defects that must blow out and clear the short circuits at those points. Some of these defects occur in the interface between the TFEL lamp and the conductive post. It appears that these defects enlarge to destroy the entire post-TFEL interface and then the entire TFEL cell breaks down and the effects propagate (probably because of trapped gases and heat) to neighboring cells. Eventually, most of the TFEL lamp array is destroyed.

Our next approach to the problem was to omit the interconnect layer. We fabricated the PC cells on a sheet of 0.003" glass which had holes etched through the glass in the center of each center electrode of the PC cell. We bonded this PC substrate to the rear of the TFEL lamp array with the PC itself facing away from the TFEL. The PC substrate then became the interconnect layer. Then thin film through-hole interconnect techniques were used to connect the PC cell electrodes to the TFEL lamp electrodes.

This technique showed promise. For this technique to work, an opaque dielectric layer must be included at the rear of the TFEL layer to prevent light feedback from reaching the PC layer. The best thin film opaque dielectric layer that we made was made of Ge co-deposited with GeO2. We have achieved 0.1% transparency (in the green) with a film ~ 5,000Å thick. The film has a resistivity of greater than 10^9 ohms per square. The film contained ~ 15% excess Ge. We experienced problems in achieving uniformity of resistivity of the films. The basic technique seems to be that the GeO, evaporation must begin first with the Ge evaporation phased in slowly until the desired ratio of rates is achieved. The usual results were that high resistance films peeled off in baking and low resistance films adhered nicely. The problem seems to be in finding the best evaporation rate schedule for getting both adhesion and high resistivity. We could not complete this task before the program was finished. So we fabricated a TFEL light amplifier using a thick film opague dielectric. This structure is shown in Figure 17. This structure is cumbersome but it verified that the CdS, Se: CuCl photoconductor in thin film form can successfully control TFEL sandwich cells.

5.4 Assembly Test Results

5.4.1 TFEL Assembly

A TFEL assembly built as in Figure 17 had response characteristics as shown in Figure 18. The points plotted are the averaged output of the assembly. Because of the sharp "turn-on threshold" of the device, small variations in TFEL characteristics or PC characteristics cause the vertical portion of the curve to vary over two-thirds of decade of input values. We plotted the prediction vs. the average of several cells since the prediction is an average of PC characteristics measured before assembly. The discrepancy in the dark output for the assembly is most probably due to halation from nearby shorted cells.

.

INTERCONNECTION TECHNIQUE FOR TFEL/PC STRUCTURE

<u>ر</u>.

FIGURE 18

-31-

5.4.2 Thick Film EL Assembly

A thick film EL assembly built as in Figure 16 had response characteristics as shown in Figure 19. This assembly did not fit the computer simulation. Investigating the discrepancy, we discovered that the opaque dielectric layer in the thick film EL layer had been inadvertently sprayed on too thick. This decreased the response of the EL layer and consequently diminished the gain we had expected. This points up the necessity for further development of thin film opaque dielectric layers. The opaque layer should be minimized in thickness as much as possible so that as much as possible of the voltage applied to the EL cell can be across the EL material and not be wasted in the opaque layer.

5.5 <u>Feasibility of Stacking Visible-to-Visible Image Conversion</u> <u>Panels onto Other Panels</u>

The final assemblies of TFEL and thick film EL image conversion panels were not finished in a form compatible with actual stacking of one onto another because of electroding problems.

Preliminary simulations have been performed using our best CdSe - thick film EL combination from the previous contract and data we have from previous visible-to-visible image converters. The resultant combination would have an output of less than 10^{-3} ft-L for an input of ~ 8 x 10^{-6} w/cm² and an output of ~ 1 ft-L for an input of ~ 2 x 10^{-5} w/cm². The usable contrast range is very narrow which makes the device almost a saturating threshold type image converter. This type of performance is due to the fact that both CdSe and CdS PC/EL image converters have a ratio of output/input that increases rapidly to saturation as a function of input. When two of these ratios are multiplied together in a "stacked" device, the resultant ratio yields and input-output curve that resembles a step function. Figure 20 is a plot of the IR input vs. output of a simulated device.

There are two methods to overcome this lack of gray scale range. The first technique is to develop photoconductors which have smaller conductivity change per unit increase in input radiation than the present photoconductors used. Past evidence indicates that some improvement can be made in this area.

The other technique is to make use of the variation in inputoutput properties of the EL/PC devices as frequency of voltage is changed. Figures 21 and 22 illustrate how the input-output curves shift with voltage and frequency variation.

We are attempting to determine whether the easily implementable techniques of amplitude modulating and/or frequency modulating the driving voltage of the image converters will effectively expand the gray scale range. The basic idea is to time share the different input-output curves within the limits of the integration time of the eye so that for a fixed input level a non-flickering image is perceived.

Output, ft-L

PERFORMANCE OF THICK FILM EL VISIBLE-TO-VISIBLE IMAGE CONVERSION PANEL

FIGURE 19

FIGURE 20

t,

٠

Input Radiation, w/cm² (.72µ-3.5µ, 2750°K)

(P is the ratio of El capacitance to shunt capacitance across the photoconductor)

Simulation of EL/PC Panel Operation at 70 V rms

FIGURE 21

;

(P is the ratio of EL capacitance to shunt capacitance across the photoconductor)

Simulation of EL/PC Panel Operation at 100 V rms

FIGURE 22

Toward this end, the computer simulations developed under the previous contract were "streamlined" and expanded to assist in easier reduction of greater quantities of data. The multi-frequency driving techniques being studied under a concurrent ONR contract have been simulated for an equal mixture of three frequencies and is plotted as the dashed curve in Figure 23. This driving technique has been experimentally verified.

Figure 24 is the same driving technique used with a simulation of the same CdSe as Figure 23 only using TFEL for the output lamps. Again the three frequencies shown were mixed in equal proportions in the composite simulation.

It appears that if the output of the final image conversion panel is to be viewed and analyzed by the human eye, then the slope of the light-in vs. light-out curve of the final panel can be effectively made unity. This will avoid shrinking the response range of a cascaded pair of image conversion panels.

Light Out, ft-L

۰.

Figure 23

-38-

.

Figure 24

-39-

6.0 IR-to-Visible Image Conversion Panels

6.1 Introduction

Under this task we were to continue development of the IR sensitive CdSe-thick film EL panels we worked on under the previous contract (N00014-70-C-0213). We were to also extend the work to using TFEL as an output media. Also, we were to investigate the feasibility of placing a visible-to-visible light amplifier panel on top of an IRto-visible image conversion panel. In this way, rather large conversion gains might be realized for the cascaded pair of panels.

6.2 Results

We finished the last program by using a CdSe PC cell array which was made by depositing pure CdSe onto an etched molybdenum electrode array (see Figure 1) on a substrate of 0.003" thick glass. The CdSe was doped with HCl gas at 400°C for 18 minutes.

Our first attempts at improving upon this technique was to dope the CdSe powder with CuCl₂ solution, sinter in vacuum, regrind the powder, and use this powder as deposition material. The Cl would mostly escape during sintering so the deposited films were doped with HCl gas as before. We were never able to get reproducible or uniform films with this process. Small regions of some of the films were extremely sensitive but uniformity was very poor. Vacuum annealing of the CdSe films before Cl doping didn't improve the results.

Next we tried depositing pure CdSe, ~ $10,000\text{\AA}$ thick, and then depositing approximately 10\AA of Cu on the CdSe films. The 10\AA of Cu was deposited by an extrapolation method. First ribbons of Molybdenum with a known thickness of Cu were used as flash evaporation sources and the thickness of the resulting deposit was measured. This measurement gave us a source film to substrate film ratio per unit area of the source ribbon. From this data, we prepared ribbon sources to give us a 10\AA Cu deposit on the CdSe. The CdSe films were then baked in vacuum at 400° C for 1 hour to diffuse in the Cu.

Again, the resulting films exhibited very poor uniformity.

Next, we attempted to improve upon a procedure that was first tried under the previous contract. This procedure was to imbed the CdSe coated substrate in a finely ground powder consisting of 98% CdSe, 1% CuCl₂ and 1% NaCl as a flux. This combination of imbedding powder and substrate was then placed in a closed crucible and baked at temperatures equal to or greater than 350°C for various periods of time. All attempts produced films with very non-uniform response. We substituted Cu₂S for the CuCl₂ and used various amounts of NaCl and many combinations of baking times and temperatures. No improvement in uniformity was noted. The literature had many excellent descriptions of techniques similar to this being used with good results. However most experimenters reported a large class of different types of recrystallization phenomena seen when using this imbedding technique. We deduced that most previous experimenters had used rather macroscopic electrode sizes and spacings when measuring the response of their resultant films. We have found that we can only use electrode gaps of ~ .0015 to ~ 0.004" in the simple square "moated" electrode pattern (see Figure 1) and achieve proper ranges of cell impedance. The best conclusion we can draw from all the unsuccessful doping-by-imbedding experiments is that this technique is unsatisfactory when using small electrode spacings and buried electrodes.

We then returned to trying by other means to get a CdSe film properly doped with Cu and with Cl as a co-activator. Knowing that using a pre-doped powder for film deposition yielded good results for visible light photoconductors of 80% CdS and 20% CdSe, we again attempted to duplicate this technique using only CdSe doped with Cu and Cl. Initial results from using the pre-doped powder were disappointing. As a point of reference, thougn, it took more than six man-months of dogged effort to develop a reliable technique for depositing the pre-doped CdS, Se film. The first few pre-doped CdSe films exhibited poor adhesion in patterns very reminiscent of the ones seen in early attempts with the CdS, Se films. However, we did not have 6 man-months of effort left in the program at this time.

At this time, we decided to see just how IR sensitive our green-sensitive CdS, Se films were. A good green-sensitive thick film EL with CdS,Se:CuCl assembly was tested on the IR source and we received a pleasant surprise. It was as sensitive as was predicted for the best cells of CdSe:CuCl that we had occasionally found on some substrates. We had never thought to measure the IR response of the PC for this assembly. Figure 25 shows the response of this assembly to near IR and for comparison, the best assembly that we fabricated under the previous contract.

Following this lucky turn of events, we then tested a TFEL greensensitive test assembly on the IR source. The results are shown in Figure 26. Again the PC used in this assembly had not been characterized with IR stimulation.

It now appears that the shortest development route to the best IR-to-visible image converter is to modify our CdS, Se:CuCl deposition powder by changing the ratio of CdS to CdSe in small increments until the best IR response is found.

THICK FILM EL/PC IR IMAGE CONVERTERS PRESENT AND PREVIOUS

FIGURE 25

-42-

TFEL IR-TO-VISIBLE IMAGE CONVERTER

FIGURE 26

-43-

7.0 General PERults, Conclusions, and Recommendations

- 1) We expanded modeling techniques to facilitate parameterization of materials, to investigate more complex forms of excitation waveforms, and to simulate the cascaded operation of various potential PC/EL candidate systems.
- 2) TFEL developed to point where can fabricate in useful brightnesses (> 50 F-L) for useful lifetimes (~ 1200 hours); test assemblies have been successfully integrated with photoconductors using these films in mosaic form.
- 3) Visible: P/C has been developed which, with useful uniformity over large areas, is capable of controlling output for input values around 5 x 10⁻⁴ foot-candles. Peak optical gains of the order of 500 have been achieved using thick film EL outputs (Figure 17), and of the order of 3,000 using thin film EL outputs (Figure 18).
- 4) IR (Figure 25): Response curve moved down 2 orders of magnitude with useful response now available at 10^{-6} w/cm².
- 5) UV: Unsuccessful in obtaining photoconductors with useful characteristics, in terms of impedance and voltage levels required to control series EL mosaic cells, with measurable sensitivity in the UV spectrum.

Recommendations:

Further studies of electroding and interconnecting TFEL would be required before mosaic arrays with the brightness and contrast required for high-ambient displays, such as avionic systems, can be realized with practical geometries and useful yields.

State of the art, in simulation, analysis, design, and fabrication, has developed to the point at which specific applications in IR and visible image emplifiers, image conversion panels, and opto-electronic logic can be evaluated using simulation techniques. In those cases where a simulation shows predicted useful performance, fabrication techniques have been perfected to the point where we can predict the feasibility of realizing a useful structure.

APPENDIX A

IR PROGRAM AND PLOT SUBROUTINE

A1. Introduction

The IR Program is written in FORTRAN IV and is used on a time sharing computer network with a remote teletypewriter terminal. The input files and keyboard inputs and the styles of data output have all been programmed with ease of data handling for the designer in mind. The details of the equations used in the circuit analysis are given in Section A2 below and a detailed description of the program itself is also given. In addition, tables of all the input parameters and a form of useful data sheets for these input parameters are given.

A2. Circuit Analysis and Solution Procedure

Figure Al shows the form of circuit that this program solves. It is only a series parallel combination of resistors; however, the resistors vary nonlinearly. We treat this circuit as an almost linear circuit. The voltage across the EL cell is given in rms form by the equation:

 $\mathbf{v}_2 = \mathbf{v}_0 \left| \frac{\mathbf{z}_2}{\mathbf{z}_1 + \mathbf{z}_2} \right|$ Equation Al

where V_0 is the rms applied voltage, Z_1 is the complex impedance of the photoconductor, and Z_2 is the complex impedance of the EL cell. For simplification:

let
$$S_1 = w C_1$$
 and $S_2 = w C_2$

then
$$Z_1 = \frac{1}{G_1 + jS_1} = \frac{G_1 - jS_1}{G_1^2 + S_1^2} = PC$$
 Impedance
 $Z_2 = \frac{1}{G_2 + jS_2} = \frac{G_2 - jS_2}{G_2^2 + S_1^2} = EL$ Impedance
Equation A2

Taking the absolute values, we have:

$$|z_{1}|^{2} = (G_{1}^{2} + S_{1}^{2})^{-1}$$

$$|z_{2}|^{2} = (G_{2}^{2} + S_{2}^{2})^{-1}$$
Equation
$$|z_{1} + z_{2}|^{2} = \frac{(G_{1} + G_{2})^{2} + (S_{1} + S_{2})^{2}}{(G_{1}^{2} + S_{1}^{2})(G_{2}^{2} + S_{2}^{2})}$$

73

FIGURE A 1

Putting these values in Equation Al, we have:

$$v_2 = v_0 \int \frac{G_1^2 + S_1^2}{(G_1 + G_2)^2 + (S_1 + S_2)^2}$$

To help in simplification in terms later on:

let
$$p = \frac{C_2}{C_1} = \frac{S_2}{S_1}$$
, note $\frac{pG_1}{wC_2} = \frac{G_1}{wC_1}$ Equation A5

Using this simplification, Equation Al becomes:

$$v_{2} = v_{0} \int \frac{\left(\frac{pG_{1}}{wC_{2}}\right)^{2} + 1}{\left(\frac{p(G_{1} + G_{2})}{wC_{2}}\right)^{2} + (1+p)^{2}}$$

Solving similarly for V_1 we have:

$$v_1 - v_0$$
 $\sqrt{\frac{\left(\frac{pG_2}{uC_2}\right)^2 + p^2}{\frac{p(G_1 + G_2)}{wC_2}} + (1 + p)^2}$

Equation A7

Equation A6

Equation A4

Also, for the ratio of voltages of the EL to the PC clement, we have:

Equation A8

The photoconductor conductivity G_1 is usually described by an equation of the form:

$$G_1 = U(U_d + L^S) V_1^{r-1}$$
 Equation A9

Where U is a dimensional constant, U_d is a dark conductivity term, L is the input radiation, and s and r are constants. For completeness, the leakage conductivity of the EL is usually found to be best fit by an equation of the form:

 $G_2 = H \omega^A \exp(b(V_2))$ Equation A10

Where H is a dimensional constant, and A and b are constants. Usually b is very small so in the computations that follow, we neglect the voltage dependence of G_2 . Strictly speaking, if one were to have a large b value one should modify the derivation that follows to include this voltage dependance in G_2 . The final thing to be calculated is the brightness of the EL. This brightness usually has a functional dependence as given by:

$$B = D F^{\alpha} \exp\left(-\sqrt{\frac{A}{V_2}}\right)$$
 Equation All

Where D is a dimensional constant, F is the driving frequency, α and A are constants. Taking Equations A9 and A10 and substituting in equation V_1 , we have:

$$G_1 = U(U_d + L^S)(f(G_1))^{r-1}$$
 Equation A12

Where $f(G_1)$ represents the right hand side of Equation A7. In solving this implicit equation, we now need the services of the computer. Equation All is of the form:

$$G_1 = f(G_1)$$

This equation can be solved by Newton's iteration method.

