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ABSTRACT

Motions and dynamic forces imposed upon a moored buoy system by the

oceanic environment are of vital interest to the user of the system. If instru-

mentation for monitoring the environment is motion sensitive, it is of little

value if its response to platform motion is greater than its response to the

changing environment. The buoy system designer is also concerned with

motions and forces in buoy systems in order to design for the highest probabil-

ity of system survival under extreme conditions.

In reoponse to these needs, this study investigates digital computer

simulation of buoy system dynamics for simple buoy systems, i.e., a surface

buoy moored on a single mooring line. The buoy system can be excited by

winds, waves, and currents. Winds can act from any compass direction, and

currents can vary in strength and direction as a function of depth in the water

column. Wind waves are simulated by first computing their properties with the

Sverdrup--Munk-Bretschneider method and then by using Borgman's energy

partitioning scheme on a two-parameter Bretschneider spectrum to compute

component sine wave amplitudes and frequencies. Since the component

Stokesian waves are linear, the principle of superposition can be used to sum

component magnitudes in order to c( mpute v _ter particle motions.

Equations of motion for the buoy are developed for six degrees of freedom.-

three translational and three rotational. Hydrostatic and hydrodynamic forces

i



and moments acting on an oblate spheroid moving on the free surface of an

infinite body of water are investigatod in detail. The set of integro-differential

equations for buoy motions are reduced to a set of nonlinear, ordinary differ-

ential equations with nonconstant coefficients by using the Haskind hypothesis

to evaluat? the hydrodynamic force and moment integrals and to represent

them as frequency dependent coefficients. Buoy motions are coupled through

hydrostatic, hydrodynamic, and mooring line forces.

Cable dynamics are also investigated. A set of coupled, hyperbolic,

partial differential equations for cable motions are developed, and character-

istic equations are derived to effect a method of characteristics solution.

A umque numerical method of characteristics technique, based upon Hartree's

method, is developed for the solutionof the cable equations in the time-space

domain. Buoy motions, which are dependent upon the cable tensions, serve as

the upper boundary conditions. ' Lower boundary conditions are prescribed at

the anchor, where there can be no motion.

For certain buoy systems, where many mass discontinuities exist along

the cable, or for shallow water moorings, where slack cable conditions can

exist, a lumped-mass method of computing cable dynamics is developed as
p

opposed to the finite-difference method just described. In general, for cable

dynamics the lumped-mass numerical method is an order of magnitude faster in

computation time than the finite difference method.

The equations of motion developed for the buoy were solved numerically

in the time domain using a fourth-order, Runge-Kutta integration method. Cable

Hi



equations can be solved either by finite-difference methods or by integrating

with the Runge-Kutta algorithm fcr the lumped-mass model.

In order to validate the numerical models developed, two buoy systems

were instrumented and deployed in Block Island Sound. The motion data from

these experiments, along with data published in the literature, are compared

with simulated buoy motion data. This comparison indicates that steady-state

buoy system forces and configurations can be predicted within approximrately

5 percent and that buoy system dynamics can be predicted within approximately

50 percent. There are some indications that the surge and sway hydrodynamic

forces acting on the buoy are being underestimated by the computer model.
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I. INTRODUCTION

Clean, green, windy billows notching out the sky,
Grey clouds tattered into rags, sea-winds blowing high,

And the ships under topsails, beating, thrashing by,
And the mewing of the herring gulls.

Dancing, flashing green seas shaking white locks,
Boiling in blind eddies over hidden rocks,
And the wind in the rigging, the creaking of the blocks,

And the straining of the timber hulls.

John Masefield
"Cardigan Bay"

This study is concerned with the analysis and simulation of the dynamics

of simple oceanic buoy systems. The analysis must include the effect of the

significant forces that act on the buoy system and are imposed by the ocean

environment - wind, waves, and currents. Because of the highly nonlinear

nature of the problem, numerical methods are favored in order to provide a

realistic simulation.

Buoys have been employed by mariners for centuries as aids to naviga-

tion and to support mooring chains. In this country, navigational buoys were

in service in the Delaware River in 1767 and in Boston H-arbor by 1808. At

present, the United States Coast Guard maintains over 24,000 buoys in the

navigable waters of the United States and its possessions. Navigational buoy

system design is largely a matter of employing "rules of thumb" evolved over

decades of experience with these buoys. The vast majority of navigational1
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buoys are moored in waters less than 100 ft deep, and the most common cause

of failure is collision with a vessel. Thus, these buoy systems are charac-

terized by massive steel buoys moored with heavy chain to large concrete

clumps. They are servi.;ed on a regular basis and are recovered and over-

hauled annually.

In recent years, oceanographers have used buoy systems to support

current meters, thermistor chains,and other oceanographic instrumentation.

The state of the art in oceanography has advanced to the point where oceanog-

raphers are no longer satisfied with data taken at a single point over a rather

short time duration. Multiple measurements to be made simultaneously over

wide areas of the ocean or long-duration measurements are made most econom-

ically with a buoy system equipped with self-recording or telemetering Instru-

mentation. This eco-tomy can be realized only if thi buoy system is designed

to have a life on station greater than the desired measurement time.

The b•sic design philosophy of deep-sea oceanographic buoy systems is

quite different from that of the navigational buoys-, Oceanographic vessels are

usually small and are not equipped for handling heavy objects over the side at

sea; thus, the buoys and mooring line components must be of relatively light

weight. The mooring lines are miles long and thus preclude the use of heavy

chains (except at the bottom) and tend to be madt-. up of light, high-strength

wire ropes or of synthetic fiber ropes. Designers of oceanographic buoy

systems are faced with the near-impossible task of designing a lightweight,

highly compliant structure to survive for periods of a year or more in one of

the harshest environments known to man.
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1
Isaacs describes a mean time between failure (MTBF) of 121 days for

the taut-moored Scripps Institution of Oceanography "Catamaran" buoys. The

observed system failures were due to parting of the nylon mooring line near

the surface. The writers hypothesize that high tensile loads in the nylon line

are caused by tensile waves propagating up and down the cable. Richardsoi2 of

theWoods Hole Oceanographic Institution (WHOI), anchored 106 buoy systems

between Cape Cod and Bermuda. The MTBF for these systems was found to

be about 90 days. The WHOI buoy system failures were attributed to mooring

line failures, fish bite of synthetic mooring line4 and theft. In 1967, WHOI3

set nine long term buoy moorings of which only one was recovered on station

after 60 days. Three of these were found adrift. WHOI was more successful

in 1968, 4 when only 3 of 14 long-term buoy moorings failed.

All the oceanographic buoy systems described above were taut-moored

systems, the majority of which utilized synthetic rope in their mooring lines.

Their short life on station and their low recovery rate indicate a need for an

accurate engineering method of computing the dynamic response of the buoy

system to the ocean environment.

Slack moored buoy systems have a much greater MTBF and are more

reliable. The catenary of the mooring line provides the necessary compliance;

thus, dynamic tensions in the mooring line are reduced. ,a-gat!onal buoy

systems are s3lack moored and are very reliable. Smith5 cites a long history

of successful moorings in the Gulf of Mexico for the NOMAD buoy system.

Over a 5-year period, a number of the NOMAD buoys were kept on station for

periods of a year or more. Smith also describes fifteen, 25-toii barges that
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were slack moored for 8 months in water depths over 12,000 ft with no

failures.

Oceanographers are also concerned with the effects of buoy system

motions on their instrumentation. For example, instrumentation fastened to

the mooring line of a slack-moored system will undergo depth excursions that

are dependent on the current structure. Webster 6 ',7 discusses errors in self-

recording current meter data due to buoy system motion. Webster shows a

current energy spectrum developed from a current meter that is attached to

the mooring line of a buoy system (figure 1). The energy introduced into the

current data by the buoy system motions is far greater than the energy of the

currents themselves.
8

Marcus compared anemometer data taken from a NOMAD buoy in the

Gulf of Mexico with other meteorological observations in the area over a

6-month period. The mean error of the wind speed data was 0. 2 knot with a

standard deviation of the error of +4. 67 knots. Huff9 shows a power spectrum

of anemometer data taken from another NOMAD buoy system moored off

Permnda. Th s spectrum (figure 2) indicates that a large amount of energy

was introduced into the spectrum by the motion of the buoy. Huff also shows

an increase in the average wind speed deviation from the mean with increasing

mean wind speed that levels out at high wind speeds. This variation is char-

acteristic of sea surface slopes, which have an upper limit due to gravity. This

upper limit implies that the wind speed error is due to the pitch and roll mo-

tions of the buoy. Day10 found that wind data sampled every 10 min from a
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buoy-mounted anemometer had to be time averaged over a 2-hr period to

remove errors due to buoy motions.

The two-dimensional, steady-state configurations of buoy cable systems
havebeeninvstigted11,12

have been investigated by Wilson. Wilson constrained the upper end of

the cable to be at the mean ocean surface and did not consider cable elasticity.

Patton, 13 as part of this dissertation research, developed a numerical method

to determine the equilibrium configuration of buoy cable systems. The three-

dimensional configuration for any current structure (currents may vary in

strength and direction as a function of depth), as well as the buoy draft, is

computed. The elasticity of the cable is considered and the stretch is also

14
computed. Martin developed a numerical method similar to Patton's, but

it is restricted to two dimensions. Martin also experimentally investigated

the elastic properties of nylon rope and the drag of buoy models. Smith

presented a graphical method for two-dimensional buoy system configurations

but neglected tangential drag and elasticity.

The study of the motions of bodies floating on the ocean surface and being

excited by waves originated in 1749 with Euler15 in his classic work, Scientia

Navalis. Froude16 was concerned with the rolling and roll stability of ships.

Froude recognized the nonlinearity of the problem and included viscous resist-

ance in the equ'ations of motion. Kriloff17 investigated ship motions and wrote

coupled equations of motion. Both Frou', -'d Kriloff assumed that the ship

did not influence the waves, which allowed them to treat the hydrodynamic

properties of the ship as a body oscillating on a free surface. By far, the

I-
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single greatest problem in ship dynamics is the description of the hydrodynamic

forces acting on the ship. Lewis18 introduced the "strip theory" in 1929,w.

Sallowed computation of three-dimensional hydrodynamic characteristics from

19,21
two-dimensional theory. Haskind9' assumed that the hydrodynamic equations

could be linearized in such a manner that velocity potentials could be super-

imposed. This method allowed the use of three velocity potentials: (1) incident

wave potential, i.e., the velocity potential of the waves alone; (2) diffracted

wave potential, i.e., the velocity potential of the body fixed on a free surface

exposed to waves; and (3) forced heave potential, i.e., the velocity potential

L of the body oscillating in still water. Naval architects currently favor the

Haskind hypothesis as opposed to the earlier Froude-Kriloff hypothesis, which

assumes that body dimensions are small compared with the waves.

22,23
John wrote complete sets of coupled equations of motion for floating

bodies in harmonic waves and considered the influence of the body on the waves

(after Haskind). John also included an external force term that could be used

to describe a mooring cable. Heave and surge motions of a sphere were

computed for various wave frequencies.

St. Denis and Pierson24 linearized the decoupled equations of motion for

a ship and investigated ship motions in confused seas by summing the ship's

responses to sine wave seas of different frequencies. Korvin-Kroukovsky25-27

used the "strip" method to compute the hydrodynamic characteristics of the

ship and included cross-coupled hydrodynamic forces. A complete discussion

- iof the state of the art in the prediction of ship motions is presented in the

proceedings of the fifth symposium on naval hydrodynamics. 2 8 Current
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research indicates that cross-coupled hydrodynamic forces are the same order

of magnitude as other hydrodynamic forces and can not be neglected.

A large oceanographic buoy was built in 1965 by General Dynan.ics/

Convair Division. As part of the design process, 29 model tests were conducted

in a towing tank for various buoy hull shapes, and buoy motions were simulated

on an analog computer. The analog computer simulation considered the dynam-

ics of the planar motions of the buoy alone; the mooring line was treated as an

elastic spring. The following quote is from reference 29:

-The simulation was not fully successful; some results are

considered inconclusive. Due to the difficulty in obtaining

reasonable agreement with the model data, the analog

computer study was terminated short of its goal.

The 40-ft-diameter "MONSTER" buoy described in reference 29 has proven to

be a successful ocean data station. At sea motions of this buoy are described

by Devereux30 and Uyeda. 31 Gaul and Brown32 correlated buoy heave accel-

eration power spectra from the "MONSTER" buoy and from a small wave

sensing buoy.

Paquette33 developed a two-dimensional, lumped-mass analog computer

model for buoy system dynamics. The buoy was assumed to follow an elliptical

orbit (major axis vertical and equal to the wave height), and its motions were

not integrated as part of the system dynamics. The lumped-mass cable elements

were acted upon by tensions on adjacent elements, weight and buoyancy forces,

and velocity-squared drag forces. Cable hydrodynamic masses and linear
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damping forces were neglected, Paquette concluded that at least ten mass

elements are needed for a deep-sea mooring line to adequately describe the

system dynamics in the band of ocean wave frequencies that were considered

(0 to 0. 5 Hz). The coupling of tensile waves into transverse waves due to the

steady-state curvature of the cable was also noted.

Biveris and Swann34 also developed a two-dimensional, lumped-mass simu-

lation of buoy system dynamic- but included the buoy dynamics. However,

hydrodynamic cross-coupled terms were neglected. Rudnick35 measured

motions of the "FLIP" spar buoy at sea and compared motion power spectra

with the power spectra predicted from a linear, decoupled buoy motion model.

Blumberg and Osborn36 developed a digital computer simulation for submerged

buoy motions. The mooring line was considered to be a rigid, massless, and

dragless link. Hydrodynamic forces acting on the buoy included no cross-

coupled terms,and the equations of motion were linearized. Millard37 describes

tension measurements made at sea as part of the Woods Hole Oceanographic

Institution buoy reliability program. Tension amplitudes were correlated with

recorded currents and wind speeds. Millard's data indicate that the tension

amplitudes are attenuated with length down the mooring cable. A very compre-

hensive study of buoy system dynamics has been conducted by Prof. Nath, of

Oregon State University. 38 The two-dimensional motions of a buoy and its

mooring cable were considered. Buoy motions were solved by use of recur-

rence formulas and served as boundary conditions for the cable. Cable dynam-

ics were solved by using a numerical method of characteristics solution.
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4t •Hydrodynamic forces acting on the buoy and cable were included,and nonlinear

stress-strain properties of the cable were used. Transfer functions between

wave spectra and line tension spectra along the cable were developed and

compared with MONSTER buoy data.

Hsu and Blenkarn39 utilized momentum flux equations to compute the

hydrodynamic forces acting on a moored ship. Equations of motion were solved

numerically, and the mooring lines were considered as elastic springs. Each

wave was assumed to Impart an impulse; thus, the forcing function was composed

of a series of impulses acting on the ship. Burke40 assumed that a set of linear

response functions for the vessel were known and developed sets of statistical

relations for vessel motions in a random sea. This technique was applied to

predict drilling ves&A motions, and the results were compared with drilling

vessel motions recorded at sea.

The present investigation has produced a three-dimensional, numerical

model for buoy system dynamics. The model includes cross-coupled hydro-

dynamic forces and can be excited by wind, current, and wave forces. Cable

dynamics are investigated with both finite-element (lumped masses) and finhite-

difference (distributed mass) methods. In this study, finite-element methods

were found to be attractive because of their relative economy with regard to

numerical computational time. Finite-difference methods, while more rigorous,

are more involved numerically and require relatively large amounts of computer

time.

The deterministic model is excited by a numerical wave model having the

same spectral characteristics as the ocean waves. The computed buoy system
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.9 • response is then ,ampled to provide motion spectra by using Fast Fourier

Tra:,ssrrm (FFT) techniques.

To validate the model, two oceanographic buoys were equipped with

motion sensing instrumentation and installed in Block Island Sound. Buoy

motions were monitored and recorded for various wind, current, and wave

conditions. These data are compared with buoy motions computed with the

numerical model for the same environmental conditions.

!I
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II. PROCEDURE

In order to predfrf the response of the buoy system (figure 3) to the ocean

environment, a deterministic model of the system dynamics must be constructed

and excited by a random model of the oceanic conditions. The two major struc-

tural components of the system (the buoy and the mooring line) are treated

separately and then are combined to form the deterministic buoy system model.

F7
2.1 System Dynamics

Buoy motions can be described by the equations of motion for a body with

28
six degrees of freedom floating on the free surface of a fluid. The major

problem encountered in the solution of the set of six, coupled, elliptical, differ-.

ential equations of motion is the description of the hydrodynamic forces acting

on the buoy. In their most rigorous form, the buoy equations of motion would

be integro--differential equations since the dynamic pressures must be integrated

over the immersed surface of the buoy. Analytical solution of these equations

of motion for an arbitrary body in a random sea state has not been accomplished /

up to this time. If the hydrodynamic forces can be expressed as variable coef-

ficients in the equations of motion, the equations can be written as a set of six,

ordinary differential equations that can be solved by using the approximate

methods of numerical techniques. The problem now is to define the variable

hydrodynamic coefficients. If the fluid is assumed to be incompressible and

12
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irrotational, the hydrodynamic properties of certain simple two- and three-

dimensional bodies can be computed. Also, if the waves on the free surface

of the fluid are deterministic and linear, the velocity potentials for various

body motion modes can be superimposed to construct the case of a body floating

on a free surface and responding to waves propagating on that free surfe.ce.

This study employs the technique described above. Equations of motion

are written as a set of six, coupled, ordinary differential equations with variable

coefficieitts; hydrodynamic coefficieints are computed by assuming that the fluid

is incompressible and irrotational and that velocity potentials can be super-

imposed; aerodynamic and hydrodynamic viscous forces are assumed to follow

a velocity-squared law; and the body is assumed to be axisymmetric about a

vertical axis (as are most oceanographic and navigational buoys), which simpli-

fies the computation of the hydrodynamic coefficients.

Dynamics of cables are investigated and simulated. The most direct

approach, i.e., solution of the cable equations of motion by a finite-difference

method, is developed first. Since the cable equations are a set of nonlinear,

hyperbolic, partial differential equations, analytical solutions are intractable,

and a numerical method of solution is devised. Although more accurate, the

finite-difference method can be very expensive Nvith regard to digital Lomputer

time. A lumped-mass simulation of cable dynamics is also investigated and

developed. Lumped-mass methods offer significant savings in computational time

at the expense of trtncation of the higher frequency cable dynamics.

The buoy equations of motion and the two sets of cable equations (finite-

difference and lumped-mass) are then coupled and solved numerically on a
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UNIVAC 1108 digital computer. A numerical model of ocean waves is used to

excite the buoy system dynamics model. Steady-state buoy system configura-

tions are solved as the zeroth-order case of buoy system dynamics.

2.2 Experimental Validaxtion

In order to validate the computer model, two oceanographic buoys were

equipped with motion sensing Instrumentation and were monitored. The recorded

buoy motion data have been reduced in statistical form and will be correlated

with buoy motions predicted from the computer models. Also, buoy motion data

reported in the literature have been used to validate the computer models.

L5



III. ANALYTICAL DEVELOPMENT AND DISCUSSION

3. 1. B u uy..•amics

Consider an axisymmetric buoy having six degrees of freedom, floating

on the free surface of a fluid, constrained by a mooring line, and exposed to

wind, waves, and currents (figure 4). The buoy is being acted on by the

following:

Inertial forces and moments

Hydrostatic forces and moments

Hydrodynamic forces and moments

Wind forces

Mooring line tensions.

The inertial forces can be separated into those due to gravity (weight)

and those due to the motion of the buoy. Hydrostatic forces can be obtained by

integration of the hydrostatic pressure acting on the submerged surface of the

ii buoy, Likewise, hydrodynamic forces can be obtained by integration of the

hydrodynamic pressures acting on the submerged surface of the buoy. Hydro-

dynamic forces are classified as inertial or dissipative. Energy is being

dissipated through viscous effects, radiation of pressure waves, and radiation

of surface waves generated by the motion of the buoy. Energy is introduced to

the system through hydrostatic and hydrodynamic forces due to currents and

surface waves.

16
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Wind forces acting on the exposed surface of the buoy also introduce

energy into the system. Mooring line tensions indicate a path of energy removal

from the system. If the buoy were treated as a "black box" that transforms

energy from one form to another, we can draw a schematic as shown in figure 5.

From figure 4, it is seen that four sets of coordinates must be considered.

It is desired to solve for the coordinates of the center of gravity of the buoy in

inertial coordinates, (xoy, Yog Zog), but the hydrostatic and hydrodynamic

forces and moments are due to fluid motions relative to the buoy. Any point in

space has coordinates xi Y, zi relative to Ri (i = 0, 1, 2, 3); therefore,iI
0  og i

Yo = og + Yi

z =z +zi
0 og I

The only difference between R1 and R2 is a space rotation about the

axes of the buoy. Thus, we have

X2 X,

where CL is a 3-by-3 orthogonal rotation matrix,

"CoS r" CoS.8 - COS Y SI•l1J SINoC cos V 5/10N cOo€"
+ SIN Y COSoC + SIN Y SINoC

- -SIN X cos8 SiN rS IN S114 '-SIN YSIS8COS"
+COST c0o 0C + COS Y SINo(

-SIN - cOs, SINoO COS'COS 0o( j (2)
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-, r
Since fl is orthogonal, we see that .., 1. thus,

"Cos 5 COSA -31N T COSA -1NA

a IN S 1I•.A -l91aof -C005,851NOoc

+SINI r Cos O( +COsSi C0o(

COS Y{ S N.,B C0S o( -,SIN • 1N.AC0oSI 505J00030C

• f SIN rsf$it a< ÷ c03a "SIN oc
- (3)

The spatial coordinates become

X0 Xo + Xt Cos Y cosýB - Y• E't " s,- SINA• (4A)

Xo ~~ ->~' SIN r COSA S N) (A

.0 + X2 (-cos YsIN.8 SNtX + SIN, COSoC)
+ YZ (SINa 6 SINAI Cos"C+ COS~rSNoc) C03' ; -c sIeCsAo) (4 B)

+f X& (COS r SINBA o ~SN~S~~

+ >0' (-3 W Y SI,,9 co0 COS YSIN c~) + (7os,Z 8 cosK). (4Q)

The center of the coordinate system, which is aligned with the waterplane

area, is located directly above the center of gravity of the buoy. Motions of

fluid particles due to waves are described relative to this coordinate system.

The dynamical equations of motion will be written in buoy coordinates, but

displacements will be transformed to the R coordinate system in order to

solve for cable tensions.

Using the free body of the buoy (figure 4) and applying Newton's Second

Law, we can develop the equations of motion for the buoy. In matrix form, the
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equations of motion for the buoy are

where

M1 is the structural mass matrix

(j is the acceleration vector

Gis the gravitational acceleration vector

B is the hydrostatic force vector

is the hydrodynamic force vector

W is the wind force vector

T is the mooring line tension vector.

Each of these forces will be considered in turn.

Using a coordinate system with the origin located at the center of gravity

of the buoy and including moments and products of inertial, we can write the

structural mass matrix as

M• 0 0 0 0 0
m on o o o 0

o m 0 0 0 0
o 0 o 0o0 0

0 0 0 I'D OC A o(

0 0 0 1,84 AA I

o 0 0 r~ot Tra 1Yr*
(6)
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If the coordinate system is aligned with the principal axes of the buoy,

the structural mass matrix is

hi 0 00 0 0

0 m 0 0 0 0

0 0 0 0 0
0 0 0 40 o 0
0 0 0 0 A0

o0 0 0 0 0 *(7)

The acceleration vectors are

"I 'cos "cos•8

,• 0

S0 (8)

3. 1. 1 Wind Forces

The wind force vector is now considered. For an axisymmetric buoy about

the x2 axis and assuming a velocity-squared viscous drag, the drag and lift

forces acting on the body are given by

2D~~L P DA WV (9
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"Ilk* and

cA2 Wv,
where

D is the drag force

L is the lift force

,P is the air density

, is the drag coefficient (subcritical, - A-6< 5- 10 5 )

is the lift coefficient (subcritical, A "0A )

At is the vertical projected area

A2 is the horizontal projected area

W is the wind velocity

/V A is the absolute viscosity of the air

)I is the buoy width.

Because of the axial symmetry, the drag and lift coefficients of the buoy are the

same in the y 2 and z2 directions. Given wind velocity components WV and

WV in the R coordinate system and assuming that the wind velocities arezo o

an order of magnitude greater than the displacement velocities of the buoy, we

can transform to the R coordinate system and can compute the wind forces
2

and moments. For forces acting on a point that lies on the axis of symmetry of

the buoy, the transform from inertial coordinates to buoy coordinates is inde-

pendent of a rotations.

• Imm



24

The wind compone-ats in the R 2 coordinate system are

V 0

L J

Neglecting the small wind velocity component acting along the axis of symmetry,

the magnitude of the wind velocity in the R2 coordinate system is

2I

iwv; 1(12)

and the wind forces become

w =IrA ~# C a,1/AsfWRt IA[14a (13)

and W,
(Note that velocities squared is written as the prcduct of the velocity and its

absolute value in order to maintain the sign convention.) Resolving the wind

drag force into y2 and z components, we find that

W~a a(15)
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and

WZRvv (16)

The wind moments are computed by usis.g the wind forces and the moment arm:

WCKI " ( 17A)

A. - a 1LW (17B)

and

Hw (170)

where is the height from C. of 0. to the wind force center of pressure.

