
FTD-MT-24-1450-71

.FOREIGN TECHNOLOGY DTWISION

GAS DYNAMICS OF DIFFUSERS AND EXHAUST
DUCTS OF TURBOMACHINES

by

M. Ye. Deych and A. Ye. Zaryankin

"DDC,
Ile"?

JUL27 17

Approved for public release;
I dlstribution unlimited.

i NATIONAL TECHNICAL
1 INFORM/ -[ON SERVICE



DOCCWUMCENTROL DATA N& D
(Ueemnt .il al~ el61 1"O tell.. b.*'. of 0gu0ef OWd IndehMd otwedm.M~n am# base W~d whee as. eve*0101 ,n"e ton elaesite~d)

I@ItATimeATIVT (Cffp.UU1 8~if) M.NEOT 89 U ITT CLA081IPCATION

F~oreign Technology Division' UNCL ASSIFIED
Air Force Systems Command S& "GOU

U. S. Air Force

GAS DYNAMICS OF DIFFUSERS AND EXHAUST DUCTS

s.OFsm~, TUROMACHIN~peEawuSde.

Translation

9 AV TNoý11118 (Fircet Rome,~. W DalEMI hui. . n~m.)I

M. Ye. Deych arnd A. Ye. Zaryankin

41. 4E00A? DATE 78. ToyAL No. or PASES NO.1. or "are

1970 47169
.. CONINACT ON GRA"T NO. 48 N@IA@0POIes kUM8UENDsI

a. POJECT Nto. GIOl vTD-MT-24-14 30-71

S. b. ~yNEN NPOtT "*ill, (AtyeN. mimi., sI ft vy &*

Approved for public release; distribution unlimited.

II.SUPLEMNTAT NTESIS- 8PONS001100 MILITARY ACTIVITY

Foreign Technology Division
Wright-Patterson AFB,' Ohio

"" Certain problems of the gau dynamics of diffusers and exhaust
ducts from single positions of the boundary layer theory are
given in the book. Methods of calculation, generalized ex-
perimental data and r-ecommendations dis to the choice of var-
ious parameters of diffifsers are given. New effectiV~e designs
of exheust ducts, such as bra 'nch connections with cross-cut
and elliptical diffusers are described. The book is intended
for wo-.kers of design offices and reseea'?i laboratories of
turbine factories and also for students and post-graduate

students.,, The book has many figures and tables.

D 0" 1



I LIroNK A LINK 0 LINK C

MOL6 WT MOLl WT ROLE WT

Laminar Boundary Layer
Reynolds Numbers
Diffuser
Pressure Gradient
Parameter
Mach Number
Gas Dynamics

I

{

IJNGLASS I.IED
SOCUrty CISIIication

/ i;.



FTi.MT_
F M -,24-i , | i1

EDITED MACHINE TRANSI, .ION
!, FTD-MT-24-1450-71

GAS DYNAMICS OF DIFFUSERS AND EXHAUS5 iCTS OF
TURBOMACHINES

By: M. Ye. Deych and A. Ye. Zaryank'n

English pages: 467

Source: Gazodirnamika Diffuzorov i '. khlopnykh
Patrubkov Turbomashin, Ene-,giya, Moscow,
1970, pp. 1-384.

Requester: AEDC

This document is a SYSTRAN machine aided transla-
tion, post-edited for technical -ccuracy by:
Robert D. Hill.

Approved for public release;
distribution unlim.ited.

b, THIS TRANSLATION IS A RENDITION OF THE ORIGI.
IHAL FOREIGN TEXT WvTHOUT ANY ANALYTICAL OR

EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED SY:
ADVOCATED OR IMPLIED ARE THOSE (C, THE SOURCE
AND DO NOT NECESSARILY REFLECT 'HE POSITION TRANSLATION DIVtSION
OR OPINION OF THE FOREIGN TECIINOLOGY D6. FOREIGN TECHNOLOGY DIVISION
VISION. WP.AF5, OHIO.

fID441 2,4-ilco-71 Date 28 Apr ig 72



TABLE OF CONTENTS

U. S. Board on Geographic Names Transliteration System ....... v

Designations of the Trigonometric Fuictions .................. vi

Preface ........ . 0 ....... .... ............. vii
/

CHAPTER ONE. ELEMENTS OF THE BOUNDARY LAYER THEORY .......... 1

§ 1-1. Basic Definitions and Relations for the
Boundary Layer .................................. 1

§ 1-2. Condition of the Transition of the Laminar

Layer into the Turbulent Layer .................. 3

§ 1-3. Calculation of tha Turbulent Boundary Layer ..... 10

§ 1-4. Some Results cf the Investigation and
Calculation of the Boundary Layer During
Diffuser Flows .................................. 15

5 1-5. The Effect of Compressibility on Characteristics
of the Turbulent Boundary Layer ................. 24

§ 1-6. Condition and Criteria of the Boundary
Layer Separation ........ 0 ......... ... ... ........ 29

§ 1-7. Effect of the Initial Turbulence on the
Boundary Layer Characteristics ............... 37

§ 1-8. Boundary Layer Calculation on the Basis of
the Semiempirical Theories of Turbulence ........ 38

CHAPTER TWO. METHOUS OF CALCULATION AND AERODYNAMIC
CHARACTERISTICS OF DIFFUSERS ................... 47

FTD-MT-24-1450-71 i



§ 2-1. Types of Diffusers. ............................. 47

§ 2-2. Aerodynamic Characteristics of Diffusers ........ 53

§ 2-3. Procedure of the Experimental Determination
of Aerodynamic Characteristics of Diffusers ..... 64

§ 2-4. Diffuser Losses and Their Calculation ........... 78

§ 2-5. The Influence of Conditions of the Inlet on the
Gas Flow in Diffuser Elements ................... 98

§2-6. Selection of Optimum Expansion Ratios of
Diffusers ..................................... ... .. .. . 110

CHAPTER THREE. RECTILINEAR PLANE AND AXISYMMETRIC
DIFFUSERS ........................... ..... .... 115

§ 3-1. Flow Pattern in Plane and Axisymmetric
Diffusers ......... o..............o................ 115

§ 3-2. Influence of Mode Parameters on Characteristics
of Conical Diffusers............ ....... . ..... 119

§ 3-3. Influence of Geometric Parameters on the
Aerodynamic Characteristics of Axisymmetric
and Plane Diffusers ............................. 133

§ 3-4. Calculation of Losses in Conical and Plane
Diffusers According to Boundary Layer
Characteristics ................................. 158

§ 3-5. Compariso. of Calculated and Experimental Data.. 171

§ 3-6. Detached Flows in Flat and Conical Diffusers .... 174

§ 3-7. Procedure for Calculating Losses with the
Sudden Flow Expansion .......................... 189

§ 3-8. Change in the Flow Parameters Along the Axis
of the Conical Diffuser ......................... 201

§ 3-9. Example of the Calculation of a Diffuser with

a Rectilinear Axis ........ .................. 206

CHAPTER FOUR. TRANSONIC AND SUPERSONIC DIFFUSERS ............ 210

§ 4-1. Effect of the Reynolds Number and Compressibility
(Mach Number) on the Diffuser Performances at
High Subsonic Speeds. Transonic Diffusers ...... 210

FTD-MT-24-1450-71 ii



§ 4-2. Reverse Transition of the Turbulent Boundary
Layer into Laminar .............................. 224

§ 4-3. The Flow of Gas in Supersonic Diffusers ......... 238

§ 4-4. Characteristics of Transonic and Supersonic
Diffusers ............................. ...... .. ...... 243

§ 4-5. Variable Modes and Some Results of the
Experimental Study of Supersonic Diffusers ...... 249

CHAPTER FIVE. ANNUAL DIFFUSERS WITH LINEAR GENERATRICES ..... 268

§ 5-1. The Effect of Geometric and Mode Parameters on
the Characteristics of Annular Diffusers with
a Rectilinear Axis .............................. 268

§ 5-2. Calculation of Annular Diffusers in an
Equivalent Angle ................................. 284

§ 5-3,, Calculation of Losses in Annular Diffusers on
the Basis of Characteristics of the Boundary
Layer ........... •....... 6.......ss.................. 289

§ 5-4. Calculation of Annular Diffusers in
Experimental Nomograms .......................... 292

§ 5-5. Effect of Structural Elements and Shape of the
Channel on the Efficiency of Annular Diffusers.. 295

§ 5-6. Example of the Calculation of an Annular

Diffuser ................ ........... ............. 299

CHAPTER SIX. CURVILINEAR DIFFUSERS. FLOW PATTERN IN
CURVILINEAR CHANNELS ........................... 301

§ 6-1. Secondary Flows in Curvilinear Channels ......... 301

§ 6-2. Effect of the Basic Geometric and Mode
Parameters on the Effectiveness of Plane
Curvilinear Diffusers ........................... 308

§ 6-3. Effect of Basic Geometric and Mode Parameters
on the Operation of Annular Curvilinear
Diffusers ....................................... 321

§ 6-4. Some Problems in the Analytical Determination
of Losses in Axiradial Diffusers ................ 339

FTD-MT-24-1450-71 iii



CHAPTER.SEVEN. EXHAUST DUCTS OF TURBOMACHINES ............... 345

§ 7-1. Fundamental Design of Exhaust Ducts
and Their Effect on the Efficiency
of Trubomachines ..................... 345

§ 7-2. Exhaust Ducts with Axial Annular
Diffusers .............................. 361

§ 7-3. Exhaust Ducts with Obliquely Cut
Diffusers ............................ 372

§ 7-4. Exhaust Ducts with Radial DLA•'users.. 384 V

§ 7-5. Exhaust Branch Connections with
Axiradial Elliptical Diffusers ....... 394

§ 7-6. Operation of Exhaust Ducts uhen the

Stage of the Turb.)muchine Exists ..... 400

APPENDICES ................................................... 420

BIBLIOGRAPHY ........ ......... .......... ...... . ..... 458

FTD-MT-24-1450-71 iv



* -t

I,

U. S. BOARD ON GEOGRAPHjIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block -Italic Transliteration
A a A a A, a Pp P p P ,r
5 6 S 6 B, b C C : S~c , s
B a Be V, v T : T m T, t
Fr r I G, g Yy Y y U, u

E 0 E Ye e Ec * X X X X Khj kh
WK *x A Zh, zh 'lU Li t( *Ts, ts
3c 3 s Z' z 4' 1 VI Ch, -.h
MN H U I, i WI Iu U Sh, sh
Rn R 2 Y, y u1 UtXujq Shah, shah
KX X r~ K, k 2) 'is i

M Ai J7 i L,l 1 b/ 6 Y, y
M X M A M,m M b h & *

H x H N, n a 3 a tE, e
0 0 0. 0, o 10~ 10,t YU IYU~
n n 17 n Pp Ya.sya

* e initially, after vowels, and after %, B; e elsewhere.
oen written as L' in Russian, transliterate Ts yo oril.*
The use of diacritical marks is preferred, but such marks

S ,bC• C 'S,

ma be omte whe expdinc dictates.,U

.1ITD-MT-21 4-11 50-h71 v



,. I

FOLLOWI•G ARE TIE CEPONDItG RUSSIAN *ND ENGLISH

DESIGNATIONIS OF THE TRIGCO TRIC FUNCTIONS
]I

Russiamn English

sin sin
•005 0C6

* tg tan
otg cot
56I0 560O
cosoo cloo

sh sinh
oh Gosh
th tanh
oth coth
sch ssoch

each oach

sar si- 1

arc coo coo
arc tg tan-1
arc otg cot-1
are s@6 soc"1
arc oo1o0 c"oo

S l I a
- arc sh nine,

Saro oh cosh-
aio th taneIh
aro oth coth-1S.iro sohb , soh-1

arc oech osohl-
! I

"rot curl
ig alog

!i I

! Vi
a~jl a



Preface

In recent years interest was noticeably raised
"-,a research on diffusers and diffuser channels,

which to a considerable degree is stimulated by the

utilization of these elements in turbomachines,
ejectors, aviation technology, MHD generators, etc.

The book proposed to the reader has been written
from results of research on diffusers in the wind-
tunnel laboratory of the department "Steam and Gas
Turbines" [PGT] (WlT) of the Moscow Power Engineering
Institute CMEI] (M3M), which were oriented in the
first place on the solution to problems connected
with the use of diffusers in turbonachines. At the
same time in the examination of characteristics of
various diffuser elements published experimental
data obtained in other organizations were widely
used.

The book consists of seven chapters. The first
chapter is devoted to the general problems of the
boundary layer theory ard has a reference nature.
The concepts discussed in this chapter are used in
the fo3)owing chapters. The reader who is familiar
with tL.- boundary layer theory can immediately pass
over to the second chapter, where energy diffuser
characteristics, existing methods of their calcu-
lation and coefficients used in the comparison of
characteristics are examined.

The third chapter touches upon problems con-
nected with the fluid flow in conical diffusers.
On the basis of numerous test data, the role of
geometric and mode parameters is investigated in
detail. Detailed research on the flow in conical
diffusers allowed explaining the nature of the

FTD-MT-24-1450-71 vii



change in the integral boundavy layer thicknesses
along the generatrix of the surface and obtaining
the base experimental values of internal losses.
A detailed analysis of calculated methods of deter-
mining energy characteristics gives rise to con-
clusion that for nonseparable flows the most pre-
cise and physically substantiated are the methods
based upon the boundary layer characteristics. For
the maximum simplification of calculations nomograms
which substantially decrease the volume of compu-
tational work are given. In this chapter some
features of the calculation of losses with the sudden
expansion of flow are noted.

The fourth chapter is devoted tc research on
flow in transonic and supersonic diffusers.
Specific attention is given to transonic diffusers.
The hypothesis which explains the crisis of dff-
fuser losses at M + 1 by partial or complete degen-
eration of turbulence at the input has been advanced
and experimentally confirmed.

Given in the fifth chapter are results of the
experimental investigation of annular diffusers with
rectilinear generatrices, and an analysis of the in-
fluence of the most important geometric parameters
on their efficiency is given. Much space is used
in the chapter for the theoretical calculation of
diffusers according to the boundar'y layer character-
istics and also the calculation according to equiva-
lent angles and experimental nomograms.

Examined in the sixth chapter are problems
connected with the flow in plane and circular
curvilinear diffusers. Here the primary attention
has been given to the examination of the physical
picture of the flow in such channels.

The last, seventh, chapter is devoted to the
flow in the exhaust ducts of turbomachines where an
attempt has been made to generalize the work ex-
perience of the authors in the indicated direction.
For this purpose, as a rule, initial variants are
examined and the ways which allow with the obser-
vance of constructive requirements the lowering of
the magnitude of losses of energy are shown. An Im-
portant moment is the investigatfon on branch pipes
together with the stage being rotated on overheated
and moist steam.

For the facilitation of practical calculations,
in the appendix to the book there are auxiliary nomo-
grams which allow determining the integral boundary

FTD-MT-24-14.450-71 viii



layer characteristics in exit sections of conical,
circular and axial-radial diffusers, and also great
factual material on the diffusers tested.

Thus, in the book an attempt has been under-
taken on the basis of exnerimental and theoretinal
investigations to sequer'-ially describe the physical
processes in simple an" complex diffuser channels

U• and to determine their jharacteristics over a wide
range of mode and geometric parameters.

One should once again emphasize that the4 authors have attempted to solve the problems from
"the single positions based upon the theory and methods
of the boundary layer and the physical apparatus of
gas dynamics.

.0

Chapter 4 and §§ 6-1 and 6-2 were written by
M. Ye Deych. He accomplished the general editing
of the monograph. -A. Ye. Zaryankin wrote the re-
maining text of the book. The authors jointly wrote
the preface and §§ 2-2, 3-2, 7-2 and 7-3. The § 4-5
was written by M. Ye. Deych together with G. G.lii• Katsnel'son.

In conclusion let us note that the book touches
upon only a number of particular problems and is one
of a few attempts [16, 34, 55] to generalize the
available experimental data on diffuser channels.
In the examination of a number of the problems and
the derivation of the calculated relations, the
authors attempted to simplify maximally the final
results, keeping in mind the applied directivity of
the monograph.

It is natural that the treatment of some sections
can be debatable, and the authors will accept the
possible remarks with appreciation.

We consider it as our pleasant duty to indicate
that in the book are used test data obtained under
the guidance of the authors by colleagues of the
laboratory of th- department of "Steam and Gas
Turbines" of ME1 Candidates of Technical Sciences
L. G. Golovina, M. F. Zatsepin, L. Ya. Lazarev,
R. K. D. Shakh, engineer L. M. Dyskin and senior
engineer V. V. Ett.

Furthermore, great practical help in the direct
work on the book was given by the Candidate of

Technical Sciences V. S. Yelizarov and Doctor of
Technical Sciences A. N. Sherstyuk and A. S. Ginevskiy,

FTD-MT-24-1450-71 ix



-whose remarks significantly influenced the final
editing of the book.

The authors offer their sincere appreciation
to all the comrades mentioned and also the operating
personnel of the department of PGT.
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CHAPYER ONE

ELEMENTS OF THE BOUNDARY LAYER THEORY '

§ 1-1. Basic Definitioris and Relations
for the Boundary Layer ,

In the flow of viscous fluid near a solid surface, the whole
region of flow in the case of the predominant influence of inertial

forces over forces of viscosity (at large Reynolds numbers Re) is
conditionally divided'into two zones: the zone of the quasi-
poteneial -flow and the zone of the eddying motion'of liquid wherr
the action of-the viscous forces is distinctly developed. The

latter region can be called the boundary layer.

a Within limits of the boundary layer tvwo flow conditions -

laminar and turbulent can take place. The boundary layer calcu-

lati'on in most cases is based on the, utilization of the integral
equation of momentum (the equation of Kdrmdn). In the derivatiQn
of this equation it is ugually considered that in the case of the
,tur1ulent flow conditions in the boundary layer in:the external
flow turbulent pulsations are small,.and, consequently, the
"1"turbulent" stresses ipduced by bulsationsof velocity cannot be

takpn into consideration. However, if boundary layerlis developed
under conditions of great externaliturbulence, the magnitude of
these additional stresses proves-to be noticeable and, strictly

, speaking,,must be considered. . I

FTD-MT-24-1I50-71 , 1
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The 'consideration of the influence of "turbulent" stresses in

quasi-pofýential flow was realized by V. A. Vrublevskaya [13, 14].

The converted equation of the momentum of a turbulent boundary

layer can be written in the following form:

where e - the turbulence level of the external flow; c1 , P1 - the

rate and density at the external edge of the boundary layer; Tw -

the frictional stress on the wall; • -the ratio of transverse and

longitudinal pulsating amplitudes; 6** - the momentum loss thick-

ness; 6* - the displacement thickness; H = 6*/6**; b = a6/6**;

6 - the boundary layer thickness; a - the damping coefficient of

longitudinal pulsations in the boundary layer; • - the correlation

coefficient between longitudinal and transirerce pulsations of

velocity.

If we do not consider the turbulent stresses on the external

edge of the boundary layer, expression (1-1) converts to the well-

known momentum equation of Kdrm~n:

da** del a"*+.--(2 +H -- M)

which is valid both for the laminar and turbulent conditions of

flow in the boundary layer.

The integral thicknesses of the boundary layer entering into

equation (1-2) are easily determined at the known velocity profile

from the following relations:

a) displacement thickness

FTD-MT-24-1450-71 2



b) momentum thickness

le dy; Sel-/ 1~4)
0

a.c) energy thickness

4'- -- E! dy.*i -c- (1-5)

Having multiplied 6* by Pcll, 6"* by plcc and 6** by plc , we

obtain the lost mass, lost momentum and lost energy in the boundary

layer per unit of length of the profile, but with multiplication by

the perimeter - the total loss of the indicated values in the given

cross section of the boundary layer.

Before passing directly to the derivation of calculation

equations, let us examine the conditions of the existence of the

laminar and turbulent flow conditions in the boundary layer with

a positive pressure gradient.

§ 1-2. Condition of the Transition of the Laminar
Layer into the Turbulent Layer

It is well known that under specific conditions the laminar

flow conditions go over into turbulent.

The basic method of the stability analysis of laminar flow

consists in the fact that superimposed on the motion in question

are additional slight disturbances, and when these disturbances

exist the flow is analyzed. If the flow is stable, then the

disturbances attenuate with time, and no qualitative changes are

observed. On the other hand, with unstable flow the disturbances

grow, and a transition to the new condition - turbulent, occurs.

FTD-MT-24-1450-71 3



The complexity of the indicated analysis as applied to the

boundary layer flow is that the development of instability depends

upon the nature of the superimposed disturbancesi.i.e.. on their
,%ahplitude and frequency. If, for example, with a*low frequency of

disturbances the motion is stable, then with an increase in fre-

quency the loss in stability can fully occur. The indicated

circumstance led to the fact that until now the purely theoretical

solutions to the problems of the stability of laminar flow in the

boundary layer did not obtaIn noticeable distribution, and in most

cases experimental data are used.

On the basis of these data it is considered that the beginning

of the loss in stability is determined by the critical Reynolds

number ReKp, the magnitude of which depends upon a number of factors.

The most important of them consist in following: the surface con-

dition of body being streamlined, the turbulence level of the in-

coming flow, and the form of the boundary layer velocity profile.

The indicated factors are quite fully characterized by five

parameters [72]:

1) by the turbulence level at the boundary layer edge e;

2) by the relative "scale" of turbulence /**, where 1=

d,- and 0'- - the correlation coefficient between

pulsations at two points taken on one perpendicular to the direc-

tion of the velocity of the main flow;

3) by the relative surface roughness k/6** (k - the mean

height of the prominences of the roughness);

4) by the relative wavelength of the roughness l1/6** (Z1 -

mean distance between the prominences of the roughness);

14



dc,. a**a
5) shape parameter -= d

It is not difficult to see that the first two parameters

A characterize the turbulence, the next two - the surface condition,

and last - the velocity gradient and shape of the boundary layer

velocity profile dependent basically on the velocity gradient in

V the external flow.

Using for the determination of the Reynolds number the momentum
loss thickness S** as a characteristic dimension, let us write the

functional dependence for its critical value, which determines the
loss in stability of the laminar boundary layer:

Re**,p= F kAL 1, (. (1-6)

If we assume that the reason for the instability of the
laminar flow consists in some disturbances superimposed on the main

flow, then as applied to the boundary layer one can indicate two

sources of such disturbances and in accordance with this examine

two cases of the formation of turbulence. Actually, acting on the

layer of the liquid located directly at the wall are, on the one

hand, disturbances connected with microseparations of the flow from

prominences of the roughness and on the other - disturbances con-

ditioned by the turbulence of the external flow.

For the case of the loss of stability only under the action

of turbulence of the external flow or only under the action of the

roughness, A. P. Mel'nikov [72] obtained the following formulas:

(0,085 + )2/3
R* *up= 0,3 15/3 + 225; (1-7)

R*U (0,0)85+ f .(
-6--- " .+225. (1-8)

5



the use of which makes it possible as a first approximation to-

estimate the order of the critical Reynolds number. For this,

4 apparently, it is necessary on one graph to plot curves of the

change in Re** number along the length of the surface in qUestion

and curves determined by formulas (1-7) and (1-8). Then the inter-

section points of curve Re"*=fj,(M with curves '0:,cp*-f(X) will

determine the values of critical Reynolds numbers, the smallest of

which corresponds to the position of the point of the loss in

stability by the laminar boundary layer.

The nature of the change in the indicated curves along the

diffuser channel with the drop in velocity in it, according to

the law .C 1 .S I , is shown in Fig. 1-1. The points of

00:1w I + 0,3x

intersection a and b of curve 3 with curves 1 and 2 give values of

the critical Reynolds numbers and coordinates of points of the loss

in stability of the layer. The small value of Re** corresponds

to the intersection of curve 3 with curve 1. Therefore, in this

case the loss in stability is caused by disturbances connected with

5, the turbulence of the external flow.

J •Fig. 1-1. On the calculation
of the transition point of
laminae flow into turbulent
"flow. 1 -calculation Re**
according to formula (1-7);

2-calculation Re**

0 ,S O.'d U$ .0 according to formula (1-8);

3 - the change in Re** number
in the diffuser channel.

Let us note that in most cases even with significant roughness

the Re** in diffusers of outlet pipes of turbomachines is deter-

mined by formula (1-7), since for the flow which leaves the last

stages of turbomachines a high turbulence level is characteristic.

6



II
Otherwise, with the use of diffusers for the recovery of the

kinetic energy of the flow, one strives, as a rule, to have a
minimum roughness, which also gives rise to the necessity during

calculations for using formula (1-7).

The process of the transition of a laminar layer into a
turbulent, as experiments show, occurs not instantly, and there is

a certain transition region whose dimensions substantially depend
upon the longitudinal velocity gradient, turbulence level of ex-
ternal flow and shape of the velocity profile in the beginning of

the transition zone [253.

In the turbulence levels of 2-3% the dimensions of the trans-
ition region are usually small, and for its calculation it is

sufficient to know the extent of this region S = S/L and the in-

crease in it in the momentum thickness r** = 6** /6*H' where L -

the length of the surface in question; 6*K and 6** - momentumK H

thicknesses at the end and beginning of the transition.

Both introduced values depend basically upon the shape

parameter f, which characterizes the shape of the velocity profile

in the beginning of the transition. The indicated dependences
given in Fig. 1-2 show that in the diffuser regions values S and

r** noticeably drop.

"r- }{i.; i trv! Fig. 1-2. Extent of the
transition zone and mag-

•""'••-• jnitude of the relative in-
crease in the displacement
thickness in this zone de-
pending on the shape
parameter f.

-. ,)J "-.,2- 43 40• . 4 5
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For an illustration of the afore-said, Fig. 14-3 gives curveg

of changes in the momentum ~loss, thickness on the curvilinear wall

with convergent and diffuser flows. The region 6f transition i's

quite clearly fixed according to the change in the an~gle of slope

of the curves P*= fOi*).

I~o'

3 5

10!

oo

Fig. 1-3. Changes in the momentum loss
thickness in the diffuser and convergent
channels.

If with convergent flow the transition is begun when F d 0.4,
it occupies approximately 6% of the total length of theawall, and.

the magnitude of r** in the transition region is2 about 1.145, then
with diffuser flow the loss in stability approaches when x=0.18,

and the region itself on curve f(i) occupies 1-2% of L. The

absence in this case of the growth in magnitude r** is explained
by the fact t~iat in the rearrangement of the profil~e in the tran-

sition/ zone there occurs, on the one hand,the growth in the

physical thickness of layer 6. and on the other hhnd - its coi4-

pJleteness is Increased If the first factor caoses an increase in

the momentum thickness 6*n, then the second, on the contrary, gives

rise to its decrease. In dtiffuse Irnrengions, due to the small com-

pleteness of the initiarl verogity profile in the laminar layer,

8
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I

ithere occurs s6 intense an increase in its completeness that the

influence'on 6** of the increase in physical thickness 6 is com-

pletely pompensatbd, and magnitude r** proves to be close to one.

With convergent flow, as a result of the transition, an increase

in thickness 6 has the primary importance since the initial profile

here is quite complete, and its deformation in this direction is

insignifi'cant, which also Pinally leads to a noticeable growth in

magnitude r*.

Thus, with the diffuser ."low without great error, one can

consider that the transition Occurs in.practice at the point, and

with the boundary layer calculation one can be limited for the

transition zone only to the definition of the position of the point

ofi the loss in stability by the laminar layer.

E With positive pressure gradients, as a first approximation

for the estimate of the transition region, it is possible to

recommend curves in Fig. 1-2 or. the empirical formulas for the ex-

t~nt of the zone of transition and growth in it of the momentum

loss'thickness:
¾ S

103 •/; (1-9)

r** L%7-!i r ICI)°' 120'51-+ 0, 12M], N.(1-10)

Considering, however, that with large positive pressure

gradients and the high degrees of external turbulence, the extent

of the laminar section is insignificant (in Fig. 1-1, for example,

a!th the turbulence level of the order of 1.5% and the moderate

posit~vs pressure gradient L = 0.06), it is possible in most cases
to consider the boundary layer flow of diffusers to be turbulent
over entire length. BecAuse of this we Will discuss only the

4 calculation of turbulent boundary layer.'

'Methods ef calculation of the laminar boundary layer are pre-
sented in'detail in L. G. Loytsyanskiy's monograph "Laminar Boundary
Layer," Fizmatgiz, 1962.

9
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§ 1-3. Calculation of the Turbulent
Boundary Layer

' The boundary layer Oalculation provides usually the deter-

mination of its thicknesses 6, 6*, 6**, 6** and the resistance

coefficient cf = Tw/PC2 along fairing. Consequently, for the

calculation it is necessary to have a number of relations which

connect the indicated magnitudes. In this case, used as a basic

equation most frequently is the integral relation of K~rm~n (1-2),

which for incompressible fluid is somewhat simplified:

d3*L del8*
d + ad' • T-( 2+ H)==cl. (1-n)

Considering velocity at the external boundary layer edge to

be assigned, we see that equation (1-1V) connects the three un-

known magnitudes, 6**, H and cf, and for its solution it is

necessary to have two more equations. Used most frequently as such

equations is a varying kind of empirical relations, which allow

obtaining a closed system of equations. However, before using

test data, let us establish, on the basis of the dimensional theory,

the structural nature of the deficient dependences.

In general the frictional stress on the wall in an incom-

pressible fluid Tw is determined by velocity on the external

boundary layer edge c,; by its derivatives C'l, c''l, c''', etc.;

by the characteristic dimension which can be accepted as any

boundary layer thickness (for instance, 6**); and by the kinematic-

viscosity coefficient v and density p.

Consequently,

= -- (cC c'1; c' 2 ... ; a; 4*1; V). (1-12)

Using as the basic the dimensionalities of velocity, density

and length, let us present (1-12) in the following dimensionless

form:

10



c, ' . ° -C7- --C? -;.. (1-13)

Here

Let us be limited in expression (1-13) only to the first

derivative of the velocity and let us expand it into series

according to the parameter c' 1 6"*/ci:
• ,,, 8*, 1 %, ** 2,

~C, - ýo (re"*) +2 ,L, (•• t _•(o, ,..+... (1-14 )

When dc 1 /dx = 0 equation (1-14) should determine '*he resistance

coefficient of a flat plate. Hence

C/o (Re**). (1-15)

According to the experimental data, irrespective of the flow

conditions in boundary layer for the plate [25, 69, 71],

Cl* !e*" (1-16)

where go and exponent m are constants equal, respectively, to

= 0.22, m = 1 for ie laminar flow and = 0.0125 and m = 0.25

J for the turbulent flow.

Having expanded function ýl(Re**) in seriis according to

parameter l/Re** and being limited to linear terms, let us present

(1-14) in the following form:

C;1= + ae** • C (1-17)

f ( c,8 ,

) 11



Here the coefficient a is a certain constant, and complex

C- is fbr te turbulent layer of parameter Buri [Trans-
C'

lator's note: named not verified] r when m = 1, i.e., for laminar

layer, into L. G. Loytsyansky's shape parameter.

Thus, for the turbulent boundary layer

Ct p0 cV-m (40aa1) - (1-18) ar

Similarly, it is possible to show that the magnitude H

incoming into equation (1-il' is also the function of the parameter
r, i.e. ,

11= H ('). (1-19)

The functional relations (1-18) and (1-19) allow the obtaining
from equation (1-11) the differential relation relative to the

parameter r in the f)llowing form:

- es, + * (-- (1-20)

where
F( T))= (01z-+ -l)4+-[I+ (+I)(I,8 +-l-ac)). (1-21)

Equation (1-20) is an ordinary dilferential equation and per-

mits integration in quadratures, if function F(r) can be approxi-

mated by a straight line. From expression (1-21) it follows that

such an approximation is possible only for the case H = const.

Then the integration of equation (1-20) gives rise to the s±mple
quadrature:

a, de,
4;b r, (1-22)

where P0 is the value of the parameter of Buri at x = xO.

12



If the calculation is begun from x = 0, and at this point the

thickness of the layer is equivalent to zero, then r0= 0:

•l•(•l•-+ !); +• 1-)( I(1, 8-.1- H- .• (1-23)

The approximation nature of the examined solution is evident.

However, for practical calculations in the region of small positive

pressure gradients the accuracy of the calculations proves to be

entirely acceptable. Moreover, using relations (1-18) and (1-19)

as a basis, it is possible to construct sufficiently accurate

solutions in diffuser ranges.

Actually, the dependence of the resistance coefficient upon

the parameter r in a certain region of changes in magnitude r can

always be approximated by the linear function of the form (1-18).

Then, by taking in this region the mean value for magnitude H, it

is possible to construct solutions analogous to solution (1-22).

Therefore, in the region of the high positive pressure gradients

the continuous solution is replaced by piecewise smooth solutions,

and the calculated correlation assumes the form:

• .- (1-24)
i~Xt

where z - the number of sections of the calculation into which the
whole streamlined surface is divided; when z = 1 formula (1-24)

turns into expression (1-22).

If coefficients ai and bi are known, the calculation according

to formula (1-24) does not represent serious inconveniences, and

for the assigned law of the velocity change ca C (x) can be con-

ducted comparatively rapidly. In this case it is convenient to

conduct all calculations of news in relative values, having

selected as a scale of velocity its peak value ClMaKc, and for

the length of the scale - the length of streamlined surface L.

13



Then the calculation equation (1-24) takes the form:
I i

1=j+ - I I
a

-j du Z" ' A .

a-~ d ~ b ~(1-25)

1t-

By knowing the magnitude r, it is possib)e to obtain easily

the value of the dimensionless momentum thickness, s~nce

: !

I 4*'*m+ (1-26)*--L Renz,

From formula (1-25) it follows that in the computatidn of the

parameter of r, sufficient accuracy can be obtained only with the

analyt'ical assigned function (i). With its graphic repres~ntation

the accuracy of the computation of Vhe velocity derivative is

usually small. However, this fact does not affect the computation

of the momentvm -hickness, since for its determination knowledge

of the .,elocity derivative is not required.

Having substituted into (1-26) the value of the parameter r

from (1-25), we obtain for the direct calculation of the momentum

loss thickness the foil*.owing expression:
I I

I~ ~ Z1at ' .. b"t X (1-27)
Rern Z {In b + I

Using further the dependence H(T), it is possible to determhine

the displacement thickness, and according to tie formula,(1-18) in

each section it is possible to calculate the local resistance co-

efficient.

*14
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Thus, at known values of coefficients ai, bi and m, it is

possible in principle to conduct a complete theoretical calciulation

of the boundary layer. True, for the definition of these co-

efficients-it is necessary to use exp&rimental'data.

1§ i-4. Some Results ok the ,iAvestigation and Calculation
,bf the Bouridary Layer During Diffuser Flows;'

In the precedingiparagraph it is noted that the specific form
S$ 'of the dependences (1-18) and (1-I1) placed 'as a basis for the

calculation of the boundary layer is determined on the basis of

experimental data. In this clase boundary layer velocity protiles
are used as the'ihitial experimental material. If with convergent,

gradient-free and weakly, diffuser flows, these profiles can be

adequately approximated by dLfferent kinds of polynomials, then' at
I I

large positive pressure gradients such an approximation is ex-

tremely difficult. For example Fiig. 1-41 gives six velocity pio-A0

files obtained on a flat wall at various external pressure

,gradients in a flat channel.

SProfiles 1 and 2 currespond to convergent flow with angles,

a = -40 and 1030'. Profile 3 corresponds to a g:-"Aient-free flow,

and profiles 41, 5 ard 6 are obtained in the diffuser channel with

the angle of opening a equal, respectively, to 10, 2040" and 430'ol

If in the first four casep a smcoth velocity change across

the boundary layer takes place, then on curves 5 ano 6 the'appear-

ance of characteristic bendings and the nonmonotonic nature of the

entire veloc.ity prpfile are distinctly noticeable.,

SFor smoothly changing profiles witp the appropriate selection

of a variable scaleialong the y axis in most cases it is possible

to obtain a certain universal or close to universal distribption.
I Usd most frequently as a scale factor is the physical thickness' of

the layer 6,'which allows presenting the family of profiles in the

dependence of tne form:

15
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CS (1-28)

flowever, in diffuser regions the universality of the depen-

dence (1-28) is disturbed.

! I,

2. ..- . . .... .

S~Fig. 1-4. Effect of the pressure gradient
S~on the velocity profiles.

.• The aforesaid is visually confirmed by curves in Fig. 1-5,

;• where the profiles examined above are reconstructed in coordinates

16
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c= c/cl; Y = y/6. If the first four profiles lie approximately

on one curve, then profiles 5 and 6 of the universal dependence

are not subordinated. In this case the investigation on the

boundary layer is substantially impeded.

4O'

,- .. .. .. -

It 1

0,4 OS . 0.8 1,0

Fig. 1-5. Velocity profiles at various
pressuro gradients in relative coordinates.

By comparing the profiles given in Fig. 1-4, it should be

noted that with the transition from convergent flow to diffuser

flow, the physical thickness of the boundary layer increases, and

the completeness of the profile is noticeably decreased. Both

17
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these factors, as it is not difficult to see from expressions (1-3)

and (1-4), give rise to an increase in the integral boundary layer

thicknesses 6' and 6"*, but the intensity of the growth at these

magnitudes in the diffuser ranges is different.

By examining the integrand in the expression for the displace-
ment thickness 6', it is easy to note that this function is con-

tinuously increased in proportion to the decrease in the complete-

ness of the profile, and, consequently, in the diffuser region a

noticeable increase in magnitude 6' occurs.

The change in the integrand in the expression for the

momentum thickness proves to be somewhat more complex:

8&('p i Cpc.

pe dy M (y dy.

Here with a decrease in the completeness of the profile, an

increase in the function of C'(y) also takes place. However, this

growth is slowed down by the factor pc/p 1cl standing before the

parenthesis, and with the great deformation of the profile it

lowers the intensity of the growth of the momentum thickness in the

diffuser region. In this respect the curve given in Fig. 1-6

is interesting, where depending on the parameter of Buri I' values

of the displacement thickness 6", referred to the corresponding

thicknesses with gradient-free flow 6**0, have been plotted. If

in the zone of small gradients (r = ±0.01) the intensity of the

increase in the displacement thickness is highly significant, then

at r > 10.011 this growth is slowed down, and at r < -0.03 and by

r < ±0.02 the ratio 6*/16**0 approaches a certain limit close to

3 in the diffuser region and equal to 0.4 in the convergent region.

These data are highly characteristic and indicate that in the

diffuser regions the increase in the momentum loss thickness is

limited. Subsequently we use this experimental fact which results

from the very determination of the magnitude 6**.

18



By analyzing the behavior of the energy thickness, it should

be noted that the integrand in expression (1-5) is similar in

structure to the function of 0(y) in the equation for the momentum

thickness. However, since the ratio of the squares of

velocities enters into this expression, the intensity of the in-

crease in thickness 6*** with the decrease in the completeness of

the profile will be still less than that for the thickness 6**.

After the remarks made it is possible to predict sufficiently

accurately the nature of the change in magnitudes H = 6*/6** and

H*= 6**/6'* with the change in the pressure gradient.

II

1 •~'( c .. °

-40J-0,6 -0,1 0 40' V, 02 ~

Fig. 1-6. Effect of pressure gradient on the
relative momentum thickness.

Actually, at small pressure gradients, the intensity of the

increase in thicknesses 6* and 6** is determined basically by the
C

same term equal to Therefore, here one should expect the
.2: Cg

insignificant increase in the par meter of H. In the region of

large pressure gradients, as was already mentioned, the growth in

the displacement thickness notic -ably leads the growth of the

momentum loss thickness, as a reiult of which the magnitude H

should be changed most intensely!. Such a nature of dependence

ff(r) is confirmed well by results of experiments of various

authors (Fig. 1-7).
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Thus, utilization with the integration of the differential

boundary layer equation of condition N = const in the zone of

large positive pressure gradients is a very rough assumption, but

on the basis of the experimental curve (Fig. 1-7) the error can be

decreased'.

4 . .. ...... . .

Fig. 1-7. Effect of pressure gradient on
parameter R. A - experiments of Nikuradze;

0. experiments of N. M. Markov; o -- ex-
periments of the authors.

Subsequently, in the calculation of characteristics of the

boundary layer, besides thicknesses Pu and 6**, for an evaluation

of the energy losses it is necessary to determine the thickness

6w**. This problem at the known momentum thickness does not re-

present great difficulty, since the ratio H* = 6***/6** both in

the convergent and diffuser regions changes weakly and can be

accepted for diffusers according to the experiments of N. M.

Markov [71] equal to 1.6-1.75.

For the refinement of the approximation (1-18) which was used

N20) leaseaietedpn

in the integration of equation (1-2 ) upon thea in heendence given in Fig. 1-8 of the normalized coefficient o

normalized parameter F, where accepted as normalizing values are

values of the coefficient i0 for the gradient-free flow and the

parameter of Buri at the separation point r The dependenoe in

20



question is plotted on the basis of experiments of Nikuradze, N. M.
Markov and N. I. Konstantinov [61, 71, 111].

4,0

Fig. 1-8. Effect of the pressure gradient
on coefficient 1. * - experiments of
Konstantinov; A - experiments of Nikuradze;
x - experiments of N. M. Markov.

Here one should note the significant spread of experimental
points, which is largely connected with the indirect method of
determining the resistance coefficient. However, as a whole the
nature of this dependence is quite clear. If in the beginning at
F < 0.7 the reduction in the resistance coefficient is comparatively
small, then at F > 0.7 its jump occurs. In connection with this
it is advisable to examine these two regions separately, assuming
in each of them its law of the change in the resistance coefficient.

As follows from test data, in the first region the actual
curve can be approximated by the following equation:

I - 0,25r. (1-29)

21

. 21



In the second region'at P > 0.7 the linear approximation in

the whole section is difficult. However, in order not to com-

plicate greatly the practical calculations, we approximate the

actual distribution by the equation of a zt'raight line:

(1-.30)

Having accepted for the normalizationcoeffibieflt CO, which

corresponds to the resistance coefficient with gradient-free flow

most frequently encountering value 0= 0..01.5, we obtain:

0"C03120•= ,0125. - r. . 0,7;,

i ~ 0,0375 when-3)

S•=0,0376 - r IF > 0, 7. (131
rs when

The magnitude of the parameter r. incoming into expressions

(1-31) at the separation point according to data of different

authors changes in very wide limits from 0.028 to 0.12 and, col-.

sequently, is to a certain degree indefinite. Below this question

is examined more in detail, and it is shown that for calculations

the magnitude rs can be accepted equal to 0.036. Then, by using

expressions (1-23) and the experimental dependence H(r) given in

Fig. 1-7, and considering m = 0.25, let us find the following values

for coefficients ai and bi, which enter into formulas (1-25) and

(1-26):

at ,0 0157;1
ba =4,92 when <0,7;
a,s= 0,047; r, 0,7.
bt = 4,0 when

As a result, for the calculation of the magnitudes r and. **

we will obtain: ,

I. At I < 0.7;
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* I I

I -

* ~; -4.921
,r , .-4,92 1;_ 0,0157 G-92d ;
9 ':[ • (1-32)

o 02.34 0 L 0

II. At F > 0.7

S4 ' I
I rJ..4j kReO.+0.S, 0 o. (1-33)

.Rej ~I do

In f'b, ro and i**0 are the velocity, its

derivative, the Burn parameter and momentum thickness in the
beginning of the turbulent bouhdary layer. Correspondingly in

formulas (1i233) Top C' 0 , r 0 and E**0 are the magnitudes in the

r, cross section of the iboundary'layer, where T' = 0.7.

"The obtained expressions based upon semiempirical relations, I

allow condulctingthe boundary layer calculation in an incompressible
fluid in the entire region of flow.

It must be noted that results of numerical computations
according to formulas (1-32) and (1-33) in the zone of the large
positive pressure gradients differ comparatively little (10-15%),
and'. consequently, for estimate calculations it is admissible to

use only these formulas.

As an example let us examine the change in the momentum thick-
ness ano magnitude r in the diffuser channel with the linear law
of: the drop in velocity (ji = 1-0.5x). Results of the calculations

for the given law of the velocity change are given in Fig. 1-9.

23
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Here, besides the parameter r, values 6** = 6**/5** are plotted•0
where - the momentum thickness in the appropriate cross section

with gradient-free flow. It'is interesting to note that here,

just as in Fig. 1-6, the value rs = 0.036 corresponds to the ratio

= 3.

.• ~,/o . . .Fig. 1-9. Changes in mag-
-- nitudes T**, r and n in the

3\ diffuser channel with the
-0, .-.......- ae4 linear law of the velocity

101.. --.--.- ,change. 1 -*1**.

j-2 2 r; 3-n.

F o!
40 d,2 0,4 as 08 1,0

§ 1-5. The Effect of Compressibility on Characteristics
of the Turbulent Boundary Layer

At high flow rates the method of calculation of the boundary

layer examined above requires a certain refinemeznt. In this case,

it is necessary to use the more complex expression (1-2) and,

furthermore, consider the dependence of magnitudes H and cf not

only on the Re numter but also on the M number. According to

experiments [25, 26], such a dependence proves to be noticeable.

At the sa. .me one should emphasize that the compressibility

of gas at subsonic speeds does not directly affect the velocity

profile in practice. Thus, the six velocity profiles in the

- boundary layer given in Fig. 1-10, obtained at a constant Re number

and M number changing from 0.3 to 1, lie on one experimental curve'.

However, despite the invariability of the velocity profiles, with

an increase in the M number the integral thicknesses of the boundary

layer are changed.

'Let us note that with gradient flows, especially in the
diffuser regions, with a speed gain there occurs an increase in the
pressure gradients, which affects the velocity profile and can lead
in the diffuser range to an earlier separation of the boundary layer.
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___ 4 Fig. 1-10. Effect of Mach
number on the boundary layer

.X velocity profile. o -M =

0.31; A - M = 0.545; x - M =
o.61o; 0- M = 0.791; 0-

S44-0.98.

I,',

4 4L

Dependences , f(M) and T* = fl(M) (Fig. 1-11), obtained

with a gradient-free cross section on a flat plate, show that with

an increase in the M number the dirsplacement thickness grows, and

the momentum thickness drops. Such a nature of change in these

magnitudes is explained basically by the density change across the

layer. Since within limits of the boundary layer dp/dy = 0, as a

first approximation (not allowing for heat exchange, i.e., on the

assumption that the wall temperature is equal to the stagnation

temperature T0 ) it is possible to present the law of the density

change in the following form:

p P Pto T, TV
Pa pto" P, :', "i'

k--!
l"---M (1.34)

k-2
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where p-- density on the wall; M - dimensionless v,•J1ocity within

limits of the boundary layer; M1 - dimensionless velocity at the

outer edge of the layer.

The presence of heat exchange somewhat reduces the difference

between the densities at the outer edge of the layer and inside it,

and according to the test dava of Wilson [112] it is expressed by

relation

( k-I (1.35)

where
n==0,35 -- 0,42.

From a qualitative side the indicated density change at the

invariable velocity profile gives rise to the growth of the inter-

grand expression in formula (1-3) and to its reduction in formula
(1-'I).

Thus, theoretically the nature of the experimental dependences

given in Fig. 1-11 proves to be entirely regular. Hence there

follows the existence of the dependence of parameter H upon the

M number. This dependence (Fig. 1-12) can be approxtmately

approximated by the following formula:

H +(1.36)

Here H0 - the value of parameter H in an incompressible fluid.

Besides parameter H, the compressibility of gas substantially

affects the magnitude of the resistance coefficient cf, which can

be corrected by the successful selection of the determining

temperature. Being limited to low supersonic velocities (M1 < 1.5),

for such temperature let us use the wall temperature Tw, and under

these conditions let us introduce into the calculation the density
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and kinematic-viscosity coefficient. Then the expression (1-17)

takes the form:

1 it- (I + ar), ((1-37)

or

CI = CIO.*

where cf0 - the resistance coefficient in the incompressible flow.

As a result, by using formula (1-35) when M = 0, we obtain:

C, = + -- ' M, Ci..

.5

V'.O ... .. 01 I'
Fig. 1-11. The effect of Mach number on the
momentum thickness and the displacement thick-ness. o

paraete H~. o- R 0;• e=l6

I I

112
/7 S1 .~ 0,, t¼ 0156 0j a4, .40 1

Fig. 1-11. The effect of teMach number onth
paaetes H o - Re = lo5/ 0 Be 10

A- Re =(3-6) 105.
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Further solution to problem no longer represents serious

difficulties, since the consideration of the compressibi'lity does

not change the type of the basic differential equation (1-2) bAt

leads only to a certain compli~ation of the final formulas.,

The combined solution of equations (1-2), (1-'36) and (1-37)

gives rise to the following formulas for determining ýhe dimension-

less momentum thickness (for k 1.4);

at 0 < r < 0.7

-~'-1 25 e.2is dd. .L .+ )I0., ] (1-38)

where
l,= ?3,s, (6--.4) ''

12 =0,00C267'2(6 A')2.e, (1-38a)

S4.17 , 1
*1

at 0.7 < 1

-F 0 5 0.25
~~** 1 :0Go...t0

0- , 2 .C . '" , d, ( 1 - 3 9 )

where ,

,oO78X,(6 -o)2,0 -go , . ,(1-39a)

In formulas (1-38) and (1-39) critical speed a* is accepted,
as a characteristic velocity, 'and coefficients are calculated for

air.
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*The indicated formulas can be used no)p onlyrat subsonic ,but,
as calculations show, at low'supersonic velocities (M1 < 1.5) for

ranges,of the flow where shock waves are absent.

§' 1-6. Condition and Criteria of' the Boundary t

*With external Plow of potential flow about an arbitrary body,
on its surface it is always possible to 'indicate two points in

anshich the velocity is equr L to zero. The first is located on the
Lohar ayer paa ion s ris to th fcthtitiszn, une

I

leading and the second on the trailino edge. of the streamlined
I.body. Consequently, on the surface of' the body the velocity cl(x) .1

'is first increased and then decreased to a znro valge. Thus, ip n

the intake region there always exists the zone in w hich the fluid.
S~~is moved against the increasing pressure. The presence of •he

bouhdary layer gives rise to the fact that in this zone, under

specific, conditions, the kcinetic f~low enei'gg near the streamlin~ed

wall is not sufficient for the flow against the increasing pressure

and the feed stagnation point is displaced towards the tlow.

similar pattern can take:place with the flow in the diffuser

channel. In this case, beginning 'from a certain point S (Fig. 1-13),

thellines of flow will move away from the surface, and in the range

formed the recurrent fluid flow appears. The zone of separation is

the source of formation of stable vortices periodically carried by

thq main flow.

, Fig. 1-13. Diagram o,f
detached flow in a flat
diffuser'.

" "
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The separation of the boundary layer from the surface of the

streamlined body leads to a sharp increase in drag and is accom-

pahied by increased energy flow losses. Therefore, it is necessary

to strive for the displacement of point S towards the exit section
of the channel or the trailing edge of the streamlined body.

The position of the separation point is determined by the

positive pressure gradient dp/dx and velocity profile in the

boundary layer before the separation point. Any increase in

dp/dx when an invariable velocity profile gives rise to the dis-

placement in the separation point against the flow. On the other

hand, the more complete the velocity profile will be, i.e., the

greater the energy possessed by particles of fluid directly at the

wall at the assigned pressure gradient dp/dx, the later the
separation will begin. Hence there follows the well-known con-

clusion about the fact that at significant positive pressure

gradients it is advantageous to have turbulent flow conditions in

the boundary layer, since due to the greater kinetic energy of the
particles near the wall separation occurs considerably laLar than
with laminar conditions. Classical experiments with a transversely

streamlined cylinder [69] confirm this conclusion.

For the calculation of losses in diffuser channels, just as

for the determination of the drag of bodies with external flow, it
is necessary to know the position of the separation point deter-

mined from condition

dy I=' (1-4o)

As was alreadj mentioned, the velocity distribution in the

boundary layer depends upon the velocity of external flow cl,

coordinate y, viscosity of fluid u, pressure gradient or velocity

derivative c' and a certain linear dimension, for which it is

possible to use the length of the body L, thickness of the layer

6** or any other thickness. Then
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c-=f(¢c; c'; 8**; Y; v). (1-41)

Having turned in expression (1-41) from dimensional magnitudes

to dimensionless, and using magnitudes cI and 6**, we obtain:

"C , "- , (1-42)

Let us expand (1-42) near the surface in series according to

the argument y/6**:

_- ,I . + ,
(1-43)

When cl = 0 expression (1-43) should coincide with the ex-

pression for the appropriate velocity profile on a flat wall. In

this case the expansion coefficients with laminar flow do not de-

pend upon the number Re** = c16**/u [68]. For the turbulent

boundary layer the indicated condition for sufficiently large

Reynolds numbers also takes place [111].

Therefore, the expansion coefficients %0' ýi etc. should be

the function of the product of parameters (c' 1 6**/c 1 )nl and

(ClI6**/U)n 2 , i.e.,

S *

l ,C , CIO• (1-44)

Thus, according to condition (1-40) and formula (1-43), the

position of the separation point is determined from the expression

(1-45)
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Let us expand (1-45) in series and, taking into account that

the argument of the expansion n is small, let us

be limited to two terms of the expansion. Then

S~bo + b/ ReJ-' 0 :

8 Hence, at the separation point

Re C91st. (1-45a)

When nI = 2 = 1 the obtained expression gives the value of
* the constant - the shape parameter of L. G. Loytsyanskiy at the

separation point fs . The value of the constant for this case can

be shown with sufficient accuracy (fs = -0.089) [68]. When nI = 1

and n 2 = 0.25, the conditions (1-4 5 ) gives the parameter of Burn

rs at the separation point. At this point the magnitude rs

according to experimental data, changes over very wide limits.

Thus, according to experimental data of N. M Markov IrsI

0.028-0.035 [71]. According to Nikuradze, G. Shlikhting and Bay

Shi-y [4, 111] Irsl = 0.05-0.12. N. I. Konstantinov's experiments

[61] gave Irsl = 0.035-0.09; P. A. Romanenko and others [90]

obtained in their experiment 1r.1 = 0.05-0.07.

Instead of the Buri parameter L. G. Loytsyanskiy uses a

parameter close to it Ism 153.2 ¢,'8" Re,#*la,*equal at the separation

point to fSm = 2-3, which corresponds to value jrs = 0.026-0.038.
Such a spread of the numerical values of the Buri parameter at the

separation point indicates that the magnitude rs is indefinite,

and it is difficult to use this parameter as a criterion of

separation.
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Furthermore, on the basis of test data in works on the boun-

dary layer, the conclusion is frequently drawn that the one-parameter

method of calculation in regions with large positive pressure

gradients proves to be invalid, since near the separation point

old velocity derivatives, which characterize the prehistory of the

flow, acquire vital importance [4, 70]. However, when the velocity

distribution at the boundary layer edge can be presented by an

analytical dependence, calculations of the thickness 6** according

to the one-parameter method give an entirely acceptable agreement

with the experimental data almost up to the separation point Ell,

23, 25].

It is possible that the effect of the old velocity derivatives

near the separation zone is exaggerated, and the probable reason

for the spread of values rs can be the low accuracy of measurements

in this region and the principal nature of the change in the

momentum thickness along the surface at large positive pressure

gradients.

Actually the experimental data given in Fig. 1-6 indicate

that at r < -0.025 the momentum thickness very weakly depends upon

the pressure gradient. In other words, from this moment the

magnitude of parameter r is determined basically only by values of

the velocity and its derivative, and the determination of these

magnitudes near the separation point, on the basis of drainage

measurements, is insufficiently precise because here the basic

condition of the boundary layer - <- d is not fulfilled, and

the longitudinal velocity gradient becomes commensurable with the

transverse, i.e.,

Thus, from the structure of the Buri parameter it follows that
its utilization as a criterion of the separation of the turbulent

boundary layer is difficult because of the purely physical reasons.
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From the aforesaid it.,fol-1&ks•*•hat for the crite.rion of
separation, it is'advantageous to select the parameter dependent
directly on the shape of the velocity.profile in the boundary
layer. The parameter proposed by Grushvits can be used as such a

magnitude [4, 111] and equals:

=1- cL2 (1-46)

Here - relative velocity in the boundary layer

when y = S**.

For the gradient-free flow of the turbulent boundary layer,

the magnitude n = 0.5. In diffuser regions the deformation of the

velocity profile leads to an increase in n, and at separation point
•s = 0.8. However, for the determination of the coordinate of this
point, it is necessary to construct the law of the change in

parameter n along the streamlined surface. For this purpose it is
possible to use the empirical relation of Grushvits [4]:

d " 0,00894-F-=0,00461  (1-47)

4 ~~where p~

The differential equation (1-47) is solved by the method of

successive approximations. Used as the first approximation are

values 6** found from the equation of K~rmdn (1-2).

For a rapid estimate of the possibility of nonseparable flow,
it is possible to use the relative momentum thickness * 6*1/**/6*,

where 60** - the momentum thickness on a flat plate:

0 0,036x

34

4>



Considering at the separation point that 6s** = 3, we obtain

the condition for determining the coordinate of the separation

point. Figure 1--9 gives the curve of the change in parameter n

along the wall of a flat diffuser with the linear law of the

velocity change. Here the dependences r(F) and t***(x) are given.

The value of parameter n3 = 0.8 corresponds to the magnitudes rs

and Ts**, equal to -0.036 and 3.1, respectively. Values are ob-

tained very close to these numbers with other laws of the velocity

change. In connection with this, in the construction of calculation

equations, which determine the change in integral thicknesses along

the streamlined surface, the magnitude of the parameter rs at the

separation point was accepted equal to --0.036. Naturally, the

indicated value rs, because of reasons noted above, is arbitrary.

However, for the majority of the problems the flow at rs > -0.036,

apparently, is nonseparable, and for its calculation the use of

the derived dependences (1-32) and (1-33) is admissible.

Without discussing in detail the other criteria of separation,

let us say that as such a criterion Tetervin and Dengoff [4] pro-

pose using magnitude H relative to which is composed the experimental

equation analogous to the equation of Grushvits. However, as the

test data show (see Fig. 1-7), this magnitude at the separation

point changes from 1.8 to 3.0 [4, 25], which makes it just as in-

definite as the parameter r
5

Using the dimensional theory as a basis, G. M. Bam-Zelikovich

[5] proposes using at the point of separation the following

parameter:
-- , -0,005.

Cl

It is not difficult to see that this parameter results from

the parameter of Buri when m = 0, and consequently the indicated

value 0.005 cannot be recognized as being sufficiently reliable.

Furthermore, the magnitude of = 0.005 is the first term of the

5I3



expansion in series of a certain functiop about the separation

point, and the degree of convergence of this series 'has not been

investigated by the author.

Quite convincing data on the determination of the separation

point are given in the work of Stratford [98]. Here, as a criterion

of separation., it is proposed t6 use the. following magnitude, which

is valid at Re > 106:

! 2)- dp 05
(2i) 4 -. X 1, CG1 (10 Re, 10

where

- nfl2 n= Res% 7; q6

2

The given set is obtained as a result of the examinbtion of

the form of the velocity profiles near the separation point and,

apparently, can serve for the comparatively precise estimate of

the possible boundary of separation. In any case the dqta on the

estimate of separation given in work [981 are quite convincing.

In conclusion let us give a table of various criteria at the

separation point and tentative ranges from measurements.

Table 1-1 _ _,

Value of
Parameter Separation

iI __ _ _Point

l sl 0,025-,012
• s0,8 I

H$s 1,8-2,6.

ks= 8)**/a*** 2,8-3,0

0.50(,.s[,dp o, o
1 , " ,23 (1o- G.T .,) o,.0 1
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§ 1-7. Effect'of the Initial Turbulence on
the Bounaary Layer Characteristics

~!

The method of calculation of the boundary layer examined above

is valid for the certain small turbulence level of external flow.

In turbomachines, as'a rule, the turbulence level of the main flow
proves to be quite large (5-15%). Under these conditions one

should expect the noticeable effect of increased turbulence on

characteristics of thp boundary layer.

The investigation of the effect of the external turbulence

unitillreoently was reduced basically to an estimate of the effect

of the turbulence on the position of the zone of transition from

laminar to turbtulent flow conditions. In this case it was con-
'sidered that with an increase in the degree of turbulence of the

external flow, there occurs a reduction in the critical Reynolds

nimber, i.e., the extent l of the laminar section is sharply reduced,

and characteristicsiof the turbulent layer are not changed.

However, V. A. Vrublevskaya's'experiments [13, 14] and the qualita-

tive analysis of equat~ion (1-1) visually show that with an increaseSin the initial turbulence a noticeable change in the momentunm

thickness occurs. Thus, Fig. 1-14 gives curves of the change in

magnitude * on a flat plate at different values of the initial

turbulence. A comparison of the curves shows that with an increase

in turbulence from 1.5 to 5% the momentum thickness increases almost

2 cimes. Analogous results were obtained with tests of turbine

cascAdes: [14].

- " Fig. 1-14. Effect of the
turbulence level on the

S ".momentum thickness on a
,Z , flat plate. x - o= 5%;

• 6 - - "• - 0 = 4 % ; A c o0 2 % ;

(5. C 1.%.-1 0
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Therefore, if the degree of turbulence of the flow exceeds

1-2%, it is necessary to introduce a correction into the appropriate

calculations of integral thicknesses. Such a correction, according

to data [14], is introduced comparatively easily, and for the cal-

culation it is possible to recommend the formula

0P a*% , (1-48)

Here 6** - the value of the momentum thickness calculated

from the relation (1-32), not allowing for the initial turbulence,

and function *( 1r) according to V. A. Vrub- ;skaya's experiments

is equal to:

0 (1?) = O3"O- 4 ) *--l'-- A (1-49)O,013I-FO, 14r (-9

where Ac = e -0.005, and r is the parameter of Burn found from

relations (1-32).

Thus, the calculation of the effect of the initial turbulence

level on characteristics of the turbulent layer is not particularly

difficult: it is necessary to introduce the correction which con-

siders the increase in integral thicknesses.

§ 1-8. Boundary Layer Calculation on the Basis
of the Semiempirical Theýories of Turbulence

The engineering method of calculation of the turbulent boundary

layer examined above permits finding quite simply its integral

thicknesses 6*, 6** and 6*** but does not give a concept about the

form of the velocity profile. Furthermore, the possibilities of

the method are limited to the fact that with the integration of

the equation of Kdrmdn the purely experimental dependence for the

resistance coefficient is used, and the accuracy of the calculation

Js determined actually by the accuracy of the utilized experimental

dependence.
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The portion of empiricism in the considered question can be

substantially decreased if we use the connection between the stress

of friction T and the velocity profile allowed by the theory of

turbulence. According to Prandtl this connection is expressed by

the relation

1 (1-50)

where I - mixing length.

If the dependence of T and 4 upon the transverse coordinate

y is known, then the differential equation (1-50) determines the

velocity profile in the following form [105]:

A. -C on / ((1-51)

Expression has a dimensionality of velocity and is

frequently called "dynamic" velocity (c,). By changing in an

appropriate manner the dependences T/Tw = f(y) and I = 4(y), it is

possible to obtain a broad class of the profiles whose conformity

to the experiment will be determined by how successful the

approximating functions are selected.

Thus, when T/Tw = 1 and Z = Ky, where -experimental

constant,

In, B A, In - +- B" (1-52)

0*

Formula (1-52) determines the universal logarithmic velocity

profile on the plate and in the pipe and surprisingly ccncurs

with the test data almost in the entire zone of flow, with the

exception of the small zone near the wall and exterior of the

boundary layer.
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In general K.. K. Fedyayevskiy (1937) used the empirical,

formula of Prandtl for the mixing length

- 0--,14--O03 1--L -- 0,03 1-1" (1-53)

and the polynomial approximation for the stress of friction in the

form:

"-- !..A Y• -- (!+A) (1-54)

which results from the following boundary conditions:

when y = 0
ehC Op ON~'C TW; T7 •=,•=•

when y =6

0: 00-+; o-~ =0.

The parameter

"a OpA=••

Substitution of the accepted dependences into (1-51) deter-
mines the velocity profile in the turbalent part of the boundary
layer at small negative and any positive gradients.

Taking into account that near the wall the magnitude of eddy

viscosity is small as compared with the viscous friction, the
lower limit of integration in expression (1-51) is established by
the thickness of the so-called viscous sublayer n, = y ,/6. More-

over, in the subsequent work [105) K. K. Fedyayevskiy showed that
the interval of the change in the argument n < n < 1 is advan-

tageously divided into two ranges: from ni to no, where the
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dependence I = 0.4y is valid, and exterior part, where the "mixing

length" is determined by formula (1-53). Then the velocity profile

can be represented in the form:

q) (A j) 61+ y(A) j t,
(A 1 A,

where

v Ft-A- ( + A) 0
(? (A , i) o , f , - (1 - Oi.- o ( r -z °) ) •

and

It is easy to calculate the second integral. As a resultVII (I A)= As reul

1C, - 0, 11 , •: (I.-- -:w .i "-

(1-55)

A A -2 (A + 1). .

F= I+ Al--(I +A)•,.

The boundary of the laminar sublayer for the gradient flow,

according to work [105], is determined by the following expression:

3/ 200pUO .
qn= = i p/- '"

The dependence (1-55) is extremely complex for practical

calculations, and this explains the fact that its successful use

became possible only with the use of electronic computers.
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Just as earlier, with the integration of equation, (1-2) with

the use of experimental dependendes, the entire possible range of'

the nonseparable flow is divided into .two regions. For small

positive gradients (0 < Irl < 2d), where d is the coefficient

dependent on the number Re**, the normal velocity plofile, (1-55)

gives rise to a quadrature of the type (1-27):

+ I j
3* PIteý cons 4 (1-5+6)i ,,

The specific value of constants m and d is determined by the

range of numbers Re**.