Basically, this method finds the zeros of a function of the type:

$$y = f(x)$$

By repeatedly doing an iteration of the form:

$$x_{n+1} = x_n - (y_n / y'_n)$$

a-4

Equation A15

Equation Al4

Equation A13

To get faster convergence, we used the second order form of this iteration equation as given below:

$$x_{n+1} = x_n - \frac{y(x_n)}{y'(x_n)} \begin{bmatrix} 1 + \frac{y(x_n) \ y' \ '(x_n)}{(2 \ y'(x_n))^2} \end{bmatrix}$$
 Equation A16

After the iteration is complete, the value of G_1 is used in Equation A6 to get the rms voltage applied to the EL cell. The actual equations used in the second order iteration are very long and are contained in the iteration calculation section of the IR Program.

A3. Description of IR Program and Plot Subroutine

IR is written in FORTRAN IV and is used on a time-sharing computer system through a standard teletype terminal. Figure A2 contains a listing of IR. Figure A3 contains a listing of PLOT. The time sharing system it has been used on has excellent file editing capabilities if the file contains line numbers. The first field of numbers on a line are the line numbers. The second field of numbers is the FORTRAN statement number field. The "*" are for comment lines. The program is liberally laced with comments as to the function of flags and switches and the purpose of a group of statements. In the program, the values of input radiation are referred to as "steps". Unless problems with the PC conductivity iteration are encountered, the input radiation as incremented as integers times powers of ten i.e., 1×10^{-6} , 2×10^{-6} , 3×10^{-6} ,..., 1×10^{-5} , If, for example, iteration convergence is not obtained for an input step of 9×10^{-4} , then the input radiation value is "backed up" to 8.1 x 10^{-4} (8.0 x 10^{-4} would have been successfully used). If iteration convergence is still not achieved, the input radiation is "backed up" to 8.01 x 10^{-4} . If convergence is then achieved, the input steps are then 8.02×10^{-4} ,, 8.09×10^{-4} , 8.1×10^{-4} ,, 8.9×10^{-4} , 9×10^{-4} . When the program is working in one of these modes, the terms "back up" or "small step" appear in the comment lines.

A feature which might be overlooked upon first glance at the program or the block diagram is that whatever form of data output is chosen, the program computes a value of light output for zero radiation input for every voltage and frequency. This computation is done at the beginning of every input light loop.

The linearized circuit equations discussed in the previous section are utilized in the program under the comment "iteration calculations" and at line 1260 and line 1300.

Table AI lists all the parameters for the data files, the file numbers, and gives a brief description of the parameters.

If desired, the resultant data may be written into a data file defined at program execution time.

Figure A4 is a block diagram of the IR program. This is not a flow chart. It is meant to be used as a guide to finding one's way through the program in addition to providing a brief overview of the operation of the program.

Figure A5 is a data sheet that has been useful to the computer operator when using the program and it contans the format specifications used in the files.

The subroutine PLOT plots logarithmically the light output versus the radiation input. The abscissa is not internally scaled and accepts only the fifty-five "normal step" values generated in IR. The ordinate scale is controlled by the variable LP which allows a vertical scale on the teletypewriter of six orders of magnitude. After the plot, 3 lines of data identification will be printed if they were included in the data files. This subroutine is used with several other programs that are described later.

IR PRØGRAM

1

20 * IMAGE INTENSIFIER, G=U*(UD+T**S)*(V1**(R-1.0)) 40 * CHOUSE TYPE OF OUTPUT; KKK=1, DATA TABLE 60 * KKK=2, PLOT ONLY 80 * KKK=3, DATA TABLE AND PLØT 100 DIMENSION P(5),V(5),FR(5) 120 DIMENSION TT(19,5), BB(19,5) 130 COMMON IT. BB.LP 140 DIMENSION GVOL(55) 160 DIMENSION DV(3), AV(3), VEA(3), ALF(3) 180 CALL DEFINE(1, 3HEL,) 200 CALL DEFINE(2,3HPC,) 220 CALL DEFINE(3,6HKNUBS,) 240 CALL DEFINE(4,6HBRITE) 260 KILLD=0 280 KKK=2 320 READ (2,1) R. S. U. UD IF(IE0F(2).NE.1) READ (2,552) 340 " 360 552 FURMATC . 380 KEAD(1,2) C 400 READ (1,901) AALF, DD, AA 420 IF(1E0F(1).NE.1) READ(1,551) 440 551 FØRMATC' 13 460 READ (3,4) (V(J), J=1,5) 480 READ(3,4) (FR(K), K=1,5) 500 READ(4,106) (VEA(I), I=1,3) READ(4,106) (DV(I), I=1,3) 520 540 READ(4,106) (AV(I), I=1,3) 560 READ(4,106) (ALF(I), I=1,3) 580 IF(IE0F(4).NE.1) READ(4,550) 600 550 FØRMATC . •> 620 WRITE(9,811) 640 811 FURMAT(/'CREATE A DATA FILE? O=NU, 1=YES'/) READ(9,812) KD 660 680 812 FORMAT(11) 700 IF(KD.E0.1) WRITE (9,813) 720 813 FORMAT(/'SUPPRESS OTHER OUTPUT? O=NO, 1=YES'/) 740 IF(KD.E0.1) READ(9,812) KILLD 760 IF(K1LLD.E0.1) GU TU 701 780 WRITE(9,107) 800 **READ(9,999) KKK** 880 705 FURMATCI10) 900 701 WRITE(9,997) 920 READ(9,996) CSHUNT 940 CSHUNT=CSHUNT+1.0E-12 960 WRITE(9,5) 980 READ(9,996) TBEGIN 990 LP=ALUG10(TBEGIN) 991 IF(KD.EQ.1) WRITE(5,792) LP 992 792 FURMAT(12) 1000 WRITE (9,101) R, S, U, UD Figure A2 1020 WRITE(9,102) C Page 1 of IR Program 1040 WRITE(9,902) AALF, DD, AA 1060 P(1)=C/CSHUNT 1080 WRITE(9,3) P(1) 1100 WRITE (9,104) v 1120 WRITE (9,105) FR

```
PAGE 2
```

IR PROGRAM

1140		WRITE(9,517) DV			
1160		WRITE(9,518) AV			
1180		WRITE(9,519) VEA			
1200		WRITE(9,520) ALF			
1220	*	NVT=2 PUT G VALUES INTO GVOL(L) ARRAY			
1240	*	NVT=1 USE GVUL(L) ARRAY FOR G IN IMPEDANCE CALC.			
1260		IF(ABS(R-1.).LE1) NVT=2			
1280	*	'NCK' SAVES LAST 'L' INDEX ØF INPUT LIGHT			
1300	*	LJUP IN CASE ØF SATURATION BREAKØUT			
1320		NCK=0			
1340	*	NVTCK" USED AS SNITCH TO STATEMENT 581 IN CASE			
1360	ж.	OF ITERATION BLOWUP WHEN COMPUTING GVØL(L) VALUES			
1380	汴	USING OTHER THAN FIRST FREO, VALUE			
1400		NVICK=1			
1420	*	SET 'IVE' TØ FIRST SECTION ØF B VS V EL CURVE			
1 4 4 0		1 VE=1			
1460		I=1			
1480	*	VOLTAGE VALUES DO LOOP			
1500		DJ 88 J=1,5			
1520		IF (V(J)-0.0) 99, 99, 10			
1540	10	CUNTINUE			
1560	*	PUT NON-ZERØ VALUES IN INPUT, OUTPUT LIGHT MATRICES			
1580		D0 516 LM=1,19			
1600		D0 515 LLM=1.5			
1620	.	TT(LM,LLM)=1.E-7			
1640	51	5 BB(LM) LLM) = 1 · E - 7			
1660	51	6 CUNTINUE			
1680	た	FREQUENCY VALUES DO LOOP			
1700					
1720	*	SET LIGHT LOOP TERMINAL PARAMETER			
1740					
1760		1F(FR(K)=0+0)89)89)6			
1780	0	UUNIINUL Teaning fo in co th che			
1000					
1020	«1 C	MALIE (7) // FLID VLUID FRAND Constants			
1840	201				
1660	301 4 D	DENTINUE DENT CHIUMA UFANISICO			
1000	ም ም	$\mathbf{T}_{\mathbf{V}} \mathbf{V}_{\mathbf{V}} \mathbf{U}_{\mathbf{V}} \mathbf{D}_{\mathbf{V}} \mathbf{U}_{\mathbf{V}} \mathbf{U}$			
1000					
1920		GU TH (991.999.991). KKK			
1960	921	WET (F(9,12)			
1980	922	CUNTINUE Figure A2			
2000	* SET EIDST LIGHT VALUE Page 2 of IR Program				
2020					
2040		IF(IDK+EQ+1) T=0+			
2060	*	SET VALUES FØR LOG. INPUT LIGHT VALUE GENERATØR			
2080	·	LT#ALUGIO(TEEGIN*•99)			
2100		ILT=0			
2120	* SI	ET MAIN PRINT COUNTER			
2140	<u> </u>	N=0			
2160	* SI	ET VPC AND VI FUR ENTERING LIGHT LUOP			
2180		VPC=V(J)/4+0			
2200		V1=V(J)-VPC			
2220	*	SET SUBSCRIPTS FOR FIRST INPUT, JUTPUT MATRIX VALUES			
2240		11=0			

٠

IR PRUGRAM

```
2260
           KK=0
  2280
        * INPUT LIGHT LOOP
  2300
           DØ 15 L=1, IDK
  2320 * INPUT LIGHT LOG STEP GENERATOR
  2340
           ILT=ILT+1
  2360
          - GU TU (53,53,53,53,53,53,53,53,53,52),ILT
  2380
        52 LT=LT+1
  2400
           ILT=1
  2420
        53 CONTINUE
  2440
  2460
           SET ITERATION BLOWUP COUNTER
        *
  2480
           MM=1
  2500
        *
          ADVANCE NORMAL LARGE LIGHT STEP PRINT COUNTER
  2520
          N=N+1
  2540
        * SET SMALL STEP PRINT COUNTER
  2560
           MMM = 1
  2580 * REENTER FROM SUCCESSFUL SMALL STEP CALC.
  2600 51 CUNTINUE
  2620
           SET ITERATION COUNTER
        *
  2640
           M = 0
       * ENTER ITERATION LOOP ON SMALL LIGHT STEP
  2660
 2630 87 CUNTINUE
  2700
           IF (L-1) 23, 23, 22
 2720 22 VPC=V(J)-VE
 2740
           V1 = VE
 2760 23 CUNTINUE
       * CHECK VOLTAGE DEPENDENCE OF CONDUCTIVITY
 2780
 2800
           IF (ABS(R-1.).GT..1) GJ TØ 863
 2820
          GU TU (867,863), NVT
 2840 867 IF(L.GT.NCK) GU TU 863
          G=GVUL(L)
 2860
 2880
          60 TU 864
 2900 863 G=U*(UD+T**S)*(VPC**(R-1.))
 2920 864 CUNTINUE
 2940 * NURMAL ITERATION REENTRY
 2960
       8 CONTINUE
 2980
       * CUMPUTE IMPEDANCE OF PC
                                              Figure A2
 3000
         Y1=P(I)*G/(6.28*FR(K)*C)
                                              Page 3 of IR Program
 3020 *
         ADVANCE ITERATION COUNTER
 3040
         M=M+1
 3060
       * CUMPUTE 1/R UF EL
 3080
          Y2G=DD*(FR(K)**A4LF)*EXP(AA*(V(J)-V1))
 3100
       * COMPUTE POWER FACTOR
 3120
          PF=1./SORT((((6.28*FR(K)*C)/Y2G)**2)+1.)
 3140
         ITERATION CALCULATIONS
 3160
       *
 3180
         Y2=P(I)*PF/SQRT(1.-PF*PF)
 3200
         Y=Y1+Y2
 3220
         Z=(1++P(I))+(1++P(I))
 3240
         V1=V(J)*SORT((Y2*Y2+P(I)*P(I))/(Y*Y+Z))
3260
         G1=U*(UD+T**S)*(V1**(R-1.))
3280
         DIFG=(R-1.)*P(I)*G1/(6.28*FR(K)*C*(Y*Y+Z))
         DDIFG=(((DIFG+P(I)/6.28+FR(K)+C+Y))+(2.+(-DIFG)+P(I)+Y+
3300
3320
          (D1FG))/(6.28*FR(K)*C*(Y*Y+Z)))/(1.+(D1FG/G1))
3340
         GD=(G1-G)/(-DIFG-1.)
3360
         G2=G-(GD)+(1.+((GD)+DDIFG)/(2.+(-DIFG-1.)))
```

