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In recent years interest was noticeably raised
11 the research on diffusers and diffuser channels,
which to a considerable degree 1s stimulated by the
utilization of these elements in turbomachines,
ejevtors, aviatiion technology, MHD generators, etc.

The book proposed to the reader has been written
from results of research on diffusers 1ln the wind-
tunnel laboratory of the department "Steam and Gas
Turbines" [PGT] (NFT) of the Moscow Power Engineering
Institute [MEI] (M3M), which were oriented in the
first place on the solution to problems connected
with the use of diffusers in turbomachlines. At the
came time in the examination of characteristics of
various diffuser elements published experimental
data obtained in other organizations were widely
used.

The book consists of seven chapters. The first
chapter is devoted to the general problems of the
boundary layer theory ard has a reference nature.
The concepts discussed in this chapter are used in
the following chapters. The reader who is familiar
with ti.. boundary layer theory can immediately pass
over to the second chapter, where energy diffuser
characteristics, existing methods of thelr calcu-
lation and coefficients used in the comparison of
characteristics are examined.

The third chapter touches upon problems con-
nected with the fluld flow in conical diffusers.
On the basis of numerous test data, the role of
geometric and mode parameters 1s investigated in
detail. Detailed research on the flow in conilcal
diffusers allowed explalining the nature of the

vii
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change in the integral boundayy layer thicknesses
along the generatrix of the surface and obtaining
the base experimentzal values of internal losses.

A detailed analysis of calculated methods of deter-
mining energy characteristics gives rise to con-
clusion that for nonseparable flows the most pre-
cise and physically substantiated are the methods
based upon the boundary layer characteristics. For
the maximum simpliflcation of calculations nomograms .
which substantially decrease the volume of compu-
tational work are given. In this chapter some
features of the calculastion of losses with the sudden
expansion of flow are noted.
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The fourth chapter 1s devoted tc research on
i flow in transonic and supersonic diffusers.
Specific attention 1s given to transonic¢ diffusers.

% The hypothesis which explains the crisis of dif-

i fuser losses at M + 1 by partial or complete degen-
[ eration of turbulence at the input has been advanced
b and experimentally confirmed.

by

-4 Given in the fifth chapter are results of the
¥ experimental investigation of annular diffusers with
K- rectilinear generatrices, and an analysis of the in-
'gg fluence of the most important geometrlic parameters
L. on thelr efficiency 1s given. Much space is used

b in the chapter for the theoretical calculation of

% diffusers according to the boundary layer character-

istics and also the calculatlion according to equiva-
lent angles and experimental nomograms.

s
"§ Examined in the sixth chapter are problems

E: connected with the flow in plane and circular

3 . curvilinear diffusers. Here the primary attention
} has been given to the examination of the physical
p picture or the flow in such channels.

3

- The last, seventh, chapter is devoted to the

> flow in the exhaust ducts of turbomachines where an
E attempt has been made to generalize the work ex-

5 perience of the authors in the indicated direction.
. | For this purpose, as a rule, initial variants are
P ’ examined and the ways which allow with the obser- .

vance of constructlve requirements the lowering of

the magnitude of losses of energy are shown. An im-

portant moment is the investigation on branch pipes

together with the stage being rotated on overheated

and moist steam. v

For the facilitation of practical calculations,

in the appendlx to the book there are auxillary nomo-
grams which allow determining the integral boundary

FTD-MT-24-2.450-71 viil
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layer characteristics in exit sectlons of conical,
circular and axlal-radial diffusers, and also great
factual material on the diffusers Tested.

Thus, in the book an attempt has been under-
taken on the basis of exrerimental and theoretiral
investigations to sequer~ially describe the physical
processes in simple an” complex diffuser channels
and ¢o determine thelr characteristics over a wide
range of mode and geometric parameters.

One should cnce again emphasize that the
authors have attempted to solve the problems from
the single positions based upon the theory and methods
of the boundary layer and the physical apparatus of
gas dynamics.