When lg Re** 2.2-4.0 d =0.0103; 1r 0.222 and

L 00 -L r --0020c8dI

When lg Re** 3.0-5.5 d 10.073; m = 0.179 and

0 1' t F Re. 0,0086 ji 72d 1 . * (1-57b)
I , all 2.10oO01';

tb %o I

42I

When ig Re** = 3.0-5.5 d = 0.00521; m = 0.1798 and
- I

~ 4~3x* * l5'

S•**~ ~~ - ['+* ReO. Co3,• ' 0 C9'17J ci••s d•(-7c
L".' ,Io,••• -. "
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For the large pressure gradients (Irl > 1.5d): the solution

piove• to be close to the relation of .Ross ýnd Robertson [87]:I I I

4.75 -

II
o If instead of dependence ,(1-50) we use the relation of K~rm~n

for the stress of friction in the tukbulent boundary layer
I I I- '

= :92P ' (1-59)

then, as A. P. Mel'nikov showed [42],, when using the polynomial

[I(1-54) it will be possible to arrive at the following expression

SU for'the momentum thickness: ,

1083
*1,6~l2-4 4 0.2 44d

I 0 I (1-6o)

Rleproducied from'T f

be spt aalbl6 Ocopy.

iThe 1idea of the c alculation proposed by K. K. Fedyayevsl~iy
wasso~ruifultha inthelas Oeadeitis used most frequent~ly

in works on the boundary layer. Despite the diversity of the:
proeduesthebasis for contempor~ary calculated methods consists

of aep-ndences of the type (1-50) or (1-59), whicb connect the

stress of friction with the profile of the averaged velocities.
In this ase,,just as in work [1051, it usualiy proves to be ad-

visable to use a two-layered or three-layered model of the turbulpnt

Iboundarly layer. In'the first case the boundary layer across is

S divided into Ia viscous sublayer, where '?wton's dependence for the

stressot friction% is the basicvand thelexpternal
I I

,turuen rlegin In the alcultond propsed betee the visou edavs y

procxedu ores therbasi foracnsti egiorar isalcuated.mtoscnit

ofdeenenesofth •pe(150 o (-5),'wic cnnct43



An important moment in the development of calculated methods

was the'research of Clauser, who introduced the concept about

equilibrium flows and showed that in the exterior region it is

possible to use not Prandtl's relation (1-50), but Boussinesq's

formula

) (1-61)

with the coefficient of virtual viscosity pe" Under this assump-

tion solutions of D. B. Spolding [94a], Libbey Baronti, Napolitano

[67], D. L. Mellor and D. M. Gibson [79], Stratford [98] and others

are constructed. Unfortunately, all these methods require numerical

integration and do not give such simple expressions for integral

thicknesses as the approximation relations (1-27), (1-57) and (1-60)

examined above. Since for our purposes the accuracy of these re-

lations is entirely sufficient, the authors considered it possible

in this work not to discuss the details of stricter methods of the

calculation than the modified method of Buri used in the book.

For greater clarity, Table 1-2 gives a comparison of design

equations obtained by various authors.

It should be noted that, despite the different approach to the

problem in question, the final expression3 differ little. The

distinction in the coefficients gives rise to noticeable deviations

in the computable magnitude in methods of A. P. Mel'nikov, G. M.

Bam-Zelikovich and Trukkenbrodt. In the remaining cases the final

results prove to be quite close. For a comparison Table 1-3 gives

values of the relative momentum thickness with the lineak- law of

the drop in velocity in a flat channel (F, 1-0.57) obtained by

calculation in various formulas.
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Table 1-2

Author Formula

Fed,: reskiy, K. K. .
Kolesnikov, A. V. -- a -
Smolyaninova, A. N. L IJ 6:.r[

+ - /" _0.82+•.0,0196 tog 6!•

Xe

Mel'nikov, A. P.

IL L 0 4-

00,015
S~Xo

Deych, M. Ye
Zaryankin, A. Ye. | r 025 1
formula (1-32) Ol 00 .2 3, 3 -I

xo

Loytsyanskiy, L. G.

Maskell r 0.2.45Re =
~' L

C- 0,124
0,*0, .l17 d2J
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Table 1-2 (Continued)

Trukkenbrodt P ;*. |6 .67 V3.5•'--
* U/

-1.

Spence 0'1,2 - 604.l0 , 2

+0,0106 0 idI*02.?

Table 1-3

Author at ReL =105  at ReL =106

Fedyayevskiy, K. K.
Kolesnikov, A. V.
Smolyaninova, A. N.

formula (1-57a) ............... 0.0193 0.0127
formula (1-57b) ............... 0.0145 0.0102
formula (1-57c) ............... 0.0142 0.0101

Mel'nikov, A. P ................... 0.0262 0.0178
Deych, M. Ye
Zaryankin, A. Ye

formula (I-32) ................ 0.016 0.0110

Loytsyanskiy, L. G .............. 0.01' 0.0108

Maskell ................................ O.018 0.0122

Trukkenbrodt ..................... 0.0115 0.0082

Spence ................... ......... 0.0193 0.013

Bam-Zelikovich, G. M ............. - 0.0248
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CHAPTER TWO

METHODS OF CALCULATION AND AERODYNAMIC
CHARACTERISTICS OF DIFFUSERS

§ 2-1. Types of Diffusers

Diffuser elements utilized for the conversion of the kinetic

energy of the flow into potential energy are completely diverse.
Because of this, we will discuss only the basic types of the

diffusers which are most frequently encountered in practice.

a) Flat diffusers are the channels, flow passage cross-
sectional areas of which are changed in the course of flow in one

plane, and the longitudinal linear dimension B (Fig. 2-1) of which

considerably exceeds the transverse dimension H1 in the exit

section. The most widespread diffusers of thistype are the flat
rectilinear and curvilinear diffusers schematiq'ally depicted in

Fig. 2-la and b. Since at H1 /B << 1 the effebt of the side walls

as a first approximation can be disregarded, the flow in such

elements is examined usually only in the meridian plane.

The cross section of the flat rectilinear diffuser is deter-

mined by the assignment of the following magnitudes: the height

at inlet h, height at the outlet H1 and the angle of slope of
the generatrices a. Together with these magnitudes the length of

the diffuser L is frequently introduced into the examination.
Any combination of three of these parameters completely determines

the shape of the channel in cross section.
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d) L

S~Fig. 2-1. Diagram of flat and conical
4diffusers. a) flat rectilinear diffuser;

b) flat curvilinear diffuser; c) conical
diffuser; d) axisymmetric diffuser with
curvilinear generatrices.

The number of geometric parameters can apparently, be reduced

• if we turn to the dimensionless values. Thus, having selected as

S~the basic parameter the height h, we obtain three values: n =
H 1 i/h, a ctnd L/h, where n - the expansion ratio of the diffuser,

Sequal to the ratio of the area at the outlet F 2 to the inlet area
FI. In this case, since the transverse dimensions of the channel

are invariable, the area ratio can be replaced by the ratio of

appropriate linear dimensions.

The similarity of flat rectilinear diffusers is provided by

the equality of any two dimensionless geometric parameters: n and

Sma, n and L/h, a and L/h. The first two parameters are used most

frequently.
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By examining the flat curvilinear diffuser (Fig. 2-1b), it

should be noted that here the minimum number of the geometric

parameters which determine the flowing part in meridian section

noticeably increases. Thus, for the diffuser depicted in Fig.

2-lb, it is necessary to assign its length L, dimensions b, radii

r1 and r 2 and heights h and H1.

Having maintaned here as the determining dimension h, we

obtain the following dimensionless values:
n = rLl _f2_ T = L b

h h

Considering, however, that the flow in the curvilinear channel

substantially depends upon radius rI [109], in certain cases it

makes sense to take for the determining dimension not h, but

radius r 1 . But both in the first and second cases, when evaluating

the similarity of curvilinear diffusers, it is necessary to

provide the equality of at least three dimensionless values:

n, r 2 /r 1 and b/L. The first of these parameters characterizes the

expansion ratio of diffusers, the second determines the shape

of the channel, and the third indicates its relative curvature.

b) Conical diffusers refer to the most widespread and very

simple diffuser elements formed by the surface of a truncated

cone (Fig. 2-1c). The meridian section of these diffusers

completely coincides with the cross section of the flat rectilinear

diffusers and, consequently, is determined by the same geometric

parameters. However, instead of heights h and H1 , here it is

advantageous to examine diameters at the inlet D1 and outlet D2 .

Then for conical diffusers we will have the following systems of

dimensionless parameters:
2

a;LID,; n - D

For the characteristic of the geometric shape of the diffusers

in question, just as for the flat ones, it is sufficient to use

any two values.
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c) The curvilinear ax.symmetric diffusers given in Fig. 2-id
are determined by the diameters of the inlet D and outlet D

2)
the length L and the law of the change in area along the x axis
Fx = f(i). Here, for the similarity of the diffusers, it 'is
necessary to provide the equality of the three values: the
expansion ratio n, relative length L/DI and dimensionless flowing
area D2

d) Annular diffusers with rectilinear generatrices are the
necessary elements of the majority of exhaust pipes of gas-turbine
installations and are the channels formed by the two coaxial-
conical surfaces. The meridian section of such a diffuser and
its basic dimensions are given in Fit. 2-2a. It is not difficult
to see that in this case the geometric parameters which atermine
the shape of the flowing part are

2 2- =2 T ; . ; a,; ct; L"T
- D, DD1

where d2 and dI - the greatest and least diameters of the internal
conical surface, and a2 - angle at its vertex.

*W

a) b)

Fig. 2-2. Annular diffuser with rectilinear
generatrices a) and a curvilinear annular
diffuser b).
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For the geometric similarity of two conical annular diffusers,

it is necessary to provide the equality of any four of the five

indicated values, since the fifth value is not independent.

e) Annular diffusers with curvilinear generatrices (axiradial

diffusers), the flowing part and geometrical dimensions of which

are given in Fig. 2-2b, are formed by two curv .i1nr'r coaxial

surface rotations: AB and CD. The shape of the cross sections

of these diffusers coincides with the shape of cross sections of

flat cu'vilinear diffusers.

In the simplest case, when 'the generatrices AB and CD are

outlined by zadii r1 and r 2 , and the dimensionless geometric

parameters iwill be

' iz~r.•..• L ."D,

The firgt three parameters given here characterize the shape

of the meridian section value D2 /D 1 determines the "radiality" of

the diffuser, and 0 = I/D 1 characterizes the dimensions of ring

at the inlet.

f) Vaned diffusers are the most widespread in centrifugal

compressors and some types of axial turbines. As experiments showed

[30], the use of vaned diffusers in turbines in a number of cases

can give a sub'stantial economic effect.

For the characteristic of vaned diffusers it is advantageous

to ise the following dimensionless values (Fig. 2-3): relative

pitch t 1 /b (t/b - fQr axial cascades) or t 2 /b (where b - chord of

the airfoil section) relative height I/b; the expansion ratio of

the diffuser as a whole n = F 2 /F 1 ; fanning D/i or D1 /b and the

angle of deflection of the, flow in vane channels.
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d .
~ a)

Fig. 2-3. Diagram of
vaned axial a) and radial
b) diffusers.

/ , 1
b)

It is natural that for the similarity of vaned diffusers,

besides the equality of the dimensionless geometric parameters,

it is necessary to provide complete geometric similarity of the

profiles which form the diffuser channel.

The types of diffusers examined here are the basic elements

of the majority of exhaust pipes of turbomrachines used for the

removal of the working medium in the assigned direction with

maximum use of the outlet speed. It is natural that both these

requirements should be connected with the arrangement of the entire

52

i~



machine as a whole. The last fact is rather often the decisive

one when selecting the design of a diffuser element and s(.heme

of the removal of the working medium.

§ 2-2. Aerodynamic Characteristics
of Diffusers

For the characteristic of the aerodynamic qualities of

diffusers, today a good many different coefficients are used.

If with a comparative evaluation there is no vital importance

with respect to which of them the comparison is produced, then

for aerodynamic calculations it makes sense only to have those

coefficients which allow according to the assigned conditions ofr' flow before the diffuser element to determine the flow conditions

at its outlet section. From this viewpoint the coefficients of

losses of energy ý and the pressure recovery ý are sufficiently

convenient. For the clarification of their physical sense, let

us examine the process of diffuser flow in the is-diagram (Fig.

2-4). Here the state of the flow before the diffuser is determined

by the point 1 characterized by pressure pl, temperature t 1

and the available kinetic energy, which corresponds to velocity

at the inlet cI and equivalent difference in enthalpy HO.

*1 -
C2 l A027

C2S............................ .. . .

r -

Fig. 2-4. Process of

compression in a sub-
sonic diffuser. a) -

diagram; b) - process
in an is-diagram. - .

b)



The state of the flow after diffuser (point 2) is determilihd

by pressure P2, by temperature t 2 and the kinetic energy equivalent

to the difference in enthalpy h 6 0c. The parameters of total

stagnation pol, t 0 1 and P 0 2, '02 before the diffuser and after

correspond to points 01 and 02.

With isentropic stagnation of the flow, its final state for

the assigned diffuser will be expressed by the point which

corresponds to maximally possible pressure P2T". However, the

energy losses give rise to the fact that the process of stagnation

occurs with an increase in entropy along a certain l~ne 1-2, and

the pressure in the outlet section P2 proves to be lower than tlz

pressure P2T"

As a result the energy losses inside the diffuser can be

estimated by value Ah, and entering here are both the frictional

losses AhTP and losses connected with the separation of flow from

the walls, AhOTP (in the case of detached flow).

The coefficient of losses of energy can be obtained either

as the ratio of Ah to the kinetic energy at inlet H0 , or, as is

done during cascade tests of turbomachines, as the ratio to the

available energy h 0 . Thus, for an estimate of the energy losses,

we will obtain two coefficients:
Ali
1T0' (2-1)

7 - (2-2)

However, these coefficients are insufficient for determining

the state of flow at point 2, since in the diffuser element there

occurs not only power losses but also the conversion of the kinetic

* energy of flow into potential energy. The degree of the perfection

of this process ca! be estimated by the coefficient of the re overy

of energy, which ý.s the ratiu of the increase in potential energy

hl.2 to kinetic energy at the inlet H0 :
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.. 2 -. (2-3)

For an incompressible fluid the coefficient ý is frequently

called the coefficient of the recovery of pressure and is

determined directly according to pressures P1 P 2 and P01:

Pot-Pa

The introduced characteristics are connected by the simple

dependence:

S= (l(2-n)

in other words, of the three introduced coefficients only

two are independent. Let us use coefficients g and E as these

independent values. Let us note that sometimes the coefficient

of the losses in energy is called the resistance coefficient of

the diffuser.

When the kinetic energy at the outlet from the diffuser is

not used in subsequent elements of the apparatus, an important

energy index is the total loss factor 4n" To determine this

value, let us turn again to Fig. 2o-4b. Let us examine the initial

(point 01) and final (point 2) states of the gas.

It is 'ivident that with respect to the outlet pressure P 2 the

flow has available energy equivalent to a drop in h0 , and all

this energy is completely expended for the provision of the

assigned flow through the diffuser in question with a definite

velocity e2.

Let us express the value h0 in portions of H0 . As a result

we will obtain the total loss factor:

(2-R)
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From the physical point of view the inoicat4d coef•icient

includes the coeffibilt-of'inter.*,nal losses 4 and the coefficient

of outlet losses 4 .c, being their sum:

Understanding as the coefficient 4 thqratio h /H0 ,let

us write the energy balance'of the diffuser in the following form:

Ii. -'4. 'c+ '~1 = --.- 11-.2- 111.,o + -Al4 ; .
I : 2

Hence it follows that for the characteristic of tihe state of

flow in the outlet section of the diffuser, instead of values 1

and 9, a combination of coefficients 4 and n or14n and ?.c can,

be used.

The introduced total loss factor, Just as the doefficient of

the recovery of energy ý, quite fully characterizes the energy

possibilities of the diffuser and recently increasingly more

frequently is used both for calculations and for a 'comparison

of the quality of various diffuser systems and branch connections

of turbomachines. Furthermore, it is easy to show that with its

help the relative pressure differential Ap/p 0 1 necessary for I

passage through the diffuser of an assigned flow is comparatively

simply found.

Actually, the enthalpy drop h0 is equivalent to the square of

a certain arbitrary velocity c0. If at the outlet section of the

diffuser the pressare of total stagnation in the center of the

channel is equal to the pressure p0 1 ,.i.e., flow with a potential

nucleus takes place, and velocity cO corresponds with the maximum

outlet velocity C2maaK* Otherwise c0 > C2ma~ c

Pressures p 0 1 and P2 and velocity co are connected by the

relation
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O a

A x2 1
where X CO/a* - the dimensienless' velocity expressed .in the
portions of the critical speed a*.

Ar Hence

SinceI

thena

"•" - "! -- 2AR-.. k 1,2,ca
Coseuetl/ I

Pot (2-7)

possible ioaintroduce the gas V.., G. Then

Aa (-7a)
a PotP pFa

Here p1 and F, - densityr and area in the narrow cross sectiona

of the diffuser.

I a

Used frehquently for the diffuser charactleristic is its err
equal to the ratio of the actual increase in potential energy to
the maximally poss ible with isentropic compression, i.e.,

ft.,

* '1T.211 ;1

In turn ht -2 "Afherh.

II
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Having divided the numerator and denominator of the expression

in question by H0 , we obtain the connection or the efr of the

diffuser with the coefficients introduced earlier:

-1 A (2-8)

For the incompressible fluid, the erf of the diffuser is

determined by pressures Pl' P 2 and P2T:

a a-Pa -•9 (2-8a)

If during the calculation of the losses we do not consider

flow velocity component, then the coefficient of losses with the

outlet velocity will be uniquely determined by thae expansion

ratio of the diffuser n and will be equal to [54):

S1 (2-9)

where pl/P2 is the ratio of average densities in the inlet and

outlet cross sections of the diffuser.

Then when p = const the connection between and is

established by the following relation:

-' "(2-10)

From the other utilized coefficients, let us distinguish the

loss factor of total pressure a0 and the coefficient of the

pressure increase (compression) a.

The first value is the ratio of the mean pressure of total

stagnation after the diffuser P0 2 to the pressure of total

stagnation before it p0 1 , and the second gives the ratio of

static pressures P2 and pl, i.e.,
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Pot pP0, 'Pa '

Having expressed these values in terms of the dimensionless

velocity at the inlet X1 and coefficients • and n' we obtain:

1x k]O (2-1l)
Pal A

I _ 2 ( I

PoA PO I (2-12)

With the transition to supersonic diffusers, the process of

the flow is substantially complicated, and here some additional

characteristics are introduced. For the development of their

physical sense, let us again turn to the thermal diagram (Fig. 2-5).

Point 1 corresponds to the state of flow at the inlet into the

diffuser. Line 1-2 conditionally depicts the process of compression

of the gas in the system of discontinuities in the supersonic

part of the diffuser. The appropriate increase in entropy AsI

characterizes wave losses and losses of friction at thi inlet part.

Behind the diicontinuities pressure P2s is established. If

P2s/P02 < c,, then after the discontinuities the flow is still

supersonic and in the narrowing part of the diffuser the gas

compression is continued. At P 2 s /P 0 2 > e, the flow behind the

discontinuities is subsonic. This means that in the narrowing

part up to the minimum cross section the flow will be accelerated,

and its pressure will drop. If in the minimum cross section the

rate of flow reaches the critical value, then in the expanded

part X > 1. In this case the stagnation of flow will occur in

the system of discontinuities after the narrow cross section.

The increase in entropy As2 is conditioned by losses in the sub-

sonic part of the diffuser.
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a)

I I I" '-zzF

~V,

Fig. 2-5. The process of compression
in a supersonic diffuser. a) diagram;
b) process in an is-diagram.
KEY: (1) Supersonic section; (2)
Subsonic section.

Let us note that the total change in potential energy in the

supersonic diffuser Hon can be considered as the sum of changes

in potential energy in the system of discontinuities h0 s and

subsonic part h0O.
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For an estimate of energy losses in the supersonic diffuser,

let us introduce the energy eff into the examination. This value

is defined as the ratio of available energy behind the diffuser

to the kinetic energy at the inlet (Fig. 2-5b).

Hai + 1 k+ I-I- f.-o= I Y~-'-i""'- V2-l (2-13)

The magnitude H0 2 is the sum of the kinetic energy of flow

behind the diffuser H0R and changes in potential energy H0 n.

The energy eff fAss can be expressed also in terms of losses in

kinetic energy Ah:
Hot -- Ah

S -,(2-14)
•qrt~ • "1101

where, as before, • - the coefficient of losses of energy in the

diffuser.

Let us note that can be presented in the following form:
k--

(P,/P 02) --I*•t~o • I-I "

(plp03) -

The eff of diffuser introduced above nA, after elementary
conversions, can be expressed in terms of dimensionless mean flow

velocities Xl and X2 and the pressure ratio pl/P 2 in the following

manner:
I~~ X+2-•-•,i- h-1

"" x2 P' k (2-15)
2 *le- 1 2 i( { l

If the relocity after the diffuser is low (X2  0), then the

formula (2-15) is simplified:
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o ~k--l

~~12 -T)k-l b

One should emphasize the distinction in concepts n and

The energy eff depends only upon power losses in the diffuser and

does not depend upon the compression ratio a. Magnitude ri depends

upon the diffuser losses and upon compression ratio. It is easy

to see that n > n The connection between these characteristics

is illustrated by the formula

H'o. | _•(• _ |)(2-16)•:.•= 1 -- (1 -- o~){ - 1 io216

For the computation of the increase in entropy As, let us use

the following expression:

-In T A- in i .c, Ti k p,=( -T•)n ,.

where As - the increase in entropy in the diffuser; C - the heatP
capacity of the gas at constant pressure; )I' - the arbitrary eff

of the diffuser:

If- t "jP =kpo/p - .P0/p,__.

k-I k--F-?7 k -I -)

The dependence between nAs and n'A is defined by the relation

1 (Pt/Poz)

4.. 6- 2
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The connection between n and y't is expressed by the formula

h-I *

At the fixed values M1number at the inlet into the diffuser,

the eff n•.,n and T'
t are changed in one direction. Therefore,

the comparison of various diffusers with an identical velocity at
the inlet can be ccnducted by any eff. However, the substantiated
comparison of the diffusers operating at various M1numbers can
be accomplished only with the correct determination of eff. In
this connection let us note that the coefficient of losses of
stagnation pressure O0 is not the single-valued characteristic
of the effectiveness of diffusers. In the comparison of diffusers,
this magnitude should be augmented by the compression ratio a and
MI number. Only at equal M1 and p2/Pl does the coefficient G0

apparasthe single-valued diffuser characteristic. The dependence

beteentheenergy eff of the diffuser and the ratio of stagnation

•.? •, --•..,. .. . ' "•., .. ........... pressure is showu in

aa ' K I7 7 ...
7/

S0' . ... ....... . ,.. /

4 I( Fig. 2-6. Dependence* of the energy eff uponAt te f"ixe values.M.n.m.er.a...... the Mach number andratio of stagnation

""ii pressures a0.
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Thus, from an examination of the variouq coefficients their

close interconnections follows.' For clarity this connection is

given in Table 2-1, where all the coefficiernts are expressed, in

terms of the coefficient of losses and the coefficient of pressure

recovery.

Table 2-1.

C'=z:' e týop.Y.u', C13! 333

Cl) . (2) ._ _

A2

KEY: (l) Symbol; (2) Connecting formula.

fl

§ 2-3. Procedure of the Experimental
Determination of Aerodynamic Characteristics
of Diffusers

The experimental investigation of diffusers is connected with

the great expenditure of time, since the nature of the fl Iow in them

is determined by the significant number of' geometric and mode
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parameters. Because 'of this, those coefficients which can be

obtained with.minimum difficulties are determined by experimental

means. The indicated condition, to 'the greatest degree, is

satisfied by the eff of the diffuser n and, the total loss factor

connected with it by.realtion (2-8). For their experimental

determination, it is necessary to know the pressure p0 1 and

temperature T0 1 of total stagnation before the diffuser, static

pressures at the Inlet.into the diffuser p1 and at the outlet

section p.. Then we will obtain:

A2.-
Pa A

," -"'(2-17)

Static presstre in the outlet section of the diffuser P2 is

deltermined by-the environment. At the outlet into the atmosphere

P2 = B, where B - barometric pressure.

The pressure p 0 1 is found so simply and with high accuracy.

The estimate of the mean static pressure p, in the inlet section

of the d1ifuser proves to be more complex. Its direct measurement

witWA t.•t help of drainage selections is applicable only for flat

and axisymmetric diffusers. When symmetry does not exist, it is

necessary to conduct the traverse of the entire inlet velocity

field, which is connected with great experimental difficulties,

or determine the mean value p1 on the basis of indirect measure-

ments. The latter way is used most frequently and consists in

the fact that, besides pressure p0 1 and temperature T0 1 , the mass

flow' weight rate G of the working medium through the diffuser is

measured, and for the assigned initial parameters the criticalSI
flow through the diffuser in question C is calc~ulated.

As a result it is possible to find easily the given flow ql.

Since G = Ap01F1/ T,01, thie formula for the estimate of ql assumes

the form:
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0 1
aq-:..-.-A - (2-18)

Here A is the constant dependent on the properties of the

working medium, and F 1 is the intake area of the diffuser. For

air the coefficient A =0.396, if the flow rate is measured in
2 2

kg/s, the area - in m ,and pressure - in kg/rn

Further, by using the single-valued connection between the

pressure p1 and the given flow ql, with the help of tables of

gas-dynamic functions all parameters and velocity A1 in the inlet

section of' the diffuser are found.

In certain cases, when the power of the feed source al-lows

achieving the critical flow through the diffuser, the magnitude

of the given expenditure q, is determined on the basis of direct

measurements, since now

0 1" HO)

Po::: 11OC

Here GaC- maximum critical flow through the diffuser

obtained at the initial pressure p01 mac

The given method of the integral estimate of the total loss

factor and eff of the diffuser require the minimum expenditure of

experimental time, and i.ts accuracy is determined actually by

the accuracy of the determination of the flow. If the magnitude

of critical flow can be successfully determined dir'ectly from

the experiment, then the accuracy of the estimate q1 proves to

be even higher. The cýomparison of coefficients g and r
obtain~ed on the basis of direct pressure measurements p1 and

calculated by the integral method, shows almost complete

convergence of results [441.
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Thus, it can be considered that the experimental estimate

of the total loss factor is quite reliable. In this connection

it is expedient to conduct a comparison of experimental data

with data obtained by theoretical'methods of the calculation of

the diffusers directly according to the total loss factor n or

according to the eff of the diffuser n . If a comparison is

conducted according to the magnitude of internal losses ý, then

it is necessary to indicate clearly by what manner these losses

are obtained.

Most simply the coefficient of internal losses can be found

"from relation

I- . (2-19)

I where

2 2

II ~.C~I)a (2-20)

The estimate of the outlet losses of the kinetic energy from

relation (2-20) is valid only at a uniform velocity profile in

the exit section of the diffuser.

In general for the computation of coefficient •ec'it is

neQ,ýsary to use a more complex expression obtained as a result

of the averaging of local losses in flow [54].

Having designated by N2 the magnitude of the integral, we obtain:

"I PI N' V2N
ý .) -T1" (2-21)

Coefficient N2 depends upon the velocity profile in the outlet

section of the diffuser and always, besides a uniform profile,

exceeds one.
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Consequently, the internal losses calculated on the basis of

formulas (2-19) and (2-20) include any (sometimes significant)

portion of the outlet losses, and ;hese formulas cannot be used

for a comparison with the theoretical methods of calculation

which consider the flow velocity component.

At the same time it is necessary to note that themost widespread

today semiempirical and purely empirical methods of the calculation

of diffusers [34, 39] are based basically on relation (2-19). If

for the ca culation of total losses such a conditional estimate

of internal losses is entirely permissible, then in the determin-

ation of the state of flow in the outlet section the accepted

conditionality can lead to an appreciable error.

From the aforesaid it follows that the magnitude of total

losses and eff of the diffusers do not make it possible to

obtain the actual value of the internal losses, for the determin-

ation of which a detailed investigation on the outlet velocity

field is necessary with the measurement of losses at each point.

In thio case usually the local coefficient of losses is

determined with respect not to kinetic energy H0 at the inlet

cross section but to the available enthalpy drop h 0 '

For the transition from coefficient ý' to the coefficient •,

calculated with respect to H0 , it is sufficient to make use the

relation (2-4), since

S The determination of local values of the coefficient of

losses, taking into account wass flow, gives:

f, a*2x 2idF
In

P, FS

d (2-22)
0
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The connection between the coefficient of local losses

and the velocity in the exit section c2i results from the determin-

ation of value ' Actually,
i"2

C21.i Iio 2-O

Hence

C20p ¢C20

Here co -the conditional velocity equivalent to the available

enthalpy drop ho.

Having substituted the obtained relatfon into formula (2-22),

and disregarding the density change in the outlet section, we

obtain

C2CP
.0

The ratio of velocities c 0 /c 2 p is easily connected to the

total loss factor and the expansion ratio of the diffuser, since

*C9, __ C0  C1 P.C

C1 .- _. ._ -. i

As a result the relation for determining internal losses,

according to data of probe tests, takes the following form:

0

It will be possiblea to present the derived formula of

averaging in a FDrmewhat different form, if in correlation (2-22)
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we replace the local coefficient of losses 4' Py the ratio ofthe

squares of the appropriate velocities from expression (2-23).
I I

Then 21

C 0 0

0

The obtained integral determines the well-known relative area

of the power losses, if velocity c0 is equal to the maximum speed,

at the outlet section.

The indicated condition is fulfilled automatir-ally with the

equality of the pressure of full stagnation in nucleus P02 i MaRd

to the initial proqsure P0 1 . Otherwise Lhe ener±gy loss thickness,

calculated with *pect to the maximum sped c2MeHc, in exit

section will be less than the examined integral.

Let us introduoe the following designations:

I.j

H2 - th2 e peiee oF2ecanlinteote ecin h

C0

1 C.,tiF

1W**A 2: -L I .

F2 CUMUCF 2
0

H-2the perimeter of the channel in the outlet section; p-the
coefficient of the conformity between the introduced values;

with p01 = P02 maKC =1; if POI > P0o2 rlaKC' then ý, > 1; for
instance, for the turbulent velocity profile and P02 mati{cIPO = 0.95

=1.2; for 0 2Cp 1 = 0.9 ~' 1.57.

Thus, to estimate the int'ýrnal difiuser losses according to

the known velocity profile in the outlet section, we will obtain

the following relation:
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Having replaced here'"' 2' by Ihe common thickiess o£ the energy

loss, we' obtain:

Formula (2-24) allows, on the basis of experimental ,data,
dlvidiný the total losses in diffusers into internal losses and
losses with an dutlet velocity, since it uniquely connects the'
outlet normal velocity distribution with coefflcieits n and
Moreqver, this formula solves the problem about the theoyrtical
calculation of total losses in diffusers.,

From (2-24) it follows that

In such a recording formulas (2-214) and (2-24a) are valid.

without any restrictiohis imposed on the flow pattern in the
diffuser.

From the given analysis it is ctear, that the e:cperimental

estimate of the internal losses, taking into account the velocity
flow component, is a sufficiently prolonged and complex operation.

p Because of this, in experimental practice estimates from mean
flow velocities are more widespread with an arbitrary determination
of the coefficient of internal loss~es 4 according to relation

- - ( 1.,"" 4... (2-25)

k It is natural that the results of the calculation accdrding
to formula (2-25) cannot be compgred with results of the calcu-
lation obtained by theoretical methoCs, which consider the form of
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the normal velocity distribution in the outlet section. Because

of the aforesaid, more convenient for such comparisons is the

total loss factor 4n' which we will subsequently use. Furthermore,

from the experimental values of magnitude n it is possible to

find the relative arbitrary areas of the boundary layer dis-

placement T'2 in the outlet section of the diffuser, since between

n and A*2 there exists a unique dependence which results from

formula (2-17).

Actually,

Let us find the ratio of velocities c 0 /cI from the equation

of continuity written for the minimum and outlet sections of

the diffuser.

With a uniform velocity field in the inlet section, we will

obtain:

Further from the average speed in the outlet section c2cp

let us turn to the arbitrary velocity c0 and arbitrary effective

output area F23€, considering the velocity distribution c. over

this entire area aniform. Then

PAF 'OF-- 2D. (2-26)

If we introduce into examination the arbitrary area of

displacement, equal to

- c dF

0
then

=(2-28)

72



In the case when in the exit s~ction of the diffuser there

is at least one point where the preosure of full stagnationj P02 MaKC P 0O = MaKC' formula (2-27) determines the common

area of displacement 6* (if the density ratio is considered to2
1 be o'qual to unity).

From expressions (2-28) and (2-26) we will obtain the following
relation, which connects coefficient n with the area of dis-

placement 2
1 2 *

ny=---2= L . (2.29)

Formula (2-29) is valid for any diffuser channel and reduces

the calculation of the total loss factor to the problem of

the determination of the arbitrary relative area of displacement

M*. When P02 MaKC = P01 E*2 = 6*2 and the problem is reduced to

the calculation of the integral area of displacement in the outlet

section •*2 on the basis of the common relations of the boundary

layer, and equation (2-29) assumes the form:

•= [p_•2 I(2-29a)

11 (1 -T%)'t

" Expression (2-29a), obtained by A. S. Ginevskiy [18, 95],

is valid for nonseparable flow with the existence of the potential

nucleus in the outlet section of the channel. If such a nucleus

is absent, then

P22 
(2-29b)

where i 1 - the coefficient of cor:-ection dependent on the

degree of the loss of pressure of full ztagnation in the range

of maximum delivery speed.

The given formulas (2-29) and (2-29a) make it possible, on
the basis of simple tests, to obtain vast test data on integral

thicknesses of the boundary layer and explain the possibility
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of the use of a theory for the boundary layer calculation in

diffuser channels at various positive pressure gradients.

Let us show further that the use of the integral method does

not only make it possible to obtain coefficients 4n and i,, but

it also allows finding the loss of *.-essure of full stagnation a0'

For this purpose, by using relation (2-18) and keeping in mind

that along the diffuser the mass flow does not change, let us

record the equa'iity

-GAF 1 A! --- AF2 p02q

where P 0 2 and q 2 - values averaged over the flow, and A - the

coefficient dependent on properties of the working

medium.

Hence, since for the insulated system T0 1 = T02,

Pq- p0q2F,

Let us introduce the average static pressures p1 and P 2 into

the last equality in the following manner:

...... po F2 po0 q2  (2-30)

P s P 'st Ps

Magnitude p0 /p is uniquely determined by the dimensionless
velocity X [25]:

-= 2-- 12 ) (2-31)

Then from formula (2-30) we will obtain the equation for

determining the average flow velocity at the known values of

pressures p1 and P2 :

•t 1r 1 t . U k- 1 (2-32)
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For the facilitation of the calculations, Fig. 2-7 gives the

dependence of the complex ,%[12.- 4 I on velocity X.

112~

, T22 Fig. 2-7. Determination of
10! Lthe mean flow rate in the
o,• Li:foutlet section of the diffuser.

' .9
',::g i.'

As a result, having calculated from equation (2-32) the

velocity X2, according to tables of gas-dynamic functions it Js
easy to find the pressure ratio p 2 /P 0 2 and, consequently,

coefficient a0 k

ao P....+. 2 (2-33)0 Pat "001 k +} I;

The examined methods of determining the basic coefficients

which characterize the operation of diffusers and the systematic

considerations must be considered with the setting of the
experiment. Specifically, the system of measurements should

provide a reliable determination of the flow of the working
medium, initial parameters and pressure in the outlet section of

the investigated diffusers.

Besides the indicated basic values, it is extremely advisable

to provide the possibility of direct measurements of static
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pressure in the inlet section of the diffuser and provide the

traverse of the outlet velocity field.

The diagram of the steam experimental circuit of Moscow Power

Engineering Institute [MEI] (M3H) given in Fig. 2-8 satisfies all

the requirements indicated above most fully. Steam to the instal-

lation will be fed through the valve [PZ] (m3) with by-pass

value [PB] (mS) and small tank 1. Receiver 2 and straight

section 3 serve for the damping of the flow. For the purpose of

measuring the pressure and temperature along the damping section,

measuring ports are provided. The diffusers to be investigated

are fastened to flange 4 between the damping section 3 and

operating section 5. In the outlet section of the diffuser there

is a measuring adapter connected with a traversing probe 7.

After the operating section the steam enters into the exhaust

section, where there is the throbile valve 6, with the help of

which it is possible over a wide range to change the counter-
pressure P2.

The exhaust steam enters into the condenser whence the
condensate being formed is evacuated by the pump [EKN] (3RH) into

the measuring tank. The small area of cross section of the
measuring tank allows with high accuracy the measuring of not
only large bAt also low flow rates of the steam. From the

measuring tank the condensate is dumped into drain tank. The
draining of the damping and operating sections is accomplished
periodically, and drainage is dumped into a small calibration

tank 8 and further into the condenser. The small tank has both
vacuum and atmospheric drains. To control the drain there are
valves 9 and 10, and a checking of the level is accomplished with
the help of gauge glass 11.

The examined diagram allows conducting an independent change
in the X. and Re. numbers in the following ranges: Xi = 0.1-1;

Re = 3.10 4-5105.
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Fig. 2-8. Diagram of the steam experimental
circuit of the MEI.
KEY: (1) Selected steam; (2) Bet, 250OC;

(3) To condenser.
Designations: nf = by-pass valve; n3 = valve.

The photograph of one of the open-type air test stands

utilized at the MEI is given in Fig. 2-9. In this case all the

measurements are considerably simplified. However, the accuracy

of determining the flow decreases, and the possibility of the

independent simulation of the flow according to M and Re numbers

is eliminated. The latter shortcoming can be removed at instal-

lations with a closed system of exhaust where it is possible

to change counterpressure, but in this case the range of' the
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- Fig. 2-9. Experimental
installation for investi-

R gating conical diffusers.

possible changes in regime parameters provep to be considerably

narrower than that during steam tests.

§ 2-4. Diffuser Losses and Their
Calculation r

The flow pattern in diffuser elements is quite complex, wh.Lch

substantially impedes their analytical calculation. As a result

until now the most reliable proves to be not the calculated but

experimental means of the determining the losses.

However, for an analysis of experimental data and the

construction of approximation calculated circuits, it is advan-

tageous to discuss in more detail the mechanism of the formation

of diffuser losses. By examining the latter as devices for the

effective conversion of the kinetic energy of flow into potential

energy, it should be noted that the perfection of this conversion

depends both upon the internal losses directly on the diffuser

element and on the magnitude of the kinetic energy of flow

leaving this element. In general the internal losses in any

channel are determined by frictional losses and losses connected

with the formation of separation zones. With nonseparable flow

a unique source of the losses is internal friction. For flow

with the potential nucleus these losses are usually 4eterwined

according to the integral boundary layer characteristics ip the
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final cross sections. Using this method, it is possible to

obtain comparatively simple calculation formulas for diffusers.

Before turriing directly to the derivation of such formulas, let

us explain the probability of nonseparable flow in diffusers.

Taeoretical investigations in the indicated direction,

generally speaking, are inconsistent. Thus, according to calcu-

lations of'N. A. Slezkin [93],S. M. Ta'rg [99] and 0. N. Obchinnikov
[82] even with laminar flow conditions in the boundary layer the

4I
existence of nopseparable flow with expansion ratios n < 2 is

possible. At the same time an analysis conducted by G. M. Bam-

ZelikoVich [4] for the turbulent layer showed that at a small

intake section before. the diffuser separation should occur
:directly in the throat, if the angle of opening a > 60. Certain

clarity into this question has been introduced by the work of

Kline [142, 143) who generalized a number of test data and showed

,on this basis that the range of the limiting geometric parameters,

which separate the nonseparable flow from the separable, in flat

and conical diffusers is quite significant and actually encompasses

the basic groupiof diffusers used in technolo.

For confirmation :Qf the aforesaid, plotted in Fig. 2-10 is

thýe limiting curve 1 with the utilization of data [142, 143],

which divides the whole range a(n) into two parts: nonseparable

diffusers (range I) and separable (range II); numerals at the

experimental points correspond to values of the coefficient of

the recovery of energy. Here data obtained at MEI are plotted.

The given experimentel results establish a close connection

between the expansion ratio n and the maximum angle of opening of

the diffuser a. With an increase in the expansion ratio for

obtaining nonseparable flow it is necessary to substantially

decrease the angle, and with an increase from n = 2 to n % 4-5

ar.ac drops from 240 to 90. Such a connection between the

lmniting parameters is conditioned by the opposite effect of theIf I

boundary layer on the flow in the potential nucleus of the flow.
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Fig. 2.10. Line of limiting parameters of
nonseparable flat and conical diffusers.
1 - depend~once a = f(n); 0 - MEI experiments;
A - data of Kline; 2 -dependence n3 = f(n).

This effect can be taken into account if we introduce into the

examination not the geometric but the effective expansion ratio

of the diffuser determined by relation

It I• _ 2 , (2:-34)

2Fwhere, as before A* 2 - the area equivalent to ,he arbitrary dis-

placement thickness in the outlet section, and F 2 - the geometric

arc a of the outlet from the diffuser.

By analyzing data in Fig. 2-10 now, it is possible to note

that at the large angles of opening and small expansion ratio the

length of the diffuser proves to be small. As a result the

geometric expansion ratio almost coincides with the effectiv'..

An increase in the geometric expansion ratio n with a

simultaneous decrease in a gives rise to more significant

deviation of n from n.

Since the drop in velocity in the nucleus of the flow is

determined by the effective value of the expansion ratio, along

curve 1 (Fig. 2-10), which corresponds to the limiting drop in
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velocity, which ensures the nonseparable flow, n should be

changed within comparatively small limits. Actually, by calcu-

lating for the diffusers in question from relation (2-29) the
displacement thickness in the outlet section, we obtain along

the entire curve value n. 1.8-2.5 (curve 2).

In other words, the nonseparable flow in the diffuser proves

to be possible only when in the nucleus of the flow the ratio

of velocities co/cI < 2.5.°0 1
By estimating as a whole the given results, it is necessary

to note that the nonseparable flow is possible both at wide anglesI of opening a and at large geometric expansion ratios, if, of

course, with this the correlation established by curve 1 in Fig.

kL 2-10 is not disturbed.

Consequently, the question of the theoretical estimate of

frictional losses in diffuser elements represents an entirely

specific interest. Considering the aforesaid, let us examine this

problem in more detail. Let us assume that as a result of the

boundary layer calculation, known to us are all the integral

thicknesses in the outlet section of the diffuser, and at the

inlet to it the boundary layer is absent. Then according to the

physical sense of value 6*** losses of energy in the outlet section

is expressed by relation

N, 2_ 2f.CO (2-35)

[ iHere and C2Ma~c - density and velocity in the nucleus of

the flow at the outlet from the diffuser, and 62*** - the area of

the loss of momentum in this cross section.

The magnitude of kinetic energy H0 at the inlet section of
the diffuser at the uniform inlet velocity field and mass flow m

is expressed in the following manner:
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I 2 314 = "•'c -.- p~cI F,..

Then according to the definition the coefficient of internal

losses will be equal to:

A it €'!P2  ..rla,,(d ;:7 * F2

For the connection between maximum velocity c2MaK• in the

outlet section and velocity cl, let us use the equat'ion of con-,

tinuity and let us introduce into the examination the effective

area F' 2 30, i.e., the area necessary fop the admission of the

assigned flow at maximum velocity c2MaKc and density in the center

P2:

P1C1P PA-CP12cp' k~ ucb~

Hence

and the fo4ula for estimating the doefficient of internal losses
4 takes the form:

13 (2-36)

Taking into account that n' = n(l-:T*), let us present (2-36)

in the following form:
! p, •**

- P- n2-(I. --* 2 )3 (2-36a)'

Here 2 6*** 2 /F 2 - the relative area of-the energy loss,

and -- 2 = 66* 2 /F 2 - the relative area of the displacement thickness.

We arrive immediately at expression (2-369) As a result of

the common solution of equation (2-21l) and (2-29) when T 2 2

and T***2 = E***2'

Formula (2-36a) was derived by A. S. Ginevskiy [18] and is

generalized by him for flow with heat exchange and flow with the

initial boundary layer.
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In the latter case when Pl =, P2 relation,(2-36a) assumes the

forM:

P -(2-36b)

where the subscript "I'' refers to values at the inlet'section.

The1 obtained relations solve the problem of -. timating the

c6efficient of losses in'diffusers 9n the condition that velocity

c determined from the equation of continuity, coincides I

'with the velocity co, equival~nt to the enthalpy droph 0 (see

Fig. 2-4).

The indicated condition is reduced to the equality of'pressures

of'full stagpation inthe. inlet section p0 1 and maximum pressure

of full stagnation in the outlet section of the diffuser P0 2.

Otherwise at P02MeRd < p 0 1 ,the calculations according tb formula

(2-36a) suibstantially understate the magnitude of the coefficient

of internal losses. .

,Leý us note that the drop in pressure of full stagnation in

the nucleus of the flow is not unique and, perhaps, even not the

decisive cause for the divergence of calculated and experimental

values. More, erious'is the absenceoof reliable test data suitable

for a comparisori Even for the simplest conical diffusers in the

majority there are given experimental values of coefficients of

internal losses obtained not 'allowing for the flow velocity

component, which greatly overstates the magnitude 4 and does not

allow the comparing of these data with results of the calculation

according to the theoretical methods based upon integral thick-

nesses of che boundary iayer. For an example, let us say, that

in a detailed investigation of conical diffusers the following

results werp obtained by us. The diffuser with a flare angle
S= 70 and expansion ratio n = 3 and A1  0.8 had a total loss

factor of 4n = 16%. Its internal losses were with averaging,

not allowing for the velocity flow component, e 9.5%, and
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taking it into account, 5.8%. Correspondingly, losses with the

* outlet velocity were in the first case 6.5, in the second, 10.2%.

Above we already indicated that having reached the solution to

the problem of the advisability of the utilization of a certain

method of calculation, it is necessary to proceed from the

comparable total loss factors.

Leaving aside the systematic side of the question, for an

agreement' of calculated and experimental data when P02maKc < POl

it is possible to introduce an additional coefficient * 2 dependent

on the degree of the loss in pressure of full stagnation in the

nucleus of the flow or use the arbitrary boundary layer character-

istics A* and A*** calculated with respect to the arbitrary

velocity co. In this case instead of (2-36a) we will obtain:

3_ _7 2 E 2.ý (2-37)

Formula (2-37) generalizes the expression (2-36a) for the

general case of nonseparable flow of the flow in channels.

Inequality P02MaKc < p0 1 takes place at the Joining of the

boundary layer. More disputable is the question of the existence
of the indicated inequality in the case when the normal velocity

distribution at the outlet from the diffuser in the cross section

has a clearly expressed section of constant velocity (nucleus

of the flow). The accepted division of the examined region of

flow into the zone of the boundary layer and potential nucleus

with formal approach automatically gives rise to the constancy

of the pressure of full stagnation in the nucleus of the flow.

One should, however, keep in mind the asymptotic nature of

the normal velocity distribution in the profile of the boundary

layer and the conditionality of the determination of its outer

edge.
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If for problems of the external flow of bodies when the

region of the boundary layer is incommensurably smi.l as compared

with the external flow, the noted conditionality entirely

permissible, then in conformity with the internal problems, where

the boundary layer occupies a greater part of th, Clow, it is

hardly possible to speak about the existence of ýe potential

nucleus in the complete sense of the word. The ?resence in the

central region of a diffuser channel even of a .ry small eddying

of the flow can be the cause of the drop in p~e..,r-ure of full

stagnation.

The expressed considerations are confirm.i by numerous

experiments by the determination of losses in different kinds of

channels and diffusers. Thus, during tests of turbine cascades

the losses are concentrated not only in the zone of the edge

trace, but they exist outsiae !t where the fteld of average

speeds is uniform [25, 26, 27). The level of losses here is

determined basically by the t;urbulence level of the incoming flow.

The same picture is observed in diffuser channels. For example,

in Fig. 2-11a relative loss in pressure of full stagnation in

the center of the conical diffuser at various expansion ratios

and velocities at the inlet X1 is plotted. The normal velocity

distributions in the outlet section corresponding to these curves,

given in Fig. 2-11b, show that the Joining of the boundary layer

occurs at n > 3.5, and the pressure loss p0 1 is noted already at

n > 2.5. Subsequently, this reduction becomes sufficiently large

and increases with an increase in the dimensionless velocity X1.

The noted fact of the drop in pressure of full stagnation in

the nucleus of the flow in unjoined boundary layers substantially

complicates the theoretical methods of the calculation, even if

all boundary layer characteristcs in the outlet section of the

channel are known. In many cases the ratio Ap0/p 01 is small, and,

for example, Reno and Johnston in work [89] consider it possible

for practical calculations to disregard the magnitude AP0 = P0 1 -

-P 0 2.
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I0 Fig. 2-11. Relative
o,~ drops in pressure of'

S..full stagnation in
conical diffusers a)
and the normal veloc-
ity distributions in

-- some channels b). 1 -
1 ,fa= 70; n = 2; X = 0.5;

0,5 2- a = 70; n = 2.0;
X 0.8; 3 -a = 70;

n =3.0; X =0.5; 4 -
-a11 = 70; n = 3; X = 0.8.
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Nevertheless, until now in practice of engineering calcul.-iona

for estimating the 'coefficients of lospes in diffusers either

test data or semiempirio-al methods have been used. To a consider-

able degree their distribution is explained by the simplicity of

design equations and by the apparent universality, while the use

of the formulas of the type (2-36a) requires sufficiently complex

calculations for the determination of the integral boundary layer

thicknesses, and the region of the use of the obtained results is

limited by cases of nonseparable flow.
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Because of this let us examine the most widespread method of
the calculation of losses based upon the separation of internal

losses into losses of friction and expansion. In this method in

the calculation of frictional losses, accepted as the initial is

the well-known hydraulic formula [34, 54].

pc2 LAV ýj '-b- (2-38)

whichidetermines the magnitude of losses on the section of tube

with length L and diameter D with stabilized flow. Such a flow
takes place at a considerable distance from the inlet section

where the joining of the boundary layer occurred, and the typical

turbuYpnt normal velocity distribution was established. As a

whole it is possible to consider that formula (2-38) gives good

agreement with the experimental data in the removal of the examined

section at 20-30 gauges from inlet section.

Coefficient gl' which enters into expression (2-38), depends

upon the ReD number and at ReD - 106 is most frequently used in the

following form:
tj - 0,316 Re il'

Let us use formula (2-38) for the calculation of the conical

diffuser. For this purpose let us divide it into an infinite

number of cylindrical sections with length dx, and let us record

formula (2-38) for an infinitesimal section:
pc' dx

d(Ah) =t t,-•.-- ( 2-38a )

Here p, c and D - current values of density, velocity and

diameter along the x axis.

Having integrated expression (2-38a) over the entire length,

we obtain the complete magnitude of frictional losses in the

diffuser. Preliminarily, however, let us establish the connection

of diameter D with coordinate x.
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From the geometric relations

- D- D,

and

dx dD (2-39)

2 sit -

For an incompressible fluid (p = const) the connection between
the velocity and diameter is established from the equation of

continu!ty:

C"- i4, (2-39a)

Having substituted (2-39) and (2-39a) into (2-38a), as a

result of integration from D1 to D2 we will obtain:

IDa42
2Ah t--" . (2-40)

2 sin-•-

At large values of the ReD number coefficient Ei weakly depends

upon the diameter and can be carried out from under the integral.

Then

'ITP -2" 2sina /2

and for the coefficient of. losses ý Tp let us arrive at the following

expression:

* si-T a (2-41)
2

The calculation of losses for the diffuser, the geometric

parameters of which are given in Table 2-2, gives the following

results.

The computed values prove to be quite different from the test

data. Howeve', in this case their agreement should not take place.
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Table 2-2.

1=30 .5 2,0 2,5 3,0 3,. 4.0

4 o9,31 1,41 1,50 1,68 1,78 1,92 2,42
4W1or.M, O/ I 3,2 1 5,8 7:5 1 10,2 11,5

*Here values of the losses obtained not allowing
for the flow velocity component are tziven.

In fact, with the derivation of formula (2-41) the coefficient

of friction is taken as constant not dependent on the expansion

ratio of the diffuser, and for its computation expression (2-38a)

[34, 54], obtained for the basic section of the circular pipe, is

used where there occurs the established normal velocity distri-

bution in the cross sectionand the joining of the boundary layer,

which is developed on walls of the tube, occurred.

As eas already indicated above, the cross section where

Blasius's formula is used is located at a distance of 20-30 gauges

from the entry into the tube.

At the same time, in analyzing the flow in the diffuser, ore

should note that on its greater part at n < 3.5 and angle a ' 7'
the Joining of the boundary layer does not occur (Fig. 2-13). In

other words, when in front of the diffuser a long inlet section
does not exist, the flow in it is similar to the flow in the

initial section of the tube.

Furthermore, it is necessary to show that the normal velocity

distribution in the initial section of the tube is substantially

distinguished from the normal velocity distribution in its basic
section for which the formula (2-38a) is obtained. Therefore, the

utilization olf this formula for the calculation of frictional

losses to a certain extent is equivalent to tht determination of

losses in the initial section of the tube accordirng to the relations

89



Il
valid for the basic section. It is natural, therefore, that

frictional losses calculated from formula (2-41) prove to be

substantially smaller than the experimental values. This difference

can be decreased if into expression for the coefficient •l we

introduce as the determining dimensioh not the hydraulic diameter

but the boundary layer thickness. In this case, however, tl

becomes the velocity distribution function along the axis ofthe

diffuser, i.e., the function of the expansion ratio of the diffuber

n, and expression (2-40) even for a = const is integrated in a

considerably more complex manner.

In connection with this in the calculation of losses according

to the indicated procedure, it is necessary to introduce into the

examination even with nonseparable flow the so-called "losses" of

the expansion Ah whose ratio to the kinetic energy at the inletp

into the diffuser determines the second component of the coef-

ficient of internal losses - the linear coefficient of thermal

expansion 4 . All additional losses not being considered by
p

formula (2-41) are included here.

By estimating the physical essence of losses of expansion,

A. S. Ginevskiy [17] connects them with the deformation of the

velocity field in the cross section of the diffuser; I. A. Bindler

[7) attempts to explain their increasing turbulence in the course

of the flow; N. D. Gryaznov refers these losses only to vortex

formation, and in work [35] explanations of losses of expansion

actually are not given.

All the expressed points of view give a partial concept about

the losses of expansion, but it hardly is worth searching for an

explanation of the physical essence of losses being determined

by the difference between the experimental values of internal

losses ý and losses calculated from formula (2-41),, since the

latter, as already mentioned, cannot correctly esti:natp the order

of the frictional losses.
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As a result 'it has been accepted to define all the losses

unaccounted fot in portions of losses with sudden expansion,

considering that

VI (i - (2-42)

The proportionality factor, which obtained the name of the

coefficient .of the "softening of"impact," is considered usually

the function only of angle a. According to data 134, 54] its

value is weakly changed with a change in the expansion ratio n

and barely depends dpon the regime parameters.

Considering the small absolute value of frictional losses

calculated from formula (2-41), in a number of cases it is

advantageous not at all to separate them, estimating internal

diffuser losses according to relation [54]:
1

Ui

The coefficient C entering here is determined on the basis
A

of test data and inc.udes both losses to expansion and losses of

¶ friction. Xts values, depending on angle a for flat and conical

diffusers, are given in Fig. 2-12.

It is necssary to note that formula (2-,)2a) is sufficiently

general and convenient for utilization, srnvc it allows calculating

the value of the losses both in separation and nonseparab~e

diffusers. Essentially we are dealing here with the .. i. ....iricai

method of the estimation of losses. Because of to tYne r-.g of

use of formuli (2-42?) is limi%,d, generally speaking, by those

diffusers for which the tnperimental dependence A (a) is obtained.

* • ° However, tie simplicity of the method 4nd ab.3ence of reliable

theoretical solutions led to its widespread use for various classes

'of diffusers. This method has been developed most fully in works
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Fig. 2-12. Dependience of coefficientA
upon angle a. 1 - conical diffusers (• 54];
e - diffuser of square cross section -a54o;
0 - experime ntal data of L. G. Golovina [21].

[34, 1141, where in general it is proposed to estimate losses

according to the following relations:

~Jsin -2

CP (a) (2-144)

Here a - the local angle of the diffuser; 0(a) - the local

coefficient of softening of thoc impact; f = F/F ratio of flowing

area to area at intet into the diffuser.

When a = const these formulas convert into the common

expressions (2-141) anj (2-42) examined above.

For the solution to the problem of the legitimacy of the

expansion of the range of use of the initial semiempirical method

of calculation, it is advisable to conduct an analysis of the

history of internal diffuser losses.



In general losses in the diffusers are deteiinined by regime

and geometric parameters. Therefore, for conical and flat

diffusers

=(M, Fe, a. 1). (2-45)

Having expanded expression (2-115) in series with respect to

parameter 1/n and having been limited to a square term, we obtain:

+ (2-~46)

For very small expansion ratios the diffuser losses coincide

in practice with losses in the tube equal in length to the diffuser

and with diameter D1 , equal to the inlet diameter of the diffuser.

Therefore, at n, striving for unity, losses ý asymptotically

approach losses in the tube, i.e., do not depend upon n. The

second asymptote for expression (2-'46) takes place in the case of
n -, oo.

Therefore,

()_10; (2-47)

On Jn-bo (2-47a)

Condition (2-47a) is fulfilled automatically, and from

relation (2-47) it follows that

I2

As a result dependence (2-46) is converted:

•' :=9° [(' - ?'-L ?o -'") ,o" "f--l~ a ?o,Jj
S32-48)

S~93



With respect to coefficients 4i let us note that they should.

be functions M, Re and angle a. At the same time, considering

the uniformity of values 00 and 0., it is possible to expect the

comparatively weak dependences o. their ratio *2/'0 upon the

indicated parameters. Further, for the convergence of series (2-46)

the fulfillinent of the condition 02/00 < 1 is necessary. In this

case, by using experimental data as a basis, it is admissible,

apparently, to consider the ratio *2/'0 closer in magnitude to one

than to zero. Then, disregarding the second term in the parentheses

as compared with the first term in expression (2-48), we obtain:

-(2.49)

-. (A ?&)

By comparing formulas (2-49) and (2-42a), we see that in

structure they prove to be similar and express essentially the

same losses. However, the presence In expregsion (2-49) of

coefficient A, generally speaking dependent on the geometric and

regime parameters, gives the basis to assume that between values

00 and 4) a certain distinction should exist.

If in formula (2-49) %0 is a function of only M and Re numbers

and angle a, then coefficient 4A must, evidently depend upon the

expansion ratio, whereupon this dependence will be determined

by the value of coefficient A, since from a comparison of

expressions (2-42a) and (2-49) it follows that

A 2o

Since the ratio €2/€0 = A <1, withan increase in the expansion

ratio 4) should somewhat decrease.

The data given by I. Ye. Idel'chik [54] with respect to

coefficient 0p indicate that its value depends upon n and in a

certain angular region decreases with an increase in the latter.

The weak dependence of 4) upon n indicates the fact that the value

A is actually close to one.
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The analysis conducted here does not pretend to be strict and

is oriented basically on the qualitative investigation of formula

(2-42a).

Returning now to the question of the possibility of the

distribution of the basic dependence (2-42a) on the calculation

of more complex diffusers, it should be noted that in this case

it is not possible to consider functior 0 to be dependent only

on the local divergence angle a.

In fact, by turning to circular and curvilinear diffusers

and conducting a similar analysis, it is easy to note that in this

casB the coefficient of the softening of the impact depends not

upon one angle a, but also on a number of other parameters which

determine the geometry of ti. fuser, the effect of which is

studied insufficiently. True, the degree of the effect of these

additional parameters can be noticeably decreased by means of

the successful selection of the so-called "equivalent" angle,

but in this case there is always place for the known arbit-ariness

in its selection.

Furthermore, in the examined works [34, 54) essentially absent

are the experimental data which characterize the dependence of

coefficient 4) upon the regime para., aters, which does not allow

with sufficient basis considering this. dependence to be self-

similar with respect to the numbers 14 and Re.

Moreover, the test work conducted at MEI by L. G. Golovina

[21], with an independent variation in Mach and Reynolds numbers
showed that the indicated parameters decisively affect the value

of coefficient 0 A Experiments were conducted with conicalSA"

diffusers with an expansion ratio n = 3 and 4 and angles a = 4,
7, 10, 15, 20 and 300. The velocity X1 at the inlet was changed

from 0.3 to 0.98, and number Re - from 5 x 10 to 8.105.
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The results of the experimental determination of coefficient

*A at moderate velocities (XI < 0.6), giveq in Fig. 2-12, indicate.

that even in the subsonic range the, change in number ReI within

limits of (5-8) x 105 give rise to the change in coefficient *
2-3 times. With an increase in the initial speed (at X 1 > 0,7)

the effect of the Reynolds number on value 0 proves' to be even
I A

more significant. Furthermore; it should be noted that the

dependence * (a) does not consider the conditions' of thý entry

and initial turbulence level, and these factors under specific
conditions can decisively change the diffuser performances.

The given considerations to a. considerabla degree lower the

value of the procedure in question and do not give basis for its

formal distribution beyond the limits of those .conaitions under

which experimental dependence (ca) is determined. In this
A

connection it is advantageous to turn to the calculation met.iod

of frictional losses for the purpose of its possible refinement.

As was already mentioned, the main disadvantage of formula

(2-38a) is that losses in an elementary cyl~ihdricaý section with-

open boundary layers were estimated according to the ccrrelaticn

valid for the section with the closed boundary layers. Therefore,

by preserving the whole methodology of theý derivation of constant

given above, let us compute the losses in the elementai'y cyliiirical

section dx, on the basis of the theory of the boundary layer. In

such a section the density and velocity can b4 considered to be

constants, and the frictional losses will be equivalent to the

change in the area of the energy loss. Therefore, tai this case

d (Ah)-= 2 pc3d***. (2-50)

If we recognize that for the elementary section of the

cylindrical tube losses can be expressed in terms of the area 6***

according to formula (2-50), then a further derivation will be

nothing different from that examined above; it is presented in

the works [34, 54].
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Let us pass in relation (2-50) to. the dimensionless quantities.
Using as scale Pactors density p2 ' maximum spebd C2MaRc and

integral arzea 6*** in the outlet section of the difruser, we will'

have:

(A) -2 -- .3 (2-50a)

i . 5

The integral of expression (2.50a) gives the absolute value

of frictional losses:

P2C- 2c d; . (2-51)
2 P2

* 0

Hence, for the coefficient.of losses we will obtain the

following formulg:

1* ,/ "(1 -**) .2- ." 3 -"d * (2-52)

Relation (2-52) according to-the sense of the conducted

derivation, should be identical to expression (2-37), which is
pdss'ible under the condition

-'I

, z -- c- d" (2-53)J P2 : \AaK
1* 0

If the considerations giver above are conducted on the basis
of the arbitrary area of the energy loss A*** and the arbitrary

area of displacement A*, or if we earlier' specify. tlhat flow with
the potential nucleus is examined, then relation (2-52) will be

identical with A. S. Ginevskiy's formula and the right side of
formula (2-L34). This id~ntity gives rise to the condition , = 1,
'i.e.,

.Spc3- A*** (2-541)

0
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In other words, with a correctly calculated boundary layer

equation (2-54) should become identical. Hence the reverse

sufficiently tempting prospect follows: to use equation (2-54) for

the boundary layer calculation. It is understandable that the

integral areas A*2 and A*** 2 , found from relation (2-54), should

coincide for plane and axisymmetric diffusers with analogous

values found from equation (1-38).

The comparison given below (see Chapter Three) for conic

diffusers confirms well the aforesaid and gives a basis for wide

utilization in the calculations of equation (2-54). The found

integral areas agree well with results obtained by direct

measurements of the boundary layer in the outlet sections of the

diffusers and allow with satisfactory accuracy the designing of

nonseparable conical and annular diffuser. w'ithout the attraction

of coefficients of correction and additional losses of the type

of losses to expansion. The degree of accuracy of such calculations

can be Judged according to data given in Chapter Three (see Fig.

3-31), Chapter Five (see Fig. 5-11), and tables placed in the

appendix.

§ 2-5. The Influence of Conditions of the
Inlet on the Gas Flow in Diffuser Elements

The question of the influence of the uniformity of the

velocity field at the Inlet into the diffuser on the gas flow has

been studied comparatively weakly. However, in a number of cases

it proves to be possible to indicate the nature of this influence

and for some problems to obtain even quantitative estimates.

From a fundamental point of view the greatest interest is

a comparison of three possible cases: aniform, convex and concave

in the center section of the velocity profiles. These three

characteristic input velocity profiles, studied by 0. I.

(vchinnikov, are given in Fig. 2-13 [82]. From a practLical point

of view the greatest interest is in the convex profile of type 2,
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... Fig. 2-13. Velocity profiles
at the inlet into the dif-

, 2 1 .. Y fuser [82]. 1 - uniform; 2 -

0 .... 
7 .... . convex; 3 - concave.

I .. . 3

since this form of inlet nonuniformity takes place when before the
inlet into the diffuser element the diffuser or gradient-free

section are located.