IR PROGRAM

```
3380
      * CUNVERGENCE TEST
3400 ESC=ABS((G2-G)/G2)
3420
          GU TJ (511,512,513), MM
3440 511 IF(ESC-0.01) 20, 20, 13
3460 512 IF(ESC-0.02) 20, 20, 13
3480 513 IF(ESC-0.05) 20, 20, 13
3500
      *
         VALUE FOR NEXT ITERATION
3520
      13 6=62
3540
          IF (M-500) 66, 66, 44
      66 GJ TU 8
3560
      * END OF ITERATION, NO CONVERGENCE
3580
3600
      ×
         TRY ADVANCING LIGHT INPUT BY 1/10 PREVIJUS STEP
3620
      44 60 TO (43,131,132), MA
3640 * F1RST BACKUP, MM=1
3660
      43 T=1-((10.0**LT)*0.9)
3680
         M=0
3700
         WW=5
3720
         MMM=2
3740
         NVT=2
         GU TU 87
3760
3780 * SECUND BACKUP, MM=2
3800 131 T=T-((10.0**LT)*0.09)
3820
         M=0
         MM= 3
3840
3860
        NNN=MMM
3880
         MN14=2
3900
         CO TU 37
3920
      * ITERATION HAS CONVERGED
3940
      20 CUNTINUE
3960 * COMPUTE SUTPUT VARIABLES
3980 Y3=P(I)*G2/(6.28*FR(K)*C)
4000 VE=V(J)*SORT((Y3*Y3+1.0)/((Y3+Y2)*(Y3+Y2)+Z))
4010
         DØ 181 IT=1,3
4020
         IF(VE-VEA(I1) ) 182,181,181
4030 182 IVE=IT
4035
         GØ TJ 183
4040 181 CUNTINUE
4050 183 CUNTINUE
4060
      400 DVLUG=ALUG(DV(IVE))
4080
          FLUG=ALF(IVE)*(ALUG(FR(K)))
4100
          ELUG=SURT(AV(IVE)/VE)
4120
          BLUG=DVLUG+FLUG-ELUG
4130
        IF(5LUG+LT++23+026) 5LUG=+23+026
41 40
          B=EXP(BLJG)
4180 * SMALL STEP PRINT CHECK
         GJ TJ (393,396,395,396,395,396,395,396,395,396,395,394), MMM
4200
4220 396 WRITE (9,11) T, B, VE, G2
4240 395 CUNTINUE
4260
         GU TU (393,397,398), MM
4280 398 T=T+((10.0**LT)*0.01)
                                            Figure A2
         GØ TØ 399
4300
                                            Page 4 of IR Program
4320 397 T=T+((10.0**LT)*0.1)
4340 399 MMM=MMM+1
4360
         M=0
4380
         GU TU 87
4400 394 GU TU (571,572,573),MM
```

a - 10

IR PRØGRAM

```
4420 573 T=T+((10.**LT)*.01)
 4440
         MMM=NNN
 4460
          MM = 2
 4480
          GØ TØ 571
 4500 572 T=T+((10.**LT)*.1)
 4520
          MMM = 1
 4540
          MM = 1
 4560
          GØ TØ (571,581),NVTCK
 4580 581 NVT=1
 4600 571 GU TO 51
 4620 * END ØF SMALL STEP CALC.
 4640 * MAIN STEP PRINT CHECK
 4660 393 CONTINUE
          IF(IDK+EQ+1)60 T0 951
 4680
 4700
         IF(ABS(R-1.).GT..1) GU TU 862
 4720
         GØ TØ (866,869),NVT
 4740 866 IF(L.LE.NCK) GJ TJ 862
4760 869 GVUL(L)=G2
 4780 862 60 TO (96,96,15,15,96,15,15,15,98),N
- 4800 96 CONTINUE
 4820
          GU TU (693,930,930), KKK
 4840 930 CUNTINUE
 4860
         II = II + 1
 4880
         JJ=K
4900
         KK=KK+1
4920
         LL=K
         TT(II,JJ)=T
4940
4960
         BB(KK,LL)=B
4980
         IF(KD+E0+1) &RITE(5,810) B,T,V(J),FR(K)
5000 810 FURMAT(4E12.4)
5020
         IF(II-19) 693,692,692
5040
       692 II=0
5060
         KK=0
5080 693 CUNTINUE
          GU TU (951,950,951), KKK
5100
5120 951 CONTINUE
5140
          IF(KILLD.E0.1) G3 T0 814
5160
          WRITE(9,11) T, B, VE, G2
5180 814 CONTINUE
5200
          IF(IDK+E0+1) 60 13 300
5220 950 CUNTINUE
5240 * BREAKUUT OF LIGHT LOOP IF OUTPUT IS SATURATED
5260
          IF (L-1) 232, 232, 231
5280 231 IF ((VE/V(J))-0.995) 232, 111, 111
5300 232 CUNTINUE
5320 98 IF (N-9) 612, 611, 611
5340 611 N=0
                                                   FIGURE A2
5360 612 CUNTINUE
                                                   Page 5 of IR Program
5380 * END OF LIGHT STEP LOOP
      15 T=T+(10.0**LT)
5400
5420
          IDK=1
5440
          NCK=55
          GØ TØ 111
5460
5480
      *
          CHANGE LIGHT LOUP TO FULL RANGE
5500 300 IDK=55
5520
          GØ TØ 301
```

IR PROGRAM

```
5540 * ESCAPE FRUM LIGHT LUUP ( SATURATED ØUTPUT )
5560 111 CUNTINUE
5580
        NVT = 1
5600
         NV1CK=2
5620
         IF(NCK+EQ+55) GØ TØ 63
5640
         NCK=L
5660 63 CUNTINUE
5680
         GU TU 77
5700
      * NO ITERATION CONVERGENCE FOR THIS FRED.JVOLTAGE
5720 132 WRITE(9,33) ESC
5740 * END OF FREQ DO LOOP
5760 77 CENTINUE
5780 89 CONTINUE
         GU TU (940,941,941), KKK
5800
5820 941 CUNTINUE
5840 * CALL PLUTTING SUBR.
5860
         IF(KILLD.E0.1) 60 TO 940
5880
         CALL LUGPL
5900
         WEITE(9,552)
5920
         WRITE(9,55.)
5940
         WRITE(9,550)
5960 940 CUNTINUE
5980
        NVT=2
6000
        NCK=0
6020
         NV1CK=1
6040 * END OF VOLT DO LOOP
6060 88 CUNTINUE
6080 99 CONTINUE
6100
      *
       FORMAT STATEMENTS
6120
      *
6140 517 FURMAT('DV = ',3(1PE8.2,2X))
     12 FORMATC'WAT1S/CM2'>2X>'LIGHT OUT'>4X>'V EL'>6X>'PCOND'>
6160
6180
     11 FURMAT(1P4E10+2)
6200
       1 FORMAT(4E15.2)
6220 101 FURMAT(//4H R=, 1PE10.2, 4H S=, E10.2, 4H U=, 1PE10.2,
6240
       + 4H UD=,1PE10.2)
6260
       2 FURMAT(E15.6)
6280 102 FURMAT( ' C=', 1PE10.2)
6300 901 FURMAT(3E15.6)
6320 902 FURMAI(SHAALF=, 1PE9.2, 4H DD=, 1PE10.2, 4H AA=, E10.2)
       3 FURMATC'CAP RATIO=', 1PE8.2)
6340
6360 518 FORMAT('AV = ',3(1PE8.2,2X))
6360
       4 FURMAT(SF10.1)
6400 104 FORMAT (10H V APPL= ,5F10.1)
6420
       5 FURMATC'BEGINNING INPUT RAD. '/)
6440 105 FURMATCIOH FREC=
                             • 5F10+1)
6460
       7 FURMATCIOHCAP RATIU=, F6.1,10H V APPL=, F6.1,
6480
       + 8H
              FREQ=>F7.1)
6500 33 FURMAT(3HESC, 1PE20.8)
6520 106 FURMAT(3E16.2)
                                                    FIGURE A2
6540 107 FURMATC'TYPE "2" IF PLUT IS DESIRED '/
                                                    Page 6 of IR Program
         'TYPE "1" IF UNLY DATA IS DESIRED '/
6560
       +
         'TYPE "3" IF BOTH DATA AND PLOT ARE DESIRED '//)
6580
6600 997 FURMATC'TYPE PC SHUNT CAPACITANCE IN PF'//)
6620 996 FURMAT(E16+2)
6640 999 FURMAT(11)
```

C

IR PRØGRAM

6660	519	FURMATC 'VEA = ', 3(1PE8.2,2X))
6680	520	FØRMATC'ALF= ', 3(1PE8.2, 2X)/)
6780		STØP	
6800		END	

12

FIGURE	A2		
Page 7	of	IR	Program

1

```
PLUT SUBRUUTINE
   20
          SUBROUTINE LUGPL
          INTEGER X, FLOT, BLANK, DOT
   40 .
          DIMENSION LINE(61), XX(19,5), YY(19,5), Y(5), PLOT(5)
   60
   80
          COMMON XX, YY, LP
  100 * CHUUSE PLUTTING SYMBULS
          DATA BLANK/1H /, DJT/1H*/, X/1HX/
  150
  140
          DATA PLUT/1H1, 1H2, 1H3, 1H4, 1H5/
  160 * LAEEL THE PLUT
  180
          URITE (9,201)
  200 201 FURMAT(///20H
                           LIGHT OUT, FT L
                                            )
  220 207 WRITE(9,600)
  240 600 FURMATC'10-4',5X,'10-3',6X,'10-2',6X,'10-1',7X,
        + '1', 3X, '10+1', 6X, '10+2')
  260
  280 * FRINT LEFT BORDER
      99 CONTINUE
  300
  320
          DU 101 N=1,61
  340
          LINE(N)=D01
  360 101 CONTINUE
  380 602 DØ 605 I=1.7
  400
          LIN=1+10*(I-1)
  420
          LINE(LIN)=X
  440 605 CONTINUE
  460 603 NRITE(9,102) LINE, LP
  480 102 FURNAT (61A1, 11.0E', 12)
  500 * BLANK THE LINE
          DJ 103 I=1.61
  520
  540
          LINE(I)=BLANK
  560 103 CUNTINUE
  580 * WE DNLY PLOT 1,2,5,10,ETC DN X-AXIS;2=2,5=4,10=6
  600 * COMPUTE YY POINTS
          DU 105 K=1,19
  620
  640
          DJ 104 L=1,5
  660
          1F(YY(K,L).LT.1.E-7) YY(K,L)=1.E-7
  680
          Y(L) = ALOGIO(YY(K)L))
  700 222 YY(K,L)=Y(L)*10++41.
  720 104 CONTINUE
  740 105 CUNTINUE
  760 * X AXIS SIEP LOOP
  780
          DJ 107 I=1,19
  800 * MAKE SURE LINE(N) IS BLANK
  820
          DØ 120 NN=1.61
  840
          LINE(NN)=BLANK
  860 120 CUNTINUE
  880 * LUAD IN PLUITING SYMBOLS IN CURRECT PUSITIUN
          I CHECK=0
  900
  920
          DU 106 J=1,5
  940
          N=YY(I,J)
  960
          IF (N-0) 106, 106, 103
  980 105 IF (N-61) 109, 109, 106
                                                    FIGURE A3
 1000 109 LINE(N)=PLUT(J)
          ICHECK=ICHECK+1
                                                    PAGE 1 of PLOT PROGRAM
 1020
 1040 106 CONTINUE
          LINE(1)=DUT
 1060
 1080 * SELECT HURIZ. PUSITION
          GU TU (107,111,112,114,111,112,114,111,112,114,111,112,114,111,112,
 1100
        + 114,111,112,114,111,112,114), I
 1120
```

PLOT SUBROUTINE

1140	* Pl	LUT 2
1160	111	IF(ICHECK-0) 400, 400, 411
1180	400	WRITE(9,402) LINE(1)
1200	402	FURMAT(1H./1A1)
1220		GU TU 107
1240	411	I C=61
1260		DU 70 IV=1,61
1280		IF(LINE(IC).NE.BLANK) GØ TØ 80
1300		I C= I C- 1
1320	70	CUNTINUE
1340	80	CONTINUE
1360	503	WRITE(9,403) (LINE(NNN), NNN=1,IC)
1380		GU TJ 107
1400	403	FURMAT(1H./61A1)
1420	* PL	_0T 5
1440	112	IF(ICHECK-0) 400, 400, 412
1460	412	IC=61
1480		D0 82 IV=1.61
1500		IF(LINE(IC) • NE• BLANK) GU TU 84
1520	80	
1540	82	CONTINUE
1200	84	LUNTINUE LUTTERO 4040 (LINECANNA) ANAL TON
1500	40 A	WRITE(9) 404) (LINE(NNN)) NNN=1) (U)
1600	404	
1640	a 121	
1660	114	LINECIARY
1680	4 4 - 1	1 INF(61) = X
1690		
1700		IF (I-19) 443, 445, 445
1720	443	CONTINUE
1740		IF(ICHECK-0) 400, 400, 444
1760	* RJ	GHT BURDER DECADE MARKERS
1780	445	DN 714 IDUM=1,7
1800		LIN=1+10*(IDUM-1)
1820		LINE(LIN)=X
1840	714	CANTINUE
1860	713	WRITE(9,301) LINE, LP
1880	301	FURMAT(1H+/61A1, '1+0E', 12)
1890		GN 10 107
1900	444	CUNTINUE
1920	511	WRITE (9,405) LINE, LP
1940	405	FURMATC1H./01A1, 1.0E*,12)
1960	107	CUNTINUE
1970		LP=LP-6
1980		RETURN
2000		END

FIGURE A3 PAGE 2 OF PLOT PROGRAM

File	Input		
Name	Device	Variable	Comments
EL	1	C	Capacitance of EL/cell
		AALF	Frequency dependence of EL leakage
			conductivity. $G_{EL} \propto$ (Freq.) AALF
		DD	Dimensional constant (H) for EL leakage
			conductivity (EL conductivity is in
			mhos)
		AA	Coefficient (b) of voltage dependence of
			EL leakage conductivity. ${f G}_{{ m EL}}$ \propto
			<pre>Exp(AA*(Voltage))</pre>
		(Optional)	30 character line for data identification
PC	2	R	Exponent of voltage dependence of PC
			conductivity. $G_{pC} \propto (Volt)^{R-1}$
		S	Exponent of input energy dependence of
			PC conductivity. $G_{PC} \propto (L)^S$
		U	Dimensional constant for PC conductivity
			(PC conductivity in mhos)
		ന്ന	Dark current constant (U _d) for PC
			conductivity
		(Optional)	30 character line for data identification
KNOBS	3	V(I)	Array of up to 5 r.m.s. applied voltages [in Volts]
		FR(I)	Array of up to 5 applied frequencies [in Hz]

TABLE AI

Input Parameters for IR Program

TABLE AI

Input Parameters for IR Program (cont.)

•

File <u>Name</u>	Input Device	<u>Variable</u>	Comments
BRITE	4	VEA(I)	If brightness of EL vs. voltage fits the equation $B \propto exp(- \sqrt{A})$ only over
			$\frac{1}{\sqrt{Volt}}, \text{only over}$
			index fanges one can iit this
			equation to the experimental curve
			over 3 ranges of voltage. VEA(I)
			are the upper voltage limits of each
			approximation.
		DV(I)	Array of up to 3 dimensional constants
			to fit an EL brightness vs. voltage
			curve (Brightness in Ft-L).
		AV(I)	Array of up to 3 exponential constants
			to fit the equation, $B \propto \exp(-\sqrt{\frac{AV(I)}{V_0 I_+}})$
			to an EL brightness vs. voltage plot
			over the full range of possible applied
			voltages.
		ALF(I)	Array of up to 3 exponential constants of
			EL brightness. B \propto (Freq.) ^{ALF(I)} derived
			from fitting of an EL brightness vs.
			voltage curve.
		(Optional)	30 character line for data identification.
Keyboar	d	CSHUNT	Shunting capacitance around the PC due
ruha ng			to structure of device [in pf]. (E16.2)
		TBEGIN	Smallest input radiation value for the
			simulation. (E16.2)
Inputs:

FIGURE A4

FIGURE A4

BLOCK DIAGRAM OF IR PROGRAM

FIGURE A4

INPUT DATA FORMAT FOR IR

DATE:

EQUATIONS:

$$B = DV(I) * F^{ALF(I)} exp - \sqrt{\frac{AV(I)}{VE}}$$

$$Y2G(Leakage) = DD*FR(k)^{AALF} exp(AA*V(J)-V1))$$

$$G1(g) = U*(UD + T^{S})*(V1^{R-1})$$

DATA BLOCKS:

Test Data:

APPENDIX B

IMINT PROGRAM AND RUNGE SUBROUTINE

Bl. Introduction

The IMINT Program treats essentially the same circuit as the IR Program with one important difference. The difference is that the conductance of the photoconductor is allowed to vary exponentially with time in response to step functions light input. A schematic diagram of the circuit treated is shown in Figure B1.