In the R 2 coordinate system, the wind forces and moments are

WyZ

R 0

(18)
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3.1.2 Mooring Line Forces

Mooring line tensions are acting on the buoy at the mooring line termi-

nation point. This point is taken to be below the center of gravity and along the

axis of symmetry a distance HML from the center of gravity. If the space

orientation of the cable is described by angles e and 0 relative to the R
0

coordinate system (figure 4), we can develop a 3-by-3 orthogonal rotation

matrix to transform from inertial to cable coordinates. The inverse of the

matrix can be used to compute the tension components acting on the buoy. This

rotation matrix, (A), is developed in the next section on cable dynamics but is

used here.

The tension components at the buoy end of the cable are

T TX 0

L[ 0L(19)

In the R2 coordinate system, they become

Txa

T. A (20)

The moments due to the mooring line tension are

S(21A)
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TAZ T1 1 *HML (21B)

=Ty?" H L .(21C)

The forces and moments due to cable tensions are then

TXaz

1' .
(22)

3.1.3 Hydrostatic Forces

The hydrostatic forces are considered next. If the displacements of an

elemental volume of fluid just below the free surface and in the immediate

vicinity of the buoy ara given relative to the inertial coordinates (1), and if

the slope of the free surface above this particle is also given (k), the buoyant

forces and moments can be computed. The assumptions that the buoy diameter

is small relative to the wavelength and that the presence of the buov does not

influence the shape of the free surface (Froude-Kriloff hypothesis) allow

representation of the sea surface as a plane intersecting with the body volume.
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"Most oceanograp!ic buoys have axial symmetry and their shape can

be approximated by an oblate spheroid. Consider an ellipsoid of revolution

(figure 6) with a major diametr-r of 2b and a minor diameter of 2a. The

equation of the surface is

+ -- + (23)

Let a plane intersect the oblate spheroid at a height Hd from the geometric

center at an angle.,. The intercepts of the plane are

X -- -HD

y= oo

H / -t•n.18

The equation of the plane becomes

.b + ____- _ _______ . (24)

or

X6 -/+n ,•J3 + H D 0 0 (24A)

The intersection of the body and the plane is therefore given by

aa
+ ++ 4 (25)
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4 • or

-- _, H --- (25A)+ + X

which is an ellipse. In order to compute the volume of the "cut" oblate spheroid,

the area of any section parallel to the cutting plane must be defined. In the

xb - zb plane, we find that on the ellipse

X (26)
Nb

and on the line

+b f + (27)

Equating (26) and (27), we can cempute the z coordinates of intersecting points

P and P by

2

+ (28)

Solving for zb ,we find

-HDtiqn.,' t "/bf tfl.8' D H (29)

For Pi the coordinates are

1'ti +11 'B+4
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and

for P the coordinates are

(t~na,'+a) (32)

and

t(33)

thus,

Tb tlA 2, t + va
i (tqn2/S't A• , (34)

The b' axis of the intersecting ellipse is

(l -

From equation (34), we substitute and find

(35)

The z coordinate of the center of the elliptical section is

Yi s (36)
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The x coordinate of the center of the elliptical section is

HP t/bnt) -

The dimension of the a, axis of the intersecting ellipse is one-half the y

dimension at the center. The y dimension at the center is

±I (tlI;) (38()tn2.s

and the axis length is

- tinBt.'+ F'g) (39)

The area of the intersecting ellipse is

A=-,,-,'b~'.T bri¢ ,T ) ' _________'___--_

or

The volume of the "cut" oblate spheroid is given by

HD

(A (41)

"HLO B



33

The lower limit of the integral can be found by setting the area of the cutting

plane equal to zero (A = 0) . The deepest draft is

HL. (42)

thus, with this lower limit, the volume is

HD cosSB

i n.bI H_ ý',Cvsa' HI

S- CVSTB''b• 2,8'+"A'+

or, whbn integrating, it becomes

The location of the centroid is given by

fH'JV

Expanding, we find

H' - Tro(t7 H'A/csf' H2. '

HCf V/ -,058 1t,,,fl'+ 9,,. (t#n-2a81. A%.)?H

Thus, carrying out the integration, we see that the centroid location becomes

2 (tn.,'•' HP

? X, IHl - HD j
H c 

3

A
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The H dimension of the centroidal plane is

I * (bt *t nz)

__________ ((45)E84 '~
H, --. 25-HHa

3 3 " tn2,' W')
The x coordinate of the centroid is

_(____,___+ _,_)_(46)

The z coordinate of the centroid is

The z coriat of the•' cenroi is c (
V

ZC ( ; ;t) fC (47)

The moment arm for the buoyant force is

d, = c +
where the distances d and d2 are given by

£*

or

and

gI 4 Hc sl,8'

The angle oK' is defined as

t 1 , -il

_29J
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"The moment arm is

4 ~,Cots'-(~ x )sN.

C* (48)

For the special case of a sphere of radius A, the immersed volume is

Y=r3L ± c A' +~L Cos,] (49)

The height of the plane intersecting the oenter of buoyancy is

HC2•Ia H+ S (50)[29.s~,SrA' + JHV - 0Cos=,

The coordinates of the center of buoyancy are

Xc, 3  Cos.' ", HB (51)

and

zC8 - s ' cosy. Hc5 (s2)

The buoyancy moment arm is then

zC .S '+ H-- ,C IN.' (53)
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If the buoy is pitched and rolled with angles 8 and 2r and the sea

surface slope at the buoy is Bw and rW the slope of the sea surface

relative to buoy coordinates is IS A-.Bw and Y = ýr- 4r'w The

angle between the sea surfac6 plane and the buoy vertical axis is

A '= •os-' (Cos ; co5,8) . With the buoy tilt angle defined, along

with the location of the buoy center of gravity relative to the sea surface, the

buoy/ant force and moment can be computed for an oblate spheroid, The buoyant

force B acts normal to the plane of the sea surface through the center of

buoyancy. In buoy coordinates, the buoyant force vector is

B ws sr cosA

(54)

The .j buoyant moment becomes

Pt BCos ý'. COSB,a)(Z 0cos COS() - COS es SINA,RS) (55)

and the " buoyant moment becomes

C. (3 OS,'s ss)(c .9- . Sc :K-(HcG,- XcX 8sf "?f) (56)

The same transformations as used above can be applied to any axisymmetric

buoy if the buoyancy can be defined as a function of the draft and tilt angle of
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the buoy. The angular stability of axisymmetric buoy hulls, as defined by the

locations of the centers of buoyancy and gravity, Is discussed in appendix A.

3.1.4 Hydrodynamic Forces

The hydrodynamic forces acting on the buoy that are due to the waves

incident on the buoy and the motion of the buoy in the fluid must be included In

the equations of motion. Ideally, the computation of these forces should be made

for a buoy moving in a viscous fluid exposed to a random sea state. However,

the solution to this general problem is not tractable and the forces acting on a

buoy moving sinusoidally in an Ideal fluid is considered in this study. These

uforces are considered as being composed of two components -t inertial and

dissipative. Energy is dissipated from the buoy, which is moving in an ideal

fluid, by the generation of surface waves that radiate cylindrically to infinity.

Dissipative forces due to viscosity will be included in the equations of motion as

separate force components.

The separation of dissipative forces Into those due to surface wave gener-

ation and those due to viscous drag is supported by Havelock, 41 who concluded

through dimensional analysis of the decay of oscillations of a prism on a free

surface that the viscous damping is an order of magnitude less than the damping

due to surface wave generation. Ogilvie 28 cites other model experiments which

support Havelock's conclusions. Ogilvie also lists generalized equations of

motion for ships in a seaway in which the viscous damping is either neglected

or included as a separate force term, which is the current practice among

naval architects.
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22 23The analysis of the motion of floating bodies conducted by John

illustrates the computation of the hydrodynamic forces. Consider a mechanical

system consisting of a liquid and a partly immersed body B. The liquid is

assumed to be incompressible and to'have'irrotational motion. The free surface

extends to infinity in all directions (figure 7). The body B is assumed to be

rigid and to describe a forced motion unde-:" the influence of external forces.

The state of the liquid is described by the velocity potential 0(x, y, z ; t),

which satisfies LaPlace's equation. The boundary condition that the normal

velocity of the particles along with the pressure is continuous across the surface

must be satisfied. In addition, the pressure on the free surface is assumed

constant and equal to the atmospheric pressure. Under these conditions, energy

is gained or lost by the system only through waves arrivinig or departing at

infinity or through the external forces.

The difficulties arising from the fact that the velocity potential, , is

a solution of the potential equation determined by nonlinear boundary conditions

on a variable boundary force linearization of the problem in order to make it

tractable. Restricting the anal)jis to infinitesimal motions, note that the bound-

ary conditions become linear conditions for the potential function 0 on fixed

surfaces corresponding to the rest or equilibrium position. The average free

surface lies in a horizontal plane, and the average immersed surface S for

the body B is for a position of equilibrium for B. On the average free

surface, y = 0 , the wave equation is

Ott• - (57)
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Figure 7. An Object on a Free Surface
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On the average immersed surface, we find

t; P+ 19 2,+ 0j 6t(5 8)

where

, IZ are the coordinates of the center of gravity .fI B

e; e; N' are the angular displacements of B

YI is the mnit normal of S°

4 p are the components of n

are the components of the moment of n about the center of

gravity.

Six differential equatior, of motion for B must also be written. For small

perturbations, they are linear, second-order differential equations in x , y, z,

6) ', ) eo with constant coefficients and integrals of q in the inhomogeneous

part. They are of the form

• ff.o ,-
where

ttis the mass of B

,.sO is the fluid density

A
I is the area of A , the intersection of the body and free surface

A A
Ix, are the moments of A about v .rtical planes

is the acceleration of gravity. I
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The integral expresses the hydrodynamic forces, whereas the right-hand term

represents the hydrostatic forces.

For a buoy undergoing simple harmonic oscillations, ¢ can be defined as

Re (T )3fj& 7,) ii ]e (60)

where

0- is the angular frequency of the oscillation.

For an incompressible fluid, V is a solution to

where V is complex valued. For small oscillations of the buoy, the amplitude

of induced wave motion will be small compared with the wavelength. Thus, the

linearized dynamic condition for q on the free surface is

(0ý t 0 + 0, 0,61

where

is the free surface elevation.

Equation (61) with the linearized kinematic condition,

(I' j 0.J)5 Z; t - (g; ~Ayields

-V(,o, )- kV (,ioP-)=o on =o (62)

4, ~*-4~444~.~'4 4- - - - -
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where

k is the wave number, •=0% =aT/•

is the free wavelength.

The normal velocity across the immersed surface of the buoy is continuous;

thus, we find

Yh (63)

which is equation (58) restated in vector form where

V is the position vector of the body C. of T.; Q x r, +Y 2 + Z ,r

is the rotation vector of body B; e eqs, ÷ eq¢ + e' +3
Sis the position vector of some point on the immersed surface of the

body.

The kinematic condition is to be satisfied on the immersed surface in the

undisturbed position, i.e.,
6

J=1
Applying a Sommerfeld radiation condition at infinity, we find that a disturbance

in the finite region should only produce an outgoing wave at a Ir ge distance:

-- 7-4 kp+ikg
V'( , , 7 -A ("1• e 0 o • --p. CýO (65)

)

where

5,g
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To put the equations in dimensionless form, let

f= k the frequency

Y yspace variables

Q (the space parameters,

where a is a typical buoy dimension. Introduce the pressure function (j

by

and

The boundary value problem is to find a potential Uj (x, ).) t':) .... ,

that is continuous in the fluid space in such a manner that

" u- L( o,)- i X4 (.Y), z) 0 oin, 4 Y°

• a(~X, 0 )' hJ(X, y)0 ) o0

u,. ( 3 YOE ) - , (X,,- Oh 4.-,'•'
,j Aj -----e"" o, 0 s d--oo

where hj represents the prescribed function that depends on the mode of
oscillation. The hj are given as

he (xk y,--) -ny SK (x ,yz) F- Y)n - x nxh., (X, ,Z')= • (Xy,) =)-) x ny, - Ynx,
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The source potentials G of unit strength in the lower half-space which satisfy

the sets of boundary conditions are

0

I )(67)

where

3,0O{l) is the Struve function of order 0

•{J•e3',o(i) is the Bessel functions of first and second kind of order 0.

The solution to the boundary value problem is now In the form

(68)

where is the strength of the distributed sources over the immersed surface

and is a continuous complex function. If the forces and moments are written as

components in phase with the acceleration and velocity, we find that

-3 p --- -,pC 9 N j j -1, 3 (69)

I or simple harmonic motions, the body vectors become
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and

e-)eLjt ej S)/ 5 (70)

The moments are

Then, jM. and .X" are the hydrodynamic mass and the linear damping coef-

ficients, and r and it are the hydrodynamic mass moment of inertia

and rotational damping coefficients. The dimensionless coefficients are

- "Im Lf• - )•rnxfyIk, 5d] J =.,),3 (72)

I , ; = Re u%5(xy,)7--(r x) -T) (73)

• ~I, =2-- = 'm! X(x, ,4), (Pr,)o* j= Y, 53 6. (74)

Kim42 has evaluated these integrals numerically for spheroids of various

aspect ratios and has plotted the dimensionless hydrodynamic coefficients versus

the frequency parameter. Barakat43 evaluated the Fredholm integrals with an

approximate analytical solution for the case of a sphere on the free surface.

H im's dota are shown in figures 8, 9, and 10. A curve-fitting program

tCURFIT) built into the Government Services Administration remote terminal
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computer system was used to develop approximate equations for Kim's data for

a sphere. Program CURFIT fits six curves to the data by a least-squares fit of

the candidate curve's linear transform. The six curves are of the following

types:

Y =A+ B'X
Y A e

AX
y= Aex

Y = A +8/

Y = I/(A+B BX)
Y = IALX

Coefficients for each curve and an index of determination (best fit) are computed.

Kim's data for the sphere are approximated by the following functions:

Sway- Surge

HIYDRODYNAMIC MASS

.•[ • . J~ x "-1,0 917 -th 0,51 7 9 0<t <q'.< 0,7q (75A)

./(-O.031g+o.0-7,Sq') .,7q.<)',3.,f (75B)

DAMPING

" "X 0 0a-/ A'<0" , O1 (76A)

=-O .06q+ 0.71 sq 0.1< 19'< 1.37 (76B)

1. .S q ,5 1,37<)'< 3.'1 (76C)

Heave

HYDRODYNAMIC MASS

J•yt = 1,Y0< )1'< 0.1 (77A)Pt 1. 0. 25*6'S"
-- A 0, 1 < )9'< 3. 1 (77B)
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DAMPING

"iso,< eq" q * (78B)

Dimensionless hydrodynamic mass and wave damping coefficients for a sphere

based upon Kim's study along with the above approximate curves are shown in

figure II. The set of approximate functions will be used in the computer simu-

lation of buoy dynamics for a spherical buoy.

Birkoff44 has investigated the influence of body symmetry on the hydro-

dynamic, mass dyadic. An oblate spheroid possessing an axis of symmetry has

five hydrodynamic mass values along the main diagonal: heave, surge, sway

(same as surge), pitch, and roll (same as pitch). For an ideal fluid, the yaw

hydrodynamic mass is zero. However, Lamb45 studied the rotational motion of

a sphere in a viscouks fluid and identifies a force proportional to angular accel-

eration that can be considered as a yaw hydrodynamic mass. For a fully

immersed oblate spheroid in an ideal fluid with the centers of gravity and

pressure coincident, all the off-diagonal terms would be zero. However, for

a half-immersed oblate srherold, the following hydrodynamic forces are coupled:

Surge-Pitch

Sway-Roll

Pitch-Surge

Roll-Sway.

Thus far, hydrodynamic mass and wave damping have been computed for

heave, sway, surge, pitch, and roll. Using Lamb's analysis for a rotating

"sphere, we can approximate the yaw hydrodynamic mass for an oblate spheroid
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in a viscous fluid:

j+ +~.R n (79)

The viscous damping in yaw is

3.

where

] is the major diameter

.,P is the fluid density

. is the viscosity

"1V is the kinematic viscosity

is defined as

O" is the wz.-ilar frequency of oscillatory motion.

Since the center of pressure and center" of gravity of the buoy do not

necessarily coincide, force components due to hydrodynamic mass or damping

will induce moments about the center of gravity. The projected area of an

oblate spheroid in the y-x or z-x body planes is a semiellipse. For HDD 0,

i.e., less than half immersion, the center of pressure is located a distance

below the centroid of the oblate spheroid. For HD > 0, i.e., more than half

immersion, the center of pressure is located a distance
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7r( q ~ i (82)

SHp/- -nvz + 9b

below the centroid.

In the coordinate system shown, a positive y acceleration will induce a

negative 2" moment and, conversely, a positive • acceleration will induce a

negative y force if the center of gravity is below the center of pressure. Thus,

the coupled roll-sway hydrodynamic mass moment of inertia is

Also, a positive z acceleration will induce a positive .R moment and

vice versa. Thus, the coupled pitch-surge moment is

MbM hZ (Hc6 H,~ (84)

Summarizing the inertial hydrodynamic force coefficients, i. e., the

elements of the hydrodynai' :c mass dyadic for a Palf-immersed oblate spheroid,

we find

o J'lM h 0 0 0 I1hy.

0 m~yo 0 0M.Y

0 0 0 1  'O•C 0SVh -- 0 0 M 0 0 o
o o
_0 li, 0 0 . (85)

LO M
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For the special case of a sphere, the elements of the dyadic are

I
•h•19 0 "8 ~ < M 0' 1

fli- = 3 =(1.o7n')., ' o< t'4o,7Y

S0.- 7h. (HCG- H3 )

where ,HH

Yi is defined as

9 is the sphere radius

Or is the angular frequency

is the fluid density

is defined as

"1/ is the kinematic viscosity

HC,.S pare locations of centers of gravity and pressure.

In a similar fashion, the dissipative force coefficients due to surface wave

generation are

Y") X; 0 0 0 00
0 Pn' 0 00 0

0 0 na 0 0I•, 0

0 0 0 0 0 0

0 0 M,1B 0 rt-.'. 0

L 1Mr 0 0 0 n 'Y~j (86)

4 -~---- -- ,1-1-
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Again, for the special case of a sphere. the elements of thc dyadic are

Yly=V•=0 /" 0 < Y1< 0o.=~~~0 ( 1~e 3A*j, r ,q ~3~

=(-o. e"1'). 3 7

nyr = rI. -n>,/ H,,
nq, .z=11, Hcc- - Hc•,)

Dissipative forces due to viscosity are assumed to follow a velocity-

squared drag law. There is some question as to the validity of representing

an u•nsteady force with a coeffi-ient based upon steady flow experimental

measurements. Martin4 has found that the mean drag coefficient for a plate

started impulsively from rest is an order of magnitude greater than for steady

flow. However, there is no general, analytical method available to compute the

47viscous forces for a fully turbulent, oscillatory flow. Schlicting cites use of

a method of successive approximations for unsteady laminar flow. Since viscous

forces, f(a2.), are an order of magnitude less than hydrodynamic inertia and

wave damping forces, f(a3), and beca-use steady currents are acting on the

buoy, the viscous forces are assumed to follow a velocity- squared drag law for

subcritical Reynold's numbers.

Analagous to the hydrodynamic mass dyadic, the viscous force miatri~x will

: contain ten elements. The viscous force coefficient matrix is

r1II
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ooo or

0 xx 0 0 0
o o y 0 o 0

o o o o d o

LO OY 0 0 (87)

where

dyy = p - Cps As

3

dyr dryy O(iA14CG.-IPCP)

The projected area in heave is

A b•A, • Tr(88)

and in surge or sway is

V/WI ' (89)

For half-inmersed spheroids, floerner shows plots of drag coefficient

(surge or sway) versus the ratio of vertical to horizontal axis dimensions.
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SHoeier's plot for a subcritical drag coefficient is fitted by the function

0. 351'f it/b Re < suberitical

for various spheroids. The drag coefficient in heave is approximated with one-

half the value for a sphere, CDH - 0.3

3.1.5 Ocean Waves

In order to compute the magnitude of the hydrodynamic forces with the

coefficients just derived, the relative motion of the fluid surrounding the buoy,

relative to the buoy, must be computed. A mathematical model of the sea state

must be developed.

The following hypothesis offered by St. Denis and Pierson24 in 1953 h.s

been verified by Dalzell, 49,50 Gerritsina, 51 and others for the motions of ships

in a random seaway:

1. Assume that the sea can be represented as the linear sum of

elementary waves, each traveling in the manner described by the

classical Airy formulas of linearized water wave theory. Each

component wave train will have random phase.

2. Weight the compoi" ý waves to have the same spectral

characteristics as the observed sea state.

3. Assume that the body response to a random sea is the sum

of its responses to the various frequency components.

Within the constraints imposed by the assumptions maide in the dcrivation of

the hydrodynamic coefficients, i.e., body dimensions are small compared with

V.
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a wavelength, the St. Denis-Pierson hypothesis should be better suited to the

case of a buoy, with dimensions on the order of 10 ft, than to ships, with

dimensions on the order of 100 ft. (For example, as a worst case, a 10-ft

buoy in waves with 100-ft wavelengths-would only cause a peak error of

3.3 percent in the computed elevation of the mean waterplane. This error will

decrease as the wavelengths become longer.)

From the Airy formulas, water particle motions in deep water for waves

traveling along the z axis are described as follows:

Wave Height

Xw = 1w SIN (kp -o-t) (90A)

Vertical Velocity Component

- = - k cos (k F-o-t) (90B)O"

Horizontal Velocity Component

S--t) (90C)

Vertical Acceleration Component

Xw -W- P, k sw k ki_9 0' (90D)

Horizontal Acceleration Component

"4""*Wqk COS(kE-Ot) (90E)
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Sif Wave Slope

'BW T AN-'( iqw k Cos RE - o-t~))

-- •-"•: "" ".. OS (h " •')(90 F)
)q k- co k. o.- o--t

Angular Velocity of Free Surface

AW - mw k a- sim (k - o-C (90G)

Angular Acceleration of Free Surface

(90H)•-•W it , -- w k -"a COS( k•-o"--

where

k is the wave number (k
-L.o is the wavelength

c- is the angular frequency

t is the time.

The assumption that body dimensions are small.compared with wavelengths

implies that body displacements are small compared with wavelengths. Thus,

we find that

xw ! --•w SIN 0-t (91A)

AW !4 - o" 0 COS C't (1B

:A ýa -Iqw°- SIN 0"-; (91c)
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Xw wO SINO -t (91D)

"- -w o-cos o- (91E)

A£W 19 k~ Cos a-t ,(91F)

W - w osi• 4rt (91G)

and

,3W • - lw k a- _cos ot (91H)

Transforming the water mass velocities and accelerations to b'ody coordinates,

we see that the velocities are

• xwa!J '
"" -I) (92A)

and that the accelerations are

xW( X,.B

. (92B)
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The location of the intersection of the free surface and the "vertical" axis

of the buoy is

YID B Co S,8 Cos Y +xa - X? (93)

In order to develop a random wave model, the statistical properties of

the sea state must be described. The development of wind waves on a body of

water is either limited by the distance to land in the direction from which the

wind blows (fetch limited) or by the length of time during which the wind acts on

the water surface (duration limited). For the fetch limited case, Bretschneider 5 2

normalized the original wind wave forecasting relations of Sverdrup and Munk5 3

and included much additional data. Bretschneider's dimensionless curvts have

been approximated by piecewise linear functions by Patton.54 The approximate

functions are as follows:

Significant Period

"" 2I7 .O-a F .:F< .OX 10 (94A)

OC-G 77, ==" -1.136 + O.?.g3 I-OCT 2 R T,0< r< 1h2 40~ (94B)

s -- R,O F >I/,P- t (94C)

Significant Height

H5 7' I0-sf F . ,c 10" (95A)

I
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LOG H4 i - 1..-•O.'Is* LOG I.C w'z, <,0 (95B)

, >5,YOxIOf (95C)

Weigel55 extends Bretschneider's dimensionless curves to the case of

duration limited wind waves. These curves are approximated by

Significant Period

LOG " 0,?- 0I ,;2?- q I-OC" DZ (96)

Significant Height

LOG 0 C,1ý ? 03-9 o (97)

where

" 7r W the dimensionless significant period
.r4WV

f Ithe dimensionless significant height

F the fetch parameter

the duration parameter
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7is the significant period

II is the significant wave height
'3

A

F is the fetch

D is the duration

! • is the gravitational constant

'WI! is the wind velocity

In order to determine if the waves are fetch or duration limited, the

minimum duration for a given fetch must be determined. From Bretschneider's

curves, the minimum duration is given by

LO I.' 77- 0.255 LOG F (98)

If the duration (D) is less than the minimum duration (Drin) the waves are

duration limited,: if greater, the waves are fetch limited.

For a given wind speed, fetch, and duration, the significant wave height

and period canbe computed by usingthe above equations. Longuet-Higgins 5 6 and

Bretschneider52 have shown that the distributions of wave heights and squared

periods can be represented by Rayleigh distributions. Thus, the wave height
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"4' distribution is

H = H7r- A e (99)

and the wave period distribution is

S2.7 - e (100)

The mean wave height and periods are

0.i O6T 5H (101)

and

T = o, 75 e •• •2
* (102)

Ocean wind wave amplitude spectra are of the form

$,12(c1 = A w e-•"(103)

Pierson and Moskowitz57 analyzed ,54 data sets and evaluated A, B, m, and n.