It is not difficult to show that the indicated nonuniformity

shculd lead as compared with the uniform field of velocities, to

a substantial increase in losses in diffuser elements and causes

an earlier boundary layer separation.

Actually the presence before the inlet into the diffuser of

considerable rectilinear sections gives rise to a braking of the

flow, and before the diffuser there is already located a more or

less developed boundary layer whose growth in the subsequent

diffuser section occurs more intensely than at zero thickness of

the layer at the inlet (i.e., at a uniform velocity field). As

a result an increase' in losses to friction takes place, and the

possibility of nonseparable flow is sharply decreased.

The aforesaid is confirmed well by curves given in Fig. 2-14
[54]. Here as a characteristic of nonuniformity has been accepted

the deviation of maximum velocity on the axis from the average

flow rate k = c aKc/Ccp, and depending on this parameter and

flare angle of the conical diffuser a curves of correction factor

K = C Hep,/pae, which characterizes tne degree of increase in
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Fig. 2-14. Correction coefficient K, which con-
siders the nonuniformity of the velocity field at
the Inlet into the diffuser according to I. Ye.
Idel'chik [54].

internal losses 4 with the nonuniform velocity field at the inlet

with convex profile as compared with the uniform profile.

From the curves it is distinctly evident that in the field

of narrow angles there takes place a steep increase in factor K,

which reaches a peak value at a = 5-60. A further increase in

: the angle gives rise to a reduction in value K, and at a z 250

the influence of the inlet velocity profile on the diffuser

characteristics proves to be insignificant.

The indicated nature of the change in the correction coef-

ficient for the convex -'elocity profile at the inlet is regular.

At small angles a and the uniform inlet velocity field on the

entire length of the diffuser, nonseparable flow takes place.

The braking of the flow in the boundary layer of the inlet section

leads (depending on the length of this sectilon) first to an

increase in the boundary layer loss of the diffuser and then to

the emergence of the flow separation. The peak value of factor

K corresponds to the case of transition from nonseparable flow to

flow with separation. In this angular region a almost a crisis

increase in losses takes place with an increase in the nonuniformity

in question.
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With the emergence of separation the influence of the inlet
nonuniformity noticeably decreases, since in this case the

initial level of losses proves to be high, and a certain dis-

placement of the separation point of flow with an increase in
factor k has a slighter effect the relative increase in losses.

Finally, at wide angles (a = 15-20°), when separation occurs

near the inlet section, the nonuniformity of the inlet velocity
profile can affect basically only the intensity of eddy currents.

Since for such angles losses are great (30-40%), the relative

influence of nonuniformity becomes small.

For an illustration of the aforesaid, Fig. 2-15 gives curves
of the change in losses depending on M number for two conical

diffusers with angles a = 6 and 200 and a radial diffuser tested
at the uniform velocity field (curves 1, 2, 3) and the input

nonuniformity characterized by a convex profile with factor

k = 1.16 (curves 4, 5, 6).

0.8----

" A -/ Fig. 2-15. Change in the coef-1A6' .- -j ficient of losses g depending

4,I' I on M number with a uniform and
S.... arabolic inlet profile. 1 and

conical diffuser, a = 60,
n 2.34; 3 and 5-conical
diffuser, a = 200, n = 2.34; 2
and 6 radial diffuser.

r14 930OJ 0.38 0.46 0,S4

If for a diffuser with angle a = 60 the transition to a
nonuniform velocity field led almost to a triple increase in
losses, then for a diffuser with angle a = 200 this increase was

a total of 60%. It is necessary to show that the absolute increase

in losses in both cases compared was noticeable. For a = 60
this increase was A4 = 50%, and for a = 200 A4 = 15-25%. An
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analogous influence can be noted for the radial diffuser where

the transition to the nonuniform velocity field increased losses

by 40-50%.

Since parabolic nonuniformity examined here is defined

basically as the length of the inlet section located in front of

the diffuser, in some problems it is advantageous to characterize

it by integral boundary layer thicknesses at the inlet into the

diffuser, since connected with this are the probability of the

emergence of separation in it and, as a consequence, a drop in

efficiency.

For representation about the degree of the influence of the

inlet boundary layer on the operation of the diffuser, let us

examine the experimental dependence given in Fig. 2-16. These

data obtained in the work [118] for the diffuser with a flare angle

a - 80 and expansion ratio n = 4, show that an increase in the

relative momentum thickness 265**1/D1 at the inlet from 0.2 to 3%

causes a decrease in the eff by 20%. Such a pronounced reduction

in efficiency is caused not only by an increase in internal losses

but is also connected with an increase in the outlet losses,

which depend upon the velocity profile in the outlet section, and

the shape of the latter is found to be closely connected to the

state of bourdary layer at the inlet into the diffuser. These

losses increase especially sharply with '-he emergence of

separation, which, apparently, took place here at a large boundary

layer thickness at the inlet.

Theoretically the question of the influence of the inlet

profile on the efficiency of the diffusers was examined in [95].

The authors used three values as factors which characterize the

velocity profile: the coefficient of irregularity of velocity

= 1/1 - P*, the coefficient of irregularity of the momentum

k2 0
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lFig. 2-16. Change in Uhe ef of a
conical diffuser depending on the
inlet boundary layer thickness I1l8J.

and the coefficient of irregularity cf kinetic energy

hiowever, basically the influence of' only one coefficient k

equivalent to coefficient k in Fig. 2-14I was analyzed. With an

increase in this value a reduction in eff was also noted. True,
in the analysis of internal losses the authors come to the con-
clusior that for nonseparable diffusers the nonuniformity

characterized by value kIcauses a reduction in coefficient •.
Such a result contradicts the curve given above (see Fig. 2-1-')..
obtained by I. Ye. Idel'chik [514J, where the growth in nonuniformi~ty

at any flare angles of the diffusers gave rise to an intense
increase in losses. This contradiction is explained, apparently,

by the insufficiently accurate estimate of the energy loss

thickness in the final cross section of the diffuser with non-

urniform inlet velocity profile.

• As a whole the given data give a cl.ear representation of the

influence of the inlet nonuniformity on the efficiency of the

diffusers.

By examining the influence of the profile concave in center

section, it is natural to assume that with such a nonuniformity
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the possibility of the emergence of the separation of flow in

the diffusers should be reduced.

The velocity profiles in the outlet section of the Aiffuser

(Fig. 2-17), taken at various velocity profiles at the inlet,'

show that at the uniform velocity field at the inlet in the outlet

section a parabolic profile takes place, and with a c6nvex

profile there appears the boundary layer separation, as a result

of which symmetry of the outlet velocity diagýam is' disturbed,

and the peak value of velocity induced by the decrease in effective

area sharply increases.

"Fig,. 2-17. Velocity' profiles

.... 0I at the outlet from the dif-

fuser at uniform (1), convex
(2) and concave (3) profiles

-S at the inlet.

. IV I O0

I I1

SBy estimating the influence of condave inlet profile, one

_•should indicate that, by decreasing the possibility of sepavation,

this profile at large input nonuniformity gives rise to a sub-• stantial increase in frictional losses. The last fact is

Sexplainec. by the l,.,,ge transverse gradient of velocities~along

the length of the diffueer, ,,4,,ch gives rise to an increase in J

S~turbulent stresses in the flow.
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The very characteristic curves of the change in losses,

depending on the degree of irregularity, are given in Fig. 2-18.

Here, for the characteristic of nonuniformity, coefficient k

defined from ýhe relation [82]

is accepted, .

"0 Fig. 2-18. Dependence of the

6 , coefficient of losses in conical
z diffusers upon the nonuniformity

_. of the ihlet velocity profile.
1 - a = 60, n = 3.33; 2 -
a i 200, n = 3.33.

-15

From the formula it is evident that for convex profiles

k,3 > 0, and for concave profiles k3 < 0.

The de~pendepces were diverse for the nonseparable diffuser

(a = 60) and for the diffuser having separation even with the

uniform velocity field at the inlet (a - 200). If in the first

casp both thc positive and negative nonuniformities gave rise

to an increase in losses, then in the second case the transition

to n'gative nonuniformity gave rise to a certain reduction in

losses.

The purely qualitative analysis conducted above of the
influence of the inlet nonunif6rmity on the operation of the

di-ffusers to a considerabJe degree can be supported by the
theoretical solutions of S. M. Targ [99] and 0. N. Ovchinnikov

(82). These solutions refer to laminar flows, but their

importance is not restricted to this case, since they allow
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explaining the features of the influence of the degree of

irregularity of the inlet field, flare angle and Re1 number

on the operation of the diffusers.

Without discussing in detail all the results, let us examine

only the question of the position of the separation poiat
depending on the velocity diagram at the inlet to the diffuser.

Figure 2-19, borrowed from [82], gives curves which characterize
the position of the separation point in the plane diffuser at

various inlet velocity profiles and values of the complex Rel a
for laminar flow. Distinctly visible on the graph are substantial
displacements of the separation point along the flow for concave

and against the flow for convex velocity profiles. Confirming
from the qualitative side the considerations given above, these. results can in certain cases be used for quantitative calculations.

S. .. . . .. _V _ 8. •

i-'; -- Fi&. 2-19. Displacement of
=. -1- the separation point of laminar

41. flow in a plane diffuser at
4 ------ -- various velocity profiles at

the inlet (see designations in
Fig. 2-13) [82].2 2--,-- -----

0 600 40 2f0 260

The influence of the inlet nonuniformity on the operation of
more complex diffusers (circular axial, axial radial, diagonal

and i.e.,) has been studied extremely weakly. However, the

available data allow assuming that in this case the inlet non-
uniformity seriously deteriorates the operation of the diffusers,

whereupon the degree of deterioration also depends upon the form

of this nonuniformity.

An interesting investigation in the examined direction was
conducted by Johnston [137] for a series of circular axial
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diffusers with a constant expansion ratio n = 3.19. Test,- were

conducted at the Reynolds number Re = 2.5.105 on the model whose

diagram and basic designations are given in Fig. 2-20a. Fox1

change in the inlet velocity profile in front of the internal

cone 1 there was installed an interchangeable shaped fairing 3,

with the help of which it was possible to obtain various inlet

nonuniformity.

vV

a)

r

0, 0,; " . .. .. ..84...4 ...

Ito

b)

Fig. 2-20. Diagram of an experimental model of the circular
axial diffuser a), velocity profiles before the in>:t into the
diffuser b), and the ctanv;e in eff of the diffuser depending on
the inlet nonunicormity and angle a 1 . 2 c). a: 1 - internal

cone; 2 - external cone; 3 - shaped fairing; b, c: 1 - profile
at the inlet 1; 2 - profile at the inlet 2; 3 - profile at the
input 3.
KEY: (1) Surface of internal cone; (2) Surface of external cone.
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The shape of the velocity profile before the inlet into

diffuser was determined from results of probe measurements, Three

such profiles are given in Fig. 2-20b, and their influence on the

eff of the diffuser is distinctly evident from curves in Fig. 2-20c,

where experimental data obtained during a test of four diffusers

which were distinguised only by the magnitude of the total angle

a 1 . 2 are plotted (Fig. 2-20a). Just as in the case of conical

diffusers, the transition from the uniform profile to profiles with

a maximum speed in the center led to a noticeable reduction in

efficiency, whereupon this reduction was maximum at a1.2 of thle

order of 8-120 and consisted of 17-19%.

The decrease in eff in annular diffusers was close to a drop

in eff in conical diffusers at thp three percent relative momentum

thickness T** at the inlet (see Fig. 2-16), and the maximum of the

increase in losses as compared with the conical diffuser was

somewhat displaced to the side of larger angles.

Since annular diffusers are rather frequently installed in

branch pipes of turbomachines, where, apart from the significant

inlet nonuniformity, there exists in most cases the asymmetry of

the velocitý profile, the clarification of the question as such

asymmetry affects the characteristics of the diffuser is of great

interest.

Figure 2-21a gives three velocity profiles investigated in

work [137J, which are distinguished by the fact that the maximum

speed was reached at the external cone (curve 4) in the middle

part o: the inlet diffuser (curve 5) and at the internal cone
(curve 6). Changes in the eff of the annular diffuser corres-

ponding to these profiles, depending on angle a1.2, can be seen in

Fig. 2-21b.

It was found thE. the stablest diffuser characteristics are

obtained for the case when the maximum of the velocity is shifted

to the surface of the external cone. In this case the dependence
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0,9-8
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a) b)

Fig. 2-21. Velocity profiles at the inlet into the circular axial
diffuser a) and the change in the eff of the diffuser depending onthe inlet nonuniformity and angle a 1.2 b). a, b: 4 - profile at•

inlet 4; 5 - profile at inlet 5, (see Fig. 2-21a); 6 - profile at
inlet 6.
KEY: (1) Surface of internal cone; (2) Surface of external cone.

of the eff L on angle a1 2 practically coincides with the analogous

dependence for the uniform velocity profile (curve 1 in Fig. 2-20c).

If the maximum velocity is found on the side of internal cone

(profile 6 in Fig. 2-21a), then the efficiency of the diffuser for

all angles drops by 20-30% (Fig. 2-21b). Such a behavior of the

curves is explained by the fact that for profile 6 the probability

of the separation of flow from the surface of the external cone

3harply increases, whereas for profile 4 the flow in the diffuser,

apparently, is nonseparable. Furthermor~e, on the total diffuser
characteristic separation from the surface of internal cone is

affected more weakly than from the external cone, where the basic

portion of the mass flow passes.

According to the data given in Fig. 2-22 [137] combined curves

for all six investigated profiles depending on coefficJent ki,

which characterizes the certain average nonuniformity flow are

constructed. Its value is the ratio of velocity ci, averaged over
area Fi, which adjoins the internal cone (see Fig. 2-20a), to the

average flow rate c cp. From a comparison of the curves it is
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' Fig. 2.22. Influenoe of the
-8 average inlet nonuniformity on

the eff of circular axial dia-.
,fusers. 1.- 65'; 2

al 2. * 8. 5'; 3 -'l 2 .ý10.-5? ;
"l -- l.2 a 150 (1, 2, 3, 4, 5,

--5 6) numbers in circles - desig-

!j nations of the velocity profiles
__L0 *h _ in Figs. 2-20b and. 2-21a.

evident that for all angles the nonuniformity at the inlep gives

rise to a reduction in the eff, whereupon the greatest reduction

occurs for profile 6 with a maximum velocity of the internal cone.

With the change in nonuniformity estimated by coefficient ki,

within the limits of ±4% the eff of thd diffusers with angles

a. 2 < 150 is practically not changed. Only when a1 .2 = 150 and

k•i 3% does there take place almost a crisis drop in the eff by

14%, which is connected, apparently, with the emergence of the

separation.

The given data are not exhausting and do not solve the examined

question in question as a whole. However, they give representation

about the order of the reduction in efficiency of the diffusers

which operate at the nonuniform velocity field at the inlet.

§ 2-6. Selection of Optimum Expansion
Ratios of Diffusers

When selecting the rational expansion ratio of diffusers

used in turbomachines, i.t is necessary to consider both the

efficiency and permissible overall dimensions of the machine.

The latter requirement rathev- often restricts the expansion ratio

of the diffusers, which can lead to a substantial reduction in the

coefficient of energy restitution of energy. In connection with

this it is necessary, apart from the definition of the optimum

expansion ratio n from the minimal condition of losses, to estimate
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how greatly the eff~ciency of diffuser changes with the reduction
in value n, having established thereby the definite limitatiohi from

the lower side.

It should be noted that the problem in question has a sense

"only for the diffusers, after which the outlet velocity, and the

dependence of the internal losses upon the expansion ratio will be

monotonic. I

Let us'conduct an estimate of the optimum value n from the

condition of the minimum of the total loss factor n" In general

the value of n is added from values of the coefficient of losses'

to friction up to the separation point of flow • , coefficient

•op which characterizes losses.in the separation zone, and the

coefficiept of outlet losses

The existence of the optimum expanision ratic results from that

fact that the components of total losses depend differently upon

valUe n.
I I

Actually, with' ar increase in value n the internal losses

grow,'and losses with the outlet velocity drqp. At the optimum

value n the sum of the outlet and internal losses~is minimum.

The specific estimate of the optimum expansion ratio is

connected, however, with serious difficulties, since today there

are no theoretically bases for the dependence between the components

of total losses and value .. Moreover, if formula (2-29a) is

used as a basis, then for the incompressible fluid the statement

6f tho determination of the optimum expansion ratio generally

meaning, since the total loss factor is connected with the effective

expansion ratio by dependence

""i -0(I., (2-29a)

which does not give the optimum value of the expansion ratio.



F The indicated contradiction is the consequence of the fact

that formula (2-29a) was obtained under the assumption of the

constancy of the pressure of total stagnation in the flow nucleus

and can be used only with the small relative lengths of the

diffuser (L/DIL and the small expansion ratios n, when the boundary

layer thickness is small as compared with the flow nucleus.

Because of this, for the solution to the indicated question it is

necessary to proceed from the general formula (2-29b) which is

easily converted to the form:

sit= ... . (2-29c)

Here each factor, to a certain degree, depends upon the

geometric parameters of the diffuser, especially, upon value n.

If the density ratio when n > 2 is not changed in practice,

then the value of the second factor is determined by the dimension-

Aless length L/D, expansion ratio n and value of turbulence of the
-C incoming flow.

As a result the following function of parameter n will undergo

investigation:

From the condition of acn/1n = 0 we will obtain:

nu" (n) - 21 (n) = o. (2-55)

Eqt.ation (2-55) with the known function f(n) determines the

optimum expansion ratio of the diffuser. It should be noted that

by using experimental data, it is possible for various diffusers

to obtain specific expressions for function f(n) and even

extrapolate the obtained data on the definite group of diffusers.

However, in the solution to the question of the optimum expansion

ratio n, it makes no great sense to construct analytical solutions,

since for nonseparable conical diffusers, on the basis of the

structure of equation (2-29b), this value will be knowingly more
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n > 2-3 and the optimum should be very sloping, and with the

emergence of separation it is very difficult to select the

successful approximating function.

From an analysis of equation (2-55) it follows that the less

the loss in pressure in the flow nucleus with an increase in n,

i.e., the less f(n) depends upon this parameter, the further the

opvimum is mixed according to the expansion ratio, and, on the

contrary, the worse the diffuser, the more the absolute value of

coefficient ýn for it, and the less the value of nonT.

For an example, Fig. 2-23 gives dependences of the total

loss factor upon the expansion ratio for the conical and three

radial diffusers. If for nonseparable flow in conical and radial

diffusers the minimum of losses proves to be completely sloping

(Fig. 2-23, curve 1, 2), then with the emergence of separation

deviation from the optimum expansion ratio gives rise to the steep

increase in losses (curve 3), and the point of minimum losses is

displaced to the origin of coordinates. The given experimental

data show that for the case in question with the emergence of

separatiun (curve 3) the optimum expansion ratio consists of a

value of the order of 1.7-2.0.

8 ¶1111 .i " Fig. 2-23. Change in losses
13,7 A Idepending on the expansion

A/ I Z, ratio n. 1 -conic diffuser
-0-- , (a = 150); 2 and 3 -radial

_ •diffusers.
0,5 4

0,3 *

"' " -•~ .z . , I F .. . . ... 1

0,2 ,5 17S 2.5 2,7S3,0
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Numerical values for the optimum expansion ratio and the nature

of the change in losses with a change in n allow Judging indirectly

the flow pattern in the diffuser. In this case one should again

emphasize that the dependence of losses upon the expansion ratio

in the zone of the optimum value n with nonseparable flow is

completely insignificant, and at limited overall dimensions the

considerable deviation from nfonT to the smaller side is admissible.

However, for any diffuser intended for the conversion of kinetic

energy of flow in potential energy, the minimum expansion ratio

should not be less than 2, since otherwise there occurs a steep

increase in losses with the outlet velocity, and correspondingly

the coefficient of energy restitution is lowered.

Thus, to obtain the acceptable value of quantity n' the

practical range of the e:Lpansion ratio, taking into account the

overall dimensions, proves to be comparatively narrow (2 < n ! 3).

1
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CHAPTER THREE

RECTILINEAR PLANE AND AXISYMfETRIC
DIFFUSERS

§ 3.1. Flow Pattern in Plane and
Axisymmetric Diffusers

By examining the pattern of nonseparable flow in

axisymmetric diffusers, it is possible to note its similarity with

the pattern of plane flow. As is shown in [68, 70, 93], by means

of the appropriate conversion of variables, it is possible to

reduce a number of the axisymmetric problems to the two-dimensional

case, having substantially simplified thereby the procedure of

their solution.

However, with the emergence in the channel of separation

the noted analogy is distrubed, and between the characteristics

of the plane and axisymmetric diffusers the noticeable distinction

is developed. For example, Fig. 2-12 gives coefficients 4) [the

coefficient of "softening of the shock" in formula [2-42a)]

according to I. Ye. Idel'chik for the conical diffuser (curve 1)

and a diffuser with a square cross section (curve 2) depending on

angle a.

When a = 2-80, i.e., for nonseparable flow the divergence

between the curves comprises a total of 2-4%; when a > 120 the

coefficient of internal losses of the square diffuser is almost
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2 times more than the conical diffuse-. The noted distinction is

explained, on the one hand, by the large perimeter of the square

ditfuser, and on the other, by the different flow pattern in the

separation zones of the plane and conical diffusers.

In plane flow, after the separation point, it is possible

to observe the stable eddy formations whose intensity is determined

by the state of the boundary layer in front of diffuser and weakly
changes with time. -

In the axisymmetrical channel the separation of flow has

a local character, and the intensity of the formed vortices

rapdily falls, as a result of which their rate of motion increases

and approaches the rate of the main flow.

The characteristic pattern of lines of flow in a plane

diffuser at two flare angles (a = 24 and 380) is shown in the

photographs (Fig. 3-1). Here the entire flow is moved in the

head of the channel, flowing around the eddy regions as certain

oval cylinders. This analogy is especially noticeable in the

comparison of Fig. 3-1 and Fig. 3-2, where the moment of the

origin of the vortex in the flow around the cylinder of plane-

parallel flow.

a)

b)

Fig. 3-1. Flow spectrum Fig. 3-2. Spectrum of
in a plane diffuser [54]. transverse flow of a

a) a = 240; b) a = 380. cylinder.
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By examining the flow spectrum at various instants, it is

possible to establish that the vortex lines are carried by the

flow downstream. The rate of this motion depends upon the

vorticity or, if we examine them as some circulatory flows, on

the magnitude of the circulation of "'&locity r. The latter can

be found from the boundary layer thickness and the velocity at

its outer edge at the moment of separation.

In fact, directly before separation the boundary layer

velocity profile on its greater part can be approximated by a

straight line (Fig. 3-3) [5], i.e., directly at the separation

point there takes place the linear normal velocity profile,

characteristic for the core of the circulation flow. Then, having

used the separation point S as the center of the formed vortex,

it is possible to estimate the magnitude of circulation by

expression r = Cs6 S and examine further the motion of this

vortex in the flow of the source by power Q.

: 40Fig. 3-3. Velocity profiles at
the separation point of a tur-

bulent boundary layer [5]. +,

(, 0, A, A - external flow; 0,0,75- diffusers; yo - distance along

the normal from the wall to pointLA where c =1/2 c~ec

gO

0,5 4,0 /$5 2,0

Obviously, the more the magnitude of circulation r, the

slower at the assigned power Q will be the motion of the vortex

along the flow, and, consequently, the more the diffuser losses,
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since the vortex zones sharply reduce the effective area and not

only give rise to an increase in internal losses, but also cause

an increase in outlet losses.

It should be noted that in a plane chauinel the vortex

zones prove to be stable, since in this case the vbrtices rest

by ends on the side walls, and, consequently, the Helmholtz theorem

about the conservation of the vortex flow is fulfilled. However,

the dissipation of energy gives rise to the fact that the circula-

tion r does not remain constant and in the course of time

decreases. As a result the rate of motion of the vortices

increases, and they decay into smaller formations, and at certain

distance it is possible to note only the brightly expressed

turbulent nature of the flow. I

The qualitative pattern of the flow in separation zones

is confirmed well by experimental data, and it shows that for the

improvement in the operation of separation diffusers it is

necessary, in the first place, to decrease the intensity of tlhe

appearing vortices. For this purpose in the separation zones

frequently installed grids, which lower the dimensions of discrete

vortices and ensure the uniform flow distribution over whole'

outlet section. For large flare angles finned diffusers [76,

77], which replace the macroseparations by microseparations, appear

effective. For this reason the axisymmetric diffusers are more

effective than the plane, since separation in such diffusers most

frequently has a local character, and the intensity of the formed

vortices rapidly falls, whereupon the vortices are considerably

less stable (in axisymmetrical channel the fulfillmept of the

Helmholtz theorem is possible only under the condition of the

closing of the vortex into a ring, which in a conical diffuser

is unlikely). As a result the velocity of the vortices

increases and approaches the velocity of the main flow, and the

effectiveness of the axisymmetric diffusers during flow with
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separation proves to be substantially higher than that of the

plane diffusers.

§ 3-2. 'Influence of Mode Parameters
on Characteristics of Conical Diffusers

Plane and axisymmetric diffusers comprise the most investi-

gated gr6up of the diffuser elements. In spite of this,

comprehensive test data for their, direct utilization in the defini-

tion of the effectivenegs of even the most widespread conical

diffusers, do notexist today. Semi-empirical methods of calcula-

j • tjon, based upon formtulas of the type (2- 4 2a), also cannot be

considered reliable because the utilized experimental dependence

of copfficient 4) upon angle a (see Fig. 2-12) was obtained by

Gibson in 1910 at an almost constant Reynolds numbers (,Re 1 ' 2.105),

constant inlet ciidit'ions and low velocities [54].

If for an estimate of the influence of the inlet conditions

in literature there are definite data, [52, 54, 82, 95, 118, 137],

then the influence of mode parameters is investigated very weakly,

although with their change the variance of experimental values
of coefficient ¢ lbecomes inadmissibly large (Fig. 2-12).

Actually when ReI < l05 and M1 > 0.5 the problem of estimat-

ing the character-stics of diffusers becomes indefintie because

of the pronounced increase in the role of these criteria, where-

upon their influence is not unique and depends upon the geometrical

characteristics of the diffusers.
Vi

The indicated question was examined in [66, 67]. However,

the experimental data obtained in the simultaneous change in

numbers M and Re substantially impede the analysis of the

influence, of each parameter individually.

It was noted above-that the independent change in Mach and
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Reynolds numbers can be achieved on installations which allow

changing over a wide range the counterpressure. Results of such

tests conducted at Moscow Power Engineering Institute [MEI] (M3B)

on a steam test stand with a series of conical diffusers, which

were distinguished in flare angles and expansion ratio , are given

below.

Since the estimation of the role of the Re number is most

complex, we will discuss its influence in more detail.

Theoretically the nature of the change in losses depending

on Re1 can be presented in the following manner (Fig. 3-4).

First, at very small Re1 numbers, when there is no basis for

speaking about the boundary layer, an increase in the Reynolds

numter should give rise to a drop in losses because of the

localization of the viscosity ncar the restricting walls.

Fig. 3-4. Theoretical depen-
o•fI° dence of the total loss factor

upon the Reynolds number.

Then, depending on angle a, with an increase in Re1 number

there occurs separation of flow from wall and its displacement

against the flow (zone II in Fig. 3-4). The emergence of separa-

tion and its subsequent displacement against flow are explained

by the fact that with an increase in ReI number the effective

expansion ratio intensely increases, as a result of which the

positive pressure gradients increase, and the kinetic energy

of the particles found near the wall is already insufficient for

overcoming these gradients.
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According to theoretical calculations [82, 93, 99], both
in plane and conical diffusers the separation point of the laminar

boundary layer is asymptotically displaced toward the section

with the ratio of areas Fx /F1 = 1.65-1.7.

With the approximation of the separation point toward section

Fx, the intensity of the growth of losses is decreased and
approaches the stabilization associated with the fact that the
position of separation zones with change in ReI number is changed

insignificantly. The extension of the zone of "stabilization"

depends upon the stability of the laminar flow in the boundary

layer. Then, on the reaching of the critical state, when the

point of the loss in stability (point of "transition") proves to

be near the separation point, there occurs a sharp reduction in
losses induced by the displacement of the zone of separation to
the outlet section as a result of the transition to turbulent flow.

This zone, called in [66] the crisis zone, is finished when

Re1 = (o.8-1.5)l105. The smaller numbers Re1 refer to diffusers

with larger flare angles a. In other words, at the large values
of angle a the crisis zone occupies a smaller extent with

respect to the Re1 number. The further character of dependence

ýn = f(Re 1 ) is wholly determined by the flare angle of the
diffuser.

At narrow angles (a < 110) the losses remain practically
constant or fall with a change in thickness of the layer and

increase in the effective expansion ratio. At large angles

(a > ll) with an increase in Re1 number there again approaches

separation of turbulent layer, and the coefficient of losses

tends toward a certain constant value (zone V). In the majority

of the known works the influence of Re number precisely in this
zone is usually investigated, and the zone of smaller values Re,

remains outside the field of view, although for a number of problems
of turbine construction associated with the last stages of steam

121



turbines, the region Re. < 5.105 represents concrete practical
F interest.

The described hypothetical pattern of flow, based on the

analogy of the transverse flow of real flow about a cylinder, can

be accepted as the basis if it is possible to prove theoretically

or experimentally that in the stabilization zone III the detached

flow of the laminar layer actually takes place, and in zone IV the
localization of separation or its disappearance occur. Since

4 such a transition is feasible only as a result of the replacement

of the form of flow, the given scheme in this case could be

considered as proven.

If in zone IV, which still comparatively easily yields to

experimental investigation, the flow is nonseparable, then the

alialysis conducted above should be acknowledged as invalid, and
the sharp drop in total losses with an increase in Re1 number

is due to the reduction in losses with outlet velocity.

Thus, for a correct theoretical solution it is necessary

to investigate the possible flow conditions both in zone II and
zone III. For this purpose let us explain under which conditions

Sin section Fx of the conical diffuser is the separation of the

laminar boundary layer possible, since only under these conditions

is the pattern examined above possible.

For the lminar boundary layer the momentum thickness is
calculated according to formula [68]

a** 0,44 (4.75.'T=: .j -f (3-1)

In the case of incompressible fluid the velocity distribution

in the conical diffuser, not allowing for the reverse effect of
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the layer, can be represented by a comparatively simple dependence

"C- +-- (3-2)Sc, l! ~~+ (reT F

where cl -velocity in the throat of the diffuser, and n - the

total expansion ratio.

Having integrated (3-1), taking into account (3-2), we

obtain:

0 .242 I). I +3-

Hence it is easy to establish the connection between the

Reynolds number, calculated according to thickness 6**, and

the number ReL = ClL/v:

= 0,242 R--L X
SX f + (Vc) ,7 -•1,.

VW. I f + 2 ortz -- n.l,/
Having used as the separation point the section where the

area ratio Fx/F1 = 1.7, i.e.,

0,305

let us find the value Re** in this section at various expansion

ratios and ReL values.
4L

Substitution into equation (3-4) of OTp gives rise to the

very simple dependence:

Re* -o , - (3-6)

Results of calculations according to formula (3-6), presented
; in Fig. 3-5, show that the intensity of the growth in value Re**

-3 I
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substantially depends upon the expansion ratio of the diffuser

n, since with an increase in this parameter 'he separation

point is displaced to the inlet section.

S30o - ,

20 .Fig. 3-5. Determination of critical2 • " Reynolds numbers at which the
I 'transition to the turbulent flow

conditions in the boundary layer
tOO occurs.

From the given data it is evident that near the separation

the Re** number can attain large values. Therefore, the

probability of the existence of the laminar boundary layer is,

sharply decreased, and for the es~timation of the possible zone

of laminar flow it is necessary to compare the obtained values

with the critical value of the Reynolds number. Having used in

this question point of view of A. P. Mel'nikov [72J, according

to which minimum Re** near the separation consists of a valueKpI

equal to 225, and by intersecting on curves of Fig. 3-5 the

indicated value, let us find the critical ReL numbers. According

to the calculation the range of ctitica] ReL numbers consists of

(2-6)0105.

Thus, the pattern described above of the change in losses

proves to be real, and when Re, = ReL Kp in the diffusers one

should expect the "critical region of Reynolds number," i.e.,

a sharp drop in losses induced by the transition of laminar flow

to turbulent.

It is advantageous to note that the experimental data given

in (66] confirm well theoretical solutions: for all the diffusers

tested the reductiun in losses was begun at
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Re 1

Re, = ReL - 101. O

which approximately corresponded to the critical values.

Analogous results were obtained at MEI during diffuser tests

with independent simulation according to the Mach and Reynolds

numbers. Thus,' Fig. 3-6 shows the dependence oý the coefficient

of losses upon the Re1 number for conical diffusers with various

flare angles. For every.curve in question the Mi number was
maintained constant, i.e., in this case the experimental data

r'eflected only the influence of the Re1 number.

0,3 1-

0,10 3

0 3 3

Fig. 3-6. Change in the coefficient of losses
depending onthe Re, number (n = /4; M1 '%0.5).

I - a',= 200; 2 - a 15'; 3 - a = 100; 4 - =

In complete conformity with the pattern described above of

the flow of gas in a diffuser with angle a =,200, an increase in

ReI number caused a growth in losses whose magnitude asymptotically

tends to a certain constant val-e. At the same time in cdiffusers

with angles Q = 15° and 100 the losses were intensely lowered and

approached consta2nt values when Re1 > 5'10. Losses plotted on

Fig. 3-6 for a diffuser with a flare angle of a = 40 and n = 3.5

in practice proved to be not dependent on the Reynolds number.

This fact is connected with the fact that at small angles a the
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flow in the diffuser in the entire range of Re1 numbers is non-

sepepable irrespective of the flow conditions in the boundary

lay~er. In this case (small angles) the reverse effect of the

boundary layer is very substantial, and the effective expansion

ratio does not exceed that value which corresponds to the section

of separation. The experimental values of the limiting effective

expansion ratio are given in Fig. 3-7 as a function of the Xl

number.

2,6 " .-

0'

0,2 0,3 0,4 0,5 0," 0,7 0,0 0,9 1,0

Fig. 3-7. Dependence of the limiting

effective expansion ratio na¢ upon

the dimensionless velocity X1 at the

inlet Re1 = (0.8-4.7).10 5; n = 3-4;

Ik = (1.3-1.4). 0 - a = 100; x - a =

=150; A - a = 200.

With an increase in angle a, at its certain value a critical

increase in losses associated with the emergence of separation

occurs. The critical angle aP at which there appears separation

depends upon the Re1 number. If when Re1  l05 a,= 80. then

when Re1 = 5.105 150 < ap < 200.

Thus, with the increase in ReI number for a large group of

diffusers transition is observed from the detached flow to the

nonseparable, induced by the replacement of flow conditions in

the boundary layer. A clear representation about such a transition

can be composed in curves of the changes In pressure (or velocity)

along the axis of the diffuser. (*Below it will be shown that a Kp
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is determined not only by the Reynolds number but also by con-

ditions of the organization of the inlet into the diffuser.)

Figure 3-8 gives a relative drop in velocity in diffusers

with angles a = 150 avid 100 at various values of the Re1 number,

calculated according to the measured static pressure and constant

pressure of full stagnation po1 in the flow core.

448

0,9 .0,4 0,6 0,8 oA 1 b)
a) b

Fig. 3-8. Change in relative velocity X/X1 along the axis of the

diffuser (X 1'0 0.8). a) a = 150: n = 4; 1 - Re, = 0.9.105; 2 -

ReI = 1.2.l05 ; 3 - Re1 = 4.2"105; --.-- - theoretical dependence
p = const; b) a = 100; n = 4: 1 - ReI = 0.45-105; 2 - Re

= 0.66.105;3 - Re = 1.25"105; 4 - Re1 = 2.1.105; 5 - Re1 =

= 2.8-3.4.105.

If when Re1 = 0.9"105 the velocity in the diffuser is

decreased by a total of 18% as compared with the velocity in the

inlet section (Fig. 3-8a), which indicates the separation of flow

near this section, then with an increase in Re1 to 1.2l105 the

decrease in velocity is 35%, and when Re1 = 4.105 it reaches 55%.

For a diffuser with a smaller flare angle the described pattern

(Fig. 3-8b) is expressed less brightly, but the maximum drop in

velocity comprises a magnitude of the order of 55%, although

it is attained at lower Re1 numbers.
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The given value of the maximum drop in velocity is sufficiently

characteristic and almost for all nonseparable diffusers when

n > 2.5 comprises 50-60%, although according to the geometric

expansion ratio the maximum outlet velocity should be noticeably

less. Such a divergence is the consequence of the loss in pressure

of full stagnation in the flow core noted above. By calculating

the velocities in the center of the channel not according to

pressure p02 at the inlet into the diffuser but according to

the actual pressure p0 i in each section, we obtain a sharp reduc-

tion in maximum velocities along the diffuser.

The certain fictitious drop in velocity given in Fig. 3-8

gives a clear representation about the local values of the total

loss factor. Actually, current velocities X in this case are

calculated with respect to pressures pi/P01, and velocity X1 is

determined by ratio pl/pol. Then by definition of value 4n the

square of the ratio to velocities Xi/Al give the local value of the

total loss factor and allows determining the local value of the

coefficient o' recovery of energy. Actually,

Co ti I X

The examined diffuser characteristics are obtained at

a constant M1 (X1 ) number. However, from curves given in Fig. 3-8,

it follows that with a velocity gain the losses can noticeably

change, whereupon the magnitude of the change depends upon the

Re1 number.

The brightest representation about the interaction of

numbers Re1 and M1 on the diffuser characteristics is given by

curves given in Fig. 3-9. From these curves it is evident that

when separation does not exist, in the zone of the large numbers

Re1 (Re 1 > 4.105) the compressibility effect proves to be in-

significant. In fact, with an increase in M1 (X1 ) number at the

inlet into the diffuser there occurs, on the one hand, an increase

in inlet pressure gradients, and on the other - the displacement

thickness somewhat increases.
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Figure continued on following page.
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11,9 Z . . . . .. ..

47 0, .2
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45

coicl ifu0,s 1 /7.3 0,3 044.e)

Fig. 3-9. Influence of Reynolds numbers on characteristics of
onical diffusers (n = 4) when X1 = const. a) • f(Rel) a = 100:

1 - l= 0.126-0.363; 2 - X1 = 0.57-0.7; 3-A 1  = 0.8-0.89; 4 -
= 0.98-1.0; b) • = f(Rel) a = 70: 1 - 1 = 0.4-0.8; 2 - X1

= 0.9; c) • = f(Re1 ) a = 100: 1 - X1 = 0.125-0.36; 2 - X1 =

= 0.57-0.7; 3 - A1 = 0.8-0.89; 4 - X1 = 0.9-0.98; 5 - X1 = 1.0;

d) C = f(ReI) a 15': 1 - Xl = 0.2-0.33: 2 - X1 = 0.67-0.73; 3 -

1 = 0.77-0.8; 4 - l = 0.88-0.92;'5 - Xl = 0.94-0.96; 6 - x1

= 0.98-1.0; e) C = f(Re 1 ) a = 20o: 1 - X % 0.3; 2 - A1 X 0.41;
3 - X R 0.5; 4 - 1 = 0.6; 5 - X 0.7; 6 - X 0.8; 7 - X

1 .;6-1 =08 1
= 0.95; 8 - Al = 0.98-1.0.

The first factor, if it does not cause the separation of

flow directly in the inlet section, lowers the intensity of the

growth of the displacement thickness along the axis. The second,

on the contrary, increases the displacement thickness. As a

result of the interaction of two opposite tendencies the effective

expansion ration, as experiments show, is lowered somewhat.

Furthermore, with a velocity increase the density ratio pl/P2,

which completely compensates the decrease in n and leads finally

to a drop in coefficient 4n and to a growth in the coefficient of

recovery of energy, noticeably falls (Fig. 3-10).

The curves given visually show that the compressibility of

flow is most greatly developed at small Reynolds numbers, when

an increase in inlet dimensionless velocity A1 gives rise to a

critical drop in the diffuser characteristics. This growth in
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losses is caused by the separation of flow in the inlet section

under the influence of increase inlet positive pressure gradients.

The dimensionless velocities X1 which cause the critical

drop in coefficient C are determined not only by the Re1 number

but also by the magnitude of angle a.

If for Re2 = 105 at angle a = 100 Ai p 0.65 (Fig. 3-10b),

then a = 15 p1 X 0.55 (Fig. 3!-0c). With an increase in ReI
number X1 Kp also continuously increases, and when Re1 > 5.105

comDrises a value close to one (X 1 p = 0.95-0.98). The pattern

noted is confirmed even in the examination of internal losses

(Fig. 3-10a).

The smaller value of A1 Kp for diffusers with larger flare

angles is explained by the fact that at large angles of a, when

for an incompressible fluid the inlet pressure gradient is signif-

icant, its increase is small enough in order that the separation

of flow would begin. The degree of this increase substantiallv

depends upon the A1 number.

P45

22 44

a

Figure continued on following page.
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Fig. 3-10. Influence of X1 numbers on characteristics of the

conical. diffusers when ReI const (n = 4; k = 1.3).

1

a) f(X1) a = 10': 1 - ReI = (0.3-0.65).105; 2 - Re 1

=(0.8-I)'105 ; 3 - ReI1 = (1.1-1.4)'105 ; 4 - ReI1 =(1.5-1.6).i05;
5- ReI = (1.7-2-3)-10 5 ;6 - ReI1 = (2.6-43).10,6; b) f(,l)

a a = 10: 1 -Re 1 = (0.3-0.65) Re 1 (0.8-).I05; 3 -

Re = (1.1-1.6).i05; 4- Re = (1.7-2.3).i0 5 5- Re1 =15 6•

(2.6-4.3)R105e; C) (f(l) a = 15: 1 - Re1 (= (1-1.2).I05; 2b-

Re1 = (1.25-1.3)-105; 3- Re1 = (1.6-1.74').-0'; 4 - Re1 =

= (2.3-2.6)-105; 5- Re1  (2.8-4.8).lo5.
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An increase in the inlet pressure gradient with an increase
in the inlet velocity proves to be so considerable that the

emergence of separatioa with an approach to transonic conditions

is, in most cases, unavoidable.

At small Re1 numbers and large a angles when in the in-

compressible fluid separation appears in the intermediate sections

(see Fig. 3-9e), an increase in X1 number gives rise to a notice-

able growth in losses until the separation approaches the inlet

section. From this moment the diffuser characteristics coincide
with characteristics of the p~urely separation diffuser, and the
dependence of losses upon X1 disappears in practice.

The analysis conducted indicates that the influence of

regime parameters Ml( 1 ) and Re1 on diffuser characteristics

proves to be complex and depends upon the geometric parameters

of the diffuser. At the same time the obtained data allow

pIredicting the general tendency in the changes in coefficients

4n and ý with the change in M1 and Re 1 numbers.

§ 3-3. Influence of Geometric Parameters
on the, Aerodynamic Characteristics of
Axisymmetric and Plane Diffusers

The geometric parameters of conical and plane diffusers

are the dimensionless length L, expansion ratio n and flare

angle a. TheiF influence ion the aerodynamic characteristics of

the diffuser is sufficiently complex and is found in close

connection with the regime parameters.

Thus, for example, by changing the angle a with a constant

expansion ratio in the zone of small Re, (Re 1  10 ) numbers from
140 to 200, it is possible to arrive at the conclusion about the

monotonic increase in the total loss factor from 18 to 28%

(Figs. 3-9 and 3-10). The same change in angle a when Re1 =

6 2.105 gives a completely different picture: up to a = 150 ýn
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I.
increases by a total of 4%, and then with transition to a = 200

it is critically increased by 20%. At high speeds (X l" 0.8-0.9)

this crisis for a diffuser with angle a > 150 takes place at all

Re1 numbers.

The absence of uniqueness in the examined problem substan-

tially impedes the analysis. However, the physical side of the

phenomena which occur in the diffusers with a change in their

geometric parameters is sufficiently clear.

For an analysis let us use the numerous experimental data

obtained in various works [21, 42, 56, 88, 89, 139, 140, 142, 143,

145, 146, 147, 148]. For the purpose of the greater clarity these

data are put by the authors into tables and are placed in the

Appendix (see Table A-l), where data on the total loss factors

for 300 conical and plane diffusers are gathered, which ensures

the definite reliability of the analysis conducted.

Since the basic geometric parameter which characterizes

the possibilities of the diffuser is its expansion ratio n, let

us begin the examination of the question frorii this value.

Let us note that the change in the expansion ratio n can be

produced either at a constant angle a, when the relative length

L/D 1 is changed, or at a constant length, when angle a is changed.

Both in the first and second cases the coefficient n sharply

falls with an increase in the expansion ratio, and then it reaches

a minimum value and grows further. The intensity of this growth

is determined either by angle a or length L.

The experimental values of coefficient ý given in
Fig. 3-11 visually confirm the aforesaid. The dependence 4n =

= f(ri) when a = const (Fig. 3-11a) have a very sloping minimum

outlined quite clearly only for angles a = 28-300. In the remain-

ing cases coefficient n with an increase in the expansion ratio
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is noticeably decreased in the zone of small values n (n < 3), and

then when n > 4 either it is not changed or is changed insignif-

icantly. The intensity of the reduction in losses with an increase

in value n and their absolute level are determined by angle a.

First an increase in the angle from 3'30' up to 10-121 gives

rise to a comparatively sharp reduction in losses when n < 4, and

then for a > 15' the intensity of the change in coefficient n

falls, and its absolute value continuously increases with an

increase i. angle a.

The pattern noted is entirely regular. At narrow angles an

increase in the expansion ratio gives rise to the continuous

reduction in losses with the outlet velocity, and the internal

losses determined by fiction increase comparatively slowly. The

nature of their changes can be judged by curve 8 on Fig. 3-11a,

where values of coefficient ý, obtained as a result of traversing

of the outlet velocity field. It is evident that a basic increase

in losses occurs at small expansion ratios, and for n > 4 these

losses increase weakly and cannot substantially influence the

nature of the change in the total loss factor.

With the transition to large angles the absolute value of
internal losses is decreased due to the reduction cf the surface

of the diffuser (the reduction in its length), which also causes
a reduction in the total losses. However, the noted reduction in

losses takes place only up to definite a angles, which ensure

the nonseperable flow on the entire length of the channel.

Already when a = 150 (curve 4) such a flow is possible only for

the small expansion ratios (n < 2.5), and then the separation of

flow from walls approaches, and losses with outlet velocity remaln

practically constant and do not d&eend on n. If the separation

point of the flow remains fixed, then frictional losses prove to

ba constant. In the separation zone a vortex flow pattern is
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established, and significant dissipation of energy occurs. How-

ever, this process cannot have a decisive influence on the total

loss factor ?n' since the vortex flow is supported because of
the energy of the free stream. Consequently, in this case the

separation section determines basically the effectiveness of the
diffuser, and processes which occur after it are connected with

the dissipation of the outlet energy. The expressed consideration

is visually confirmed by curves 2, 3 and 4. Here the growth of
the expansion ratio from 4 to 8 did not at all lead to a notice&ble

Z change in coefficient n"

Fig. 3-li. Dependence
2 of coefficients n and

0, --- -•--... .._- _ upon the expansionratio n.

" k:-4l .a) al const: 1-

0,2 A-= 28-300; 2 - =
6'-_ . = 220; 3- a = 180;

A - 4- a= 150; 5- a:
Lt- = 10-120; 6 - a = 6 to

1 2 3 4 6 8 80; 7 - a = 3.5-40;
8 - = f(n) a =

a) b) L/D 1 = const.

O5•, -___ I0,7 -3

0150

0,2' ,7 2 ' -

b)
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At large angles (a > 300) the intensity of the vortex motion

proves to be so significant and separation section IS so closely

located to the inlet section of the diffuser that on curves

Cn = f(n) the expressed minimum of losses (curve 1) appears.

If the expansion ratio of the diffuser is changed at constant

length only because of an increase in angle a, then the minimum

value C for L = const is determined by such an angle a at

which in the diffuser the developed separation of flow from tne

walls of the channel appears. The nature of the change in curves
Cn = f(n) in the case in question is well evident from Fig. 3-11b.

At large expansion ratios n (n > 4) the growth in this parameter

causes an increase in coefficient n' whereupon smaller values

of relative length L correspond to the higher level of losses.

The obtained result is the consequence of the fact that the

assigned value of parameter n for the longer diffuser is ensured

by a smaller angle of expansion a. Thereby the possibility of the

flow separation is lowered, and the uniformity of the velocity

profile in the outlet section of the diffuser is improved. Thus,

for L/DI = 14 the monotonic reduction in losses with an increase

in n is noted.

The pattern is changed in the region of small expansion

ratios, where longer diffusers have greater losses than do short

ones. In this case the flow in the diffusers is nonseparable,

or the separation bears a local character, whicý increases the

role of internal losses. These losses, just as losses in the

tube, grow with an increase in the relative length L/DI. True,

the coefficient ý changes little and is close to the appropriate

values for tubes having the same relative length as that of the

diffuser. In [95] even the reduction in the magnitude of

coefficients C as compared with that for tubes is noted. As a

result the approach of all curves occurs and for n < 2 the in-

fluence of length L on coefficient n decreases.
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The examined influence of the expansion ratio of the

diffuser on the coefficient of total.and internal losses is to a

considerable degree unique and is not changed with:a change in

regime parameters. Only absolute values of coefficients n and

Sand the position of the minimum on curves 4(n), but not the

nature of dependence n = f(n) can depend on the change in. the

regine parameters.

For an example Fig. 3-12 gives, the dependence of the

coefficient of the reduction in energy upon the X1 number at

various Re1 numbers for two values of parameter n. At large

Re1 numbers the transition from n = 3 to n = 4 did not cause
1 . 5changes in the nature of the curves, and for Re1 < 10 the maximum

distinction in coefficient g is about 3%. Let us note simulta-

neously that the critical reduction in value E occurs for

both expansion ratios n at the same value of the dimensionless

velocity X1 , An analogous pattern is noted for diffusers with

angles of 4, 10 and 200.

It is considerably more complex to analyze the influence

of angle a. In the majority of works on diffusers, precisely

this parameter is considered the basic one which determines the

flow pattern in the channel [5, 34, 54, 102, 106, 107]. The value

of angle a at invariable remaining parameters, in the first

place, is connected with transition from nonseparable to detached

flow in the diffusers.

The experimental data given in Fig. 3-13 show that at large

Re1 numbers the change in angle a up to a certain critical value

a p barely changes the coefficient of the recovery of energy,

and when a > a there occurs its sharp reduction induced by the

separation of flow at the throat of the diffuser.

The value of the critical angle depends upon the expansion

ratio, the Re1 number and the dimensionless inlet ve'ocity X1 .
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For low speeds and large Re, numbers the value a is determined
by the curve given in Fig. 2-10, and it shows that with an
increase in the expansion ratio there occurs a reduction in the
critical value of angle aKp. This dependence follows from curves
6n Fig. 3-14a., When n'= 2.4 an increase in coefficient 4 n occurs,
"beginning from 150, and when n = 4, qp 100.

HP

-4•- , , -- , Fig. 3-12. Dependence of
-.- ,--e -. " _, coefficient • upon X(a

:f --. '- _V -r 150).
017ýc'------- 4.5, O- n= 3; 0,A., A, p, •- n = 3; 0 , A,

0• -• 10; A, A - Re1  1.2 x

x 105; O,:E- Re1  1.65 x

5. •x 105; 4'- Re1 = 2. 4. 105..

'112 0,4 01 02

-____ Fig. 3-13. Dependence of co-
08•'- efficient C upon Re1 and angle

127 a a (n,= 4; X, 0.8).

0. 1- a 701 2-a = 100; 3 a-
=_150; 4 - a 200.

vs Re-, __

50. �2 0, /9.3 4

With an increase in velocity the range of limiting angles
will be narrowed, and with a decrease in Re1 number in the zone
of its small values (Re1 < 105) it is possible to obtain non-

seperable flow when n = A4 and angle a =,20°. The aforesaid is
confirmed by data of an experiment given in Figs. 3-9e and 3-10b.

When XI 1 0.4 and Re = 105 the losses depend upon angle a
weakly and even when a = 200 consists of a magnitude of the order
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of 27% (Fig. 3-9e). With an increase in velocity (Xi = 0.85)
and Re1 < 2.105 number there occurs e sharp decrease in the
coefficient of recovery of energ,; in the diffuser not only when
a = 200 but also when a.* 100 (Pig. 3-10b).

73.. Fig. 3-14. Dependence of co-
__efficients Cn and c upon angle a.

a): I -n =24; )
2-n = C.o;I

3 - '), - = 2.4;

b): 1 - n = 2; 2 - n 3; 3 - n =
=4; 4 -n = 6; 5 -n = 10 [A1 =

.5 - = 0.4; Re1 = (2-3).105].

a)

• : •__ .,,<-_

'I '.I -----[/--.-' ., -...... ,-__ '

o, " I/ u /52

b)

If the upper values of the critical angle depend upon a number
of factors and are changed over wide limits, then the lower values

Sare determined more accurat, .Ly. In accordance with the experimental
data) it; is possible, apparently, to confirm that when a < 80
the flow in diffusers has basically a nonseparable character.

* The angular region from 8 t.. 15° is transient) but the region
ili of nonseparable conditions and permissible expansion ratios is
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still sifficiently wide. At angles from 15' to 201 the zone

of nonseparable flows is extremely narrow, and when a > 200 the

flow has a clearly expressed separation character, whereupon

separation Ls begun near the inlet section. This is indicated by

the curve given in Fig. 3-14b.

If when a < 201 total losses are noticeably changed with a

change in the expansion ratio, then for a > 200 all curves

converge, and the dependence of value 4n on n in practice

disappears.

By examining the nature of the change in total losses in the

zone of nonseparable flow, it is possible to note their weak
dependence upon angle a. At the same time internal losses

noticeably fall with an increase in a and reach a minimum value near
the limiting angle. The change in internal losses, depending

on this value for diffusers with a constant expansion ratio (n =
=2.4), is given in Fig. 3-14a (curve 4). The experimental

point3 are obtained as a result of the traversing of entire
outlet section of the diffuser and subsequent averaging taking

into account the flow velocity component. Here, for a comparison,
the dependence of internal losses (curve 3) upon angle a, obtained

without allowing for the flow velocity component is plotted.

If at narrow angles (a < 50) the method of averaging plays

a comparatively small role, then when a = 100 the divergence of

the compared curves comprises 4%, and when a = 150 the losses

differ almost 2 times, and then with the emergence of separation

this distinction is barely changed.

The given comparison indicates the fact that with an increase
in the flare angle of the diffuser there occurs a noticeable de-

formation in the outlet velocity field, which leads to an increase
in the ratio c2maKc/c2cp. Having calculated for the given case
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the coefficient of energy N2 in the outlet section, we obtain its

continuous increase (N 2 = 1.09; a 5*, N2 = 1.58; a = 150)

In other words, with an increase in angle a up to the

limiting value, internal losses decrease, and losses with the out-

let velocity increase. The decrease in coefficient C with an

increase in angle a at a constant expansion ratio is explained

by the decrease in length of the diffuser and, consequently, by

the decrease in the rubbing surface. At the same time the de-

formation of the outlet velo'ity profile gives rise to the increase

in the coefficient of losses with the outlet speed C .C.. The

intensity of the growth in coefficient • .C. when a > 7-8*

exceeds the intensity of the decrease in the coefficient of internal

losses, and as a result of the optimum with respect to total

losses appears shifted to the side of smaller a as compared with

the optimum angle in internal losses.

In analyzing the influence of angle a, one should keep in

mind that with its increase the effective expansion ratio in-

creases. As a result the deformation of the velocity profile

in the outlet section and as consequence the noted increase in

the coefficient of energy N2 occur. If with this the outlet

losses are estimated according to the mean flow rate by relation

/ p, 2 1

then the portion of losses unaccounted for here with outlet

velocity enters into the internal losses and lowers the intensity

of their change with an increase in angle a (Fig. 3-14). At narrow

angles (a < 6-80), when the flow is still distant from the pre-

separation state, this portion of outlet losses is insignificant

and cannot change the nature of the dependence of the coefficient

of losses Cn upon angle a. With an approaci, to the preseparation

state coefficient N2 and the total losses begin to gro.i with an

increase in angle a.
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By estimating the internal losses according to the difference

between total losses and losses with the outlet velocity, calculated

according to the formula 1/n2, we obtain that the optimum

value of the angle is 6-100. During probe diffuser tests, when

averaging is conducted without allowing for the flow component,

the portion of losses indicated above with the outlet velocity

is also automatically included into the internal losses.

When estimating the total losses in principle it is no

different than when averaging is conducted: taking into account

the flow velocity component or without it, since they represent

the sum of internal and outlet losses, and the method of averaging

leads only to the redistribution of components of total losses.

The aforesaid is confirmed by the experimental data in

Fig. 3-15, where given are test data of a series of conical

diffusers with a constant expansion ratio n = 2.33 for four

values of the M1 number. Here it is possible to distinguish

three zones. With an increase in the angle up to 60 a reduction
in losses occurs. Then when 60 < a < 150 the losses comparatively
weakly increase (in practice according to the linear law). This

zone is characterized by the high-frequency pulsations induced
by the appearance of small nonstationary separation zones.
However, the developed separation zones are not detected, and the
losses increase a total of 3-5%. The extent of the second zone

depends upon the Mach number at the outlet into the diffuser and
Re1 number and is continuously reduced with an increase in MI.

When a > 15-200 the losses intensely increase, and the flow

acquires a pulsing character with clearly expressed vortex regions
carried downstream, whereupon the ripple frequency decreases with

an increase in the angle.

SThus, minimum losses correspond to the comparatively narrow
angular region (6-100). For the purpose of decreasing the axial
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dimensions of the diffusers, it is admissible for low velocities

and high Re1 numbers to use angles of the order of 150 (without

a noticeable deterioration of aerodynamic characteristics). By

explaining such a pronounced influence of angle a on the flow

pattern in the diffusers, authors of some works [34, 94] make

attempt to connect value a with the Burn [Translator's note: name

not verified] parameter r and thus explain not only the deforma-

tion of the velocity profile in the outlet section but also the

emergence of separation when a > anp.

Fig. 3-15. Dependence of
lliig • upon angle a at various
LI6~ -- *- -initial velocities.

41 - M1= 0.25; 2 - M1= o.14;

S3 - M = 0.51; 4 - M = 0.7.

0 id6  2S,~

The reasoning is based on fact that with an increase in

angle a there occurs a growth in parameter r in connection with the

growth of both the velocity gradient dc/dx and the boundary layer

thickness. As a result value r rapidly reaches the separation

value rS, and a further increase in the angle gives rise to the

displacement of the separation point against the flow. However,

it is not complicated to show that the Buri parameter r does

not depend upon angle a, and, consequently, the considerations given

above prove to be invalid.

In fact, let us rewrite (1-26) in the following form:

a. P*.25 0y 2

where accepted as the velocity scale is the velocity at the inlet

into the diffuser, and the length scale -the length of the

generatrix L.
144
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The dimensionless momentum thickness 6**, the velocity c

and the velocity gradient are determined only by the dimensionless

coordinate x and for assigned expanoion ratio do not depend upon

angle a. For the laminar boundary layer this conclusion was made

by Pol'gauzen [lll].

Thus, in the explanation of separation in diffusers with an

increase in angle a, one should proceed from different premises.

Specifically, let us note that with an increase in angle a at

an invariable relative length there occurs a reduction in the

reverse effect of the boundary layer, and the effective expansion

ratio approaches the geometric, i.e., an increase in the actual

expansion ratio occurs. Furthermore, an increase in the angle

causEs a significant local disturbance at the inlet into the

diffuser. This disturbance lowers the boundary layer stability

and gives rise to its separation when a > a
np.

The influence of conditions of entry (evenness of transition)

is illustrated by velocity profiles in the outlet section of the

seven-degree diffuser given in Fig. 3-16. If at angular fracture

(r1 = 0) in the transition point to the diffuser part in the

outlet section was fixed detached flow, then the rounding of

angle (r = 2 mm) gave rise to the liquidation of the separation.

The last fact gives the basis to connect the emergence of separa-

tion with the degree of the inlet disturbance induced by the

angular fracture.

If the flow plane contains singular points of the pole

type, then in their environs the common boundary layer theory is

inapplicable, and in this region a special analysis of the flow

is required. The aforesaid results from the sense of Prandtl

equations, since near the angular points ap/ay 5 0.
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Fig. 3-16. Velocity profiles at the inlet section of the . )nical
diffuser under various conditions of the inlet (a= 70;. n = 4;'1 =

= 0.82). 0 - r1 = 0; 0 - rI = 1 mm; C- r1 = 2 mm; A - rI = 4 mm.

In the remaining space, excluding the zone of separation,

where also 3p/3y X 0 [65], it is possible to use as a basis methods

and derivation of the boundary layer theory used for the internal

problem. However, unlike the external problem, here the reverse

effect of the boundary layer on the distribution of pressures

along the limiting walls is considerably greater and can lead to

a substantial deviations of results from values calculated for

the ideal fluid.

For a solution to the problem of the flow pattern in

diffusers, apart from a general analysis based upon the known

distribution of pressures and velocities, it is necessary to

examine the fluid flow with finite viscosity near angular points,

and explain the validity of the assumption made above about the

role of angular fractures. For this purpose let us examine results

of an investigation of the plane channel depicted in Fig. 3-17a

and which is a unidirectional diffuser with flare angles a equal

respectively to 5, 10, 20 and 300.
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a)
Fig. 3-17. Diagram of the

I... channel investigated a)
" j and the change in relative

" .",• j� •-velocities in this channel

S L.�..�/k .. , *,05".1 = 200; along wall
ABC; ----- along wall DE.

- ]' "", ---

I -

Y,,• 0 o 0,/, 4 0,6' 0,8 '.0
b)

For an experimental estimate of the velocities both the

lower and upper walls of the channel haa a series of drain holes,

and in fracture zone'they were located at a distance of 1-2 mm

from each other. Furthermore, directly in section I-I (Fig. 3-17a)

with the help of a stanton tube the boundary layer velocity profile,

which illowed obtaining a representation about the disturbance

introduced by the fracture was measured.

Figure 3-17b gives values of the relative velocity along the

wall ABC at various values of the dimensionless velocity at

initial point A (XlA) for two values of angle a equal to l0* and

200. For the cor.venience of comparison the current velocity

everywhere refers to the velocity at point B. All velocities here
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are calculated according to static pressure on wall pi and the

initial. pressure pO.

From the curves it is evident that influence of the fraCture

has quite a great effect and is extended for a considerable

distance upstream. With an approach to the angular point the

velocity on the small section increases by almost 30%, and then

just as sharply its decrease in the diffuser part occurs.

Simultaneously it is possible to note that on the opposite wall DE

the velocity increases by a total of 2-5%.

The indicated results from the qualitative side agree well

with theoretical solutions for the flow of ideal fluid about

a convex angle [64]. However, the absolute velocity increase

remains limited although very noticeable.

By estimating the practical velocity increase near the

pole, V. V. GoluL.v [20] considers that the pressure force at this

point cannot be less than the friction forces. Hence, by knowing

the order of minimum pressure, it is possible to determine the

order of maximum velocity. Such an approach is more physically

substantiated and allows conducting certain quantitative

estimations.

For a comparison of the theory with experimental data, it is

hardly possible to use the curves given above, since near the

angular point not only a longitudinal but also a substantial

transverse pressure gradient should take place even within limits

of the boundary layer. This is confirmed completely by the measure-

ments of static pressure across the channel with the help of a

stanton tube of static pressure [52].

From the given results it follows that the disturbances

introduced into flow by the fracture increase with an increase in

the M number and depend upon the angle of fracture a. A clear
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represenzation about the influence of the indicated parameters

near the point in question can be obtained from Fig. 3-18. Plotted

here along the axis of the ordinates is the mean flow rate in

section I-I (see Fig. 3-17a) and along the axis of the abscissas -

the local velocity in the section of fracture on both walls of the

channel. In the indicated coordinates the degree of deviation of

the experimental points from the bisectrix gives the difference

between the local and average velocities at various angles in the

whole subsonic (in average speeds) range.

,0 Fig. 3-18. Dependence between
~cPj _ _.1 the average (X and local MX

0,3 relative velocities at the inlet
into the diffuser. 0 - a = 50;
0 - a = 100; A - a 200 - wall

I ~I(1ABC; x - =100; 0- 200'
wall DE.

W,, .

I - I. I

It is evident that on wall DE the local velocities coincide

in practice with the mean value an.d are scmewhat increased with

the approach to the speed of sound. On wall ABC at point B the

difference in question proves to be substantial and almost in the

whole subsonic range is equal to 30-35%. With this the absolute

divergence between the ve~ocity at point B and its mean value

cont!i.uously increases. For Xcp 0.75 XB 1. A further increase

in the average velocity gives rise to the appearance near the

fracture of the zone of local supersonic velocities. The trans-

verse extent of the region of increased velocities is small.
However, its influenc on the further development of flow in the

part of the channel being expanded frequently proves to be

decisive, since it gives rise to the sharp increase in the local

positive pressurc grad.ients.
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Bearing in mind what has been said, let us examine the

dependence of maximum velocity at p('nt B upon a. This dependence,

given in Fig. 3-19, proves to be discontinuous. First, with an

increase in angle a the local acceleration of the flow increases

continuously. Then when a > 100 the intensity of this growth is

slowed down, and when a = 20-25' function XB/Acp = f(a) undergoes

discontinuity, and the local velocity approaches the mean value.

With an increase in velocity the point of discontinuity is

displaced to the side of smaller angles, and the disturbance

4ntroduced by tLe fracture increases.