Chapter 4 and §§ 6-1 and 6-2 were written by
M. Ye Deych. He accomplished the general editing
of the monograph. A. Ye. Zaryankin wrote the re-
maining text of the book. The authors jointly wrote
the preface and §§ 2-2, 3-2, 7-2 and 7-3. The § U-5
was written by M. Ye. Deych together with G. G.
Katsnel'son.

In conclusion let us note that the book touches
upon only & number of particular probl:ams and is one
of a few attempts [16, 34, 55] to genercalize the
avallable experimental data on diffuser channels.

In the examination of a number of the problems and
the derivation of the calculated relations, the
authors attempted to simplify maximally the final
results, keeping in mind the applied directivity of
the monograph.

It is natural that the treatment of some sections
can be debatable, and the authors will accept the
possible remarks with appreciation.

We consider it as our pleasant duty to indicate
that in the book are used test data obtalined under
the guidance of the authors by colleagues of the
laboratory of tha department of "Steam and Gas
Turbines" of MEl Candidates of Technical Scilences
L. G. Golovina, M. F. Zatsepin, L. Ya. Lazarev,

R. K. D. Shakh, engineer L. M. Dyskin and senior
engineer V. V., Ett.

Furthermore, great practical help in the direct
work on the book was glven by the Candidate of
Technical Scilences V. S. Yellzarov and Doctor of
Technical Sciences A. N. Sherstyuk and A. S. Glnevskiy,
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‘whose remarks significantly influenced the final
editing of the book.

The authors offer their sincere appreciation
to all the comrades mentioned and also the operating
personnel of the department of PGT.
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CHAPTER ONE ‘ :

ELEMENTS OF THE BOUNDARY LAYER THEQRY ;'

§ 1-1. Basic Defint'tions and Relations |
for the Boundary Layer I

In the flow of viscous fluid near a solid surfaceﬁ the whole

region of flow in the case of the predominant influence of inertial

foroes over forces of viscosity (at large Reynolds numbers Re) is
conditionally divided' info two zones: the zone of the quasi-
potential flow and the zone of the eddying motion of liquid where
the ,action of: the viscous, forces 1s distinctly developed. The
latter region can be called the boundary layer.

1 v

i

Within limits of the boundary layer tyo flow conditions -
laminar and turbulent can take place. The boundary layer calcu-
latibn in most cases 1s based on the, utilization of the integral
equation of momentum (the equation of K&rmin). In the derivation
of thils equation it is usually considered that in the case of the

iturbulent flow conditions in the boundary layer in:the external
flow turbulent pulsations are small, and, consequently, the s
“turbulent" stregsses ipduced by pulsations: of velocity canpot be
taken into consideration. However, if boundary layer is developed
under conditions of great externalﬁturbulence, the magnitude of
these additional stresses proves to be noticeable and, strictly
speaking,‘must be considered. . ! !

i
I
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The;consideration of the influence of "turbulent" stresses in
quasi-pofential flow was realized by V. A. Vrublevskaya [13, 14].
The converted equation of the momentum of a turbulent boundary
layer can be written in the following form:

*s de, @°*
-—-— .-..—0 o—o--‘-.--—— ~ . 3 - -————_‘
(l +L$2) H :‘ dx ug (2-! H D/‘l) p‘cl 3’. (1.1)

“where € — the turbulence level of thé external flow; Cys P — the
rate and density at the external edge of the boundary layer; Ty
the frictional stress on the wall; § — the ratio of transverse and
longitddinal pulsating amplitudes; %% — the momentum loss thick-
ness; 6% — the displacement thickness; H = §¥/8¥%¥%; b = a6/8%%;

8§ — the boundary layer thickness; a — the damping coefficient of
longitudinal pulsations in the boundary layer; y — the correlation
coefficlent between longitudinal and transverce pulsations of

, velocity.

If we do not consider the turbulent stresses on the external
edge of the boundary layer, expression (l-1) converts to the well-
known momentum equation of K4rmén:

ds**  de, 3**
dx -}' dxl € (2+H M2) ' (1—2)

which is valid both for the laminar and turbulent conditions of
flow in the boundary layer.