B2. Circuit Analysis and Solution Procedure

To solve this circuit we do not use any linear approximations. Instead, we write the equations for the total current through the combined circuit in a form:

I	$C_{EL} \frac{d(V_{EL})}{dt} +$	v_{EL}	$\frac{1}{R_{EL}}$		•	Equation	B1
I	$C_{PC} \frac{d(V_{PC})}{dt} +$	v _{PC}	1 R _{PC}	•		Equation	B2

The conductivity of the EL cell is written again as it was for the IR Program and is expressed below:

 $\frac{1}{R_{EL}} = H F^{A} \exp(K(V_{EL}))$ Equation B3

where H is a dimensional constant, F is the frequency, and A and K are constants. The photoconductor conductivity is again expressed in the same form as before, but modified with an exponential time term.

In the equation below, the upper exponential term is for the duration of the light pulse. The lower time term is for the decay time of the photoconductor after the input radiation pulse has ceased.

$$\frac{1}{R_{PC}} = U(U_{d} + L^{S}) V_{PC}^{r-1} \left\{ \frac{1 - \exp(-\lambda_{1}(t-t_{1}))}{\exp(-\lambda_{2}(t-t_{2}))}, & \text{if } t_{1} < t < t_{2} \right\}$$

Equation B4

FIG	URE	B	1

In this equation, U is dimensional constant, Ud is a dark conductivity term, L is peak input radiation, s and r are constants, λ_1 is a rise time constant, λ_2 is a decay time constant, t_1 is the beginning of the light pulse, and t_2 is the end of the light pulse. The applied voltage is assumed to be of the form:

$$V_{app} = V_m \sin(\omega t - \delta_0)$$
 Equation B5

Where δ_0 is chosen so that the beginning voltage on the EL for the simulation is zero. This gives us for the voltage on the photoconductor the following term:

$$V_{PC} = [V_m \sin(\omega t - \delta_0)] - V_{EL}$$
 Equation B6

Putting Equation B6 into the combined Equation B1 and B2, we have Equation B7.

$$(C_{EL} + C_{PC}) \frac{d}{dt} V_{EL} = -V_{EL}[HF^A \exp(K(V_{EL}))]$$

 $+C_{pc}[V_m \omega \cos(\omega t - \delta_o)]$

+ $[U(U_d + L^S)] [V_m \sin(\omega t - \delta_0) - V_{EL}]^r \left\{ \frac{1 - \exp(\lambda_1(t - t_1))}{\exp(-\lambda_2(t - t_2))} \right\}$

Equation B7

This equation is of the functional form:

 $\frac{dy}{dt} = f(y,t)$

Equation BS

This equation is a first order equation which is easily integrable by several numerical techniques. We have used one of the simplest techniques which is the Runge-Kutta method. The present IMINT Program is not ideally suited for the simulation of thin film EL light output because it has no provision yet for the inclusion of multiple curve fits to the TFEL brightness versus voltage curve.

B3. Description of IMINT Program and Runge Subroutine

IMINT is written in FORTRAN IV and is used on a time sharing computer system through a standard teletype terminal. Figure B2 contains a listing of IMINT. The time sharing system it has been

used on has excellent file editing capabilities if the file contains line numbers. The first field of numbers on a line are the line numbers. The second field of numbers is the FORTRAN statement number field. The "*" are for comment lines. The program is liberally laced with comments as to the function of flags and switches and the purpose of a group of statements. A complete listing of the input parameters for the program along with the device number called for in the program are shown in Table Bl. Table BII contains the input parameters which are entered at the keyboard at program execution time along with comments as to the nature of the parameters. The IMINT Program integrates Equation B4 in the section above by means of a subroutine called RUNGE. The program is basically a simple integration program except for two parts. The first of these parts is the determination of the phase difference between the applied voltage and the voltage on the EL. This phase difference (δ_0) is determined such that the voltage on the EL at the beginning of the simulated voltage cycle is passing through zero in the positive direction. The program finds this phase angle from an initial guess by the designer by means of an iteration technique and computing the rate of change of the convergence difference between two cycles run with different phase angles and computing a new phase angle based on this rate of change of convergence with respect to phase angle. Once the program has determined a δ_0 so that the voltage on the EL returns to zero in one period of the applied frequency, the program then integrates from the end of this one cycle (with no input radiation during this cycle) forward in time for as many cycles as the designer choses.

The second part of the program differs from a simple integration routine because of the time varying nature of the radiation input. This time varying nature is handled by introducing the exponential rise of decay functions as shown in Equation B4 of the section above at the appropriate time in the integration.

Figure B3 is a block diagram of the IMINT Program. This is not a flow chart. It is meant to be used as a guide for finding one's way through the program in addition to providing a brief overview of the operation of the program. Table BIII and Table BIV are data sheets that have been useful to the computer operator when using the program and contain the format specifications used in the files.

The subroutine RUNGE is a simple form of the Runge-Kutta technique for integrating first order differential equations. The flags, switches, and variables in the subroutine are described in the comment statements at the beginning of the subroutine listing. A listing of RUNGE is contained in Figure B4.

As yet, we do not have a useful plotting subroutine to plot the output of the IMINT Program. At present, the output is the time, voltage on the EL, EL current, and derivitive of the voltage on the EL. The data must then be plotted by hand. From the plot, one can find peak AC voltages applied to the EL as a function of time and use this in a simple calculation with EL brightness formulas that are appropriate for thick film or thin film EL to get the brightness output.

• • • • • • •

IMINT PROGRAM

		•
10	* UMAGE INTENSIFIER PROGRAM	•
20	* CFFICE OF NAVAL RESEARCH PRØGRAM	•
-30	*	•
40	*	
50	DIMENSION Y(10), DY(10)	
60	CALL DEFINE(1,6HIIDAT)	
70	READ(1.10)CEL.CPC.ERED.A.H.AK	
80		•
00		•
90	READ(1)207 1) GLAMID GLAMZ	•
100	READ(1,11) N	
110	WRITE(9,12)	•
120	12 FURMATC'ELJELPJPHSEJDPHSE'/)	
130	READ(9,25) EL,ELP,PHSE,DPHSE	
140	WRITE(9,13)	
150	13 FORMATC 'TF, DPRT, DT, VDED'/)	
160	FFAD(9.25) TR.DPRT DT.VDFD	
170		· ·
170		
180		
190	READ(9,26) R, T1, T2	
200	WRITE(9,16)	•
210	16 FURNATC'CYCMX'/)	
220	READ(9,15) CYCMX	
230	WRITE(9,17)	•
240	17 FURMATC CONVER 12)	-
250	READ(9.15) CONVCR	Figure B2
960		Page 1 of ININT Ducaram
670		FAGE I OI IMINI FIOGIAM
210	10 FURMAI (0212-57	
- 2XII		
290	15 FURMAT(E12.5)	
290 300	15 FURMAT(E12.5) 25 FURMAT(4E12.5)	
290 300 310	15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5)	
290 300 310 320	15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5) *	
290 300 310 320 330	15 FURMAT(E12.5) 25 FORMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES	
290 300 310 320 330 340	15 FORMAT(E12.5) 25 FORMAT(4E12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES	
290 300 310 320 330 340 350	15 FORMAT(E12.5) 25 FORMAT(4E12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * "MG" IS INPUT STATE INDICATOR. MG	=1 IS BEFORE PULSE
290 300 310 320 330 340 350 360	15 FORMAT(E12.5) 25 FORMAT(4E12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG' IS INPUT STATE INDICATOR. MG * 'MG' IS INPUT STATE INDICATOR. MG	=1 IS BEFORE PULSE
290 300 310 320 330 340 350 360	15 FURMAT(E12.5) 25 FURMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 370	15 FURMAT(E12.5) 25 FURMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 *	=1 IS BEFORE PULSE TER PULSE
290 300 310 320 330 340 350 360 370 380	15 FURMAT(E12.5) 25 FORMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * 'MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 370 360 390	15 FURMAT(E12.5) 25 FURMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * 'MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1.	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 360 370 360 390 400	15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * "MG" IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * "CYC" IS VOLTAGE CYCLE COUNTER CYC=1. L=1	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 370 360 390 400 410	15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FDRMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * "MG" IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * "CYC" IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 370 360 390 400 410 420	15 FURMAT(E12.5) 25 FORMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * 'MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159	=1 IS BEFORE PULSE Ter pulse
290 300 310 320 330 340 350 360 370 360 370 380 390 400 410 420 430	<pre>15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FDRMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION</pre>	=1 IS BEFORE PULSE Ter pulse Of first cycle
290 300 310 320 330 340 350 360 360 370 360 390 410 420 440	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FDEMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0.</pre>	=1 IS BEFORE PULSE Ter pulse Of first cycle
290 300 310 320 330 350 350 360 360 370 380 400 420 420 420 450	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FDEMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPET'' IS TIME TO PRINT OUTPUT VAR</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 300 310 320 330 350 360 360 360 370 360 370 380 400 420 420 450	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FDEMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPET=T</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 300 310 320 340 350 360 360 370 360 370 380 410 420 420 420 450 450	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FDEMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * "MG" IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * "CYC" IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * "APPSW" IS O FOR FIRST INTEGRATION APPSW=0. * "TPRT" IS TIME TO PRINT OUTPUT VAR TPRT=T * "ETET IS DESCRIPTION OF DEFINITION</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 300 310 320 330 350 360 360 360 370 360 370 380 400 420 420 420 450 450	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FDEMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * "APPSW" IS O FOR FIRST INTEGRATION APPSW=0. * 'TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * 'DTF'' IS PERIOD OF DRIVING FRE0.</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 300 310 320 330 350 360 360 360 370 360 370 380 410 420 420 450 450 450 450 450 450 450 450 450 45	<pre>15 FURMAT(E12.5) 25 FDEMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * "MG" IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * "CYC" IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * "APPSW" IS O FOR FIRST INTEGRATION APPSW=0. * "TPRT" IS TIME TO PRINT OUTPUT VAR TPRT=T * "DTF" IS PEHIOD OF DRIVING FRE0. DTF=TF-T</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 300 310 320 340 350 360 370 360 370 360 370 380 410 420 420 450 450 450 450	<pre>15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * "MG" IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * "CYC" IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * "APPSW" IS O FOR FIRST INTEGRATION APPSW=0. * "TPRT" IS TIME TO PRINT OUTPUT VAR TPRT=T * "DTF" IS PERIOD OF DRIVING FREO. DTF=TF-T M=1</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES
290 310 320 330 350 360 370 360 370 360 410 420 450 450 450 450	<pre>15 FORMAT(E12.5) 25 FORMAT(AE12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG # MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * 'APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * 'TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * 'DTF'' IS PERIOD OF DRIVING FREO. DTF=TF-T M=1 * 'NCON=1'' IS SWITCH TO CONVERCENCE ()</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES,.
290 310 320 330 350 360 360 370 360 410 420 450 450 450 510	<pre>15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * ''MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * ''CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''UTF'' IS PERIOD OF DRIVING FREO. DTF=TF-T M=1 * ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''WCJN=2'' IS SWITCH AZOUND CONVERCENCE)</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER
290 310 320 320 320 320 320 320 320 320 320 32	<pre>15 FURMAT(E12.5) 25 FDRMAT(4E12.5) 26 FURMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * ''MG'' IS INPUT STATE INDICATOR. MG * MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * ''CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS PERIOD OF DRIVING FREO. DTF=TF-T M=1 * ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''WCON=2'' IS SWITCH ADOUND CONVERCENCE * ''WCON=2'' IS SWITCH ADOUND CONVERCENCE * ''WCON=1'' IS SWITCH ADOUND CONVERCENCE</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER SE=PHSE+DFMSE
2900 3100 3200 3200 3200 3200 3200 3200 32	<pre>15 FURMAT(E12.5) 25 FDRMAT(E12.5) 26 FURMAT(BE12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * ''CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS PERIOD OF DRIVING FREO. DTF=TF-T M=1 * ''NCON=1'' IS SWITCH TO CONVERCENCE OF * ''NCON=2'' IS SWITCH ADDWD CONVERCENCE * INTEGRATIAG SECOND TIME LITH PR * ''NCON=3'' IS SVITCH COMPLETELY ASDM</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER SE=PHSE+DFMSE ND CONVENSENCE
2900 3100 3200 3200 3200 3200 3200 3200 32	<pre>15 FURMAT(E12.5) 25 FDRMAT(E12.5) 26 FURMAT(BE12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * 'MG'' IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE. MG=3 IS AF MG=1 * 'CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * "APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * 'TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * 'DTF'' IS PERIOD OF DRIVING FREO. DTF=TF-T M=1 * 'NCON=1'' IS SWITCH TO CONVERCENCE OF * 'NCON=2'' IS SWITCH ADDWD CONVERCENCE * INTEGRATIAG SECOND TIME LITH PA * 'NCON=3'' IS S' ITCH COMPLETELY ASUUT CHECKS AND PHASE AND FLORE CAREFULT</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER SE=PHSE+DFMSE ND CONVERGENCE ONS
2900 3120 323 333 333 333 333 333 333 333 333 3	<pre>15 FORMAT(E12.5) 25 FORMAT(4E12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * ''MG'' IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * ''CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS PERIOD OF DRIVING FRE0. DTF=TF-T M=1 * ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''NCON=2'' IS SWITCH TO CONVERCENCE (* ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''NCON=2'' IS SWITCH TO CONVERCENCE (* ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''NCON=1'' IS SWITCH TO CONVERCENCE (* ''NCON=1'' IS SWITCH ALOUND CONVERCENCE (* ''NCON=1'' IS SWITCH COMPLETALY ALOUND CHECKS AND PHASE ANGLE CORRECTING * ''NCON=1'' IS SWITCH COMPLETALY ALOUND * ''NCON=1''' IS SWITCH COMPLETALY ALOUND * ''NCON=1''''''''''''''''''''''''''''''''''''</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER SE=PHSE+DFMSE ND CONVERGENCE DNS
2900 31200 32300 33000 33000 33000 33000 33000 33000 33000 3000000	<pre>15 FORMAT(E12.5) 25 FORMAT(4E12.5) 26 FORMAT(3E12.5) * * INITIALIZATION OF FLAGS AND SWITCHES * * ''MG'' IS INPUT STATE INDICATOR. MG MG=2 IS DURING PULSE, MG=3 IS AF MG=1 * ''CYC'' IS VOLTAGE CYCLE COUNTER CYC=1. L=1 IG=1 PI=3.14159 * ''APPSW'' IS O FOR FIRST INTEGRATION APPSW=0. * ''TPRT'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS TIME TO PRINT OUTPUT VAR TPRT=T * ''DTF'' IS PERIOD OF DRIVING FRE0. DTF=TF-T M=1 * ''NCON=1'' IS SWITCH TO CONVERCENCE OF * ''NCON=2'' IS SWITCH ACOUND CONVERCENCE * ''NCON=3'' IS SWITCH COMPLETELY ACOUND CHECKS AND PHASE ANGLE CORRECTION NCON=1 * ''NCON=1</pre>	=1 IS BEFORE PULSE TER PULSE OF FIRST CYCLE IABLES, CHECK MCE CHECK AFTER SE=PHSE+DFMSE HD CONVERGENCE DNS

. .