The exponent m was set equal to -5 and n was found to vary between 2 and 4

depending on the wind speed. Kottler58 optimized ths parameters by using a

least-squares fit of each data set used by Pierson-Moskowitz and proposed the

form
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t

S1 ,•o•) =Iow"'5 c+ (104)

where

= (1.75,00s) wV -q'•°V
/

C =o.03051( e

The Bretschneider spectrum, given by

-0.47 ___L

S11W (105)

where

S 3.Y37

was chosen for this study since it closely resembles the optimized spectrum and

is integrable.

St. Denis and Pierson24 proposed a random wave height model in 1953 of

the form

00 _

w .1COS&(Wt 6W~t)) ~S (W) oO( (106)
(o)
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where E (') is a random variable whose values are equally probable for any

value between 0 and 2 " . The integral is not an integral in the Riemann

sense since the function is discontinuous because of the random variable. The

expression indicates that the random wave heights can be represented as a

finite number of cosine waves of different frequency, each having random phase.

Let the spectral density So (WO) be partitioned into N frequency bands

(figure 12) in such a manner that

0 <, W,,l < (A) W

where the spectral density is essentially zero if tW is greater than ?J

The width of the nth band is

A t~h = Wn - 6011-j (107)

and the mean angular frequency of the nth band is

+ W (108)

The random wave height model is now defined as

where R g) 3.. ,o are independent random
59

variables distributed uniformly over the interval 0 to 2 'Y . Borgman

indicates that an equally spaced subdivision A -6 0Y/1%f will

result in Xw(t) repeating itself with period P-Trj/ . Borgman
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partitions the spectrum on an energy basis using the cumulative spectrum given

by

$HR~w)(109)
0A

thus,

ý>Hz W" SHZ Wn) S2 (&h-l)(.10)

hence,

x•(• = •(•.) •C•.,• Cos (•.ht +60. m

The periodicity is avoided if the set of tA), values are chosen to make

3,,2 (Wri- (&.h..,) constant for all n Let

(6n SH Wn1 (112)

then, the instantaneous wave height is

The frequencies, Wn , are given by

Se H2 (0 *O (114)
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" which corresponds to an equal subdivision of the energy coordinate axis for

Using the Bretsc meider-Pierson spectral density of the form

e ) (115)

which is directly integrable, we find that

£0

Integrating out to infinity, we find that

2,(, A

and

"whr =Wave (117)

where the coefficient is given by

B 0-o, 5 (118)

Next, we define the various elements of the randori sea state model:

Wavej Height

f tN
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Vertical Velocity Component

r-t 0,5c (a ~O (t +(120) i

Horizontal Velocity Component

: (t;)= - $,12CclAWh ,SIN (nt+E) (121)

Vertical Acceleration Component

~x w (t)Zl.6I • • (122)

Horizontal Acceleration Component

I 8-2 -an 4 S)Wm' CO 5p," et ) (123)

-- j
Wave Slope

Angular Velocity of Free Surface

A (t) k,-~3 SH&,,5,:q), 5N('~l+h (125)

Angular Acceleration of Free Surface

- ~ ~ II $,(c~~WnCoS(0-t+ ,) (126)
nzt
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Again, the wave height, velocity components, and acceleration components

must be transformed to body coordinates according to equations (92A), (92B),

and (93).

A ten-component, random sea state model was programmed in FORTRAN

for use with the UNIVAC 1108 digital computer at the Naval Underwater Systems

Center, New London Laboratory. This program is shown in appendix B as

subroutine "RWAVE." The ten-component model was found to truncate the

low and hIgh ends of the spectru. (the first and ninth frequency components).

Since the low-frequency end of the spectrum is important in the computation

of the response of mechanical systems, Borgman's frequency partition method

was modified to include the low-frequency energy by the following numerical

scheme:

1. Use a trial and error method to compute the frequency at

which the value of the spectral density rises above some threshold value,

for example, $. 2 (W) >0,01 f0 . . Let this frequency be denoted

C0 0 .

2. Thus,

and

A tjI Ol- W ,

3. Use the energy computed for the second partition SHz2(Wa)-).,a 2 (W1,)

to compute the component amplitude.

This method accounts for the energy in the low-frequency end of the

spectrum.
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3. 1.6 Numerical Solution of the

Equations of Motion

Having computed the wind wave displacements, velocities, and accelera-

tions, we can now nompute the hydrostatic and hydrodynamic forces acting on

the buoy (terms B and H in equation (5)). The hydrostatic forces and moments

depend on the position and orientation of the waterplane relative to the buoy.

The wave height, given by equation (91A) for a sinusoidal wave model or by

equation (119) for a random wave model, must be transformed to buoy coordi-

nates. The transformation is

xZ = w COSJ3 COSY -)(o COS" COSy ? (127)

where X c is the vertical height of the center of gravity of the buoy below the

mean waterplane with no buoy pitch or roll. The transformed wave height must

be subtracted from the heave motion of the buoy in order to apply equation (93),

the location of the intersection of the waterplane and the "vertical" axis of the

buoy. Restricting the study to waves traveiing along the x axis of the coordi-

nate system, the wave slope B,, in the inertial coordinate system is given by

equation (91F), for sinusoidal waves and by equation (124) for the random wave

model. The attitude of the waterplane, relative to the buoy coordinates, is

described by the angles 's =.-• -Aw and . The slope of the

sea surface is

A / c -'(cos z3 COSA ).
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"V With the location (equation (93)) and slope (equation (128)), the buoyant forces

and moments for a sphere are given by equations (49), (55), and (56).

In a similar manner, the hydrodynamic forces are computed by consid-

ering water mass movements relatfve -to the buoy. With the assumption that the

buoy dimensions are small relative to the wavelength and applying the Froude-

Kryloff hypothesis* for the viscous forces, we find that water mass velocities

and accelerations are given by equations (91B), (91C), (91D), (91E), (&1G), and

(91H) for a sinasoidal wave model and by equations (120), (121), (122), (123),

(125), and (126) for a random wave model. Water mass accelerations are

simply transformed to buoy coordinates (equation (100B)) and subtracted from

buoy accelerations to compute the motion of the buoy relative to the water mass.

The relative acceleration is

.9..
-W (129)

where

Q is the acceleration vector relative to water mass

Q is the buoy acceleration

d is the water mass acceleration.

Water mass velocities are more complex because ocean currents exist and must

fbe Included. There is a difference in reference frame that must be resolved

since buoy velocities cause a tactive force (i. e., a positive buoy velocity

*The presence of the buoy does not appreciably change water mass move-

ments in the vicinity of the buoy.
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causes a negative force) while waves and currents cause active forces (positive

velocities cause positive forces). The velocity vector of the buoy, relative to

the water mass, is given by

=) - (130)

where

is the buoy velocity vector

is the particle velocity vect r due to waves

4Cis the current velocity ve•°. , .

For current velocity components C"' and CW acting in the positive y0 and

z diirections, respectively, the cv.-i ent velocity vector isC rg]
LCW (131)

For viscous dissipative forces, which are functions of the velocity squared, the

velocities are

;-• •" •(132)

The absolute value is used in order to preserve the sign convention.

If the buoy were free floating, not moored, the equations of motion for the

buoy could now be Integrated for a given set of environmental conditions to solve

for the buoy response.
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The equations of motion for a spherical buoy are summarized. Equation (5) is

In the R2 coordinate system, the heave acceleration is given by

The sway ac eCeroa ti s BiCosv nCosy

+T' cos r WA- T+ SIN Y +T- C.sSIN,

The sway acceleration is given by

FM5SIN ý COSfi SIN r COSý,R f~,

Y rAV,*y- Tl, SINr COyy' )i

+TY cos Y -TrSIN YSIAIA,

The surge acceleration is given by

S_ t_[ rn q sl•,, + 3 II -,, •hY -_ M x.A - '

I
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The yaw acceleration is given by

The pitch acceleration is given by

H (GOS.

The roll acceleration is given by

dyi*/j / cc-1"I V~-: - TX• SWY•COs + T o -T.sl;tYs,

Hydrodynamic inertias and wave damping are computed for motions of the buoy

relative t% the water mass. Thus, for waves traveling along the z axis, we

see that

x x' -'2 Xk,. A",--X W2A =A
9 ' -J. P" = Y' /=-- 1

"-WA =F = • - ZO t
CK O C C><

O-Bwa
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where the subscript Wp indicates that the computed wave induced water

particle motions are transformed to the buoy coordinates. The viscous drag

forces and moments must include a contribution due to the steady-state currents;

thus,

The draft of the buoy is Hp)= He, +•X where HC•r Is the

•i height of the center of gravity of the buoy from the bottom of the buoy hull. The

,• buoyant force is

, I•,

B>'w 1y-c 7V

and

• The hydrodynamic inertia coefficients are summarized in equation (85). Wave

damping coefficients are summarized in equation (86). Viscous drag force

coefficients are summarized in equation (87). Finally, wind forces are shown

.I in equation (18).
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VWith all the coefficients in the equations of motion defined and with the sea

state model available as a forcing function, the dynamics of a free-floating

buoy* (no mooring line) can be investigated by numerical solution of equation (5).

The matrix equations of motion can be -rewritten to yield six, coupled, second-

order, ordinary differential equations with nonconstant coefficients - three

force equations and three moment equations. They can be rewritten as twelve

first-order equations.

These equations can be solved numerically in the time domain for the six

buoy motions using a standard highier order numerical integration algorithm

(usually Milne Predictor-Corrector methods or Runge-Kutta methods). In this

study, a fourth-order, Runge-Kutta irethot, was used to integrate the buoy equa-

tions of motion on a UNIVAC 1108 digital computer. Although a bit slower than

Predictor-Corrector methodi, the Gill's MeOhiod Runge-Kutta subroutine is

available on the UNIVAC 1108 and was found to be easier to implement for large

numbers of coupled, second-order differential equations.

5Errors in the fourth-order, Runge-Kutta method are on the order of h

where h is the integration step size. For the smaller oceanographic buoys, it

was found that a step size on the order of 10 sec was required for numerical

stability. If a step size of 5 x 10-3 were used, the error would be on the order

-12
of 3. 125 x 10

The computer programs used are described in detail in appendix B.

4i *The mooring line tension force will be developed in the next section on
cable dynamics and the equations of motion for the buoy will be coupled with
those for the cable.
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3.2 Cable Dynamics

A study of the dynamics of cables in the ocean environment must include

hydrodynamic forces acting on the cable and be capable of including nonlinear

stress-strair, properties for the cable. Since oceanic currents may flow in

various directions at different depths and the excitation at the ends of the cable

may be described by a three-dimensional force vector, the analysis must be

conducted in three dimensions.

3.2.1 The Cable Equations

Consider a free body of a cable segment of length dS (figure 13) being0

acted upon by an external force per unit length, Q, and assume perfect flexi-

bility. The geometric center of the cable segment lies at a point (x y , z 0)

in a cartesian coordinate system. The external force Q dS acting on the cable0

segment can be resolved into components; they are

Y (133)

Writing Newton's Second Law, we see that in the x direction

= x 3c, (~( 0  s0~(~~)~4 (134A)

in the y direction

ndinth z~ diretionT (134B)

and in the z direction,
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Figure 13. Free Body of a Cable Segment
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ST( (134C)

where ,U(S,) is the mass per unit length of the cable. Divide through by dS
0

and let dS -- * 0 . Taking the limit, we can write equation (134A) as
0
O

or

/4U•" 1 (135A)

and, in a similar manner, equations (134B) and (134C) become

2Y Y + 135B)

and

}A

15o k(1350)

Define the vector r from the origin to a point S 6n the cable segment.0

The vector is defined as

r x =, 4.I<

A vector tangent to the cable is

a~~ ~ ~ ;a= x '
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V* The unit vector tangent to the cable is

y~J

+(ay)v (ý72

At point S , the tension T is tangential to the cable if the cable is assumed

to be perfectly flexible (i. e. the cable can not support bending moments). The

tension is

(t ) ÷
where T is the magnitude of the tension. The x component of the change of

tension along the cable is

A. A. (2 ax
- -. " •-- (136)

Substituting equation (136) into equation (135A), we find that

and in a similar manner for the y and z forces, we find that

[T
Y + ;0 AJ . '>)137 B)

0o % k 1
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and

(V-_
-- . (137C)

The strain, (6), is defined as

OW d - -gS- (138)

where S is the strained length of the cable. Substituting equation (138) Into

equations. (137A). (137B). and (137C), we can write the equations of motion as

Sfollows:

/U ~~)- (139A)

and

)A 65o) 0 (139C)

In addition, the auxiliary equation (138) becomes

0(S

A constitutive relation,

T = T(6) (140)
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must also be defined.

This set of equations is standard for cable systems and has been devel-

60 61 62 63
oped by Cristecu, Schram, Whicker, Lindsay, and others.

It is desirable to transform the equations of motion to a "natural" coor-

dinate system (i. e.. a coordinate system aligned normal and tangential to the

cable), because hydrodynamic forces are usually defined as normal and tangen-

tial to the cable. The coordinate systems are shown in figure 14. Rotating

about the y axis, the transform is

"Cose 0 SIN6

"-s•IN U ] c05 e

Rotating about the z axis, the transform is

COS~ SINOb 0

SAZ = s ' cosq 0

For both rotations, w- %hat

A AZ.AI
thus,

' Cos. ,oe .•,, _SM oSI,,O]

A C.,0se cocO -s.si(141)
L0.:•, cosG (1 <41)
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I

86

A is the transform matrix from the x, y, z coordinate system to the x", y",

z" system. 14nce A is orthogonal, we see that A-" At; thus,

COS@(ose -SINq COS6 -SI1VeA -1 ... ,
,cs 'e - N S•e cosi

[COS $11Ve -SIN~ SIN9G S 0(142)

In the double-primed system, let x" be along the cable and z" and y" normal

to each other and the cable. Since _L ( A is a unit vector tangent to

the cable, ( transforms to f1 in the double-primed

coordinate system. This transformation is

-~ A-Ir1l?'50
or

?so Cos 0 cOs a(J-) _Y
I ÷ -• -"N

(143)

The components of equation (143) are

D x (1 6) -SIN (144B)
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and

•so • 1I÷6) cos SIN e (144C)

Lot H, G, and I be forces per unit length acting on the cable along the x", y",

and z" axes, respectively. In earth coordinates, the cable forces per unit

kongth are

X H''
Y =-'"

.z (145)

Writing equations (139A), (139B), and (139C) in vector form (in the unprimed

coordinate system), we see that

(146)

where u, v, and w are velocities in the x. y, and z directions, respectively.

Transforming to the double-primed coordinate system, equation (146) becomes

(ry COS ý COS ) H jl

A o(Ts SN, ) (S. )A
(TCOs SIN. ()
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The first term on the left is

+T(1-0cst6e cSqsIN20+ CO~OW1

co9ossw Sos& t

?T (-Cos219 SINOC4$S + COSOSINO -SIN219SINOO)

+T COSGO SlI8e +Cos~ -0 +SI~se S,,jN cos0

54(- sINe CoSbos CO+SNO +si Cose Cose)

4-T (cose 3NsAiv -w cas~ SIN s/l6?P

+TL' (cos'PsiN2 + cospcosae)

which can be reduced to

T Cos.70 (148)
ýso.

Now consider the term on the right side of equation (147),

/AAS4 )A

Iý
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"If U. V, and W are the velocity components along the x", y", and z" axes,

respectively, the velocity components in inertial coordinates are

xU

[v]=A" ~v]

then, the acceleration components are

'(A') + A`

Multiply through by the mass density and the transformation matrix (A),

irG

/(as) A om ,C.) (A)"A (A 4÷,U(S.• Af,

(149)

Considering the first term on the right of equation (149), we see that

"COS C050 -SINO cose -SIN o

(lSIN ~ Cos~

GOSObSINO -SIN6SING c Iooj
or

P
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.~sG -cosecocase)
% -Cos#SNSpO~ SSN

C, (0~. ) (-sIF) 0

AD-. (-SImoe

A furt~her expansion of (Al) gives

Ff 08cosew@Sim~ 0 Coss(; CO'5' 4A_
SNC03*0O- S IN ei% S -SINGfC03'4 COYOS*IJ%.

+CNIOSbCOSG SINO -SJJa& jCos 2,0 3

COS2GIO4 COSO3'e5ti0sIN (9CO-T4Cs )

(CSuO SIA12os0s* -Sircosre SiAj# cos'esi fl

( 1MSNO COTO CSIJ I -+SIN TO SNGcoB

31NO Cos 0 cos
SIWOC03SONG C -save core r

The above matrix can be reduced, and we find that
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0 CSO JqS

coA(A -SIAI o

(150)

Substituting into equation (149), the accelerations become

(151)

Substituting equations (148) and (151) into equation (147) and writing the compo-

nent equations, we obtain the equations of motion:

DT +- A(SJ.)I - -v Vc1sW)
ýt a (152)

(153)
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cos 22 +L =,( )( + cos S o (154)

In addition, we have the strain definition,

S+ (155)

and the constitutive relation,

T T(e) (156)

Equations (152) through (156) give five equations in eight unknowns

(rrT e, 6Uý T) VW), 6), Three more geometrical equations can be developed by

considering the velocities. The velocities are

and the space derivative of the velocity vector is

VV +A-j .1•. -- •(A")
LWj Wq"

(157)

:2 Consider the left-hand term of equation (157). The space derivative of the
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velocity, vector becomes

From equations (144A), (144B), and (144C), we see that

(+ I) Cos -S~3IN

(158)

Rewrite equation (157) and transform with A; thus

AA 'o " V - (A-') V

and

I+6) cos cose

S=A • ,6) SIN A *oK )V i

(159)

By anal( Py with the development of equation (148), the first term on the right-I .hand side of the above equation is
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at

I6) Cos4~~

By analogy with the development of equation (15Q'), the second term on the right-

hand of equation (1.39) is

-SIN

LCOS~~ Y Si4' 0

Substituting into equation (159), and writing the component equations gives

a-Y - (U + slo(160B)

and

I + Cios n, (U Cosb th t dyStive
so 3 (W'OC,

Rewriting the constitutive relation, we obtain the time derivative of tension:

3 orr ?
t de at
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"Finally. the equations are summarized as follows:

T - tA(S.) - VL- - cos + H2 0 (161)

S(162)

2-Y 1t Cos V -- + (163)

aT cos a ot
+' --- 7g C"O= (164)

Using th) +osttuiU reltio equtio ( 167) ths reu(165)eutinwt

o ,o

(1t-) + U.$WJJ NG 15

ý5 T (166)

and

3t OltF (167)

We have seven, nonlinear, partial differential equations in seven unknowns.

Using the constitutive relation equation (167), these reduce to six equations wvith

six unknowns. Jeffrey and Taniuti6. show that an analytic solution in the form

of a power series for a single, nonlinear, hyperbolic, partial differential equa-

tion can only be obtained locally, or "in the small" for a point P on a nonchar-

acteristic curve '" in the time-space plane. Physically, it is known that the
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flexible cable can propagate both tensile stress waves and transverse flexural

waves. It is also known that the characteristic velocity of the transverse waves

is a function of the state of stress of the cable. Thus, the usual method of

characteristics approach to solve nonlineai wave equations is not tractable

because the characteristics diverge in the timz--space domain. Solutions m Ist

be obtained simultaneously at the same locations un tU. time-space domain in

order to continually update the transverse wave chara, ctistic. A numerical

method, which is an extension of Hartree's "hybrid" method, 6.9--70 will be

employed to conduct simultaneous integrations at nodal points of a rectangmlar

grid in the time-space domain. Because this method utilizes integration along

characteristics in the immediate vicinity of the time-space grid nodal points, it

is necessary to rewrite the cable equations in their "normal" form, i.e.,

characteristic equations.

7irst, the characteristics must be found. Assume a linear variation of

tension with strain. Equation (167) reduces to

T
Rewriting equations (161) through (166) in the form A Vt. + BUfs + • Q (168)

gives

o ,of AwCOS -,A 0 0

0 -/iA V -,(AWsiwV 0 -/U 0

04 0 -,U(UcosO_-Vsijpj) 0 0 -,U.

-I 0 o 0 0 0

0-IE 0 0 0 0 aVI0 0 -(i6) Cost 0 0 0 IV
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;I_ 0 0 0 4s 0i-
0 E 470 0 C)

10 V V SI~N# 0 1. 0 0

I" I

0  (j csNP 0 0 1 • 0

Rewriting equation (168), we see that

A AUft A' BU+A'
or

U* kA3L. + A' (109)

The six characteristics are derived from equation (169). This derivation is

shown in detail in appendix C. From appendix C the six equations (equations

(161) through (166)) yield six characteristics:

+ ,(T (170)

I. 4T(171)

~+ 6 7 (172)
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j S(173)

+-1 E 471

(174)

and

.+ (175)

Rewrite the cable equations in their normal form using the characteristics. To

find the characteristic equations, we can write equation (161) in terms of

using the constitutive relation (equation (167)) multiplied by and subtract

from equation (164) multiplied by dS. This operation is

+ Oft

+f S{-sL- s +(-V ýtds -WCOS70 s)] d0

(170)

Since there are only two independent variables, s and t , the total differential

of any dependent variable, for example Vf, is

" - S + iE (t (177)
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The variables in equation (176) are expanded as follows:

-VLO ds -wcos¢ • dt-Wcos¢ o ds- H dt --=0

or

0 C~ -o iWols +0 (ti -4P W csi(-LFXdt,
Ad6 5 at.(5+ 0.'A (179)

In terms of the char',= riaic values. w . we see that

d5e + WCO3 0" 0) (180)

where + are the axial wave characteristics

in the t-s plane; hence,

The characteristic equation becomes

'7 .(T.4 + dU-V-- Vc-Wos d0 -j-- ft O (181)

A- t A

This equation represents the motion of the cable in the axial direction (stretching).

If we let the c< characteristic be associated with +/ E and

reprosent disturbances traveling down the cable, we see that

-4- - ]--t- ='-"'(182)

Similarly, let ., be associated Nith disturbances traveling ap the cable,
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-- s; then,

O-I A' jo- *f Z (183)

Again. equation (162) multiplied by ('ý) dt is subtracted from equation (165)

multiplied by ds to give

Dividing through by ( 1 +6 ), we find that

C(T ~ 4. dt + =do+I0((1+ 6.._) W6 Y.5 1+ 0

The transverse wave characteristics in the t-s plane are

3) = -,L (1+6) 56

hence,

ds j((li- ) -ti
and

dýf- (1+6) LL --- .

Let the o0 characteristic be associated with + and

represent disturbances traveling down the cable in the y" - x" plane:
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A4V ++1 ov 5 
_ 14

Let the R characteristic be associated with and,.

represent disturbances traveling M2 the cable in the y" - x" plane:

01V +f(+6)1 -Ci- +W N$ --+~ +WU. (1+6 dE -L C, 0 (185)

Finally, equation (163) multiplied by(ý&)dt is subtracted from equation (166)

multiplied by ds to give

The transverse wave characteristic in the t-s plane is

5, G R- Qý

hence
_ £" /.L

cdt ((6- ;6
and

Let the oa characteristic be associated with + 1 - and

represent disturbances traveling down the cable in the z" - x" plane:

Lc 0 (0 rt be 'd e 0(186)

* Let theA characteristic be associated with -and
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represent disturbances traveling up the cable in the z" - x" plane:

The characteristic equations are now summarized. For tensile waves

traveling down the cable with velocity- + , we have

-Y - -0
VOVYOT ;r' (188)

For tensile waves traveling up the cable with velocity ,- * 2 we

have

/tU' ý e (189)
.".

For transverse waves in the y" - x" plane traveling down the cable with

velocity -i- e) , we have

dv'
+ ti-ae) od - -'Oýe (190)

For transverse waves in the y" - x" plane traveling up the cable with velocity

-- 7 7  .s ,we have

F v n zSI"O'4"ple taei 0 (191)

For transverse waves in thc z" - xt ' plane traveling down the cable with

velocity + we have
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- ( j =0(192)

For transverse waves in the z" - x" plane traveling up the cable with velocity

- •we have

S()I+6JWS# 1U(S)N#: e)'d9 (193)

Equations (188) through (193) form the basis for a numerical solution of

the three-dimensional equations of motion for a buoy mooring cable. The

original set of six partial differential equations with six unknowns has been

transformed to a set of six ordinary differential equations with six unknowns

with the restriction that integration operations must be carried out along

characteristic curves.

The solution of sets. of coupled, nonlinear, partial differential equations

with different characteristic velocities is usually accomplished by assuming that

the equations can be decoupled. At best, they can then be linearized and a

separation of variables method can be used to obtain an analytical solution. At

worst, the normal fc'ms can be integrated numerically along characteristics.

Examination of the functional form of the transverse wave characteristics

show that they are dependent on the state of stress in the cable. Thus, the cable

equations can not be decoupled if they are subject to time or space varying forces.

Also, the particular cable system studied here is a combined initial value -

boundary value system:
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1. All the dependent parameters are known at time = 0.

2. The displacements at the lower bound (anchor) are constants for

all time and their time derivat!ciis are zero.

3. The displacements at the upper bound (buoy motions) must be solved

for simultaneously as are cable motions.