The integral thicknesses of the boundary layer entering into
equation (1-2) are easily determined at the known velocity profile
from the following relations:

a) displacement thickness
3

— N A (1-3)
6*~§(1 hﬁ)d%

FTD-MT-24-1450-71 2




b) momentum thickness

e N D
ares | B (1—— P‘)dy. (1-4)
3 .

¢) energy thickness

B |
8*“ S;p——(l - )dJ. (1-5)
0 .

Having multiplied 6% by P18q5s d#% py plc1 and S*#% by plc%, we

obtain the lost mass, lost momentum and lost energy in the boundary
layer per unit of length of the profile, but with multiplication by
the perimeter — the total loss of the indicated values in the gilven
cross section of the boundary layer.

Before passing directly to the derivation of calculation
equations, let us examine the conditions of the existence of the
laminar and turbulent flow conditlons in the boundary layer with
a positive pressure gradient.

§ 1-2, Condition of the Transition of the Laminar
Layer 1nto the Turbulent Layer

It is well known that under specific condltions the lamlnar
flow conditlons go over into turbulent.

The basic method of the stabillty analysis of laminear flow
consists in the fact that superimposed on the motion in question
are additional slight disturbances, and when these disturbances
exist the flow 1s analyzed. If the flow is stable, then the
disturbances attenuate with time, and no qualitative changes are
observed. On the other hand, with unstable flow the disturbances
grow, and a transition to the new condition — turbulent, occurs,

FTD~MT-24-1450-71 . 3
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The complexity of the indicated analysis as applied to the
boundary layer flow is that the development of instability depends
upon the nature of the superimposed disturbances;-i.e., on their
“#gfplitude and frequency. If, for exampié;'with a“low frequency of
disturbances the motion is stable, then with an increase in fre-
quency the loss in stabllity can fully occur. The Indicated
eircumstance led to the fact that until now the purely theoretical
solutions to the problems of the stability of laminar flow in the

boundary layer did not obtain noticeable distribution, and in most
cases experimental data are used.

On the basls of these data it 1s conslidered that the beginning
of the loss in stabllity is determined by the critical Reynolds
number Rer, the magnitude of which depends upon a number of factors.
The most important of them consist in following: the surface con-
dition of body being streamlined, the turbulence level of the in-
coming flow, and the form of the boundary layer veloclity profile.

The indicated factors are quite fully characterized by five
parameters [72]:

1) by the turbulence level at the boundary layer edge €;

2) by the relative "scale" of turbulence //3**, where [=
3

mu“c;-ydy, and y — the correlation coefficlent between

pulsations at two points taken on one perpendicular to the direc-
tion of the velocity of the main flow;

3) by the relative surface roughness k/5%* (k — the mean
height of the prominences of the roughness);

) by the relative wavelength of the roughness 11/6** (Z1 -
mean distance between the prominences of the roughness);
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5) shape parameter =gz 5"

It 1s not difficult to see that the first two parameters
characterize the turbulence, the next two — the surface condition,
and last — the velocity gradient and shape of the boundary layer
velocity profile dependent basically on the velocity gradient in
the external flow.

Using for the determination of the Reynolds number the momentum
loss thickness §¥* as a characteristic dimension, let us write the
functional dependence for its eritical value, which determines the
loss in stabllity of the laminar boundary layer:

k l l
P\e”up =z (‘3:‘.‘5'! TR .{f*“"a ¢, )' (1-6)

If we assume that the reason for the instability of the
laminar flow consists in some disturbances superimposed on the main
flow, then as applied to the boundary layer one can indicate two
sources of such disturbances and in accordance with this examine
two cases of the formation of turbulence. Actually, acting on the
layer of the liquid located directly at the wall are, on the one
hand, disturbances connected with microseparations of the flow from
prominences of the roughness and on the other -~ disturbances con-
ditioned by the turbulence of the external flow.