IMINT PROGRAM

5'70		ISAVE=1
580	*	
590		WRITE(9,31)
600	31	FØRNAT(1X, 'CEL', 9X, 'CFC', 9X, 'FREO', 8X, 'VN')
610		WRITE(9,30) CEL, CPC, FREG, VM
620		WRITE(9, 32)
630	32	FORMATCIX, 'H', 11X, 'A', 11X, 'AK', 10X, 'VEL')
640		WRITE(9, 30) H, A, AK, VEL
650		WRITE(9,33)
6.6.0	33	FORMAT(1X, 'U', 11X, 'UD', 10X, 'S', 11X, 'R')
670		WRITE(9,30) U,UE,S,R
680		WRITE(9, 34)
690	34	FORMAT(1X, 'PHSE', 8X, 'DPHSE', 7X, 'TF', 10X, 'DT')
700		WRITE(9,30) PHSE, DPHSE, TF, DT
710		WRITE(9,35)
720	35	FORMATCIX; 'GLAM1', 7X, 'GLAM2', 7X, 'EL', 10X, 'ELP')
730		WRITE(9, 30) GLANI, CLANZ, EL, ELP
740		WRITE(9,35)
750	36	FORMAT(1X, 'T1', 10X, 'T2')
760		WRITE(9,30) T1,T2
770	· *	
780	30	FURMAT(1PAE12.5)
790		DNEGA#20718FRED
800		
810		
820		- FURE ADA LIGH 中VII
830		VEL 7-74 CONCONVICE BETTT AND
040	ም ለ በ	CA TO 145.461.190UF
860	-10	00 10 (40) 10/7 ISUAC
870	-15	
880	F1 6	AvetPrt
800		
900		69 TU AS
910	46	
920		VELEA2
930		TPRT#A3
940	*	
950	43	PPH=PHSE#150+/PI
260	•	WRITE(9,840) PPH
970	840	FORMAT(/'PHASE ANGLE = 'FIO.3)
980		WRITE(9, 49)
9 90	49	FURMAT(/AX, 'TIME', 6X, 'VEL', 6X, 'CURR', 6X, 'VELD'/)
000	ಸೇ	INTEGRATION REPATRY
010	50	VEL1=VEL5+COSCOMEGA+T+PHSE)
020		VELA=VM*SIN(CMEGA#T+PHSE)=VEL
030		GO TU (54,55,56),3G
040	55	VEL6=(1EXP(-(T-T1)/GLAM1))*VELB
050		69 70 58
000	56	VELG=(EXP(-(T-T2)/GLAM2))*VEL8
070		60 TU 58
020	54	VELG=U@CUD+EL@wS>
090	58	CWITINUE
100		VEL2=VELANVELGOADS(VELA) VOR
110		VELB=-VEL®VEL7®EMP(AK®VEL)
120	*	· · · · ·

n-29

.....

IMINT PROGRAM

3

1130	* BASIC DIFFERENTIAL FOUNTION	• • •
11/0		
1150	· • • • • • • • • • • • • • • • • • • •	
1140	T CO TO (40 100) N	•
1100		•
1170	60 IF(I+LI+(IFKI=I+L=7)) 60 10 80	• •
1180		(2) A set of the se
1190	CURR=(CEL*VELD)+(VEL)*(FREQ**A)*H*E?	XP(AK*VEL)
1200	WRITE(9,70) T, VEL, CURR, VELD	
1210	*	
1220	70 FURMAT(1P2E12.5,E9.2,E12.5)	•
1230	TPRT=TPRT+DPRT	
1240	*	•
1250	80 CONTINUE	• •
1260	GO TO (81,82,83),MG	`
1270	81 JF(T.LT.(T1-1.E-7)) G0 T0 83	•
1280	EL=ELP	•
1290	MG=2	
1300	VEL8=10s(11D+EL**S)	
1310	60 TO 50	· · · ·
1320	80 IV JU JU 80 IV(T-1)T-(T0-1-F-7)) CO TO 82	•
1020		
1000		
1340		
1350	VEL8=U%(UD+EL##S)	
1360	GD TØ 50	•
1370	83 CONTINUE	•
1380	*	• • •
1390	IF(T.GE.(TF-1.E-7)) G0 T0 200	
1400	M= 2	
1410	100 CUNTINUE	
1420	DY(1)=VELD	
1430	Y(1)=VEL	
1440	*	•
1450	CALL RUNGE (L. IG, Y, DY, DT, M, T, N)	
1460	*	
1 470	VEL=Y(1)	ويسمى المتوجد تبارحك وشرارياني والإحمد اليور موجوانك بتكرك فالمستمدة فتنا الالالموجود الجراج والكرك للمدار الكاليك التكاليك
		·
1480	60 70 50	Rigura B?
1480	62 TO 50 200 CONTINUE	Figure B2. Page 3 of IVINT Program
1480 1490	62 TO 50 200 CONTINUE 63 TO CRIDE 200, 2001, NCON	Figure B2 Page 3 of IMINT Program
1480 1490 1500	G2 T0 50 200 CONTINUE G3 T0 (210,240,300), NCON TEST FOR CONVERSENCE	Figure B2 Page 3 of IMINT Program
1480 1490 1500 1510	G2 T0 50 200 CONTINUE G3 T0 (210,240,300), NCON * TEST FOR CONVERGENCE 210 UDE+UE	Figure B2 Page 3 of IMINT Program
1480 1490 1500 1510 1520	G2 T0 50 200 CONTINUE G3 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDE=VEL	Figure B2 Page 3 of IMINT Program
1480 1490 1500 1510 1520 1520	G2 T0 50 200 CONTINUE G3 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE	Figure B2 Page 3 of IMINT Program
1450 1490 1500 1510 1520 1520 1530	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR)	Figure B2 Page 3 of IMINT Program
1450 1490 1500 1510 1520 1520 1530 1540	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEA1=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) *	Figure B2 Page 3 of IMINT Program 0 300,300,230
1450 1490 1500 1510 1520 1520 1530 1540 1550 1560	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON	Figure B2 Page 3 of IMINT Program 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1530 1540 1550 1560 1570	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DEFIVE NEW PHASE ANGLE FOR SECOND CON 230 IF(APPSW.E0.1.) G0 TO 250	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1530 1540 1550 1560 1570 1550	G9 T0 50 200 CONTINUE G9 T9 (210,240,300),NC9N * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * * DEFIVE NEW PHASE ANGLE FOR SECOND CON 230 IF(APPSW-E0.1.) G9 T9 250 APPSW=1.	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1550 1550 155	G9 T0 50 200 CONTINUE G9 T9 (210,240,300),NC9N * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF(APPSW-E0-1-) G9 T9 250 APPSW=1- PASS=1-	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1550 155	G9 T0 50 200 CONTINUE G9 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DEFIVE NEW PHASE ANGLE FOR SECOND CON 230 IF(APPSW.E0.1.) G0 T0 250 APPSW=1. PASS=1. PSAVE=PHSE	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1550 155	G2 T3 50 200 CONTINUE G3 T3 (210,240,300),NC3N * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF(ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF(APPSW.E0.1.) G2 T3 250 APPSW=1. PASS=1. PSAVE=PHSE PHSE=PHSE PHSE=PHSE	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DEFIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 TO 250 APPSW=1. PASS=1. PASS=1. PASS=1. PASS=2	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G2 T0 50 200 CONTINUE G3 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 T0 250 APPSW=1. PASS=1. PASS=1. PASS=1. PASS=2. GU T0 40	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 TO 250 APPSW=1. PASS=1. PASS=1. PASS=1. PSAVE=PHSE PHSE=PHSE PHSE=PHSE OUN=2 GU TO 40 240 DELVDE=VEL-VDE	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G2 TD 50 200 CONTINUE G3 TO (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 TO 250 APPSW=1. PASS=1. PASS=1. PASS=1. PSAVE=PHSE PHSE=PHSE PHSE=PHSE+DPHSE NCOM=2 GU TO 40 240 DELVDE=VEL-VDE PVDE=EELVDEZDPHSE	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G2 T0 50 200 CONTINUE G3 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 T0 250 APPSW=1. PASS=1. PASS=1. PSAVE=PHSE PHSE=PHSE+DPHSE NCON=2 G0 T0 40 240 DELVDE=VEL-VDE PVDE=DELVDE/DPHSE G0 T0 270	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1490 1500 1510 1520 1520 1520 1520 1520 152	G9 T0 50 200 CONTINUE G3 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 T0 250 APPSW=1. PASS=1. PSAVE=PHSE PHSE=PHSE+DPHSE NCON=2 G0 T0 40 240 DELVDE=VEL-VDE PVDE=DELVDE/DPHSE G0 T0 270 *	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT
1450 1450 1510 1510 1520 1520 1520 1520 1520 15	G9 T0 50 200 CONTINUE G9 T0 (210,240,300),NCON * TEST FOR CONVERGENCE 210 VDE=VEL VDEAI=-VDE IF (ABS(ABS(VDEAI)-ADS(VDED))-CONVCR) * * DERIVE NEW PHASE ANGLE FOR SECOND CON 230 IF (APPSW.E0.1.) G0 T0 250 APPSW=1. PASS=1. PSAVE=PHSE PHSE=PHSE+DPHSE NCON=2 G0 T0 40 240 DELVDE=VEL-VDE PVDE=DELVDE/DPHSE G0 T0 270 *	Figure B2 Page 3 of IMINT Program 0 300,300,230 NVERGENCE ATTEMPT

• • •

IMINT PROGRAM

4

. . .

1690	250 IF(PASS.EO.PASMX) GO TU 400
1700	PASS=PASS+1 .
1710	270 CORN=VDEAI/PVDE
1720	PHSE=PSAVE+CURR
1730	PSAVE=PHSE
1740	NCUN=1
1750	67 TV 40
1760	*
1770	300 CUNTINUE
1780	IF(CYC.EQ.CYCMX) CJ TU 400
1790	IFCCYC+EQ+1+) NCUN=3
1800	· CYC=CYC+1 ·
1810	TF=TF+DTF
1820	ISAVE=1
1830	TPRT=T
1840	APPSU=0.
1850	GO TO 40
1860	*
1870	400 STOP
1880	END

Figure B2 Page 4 of IMINT Program

a--31

TABLE BI

Input Parameters for IMINT Program from Data File

File Name: IIDAT Device Number: 1 Parameter Name Comments CEL Capacitance/Cell of EL [in farads]. CPC Shunt Capacitance around PC cell [in farads]. FREQ Applied power supply frequency to the device [in Hz]. Exponent of frequency dependence of EL leakage conductivity A according to: G_{EL} co (Freq.)^A. Dimensional constant of leakage conductivity of EL [EL leakage Η in mhos]. AK Exponential coefficient of voltage dependence of leakage conductivity of EL according to: G_{EI} ∝ Exp(AK*Volt.), Note: Volt. is absolute value of peak applied voltage. VM Maximum peak applied voltage to the device. U Dimensional constant of PC conductivity [PC conductivity in mhos]. W Dark conductivity term (U_d) of PC conductivity. Exponent of steady state dependence of PC conductivity upon S input radiation. PASMX Upper limit on number of searches for convergence of first voltage cycle. VEL Voltage across EL cell at time = T. T Time at which simulation begins [in seconds]. GLAM1 · PC conductivity rise time constant used in form:

 $G_{PC} \propto 1 - Exp(-\frac{T-T1}{GLAM1})$. (Times in seconds)

T/	٩E	L	E	B	I
	_				

Input Parameters for IMINT Program from Data File (Cont.)

to be integrated by RUNGE subroutine. In IMINT, N = 1.

	File Name: IIDAT Device Number:]
Parameter Name	Comments
GLAM2	PC conductivity decay time constant used in form:
• •	$G_{PC} \approx Exp(-\frac{T-T2}{GLAM2}). $ [Times in seconds]
N	Number of simultaneous first order differential equations

TABLE BII

Input Parameters for IMINT Program Entered at

Program Execution Time

Parameter Name	Comments
EL	Input radiation before input pulse [in units consistent with
	PC conductivity equation].
ELP .	Peak value of square pulse input radiation [same units as EL above].
Phse	Initial guess at voltage phase angle for first steady-state cycle [in degrees].
DPHSE	Increment for adjusting PHSE after integration of first
	steady-state cycle [in degrees].
TF	Time at which voltage on EL repeats its value at T. (TF-T)
	is period of the driving frequency [in seconds].
DPRT	Time increment between printouts [in seconds].
DT	Time increment used per integration step [in seconds].
VDED	Desired value of voltage on EL after integration of first
	steady-state voltage cycle (usually equal to VEL).
R	Exponent of input radiation dependence of PC conductivity:
	$G_{PC} \subset (L)^R$ (Note R = r-1 in equations).
Tl	Start time of input radiation pulse [in seconds].
Т2	Stop time of input radiation pulse [in seconds].
CCMX	Maximum number of EL voltage cycles computed.
CONVCR	Difference allowed between EL voltage computed at end of
	first voltage cycle and the desired voltage value
	(VDED) [in volts].

• FIGURE B3

FIGURE B3

FIGURE B3

FIGURE B3

IIDAT DATA FILE INPUTS FORMAT FOR IMINT

.