4 i Fig. 3-19. Dependence of maximum

I "(I-, velocity at the fracture point on
1,3 3 angle a and average velocity p.P

I ISI O o c

IU/0 20° 300

Thus, if angle a is comparatively small, then the disturbance

induced by them does not have a substantial influence on the sub-

sequent flow, and the position of the separation point can be

determined on the basis of the theory of the boundary layer. How-

'.ver, with an increase in the angle the zone of the disturbed

flow includes more significant regions and substantially increases

the local positive pressure gradient directly at the inlet into

the diffuser (see Fig. 3-17b), which gives rise to a reduction

in the stability of the velocity profile, and in flow local zones

of nonstationary separations appear.

The theoretical calculation of the indicated flow is

extremely complex, and thus far it has been necessary to be
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criented on experimental data which, incidentally, due to the

nonstationary character of the flow are also rather inconsistenit.

It is natural that the emergence of nonstationary separation

in the angular region in question (a = 10-25o) depends upon the

total expansion ratio of the diffuser n. The larger the angle,

r the less the limiting vaue n, which ensures the nonseparable flow.

Let us note simultaneously that an analogous conclusion can be

made with respect to the compressibility effect (the more ve3ocity

at the assigned angle a, the less the limiting value of the

expa.ision ratio should be). The reason for such a limitation is

clear from the previous presentation.

By examining finally diffusers with angles greater than 200,

it is possible to note the emergence of the separation directly

at the inlet section. From this moment the flow in the diffuser

acqures a stream character, and tne influence of angular point B

upstream is little. In Fig. 3-19 the transition to the indicated

flow conditions corresponds to the point of discontinuity.

With the emergence of the stream separation the flow in

the diffuser becomes identical with the flow at sudden expansion,

and for the evaluation of the power losses ý it is possible to use

the widely Inown formula (2-42a). In connection with this it is

interesting to indicate that the values obtained here of angles

which correspond to the transition to stream separation in a

rectangular diffuser coincide for low velocities with the data

given in work [54], where the value 4' = 4(a) becomes equal to

one for angle a = 260.

Thus, the presence in the flow of angular points can decisively

influence the flow pattern in the subsequent diffuser regions,

since the introduced disturbances will noticeably redistribute

the velocities in the cross section of the channel. The indicated

disturbances are somewhat decreased if in front of the fracture
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there is an inlet section. Then the inlet boundary layer gives

rise to the smooth change in longitudinal velocities, "smoothing"

the influence of the fracture. It is necessary, true, to keep in

mind that, by decreasing the disturbance induced by the fracture,'

the inlet boundary layer deteriorates the aerodynamic character-

istics of the diffusers and also promotes early separation. How-

ever, in this case the possible point of separation is located ih

the expanded part of the channel, and i'ts position can be pre-

dicted as a result of theoretical calculations.

In the examination of flow at the inlet section of the

diffuser the author of work [5] made a theoretical conclusion about

the inevitability of separation if the length of the section

in front of the diffuser exceeds two inlet gauges and angle

a > 60 .

The experimental data given.above obtained at the inlet

section equal to three gauges, and subsequent experiments with a

longer inlet, and also data examined in the works [21, 88, 89,1
140] indicate the nonseparating state of the flow at angles which
considerably exceed 60. This fact is especially brought out in

work [88]. In our experiments even when angle a = 200 the flow
in the inlet region of the diffuser had a nonseparable
character, and only in the subsequent sections did nonstationary

separation appear. This is Indicated by experimental values of
the coefficient of the recovery of pressure given on Figs. 3-9
and 3-10.

rThe study of the flow pattern near angular points can give

valuable data for the explanation of the critical increase in
4 diffuser losses in transonic conditions, when with an increase

in velocity there occurs a sharp increase in the inlet disturbance

and, as a consequence, the separatitn of flow near the inlet sec-
"tion.
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-'In connection Withthat stated we will discuss the question

of the rational law of the decrease in velocity along the, axis of
the diffuser, which ensures ninimum losses and the greatest zone
of nonseparable flow. For this purpose let us examine the follow-
ing laws of the chahge in the dimensionless velocities:

• I -Y1 . (3-7a)

, _I(3-7b;)

Curves which correspond 'to these dependences when n = 2'
are given in Fig. 3-20. It is not difficult to see that the

formula (3-7b) corresponds to the theoretical decrease in the
velopity in a plane diffuser wben p = const.

" /10 $/Wu1/C•n-U1) Fig. _.-O. Different laws of the

(3-7a) I elocity change in the diffuser.

i -- N&•.> 3••b)rj KEY: (1) According to relation.

1? 0 2 0,4 0, 6 0,8 4,0

Having calculated from formulas (3-7a), (3-7b) and (3-7c)
the value of paramter f., we obtain for the case of formula (3-7a):

r=, 1.0- 1 ~ _•,, (3-8a)

when using of formula (3-7b)
adfom•a = .i:-a{l - (3-8b)

Sand formula (3-7c)
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S" ---- n (3.8c)

The curves plotted according to these formulas of the

change in parameter r along the diffuser for n = 2 (Fig. 3-21)

show that the intensity of its growth substantially depends upon

the law of the velocity change. With the linear law (3-7a) the

separation value FS is reached in the section x = 0.85. However,

on the initial section value r proves to be minimum, i.e., from

the point of view of disturbances at the inlet, it is advantageous

to have as far as possible a smooth transition to thz. diffuser

section. With a sharp decrease in velocity at the iniet [law

(3-7a)] parameter r attains in this region the maximum value,

although in finite sections its values are less than those with

a linear dependence for velocity.

J I (i) I /Fig. 3-21. Change in parameter r
"/l)7oJ~l/1.Vz':/;/1 • along the diffuser at various laws

CA. . -3"'-c//of the velocity change.

(3;8b) .' KEY: (1) According to relation.

-IX
'9--j.o -. .

I . . . -..7.
0 ~ /~~' 04 0,0L 1,9

Thus, for the provision of nonseparable flow in finite
sections, it is advantageous to have in the region of the minimum

section a sharper decrease in the velocity. The examination of

laminar flow in the diffuser leads to this result.

At the same time for short diffusers, when angle a > 11' and

the effective expansion ratio approaches the geometric, it is

advantageous to provide a smooth transition from the cylindrical
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section to the expanded channel. In this case the so-called

isograde diffusers, having at L/D 1 < 2 somewhat smaller losses than

the plane diffusers are most frequently used.

However, at angles a < 10-110 and L/D 1 > 2 it is most

advantageous to use common conical or plane diffusers, and at

low speeds it is admissible to change to diffusers with increased

expansion near the inlet section. The shape of such a diffuser

is shown in Fig. 3-22a.

�.0 14

a) b)
Fig. 3-22, Diagram of a profiled diffuser a) and the dependence
of coefficient i upon M1 for various diffusers b) (n = 2.33). 1 -

conical diffuser; 2 - isograde diffuser; 3 - profiled diffuser.

The considerations stated are confirmed well by curves of
losses in Fig. 3-22b. Let us note that when n = 2.33 and the
relative length L/D1 = 2, only in the conical diffuser does non-

separable flow take place in a wide range of M numbers. In an

isograde diffuser (curve 2) separation occurs during all conditions
and in a diffuser with the inverse curvature of the wall (curve
3) at M. > 0.45, when the local inlet velocity gradient noticeably
increases.

The analysis conducted of the influence of the flare angle
on the flow pattern in diffuser channels shows that a essentially
characterizes the degree of the inlet disturbances. The magnitude
of the latter increases intensely both with an increase in the
angle and with an increase in the inlet velocity. Here the local
pressure gradients considerably exceed values of 3p/Dx calculated
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according to the mean flow rate.

For a reduction in the negative effect of angular fractures,
the small rounding of the diffuser inlet section frequently proves

to be sufficient. Thus, in Fig. 3-16 examined above when rI = O,

when the transition from a cylindrical to a conical section was

accomplished without rounding, in the exit section of the diffuser

the flow had a separation character, and when r1 = 1 mm separation

was eliminated, despite the high inlet velocities. A further change

in radius r1 no longer gs.ve rise to any noticeable deformation

of outlet profile.

The dependence of the coefficient of recovery of energy

upon number Xi (Fig. 3-23) also shows that the smooth coupling

of the diffuser with the inlet section even with a small radius

(r1 > 2 mm) substantially decreases the losses.

.. Fig. 3-23. Effect of the
,:- - ,. inlet into the diffuser

.. ,--., on the coefficient of
• pressure recovery.

¶ _ -Q0, A-r 1  2.0Qmm;

A - *, *, A - rI 4 mm; 0,
"�"" ~* \- -* = 70; 0, 0 - = 100;

S, . .. . .. A, A - ct= 20Q .

The influence of the last of the determining geometric
parameters of conical diffusers (value L/D on the total loss
factor •n essentially was already examined above. In explicit form
the relations

n= f(L/DI) for n = const

are given in Fig. 3-21a and for a = const in Fig. 3-24b. In both
the first and second cases (except a > 220) with an increase in
the length, the total losses continuously decrease. The decrease
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in coefficient n in Fig. 3-24a is connected with the fact that an

increase in parameter L/D 1 occurs with a simultaneous decrease

in angle a, and in Fig. 3-24b the latter is explained by the growth

in the expansion ratio. Both the decrease in angle a and the growth

in value n lower losses with the outlet velocity, and the certain

•. il increase in internal losses with an increase in the length of the
ýA diffuser cannot substantially influence the character of the

dependence gn = f(L/DI)"

JI~

S..~.. '" %l

i1 8 12 /5 20 24 Fig. 3-214. Dependence

a) of the total loss
factor upon value

,..L/D 1 . a) n = const;

b) a = const.

00

0,7

" A•j -- "f

]ce s o .. 6- : ,__ _
.....................................

5 V5 20 211

b)
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The examined experimental data refer to the axisymmetric

diffusers. However, they are completely used for an analysis of

the flow in plane channels. True, this analysis is somewhat

complicated for diffusers whose width B is commensurable with the

height H (see Fig. 2-1a), since in this case the magnitude of

losses is significantly affected by the correlation of longitudinal

and transverse dimensions of the inlet and outlet sections.

§ 3-4. Calculation of Losses in Conical
and Plane Diffusers According to
Boundary layer Characteristics

The calculation of the effectiveness of diffusers is reduced

finally to the estimation of coefficients of total (g) and internal

(n,) losses. At known boundary layer characteristics in the outlet

section of the diffuser channel, the values of these coefficients

are defined by relations

P2, Y )
(_Llj

- P2 n (1 -.(..A%,)-2 (2-29)

P 2  j-- (2-37)

where A* 2 and A***- the relative areas of displacement and

energy losses connected with the velocity profile c 2 i in the

outlet section and with the arbitrary velocity c 0 which corresponds

to the pressure ratio p2 /pol:

0

'A C1 42 d

2

If in the center or the flow the potential core (the zone

where Po 1 = P Pi") is preserved, then c 0  e2ma~ c and the
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introduced values A* and A*** are identical with the relativearea-of*dislacementve

area of displacement P 2 and the area of the energy loss 2***
determined from formulas (1-3) and (1-5).

If P01 > P02maKc' then A*2 > 6*2 and A*** 2 > 6***2" Above

it was noted that condition p0 1 = P02maK3 for nonseparable flow

is disturbed not only with the joining of the boundary layer but

also somewhat earlier under the adverse conditions of the entry

into the diffuser and increased flow turbulences. Considerable

distinctions between pressures p0 1 and P02MaKc and respectively

between velocities c0 and c2Maac in the case of nonseparable

flow take place at comparatively large expansion ratios (n > 3),
when values of the coefficients Cnare small and the absolute error

of the calculations is found within limits of the accuracy of the

experiment (A 3-5%).

For an example Fig. 3-25 gives the correlations between
velocities c0(X0), C2maKc(X2maKC) and c 2 cp (X 2cp) in a seven-

degree diffuser with various expansion ratios n. With an increase

in this parameter average speed (curve 1) is decreased most

sharply. The intensity of the decrease in the maximum speed

(X2Maec), determined according to the maximum pressure of full

stagnation of the inlet section and static pressure P2, is noticeably

less (curve 2), and the arbitrary velocity X0 coinciding with the

rate X 2MaKC up to n = 2.0 is reduced only by 66% of the initial

velocity Xl, but then when n > 4 it is almost not changed (curve

3).

Thus, in practice for important expansion ratios (n < 4) it

is possible not to take into consideration the drop in pressure

of the full stagnation, and to use the common definition of integral

areas of the boundary layer.

From the aforesaid it is clear that the accuracy of determin-

ing coefficients Cn and 1 depends upon the accuracy of the

computation of values A*(6*2) and A***2(6***2)" For a calculation
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of the arbitrary thicknesses let us use formula 1(1-32) and convert

it taking Into account the axial symmetry of the problem, to the

form [69]

L"OO. - -. o.8 (3-9)

"• %;2 D2 L

(here D = D/D 2 ).

Fig. 3-25. Dependence of
0;I tive velocities in the i nlet

section upon the expansion ratioL•,8 . • .. ... . } ... .n.

3 I 6
"'{'" •{ • •,• 1' " "' ---'I "''-4 ... 3-.,.j,',.

The dimensionless velocity Z = c/c 1 entering here is

determined by the law of the change in area along the channel.
However, as was already mentioned above, in plane and conical

diffusers the nature of its change along the x axis is consioer-

ably different from the theoretical dependence.

If in the initial section the agreement of experimental
and calculation data still takes place, then with an approach to
the outlet section due to the growth in the boundary layer the
decrease in velocity is sharply reduced (see Fig. 3-8b).

Consideration of the reverse effect of the boundary layer

can be realized if we introduce the local area of displacement *
into the examination. Then from the continuity equation the law

of the velocity change in the diffuser channel will be expressed
by the following relation:
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• •"-- •'L'%(I" .- •[•-.(3-10)

With a comparatively thin boundary layer

*i2= -b2 (3-11)

If the boundary layer occupies almost the entire channel,

then the correlation between the relative area of displacement
*2 and the thickness .6*2 proves to be more complex:

2 (3-11a)

The combined use of equations (3-9), (3-i0) and (3-11a)

gives rise to the following integral equation, which determines

the area of displacement 6*2:

B •-B [0O'"(I -- 'x)'" 0 j (3-12)

Here

0,14.411- L L\.8* 6I e. B0.; H

Quantity H depends basically upon the expansion ratio n and relative

length L/D 1 .

As a Cirst approximation let us assume

---- --- I (3-13)

QualitativelyI the relation (3-13) expresses that fact that

with an increase in the expansion ratio at constant length E the

velocity profile Ln the outlet section approaches the separation

form for which coefficient H = 2-2.8 [71, 111] when n = 1 11 1.4,

wzi.ch corresponds to its value for the gradient-fret flow.
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The degree of approximation (3-13) can be judged from
Fig. 3-26, where experimental values of parameter H, obtained by
L. G. Golovina and V. V. Ett as a result of the traversing of
the outlet velocity field of the diffuser with a = 70 are given.

''.-T .Fig. 3-26. Change in parameter H2- iI T depending on the expansion ratio
-V _(1 ..i), n. - zone of experimental

values H for M1 = 0.5-0.8 (experi-

0 . ments of MEI).
2 3 4 5 " KEY: (1) Relation.

Using the obvious relation

751- -+ (3-13a)

let us present (3-12) in the form

S+ I ×[ YB. 4)

and express the current area of displacement 6 in the following
manner:

S•-' = •'"4 {}. (3-14 )

The unknown function f(i), which determines the law of the
change in value 6*, --.onp the R axis, continuously increases from
zero to one and can be approximated by the power function of the
form:

f (,T)= ,,

A' Then
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' (- I z- l )-- .O (I - "

o

SS (I +-. (g/z- I)]8.,, (I - •"'o2~.02, (3-15a)01- 0 2;8* 30

In equation (3-15) at fixed values of quantities m and n,

a unique unknown is the area of displacement P'2 at the outlet

Sthe diffuser.

Concrete calculations show that the change in the exponent

m in rather wide limits (from 0.5 to 1.0) changes the final

result little. On this basis it would be possible to use the

simplest linear approximation. However, experimental values
f(x) (Fig. 3-27) show that good agreement with experiment takes

place when m = 0.8.

The structure of the expression obtained for P*2 is complex,

and its solution in each case requires significant computational

work, which lowers the practical value of the examined method.
In this connection L. M. Dyskiny conducted computations of the

area of displacement P 2 for a whole series of conical diffusers

on a digital computer. Results of the calculations are given in
the Appendix (see Fig. A-l) in the form of a nomogram. Using
the expansion ratio n as a parameter, i,. is possible to construct

value P*2 depending on coefficient
21 +
0,0 ( L )@, [I VW-.- 1.10.2 - (L.D,) 0., (3-16)

I Thus, the entire calculation is reduced to the definition of
coefficient B and finding on the nomogram of the area of
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displacement 6*2 with the subsequent .se of formula (2-29).

-. I I I .. .. . -Fig. 3-27. Change in function f(R)
along the axis of conical diffusions.

. -' -] - .- experimental values of
_o, _•"1 function f(x) (experiments of

tii

Again let us note that the calculation is constructed on the

basis of the equation of Kdrmdn (1-2), whose integral. for

axisymmetric flow is expression (3-9). Hence it follows that the

source of possible error in the definition of area 6*2 can be

the following facts: the absence of a potential nucleus, when

the relation

dp dc-tasc
WF ::-- -- jM C

used tn the derIvation of the equation of K~rm~n loses force;

the approximation nature of relation (3-13); the absence of axial

symnmetry in the distribution of value 6*2 and the known arbitrariness

when selecting the exponent m in formula (3-14a); the approximation

nature of the equation (3-9) obtained for small positive pressure

gradients.

Although all the indicated reasons finally do not give rise

to great error, nevertheless the influence of some of them can be

weakened if a calculation is conducted on the basis of formula

- ('/pt\c\ D~
j-2P2/C
0

The absolute valluc of energy losses in the cylindrical

section, which is at the distance x from the throat of the

diffuser, will be equal to [25, 72]
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Hence

u., ... 021e~,11 P •._••2 • (3-17)

Here H* = A***/A** (for gradient-free flow H* = 1.8).
Having substituted (3-17) into expression (2-54), arid having

replaced the ratio of velocities Ei according to formula (3-10)

and the ratio of diameters according to relation (3-13a), we
obtain:

A2  0208D L\ 0,3'n.
.•5' I )a , X

P6 (I -(Vn-) J.(1 it)o

Let us use for the relative area A' the relation of the
(3-14) type with the same furnction f(R) as earlier, and let us

pass from the energy thickness to the relative area of displacement
A*2 , keeping in mind that

As a result the integral equation which determines the area

of displacement takes the form

A-*•= 1.- 1 - B, (1 - *2) 12
~2

X. i2 .28 _ .Od --. (3-18)
P) .[.I -- (V" - 1) it]4.O (I -

where the parameter

0. 0115 /L N0.8 j j-q
.2.
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As yet let us eliminate the density ratio p 2 /P 1 appearing

in formula (3-18) from the examination, since the density is

changed basically only on the initial section of the diffuser, and

then it remains aý.most constant (Fig. 3-28).

1F1g. 3-28. Density chiange

.. --- along a conical diffuser
____ ____ (n = 4; a = 100; Re1 ='

2 = 2-l05).* 1 - X1 = 0 .98;

, -::,.... '•.'-' --__ 2 - X1 = 0.63; 3 - 'Xl
1"2 "'-=0.57; 4- = 0.4; 5

S .. .0.3.
"0,2 0, " a' Old. 1 1

For value H let us use the approximation (3-13) introduced

above. Then we will obtain

o,131 /Lo.8r ,/n-.i 1.B,,=h•,--•- TL) ,-1 [-I- V)~•/ 31•

As a whole equation (3-18) is simpler than equation (3-15),

and in its derivation we did not use in explicit form the

condition of the potentiality of flow in the flow core. The

physical basis for formula (3-18) is the replacement of the real

flow on an infinitely small section of the diffuser dR by a

certain fictitious flow in a circular tube of the same length dR

at the same distance K from the inlet, and having in the center

of flow the same velocity ci as that of the section of the

diffuser in question [see formula (2-54)].

The numerical comparison of calculations according to formulas

(3-15) and (3-18) shows that both methods give sufficiently close

results. In Appendix the nomogram (see Fig. A-2) based upon

equation (3-18) with parameter B1 being defined from formula

S(3-18a) is given.
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Representation about the Accuracy of definition of relative

areas of displacement in the in.-.t section of the diffuser is

given on Fig. 3-29, where both'methods of the calculation are

compared with experimental values obtained as alresult of the

traversing of the outlet vel, city field in seven-degree diffusers,

which differ in the expansion ratio n. The agreement of

calculation and experimental values 6* should be recognized as

- being entirely satisfactory. At the same time it is necessary

to note that the •rbitrary area of displacement A*2 when n > 4
Sis noticeably distinguishd from valtie ,"2" This difference is1 caused, by the drop in pressure of full stagnation in the flow c'
(see Fig. 3-25). Hencethe limitation of the examined method of
the -calculation of total loss factors n by moderate expansion

rattos n < 3.5-4 follows.

In all the given relations except the geometric, only one
regime parameter - the Reynolds number appears. The absence

here of the Mach number is explained by the fact that directly
on the integral thicknesses 6* 6*2 and 6'**, in the outlet2' 6*2 6**2
section this parameter has litt.e effect. Basically the Mach
number changes the flow pattern in the iiitake of the diffuser,
where its growth gives rise to an increase in, the inlet positive

pressure gradients. However, this disturbance, if it does notI cause boundary-layer separation, is smoothed in the subsequent

* • flow, and the whole compressibility effect is reduced finally to

a density change along the diffusor, which gives rise to an increase
in value P 2 The degree of this increase is traced on Fig. 1-11,,L 2*where with the change in, inlet velocity from X1 = 0.3 to Xl = 1.1
the, maximum growth in value 6*2 was 20%. In principle this grcwth
should be kept in mind, and it can bNtaken into account if we
do not reject the density ratio in formula (3-18), arid, by using

the mean value theorem, include the ratio Into parameter

B1.
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.. 2 . .. .. i•'fTY-7."" Fig. 3-29. Comparison of results
2P f calculations according to,.4 ..... ... I .... " ,-'T;-=•/•.•:•L_ .•,./ H formulas (3-15) and (3-18) with

I test data. A - calculation by
formula (3-15); 0 - calculation by[ formula_ (3-18); 0 - experimental

-- . values 6*2; x - experimental
.;7Z /t 7. values A*2 .
32

As a result it is possible to use the same nomogram of the

Appendix but define the coefficient B1 by relation

o.161 r 1.1o.
0.2 DI-02 P ( 3-20 )

(LD)I

The ratio of densities in the certain section x is expressed

in the following manner: ()2
i p1 ' (3-21)

where coefficient a < 1, and ratio p2/Pl is connected with

velocities X0 and A1 by relation [25]:

J I1 X- F (3-21a)P1 -k_-• 2

It was noted above that the relative velocity X0 is dis-

tinguished by not more than 2.5 times from velocity X1 (see2 _ 25,eoban
Fig. 3-25). Then, assuming X0 2 we obtain:

__ - -(3-22)

As a whole formula (3-22) gives an approximate representation

of the order of the density ratio and can be used not only in the

computation of parameter B1 but also in the relations which

define the complete (2-29) and internal (2-34) diffuser losses.
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The nature of the density change along the diffuser at

various velocities A is sufficiently clear from the curves given

in Fig. 3-28, which allod using coefficient a in formula (3-21)

of the order of 0.4.

Tading into account the aforesaid, we will obtain

0A 2 1 (LID,)°. 8
SI[ 1

-0 1 (3-23)•' ::k -- i k-1

A2
k+1-

The examined procedure is easily generalized on arbitrary

diffusers with a rectilinear axis. In this case instead Gf the

formula (3-18), we will obtain the following general expression:
I

=Z- - .(3-24)

Here D .- 0W.81 [ L b.:fI2

L the length of the channel on the center line: b2 , and b2 are

the characteristic dimensions of the inlet ant outlet section

1I1i and nf2 - current perimeter and perimeter of the channel in the

outlet section.

Results of the ceiculation according to formula (3-24) depend

upon the concrete cnannel, and because of this they cannot be

obtained earlier. However, having isolated the definite group of

one-type diffusers, it is not difficult to obtain simple calculated

nomograms for them.
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For plane diffusers equation (3-24) is considerably

simplified. In this case, having used as characteristic dimensions
h and H 1 (see Fig. 2-1a), we obtain

~a2 - B -(I aj l2 (3-25)B[( A) 1!+i (n-- 1)12.s (1 -- •°, A'-2) •°= 3-5

0,.0576H, - L ,..pIsA91- .o2 UT (3)•'-26)
By examining the pyramidal diffuser depicted on Fig. 3-30,

it is easy to see that in this case the calculation is considerably

complicated. Actua~ly, here the ratios of areas and perimeters

entering into formula (3-24) are expressed in the following

manner:

112 HI1 (IA_ DI

1;- -. . n"

2• Fig. 3-30. Diagram of a

As a result the calculation of area A*2 must be conducted
not with one parameter n but with three additional values:

HI B.. and B
"Tr' ,. -- "

This fact impedes the construction of the universal nomograms
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of the type examined above, and it gives rise to the necessity

for the determining A* 2 by the method of successive approximations

according to equation ( 3 -24).

§ 3-5. Comparison of Calculated and
Experimental Data

The examined calculation procedure of diffusers according

to formulas (3-15) and (3-18) when using nomograms of the stagnation

differs little in laboriousness from the calculation method

according to the coefficient of "softening" of the impact 1 A

However, the question of laboriousness is not decisive but rather

the accuracy of the final result.

By using experimental data given in Table A-1 of the

Appendix, let us compare them with the theoretical values found

both on the basis of the boundary layer characteristics and

on the basis of formula (2-42a).

For a comparison let us use the data on the conical diffusers

with angles a < 110, and let us limit the maximum expansion ratio

n < 6. In other words, let us distinguish the group of nonseparable

diffusers, since only for them is it possible to conduct the

calculation of losses on the basis of nomograms.

Furthermore, for the correctness of the use of the curve

in Fig. 2-12, which )inks the coefficJent A with angle a, let

us use the test data obtained at low velocities at the inlet

(XI < 0.14) and similar Reynolds numbers (Re 1 = (2-3).105). Data

selection according to such a principle of 35 diffusers are placed

in the first part of Table A-l, and for them the calculated values

of coefficients ;n are determined.

Results on the comparison conducted are clearly visible

from Fig. 3-31.
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i Fig. 3-31. Comparison of the cal-I-~ culated and experimental values
•] Iof coefficient ý n. 0 - calculation

op by nomograms of the Appendix; Aua4%• Icalculation by formula (2-42a).

Deviation of the applied points from the bisector of the

quadrant gives the absolute value of the divergence between the

calculations and experiment. The comparison conducted illustrates

visually the advantage of the examined method of calculation for

nonseparable flow. In thi!: case the absolute deviation in the

points from the bisector does not exceed 3%, and the maximum

relative error is 15%. At the same time the use of the

coefficient of softening of the impact ¢) increases the relative

error to 25%, and the general divergence of the points is noticeably

worse than that in the case of calculation according to boundary

layer characteristics.

Furthermore, it should be kept in mind that we actually

eliminated from the examination the mode parameters - Mach and

Reynolds numbers. Otherwise the error of calculation according

to coefficient 4A could exceed the absolute value of the definable

value ý n' since the relation 0) = f(a) is far from being universal.
Considering the wide distribution of the relation and its use for

the performance calculation of all possible diffusers, Fig. 3-32

gives values of 4) depending on angle a obtained on the basis

of the experimental data gathered in the Appendix. It is evident

that at the same angle the value of coefficient 4A can change
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several times in the zone of narrow angles and by 30-50% when
a > 150. Hence it follows that the relation in question (2-42a)

can be used for an estimate of the order of losses with the

emergence of separation, but it does not solve the problems in

the zone of small angles (a < 110) when the flow is not separated.
Here the advantage of theoretical methods is evident.

A0

-0

6A 0 7
_A 00. 1

00

A

,2 I 1i 20

Fig. 3-32. The experimental values of coefficient
4A depending on angle a.

Considering the significant quantity of experimental material

attracted for analysis, the e-timate of losses in conical diffusers

can be conducted directly according to the experimental dependences

depicted on Figs. 3-11, 3-14 and 3-24. In this case not only the

direct but also the inverse problem is easily solved: according

to the prescribed value of coefficient select the adequate

geometric parameters of the conical diffuser. For instance,
setting o 0.4, from Fig. 3-11a we find that this conditi6n
satisfies a number of diffusers with angles a = 4-180

and value n = 1.6-2.8.
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If according to design considerations a short diffuser is

required, then the most suitable parawe'ters will be a = 150 and

n = 2.0. If it is required to provide stable flow in yariable'

modes, then it is advantageous to decrease angle a and use a =

= 70 and n = 1.9.

§ 3-6. Detached Flows in Flat and
Conical Diffusers

The visual study on the flow pattern in diffusers, conducted

in works [88, 142, 143], showed that the separation of flow from

walls o' the channel occurs at a definite correlation between

the flare angle of the diffuser and the expansion ratio (see

Fig. 2-10).

A small increase in limiting values of ac and 1n causes 'at

if npandkinp
first nonstationary separation. The small eddy regions appearing

in this case are easily carried away by the flow without causing

a substantial drop in the efficiency of the diffuser. Subsequently,

however, with an increase in the anglJ a or the expansion ratio,

there appear more powerful eddy formations, which sharply change

the flow pattern in the outlet section of the diffuser. These

changes are most noticeable in flat diffusers. If during non-

separable flow the flow lines of ordered motion fill the whole

outlet section of the diffuser, then with the separation of flow

the zero line of current will move away from the wall of the

diffuser, and in the region between this line and the wall

the vortex fluid flow is established. In the zone of separation

there can be formed either the stationary vortex, which rests on

the side walls of the channel, or the system of vorticesi of

smaller intensity being transported together with the flow. The

diagram of such a flow is given on Fig. 3-33. The zero line of

current ABC at point B moves away from the wall and separates the

'Here and further we will understand by the word "vortex"
purely circulation flow.
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zone of vortex currents from the main stream.

-.. I-_<
\ - ig. 3-33. Diagram of detached
--.. -- flow in a plane diffuser.

. . . . . . . . . ....... , ..-' "• •,-

iLI
Thus, with the emergence of separation, the section of the

r channel which passes the assigned fluid flow rate is sharply
reduced, and in the zone lying over the line of separation the flow

whichlis close to being gradient-free is established. It is

natural that in connection with the decrease in effective output
area F an increase In the 'total loss facto- occurs, and,
correspondingly, the coefficient _f the recovery of energy is

lowered.,

The theoretical determination of area F with the emergence
of separation is associated today with insurmountable difficulties.

Because of this, for the calculation of losses in ,eparation
diffusers, it is necessary to use either the purely experimental
data or semi-empirical relations of the type of formula (2-42a).
Ap way already mentioned above, the accuracy of the estimate of

coefficients ý and C in such case proves to be low. With
_ f emergence in the zone of the separation of a stationary vortex

* approximately the, same accuracy can be obtained by means of the
follow~ing rough estimation of the effective expansion ratio.

I

"Let us assume that in the vortex zone CD (Fig. 3-33) the
flow-rate velocity comoonent is equal to ýero, and in zone CD1 the
velofity profile is close to being uniform. Then

k 175



and for determining the total loss factor when a stationary vortex

exists, in the pl.ane diffuser we will obtain:

( 3-27)

The value of coefficient rn' calculated on the basis of

formula (3-27), should be somewhat lower than the experimental

value, since it is obtained as a result of the estimate of 'he

effective expansion ratio according to the value of everage velocity

in zone CD1 and not velocity co, which corresponds to the

available enthalpy drop in the diffuser. This inaccuracy can

be compensated by the line shift of section BC to the side of the

main flow. It is clear that such a means of the calculation of
losses, to a consideralle degree, is arbitrary. However, it can
be recommended for the comparative performance estimate of

Z various diffusers if we use the same procedure of the determination
of the zone line of current ABC.

Before accepting any method of drawing the line ABC, let
us explain in which cases the existence in a plane diffuser of
a stationary vortex is possible. For this purpose let us maximally

simplify the problem and let us examine the flow of inviscid fluid
in the plane of the complex variable z from the source by power

Q placed at point 0 and the vortex with intensity r located at
point za (Fig. 3-34a). Let us assume that the region of flow is

limited by sector BOB 1 with angle a = n/m. Then the fluid flow
rate in this region will be equal to Q/2m, and the coordinate of
the center of the vortex in polar coordinates will be defined

by relation

zu = ra exp (P4). (3-28)

Let us map the indicated region on a strip of width i. As
is known [641, such a mapping is accomplished with the help of
function
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: €•= , In z. (3-29)

The mutual uniqueness of the mapping (3-29) provided
automatically if

• 0. :I•[• Z• a.(3-30)

With this point z8 goes over to point w., and point 0 - to

i'.ifinity, and values of tho power of the source and vortex strength
with conformal mapping remain without changes.

Therefore, frorn the initial case we turn to the problem

about the flow of a vortex with intensity r, located inside a

strip with width n, and plhne-parallel flow with a velocity at

infinity equal to

cc,• -= It (2 (3-31)

In such a formulation the problem is close to that examined

in [62]. The analytical extension of the chosen region on the

whole plane is attained, representing its infinite number once

relative to each wall. We will obtain the double vortex chain,

which consiststs of equidistant vortices with opposite intensities

r and -r [62]. Let the coordinates of the first vortex system

be w and w•-,, and of the second k2 nd-k2 (Fig. 3-34b).
These values are easily exoressed In terms of coordinates of

vortex w in the assigned strip:

We + 2ikI;
c*l --- co. -- 2nki; (3-32)

-04 (N~ + 2rcki;
h3 - 0) - 2nki.

Taking into account the aforesaid, the complex potential

from the first vortex system will be equal to
---Ph n,-,, '.- _.' ._ -I . -", (3-33)

'I 1 2i \21dei/ 2.d 2t~ni~j-
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Fig. 3-3. ' g ra :.. . diffuser 'A

the region of flow in the plane of the" complex variable
b ) .'

Analogously., for the second vortex system we will obtain

A *

172- . --I s -i- •-34)'

21 (

Finally, let us present the complex potential of plane-

parallel flow in the form of

U

1'73 0. '= U,, 30 2; Co. (3-35)

Thus, for the complex flow induced by the double vortex
chain and the plane-parallel flow, thecomplex potential will be

equal to

17 -- i= In ."'I" -.-.- •. (3-36)

sla 21
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is easy to note that the presiure and velocity on both

sides 8f the lines dividing the plane into strips with width w

are equal.: Therefore, each such line can be used as the restricting
wall, and exprepsion (3-36) gives the complex potential for fl6w

in the infinite channellwith the vortex being located at point

•8 '

Having substituted into (3-36) the value w from formula
(3-'29), !we obtain the -value of the 'nomplex pot"-ntial in plane

z for flow in the diffuser with the vortex at point ze:

wIr

t. j

-i. I #" 2x,. In Z'.,z. (3-8•7).

epLet us turn to polar 6oordnates accordingy to relation (3-28),
' then ,•

poseE let upr Sent (338 i the-frm8o

[ '. inh r/ri. + i (fA..2)1srsll 'I "L

121f9

For'a definition of the stream function, it is sufficient in
expression (3-38) to separate the imaginary part. Fo.- this pUr-

pose let us present (3-38) in the form of ,

11--lt rl, + 2

7i r, 2 2_

'• ~~ ~ ~ 1 "I' r,, + I... . .,-(Ct,+Z)
+ ! , "2='" , I 0 PI 2
or 0 ecI--lorr -~ ., v -,•

+ I . " ' '
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"()" + ":+ (a + a -- 2

To obtain the concrete line of flow in expression (3-39) let

us assume:

Co. :_. (3-400)

As a result we will obtain:

i , ' ,z r '' ., ________

r0 -

2. -) -m 2 i
xI4 2 2 1 - %) 2 2-4sin- -- (" + a,) +2

The right side of the equation is a function of angle a and

three parameters: Q/r, ao and a•, i.e.,

'Z (,c -to)J4 s,' • , -,, 48 In' -(+,)I -•P. +2, = (3-41)

As a result for determining the zero line of flow, we will

obtain equation

(T r a +,o
the solution of which will give:

LT t;f [t * 6 (3-42)

If the center of the vortex is located on ray arg z = as'

then, as calculations show, it is possible to consider that the whole
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"vortex atmosphere"' is located in the angle o-' ;he definable

equality
0 < a v- z , ,. .( 3- 43)

Since points of the "vortex atmosphere" -long to the zero

line of flow, we assume that the tangent to tii contour of the
"vortex atmosphere" has a length of the orde. f r., i.e., r/r 5 =

- 1. Then from (2-42) it follows that

')(a) --.2. (3-44)

For the fulfillment of this equality :,. equation (3-41),

it is necessary to place:

c1o=0;
a=2,la.

As a result the condition (3-44) takes the form:
Q sl.t (I,55;n•).

exp2,l -jra =1 sin('nc,) (3-45)

Its solution for the given value (./r makes it possible to

determine the ray along which the displacement of the center of

vortex occurs. The graphical solution of this equation for

different values of Q/r shows that with a decrease in the vortex

strength r and an increase in the flow rate Q the ray arg z = a

approaches the real axis, i.e., near a "vortex atmosphere" the

dimensions are sharply decreased. This direction is influenced

by the decrease in flare angle of the diffuser characterized by

parameter m.

The obtained relations allow determining the velocity, from

which the center of the vortIA will be carried away by the flow

* downstream. For this it is sufficient to differentiate expression

(3-36) with respect to variable w and to assume w = w.. Then

the value of the complex velocity will be equal to

'Here and further we will understand by "vortex atmosphere"
as the closed line which limits both adjacent vortices.
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- io [ r 0)n 1- . S do) (3-46)
'-Ir 2i - ----+ 7Y~I *1d

Since the difference 08--0 is a real number, from (3-46)

wu will obtain

Ili) = -...... ._ _ = 0. (3-46a)

In the particular case Q = 0 the solution of (3-46a) coincides

with the result obtained by N. Ye. Kocninyy, A. I. Kibel' and

N. V. Roze [62].

Replacing wB according to equation (3-29) and having passed

over to polar coordinates, we find the velocity of motion of the

center of the vortex in the diffuser:
__Q r,•l

Hence it is apparent that the velocity of motion of the

vortex substantially depends upon the value of the circulation r
and flow rate Q with the certain relation between these values

ur = 0. This case correspond to the fixed stationary vortex

inside the diffuse-, and from (3-47) the simple condition of its

existence follows:

Q in
"~'• - (3-48)

With the fulfillment of equality (3-48) we will obtair f'rom

(3-45) the value of the argument ca, which corresponds to

ray on which the center of the stationary vortex should be k..,ated.

For this case equation (3-45) assumes the form

exp l "- ... . -"f 1c.• sin 0,55 a,( -9

Hence for angle a. we will obtain

0,475
m . (3-50)
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Consequently, the center of the stationary vortex should be

located on ray (3-50), and the ratio of the source power to the

vortex strength r is determined by equality

~-z-= 0,976u. (3-51)

If Q/r > 0.975m, then the vortex will be carried away

downstream. When Q/r < 0.975m the vortex will be moved against the

flow. The velocity of motion of the vortex can be found from
expression (3-47).

Taking into account (3-50) and (3-52), equation ( 3 -41)
is considerably simplified and depends only upon parameter a0 :

(a,) s1' fO,5 - 0,=374
I -UftP 1 ,96'a (a ~-- UOfl

stn2 JO,Sm m + 0,2371
-' - xp IAfI(- )1 2. . (3-52)

Let us give as an example the calculati.on of lines of flow

in a plane diffuser when m = $. The accepted value of m

corresponds to a diffuser with a flare angle a = 22031'. For
the construction of the pattern of flow in diffuser from the

results of a calculation, it is necessary to determine the value

of the radius rB from the center of the vortex. Having

assumed that the branch point of the zero line of flow is the

separation point of flow from the wall, we obtain for the diffuser

in question:

The greatest difficulties usually appear in the definition

of the coordinate of the separation point. As was already mentioned

above, not one of the known criteria of separation based upon

results of the boundary layer calculation gives sufficient accuracy

in determining the indicated ccordinate. In this direction some

help can be given by purely statistical data. Thus, in [167]

vast statistical material about the emergence of separation in

compressor cascades is given. It was found that in almost all
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cases the separation of flow from the walls began with the reduc-
tion in maximum speed in the channel of approximately 2 times,

which for incompressible fluid corresponds to the effective

expansion ratio n3 S = 2. It is interesting to note that this

value in the zone of turbulent flow was found not dependent on the

Reynolds number. Analogous results were obtained even at MEI

during tests of conical diffusers.

Figure 3-7 gives the limiting values of the effective

expansion ratios determined according to the velocity co, which

corresponds to the available enthalpy drop in the diffuser,

depending on the input dimensionless velocity A I at various Re1

numbers for the large series of conical diffusers.

The obtained test data indicate that the value ns S'is

considerably affected by the compressibility of gas. With a

velocity increase from X= 0.3 to X = 1, n is decreased

from 2.4 to 2.0.

The influence of the flare angle of the diffuser a is

noted only at low velocities. Here, as one would expect, with

an increase in the angle from 100 to 200, n30 S drops from 2.5

to 2.3. When Al > 0.7, for all diffusers tested both on air

and steam, ns•S = 2.

The decrease in the influence of the flare angle on the

limiting effective expansion ratio of the diffuser with the

increase in inlet velocity is connected with the feature of the

flow of flow near the sharply changing curvature in the inlet

of the diffuser. In the examination of this question it was

indicated that near the angular point there occurs a sharp in-

crease in the pressure gradients dependent both on the flare angle

and the flow rate. If at low velocities the angle is of decisive

importance, then, with an increase in velocity the noted local

increase is basically determined by velocity X1.
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The use of the value of the limiting effective expansion

ratio, along with the known criteria of separation, allows approach-

ing the solution to the problem of the separation point of the

boundary layer.

Since in this case flow not in cortca] ,ut in plane diffuser

is examined, let us use on the basis of [167] n s s = FOTP/F1 =

= 2.0, where F - the area of pressure of the diffuser at theOTP

separation point B.

Since in a plane diffuser

'. 2r0jp sin a/2ni,

then rotp = 2r H, where r - the radius of the inlet section of

the diffuser (see Fig. 3-34a). Hence

S,"- (3-53)

The pattern of flow of an ideal fluid in a plane diffuser

when in it there is a stationary vortex located at the point with

coordinates a 8 and r., determined by equalities (3-50) and (3-53),

is represented in Fig. 3-35. From the spectrum of lines of flow

it is clearly evident that the presence in the diffuser of a

stationary vortex is equivalent to the appearance inside the

channel of a certain solid contour outlined by the line BNM, which

coincides with the "vortex atmosphere" of the vortex.

By comparing the given pattern of the flow of the ideal

fluid with the real spectra of flow when separation exists,

(see, Fig. 3-1a), it is possible to note the qualitative concurrence

of the lines of the flow of ideal and real flows.

Thus, appearance in the flow of a stationary vortex gives

rise to the noticeable decrease in the cross section of the

channel. With a uniform velocity vector its effective cross sec-

tion in the zone of location of the vortex is defined by segment

NN
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Fig. 3.35. Reference lines of flow in a
plane diffuser (a = 22031?).

Consideri~ng that after section NN1 in the zone or the vortex

interferen~ce with the advancing flow the restortation of energy

does not occur, instead of the formula (3-27) we obtain the

Sincesn .- -L

NiV, sin ,o/2n

then taking into account (3-53)

M, 0,1. 512o (3-53)

OiL) I I Vii q2rn

The total loss factor, calculated according, to f.rmula

(3-54), for the case in question proves to be equal to 0i43. This

value of losses is, apparently, minimum, since when Eelectimg

formula (3-54) accepted as an effective area is the area NN1 in
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the cross section of separation. With an increase in the expansion

ratio at a constant flare angle, the effective area in outlet
" section will, be decreased as compared with area NN1 , which can

lead to an increase in total l6sses.

g The aforesaid is confirmed well by the experimental data
.given in..Fig. 3-11a. Her6' minimum losses for angle a = 220 are

about 0.41 when n = 4, which coincides in practice with the computed
value of quantityl •n' Further, •n somewhat increases with an

increase in the expansion ratio n.

The derived ,formulas f6r the calculation of losses in plane

se~aratdion diffusers are completely approxinrate, and they should
be examined only as one of the possible ways of solving this
complex problemý At the "same time the obtained results are

linter~sting from a physical side, since they allow explaining the
reason for the reduction In-channel losses examined above, where

b'y various measures it is possible to divide the basic vortex
"into a number of vortices of less strength. Actually, according

to formula (3-48) for existence in the channel of stationary
vortex, it is necessary that between the vortex str'en.gth and

"flow rate there would be a completely definite sorrelation.
With the disturbance ofithis ratio, especially with the decrease

in the maqnitude of circulation, the vortex begins to be carried
away with the' flow downstream.

The indicated motion of the voltices is one of the conditions
of ,he reduction in channel losses which ,perate w.th the boundary

la•1ev? separation, since in this case tne "f•i-obstýacle" -. , the
S form of "a vortex atmosphere" 4t r--lacec .al2er 1- .- mens .ý,:ns

and by the 'solid": contours moved together with the flow, and
therefore the "s1 .adow regions'" disappea,,., and on whole outlet

section of the channel the mean ,flow rate is established.
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However, the appearance in the flow of the moving vortex
regions gives rise to the appearance of rather powerful pulsations.

SThe latter is explained by the fact that the passage of the
vortex through the channel is equivalent to the motion in the channel
of a certain solid contour, and with the exit of the vortex from
the chennel its resistance sharply falls due to an increase in
the effective flow area. The formation of the following vortex
again gives rise to the contraction of the cross section. As a
result pulai2.•ng flow is established with the frequency dependent
on the v,'.,,city of motion of the vortices.

Sow-frequency pulsations take place at low velocities of
motion of' the vortex, i.e., at a considerable magnitude of
circulation r. On the other hand, high-frequency pulsations appear
at the powerful fragmentation of the basic vortex. It is under-
standable that in the latter case channel losses fall more
intensely, since with a reduction in the vortex strength the
velocity of the vol-tex approaches the velocity of the main flow,
and the whole cross section is filled with the flowing fluid.
In this respect the experiments having the purpose of decreasing
the resistance of the diffusers with the help of the grids placed
inside the channel are charactejaistic [54]. The presence of such
additional resistances in diffusers allows in a number of cases
lowering their total resistance; in this case the basic vortex
is divided into number of small vortices, and over the whole
cross section the mean flow rate is established. lf the grid
resistance is less than the resistance induced by the "shading"
of the channel by a stationary vortex, then the total losses of
diffuser decrease. Analogously, the reduction in losses in finne.
diffusers can be explained [46], where the transverse grooves
cause microseparations of the flow with the formation of vortices
of small strength, which are easily carried away by the flow,
without disturbing the total picture of the flow.

The obtained results from a qualitative side are valid even
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for axisymmetric diffusers. However, quantitative estimates in

this case prove to be different: in an axisymmetric diffuser

in most cases local separations appear, and the formation of

closed vortex rings is observed extremely rarely.

§ 3-7. Procedure for Calculating Losses
with the Sudden Flow Expansion

The sudden flow expansion, i.e., flow with a sharp change in

the flow area, is frequently encountered in various technical

problems.' The solution to this problem includes the procedure

of calculating losses i conical diffusers at flare angles a > 3DO,

when it is recommended to turn to sudden expansion [34].

In most cases for the estimate of losses with sudden

expansion, the authors [34, 54] in one form or another use the

formula of Borda-Carnot

where n = F' 2 /F 1 - ratio of appropriate areas.

A simple analysis shows that the mechanical use of formula

(3-55) for a number of problems can lead to the perceptible

errors. In connection with this let us indicate the prequisites

and limitations which were placed as a basis for the solution of

formula (3-55). Let us examine the flow in the cylindrical channel

by radius r 0 (Fig. 3-36) and radius r 2 connected in the crcss

section I-I with a tube. During such a transfer in flow tt is

possible to distinguish the two characteristic zones - the zone of

the free jet adec and the equalizing zone deki.

'In tulbine construction problems about ,udden expansion
include the calculation of losses in the presence of a c-ver at
the inlet into operating grid and nozzle apparatus, the calculation
of losses beyond the control valves, and in a revolving uiffuser
with partial losses the calculation of boundary losses and so on.

189



hI b _ _ Fig. 3-36. Diagram of flowI* I_ - with sudden expansion.

0*1

3In the section in question one usually assumes that the

pressure changes only along the axis of the channel and does not

depend upon the transverse coordinate r. At the same time the

velocities change both across and along the x axis. In this case

in the open jet there exist the potential core abc, within the

limits of which the longitudinal velocity cI depends only upon

coordinate x, and the zone where the veloCt'-es in a transverse

direction are changed from the value in potential core cI Ap to

zero on the jet boundary. In a known sense this zone can be called

the zone of boundary layer, bearing in mind, of course, the

conditionality of such a definition.

From the diagram of the flow presentation in Fig. 3-36, it

follows that along the x axis the sharp contraction of the

potential core and the expansion of the jet occur.

For the computation of losses between 3ross sections I-I and

III-III, in these cross sections the equations of energy and

momentum are recorded, the common solution of which gives rise to

the following relation [54]:

S• I', -- IV" , -- (3.56 )

The coefficients of the momentum M1 and M2 and also

coefficients of kinetic energy N! and N2 are determined by the
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velocity profiles in the cross sections in question and are

calculated according to formulas

M: M,=. (C) dF;

Cap
P, .

Since it is assumed that in cross section III-III the flow

was equalized and has a turbulent velocity profile, for which

N2  2 1 1, for the calculations a simpler relation is re-

commended:
I 2M,

1 .- 2 +- - NI - . ( 3 - 5 7 )

If we assume that in cross section I-I the uniform velocity

field takes place, then N1 = 1 = 1, and formula (3-57) turns into

widely used relation (3-551.

However, calculations according to formula (3-56) give the

basis to assume that strongly it minimizes losses with the non-

uniform output field and the small expansion ratio . Actually,

let us determine losses in cross section III.-III (Fig. 3-36),
where the velocity profile took the typical form characteristic
for developed turbulent flow, with *he uniform field before the

sudden expansion and n' = 1.2.

For the exponential velocity p1Ž.tfle, beginning with index

m = 1/7, the coefficients are equal, respe,'ively, to M2 = 1.015
and N2 = 1.043, i.e., actually very close to one. But in this
case the result proves to be completely different if we

assume M2 = N2 = 1.

Having calculated the losses for M2 = N2 = 1, we find:

= 0.0143. If we use the actual values M2 and N2 , then we will
obtain • = -0.0137.
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The noted feature of relation (3-56) is connected partially

with the fact that with its derivation in the momentum equat'on,

written for cross sections I-I and III-III, the momentum of fric-

tional froces in section L is not c6nsidered. In 8onnection with

this formula (3-56) gives substantially fewer losses, but. at small

expansion ratios n the losses generally become negative. The.

particular form of formula (3-55) is unacceptable both in the

zone of the free jet and outside the equalizing section, since in

the first zone coefficients M2 and N2 are differe't from one, and
in the second zone frictional forces on the'restricting walls

are not considered.

Since the length of the equalizing zone j!-III is of the

order of (10-20)r' 2 , the error at large n can show. In fact, if,

we introduce into the momentum equation the momentum of frictional

forces and assume the velocity field in cross section I-I to be

uniform, then in cross section III-IIl for.determining losses

connected with the sudden expansion, we obtain the following

expression:

0 = t(2 no S-SL, -n (3-58)

Here .-. - the resistance coefficient 'on the

equalizing section L.

Having estimated the value of the additional term in

formula (3-58) when L/D 2 = 10 and number ReD = 10, we obtain

that for the expansion ratio n = 2 the correction is 9%, or with

respect to the first term, 36%. Thus, in the computation of

losses in pipelines with a sudden change in the flow area it is

more correct to use formula (3-58) and not (3-55). In this

connection it is necessary to show that for rectangular ,cores

with expansion of the area in only one plane, the formula of the
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type (3-56), appa~'ently, cannot generally be used, bec~ause in

II

this case the momentum of frictional forces on the side walls
'proves to be of the same order as the momentum of 'forces of

pressure, and calculation of these become difficult.

Furthermore, the sudden expansion of the cross section In

one plane substantially changds the whole pattern of flow. In

4 this case with the transition to the wide cross section the boundary

sections of the jet lose stability and are displaced into vortex

lines, forming along channel stable, vortex regions which induce

additional velocities in the main jet. The pattern of flow proves

to be complex, and the equalizing-zone is stretched far along the

flow.

The examined cases-of the use of formula (3-55) refer

to the long channcls where section-L is' great and the velocity

profile 'assumes the iorm characteristic for turbulent flow. For

short channels, where the outlet *eqtion at best is located in

cross section II-II, the equalizing of the velocity field does not

occur,, and for the estimate of losses it is necessary to know

the form of the normal Velocity profile in the free section of

the jet. For this purpose we approximate the veloiity profile

by the following polynomial:
C = a0 +I air -+ atrt "-L ag.•.(35

I c~o~a~~a~r+ar.(3-.59)

We compute coefficient ao, ai, a• and a3 from the following

obvious boundary conditions:

when r,= r

1 ) C =O; 2) ac .0
Oc

when r r -'
3) C "a: 4) •:,'.(-60)

Then we will obtain

CIO /.-- 2 1r 2 -r 2

193



Here rI - the radius of the potential core; r - flowing

radius in the given cross section (Fig. 3-36).

The velocity profile, plotted from expression (3-61), is

represented in Fig. 3-37 by the solid curve. Plotted here are

test data taken at different distances from the inlet section I-I

in various pressure differentials. The calculated velocity

profile adequately coincides with experiment 1 results on the

boundary of the core of the jet and somewhat deviates from

experimental points in the exterior, which is explained by the

suction of flow in the space between the open jet and wall AB.

As a result the second condition in relations (3-60) is fulfilled

approximately. However, as a whole it is possible to consider

that equation (3-61) correctly describes the velocity profile

with sudden expansion and can be used for determining the area of

displacement 6' and the area of energy loss 6*** in the longitudinal

cross section of the open jet. The appropriate calculations give

rise to the following relations:

pa

,(2
•***"-- 11I•---.o -- ~ - I•,a• dF = o,2(I~2 03 1-.i~ (3-63)

12 Clggito C1.31 )
where b = r 1 /r 2 - the parameter dependent on the jet cross-sectional

area.

Analogous expressions can be obtained if as the velocity

profile we use [111].

C 1 (..&)3/2 jI (3-64)

The divergence in the integral areas n ad *k, calculated

on the basis of profiles (3-61) and (3-6,4), is small and when

b = 0 is 4%.
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Values of the relative areas of displacement and energy
losses, depending on parameter b, pre3-3.

a decrease in b from one to zero 6' monotonically increases,

and 3 reaches a peak value when b = 0.38. Since along the jet

the ratio r /r2 falls, the curves given in Fig. 3-38 degýJ.ne the

C. laws of the change in the area of displacement and area of' the

energy loss ini zone adeo (see Fig. 3-36).

.1Pi TVF ~ Fig. 3-38. The change in integral
areas 9* and 9** along the jet

*.~ I.~K1' -~ with sudden expansion.
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If we assume the jet boundary to be rectilinear, then it

will be easy to connect value b to the expansion ratio:

where n 2. k•- 1;y1 and the external and intc: .l

angles of lines limiting the zone of the viscosity effect on the

section of the open jet.

In cross section II-II n' = n; having designated the ratio

t,,., 1 It-, by d, we obtain:

b r+ I ) (3-65)

With the change in the expansion ratio the correlation

between angles y 1 and Y2 does not remain constant, i.e., value

d is also a function of the expansion ratio. At first the value

d grows with an increase in n and reaches a peak value equal to

2-2.2 when n = 2, and then it falls and when n j 4 approaches

one. According to experiments conducted by B. B. Ett, this

dependence can be approximated by the following relation:

d =.=-= n(5-n)- '. (3-66)

The noted change in parameter d is connected with the fact

that at first the growth in the expansion ratio gives rise to a

sharp increase in the rarefaction directly in the region of

the change in flow area. As a result the external jet boundary

is deflected to the large angle yl, and the internal angle Y2

is decreased somewhat. For large valuea of n (n > 2) the

rarefaction drops, and the free jet boundary is noticeably

lengthened,and angles y 1 and Y2 become approximately equal.

The specific values of the angles in question are given

below. It should be noted that relations (3-62), (3-63), (3-65)
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and (3-66) allow completely solving the problem of the estimate
of internal and total losses with sudden expansion near the cross

section II-Il (see Fig. 3-36), when the Jet completely fills the

channel examined. For this purpose it is sufficient to use

formulas (2-29) and (2-36)

S; and .,-

112(1..d) n2 (

having substituted in them for the prescribed value n the area

of displacement P and the area of the energy loss 3*** defined

by formulas (3-62), (3-63), (3-65) and (3-66).

For the facilitation of the indicated calculations, plotted

in Fig. 3-38 is dependence b = f(n), which allows immediately

finding the desired characteristics for the assigned expansion

ratio. The order of the use of a nomogram in Fig. 3-38 is shown

by dot-and-dash line and is not required in additional explana-

tions.

Figure 3-39 gives the calculation and experimental values

of the coefficient of recovery of energy ý for various expansion

ratios n. The use of formula (3-55) for determining this value

gives rise to the dependence depicted by curve 1. At first an

increase in the expansion ratio causes an intense increase in

the coefficient ý, and for n = 2 it reaches its peak value

S= 0.5. A further increase in parameter n does not kive a

oositive effect, and the conversion of the kinetic energy of flow

into potential occurs with increased losses (when n = 4 • = 0.385).

Figure 3-39 gives experimental values of the coefficient of

recovery of energy obtained in the channel with the sudden expansion

of the area and relative length L/D 0 , which ensures maximum ý

with sudden expansion (curve 2). If when n = 2 the experimental

and computed values & coincide, then subsequently the empirical

curve is noticeably distinguished from the calculated one, a:id
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when n = 4 the error is almost 22%.

'"- Fig. 3-39. The dependence of the
___-coefficient of recovery of energy

__ .e-1j upon the expansion ratio with
S.1 sudden expansion. 1 - calculation

by means of formula 3-55); 2 -• J---'[ -- i°----• experimental dependence; 3 - cal-

I __ culation formula (2-29) with the
-- use of nomograms in Fig. 3-38;

A - experimental values with theI ,5 ; 8d2,W 5 Y.U ;5 e.O joining of the jet with the wall.

The obtained results confirm well the considerations

expressed above about the necessity for the introduction of a

correction into formula (3-55), which considers the momentum of
frictional forces on the side of the restricting walls on the

equalizing section.

When n < 2 the length of the free section of the jet is
small, and the zone of nonuniformity of the velocity profile is

also insignificant. In these conditions the additional losses,
not being considered by formula (3-55), are small and practically

do not affect the final result. When n > 2 the zone of equal-

izing is stretched, and, furthermore, losses in jet itself'

increase. As a result the additional term in formula (3-58)

begins to play a noticeable role, and it is already necessary to

consider it.

For the case when the length of the equalizing zone is equal
to zero, i.e., when the jet wholly fills the outlet section, the

calculated dependence C = f(n), obtained by means of the nomogram

in Fig. 3-38 and formula (2-29), is represented by curve 3. Here

also the greatest value of the coefficient of recovery of energy

is reached when n = 2, but its absolute value is substantially

less and comprises only 0.311. A further increase in the expansion

ratio gives rise to a drop in coefficient ý. Experimental values
of C confirm not only qualitatively but also quantitatively the
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calculated dependence • = f(n) well.

If in outlet section the diameter of the Jet is less than

the diameter of the channel, i.e., the flow does not fill the

entire outlet section, in the space between the Jet and wall there

appears an intense return flow, which increases the losses and

sharply lowers the coefficient of recovery of energy. From the

aforesaid it follows that for the complete realization of sudden

expansion, considerable length of the channel, determined by theI

total expansion ratio n and value of the external angle y1 is

necessary.

For an example Fig. 3-40 gives curves of the change in

coefficient ý at various relative lengths of the wide part of the

channel for three values of the expansion ratio n (vertical lines

denote cross sections where the Jet completely fills the outlet

section of the channel). The nature of the 64ven curver was

different. When n = 2 the effectiveness of sudden expansion with

an increase in L/D0 grows very rapidly and reaches its greatest

value when L/D0 = 6-7, whereupon it is possible to note a certain

drop (by 2-2.5%) in the coefficient •.

.. , _Fig. 3-40. Change in the coef-
'- . -- .ficent of recovery of energy

--.. with sudden expansion depending on1/ I/ (' ' N 1 the length of the wide part of the
channel for various expansion

ratios.

With an increase in the expansion ratio to n = 3, the intensity

of the growth in ý noticeably falls, and its greatest value

(ý = 0.4) corresponds to L/D 8-10. The even more clearly

expressed regularity is characteristic for n = 4, where generally
at first (L/D 0 < 2) the coefficient of the recovery of energy

Sis close to zero. Only with an increase in the relative length
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of the wide part of the channel (L/D 0 > 2) is there noted an

increase in the coefficient ý, the maximum value of which (0.33)

is reached when L/D0 > 10.

The noticeable decrease in total losses and the appropriate

growth in value ý after the filling with the flow of the entire

channel located after the sudden expansion are explained by the

sudden decrease in losses with the outlet valocity inducea hy

the equalizing of the velocity field. The latter occurs at,

considerable length and is accompanied by additional internal

losses.

The data given in Fig. 3-40 do not pnly allow observing

the change in the diffuser effect with an increase in length, but

also make it possible to estimate angle y1 for the given

expansion. This value was equal to 9030' for n = 2, 70 for - 3.

and 5030' for n = 4, i.e., with a decrease in the diffuser effect
(with a decrease in rarefaction in the region of sudden expansion),
there occurs a decrease in angle yI and its approximation to the

value characteristic for the free jet.

The examined theoretical and experimental data show that

the maximally attainable coefficient of recovery of pressure with
sudden expansion is 0.50 for n = 2 and can be obtained only with

long length of the channel.

For a determination of the minimum length of the wide
part of the channel, wihich ensures the filling with the flow of
its outlet section, it is possible to use the simple geometric

relation

S. .. .. (3-67)
re t9 Yi

In this case the La2 .ulation of internal and total losses

can be conducted on the basis of formulas (2-29) and (2-36) with
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the use of the nomogram in Fig. 3-38.

As was already mentioned above, at wide flare angles of
coni~cal diffusers (a >,400) and small axial dimensions, it is
sojmetimes recommnnded to turn over to the diagram with the
studden:expansion of flow [34]. In light of the given data, such
a conclusion is insufficiently substantiated, because to obtain
an acceptable diffuser~effect in a scheme with sudden expansion
it is necessary tp have considerable axial dimensions (L/D >

0
> 5-6), and at such a length it i§ always :possible to use a non-
detached diffuser having higher aerodynamic characteristics.

In conclusionlet us point to the original method of the
implementation of the sidden expansion proposed in work [160].
The form of channel for two-dimensional flow in this case is
depicted on;Fig. 3-41.

Fig. 3-41. Diameter of
7X- vortex diffuser.

* If -

Here directly after the sudden expansion "pockets" are
created which facilitat6 theiformation at the inlet of two

stationary vortices which play the role of unique vortex "pumps."
According to work [160] such a system has small total losses and

allows obtaining the coefficient of recovery of energy at a level

c(f 80%.

,§ 3-8. Change in the Flow Parameters Along
* the Axis of the Conical biffuser

The problem of the calculation of flow parameters along
the axis of plane and axisymmetric channels for an ideal fluid
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is solved within the framework of the one-dimensional theory

comparatively simply [25].

When friction exists, the initial differential momentum

equation is written by taking into account the unit impulse of

frictional forces L and take the following form [25, 31.]:

cdc- A-L--dLp =O. (3-68)

Here c, p and p - velocity, pressure ana flow density in

the given cross section.

With the known law of the change, in the frictional forces,

equation (3-68) by means of equations of continuity and energy is

solved in quadratures.

As a result for conical diffusers the following connection

can be established between the flowing area F and dimensionless

velocity X [34]:

,- - - -z- ..- - - -

F~ k-1 Ya

I+1

V, T -•-,, (3-69).

where

A - f .+ 1)" F, and,

are the area and velocity in the inlet section, and A - the

coefficient of the "softening of shock" in formula (2-42a), which

defines the losses ý in the diffuser.

Relation (3-69) represents the common equation of continuity,

in which the density ratio p1 /pl is connected with the velocity
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and losses, namely:

'It

With X ÷ 0 pi/p* 1, and formula (3-69) expresses the

distribution of average velocities in the incompressible fluid:

ct F1

If in the assigned cross section of the diffuser the mean

dimensionless velocity is found, then the remaining values are

easily located by means of gas-dynamic functions.

Unfortunately, for the calculation of mean velocities accord-

ing to formula (3-69) it is necessary to known the coefficient

of "softening" of the shock A . This value, as was shown above,

depends upon a n.imber of factors and changes within inadmissibly

wide limits (see Fig. 3-32). True, the structure of the formula

(3-69) is such that at low velocities the error in the accepted

value of coefficiLnt *A weakly affects final results. However,

for high velocities, when the density ratio changes greatly, the

error can become perceptible. In connection with this let us

examine the solution to the stated problem with in the framework

of the theory of the boundary layer, being restricted to the case

of nonseparable flow.