For the case of the loss of stablllity only under the action
of turbulence of the external flow or only under the action of the
roughness, A. P. Mel'nikov [72] obtained the following formulas:

0,085 - f)*/3

Ro*%;=0,3 ¢ .5/;,- L -+ 225; (1-7)
(0,085 4- )’

Re**y, =6 (% 6“)513 - 225, (1-8)

v*h"m,»s‘.\mw -
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the use of which makes it possible as a first approximation £6
estimate the order of the critical Reynolds number. For this,
apparently, it is necessary on one graph to plot curves of the
change in Re*¥ number alohg the length of the sufface in qtiestion
and curves determined by formulas (1-7) and (1-8). Then the inter-
section points of curve Re°‘=f|(.’c‘)'._ with curves Rewp®*==f2(3) will
determine the values of critical Reynolds numbers, the smallest of
which corresponds to the position of the point of the loss in
stabllity by the laminar boundary layer.

The nature of the change in the indicated curves along the
diffuser channel with the drop in velocity in 1t, according to

the law .. 6 ... 1 , 1s shown in Fig. 1-1. The points of
21naKe 140,3x

intersection a and b of curve 3 with curves 1 and 2 give values cof
the critical Reynolds numbers and coordinates of points of the loss
in stability of the layer. The small value ofﬁRe**Kp corresponds
to the intersection of curve 3 with curve 1. Therefore, in this
case the loss in stabllity is caused by disturbances connected with
the turbulence of the external flow.

,000 /}e:'(" : v 3
J Fig. 1-1. On the calculation
”JL” of the transition point of
P N g 3 laminae flow into turbulent
‘ao‘;*f?f'f?igii'"'g T flow. 1 — calculation Re**H
i .
I I :§% . according to formula {(1-7);
H ! 7 2 — calculation Re**up
e AUS Gw o Gls e02 according to formula (1-8);

3 — the change in Re¥*¥* number
in the diffuser channel.

Let us note that in most cases even with significant roughness
the Re**Kp in diffusers of outlet pipes of turbomachines 1is deter-
mined by formula (1-7), since for the flow which leaves the last
stages of turbomachines a high turbulence level 1s characteristic.




Otherwise, with the use of diffusers for the recovery of the
kinetic energy of the flow, one strives, as a rule, to have a
minimum roughness, which also gives rise to the necessity during
calculations for using formula (1-T7).

The process of the transition of a lamlnar layer into a
turbulent, as experiments show, occcurs not instantly, and there is
a certaln transition region whose dimensions substantially depend
upon the longltudinal velocity gradient, turbulence level of ex-
ternal flow and shape of the velocity profile in the beginning of
the transition zone [25].

In the turbulence levels of 2-3% the dimensions of the trans-
ition region are usually small, and for 1its calculation it is
sufficient to know the extent of this region S = S/L and the in-
crease in it in the momentum thickness r#*#* = 6**K/6**H, where L -
the length of the surface in question; 6**H and 6**H — momentum
thicknesses at the end and beginning of the transition. K

Both introduced values depend basically upon the shape
parameter f, which characterizes the shape of the velocity profile
in the beglnning of the transition. The indicated dependences
given in Fig. 1-2 show that in the diffuser regions values S and
r** noticeably drop.

[ oy

—
So% ,."(# ) I'. /A P)
=1 S5 A | Fig. 1-2. Extent of the
1 }l,& m¢rnm9“”"ﬁ transition zone and mag-
: I RSP0 nitude of the relative in-
Ny f{’ crease in the displacement
//,f o) A} thickness in this zone de-
i A'f<;ff7 9 pending on the shape
, rd . parameter f. |
= 2L by . ‘
/] v A
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For an illustration of the aforroaid Fig. 1+3 gives curves
of changes in the momentum loss,thickness on the curvilinear wall
with convergent and diffuser flows. The region of transiti?n 15
quite clearly fixed according to the change in the angle of slope
of the curves ¥** = £(X). : i

1 . 3

3 3 U g . )
VY Fi g3 ! ! 042 '
~10,38
Mo ke
?..',- "-—‘&K\ __0,‘?4'
5.,
* I 0,00 .
J'Q::// A\q;\:h~ 4 : '
ho s I et 4,26 n
'0 ’\‘0*0.‘;.’0"\_"-/ 1 7
N - N '
1 N g lf/'),yd
‘, . :J: /-S;H“C"“ |
0 7\f i ‘ Z |
T g2 TR T v a8 4o