DATE:

EL Leakage Constants CEL CPL FREQ H A AK (6E12.5) PC Constants U VM ໝ S PASMX VEL (6E12.5) T GLAM1 GLAM2 (3E12.5)

N

(14)

COMMENTS:

TEST DATA:

TABLE BIII

		TTY Inputs for	IMINT	DATE:
EL .	ELP	PHSE	DPHSE	
••••••••••••••••••••••••••••••••••••••		e energy in the second second second		(4E12.5)
		· · · · ·		· · ·
	•			
TF	DPRT	DT	VDED	
			<u></u>	(4E12.5)
• •				
				· · · · · · · · · · · · · · · · · · ·
R	Tl	T2		
				(3 E12.5)
CCMX			• •	
Contractor Conference	(E12.5)			
	• .			
CONVCR				
	(E12.5)			
	• •			
COMMENTS:				
	· · · ·		•	

TEST DATA:

•-

TABLE BIV

RUNGE SUBROUTINE 10 SUBROUTINE RUNGE(L, IG, Y, DY, DT, M, T, N) 20 * N=NUMBER OF DIFFERENTIAL EQUATIONS (MAX. DF 10) .30 * IG=1 INDICATES IF CALL IS FOR FIRST RUNGE SLOPE 40 * CALC. IN THE SUBROUTINE 50 * T=INDEPENDENT VARIABLE 60 * DT=INTEGRATION INCREMENT OF IND. VARIABLE 70 * Y=DEPENDENT VARIABLE 80 * DY=DERIVATIVE OF Y 90 * L=2 IS SWITCH AROUND "IG" CHECK AT STATEMENT 100 (ON 100 * FIRST CALL TO RUNGE SLOPES) FIRST CALL TO RUNGE SLOPES) 110 * M=2 INDICATES TO MAIN PROGRAM THAT RUNGE SLOPES ARE 120 * BEING COMPUTED 130 DIMENSION DY(10),Y(10),F(80) 140 90 G3 T3 (100,110),L 150 100 GO TO(101,110), IG 160 101 J=1 170 L=2 180 D9 106 K=1.N 190 K3=N+K 200 106 F(K3)=Y(K) 210 60 10 90 220 110 DO 140 K=1,N 230 K1=K 240 K2=K+5+N 250 K3=K2+N 260 K4=X+N GO TO(111+112,113,114),J 270 280 111 F(K1)=DY(K)=DT 290 Y(K)=F(K4)+.5%F(K1) 300 GO TO 140 310 112 F(K2)=DY(K)*DT 320 GU TU 124 330 113 F(K3)=DY(K)*DT 340 69 TO 134 350 114 Y(K)=F(K4)+(F(K1)+2.*(F(K2)+F(K3))+DY(K)*DT)/6. 360 GØ TØ 140 370 124 Y(K)=.5*F(K2) 380 ¥(K)=Y(K)+F(KA) 390 G9 T0 140 400 134 Y(K)=F(KA)+F(K3) Figure B4 410 140 CONTINUE RUNGE Subroutine 420 GU TO(170,180,170,180),J 430 170 T=T+.5+DT 440 180 J=J+1 450 IF(J-A)404,404,299 460 299 16=1 470 M=1 69 TU 406 480 490 404 IG=2 500 405 L=1 510 406 RETURN

PAGE

520

END

1

APPENDIX C

UTILITY PROGRAMS

Cl. Introduction

Several smaller programs were developed to aid in the analysis of proposed devices. The first group of programs are used as aids in extracting useful parameters of the light-emitting materials and the photoconductive materials. This group includes the GFIT, ELFIT, ELDG, and PLDATA programs and the SLPLOT subroutine.

The GFIT program fits a non-voltage dependent equation to resistance vs. input radiation measurements of photoconductor cells. The ELFIT program fits the electroluminescent brightness vs. frequency and voltage measurements to an equation over three consecutive ranges of applied voltage. The ELDG program creates pairs of brightness vs. voltage data from an equation. The data is put in a file for plotting with the PLDATA program. The PLDATA program takes data from a file, modifies it for use in the SLPLOT subroutine, and calls the subroutine. The SLPLOT subroutine generates a four-cycle semi-logarithmic plot of a maximum of five curves of fifty points each.

The second group of utility programs simulate unusual ways of driving image conversion panels and the stacking or cascading of image conversion panels. The AM and FM programs use data files generated by the IR program to simulate the time averaged light output from image conversion panels driven by very simple amplitude or frequency modulated voltage waveforms. The MASSA program condenses the data files generated by the IR program for use in the AM or FM programs. The CASCAD program uses data files of input

RUNGE SUBROUTINE

10 SUBRUUTINE RUNGE(L, IG, Y, DY, DT, M, T, N) N=NUMBER OF DIFFERENTIAL EQUATIONS (MAX. OF 10) 20 \$1 .30 IG=1 INDICATES IF CALL IS FOR FIRST RUNGE SLOPE * 40 * CALC. IN THE SUBROUTINE 50 * T#INDEPENDENT VARIABLE 60 DT=INTEGRATION INCREMENT OF IND. VARIABLE * 70 * Y=DEPENDENT VARIABLE 80 * DY=DERIVATIVE OF Y L=2 IS SWITCH AROUND "IG" CHECK AT STATEMENT 100 (ON 90 沭 100 FIRST CALL TO RUNGE SLOPES) * 110 * N=2 INDICATES TO MAIN PROGRAM THAT RUNGE SLOPES ARE 120 26 BEING COMPUTED 130 DIMENSION DY(10), Y(10), F(60) 140 90 63 TO (100,110),L 150 100 GU TO(101,110), IG 160 101 J=1 170 L=2 180 DO 106 K=1.N 190 X3=N+K 200 106 F(K3)=Y(K) 69 10 90 210 220 110 DO 140 K=1.N 230 K1=K 240 K2=K+5#N 250 K3=K2+N 260 $K_{4}=X+N$ GO TO(111+112+113+114)+J 270 280 111 F(K1)=DY(K)*DT 290 Y(K)=F(K4)+.5%F(K1) 300 GO TO 140 310 112 F(K2)=DY(K)*DT 320 GU TU 124 330 113 F(K3)=DY(K)*DT 69 TO 134 340 350 114 Y(K)=F(K4)+(F(K1)+2.*(F(K2)+F(K3))+DY(K)+DT)/6. 360 GO TO 140 370 124 Y(K)= .5*F(K2) 380 Y(K)=Y(K)+F(KA) 390 G9 T0 140 400 134 Y(K)=F(KA)+F(K3) Figure B4 410 140 CUNTINUE RUNGE Subroutine 420 GJ TO(170,180,170,180),J 430 170 T=T+.5*DT 440 180 J=J+1 IF (J-A) 404, 404, 299 450 460 299 IG=1 470 M=1 60 TO 406 480 490 404 IG=2 500 405 L=1 510 406 RETURN 520 END

vs. output of simulated image conversion panels to compute the light output of a cascaded pair of panels. The MASSA2 program is used after the MASSA program to condense IR2 data output for use in CASCAD. In addition, the AM or FM programs can be used to effectively sort IR output data before use in CASCAD.

C2. GFIT Program

This program fits an equation of the form:

 $g \equiv conductivity = u(u_d + T^S)$ where u and u_d are constants, T is input radiation, and S is a constant, to resistance vs. input radiation data obtained by measuring individual PC cells under stimulation. The fit is obtained by assuming that for $T \ge 10^{-3}$, $g \simeq u \cdot u_d T^S$. The natural logarithm of both sides is taken and the resulting equation is fitted by means of the least-squares method to the test data. This determines S and U. After this fit, the simple average of the dark current data is used for the product $u \cdot u_d$ and u_d is computed.

The program uses data from a stored data file containing the input radiation and resulting cell resistances. The file is called for at program execution time. A zero input radiation value signifies the end of the data file and reads in the average (computed manually) dark resistance of the cells.

Table CI summarizes the necessary data inputs and formats for the program. Figure C1 is a listing of the GFIT program.

GFIT PRJGRAM

1

20	*	CUNDUCTIVITY EQUATION FIT
40	*	6=U*(UD+]**\$)
60		DIMENSION T(75),G(75),TL(75),GL(75)
80		DATA 51, 52, 53, 54/ 4*0./
100		DJ 20 I=1,75
120		READ(1,2) T(I),G(I)
140		G(I)=1./G(I)
160	2	FURMATC2E16.4)
180		IE=I-1
200		IF(T(I)+LE+0+) 60 TØ 30
550	20	CUNTINUE
240	30	DU 40 J=1, IE
260	(GL(J)=ALUG(G(J))
280		1L(J)#ALDG(T(J))
300	40	CONTINUE
320		DU 50 K=1, IE
340		S1=S1+GL(K)*TL(K)
360		S2=S2+(TL(K))**2
380		\$3=\$3+6L(K)
400		S4= S4+ TL(K)
420	50	CONTINUE
440		FNFIE
460		S=(((\$3*\$4)/FN)-\$1)/(((\$4**2)/FN)-\$2)
480		BL=(S3-S*S4)/FN
500	4	FURMATC1P3E10+2)
520		U=EXP(HL)
540		UD=G(IE+1)/U
560		WRI1E(9,3)
580	3	FURMATCEX, 'LIGHT IN', 2X, 'G MEAS, ', 2X, 'G CALC, '/)
600		II=IE+1
680		DU 60 L=1,II
640		GG=U*(UD+1(L)**S)
660		(RITE(9,4) T(L), G(L), GG
680	60	CONTINUE
700		WRITE(9,5) U, UD, S
720	5	FURMAT(/'U=', 1PE10+2/, 'UD=', 1PE10+2/, 'S=', 1PE10+2/)
740		STOP
760		END

FIGURE C1

INPUT DATA FORMAT FOR GFIT

EQUATIONS: G = U*(UD + T**S)

DATA BLOCK:

Device

Data Format

	Energy Input	Cell Resistance(л)		
1		(E16.4)		
	······································			
	1	•		
	•	•		
	1	۲		
	<u> </u>	Average Dark Resistance		

TABLE CI

.

C3. ELFIT Program

This program fits an equation of the form:

 $B = Brightness = D \cdot F^{\alpha} \exp(-\sqrt{\frac{A}{V}})$, where D, α , and A are constants; V is the applied r.m.s. voltage; and F is the applied frequency, to the brightness vs. voltage and frequency data obtained from sample EL material. The natural logarithm of both sides of the equation is taken and the resulting equation is fitted by the method of least-squares to the measured values. The program accepts up to 10 frequencies and 30 voltagebrightness number pairs per frequency. The data is stored in a data file and called for at program execution time.

In practice, it is best to first plot the measurements as In B vs. $\sqrt{\frac{A}{V}}$ and determine the Voltage ranges over which the resulting curves are approximately straight lines. Usually, for thick film EL, the curves are straight lines for all practical voltages. TFEL curves are not and in the IR program, we make provisions for dividing up the brightness vs. voltage dependence of the TFEL into 3 voltage ranges. The ELFIT program is then used on the measurements falling into each separate range. The IR program then uses the α , A, and D parameters only when the EL voltage is in their range of validity.

Table CII lists the data format for the stored data file used by ELFIT. Figure C2 is a listing of the ELFIT program.

elf i t	PRØ	GRAM
10	*	EL EQUATION FIT
20	*	B≃D*(F**ALPH)/EXP((A/V)**•5)
30		DIMENSION CF(10), JJ(10), V(10, 30)
40	+	,B(10,30),F(10)
50		DATA FN, S1, S2, S3, S4, S5, S6, S7, S8/ 9*0+/
80		DØ 10 I=1,10
110		READ(1,2) F(1)
120	2	FORMATCE12.3)
130		IF(F(1)-0.) 30, 30, 40
140	40	CONTINUE
150		FI=I
160		11=1
190		DU 20 J=1,30
200		READ(1,5) V(I,J), B(I,J)
210	5	FURMAT(2E12.3)
220		IF(V(I,J)-0.) 10,10,22
230	22	CUNTINUE
240		CF(I)=J
250		
260	20	CONTINUE
270	10	CONTINUE
280	30	CONTINUE
200	*	
300		00 50 K=1.11
310	50	FN=FN+CF(K)
300	*	
330	-u- sk	
340	•	
350	*	FIGURE CZ
340	-	
220		
370	J.	00 10 mm-11000
300	Ŧ	15/11-11 55, 55, 02
400		
400	22	SIMSITALUU(D/L)/MA)/AAAA
410		DUTAVALIVAN AND CANANA AND AND AND AND AND AND AND AND AN
420		う /= 5 / + (V (L) PRI / + + - + 5 / + HLU ((B (L) PRI) /)
430		
440	~~	
450	23	CONTINUE
460	*	the second second second of the
470		
480		S2=S2+ALUG(F(L))
490		S3=S3+(V(L,MM)) **-•5
500		54=54+(ALDG(F(L)))**2
510		S5=S5+ALUG(B(L)MM))#ALUG(F(L))
520		S6=S6+(V(L,MM)**5)*ALUG(F(L))
530		\$7=\$7+(V(L,MM)**5)*AL0G(B(L,MM))
540		S8=S8+(1./V(L,MM))
550	70	CONTINUE
560	60	CUNTINUE
570	*	
580	*	
590		IF(II-1) 44, 44, 45
600	*	
610	45	CUNTINUE
620		DET=FN*(-\$4*\$8+\$6*\$6)-\$2*(-\$2*\$8+\$3*\$6)-\$ 3 *(\$2*\$6-\$3*\$4)
		· · · · · ·

ELFIT PRØGRAM

2

1		いしょうしょう しゅうし ひょうひょ じくみ じくちょ ひろみ とうひじゅひろう ひつゆひくちゃ ひつゆと ひにゅじくう ピブ		
630	_	したしい曲(21本(12日本)23本29~20~20~23本(222本28~2)本26)~23本(20本20~2) あたかえた「ノールにす		
640 660	Ŧ	「「「」」、「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「		
650		AFLENE (FNA(-55456+57456+574567-564-564-564-564-564-564-564-564-564-564		
600	T			
670				
600	Ŧ			
200	ste	00 10 31		
210	ም አለ	C () A () T (A) () C		
700	*1*4	DØN 11900 DØTHER MARCHER 2005		
720		- DE1		
730				
260		AL BUMAN CENTRE DE LE		
120	Ne			
770	чр. ц.			
7920	21	A+ \$0004 \$\$ \$000A		
700	01	DERMOS DE GAN		
470	e.			
810 810	Ŧ	LETTERO, CON		
010	00	- 2771 122 ステレント しゅうし エッチノ・タイナンチャン		
020	22	DJ 00 (let.TT		
000 970				
040	6	- RACESECクチロノードへいコン - RACESECマチロノードへいコン - RACESECマチロノード、サンサロノード、サンサンサロロサムIPSCサ、		
000 V40	0 -	OY, ICALC. DO. 1/1		
600	т			
880		DO GO ME1.1111		
200		16711-1071.71.72		
070	71	TRATTORUCOAUCERESS Dechterucoauceress		
010		- DAGE DA EAA X CAA V CAADAA AAA VII VII VII VII VII VII VII VII V		
000	20			
920	12			
920	72			
950	10	ASTINOS VILLAND. BUILMD. BD		
940	7	TRANSATAIPSEID.2)		
970	ön	COMPTMUS		
270	80	- MANT TABLE		
000 000	00	TENTEROR D. A.ALPH		
1000	s.	ROD WATCZZIOWI. 18810.02. JAWI. 18810.02. JALEWI. 810.02//)		
1010	0	- CARDO - Contractory - Dam of the Contractory - Contractory - Contractory - Contractory - Contractory - Contractory - C		
1010				
エレムロー		Alex N 6.7		

FIGURE	C2

INPUT DATA FORMAT FOR ELFIT

EQUATION: B = D*(F**ALPH)/EXP((A/V)**.5)

DATA BLOCK:

30 Volt, Brightness/frequency

TABLE CII

C4. <u>SLPLOT</u> Subroutine

This subroutine generates a four-cycle, base ten, semilogarithmic plot of up to five curves. The subroutine uses an X-array (linear scale), a Y-array (log scale) and a variable named DEC which determines the lowest ordinate on the plot. The lowest ordinate is 10^{DEC} .

The program automatically determines the end points of the linear scale and picks a convenient scale factor for reading values from the plot.

For plotting brightness data of EL lamps, the PLDATA program discussed in the next section is used as a calling program. Table CIII summarizes the calling arguments of the subroutine. Figure C3 is a listing of the SLPLOT subroutine.