Buoy system cable motions, as posed here, can best be handled numeri-

cally with a modification of Hartree's method, i.e., solving for the values of

the dependent variables at rectangular grid nodes in the time-space domain.

Hartree's method, as described by Ames, 66 was developed for a single hyper-

bolic equation whose coefficients may be time or space dependent. In this study,

the basic method will be extended for a set of coupled hyperbolic equations with

variable coefficients.

3.2.2 Finite-Difference Methods

Consider a rectangular grid in the time-space plane (figure 15). Assume

that the values of the six independent parameters are known at the nodal points

on the jth time line. It is desired to advance the solution to the nodal points on

the (j + 1)th time line; specifically, for the ith point R. If the characteristics

are known at point R, characteristic lines can be drawn back from R to inter-

sect the jth time line. The six parameter values at points B, A, and D can be

linearly interpolated to find the values at each intersection point, P 2, I Q'

and Q " Now, the characteristic equations, (188) through (193), can be used to
2 *j

advance the solution to point R . For tensile waves, the length between point A

and point Pin the grid isS +tl 1
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Figure 15. Grid for Adaptation of Hartree's Method
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SR -Se, ±-(ch,+ Chh,,,).k
If constant cable mass and modulus is assumed, the tensile characteristic is

independent of the tension; thus.

Ckh,,=l Ch, 1  = ,L
The location of point P1 is given by -,t -S Chi. ; in a similar

manner, point Q (associated with tensile waves propagating up the cable) is

given by Si - 34! = -Ch' - . For tensile waves traveling down

the cable, the finite-difference equation is

-(. • i-[ +H f,,). k 0 (194)

For tensile waves traveling up the cable, the finite-difference equation is

tfR U0 + k(Ch±IR +Cý)Q (E-c~ Ia +- (V ol&, (P1

-L. I Ifi i+ (195)
/A' H .Q)k =o

For transverse waves in the y" - x" plane traveling down the cable, point P2

is located by

where

"C"a e R 'r
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The fin i te.difference equation is

i - ' IN( ' ••

S ( Q + -0(196)

For transverse waves in the y" - x" plane traveling up the cable, point 2 is

located by

-Si (+ ,.), k .

The finite-difference equation is

+ (197)
Re

For transverse waves in the z" - x" plane traveling down tile cable (note that

the characteristics for the transverse waves are the same), the finite-difference

equation is

2' (OR 00WR -- a]E~ C P Cos (i(pR 'a))

- (TJR +ULip -L ( OR + ýp)> R

AA T+ l,,)- k =o . (198)

1For transverse waves in the z" - x" plane traveling up the cable, the finite-
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difference equation is

WR-V,z + aR~ 24c2*'*)

Zt L(U' *U't) COSG(4~U 40.)) k(VR+ zo)sI(kZkti0pa))}(OCG60a)

,AA 2(199)

Rewriting the six finite-difference equations, we see that

U4 - ~-Z (ChIR+ C ~) 6R -?-L (VR + VA) P-j(WA +AI)COS(k(e+4v)] e"

-L A+ H) - j 0(200)

UR + (CýIR+ChIQ)6R -(R

4+

+ Ti, ~, (VRI+VQ.)OQI + (WR +W',fcos(# %+÷t'))] 0Qj

- ~ ~ k 0 \LJat) ' (201)

+{2V+ - ((l+6R)Cb2R+(I+6Jp)Cklp) +1

(IW+Wp[Sj(.(OR Oj 6 -L-L ,,+ Qa'I~ (202)
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VRt + ~ oE~a+fEc~ R+ kW~

+f -v6+ 64) Cb4R ((I+203)

-{hp(s+ lcos(i+,rA ) C ()os 6( ( ,+ or.))

+f{ (9CI~~, Lk(+Ip.i 0
) (204)

.md

w. +{'((I+6t)ch2A+oi.E6 )chaQ 0o(.'Q))

1* (UR +TZ) Cos( qft+O~))- ±L(VR+VQZ) S1N(2' (OR+zi 9R?- R o ,,•, • 0z- OQZ)
+ r. r.A E - . (IR-f To,7.- k (205)

In determinant form, they become

1JR + 0 + 0 + A, 6,-+AllO-AR,, +AO, 7 A o

o + v + o + o +A.95R+ AU QR e+A 3 -o

o + 'ft+ 0 +o A54+A6(p y

o +o + wR + 0o + + A, eA + A5 = a
o .0 + w, + o 0 + A,, eR A,, = 0
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where the A.. are the coefficients in the preceding set of equations, (200) throughIj

(205). The six simultaneous equations are solved to give

"-t;• +A A,,ep. = -AAsr

-(WAi -A. )ge= A, 7-Aa

.. e (A 7-As 7)
(AA,- AsA)

L)

WR t Asc OR = -A57  . - As Op

VR + A35 OK -A3C 1R-A37
Not + Aqs OR -Ac OR - AV7

(A3S-Aj 5)4N= (A46 -A36)9 +Aqg7-A37

O 4 (Aqj-A 3 E)e + A,, -A37

"("" - A A s)

VR+ A3s •R=-A. Oe-A 3X. .V • -A3' OR -A.,3 PR-A3

TR + A,.,Er = -Als•R-AGOt-A,7
-(UR +Azi 6R = -A, 4 O- AV7)

(AIq-A,) ER =(A 25-As) (A . ( -Ag)% + A27-A,7

(As -As) R t. (A26,-A,)e + A0 .RA,

(="R (Aq - Aa'.) '

and

UR = -Alq 6A -Als'PR -AjliR-A,7



The numerical li-ocedure within the time-space plane grid is as follows:

Step I

Compute the coefficients of the six simultaneous equations using the

values previously computed along the two preceding iso-time lines.

Parameters between grid points ai'e estimated by linear interpolation

along an iso-time line; for example,

try - ,,- (ha ,/ h)C(4v,-b ),
where

I -S
Accelerations are needed to compute the hydrodynamic mass terms in

the loading functions. Accelerations are estimated by using an Euler

numerical approximation along an iso-space line, for example,

UJ=(t-JU A)/k
In order to begin the iteration, assume that the values of the para-

meters at point R are equal to the values at point A.

Step 2

Solve the simultaneous equations for the six parameters at point R.

Step

Go back to step 1 using the new values at R in the coefficients and

recompute values at R.

Step

Repeat this procedure three times. *

*A more efficient method would be to specify an error and iterate until

the computed paramneter valhes converge within the eiror band. However,
three iterations were found to give good convergence.
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From the above scheme, it is obvious that solutions along two iso-time

lines are needed to start the iteration. Use the initial conditions along the

cable at t = 0 to fill in the parameter values at points C, E, and F. Assign

these same values to points along the cable at t .- k to obtain parameter

values at points B, A, and D. Begin iteration at grid point (1, 2); S = h,

t = 2k, and iterate down the cable. At the lower end of the cable, set S = h

and t = 3k anr repeat.

Velocities along the upper boundary are described by the motion of the

cable end. However, at the beginning of each new iso-time line, strain and

angles must be computed at S = 0 for the previous time increment. Hartree's

method can not be used here because parameter values at times less than 0 are

not available. A linear extrapolation along the previous iso-time line is used

to obtain the required values; for example,

@5=0 ; ES= A -(60- 6A)
The same problem exists along the lower boundary; only here the velocities

are set to 0. Once again the values of strain and angles are determined by

linear extrapolation along the previous iso-"ime line.

This method fails to converge if points P or P2 fall outside the space

interval A-D. Since the locations of these points are determined by the

characteristics, the minimum relative size of the space-to-time increment is

equal to the value of the greatest characteristic. The tensile wave character-

istic is always greater than the transverse wave characteristic; thus,
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The maximum space increment is determined by the size of the smallest

wavelength in the cable. The transverse wave characteristic will determine

the smallest wavelength. If the transverse wave characteristic is known to be

250 ft/sec and the cable is bcing excited by a sinusoid with a 2-sec period, the

wavelength will be 500 ft in length. At least ten points are needed to describe

a sinusoid; thus, the maximum size of the space increment is 50 ft. The time

increment for a 3,000-ft/soc tensile wave characteristic is

km ~ h - 50 F:t. oo~- ek = -, k - 50ft 0,01667 Sec
ý000 ft./sec

Note that the characteristics must always be real, finite values. If the

characteristics are zero or imaginary, the equations become ultrahyperbolic

with multiple solutions for a given set of initial conditions. In this system,

this is possible if the tensions are less than zero. Transverse wave character-

istics are then imaginary and the problem is indeterminate. This study is

further constrained by the requirement that the tension must be greater than

zero at all times over the whole length of cable.

3. 2.3 Cable Lo-' Aing Functions

The loading functions ii, G, and I (figure 16) in the cable equations are

composed of the weight components in the double-primed coordinate system,

the steady-state and dynamic drag components (viscous forces), and hydro-I dynamic inertia components (acceleration proportional forces).

T're weight components are found by simply transforming the weight per

unit length from the inertial coordinate system to the cable coordinates. The

,,elg,,t comnponents are A "fC , or
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Figure 16. Cable Loading Functions
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'I - 51N4 Co Cos 6

We SIN e (206)

Drag forces are assumed to follow a velocity-squared drag law of the form:

D= {pCDAV (207)

On a unit length basis, they- become

D= #p o(aV1VM (208)

where d is the cable diameter. In order to maintain a sign convention,

equation (208) is rewritten as

D- -LPpavIVI
D - • dv (209)

Casarella and Parsons71 have reviewed the state of the art for analysis

of hydrodynamic forces on cable systems. Two approaches are described: the

use of loading functions* to compute the normal and tangential drag force compo-

nents, and the direct computation of normal and tangential drag using normal

and tangential drag coefficients. The latter method, used by Wilson1 1 ' 12 for

mooring problems, is employed in this study because it lends itself to three-

dimensional cable problems and only requires a simple transformation of the

relative velocity components to cable coordinates. The first method requires

*Loading functions are defined as the ratio of the hydrodynamic force

component of interest to the drag force when the cable is oriented normal to the
flow.
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multiple transformations to define the normal and tangential forces and to

resolve them into three force components.

If the current velocity components are given by

0

Ed

(no vertical currents) and the velocity components of the cable element are

L ki
then the velocity components of the water relative to the cable are

U R 0 - J

VR Vs->~

YP [WJ [ws-i-I

Transforming to cable coordinates gives

I"= X sINO coso + (v- *) cosO- (w•-.)s,)Is,,IAo
RW J X SINE) + (V-A) cosoi

L



117

The drag force components are now written:

and

=x WPc4 ý~ 14 (2100)

48 11
Hoerner, Wilson, and others show plots of normal and tangential

drag coefficients versus Reynolds number for stranded cables. Wilson's data

were used in the G. S.A. program "CURFIT, "and the following expressions for

normal and tangential drag coefficients were developed:

CDN 3 .30227 + ± O,-96/Re O< Re-< 100'

100<Re <5,00 (211A)

= OOM 75) . Re0< <5xi15

(211B)

where Re V is the kinematic viscosity. These expressions are

"5
valid only in the subcritical Reynolds number region (Re 5 X 10 ). However,

since this Reynolds number would apply to a 2-in.-diameter cable moving at

35 knots, it is felt that the range of Reynolds numbers covered is adequate.

lydrodynamic inertia forces are defined normal and tangential to the

cable. Transforming the accelerations to cable coordinates and assuming

steady ocean currents, we find that the accelerations become
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X.- COS o + ySIN +- coT4SN ,,

jj X COSJ ce YCS - IA 0 siAI
L-X si,•e -+ P Cos e6J

The hydrodynamic inertia force vector is

F 0

L F4dZ Lo o Mh:t' L,'.
The hydrodynamic mass dyadic is a diagonal matrix due to the axisymmetry of

the cable. Also, for a cylindrical object of infinite length, the tangential hydro-

dynamic mass ( mhxk") is zero. For a smooth, constant diameter cable, the

normal hydrodynamic masset ' Mh >,y) MhZZ,, ) are equal.

45 72
Lamb, Basset, and others have used potential flow theory to com-

pute the normal hydrodynamic mass of a circular cylinder:

rhN = "•I 0 2/"f (212)

Miller73 and Miller and Hagist74 have investigated the frequency dependence of

hydrodynamic mass for various bodies. Their data show a linear decrease in

hydrodynamic mass with increasing frequency in the Stokes number region

0 .4 St. < 3 X 105 . By using Miller's data for a 5:1 cylinder, 74w can see

that the slope is -1.62 X 10-. Equation (212) is modified to include the

frequency dependence as follows:

=Ga-16X0G) OZT l < 3x10

mhN 'P 4a (213)

The components of the hydrodynamic inertia force are

F0) (214A)
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an I'N y(234B)

S~and

FL, (214C)

The loading functions are summarized by using equations (206), (210), and

(214):

H =w. oos 4cos'& -t- (o.Co5% - dRlf (4!1',215A)

=i -Wc SWN4 Coeo+D~~ d VRV" I

and

r C SI 19 s~ + CD5 OWRIWRI

+(1o- (1, GaX ) )rrp 4(215C)

where

V'°

Rew _ w"d
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PNV" 1,3?0?7 ji- 0, i6 q9 •Aevi. 0< ev.ft< I00
P" 1.9 V100< Rev,,< .5 ,io 5

CDN,,,.= 1.34027 + 1O.0ci/lgew,, o< Rz,,. < ieoo

1.9 100o< Rew- <5K(Ol

3.2.4 Lumped-Mass Model

The finite-difference analysis for cable dynamics can become very

expensive in computer time and can require large amounts of computer

"storage" because of the large arrays. A lumped-mass analysis can offer

significant savings in computational time at the expense of simulation accuracy.

In general, the lumped-mass analysis will truncate the high-frequency response

of the system. However, for many engineering applications, the high-frequency,

low-amplitude response is not of interest, and the cable can be represented as

a small number of lumped masses.

Assume that a uniform cable of length L can be broken up into N

segments of equal length (figure 17). The length of eacli segment is

AL L/N

Assume that the properties (weight, mass, hydrodynamic forces, etc.) of th,

cable can be concentrated at points 2, 3, ... , N, which are located A L,
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IFigure 17. Segments for a Five- Element. Lumped- Mass Model
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2 A L,..., (N- 1).A L from the upper end of the cable. All the forces acting

on the cable span from (N- 1) A L + are concentrated at the nth mass

point. Cristeculs cable equations, (135A), (135B), and (135C), are written for

each mass point:

L X,- L +-(4- T, (216A)

L I~ 0/4 2 ->- :Y"AL + (43- - h1(216B)

and

Tnk T (2160)

This is equivalent to modeling the cable with a system of spring-mass elements

as shown in figure 18. In order to compute the forces acting on each mass

element, the cable angles ( and e ) for each cable element must be defined.

From the geometry between the nth and (N + 1)th mass element, we see that

el - )
(217)

and

SIN =Y4 s- YY..- .l ry.-l• .,-4

(218)

Tensions between the lumped masses are computed by using the elastic

properties of the cable and the deformation of the cable. If the effective cable
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4 Ti--

i-1

Figure 18. Lumped-Mass Model
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modulus is E and the deformation of the cable of length A L is S , the
c

spring constant along the cable is

-F ___ 0KA0 T= . = I"

SIf • L (219)

The stretched length between the nth and (N + 1)th mass element is

vl/(xh..-,-. )'+ ( Y,., - Y. )'+ ( Z..+,- An) 1.
If the difference between the stretched length of the cable and the unstretched

length (A L) is less than zero, the tension is zero since the cable can not sup-

port compression. (This is analogous to the ultrahyperbolic equations that

occur in the finite-difference analysis if tensions go to zero.) Otherwise, the

tension in the nth cable segment is defined as

n = AY L) # (220)

Transforming to inertial coordinates, the tension becomes

o I Thxr cos. COS eh

(221)

These tension components are used in equations (216) to compute the tension

difference across the mass element.

As before, the forces X, AL ) Y, zL and h ,AL acting on

each mass element consist of %%eight, viscous drag, and hydrodynamic inertia

ILI
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forces. The weight force vector per unit length is

'0

c~.s4

and the velocity components of the nth element are

[ii.
L -•h

then the relative velocity components are

(222)

If the mean cable angles at Lie nth mass element are computed, we find

(223A)

and
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On + 6 _J (223B)

The relative velocity components are transformed to cable coordinates as

follows:

I,

WR' n= ~fSIN h+ (Wfl, ~ Cos U, t

The drag forces per unit length are

S= "P

and

where the drag coefficients are computed from equations (211A) and (2113).

* The accelerations of the nth mass element in cable coordinates are

y$ = . coS I oN e CO S•N coc ~ ~SIN~NI OCS )

and

7- h SINeG, + 7n cos 6?h
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The hydrodynamic inertia force components per unit length are

F. -0 (224A)

Fhy m, Y, (224B)

and

hIM "-h 1fl -i a (224C)

where is computed from equation (213). The drag and hydrodynamic

inertia forces per unit length are summed and transformed back to inertial

coordinates and added to the weight force; thus,

x. we ;o

Yn.., o + A Dy" + h

Z.0i D;. + F,
(225)

All terms have been defined in the equations of motion for the cable

elements. The three equations, (216A), (216B), and (216C), must be integrated

simultaneously for each mass element. Thus, if the cable is broken up into ten

segments, there will be nine mass elements, each having three degrees of

freedom. Therefore. there will be 9 x 3 x 2 = 54 simultaneous first-order

equations. Note that the upper half of the first cable length and the lower half

of the last cable length are not included in these equations of motion. These

e(able segments are assumed to be moving with the upper and lower boundaries
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and their properties should be lumped in with the properties of the buoy and

anchor. The computer program developed for the lumped-mass simulation of

cable dynamics will be discussed in a later section.

:3. 3 Steady-State Buoy System Configurations

As an introduction to the coupling of the buoy and cable equations of

motion and the resulting computer programs, the steady-state buoy system

configuration (zeroth-order case of buoy system dynamics) will be investigated.

The specification of the proper mooring line length for a moored buoy system

is critical in the design of the system in order to avoid tow-under of the buoy,

minimize the "watch circle" of the buoy, reduce steady-state tensions in the

moor, etc. This analysis offers a method to select the proper mooring line

length for a given buoy, water depth, and current.

If the time dependent terms in the cable equations (equations (161) through

(167)) are allowed to go to zero, we find that

S+ H (226)

- + -0 (227)

T cos + 1 (228)

and

- _. (229)IK
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Lotting cable velocities go to zero in the loading functions, we find that

H= w Co ; C0 36 0S +(o.;.5'Go(Ti_ 0'Y7)5Il/R

CT -WcYIN 0cose +c~~ C" \j/' vx I i
and

-Wc SINe 2.R
where

U."= 'VS SIN 0+'W3  oq3

Wn'-= Wcose

1•~ ,32 = .302 7 + 1O.06g21key. Op0< Revo < 100

I . It )00 <R .< 5)r IS

100< Re-.<5xIo0'

R # - Vd

V
S~W"d

Expanding equations (226), (227), and (228) to include the loading functions and

taking total derivati~es, we find that the steady-state cable equations become
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ST -- It ,--, qss d Y 1 j (230)

I W,- S - of '2 (231)

Le 1.2o 8"w 22

Ad,~, TCOSO '51 (232)I
and

(233)

Before integrating these equations, the upper boundary conditions (at the

buoy) must be determined. The tension at the buoy is

B /(Ois -W1 Vm92(234)

where

Disp is the buoy displacement

Drag is the buoy drag force due to surface currents

WB is the buoy weight.

For convenience, let the z axis of the inertial coordinate system be aligned

with the surface current. Then, the initial buoy moor angle is

A235))

and the initial moor transverse ang)e is

(236)
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Unfortunately. the displacement and drag of the buoy are functions of the cable

tension at the buoy. Thus. a trial and error solution must be used. For a

given current profile \ f 0c) • V -- (X) V the depth of water is

dhc controlling parameter. When the vertical projection of the cable is equal

to the depth of water, the correct solution has been obtained. The differential

equations defining the cable shape (equations (230) to (233)) are controlled by

the unstressed cable length S . Each iteration must take into account the0

stretch in the segment before the x component of segment is computed. Thus,

if the integration step size is dS and the tension and angles for that segment0

are T, e , and 0, the stretched length is

dS = N+ 6) *~o& (237)

From the cable properties, we see that

a= _ _ 9?T

Rewriting equation (237), we see that the stretched length increment is

f 7 * + ) d•.. (238)

The components of the cable incremental length dS are

cx A5S cos cos e

dy d,.5SIN'f

and

da= ta cos swe

-k
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Since both the displacement and drag of the buoy are functions of the draft of

the buoy (equations (52) and (95) developed for an oblate spheroid - similar

equations can he developed for buoys of different shape), the draft H is incre-

mented upward from its "free-floating" value, i.e., as if the buoy were floating

on a calm surface with no mooring. The configuration of the cable is then

computed using a fourth-order, Runge-Kutta numerical integration algorithm

for the given current structure. which may vary in magnitude and direction as

a function of depth. The components of the incremental length dS are com-

puted and summed. The x component of the end of the cable is tested logically

to see if it falls within a specified error band about the water depth. If the

computed vertical projection is less than the water depth, the buoy draft is

incremented upward and the process is repeated. if the computed vertical

projection falls within the error hand, the solution can be accepted or the

width of the error band can be reduced and the process repeated until the

solution achieves the desired accuracy. This process is shown schematically

in figure 19.

This method has been programmed in FORTRAN IV and is shown in

appendix B. Subroutines are included for the displacement and drag of oblate

spheroids, spherical buoys, cylindrical buoys (cans or spars), torroidal buovs

("donut" buoys), and discus buoys ("monster" buoys). The user must input

the buoy' characteristics tweight, dimensions, etc.) the cable characteristics

(diameter. length, cable modulus, and weight per foot in water - negative if

buoyant), and the environmental characteristics (water depth, current struc-

ture, etc.). The output includes unstretched length, stretched length, tensions,
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the cable angles, and the x, y, z coordinates of each integration step. The

step size of the buoy draft is incremented upward as some percentage of the

total buoy draft (as if it were fully submerged). Downward buoy draft incre-

ments are taken as half the prior upward increments to avoid a lock-step

situation where the solution swings between two values and never converges.

Subsequent draft increments are halved to avoid the same situation. If the

initial error band specified is too narrow and the solution overshoots the error

band, the solution may converge too slowly. A limiter is built in to stop the

program after 15 configurations are computed. The user should then open up

the initial error band. If the buoy draft is increased to its maximum value,

the program prints out a statement that the buoy sinks and the computation stops.

This indicates that the buoy tows under either because it has insufficient excess

buoyancy or the system drag is too high.

If the mooring line is made up of more than one type of cable, rope, or

chain, logical "IF" statements are used to change the cable properties at the

proper cable lengths. The writer has found that at the transition of cable to

chain, the integration step size must be reduced to ensure numerical stability.

Also, if the mooring line has objects (instruments, buoys, weights, etc.)

attached to it, the change in tension and angles across the discontinuity must be

computed from the free body of the object (figure 20). If the cable parameters

just above the discontinuity are rr ) and eH , the tension compo-

nents at that point are

N ) (239A)



135

TH

OH. 0H

Doz

SLL , OL W .

TL

Figure 20. Free Body of an Object on the Mooring Line
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and

Te. T, COS 0, SIN e, 23C

F_ H os SJe (239C)

By summing the forces on the free body. we can determine the tension compo-

nents below the discontinuity. The tensie.i components are

and

T, T. Do E

where

W is the in-water weight of th6 object

Do. is the drag ,,f the object in the minus y direction
DOis the drag of the object in the minus z direction

The cable tension just below the discontinuity is

and the cable angles become

G, T .A " (N_ / ,.) (241)

L~L _TO_ _
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and

SL. TALt (242)

The integration down the cable can resume using the new tension and angles.

The process can be repeated for other objects along the mooring line.

Computer programs developed for buoy system statics and dynamics are

shown and discussed in appendix B. The experimental data taken and the

validation of the analytical models will now be discussed.

gI
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IV. EXPERIMENTAL MEASUREMENTS

AND COMPARISON WITH MODELS

4. 1 Steady-State Buoy System
Configurations

The steady-state analysis of the buoy system configuration is important

since it serves as the set of initial conditions for the dynamic analysis. Also,

the steady-state analysis is the first step for the buoy system designer to ensure

that his system will not tow-under or have other undesirable static characteris-

tics. The analysis for both shallow and deep water oceanographic buoy systems

are compared with data taken at sea to validate the steady-state analysis.

4. 1. 1 Torroid and Current Meter
Array at Station BRAVO

On 22 August 1967, the writer installed a buoy-supported, current meter

array at station BRAVO (410 51.151N, 710 46.50'W) at the Block Island -

Fishers Island (BIFI) Oceanographic and Acoustic Range in Block Island Sound.

This array was recovered on 19 September 1967, and the current meter data

were analyzed. The components of the array are shown in figure 21. The three

Braincon type 316 current meters were suspended below the buoy at cable lengths

of 15, 60, and 105 ft. The buoy and array were moored with a 70-lb Danforth

anchor and a 100-lb lead weight to keep the line pull horizontal. The buoy used

in this experiment is shown in figure 22.

138
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Twenty-eight samples of the current meter data were selected and are

shown in table 1. Data from the bottom current meter were highly variable and

erratic and were not regarded as reliable. The data shown are 10-min time

averages due to the photographic method used to record data. The instruction

75
manual for the type 316 current meter gives the following ranges and

accuracies: /

Range Accuracy

Current speed 0. 5 - 5 knots + 0. 15 knot

Current direction 0 - 360 deg 5 deg

Current meter tilt 0 40 deg + 1 deg

Timing mechanism 5 months + 10 see/day.