The viscosa'&;y effect gives rise to the intense braking of

the fluid near walls of the channel and to the "displacement"

of it in the e:ternal part of the flow. From a physical point

of view the vlcosity effect causes a change in the effective

t flow area. Its magnitude is easily found after the appropriate

boundary layer calculation and Aetermination of the area of dis-

placement. Then, having replaced the actual channel by a certain
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arbitrary channel, the cross section of which at the known value

of-quantity 6*i is calculated according to formula

it is possible to conduct the calculation of velocities with respect

to relations of the ideal fluid.

With the practical use of the indicated method the greatest

difficulties with calculations are usually connected with the

definition of integral area 6Pi. For plane and conical diffusers

the change in this value along walls can be calculated earlier,

and then the construction of the equivalent channel will be

reduced to purely a mechanical operation.

Above the distribution of the area of displacement 6'i along

the diffuser was approximated by the exponential function of the

form

with the exponent m = 0.3, where the value 6*2 can be found from

the nomogram of the Appendix (see Fig. A-l).

i.s a result the flowing effective area Fi 3N in any cross

section R will be determined by relation

SF I- . .. -0 "

For the calculation of the flow parameters along the axis

of the thus obtained equivalent channel, it is most rational to

use tables of gas-dynamic functions. With their use the calcula-

tion is constructed in the following manner:

1. A6cording to the known flow rate, area at the inlet F1

and parameters of full stagnation, we determine the given flow

rate of the inle,; section:
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and from tables we find the dimenionless velocity Al.

2. Using the following obvious relation

* with the help of tables with respect to qi we determine the

moving valuesof velocity Xi, relative pressure pi/Po1, relative

density Pi/'Ol and relative temperature Ti/To0

On the sense of conclusion all the found values refer to the

potential flow core, but hence it is easy to turn to their mean

values. For this purpose let us write the continuity equation

in the arbitrary cross section ii:

Hence

*,,, k-I(3-70)
S. .•"' ". 2) .

Since the mean static pressure in the axisymmetric and plane

duct is equal to the pressure pi in its center, formula (3-70)

allows finding the mean dimensionless velocity Ai cp and further

from the tables all the averaged parameters in assigned cross

section of the diffuser.

The mean pressure of full stagnation poi cp is defined by

expression (2-33):

k

(P2oo -rdI kiF-I- XICPJ

The examined method of the calculation of parameters along
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the axis of the diffuser allows finding both the mean flow

parameters and parameters in the center of the channel.

Let us note that the experimental velocity distribution,

found with the help of drainage miq-urcinents of pressure and

pressure of full stagnation p 0 1 , corresponds not to the! mean but

maximum velocity in the given cross section, and in the comparison

of calculated values with the experimental data thip fact should

be kept in mind. For example, Fig. 3-42 gives calculated .and

experimental curves of the change in relative velocity along

the axis of the diffuser. As a whole the agreement of the cal-

culation with experiment should be recognized as being satis-

factory.

• Fig. 3-42. Change in relative

7 4. velocities along the axis of the
"•.•. / diffuser. 1 -• calculated curve of

a7 mean velocity; 2 - empirical curve
S-.^I 21J (a = 100; n = 3) of maximum

velocity; 3 - calculation taking
.... _.. " .. into account the 4oundary laye'r;

I -- i-.J i J4 - empirical curve for a detached
L < diffuser" (a = 200; n = 3).

§ 3-9. Example of the Calculation of
a Diffuser with a Rectilinear Axis

As an example let us examine the calculation of a conical

diffuser for the following conditions:

1. Mass flow weight rate G = 5 kg/s.

2. Dimensionless velocity at the inlet into the diffuser

A 1  0.5.

3. Pressure of full stagnation P0 = 1.2 bar.
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4. Stagnat'ion temperature TO = 4500K.
0I:

Since in the calculation it is, convenient to use tables of

gas-dynamic functions, let us introduce additionally the follow-

ing designations:

.q - reduced flow rate;

* I -,relative density;

T - relative temperature;i

R - gas constant equal for air to 287 J/deg'kg and for vapor,
470 J/deg'kg;

po - critical density.

The area of th6 inlet section of the diffuser is determined

from the formwila
' o C VT'

pit, C, g "• "3-_•3po Iq,

By knowing X 0.5, we find in the tablesq = 0.71, and,

consequently,
du3ce 3 10'0'y

Fa 0,0315.0l. 0 8~Ilabe copy

It is advantageous to conduct further calculation of the

diffuser in tabulari form (see Table 3-1).
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Table 3-1. Calculation of the conical diffuser.

"Unit of Numerical

Name measure- Calculation equation valuenation meante
mentvau

Diameter at input AD = Di 0,2J

Relative temperature at • - Determined from table O,2,4
inlet on A

1d

Temperature at inlet Ti °( 1 437

Clitical velocity L,7 4 /s am - 18,3V 388

Velocity at inlet into
diffuser C1  m/s et 1 103.

Relative density at p Determined from gas- 0,9
inlet into diffuser dynamic tables

Density at inlet into

diffuser Pt ofdnai - P.01

Coefficient of dynamic f*S
2  Found according to 3,15.100

coefficient of m? temperature from
viscosity tables

Coefficient of kine-
matic viscosity m2  *t,=11/p, 3,45"10-S

Reynolls number cal- Dice
culated by conditions Re- Re, -

at inlet Reeg0Vs

Flare angle of diffuser C deg Assumed depending
on velocity at
inlet

Expansion ratio of It Assumed from the
diffuser condition of

nonseparable

flow
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Table 3-1. (Cont'd.).

Unit of Numerical
Desig- measure- Calculation equation

Name nation mentvalue

L "V 7,- 1 6
Relative length !Di - L V l1 6/I

Length of diffuser L Ai L=D, 1

Parameter H I s= 4-•1- -- 2]i-) 2,2

Value B "BO -o.. 0,036
Relative area of dis- 7P Ditermined from the 0,178

A2  nomogram of Appendix.
placement in outlet n ig. A-2)section(see Fig...A-2)
section

Total losses in diffuser n a 2 - 16,7

Internal losses 0 3,8,z (I -- *)

Losses with outlet 0 0.= - 12,9
velocity

Pressure at inlet into pA bar PA = Post 1,035
diffuser

Pressure at outlet from p ba' p2= (1- ,) - - 1,170
diffuser
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CHAPTER FOUR

TRANSONIC AND SUPERSONIC DIFFUSERS

The characteristics of conical diffusers examined in the

previous chapter show that an increase in .ae mach number at the

inlet does not cause qualitative changes in the coefficients

of internal and total losses. However, with approach to the speed

of sound the picture is changed: almost in all cases it is

possible to note a critical increase in losses. This fact gives

rise to the necessity of dividing the transonic diffusers into

a separate group, the examination of which is the subject of

the first part of this chapter.

§ 4-1. Effect of the Reynolds Number and
Compressibility (Mach Number) on the
DiffUser Performances at High Subsonic
Speeds. Transonic Diffusers

Physically the effect of compressibility velocities is seen

in the increase in the longitudinal pressure gradients, which

is explained by the density change of gas at significant numbers

MI < 1. Actually, in accordance with conclusions of the one-

dimensional theory, the longitudinal gradients of pressure and

velocity in the elastic fluid are defined by formulas [25]:
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dp .C k + I. dF

d F .... i (4-1)

2k p A2 dF

dr , •- dF

(4-1a)

Hence it follows that when dF/dx > 0 and X < 1 dp/dx > 0

and dX/dx < 0, where with an increase in X the gradients of

pressure and velocity increase. Consequently, the effect of

compressibility is most perceptible in the diffuser inlet where

the X (M) numbers reach a maximum value. The final result of

this effect is the critical drop in the diffuser performances
with the approach to high subsonic and transonic velocities,

and the beginning of crisis depends upon the magnitude of the

aperture angle a [97] and the state of flow in the inlet section

[150].

The greater the angle a or the boundary layer thickness at

the inlet, then at smaller values of the dimensionless velocity

X the critical reduction in the efficiency of diffusers, in-

duced by the separation of flow directly in the inlet section

is begun (see Fig. 3-9 and 3-10). A most clearly indicated

pattern is traced if the coupling of the expanded part of the

diffuser with the inlet section is accomplished by a small
radius or generally with an angular break. In this case an

increase in inlet gradients of pressure and velocity with an

approach to the speed of sound becomes most noticeable. For

example Fig. 4-la gives the distribution of the relative static

pressure along the outline of the inlet section of two conical

diffusers, which are distinguished by angle a, for the dimension-

less velocities of XI equal to 0.4 and 0.85. All pressures are
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expressed in fractions of the static pressure in the throat, and

the longitudinal coordinate x is referred to the length of the

expanded part of the dlffuser L and is counted off from its

inlet section.

The existence in the flo'. nf the angular point, which is

the specific point of the pole type leads, as was already mentioned

above (see Chapter 3), to the local acceleration of flow on the

side of the inlet and to its intense braking in the expanded

part of the channel. Figure 4-la visually shows an increase

in the pressure gradients with an increase in the velocity and

angle a. The same pattern is observed in the case of a plane

diffuser (Fig. 4-1b), where for transonic velocity (curve 4)

both negative (on the inlet side) and positive (in the expanded

part) pressure gradients reach a peak value. The velocities

corresponding to these gradients are shown in Fig. 4-1c. In

the inlet plane section when Xl = 0.94 near the angular point

the velocity increases almost to 30% (curve 5), whereas when

Xi = 0.4 this increase is 14-15%.

Apart from the increase in the longitudinal pressure gradients,

in the inlet region of the diffuser substantial transverse
gradients of pressure [52] appear. In the inlet section the

static pressure increases stably from the wall to the center
of the flow. With an increase in the initial velocity and
the approach to the angular point the transverse nonuniformity
of the velocity and pressure fields increases, reaching about

32% when Xl = 0.93.

Thus, the disturbances induced by transition to the expanded

part of the channel cover sufficiently vast regions and cause
substantial nonuniformity of flow both in the longitudinal and
transverse directions. The local pressure gradients in the
wall region prove to be considerably increased as compared with
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the gradients calculated according to mean flow rate Xlcp.A

The noted features of flow give rise to substantial changes in

the.flow pattern in the inlet section, which is well noticeable

in the examination of the boundary layer velocity profiles

given in Fig. 4-2 and taken before the inlet 'section (x =-0.05),

in the inlet section (I = 0.1). With their constrtctipn the

transverse change in static pressure was considered. With an

increase in the relative velocity XI to 0.7, as one would expect,

there occurs the filling of the velocity profiles, since the

local convergence in the inlet part of the channel noticeably

increases (see Fig. 4-1). However, when X1 > 0.7-0.75 the

deformation behavior of the velocity profiles proves to be

somewhat unexpected.
)I

Despite an even further sharp increase in the convergence of

the flow with an increase in Xl, the filling of the velocity

profiles is sharply decreased (profile 4). Such a phenomenon

is all the more strange as in experiments the velocity gain

X 1 was accompanied also by an increase in Re1 number.ý Actually

this means that in the range of high subsonic and transonic ve-

locities an increase in X1 gives rise to a drop in the momentum

of particles of fluid of the wall before the inlet section df

the diffuser.

The given experimental data allow inferring about the

presence of substantial changes in the flow pattern in the range

of the inlet section of the diffuser at high subsonic and transonic

velocities X1 . The mechanism for these changes can be represented

in the following manner.

At low velocities, (X 0.34-6.37, Fig. 4-2a) in the

channel the typical turbulent velocity profile (profile 1)

takes place. With an increase in Xl in the zone of the angular
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Fig. 4-2. Boundary layer velocity profiles in the inlet section

of the plane diffuser (a = 10°).
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brea>. there occurs the sudden acceleration of flow noted above,

the result of which is the deformation of the normal velocity

profile characteristic for common convergent flow (profiles 2

and 3). However, with an increase in the local convergence

there occurs a reduction in turbulent fluctuations in the flow

[110], and, consequently, the transverse tr~ansfer of the momentum

is decreased. As a result with a certain magnitude of the nega-

tive pressui.) gradient, being determined in this case by the

value Xl, in the shaping of the velocity profile near the wall

an ever greater importance is begun to be played by the viscous

friction, and the "turbulent" friction will move away to the

second plan, and when X = 0.78-0.85 (profiles 4, 5 and 6) the

completeness of the profiles is substantially decreased. The

velocity profile acquires a form characteristic for laminar

flow.

The indicated changes in the flow pattern are an important

feature of the transonic gas flows, which has a decisive importance

for determining the behavior of subsequent flow in a diffuser.

Actually ýt high subsonic and transonic velocities XlI

on one hand, Itive pressure gradients in the diffuser range

increase (see Fig. 4-1), and on the other - there occurs a noted

replotting of the velocity profile in the section before the

inlet into the diffuser, as a result of which kinetic energy of

particles of flow in the region near the wall is decreased

(Fig. 4-2a). Both factors create conditions for the separation

of flow directly after the inlet section of the diffuser. Thus,

with the approach to transonic speeds there increases the possi-

bility of the emergence of the separation of flow as a result of
specifJi changes in the structure of the boundary layer.

Considering the varied viscosity effect on the gas flow

pattern in diffusers [157, 165], the experimental investigation
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of the compressibility effect on the effectiveness of diffusers

must be conducted at the constant values of the Reynolds number

over a wide range of its change.

Figure 3-10b and c gives experimental values of the coeffi-

cients of recovery of energy C, depending on the initial relative

velocity X1. Every curve corresponds to the narrow range of

the changes in the Re1 number. As one would expect, in the zone

of the high subsonic and transonic speeds a sharp drop in the

coefficient of recovery of pressure is observed, and a critical

lowering of the efficiency of the diffusers depends both upon X1
and upon the Re1 number. The greater Re,, then up to higher values

of the relative velocity A1 nonseparable flow exists. This

experimental fact agrees well with the structural changes in the

boundary layer examined above with the approach to tne inlet section

of the diffuser.

Actually, with an increase in the Reynolds number the

intensity of the transverse turbulent transition increases, and,

consequently, large negative pressure gradients are necessary

(high velocities of X1 = 1) for the degeneration of turbulence

and adverse from the point of view of the separation of ti~e

deformation of the velocity profile. With an increase in Re1

number the degree of degeneracy of turbulence at the inlet into

the diffuser is decreased, and the zone of rionseparable flows

according to velocity Xi is expanded.

The found connection of the critical drop in the diffuser

performances from the combination of Re1 and Al numbers is very

important and can be completely revealed only experimentally with

an independent change in these criteria. If the change in Re 1

number is reached by the appropriate velocity change, then it

is possible to arrive at the erroneous conclusion about the

independence of the aerodynamic characteristics of diffusers

from the compressibility of the fluid. Actually such a con-

clusion is made in work [66], whose author up to the velocity
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i 0.96 did not detect any compressibility effect on the coeffi-

cient of losses of the diffusers, since the increase in the

Reynolds number simultaneously with an increase in the dimension-
less velocity X1 ensured the mutual compensation of their effects

and moved aside the critical drop in the characteristics into

the zone of almost transonic speeds.

From the given experimental data obtained with independent

simulation according to X and Re1 numbers, it follows that

compressibility can most decisively influence the energy per-

t'formances of the diffuser with the approach to transonic speeds,
* whereupon the critical value of velocity X1 depends upon the

Reynolds number and flare angle of the diffuser. The connection

between these values, obtained on the basis of the examined ex-

periments, is given in Fig. 4-3. This dependence allows deter-

mining the flow pattern in the inlet section of the diffuser for

the assigned regime parameters.

.1 Fig. 4-3. Connection between the
0 critical values of the Reynolds

2,5 number and rulati-e velocity
at the inlet into the diffuser.

.5
218 - = 10; 2 - a = 150; 3 -
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Thus, if the point which corresponds to the given initial

parameters lies above the curve Relp f ), the flow will

be nonsepprable, and if it lies below it, the separation of flow

occurs directly in the inlet section. For instance, if the

velocity Xl in the diffuser with the flare angle a = 100 is

equivalent to 0.8, then for the provision of nonseparable flow

the Re1 number should be not less than 1.6.105. At smaller

values of it, as experiments show, the separation of the flow

will occur.

The dependence Re1KP = f(X 1 Kp) is determined also by the

aperture angle of the diffuser a. The greater the angle a,

the more the critical value of the Re1 number for the given

velocity. Physically such a dependence is entirely regular.

The large angle a corresponds to the increased pressure gradients

in the range of the inlet section of the diffuser, and conse-

quently, the separation of flow appears at a lower velocity Xi.

Let us note that the effect of angle a is developed only at

moderate values of the velocity A 1l With its increase compressi-

bility acquires primary importance, and the effect of' angle a

will move away to the second plan. When X1 - 1 (transonic flows)

the value of Relap for all angles a approaches very large values,

and the possibility of nonseparable flow is sharply lowered.

There is specific interest in results of the study of the

mode which corresponds to low supersonic velocity at the inlet

into the diffuser. In this case separation occurs before the

shock wave at the inlet expanded part of the diffuser.

The modes in question (XI = 1.0-1.15) are characterized by

the constant (critical) values of velocity and pressure in the
minimum (inlet) cross section of the diffuser. In accordance

with this the stratification of curves of relative velocities

(pressures), depending on mode, is noted after the inlet section
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and is determined basically by the position of' the shocks (or

the system of shocks) in the expanded part of the diffuser.

Prior to the shock the flow in the inlet part is convergent.

An increase in pressure occurs in the shock and the expanded

part after it during separation and nonseparation flows. In this

connection it should be noted that if the section of laminarization

of the boundary layer is stretched up to the shock, then the latter

always causes separation. When the ivegion of transition of the

laminar layer into the turbulent is located before the shock,

the separation is shifted along the flow.

4 The minimum intensity of the shocks which cause separation

was determined experimentally. Figure 4-4 gives the appropriate

relation of I. S. Grodzovskiy and L. Ya. Lazarev for laminar

and turbulent boundary layers. For the laminar boundary layer the

appropriate pressure ratio on the shock is. 1.50-1.58 and for

the turbulent boundary layer, 1.8-2.1. In proportion~to the

development of the process of the degeneration of turbulence,

the intensity of the shock which causes separation is-decreased,

and with completely completed reversed transfer the broken

and solid lines merge.

1.p /d, - Fig. 4-4. Intensity of the

F 1 (i ° 2 " shock causing separation of
Ila L2 -- - the boundary layer. (Experi-

S.... . . ments of I. S. Grodzovskiy
,- ---. nu,,up,,oCO,-- and L. Ya. Lazarev, MEI)

L7 I(3ý. KEY: 1 - normal shock; 2'-
" ......... .... with inverse transition; 3-

'./ I,2 ,'s. .8 O 2 ,4 for laminar flow.

The location place of the shock in the modes in question is

established by the nethod known from the theory of variable

modes of the Laval nozzle [25). The use of this method is all

the more Justified in that the modes of operation of the

diffuser when Xl > 1.0 completely correspond to modes of the

operation of the Laval nozzle with an increased ratio of pressures,
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when in the expanded part shocks are formed. One should keep
in mind that the form of the shock to a great degree depends

upon the flare angle 6f the diffuser. Thus, for in'stance, in

a diffdser with a = 150 experiment:s record the system of two

oblique shocks, and in a diffuser with a 70 - 6 ne, curvilinear

shock. The position of the shock in the diffuser also sub-

stantially depends upon the flare angle.,

The discharge characteristics of diffusers at transonic,

speeds show that the relative gas flow through the diffuser

increases with an increase in X1 up to 1.0. A further increase
in Xi does not give rise to' a change in the flow rate.

For the characteristic of transonic diffusers it is ad-

vantageous to compare values of theoretical and actual pressure
ratios. I

The appropriate graphs are given in Fig. 4-5. Curve 1
corresponds to the calculated theoretical pressure ratio P2rIPl
(without allowing for diffuser losses)., Curve 2 is obtained
experimentally and represehts the relation of the product of the

T pressure ratio and coefficient of (recovery of the stagnation
pressure:

Pa P02 PA

The agreement of the calculated 1 andýexperimental 2 curves
proves to be sati•0factory. The divergence between curves 2 and
3-8 reflects the effect o± the Reynolds number and dimelsionless
velocity X1 on the pressure ratio in the diffuser. With a de-
crease in the Reynolds number an intense reduction in the
pressure ratio is noted. In accordance with data of Fig. 4-3
critical Values of A decrease wittL a decrease in the ReynoldslRp
number.
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Fig. 4-5. Dependence of the pressure ratio in
conical diffuser upon the Reynolds number and
dimensionless velocity Al (a = 150; n = 4;

tests with superheated steam). 1 - theoretical curve

11!.;-P.! 2 .7-8--pilp; 8-- Re, = (0.5+0,O).'10s: 7--Re,--.(1.O- + 1.2).101•;

C.- -Re -:{, f .I.) 1 0 ;.8-- Ie On ( ,2 --2.c ) 0;.- ~•-• (, ,•.1
3- + - -.1. 0) i0'.

S~The graphs in Fig. 4-5 reflect the compressibility effect on

S~ the pressure ratio - the most important diffuser performance.

-•.• Here it is clearly evident when Xi < 0.5 the compressibility

•' effect is imperceptible in practice. At large Reynolds numbers

• ~(ReI > 4.105) the diffuser with the flare angle a = 150 and

Sn = 4 has a maximum compression ratio when Xi ý- 1-1.05.

i~i In connection with that expounded above, one should note

•J the influence of the initial turbulence level on the diffuser

performances. The increase in the degrees of turbulence at

small and moderate ReI values gives rise to a noticeable improve-

ment in the diffuser performances, since the transition region

222



with the mixed boundary layer is shifted against the flow,
which in a number of cases eliminates separation. However,

with a very high initial turbulence the thickness of the boundary

layer sharply increases, and the effective value of the expansion

ratio is decreased. An increase in the turbulence level causes

an increase in frictional losses. For these reasons at small

Re1 and X1 numbers the energy losses in the diffuser with an

increase in c0 are at first lowered but then increased. An

example of such a dependence is shown in Fig. 4-6. With a de-

crease in Re1 when Xl 0.1, the minimum of losses in the range

C0 = 2-3% is developed more clearly.

09 jFig. 4-6. Effect of initial
L' degree of turbulence on losses

, "' in conical diffusers at various
S. -. . ... - Reynolds numbers (Xl = 0.40;

I.n = 3; a = 100). 1-Re1
01.- 2.2.104; 2 - ReI = 106.

Experiments show that the effect of the initial turbulence

on the diffuser performances at high subsonic speeds is maintained
qualitatively the same as that for the incompressible fluid. The
data given in Fig. 4-6 can be used for the introduction of
appropriate corrections at significant Xl numbers.

Thus, the transition to high subsonic speeds does not give

rise to noticeable changes in losses and recovery ratio in
diffusers. If the flow conditions are self-similar according

to Re. number, then an increase in X1 number from 0.3 to 0.6-0.7
does not cause a substantial change in the diffuser performances.
The latter means that the intensification of the flow of process

in diffusers according to X. number up to the indicated limits
is rational.
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In conclusion it is necessary to emphasize that at small
Re1 numbers a favorable effect on the diffuser performances is

rendered by the blowing of the boundary layer. The use of suction
gives rise to a noticeable increase in the effective expansion
ratio and a decrease in frictional losses.

§ 4-2. Reverse Transition of the
Turbulent Boundary Layer into
Laminar

Let us examine in more detail the phenomenon of reverse

transition in the boundary layer and the laminarization of the

velocity profile at transonic speeds.

In the laboratory of [MEI] (M3H) Moscow Power Engineering
Institute) the transition of the turbulent layer into a laminar
layer was investigated on four different models 1) axisymmetric
"two-throat" channel; 2) plane "two-throat" channel; 3) nozzle
curvilinear channel; 4) plane diffuser. Some results of this
study are stated below.

In axisymmetric and plane straight channels there is the
possibility of obtaining the characteristic flow conditions, the
basic features of which are the following: in the second
"throat" of the channel there occurs the secondary transition of
flow through the speed of sound, whereupon the flow before the
second "throat" is created greatly turbulent by the shock wave
which appears after the first throat of the channel. The pressure
distribution along the wall of the channel (Fig. 4-7a) clearly
shows that behind the diffuser section in the middle part of the
channel the flow is characterized by very large positive
velocity gradients OCM,,2 104
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Fig. 4-7. Diagram of a "two-throat" channel
(a), pressure distribution along its length;
(b) and boundary layer velocity profile ea

a F

=0.210 (c). b)O _a = p2/Po [ 0.700; 0

•a = 0.514; A e a = 0.350; 0 c'a -- 0.309; -V-ca
S0.262; Z ea = 0.209; c) 1 - section 1; 2 -

S~section 23 mm to the left of section 1 (section
2).

The presence of such velocity, gradients should facilitate

!, and, probably, basically determine the transition of the tur-
bulent boundary layer into the laminar one. This transition

was confirmed by measurements of the velocity distribution in

i the boundary layer before and after the second throat. If
before the second throat of the channel the velocity profile
is clearly turbulent (Fig. 4-7c) then after the second throat

profile has another form - laminar.

In a plane two-throat channel measurements of pressure

fluctuations were conducted at a distance of ^0.8 mm from
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the wall, i.e., almost in the boundary layer, in three charac-

teristic sections: in the first throat, in the section of maxi-

mum width and in the second throat. Fluctuations were measured

by an extensometric probe and recorded on the film of a loop

oscillograph. It is evident that in such a channel there

should also take place the characteristic conditions of reverse

transition which were observed in the axisymmetric channel.

Figure 4-8 shows oscillograms of the measurement of fluctuations

of the total pressure in the mode ea = 0.25. One can see well

that in the first minimum cross section of the channel there

are practically no fluctuations. In the maximum section of the

channel fluctuations of large amplitude and sufficiently low

frequency ("'20 Hz) take place. This order is characteristic

for large-scale turbulent fluctuations. It should be noted

that in this mode the amplitude of fluctuations comprised about

10% of the total pressure. In the second minimum section the

fluctuations were sharply attenuated and were absent in practice.

The measurements of fluctuations described above show that in

the second throat of the channel the boundary layer became laminar,

although before the second throat the flow had a clearly turbulent

behavior.

The curvilinear channel was investigated along the straight

and convex walls in oblique shear (Fig. 4-9). By examining the

distribution of relative pressures ci = pi/P/1 along the contour

of the channel, it is possible to note that up to the emergence

of the shock wave on the convex wall the positive velocity

gradient was of the order of (6-8).103 1/s, whereupon in this

section the rates of flow were changed from M = 0.4-0.5 to

M = 1.85-2.0 in the mode e a = 0.23. It is interesting that

the extension of the section in which the large positive velocity

gradients took place consideratly increased with an increase in

the M2 number at the outlet from the channel. This is clearly
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Fig. 4-8. Fluctuations of the total
pressure (measurements in the plane
"two-throat" channel; ea = 0.25)

a) section 1; b) section 2; c) section

• •"" : '16•""••"'"•7 Fig. 4-9. Pressure distribution

17. 1 V..,./p, .," along walls of the curvilinear
;• ... lk•"i",-"='•" '• i' z •a.O~'•""•" ••| nozzle channel at different

d, 1,, ,:'-• . j• pressure ratios. 0O- convex

C, 0..-1. wall; A - straight wall.

107

V,4 0,5, 06'• 1?t 0" 0,0 .

evident in Fig. 4-10 where plotted along the axis of the ordinates

is the relative extension of the section Ax/L (L length of

the wall) with the velocity gradient, along alo the axis of the
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0.7Fig. -10. Extension of the
Ssection of the channel with
maximum velocity gradients.

0 A - convex wall; 0 - straight
- wall; 0 - concave wall.

abscissae - the Mach number at the outlet from the channel deter-

mined from pressures before and after the channel. As can be

seen from Fig. 4-10, the extension of the section with maximum

gradients depends little upon the surface shape of the channel.

It should be noted that, as was expected, the maximum gradients

of velocity (pressure) were attained in the narrow sections of

the channel, i.e., in the region where the number M - 1.

The channel tested was established in a wind channel, the

turbulence level of the flow in which was approximately 1%.

For the agitation of the boundary layer before the throat of

the channel on the convex surface (X = 0.15) a turbulent wire

with a diameter d = 0.8 mm was installed. As measurements of

the boundary layer the velocity profile showed in mode ea = 0.286,

in sections x = 0.483 and x = 0.512 on the convex wall the

boundary layer was turbulent (Fig. 4-11). With the advancement

along wall from the narrow section (x = 0.483) to the outlet

section, there occurred the laminarization of the boundary layer

velocity profile, i.e., the filling of the profile was decreased,

and under a sufficiently prolonged effect of the negative pressure

gradient the velocity profile became laminar. The laminar

boundary layer further interated with t!., shock wave which appeared

on the convex wall as a result of the overexpansion of the flow

and was separated by this shock (the characteristic separation
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a) b)

1~Fig. 4-+1l. Boundary layer velocity profiles on walls
of a curvilinear channel. a)straight wall (e 0.250):

-I a

(,!4_0,2[:): C - x.'O,C.3; A L7:7-0.512, O)-Tv09.0 '--n. C?3; 0 - ý.C23: 0
q- 7 =,5; [ T = 096..

velocity diagrams in the boundary layer are presented in Fig. 14-11b).
It should 'be noted that at a rýelatively small length of the effect

of the negative pressure gradients, i.e., at smaller Mach num-
bers, the total lamin~rization of the velocity profile was not
observed, and the turbulence degenerated partially. The analogous
change in the; velocity profile occurred even on straight wall

o f a the channel.

In the investigation of the transition of the laminar

boundary layeriinto the turbulent, usually the position of the
transition is determined from the nature of the change in the

boundary layer thickness 6a. Let us note that the same boundary
layer characteristics can be used for determining the point of the

transition of the turbulent mode into the laminar mode.
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There is specific interest represented in data given in

Fig. 4-12, where the change in the dimensionless boundary layer

thickness 6 depending on the Xl-=C:.max:ý/', number,

calculated on the coordinate along the rectilinear wall of the

channel is represented. According to Blasius's solution, the

dimensionless boundary layer thickness with laminar flow along

the plate has a constant value equal to "u5. But as soon as the

Rex number becomes more than the critical, the dimensionless

thickness of the layer begins to increase sharply. It is logical

to assume that in the case of the transition of the turbulent

boundary layer into a laminar one, a reverse pattern will be
observed, i.e., with the degeneration of turbulence the dimension-

less boundary layer thickness will be decreased along the back edge

up to the achievement of a certain constant value. The achieve-

ment of a constant value means that the boundary layer became

laminar. Such an assumption is confirmed well by an experiment.

For flow without a vortex generator (Fig. 4-12b) the thickness

without a vortex generator (Fig. 4-12b) the thickness

,6 remained constant up to Rex (1.8-2.0).5, and then

it sharply increased, which indicates the transition to the

turbulent mode induced by the shock wave. For the case with

a vortex generator (Fig. 4-12a) the dimensionless boundary layer

thickness was first rather rapidly decreased to the value

equal to I'•0, and then it remained constant (the turbulent layer

"turned into the laminar), and when Rex = 2.15.105 it sharply

increased (the laminar layer again turned into the turbulent in

the shock wave).

Completely analogous results were obtained during the study

of the boundary layer on the convex wall of the channel. These

results show some features of reverse transition. It is evident

that transition zone in the case of reverse transition should

have a large extension, since a significant section of the flow
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a) best available copy.V b)

Fig. 4-12. Change in the dimensionless boundary layer
thickness along walls of the curvilinear channel.
a) with a vortex generator: 0 - staight wall (e a

= 0.230); 0 - convex wall (e = 0.284; A - convex wall

(a = 0.325); b) without a vortex generator: A - straight

awall (ca = 0.230); A - straight wall (ca = 0.318);

0 - convex wall (c = 0.330).

for the degeneration of turbulence is necessary. It is natural

that the length of this section will depend upon the magnitude

of the velocity change. Furthermore, as is known, the instan-

taneous transition of laminar conditions into turbulent (for

instance, at the height of the protuberances of the roughness

more than limiting) is possible, and in the case of reverse

transition in principle this is impossible - the zone of transition

should have an extension.

Usually when estimating the flow stability, the basic sta-

bility criterion is the Reynolds number. Figure 4-13 gives the

change in the Re** = C xmax6**/v number and Re** Kp, calculated

according to the empirical correlation of A. P. Mel'nikov, for

straight and convex walls in the oblique shear of the channel

with the vortex generator when e a = 0.23 and e a = 0.286,
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a) b)
Fig. 4-13. Change in numbers Re** and Re** K

• along walls of a curvilinear channel. a) convex
S~back edge; b) straight wall.

respectively. In Fig. 4-13 for the convex wall it is clearly

Sevident that after the vortex generator the Re** Hp number is
-=• less than Re**, i.e., the boundary layer is turbulent. During
-- •motion along the wall R** KPincreases, and Re** Is decreased

and in the section with coordinate x = 0.490 the two curves

I .'

intersect. When x > 0.490 the number R** < Re** Kp, i.e.,

-•TJthe layer became lamrinar - "reverse" transition occurred. When

-- x" > 0.590 the Re** number again proves to be more than Re** K
•. and on the wall turbulent flow conditions in the boundary layer

_• is established.

S~One should note,the satisfactory coincidence of the point
• of the transition of the turbulent flow conditions into laminar

S~determined by two methods: as points of the intersection of curves
SRe**(-X) and Re**(x) in Fig. 4-13 and as the beginnings of the

F plane section on the curve of the dependence of the dimensionless

•;boundary layer thickness upon Re x (Fig. 4-12). Their coordinates

S~are respectively equal to 0.490 and 0.509.

, • Thus, the experimental investigation of the boundary layer1 on various models confirmed the emergence of the transition of
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the turbulent boundary layer into laminar, or of the "reverse"

transition, at large longitudinal negative pressure gradients.

The maximum negative pressure gradients correspond to the

transonic gas flows. Consequently, during the transition through

the speed of sound the possibility of the degeneration of the

turbulence proves to be maximum. The "reverse" transition is

an important feature of transonic flows of viscous gas, which

is the reason for the separation of flow with the emergence of

the shock wave directly after the secti.on of the reverse transition

where the boundary layer is laminar.

Experimental investigations showed that the transition of

the turbulent boundary layer occurs gradually in the significant

transition section. According to preliminary data, this section

has an extension of the order of (15-25)6 (S - the physical

boundary layer thickness in the beginning of the transition zone).

However, the extension of the zone of transition should depend

upon the magnitude of the velocity gradient and is in need of

refinements. Important also is a definition of conditions

necessary for the reverse transitions i.e., a definition of

the correlation between the magnitude of the velocity gradient

(or intensity of cooling of the wall) and the extension of the

zone of transition.

It is necessary to emphasize especially that in many in-

stances in the sharply convergent gas flows only partial degen~-

eration of the turbulence in the boundary layer and core of the

flow will occur. The partial degeneration of turbulence gives

rise to the characteristic deformation of the velocity profile

near the wall, which is expressed in the reduction in local

velocities. The effect of the positive pressure gradients on

f the flow with a partially degenerating turbulence also gives

rise to its separation.
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The phenomenon of partial or complete lamlnarization of

the flow at transonic speeds is revealed when the boundary

layer thickness at the inlet into the diffuser reaches large

values.

In convergent flow the reverse transfer in the boundary layer,

connected with the partial or complete degeneration of turbulence,

gives rise to a reduction in losses to friction.

The investigation of the boundary layer in diffusers whose

results are given in Fig. 4-1 and 4-2 shows that with alternating

pressure gradients at the feed and inlet sections of the diffuser

the phenomenon of partial or complete degeneration of turbulence

is observed. The flow of features in these sections at transonic

speeds, which are expressed in an increase in the pressure gradients

in convergent and diffuser regions, should give rise to the

critical increase in losses in connection with tne unavoidable

separation in inlet sections of diffusers. In this aspect

becoming quite clear are results of the experimeht, which showed

the dependence of XlKp upon the Reynolds number, since the

possibility of partial or complete extinguishing of the turbulence

is determined by the value Re 1 .

The basic regularities of the "reverse" transition stated

above are confirmed well by data of other researchers. We

will discuss some of these works briefly.

Interesting research on the flow pattern under the effect

of high accelerations was carried out at the end of the 1950's

by Senno [168] and A. A. Sergeyenko and V. K. Gretsov [94]. In

[168] the boundary layer on the back edge of the profile of the

turbine nozzle grid was studied. The boundary layer in the throat

section was always laminar even when prior to the throat turbulent

flow conditions were recorded. The flow pattern up to the throat
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almost did not affect the structure of the boundary layer near
= ~the throat. After the minimum section the flow• again became

turbulent,, which confirmed the measurements of fluctuations and

the appearance of noise in a stethoscope. An analysis of the

flow of structure was realized on the basis of the theory of a

three-dimensional laminar boundary layer, whereupon the conver-

gence of the calculation and experiment was satisfactory., Values'

of the Reynolds number in the throat section were Re** < 600,

* which confirms, the stability of such a flow.

In [94] te~t data of an axisymmetric convergent-divergent

nozzle are given. Velocity profiles in the superimposed section

and at the outlet from the nozzle were measured.: Measurements

were conducted in two modes: under pressures in the receiver of

0.3 and 1.0 bar. For both modes the velocity gradients on the

axis were equal, respective' to dc ax/dx = 2730 1/s (in the
throat) and 2720 1/s (at the outlet from the nozzle). The

velocity profiles at the outlet from the nozzle in the first
mode had the distribution characteristic for laminar conditions,

A• although in the superimposed section layer it was always tur-

bulent. In the second mode no peculiarities were noted.

A detailed study of the degeneration of turbulence was

conducted by a group of colleagues under the guidance of A. A.

Gukhman. Part of the works (they were carried out in the 1950's

and beginning of the 1960's) was based on the use of a design

apparatus of a one-dimensional model. Used as the working

seF-tions were the convergent-divergert nozzles of small conicity

with an aperture angle less than 10. On the basis of careful

measurements of the distribution of static pressure and (in ex-

periments with heat exchange) local thermal flows along the

nozzle, the coefficients of friction and thermal conductivity

along the length of channel were determined. These experimental
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values were the basis for the analysis of structural changes in

the flow. Such a method, naturally, could not lead to reliable
conclusions, since it is based on considerably important assump-

tions whose validity must be proved. In this connection a direct

study of the flow pattern is more interesting [24a]. The same
channels of small conicity served as the working sections. An

experimental installation allowed over a wide range a changing

of the Reynolds numbers irrespective of the Mach number. Velocity

profiles before the nozzle inlet and at the outlet from it at

various distances from the entrance. The studies showed the

following:

1. Under the effect of the negative pressure gradients the

turbulence in the flow begins to degenerate, which under specific

conditions gave rise to the reconstruction of the velocity

profile. Simultaneously, under the action of high accelerations

the boundary layer thickness was considerably decreased.

2. The stability of changes in the structure of the boundary

layer considerably depended upon the Reynolds and Mach number.

Only at small Re1 was the flow stabler and preserved the laminated

4 form of the profile at a distance of the order of 2 gauges

behind the throat. At large Re1 numbers even in the cross sections

close to entrance, laminated profiles were not detected.

3. The effect of laminarization was characterized by

the presence of two regions in the boundaiy layer: the wall region

with a velocity distribution close to the laminar, and the

external region with a velocity profile close to turbulent. The

magnitude of the wall region exceeded the thickness of the

viscous sublayer by one order. In accordance with the nature

of the velocity distribution, the frictional resistance of

the laminated flow was, according to the calculation, considerably

(2-2.5 times) less than the resistance of the turbulent boundary
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layer for conditions under which the reverse transition was

observed.

4. The depth of the changes which occurred under the action

of the large negative pressure gradients depended upon the con-

ditions of flow (magnitude of the acceleration of flow, the

Re1 and M1 numbers). With this the values of negative gradients

and the time of their effect appeared as interdependent causes

of the same phenomenon. The depth of the laminarization de-

pended upon the combination of these factors.

5. The effect of degeneration was developed to the greatest

degree at a certain distance from the place of the effect of

high accelerations. In certain cases, apparently, the secondary

transition managed to occur earlier than laainarization was

developed.

It is natural that both the results obtained by the authors

and data of the other researchers described above do not exhaust

the entire complexity and uniqueness of the problem of reverse

transition. Additional studies are necessary with the use of

the low-inertia probes, which allow measuring the spectrum of

the fluctuations of parameters, the correlation between

fluctuations, etc. Such measurements help understand better

the nature of the reverse transition.

In conclusion it is necessary to emphasize that for the

first time the phenomenon of reverse transition in convergent

gas currents discovered in the work3 of A. A. Gukhman and

M. Ye. Deych, is found in complete conformity with conclusions

of the stability theory.
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§ 4-3. The Flow of Gas in Supersonic
Diffusers

Supersonic diffusers have an extensive application as a

component element of aircraft and other flight vehicles and

engines and also experimental installations. Examined below are

only tube diffusers used in wind tunnels, ejectors, MHD generators

and so on. There is certain interest in such diffusers for

special turbine stages having supersonic velocities at the outlet

from the operating cascade. Therefore, even a brief examination

of features of the physical process in supersonic diffusers is

entirely justified.

From the basic equation of one-dimensional flow [25], it

follows that supersonic diffusion can be accomplished in a tube

of varying section, the inlet part of which is made constricted

and the outlet - expanded. In the first part the velocity is

decreased and reaches a critical value in the minimum section.

Then in the expanded part the process of the compression of

subsonic flow is continued.

Supersonic diffusers can be divided into two basic types:

1) without a central body;

2) with a central body.

Within limits of every type, diffusers can be divided in

diffusers with multishock, isentropic and combined compression.

The distinction in the indicated types is easily understood from

the examination of diagrams in Fig. 4-14.

Diffusers without a central body are accomplished according

to the diagrams given in Fig. 11-14a and b. As an "ideal" diffuser
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Fig. L4-14. Schematic diagraim of supersonic tube diffusers.

KEY: (1) Shocks; (2) Compression wave.

with isentropic compression it is possible to use a convergent-

divergent nozzle with profiled walls) assuming the flow in it

i is reversed. Because of the evenness of the profiled walls,
at every point of which the flow accomplishes a turn at a small

Sangle, in the diffuser inlet a system of weak compression

waves (characteristics) should arise. In passing through this

system, the flow is braked isentropically. The system of weak

compression waves in this case coincides completely with the
j system of the weak rarefaction waves (characteristics) in the

expanded part of the nozzle. In the entrance the flow acquires

' a critical velocity (A = 1). In the expanded part of the

S~diffuser the velocities are subsonic, which are decreased in

I the flow direction. In actuality, however, it is not possible

! to accomplish such a diffuser, since the flow in it proves to be

i ~unstable: sligh~t disturbances at the inlet give rise to finite
i ~ disturbances at the outlet. Th~s is explained by the fact that
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with a small decrease in M number at the inlet in the minimum

section critical speed is not established, as a result of which

before tapered part the departing wave appears.

The field of flow which enters from the Laval nozzle, as

a rule, is nonuniform and saturated irregularly. Furthermore,

as a result of the emergence of losses in the inlet part and the

formation of the boundary layer, the nature of the change in

flow areas will not correspond to those calculated. As a

result in the inlet part the system of shocks appears. Therefore,

one should consider more advisable the step braking of supersonic

flow at the inlet in the specially organized system of oblique

disturbances. The system of shocks can be organized by two

different means. One of them consists in the fact that the

walls of the inlet section are made with breaks (Fig. 4- 1 4b).

When the flow flows, about the angular turns with supersonic

velocity oblique shock waves, which interfere near the axis of

the channel with walls of the inlet part, appear. Depending on

the number of angular turns and conditions of the organization

of the flow in the outlet points of shocks on the wall, the

intensity of the shock braking can be different.

Best results can be obtained with the help of a profiled

needle, which ensures either isentropic (Fig. 4-14c) or shock

(Fig. 4- 1 4d) compression of the flow. Circular supersonic

diffusers with an inner body (regulating needle) having an axial

movement prove to be more economic with variable modes of ope -

tion. The use of combined designs of diffusers which ensure the

isentropic or shock and also mixed compression on the wall and

during the flow of the inner body is possible (Fig. 4- 1 4e and f).

One should emphasize that for 6i,; reduction in wave losses

at the inlet a'system of reflected shocks is also used.
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Thus, a characteristic feature of any supersonic diffuser is

the section of compression located after the inlet section.

Comparative merits and shortcomings in various designs of

the inlet part of supersonic diffusers can be established

basically experimentally. With this the best design should

correspond to the following requirements:

1. Losses of kinetic energy (losses of stagnation pressure

at the given value of the M1 number) should be minimum.

2. The velocity field behind the diffuser should be uni-

form.

) 3. The diffuser should have satisfactory characteristics

over a wide range of modes.

The possibility of satisfying the indicated requirements

is connected not only with the finishing of the inlet part of

the supersonic diffuser. As a more detailed analysis of physical

processes which occur in diffuser shows, the most important is

the section near the throat (minimum) area. Taking into account

the processes which occur near the throat, one should estimate

the perfection of a certain design. Actually, as experiments

show, the maximum positive longitudinal pressure gradients on

the surface of the inner body and on the contour of the diffuser

are developed near the throat section. As was indicated in

§ 4-1, this feature is characteristic for transonic speeds,

whereupon the direction of the pressure change along the flow

(convergent or diffuser) is not important. Consequently, irre-

spective of the intensity of compression in the inlet section,

in the entrance of the diffuser a region with maximum longitudina]

pressure gradients is located. It is evident that Jn this section

with maximum diffusivity the boundary layer separation or its

most intense swelling are most probable.

241



Experiments confirm the emergence of separations near the

throat area where the longitudinal pressure gradients reach

maximum values. Hence it follows that the shaping of wall and

central body of supersonic diffusers in the zone of throat area

acquires an exceptional importance. The basic problem is reduced

to the reduction in longitudinal pressure gradients in this

section and the organization of the blowing of the boundary layer

o* in the sections located before separation.

Keeping in mind the noted features of transonic diffuser

flows, it is possible to assume that in the correct organization

of flow at the inlet the maximum power losses appear in the

zone of the minimum section and in the initial section of the

expanded subsonic part.

Of significant interest is the comparison of diffusers with

shock and isentropic compression. It is known that the number

of shocks necessary for effective compression depends upon t1e

effective range of M1 numbers. This conclusion is confirmed by

the dependences in 1g. 4-15 plotted for an ideal gas. Here

curves 1-4 refer to optimum multiple-shock diffusers. As it

appears, the compression in a thrLe-shock system when M1 S 1.8

does not give noticeable advantage as compared with a two-shock

system. In the range MI = 2.0-2.5 the three-shock system gives

a gain in the recovery of the stagnation pressure from 5 to

10%. At large M1 numbers the use of four or five jumps is

advantageous; however, in these cases zombined compression

should be used.

The attainable values of the coefficient of recovery of the

stagnation pressure during isentropic compression with the

focusing of the Mach waves at one point are shown in Fig. 4-15
by curves a and b. Less recovery (curve a) refers to the case

when the requirement of the equality of Iressures from two sides

242



&!

0 Fig. 4"15. Theoretical values

1 0 of the coefficient of recovery
• , kk• • • • of stagnation pressure a• in

various systems of shock waves
during external and internalt.-i-..-.1-! compression in a supersonic dif-S... ........ •__3 fuser (numbený, no,,tr the curves

0 I i.i' , ,,.•correspond to the number of

1 1

of the discontinuity surface after the focusing point is ful-

filled.

Curves a' and b' in Fig. 4-15 are plotted under the assump-

tion of the combined isentropic compression for diffusers with

fixed geometry. These data show that isentropic diffusers have

a noticeable advantage. It should be considered that this ad-

vantage will be greater if we take into account the interaction

of shocks with the boundary layer, as a result of which there oc-

curs intense' swelling and in certair cases separation of the layer.

The effect of friction and separation on the recovery of the

total pressure, not taken into account in the curve plotting in

Fig. 4-15, is especially great at the small Reynolds numbers and

large M1 numbers.

It should be noted that in diffusers with variable geometry

'adjustable diffusers) the magnitude of the recovery of stagna-

tion pressure can be substantially higher.

§ 4-4. Characteristics of Transonic
and Supersonic Diffusers,

At high velocities of the flow of gas in the diffuser

(subsonic and supersonic), its characteristics are determined
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by taking the compressibilities into account. For supersonic

diffusers we will use (see § 2-2) the following characteristics

introduced above: the eff of the diffuser nA (energy eff nA3

and arbitrary eff n'A ), the coefficient of the recovery of

stagnation pressure a0 and the pressure ratio a.

The sections of the supersonic diffuser are designed from

the equation of continuity, which (for the tapered part) can be

recorded in the form:

p 1F, 1  '.;l' F*A

where p?* and A',- density and velocity in the minimum section

of the diffuser F. ; F1 -inlet section of the diffuser.

After transformation we will obtain

P'o* __^''

P Oea , poT q,

where ql, q'* - the reduced gas flows in the inlet and minimum

sections.

If in the minimum section the critical velocity n',

](q', 1), thea

: 4Jj



jEj ool---- • ((4-2)
F,• q,

The coefficient of recovery of the stagnation pressure in

the inlet section of the diffuser is defined from formula [25]

%k

k--I

021; 2t?:j:= ~ossi h (4-3)
where i-- the coefficient of losses in the tapered

part of the diffuser.

Substitution of a0 1 into formula (4-2) gives

F _ _ _2 ,k-, _in, I (11-2a)
F *AZ "' k+ I !., (,I I - i - ,,)1:?jk-I *

The formula shows that with an increase in losses in the

tapered part the ratio of tht sections FIF*A is decreased. Hence

it also follows that for the fixed value F1/F*A the change in

parameters at the inlet leads to the change in losses in the

tapered part.

By comparing the two mcdes of the flow under equal initial

conditions with the various losses, from expression (1-2a) it

is possible to obtain the dependence which shows that tie mini-

mum section of the diffuser should increase in proportion to the

stagnation pressure change in section F, :

Fo_ t __. P '00•
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or

F, F1 - "O

Here values of the parameters without the prime refer to

one mode, and with a prime - to another mode.

For the calculation of the inlet part of the supersonic

diffuser, it is necessary to know the magnitude of the coefficient
of losses , and, consequently, the structure and shock position
in this section. The system of shocks at the inlet is selected
from the condition of the minimum wave losses. In the selected

and calculated system of shocks it is not difficult to determine
the recovery of the total pressure and the coefficient of wave
losses in the syctem of shocks [25].

Then according to the pressure distribution on surfaces of
the inier body and inlet part the calculation of the boundary
layer in the supersonic section is produced, and frictional losse6
are determined. The section of the minimum sections and expanded
outlet part is further profiled. The outlet part of the diffuser
is designed from the selected rational distribution pressure or
on the basis of experiment-.1 data. Results of the boundary
layer calculation allow establishing the energy losses in the

subsonic part of the diffuser. At small supersonic velocities
C(MI - 1. 3 -1.4) it is possible to consider that in the inlet part
there is only one normal shock. Value Al in this case will

depend upon the position of the normal shock. If the shock
is formed in section F1 , then the energy losses will be maximum;

if the shc.k is located in the cross section, then the losses

will be considerably decreased.
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For an illustration Fig. 4-16 gives the appropriate computed

values of the eff of the aiffuser nA and n' for two limiting

cases (1 - with a normal shock in the entrance and 2 - with a

normal shock in the inlet section and also experimental points.

A comparison shows the satisfactory agreement of the calculated
and experimental values.

The outlet section of the diffuser is defined from the

equation of continuity. The coefficient of losses in the expanded
part of the diffuser can be used as a first approximation accord-
ing to tests of subsonic diffusers. The outlet velocity from

the diffuser is assigned.

The complete coefficient of losses in the diffuser is found
Sby using formula (when X', = 1)

The pressure of stagnation after the diffuser is defined

Sfrom relation (4-3):

2 -=

P0 - Po lI (4-3a)

One should again emphasize the necessity for the careful

shaping of the walls in the zone of the throat (minimum) section,
ensuring the very smooth transition to this section by lines of

small curvature. It is evident that the..haping of the initial

section of the expanded part of the diff'ser should also be

subordinated to the condition of the smooth change in the

section alor; the flow, since here also the rates of the flow

are close to being sonic.
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Fig. 4-16. Dependence of eff of
diffusers upon the Mach number
M1 at the inlet; k = 1.4.

The outlet subsonic section is shaped on the basis of

conditions described in Chapter 3. In the simplest case this
section can be fulfilled with linear generatrices.

At transonic and small supersonic velocities at the inlet
(M1 < 1.3) the usual expanded subsonic' diffusers are used, In
this case before the expanded part there appears a normal shook
wave, in which the flow passes over to subsonic vplocities. In
the expanded part the compression of subsonic flow is continued.

Losses in such a diffuser can be moderate, since when M1 < 1.3

wave losses in normal shocks are small. The calculation of
diffusers can be realized by the following scheme. Determined
is the pressure ratio which corresponds to the appearance of
critical velocity in the inlet section with the help of the
semiempirical formula

-(4-4),Jot n roo
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where - P 0 2 /P 0 1 .the coefficient of recovery of the stagnation

pressure; p 0 1 , P0 2 - the stagnation pressure before and after

the diffuser; critical pressure ratio; n -

expansion ratio of the diffuser; P 2  desired discharge pressure'

which corresponds to such'a limiting mode.

If the assigned ratio p2 /p 0 1 is less than that value

calculated from formula (4-4), then the diffuser operates with

the shock wave in the expanded part, In this case

on the basis of the theory of variable modes of supersonic

nozzles [25] the position of shock and its intensity are found

and the possibliity of nonsepa3'able flow is checked (see Fig.

4..4-4). With nonseparable flow the energy losses in shocks and the

losses of friction after the shock are determined. Losses in

the convergent section prior to the shock can be disregarded.

In solving the problem of th .,.!raence of separation, one

should consider the possibi'-ty, of a reverse and direct transition

in the boundary layer. 7'pending on the flow conditions in the

boundary layer, the r-,c. can cause separation. With laminar

conditions separatic observed, as a rule, in all cases.

§ 4-5. Variable Modes and Some Results
of the Experimental Study of Super-
sonic Diffusers,

Let us examine some features of the operation of supersonic

diffusers without an inner body under partial load conditions.

The mnJe in the diffuser can be changed as a result of the change

in the flow conditions at the inlet (M1 , l' Pp0 1 ) and, conse-

quently, the gas flow and discharge pressure p2.
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Let us allow first that the flow conditions at the inlet

and the gas flow through the diffuser remain constant, and let

us observe the effect of the changing counterpressure pa Let

us assume that in the initial section the velocity is equal to

the critical, and the pressure of the medium is considerably low-

er than calculated (pa <p 2m). In this case the expanded part of

the diffuser works as a convergent-divergent nozzle. On the shear

of thd outlet part, depending on pa rarefaction waves or oblique

shocks appear. With an increase in P a in the outlet section

there is a bridge-like shock; a further increase in pa leads

to the displacement of the shock inside the expanded part toward

the minimum section. With limiting counterpressure pa = P2m

the shock is looated in the entrance of the diffuser (narrow

section) and the flow in the expanded part is completely subsonic.

Such a mode with a shock in the entrance corresponds to the maxi-

mum compression ratio in the diffuser.

The appropriate graphs of the pressure distribution along

the diffuser without the inner body are given in Fig. 4-17a.

The curve OAC corresponds to the limiting mode of operation

of the diffuser with critical pressure in the minimum section.

Curves CAB, OADE and others correspond to reduced pressures

after the diffuser pa < P2m and curve OiAiL - to the increased

pressure pa > P2m* With this the pressure in the throat section

proves to be higher than the critical pressure.

Let us examine now the effect of changes in the flow con-

ditions at the inlet into diffuser. Let us assume that the

pressure after the diffuser is maintained constant (pa < p 2m)

The dimensionless velocity at the inlet V increases. At

subsonic velocities at the inlet (X'I < 1) in the tapered

part, the flow is accelerated and maximum velocity is reached

in the narrow section F *A. As X' increases the gas flow and

velocity in the narrow section X' increase.
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Fig. 4-17. Pressure distribution in a supersonic diffuser at
varicus modes. a) pa = var; b) .. a = const; X. 1 = var; p1  var.

KEY: (1) Shocks.

At a certain value All < 1 the velocity in the section

F4 is equal to the critical (A's 1). A further increase in flow

rate at invariable static pressure before the diffuser becomes im-

possible. In accordance with this, the velocity gain V' > X

will entail a pressuro increase in the inlet section of the

diffuser and in all other sections of the tapered part; as a

result when V I > 1 a shock appears before the diffuser. With

an increase in X11 the shock approaches the diffuse.- and at a

certain value V 1 is located in the inlet section F1. If the



shock at the inlet is normal, then in the tapered part of the

diffuser the flow is subsonic and is accelerated towards the

minimum section. In order that the normal shock (or system of

shocks) penetrates into the tapered part of the diffuser, a

further velocity gain X'1 is necessary.

Since with the motion of the shock toward the entrance the

power losses are decreased, then in the minimum section the

critical speed can again arise. In certain cases when pa < P2m

with transition into the expanded part, the flow continues to

be accelerated and becomes supersonic. Then in the expanded part

of the diffuser shocks appear. In such modes the diffuser losses

sharply increase'. The examined modes are illustrated by graphs

of the pressure distribution in Fig. 4-17b. With the simultaneous

appearance of shocks in the tapered and expanded parts of the

diffuser, curves of the-pressure distribution acquire a charac-

teristic loop form.

Experimental results allow concluding that the form and

correlations of the flow area of the diffuser have a very great

effect on its effectiveness. The most considerable effect is

in the change in angles of the tapered and expanded parts and

also the length of the entrance. The research of P. Simons and

others [161] allows evaluating of the effect of these angles

for the simplest design of a diffuser without an inner body.

Figure 4-18 gives a pressure distribution along the circuit of

a supersonic wind tunnel, for three angles of the expanded part

of the diffuser, which shows that the greatest recovery of

pressure in the expanded part corresponds to a Z 60.

The effect of the angle of the tapered part should be

examined in connection with the selection of the geometric

'The case in question is shown by dot-and-dash line on the
diagram of Fig. 2-5b.

252



•.I:• " ' •,•'0 11) 0 I/,'d 200 ,JU0 4tUO Jf riO'bd/U 700 C6'/_/,Z u

Fig. 4i-18. Pressure distribution along the
circuit of a supersonic wind tunnel at various

•-• flare angles of the subsonic part of the dif-
fuser (MI = 2.57).
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Sparameter FI/F,• (or F*A/F~c, where Fc- the area of the minimum

section of the nozzle installed before the diffuser). Figure

'•.14- 19a gives dependences of these geometric parameters upon the

M1number before the diffuser. Let us note that the curve for

the diffuser with a smaller angle B of the convergent section,

i.e., with its greater length, lies below the curve obtained

for the short convergent section.

SFigure L4-19b gives values of the limiting angle of the

S~tapered part, which corresponds to the minimally permissible

• ~value FA/F, . It should be noted that for the transonic diffuser

[ (Mi 10), the value f•np~-1 0  i.e., the inlet section must be

made with a small expansion, which compensates for the building up

of the boundary layer. For the short inlet section the limiting
S~angles B (curve 1) should be greater than that for the long

inlet section (curve 2).
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$1 Fig. 4-19. The change in relative minimum areas

of the diffuser, depending on M number (a), and
limiting angles 0 of the tapered part of the super-

sonic diffuser (b).

Results of a comparison of two types of diffusers without

an inner body made with the tapered and expanded (B = -10)

inlet section are of interest. At low supersonic velocities both

diffusers are equivalent (Fig. 4-20). With an increase in M

the advantage of the diffuser with the tapered inlet section

becomes obvious, and when M1 = 2.9 the recovery of stagnation

pressure in this diffuser is 25% more.

An examination of the operating conditions of the supersonic

diffuser during partial load conditions (see Fig. 4-19) shows
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thatc theuer wihu hetprd eto

soi ifsr ihu h aee eto(with small expansion) and with a tapered in-

let part II according to experimental data

(P. Simons's experiments [161] and by calculation.
KEY: (1) theoretical calculation (without losses).

thattheratio of the sections F*,/F1 should be changed with a
change in flow conditions at the inlet or outlet. During the

launching phase the ratio F*/F 1 should be maximum. With starting

any disturbance of the mode can be partially compensated by the

appropriate change in ratio F * " I "

Let us analyze in more detail the variable modes of the
diffuser with minimum section changing during the operation.

If the minimum section is gradually decreased from F* F1 up

to that value for which the velocity M* = 1, then the gas flow

through the diffuser will be maintained constant (G = plc 1F1 ).

However, if the area of the entrance will be decreased further,

then the flow-rate through the diffuser will be lowered. With
"ihis near the narrow section a shock wave will arise since the

narrowed entrance is an additional resistance. Because of the
increase in entropy in the shock, the presscore in minimum cross

section will fall, and the velocity and temperature will be
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maintained constant. As a result of the decrease in density

p,, the flow rate is decreased to an even greater degree, and the

shock will be shifted against the flow. At this the intensity

of jump will increase. The motion of the shock against the flow

will be continued until it falls outside the limits of the

inlet section F1 ; depending on the form of the feed section, the

position of the shock relative to F. can be different. If in

the inlet section after the shock the possibility of the bypass

of part of gas beyond the limits of the diffuser will be provided

for, chen with a further decrease in F*, the shock will move

against the flow toward the Laval nozzle, ensuring the necessary

reduction in flow rate through the diffuser; the intensity of the

shock will be maintained practically constant (Fig. 4-21a).

kk
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Fig. 4-21. Diagram of a diffuser with a
variable minimum section a) and its dis-
charge characteristics b) during various
modes.
KEY: (1) Shocks.
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By examining now the reverse process - the increase in

can be concluded that if F reaches the value during

which, appeared the shock for the first time, then the shock will

hot disappear, since the reduced density in entrance will cause

the partial displacement of the gas mass beyond the limits ofII

the diffuser. Consequently, F, must be increased to such limits

inj order to compensate for the decrease in density in the entrance.

A subsequent increase in F*, leads to a displacement of the shock

inside the diffuser and ptovides a constant maximum flow rate

through the diffuser.

That which has been expounded shows that in a diffuser

with a variable section of entrance hysteresis effects will be

observed. Graphs in Fig. 4-2lb illustrate this. In the diagram

of dependencp of GIG0 upon FA/F 1 (G - flow rate through the

diffuser; GO = POlCF 1 ), it is possible to indicate point A,

which co=..t-sponds to FA Fl(G = GO). With a decrease in

F, ý,he .ow rate is maintained constant up to point B, which

corresponds to M, = 1 in the ehtrance; before the diffuser

there appears a shock, and the flow rate falls down to the value

at point D. A further decrease in F*, gives rise to the change

, in flow rate along line DO.

With'an increase in.F,, the shock before ýhe diffuser is

maintained up to that value oP F which corresponds tG point E.
I*A

The diffuser returns to the origin A along the line ODEA. As

a result the hysteresis loop EBDE~is formed, and In order to

establish the ctate of flow in the diffuser at arbitrary F,*A

it is necessary to know what ihe direction of change in F*A

was.
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It is necessary to emphasize that the modes with shock waves

before the diffuser are characterized by a sudden increase in

resistance. The dimension of the hysteresis loop depends upon

the M1 number, with an increase in which segment BD moves to

the left (Fig. 4-21b). It should be noted that the region

between the curves characterizes the unstable modes of operation

of the diffuser, during which the shock can appear and disappear.

As was indicated, used in practice variable supersonic

diffusers with step braking at the inlet (with an inner body).

When the internal cone has the possibility of axial movements,

it is possible not only to improve the conditions of starting

and operation of a supersonic diffuser but also to provide the

higher eff during calculated and partial load conditions.

Thus, the features of the operation of supersonic diffusers

during variable modes distinctly show that the multimode diffusers

should be made variable. In tube diffusers two methods of the

control of the mode are used: a) a control needle and; b)

flexible walls in the region of the minimum section. Furthermore,

the control of mode can be accomplished by means of the bypass

of the excess in the flow rate through openings in walls of

the subsonic part of diffusers and the bypass of the excess

of gas through the drilled walls of the inlet supersonic section

of the diffuser.

The indicated methods of control are based on the use of

diffusers with variable geometry. It should be noted that the

use of any means of the control of flow through trt diffuser

does not take away the question of the advisability of the

use of blowing of the boundary layer in sections of surfaces

where the emergence of separation or the sudden swelling of layer

are possible.
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Experiments showed [127] that with detached flows near

the throat it is advantageous to make the section of constant

cross section in the zone of critical speed, which facilitates

the stabilization of separation. Experiments confirmed also

that the decrease in the aperture angle of the subsonic (expanded)

part of the diffuser in the initial section and its increase in

the outlet section give a positive result if the aperture angles

do not exceed the permissible limits, This result confirms the

advisability of such a profiling in the region of transonic

velocities, which ensures the lowering in the longitudinal

pressure graaients.

A large series of experiments with uncontrolled supersonic

diffusers is described in [12811. The effect of the compression

ratio and form of the inlet part and the effect of the form of

the inner body on the coefficient of recovery of the stagnation

pressure 0'. Experiments were conducted for single-shock and

multishock inner bodies whereupon the shocks were focused on the

tnlet edge of the conical casing. For every stage of compression

on the inner body the intensity of the shocks was selected less

than limiting in order to eliminate the boundary layer separation

(p/Pl < 1.8). The latter angular turn was selected so that

the M number on the leading edge of the conical casing would

be 0.1 more than the M1 number at wnich detachment of the shock

occurs. The total apei'ture angles of the subsonic diffuser

was 6, 9 and 210. One of the models was made with the bleed

of the layer on the surface of the inner body directly after the

shock reflected from the conical casing.