SUBROUTINE SLPLOT

1

20 40 60		SUBROUTINE SLPLOT (X,Y,DEC) DIMENSION MCT(5),PLOT(5),LINE(62) INTEGER ELANK,DUT,XPLOT,PLUS,PLOT	• SCALE(7)• X(5• 50)• Y(5• 50)
80	*	ARRAY COMPRESSION	
100		D0 200 I=1,5	•
120		MC=0	 A second s
140	907	TE(1=(50=MC)) 208-206-206	
180	208	$IF(X(I_{2}J)=0_{2}) = 202_{2}202_{2}201$	
200	202	MC=MC+1	
220		JJ=J	
240	203	<pre>(I,J)=X(I,J)+1)</pre>	
860		<pre>X(I)J)=Y(I)J+1)</pre>	
280		1+10=00	
300		IF((50-MC)-(JJ-1)) 205,207,207	
320	205	G0 TU 203	
340	201	CONTINUE	
360	206		
380	200	CONTINUE	
400	* *	DED. VAUTAGIE DANGE	
420	. T	XMINEX(1.1)	· · · · · · · · · · · · · · · · · · ·
460			
480		$D\theta = 10 \ 1 = 1.5$	
500		MAXJ=MCT(1)	
520		D0 20 J=1,MAXJ	
540		IF(X(I)J)-0+) 20,20,11	
560	11	IF(X(I)J)-XMIN) 30,30,31	,
580	30	XMIN=X(I,J)	•
600	-31	IF(X(I)J)-XMAX) 20,20,32	}
620	32	XMAX=X(I,J)	DIGIDD 02
640	20	CONTINUE	FIGURE C3
660	10	CONTINUE	
200	#* ∿	COALE NED MADIADIE	
720	т	IX=0	
740		XRANGE#XMAX=XMIN	
760		XRSAV=XRANGE	
780	12	IF(XRANGE-60.) 13,14,14	
800	13	XRANGE=10 . *XRANGE	
820		IX=IX+1	
840		60 TO 12	
860	14	IF(XRANGE-600+) 15,15,16	
មមល	16	XRANGE=XRANGE/10.	
900			
920			
940	15		
700		ADIV#ARANGC/00+ TE(XDIV=1-) 61-61-63	
1000	61	DTV=1.	
1020	01	GØ TØ 69	· ·
1040	63	IF(XDIV-2.) 62,62,64	
1060	62)	(DIV=2.*(10.**(-IX))	
1080		DIV=2.	
1100		GU TU 69	
1120	64	IF(XDIV-5+) 65,65,66	

```
SUBROUTINE SLPLOT
       65 XDIV=5+*(10+**(-IX))
1140
1160
          DIV=5.
          GØ TO 69
1180
1200
       66 CONTINUE
1220
       70 XDIV=10.*(10.**(-IX))
1240
          DIV=10.
1.260
       69 CONTINUE
1280
       *
1300
       * LOWEST SCALE VALUE
1320
          XS=XMIN
1340
          I XM=0
1360
      80 IF(XS-1.) 72,75,73
1330
       72 XS=XS=10.
1200
          1 8/0 - 1 8/04 1
1420
          60 TO 80
1440
       73 IF(XS-10.) 75,75,74
1460
       74 XS=XS/10.
1480
          IXM=IXM-1
1500
          60 16 73
1520
       75 XS#XS#10.
1540
          IXS=XS/5.
1560
          XS=1XS
1580
          X5=X5*5+
1600
          XS=XS*(10•**(-IXM-1))
1620
          1F( (XMIN-X5).GE.(10.*XDIV) ) XS=XS+(10.*XDIV)
1640
      CHOUSE PLUT SYMBOLS
1660
      诗
1680
          ELANK=1H
1700
          DOT=1H#
1720
          XPLOT=1HX
1740
          PLUS=11(+
1760
          PLOT(1)=1H1
1780
          PLUT(2)=1H2
1800
          PLUT(3)=1H3
1820
         FLOT(4)=114
1840
         PLUT(5)=1H5
1860
      4
         SCALE THE PUINTS
1880
     5
1900
         DJ 300 I=1,5
1920
         GAXJANCTCIN
19:40
         DO 301 J#1.MAXJ
                                                        FIGURE C3
         X(I,J)=(X(J,J)-XS)/ XDIV
1960
          IF(Y(I,J)+LE+0+) Y(1,J)=1+E+10
1980
2000
          Y(J,J)=(ALGG10(Y(I,J))*18.)-(18.*DEC)+1.
2020 301 CONTINUE
2040 300 CUNTINUE
2060
      . .
         PRINT BURDER
2080
      *
2100
          SCALE(1)=XS
2120
          DJ 120 I=2,7,1
2140 120 SCALE(1)=SCALE(1-1)+(10.*XDIV)
2160
         WRITE(9, 400)
2180 400 FORMAT(///)
2200
         WRITE(9,121) SCALE
2220 121 FOLMATC7(1PE8.2,2X))
2240
         WRITE(9,122)
```
3

SUBROUTINE SLPLOT 2260 122 FØRMAT(7('1',9X)) 2280 DØ 123 I=1.61 2300 123 LINE(I)=PLUS 2320 DØ 124 I=1,61,10 2340 124 LINE(I)=XPL0T 2360 WRITE(9,125)(LINE(IDUM), IDUM=1,61) 2380 125 FØRMAT(61A1) 2400 * BLANK THE LINE 2420 DU 126 I=1.61 2440 126 LINE(I)=BLANK 2460 * 2480 * PLOT THE POINTS 2500 IDEC=DEC+4. 2520 IDØT=0 2540 IXPL0T=0 2560 LINE(62)=0. 2580 DØ 310 N=1,71 2600 LINE(1)=PLUS 2620 IDOT=IDOT+1 2640 IF(ID0T+NE+6) G0 T0 315 2660 1007=0 2680 LINE(1)=DUT 2700 IXPLØT=IXPLØT+1 2720 IF(IXPLOT.NE.3) 60 TO 315 2740 IXPL01=0 2760 LINE(1)=XPLOT 2780 LINE(61)=XPLOT 2800 IDEC=IDEC~1 2820 LINE(62)=IDEC 2840 315 IPY=73-N 2860 DØ 311 I=1,5 2880 MAXJ-MCT(I) 2900 D0 312 J=1, MAXJ 2920 IY=Y(I,J)*1.001 2940 IX=X(I,J) 2960 IF(IY-73) 316,317,317 2980 317 Y(I,J)=0. 3000 IY=03020 316 IF(IY-IPY) 312,313,313 3040 313 LINE(IX+1)=PLOT(I) 3060 Y(I,J)=0. 3080 312 CUNTINUE 3100 311 CONTINUE 3120 IC=613140 DU 314 IDUM=1.61 IF (LINE(IC).NE.BLANK) GU TO 384 3160 3180 314 IC=IC-1 3200 384 IC=IC+1 3220 WEITE(9,380) (LINE(NDUM),NDUM=1,IC) 3240 380 FORMAT(61A1, '1.0E', 12) 3260 DØ 382 II=1.61 3280 382 LINE(II)=BLANK 3300 310 CUNTINUE 3320 DU 383 I=1.61 3340 383 LINE(J)=PLUS 3360 DU 385 1=1,61,10

FIGURE C3

SUBROUTINE SLPLOT

3380 3400 3420 3440 3460 3480	385	LINE(I)=XPLOT WRITE(9,125)(LINE(IDUM),IDUM=1,61) WRITE(9,122) WRITE(9,121) SCALE WRITE(9,400) RETURN
3500		END

FIGURE	СЗ

DATA BLOCK FOR SLPLOT SUBROUTINE

(X, Y, DEC)

Dimensions of Arrays:

X(5,50)

Y(5,50)

X direction is linear scale

Y direction is Log₁₀ scale

Maximum of 5 curves plotted

DEC: Bottom ordinate of the Plot is 10^{DEC}

TABLE CIII

C5. PLDATA Program

PLDATA converts raw measurements of brightness of EL vs. voltage at a fixed frequency into a data block for plotting by the SLPLOT subroutine. The program lets you choose at execution time whether to plot vs. voltage or the inverse square root of the voltage. This second form allows the operator to determine ranges of applied voltage over which the ELFIT program can provide accurate results.

Table CIV summarizes the format of the data file used with the program. Figure C4 is a listing of the PLDATA program. It must be loaded with the SLPLOT subroutine.

a ~ 56

PAGE 1

.

PLDATA PRUGRAM

20	* 0	PLUT DATA WITH SLPLUT
40	C	DIMENSION X(5, 50), Y(5, 50)
60	2	DATA X/250+0./. Y/250+0./
80	2	DØ 10 I#1,5
100)	DJ = 20 J = 1,50
120)	READ(1,1) X(I,J),Y(I,J)
1 40)	IF(X(I,J).LE.O.) GJ TU PI
160) 20	CUNTINUE
180) 21	CONTINUE
200	9 10	CUNTINUE
220)	READ(1,2) DEC
240) 1	FURMATCRE16.3)
260	2 2	FURMATCE16-2)
280)	WRITE(9,3)
300	3	FURMATC/// STYLE OF PLUT /
320	•	'1= X-VALUES AS READ '/
340	+	2= X=1/SORT(X) */
360	+	>
380		READ(9,4) IS
400	4	FORMATCII)
420		GU TU (30,40), IS
440	40	D0 50 1=1,5
460		DJ 60 J=1,50
480		IF(X(I)J).NE.O.) X(I)J)=1./SORT(X(I)J)
500	60	CUNTINUE
550	50	CONTINUE
540		GU TU 100
200	30 0	JINTINUE
500	100	CALL SLPLOT(X, Y, DEC)
600	100	IF(IEUF(1)) 102,102,103
620	102	
640	101	
600		WRITE(9,101)
200	000	WKI 12(9)200)
700	200	
740	103	DIUP DATO
140		P.IN I.I

FIGURE C4

a-57

)

INPUT DATA FORMAT FOR PLDATA (Uses SLPLOT Subroutine)

Beware of Blank Records in File!!

TABLE CIV

C6. ELDG Program

This program generates a set of EL brightness vs. voltage and frequency values computed from the equation:

Brightness = $D \cdot F^{\alpha} \exp(-\sqrt{\frac{A}{V}})$

where D, α , and A are constants, F is the applied frequency, and V is the applied voltage. This program is useful in checking the results of the ELFIT program. The resultant data file is ready for use by the PLDATA program.

The program asks for the D, α and A values along with their ranges of validity at execution time. All data is entered at the keyboard. The program will accept five voltage ranges but the IR program can only use three ranges.

Table CV lists the formats for the input data. Figure C5 is a listing of the ELDG program.

ELDG PROGRAM

20) *	EL DATA GENERATUR FUR PLDATA	
40)	DIMENSION FELDS AFES UNLES DURES BURES	
14		Da 10 1-1	
00	,		
	J	WRITE(9,1)	
100)	I FORMATC'VOLTAGE RANGE: VL.VIII/S	
1 20)	READ(9, 9) VICTS, VICTS	
1			
140	, i	E FORMAI(2E10.2)	
160		IF(VL(I)-0.) 30, 30, 20	
180	20		
200	1	WRITERO	
000			
220		S FORMATC DV S AV S ALPHA 1/)	
840		READ(9,4) DV(I),AV(I),A(I)	
260	l	FURMATCHEID, S)	
230	10		
200	10	GONTINUL .	
300	30	CONTINUE	
310		ZERO=0.	
320	*		
3 40	-		
0.40		WATTE(3)21	
360	5	FURMATC FREQUENCIES //)	
380		DU 40 J=1,10	
400		DEADED AN ERIN	
-100			
420	6	FDEMATCE10.2)	
440		1F(F(J)-0+) 50,50,60	
460	60		
480	20		
500	40	CONTINUE	
200	50	CONTINUE	
510		WRITE(9,7)	
511	7	FURMATC/ FEVENNENT OF SMALLEST OF ADDRESS	
610	•	WARACT EARDINENT OF SMALLEST ORDINATE (F10.1) '/)	
JIC		READ(9)81 DEC	
513	8	FØRMAT(F10.1)	
520	*		
530			
6 40			
540			
660		C=1.	
680			
700			
200			
120		V5=101V5	
740		V05=V5×5•	
760	90 C	GONTINGE	
840			
040	~~	11/// U(V)) 51/55/55	
600	22		
880		C=200•	
900	21	CONTINUE	
920		EL (ICH CC) DIVE AVE IN AVE	
0.40			
740		FL06=A(K)*AL06(F(L))	
960		UVLUG=ALUGCDVCK))	
980		BLOG = UULUG + BLOG = BLOG	
000		DECYDINE ACA	
000			
020		WRITE(1)9) V/B	
040	9	FURMA1(2E16.3)	
080		IF(CoEdata) VEUMSAS.	
100			
		οεινοτοιτιτιτ/ ν≖ντο. ο=ο:ι	
120		U≂C+1•	
40		IF(C+GE+200+) 60 TO 70	
160		GJ TU 90	
I RO	70	CAN'T TAILUE	
	10		
		FIGURE C5	
		R-60	

ELDG PRUGRAM

1188	WRITE(1,9) ZERØ, ZERØ
1190	80 CUNTINUE
1192	IF(JJ.E0.5) 60 TU 99
1193	DU 98 KK=JJ,4,1
1194	WRITE(1,9) ZERO, ZERO
1195	98 CONTINUE
1196	99 WRITE(1,11) DEC
1197	11 FORMAT(E16.2)
1200	STUP
1220	END

FIGURE C5

INPUT DATA FORMATS FOR ELDG

EQUATION: B = (F(L) **A(K))*DV(K)/SQRT(AV(K)/V)

DATA BLOCK:

Device

TTY VL____, VU_____(E10.2) (as asked for) DV____, AV____, ALPHA____ (E10.2)VL____, VU_____ DV ____, AV , ALPHA (0 Voltage terminates parameter 0. inputs) Frequencies (E10.2) 0. (0 frequency terminates data input) Exponent of (E16.2) Smallest Ordinate Maximum of 5 voltage ranges Maximum of 10 frequencies

Formats

VL < Voltage Range < VU

TABLE CV

C7. FM, AM and MASSA Programs

The MASSA program condenses the data file created by the IR program into a more compact form for use with the AM and FM programs. Figure CG lists the MASSA program. It calls for the input data file at program execution time.

The FM program uses the brightness vs. radiation input data generated by the IR program and condensed by the MASSA program to approximate the operation of an image conversion panel driven by several applied frequencies in rotation. The simulation is that a panel is driven at a constant voltage and one frequency (F_1) for a short time (t_1), then driven at another frequency (F_2) for a short time (t_2), and so on up to F_n for time t_n and then driven again at F_1 , etc. If the sum $\sum_{i=1}^{n} t_i$ is less than the time for the eye to see flicker in the brightness of the panel, the viewer perceives a simple average brightness of the panel. The FM program sorts through the response curves generated by the IR program and weights the output brightnesses for a selected frequency by the fraction $t_j / \sum_{i=1}^{n} t_i$ for that frequency. The program will accept up to 20 desired frequencies but seldom is it worthwhile to construct a data base large enough for use with that many frequencies.