Fig. 1-3, Changes in the momentum loss
thickness in the diffuser and convergent !
channels,

!
If with convergent flow the tranéitidn is begun when X< 0.4,
it occuples approximately 6% of the total length of ﬁhe‘wal, and
the magnitude of r*#* in the transition region is,about 1.45, then
with diffuser flow the loss in stability approaches When i = 0.18,
and the region itself on curve §** = f(X) occuples 1-2% of L.  The
absence in this case of the growth in magnitude r¥** is explained
by the fact tiaat in the rearrangement of the profile inlthe tran-
sitlon zone there occurs, on the one hand, ' the growth in the
physical thickness of layer &, and on the other hénd - its com-~
pleteness 1s lIncreased If the first factor causes an increase in
the momentum thickness &6%¥*, then the second, on the éontrgry, glves
rise to i1ts decrease, In diffuser‘rqgions, dug to the small com-
pleteness of the initia: veio:it& profile in the laminar layer,
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,théré occurs sé intense an lncrease in its completeness that the
influence on §** of the increase in physical thickness & is com-
pletely compensatéd, and magnitudg r** proves to be close “o one.
With conbergent flow, as a result of the transition, an increase
,in thiékness § has thelprimary importance since the initial profile
here is quite comﬁlete, and its deformation in this direction is

iqsignifﬁcaﬁt, whiphlalso finally leads to a noticeable growth in

magnitude pr¥*%,
i ]

Thus, with tﬁe_diffuser Jlow withodt great error, one can
consider that the transition occurs in practice at the point, and
with the boundary layer calculation one can be limited for the
transition zone only to the definition of the position of the point
of} th loss in stability by'the laminar layer.

K o ‘ |
With positive pressure gradlents, as a first approximation
for the estimate of the transition region, it 1s possible to

‘ recommend curves in Fig. 1-2 or.the empirical formulas for the ex-

tént of the zone of transition and growth in it of the momentum

loss'thickhess:
] I

5= (1Y 0,72 5.51 % (1-9)

i

Y A =T N 1co;)° 1240.5¢ +0,12M], %. (1-10)

Cons&dering, however, éhat with large pcsitive pressure
gfadient= and the high degrees of external turbulence, the extent
of the laminar section is insignificant (in Fig. 1-1, for example,
4ith the %urbulence level of the order of 1.5% and the moderate
posit;!.vc pressure gradient L = 0.06), 1t is possible in most cases
to consider the boundary layer flow of diffusers to be turbulent
over entire length. Becduse of this we will discuss only the
calculation of turbulent boundgry layer.!

i !Methods 05 caldulation of the laminar boundary layer are pre-
sented in detail in L. G. Loytsyanskiy's monograph "Laminar Boundary
Layer," Fizmatglz, 1962,
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§ 1-3. Calculation of the Turbulent
Boundary Layer

" The boundary layer ¢alculation provides usually the deter-
mination of its thicknesses &, &%, §¥¥% 6 §¥** and the resistaunce
coeflicient Cp = Tw/pC§ along fairing. Consequently, for the
calculation it is necessary to have a number of relations which
connect the indicated magnitudes. 1In this case, used as a basic
equation most Ifrequently 1s the integral relation of Kirmin (1-2),
which for lncompressible fluid is somewhat simplified:

- A3 de, 3% ’ _
A 2 e, @i

Considering velocity at the external houndary layer edge to
be assigned, we see that equation (1-11) connects the three un-
known magnitudes, 6**, H and Cps and foyr its solution it is
necessary to have two more equations. Used most frequently as such
equations is a varying kind of empirical relations, which allow
obtaining a closed system of equations. However, before using
test data, let us establish, on the basis of the dimensional theory,
the structural nature of the deficlent dependences.