The shape of the diffuser and experimental results are

presented in Fig. 4-22. In the study of the effect of internal

compression the magnitude of this compression was changed by

'In [A281 results are given of the study of the supersonic

diffuser of a jet engine w4th the so-called "combined compression."

Cited here are some data which are of interest in designing of

tube diffusers.
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Fig. 1i-22. Results of the experimental investigation of
a plane supersonic diffuser with combined compression
[128]. a) Roman numerals correspond to the number of
shocks; b) 1 - optimum bleed; 2 - maximum bleed; 3 - with-
out blecd; 4 - minimum bleed.

appropriate empirical curves in Fig. 4-22a represent the relative
stagnation pressure change Ap0 in the portions of the theoretical

value of the coefficient of recovery aOT' Experiments showed

thet the effect of the use of the internal compression changes

wesicly depending on the system of shocks at the inlet, and the
angle of the undercut of the conical casing and increases with

an increase in F*,/Fl.

The effect of the bleed of the boundary layer was inr..sti-
gated for the three-cascade system at the inlet (Fig. 4-22b).
Experiments showed that with an increase in the quantity of the
air being draiin off by more than 1-3%, the coefficient a0 is

decreased. With the correet selection of the dimensions of the

slot and its position, the bleed allows increasing the effective-
ness of the diffuser, giving an increase in a0 of 2-3%.

The effect of the subsonic section of the diffuser can be
uvaluated also according to curves in Fig. 4-22b. As it appears,
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with the tr~ansition to the large aperture angle (210), a sharp

drop in the coefficient of recovery is noted. The aperture

angles of 6-90, apparently, are close to the optimum, which coin-

cides with the experimental data in Fig. 4-18.

*The experiments in question allow revealing the rational

method of organizing compression on the inner body. Peak values

of a0 at the given MI are given by the four-cascade system and

isentropic wedge.

As the discharge characteristics show, the actual flow rate

for the majority of the models was lower than that calculated.

This is explained by the fact that the angle of the first oblique

shock of the system was more than that calculated and also by the

fact that throat section was insufficient. In this connection

the specific features of the location of the discharge charac-

teristics of supersonic diffusers should be noted (Fig. 4-22b).

At first, with an increase in relative flow rate GIG0 the coeffi-

cient of recovery is weakly changed. With the achievement of

critical velocity in the throat section the actual flow rate is

not changed, and the coefficient of recovery falls (vertical

section of the diffuser performance). The presence of this

section is explained by the additional losses in the system

of shocks being changed over with a change in the parameters of

the undisturbed flow and by an increase in losses in the throat

section of the diffuser.

In diffusers with a control wedge (cone) the change in

velocity M, gives rise to the disturbance of the calculated

system of shocks. Modes MI < Mlp cause an especially sharp

increase in the wave losses, since in this case reflected shocks

are for.aed. A study of two types of diffusers at variable

velocities at the inlet showed that tne noeffinients of losses
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when M1 < Mlp increase more intensely than for diffusers with

an inner body. Minimum losses correspond to conditions close

to the rated.

As was already mentioned, attempts to improve the charac-

teristics of supersonic diffusers should be oriented for the

improvement of the flow near the throat section. Most advisable

is the organization of the bleed of the boundary layer and the use

of vortex generators located on the inner body. The available

experimental data show that in the correct organization of tho

bleed (i.e., with the correct selection of the shape, dimensions

and place of the location of the slot) the bleed gives positive

results and increase. The coefficient of rec(very of the total

pressure [126].

Various methods of organization of bleed before the throat

section of the diffuser at a constant M1 = 2.2 number were

investigated in [152]. Experiments showed (Fig. 4-23) chat the

bleed through slot of the scoop type (variant I) does not give

rise to a noticeable improvement in the diffuser performances,

and the coefficient of recovery of the stagnation pressure proves

to be minimum weakly dependent on the quantity of the air being

drawn off AG. The mean value of the coefficient of recovery

for variant I is equal 00 = 0.835 (computed value co = 0.939).

Considerably better results were achieved w:,en using a stepped

type of slot (variant II). In this case with the flow rate of the

air being drawn off -G_= 2.8% the coefficient of recovery

Go = 0.87 is obtained, whereupon an increase in AG > 2.8% should

give rise to a further increase in ao. The rourded slot (variant

III) gives intermediate values of aO, whereupon i noticeable

reduction in the energy losses, as compared with variant I, is

reached only at large flow rate of the air being drawn off.

A comparison of the three variants clearly confirms the

advantages of the variant with the stepped slot. A shortcoming
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of the scoop type of slot is that it's drag proves to be consider-

able, and a detached curvilinear shock appears bef o;.eit urhr

~ it Furthe...r-

S~more, the slot is made protruding into the flow, which gives

• ~rige to a relativel~y great 'change in the area of the section

in the z~one of transonic speeds, which is most sensitive to the
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geometric effect. It is evident that the rounded slot in

practice possesses the same shortcomings.

The given results explain the comparatively small effect of

the bleed illustrated by graphs in Fig. 4-22. Also used here

was a rounded slot for the bleed.

The organization of the bleed from the side walls (variant

IV) led to an increase in the coefficient of recovery of the

total pressure of approximately 1.5% (Fig. 4-23c). In this case,

according to an approximate estimate through openings in the

side walls up to 8% of the air through the diffuser was drawn

off. It should be noted that scheme of the bleed through a group

of openings is unsuccessful, since the resistance of such a

system proves to be considerable. Substantially the best results

can be obtained by means of making on the side walls of vertical

slots or increasing the dimension of the stepped slot (variant II)

near the side walls.

In summing up, let us note that the effectiveness of the

bleed of the boundary layer before the throat section of the

diffuser depends upon the geometric parameters of the inlet

(supersonic) and outlet (subsonic) sections of the diffuser.

The changes in angles of inclinatJon of surfaces of the wedge

and aperture angle of the subsonic section give rise to the

change in a at the assigned values M and T-G. Qualitatively0 , 1
the effect of thege factors is reflected in Fig. 4-22. The

experiments in question showed that this effect is conditioned

by the change in the Mach number before the closing shock in the
bleed zone. Experiments confirmed also the noticeable effeýýt

of the Reynolds number or ao, With an increase in the Rel
numbers losses in the diffuser were decreased.

Experiments confirmed also the advisability of the use of
vortex generators, which expand the zone of the stable operation
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of diffusers. However, positive results were achieved only at

definite positions of the vortex generators and with the corre-

spondingly correct selection of their construction [127].

It is evident that the methods in question should supplement

the methods for increasing the effectiveness of supersonic dif-

fusers based upon the rational profiling of throat section and

supersonic and subsonic sections adjoining it.

There is considerable interest in results of the study of

supersonic diffusers with drilled walls of the supersonic section

[125, 150]. In [125] results of the study of a diffuser with

a drilled similar part are presented (Fig. 4-24e). The change

in the coefficient of recovery of the stagnation pressure a,

depending on the variable relative inlet area, is shown in Fig.

4-24c. The peak value of the coefficient of recovery a Omax = 0.81

was obtained at ratios of the area of the inlet section to

the area of the throat F 1 /F,* = 1..33 and the area of the drilled

surface to the throat area AFp/F,6 = 4.28. A further increase

in F1/F,* gives rise to a change in a0 according to the law

close to the hyperbolic. With F1 /F, ' 0.6 in the diffuser there

appears an unstable motion (surge), which is characterized by the

fluctuation of the parameters. The actual distribution of ratio

AFnep/IF *along the diffuser is shown in Fig. 4-26b, depending

on the local value of the M number in thý tapered section of the

diffuser.

Returring to Fig. 4-24a, imt us note the physical features

of the gas flow -n a diffuser with drilled walls. When drilling

is not included (diagram I) before the diffuser there appears a

bow shock, whereupon the peripheral part of the incoming flow

within limits of the inlet section will pass into the zone of
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Fig. 4-24. Characteristics of a supersonic diffuser with
a drilled inlet section [125]. a) diagrams if flow in the
diffuser; b) relative area of the drilling depending on
the M number; c) coefficients of recovery of the stagnation
pressure depending on the relative inlet area.
KEY: (1) Stream being passed; (2) Normal shock.

reduced static pressure at the external surface. After the

shock the flow is subsonic and convergent.

With a partially included drilling (diagram II) the normal

shock moves inside the diffuser. Part of the drilling will pass

supersonic flow, and the pressure in direction toward the shock

grows. From the inlet edges in the external flow an oblique shock

is propagated. After a normal shock the pressure increased,

which is decreased along the flow. With an increase in the

outlet section F 2 /F,* the normal shock moves toward the throat

section; in this case the area of the drilling increases and the

quantity of the Jettisonable air increases. niagram III corre-

sponds to the mode of operation of the diffuser which is close

to that calculated. This mode corresponds to the maximum

recovery of coefficient a0 (Fig. 4-24c).
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The examined experiments showed that with the help of

drilling it is possible to obtain high recovery of coefficients

ao; however, in this case the part of gas is lost. There is

special interest, therefore, in a drilled supersonic diffuser

with a variable drilling. After the starting of the diffuser

the openings can be closed, which allows maintaining the total

gas flow rate in design conditions. The calculation of the

drilled diffuser can be produced if the discharge coefficients

through the openings for supersonic and subsonic flows are known.

2
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CHAPTER FIVE

ANNUAL DIFFUSERS WITH LINEAR GENERATRICES

§ 5-1. The Effect of Geometric and
Mode Parameters on the Characteristics
of Annular Diffusers with a
Rectilinear Axis

Circular axisymmetric diffusers with a rectilinear axis are

rather often used as elements of exhaust ducts of turbomachines.

Their designs and basic designations are given in Fig..2-2. Such

diffuser systems formed by two conical surfaces are characterized

by the assignment of the following geometerical dimensions (see

Chapter 2): inlet diameters D1 and dl, outlet diameters D2 and d2,

and length I.

These dimensions are not unique ones which determine the geomet-

ric form of annular diffusers. For this purpose these parameters

(Chapter 2) can be used: D1 , d1 , a,, a 2 , L, where a1 and a2 - angles

of inclination of generatrices of conical surfaces, or Dlcp, 1, al,

a2,• n. Here: Dlcp - the mean diameter of the inlet section; I -

height at the inlet and n - expansion ratio of the diffuser.

Consequently, in the examination of annular diffusers it is

necessary to deal with the fol2owing geometerical dimensions: D1,

dl, Dlcp' D2, d2P al, a 2 , L, 1, and n. Five values from this set

completely determine the geometry of the diffuser.
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True, the selection of the characteristic dimensions cannot be

arbitrary. They should include two parameters connected with internal

and external cones and one general parameter for the entire diffuser.

For example: dl, d 2  ,l' a,, and L or Dlcp, ' , a 2, and n. The

latter combination is, in our opinion, the most successful one.

Having passed to the dimensionless parameters and selected as the

determining dimension DlcP, we obtain a set of four characteristics:

l/Dlcp al, a2 and n, with the help of which it is possible to

express all the remaining values in terms of relations:

+

P

£ -= vl/Dr0,(I/DcJ)

2 2

2 72

2P It DCP1 C
tg a - tY 2

Here and further Dcp = DlcP = D.

Thus, in examining the influence of geometric parameters, we

will discuss the clarification of the role of dimensionless inlet

diameter D/1, angles a1 and a 2 and the expansion ratio of the

diffuser n. For the solution of the stated problem by experimental

means, changing each parameter 4 times, it is necessary to test

1820 variants. Being limitea to three changes, the number of these

variants can be reduced to 220.
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The given numbers give a graphic representation about the

necessary minimum volume of experimental work. In the study of

conical diffusers being determined by two dimensionless quantities

(for instance, L and n), complete test data with fixed mode para-

meters can be obtained as a result of tests of a total of 28 variants.

Today the bibliography on the experimental investigatidn of

annular diffusers is comparatively small [1, 10, 22, 41, 51, 131,

137], but the number of variants investigated in the zone of low

Mach numbers and numbers Re 1 05_106 approaches the numeral 220.

For the clarity of the performed analysis, given in Table A-2

of the appendix are test data of 174 annular diffusers ponducted by

various authors in different organizations. On the basis of this

statistical material, let us conduct an analysis of the effect of

the indicated geometric parameters.

a) Effect of the dimensionless inlet diameter. In examining

annular diffusers from the point of view of their use in the system

of exhaust of turbomachines, it should be noted that the value D/I

characterizes, on one hand, the stage of the turbomachine, and on

the other - determines dimensions of the inlet section of the

-* diffuser connected with the given stage. In other words, the value

D/l is the assigned design parameter determined by dimensions of

4 the stage of the turbomachine. The limits of its changes is

sufficiently wide, but the greatest interest is in the range of

2.5-3.0 to 10. As a whole the effect of D/l on internal losses

proves to be sufficiently complex, but it is possible to expect

that with an increase in this parameter the losses will increase.

Actually the absolute value of losses in the diffuser during non-

seperable flow is proportional to the streamlined surface, and the

available energy at the given velocity is determined by the inlet

section area (mass flow). As a result the coefficient of losses in

a rough approximation proves to be proportional to the relative

length L/D and to the parameter D/4, i.e.,

D L
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The change in value D/I at a constant expansion ratio can be
aecomplished either at a constant relative length or at const-.nt
angles aI1 and a2. In the first case conditions n = const and L =

const give rise' to the necessity for the changing of angles al and Lc
In the second case when n = const' and at const*ant angles the length

S is changed. In accordance with this one should expect a different
dependence of losses upon D/l for the indicated extreme variants.

The experimental investigation of diffusers as a whole confirms
the aforesaid. Thus, Fig..5-1 gives the dependence of total losses

upon value D/1, obtained as a result of a test of 20 annular
diffusers the geometrical characteristics of which are placed in

Tables 5-1 and 5-21.

0,3 i-- IZZ'"Fig. 5-1. Dependence of ýn
-.-.. on D/1 for annular diffusers.

4-n 2;

(Experiments of Moscow Power
. Engineering Institute [MEI]

Table' 5-1. Coinical annular diffusers with a
cylindrical [Q] inner body (dI = d 2 ).

Designations j DI,,..AZ DU.91 j. j lM DAI j d1 ,,.g ' 1d 5 ,:.,z

1/11 1,
/29 5 914 2,5 21 0,43' 21

1/3 . --

12/1 JA
2/2 Lk 49 39 10 3,9 29 0,43 29
2/3 1
2/4 Lý

3/1 Lý
43/21A 49 43 6 7,17 37 0,43 37
3/3 LJ
3/4'1AJ
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Table 5-1 Continued.Designations LID,

d- - ~,73,01317 • .,,
I/3 V0, 4 2,3" ' I,2,2 3, L1 ' ,a ,10

2/2 T , •7, .,8 153 912 3,0r 4,34
2/31, 0,43 I0,0 1,63 254,2 3,96 5,

2/411 84,9 1,75. 2M4,4 4,03 6,00

3/1iLX 56,6 1,15 62,3 I,7'1.3 1,21
3/2 U 0,43 63,3 1,29 117,1 2,55 2,40
3/3 1t 67,1 1,37 148,2 3,04 3,02
3,/, 74,8 1,53 212 4,09 4,33

Table 5-2. Conical annular diffusers with a conical
[H] inner body (d 2 > d 1 ).

Designation D,.p D. mmA 1. .ciu D11 dpmn':d ,,.t

1/1 K "34,7
1/2 4( 49 23, 75 . 12,25 -3 ?-5 0,5 49,5
1/3 K /9,0

2/1 K 2
2/2K 0:9 ,:0,.5 8,15 5 32,7 0,67 56,7

65,4

3/1 K 52
3/2 K 4;9 4"2,5 6,15 7 73,3 0,75 03,8
3/3K '/73,6

Decignation - -/ D:. ,:,. t - ., " n f LID,

1/1 K 0,71 69,3 1,415 1C,33 2 3,,4
1/2K 0,7 84,9 1,73 '..,4 3 6,0
1/3 1K 1,00 93 2,0 401,9 4 8,2

2/1 1K 0,9,1 69,3 1,416 1($3,3 2 3,4
2/2 K 1,16 8t, 9 1,73 2 4I,, 3 6,0

1,3335 C3 2,0 41,9 3,2

3/1 K 1,03 GO,3 1,:15 . IC 3,3 2 3,4
3/2 K 1',.10 1'99 1,73 '2',4 3 6,0
3/33 IU;O 2,0 "1I,9 , 4 3,2

272



If for diffusers with a cylindrical inner generatrix (curves

4, 5 and 6) losses in the region of small and moderate values D/1

increases insignificantly, then when L = const (curves 1, 2 and 3),

it is possible to note an almost linear dependence of the total

loss factor on the dimensionless inlet diameter.

The studies conducted in work [105] for diffusers with large

values D/Z (D/1 > 7) confirm the fact of an increase in losses with

an increase in D/Z, and this increase becomes sufficiently intense

with a cylindrical inner generatrix.

b) Effect of angles a1 and a 2' By examining the effect of

the angles, one should keep in mind that their change with a constant

expansion ratio n leads to a noticeable change in the relative

length, and when f = const the expansion ratio changes. Hence, at

first sight, it is sufficiently simple to predict the dependence of

the toral loss factor upon the indicated angles. Actually, with

an increase, for example, of angle a1 when n = const, it is possible

to expect a reduction in losses due to the decrease in length of

the diffuser, and when • const total losses must drop due to an

increase in the expansion ratio. In a certain range of the change

in angles, such a pattern is observed in actuality. For an example

Fig. 5-2 gives the dependence of losses in annular diffusers upon

angle a, (Fig. 5-2b) with a cylindrical internal generatrix and upon

angle a 2 (Fig. 5-2a) with a cylindrical external generatIrix' and at

a constant value of the expansJnn ratio. In both cases the growth

at angles of up to 100 gave rise to a certain decrease in losses,

and then the coefficient n sharply Increased, whereupon not only

qualitdtive but quantitatively the effect of the angles examined

was almost identical.

'The minus at coordinate a 2 indicates that the top of the

internal cone is located behind the exit section of the ulffL-v-
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Fig. 5-2. Dependence of the total loss factor •

upon angles a2 (a) and a.i (b).
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I"Reproduced from ,
best available copy.

Sometimes instead of angles aI and a2, which characterize the

geometry of the annular diffuser, the. plane angle 3 = a1 - a 2/2
(here angle a2 is taken with its sign) is used. In this case 'the

number of independent geometric parameters is redu2ed,, and the'
experimental data can be presented as a :function of one angle 0.

Such a dependence when n = const (Fig. 5-3) has a minimum whpn

0 = I4-5O, whereupon again an intense increase in losses occurs.

If we examine the effect of angle 0 on 'the total loss factor

at a constant relat~ive length L = const (Fig,. 5~-•), then it is

possible to note that here first a reduction in losses takes place.
True, in this case the minimum of los~ses is reached at large 4•-alues

of angle 0, and the intensity of their increase .when 0 lQ° is

small.

The disturbance of the expected pattern at large angles of

'01

taper is connected with the feature of the flow near the angular

*upoints. A detailed study of this question examined above (see

Chapter 3) showed that near an obtuse angle a sharp increase in th'e

local pressure gradients occurs. Up, to a definite limit the noted
local disturbance of flow does not change the qualitative pattern
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n~0.2
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a) I(b

"Fig. 5.3. Dependence of the coeffIici
plane angle 0 when n =consý. e~~uo h

I 0 -experiments of Gurevich [22]; 0 - experiments of
Dovzhik and Morozov [141J;',A - experiments of ME!;
A experiments of Johnson [1373

II

II

'/7V/ =,fs /Zz4
, . ~Fig. 5 -4. D epen ence of thae angl~cen 6 onuo h

cola efan icwhent n whnL= cons t.

sepaatio ofpowr hemen sul of Gu heich is2] an ieaserimnt losse
when>o100.Ik an cohozoe [41n the -eoefficients of losesith

constant expansimenrtiis exmied Johns n the7 e c, o th

-J I - -

lo s'es. ' " " . . ,
0., -- -- - *• . . .. -- -.- ,- .; ....

Fig. 5-4. E'fect ofyplane angle e on,coefficient'n when L = const.

of flow, and losses with the increase in the angle decrease.
However, at !•rge ang!es (a/2 >. 50) the local positive pressure

gradiente indreyse so substantialleou that they give rise to tse

separation of flow, the result of which is an increase in losses
when c• > 100. If' a change In the coefficient of losses with a

constant expansion ratio is examined, then the effect of the
Ssepax'dtion of .slow is sufficiently great since it gives ri'se to a

4 •haro reductior. in the effective output area and,, consequently, to

an increase in the total energy balance of a portion of the otitput

losses..

At a constant re)1ative length of the diffuser the effect of

the separation of flow, induced by the increa.be in angles, is

compensated by the simultaneous growth in the geometric expansion
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ratio. As a result the minimum of losses with respect to angle 0

on curve in Fig. 5-4 proves to be more slanting.

The given test data give the basis for some practical

recommendations for the choice of angles al and a2 . Thus, keeping

in mind the local disturbances introduced by the angular break, it

is inexpedient to increase angle a1 above 100 and to select less
than angle a2 100. (Let us recall that the minus sign aL angle a2
indicatesthe location of the vertex of internal conical surface

after the outlet section of the diffuser.) Thus, the maximum

magnitude of the plane angle 6 proves to be limited to 100. It

should be noted that the design of the diffuser in question, with

respect to design considerations, is rarely used in turbomachines.

More widespread is the design with a positive angle a2 at the

location of the vertex of the internal conical surface before the
inlet section. In such a circuit the internal angular break is the

zero point and forms the closed separation zone whose extension

increases with an increase in angle a2.

If in this case limitations with respect to angle al indicated

above are adhered to, then the value of the plane angle 0 will be
very small and at the assigned expansion ratio will sharply increase

the linear overall dimensions of the diffuser, and at limited

length L the expansion ratio n will approach unity. In this case

it is frequently necessary to increase angle a1 to 20-250 at angle

a2 equal to 10-150, which corresponds to a plane angle 0 of the
order of 50. Such an increase in angles in the scheme of diffuser

in question at a limited plane angle 0 proves to be permissible,

since the closed separation zone near the internal surface smooths

the local positive pressure gradient in the zone of angle a1 and
IS

the total effect is defined basically by the magnitude of the plane

angle 0. The experimental data plotted in Fig. 5-4 confirm this

fact sufficiently well. At the same time it is necessary to note

that to obtain a high effectiveness of annular diffusers, it is
necessary to pay serious attention to the provision for normal

inlet conditions. For this purpose the transition from the
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cylindrical inlet section to conical surfaces forming the diffuser

is advantageously carriee .,.ut without angular breaks with a smooth

coupling of cylindrical and conical surfaces.

c) Effect of the e P..nsion ratio of the diffuser. Tne

expansion ratio of the ,,.ffuser is the basic geometric parameter

which determines the e ectiveness of the process of the conversion

of kinetic flow energ, into potential pressure engergy. The effect

of this parameter at oonstant relative inlet diameter, just as

for the previous par:qiters, can be examined while maintaining
constant one of two .',qensions: the relative length 1 or plane

angle 6. Then In t.- first case the expansion ratio will be changed

because of angle 0 and in the second - because of length L.

The dependen', -)f total losses upon the expansion ratio in

both cases in que' ý.on is given in Fig. 5-5 and proves to be, as

one would expect, '.ot monotonic. With an increase in the expansion

ratio the coefficient of losses Cn first falls to a certain minimum

value and then begins to increase intensely. At a constant length

of the diffuser the position of the minimum on the examined

dependences is determined by the value of the relative length L.

The less the xo. 2ative length of the diffuser, then at smal er

expansion rat;.io3 this minimum is reached. Thus. f*r instp'.2e, when

T = 0.5, n onr = 1.8; when T = 0.75, nonT = 2.1; when 1 = 1.!)0,

nonT = 2.5, and when • = 8 in the investigated range of the

expansion ratios the minimum of the losses is not detected !t all.

This type of dependence is regular and results from the effect

of angles a1 and a2 examined above. Actually, at a constant l~ngth

the small expansion ratios correspond to small values of plane

angles 0. Under these conditions the disturbances introduced by

angular breaks in the inlet section of the diffuser still do not

substantially change the flow pattern inside the channel, and the

coefficient of losses with the outlet velocity is intensely decreased

with an increase in n, causing such an intense a decrease in value

4n"
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Pi•-Fig. 5.5. Dependence
S, ' 5..,i. of ý n upon the

(U .... . ,•"* "": ... expansion ratio n when
00,

..- -..." "..- = const (a) and 0=
= const (b) (D/1

(a)

0=120

"I ., .2

(b)

However, with an indrease in the expansion ratio'the negative
effect of angles a1 and a2 increases, and the intensity of the
reduction in losses with the outlet velocity BC falls, and at
certain value n the minimum level of losses is reached. Naturally,
the greater the length U, the larger the expansion ratio can be
achieved at equal critical values of angle 0. In accordance with
this, the displacement of the optimum expansion ratios noted in
Fig. 5.5a occurs to the side of larger values with an increase in
length T, and there is an appropriate reduction in the minimum value
-0 coefficient of total losses.

With an increase in the expansioh ratio above optimum value,
inside the diffuser channel the separation of flow occurs, and the

separation is shifted toward the entrance -4th an. increase in the
expansion ratio n (with the increase -in z• a

At a very long length (in the case in qaettion when • = 8.0)
the range of the change in the plane angle 0 for the achievement of
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large expansion ratios becomes small (e < 50), the flow inside the

channel is maintained nonseparable, and at a small level of internal

losses the optimum according to the expansion ratio becomes more

slanting, being displaced into the zone of practically unused

expansion ratios.

The pattern analogous to that examined Is observed in the case

when the expansion ratio changes because of the length L at a

constant angle 0. Here (Fig. 5-5b) when 0 = 10 with an increase in

the expansion ratio at first an intense drop in the coefficient of

total losses 4n occurs, and then when n > 3 its magnitude is not

changed in practice. In other words, in this case the growth in

internal losses with an increase in n (with an increase in length

E) is completely compensated by the reduction in losses with the

outlet velocity.

If angle 0 proves to be large, then with a comparatively small

increase in length L an Intense increase in the expansion ratio

occurs. Under such conditions a local increase in the positive

pressure gradients in the inlet section, together with an increase

in the average diffusivity in the channel, gives rise to the

separation of flow in the region of small values n. In accordance

with this, on curves 4n there appears a clearly marked minimum,

determined by angle 0 and value n.

d) Effect of relative length L. The relative length does not

enter into the number of basic geometric parameters selected above

for the characteristic of annular diffusers, and, consequently, its

effect• ,an be estimated on the basis of the given experimental deta.

Actually to the role of this parameter was already indicated during

the analysis of the dependence of losses both upon D/l and the

expansion ratio n.

Considering, however, that the relative length is rather often

assigned according to purely design considerations let us construct

the dependence of total losses upon L at constant plane angles 0
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(Fig. 5-6a) and expansion ratios n (Fig. 5-6b).

§i 2g %1 Fig. 5-6. Dependence of
- •_ -nC upon dimensionless

O.. 2_ Oi* . .. length L when e = const (a)
-- " , -L. . and n = const (b) (D/1 =....................... ..../..::

(a)

A 4

4I_
fl-', .- Q-

(b)

The first dependence is obtained by means of the replotting of Fig.
5.5a, and the second results from Fig. 5-5b.

When 0 = const with an increase in L a change in the expansion

ratio occurs. It is natural that when separation does not exist,
(0 = 10) the increase in length T leads here to the drop in losses
due to the reduction in delivery speed. When the emergence of
separation (0 > 100) on the curves in question the points of the
minimum of losses, which correspond to critical values of the

length 1 (critical expansion ratios) are well visible. The
larger the angle 0, the smaller the value L and higher the level
of losses at minimum point.

By examining the change in losses depending on length T at a
constant expansion ratio n, we obtain their monotonic reduction with
an increase in 1 (Fig. 5-6b), induced by a simultaneous decrease
in losses when T > 1 noticeably drops and depends upon the expansion
ratio n. The larger n is then to a greater extent the effect of the
relative length E is apparent. However, in all cases beginning
with ? > 2, the effect of this parameter becomes unimportant.
Hence there follows the important practical conclusion about the
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possibility of the building of highly economical annular diffusers

with a constructively acceptable length 1.

e) Effect of mode parameters. The majority of the experimental

data gathered in the appendix refers to incompressible fluids and

encompasses a narrow range according to the Reynolds number.

Actually there is no systematic data on the effect of Mach and

Reynolds numbers on the efficiency of annular diffusers. The position

is complicated still by the fact that the effect of these parameters

cannot be examined separatel! without the connection with the

geometerical dimensions, which can considerably affect the flow

pattern inside the diffuser.

However, the present experimental data show that from the

qualitative side tne role of the mode parameters proves to be the

same as that for the conical diffusers examined earlier (see

Chapter 3). For an example, Fig. 5-7 gives results of experimental

research on diffusers placed in Tables 5-1 and 5-2 at numbers

X = 0.3-1.0. Here in all cases at subsonic velocities the flow

remained nonseperable, and the reduction of losses was recorded

everywhere with an increase in the dimensionless velocity X1l The

magnitude of this reduction, just as earlier [see formula (2-29)],

is determined basically by the density change between the inlet and

outlet sections of the diffuser and can be taken into account with

the help of the following expression:

Inn
where rn - total losses in the flow of compressible fluid;

nCn H - total losses in the flow of incompressible fluid;

p and P2 - densities at inlet and outlet of the diffuser;

m =1-2.
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The validity of formula (5-2) results from the theoretical

solutions (see Chapters 2 and 3) and for noriseoarable flows is
confirmed experimentally. In the case in question good agreement

with the experimental data is observed when m = 1.6.

Let us note that the curves in Fig. 5-7 were obtained diring

the investigation of diffusers in air in an open circuit, i.e.,

here simultaneously with a change in the Mach number a change in

Lhe Reynolds number occurred. Ho'-ver, the change in the latter in
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I
the zone of high velocities was small, and at the relacive klociiy

X, 0.8 simulation only according to the number M, (X,) was

accompli~shed in practice.

For nondetached annular diffusers •the velocity increase in the

inlet section at a constant counter pressure gave rise to a

'disproportionate increase in the Reynolds number, since ýirmulta-.

Al neously with an increase in velocity in the inlet section the

density was intensely lowered, and at transonic velocit:ces the

magnitude 6f'the specific mass flow rate incoming into lAie ReI

,number is changed insignificantly.

The connection idi question, constructed on the basis of direct

measurements in the inlet section of the diffusers, is given in

Fig. 5-8. If. in the zone of-low velocities the dependence Re1
= f (X 1 )is almos• lihear, then in the transonic zone the change in

velocity of 40% gives rise to an increase in the Re1 number of a

total of 10-15%.

- .Fig. 5.8. Dependence of the
1.' •. ReI numoer upon velocity Xi

_A ̂ .7.41, Uo at the inlet into the

, . ..- - d i f f u s e r .
ao--./13 V-1/2"; O-1i137 (see

-- 3/21C; 0-3J 3;2K. Table41f
; 5-2

The noted fact is important during the study of transonic flows

because it allows distinguishing the effect of the Mach number
almost in pure form of open experimental contours.
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§ 5-2. Calculation of Annular Diffusers
in an Equivalent Angle

The analytical calculation of diffusers, especially annular,

is based basically on semiempirical relations. For practical

purposes the method of calculation in equivalent angles is most

frequently used. The essence of the method is that the arbitrary

diffuser channel is placed into conformity to a certain conical

diffuser, and ror this equivalent diffuser on the basis of

experimental data the magnitude of the coefficient of losses is

calculated or estimated.

The use of such a method of calculation is very tempting

because it allows reducing the problems to a simpler one. As a

result the accuracy of the final result depends upon the accuracy

of determining losses in the conical diffuser. The calculation of

energy characteristics of the latter (see Chapter 2) is based on

the elementary relation

r -"F/ (5-3)

where • - the coefficient of internal losses, and CA - the experi-

mental coefficient whose magnitude according to [54] is determined

only by the flare angle of the diffuser a. The limits of

changes 0 , as was noted above, are quite wide and vary from 0.1 to

1.1. For any diffuser it is possible to match the experimental data

with the formuula (5-3) by means of the appropriate selection of the

equivalent angle a.. The magnitude of this angle must, apparently,

depend .pon a number of parameters which define both the geometry

of the channel and the flow conditions in it.

Actually, for annular diffusers the coefficient of internal

*- losses on the basis of experimental data given above thould be

expressed by the following relation:

f(z; D1I; t; a; Re). (5-4)
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By comparing formulas (5-3) and (5-4), we arrive at the

conclusion that the coefficient A should be determined by taking

into account all the given parameters, i.e., it is possible to

record

and
I• = (n; D11; al; C,a; M,; Re). (5-5)

In such a form the problem still remains sufficiently complex,

since the magnitude of the equivalent angle aa is determined by

six variables, the connection between which is unknown. in striving

to redace the number of variables, the effect of the mode parameters

is usually disregarded and angle aa only according to geometric

parameters is estimated. For low velocities (M1 < 0.3) and large

Re. numbers (Re1 > 106), such a simplification is admissible, and

the connection between the remaining variables depends upon how the

equivalent diffuser is determined.

Most frequently as the equivalent diffuser the conical

diffuser is assumed as having the same length L, the expansion ratio

n and the inlet area F1 as does the diffuser channel in question.

In this case the equivalent angle a is determined by the relation

S.(5-6)

For annular diffusers F1 = 7Dl and

* -- 2 nreCifn W( 'n )5-7)

Formula (5-7) links the equivalent angle with the geometric

parameters of the annular diffuser and allows defining according

to Fig. 2-12 the value of the coefficient A
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Fig. 5-9. Comparison
j 'z~calculated [see formula
- I _(5-3)] and the experimental

values of coefficient n

• ~In analyzing the change in angle %3, it is possible to note

S~that with an increase in length L the magnitude of the equivalent

S~angle is decreased, and an increase in the expansion ratio gives
Srise to an increase in a*Since tt• higher values of angle a

•- ~correspond to higher coefficients *• arid, consequently, larger

=.. values of coefficients of losses, fo•.mula (5-7) qualitatively agrees
S~ with the test data. However, in a quantitative respect such an

Sagreement does not always prove to be sufficient. lior an example
• in Table A-2 of the appendix values of equtvalent angles are

• calculated, calculati-'n data are given on all the gathered

S~diffusers, and Fig. 5-9 gives their comparison with experimental
-• data on 155 diffusers.

~On the average the experimental points are grouped around the

• bisector of the right angle; however, their s~.read proves to be
•• inadmissibly large, whereupon this spread (±20%) takes place not

• only in the zone of large absolute values of losses, where the
Sflow bears a separation character, but it remains important even

• for nondetached diffusers. Thus, at the same csIculated losses

-•-÷•equal to 0.25, the experimentally determined losses are changed
' from 0.15 to 0.30. Such an error, naturally, is great even for a

S~rough approximation. The limited possibilities of the calculation

-• of diffusers in eqalvalent angles are indicated in [10].

28n

0



Nevertheless, in striving to use an apparent simplicity of the

method, and by attempting as far as possible to take into account

fully the law of the change in the geometric characteristics of

diffusers, the authors of work [34, 1141] introduce the concept of

the local equivalent angle, defining it by relation

(IdF~aq = 2 arctg V )1 (5-8)

where n - wetted perimeter, and F - area in the given section
at distance x from the inlet.

For annular diffusers the use of formula (5-8) gives

Here

x0, Yo - coordinates of the intersection of the generatrices of the

diffuser I"49. 5-10).

In such a definition it is possible to indicate only two types

of annular diffusers with a constant equivalent angle:

1. Diffuser with a cylindrical axial surface, when a1 = -a

2. Diffuser f£r which yo = 0.

In the f!..st case a. = 2a, and in the second a. = 2 arc tg 2

tg e.

In all the o'•.'er cases the calculation on the basis of formula

(5-3), taking into accouk.' relation (5-9), requires numerical or

graphical integration, which increases computational difficulties

and impeded the theoretical analysis.
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Fig. 5-10. Determination of alocal equivalent-angle.

"-4

I 1
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Furthermore, the accuracy of calculations with the introduction
of local angles proves also to be low, and in certain cases in

principle it is impossible to expect correct res'ilts.

For example, it is possible to indicate the calculation of
equiangular diffusers. In this particular case the magnitude of
the equivalent angle will depend o-ly upon the,correlation of'

angles a1 and a2 " All the remaining geometric parameters w.1ll not'
enter into the examination. Hence in the comparison of two equal
angular diffusers having identicai angles al, and a21 but different

relative lengths E or different relative diameters D/l,, we obtain
equal calculated coefficients of lbsses. At the same time the

experimental data indicate the di3tinctidn in losses,with the
change in length L or dianeter D.

Using the method of equivalent angles, it is possible,
apparently, for a definite group of diffuserb, by the appropriate
selection of angle a., to attain the agreement of experimental and
experimental data. However, with entire simplicity the meth"
possesses a fundamental shortcoming, which consists in the fact
that the consideration of the effect of geometric factors during
any celection of the equivalent angle has to a considerable degree

a formal character and does not consider the features of flow in
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the diffuser channel.

For the indicated reason the method of. calculation of the

diffuser on the basis of the boundary layer theory is more promising

although less widespread.

§ 5.3. Calculation of Losses in Annular
Diffusers on the Basis of Characteristics
of tie Boundary Layer,

I

The fundamental:relations for determihing the total and internal

losses werelderived in Chapter 2.'

Design equations (ý-29) and (2-34) show that the problem in

question is reduced finally to defin.tion of the area of the energy

losse's E***2 and the area of displacement P'2 in the exit section

of the diffuser. The basis for the definiti6n of the indicated

values can be equation (3-9) oi- (2-54).

Since an almost complete agreement of results of the calculation

in formulas (3-9) and (2-54) with comparatively small'expansion

ratios (n < 3) was shown'above, the selection of the basic design

equations iS determinedonly by thý simrlicity of the calculation.

In this sense relation (2.54) is more convenient. However, the use

of formulas based upoh the integral equation of Kdrmn.(l-l), is

more usAal, and when using electronic computers computational

difficulties no loqger have a, decisive importance. Because of this

the calculated nomograms. given in 'the appendix are obtained as a

result of the use of equation (3-9). This relation converted for

annular diffusers with a rectilinear axis, has a sufficiently complex

structure:
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[ 2 ....- 3 (1 -) . . -

(12 +- -(D 2 1)'c1 [1- -(p- 0~2 3 ~

11
•, ~Here all the geometerical dimensions are referred to diameter D

(see Fig. 2-2), and parameters B and H are equal, respectively:

301 - - L) O ; (5-11)

H I,4[ - -L. (5-12)

These relations, obtained when using equations (2-54), take

the form

A'* = Bn 0 2.' (1 -- *,)30 () MaT,)+ (,7,),.,v

SI

* ii(( ,) -do). + (D, I d- • J:)] (I '

where

-- 00�.�3�( O' D2 0  (5-14)

PICO2 ii/ 1

The comparison of formulas (5-10) and (5-13) gives rise to

conclusion that as compared with conical diffusers the number of

parameters which determine the area of displacement was sharply

increased. At the same time for a specific diffuser these relations

are considerably simplified, and value P 2 z 0*2 can be found with

the method of successive approximations.

290



To reduce the volume o1 computational work, in the appendix

(see Fig. A-3) nomograms are given for the calculation of the area

of displacement ZA2 (6*2) in annular diffusers with linear genera-

trices at different values of the geometric parameters. The given

nomograms encompass essentially all the annular diffusers the most

used in turbomachines and reduce the entire calculation to simple

arithmetical operations. Actually for the assigned diffuser it

sufficient to determine the relative dimensions D2, dl, and d2 and

calculate, according to formulas (5-11) and (5-12), parameter B

in order from the appropriate curve of the appendix to find

A 2 (6* 2) and, consequently, the total loss factor ;n" Such

calculations for nondetached diffusers in (Table A-2 of the

appendix) showed satisfactory accuracy. The appropriate comparison

which was shown in Fig. 5-11 confirms that the absolute error does

not exceed 5-8%, and the relative error lies within limits of 15%.

400

/0

0,4- 0
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Fig. 5-11 Coprio aluaed[e

formula (5-10)] and experimental values
of coefficient n".
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524. Calculation of Annular

Diffusers in Experimental
Nomograms

The examined analytical method of the calculation of annular

diffusers allows estimating their energy characteristics with
definite accuracy. In certain cases the accuracy of such estimates
can be raised, and the labor input of the calculations is decreased

by means of the direct use of experimental data. With the
appropriate selection of variables these experimental data can be
assumed as the basis for the construction of simple calculated

nomograms. For annular diffusers such a nomogram is given in Fig.

5-12. Given in its upper part is the experimental dependence of the
total loss factor upon the equivalent angle a3 at a constant

relative length E, constructed on the basis experimental data of
various authors [1, 22, 41, 103] for D/Z = 5.4.

Attention is given to the fact that all 85 experimental points

in the selected coordinate system obey the definite regularity

noted above in the examination of the effect of geometric parameters.
Thus, at a constant length 1 the increase in angle a3 leads first
to a drop in losses, and then they reach a minimum value and further

comparatively slowly increase.

With an increase in length when a < 200 the coefficient of
losses is lowered, and the optimum magnitude of angle' a develops

a tendency toward a decrease.

The noted regularity is explained by the fact that at constant
length L and invariable diameter D the increase in the equivalent
angle is accompanied by an increase in the expansion ratio.

'By optimum angle a. we understand as the angle at which the
minimum of losses is attained.
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Fig. 5-12. E~xperimental nomogram for the
calculation of annular diffusers with a
rectilinear axis (D/Z = 5.4).

At narrow angles a an increase in the expansion ratio n is

accompanied by an intense drop in losses with the outlet velocity

and small increase in internal losses. However, with the transition

to large angles a (a > 200) the nature of the flow in the diffuser

is changed. Here the intensity of the increase in internal losses,

induced by the appearance of separation zones, exceeds the positive

effect of the increasing expansion ratio, and the total losses

increase. With an increase in length this process is begun at
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smaller equivalent angles, since in this case the magnitude of

internal losses increases, and the large expansionratios are reached

at comparatively narrow angles a 3 . In accordance with what has

been said, the right branches of the curves in question are built

up more steeply with an increase in length.

For the practical use of a nomogram, given in its lower part

is the relation between basic geometric parameters of the diffusers.

* Taking into account this addition, it proves to be possible with

maximum simplicity to estimate losses in the annular diffuser of

I assigned geometry or, having been assigned the level of losses,

to find the geometric parameters of the diffuser. In the first

case the problem has a unique solution, and in the second diverse

variants are possible.

For instance, it is required to find the total loss factor for
the diffuser with the relative length L = 1 and expansion ratio

n = 2.3. Using the lower part of the nomogram, on the axis of the

ordinaLes we find poirt A, which corresponds to n = 2.3. Moving

from it in parallel to the axis of abscissae up to the intersection

with the curve L = 1, we find the magnitude of the equivalent angle

(aa = 210 15'), and in the upper part of the noinogram we obtain the

total loss factor, n = 0.30 (point D).

Somewhat more complex proves to be the solution to the problem
of the planning of a new diffuser according to the tolerance level

of losses. Let us assume that it is required to determine the

geometric parameters of the diffuser, the level of losses in which

should not exceed n < 0.5. In this case, by using the upper part

of the nomogram, let us move from point a, which corresponds to

the assigned losses, in parallel to the axis of the abscissae up

to the intersect.ton with the experimental curves at points bl, b 2 ,

b3 and b4, obtaining four solutions equivalent in losses. The

practical selection of the diffuser is determined further, on the

strength of additional conditions.
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For turbomachines the requirement of dimensionality is

important. Then in the case in question one should discuss the

third variant, which determines a diffuser with the following

parameters: n = 1.5; • = 0.5; a = 180. I

The obtained results, naturally, should be corrected to the
assigned relative diameter of the inlet, which can be made with

the help of curves in Fig. 5-1. I
§ 5-5. Effect of Structural Elements
and Shape of the Channel on the
Efficiency of Annular Diffusers

The examined characteristics of annular diffusers were obtained

with a uniform inlet velocity field and free annular channe'. not

blocked by the structural elements, the most important of which are

fins.

If the influence of the inlet nonuniformity in annular

diffusers to a certain extent has been examined in [137] and has

been touched upon in Chapter 2, then the data which allow estimating

the effect of fins are extremely small.

In this connection the investigations conducted at MEI with a

series of annular diffusers, the meridian sections of which are

given in Fig. 5-13 and geometric pai'ameters are reduced in Table

5-3 are of definite interest.

It is evident that with identical shape of the blading

diffusers Nos. 1 and 4 differed in practice only by the ratio D/1.

Diffusers Nos. 2 and 3 had a cylindrical internal bushing, identical

inlet and outlet dimensions, but different configuration of the

channel in meridian of plane. If diffuser No. 2 .had a conical

external generatrix, then the external generatrix of diffuser No. 3

was made curvilinear, as a result of which a sharp increase is

noted in the area of the sections at the inlet section.
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Fig. 5-13. Meridian sections of annular diffusers
tested at MEI.

Table 5-3.i
oD;..., . m it . am, . Am

Diffusers e ..

1 67 56 11 5,1! 45 , 0,67 , 27
S2 67 56 1 1 5, 1 45 0,67 45

3 67 .5G 11 5, l 45 0,67 ' 45Fig4 65 M 3e 5 i i,5 2,9 of22 0a49 4

Table 5-3 Continued

NumberD., M )1M

of d,; Ds. •= Dt ,
Diffusers _

1 067 5 1.27 65 0,97 2764
2 0,67 162 1,52 45 0,97. 3,5
3 0.67 102 1 ,52 65 0,97 3,5
4 0.09 63 1,40 65 1,449 2,57

Furthermore, all the diffusers were divided by longitudinal

fins into six insulated sectors and were tested both w-11h• inlet

fairinets and without them.
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In this caselthe improvement in conditions of the inlet by
means of the installation of fairings did not affect in practice

the total loss factor (Fig. 5-14). This result is the consequence
of the fact that in the insulated sectors the flow pattern is
determined not by conditions of feed but by those disturbances
whichtare introduced by the fins. The. installation of the latter
n9t only blocks the inlet section, but it leads also to the emergence
of stable s~paration zones fn the channel. Indirectly the separation
flow pattern is indicated by the level of the coefficient of losses

and the absence of its dependence upon th: Reynolds number. This
conclusion is confirmed by direct measurements of the velocity field
in the outlet pections.

SAs a whole, as one would expect, the best in efficiency proved
to be diff4sers No.' I and No; 4 (Fig. 5-14a and d) (n = 0.50-0.55).

• •n

05 V

051 O-"J +•.... ib)

.s :::--. i .'°.~ --. I.... °C- . .[
-. . ..... ... . . * . ....

. 10

Fig. 5-14. Dependence of coefficient

upon Reynolds number, a) diffuser No. 1;
b) diffuser No. 2; c) diffuser No. 3; d)

'diffuser No. 1 4; 0- experiments without fairing;
A- experiments with fairing;f- experiments
with smooth inlet.

EI

The transition to large equivalent angles and, respectively,
with equal length L to the large expansion ratios n did not give
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Table 5-4.

""ot* unit Roesult
Name Nt of of

tion Ieasure-J Design Equations the cal-
, I ent culation

External diameter A- . 0,293
at the inler
iTitenal direter da 0,•02ath9e nine

Eitnealufteateter Ds 0.332

I~ttpalfteateter d02.%
al •;e ou0l•

Length L-a 0111
D2-d22 2

Expansion ratio n D2 -d 2  19

I I

Mean diameter at ID= (Ds + dg) P'0,247
the inlet 2- D 5  .4

Height of threat I--.(D--dj) 10,1055 1

Relative diameter 5D43
of the stage

Nlative intenal td1 = d1/Da 0.G9
Pam,•einpult veat T,

eer a IhD
ou -ef

Relative in'e•onal - d_ 0.85
di~eeer at, 71. -08ou ~e D

Relative ly ength. L= D& 0,38

SI]

'~quvalent flare a1 deg Ct NI.Ct" I* *d' ,) (5V0

R•nlcity C / Calculated from parameters 178
nat the inlet

1 ust at oo
oulet S _k The same

thelaS o tdeneity at • at~Calculated from parameters 0.0715
the outlet -4m a heote

Estimated according to para- 6,05.10"6
e gas m2/s meters at the inlet

Reyr.n1ds number Re, Re, -:-- 8,63310-8

Shape parameter r Vj•.-- J
of ~ne boundary 1 I4 I+ - - 1 1.=0.
layer H (.4
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T a l 5 - 4 C o n t i n u e d Jn vR s l

STable 51
" p :;i,•Result
•Iota- of

13t- O the cal-
flame tion hea5~V4 Design Equations culation

___ _...... Imen, . u. at.ion

Complex parameter a "I t No's 0, iT

Arbitrary relative ci~ ~~c
Areab of ir - "a e ' Calc, -ed from (5-10) or 0,025
p acemen. graphs -: the appendix

Coefficient of C y4~J r i
internal losses " Ji"Z li- -f i..- 0,0266

Total loss factor 0,53
Coeff"ient of -- ound on Fig. 2-12 (5 0.4

the "completenessi

Coefficient of w ( -\- 0.112
internal losses

Total loss factor C" I C+ 0,63

Total loss factor ilt On the nomogram of Fig. 5-12 0,52

positive result. The total loss factor for diffusers Nos. 2 and

3 was raised to 0.60-0.70. This increase is connected in the first

place with the appearance in the channel of sharp angular breaks

(see points A and B in Fig. 5-13). The smooth coupling of the

~i generatrice,? at points A and B by radius rI = 10 mm reduced the

Slosses by 5-7% for diffuser No. 2 and 10-15% for diffuser No. 3.

: i The obtained results again confirm the conclusion made in Chapter 3

about the role of angular points and indicate the necessity for

imooth couplings in the diffuser inlet.

§ 5-6. Example of the Calculation of an

Annular Diffuser'

Given below is the calculation of an annular diffuser made by

three methods: according to boundary layer characteristics, the

equivalent angle of expansion, and experimental data.

'Calculations were carried out by enjeer L. 'A. Dyskin.
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Results of the calculation give good agreement of the total

loss factors calculated in the boundary layer characteristics with

the experimental data. The difference between the indicated co-

efficients comprises here a total of 1%, which indicates the

sufficiently great accuracy of the theoretical method of the

calculation of losses in diffusers based upon boundary layer

characteristics.

The distinction between the total loss factors calculated in

the equivalent angle of expansion a and the experimental data

comprises 11% in the given example.

The geometric mode parameters and results of the calculation

of the diffuser are given in a Table. A diagram of the diffuser is

shown in Fig. 2-2.
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CHAPTER SIX

CURVILINEAR DIFFUSERS. FLOW PATTERN
IN CURVILINEAR CHANNELS

§ 6-1. Secondary Flows in Curvilinear
Channels

As is known [15, 17, 19), with flow in curvilinear channels

secondary flows appear. Let us examine the mechanism of secondary

flows for a channel of the parallel section in which the flow

accomplishes a turn of 900 (Fig. 6-1a). Let us assume first that

the velocities of motion in the channel are low as compared with

the speed of souna, so that the compressibility effect can be

disregarded. In connection with the fact that particles of gas

move along curved paths, the pressures on the external (concave)

and internal (convex) walls of the channel prove to be different

and change differently in the direction of the motion. Since

particles of the flow core under the action of centri.fugal forces

are forced back toward the external wall, then the pressure along

AB increases as compared with the pressure of the influx p and is

decreased along AIB1 . After a turn the pressure on the concave

wall is lowered, and on the internal wall it is increased; at a

significant distance after the turn the pressures are equalized.

Thus, in sections of the curvilinear channel a nonuniform

distribution of velocities and pressures is established; here

transverse pressure gradients appear. The particles of fluid which
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move in the boundary layer along flat walls are under the effect

of a pressure differential and, by possessing low speed in ,the

direction of the basic motion overflow to the internal wall,!

undergoing greater deflection than particles far from the walls.

According to the condition of continuity in the flow core, com-

pensating flows directed toward the external wall should appear.

As a result in the channel secondary vortex motion, which is

superimposed on the main flow, is formed. Lines of flow of the

secondary flow are closed in the cross section of the channel (Fig.

6-1b).

424!•.Ph 17,, "'P0

* V

a).b ...,

Fig. 6-1. Diagram of flow In curvilinear
channels with a different shape of the
profile.
KEY: (1) Convex wall.
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The secondary flow consists of two flows which near the flat

walls are directed toward the convex surface of the channel and, in

center - toward the concave surface. Consequently, the,!secondary

flow 1as a symmetrical-helical behavior. The lin6s of flow of the

secondary flow on the flat walls are shown by a dashed line in

Fig. 6-1Ja.

Along the 'section of the cbncave wall AB and section of the,

convex wall BIDI the flow is: divergent, and depending on the shape

of the curvilinear, channel separations can appear here. Separation

on the concave wall AB can be localized by the subsequent conver-

gent flow-in section BD. Separation in section B1 D1 has a~more

significant extension along the flow.

Thi structure of the secondary flowin the curvilinear channel

Iand the additional energy losses being caused by it considerably

depend upon the geometric shape of the channel and flow regime

(Re'and M numbei's). Experiments show that the structure of

secondary flows is changed with a change in the shape of the section

of the channel (Fig. 6-1b). The greatest distinctions from the

diagram examined above are revealed in channels w.th ,a rectangular

shape of the section (I- >> a and Z << a). In the case Z >> a the

secondary flow of gas over the concave and convex walls is difficult,

since the particles should ac-omplish the long path and overcome

frictional reeistance. Such an overflowing proves to be possible

-.r'y in the bolindary layer along the flat walls; it is begun on

th concave surface (near the flat walls) and is continued on the

flat walls in the direction toward the convex surface, where the'

boundary layer, whichparticipates in the peripheral motion, merges
with' the boundary layer of the main flow and swilis intensely. At

the same time, aswas already indicated, because of the motion in

the boundary layer from the concave surface to the convex in th.

flow core of flat walls the compensating flcws directed toward tue

concave wall are formed. These flows together with the boundary

layer, which moves along the flat walls in the opposite direction,
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formthe closed eddy regions which encompass not the whole section

of the ilow but only its part near the convex surface and flat

walls. In the rectangular channel in question the secondary flow

degenerates into a pair of vortices, which are rotated in the

opposite directions.

In channels with 1 << a the secondary flow is difficult by

the friction on flat walls, the effect of which is seen in the

flow core, which gives rise to the extinguishing of the compensating

flows from the convex to concave surface. As a result in such

channels the secondary motion degenerates into small vortices,

which are concentrated near the corners of channel.

The important features of the flow pattern are reached in

annular curvilinear channels. Actually by comparing the dis-

tribution of losses in the exit section of annular curvilinear

channels at ratios dl/d 2 = 0, 0.19, 0.31, and 0.6 (Fig. 6-2), it
is possible to note the qualitative change in the structure in the

transition from the cylindrical curvilinear channel (dl/d 2 = 0) to
the annuiar. In the first case the zone of sharply increased

losses is located in the lower part of the flow near the convex

wall and reflects the effect of the separation, which is formed

in the diffuser region. In annular channels there are several. zones

of increased losses symmetrically located along the circumference.

The number of these zones does not depend within certain limits on

the relation of the internal and external diameters of the channel,

but the level of losses in them is basically defined by d1 /d 2 .

With an increase in parameter d1 /d 2 losses at all points of the

section substantially increase, especially intensely in the

nucleus of regions of increased losses. This result is confirmed

also by measurements of total channel losses with various dl/d2

(Fig. 6-3a). Thus, in the transition from dl/d 2 = 0 to dl/1d2 = 0.6
the coefficient of losses increases almost twice. Curves in Fig.

6-3a show that with an increase in M2 number in all channels the

losses are reduced.
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I
The physical flow pattern in the annular curvilinear channel

is illustrated by graphs of the distribution of relative velocities

over, contours of the channel (Fig. 6-3b). Here it is clearly

evident that the differences in the velocities between the concave

and convex walls of the channel and also the values of velocities

at various points of the contour are substantially changed de-

pending on dI/d 2 . With an increase in d 1 /d 2 the indicated

difference in the velocities is lowered; the relative velocities

at all points of the contour with the exception of the outlet

section are decreased somewhat.

The given experimental data show that in the curvilinear

annular channel the secondary flows have a different structure.

The systems of two vortices disintegrate; in such a channel, de-

pending on the ratio d 1 /d 2 , six vortex regions, evenly arranged

over the circumference are formed. In the secondary flows a

boundary layer participates both on the external and internal con-

tours. Under the effect of the t-insverse pressure gradient there

occurs a runoff of the layer at several points of the internal

surface and its entrainment into the zones of compensating flows.

An increase in losses in the annular curvilinear channels is ex-

plained also by an increase in the rubbing surface in the boundary

layer on the internal contour. One should consider that the motion

of the layer occurs on the helixes of flow, which increases the

actual rubbing surface.

It is necessary to keep in mind that because of the intense

accumulation of the layer on the convex surface of the external

contour and internal surface of the insert, the separation, de-

tectable after the turn, proves to be considerably more developed

than that in the case of a common curvilinear channel.
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* . d1/d2; b) velocity distribution over the contour of

01 the channel.
SKEY: (1) Numbers of measuring points.
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§ 6-2. Effect of the Basic Geometric
and Mode Parameters on the Effectiveness
of Plane Curvilinear Diffusers

Let us examine the basic characteristics of plane curvilinear

diffusers according to data of experimental investigations. The

formation of the secondary flow in curvilinear diffusers (channels)

is due to part of the kinetic flow energy being expended. The

energy losses, conditioned by the curvature of the channel, can be

considered as a sum of: a) additional frictional losses as a result

of the secondary motion; b) vortex losses in the zones of separation;

c) losses induced by vortex compensating flows. The greatest part

of the losses comprise the vortex loises as a result of separation.

Figure 6-4 gives data of H. Nipprt which characterize the

effect of certain geometric characteris.tics of the channel on the

coefficient of losses. Here the coefficient ý is defined as the

difference in total energies at the inlet and outlet referred to

the velocity head at the inlet into the channel. As can be seen

from Fig. 6-4, C considerably depends upon the internal rI and

external r 2 of radii of curvatuire, basically upon the expansion

ratio of the channel defined by the ratio n = a 2 /a 1 (if n < 1,

then the channel is convergent; if n > 1, then the channel is

divergent). At the assigned n the change in r1 or r 2 gives rise

to a change in the ratio a = a /a, and, consequently, the areaof thein M
section along the axis of the flow. The points of the minimum of
curves C correspond to different r r 2 /a 1 depending on r1 = rl/a

Cuve_ 2= 11
The optimum values of r are somewhat less than r2. At the given

r1 an increase in r2 > F2onT gives rise to an especially sharp
increase in losses. In this case the curvilinear channel acquires

a converging-diverging shape; the rate of flow on the turn and

losses increase.

The curves in Fig. 6-41 also reflect the effect of the basic

parameter n. In the diffuser channels (n - 1) the losses Fre sub-

stantially higher than those in channels of constant section
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(n = 1) and convergent channels (n < 1). In the whole range of

values r 1 and r2 the envelope 4 (r2, rF1 ) lies higher for the

diffuser channel (n = 1.30). An intermediate position is occupied

by the channel of constant section (n = 1).

'•~ 14•- 1' 7;", '"

0,4,

S 6!

02 I/ /

0,1 -.-.. •...

O - 2 4 5 6'

Fig. 6-4. Effect of the radii of
curvature oi concave and convex walls
of a plane curvilinear channel with
the angle of turn of 900 on the co-
efficient of losses of energy for
various expansion ratios n.

A similar effect of the geometric parameter n is revealed for

a channel with an angle of turn of 1800. The minimum of the losses
in thts case corresponds to values n < 1, and tne optimum com-

pression in the outlet part of the channel is decreased with a

transition to converging channels (n > 1).

Let us examine some results of research on curvilinear

diffuser channels which were made in MEI by V. I. Nikitin. Graphs
of the pressure distribution along the generatrix of the channel

(Fig. 6-5), plotted for various M1 and Re1 numbers, show that at

the inlet into the channel (points 27-21) on the concave surface
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the diffuser section with large pressure gradients is formed. The

diffuser region on convex wall of the outlet (points 9-11). An

-mportant aspect is the fact that after the diffuser section on

the concave surface there follows the region of convergent flow

(points 20-12), in which there occurs the' localization of

separation if it appears in the preceding dtffuser, section. On

convex wall the separation which appears in the diffuser region

near the outlet section is not localized.

S| 12 14 18

Z.o

its 227 S, .,t-,P4

fl ij~7 6' 5 6,3 2 1 0 .-.. ,., ,_,.u L. , .,_...L..L.. J. \..

\f. ... L 1, u '._l0-da'5 23 21 19 17
IV 40 HepmeN/13

St! o,,, .---

1; Slu £ 1$,5(f4 ws) ;9,45

jig; .... 7S All -0 "7
I .

Fig. 6-5. Pressure distribution over concave and
convex walls of a plane curvilinear diffuser at
various M1 and Re1 numbers.

KEY: (1) Numbers of points.

With an increase in M1 number the pressure gradients both in

the diffuser and, in particular, in the convergent sections of the

channel noticeably increase. The general nonuniformity of the

pressure distribution in the channel increases. It shcould be noted
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that at num~ber M, 0.7 at points 8-10 on the convex wall super-
sonic velocities are reached, since the pressure ratios at these

point~s prove to be lQwer than the critical value Pi* = 0.79 at

this value of M1 (Fig. 6-5). Let us note also that the divergence

ofcurves p for numbers M1 0 and 1 = 0.13 is explained by the

Reynolds number effect.

The distribution of the coefficients of losses over the
channel width in the outlet section confirms that near the convex

wall a separation appears (Fig. 6-6a). Here the energy losses
sharply increase, which is characteristic for the developed regions
of separation. Let us note that with an increase in the height of
the channel T losses near the convex wall increase, and near the

cohcave wall they decrease. Consequently, the secondary over-
flowing of boundary layers from the plane wall to the convex gives

rise to a decrease in the extension of the separation zone and
i Ia certain reduction in the energy'losses. The indirect confirmation

of this assumption can be the graphs in Fig. 6-6b, where presented
is the distribution of losses over the channel width for various

distances from the plane wall. In the zone of secondary boundary

layer flows near the plane walls (_ = z/1 = 0.014 and z = 0.083),
values of the coefficients of losses near the convex wall were
lower than those in sections far from the plane walls (Z = 0.18

and z = 0.5).

Of interest i the distribution of losses over the height of
the channel -(Fig. 6-6c), which shows that the altitude effect in

the diffuser curvilinear channels, the motion in which occurs with
separation, proves to be complex. Separation on the convex wall

,does not reach the flat walls because the secondary flows are

convergent. The secondary flows restrict the development of the
separation zone along the convex wall and push back this zone to
the middle sections where the losses increase due to this.

p|

Curves in Fig. 6-6 allow drawing the conclusion about the

sharply nonuniform distribution of the flow conditions along the
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section, which, naturally, is explained not only by the effect of

the secondary flows, but also, mainly, by the effect of separation.

The lines of constant coefficients of losses for channels with

T = 0.625 and T = 1.125 (Fig. 6-7) show that at a smaller height

T there occurs not only the joining of the secondary flows but also

the deformation of the vortex region on the internal wall because

of the secondary flows. The reduction of this region at very low

levels facilitates the reduction in losses because of the decrease

in fundamental component - eddy losses in the separation zone.

F 4

* '. I

0 -, k L= 1

X c" S14

Fig. 6-6. Distribution of the coefficients of
losses over the width (a and b) and the height
(c) of a plane curvilinear diffuser with an
angle of turn of 90°. (experiments of MET).
KEY: (i) Concave wall; (2) Convex wall.

312



I_.

The secondary f.ows, which limit the separation zone on the
convex wall, simultaneously push this zone aside into the flow

core (region I in Fig. 6-7); the dimensions and extent of region

II (maximum losses) change with a change in height of the channel.

The forcing back of the detached flow into the flow core is also

characterized by the displacement of vortex zones III toward the

axis of the outlet section and by the increase in their dimensions.

-%-5

I

a)

I 1,6 •. ,Thocian cm ., L -( .1

r . . . --, , * ... , . .,- ,.i .. ,r -

%AA -~~* , 63'-17,t •_ ! _1.:P: . - _•';v:J

b)

Fig. 6-7. Distribution of coefficients of losses
of energy in the outlet section of plane curvi-
linear diffusers of different height (M1 = 0.76-0.8;

Re1 = 2.1.105. Experiments of MEI). a) T = ./a 2

= 0.625; b) T = 1.125.
KEY: (1) Flat wall; (2) Convex wall.
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The Joining of secondary flows under conditions of separation

occurs also on the convex wall, and the vortex zones III preserve

their structure here. The penetration of secondary flows into the

region of separation gives rise to a certain reduction in losses

near the 2onvex wall. This result is explained by the fact that

the secondary flow possesses the greater kinetic energy than the

flow in the separation zone. However, the pushing back of zone II

exerts a negative effect on the core of the region I (near the

concave channel wall). Zone I is narrowed, and losses in it

increase. The boundary of the vortex zone II is concave, and flat

walls form the fictitious channel with a decreased section along

the flow. In this case in zone II the stationary vortex or the

system of periodically formed vortices of smaller intensity are

formed. In the latter case the flow will be periodically non-

stationary (pulsating).

The effect of the basic geometric parameter (relative height)

and mode parameters (M1 and Re1 numbers) on losses in the diffuser

channel with the angle of turn of 900 can be seen in Fig. 6-8.