Figure C7 is a listing of the FM program. Table CVI is a summary of the data file format for the FM program. The FM program may also be used to effectively sort and condense data for use in the CASCAD program. The FM program must be loaded with the PLOT subroutine.

The AM program works in an identical manner to the FM program only it computes a weighted average of different voltages applied for short time periods at one frequency. Figure C8 is a listing

of the program. Table CVII describes the formats of the data file. This program may also be used to sort data for CASCAD. The AM program must be loaded with the PLOT subroutine.

MASSA	A PR	JGRAM
20) *	MASSAGE LIGHT AND DATA
30)	IFLAGE1
32	2	READCIANTER
34	4	WRITE(2.4) 10
36		4 FURMATCION
40	10	READ(1.1) R.T.V.F
60	1	FURMAT(AF12.A)
80	12	2 1=0
100		BS=B
120		TS = T
140		VS=V
160		FS=F
180		WRITE(2.2) V.F
200	8	FURMAT(2E12.4)
210		
220	20	READ(1.1) B.T.V.F
240	· •	IF(IEUF(1)) 30.30.100
260	30	IF (F-FS) 40,50,40
230	40	IF(1-19) 60,70,70
300	60	DJ 80 J=1,18,1
320		WRITE(2,3) BS
340	З	FURMAT(E12.4)
360	80	CUNTINUE
370		GU 10 (70,110), IFLAG
380	70	60 10 12
400	*	
420	50	WRITE(2,3) BS
44()		1=1+1
460		BS=B
450		7 S= T
500	•	VS=V
520		FS=F
540		60 70 20
560	*	
580	100	IFLA6=2
590		GJ TJ 40
595	110	STOP EUF
600		END

FIGURE C6

				,	
PAGE	1			• • •	•
FM PRU	GRA	j	•		ta ngi
20	*	FM DRIVEN LIGHT AMP			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40	*		x		
60		DIMENSION FD(20), FRA(20), B3(19,5), VS(5)	•XX(19•5)		•
80		COMMON XX, BU, LP			
100		DATA VS/5*0./			
120		DJ 23 I=1,19	1		sina sana sana sana sana sana sana sana
140		DJ 24 J=1,5			
160		XX(1,J)=0.			· · · · · · · ·
180	~ ~				
200	24				ана (Х) 19
040	25				-
240		WALLENDER NATA BILES ASAULT IS ASAULT ASAC	1 N 12		
200	4	PRADICE UNDER DATA PILLET UNIVER TELS" DRADICLES TELST			
200	С.	MANDATIII MANDATIII			and the second s
300	5	1 847 1 8 1 8 6 1 9 4 1 9 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7			
370				, ² 4	
340	00	FALMATIZZINANT DERT? OHMOL IHVECIZI		· ·	•
380	11	$\frac{1}{2} \frac{1}{2} \frac{1}$			
400		ACHARTER ISSUES IN THE STATE		100 - 100 - 140 - 100	
400		NOTTEO,OS	•		, start and a second
420	0	FORMATCZIFRED. FRACTIONSIZIERMINATE W	TTH: 0+ 1/2	•	
460	د,6	Todan=1		· · · ·	Υ
480		10000-1 100 10 1=1.20	n an		
500		READ(9.1) FO(T) FRACTS	Real Contraction of the Second		
520	1	FURMAT (2E12.4)	$\epsilon_{\rm A}$		
540	•	1F(FD(1)) 11,12,11	•		,
560	11	IC=I	· · · · ·		•
580	10	CONTINUE	1		, * ;
600	12	CONTINUE			
620		FS=FD(1)			×
640	*				
660		READ(1.7) LP			
680	7	FURMATCI2)			1
700		IF(ISWIT.EQ.2) WRITE(2,7) LP			
720	20	READ(1,1) V.F	•		
740		DØ 30 1=1,IC			
760		IF(ABS(FD(I)-F)-1.) 21,21,30			́х.
780	21	16000#2			
800		1SAVE#I			
820		69 TO 82	FIGIDE OF		
840	30	CONTINUE	FIGURE C/		
860		16000=1			•
880	85	CUNTINUE			
900		GU TJ (40,60), IGUUD			
920	40	DJ 50 J=1,19			
940		KEAD(1,3)			
960	3	FURMAT(E12.4)			
9 80	50	CONTINUE			
1000		IF(IEUF(1)) 20,20,80			
1020	*				
1040	60	DU 69 K=1.5			
1060		IF(ABS(V-VS(K))-1+) 66+66+69			
1060	69	CONTINUE		•	
1100	1	00 613 K=1,5			
		10/UC/UNN /0.67.60			

FM PRØGRAM

1140	68	CONTINUE
1160		IGUUD=1
1180		GU TU 22
1200	67	VS(K)=V
1220	66	CUNTINUE
1240		DU 70 1=1,19
1260		READ(1,3) B
1880		BU(I,K)=BU(I,K)+(FRACISAVE)*B)
1300	70	CUNTINUE
1320		FS=F
1340		IF(IE0F(1)) 20,20,80
1360	80	CONTINUE
1380		G9 T0(91,92),ISWIT
1400	92	CUNTINUE
1420		DU 93 K=1,5
1440		Du 94 J=1,19
1460		IF(BU(J,K)) 93,93,95
1480	95	WRITE(2,6) BJ(J,K)
1500	6	FURMATCE12.4)
1520	94	CUNTINUE
1540	93	CONTINUE
1560	91	60 10 (97,96), ISWIT2
1560	96	CALL / GPL
1600	97	CUNTINUE
1620		STOP
1640		END

FIGURE C7

INPUT DATA FORMATS FOR FM

PAG	E
-----	---

1

AM PROGRAM 20 * AM DRIVEN LIGHT AMP 40 * DIMENSION VD(20), FRA(20), BU(19,5), FS(5), XX(19,5) 60 80 CUMMUN XX, BU, LP 100 DATA FS/5+0./ 120 D0 23 1=1,19 140 D0 24 J=1,5 160 XX(I,J)=0. 180 B0(I,J)=0. 200 24 CONTINUE 220 23 CONTINUE 240 WRITE(9,4) 260 4 FURMAT(/ CREATE DATA FILE? O=NU, 1=YES //) 280 READ(9,5) ISWIT ISW1T=ISW1T+1 300 320 5 FORMATCII) 340 WRITE(9,99) 99 FORMAT(/'WANT PLOT? O=NU, 1=YES'/) 360 380 READ(9,5) ISWIT2 400 ISWIT2=ISWIT2+1 420 WK11E(9,2) 2 FURMAT(/ VULTAGES, FRACTIONS */ 'TERMINATE WITH 0. */) 440 460 16000=1 480 K=0 500 DU 10 1=1,20 520 READ(9,1) VD(1),FRA(1) 540 1 FURMAT(2E12.4) 560 IF(VD(I)) 11,12,11 580 11 IC=I600 10 CONTINUE 620 12 CONTINUE 640 VS=VD(1) 660 * 680 KEAD(1,7) LP 700 7 FURMATCIES 720 IF(ISWIT-E0.2) WRITE(2.7) LP 740 20 READ(1,1) V.F 760 DU 30 I=1,IC FIGURE C8 780 IF (ABS(VD(1)-V)-1.) 21,21,30 800 21 IG000+2 820 ISAVE=I 840 60 10 22 30 CONTINUE 860 880 16000=1 900 22 CUNTINUE 920 60 TO (40,60), IGUOD 40 DJ 50 J=1,19 940 960 KEAD(1,3) 980 3 FORMATCE12.4) 1000 50 CONTINUE IF(IE0F(1)) 20,20,80 1020 1040 1060 60 DØ 69 K=1,5 1080 IF(AB5(F-FS(K))-1+) 66,66,69 69 CUNTINUE 1100 1120 DJ 68 K=1,5

AM PRUGRAM

1140		IF(FS(K)) 68,67,68
1160	68	CUNTINUE
1180		I 600D=1
1200		60 10 22
1220	67	FS(K)=F
1240	66	CONTINUE
1260		DJ 70 I=1,19
1280		READ(1,3) B
1300		BU(I,K)=BU(I,K)+(FRA(ISAVE)*B)
1320	70	CONTINUE:
1340		VS=V
1360		IF(IE0F(1)) 20, 20, 80
1380	03	CONTINUE
1400		GU TU (91,92),ISWIT
1420	-92	CUNTINUE
1440		DU 93 K=1.5
1460		DØ 94 J=1,19
1480		IF(BJ(J,K)) 93, 93, 95
1500	95	WRITE(2,6) BU(J,K)
1520	6	FURMATCE18.40
1540	94	CONTINUG
1560	93	CUNTINUE
1580	91	GU TU (97,96), ISNIT2
1600	96	CALL LOCPL
1620	97	CONTINUE
1640		STOP
1660		END

FIGURE CS

INPUT DATA FORMATS FOR AM

. .

Device:

Contraction of the local division of the loc

Device:	Data Format	:		
TTY (as asked for)	Voltage	,	Fraction	_(E12.4)
		, , 	(maximum of 20)	
1	Voltage	,	Frequency	_(E12.4)
•	Brightness		(E12.4)	
		Ŧ		
		19 value	28	
	Voltage	* ,	Frequency	
· ·	Brightness			
		مە يەرىپ يې تىكىمە يىلى تىكىما تاراتارىلەر مەرىپ يې تىكىما تىكىما تىكىما تاراتارىلەر		
		etc.		

TABLE CVII

C8. CASCAD Program and MASSA 2 Program

The MASSA 2 program converts the data files generated by IR and MASSA into a form compatible with the CASCAD program. The IR program can generate up to 25 output brightness curves for different voltage and frequency combinations. The CASCAD program will only plot data for 5 possible output combinations of the second stage panel. The operator should edit his data files to make sure that the files used in device 2 contain no more than 5 curves. The AM or FM program can be used to sort the files generated by IR and MASSA. For instance, if the operator using AM selects 100% of one voltage to be used, the output data file will contain brightness curves at only that operating voltage and all frequencies that were available.

The CASCAD program takes a set of 19 output brightnesses from the first image panel and uses these brightnesses with linear interpolations from all sets of output brightnesses for the second state image panel to generate an approximate simulation for a twostage image converter. The program permutes all curves of the second stage panel on each curve of the first stage panel.

Either or both of the simulated image conversion panels may have been AM or FM simulated panels. At this stage in the simulations, operator discretion is mandatory or one may drown in output curves.

Figure C9 is a listing of the MASSA 2 program. Figure C10 is a listing of the CASCAD program. Table CVIII is a summary of input data formats for CASCAD.

PΑ	G	Ë	
ГМ	U	C.	

MASSA2 PROGRAM

1

20	*	MASSA2
40	*	PREPARES MASSAGED DATA FUR CASCAL
60		DIMENSION B(19)
80		READCISTS LP
100		WRITE(2,1) LP
120	1	FURMATCI2)
140	2	FURMAT(E12.4)
160	3	FORMATCRE12.4)
180	30	READ(1,3)V,F
200		DU 10 I=1,19
220		READ(1,2) B(I)
240	10	CONTINUE
260		DJ 20 I=1,19
880		WRITE(2,2) B(I)
300	20	CONTINUE
320		IF(IEUF(1)) 30,30,40
340	40	STOP EWF
360		END

FIGURE	C 9

CASCAD PROGRAM

1

80	*	CASCAD
40	*	COMPUTES OUTPUT OF CASCADED LIGHT AMPS
60	•	DIMENSION REC19), R2(19), T(19), R0(19, 5), XX(19, 5)
80		COMMON XX-BALLP
100		DATA 1(1).T(2).T(3)/1.F-A.2.F-A.5.F-A/
1.00		
1 40		DATA ((1))/(-)/0/0/
140	•	DU 12 1-1999 DU 19 1-1.6
100		
100	13	AAA SIJJ/**QA Ahaa Tuutuk
200	10	CONTENTS AND A
0.53	12	
240		
200		1812-1824181-024104
200		
200	10	
320	10	CONTINUE
340	Ţ	6.5.75 8.7 m - 4 N
300		WALLENVELE Not NATERAL AND IN THE NATA STREET CONSISTENT AND THE SAME AND
300	1	FORMARY CREATE DATA FILLS D-NOT 1-165 //
400	0	KUNDANAAN IDWII
420	2	TALING AND AND AND A
440		ISAISA ZO ON
400	-	- W KILL - ビンナのフ - ビート・ペイアノトロビイエンショナンション - エンションサージベロエスタインスタイン
400	Ş	NAMERICZ BEGINNING INPUL RADIATION //
500		ALADA1907 LF A MARKAR 78 LA
250		いた1111(フライン LLC いたA111(ステレスト L)
540		KEADVEROJEF
260		WRITERS JII EN ON LONGER AN LON
560		IF(ISWII+EU+2) WRIIE(3)6) LP
600	6	
620	1	FORMATCIONS 1 • E · 123
640	4	
660		113410•**6
080	*	
700		- コントン・コントン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ
720	ÖÖ	- キャインティング キャイトログ キャピー ロン
740	20	
700	- T - 20	
200	30	
000		
920	21	
040 660	51	
660	25	Provinski Coltan
900	00	103 50 141,10
900		- DU 34 191919 - DU 34 191919
32.0	20	- NEWARD ST - DEN KT - NEWARD ST - DEN KT
940	52	
- 200 - 980		11 - 0 - 0 - 1
1000	40	11 4 m A 1 m A 4 ()
1000	40	
1020		15000 A-NJ[73] 15004 (1)-10070 20 20
1060	un	JE VDIVIJE IVNJJE JUJ (UJ DU 1877-1985 - 40. 90. 90
1000	0U 2.0	AF NN=1フォーロリアリオフレ ハAND 15000
1100	00	- 1414 - 19 - 19 - 19 - 19 - 19 - 19 - 1
1100	90	
1120		10 10 50 T
		UTIGUICE CTO

CASCAD PROGRAM

1140	70	N=K
1160		BU(I,J)=B2(K-1)+((B2(K)+B2(K-1))*(B1(I)-T(K-1))
1180	+	/(T(K)-T(K-1)))
1200		IF(BU(1,J).LE.0.) BU(1,J)=1.E-10
1220	50	CUNTINUE
1240		IF(IEJF(2)+EQ+1) 6J TØ 100
1260		6d To 35
1880	*	
1300	*	
1320	100	60 10 (103,102), ISWIT
1340	102	WRITE(3,4) ((BU(L,M),L=1,19),M=1,J,1)
1360	103	CALL LUGPL
1380		DJ 25 1=1, J, 1
1400		DU 26 K=1+19
1420		B⊎(K, I)=0.
1440	26	CUNTINUE
1460	25	CONTINUE
1480		J=0
1500		REWIND 2
1520		GU TU 30
1540	101	STOP
1560		END

FIGURE C10

INPUT DATA FORMAT FOR CASCAD

Device:

Data Format:

l (First Stage) LP____(12) (Beginning input Radiation = 10^{LP})

Output Brightness____(E12.4)

19 values

1

Brightnesses are in groups of 19

2 (Second Stage)

LP_____(12)

Output Brightness

19 values

ŧ

1

(Same format as for device 1) (Maximum of 5 groups of Brightnesses)

TABLE CVIII