In general the frictional stress on the wall in an incom-
pressible fluid T is determined by velocity on the external
boundary layer edge Cqs by its derivatives c'l, c"l, c"'l ete.;
by the characteristic dimension which can be accepted as any
boundary layer thickness (for instance, &§**); and by the kinematic-
viscosity coefficient v and density p.

Consequently,

Tu=9{¢1s ¢'1; ¢"2...; p; 0% V). (1-12)

Using as the basic the dimensionalities of velocity, density
and length, let us present (1-12) in the following dimensionless
form:
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. ) cl‘atﬁiﬁ . < [0 .
c’,____?(reedo - 01 M c‘ g .o (1“13)

Here
Re®* = ,6**/v.:

Let us be limited in expression (1-13) only to the first
derivative of the veloclty and let us expand it into series
according to the parameter c'lé**/c1

cl 2

2
¢y =t (Re”)+"'x (Re??) ”“‘“’!‘Va (Re>*j (~ ) 4.0 (1-18)

When dcl/dx = 0 equation (1-14) should determine *he resistance
coefficlent of a flat plate. Hence

¢jo="Yo (Re**). (1-15)

According to the experimental data, irrespective of the flow
conditions in boundary layer for the plate [25, 69, 71],

._'..._S?.......
Cro="Tgwem " (1-16)

where o and exponent m are constants equal, respectively, to
&y = 0.22, m = 1 for qe laminar flow and 5y = 0.0125 and m = 0.25
for the turbulent flow.

Having expanded function wl(Re**) in seri-s according to
parameter 1/Re** and being limited to linear terms, let us present
(1-14) in the following form:

g ¢! 60‘
¢; == Re**m (l + a Re""‘ - ‘cl >' (1-17)
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Here the coefficient a is a2 certain constant, and complex

c'\3**
G

is for the turbulent la&er of parameter Buri [Trans-

lator's note: named not verified] I whenm = 1, i.e., for laminar
layer, into L. G. Loytsyansky's shape parameter.

Thus, for the turbulent boundary layer

1 &(r
= fovem (%o -+ a, 1) = Re(*")"‘ . (1-18)

Similarly, 1t is possible to show that the magnitude H
incoming into equation (1-11‘ is also the function of the parameter
r, 1.e.,

H=H(T). (1-19)

The functional relations (1-18) and (1-19) allow the obtaining
from equation (1-11) the differential relation relative to the
parameter I' in the Tllowling form:

dr c" hl
= F (D)= .';_.. (1-20)
where
"’) = (it - 1) §o - [1 4 (e -+ 1) (1,8 4- H —ay)). (1-21)

Equation (1-20) is an ordinary diiferential equation and per-
mits integration in quadratures, 1f function F(I') can be approxi-
mated by a straight line. From expression (1-21) it follows that
such an approximation is possible only for the case H = const.
Then the integration of equation (1-20) gives rise to the s.mple
quadrature:

% L

a4 dc, ' ,
I'=~1;‘;"“"" 6 =1dx 4 Lo,
Lo .\

dx
where Po is the value of the parameter of Buri at x = Xge
.

(1-22)




If the calculation is begun from x = 0, and at this point tke
thickness of the layer is equivalent to zero, then PO = 0:

ay== (241385 Doz bl (2 - 1) (1,84 H — a0). - (1-23)

The approximation nature of the examined solution is ewvident.
However, for practical calculations in the region of small positive
pressure gradients the accuracy of the calculations proves to be
entirely acceptable. Moreover, using relations (1-18) and (1-19)
as a basls, 1t is possible to construct sufficiently accurate
solutions in diffuser ranges.

Actually, the dependence of the resistance coefficient upon
the parameter ' in a certain region of changes 1n magnitude I can
always be approximated by the linear function of the form (1-18).
Then, by taking in this region the mean value for magnitude H, 1t
is possible to construct solutions analogous to solution (1-22).

Therefore, in the region of the high positive pressure gradients
the continuous solution is replaced by plecewlse smooth solutions,
and the calculated correlation assumes the form:

z’ , C ¥4 . l .
. Cy —
I'=Eag bl S Cl‘. _dx.
6 - oo (1-24)
l=-" . x‘ .

where z — the number of sections of the calculation into which the
whole streamlined surface is divided; when z = 1 formula (1-24)
turns into expression (1-22).