Primarily it should be :ioted that the dependence ? upon the height

is not linear (Fig. 6-8a). An especially intense increase in

losses with a decrease in height is noted when l/T < 1.0. If the

numter M1 > M1 , (M1 , - critical M1 number for the curvilinear

channel), then the dependence C (1/T) is changed: with a decrease

in height losses in the beginning are lowered and then are somewhat

increased. In the channel with T = 1.875 when M1 > M1, the shock

wave, which closes the local supersonic region on the convex wall,

gives rise to separation, whereupor the separation region is ex-

tended to the entire height of the channel. It is natural that in

this case the losses sharply increase as compared with subcritical

modes.

Figure 6-9 gives values of the optimum radius of curvature

and ratios of the characteristic sections of the channel, which

ensure the minimum intensity of secondary flows in the curvilinear
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diffuser channel with the angle of turn of flow of 900. From the

graphs it follows that in the diffuser and weakly convergent

channels it is advantageous to make the middle section of the

channel am increased (am = a m/a1 > 1) and then to ensure the con-

vergent flow by the corresponding compression. In this case the

pressure differential is decreased between the concave and convex

surfaces in the sections, where the curvature of the channel is

maximum, and, consequently, the intensity of the secondary flows

is lowered. Furthermore, the compression of the output part of

the channel reduces the region of separation on the convex wall AB

(see Fig. 6-1a) and in certain cases prevents separation. Ex-

periments of H. Nippert showed that depending on the angle of turn

and the radii of. curvature of the concave and convex walls, the

optimum correlations of values am and a1 are changed. This result

is confirmed also by experiments of MEI.

The indicated correlations depend also on the geometric

diffusivity of the channel, i.e., on n. Experiments show that with

an increase in the radii of curvature of the back edge and the

;- |concave surface, losses from the secondary flows areý decreased.

At the same time (Fig. 6-9a) with an increase in the radius of

curvature of the convex wall rl, the optimum value am at the given

angle of turn and expansion ratio n increases. The dependence of

a m upon n, which corresponds to minimal losses in the curvilinear

channel with the angle of turn of 901, is shown in Fig. 6-9b. One

should also note the effect of the relative height of the channel

T on the optimum value of parameter a m. The relation a-m = f(T)

should have a maximum the position of which will be determined by

the geometric degree of diffusivity of the channel n. The most

j important geometric parameter of the curvilinear channel is the

angle of turn of the flow. At MEI the plane curvilinear channels

with angles of turn of 150, 180 and 2500 were investigated. H.

Nippert determined the optimum dimensions of channels with an
angle of turn of 1800. With a change in the angle of turn the
intensity of the secondary flows and the position and number of
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vortex.zones and regions of separations should be.changed, In
channels with angles of turn of 150-180° the region of separation
in the initial section of the convex wall can be stbstantially
developed in the subsequent curvilinear flow if wedo not use special

methods of shaping.

• 
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%. Fig. 6-8. Effect of relative height a) and number
0 M b) on losses in a plane curvilinear diffuser
10 1

channel with the angle of turn of 900.
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"."a) a.,_.. b)
• Fig. 6-9. Optimum geometric parameters of' plane curvP-
S~linear diffusers, a) relative radii' of curvature of

• the walls; b) degree of' the diffusivity of the inlet
section foix the angle of' turn of 90°.
KE: 1 Convergent channel; ()Divergent channels;

SKEY (i)(2)

S~(3) Channel of the standed sect~ion.

The appropriate experimental data are given in Fig. 6-10 and
6-11.. It should be noted that with ah increase in n the conver-
gence of the outlet section am should be decreased for channels

with such angles of' turn. However, the idiffusivity of the inlet
section, d'eterminned by• the ratio am = a2 /al, increases with an

~ I increase in n (Fig. 6-lob). With shff'iciently large expansion
ratios of the channel ,n, the construct4.on of the channel with
am > 1 and a'm > 1 can cause some difficulties, since these
parameters will not be in the optimum zone. Some deviations from

the recommended parameters (Fig. 6-10a)'do not cause a noticeable
change in characteristics of the curvilinear diffuser channel.

Consequently, in "hannels with large angles of turn it proves to

be advisable to decrease the velocity before the turn (introduce
the local diffusivity am> 1 ) and after the turn to increase the
velocity by the introduction of the local convergence (a' m I)

The appropriate results were obtained at MET for channels wit~h
angles of curn of 150-250o. As can be seen from Fig. 6-lob, for
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channels angled turn of 1500 and 1800 the optimum diffusivity of

the inlet section is approximately equal. For the plane channel

with the angle of turn of 2500, it was necessary to introduce

successively two diffuser and two compression sections (Fig. 6-11).

In this case tho energy losses were minimum but quite Ligh. At

angles of turn 0 > 1800 the length of the section of constant cross

section after the first turn is of importance.

49/a1 Fig. 6-10. Effect of the ex-
- -pansion ratio n and compression

ratio of the outlet section
a' of the curvilinear diffuser
m

I\ I I . with the angle of turn of 1800

S, _on the energy losses a) and
"the dependence of the optimum

,'•,-, I. expansion ratio of the inlet
-,..,' ,..,". ,>- section am upon the expansion

ratio of the channel n for
channels with angles of turn

a) of 1500 and 1800 b).

6-2 I s ay ose ha h

2,1

b) 17/ n " l ";.,,-a

:• ~~~ ~ ~ P ,,",,'-\- _ 10

SGeneralized graphs of energy losses in curvilinear diffuser

• channels are shown in Fig. 6-12. It is easy to see that the

effect of the angle of turn of the channel sharply increases with

~an increase in the expansion ratio. Moreover, with the correct
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organization of the flow in the curvilinear diffuser channel it is
possible to provide moderate energy losses even at large angles of

turn.
Reproduced from
best available copy.

21,o..M, =-do,.,/,.! 7 -, < 11 ,o0 o ,

A,75 " a"LI'I. -,, .•~a Fig. 6-11. Optimum ex-
, - pansior. ratios of the inlet;Z\ 'Ri~-'( '\\._Jv.section aml and outlet

,5 - section am2 depending on

. ',the expansion ratio of theVI
\N channel n with an angle

.�0 '1"10Y o. a/ of turn of 250'.

/,,y 40• 11.S" 45 1,7S

Plotted on the axis of the ordinates in Fig. 6-12 are co-

efficients of losses in straight diffusers with the appropriate

expansion ratios and small flare angles. A comparison with these

values allow estimating the additional losses in curvilinear

diffusers conditioned by secondary flows and separations.
Re~produced fropm
b est available, opy

Fig. 6-12. GeneralizedJ .," , . graph of losses in curvi-
linear plane diffusers de-
pending on the expansion

., ratio n and angle of turn
.. I* "' - of the flow in the channel
•~~~~~ ... •:•

,,#~ ~ ~ ~~1? 2; :U .,:;."Z. 70 0

Important results were obtained in the study of the effect of

the expansion ratio of curvilinear diffusers with constant angles

of turn of the flow. An increase in n should give rise to an

increase in the energy losses and the formation of separation.

The existence of the dependence of the limiting expansion ratio of

the curvilinear diffuser upon the angle of turn of flow was
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established (Fig. 6-13). When n > nnp the recovery of pressure in
the curvilinear diffuser was sharply lowered, and the diffuser

practically stopped operating. It is natural that in the curvi-

linear diffusers the maximally attainable expansion ratio nnp was

substantially lower than that in the rectilinear diffusers.

I . Fig. 6-13. Limiting ex-

. pansion ratios of a plane
curvilinear diffuser de-
pending on the angle of

-. - turn of the flow e.

0 1Y do"' 10 351, 4/01" 225" 027I'

A noticeable improvement in the structure of the flow and a

reduction in the loss in the curvilinear plane diffuser can be

attained by the use of blowing of the boundary layer before the

zone of separation on the convex wall near the outlet section.

Furthermore, in those cases when blowing cannot be accomplished it

is advisable to install moving blades with nonuniform pitch. The

number of the installed blades should be a minimum (1-2).

The recently conducted experiments showed that the use of a

short separating rib on the concave wall of the channel (over the
entire length) and blind grooves on flat walls near the convex

surface allows noticeably reducing the losses and increasing the

limiting expansion ratio.

It is rational to use the indicated methods, having provided

the optimum geometric parameters of the diffusers, especially, the

radii of curvature of the concave and convex walls of the channel

and the degree of diffusivity of the inlet section am

The effect of the two most important mode parameters (Re1

and M1 numbers) on losses in curvi]inear channels with various
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angles of turn has still been studied insufficiently. With an

increase in Re1 losses in the channel are decreased. The turbulence

of the layer near the separation gives rise to a line shift of

separation along the flow, which also causes a sharp reduction in

the losses.

The compressibility effect at subcritical velocities is in-

dicated in the fact that the intensity of the secondary flows is

lowered. An analysis of curves of pressure distribution (See Fig.

6-5) shows that with an increase in Mach number the transverse

pressure gradients in the channel are decreased, since the pressure

ratios increase more intensively on the convex wall than on the

concave wall.

§ 6-3. Effect of Basic Geometric and1, l Mode Parameters on the Operation of
Annular Curvilinear Diffusers

The experimental investigation of the effect of geometric

parameters on the operation of annular curvilinear diffusers is

associated with great difficulties. They result from the fact that

for the characteristic of even a plane curvilinear diffuser the

assignment of five dimensionless quantities is necessary, and with

* the transition to the axiradial variant (see Fig. 2-2b) their

r number increases to six. Then, having changed each of six

parameters 4 times, let us arrive at the conclusion that to obtain

the total test data on annular curvilinear diffusers, it is

necessary to test an unreally large quantity of variants determined

by the number of combinations of 24 elements with 6 each, i.e.,
2 24! ...,...134594 variants.
24 6!8!

( As a result in the study of axiradial diffusers, they are

restricted to the geometric parameters whose effect should be

f decisive.
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The present experimental data on the indicated group of

diffusers, generally speaking, are limited and show in the majority

the effect of only one-two parameters. Furthermore, results of

some studies prove to be inconsistent.

The most complete research on axiradial diffusers was con-

ducted by N. M. Kondak [60]. The shapes of vaneless annular turns

examined by him were unsuccessful and led the author to the

conclusion about inexpediency of the use of vaneless axiradial

diffusers. These results, however, contradict the previous studies

[7, 15, 70] and were not confirmed in the subsequent work [8, 41,

103].

Thus, I. A. Bindler obtained in the axiradial diffuser with

the expansion ratio n = 2 the total coefficient of losses

ýn : 0.61.

In experiments of R. N. Bogomolov and L. A. Dorfman [8] the

minimum total loss factor n was 43%. At this level there were

losses in experiments of M. P. Umanskiy [103] and S. A. Dovzhik

and P. I. Morozov [41].

Thus, in the correct selection of the relations between

geometric parameters in annular curvilinear channels, it is possible

to transform into the gravitation energy of pressure more than 50%

of the kinetic flow energy at the inlet. For the solution to this

problem, however, it is necessary to examine the effect of the

most important geometric parameters.

Let us examine the following dimensionless parameters of the

diffusers: the dimensionless diameter at the inlet 0 = D/Z,
"radiality" D2 /D 1 , "intensity" of turn L/Z, dimensionless radius

r2 = r 2 /rl, and the expansion ratio n.

Each of the given parameters has a definite physical sense.

Thus, 0 characterizes the inlet conditions and the structure and
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intensity of the secondary flows, r 2 /r 1 determines the shape of the

channel in the meridian section of the diffuser, L/u shows how
"1sharply" the turn occurs and so on.

All the experiments were conducted in air at constant vcalies

ort node parameters M1 and reI equal, respectively, to 0.3 and

5.105.

The dimensionless gLometric parameters of the investigated

diffusers, optimum expansion ratios and minimum values of losses

are given in Table 6-1.

Table 6-1

No. ( D,•I DID, r,/r, LI " .

1 6 2 0 2,5 2,3 0.60
2 6 2 0,4 2',5 2,3 0,59
3 6 2 0,7 2,5 2,3 0,51
4 1 6 2 1,0 2,5 2,3 0,52 r2,/r1=var
5 6 2 I, 2,5 2,3 0,53
6 6 2 1,4 2,5 2,3 0,64

7 6 2 1,0 1,0 1,7 0,66
8 6 2 1,0 1,5 2,2 0,57
9 1I 6 2 1,0 2,5 2,3 0,53 L/I=var
0 O 6 1,0 3,4. 2,6 0,48

11 6 2 0,9 4,5 2,7 0,46

12 6 2,67 0,85 4,2 2,7 0,38
13 111 6 2,34 0,95 3,4 2,7 0,40 D2 /D1=var
14 6 2,00 0,87 3,54 2,6 0,46

15 6 2,00 1,0 1,5 2,2 0,57
16 IV 6 1,88 ,0 1,5 2,0 04 D/Dvar17 IV 6 [1,75 1,0 1,5 1,8 0,72 D/D va

!/18 6 [ 1,5A 1,0 1.5 1,7 0,75

G1 OO 0 9 ,3 ,6 -- •var
224, 1,78 0,8 .3,0 2,5 0,601 KEY: (1) Group of diffusers.
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Five series of diffusers were tested. In the first series

the effect of the shape of the flowing part characterized by the

ratio of radii r 2 /r 1 was investigated; in the se'cond series the

relative length L/Z was changed; in the third and' fourth series

"radiality" was changed, and in the fifth series the role of the

inlet diameter was investigated.

a) Effect of radii rl, r 2 and the expansion ratio n. Since

losseL in the annular curvilinear diffusers depend basically upon

the velocity distribution about the contours AB and CD and the

latter are determined by shape of the meridian section, let us

explain first the effect of radii r1 and r 2 and the expansion

ratio n. For this purpose let us examine results of the, experi-

mental research on diffusers at various shapes of the meridian

sections. These sections, given in Fig. 6-14, are outlined by the

invariable radius r1 and continuously decreasing radius r 2 , as a

result of which the effect of the vertical section of contour CD

is similar to the effect of the turning shield of the annular

curvilinear diffuser.

Fig. 6-14. Shapes of
meridian sections of

V• radial diffusers and
basic designations.
1 - r 2 = 1.2; 2 -
r 2 i 3 - r= 0.7;

Tests of the indicated diffusers, whose results are presented

in Fig. 6-15, indicate that between radii rI and r 2 there exists

a certain optimum relatioi, the deviation of which with small

expansion ratios gives rise to a noticeable increase in losses.
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'0V T - Fig. 6-15. Dependence of
losses in axiradial diffusers
upon-the expansion ration
in various ratios of radii

0,7. r i/r. 1- "2r 1.2; 2-
l , -2 1.1; 3- r 0.7';

-;4 F25 o .14.
1,25 1S 1,75 2 ,0 25 2 ,5 2,1S J.

For the greater clarity Fig. 6-16 depicts the relation

n= f(r 2 ) obtained in the zone of optimum values of n (nonT
= 2.2-2.3).

40 - Fig. 6-16. Variation in
,56------.losses depending on T2 in

the zone of optimum ex-
0 0,2 0,4 06 0.8A.0 U pansion ratios.

From the given curve it follows that with an increase in r2

first a certain reduction in losses occurs. When r2 = 0.7-1.1 the
losses reach a minimum value, and then for r > 1.1 they rather
sharply increase. Such a nature of the change in losses is con-
nected with the shape of the channel in the meridian section of

the diffuser or, more accurately, with the nature of the change in
velocities along the convex AB and concave CD (see Fig. 6-14)

contours which form the channel.

It is obvious that when r < 1 the basic braking of the flow

occurs in the inlet, and a further turn is accomplished with

reduced velocities. If we depict for this case the change in areas

along the 'center line, then the corresponding dependence will be
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close to curves F for the most effective nondetached conical

diffusers. With an increase in the radius r2 the braking of the

flow is transferred to the zone of turn and then into strictly the

radial part. As a result the distribution of velocities on the

convex contour noticeably deteriorates, and there appears an open

separation zone on the convex wall, which decreases the effective

expansion ratio of the diffuser. In this case the losses increase.

On the other hand, the value of the radius r2 is limited on

the lower side, since at small values of r2 there occurs an abrupt

braking of the flow by the concave contour, which causes the

appearance of a closed separation zone of the concave wall.

However, the effect on the total losses of internal separation is

considerably less, since it does not cause a substantial change in

effective outlet area, i.e., an area with a positive value of the

flow velocity component. This circumstance explains the fact that

even when r2 = 0 the losses are increased in comparison with the

minimum value a total of 9%.

Thus, with the optimum relation between radii r1 and r 2 the

shape of the channel in the meridian section of the diffuser

should ensure nondetached flow of contours AB and CD or the minimum

extent of the separation zones. From this viewpoint the fulfillment

of inlet with maximum diffusivity is also justified: in this case

the maximum positive pressure gradient acts on the comparatively

thin boundary layer, and the probability of nondetached flow in-

creases. If the zone of braking of the flow is far from the

inlet section, then the effect of the positive pressure gradient

on the thicker boundary layer in most cases gives rise to a

separation on the convex contour.

One should emphasize that the discussed test data of axi-

radial diffusers conflrm the data on the advisable shape of the

curvilinear diffusers given in § 6-1.
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The curves given in Fig. 6-15 visually confirm the aforesaid

about the role of the radius r Actually when r 2 = r2Ma~c in the

whole range of values of the expansion ratio the losses have a

peak value. Then when r = 1.1 and 0.7 these losses become minimal
2

and practically equal, and with a further decrease r they again
2

increase. Furthermore, it is clearly evident that the losses

substantially depend upon the expansion ratio. Thus, if when

n = 1.5 the maximum change in losses, depending on r is 20%, and

then for n = 2.8 it is decreased to 5-7%.

"The noted distinction in quanti;ative results is connected

with the fact that in the experiments the expansion ratio was

changed by means of the displacement of the contour CD alorg the

longitudinal axis. As a result with small expansion ratios, any

deformation of the contour CD substantially changed the velocity

distribution on the contour AB. With an increase in n, when the

Scontour CD was remote, its3 effect on the flow pattern along the

contour AB was decreased.

Thus, the estimate of the effect of the radius r 2 must be

conducted taking into account the expansion ratio n. If for large

values of n the use of arbitrary values of the radius r 2 is

admissible. then with decrease in n it is necessary to approach

the observance of the optimum relations between radii r1 and r 2 .

By comparing the relations Cn = f(nn for the conical and

annular diffusers, it is possible to note the substantial reduction

in the zone of optimum expansion ratios, wiich in the case In

question changes from 2.2 to 2.5. A decrease in nonT is connected

with the fact that nondetached flow in the annular radial diffuser

is possible only with small expansion ratios.

Visual observations and the shape of the velocity profiles

in the outlet section showed that with an increase in n in the

outlet part of the contour AB there appears the separation of the

327



flow, which is continuously displaced inside the channel. As a

result there occurs a decrease in effective area at the outlet from

the diffuser and an increase in internal losses, and their magnitude

rather rapidly becomes of the same order as that of the outlet

losses. A further increase in the expansion ratio is given in

Fig. 6-17.

b) Effect of the relative length (the "intensity" of the

turn). The following very important geometric parameter of the

axiradial diffuser is the dimensionless length L/Z.

-------------

Fig. 6-17. Diagram of the redistribution of separation
zones in an annular diffuser with an increase in the
expansion ratio n.

The data given in Fig. 6-18 indicate that with an increase in

the nondimensional distance U there occurs a continuous decrease

in the total loss factor, and the optimum expansion ratio increases

(Table 6-1). Geometrically with an increase in L the axiradial

diffusers approximate the axial annular diffusers. It is natural

that with this the portion of the losses connected with the turn

of "he flow should be continuously decreased. On the contrary,

with an increase in the "intensity" of the turn, i.e., with a

decrease 1n the axial length of the diffuser, one should expect an

increase in losses. Simultaneously, to provide for such a turn

more active effect on thc flow of the concave contour CD is

necessary, which requires its approach with the convex contour AB

328



S--and gives rise to a decrease in the optimum expansion ratio. At

the same time the curve given in Fig. 6-18 shows that the intensity

1A of the reduction in losses, with an increase in value E, decreases.

If an increase in dimension L from 1.0 to 3.0 gives rise to a
decrease in losses by 18%, then with a change in L from 3 to 4.5

the losses decrease a total of 2%.

-- Fig. 6-18. Denandence of

O'5 "upon parameter L.

I

F Thus, for a reduction in the losses it is necessary to strive
for a decrease in the "intensity" of the turn. However, to in-
crease dimension f more than 2.5-3.0 is hardly advisable: the
economic effect in this case is comparatively small, and the over-
all axial dimensions of the diffuser substantially increase. The

"expressed considerations apropos of the selection of the dimension
L completely refers to the dimensionless radius of the convex
contour.

- Let us note that the curves in question are obtained with the
optimum relation between radii rI and r2.

4 With a decrease in U from 3.5 to 2.0 the minimum magnitude of

the losses increases by 12%, and the optimum expansion ratio is
decreased from 2.2 to 1.8. If we examine the effect of L with a
constant expansion ratio n, equal to 2.2, then the indicated
decrease in axial dimension increases the losses by 22%. Such a
sharp increase in losses with an increase in the "curvature" of
the radial diffuser is caused by the substantial deterioration of
flow along the contour AB, where even with a small expansion ratio

-329



n separation appears.

c) The effect the "radiality" of diffusers D2/D1 . The effect,

of "radiality" was investigated in the third and fourth series of

the diffusers.

The distinction between the indicated series was that in the
first case the ratio of the diameters was changed because of radil

rI and r 2 and in the second case - because of the radial cutting

of the same diffuser.

From a qualitative side the dependence of losses from the

dimensionless ratio D2/D in both cases was equal (Fig. 6-ý9):'

with an increase in "radiality" the energy losses were decreased.

In this case it is possible to note that in the third series of

experiments the optimum expansion ratios were changed very weakly,
whereas in the fourth series simultaneously with a decrease in the

ratio of diameters D2/D1 a noticeable reduction in the optimum ex-

pansion ratio and a sharp increase in'losses occurred.

The obtained res'4lts reflect the effect of the shape of the

diffuser channel. If tne "radiality" of the diffuser was changed

with variations of radii r1 and r 2 with close expansion ratios,

then this gave rise to the approach of convex and concave contours.

As a result the reverse boundary layer effect increased, since the

same geometric diffusivity was accomplished on a large length,

and the gas flow in the whole channel could be ncndetached. From

this viewpoint, when evaluating the optimum value of "radiality,"

it is possible, apparently, to proceed from the same consideration

as when evaluating the optimum flare angle of a conical diffuser.

On the one hand, the increase in ratio 2/D1 causes an in-

crease in the fairing and, consequently, an increase in frictional
losses. On th• othtr hand, the distribution of the assigned

diffusivity at the greater length gives rise to a reduction in the
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longitudinal positive pressure gradients and increases the

probability of nondetached flow. The optimum ratio of diameters

D2 /J1 accprding to ihe available data comprises a magnitude of

the order of 2.5-3.0.

47 -Fig. 6-19. The effect of
;lCd'Ju*(1 "radiality" of the annularI .0 (1) - diffuser D2/D onthe total

loss factor
5 __KEY: (1) Series.

/,•50 ,7S 2,0 2,Z5 2,50 2,75

If the "radiality" is changed by means of radial trimming,

then the shape of diffuser substantially changes, and with large

sections it approaches the diagonal shape and further to the axial

variant with a large opening angle and shield at the outlet. The

motion in such a diffuser occurs usually with the separation of
flow and ib accompanied by increased losses, and the optimum con-

ditions of flow correspond to the reduced geometric diffusivity.

A certain concept about the effect of the "radiality" in such a

case can be obtained from curves in Fig. 6-20, where curves of

losses in four diffusers differing only by the ratio D2/D1 are

given. The remaining parameters in this series of experiments

are: e = 6; L = 2.5 and r2 = 1.

From the curves in Fig. 6-20 it follows that with a decrease

Sin D2/D a very 'sharp increase in losses takes place. Thus, having

kept n invariable and equal to 2 and having decreased D2/D from

2 to 2.6, we obtain an increase in losses of 22%. For n = 2.5

this increase consists of 30%, and in the zone of small expansion

ratios (n = 1.4) losses with a change in D2/D were practically

not changed.
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0,31-

0, 14 1 Ie 1ý

0,7--

4, n

2,0 Z5 3,0

Fig. 6-20. Dependence of the coefficient
of total losses upon the expansion ratio n
for various values of D2 /DI. 1 - D2 /D 1 = 1.58;

2 - D2 /Dl = 1.75; 3 - D2 /D 1 = 1.88; 4 - D2 /D 1 =

= 2.

The noted effect of "radiality" is explained by the fact that

with a decrease in ratio D2 /Dl, to preserve the invariable ex-

pansion ratio it is necesoary to increase the width o: the outlet

section by means of the axial displacement of the external contour

CD (see Fig. 6-14). As a result the conditions of flow on the

contour AB noticeably deteriorate, which leads in this region to

the separation of flow whose zone is continuously expanded with an

increase in the outlet dimension.

With a small expansion ratio (n = 1.4), when the flow in

meridian plane is not accompanied by separation, the reduction in

the "radialtiy" has an insignificant effect, since in this case the

displacement of the contour CD leads only to an increase in boun-

dary layer losses, without causing its separation. When separation

does not exist, and with a constant output dimension H1 the re-

duction in the ratio to diameters D2 /D 1 causes an increase in the

losses with an outlet velocity within bounds of a decrease in the

expansion ratio and gives rise t a certain reduction in internal

losses due to the reduction of the streamlined perimeter.
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For an illustration of the aforesaid, in Fig. 6-20 a line of

the change in losses is plotted with a change in "radiality" butat

constant value H1 . Here the dashed line represents the calculated

increase in total losses induced by the reduction in th- expansion

ratio. A certain divergence between these curves in the zone of

small values n is connected with the reduction in internal losses

noted above.

A similar curve, plotted for the region of large values of

the outlet dimension H1 , when inside the channel detached flow takes

place, gives a more intense increase in losses as compared with the

calculation; here the decrease in "radiality" along with an increase

in losses in outlet velocity gives rise to an increase in internal

losses. The latter is caused by the fact that with a decrease in

D the internal local separation in the region of the turn turns

into the open zone of the senaration, lowering the effective outlet

area.

d) The effect of dimensionless inlet diameter 8. The next

parameter, investigated in experimen.s of the fifth series, was

the dimensionless inlet diameter 0 = D/l. In turbomachines this

parameter serves as one of the basic stage characteristics.

Therefore, in this case a comparatively wide range of the variation

of 0 from 4.5 to 10 was investigated, which corresponds to a la.,ge

number of stages of steam and gas turbines.

By estimating the effect of the dimensionless inlet diameter

on the operation of the diffuser with invariable remaining dimen-

sions, it is possible to note that if a change in 8 is accomplished

only because of the diameter at a constant absolute value of the

inlet dimension Z, then the effect of this parameter proves to be

weak. In fact, with an increase in 0 the streamlined surface

increases, but simultaneously with this there is an increase in the

inlet section area of the diffuser, which increases the value of

the available kinetic flow energy at a constant differential
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pressure on the diffuser. As a result the coefficient of losses,

which represents the ratio of internal diffuser losses to the

kinetic energy at the inlet, is changed insignificantly. As a

whole, according to the data given in Table 6-1, the change in this

parameter from 4.5 to 10 causes an increase in losses of approxi-

mately 1-1.5%. If e is changed because of the height 1, then in

the axiradial diffusers a noticeable increase in losses occurs.

e) The effect of the smoothness of the contours outlining the

meridian channel of the diffuser and fastening ribs on losses in

a-iradial diffusers. As was already mentioned, with small radius

r2 on the concave contour -losed detached zone is formed (see Fig.

6-1). In this case between the main flow and the zone of separation

an intense energy exchange is established, which maintains a vortex

flow pattern here.

The magnitude of additional losses connected with the formation

of separation on the concave contour of the diffuser substantially

depends upon the extension of the detached zone, and therefore,

for their decrease it is necessary either to reduce the extension

of the vortex zone or reduoe the intensity of the energy exchange

with the main flow. In this direction good results can be

achieved in the replacement of the smooth concave contour in

meridian plane by a contour composed of segments of straight lines.

Tests of such a diffuser with three different contours (Fig. 6-21)

showed that with the transition to a broken generatrix (curve 2,

Fig. 6-21) losses in the zone of optimum expansion ratio are

lowered by almost 10%.

At small expansion ratios (n < 2) the effect of the shape of

the broken contour proves to be insignificant. However, when

n > 2.0 it is advantageous in zone of high velocities to nave a

smaller angle of break of the generatrix, since at a small angle

of break the basic zone of separation is transferred into the

region of lower velocities, and with an increase in this angle the
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e-cenoion of the separation zones at conjugation points proves to

be approximately equal (Fig. 6-14, contour CD). The reduction in

losses during the replacement of the smooth contour by a broken

line is exp.Lained by the fact that with such contour the zones of

separation are localized at angular points, and their extension

is noticeably reduced.

S._\_---Fig. 6-21. Effect of theshape of the concave contour

• ¢of axiradial diffusers on08 total losses in it.

01

n

-3 45 1,7S 2, 2,25 1,5 2.7S 30

The obtained re3ults are important, since the technology of

the manufacture of radial diffusers for exhaust ducts of powerful

steam turbines is considerably simplified, since in the transition

to a broken contour the execution of a welded contruction proves

to be possible. From this viewpoint it was advisable to examine

the question of the replacement of the smooth convex contour of

the diffuser with a broken line. Two variants of the contour are

depicted on Fig. 6-22a, and test data at various values of n are

given in Fig. 6-22b.

tiere, just as one would expect, the disturbance of the

smoothness of the contour led to a substantial increase in losses,

since unlike the internal contour, where at angular points local

separation took place, in this case the angular points were the

sources of the developed separation zones, which sharply narrow

the effective output area of the diffuser. In this case not only

the internal diffuser losses but also the outlet increased.
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a) b)

Fig. 6-22. Variants of convex contours a) and the
dependence of losses upon the expansion ratio at
various contours AB b).

It should be noted, however, that the magnitude of the losses

depended upon the position of the angular point on the external

contour. If the smoothness of the contour was disturbed only in

the outlet part (contour 2, Fig. 6-22a), then the change in losses

proved to be unimportant. Moreover, at small radii r 2 thiis gave

rise to a certain reduction in the losses. However, the approach

of the angular point to the inlet section eaused a sharp increase

in losses irrespective of the magnitude of the radius r 2 (contour

3, Fig. 6-22a). From what has been said it follows that in the

designing of the radial diffuser it is necessary to pay serious

attention to the outlines of the convex contour and then select

the most optimum shape of the concave part of the axiradial

diffuser.

Since in most cases with the installation of axiradial

diffusers after the stage of the turbomachine, according to design

consideration, it is necessary to provide rigid coupling of the

external and internal contours, let us examine the effect of the

internal coupling elements on the magnitude of the diffuser losses.

Used most frequently as such elements are longitudinal ribs. As

experiments show, the location of these ribs can substantially
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change the whole pattern of f'low. Thus, with the installation of

the continuous longitudinal ribs, which divide the channel of the

diffuser into a number of isolated segments, one should expect a

noticeable increase in the losses; in this -ase in each segment

there occur complex secondary flows, which cause the separation of

the flow at connecting places of the ribs with the contours of the

diffuser.

The test data of an axiradial diffuser given in Fig. 6-23 show

that with the installation in it of three continuous ribs losses

increase by 5-8%.

0

0,70 0

Rey,1,9
05 03 0 0's5 05 0,7

Fig. 6-23. Effect of ribs on the operation
of axiradial diffusers. 1 - Flat ribs;
2 - Round rods; 3 - Ribs are absent.

The picture proves to be complbtely different, if from con-

tinuous longitudinal ribs we turn to slotted ribs or ribs in-

stalled only in the outlet section, where the transverse pressure

gradient is minimal. In this case the effect of the ribs proves

to be insignificant. With the installation in the diffuser of six

round rods the losses were practically not changed (Fig. 6-23,

point 2). Thus, at the inlet into the diffuser it is necessary

to install as small a quantity of narrow ribs as possible and

place the main power ribs in the outlet section.
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We will discuss further the effect of misalignments and

eccentricity of the installation of the concave contour of the

diffuser relative to ii.s convex part. Such disturbances are always

possible with the assembly of a diffuser, and, as the conducted

experiments show they can noticeably be, reflected on the efficiency

of the entire machine.
AI

Thus, Fig. 6-24 gives curves of the change in local coefficients

of pressure recovery over the circumference of the axiradial

diffuser with the concentric nd eccentric location of the concave

contour.

I,k 0 il4,4

32 J4 5 .7 .. 10.13

Fig. 6-24. Measurement of the coefficients of
pressure recovery over the circumference of an
axiradial diffuser with a disturbance in the
concentricity of the installation.
KEY: (1) Numbers of points.

Experiments showed that even with a small eccentricity its

presence gives r'se to a noticeable change in the local co-

efficients of presbure recevery. If the mean value of these co-

efficients in comparable cases is approximately equal, then the

local nonuniformity was increased almost 2 times, which can have

a noticeable effect on the operation of the last stage of a

turbomachine. From this viewpoint one should, apparently,
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estimate the effect of the eccentricity and misalignments of the

exhaust diffuser of the turbomachine.

§'6-4. Some Problems in the Analytical
Determination of Losses in Axiradial
Diffusers

The calculation of c'.vilinear diffusers represents today the

greatest difficulties, ý.ne their shape is determined by a large

number of geometric parameter.i which affect the structure of the

floiy. Because of this attempis to use for calculation here a

formula of the type (2-42a) cannot give positive results. At the

best by such a method the probable order of the coefficient of

losses can be found, because, on the one hand the equivalent angle

even on'a qualitative side cannot take into account the effect

the most important geometrinal parameters of axiradial diffusers,

and on the other hand - the relation ¢ A = 4 (a.) (see Fig. 2-12)
is far from beihg universal.

In attempting to solve the indicated problem, W. Albring [114]

offered to examine not the equivalent but the local angle determined

by formula

Thus,,an attempt is made to introduce into calculation as

large geometric parameters of complex diffusers as possible and by

subsequent integration of local losses over the whole channel to

find the total magnitude of the loss factor 1. This method of

calculation has been developed most fully in [ 3 4, 38, 39]. However,

as was already mentioned above, the method based on the use of the

coefficient of softening of the shock € can give correct result

if the experimental dependence 0. = f(a) is single-valued. Un-
fortunately, there is no such uniqueness even for the simplest

conical diffusers. Fig. 3-32 already gave values of coefficient

for various angles of a, calculated from experimental values of
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the coefficient of losses ý [51, 66, 110, 142, 148]. Even with

the same mode parameters the same angle corresponds to a number of

coefficients A . Thus, for a = 4.0', 0.4 < 4) < 0.8, for a = 70,

0.1 < 4) < 0.6, for a = 150, 0.1 < 4) < 0.4, etc. Nevertheless,
the method expounded in [34, 38, 39] is still the only cne for the

analytical calculatloi of losses in curvilinear diffusers.

The use for calculation of boundary layer characterisbics in

this case also encounters difficulties in the determination of the

area of displacement A* and the area of energy losses T***.

However, with some assumptions it is possitle to determine the

magnitude M* and by using formula (2-29) find the total loss

factor n"

For this purpose let us introduce into the examination not

the equivalent angle but the equivalent channel, i.e., the channel

with a rectilinear axis whose areas, perimeters and the law of the

change in these values along the x axis coincide with analogous

values of the assigied curvilinear diffuser. Let us present the

law of the velocity change along the axis of such a channel in the

form of

Ct lei (6-1)

Let us designate further the length of the external contour of

diffuser AB (see Fig. 6-14) by L1 and the internal CD by L2 . Then

on these contours in the inlet section, when using expression (3-9)

and formula (6-1), we will obtain the following values of the

displacement thickness:

A * . (, 0 :5R e I.: 3' ' ( 1 -- O 's'. '0,3! -"
..I DLI -)) X
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0, . _361 .• L, D 2A( 2.3-- . ( D

IL

D, )12 ..1) ,9 i (6-3

* Hence

i •.•. z.,.,+ •,, *2.' ( A*,)p.3,X
, - -2 "

f I (.•) dk) (6-4

S, where

parameters B and H are determined by formulas

0,03611 L 0. D,,..._, ]
C112 --- ~) It L

it=: 1,4 1 0.8 ( ,)o. 6-5)

h - the channel width In meridian plane at the outlet f.,om

the diffuser.

Formula (6-4) is a generalization of the earlier derived

exprec ions (3-12) and (5-10). Actually for annular di'fusers

with linear generatrices LI L2 ; h D2 -d 2/2 and
1 2 2 2

SF, D! - (11 1 (72d
Fr, ,~- 4I I) -d,4

3~41



The substitution of these values into (6-4) gives rise to

relation (5-10). Thus it is possible to show the identity of

formulas (6-4) and (3-12).

In general function $(•) is changed arbitrarlay, and for the

assigned channel the calculation of area is reduced to the solution

of the integral relation (6-4). For the purpose the facilitation

of calculations, lrt us approximate the function 4(T) by the

* following expression:

+ - , (6-6)

By changing the exponent m, it is possible at the assigned
expansion ratio n to achieve the close coincidence of the actual

function 4(i) and the approximating expression (6-6):

q)- 2 = (LI-. s- - ( I (6-6a)

Then the calculation according to formula (6-4) can be

noticeably facilitated if under condition (6-6) earlier we calculate

for different values of parameter B of the area of displacement
-*2" These calculations, conducted by L. M. Dyskin, are presented

in the form of a nomogram in the appendix (see Fig. A-4),

constructed for the exponent m = 1.5. As specific calculations

show, for axiradial diffusers the value m is changed from 1.5 to

2.0.

Let us note that, Just as in the case of conical diffusers,

the use of the simpler formula (2-54) instead of (3-9) leads

almost to the same quantitative results, and with the expansion

ratios n > 2 it gives the best agreement with the experimental

data. However, in considering the definite discussion of formula

(2-54) and the degree of approximation of the evaluation of losses
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in axiradial diffusers, we are limited here to the use of the more

usual relations.

The greatest difficulties in the analytical calculation of

axiradial diffusers are connected with the estimate of the flow

pattern in them, since all the given conclusions are valid only

for nondetaohed flows taking place with defined relations between

the geometrical parameters. These optimum reiations, based upon

results of the experiment, are examined in the previous paragraph.

For the concept about the possibilities of the calculated method,

let us conduct an estimate of the losses in the axiradial diffuser

with the expansion ratio n = 2.3 and D/I = 2.5 whose contours are

outlined from one center. In this case the calculated distribution

of the dimensionless velocities along the center line of the

diffuser proves to be very unfavorable.

Actually, if in the conical diffuser the basic drop in

velocity occurs in the initial .•ctlon of the diffuser where th&

thickness of the boundary layer is small, then here the maximum

velocity gradients are displaced to the outlet part of the channel,

and there is complete basis for expecting the boundary layer

separation.

The comparative performance calculations of the boundary

layer in diffusers at various distributions of velocities (see

Fig. 3-20 and 3-21) show that with a linear drop in velocity for

n > 2 practically does not succeed in avoiding the boundary layer

separation.

However, with a sharp increase in the displacement thickness

A*i an intensive reduction in the effective expansion ratio occurs.

As a result the actual drop in velocity, as was already repeatedly

noted, will be less intense, and with small geometric expansion

ratios the flow will be kept nondetached.
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Results of the calculation give for the diffuser in'question

a magnitude of the total loss factor of about 4f5%., An analogous

coefficient for a conical diffuser with the same expansion ratio

and same relative length consists of.27%, i.e., according to the

recovery ability even with nondetached flow radial diffusers are

considerably inferior to conical and axial diffusers, and the

magnitude of the total coefficient .of losses, equal to 40-45%, is,

apparently, minimal.
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* CHAPTER SEVEN

EXHAUST DUCTS OF TURBOMACHINES

§ 7.1. Fundamental Design of Exhaust
Ducts and Their Effect on the
Efficiency of Turbomachines

I When selecting a design scheme and design of the exhaust ducts
of turbomachines, it is necessary to consider the requirements

dictated by considerations of the efficiency of reliabllity of

the maohine. The created branch connection should:

1) ensure the removal of t'he working medium, from the turbo-

.machine In an assigned direction~with minimum aerodynamic losses;

2) ensure the .iiform pressure field after the last stage,

i.e., posse equal flow friction in all the directions dis-

charginr e working medium to the outlet section;

inave a uniform velocity field at the outlet;

S4) in all modes ensure the stationary stable flow pattern;

5) possess high rigidity;

"6) have acceptable design overall dimensions.
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The execution of requirements of points 2, 3, and 4 will allowS~successfully solving the complex problems of the increase in the

vibration reliability of the blades of the last stage. The
creation of a branch connection which satisfies all these require-

ments is quite complex, and the problem is to find an acceptable
Scompromise solution. In the designing of branch connections the
"bases are requirements of rigidity, overall dimensionality, and,
being determined by thermal and layout schemes, the direction of
the removal of the working medium. The tendency to implement the
remaining requirements sometimes creates insurmountable difficulties.

The maximally complete execution of the first requirement is
the main thing, since, as a rule, at the low total flow friction
of the branch connection the subsequent three are automatically
executed.

Depending on the flow dit'ection, designs with the axial,
diagonal and radial exhaust re'ative to the rotating axis. The
first two designs (Fig. 7-1) are the most simple in a design
respect and consist of annular rectilinear (Fig. 7-1a) or curvi-
linear (Fig. 7-1b) diffusers, which ensure the symmetrical exhaust
from the stage of the turbomachine. It is natural that such an
organization of flow allows obtaining the highest coefficients
of pressure recovery.

a) b)
Fig. 7-1. Diagram of an
exhaust duct with axial a)
and diagonal b) exhaust.
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Sa) b)

_-s ;Fig. 7-2. Diagrams of exhaust ducts without a diffuser a), and
e•- with axial b) and radial c) diffusers.
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The solution to the indicated problem can be achieved with

the installation after the stage of the appropriate diffuser.

Depending on its type, branch connections with axial (Fig. 7-2b)

and radial (Fig. 7-2c) diffusers are distinguished. The first

design is most frequently used for gas turbine installations,

but here the axial overall dimensions of the branch connection

are usually commensurable with the axial overall dimensions of

the entire gas-turbine installation. Therefore, for the steam

turbines having limited axial overall dimensions and the exhaust

at an angle of 900 to the axis of the machine, designs with axi-

radial annular diffusers are widely used. Their efficiency as

compared with other types of diffusers is somewhat less, but with

the correct selection of geometric parameters it is quite possible

to convert to a pressure of about 60-65% of input kinetic flow

energy [17, 22, 81]. The preservation of these criteria for the

entire branch connection as a whole is very tempting. However,

during the solution to this problem it is necessary to contend with

the problem of the arrangement of flow beyond limits of the

diffuser element with limited overall dimensions. It is sometimes

considered that since the velocities after the diffuser are low,

the flow after it can no longer lead to substantial losses. Such

a point of view is erroneous, since when a symmetrical exhaust

does not exist and with limited overall dimensions of the brazvch

connection according to design considerations, the flow distribu-

tion after the diffuser proves to be extremely nonuniform. As

a result there are zones where the flow again undergoes local

accelerations, zones of overexpansion where there occurs its kind

of sudden expansion, and zones of stable vortex motions, which

sharply lower the effective output area of the branch connection.

From the outside the flow in such a branch connection reminds

one of the flow in the simplest conical diffuser with high outout

resistance. How seriously this fact can affect the aerodynamic

characteristics of the entire system as a whole can be seen in

Fig. 7-3, where given are curves of the coefficients of the
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recovery of energy in the conical diffuser, which onerates with

the outp'it resistance in the form of grids (curves 3, 4) ana

without It (curves 1, 2). Characteristic are curves of the change

in static pressure along the axis of this diffuser (Fig. 7-4).

Actually here the whole pressure increase inside the diffuser is

expended for the overcoming of the resistance of the grids.

S.....
474

-0 -WO

0 42 0, 0,6 0,8 f;0 A 1Z
Fig. 7-3. Coefficient of recovery of energy in a conical diffuser

with the output resistance and without it. 1 - n 3; a = 40;

2 - n = 3; a = 100 (without resistance); 3 - n = 3; a = 40,
4 - n = 3; a = 100 (with resistance).

With the external similarity of the nattern in question with

the flow in the exhaust ducts of the turbine a oualitative

difference exists.

0,97

J r.

SFig. 7-4. Cnange In the relative static nressure along a diffuser

with resistance (curve 1) and without it (curve 2) (n 3; a = 40).
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In the given experiments with conical diffusers the output

resistance was assigned and was determined only by geometric

parameters of the output grid. In the branch connection the

resistance after the diffuser has a purely aerodynamic origin and

is the result of the unsuccessful arrangement of the flow.

If when structural resistance exists, after the stage of the

turbomachine (for instance, the regenerator in the Gas Turbine

Installation [GTU] (FTY) the installation of the diffuser is

unconditionally justified, then in a steam turbine the total

resistance of the branch connection with the diffuser and without

it in a number of cases can be of one order. In fact, with the

installation of a diffuser the active passage area in the assembly

part of the branch connection is considerably reduced, and when

the special organization of flow does not exist tlhe increased

resistance of the remaining part of the branch connection reduces

the pressure increase in the diffuser itself to a zero effect.

Hence it follows that with the working out of the exhaust

duct It is necessary to pay serious attention to the arrangement

of flow In all its parts. A highly economical diffuser is a

necessary but far from being a sufficient means of lowering the

resistance of the exhaust ducts.

This conclusion was repeatedly confirmed in a number of the

published works [73, 100] and is indisputable.

At the same time it is not possible to exaggerate the role

of that part of the branch connection where motion from the diffuser

to the outlet section (scroll of the branch connection) occurs.

Sometimes for the calculation of this part a different kind of

the relation of one-dimensional flow is used, and walls of the

branch connection are shaped according to quite complex laws

1[34, 361. Such a means can be useful for the calculation of

branch connections of small turbomachines and hardly solves

problems for energy turbomachines.
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Some concrete means for the improvement of the efficiency

of branch connections and comparisons of diverse variants will be
given below, but let us note now that between the indicated
extreme designs there is a different kind of intermediate variants

with shortened axial diffusers, axiradial and diagonal diffusers

and others.

In examining the role of exhaust ducts, it should be noted

that their aerodynamic characteristics is governed not only by

the efficiency of the turbine or compressor, but to a considerable

degree the efficiency of the entire steam-turbine or gas-turbine

installation is determined.

Before turning directly to the examination of the experimental

data, let us explain the possibility of the increase in the

efficiency of turbines with the partial utilization of the energy

flow leaving the last stages.

In general with the diffuser branch duct the process in the

turbine can be depicted in the is-diagram by lines 0-3-4-5 (Fig.

7-5). Here line 0-3 corresponds to

the expansion of flow in the flowing
0a part, line 3-4 depicts the process

of compression in the branch
connection, and line 4-5 expresses

z . the loss with the outlet velocity

in the shear of the branch connec-

tion. With respect to this process
"H 0 represents the available

enthalpy drop (according to pressure

in the outlet section of the

branch connection; H' 0 - actual
i• available drop on the turbine

determined from pressure O2 after

Fig. 7-5. Thermal process the last stage; Hi the drop used;

In an is-diagram for a H* - droD at zero outlet speed;
turbine with a diffuser i
nozzle.
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However, the axial and diagonal e~xhausts are used basically

for transport and low-power stationary turbomachines. In powerful

machines, according to design considerations, in most cases it

is necessary to discharge the working medium at right angles

to the rotating axis, using for this highly diverse desigh schemes.

The simplest is the design given in Fig. 7-2a, where the

special organization of flow is generally absent. The air drag

of the branch connection proves to be high, since in it a signi-

ficant place is occupied by zones of three-dimensional separation,

which are the source of the origin of vortex formations. The

latter, in moving together with the flow, will narrow the

effective flow passage area, induce additi.onal velocities, and

thus create the basic component of aerodynamic losses. !By

measuring the velocity field in the outlet section of the branch

connection, it is possible to note that the area with the positive

velocity component F2, as a rule, is distinguished little from

the area of the outlet of flow from stage F1 , and it sometimes

proves to be even less than the latter, although geometrically

area F 2 is 2-3 times more than area F 1 .

Hence naturally appears the tendency to arrange the flow in

order to expand the effective output area of the branch connec-

tion, having approximated it to the geometric. The simplest

solution by this means is the use of various guide vanes and ribs.

Such measures usually lower the total losses by 10-20% but do not

solve the problems, since they become the source of additional

frictional losses, and at the best the pressure after the stage

proves to be close to the pressure in the shear of the branch

connection. In other words, when using guide vanes and ribs

it is possible to create a branch connection the nydraulic losses

of which would be covered because of' the kinetic energy of flow

leaving the last stage of the turbine. Problem is to partially

convert this energy into the potential energy of pressure.
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h - the drop equivalent to the kinetic flow energy after the

la~t stage, and r, - the coefficient of the recovery of kinetic

energy in the branch connection.

By estimating the relative blade eff of the turbine no.•

as the ratio of the used drop to the available, we obtain

jH= H*i - hf.t

Hence

"o -*3.C
S"I (7-1)

In formula (771) n* - blade eff of flowing oart with theO.J1

complete use of the outlet velocity; B.C = h .c/H'0 - the

coefficient of losses with the outlet velocity. The last value

refers to the turbine and is calculated in portions of the

available drop on the turbine, while the coefficient ý and,

connected with it, the total loss factor n = 1 - refer to the

branch connection and are expressed in this case in the portions

of output energy of the turbine h Bc. Having replaced 9 bj %n'

we obtain

""-(- ) "(7-2)

Expression (7-2) allows examining the effect of the exhaust

duct on the eff of the turbine at various values of coefficients

4n and c .0. On Fig. 7-6 curves are olotted of the change in the

eff no.1 deoending on 4 for varioug values of the coefficient

* r wher 0' 0.9.

nl 0.3
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Fig. 7-6. Dependence of the relative blade eff of a turbine uoonlosses with the outlet velocity and on the total loss factor ofthe branch connection.

From curves in Fig. 7-6 it fcllows tLat with the improvement
in the aerodynamic characteristics of the branch connection, a
noticeable increase in the eff of the turbine takes pDlcý Thus,
for instance, by estimating the losses with the outlet speed
from the turbine at 5%, we obtain with the reduction in the
total loss factor of the branch connection 3 times an increase
in the eff of 3.5%. This gain considerably increases with an
increase in the outlet velocity and when • SC = 10% comnrises
about 71.

For Dowerful steam turbines the loss with an ctlet velocity
with respect to the whole available enthalpy drop varies from
"1.5 to 3.0%, which allows with the reduction in the coefficient

411 of 1.3 to 0.7 ircreasing the eff by 1-1.5%. The absoluteincrease in the power of turbine installation in this case is
proportion to the increase in the eff and comprises
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When X, = 200-1000 MW, ANi = 2.2-12 MW.
4.

For a representation about the order of losses with the

outlet velocity in contemporary turbine installation Table 7-1

gives for different units data on the power, steam parameters

and the absolute valve of losses with the outlet velocity h
B.C"

Table 7-1.

(1 2)- (4)
%,w 1T .111

-C ____ M___ (4111 )1

BKT-100 100 535 90 0,035 8,2 ' XrT3
BK-100-6 100 535 90 0,035 11,4 J1M3
HrBK- 150 150 565 130 0,03 9,9 XFT3
nl3K-200 200 535 130 0,035 8,6 JAM3
K.300-240 300 565 2.10 0,035 6,4 xrT3
(K-300-240 300 565 2.10 0,035 8,2 JiM3

2)"0ou X'.o 8 (5) 250 593 247 0,035 22,5 BecTuiray3(14)
9;i1l'cToy'i •N 1(6) 325 650 352 0,035 7,7
6 .'.o 1 (7) 500 566 247 0,052 7,5 .)KIHH
Tamucpc KpHK X2 4(8) 600 538 247 0,052 5,0
3y.a Paii X2 1 (9) 900 538 247 0,052 8,0

KeiýcoyIi M, 1, 2 (10) 900 538 258 0,066 6,5
Kapuiimu.a N. 1, 2(11) 615 535 247 0,035 7,0 BCCTiray3 (14)
Yi'iiovc KpifK .\ 7(12)500 566 170 0,052 10,5 X)XH H
Ywi Kayvri i.o 4(13) -530 538 170 0,035 10,5

KEY: (1) Type of installation, (2) Power; (3) Steam
Parameters, (4) Factory -c manufacturing firm, (5)
Avon No. 8, (6) Eddistune No. 1, (7) Breed No. 1;
(8) Tanners Creek No. 4, (9) Bull Run No. 1, (IJ)
Keystone No. 1, 2, (11) Cardinal No. 1, 2, (12) Widows
Creek No. 7, (13) Will County No. 4, (14) W'-tinghouse

Designations: R12.1 = Leningrad Metal Plant; XFT3 =
Kar'kov gas Turbine Plant; ,MHHH = unknown; 1iam = MW;
am = at; =.A,,? cal/kg.

Thus, the working out of bran ] ducts can allow considerably

increasing the eff of turbine at the nrescribed value of outlet

losses or ncticeably increasing the outlet speed at an Jnvariable

level of eff. The last problem can be of Interest for gas turbines

of maximum oower when it is necessary to rrovlde maximum volumetric

flow rate through the last stage.
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Let us examine now the possibilities of the conversion of

kinetic flow energy into poetential energy in various diffuser

elements. For this ý,,,pose Fig. 7-7 gives values of total losses

depending on the M number for various diffuser systems. The

best prove to be conical ciffusers for which rn has a value of

the order of 0.25-0.3, wheizýas for the remaining diffusers

In = 0.35-0.6. Ine given results indicate the suffi2iently high

efficiency of the inherent diffuser element.

17,8
41 T 7 SII

.01

0,2 0,3 0, 6;5 Ol 0,7 18

Fig. 7-7. Dependence of total losses in various diffuser systems
upon the M, number. 1 - conical: 2 - annular; 3 - annular with

radial turn; 4 - axiradial; 5 - branch connection with an obliquely
cut diffuser; 6 - branch connection with a radial diffuser and
guide vane at the outlet; 7 - branch connection with an axiradiaJ
diffuser.

However, in the system of the branch connection the operating

conditions of the diffuser noticeably deteriorate, and the
efficiency of the entire branch connection deoends upon the method
of the removal of the flow after the d ffuser element. Thus, if
the annular diffuser with radial turn has losses of tVe order
of 50$ (curve 4 in Fig. 7-7), then with its joint operation

with the discharge housing of the branch connection the magnitude
of losses increases to 70-80%, and with an unfavorable outline
of the contours of the housing this magnitude is of the order of

100-130%.
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Such a sudden increase in the losses is explained by the

fact that the flow, falling into the composite housing, is very
unevenly distributed over its exit section. Rather often •ne

effective area of the exhaust F290 (area with a positive value

of the velocity) comprises a total of 50-60% of the geometric

area. Furthermore, when the special arrangement of the flow
does not exist, on the path from the outlet section of the diffuser

to the outlet section of the branch connection are formed zones
of intense vortex currents. At a rcsult losses of the housing,

which consist of internal losses and losses with outlet

velocity, prove to be of the same order, and sometimes exceed

losses in the inherent diffuser element. It should be noted that

due to the sharp reduction in effective area, in a number of

cases in the balance of the losses the basic portion is comprised

of outlet losses.

In accordance with the considerations discussed above, for

• 1 the improvement in branch connections one should pay great a

attention to the arrangement of flow in the composite housing.
In this case, however, it is difficult to indicate how many

general rules of the design of branch connections there are, since
their shape and dimensions are closely connected with the

construction of the entire installation, and their possible

changes are extremely limited. As a result the branch connec-
tion of each new installation requires a prolonged and laborious

working out.

In connection with that expounded at the Department of

Steam and Gas Turbines of MEI (Moscow Power Engineering Institute),

an attempt was undertaken to develop the branch connections

having satisfactory characteristics with the simplest shape of

thE composite housing.
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To a considerable degree the stated purpose was achieved

because of the use of diffuserseobliquely sheared in the direction

of the exhaust. This simple change, which is that the external

cone of the annular diffuser will be cut at a certain angle y

to the longitudinal axis of the machine (see Fig. 7-2b), allowed

approximating the aerodynamic characteristics of the branch

connection to the characteristics of the best diffusers (see

§ 7-3).

Curve 5 given in Fig. 7-7, obtained for the same branch

connection as that of curve 7, but with the shear of the external

cone at an angle y = 150, visually indicated the noticeable

reduction in losses whose magnitude is of the order of tn = 55-60%,
whereupon these values are preserved for different variants of

the composite housings.

The skew shear of the external cone ensures an almost free

""utlet of flow from the diffuser directly into the outlert section

of the branch connection, which expands the effective area of the

exhaust. Furthermore, the flow which leaves the branch connection

almost over the whole exit section creates an ejecting effect,

which ensures the reduction in internal losses in the housing.

Both these reasons substantially raise the efficiency of branch

connections with obliquely sheared diffusers.

Since the examined way for the improvement in exhaust ducts

of GTU requires in practice no changes in design of installation,

it is possible not only to use it extensively in the designing

of new turbines but also to use it in the modernization of the

operating gas turbines.

In certain cases the overall dimensionis of the installation

do not allow using in the exhaust system annular diffusers with

"radial turn and it is necessary to replace them with more compact
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axiradial diffuscrs. The efficiency of the latter also proves
to be high if we select the optlmum geometric relations. However,

a large number of free geometric parameters impedes the designing

of such a diffuser element.

Furthermore, with a radial diffuser it is considerably more

complex L organize a one-way exhaust from the turbine with

minimumlosses In the exhaust duct, since the flow after the

stage is turned at first 900 'relative to the axis of the turbine

in th radial qiffuser and then in upper part makes one additional4!

900 turn in the transition into the housing. These two successive

turns give rise t 9 the formation of stable vortex filaments, which

lowpr the effective area and increase the internal losses in the

branch connection. As a result branch connectiops with axiradial

diffusers ra.-ýly have losses le'ss than 80-85%, although by means
of a different location of the separating ribs inside the composite

housing it succeeds in sometimes obtainin. -itisfactory results.'

The investigations conducted at MEI showed that the efficiency

of the indicated branch connections can be raised' if directly in

the outletse'tion ofthe radial diffuser a guide vane is in
installed with compressor profiles, which ensure in the left

and right halves of the housing the turn of flow in the direction

of the outlet section of the branch connection. The test data

of the examined system represented in Fig'. 7-7 by curve 6 show

that also in this case it proves to be possible to obtain in'

the branch connection losses at a level of 50%.

Thus, according to economic data both variants of the improved

exhaust ducts are approximately equal.

Besides the examined designs, for turbines of' maximum power

"multilayer" diffusers can be useful. The variant of the branch

connection with such a diffuser is given in Fig. 7-8. The basic

359



feature of such a design is the replacement of the general diffuser

by the system of separating annular channels, each of which is

made with optimum I'lare angles and moderate expansion ratios.

Fig. 7-8. Diagram of a branch
connection with a "multilayer"

diffuser.

The effectiveness of the system in question substantially

depends upon the law of the change in the inlet areas Fli over

the radius. As was shown above (see Chapter Five), the
preservation of value F li constant in each diffuser can lead to
a substantial increase in losses with a decrease ii. 12 /D, since in

this case the perimeter of the fairing increases while maintaining

the invariable available energy. However, if with a transfer to

a smaller dimension 12 /D F 1 is simultaneously increased. Thereby

increasing the available kinetic energy at the inlet, it is possi-

ble to obtain rather high results at small values of 12 /D. Thus

the experimental data given in Fig. 5-1 show that in this case a
decrease in I/D form 0.3 to 0.15 gives a rise to an increase in

losses by a total of 3-5%.

- In the case of the use of "multilayer" dffusers, good

results can be achieved if in each channel an approximately equal

absolute inlet height I is maintained.

Returning to the question of the effect of outlet ducts

on the efficienoy of the turbine, let us say that the obtained
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results allow raising the eff by 1-2% with a fixed value of outlet

energy losses or increasing the outlet velocity with a fixed

eff level.

In the latter case 4t appears possible to increase the gas

flow through the stages of maximum dimensions by 30-40%, having

raised approximately in the same ratio the power of the entire

turbine.

After a brief survey of the possible designs of exhaust

ducts, let us turn to the detailed examination of each design

separately.

§ 7-2. Exhaust Ducts with Axial Annular Diffusers

Exhaust ducts with axial annular diffusers are most frequently

used in gas-turbine installations. The typical such branch

connection, given in Fig. 7-2b, consists of an annular diffCuser

1, rotary shield 2 and composite nousing 3.

For the maximum use of the kinetic f2ow energy which leaves

the last stage of the turbomachine, it Is necessary to provide

quite definite geometric relations between the indicated elements

of the branch connection. With this one should consider assigned

the dimensions of the last stage, which is characterized by

the dimensionless mean diameter e = D/Z 2 (referred to the height

of the rotor blades 12), and the selection of remaining dimensions

should be produced from the condition of minimum losses and

permissible overall dimensions of the branch connection.

The solution to the stated problem today is possible only

empirically, and this gives rise to the necessity for the

individual development of ý branch connection with a change in

the dimensions of the last stage of the turbine.
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Conducted at MEI was a series of tests of exhaust ducts with

axial annular diffusers at various distances between shield and

the diffuser and different values of e, which allowed explaining

the role of this parameter and establishing the effect of the

rotary shield on the magnitude of losses with the fixed simplest

construction of the housing 3 [28].

Table 7-2 gives the range of the changes in geometric

parameters of the t.sted branch connections, which encompasses

the majority of the real dimensions which are encountered in

gas-turbine construction. This range is so close to the natural

range of the mode parameters M1 and Re 1 .

Table 7-2

D1I* ,3 L1II3 Re&

4 1-.7 4,7-8 0,15-0,6 (0,5÷3).105 2,22
6 1-6 6,7 0,15.-0,4 (0,5-2).105 2,21
8 1-6 6,7 0,15-0,3 (0,5- 1,5).103 2,20

10 1-6 6,7 " 0,15-0,5 (0,5+I,0).103 2,15

When evaluating the efficiency of one or another system the
total loss factor ýn' calculated with respect to the kinetic
energy at the inlet into the branch connection was used.

Since the efficiency of the branch connection is determined
4, to a considerable degree by the diffuser element, let us begin

examination from characteristics of the annular diffusers used.

According to Table 7-2 the diffusers had an approximately
equal expansion ratio, equal to n2.2, and an equal relative
length of • = 6.7, which corresponds to the angle a:zKB = 7-80.
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The accepted dimensions are close to the optimum but should

ensure the coefficient of recovery of pressure at a level of

75-60% (the total losses in this case will be ,= 25-40%).

However, dith the installation of the turning shield losses

in the diffusers are changed and depend upon the distance between

the outlet section and the shield 14. The nature of this

dependence can be Iudged by the curves in Fig. 7-9a, where is

presented the change in total losses depending on the relative

distance for different values of 0.

4C

,42-

018.

11

0,4-4;

ON --

a) b)

Fig. 7-9. Variation in the total loss factor cn depending on

I and e = D/1 2 for annular diffusers with a shield a) for branch

connections b). 1 - 0 = 10; 2 - 0 = 8; 3 - 0 = 6; 4 - =4.

As one would expect, with a decrease in distance t

irrespective of D/I- a continuous inerease in the losses occurred,

since for nondetached conical and annular diffusers the installation
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of the shield should give rise to additional losses connected

with the turn of the flow. The magnitude of these additional

losses continuously increases with the approach of the shield

to the diffuser, and at small values of 14, when the circular

area F3 becomes commensurable with the area F 2 (see Fig. 7-2b),

a sharp increase in not only internal but also outlet losses should

take place. As a result at small values of T4 it is possible

to note an intense increase in the total losses.

The indicated dependence can be different if we use short

annular diffusers with a large expansion ratio, for which, as

is known F--4], the zone of optimum values ¾4 exists. However,

* even in this zone the minimum value of losses in such systems

proves to be high. Certain data, which estimates the effect of

the relative length L, will be given below, and let us now

examine the operation of nondetached diffusers together with a

housing.

Results of the tests given in Fig. 7-9b indicate that the

installation of the h.asing substantially changes the nature of

the dependence of losses upon the nondimensional distance 14.

First with the approach of the shield the losses increase and

more intensly than without a housing. Then when 14 = 3.3 the

coefficient Cn reaches a maximum value and a further decrease

in 14 leads for small values D/1 2 almost to a critical reduction

in the losses (curves 3, 4), and for large D/1 2 the losses are

maintained constant (curve 1). For all the tested branch

connections the zone of minimum losses corresponds approximately

tc the identical value T4 equal to 2.2.

When T 4 < 2.2 losses begin again to intensely increase

and the effect of the housing is decreased. The degree of this

effect in the whole range of distances T4 can be Judged by the

curves in Fig. 7-10, where has been given the differences between

losses in the branch connection and its diffuser system with a

different location of the turning shield.
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Fig. 7-10. Effect of the
. presence of a housing on losses

4- Iin the branch connection.
1 e = 4; 2 - e = 6; 3 - e = 8;
4 -o = lo.

0 1 6' 7

As a whole the effect of the housing proves to be very

importanL but not monotonic. With the approach of the shield to

the diffuser the portion of the losses in the housing increases,

reaching at 4 = 3.8 a peak value equal to 40% for 0 = 4 and

62% for 0 = 10. Then A4 falls and comprises at T= 1.8-2.0

for the same values of 0, respectively, 12 and 47%. A further

decrease in 74 gives rise to a certain increase in A n, and

then the effect of the housing again begins to be reduced.