The weight in sea water of the current meter is given in the instruction manual

as 67 11). The cylindrical body of the current meter is 81 in. in diameter by

381 in. long with a 36-in. vertical vane 6ttached to alIgn it with the flow.

Sunblad76 gives a normal drag coefficient of 0.59 based on frontal area derived

from tow tank data for the type 316 current meter.

The torroidal buoy has an 8-ft outer diameter and a 3-ft hole through the

center. The buoy weighed 1200 lb in air. The mooring line was 5/8-ia.-diam-

eter polypropylene rope having 0. 02 lb/ft buoyancy. The 3,/8-in.-diameter

wire rope at the anchor weighed 0.2 lb/ft. The cable modulus of elasticity for

the polypropylene rope was taken as 1.67 x 10 lb/in. (500 F) and for the steel

cable as 12.0 x 106 lb/in.2

Williams77 and Nalwalk et al. 78 have made current measurements at

station BRAVO and have found a t%%o-layer current structure. On an ebb tide
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TABLE 1. CURRENT METER DATA - STATION BRAVO
STime Speed (knots) Direction (deg) IObserved Tilt Angle

Reference to Magnetic North (deg ± 1 deg)

(hr) 15 60 105 15. 60 105 15 1601 105

.333 1.177 1.27 .701 278 270 301 10 22 40

.666 1.205 1.16 1.04 276 276 310 10 20 40

1.000 1.079 1.08 1.11 281 277 300 7 18 40

1.333 1.099 1.07 1.84 284 283 257 6 14 40

1.666 .945 .928 .498 292 282 217 6 11 18

2.000 .836 .713 .777 290 276 206 5 7 41

2.333 .717 .578 1.031 286 273 119 4 7 40

2.666 .538 .497 4.688 298 284 115 4 5 40

3.009 .d09 .341 3.92 316 302 171 3 3 10

3.333 .378 .214 .110 335 316 160 2 4 17

3.666 .420 .159 .069 27 188 151 3 I 7

49.0 1.253 1.086 .764 290 280 215 15 25 18

50.0 1.169 1.088 1.386 298 275 202 15 25 40

51.0 .940 .943 .697 291 272 246 10 20 40

52.0 .748 .516 .523 308 289 110 6 11 40

53.0 .617 .265 1.472 21 91 109 5 5 9

54.0 .790 .578 .687 83 89 17 5 5 0

55.0 .908 .666 .901 93 86 56 4 10 40

56.0 .824 .814 1.964 90 169 1 5 5 19

20.0 .632 .699 .756 71 96 1 5 5 40

21.0 .578 .345 .859 41 104 5 5 5 5

22.0 .630 .363 1.39,4 283 242 312 6 15 40

23.0 .910 .845 4.539 267 305 10 23 40

24.0 1.178 1.108 2.141 278 268 309 16 30 41

25.0 1.219 .985 -. 545 283 260 306 14 30 40

26.0 1.158 1 0• 1.283 288 257 306 15 26 18

27.0 .893 -' 1.894 298 257 201 9 20 18

28.0 .691 '42 .832 347 254 111 6 6 40
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(current setting to the east) the bottom layer appears to set to tile northeast.

On a flood Lide (current setting to the west) the bottom layer sets to the north-

west. Williams and Nalwalk never observed bottom currents greater than

1. 5 knots. which make the data from the bottom current meter questionable.

Also, the high tilt angles of the bottom current meter preclude proper response

of the Savonius rotor to tile ambient currents. In the following study, which was

made to compare predicted current meLer tilt angles with obsirved tilt angles,

the current is modeled as an upper layer having a thickness of 70 ft and a

bottom layer with a thickness of 50 ft. The current speed and cdirection of the

upper layer is approximated by the mean of the speeds and directions from the

two upper current meters. The speed and direction of the lower layer is

assumed to be equal to the speed and direction from the bottom current meter.

Bottom currents greater than 1.5 knots were set equal to the value of tile upper

layer current.

The computer program for steady-state buoy configurations shown in

appendix B was modified to include the effects of the current meters and lead

weight by solving the free body at each object (equations (239A) through (242)). The

torroidal buoy subroutine was used and cable configurations were integrated

with a fourth-order, Runge-Kutta algorithm using a 1-ft step size. Current

meter tilt angles were computed by balancing moments on each current meter.

The program was run on the GSA-360 time sharing computer and rCselts for the

first ten cases are shown in table 2 and in figure 23. Average tilt angle errors

for the ten cases are as follows:

Ak
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Figure 23. Current Meter Tilt Angles Computed by Integrating
Down the Cable Compared With Observed Data
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Upper current meter + 0. 22 deg

Middle current meter + 0.2 deg

Lower current meter* + 1.06 deg

Overall average error + 0.49 deg.

With the exception of the lower current meter, these errors fall within the

+ 1 deg accuracy of the tilt indicator indicating good agreement of the computer

model with observed data. The computer study indicated that the 100-lb weight

was never picked up off the bottom by the strongest currents and that the weight

and drag, of the current meters control the buoy system configuration to a

greater degree than the weight and drag of the polypropylene rope. With this in

mind, a simple statics model of the buoy system was developed; it was assumed

that the rope was not deflected between current meters and that half of the drag

force acting on each rope span could be assumed to be concentrated at the end

of the current meter to which it was attached. Since the tensions in the inte-

grated cable configurations were observed to be very small, the buoy draft was

computed for the buoy weight and the weight of the current meters only. Thus,

the vertical force component is equal to the weight of the current meters. The

simplified model is shown on figure 24. Lateral deflections computed by the

integrated configurations were very small; thus, the simplified model was

restricted to two dimensions. Drag forces on the rope spans and on the current

meters were computed as if the currents were acting normal to the rope or

current meter. The small buoyancy and the stretch of the rope were neglected.

*The errors of the lowest current meter were not computed for data where

the observed tilt angle was 40 deg.
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Buoy system configurations for the case at current meter reference time

of 0.333 hr are shown in figure 25 and are quite similar. Computed current

meter tilt angles were compared with the observed tilt angles. The angles

were computed by using a uniform current equal to the mean value of the current

speeds from the upper two current meters. The angles are shown in table 3 and

on figure 26. TW3 average errors for the first ten data sets are as follows:

Upper current meter - 2.15 deg

Middle current meter - 0. 26 deg

Lower current meter + 7.64 deg

Overall average error + 1.74 deg.

These errors indicate that the simple statics model is about three times less

accurate than integration down the cable but may be adequate for engineering

applications. The average errors for 28 data sets are as follows:

Upper current meter - 3.77 deg

Middle current meter - 2. 69 deg

Lower current meter 16.66 deg

Overall average error 3. 4 deg.

The preceding study indicates that the steady-state buoy system con-

figuration model can predict current meter inclination angles to within 2 deg on

the average. No tension data were recorded; thus, the steady-state tension

errors were not computed. The shallow water buoy system described above is

most heavily influenced by the weight and drag of the current meters. In most

deep water buoy systems, the weight and drag of the mooring cables are the

predominant forces.
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TABLE 3. COMPARISON OF OBSERVED CURRENT METER TILT ANGLES
WITH DATA COMPUTED BY ASSUMING NO CABLE CURVATURE

Speed (knots) Observed Tilt Angle Computed Tilt Angle (deg) Tilt Angle Error (deg)
Time I(des+ 1 deg)

15r560 105 115 60 105 15 60 1105

.33 1.177 1.27 10 22 40 6.90 20.77 62.53 -3.10 -1.12 -

.66 1.205 1.16 10 20 40 6.45 19.50 60.90 -3.55 - .50 -

1.00 1.079 1.08 7 18 40 5.38 16.45 56.27 -1.62 -1.55 -

1.33 1.099 1.07 6 14 40 5.43 16.59 56.51 - .57 2.59 -

1.66 .945 .928 6 11 18 4.06 12.53 48.42 -1.94 1.53 30.42

2.00 .836 .713 5 7 40 2.78 8.64 37.62 -2.22 1.64 -

2.33 .717 .578 4 7 40 1.94 6.06 28.31 -2.06 -. 94 -

2.66 .538 .497 4 5 40 1.24 3.88 18.99 -2.76 -1.12 -

3.00 .509 .341 3 3 10 .84 2.62 13.07 -2.16 - .38 3.07

3.33 .378 .214 2 4 17 .41 1.27 6.42 -1.59 -2.73 10.58 I
3.66 .420 .159 3 1 7 .39 1.22 6.15 -2.61 .22 -. 85

49.0 1.253 1.086 15 25 18 6.31 19.11 60.36 -8.69 -5.89 42.36
4 50.0 1.169 1.088 15 25 40 5.88 17.88 58.57 -9.12 -7.12 -

51.0 .940 .943 10 20 40 4.10 12.66 48.72 -5.90 -7.34 -

52.0 .748 .516 6 11 40 1.85 5.78 27.17 -4.15 -5.22 -

53.0 .617 .265 5 5 9 .90 2.82 14.03 -4.10 -2.18 5.03

5,4.0 .790 .576 5 5 10 2.17 6.76 31.01 -2.83 1.76 21.01

55.0 .908 .666 4 10 40 2.87 8.92 38.51 -1.13 -1.08 -

56.0 .824 .814 5 5 19 3.10 9.64 40.76 -1.90 4.6.4 21.76

20.0 .632 .699 5 5 40 2.05 6.40 29.64 -2.95 1.40 -

21.0 .578 .345 5 5 5 .99 3.09 15.31 -4.01 -1.91 10.31

22.0 .630 .363 6 15 40 1.14 3.57 17.58 -4.86 - 11.43 -

23.0 .910 .845 10 23 40 3.56 11.04 44.70 -6.44 -11.96 -

24.0 1.178 1.108 16 30 41 6.03 18.31 59.22 -9.97 -11.69 -

"0 1.219 .985 14 30 40 5.61 17.10 57.35 -8.39 -12.90 -

1.158 1.056 15 26 18 5.66 17.25 57.58 -9.34 -8.75 39.58

27.0 .893 699 9 20 18 2.93 9.12 39.15 -6.07 -10.88 21.15

28.0 .691 .342 6 6 40 1.24 3.87 18.92 -4.76 -2.13

28 Set average error -3.77 -2.69 16.66

Overall average error 3.4
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4.1.2 WHOI Mooring N 279

Millard37 describes tension measurements made on a taut-moored buoy

system. The buoy system (figure 27) was installed in water 2685 m deep at

Woods Hole Oceanographic Institution Site D. Tensions were recorded at four

locations along the mooring line, and currents were recorded at a depth of 12 m

79
for the 2- months that the buoy system was on station. Berteaux and Walden

describe the properties of the wire rope and plaited nylon rope used in this buoy

system as follows:

Diameter (in.) Weight/ft in Sea Water (lb/ft)

1/4-in. 1 V 50 wire 0.25 0.090
rope

5/8-in. plaited nylon 0.625 0.01047.

7 2
The cable modulus for the wire rope was taken as 1. 682 x 10 lb/in.

Nylon rope is subject to both elastic and inelastic deformation when loaded.

New rope, when first loaded. will acquire a permanent deformation, the amount

of which depends on the initial load. Furthermore, if the load is left on the

rope, the rope is subject to creep and the permanent deformation increases

with time. Martin14 discusses the various mechanisms for the deformation of

nylon rope. Using Martin's curve for thle percent stretch versus load for tile

5/8-in.-diameter plaited nylon rope, the rope modulus is computed as follows:

5 2E=3.52 x 105lb/in. , 0 < T < 1000 lb

5 2E - 6. 79 x 10 lin. :1000 < T < 2000 lb

6 2
E 1.041 x lb/in. :2000 < T

44 '4
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PURPOSE OF TEST - EVALUATION OF MOORING CONFIGURATION AS SHOWN OVER
A TWO MONTH PERIOD - MEASUREMENT OF MOORING TENSION
STRETCH 13%

PROCEDURE - LAUNCH BUOY, PAY OUT MOORING LINE, ATTACH BALLS,
LAUNCH ANCHOR. CHECK ANCHORING, RETRIEVE NEXT CRUISE

EQUIPMENT - AS SHOWN

T TOROID - LIGHT - RADIO - WINDA h RECORDER - CHAIN BRIDLE

- - -*' / ECORDING r. TELEMETERING
U TENSIOMETER

10 m MILLER SWIVEL 3 TONS•J• I1/2.n, 6' CHAIN

CURm' -ý T METER

500 m
STA. 279 1/4 In. 1 x 50 GAC TORQUE

SITE "D" I BA
SET: OCT. 1, 1968

RET: DEC. 11, 1968
DEPTH: 2685 M. 500 m

500 mn

34 f

RECORDING TENSIOMETER

(0.-3000 Ib)

527.5m

581 RT

S5/8-1n. PLAITED NYLON
S~347 m

S--I RECORDING TENSIOMETER

4 
O.3000 lb)

_• . /8 -ln .. P L A I T E D N Y L O N

- 32- , in. 0GLASS BALLS & 1 BENTHOS
85m LIGHT SPACED 2 m APART & PLACED

AS SHOWN
-25

0 *33

ACOUSTIC BEACON - DEPTH MODULATED
1m 1/2-1n. OCHAIN

_. RECORDING TENSIOMETER
1Im 5/8.Mlh. PLAITED NYLON

SAMF ACOUSTIC RELEASE

15 m 5/8-in. PLAITED NYLOt,

~3 m 1_% /2*on. 0 CHAIN

- .L 35t0.1b STIMSON ANCHOR

Figure 27. Woods Hole Oceanographic Institution Mooring No. 279
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Webster 8 0 measured currents for a 2-month period at site D. Webster's

data were curve-fitted using the program CURFIT on the GSA time-sharing

computer, and the following function for the current strength as a function of

I depth was developed:

K -0.418
C =2.6 Cs D

where

C is the current (ft/sec)

Cs is the surface current (ft/see)

D is the depth (meters).

The steady-state buoy system config'.ration computer program was

modified to include Webster's current profile, Martin's elastic properties for

the nylon rope. and the cable properties given by Berteaux and Walden. Since

information on the variations of current direction with depth was not available, the

currents were assumed to be acting in the same direction at all depths. Further-

more, the initial inelastic stretch due to the emplantmient and the dynamic wave

ioads is not known. The no-current elastic stretch of the nylon rope was

assumed, and the tensions in the system were computed while currents acted on

the system. Tensions at the junction of the wire rope and nylon rope are

shown in figure 28 as functions of the surface current and of the no-current

,lastic stretch. Data taken by Millard at the same location on the mooring line

are also shown on figure 28. Because of the creep pioperties o0 the nylon rope,

the inelasic stretch will increase ard the no-current elastic stretch will

decrease as time increases. The shape of the tension curve will remain

roughly tLe same, but the tension bias will decrease with time. Since the
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-K. creep properties of the nylon rope are not known, computation of errors

between observed and computed tensions in this case is of little value.

Millard analyzed the tension versus surface current data shown on

figure 28 and least-squares fitted the linear function:

T=12.3 • Cs + 369

Least-squares linear fits to the computed curves A, B, and C are

T=12.59 • Cx + 608

T=12.25 • Cs + 381

and

T=12.10 • Cs + 203

Slopes of the computed linearized functions are in very close agreement, which

indicates that the functional form of the computed tensions is accurate.

From this comparison, it is obvious that more experimentation on the

elastoplastic properties of nylon rope is needed in order to predict the steady-

state configurations of deep ocean, taut-moored buoy systems. Also, a deep

ocean buoy system should be installed with both recording tensiometers and

inclinometers to better validate the steady-state computer model.

4. 2 Experimental Measurements of
Buoy System Dynamics

In order to validate the computer simulation of buoy system dynamics,

buoy motions .s measured at sea will be correlated with computer simulated

buoy system response to the same environmental conditions.

Two oceanographic buoys were equipped with motion sensing instrumenta-

tion and installed in Block Island Sound. The smaller of the two buoys, a
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3 -ft,-diameter sphere, was installed in March 1970 off Great Salt Pond

entrance, Block Island, Rhode Island. The larger buoy, an 8-ft-diameter

torroid was installed at station BRAVO during May 1970. A description of the

instrumentation and a discussion of the measurements taken are presented in

reference 81.

4.2.1 Spherical Buoy at Station D

The 3½-ft-diameter spherical buoy is shown in figure 29. This buoy was

loaned to the writer by Dr. A. Nalwalk, of the Marine Sciences Institute of the

University of Connecticut. The buoy was equipped with the following instru-

mentation:

Heave motion statistical accelerometers

Current meter

Heave accelerometer

Surge Accelerometer

Sway accelerometer

Pitch pendulous potentiomet:r

Roll pendulous potentiometer

Cable pitch pendulous potentiometer

Cable roll pendulous potentiometer

Cable tension gage

Thermisor.

The buoy system was installed in 62 ft of water, west of Great Salt Pond

entrance at Block Island by the Research Vessel, UCONN, on 2 March 1970.

The 1½-in.-diameter, 14-conductor armored cable was laid along the bottom to
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Figure 29. Spherical Buoy at Block Jsland Station D
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the beach and was carried over the beach to the BIFI field station: A Snodgrass

wave sensor was also installed off the beach in 25 ft of water. The arrangement

of cables and instruments is shown schematically in figure 30.

Two weeks of statistical heave accelerometer data were collected. Some

buoy motion data were also recorded. The electrical conductors in the cable

began to fail after a month of use and a number of attempts were made to repair

the cable in order to continue collecting data. The buoy broke loose during a

storm in early November 1970 and is missing.

The statistical acceleromrers were designed to count at 0.35-, 0.50-, 0.65-,

0.80-, 1.20-, 1.35-, 1.50-, and 1. 65-g heave acceleration levels. The pulses

from the accelerometers actuated counters in the van at the BIFI Field Station,

and the total count was recorded daily. Sea state data were lased on estimates

by the resident engineer (Carl T. Milner) and by Coast Guard observations

reported by the ESSA Marine Weather Service. Data were recorded during the

period 4 March to 12 March 1970.

'A Data from the 22 observhtions of positive acceleration counts were used

to generate figure 31, a plot of the counts per hour versus acceleration level

for various sea states. The negative acceleration counters did not work, because

of the failure of leads in the cable. Figure 31 indicates that for any sea state

greater than sea state 0, the buoy will always undergo 1. 2-g accelerations at a

rate of 1,000/hr. The number of cycles per hour for higher acceleration levels

will increase with increasing sea state. Figure 32 is the contLitional probability

of the buoy exceeding various positive acceleration levels given that the buoy

exceeds 1. 2-g level accelerations. Figure 33 shows the buoy heave acceleration



160

ANEMOMETER
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Figure 30. Spherical Buoy System at Block Island
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amplitude histogram for various sea state conditions. Rayleigh distributions

are plotted over the histograms and were computed by using the mean of the

55 51histograms. Longuet-Higgins and Bretschneider have shown that the

distribution of wave heights is given by the Rayleigh distribution.

Analog data of Ehe spherical buoy motions were also recorded. On

16 March 1970, the following records were obtained on a two-channel strip

chart recorder:

Wave height (20 rain)

Buoy heave and buoy surge (15 min)

Buoy heave and buoy pitch (10 min)

Buoy heave and buoy roll (10 min)

Buoy heave and cable pitch (10 min)

Buoy heave and cable roll (10 min).

Winds were 15 to 20 knots, northeast, with an estimated sea state 3 at the

buoy. Results of a simple "quick look" analysis are shown in figures 34 through

37.

One-hundred samples of each record were digitizea and analyzed on the

GSA-440 time sharing computer. Figure 34 shows means, variances, and

standard deviations for each parameter. In addition, the correlation matrix for

simple product-moment correlations is shown. Parameters that should be

coupled appear to be coupled, and parameters that should be decoupled appear

to be decoupled For example, heave-surge, heave-pitch, and surge-pitch are

coupled, and heave-roll, surge-roll, and pitch-roll are decoupled. Also, cable

angles are mildly coupled to buoy displacements but decoupled from buoy angles.
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-VARIABLE MEAN VARIANCE STANDARDS~ DEVIATION

2HEAVE Og 0. 0242 g 0. 1555 g
ACCELERATION

SURGE Og 0.00978 g  0. 0991 g
ACdELERATION

2PITCH ANGLE 1.1 deg BOW DOWN 104.2 deg 10. 20 deg

2ROLL ANGLE 14.3 deg POlRT 55.3 deg 7.58 deg

CABLE PITCH -27.1 deg 24.0 deg2  4.90 deg

CABLE ROLL -7.3 deg 16.2 deg2  4.01 deg

THE CORRELATION MATRIX
CABLE CABLE

HEAVE SURGE PITCH ROLLSPITCH ROLL

HEAVE 1.0 0.480, 0.6050 -0.0706 0.243,i 0. 0454-

SURGE 1.0 -0.4199 0.0054 -0.1605 0.1975

PITCH 1.0 -0.1021 0.0063 -0.0946

ROLL 1.0 0. 2121 -0. 3813

CABLE PITCH 1.0 -0.2282

CABLE ROLL 1.0

Figure 34. Spherical Buoy Motion Parameter Statistics
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Figure 35. Spherical Buoy Motion Amplitude Histograms -
Wave Height, Heave, and Surge
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Figure 36. Spherical Buoy Motion Amplitude Histograms - Pitch and Roll
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Figure 27. Spherical Buoy Mtion Amplitude Histograms -
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One hundred amplitudes from each parameter record were digitized and

were used to generate parameter amplitude histograms. These probability

distributions are shown in figures 35 and 37. The median amplitudes were

computed and were used to compute Rayleigh distributions, which are plotted

over the histograms. The Rayleigh distributions of the form

Hr

where

p(H) is the probability of parameter H

H is the parameter

H is the mean value of the parameter,

were found to match the histograms quite well. The fact that the amplitude

probability distributionu all appear to fi:t a Rayleigh distribution indicates a

linear transform from wave height to buoy response.

If the functions relating the mean buoy motion amplitude parameters to

sea state were known, the probability distribution for any parameter in any sea

state can be computed from the Rayleigh distribution.

From the statistical accelerometer data, the mean heave acceleration

80
amplitude can be plotted versus mean wave height (using Vine and Volkman's

relations for sea state and mean wave height). This curve, shown in figure 38,

can be approximated in the region H = 1 to 10 ft with the linear function:

Hv O11 + Q0' 0 6N.
Assuming a linear transform for the other motion parameters and averaging

pi tch and roll amplitude means, we can write a set of linear equations for the
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mean motion amplitudes. In addition, these c,'iations can be substituted into

the Rayleigh equation to find the amplitude probability distribution for any

parameter. The linear equations and their amplitude distributions are as

follows:

For I < H < 10 ft, the mean heave acceleration amplitude is

4 = 0 11 O. oo0' "
The amplitude probability distribution is

p(HV =T7 Hv

The mean surge acceleration amplitude is

andSte = Oo 06 8'+ 0. OO53TH

and the probability distribution is

5u) ee
The mean sway acceleration amplitude is

Sw O=, 0G + O.00537 H
and thxe probability distribution is

The mean pitch angle amplitude is

P; 5,5q + o, q33 H)
and the probability distribution Is

10 •) • -b e- - .

The mean roll angle amplitude is

RL = 5.s5 + oq,
and the probability distribution is
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r RL

The mean cable pitch angle amplitude is

and the probability distribution is

Cf 4

"The mean cable roll angle amplitude is

CFL H ,

apd the probability distribution is
j CCRLL

p (CRL) e
The preceding enpirical equations will serve as a first-order approxi-

mation to the buoy motion parameters for the spherical buoy and can be used

for design purposes.

4. 2.2 Torroidal Buoy at -Station BRAVO

An 8-Bt-diameter, torroidal oceanographic buoy was outfitted with buoy

motion sensing instrumentation and telemetry and was installed in Block Island

Sound during May-June 1970. The buoy (figure 39) was installed by the USCGC

MARIPOSA on 30 April 1970 at station BRAVO in 120 ft of water. A telemetry

receiving station was established in the generator building at the Watch Hill

Lighthouse, Watch Hill, Rhode Island (figures 40 and 41). A schematic of the

instrumentation arrangement is shown in figures 42 and 43. A detailed descrip-

tion of the instrumentation, circuitry, and calibrations is described in

reference 81.
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Ai"

to -

e C.

Figure 39. Torroidal Buov at Station BRAVO
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BB

!be

F 1t

Figure 40. The Shore Station at Watch Hill Lighthouse
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4,fr

Figure 41. Telemetry Receiver and Recording Equipment



176
'V

4.5219.6 Mh• MILES

HEAVE -- 0
SWAY
PITCH
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Figure 42. Torroidal Buoy Motion Experiment Setup
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The buoy contained :-e following motion sensing instrumentation:

Heave accelerometer

Surge accelerometer

Sway accelerometer

Pitch angle potentiometer

Roll angle potentiometer.

In addition, a self-recording current meter was attached to the mooring cable

a' a depth of 60 ft. Wind speeds were recorded on a paper tape recorder at the

Watch Hill Lighthouve. Wind directions were logged every 4 hr by the duty

personnel at the Lighthouse. Also, the ESSA weather reports on 163.5 kHz

were monitored during each data run, and reported conditions at Coast Guard

Stations bordering Block Island Sound were logged on the data sheets.