If coefficients ay and bi are known, the calculation according
to formula (1-24) does not represent serious inconveniences, and
for the assigned law of the velocity change ¢y = cl(x) can be con-
ducted comparatively rapidly. In this case it is cconvenlent to
conduct all calculations of news in relative values, having
selected as a scale of velocity its peak value C1manc’ and for
the length of the scale — the length of streamlined surface L.
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Then the calculation equation (1-249 takes the form:

1] ]

. p— . N

*t41 S !

2
. \y & dg; —l y
Pe= /5“—~'T¥ 3; df- v (1-25)
X
§

By knowing the magnitude P; it is possible to obtain easily !

the value of the dimensionless momentum thickness, silnce \

. FO | .
o . slem \m¥1 . .
= * Ter ot - (1-26)
L Re7' @, L

From formula (1-25) 1t follows that in the computatidn of the |
parameter of I', sufficient accuracy can be obtalned only with the
analytical assigned function El(f). With 1ts graphic represéntation
the accuracy of the computation of the velocity derivative is
usually small. However, this fact does not affecf the comphtation
of the momentum thickness, since for 1ts detgrmination knowledge
of the eloclty derivative 1s not gequired.

t \

Having substituted into (1-26) the value of the parameter T
from (1-25), we obtain for the direct calculation of the momentum

loss thickness the following expression. :
! i
1

2. T ey
! y y 57 uz
Re’,’" ET ':.; cl _l I ! ! st

) - —
o=
[ 4 t
: en an i

0 =

(1-27)

Using further the dependence H(r),!it is possible to determine
the displacement thickness, and according tc the formula, (1-18) in
each section it is possible to calculate the local resistance co-
efficient. '
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H
Thus, at known values of coefficients ays bi and m, it 1s
possible in principle to conduct a complete thecretical calculation
of the boundary layer. True, for the definition of these co-

efficients. 1t 18 necessary to use expérimental 'data. '
) |

§ 1-4. Some Results of the~Investigation and Calculation
of the Boundary Layer During Diffuser Flows: '
. : ' ; .

In the preceding iparagraph it is noted that the specific form
of the‘dependences (1 18) and (1-19) placed ‘as a basis for the
calculation of the boundary layer 1is determined on the basis of
experimental data. In this chse boundary layer velocity profiles
are used as the ihitial experimental material. If with convergent,
gradient free and weakly diffuser flows, these profiles can be !
adequately approximated by different kinds of polyncmials, then at
large positive pressure gradients such an approximation is ex~-
tremely difficult. For example Fig. 1-4 gives six velocity pro-
files obtained on a flat wall at various external pressure !

. gradients in a flat channel.
! ! ! ; !
Profiles 1 and 2 currespond to convergent flow with angles
= «4° and 1°30'. Profile 3 corresponds to a baa‘ient -free flow,
and profiles Wi, 5 ard 6 are obtained in the diffuser channel Wwith
the angle of opening o esqual, respectively, to 1°, 2040" and 4°30'.

i . : , l

: If in the first four cases a smdoth velocity change across
the boundary layer takes .place, then on curves 5 and 6 the'appear-
ance oq characteristic bendings and "the nonmonotonic nature of the

i

entire velocity profile are distinctly noticeable. ‘ I

'
) !

For smoothly changing profiles with the appropriate selection
of a variable scale:along the y axis in most cases it 1s possible
to obtain a certain universal or close to universal distribution.
Used most frequently as a scale factor is'the physical thickness of
the layer 6, which allows presenting the family of profiles in the

dependence of tne form: ’ ' r
' i
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3 -"-'f("i')' (1-28)

However, in diffuser regions the universality of the depen-
dence (1-28) is disturbed.

-

, —O—n

aal g : i :{f
o : ' .

di

3 . ., 5_4-‘:

2 e et I L ALY

Fig. 1-4, Effect of the pressure gradient
on the velocity profiles.