The obtained dependence has an important practical value.

Thus, if the distance 14 in the branch connection is selected

in the zone of maximum values A4n by means of treatment of the

composite shell, it is possible to attain a substantial reduction

in the losses. However, ir. nost cases such means gives rise to

an increase in the overall radial dimensions of the machine.

At the same time from the curves 't follows that the improvement

in the aerodynamic characteristics of the branch connection can

be achieved by the simple decrease in axial distance 1 4 This

means is especially effective for small relative diameters, but

when 0 = 10 the advisability of the transfer from T14 = 3.0-3.5

to T 4 = 2.0-2.5 is obvious, since it gives rise to the decrease

in the overall axial dimensions without an increase in the total

losses.
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If in the initial branch connection 4 = 2, then at small

t...e trea-trent of the zhaell Droves to be practically aiimless:

in thi:; ca.;e the basic portion of the losses are in the d:"fuser

:;.y::ter,, and t?,e portion of losses in the housing comprises,

inzignificant magnitude.

The exarmined effect of the houszing is connected with the

zoecific featurec of the flow in branch connections width a one-way

exhau:; t.

In fact, at large distances I the flow from t1)e upper,

44part of the branch connection is able comparatively easily to

turn ts the side of the outlet section, considerably disturbing

the zymmetry of the flow. With the approach of the shield to the

diffuser the asymmetry of the flow substantially increases, which

itive: rise to a noticeable increase in the resistance of the

branch connection. However, thus far resistance on path 1 I

(zee. Fig. 7-2b) is less than the resistance being exerted by

the clearance l5 on path II, and the main flow from the upper

part of the branch connection is superimposed on the flow in

it:" lower half and moves not along possible oath II but along

the path I, substantially deteriorating the outlet conditions.

With the equaL'ty of the resistances in question the losses

reach an extreme value. This mode is characterized by the erratic

operation of the branch connection, since now the exhaust from

upper half can occur both on path I and path II. The transition

to such a mode is accompanied by standard noise of variable

intensity, and is clearly recorded.

A noted fact should be kept in mind, since the unstable

mode is accompanied not only by a noise effect but also leads

to the fluctuation of pressure at the inlet Into the branch

connection, which can have very serious consequences from the point

of view of the strength of the blades of the last stape of the

turbomachine.

366

N.



of thfurther displacement of the shield to the outlet section
io 'f the diffuser ensures the removal of flow from the upper part

of the branch connection along path II, the resistance of which

proves to be less than the resistance of path I. As a result the

effective area of the branch connection at the outlet (area with

a positive value of the flow rate component) noticeably increases

and the conditions of the removal of flow from the lower part

S* improve, since now on path I a smaller part of the working

medium is discharged.

The indicated reasons causes a reduction in the total losses

whose magnitude approaches losses in the free diffuser system,

This reduction occurs until area F3 in magnitude is of the same

order as that of area F2 . From this time on, the decrease in

dimension i4 gives rise to a sharp increase in losses induced

by the reduction in the expansion ratio of the diffuser system

of the branch connection. In these modes the effect of the housing

is again decreased.

For the clarification of the role of relative diameter

e = D/1 2 , let us examine the dependence of losses at a constant

distance T4'upon this parameter. The curves given in Fig. 7-11a

for the diffuser system and in Fig. 7-11b for the entire branch
connection as a whole indicate that the effect of this parameter
is noticeable even for the free annular diffuser. Thus, the
change in 0 from 4 to 10 gives rise to an increase in losses

of 5% (curve 1 in Fig. 7-11a). With the installation of the

turning shield this increase is 15-33% (curves 2 and 3), and in
the brancn connection it reaches 55% (curve 1 in Fig. 7-11b)
and depends upon the distance 14, decreasing with its increase.
In this case the effect of the housing is simultaneously

decreased.
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Fig. 7-11. Effect of the dimensionless input diameter 0 =DZ

on coefficient ;n" a) diffusers: 1 - T4= •; 2 = T4=3.3;

3 - •4= 2; b) branch connection; 1 - T4= 2.2; 2 - T4= 3.3;
3 - $4= 5.0; 4I - -4= 6.0; c) 1 - -4= 2.0; 2 - T4= 5.7.

Thus, if in the zone of optimum values •4an increase in

S from i4 to 10 gives rise to an increase in losses in the housing

of 35% (curve 1 in Fig. 7-iic), then for •4= 5.7 this increase

is 9-10% (curve 2).

Such a great effect of the parameter 0 is connected with

the fact that its increase leads as a rule, Fo an increase tn

the totai surface streamlined by the flow and, therefore, to

an increase in frictional losses. in the free diffuser, as

was already noted, frictional losses increase by 5% (see curve 1

in Fig. 7-1la and Fig. 5-1).
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With the installation of a shield losses for large 0 increase

.even more intensely, since now on the internal genei-atrix of the

diffuser the boundary layer development occurs with an increased

positive pressure gradient, and with the approach of the shield

the possibility of separation of the layer becomes more probable.

The separation flow pattern is indicated by the obtained

level of losses at large 0. It is natural that in this case the

conditions of the flow in the composite housing, i.e., its negative

effect becomes more noticeable.

The tests conducted clearly showed that the optimum designs

of the exhaust ducts are determined by dimensions of that stage

behind which they are installed.

At small 0 and optimum geometry of the diffuser it proves

to be possible to obtain a high coefficient of the recovery of

pressure at limited axial and radial overall dimensions of the

branch connection; in this case the following ratios between the

areas are maintained: F1 :F 2 :F 3 :F11 = 1:2.6:3.5:4.0.

With an increase in 0 the reduction in losses in the branch

connection can be achieved basically because of the treatment of

the composite housing and increase in the axial overall dimensions
or by the method indicated in [100].

By examining the design of the branch connection with an
annular diffuser, it is easy to note that dimension 14 can be
changed not only by means of the movement of shield 2 but also
owing to the use of shorter diffusers, especially when a shield
exists, according to [54], sufficiently high coefficients of the
recovery of pressure in short diffusers are ensured. For the
clarification of this question in the system of the branch
connection three diffusers with different relative lengths were
tested. The test data are given in Fig. 7-12. Diffuser syste•mm
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tested without a housing at almost all distances of t.ýE shield
Swere equivalent (curves 4, 5, 6), and their te,.-.ts together wltlh

the shell showed that the short diffusers (L/Z 2 = 4.7) are

noticeably worse than the long ones (i - 8).

4897v 0-5
4 P

•?I Z , 7 8

a) b) .
Fig. 7-12. Effect of the relative length of the diffuser L/I 2

on losses in tne diffuser and branch connection (o 4).

: -- L 8.0;

2 -- -6.7 losses in branch connection;
3--L = 4.7

4--E= 8.0;

6-'-=I,7; diffuser losses ;

b) "•=2.2; 1 - losses in the branch connection;'2 -diffuser

losses.

Over a wide range of values 14 the change in los5es comprises

10-15%. Such a behavior of the curves is connected with the

unsymmetric flow pattern noted above in the branch connection

with one-way exhaust. The asymmetry of the exhaust noticeably

disturbs the flow in the diffuser, and this _dIsturbance is

greater the less the length of the diffuser.
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It is natural therefore that the installation of the housing

causes a more intense increase in losses in a short diffuser

(curve 3) than in a long one (curve 1), and cnly, at the very

dlose location of the shield (T4 - 2), when the effect of the

external asymmetry is small, and the exoansion ratio of the

diffuser system begins to decrease, do losses in the long diffuser

due to an increase in the streamlined surface prove to be great.

Here one should especially emphasize that the tendency to

move the shield away from the diffuser by means of a dedrease
in the length in its generatrix can lead not to a decrease in

Losses but to their, great increase (up to 25% at'small e), if

the initial distance T is located in the zone of optimum values.

Thus, a decrease in dimension because of the length of the

diffuser is inexpedient if, of course, this decrea~se is not

dictatedby the necessity of a reduction in the axial overall

dimensions of the machine. In the latter case an increase in

angle a up to 15-180 is admissible witle maintaining the invariable

expansion ratio of the diffuser.

* The conducted analysis of the effect of the basic geometric

parameters on the efficiency of the exhuast ducts refers to

the fixed number M1 = 0.30 (in practice an incompressible fluid).

The effect of'this mode parameter on the operation'of the

diffusers in que3tion and branch connections can be observed on

Fig. 7-13; where curves of the change, in coefficients ýn for

brar,-h connections with different D/1 2 depending on M1 are

given.

it is poss!'ble to note that in all cases with a speed gain

a certaini increase in losses ocqurs. This is connected with

the fact that in this, case with an increase in M1 numbers an

4 increase in the positive pressure gradient and an increase in the

available separation zones occurs.
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a7, ' Fig. 7-13. Change in diffuser
losses and branch connections
depending on MI number.

WWI I ~- 9= 4; 1.-.=
3-0=6 ' =2 (diffuser);

_____ 2-9=4
4-6=6 14I.,2 (branch connections).

Since in gas-turbine installations the MI number does not

exceed 0.3-0.5, it i•s possible to consider that the relations

obtained above between the geometrical dimensions of exhaust
ducts with annular diffusers can be without great error assumed
the basis for their design. It should be noted that in the
exhaust systems in question with limited axial and radial overall
dimensions, the negative role of the composite housing is very

significant and the average level of losses in the branch connection

comprises a magnitude of the order of 65-80%. In connection with
this the creation of a diffuser system which adequately operates

with simplest form of the composite housing is advisable. As
was already mentioned above, good results in the solution to such

a problem can be obtained as a result of the use of obliquely cut
diffusers in the direction of the outlet.

§ 7-3. Exhaust Ducts with Obliquely Cut Diffusers

The text data of exhaust ducts examined in the previous

section with annular diffusers showed that the losses in them
substantially depend upon the correct correlation between the
basic geometrical dimensions. On the basis of the data given
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above, such dimensions can be considered as t÷he relative

diameter at the inlet e = D/1 2 and relative u.stances I = /I

and T4 = 4/2 1 (see Fig. 7-2b).

For the given value of e and the fixE, value of 15 the

decrease in the dimension of causes an :ntense increase
in the losses. However, in a certain zor this increase is slowed

down, and for small 0 it is possible to ,-ieicate the region in

which losses with the approach of the s, •-.d to the outlet

section of the diffuser do not increasc, rut decrease.

The dependence given in Fig. 7-9b .s very characteristic for

exhaust ducts with annular diffusers &id clearly shows the effect

of the housing in various positions o0. he turning shield.

The negative effect of the housing can be decreased if

the axial (T4) or radial (T5) dimension is greatly increased.

The first means is usually unacceptable for design considerations,

because for satisfactory results It is necessary to have T4 < 6,

i.e., one should sharply increase 'he overall axial dimensions

of the machine.

A second means is used considerably more frequently [73],

whereupon the obtained gain substantially depends upon the magnitude

of the relative diameter 0 and dimension 1 4"

lInstead of the linear ratios it is more correct to use the
area ratios F4/F 1 and F3 /F 1 . However, since the experimental

data are obtained for the branch connection with the housing,
in which along the circumlrence the dimension 1 remained constant,
in the examination of obliquely cut diffusers we will use ratios
of linear dimensions.
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According to the experimental data obtained at MEI, an

increase in the radial dimension gives a maximum reduction in
the losses when T4 = 3-3.5 and a minimum result when T4 = 2.2,

and the difference between these values is continuously reduced

with an increase in 6.

Test data of the branch connections at different values

of T5 are given in Fig. 7-14.

0,7

7

Fig. 7-14. Effect of radial dimension 5 on the efficiency of

exhaust ducts. 1 - 5 = 1.0; 2 - 75 = 1.5; 3 - 75 = 2.0;

;4 - -5 = 3.0; 5 - 5 - 4.0; 6 - 5 (6 = 4).

Thus, for tk, symmetrical annular diffuser and one-way

outlet the reduction in losses to a certain degree is connected

with an increase in the overall dimensions of the bran\'h connection

and frequently requif~es a complex shaping of the composite

housing. At the same time, by rejecting the symmetrical cl"fuser,

it is possible to obtain a noticeable red-ction in the .

having kept the remaining elements of the branch connection fixed.

In this direction the use of obliquely cut annular diffusers in

the direction of the exhaust was quite effective [29). The

diagram of the branch connection given in Fig. 7-2b remains

essentially without any changes, and the plane of the output
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of flrow from the diffuser is arranged by means of the shear of
external cone at angle y to the vertical plane.

It is interesting to note that the indicated unsymmetric
diffuser during operation with a shield gives with close

location of the latter a noticeable reduction in losses. The
aforesaid is clearly confirmed by the test data given in Fig.
7-15a. If for the symmetrical diffuser (curve 3) the reduction

in the dimension of I4 from 6 to 1.3 caused an increase in
losses of 60%, then when a shear exists, the same change increased
the losses at a total of 18% (curve 4). Approximately to the

same degree losses in obliquiely cut diffusers and at other
values of e increase.

Curve 2 given in Fig. 7-15a shows that with the introduc-

tion of an oblique shear losses in the branch connection were
decreased in practtcally the whole range of values T4. Moreover,
when 14 = 1.3 the effectiveness of the branch connection with

a diffuser having a skew shear was higher than in the branch

connection with a symmetrical diffuser by almost 15%. Therefore,
there is the real possibility of using the kinetic energy of flow
which leaves the last stage of the turbine without an increase

in the overall dimensions of exhaust duct.

Representation about the magnitude of losses in the indicated
:;ystemz can be obtained from Fig. 7-15b and c, where coefficients
Cn are given for four branch connections with obliquely cut
diffusers which differ by parameter 0. As a whole all the
curves are arranged almost equidistantly, although the level

of losses, just as for the insulated diffusers, proves to be
higher with an increase in 0.
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Fig. 7-15. The change in total losses in branch connecticns
and diffusers depending on the relative distance T4. a)

1 branch connection with an annular diffuser (e = 8; n - 2.4);
2 branch connection with an annular obliouely cut diffuser
(e = 8); 3 - annular diffuser (0 = 8; n - 2.4); 4 - annular
obliquely cut diffuser (0 = 8); 5 - shortened diffuser (0 = 8;
n = 1.7); 6 - branch connection with the shortened diffuser;

.. :. branch connections with obliquely cut
,.- 0 , diffusers:

c) -i" .... ~ branch connections with annular diffusers
7 - without section.

branch connections with obliquely cut
"diffusers.
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One should emphasize, however, that the introduction of
shear noticeably lowers the intensity of the increase in losses
in the branch connection with an increase in a. If for the
normal sysem (see Fig. 7-11b) an increase in 0 from 4 to 10 gives
rise to an increase in losses from 70 to 108% when T4 = 3.3
(curve 2) and from 52 to 105% when T = 2.2 (curve 1), then in
the branch connection with an obliquely cut diffuser (Fig. 7-.15c)
the same increase in 0 causes an increase in losses from 55 to
70% for 4 = 3.3 (curve 6) and from 45 to 68% for ! - 2.2

(curve 8).

Thus, the branch connection ensures fhe use of 30 to 55%
of the input kinetic flow energy, and ',he effect of the shape
of the composite housing proves to be tnsignificant.

The absolute reduction in losses in branch connections with

obliquely cut diffusers A~n = 4n-4n.c, where ýn - total losses
in the initial variant and ;nrc - in.the examined variant with

shear (Fig. 7-16), proves to be more substantial than in intrinsic

diffuser systems.

7

0)b- -

422

Fig. 7-16. Absolute reduction in losses in branch connections in
the transition to obliquely cut diffusers. 1- e = 10; 2 - 0 = 8;
3- 0 6; 4 - e = 4.

377



Thus, if the use of an oblique shear in a diffuser with'

a turning shield at e = 10 increases its effectiveness by 20%

at T 4  2, then in the system cf branch connection the losses

at 8 = 10 and T4 = 2 are lowered by 38% (curve 1 in Fig. 7-16).

These data indicate the fact that the effectiveness of the

branch connection with an obliquely cut diffuser increases not

only because of the improvement in operation of the diffuser but

also owing to the more rational arrangement of flow in the

composite housing.

In the usual scheme the flow coming out of the diffuser

at a distant location of the shield turns directly into the

direction of the outlet section not only in the lower but also

from the upper half of the diffuser, moving along path I (see

Fig. 7-2b). With the approach of the shield the resistance for

this part of flow continuously increases, and.the flow fropa the'

upper half of the diffuser begins to flow not only along the path

I, but also along path II. It is natural that the larger the

dimension Z5, i.e., the further composite housing is arranged,

the less resistance the flow in path II undergoes, and, therefore,

the less intensely losses with the approach of the shield increase.,

The comparison of the total losses ' obtained in the

branch connection with increased dimension 5 (see Fig. 7-14),5
and curves 1 and 2 in Fig. 7-15a shows that in this case the

nature of the change in the losses proves to be approximately

the same as that for the branch connection with an oblique shear.

In other words, the flow in the composite housing with an

obliquely cut diffuser and with increased radial dimension Z5.

from a qualitative side proves to be identical.

In fact, with the introduction of an oblique shear the flow

after the diffuser in the lower part fills the greater part of

the passage disciarge area of the branch connection, sharply
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increasing the area with a positive flow component. As a result,
t.tgether withithe r~duction in resistance for the flow coming

S, out of the ppperb part of the diffus~er on path I, resistance on

Spath I! i noticeably reduceds since with an.increase in the

degree of filling of the outlet section the ejecting effect of

the flow nhich leaves branch connection increases.

""ith the approach of the shield the air drag in path II

for flows in thewupper part of the diffuser first approaches the

re':iztance on, path I, and then it becomes less than the latter.

The indicated redistribution of resistance explains, especially,

the certain reduction in the losses in Fig. 7-15b at T4 = 2-3.

By estimating the role of the-oblioue shear, it is advan-

tageous to examine the Operation of the brancn connection with
a shortened diffuser, since in this case, while maintaining
the external overall dimensions distances 14 and Z5 noticeably
increase, which on the who2e lowers the air drag of the subsequent
channel. Test data is given in Fig. 7-15a, where '-urve 5 refers
to the shortened diffuser and curve 6 - to the corresponding

branch connection.
I I

"As a L;hole the coqducted change did not give positive

results, because simultaneously with an increase ir Iistance
1 there occurred the displacement of the extreme value of

-- locses to the side of large values uf 4, which was caused by the

decrea'e in 'the resistance in the upner part of the branch
co.nnection due to an increase in the drmension I

Furthermore, the straight shea- of the diffuser decreased
its expansion ratio from 2.2 to 1.7. As - result the oiutput
,losses were increased by 12%, and the total 'x. 3es w-rre

respectively increased (curve 5.. n thl-. -ase, v ily,
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a portion of the losses in the composite housing was increased,

since at smaller expansion ratio of the diffuser ti. flow after

it occurred with higher rates.

Thus, from a comparison of the shortened diffuser with an

oblique shear the obvious advantage of the latter follows,

The results examined above were obtained at the fixed

value of the angle of shear y = 180. It is possible to expect

that the magnitude of the angle should have an optimum value,

since with an increase in y, on the one hand, the conditions

of flow after the diffuser are improved, and, on the other hand,

the exparuon ratio of the diffuser is lowered, and in the limit

from th, *;-wer it is possible to shear completely the conical

surfa',•-.

A study of the effect of angle y confirms the inferred well.

Figure 7-17 gives the relative decrease in losses in the three

branch connections with an increase in the angle of shear y.

The tested branch connections in the initial variant were

distinguished only by the expansion ratio of the diffuser at

constant length. Therefore, in this case the change in the

expansion ratio was accomplished by a change in angle a (see

Fig. 7-2b). The qualitative nature of the obtained curves was

approximately equal for all branch connections. First with

an increase in angle y a reduction in losses occurred; with

angle y of the order of 18-220 the losses reached a minimum

value, and with a furthe- increase in the angle of shear they

increased.

However, the quantitatively effect of angle y was different

for different diffusers. With a large expansion ratio (n - 2.8)

the diffuser cut at an optimum angle y led to a decrease in
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losses of 10% (curve 1), whereas ':hen n = 2 2.urve 3) a similar

.hear imrarved the efficiency up •o 20%. This distinction is

exp~ained ty the fact that for the large value of n the velocity

in the outlet section of the diffuser is small, and the improve-

ment in outlet conditions of flow affects the total losses to a

lesser degree than with moderate values of the expansion ratio.

¶ I'd~

0133

Fig. 7-17. Effect of the angle of the :;iear of the diffuser y
on the relative reduction in losses. 1 - n = 2.8; 2 - n = 2.4;

-n= 2.

Let us note that at the small relative lengths of the

external cone (L/D 1 < 1.0, where D1 - diameter at the inlet'

the shear of the diffuser at an optimum angle cannot be accom-

plished, because in the lower part the shear plane emerges beyond
the limits of the diffuser. In this case it is necessary to

decrease the shear angle y in such a way that the shear plane

intersects the lower generatrix on half o!' the initial length L.

The indicated limitation enters into force i±"'

L/D, < 0,8 V,4,

where n1 - the expansion ratio of the external cone which forms
the annular diffuser.
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Otherwise the fulfillment of obliquely cut diffusers with

,,ttimum anglez of shear equal to 15-20 does not create srecial

dlifficultie:;.

The examined results have a practical importance, since

they allow obtaining the acceptable values of coefficients of

pressure recovery at limited overall dimensions and simnle

,ornfiguration of the branch connection and allow comparatively

si~ply reconstructing the exhaust ducts of the operating

inritallationrs, the air drag of which exceeds the dynamic head

of the flow at the outlet from the last stage. The obtained

values of the total loss factor for branch connections withS

obliquely cut diffusers show that with such reconstruction it

is quite realistic to increase the absolute value of the eff

of the turbine by 0.5-1%. As a result the increase in the

efficiency of entire gas-turbine installation will be 1.5-2%.

Further from the obtained results theL- ensure quite specific

ways for improvement in the branch connections, and these ways

considerably depend upon the type of the stage after which the

branch connection is installed.

For small values of 0 good results can be achieved with

3the correct selection of the combination of the obliquely cut

diffuser and distance T4, the optimum value of which comprises

on the basis of tests of a considerable series of branch

connections I4onT = 2.2. With an increase in 0, as was already

mentioned above, losses in branch connections increase even at

optimum values of 14 and obliquely cut diffusers (see Fig. 7-15c).

Therefore, here one should focus great attention on the design

of a composite housing, increasing, especially, the dimension
7.

Let us note that since for large value e the mean level

of los:;es is 60-70%, it is advantageous, apparently, in this
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case to turn from axial diffusers to axiradial. Losses in the

latter have approximately the same order, but the overall axial

dimensions are substantially less. Furthermore, by using special

circular grids, here it is possible to attain good results, having

lowered the losses down to 50% [30].
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1III
§ 7-4. Exhaust Ducts with Radial
Diffusers

Exhaust ducts with radial diffusers are widely used in steam

turbines. However, with an increase in the power and dimensions

of the last stage the difficultieq connected with'the selection

of optimum contours of the radial diffuser substantially increase.

At the same time a sharp increase in recent years of .nitary

powerful steam turbines with limited dimensions of the last stage

led to a perceptible increase in the outlet losses. In absolute

values these losses for machines of types VK-150, PVK-200,and

K-300 comprise 6-10 kcal/kg (see Table 7-1). It is natural

that the recovery of even a small part of this energy would lead

to a noticeable increase in the efficiency of tie entire installa:

tion.

However, an increase in the power of the turbines i.s

accompanied by considerable changes in the design of exhaust

ducts. In the majority taken as the basis is the branch con-

nection of the turbine VK-100 [LMZ] (JMS)'Lenir~grad Metal Pl.nt

(Fig. 7-2a), despite the fact that according to restlts of

aerodynamic tests the coefficient of losses of the indicated

branch connection n , depending on the design'features and mode

of operation, varies within limits of 1.2-1.6. Thug, in this

case for the overcoming of air drag of the branch connection

all the kinetic energy of flow which leaves the last stage of

the turbine is expended in the best variant., The reason for

such high losses consists in the absence of the general diffuser

element in which the recovery of pressure could take place.

At the same time an analysis of the change in the flow passage

cross-sectional area snows that on the path of steam flow there

are many local diffuser sections the nondetached flow in which

is practically impossible. Furthermore, the geometric area

sharply increases at the inlet into the branch connection, and
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then is decreased to the outlet section.

The indicated shortcomings were to a considerable extent

eliminatedin the branch connection of the turbine PVK-200 (LMZ),

'where by means of a certain increase in the transverse overall

dimensions of the branch connection, by the introduction of

smooth contours and' by means of the creation of the nonsymmetric

radial diffuser" with the subsequent direction of the flow along

the defined channels bounded by curvilinear ribs, it was possible

to obtain in the effective range ofI velocities the coefficient

4n ,equal to 0.84-0.9 [100].

Similar changes were introduced into the branch connection

of the turbine T-50 CSTMZ] (CTM3) Stalinsk Metal Plant [47].
II

A diagram ofthis branch connection is'given in Fig. 7-18. The

indicated branch connection was tested in detail in MEI, whe-e-

upon the tests were conducted both in air and steam. Since ,

data on steam tests is small, and the results obtained du-'ing

these tests represent a definite, interest, we will discusý them

in more'detail.

In the air tests the common scheme described An [44] was

used. Steam testp were conducted' on an installation whose diagram

is given In Fig. 7-19.

The tested branch connection 1 was fastened to the steam box
2 of the experimental turbine, from which the, rotor was removed.

Thus, the whole system of the feed and removal of steam to the
branch connection proved tobe inside the turbine casing 3,

which ensured the' sufficient density of the entire system and

the most simple method of the removal of steam to the condenser 4.

To maintain the assigned counterpressure to the installation

a three-stage ejector 5 was connected, which allowed changing
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Fig. 7-18. Diagram of an improved branch
connection of the turbine T-50 (STMZ).

U( Z
to -_ I

Fig. 7-19. Diagram of a test stand for the
conducting of steam tests of branch connections.
1 - steam-water mixture; IT - condensate; III -
circulation water; IV - stean.
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over wide limits the counterpressure P 2 and conducting tests with

independent changes in the Mach and Reynolds numbers. Before the

entry into the branch connection a grid 6, which simulated the

turbine stage was installed.

Pressure measurement was conducted by means of mercury

manometers, and the temperature was determined by the thermo-

couples installed in the steam box of the installation. To

determine the flow rate, the condensate by condensate pump 7

was pumped into the gauging tank 8. The pressure in the mouth
of the condenser was determined by means of the averaging of

pressures measured at 14 points of the cross section of the
mouth.

All tests were conducted over a wide range of Mach numbers

at the inlet (M1 = 0.2-0.9) and at various values of the Re 1

number. The coefficients of the branch connection n , obtained

as a result of these tests, are given depending on the M1 and

Re1 numbers in Fig. 7-20. The dependence on the M1 number is

obtained for two values of the Reynolds number (lines 1 and 2).

Plotted here is the curve from results of air tests (curve 3).

In this case separate simulation according to M1 and Re1 numbers

was not provided.

It is interesting to note that the air tests showed the

same order of losses as the steam tests at the number Re = 8.2 x4I

X 10 , but the nature of the change in losses depending on M1
number was somewhat different.

Taking into account that in the turbine the Reynolds number,

calculated according to the diameter of the last stage and rate

at the inlet into the branch connection, is of the order (2-5) x

x l05, when evaluating the quality of the branch connection in

question it follows to be oriented on curves 2 and 3 in Fig. 7-20a
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Fig. 7-20. Dependence of coefficient upon M1 a) and Re b) for

various objects. a; 1 - branch connection of the turbine T-50;
14

Re, ; 4.10 ; 2 - branch connection of the turbine T-50, Re1 ,

- 8.'10 4; 3 - branch connection of the turbine T-50 (air tests);

Re1 - (2-6.5)-105; 4 - conical diffuser (a = 80; n = 2.34); 5 -

variant of a branch connection with a vane and smooth radial dif-
fuser; 6 - variant of a branch connection with a vane and welded
radial diffuser; b: 1 - branch connection of the turbine T-50;
M- = 0.35 (steam tests); 2 - branch connection of turbine T-50;

M1 U 0.15-0.37 (air tests); 3 - conical diffuser (a - 80; n - 2.34);

4 - conical diffuser; MI = 0.13-0.43 (a = 300; n = 2,34).
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i.e., in the effective range cf the velocities (0.5-0.7) M1 the

total losses in the branch connection will comprise a noticeable

magnitude (,n = 0.8-1.0).

From the given curves it follows that with an increase in M1

and Re1 numbers an increase in the coefficients of losses occurs.

As experiments showed, an increase in Re1 number 2 times when

MI = 0.33 (Fig. 7-20b) gives rise to an increase in losses of

28%, and an increase in M1 number from 0.35 to 0.72 when Re,

2'104 causes an increase in losses of 27%.

Let us discuss the effect of M and Re1 numbers in more
detail. Figure 7-20b gives the dependence of the coefficient of

losses for a number of tested objects upon the Re1 number. it

is interesting that in the region of small values of ReI with

its increase there occurs not a decrease but an increase in

losses (curve 1). A certain increase in losses with an increase

in the Re1 number was noted during air tests of a branch connection

(curve 2) in the zone of higher values of the Reynolds number.

For a comparison Fig. 7-20b plots test data of two conical

diffusers with an equal area ratio n = 2.34 and flare angles

a = 8 and 300. In the first diffuser the flow in all the modes

occurred without boundary layer separation, and in the second

one detached flow took place.

The test data showed that increase in Re1 number led to

a decrease in losses in the nondetached diffuser (curve 3) and to

the increase in diffuser losses with angle a = 300 (curve 4).

As was already mentioned above (see Chapter 3), with an

increase in the Re1 number there occurs a certain decrease in

the boundary layer thickness and as a consequence a reduction
in losses. An increase in losses with an increase in Re1 number
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with the appearance of separation is explained by the displacement

of the separation point against the flow, whereupon in the region

of large values of the Re1 number the nosition of the separation

zones is stabilized and the effect of the Re1 number proves to

be weak. That fact that in the branch connection in question

(Fig. 7-20b) with an increase in the Re1 number the losses

increase confirms that the flow'in its elements occurs with

separations.

An increase in the M1 number has a similar effect. Since

with an increase in the Mach number the positive pressure grad-

ients increase, then at large M1 numbers the previous boundary

layer separation and the sharp increase in energy losses occur.

A pressure measurement along the circumference of the inter-

nal contour of the branch connection showed that the resistance

of all the channels is practically identical, the reverse effect

of the branch connection on the operation of the last stage of

the turbine is insignificant.

By comparing the improved variant of the branch connection

with the previous one, let us note that for the turbine T-50

the transition to a new design means the reduction in losses

expressed in power units by 200-300 kW.

Naturally, tha obtained results a:ýe not limiting. In order

to be convinced of this, let us return to Fig. 7-20a, where

plotted is the curve of the change in coefficient tn depending

on the M1 number for a conical diffuser with the expansion ratio

n - 2.34 (curve 4). In comparing these data with data on branch

connections, we see that in the range of high velocities the

distinction in coefficients 4n for the diffuser and branch

connection is 40-60%.
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The reason for the sharp increase in losses in the branch

connection as compared with that in the diffuser with an increase

in the MI number is the fact that in design considerations the

radial diffuser of the branch connection must be made unsymmetric.

If in the upper part of the branch connection the axial

opening of the radial diffuser is small, then in the outlet

section for the provision of normal flow it is necessary to in-

* troduce additional guide ribs. As a whole losses in such an

unsymmetric diffuser are intensely changed with a change in MI

number which is clearly evident in Fig. 7-20a (here in the

analysis one should compare curves 2 and 4, since they were

obtained at approximately equal Re1 numbers).

Furthermore, the presence in the branch connections of

developed ribs, which separate the flow on the outlet section,

substantially increases the rubbing surface and gives rise to

additional losses which are not always compensatcd by that gain,

which gives such an arrangement of flow behind the radial diffuser.

For the clarification of the role of the ribs in the given branch

connection, a determination of the coefficient of losses c' in

whole exit section was conducted by means of probe tests. In
this case the losses were determined not allowing for outlet

losses and were referred to the energy of the completely stag-

nation flow.

Test data are given in Fig. 7-21, where values of the losses

averaged over the height H (see Fig. 7-18) are plotted. For a

comparison the curve of losses, obtained during tests of a branch

connection without ribs is given. A comparison of these curves
visually shows that near the ribs a sharp increase in losses

occurs.

Thus, on the basis of the conducted analysis, it is possible

to confirm that the examined design of the branch connection from
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Fig. 7-21. Variation in losses in the outlet' sec-
tion of the branch connection of the turbine T-50.
1 - branch connection with ribs; 2,- branch connec-
tion without ribs.
KEY: (a) Center of branch connectiop; (2) Sections.

an aerodynamic point of view is not optimum, although it is better
than the initial variant.

The noted shortcomings were eliminated to a considerable de-
gree in the branch connection designed in MEI (Moscow Power

Engineering Institute). Its diagram is given in Fig. 7-22.

The main part of branch connection consists of a symmetrical.
radial diffuser and the subsequent vane diffuser installed at
the outlet from the radial diffuser. The transition to the coup-

ling dimension of the condenser is accomplished by means of a
sudden expansion from the outlet area of the vaned diffuser in its
lower part to the final dimension. To provide for a more uniform
field, in the outlet section of the branch connection an equalizing
grid with a cell with a dimension of 10 x 10 mm is arranged. Such
a design ensures the satisfactory operation of the branch connec-
tion during various modes of operation over a wide range of

velocities.

In this case the basic braking of the flow ir accomplished
in a symretric&l ruial diffuser. The subsequent grid, installed
in the range of reduced ve.acOdties, ensures further braking and,
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Fig. 7-22. Diagram of a branch'connection of MEI with
radial and vaned'diffusers.

most improtahtly, guides the flow into the compc Ate chamber of

the branch connection. Furthermore, a certain additional pressure

of recovery takes place with the sudden expansion of flow at

the inlet into the composite chamber, These design changes led

to a substantial increase inithe aerodynamic characteristics of

the branch connection and provided its stibler operation with

a change in flow rate at the inlet.

Thus, from curve 5, given in Fig. 7-20a, it follows that

over a wide range of velocities the coefficient of losses of

the branch c9nnection was changed in the range of 0.45-0.7, i.e.,

in the given branch connection it was reduced from 30 to 55% of

the kinetic energy of flow which entered into the branch connec-

tion.
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The obtained curve is close to the analogous dependence

for the branch connection of the turbine T-50 taken at small

Re1 numbers. However, since in the turbine the order of the

number Re1  105, we should produce all comparisons with curve 2.

For a clarification of the possibility of making the examined

branch connection welded, tests of a radial diffuser with the

external contour composed of two cones were conducted.

The test data showed that with the correct selection of

nondimensional distance Z4 - '4/12, where 14 - the width of

radial diffuser at the outlet, and 12 - the height of the inlet

section, it is possible to obtain approximately the same values

of characteristics of the branch connection as with a smooth

contour.

A study of the role of the guide vane showed that its in-

stallation increases the degree of pressure recovery by 5-7%,

whereupon the quality of the manufacture of the vane and shape

of the profile weakly affect the total characteristics of the

branch connection. The known freedom 4n the selection of the

type of vane is explal-led by the fact that the main braking

occurs in the radial dif"user, and the portion of losses in

the vane, referred eo the kinetic energy of flow at the inlet

into the diffuser, is small.

§ 7-5. Exhaust Branch Connections
with Axiradiaj. Elliptical Diffusers

The diagram examined above (see § 7-4) of the exhaust duct

with a circular grid installed behind the axiradial diffuser, with

good aerodynamic characteristics, possesses a considerable de-

sign shortcoming. Actually, for the removal of flow behind the

grid with minimum losses, it is necessary to increase noticeably
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the transverse dimensions of the branch conncctlon (Fig. 7-22).

As a result its outlet section takes the form cP Pn elongated rec-

tangle located across the axis of the machine. If for &as turbine

this shortcoming to a certain degree is compensated by a gain in

efficiency, then for steam turbines the elongated recianoular

exhaust duct complicates the joint of the branch connectton with

the existing condensers. Hence there results the necessity ýo

create an economic branch connection with limited transverse

dimensions and adequate shape of the outlet section.

Here it is possible to propose for use as one of the possible

solutions axiradial elliptical diffusers, the minor axis of

which is arranged perpendicular to the axis of the machine in a

horizontal plane. Then while maintaining the design described

in § 7-4, it appears possible to eliminate the shortcomings

noted above.

Before turning to the branch connection as a whole, let us

examine results of the experimental investigation of such

diffusers given in Fig. 7-23.

0,3 Fig. 7-23. Dependence of losses
upon the expansion ratio for
elliptical diffusers. 1 -

a7- a/b = 1.0; 2 - a/b = 0.89; 3-
4, a/b = 0.834; 4 - a/b = 0.722.

2 J j

The dependenaes of the total loss factor upon the expansion

ratio at various relations between the maj- and minor axes of

the ellipse from a qualitative side were identical.
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However, with a decrease in ratio a/b there occurs a certain

increase in losses, and the displacement of the optimum expansion

ratio to the side of smaller values is clearly noticeable. Thus,

if when a/b = 1.0, nofT = 2.8, then when a/b = 0.8, n onT = 1.9-2.0.

Of specific interest is the behavior of the curves in question

in the zone of small expansion ratios, since because of the

limited axial dimensions of steam turbines it is rarely possible

in radial diffusers to maintain the optimum value of n.

In deviLting from nonT to the smaller side, with a normal

axiradial diffuser (a/b = 1.0) we will obtain that when n 1.5

the coefficient of recovery proves to be close to zero ( n 1.0).

At the same time for the elliptic diffuser this magnitude is

preserved at a level of 40%. Such a valuable quality can be

successfully used in the designing of exhaust ducts of steam

tu-bines. One of its possible variants is given in Fig. 7-24.

The aerodynami scheme of this branch connection consists in

the axiradial diffuser 1 (Fig. 7-24a), guide blades 2 (Fig. 7-24b),

a separating "plug" rib 3 (Fig. 7-24c), guide and force ribs

4 and a housing 5.

The basic element of the branch connection, which converts

the kinetic energy of flow into potential energy of pressure, is

the axiradial diffuser, which conbists of two halves separated by

rib 3. In the upper part its contour is outlined by the circum-

ference, and the lower half is made with a considerable side shear,

which allows increasing the free passage area after the diffuser

without an increase in the overall radial dimensions oi the branch

connection,

Entering into the diffuser, the flow is separated by rib 3,

installed on horizontal Joint, into two almost isolated parts,

which subsequ, ntly are connected only in the outlet section of the

branch connection.
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Installed in the radial part of the upper half of the dir-

fuser are guide vanes which turn the flow around In the direction

toward the outlet section of the branch connection. Simultaneously

with this, they are the basic force elements which ensure the
rigidity of the upper half, of t'e oranch connection. The flow

directed thus toward the horizontal Joint by the "plug": rib is
thrown off into the free chambers I and II of the lower half of
the branch connection (Fig. 7-24a).

The removal of the flow from the lower half *of the diffuser

and its distribution along the outlet section are accomplished

by the usual guide ribs, which together'witn the longitudinal ribs
form the rigid stressed frame of the lower half of the branch

connection.

The examined organization of the flow of flow behind the
diffuser has as a goal the complete use of the structural flow

passage cross-sectional areas and the liquidation of vortex
regions.

It should be noted that the indicated design 'allows-pre-

serving all the coupling dimensions, and if there is a decrease
in "radiality" of the diffuser, then the external overall dimen-

sions of the branch connection with a ,certain reduction in its
efficiency can remain constant.

Results of comparative tests of the initial design (see Fig.

7-2a) and the modernized variant were encouraging. If in the
initial variant the total losses at the velocity at the inlet
of M1 - 0.45 comprised 4n 1.3, then upon the introduction of the

design changes examined above this value was lowered to Cn = 0.62.
In other words, in the new variant 38% of the kinetic energy of

flow which leaves the last stage of the turbine is recovered, and

the total gain with respect to the initial variant is 68%.
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Here it is interesting:to indicate that the half-welded

construction of the diffuser, tested without a branch ponnection,

gave losses at a level of 60%, i.e., in the indicated arrangement

of the flow behind the diffuser losses ih the free part of the

branch connection were very small, since in all of its parts

the flow was characterized by insignificant velocities.

Simultaneously with a decrease in air drag in, the new

branch connection, the nonuniformity of pressure behind the

stage was lowered and zones of reverse currents in the outlet
section disappeared. The last fact can substantially affect the
effectiveness of the operation of the condenser, since it ehsures

a uniform distribution of steam flows along tube banks.

I The numbers of losses given above are obtained not allowing

for the inlet nonuniformity being created by the runner. There-

fore, the absolute values of'losses in teh real machine can be

different. However, the relati'e improvement should remain'

of approximately the same order as that with static tests.

39A I
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§ 7-6. Operation of Exhaust Ducts when the
Stage of the Turbomachine Exists

The test data given above were obtained with a uniform axial
velocity field at the inlet into the branch connection. It is
natural that when the stage of turbomachine exists, the inlet
field can be substantially nonuniform. Furthermore, the deviation
of the mode of operation of the machine from that calculated leads
to the appearance of flow spin. According to experimental data
the small flow spin takes place in design conditions.

A certain idea about the flow pattern after the turbine stage
can be obtained from experimental data of Central Scientific
Research, Planning and Design Boiler and Turbine Institute im.

I. I. Polzunov [TsKTI] (IKTH) [23]. Figure 7-25 gives curves of
changes in the angle and velocity of the outlet for four turbine

stages with 6 = 5 which were different only by the type of blading.

0/y/t

1-

.!.o

4 .. V. .0C _f_ 0 ___
a) b)

Fig. 7-25. Change in the angle of outlet a2 a)

and velocity at the outlet c2 b) along the radius

1 of the turbine stage [23].
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Stage I was designed according to the law of constant

circulation:

cur= const; c2 = const.

Stage 2 is constructed according to the law

)rf 00-= c 'nst; pCz.- comzt.,

Stage 3 is designed with a constant reaction along the radius,

and stage 4 had cylindrical blading. (Numbers of the curves in

Fig. 7-25 correspond to the numbers of stages).

In all cases it is possible to note a certain spin of the flow

on the greater part of the radius and the nonuniformity of the

velocity profile. Consequently, in the final evaluation of the

effectiveness of a certain exhaust of system, it is necessary to

introduce the corrections which consider both factors.

For the characteristic of the nonuniformity of the inlet
profile in [54] the coefficient kI = cmaKc/cp, which represents

the ratio of the maximum flow rate to the mean flow rate, is used.

The coefficient k2 = c maK/c/MH is similarly introduced [82].

However, both these coefficients characterize the velocity profile

quite unilaterally since they do not consider the sign of hetero-

geneity. In this sense the coefficient

k3= 1( - 9)dF,¢¢P

F

used in work [82] is more successful.

It is not difficult to see that for the convex velocity

profiles k3 > 0, for the con-ave k3 < 0, and for the uniform
33 3

k 3= 0.

Thus, by taking as an argument the coefficient of nonuniformity

k3, it is necessary to construct the functional dependence of

losses upon this coefficient.
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The theoretical solution to the stated problem for laminar

flow conditions in the boundary layer was obtained by 0. N.

Ovchinnikov. However, for the solution to this problem, in general

it is necessary to use experimental data. According to the latter,

dependence ;/40 = f(k 3 ), where C0 - the coefficient of losses with

a uniform velocity profile, can be represented by a certain parabola

the vertex of which for nondetached flow is located at point k3 = 0

(curve 1 in Fig. 7-26) and is shifted to the side of negative

values k 3 with detached flow (curve 2).

Fig. 7-26. Effect of the non-
uniformity of the velocity
profile at the inlet to losses

2 in branch connection. 1 - non-
S 2, separable flow; 2 - separation

h31

For experimental velocity profiles after the last stage given

in Fig. 7-25b, the coefficient k3 - 0-3%, and, consequently, the

maximum increase in losses because of the nonuniformity of the

velocity profile at the inlet into the branch connection will

comprise 10-15% of the initial level of losses.

The given numbers should be examined only as a first approxi-

mation, because for the final conclusions the experimental data are

clearly insufficient.

Besides the radial nonuniformity of the inlet velocity profile,

the efficiency of exhaust duct can be substantially affected by

the spin of the flow behind the stage, characterized by the circular

component cu of absolute velocity c.
p

Flow in the diffusers when the indicated component exists was

experimentally investigated little [3, 22, 145, 147j, but the
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obtained results are of great theoretical and practical interest.

It was found that up to a de.finite limit the appearance of a

circular velocity component favorably affects the aerodynamic

characteristics of diffusers of all types. The greatest improvement

in characteristics is noted for wide-angle conical diffusers [147].

The least sensitivity to the twist of flow was showed by axiradial

diffusers [3, 22].

The positive effect of the twist of flow on the efficiency of

diffusers is connected with the fact that the development of the

flow in the zone of positive pressure gradients occurs in the field

of centrifugal forces, which prevent the emergence of the separation

of the flow. If in wide-angle conical diffusers this field prevents

the emergence of the separation of flow from walls of the channel,

then in annular diffusers, simultaneously with the stabilization

of the flow on the external surface, the deterioration of conditions

of the flow on the internal surface occurs. As a result in annular

diffusers, depending on their shape, a small positive effect of the

spin is noticeably observed.

For an illustration of the aforesaid, Fig. 7-27 gives the

dependence of the coefficient of losses in upon the angle of twist

of the f]ow 0 for conical and axiradial annular diffusers.

If for one conical diffuser an increase in angle 0 up to 300

led to a reduction in losses of more than 25%, then for axiradial

diffusers the losses were practically not changed. The results in

question were obtained during a test of free diffusers. At the

same time being of interest is the effect of the twist of flow not

only on diffuser systems but also on the characteristics of exhaust

dutcs as a whole. Such results were obtained at MEI during research

on the exhaust duct in static conditions. The basic geometric

parameters of an axiradial diffuser used in the branch connection

is given in Table 7-3. Given here for a comparison are data on

diffusers [3, 22].
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... .ig 7-27. Dependence of coef-
1,1-_.f-- - ficient n upon the angle of

-. _._twist . 1 - conical diffuser
(a - 25°) [147); 2 - axiradial

-•_-•...... --- ,- diffuser [22]; 3 - axiradial dif-
O 8. fuser [3); 4 - experiments of MEI.

200~ 40° e•0o Y0o

4 Research on the effect of the twist of the flow was conducted
at angles 8 equal to 0, 15, 145, and 60°. The dependence of the

coefficient of total losses for the system in question upon angle

8, presented in Fig. 7-27 (curve 14), as a whole confirmed the

results of work [3, 22]. Her~e, just as during the test of axiradial
S~diffusers, an increase in the angle 0 to 300 in practice did not

cause a change in the value •n A further increase in twist led

to negative results, and when 0 = 600 the total loss factor was
increased by 15%. With this coefficient of the recovery of energy

Swas decreased from 60 to 40-145%.

The reduction in the recovery ability of an axiradial diffuser
with a transition to a significant twist of flow is illustrated well

i! by the distribution of the local coefficients of pressure recovery

on the external (Fig. 7-28a) and in~ternal (Fig. 7-28b) contours of

S0 6

Sthe diffuser. The coefficient •iused here constitutes the following

S~value:

Pl-mean static pressure in the inlet section; E0 - inlet kinetic

9,44

en sergyo heefc f h ws of the flow.wscndce

at angles a equal to 0, 15, 45,an 6014Tedpndneo h
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With the axial entry of flow (0 = 0) on the external contour

a pressure increase pi in the P-ial part of the diffuser takes

place. Then whan x > 0.5 in the zone of the turn the flow is

accelerated, and subsequent braking occurs at the output part of

the external contour (O > 0.7).

On the internal contour the picture is somewhat different.

The braking of the flow, beginning from the entry, intensely

builds up, attaining a peak value in the zone of the turn

(O = 0.7-0.8), whereupon a certain acceleration of the flow and,

correspondingly a decrease in the coefficient of pressure, recovery

occur.

With a significant deviation in the flow from the' axial

entry (8 = 45, 600) the distribution of ýi along the surfaces

which limit the channel is qualitatively preserved without a

change. However, the numerical values of coefficient fall very

noticeably, and at angle 0 = 600 on the external contour there

are zones where the local static pressure p. proves to be less

than the mean pressure in the inlet section of the branch

connection. On the internal contour the coefficient ýi maintains
at all tested angles 0 a positive value, but its absolute value

at 0 = 600 drops by approximately 30%.

The noted reduction in the effectiveness of the axiradial

diffuser with the appearance of a noticeable circular velocity

compon'nt is caused by Lhe following fact.

With the axial entry and nondetached flow the effectiveness

of the conversion of the kinetic energy of flow into potential

energy is basically determined by the law of the change in the

mean flow rate dependent on the flow passage cross-sectional area

of the channel,

The appearance of the circular velocity component complicates

the flow pattern, but now it is possible to consider that during
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braking dlnmirsrnt role is played by the axial or in tnis case it is
more correct to say the meridian velocity component cm. Then,

by considering the proportionality of pressure to the square of
the velocity, we obtain that a narrow angles of 0 (small values

cjf cU) the square of the meridian velocity cm is little distin-

guished from thislvalue• with the axial entry of flow, and the
additional centrifugal-force field~induced by the twist has as
a whole'a favorable effect on the development of flow in the

diffuser channel.

Since the angle 0 at the assigned absolute velocity uniquely

determines its components cu and cm (cu = c sin 0), we obtain
with An increase in twist the drop in value of cm and increase

in ci.

If one assumes that along the diffuser channel the intensity
of the drop in the meridian velocity component exceeds the

intensity of the drop in its circular component, then the re-
duction in the effectiveness of the diffusers noted in the

experiments at angles $ > 301 becomes entirely regular. This

regularity remains valid even for detached diffusers. True, in

this case at moderate angles 0'(0 < 300) there occurs a sharp
reduction in the total losses induced by the displacement of

point of separation in the direction toward the outlet section,
which gives rise to a well bxpressed optimum. with respect to

the angle of thd twist of flow (see curve 1, Fig. 7-27).

The quantitative estimate of the possible displacement of

the separation point depending on the twist is quite complex and
at present is impracticable in practice. However, the qualitative
change in the limiting values of parameters of the boundary layer

can be predicted.

Actually, having used for certainty as a parameter of the
boundary layer the.Buri ITranslator's Note: name not verified]

parameter r, let us present the cqndition of nondetached flow
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on the external contour of the diffuser in question in the form

of

c dx

-I , i, 7 - 'IT A
.1 (7-1)

Here: A1 , A2 and A3 are certain constants whose value should

be determined from the experiment; 6** - the momentum thickness.

The expression (7-1) written on the basis of purely quali-

tative considerations expresses the fact that the limiting value

of parameters of separation during the moUon of swirling flow

in the curvilinear channel cannot be constant and is determined

by conditions of the flow. Moreover, the experimental values of

r, obtained for flat channels at the axial entry of the flow,

indicate that in this comparatively simple case the limiting

value of the parameter r is changed over wide limits. In other

words, the coefficient A1 , which enters into expression (7-1),

generally speaking, is not constant, and also depends upon the

flow conditions. According to our data, quite good results

during the processing of experimental data can be obtained if

we present the coefficient A1 in the form of

where B is the experimental constant, and pi is the local

pressure ratio.

The relation (7-1) given above is very debatable and can be

recommended for quantitative calculations only after serious

test work.

By examining the effect of twist, it is necessary to indicate

even the effect of the fastening ribs installed usually in the
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exhaust ducts of the diffusers. This question is investigated

most comprehensively in [3]. The study was conducted with a

different location of eight fastening stiffening ribs.

As one would expect, the location of the ribs directly at

the inlet section gave rise to a sharp increase In losses with

a deviation of the velocity vector from axial direction (Fig. 7-29,

curve 1). With removal of the ribs from the inlet their negative

effect decreases and with the location of the ribs near the outlet

sect ion a twist of the order of 15-200 practically iid not change

the magnitudes of the losses. Hence it follows that with the

correct position of the stiffening ribs it proves to be possible,

by estimating the efficiency of the branch connections, not to

consider the twist of the flow in design conditions.

Fig. 7-29. Dependence of losses
3 .- upon the outlet angle of flow

a2 for a curvilinear diffuser
_ -l- with different length of the

ribs 13]. 1 T = 0.3; 2 -

I- I 1 = 1.0; 3 - 6 = 3.1; 4 - dif-

--- - - fuser without ribs; 2 = -

/C 0dimensionless distance from the
inlet to the ribs.

With a deviation from the design conditions, when the twist

of the flow exceeds 300, a noticeable increase in total losses,

which is connected both with the separation of flow under the

action of centrifugal forces and with an increase in losses of

friction in sections of nondetached flow occurs. It is natural

that the quantitative estimates in this case can be conducted

only on the basis of experimental data. A certain representation

about the intensity of the increase in losses can be given by

* Icurves in Fig. 7-29 [3]. These data, besides estimating the

L role of the twist, allow quantitatively estimating the effect of

the ribs.
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At 8 0', i.e., when there is no sqparation of flow from

the ribs induced by twist, it is possible to observe the degree

of the reduction in losses with a decrease in the fairing. Thus,

with the location of the ribs along the whole curvilinear dif-

fuser, the total losses in it were n = 0.68 (curve 1), and with
a reduction in their length by approximately 9 times the losses

were decreased by 18% (curve 3, Cn = 0.50). The complete re-

moval of the ribs (curve 4) reduced the losses down to 0.40-0.42.

Ap a whole the reduction in losses by 28% as a result of the

removal of the continuous ribs is caused not only by the reduction

in the fairing but also by the noticeable change in the flow

pattern in the curvilinear diffuser with the replacement of
continuous channel with a series of sections.

The given results give an indirect idea about the possible

change in characteristics of the exhaust duct during its

operation with the rotor wheel. It is understandable that decisive

importance in this question belongs to the direct experiment.

Unfortunately, such data at present are insufficient for final

conclusions. Nevertheless, some experiments are of doubtless

interest and allow conducting an estimate at least from a quali-

tative side. In this sense a sufficiently detailed study of the

exhaust duct, which operates together with the stage of the gas

turbine, was conducted by R. I. D'yakonov, A. M. Drokonov and

R. V. Kus'michev at the Bryansk Institute of Transportation

Machinery [BITM] (SHTf) [39a]. The stage had a comparatively

small tiLib-tip ratio (D/Z 2 = 3.34 at the span of the blade 12 =

= 125 mm) and a high value of the coefficient of outlet losses

B. ( = 0.11). Results of the test with the exhaust into the

atmosphere, given in Fig. 7-30 (curve 3), show that the maximum

efficiency level in this case was n01 = 83.8%. The same stage,

tested with an ax:radial diffuser (n = 1.9; r 2/rI "ý 1.3; D2/D 1 =

= 2. 25 and L/r 1 ,u 1), had a maximum eff n01 = 86.6% (curve 1).
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O,1'0- 0,3 0,55 4,50 0,465 0,70 1,75 0,8

Fig. 7-30. Variation in the eff of the axial stage
of the turbine depending on u/c 0 from experiments of

BITM. 1 - stage with diffuser; 2 - stage with branch
connection (F 3/F 1 = 3.82); 3 - stage with exhaust

into the atmosphere; 4 - stage with branch connection
(F 3/F 1 = 3.35); 5 - stage with branch connection
(F (F 3/F 1 = 2.98).

The established increase in the eff of 3% when using a

diffuser visually shows the effectiveness in its installation

behind the last stage.

For our purposes it is advantageous to distinguish the

characteristic of the intrinsic diffuser. Such a characteristic

is given in Fig. 7-31, where the dependence of total losses in

the diffuser 4n upon the mean angle of departure of the flow

from the stage a 2. Just as with static tests, the reduction in

the a2 up to 700, i.e., the twist of the flow within limits of 200,

affected little the magnitude of the total losses. A more per-

ceptible effect was an increase in angle a2, with an increase of

which up to 1020 losses increased from 0.61 to 0.67. It is

interesting to note that the coefficient of losses in the given

diffuser, according to results of static tests, was about 0.55.

Approximately the same value of losses (4n = 0.51) is obtained

as a result of theoretical calculations. Thus, in this case the

effect of the rotating grid proves to be unessential, and its

portion makes up about 5-6% of the losses. Basically this effect.
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or .Fig. 7-31. Variation in total
___,_• { " _ _ i losses in.an axiradial diffuser,

, S- -tested together with the bper-
of zhe flow from the zlotor wheel

"___________2" (Experiments of BITM.)

S0 70" 8,900 00 o,'4.

is explained by the increased'turbulence level of the flow which

leaves the stage. Under such conditions in the flow it is not

possible to isolate the region where the pressure of full stagna-

tion p0 1 would be maintained constant, and everywhere in the'

outlet section the pressure P0 2 proves to be below p0 1 . Above it

was indicated (see Chapter Two) that if P0 2 < P0 1, then the: losses

should be determined according to the arbitrary relative areas

of the boundary layer A* and E,, which consider the difference

in the pressures of full stagnation.

Results of the detailed study on the velocity field in

front of the diffuser and behind it, in the optimum ratio u/co,

are given in Fi~s.7-32 and 7.33 (experiments of BITM).

When the diffuser is not present, the static pressure behind

( the stage, expressed in the protions of the initial pressure

before the stage (Fig. 7-32), was distinguished little from the'

ambient pressure and was insignificantly changed along the height

of the blade (curve 1). The setting of the diffuser led to a

noticeable pressure change in the direction from the root to the

top of the blade and increased rarefaction behind the stage (curve

2). However, the distribution of the angles and velocities wYas

changed to a lesser degree. The output angles of flow along the

height of the blade a 2 were practically not changed (Fig. 7-32t,),

ccarves 1 and 2), and on the velocity profile (Fig. 7-32c, curve

1) it is possible to note the local acceleration of flow near

the top of the blade. The given dependences confirm the assumption

about the absence of the twist of flow in the mode in question

and sufficient unifcrmity of the velocity field in front of the
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SFig. 7-32. Variation in relative static pressure a),
angles a2 b) and relative velocities c) behind the

turbine stage. (Experiments of BITM.) 1 - free exhaust;
2 - stage with diffuger; 3 - stage with branch con-
'nection (F 3/F 1 = 3.35); 4 - stage with branch connection

(F 3!'F1 = 3.82).

* entry into the diffuser. Hence it is quite evident that the

characteristics of the intrinsic diffuser, tested with a stage

and without it, differ little. Research on the flow pattern
Ii

in its outlet section showed the almost uniform velocity dis-

trib~tion over the whole cross section (Fig. 7-33b, curve 1).

J With a trn.isition to smaller values of u/co, the operating

conditions of the diffuser are changed, arid the velocity field in

the outlet section is deformed. For example in Fij. 7-34

velocity profiles taken at various ratios of u/c 0 are compared.

In the optimium mode '(u/c 0 = 0.675) the instantaneous values of
velocity are distinguished from average velocity by 15-20% and

are changed from the external to the internal contour almost

according to the sinusoidal law.
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Fig. 7-33. Variation in the relative
static pressure a) and relative veloc-
ities b) in the outlet section of the
diffuser along the radius. (Experi-
ments of BITM.) 1 - free outlet; 2 -
closed side of branch connection; 3 -
middle section; 4 - open side; (F 3 /F 1

= 3.82 and 2.98).
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- _ " Fig. 7-34. Velocity distri-
bution at the outlet from the
diffuser at various values of
u/c 0 = 0.675; 2 - u/c 0 = 0.575;•0• m 3 - u/c0 = 0.475.

0 0,2 0, 4 Ole 0d ,

For u/c 0 = 0.575 (curve 2) an increased drop in velocity
directly in the external contour, a more uniform distribution in

the middle part, and an increase in velocity of 30% from the

middle level of the internal contour are characteristic. A further
reduction in u/c 0 led to an increase in velocity near the internal

outlet. Thus, with nonaxial entry, when there exists a circular

velocity component, in the axiradial diffuser the displacement of
flow from the external to the internal outlet occurs. As a result
the effective expansion ratio nf the di.ffuser is lowered, which

gives rise to an increase in energy losses, and the eff of the whole
installation is noticeably lowered. If for u/c 0 = 0.675 the in-
crease in the eff induced by the diffuser is An0i = 3%, then for
u/c 0 = 0.475 it is lowered to 0.5% (see Fig. 7-30).

As was already mentioned above, the aerodynamic characteristics
of the exhaust system is defined not only by the diffuser, but

to a considerable degree it depends also upon the correct arrange-

ment of the flow in the housing of the branch connection. When
special measures do not exists, for this the effectiveness of

diffuser can be reduced to zero.

The aforesaid is convincingly confirmed not only by results

of static tests but by the examined experiments of BITM [39a],
where the operation of the stage together with the implest branch

connection was investigated. A diagram of the latter is given in
Fig. 7-35. Tests were conducted in three positions of the side

walls, which ensured the following relation between the intake
area Fl, the area of the outlet from the diffuser F2 and the area

415



A
I -

Fig. 7-35. Diagram of the investigated
branch connection [39a].

of the outlet from the branch connection F 3 : 1) F1 :F 2 : F 3

= 1:1.9:1.57; 2) F1 :F2 :F3 = 1:1.9:1.76; 3) F1 :F2 :F3 = 1:1.9:2.0.

The first variant immediately gave a negative result, having

caused a reduction of 5% in the eff of the turbine as compared
with the free diffuser and 2% as compared with the open exhaust
into the atmosphere (curve 5 in Fig. 7-30). The second variant
was somewhat better (curve 4), and only in the third case (curve
2) did t)-,: branch connection on the whole provide a small dif-
fuser effect, raising the eff by approximately 0.5-0.6%.

Such a sharp negative effect of the housing is explained
by the positive relation between the area of the outlet from the
diffuser and the area of the outlet from the branch connection.

The ratio F3 /F 2 for the branch connection without the arrangement
of flow behind the diffuser according to the work [28] should be
of the order of 3-3.5. The numbers given above are 1.5-2 times
less than these values. The necessity for having a large reserve
of output area is dictated by the fact that the flow distribution
in the housing is extremely uneven, and with a small ratio
F F3/F2 the effective outlet area, i.e., the area with a positive

component of flow rate, proves to be less than the area of the
outlet from the diffuser (F 3 90/F 2 < 1).
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As a result additional'local accelerations of flow and an

intense vortex formation in the housing of the branch connection

appear, and the latter causes increased air drag of the outlet

channel.

With installation of the housing conditions at the inlet

into diffuser are changed little. Diagrams of the distribution

of angles a2 and velocities c1 along the height of the blade

are practically not changed (see Fig. 7-32b and c), and the

distribution of static pressure, in preserving the general

regularity in connection with the additional drag of the channel,

is noticeably raised (curves 3 and 4).

More important changes are observed in the outlet section

of the diffuser. Here the asymmetry of the outlet disturbes the

uniformity of flow in various sections. On the closed side of the
diffuser (section I-I in Fig. 7-35) the static pressure (see
Fig. 7-33a, curve 2) sharply increases, and the velocity near the
external contour increases (Fig. 7-33b, curve 2). In the middle
section the static pressure is also noticeably higher than the
pressure in the outlet section, and the velocity distribution

internal contour (curve 3 in Fig. 7-33b).

On the open side of the diffuser, as one would expect, the

mean pressure is almost equal to the atmospheric (curve 4) and
increases from the external contour, where there is the zone of
separation of the flow (curve 4 in Fig. 7-33b), to the internal
contour. The examined data indicate that the presence of the

axial stage in front of the branch connection does not cause
&udden changes in the quantitative characteristics.

The effect of the operating grid in the case of the
axiradial stage, where at the inlet into the branch connection
there is increased nonuniformity of velocity field, proves to be
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more important. Results of such tests together with the branch

connection (see Fig. 7-24) are giveh in Fig. 7-36.1 Experiments

were conducted with superheated (curve 1) and moist (curves 2

and 3) steam. It was found that the value 4n substantially

depends upon the mode of operation of the turbine characterized

by the ratio u/c 0 . With a small ratio of u/co, not dependent

from the initial state of the steam, the coefficient 1n was

everywhere more than unity, i.e., the kinetic energy at the

outlet from the grid proved to be insufficient for the overcoming

of the air drag of the branch connection. With an increase in

value u/c 0 there occurred an intense decrease in the coefficient

Cs and for superheated steam, when u/c 0 = 0.55 n', reached the

minimum value equal to 0.9.

- - i--- Fig. 7-36. Dependence of
S the total loss factor upon

i •3 • u/c 0 . 1- dry steam; 2 -
- moisture y = 3%; 3 -

moisture y = 6%.

43 0,35 04f~ 0,4S 0,40 95..5 0, SO 0,4S

It was noted above that for this branch connection, according

to static tests 4n = 0.68, i.e., in this case the noticeable

deterioration of the aerodynamic characteristics of the branch

connection was noted.

A further increase in parameter u/c 0 again gave rise to the

increase in coefficient Cn"

The nature of the dependence in question was not changed

even with transition to moist steam, but numerical values of 4n

'Experiments were conducted by Engineer Ye. N. Myslitskiy.
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prove to be different. With the initial moisture of the steam in

front of the turbine equal to 3%, ;n. mH = 1.0, and with itsincrascot % ;n~mm 01.1. In other wor.ds, with an increase

in moisture an increase in the total loss factor occurred, and

this fact must be considered if the discussion concerns the

exhaust ducts of steam condensation turbines.

Unfortunately, for a quantitative estimate of the effect

of moisture, at present there is still very little experimental

data.
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- I6,0 Fig. A-1. Nomogram
I f -for calculation of

I~ I .5 6 by formula
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SFig. A-3. Nomograms for calculation of A*2 by

formula (5-10).
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