The buoy transmitted data every 12 hr for a 1-hr time period. Each data

transmission was preceded by a calibration sequence consisting of two voltage

levels from the potentiometer sensors. The FM signals from the buoy con-

taining the five mixed frequencies were demodulated and recorded on an FM

tape recorder. The composite signal and a 12.5-kHz phase-lock signal were

also recorded on two AM chaimels.

During the 51 days the buoy was on station, 65 data transinh-sions were

recorded. The only major problem encountered was the failure of the opera-

tional amplifier that mixed the five frequencies from the voltage ?ontrolied

oscillators in the buoy. This component was replaced and tests continued.

Structurally, the only failure was the loss of a cotter pin on a shackle holding

one of the three chain bridle legs under the buoy. The loss of this pin allowed
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the shackle to come undone in such a manner that the buoy bridle had only two

active legs. The buoy was recovered on 19 June 1970 by the USCGC REDWOOD.

Because of the large amount of recorded data, a simple "quick look"

analysis of the data was performed by playing back the recorded datat for each

of the five motion parameters on a I"memoscope. "1 A 2-min sample of each

parameter for each run was traced out. The mean width of the band trace-out

was measured, and the value of the parameter double amplitude (in volts) was

logged. This value was assumed to be the "significant" amplitude, i. e, , the

mean of the higl •t one-third of the amplitudes. It was found that the data on

the pitch channel were too noisy to be used in this fashion; thus, pitch was not

included in this analysis. The logged values of buoy heave, surge, and sway

acceleration amplitudes along with buoy roll angle amplitude are shown in

table 4. The environmental conditions are also shown for each run.

The statistics of the measured parameters are shown in figure 44. The

matrix of simple product-moment correlation coefficients is also shown. These

statistics were computed on the GSA-440 time sharing computer. Inspection of

the correlation matrix indicates that all the significant buoy motions are well

correlated. In addition, they correlate well with wii.d speed and, to a lesser

extent, with computed wind waie height. A similar anaivsis was conducted with

current speed. The elements of that correlation matrix are as follows:

Heave Sway Surge Roll

Current 0.1537 -0.00572 0.1040 -0.0237.

Tius, it appears that buoy motion amplitudes are not correlated with current

speed. Buoy motions are not significantly affected by current speed.
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STANDARDVARIABLE MEAN VARIANCE DEVIATION

WIND 8. 198 (knota) 52. 72 (knots ) 7. 261 (knots)

SIGNIFICANT 1.62 ft 4.44 ft2 2.10 ft
WAVE HEIGHT

2
SIGNIFICANT HEAVE 0. 197 g 0.00574 g 0.0758 g

ACCELERATION
AMPLITUDE

2
SIGNIFICANT SWAY 0. 1397 g 0.0024 g 0. 049 g

ACCELERATION
AMPLITUDE

2
SIGNIFICANT SURGE 0. 135 g 0.00284 g 0.0532 g

ACCELERATION
AMPLITUDE

2
SIGNIFICANT ROLL 14 deg 25.9 deg 5.09 deg

AMPLITUDE

CURRENT 0. 7022 (knots) 0. 1435 (knots 2) 0. 3787 (knots)

THE CORRELATION MATRIX

WIND WAVE HEAVE SWAY SURGE ROLL

WIND 1.0 0.7699 0.6418 0.4839 0.5P&2 0.19971

WAVE 1.0 0.4989 0.3765 0. 4553 0.4134

HEAVE 1.0 0.8058 0.8448 0.4671

SWAY 1.0 0.8642 0.4885

SURGE 1.0 0.5571

ROLL 1.0

Figure 44. Torroidal Buoy Motion Statistics for 6-week Period

tL
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The GSA-440 computer was also used to fit curves to the observed

parameter significant amplitudes. Six curves were fitted using least-squares

methods.

In general, the linear plot had the best index of determination when fitted

to the data. Figures 45 through 50 show the observed buoy motion significant

amplitudes plotted versus wind speed, computeA significant wave height, and

buoy heave acceleration. The least-mean-squares linear curve is shown on

each plot. The least-mean-squares linear functions were transformed to

engineering units and are summarized in figure 51. If the buoy motion ampli-

tudes are assumed to be distributed by the Rayleigh distribution, the mean

amplitude is 621 percent of the significant amplitude. The empirical equations

shown in figure 51 were again transformed in such a manner that they are in

terms of mean amplitudes. They are shown in figure 52.

The cumulative probability distributions for wind, current, observed and

computed wave height, and buoy motion amplitudes are shown in figures 53

through 55 for the time period that the buoy was on station.

A complete spectral analysis was performed on two runs of buoy motion

data taken on 10 and 11 June 1970. A Fast Foulrier Transform method that is

prcgrammed and is available on the NUSC UNIVAC j108 computer was used to

co'upute power spectra and cross correlations. The data were digitized at a

rate of 64 samples per second on automatic data processing equipment by the

Data Analysis Branch at NUSC. A set of buoy motion spectra for the second

data run, which was taken at 2030 EDST, on 11 June 1970, is shown in figures 56

through 61. The wind was at 10 knots from the southwest and had been blowing
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1. ON WIND (W in knots)

HEAVE ACCELERATION Hv = 0.0064 + 0.0163*W (g t s)

SWAY-SURGE ACCELER- Su 1/3 Sw1/3 =0.1056+ 0.003825oW (g's)
ATION.

PITCH-ROLL ANGLE Pi = Ri 12.830 + 0.13739W (deg)
1/3 1/3

2. ON SIGNIFICANT WAVE HEIGHT (H1/ 3 in ft)

HEAVE ACCELERATION Hv1 / 3  0.168 + 0.01792 *H1/ 3 (g's)

SWAY-SURGE ACCELER- SU/3 = Sw/3 = 0. 120 + 0.01015*HI1/3 (g's)
ATION

PITCH-ROLL ANGLE P1/3 -Rl/3 = 12.36 + 1.0*Hl1/3 (deg)

3. ON HEAVE ACCELERATION AMPLITUDE (Hv 1/ 3 in g's)

SWAY-SURGE ACCELER- Su 1/ 3 = Sw 1 / 3 = 0.0268 + 0.557*Hvi/ 3 (g's)
ATION

PITCH-ROLL ANGLE Pi1/3 = RII/1 7.82+31.35,Hv 1/3 (deg)

Figure 51. Empirical Equations .or Significant Buoy Motion Amplitudes
(Based on Linear, Least-Mean-Squares Equatio•ns)
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1. ON WIND (W in knots)

HEAVE ACCELERATION Hv = 0.004 + 0.0102*W (g's)

SWAY-SURGE ACCELERATION Su:= Sw= 0.066 + 0.0023949W (g's)

PITCH-ROLL ANGLE Pi = R1 = 8.03 + 0.086.W (deg)

v 25u2

F2

Hi V AC ELRTO p(Sw)= 0.05+0.079e (ges

2 --2 2 u2

PITC-ROLANGL PiRl 7.720/10H dg

IR AS A-OE.

p(Pi) =p(R)= 4o ue R
2 T--2

2. ON MEAN WAVE HEIGH-TI (R in ft)

HEAVE ACCELERATION U=D0.105 + 0.01792 (g's)

SWAY-SURGE ACCELERATi'ION Sw Su = 0. 075 + 0.01015 *H (g's)

PITCH-ROLL ANGLE Pi = Ri 472. + 1. 03 Hv (deg)

i(NOTE THAT THE mpROBAlEruIorITY DISTRIBUTIONS ARE THE SAME

AS ABOVE. )

3. ON MEAN HEAVE ACCELERATION AMPLITUDE (ffv in g's)

SWAY-S[IHGE ACCELERATION 9w 9 u = 0.01674 + 0.557*fv- (g's)

PITCH-ROLL ANGLE Hi =R 4. 89 + 31. 35* oHv (deg)

Figure 52. Empirical Equations for Mean Buoy Motion Amplitudes
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Figure 16. ('omputed Wind Wave' Spictral I ,\'els - 2030 hr. 11 June 191(0
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Figure 59. Observed Sway Spectral Levels
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I4

steady at that strength for 1 hr. The wind wave spectrum was computed by

using a two-parameter Bretschneider spectrum. Figure 56 shows the computed

wind 'ave power spectrum. Figures 57 through 61 show the buoy motion power

spectra. Figure 57, the buoy heave ao'celeration power spectra, shows a peak

in the energy around 0.5 rad/sec (T = 12.5 sec). There is also a peak around

1. 5 rad/sec, which corresponds to the peak of the computed wind wave power

spectrum.

The peak at the lower frequency may be caused by swell; a 1-ft swell

from thq south was observed visually during the data run. The same type of

energy distribution is seen in the other spectra. Buoy roll angle and sway

acceleration spectra indicate relatively more energy at wind wave frequencies;

thus, it is concluded that the buoy was oriented in such a manner that the sway-

heave plane was close to a southwest-northeast orientation.

Buoy motion parameters were cross-correlated with buoy heave accelera-

tion and are shown in figures 62 through 65. These plots indicate the existence

of two modes with rather strong coupling between motion parameters. If a

linear system is assumed, the input and output spectra can be related by the

transfer function:

,A here

,5,iks the buoy motion power spectrum

is the wave height power spectrum

Hw) is the transfer function
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•. 77
Wave spectra determined by Williams for similar conditions in Block

Island Sound indicate that swell appears in the wave spectrum as a horizontal

line to the left of the wind wave peak and is about 5 dB down from the peak.

Figure 56 was modified to include swell. The buoy motion power spectra were

smoothed and the difference in decibels between them and the wave spectrum

(including swell) were plotted as the square of the absolute value of the transfer

function in decibels. Figures 66 through 70 show the transfer functions and

indicate the existence of two modes. The relative magnitudes of the peaks

indicate that the modes are a heave mode (low frequency) and a roll mode (high

frequency). Observations made by the writer while servicing the buoy at sea

indicate that the sway-surge mode has the lowest frequency, the heave mode

has the next highest frequency, and the pitch-roll mode has the highest frequency.

These spectra indicate that the heave, surge, and sway motions of the

buoy are primarily excited by the sea swell, whereas buoy pitch and roll are

excited by the higher frequency wind waves.

Analysis of measured buoy motion data for the 31-.ft spherical buoy and

for the 8-ft torroidal buoy have yielded sets of empirical equations that can be

used to predict mean buoy motions and amplitude distributions for various sea

states. Buoy motion amplitude distributions appear to follow a Rayleigh

distribution, which indicates that the dynamic system is linear or near-linear.

Spectra for the torroidal buoy indicate the existence of a heave mode and

a pitch-roll mode within the range of wave frequencies. In general, both buoys

are hard-coupled to the sea surface in heave. The torroidal buoy appears to

respond in pitch-roll motions to a greater extent than does the spherical buoy.
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4.3 Simulation and Comparison of
Buoy System Dynamnics

4. 3. 1 Spherical Buoy at Station D

Steady-state configurations of the spherical buoy system, installed at

Station D, are shown in figure 71 for various uniform currents. Very little of

the 3/4-in. DiLock chain is picked up off the bottom even under the worst current

conditions - 1 knot. Steady-state tensions never go over 100 lb, and the watch

circle radius can vary from 38 ft at 0 knot to 62 ft at 1 knot. These configura-

tions were computed on the GSA time-sharing computer using the steady-state

buoy system configuration program shown in appendix B. rhe Savonius rotor

current meter used in the spherical buoy system failed 3 days after emplantment,

thus; cable angles can not be correlated with current strength for this buoy

system. However, the computed configurations are used as initial conditions

for the buoy system dynamics simulation when current strength and direction

83are computed from the Coast and Geodetic Survey current tables.

The lumped-mass dynamic equations of motion for the cable and the

equations of motion for the spherical buoy were programmed and solved numer-

ically in the time domain using a fourth-order,Runge-Kutta numerical integra-

tion scheme. Five mooring line mass elements were used - three for the

cable and two for the chain. The buoy was allowed six degrees of freedom

(heave, surge, sway, yaw, pitch, and roll), and each mooring line mass

element was allowed three degrees of freedom (xi . y, and z). The program

shown in appendix B can accept wind and current vectors coming from any
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direction; however, the waves are assumed to be two-dimensional and are

constrained to come in on the z axis of the inertial coordinate system. A

complete listing of the input data needed to describe the spherical buoy system

is shown in appendix D. Mean wave heights and periods were computed from

reference 82 for various sea state conditions. The spherical buoy system

dynamics model was excited with the ten-component random wave model based

upon a two-parameter Bretschneider spectrum having the mean wave height and

period for each sea state. The averave wind strength and direction and the

average cgrrent strength over the tiane period in which the statistical acceler-

ometers were in operation were also used to force the model. The wa've

amplitudes for each component were allowed to build linearly over two compo-

nent wave periods. This procedure minimized transient motions. The solution

was allowed to proceed in time as transients decayed. Finally, buoy heave

accelerations were sampled over a time period, and the mean heave acceleration

amplitude was computed.

These computed amplitudes are shown in figure 72 and are compared with

the amplitudes derived from the statistical accelerometer data. The computer

model overestimates the heave acceleration amplitudes at the lower sea states

and agrees quite well at the higher sea states. Since the observed sea states are

based upon the Block Island resident engineer's visual observations, a plus or

minus one sea state error band is shown in figure 72 for the observed data. It is

concluded that the computer model provides a conservative estimate of buoy

accelerations for design purposes.
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* On 16 March 1970. strip chart recordings of the buoy motion instrumenta-

tion were made. The computed Bretschneider wind wave spectrum for that

location, date, and time based upon the observed wind speed, direction, and

duration is shown in figure 73. This spectrum was used to determine .,ompo-

C nent amplitudes for the random sea forcing function. The observed wind and

the current as computed from the tidal current tables were also used to force

the model on the UNIVAC 1108. Computed buoy heave, sway,and surge accel-

erations. pitch, roll, cable pitý-h, and cable roll were sampled in the same

manner as the observed data and were analyzed on the GSA time-sharing

computer.

The reduced spherical buoy motion parameters based upon computed

motions and observed motions are shown on figures 74 and 75, respectively.

Since the spherical buoy was not equipped with a yaw sensing device, the motions

designated surge and sway and pitch and roll are not lkown relative to the z

axis, along which the waves are traveling. Visual observations made from the

beach while the data were being recorded indicated that the buoy was aligned in

one direction with little or no yaw motion. A comparison of figures 34 and 75

indicates that the observed sway may really have been surge and that pitch and

roll should be interchanged. Figure 75 reflects these changes.

A coml)arison of figures 74 and 75 indicates that the computer model

te

predicts buoy heave accelerations with good engineering accuracy (-9.5 percent

error for heave acceleration standard deviation), underestimates buoy sway

accelerations (-71 percent error for sway acceleration standard deviation), and

overestimates buoy pitch and roll motion (+5.1 percent error for pitch angle and
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VARIABLE MEAN VARIANCE STANDARD
DEVIATION

HEAVE
ACCELERATION Og 0.0198g 2  0. 1408 g

SWAY
ACCELERATION 0 g 0. 0009 g2  0. 0288 g

SURGE 2
ACCELERATION 0 g 0. 0015 g 0. 0390 g

PITCH -1.37 deg 137.00 deg2  11.70 deg

ROLL -1.01 deg 315.07 deg2  17.75 deg

CABLE PITCH -19.37 deg 13.38 deg2  3.66 deg

CABLE ROLL 38.29 deg 15.72 deg 2  3.97 deg

THE CORRELATION MATRIX

HEAVE SWAY SURGE PITCH ROLL CABLE CABLE
PITCH ROLL

HEAVE 1.0 0.4774 -0.2632 -0.1251 -0. 0410 0.2660 -0.3602

SWAY 1.0 -0.6762 -0.6023 -0.5559 0. 1582 -0.2172

SURGE 1.0 0. 1980 0.3751 0. 1502 0. 1979

PITCH 1.0 0.7363 -0.3377 0.2582

ROLL 1.0 -0. 1546 0.3268

CABLE 1.0 0.0388
PITCH

CABLE 1.0
ROLL

Figure 74. Simulated Spherical Buoy Motion Parameter Statistics
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4.

VARIABLE MEAN VARIANCE STANDARD
DEVIATION

2
HEAVE 0 g 0.0242 g 0. 1555 g

ACCELERATION

SWAY 0 g 0. 0098 g2  0.0991 g
ACCELERATION

SURGE - - _
ACCELERATION

PITCH 14.3 deg 55.3 deg 2  7.58 deg

ROLL 1.1 deg 104.2 deg 2  10.20 deg

2
CABLE PITCH -7.3 deg 16.2 deg 4.01 deg

CABLE ROLL -27.1 de- 24.0 deg 2  4.90 deg

THE CORRELATION MATRIX
CABLE CABLE

HEAVE SWAY SURGE PITCH ROLL CH ROLL
PITCH ROLL

HEAVE 1.0 0.4806 -0.0706 0.6050 0.0454 0.2435

SWAY 1.0 - 0.0054 -0.4199 0.1975 -0.1605

SURGE 1.0 - - - -

PITCH 1.0 -0.1021 -0.3813 -0.2121

ROLL 1.0 -0. 0946 0. 0063

CABLE 1.0 -0.2282
PITCH

CABLE 1.0
ROLL

Figure 75. Observed Spherical Buoy Motion Parameter Statistics
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-'74 percent error for roll angle standard deviations). Mooring line pitch and

roll angle standard deviations are underestimated by -33. 6 percent and

-19. 0 percent, respectively.

The simple product-moment correlation matrix for the observed data

indicates moderate coupling for heave-sway, heave-roll, sway-roll, and pitch-

cable pitch. Because of the axial symmetry of the buoy, it is expected that

heave-pitch ,nd surge-pitch Would also be coupled. The simulated buoy motion

correlation matrix indicates coupling between heave-sway, sway-surge, sway-

jpitch, swav-roll, and pitch-roll. The modal coupling indicated bv the two

correlation matrices do not agree. This poor agreement is probably due to the

rather short sample time used to compute the product moment correlations. An

error estimate based( upon an assumed bandl)ass \while noise sea spectrum with

a bandwidth ol 1 I 1, inidicates normalized errors of about 22 percent in the stand-

ard deviatiom:, ind " I'out IS pelrcenlt in the product-moment correlations. The

Corl pariso ll of SlO l ,t ,, 1 ,Iw i,)fl,, ', th observed buoy motions for this case

indicate's reasonIhi ( fr e' f)a'1 p1'ai meter standard deviations but poorer

agr',mont for podtc'(,l mo0,.t correlations. In view of the limited amount of

data a"nd its rclin.i\,,i' poor lua lih . this particular comparison will not be

ext ended.

1. 3.2 T()'rroidal Iumo at Stition IBRAV()

The i)tIT iflotiona 11'100noIi tIrl model with lo mped-nmass (cable elements was

Jno0(111Icld :,n(I inlliht valWes \\e re chaninged in ord er to simulate motions of the

torroi(Ial h)\o I;I,.\ Vt). .A subr)outile to ( oml)ute the buom ant forces and moments
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by polar integration around the torroid as a function of its draft and tilt a1ngl1e

was incorporated in the program (appendix E). A subroutine to compute simple

statistical properties (mean, variance, and standard deviation) of the input %%ave

height and output buoy motions (heave, surge, and sway accelerations anid pitch

and roll angles) was also incorporated in the program.

Winds were assumed to act from the southwest (the predominant %% ind

direction during May and June• and an average ebb current of 0. 7 knot was

assumed (uniform in depth, setting to the east). Thus, the buoy system coor-

dinate system has the z axis pointing southwest and the y axis pointing south-

east (figure 76). The S-M-B method was used to compute the mean %ia'e height

and period for winds of 5, 10, 15, 20, and 25 knots for the southwest winds

with an assumed duration of 4 hr. The computed mean wind wave heights and

periods for station BRAVO are shown in figure 77. Resulting Bretschncider

spectra for these conditions are shown in figure 78. These spectra \\erc used

to compute random wa% c componcnt amplitudes and frequencies which,in turn,

forced the buoy motion computer model.

Initial runs with a five-element cable model were found to be very time-

consuming in machine time since the relatively low mass and high elastic

modulus of the cable elements required that numerical integration step sizes on

the order of 0.001 sec be used for numerical stability. A step size of 0. 0005 sec

was used for accuracy. Tho program was rewritten, and inputs were reconi-

puted for a three-element mooring line model. Caule masses were concentrated

at the current meter in the middle of the cable, and the lenfths of hoav\ anchor

chain \\ere broken up to form the other tN\o mooring line lumped masses. This
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S procedure greatly reduced the highest natural frequency of the system and the

step size could be increased to 0.01 sec before numerical instability occurred.

A step size of 0. 005 sec, which allowed an order of magnitude increase in compu-

tational speed,was used. No significant difference was seen in computed buoy

motions when using the three-lump or five-lump cable model.

The run procedure is as follows. First, the model is acted upon by the

mean wind and current components (no waves) and allowed to converge to its

steady-state configuration. Then, the random wave components are introduced

and buoy motions sampled at every integration for 60 sec. Each run required

about 20 min of computer time on the UNIVAC 1108. The ratio of computer

time to solution time was 9. 15:1.

The results of four runs with mean wind speeds of 5, 10, 15, and 20 knots

are shown in figures 79, 80, and 81. The least-mean-squares plots of the

observed data, as shown in figures 45 through 50 and as summarized in

figure 51, are also shown in figures 79, 80, and 81. Since the yaw orientation

of the buoy was not known during the at-sea measurements, the coefficients of

the surge and sway empirical functions and of the pitch and roll empirical

functions were averaged. Also. since the winds and waves in the computer model

are acting along the z axis, only heave, surge, and pitch motions are compared

with observed data. The , verage error indicated in the simulation over the

range of wind speeds considered are as follows:

1. On Mean Wind Speed

Mean heave acceleration amplitude +14.45 percent

Mean surge acceleration amplitude -63.6 percent
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Mean pitch angle amplitude -42.4 percent

2. On Mean Wave Height*

Mean heave acceleration amplitude +2.22 percent

Mean surge acceleration amplitude -60. 15 percent

Mean pitch angle amplitude -41.43 percent

3. On Mean Heave Acceleration Amplitude

Mean surge acceleration amplitude -60.4 percent

Mean pitch angle amplitude -42.3 percent.

Again, assuming bandpass-iimited white noise spectra of about 1-Hz bandwidth,

note that the error in the standard deviations of the simulated buoy motion is about

+13 percent. Also, known and estimated errors in the sensors and instrumenta-

tion (including possible observer error in reading the memoscope) indicate an

overall error of +20.13 percent in the observed data.

The differences in observed and computed mean heave acceleration ampli-

tudes fall within these error bands and thus indicate that the computer model

offers reasonable accuracy for this motion. However, even if these error bands

are taken into account, the model is systematically underestimating surge and

pitch motions. Since surge and sway motions are underestimated with both the

spherical buoy and with the torroidal buoy, it is suspected that the transverse

hydrodynamic mass and damping used in the model may be in error. Recent

*Note that wave heights for the observed data were based upon visual
observations while wave heights for the simulated buoy motions were computed
by the S-M-B method.

It
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communications with E. Geller and R. Canada, who are affiliated with the

National Data Buoy Project, have indicated that the results of their modl buoy

tests in towing basins do not agree with present theory because surge and sway

hydrodynamic forces are less than predicted analytically. This communication

confirms the above suspicion, but judgment is reserved until more test tank

data are published.

The environmental conditions as measured during the data run of 11 June

1970 at 2030 EDST were used as input to the computer model, and buoy motions

were computed. Power spectra for wave height, buoy heave accelerations,

buoy sway acceleration, buoy surge acceleration, buoy pitch motions, and buoy

84-86
roll motions were computed by a Fast Fourier Transform method. A total

of 1,024 samples, sampled at 0.06-sec intervals for each parameter, were

transformed. The samples were smoothed by averaging over a 0. 3-sec interval

to prevent aliasing in the spectra. Eight ensemble averages were used, and they

resulted in 64 statistical degrees of freedom and a standard error of 17.66 per-

cent. The frequency resolution is 0. 0163 Hz. Williams87 states that a

resolution on the order of 0.02 Hlz is adequate to define ocean swell spectral

peaks in his study of ocean wave spectra in Block Island Sound.

The input wave spectrum is shown in figure 82 along with the frequencies

of the components that form the "random" wave forcing function. Figure 83

shows the computed spectrum level of the "random" wave model compared with

the theoretical spectrum level. As expected, the "random" wave model exhibits

characteristics of narrow-band white noise, which is reasonable since it is

made up of a finite number of sine wave components close to one another in
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*- the frequency domain.

The standard deviations for the input walve height and the output buoy

motions are as follows:

Wave height 0.4807 ft

Heave acceleration 1. 9321 ft/sec2

2
Sway acceleration 0. 4217 ft/tsec2

Surge acceleration 0.4974 ft/sec2

Pitch angle 2.98 deg

Roll angle 4.437 deg.

Output spectral levels are shown in figures 84 through 88. In general, the

spectra exhibit more deterministic properties than the buoy motion spectra

from the at-sea data. More smoothing was done on the at-sea spectra than on

the simulated spectra, but the at-sea spectra do not appear to have the narrow-

band characteristics of the simulated spectra, especially in heave, surge, and

pitch. This indicates that the model may be inadequately damped. The natural

frequency of the buoy in heave when at middraft is computed to be 0. 36 Hz. The

heave, surge, and pitch spectra exhibit peaks at about this frequency. Since

surge and pitch are decoupled from heave hydrodynamically, the coupling must

be effected through the cable tensions acting on the buoy.

The second peak in the heave spectrum is located at about the same

frequency as the peak of the water particle acceleration spectra. The forcing

function component due to the heave hydrodynamic inertia force caused by water

particle acceleration is driving the buoy in this frequency range. The surge

spectrum also indicates that this forcing mechanism is active in tiat mode.
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A.0 Both pitch and roll spectra show peaks at this frequency. Pitch and roll

motions have computed natural frequencies at about 0. 7 Hz and would tend to

respond to this forcing mechanism through coupling from surge and sway

motions. Since the water particle motions are constrained to the x - z plane,

one would not expect a response out of plane. However, the current vector has

an out-of-plane component; thus, the mooring line tension force will have an out-

of-plane component. Heave and surge motions will couple into sway and roll

motions because of the mooring line tension. This coupling also illustrates

another unusual feature of this dynamic system in that the response of the

system is strongly dependent on the mean values of the system element spatial

locations - a strong argument against linearized, decoupled models of buoy

systems.

Both heave and surge show peaks at hjiher frequencies (1.05 and 1.4 Hz).

These peaks are probably due to natural frequencies for the lumped-mass cable

model. Sway and roll spectra have nearly the same shape and thus indicate a

strong coupling in these modes. Surge and sway (also, pitch and roll through

coupling) indicate some response at very low frequencies. This is due to the

lowest natural frequency of the buoy system in a horizontal mode. If the

analogy is made with a pendulum having a length order of magnitude with the

water depth, the natural frequency of this motion would be quite low.

The heave spectrum computed from the experimental data (figure 57)

indicates a peak at 0.4 lIz, which agrees well with the peak in the simulated

heave spectrum due to the buoys natural frequency in heave. Surge, sway,

pitch, and roll spectra all have spikes at 0. 6 liz. This is in agreement with
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"the peaks in the simulated sway, surge, pitch, and roll spectra. All the

spectra, especially in roll, indicate energy at frequencies out to 2 Hz. This

energy may be due to vibration in the mooring line coupling into the buoy.

This comparison of simulated buoy motions with observed buoy motions

for the torroid buoy at station BRAVO on 11 June 1970 indicates that the com-

puter model is distributipg energy in its response in about the same way as the

actual buoy system. However, the model is apparently widerdamped and is

filtering out some energy between natural frequencies. Again, more test tank

data are needed for buoy hulls to determine their hydrodynamic characteristics.

The simulations of buoy system dynamics for the spherical and torroidal

buoys moored in Block Island Sound have used the lumped-mass model of cable

dynamics. In the course of this research, it was found that if mean tensions in

the cable are very low or if a mumber of force discontinuities are present

along the cable (both conditions common to shallow water moorings), the finite-

difference method is usually not suitable. With very low tensions, the cable

equations can go ultrahyperbolic, which could cause the numerical method to break

down. When many force discontinuities are in the line, a large number of nodes

are needed in the cable segments between the discontinuities in addition to equation

of motion for each discontinuity. The resulting computational time becomes

prohibitive.

4. 3.,3 WHOI Mooring No. 238

In order to validate the buoy dynamics simulatation using the finite-

difference cable model, mooring line tension data taken with WHOI mooring

No. 238 (reference 37) is compared with simulated tension data for the same



241

buoy system. WHOI mooring No. 238 is essentially the same as W1tOI mooring

No. 279 (figure 27) and was moored at the same location. Tensions were meas-

ured just below the torroidal surface buoy and were telemetered ashore. Com-

puted inputs for the simulation of WHOI in-'oringNo. 279 are shown in appendix

D, and the buoy system dynamics program incorporating the finite-difference

cable model is shown in appendix B. Since the WHOI data are shown against

wind speed, the primary input is wind speed. The fetch was assumed to be

100 miles for this location in the North Atlantic, and wind durations were taken

to be 24 hr. The Webster current profile, with a surface current of 1. 5 ft/sec,

was assumed to act in the direction of the wind for all cases.

Strains and cable angles at each node must be read in as initial conditions.

The steady-state buoy system configuration program was used to compute these

parameters for each wind speed and the given current profile. The initial cable

angles are shown in figures 89 and 90. The standard deviation for the cable

tension just below the buoy was computed for each run. Millard37 presents a

"scattergram" of "dynamic tension amplitude" versus 2-hr mean wind speed.

Tensions were recorded on a Rustrak recorder, which has a very slow chart

speed - on the order of .entimeters per day. Thus, this "amplitude" was read

by measuring the breadth of a very thick line. This actually represents the

tension difference between the highest and lowest tension that occurred in a 2-hr

period. It is assumed that these "amplitudes" correspond to the highest 1/10th

wave heights found in wind-wave height distributions. The WHOI data of

"dynamic tension amplitude" versus wind speed is shown in figure 91.
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Tension standard deviations for each run were first converted to mean

amplitudes by assuming sinusoidal variations, converted to highest 1/10th

amplitudes by assuming a Rayleigh distribution, and finally converted to double

amplitudes. The resulting expression is

The simulated "dynamic tension amplitudes" are plotted in figure 91.

Errors for the simulation were not computed in this case since the meaning of

the WHOI "dynamic tension amplitude" is not clear. However, the simulation

computes dynamic tensions that are order of magnitude and that increase with

increasing wind speed. A better set of buoy motion and tension measurements

are needed for deep sea buoy systems in order to fully validate the buoy motion

dynamic simulation with the finite-difference cable model.

'4



V. SUMMARY

5. 1 Restatement of the Problem

The object of this investigation was to evaluate the forces acting on the

components of a simple buoy system exposed to the oceanic environment and to

develop a numerical model of buoy system dynamics to simulate buoy system

respohse. Axisynmmetric buoy hull shapes were considered in general, and

hydrostatic and hydrodynamic forces and moments on oblate spheroids were

studied. The set of integro-differential equations of motion for the buoy were

reduced to a set ot ordinary differential equations with nonconstant coefficients

by using frequency dependent hydrodynamic force coefficients published in the

literature.

A"quasi-random" wind wave model was developed to simulate the motions

ot .he water masses in the immediate vicinity of the buoy. Wind wave properties

were computed with the S-M-B method from the mean wind speed, fetch, and

duration. Borgman's energy partitioning method was applied to a two-component

Bretschneider spectrum, and sinusoidal wave component amplitudes and fre-

quencies were computed. The random phase components were summed to

comJpute instantaneous water particle motions.

Major assumptions made in the invesfigation of buoy dynamics include the

following:
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1. Dissipative forces can be separated into those due to surface wave

generation and those due to viscous drag.

2. Infinitesimal buoy motions exist; this assumption was made by

John 22,23 in the derivation of the hydrodynamic force and moment integrals

42
and subsequently by Kim, who evaluated the integrals for oblate spho-oids.

3. The Ilaskind hypothesis is valid; i.e., it is assumed that the general

problem of an object moving on a free surface in response to gravity waves on

that free surface can be linearized to the extent that the velocity potential for

that motion is the sum of

a. the linearized velocity potential of the gravity waves alone,

b. the velocity potential of the object moving on the free surface

with no waves, and

c. the velocity potential due to the waves generated by the motion

of the body.

The Haskind hypothesis was used in order to apply Kim's coefficients for oblate

spheroids, which were derived for objects oscillating on a free surface, to the

case of objects oscillating on a fre. surface with gravity waves.

4. The St. Denis-Pierson hypothesis is valid, i.e., it was assumed that

the sea can be represented as the linear sum of elementary waves of random

phase.

5. Body dimensions are small compared witha wavelength. This assump-

tion was made in orde. to use the computed water particle motions as th:

motions of the mass of water in the immediate vicinity of the buoy hull.

I
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Equations of motion for an elastic cable capable of supporting b-"hi axial

and transverse waves simultaneously were written. A unique finite-difference

numerical technique, an extension of Hartree's method for hyperbolic partial

differential equations, was developed for the solution of sets of coupled hyper-

bolic equations. A hl mped-mass cable model was also developed. Major assump-

tions made in the development of the cable dynamics model are that the cable is

homogeneous and perfectly flexible and that hysterisis damping is negligible

compared with viscous damping. The equations of motion for the buoy and cable

were programmed and solved numericallý on a UNIVAC 1108 digital computer in

the time domain. Two types of buoy hulls were considered - a spherical buoy

and a torroidal buoy. Both shallow water and deep water moorings were simu-

lated using the lumped-mass and finite-difference cable models. Simulated data

were compared with observed data in two steady-state cases and in three

dynamics cases.

5.2 Conclusions

Steady-state buoy system configurations were simulated using the method

described in chapter III for a shallow water buoy svstem and for a deep water

buoy system. Comparison of simulated tc, observed configuration parameters

(current meter tilt angles for the shallhý, water mooring and mean tensions for

the deep % ater mooring) indicate good agreement between the computer model

eonfigurationz and the configurations of the actual buoy systems. Although this

comparison of a few bits of data from t\\o buoy systems does not constitute a

full validati,'m of the steady-state buoy system configuration model (angles and

tensions all along the mooring line for many current profiles and winds and for
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many different buoy systems should he simulated and correlated for a full

validation), it does indicate that the simulation errors are on tile order of

5 percent, which is adequate for engineering analysis.

Buov system dynamics were simulated for three cases (two shallow water

moorings where the lumped-mass caL.. model was used and one deep water moor-

ing where the finite-difference cable model was used), and simulated buoy motion

parameters were comparc2 with obsarved parameters. In general, I he lumped-

mass cable model is more adaptable to shallow water buoy systems, which, if

slack-moored, tend to have very low tensions at the bottom and cable angles that

approach "r/ 2 and, if taut-moored, tend to have very high dynamic strain levels,

which can cause slack cable. The lumped-mass cable model can handle these

cases easily (if tensions on an element go to zero, the element simply free falls

through the water), whereas the finite-difference cable model breaks down with

slack cable conditions since the equations of motion are ultrahyperbolic and

possess an infinite numbe- of equally valid solutions. Also, the lumped-mass

model is more adaptable when the mooring line contains a number of mass or

force discontinuities, i.e., instruments, subsurface buoys, sentinels, etc.

The comparison for both shallow water cases, one a spherical buoy and

the other a Richardson torroid, indicate that the surge and sway hydrodynannic

forces were underestimated in the simulation. Also, the comparison of observed

to sin flated shallow water torroidal buoy motion spectral levels indic: tes that

thi simuiation is underdamped in all modes. There is good agreement in

;imulated and observed heave motions, the most important motion parameter
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for the buoy system designer. In general, the simulation appears to predict

heave motions within +15 percent and the other motions within +50 percent.

Since the environmental conditions were not monitored at either buoy during the

motion measurements but were inferred from wind speeds measured ashore,

from computed tidal currents based upon previous current measurements, and

from visual observations of sea conditions, it is impossible to draw conclusions

on the validity of the model, except that it computes buoy system motions that are

order of i.iagnitude with observed motions.

The comparison of simulated deep sea Rioy system dynamics using the

finite-difference model is inconclusive because of uncertainties in monitoring

the environment and in the statistical meaning of the tension data collected.

5.2 Suggestions for Further Study

Future research in the area of buoy system dynamics should involve the

emplantment and the fitting of motion sensing instrumentation to a wvide spectrum

of oceanic buoy system types - both shallow and deep water. The environment

at each site should be adequately monitored (winds, waves, and currents), and

a complete set of buoy system motions should be recorded. The measurements

should include angles and tensions along the mooring line as well.

Another key area that should be investigated involves the hydrodynamic

forces acting on a body on the free surface of a fluid when the free surface is

subjected to random gravity waves. Jol,n's analysis asst.med infinitesimal body

motions in order to linearize the free surface boundary conditions. Kim's

analysis assimmed sinusoidal body motions in order to evaluate the hydrodynamic

f' and moment integrals. An investigation of the validity of these :ssumptions

I'
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should be made in order to better understand the nature of the body-fluid inter-

action. Also, test tank data are needed to validate theoretical force and

moment coefficients.

Extension of the analysis presented in this dis.,,ertation to nonaxisymmet-

tic buoy hulls to include cross-coupled hydrodynamic forces and moments in

the other modes would be of significance as a more general study of buoy

system dynamics.

Finally. more research on the behavior of wire ropes and synthetic lines

that are used in the ocean environment is needed for the prediction of buoy

system performance.
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Appendbi A

ANGULAR STABILITY OF AXISYMMETRIC BUOYS

It is known from visual observation and from collected motion data that

buoys do not become unstable in the sense of Liapunov; i.e., buoy motions will

not build to infinity. However, buoys will undergo large excursions and can be

upset. For example, a buoy that undergoes gross heaving motions in ihe sea so

that it is alternately awash and then rises out of water to fall over on its side

would be deemed unstable by the casual observer; however, the buoy would

actually be stable since its motions are bounded and do not tend to infinity with

time. Of course, if this buoy hodsed meteorologic or oceanographic instru-

mentation, it would be of little value because of its wild motions.

The "stability" of this type of motion is best described in the pitch (or

roll) phase plane, i.e., a plot of pitch angular velocity ,arsus pitch. However,

pitching (and rolling) motions are heavily influenced by the draft of the buoy,

i. e., the location of the center of buoyancy relative to the center of gravity.

Thus, the heave motions and resulting buoy draft must be considered. Because

the righting moment depends on the location of the center of buoyancy relative

to the center of gravity, the pitch (or roll) equations of motion are similar to

the nonlinear equations of motion for a pendulum.

A wide spectrum of axisymmetric buoy shapes will be considered, ranging

from a spar buoy with a high draft-to-beam ratio to a discus buoy with a low
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"draft-to.-beam ratio (figure A-i). First, consider the spar buoy. In the absence

of external forces (mooring line tensions, etc.), static stability is maintained

only if the center of gravity is below the center of buoyancy:

L c < H/?..
This is obvious from the undamped pitch equation of motion for the spar buoy:

Also, if the buoy is tilted at extreme angles, we see that

J9 T-" Or 'B < -'rr
The spar buoy will not return to its initffal equilibrium position but will undergo

a complete re-olution and seek equilibrium at either 2W or -27r. A typical

pitch phase plane for the spar buoy is shown on figure A-2 fo.ý two possible

conditions:

1. L c " H/

2. L c:rs > H/.

Note that if the buoy is initially unstable, LCG > H/2 , it is stable at + Tr;

i.e., it is stable upside down.

A cable attached to the bottom of the spar buoy will tend to stabilize the

buoy. Adding a restoring moment due to the cable tension in the equation of

motion yields

a f +A 4 BD H (H//Ž - c,;.)S IN..

+ K Le (I -Cos7if) L sr ,1 N B -" 0
\here K is a cable spring constant. For a stable system, the sum of the two

restoring moment terms must be positive. Solving for LCG , we see that
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where

* p~~TrB2

K(-COSB )

in general, a spar buoy is designed to minimize heave response. Thus,

the shallowest buoy draft would be the static draft of the buoy minus one-half

the largest wave height:

HMN Hoý M'?AX

For a stable buoy, we see that

The spherical buoy shape is subject to the same types of mome,.ts, but

the study is complicated by the fact that the center of buoyancy will deviate from

the vertical axis of the buoy as the buoy pitches. If the center of gravity lies

below the center of buoyancy (5/8 H1 from tht. 'ottom), the buoy is positively

stable and will have a phase plane representation similar to that shown in

figure A-2 for tie spar buoy. The upper phase plane applies if LCG < 5/8 H,

and the lower phase plane applies if LOG > H . However, the buoy is neutrally

stable if 5/8 H < L0 G < If, since the center of buoyancy is always directly

below the center of gravity. In this situation there is no definite stable position,

because there is no restoring moment. Again, the tension of a mooring line

attached below the center of buoyancy will stabilize the buoy.

Any buoy with a drnft-to-beam ratio less than 0. 5 and a hull height-to-

beam ratio less than 1 can be bistable; i.e., it can be stable right side up or
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upside down. Torroid and discus buoys are of this class. If the center of

gravity is located far Lelow the buoy hull (achieved by means of ballast weights

on a boom or tripod), the phase plane is similar to the upper curve for the spar

buoy. If the center of gravity is far above the buoy hull (due to heavy instru-

ments or equipment), the lower curve for the spar buoy phase plane would

anply - the buoy is stable when upside down. If the center of gravity is near

the geometric center of the buoy hull, the buoy is equally stable right side up or

upside down. The phase plane for this situation is shown on figure A-3. Inspec-

tion of figure A-3 indicates that the width of the stable (in the sense that the

buoy is right-side-up) region in the phase plane can vary from 2"lto 0 depend-

ing on the vertical location of the center of gravity.

This simple discussion of buoy stability did not consider other modes of

possible unstable motion since they have never been observed to offer serious

problems. Cross-coupled moments due to the hydrodynamic forces acting on

the buoy and the horizontal tension components were neglected in this discussion.

Even with these restrictions, a few design guides are apparent. The buoy should

be designed with the center of gravity below the center of buoyancy if at all

possible. Also, the mooring line attachment point should be as low as possible

to offer the greatest righting moment if the buoy does capsize.
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TORROID OR DISCUS BUOYS

Figure A-3. Torroid or Discus Buoy Phase Planes



Appendix B

COMPUTER PROGRAMS FOR THE MODELS

.Steady-State Buoy System Configurations

This program computes the three-dimensional spatial configuration,

tensions, and strains of either an elastic or inelastic buoy syetem mooring

line. Winds from any compass direction can act on the buoy, and currents that

vary in strength and direction as a function of depth cnn act on the bucy and

mooring line. The mooring line can be composed of segments having different

properties (weight in water, mass, drag, elasticity, etc.). Point mass discon-

tinuities (to simulate current meters, hydrophones, etc.) can also be accounted

for.

The basic cable equations (equations (230) to (233))and a discussion of the

development of this program are included in chapter III of the main text. The

logic employed in this program is shown in figure B-I, which generally illus-

trate:; the computational operations.

)he input data are as follows:

Buoy major diameter (ft)

2. Buoy minor diameter (ft)

a. Vertical diameter for an oblate spheroid

b. Hole diameter for a torrold

267



268

READ IN UUOY.
CABLE &

ENVIRONMENT
PARAMETERS

INITIAL BUOY
DRAFT- FREE

DRAFT+ DRAFT
INCREMENT

COMPUTE
WIND FORCES

ON BUOY

DISPLACEMENT NO S S a4"ORIZONTAL"

INITIAL DRAFT OLD YES X < DEPTH

CABLE ANGI. xS H _INCREMENT BN

"J• NO

CURRENT DRAFT - 1/2 YE X> EPRO,,
PROFILE FROM DRAFT INCREMENT +% R~an•

X COORD. (DEPTH)•.• f•NO
-- •S TRASFORM RT/ PRINT DISPLACE-

COORO;NATES
J

CABLE E•QN'S Gý

Sds dts ds

:• ~CALL RUNGE1

INTEGRATE

• ~STRETCH, XY

& Z COORDS

I 
NO

Figure B3-1. Steady-State Buoy System Configuration Flow Chart
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I c. 0 for a cylinder

d. 0 for a sphere

2. Buoy weight (lb)

4. Maximum draft of hull (ft)

5. Free draft with no mooring line (ft)

6. Buoy windage (ft 2

7. Wind drag coefficient

8. Cable diameter (in.)

9. Cable weight in water per unit length (lb/ft)

10. Effective cable modulus of elasticity (lb/in. 2)

11. Unstretched cable length (ft)

12. Surface current (knots)

13. Water depth (ft)

'14. Wind speed component in V direction (ft/sec)

15. Wind speed components in z direction (ft/sec).

The integration step size "B" is normally set at 1/100th of the total cable

length. However, if the cable properties are changed from a lightweight line to

a very heavy line (for example, anchor chain), the step size should be changed

in inverse proportion to the in-water weights. Also, the normal and tange.,1ai

drag coefficients ("DRGON" and "DRGCT") should be changed accordingly if the

mooring line section is not circular, for example, hair-faired cable and chain.

Occasionally, the solution will not converge into the depth error band. This

occurs if the first draft increment is too large and the computed x dimension of

the mooring line "overshoots" the depth. With each overshoot, the buoy draft
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increment is halved; thus, convergence may be very slow. The initial buoy

draft increment should be halved if this occurs.
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Buoy System Dynamics for the
Spherical Buo,

This program simulates the motions of a spherical buoy exposed to winds,

currents, and a random sea. The mooring line is simulated as five, elastically

connected, lumped masses. Cable weights, drag forces, and inertia forces are

concentrated at each mass. The buoy is allowed six degrees of freedom, and

each mooring line mass element is allowed three translational degrees of free-

dom. With a total of 21 degrees of freedom, 42 first-order differential equations

are integrated simultaneously in the time domain.

The equations of motion for the buoy and the development of the forces

acting on the buoy are presented in chapter III of the main text. The lumped-

mass cable equations are also shown in that chapter.

Major computational procedures in this program are shown in figure B-2.

The input data are as follows:

1. Buoy hull radius (ft)

2. Height of the center of gravity of the buoy above the mooring line

connection point on the buoy (ft)

3. Height of the mooring line connection point below the buoy hull (ft)

4. Buoy weight (Ib)

5. Buoy structural and floodwater mass (lb-sec 2/ft)

6. Yaw mass moment of inertia (lb--sec 2/ft)

7. Pitch mass moment of inertia (lb-sec 2/ft)

8. Roll mass moment of inertia (lb-sec2 /ft)

9. Effective buoy wind drag coefficient (dimensionless)
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START

READ IN
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Figure B3-2. Spherical Buoy Dynamics Simulation Flow Chart
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10. Effective buoy wind lift ccefficient (dimensionless)

11. Buoy windage (profile area) (ft2)

12. Buoy plan area (ft2 )

13. Ifeiht of the wind center of pressure above the center of gravity of

the buoy (ft)

14. MWan wave height (ft)

15. Mean wave period (see)

16. The unstretched cable lengths between mass elements (ft) (6 required)

17. Upper mooring line segment diameter (ft)

18. Upper mooring line segment weight in water per unit length (lb/ft)

2
19. Upper mooring line segment mass per unit length (lb-sec /ft)

20. Lower mooring line segment diameter (ft)

21. Lower mooring line segment weight in water per unit length (lb/ft)

2
22. Lower mooring line segment mass per unit length (lb-sec /R)

23. Surface current y component (ft/sec)

24. Surface current z component (ft/sec)

25. Wind speed y component (ft/sec)

26. Wind speed z component (it/sec)

27. Initial buoy displacements x, y, and z (ft)

28. Initial cable element displacements (including the anchor clump)

x, y, and z for each of 6 sets (ft).

The user of this program should first estimate the highest natural fIre-

quency in the system. In general, the upper mooring line segment will be

lightest and the highest natural frequencies are in the axial mode along the
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4 cable. Using the same variable names as those in the program we can estimate

the highest natural frequency:

HI 21 DCSMI. CLO0(a)

where

EA is the cable modulus* (lb)

DCSM1 is the mass per unit length of the upper mooring line segment

(lb-sec2/ft2)

CLO(2) is the unstretched cable length between the first and second

cable mass elements (ft).

It the .,able lengths were very short or the cable modulus were very high in the

lower mooring line segment, an estimate should be made of its highest natural

frequency also.

For numerical stability, the integration step size should be about 1/20th

the shortest period present. Thus, the step size is computed:

R 0o. o (/ ,).

In this program, the wave component amplitudes, frequencies, and phase

angles are computed externally and are listed in the body of the program (MOMEG,

AMP, and PHS). The water depth (DEEP) is also listed, and the x coordinate

of the mooring anchor -lump should be set equal to the water depth. Th- total

time of the simulation is controlled by a logical "IF" statement (statement

*The cable modulus is the product of the cable material elastic modulus
and the actual cable cross-sectional area.
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no. 491), which shifts to the "STOP" control if the maximum simulated time is

exceeded.

In this program, buoy motion output data are not printed for the first

6 sec of simulation as initial transients decay. After this time, the following

buoy system outputs are printed ,very 800 time steps:

Simulation time (sec)

Water particle vertical acceleration (ft/sec )

Buoy heave acceleration (ft/sec2)

Buoy sway acceleration (ft/sec 2

Buoy surge acceleration (ft/sec 2

Buoy pitch angle (deg)

Buoy roll angle (deg).
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1. Buoy System__ynamics for the Torroidal
Buoy at Station BRAVO

The previous program, developed for the spherical buoy, was modified to

simulate the torroidal buoy dynamics. As indicated in figure B-3, the !..asic

computational procedures remain the sftme as for the spherical buoy. However,

the wave component amplitudes, frequencies, and phase angles are computed in

a subroutine (RWAVE) in the program and do not have to be listed in the program.

The buoyant forces and moments for the torroidal buoy are also computed in a

subroutine (TORBU) using an integration method developed in appendix E.

Finally, since the output motions were to be displayed as spectrum, subroutines

using Fast Fourier Transform (FFT) methods were employed to compute the spectra.

Buoy hull hydrodynamic force functions in the program were modified

according to Kim's data for a half-beam to draft ratio of 3.2:1. Terms are

included to account for the hydrodynamic mass and drag of the three-leg chain

bridle under the buoy, and the effective hydrodynamic centers are modified to

account for the bridle. The computed inputs for the torroidal buoy are shown

in appendix D.

A three-element, lumped-mass cable model was used in this simulation

since the actual masses in the system were concentrated at three places along

the mooring line (the current meter, the sentinel, and halfway down the 3/4-in.

chain). Initial runs using a five-lump cable model were compared with runs

using a three-lump cable model, and no significant difference in buoy motions

N\as noted. However, there was an ordei .f magnitude increase in computational

speed since the two, high-natural-frequency cable lumps were summed into the
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READ IN
BUOY. CABLE

& ENVIRONMENT
PARAMETERS

CALL R WAVE
COMPUTE

WAVE
COEFFICIENTS

COMPUTE PRINT TIME
WINO FORCES BUOY MOTIONS
& MOMENTS S CABLE MOTIONS

ON BUOY & TENSIONS

COMPUTE
WAVE STABLE NO

MOTIONS MTN

t • YES

COMPUTE
RELATIVE NO MAX PRINT

VELOCITIES T t >TiME ST
& ACCEL'S

CALL TORBU
COMPUTE SMOOTH
BUOYANT

FORCES & MOMENTS DATA

ACOMPUTE CHANGE COMPUTE FFT
HYROMASS WAVE CALL COSINE

& WAVE COMPONENT CALL GNSCR
DAMPING PHASE/* CALL FFOUR

COMPUTE
VISCOUS AVERAGE FFT
DAMPING COEFFICIENTS
FACTORS

COMPUTE
CABLE ELEMENT NO

TENSIONS &
COMPONENTS

r COMPUTE J COMPUTE

CABLE ANGLES FREQUENCY &
&ELEMENT SPECTRALFORCES LEVELS

1•- t
SEQUATIONS OF JPRINT &

MOTION FOR PLOT
BUOY & CABLE MOTION

ELEMENTS SPCCTRA

,CALL RUNGE _ o BINTEGRATEK0
EON'S OF/'M'OTIONYE

Figure B-3. Torroidal Buoy 13RAVO Dynamics Simulation Flow Chart
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current meter lump.

Input data for this program are as follows:

1. Buoy hull radius (ft)

2. Height of the center of gravity of the buoy above the mooring line

connection point on the buoy (ft)

3. Height of the mooring line connection point below the buoy hull (ft)

4. Buoy weight (Ib)

2
5. Buoy structural and floodwater mass (lb-sec /ft)

6. Yaw mass moment of inertia (lb-sec 2,/ft)

2
7. Pitch mass moment of inertia (lb-sec /ft)

8. Roll mass moment of inertia (lb-sec "t)

9. Effective buoy wind drag coefficient (dimensionless)

10. Effective buoy wind lift coefficient (dimensionless)

211. Buoy windage (profile area) (ft

212. Buoy plan area (ft2)

"*3. Height of the wind center of pressure above the center of gravity of the

buoy (ft)

14. Mean wind speed causing the wind waves (ft/sec)

15. Wind duration (hr)

16. Surface current y component (ft/sec)

17. Surface current z component (ft/sec)

18. Wind N component (ft/sec)

19. Wind z component (ft/sec)

20. Initial displacements of the buoy' x, y , and z (ft)
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21. Initial cable displacements (including the anchor clump) x, y, and z

for each of four sets (ft)

Again, the user should estimate the highest natural frequency in the

system and adjust the integration step size as required. Computed buoy motions

10
are sampled every 12th time step, and 1024, or 2 , samples are stored.

Simple statistical estimates (mean, variance, and standard deviation) of the

output motions are computed. Each data point is smoothed to reduce aliasing

by averaging with the four data points closest to it in time. Spectra are com-

puted using FFT subroutines and are smoothed for plotting. Statements 557

through 595 plot the spectral levels in dB, A Stromberg Datagraphics, Inc.

integrated graphics system peripheral to the Naval Underwater Systems Center

UNIVAC 1108 computer was used for this procedure.
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Buoy System Dynamics for the Torroidal
Buoy Used in WHOI Mooring No. 238

This program (figure B-4) is basically the same as the previous program

except that the mooring line forces and dynamics are simulated with the finite-

differ znce method described in chapter III of the main text. Subroutine "MOOR"

(figure B-5) takes the spatial values of the six variables (strain, two angles,

and the velocity components) describing the cable motions and updates them for

the next time step. The tension and angles at the top of the cable are then used

to compute the mooring line forces acting on the buoy.

For numerical stability, the value of the tensile wave characteristic

should never exceed the quotient of the nodal spacing, H, and the time step, K,

in the subroutine:

Ch, < H/K.
The list of input values is the sanme as that for the previous program. In this

particular program, the mooring line is composed of two segments, and kne

cable weights, masses, etc. are changed at a cable length of 4800 ft. There

are 20 nodes spaced 400 ft apart to simulate dynamics of an 8, 000-ft mooring

line.
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READ IN BUOY,

CABLE &
ENVIRONMENT
PARAMETERS

i
CALL R WAVE

COMPUTE
WAVE

g ~COEFFICIENTS

COMPUTE, PRINT TIME,
WIND FORCES BUOY MOTIONS
& MOMENTS &CABLE

ON BUOY PARAMETERS

YCOMPUTE NM
WAVE Siuato F C

MOTIONS MTOS

IVELOCITIES A&CELERATIONS "UNSTABLE"ACELRTIN
CALL TORU CALL DSTAT SO

BUOYANT PARAMETER
FORCES MEAN, VARIANCE

& MOMENTS & STD. DEV.

tCOMPUTE RNT /
HYDROMASS PAR,,METER

& WAVE •MEAN, VARIANCE/
DAMPING & STD. DEV./

CABLE FORCES
ON BUOY

OF MOTION
FOR THE BUOY

INTEGRATE
EON'S OF MOTION

SF,, tire B-4. Torroidal Buoy %V1lO1 Mooring No. 238

S~ Dynamics Simulation Flow Chart
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"PRESENT" PARAMETER VALUES & BUOY MOORING

STARTPOINT VELOCITIES TRANSFERRED FROM

MAIN PROGRAM

CABLE
PROPERTIES
&ENVIRONMENT

SET OLD VALUES

COMPUTEE
TRANSFORM PARAMETERR

BUOY VELOCITIES VALUES AT R -
TO CABLE COORD'S "NEW* VALUES

DOA5AMETER,2 SETRI< STRAINE-T0

I'-

INO

ETUA"RESNTEPAAMTE

VALVALEE TRANSFERREDN-
DTO MAI PROGRAMI

YE

Figure 1-5 COMPUTEDifrneC leDn ic SiuaonF wCh t
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Appendix C

DERIVATION OF THE CABLE CHARACTERISTICS

In order to rewrite the cable equations in their "normal" form, the

characteristic roots of the cable equations must be determined. From equation

(168) of the main text. we see that ALft *i B - C 0

o AV" ,utwcos -.,• o o "4t

0 0 -,Aw(UCo.b-Vs) a 0 -,g o

-I 0 0 000 0

0 -(1+6) 0 0 0 0 av4D

0 0 0 0 0 0

"dT H

0 -Wcoso 1 0 0 0

0 Uj WsN 0 1 0 arv.4 O

o 0 (tkos4--wN,) 0 o 1. • 0I

352
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Multiplying through by the inverse of the A matrix yields

A,'A U, + A-'13JV, + A-'C =0,
or

J +A"B UA -+A-'C - 0.
To find the inverse of the A matrix, partition the A matrix into four 3-by-3

matrices:

0 UaV ucos-Cs,

D= o -,' -a

Let A -- .A~UCOSO-VSIO)]

E = o-(1+6)
0 0 -(1+6)coso

ILet A be partitioned in the same way,

I K

then

ýE 0 K3 K4 0
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DK,-AK 3,=

+i- 0-- 0 E hOASuqu, A. . 1 = 0

EK O .'. -

Substituting into the first equation, we see that

F. om the second equation, we see that

-1 0 0

K, o -1ko 0

o _v~ w.
o 0

(c osV W-VsI
(e)Cos~
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The A matrix is written

o 0 -0 0

0 0 0 0-- 0

00000)
0 0 0 07

0 0 00 -WqSIf

470 0 00(9sw

0o o0

0T 0 0SN 0 0 0

0 0 c~~~~ 0 0

o oWeCos~ -1 0

0 o VC.NOT VSN 0 -

L.0 o coa-0(14 cofjo-

0~4 v.x - wcosý 0 0*6

0 0 16)___ 0 o I~)CS

L 0 7A ~co. + 0q~~ (1+&)co# -se,
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0 02- 0 H [0

0 0 00- 0-0

(1 65 4I-t)

0 Ia0000 " 0.IN
p0  OVil-SAl 0
0 0 0 (ýe -([t6)CO- j '-

To find the characteristics. Ause LA

20 - WSINý 0 1

o 0o4 -jv- 0 0 (ecs_

10Ae FIT -) 0(vf6)
z 0 w SINIP

0 1A 0 .St

whicier

Vi~ cosVS4'

0i+6) (1+6) COS 4
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The first reduction is

IU

(i 0Jt. 0 0i 6

(0+~ 0 0 ( - -) (,) C

IJV Vcs -I 0
(146) 0I+ 0 6 06 -e

N 0 ' J S IAIO

(W-rCOSOp ÷(UCrpT-V.Stl)) 0 0 M-A

09

a-r 0 0 ~I6cs

.1A6 (?t%7) (~~o

a -rCOSO +.M(UCOYO+VSINO) 0
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RITZ) 0

0 0 -i6)cos - Q

(e -•,O(,•4Vt(LJCS•-v.,,,, o -•.

Note that these two matrices are the same. Since they must be nonsingular,

we see that

thus,

The third reduction is

"(1r&---) A (+tE) N kt

0 C +M (uco -v I-
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0 _1__-A0 --(1*) )4l e

)I'l

The fourth reduction is

_-

,4

" + + )

Again. the matrices are the same; since they must be nonsingular, we see t. at

(+6) drd - C -
- ;6 T6 0 )f

or

•--1 6•

rlm)---- -



360

The fifth reduction is

- CO S , lv(T C04r )- I

or

Summarizing, the six characteristics are

- -

f 3 -- •- 7

13 +

- F I,-~



Appendix D

COMPUTED INPUT DATA FOR THE SIMULATIONS

This appendix provides computed input data for the following:

1. Steady-state configurations of the 8-ft torroidal buoy and current

meter array at Block Island Sound station BRAVO.

2. Steady-state configurations of the 8-ft torroidal buoy and cable used

for WHOI Mooring No. 279.

3. Dynamics of the 3½--ft spherical buy and cable at station DELTA off

New Harbor, Block Island.

4. Dynamics of the 8-ft torroidal buoy and cable at station BRAVO in

Block Island Sound.

5. Dynamics of the 8-ft torroidal buoy and cable used for WHOI Mooring

No. 238.

Inputs for the Simulation of Steady-State
Configurations of the 8-ft Torroid and
Current Meter Array at BRAVO

The components used in the buoy system are shown in figure 21 and are

described in chapter IV of the main text. The input data are as follows:

1. Buoy diameter BD1 S. 0 ft

2. Torroid section diameter BD2 2.5 ft

3. Buoy weight WB 1200.0 lb

4. Maximum bull draft IIM 2.5 ft

:361
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5. Free draft (when displacement ,quals buoy

weight) HFREE 0. 7 11

6. Buoy windage WAREA . •4 ft2

7. Wind drag coefficient WCD t. 971

8. Cable diameter DIA:

Upper line - 5/8-in. polypropylene 0.625 in.

Lower line - 3/8-in. wire rope 0. 375 in.

9. Cable weight in water per unit length

WTC:

Upper line - -0.02 lb/ft

Lower line - 0.2 lb/ft

10. Cable modulus of elasticity EC:

Upper line - 1.67 x 105 lb/in. 2

7 2
Lower line - 1.20 x 10 lb/in.

11. Mooring line length SM 235.0 ft

12. Current speeds at three depths:

CUR1, CUR2, and CUR3 1.0 to 1.77 knots

13. Current directions at three depths:

DIR 1, DIR 2, and DIR 3 0-360 deg

14. Water depth DEEP 120,0 ft

15. Wind speed v component 0.0 ft/sec

16. Wind speed x component 0.0 ft/sec.

The cable properties DIA, WTC, and EC are changed at a cable length of

230. 0 ft from thie values for the 5/8-in. pol propylene to the values for 3/8-in.
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wire rope. Changes in tension and angles across the current meters were

found by inserting the following procedures in the program:

1. Use and IF statement to locate the current. meters along the mooring

line.

2. Use the computed tension and angles to compute the force components

acting on the top of the current meter.

3. Solve tile statics equations for the current meter by using the current

meter in-water weight and computed drag force components to find the force

components acting on the bottom of the current meter.

4. Compute the current meter tilt angle.

5. Transform back to cable coordinates to find the new cable tension and

angles.

6. Increase the cable length by 3 ft, i.e., the length of the current meter.

7. Continue integration down the cable.

The following data were required to accomplish the above:

Current meter weight in water WCM 67 lb

"Current meter drag coefficient CDCM 0.59

Current meter frontal area ARCM 2. 285 ft 2

Current strengths and directions as functions of depth were computed as

follows:

1. Average strengths and directions from current meters 1 and 2.

2. For depths of 0 to 70 ft, set the upper layer strength and .

equal to these values.
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3. Test current meter 3 strength against mean strength of meters 1 and

2. If greater, set the lower layer current equal to the mean strength in the

upper layer.

4. Current strength and direction in the lower layer (70 to 120 ft) set equal

to current meter 3 strength and direction.

Integration step size (B) was set equal to 1. 0 ft, and the limiting depth

error bandwidth DDP was set equal to 1 ft.

Inputs for the Simulationi of Steady-State
Configurations of the 8-ft Torroid and
Cable Used for WHOI Mooring No. 279

The components used in this mooring are shown in figure 27 and are

described in chapter IV of the main text. Buoy dimensions are the same but the

buoy weight is increased to account for the instruments in the buoy, the chain

bridle, and instruments directly beneath the buoy. The input data are listed as

follows:

1. Buoy diameter BD1 8.0 ft

2. Torroid section diameter BD2 2.5 ft

3. Buoy weight WB 2100.0 lb

4. Maximum hull draft HIM 2.5 ft

5. Free draft IIFREE 1.04 ft

6. Buoy windage WAREA 19. 84 ft 2

7. Buoy wind drag coefficient 0. 971

8. Cable diameter DIA:

Upper cable - 1/4-in. GAC 0.25 in.
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Lower cable - 5/8-,in plaited nylon 0. 625 in.

9. Cable weight in sea water per unit length WTC:

Upper cable - 0.090 lb/ft

Lower cable - 0. 0105 lb/ft

10. Cable modulus of elasticity EC:

Upper cable - 1.682 x 107 lb/in.

Lower cable - 3.52 x 105 lb/in. 2 0 < T < 1000 lb

6. 79 x 105 lb/in. 2 1000 lb < T < 2000 lb

1. 041 x 106 lb/in. 2 2000 lb < T

11. Mooring line length SM 8000.0 ft

12. Surface current CUR 0-1.46 knots

13. Water depth DEEP 8800.0 ft

14. Wind speed y component 0.0 ft/sec

15. Wind speed z component 0.0 ft/sec.

Cable properties were changed at a length of 4800 ft from the buoy and the

changes in tension and angles were computed across the instruments in the line

as before. The input data for the current meter and tensiometers are listed as

follows:

Current meter:

Weight in water 120.0 lb

Drag coefficient 1.4

Frontal area 2.92 ft2
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Tensiomete.:

Weight in water 50. 0 lb

Drag coefficient 1.4

2
Frontal area 0.875 ft

The drag force acting on the buoy was increased to account for the chain

bridle and the instruments directly below the buoy. An effective area-drag

coefficient product of 22. 18 ft2 was added to the area-drag coefficient product

of the buoy to account for the instruments and chains.

Inputs for the Simulation of Buoy System
For the Spherical Buoy

The spherical buoy dimensions were ,nea.-ured E nd the buoy and its

instrumentation were weighed. The center of gravity and mass moments of

inertia were calculated from the known weights and dimensions. The cable and

chain were weighed in air and the mass and weight in sea water of each were

computed. Mean wind wave heights and periods and the frequencies, amplitudes,

and phases were computed on the GSA computer by using program RWAVE (see

subroutine RWAVE in appendix A) for a given wind speed, a 10-hr duration, and

a 15-:nile fetch. Input data are listed as follows:

1. Buoy hull radius BB 1.75 ft

2. Center of gravity height XML 0.208 ft

3. Mooring line connection height XML 0. 20 ft

4. Buoy weight WB 440.0 lb

5. Buoy mass MB 13.66 lb-sec 2/ft

6. Yaw mass moment of inertia ALIN 11.967 lb-sec 2/ft
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7. Pitch mass moment of inertia BTIN 17.46 lb-sec 2/ft

8. Roll mass moment of irnertia GMJN 19. 875 lb-sec2 /t

9. Wind drag coefficient WCD 0.5

10. Windage (profile area) WAREA 5.435 ft2

11. Wind lift coefficient WCL 0.25

12. Plan area WAREL 4.81 ft2

13. Wind center of pressure height 1.068 ft

14. Mean wave height WHTM 0.5 to 4.05 ft

15. Mean wave period PER 2.2 to 6.0 sec

16. Unstretched cable lengths CLO(I) 18. 75 ft

18.75 ft

18.75 ft

18.75 ft

12.75 ft

12.5 ft

17. Upper cable diameter DIAl 0.0416 ft

18. Upper cable weight in sea water DWC1 0.35 lb/ft

19. Upper cable mass per unit length DCSM1 0. 0124 lb-sec 2/ft2

20. Lower cable diameter DJA2 0. 125 ft

21. Lower cable weight in sea water DWC2 7. 3 lb/ft

22. Lower cable mass per unit length DCSM2 0. 233 lb-sec /ft

23. Surface current y component CYS 0.0 ft/sec

24. Surface current z component CZS 0. 845 ft/sec

25. Wind y comporent -30.0 ft/sec
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26. Wind z component -8.0 ft/sec

27. Initial buoy displacements y(2) -0. 21 ft

y(4) -41.1 ft

y(6) 62.35 ft

28. Initial cable element displacements y(I) 15.04 ft

27.54 ft

38.76 ft

49.46 ft

55.95 ft

62. 00 ft

y(I + 2) -29.79 ft

-20.54 ft

-13.06 ft

-6.86 ft

-3.31 ft

0.00 ft

y(l + 4) 55.86 ft

46.06 ft

34.47 ft

20.48 ft

10.43 ft

0,00 ft.

The highest natur,) frequency o! the system was esti:,.-,ted by using to-,

method described in appendix A, and a time siep size (1t/l of 5 x P ,-,,e was
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used. The currents were uniform over the 62-ft water depth. A 30-lb force

was added to the vertical cable force component acting on the buoy to account

for the instiument package just below the buoy.

Inputs for the Simulatioi of Buoy System
Dynamics for Torroidal Buo LBRAVO

Again, buoy dimensions and weights were measured or taken from the

iwianufacturers'drawings, and the properties of the buoy werE calculated. The chain

bridle below the buoy was assumed to be rigid, and its mass and drag were

included in the computations. In this case, each cable element weight, mass,

and drag were listed directly in the program since the mooring line was com-

posed of many elements (cable chains, current meter, sentinel, etc.). Input

data ar', ]iited as follows:

1. Buoy hull radius R11 4.0 ft

2. Center of gravity height XCG 13.064 ft

3. Mooring line connection height XML 11. 782 ft

4. Buoy weight WB 2100.0 lb

22

S5. Buoy mass MB 65. 25 lb

S6. Yaw mass moment of inertia ALIN 283.44 b-e2/f

7. Pitch mass moment of inep'tia BTIN 445. 12 lb-sec /ft

8. Roll mass moment of inertia GMIN 445.12 lb-sec 2 /ft

9. Wind ag coefficient 0.971

10. Wind lift coefficient 0.25

2
11. Windage (pi'ofile area) 19.84 ft

212. Plan area 50.3 ft
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13. Wind center of pressure height 6. 19 ft

14. Wind speed causing the waves

(11 June 1970) 16.9 ft/sec

15. Wind duration

16. Surface current y component

(11 June 1970) -0.21 ft/sec

17. Surface current z component

(11 June 1970) -0. 597 ft/sec

18. Wind y component 0.0 ft/sec

19. Wind z component

(11 June 1970) -16. 9 ft/sec

20. Initial buoy displacements y( 2 ) -0.25 ft

y(4) -0.7 ft

y(6) 208.6 ft

21. Initial cable element displacements y(I) 64 18 ft

110.45 ft

120.91 ft

120.9 ft

y(I ( 2) -0.8358 ft

-0. 7416 ft

-0.6017 ft

0.0 ft

y(I + 4) 200. 84 ft

190. 35 ft
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-,.95 ft

0.0 ft.

Jn this case, the time step size was taken to be 5 x 10-3 sec. Because

of the chain bridle, the hydrodynamic force moment arm was computed to be

4. 16 ft below the center of gras .cy. The surge and sway area-drag coefficient

products include the effects (,- the steel bracing and chain bridle under the buoy.

Inputs for the Simulation of Buoy System

Dynamics for the Torroidal Buoy and
Cables Used in WIIOI Mooring No. 238

Buoy dimensions, weights, masses, etc. are the same as those for the

torroidal buoy at station BRAVO. The wind fetch length in subroutine RWAVE

was changed to 100 miles to better simulate deep-sea wind wave conditions.

Cable dynamics were simulated with subroutine MOOR, and the six dependent

cable properties (tension, two angles, and three velocity components) were

calculated at 20 points along the cable. Total unstretched mooril.g line length

was 8000 ft: 4800 ft of 1/4-in. galvanized steel aircraft cable (polyo!efin

jacketed to 3/8-in. diameter) and 3200 ft of 5/8-in. plaited nylon.

The upper cable properties arc listed as follows:

1. Diameter 0.0312 ft

2. Weight per unit length in sea water 0. 125 lb/ft

3. Mass per unit length 0.0054 lb-sec 2/ft2

-1. Characteristic velocity 11,300.0 ft/see

5. Elastic modulus-cross section product 6.87 x 105 lb
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The lower cable properties are listed as follows:

1. Diameter 0.052 ft

2. Weight per unit length in sea water 0.0105 lb/ft

2
:3. Mass per unit length 0. 00455 lb-sec /ft

4. Characteristic velocity 2600.0 ft/sep

45. Elnetic modulus-cross section product 3.06 x 104 lb.

Cable properties were changed from wire rope to nylon rope at 4800 ft

(1 = 14). The Webster current profile was used to compute steady drag forces

on the cable. Numerical stability was maintained by using a time step (d) of

0. 02 sec. The H/K quotient is equal to 20, 000 ft/sec, which is larger than the

tensile wave speed in the upper cable (11,300 ft/sec). Initial strains anO cable

angles were computed with the steady-state, buoy system configuration program

with the same current profile and a surface current of 1.5 knots. Winds of 10,

20, and 30 knots were used. and the computed stoady-state strains and cable

angles served as input (initial conditions) e 2 dynamics model.



Appendix E

BUOYANT FORCES AND MOMENTS FOR

A TORROIDAL BUOY

In order to simulate the dynamics of the torroidal buoy, a method to

compute the buoyant force and righting moment for a given buoy draft and tilt

angle was developed. This computation was included in the program as sub-

routine TORBU, and it updated the buoyant force and moment for each integra-

tion time step.

Consider a torroid with major radius R and minor radius r, partially

immersed in a fluid with a mean draft Ii and a tilt angle 0 (figure E-1 , The

area of an immersed circular segment with draft ft is given by
S

As • r 2 0 <. SIN 0< (E- 1)

where

Z ~TAN' 1

If If > r, we can redefine the draft
S

H -= r- H3, (E-2)
and

:1,731
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Figure E-1. Torroid Section
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o<'--•TAN 4 rR)

Thus, the area becemes

As3 = 7-- rr -± r (O"s< Nc ) (E-3)

Define the section draft, H , as a function of 0 , the radial angle about the

torroid axis. The maximum draft in the direction of the tilt angle 7/ ( -)

is

H - )H + SIM

and the minimum draft is

HS•,w = H - Rsw 19

For any angle 0 around the torroid,

Hs = H+ R S)N~~m + IG- ( zr- H) N -,e) (E-4)

The last term represents the small change in the mean draft H due to the fact

that the tilt is about the center of gravity and not about the waterplane center.

By using the draft for any section as defined above, we can compute the

immersed area of any section from equation (E-1) or (E-3). The immersed

volume is found by integrating around the torroid,

A S (E-5)
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and the buoyant force

'fV

(E-6)

where 2r is the weight density of the fluid. The centroid of the submerged

volume V is computed in order to find the righting moment:

2 sm€A
2 .ffSr(E-7)

Afs 40

The righting arm is

A• X cas e - L -r1 S~ s(E-8)

and the righting moment is

MAeB (E- 9)

The above equations were programmed for subroutine TORBU, and the

differential volumes were summed in 2-deg steps around the torroid. Puoy

draft and tilt angle are the inputs, and the heave buoyant force, tilt righting

moment, cross-coupled tilt-heave buoyant force, and cross-coupled heave-tilt

righting moment are the outputs. Plots of the displacement, righting moment,

and the cross-coupled force and moment for the Richardson torroid used at

station BRAVO are shown, In figures (E-2) through (E-5).
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Figure E-2. Torroid (8-ft) Displacement versus Draft
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Figure E-3. Torrotd (8-ft) Righting Moment versus Tilt Angle
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