The aforesaid is visually confirmed by curves in Fig. 1-5,
where the profiles examined above are reconstructed in coordinates

16




¢ = c/cl; y = y/8. If the first four profiles lie approximately
on one curve, then profiles 5 and 6 of the universal dependence
are not subordinated. 1In this case the investigation on the
boundary layer 1s substantially impeded.
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Fig. 1-5. Velocity profiles at various
pressur: gradients in relative coordinates.

By comparing the profiles given in Fig. 1-4, it should be
noted that with the transition from convergent flow to diffuser
flow, the physical thickness of the boundary layer increases, and
the completeness of the profile 1s noticeably decreased. Both

17
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4 these factors, as it is not difficult to see from expressions (1-3)
? and (1-4), give rise to an increase in the integral boundary layer
4 thicknesses &% and §**, but the intensity of the growth at these
magnitudes in the diffuser ranges is different.

fg By examining the integrand in the expression for the displace- q
.§ ment thickness 6%, it 1s easy to note that this function is con-

’g tinuously increased in proportion to the decrease in the complete-

3 ness of the profile, and, consequently, in the diffuser region a <

noticeable increase in magnitude 6% occurs.

ﬁ The change in the integrand in the expression for the
§ momentum thickness proves to be somewhat more complex:

b ' 3 . 3

K=Yy = |

; -S ot ( c‘)dy-.bs -9 (§) .
0

% Here with a decrease in the completeness of the profile, an

A increase in the function of ¢(y) also takes place. However, this

% growth is slowed down by the factor pc/plcl standing before the

f parenthesis, and with the great deformation of the proflle it

b lowers the intensity of the growth of the momentum thickness in the

= . diffuser region. In this respect the curve given in Fig. 1-6

A is interesting, where depending on the parameter of Buri I' values

of the displacement thickness 6*¥, referred to the corresponding

thicknesses with gradient-free flow 6**0, have been plotted. If

in the zone of small gradients (I = £0.01) the intensity of the

increase in the displacement thickness 1s highly significant, then

at T > |0.01]| this growth is slowed down, and at T < =-0.03 and by . z
I < £0.02 the ratio 6**/6**0 approaches a certain limit close to

3 in the diffuser region and equal to 0.4 in the convergent region.

These data are highly characteristic and indicate that in the .
diffuser regions the increase in the momentum loss thickness is

limited. Subsequently we use this experimental fact which results

from the very determination of the magnitude §¥¥,
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By analyzing the behavior of the energy thickness, it should
be noted that the integrand in expression (1-5) is similar in
structure to the function of ¢(y) in the equation for the momentum
thickness. However, since the ratio of the squares of
velocitles enters into this expression, the intensity of the in-
crease in thickness 6*¥¥* with the decrease in the completeness of
the profile will be still less than that for the thickness §¥*¥,

After the remarks made 1t 1s possible to predict sufficiently
accurately the nature of the change in magnitudes H = §%/8¥%¥% and
H* = §#%¥/5%% yith the change in the pressure gradient.

J

. !
.
~
. ; 3
. /
S — : ] L

~003 ~quz -4of 0 | 401 402 903"

Fig. 1-6. Effect of pressure gradient on the
relative momentum thickness.

Actually, at small pressure gradients, the intensity of the
increase in thicknesses 6% and 6*¥¥% is determined basically by the

same term equal to l_.if-. There?ore, here one should expect the
1

insignificant increase in the parfimeter of H. In the region of
large pressure gradients, as was jalready mentioned, the growth in
the displacement thickness noticeably leads the growth of the
momentum loss thickness, as a result of which the magnitude H
should be changed most intensely. Such a nature of dependence
H(T) is confirmed well by resulﬁs of experiments of various
authors (Fig. 1-7).
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Thus, utilizatlion with the integration of the differential
boundary layer equation of condition i = const in the zone of
large positive pressure gradients is a very rough assumption, but
on the basis of the experimental curve (Fig. 1-7) the error can be
decreased. '
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Fig. 1-7. Effect of pressure gradient on
parameter H., A — experiments of Nikuradze;

g~ experiments of N. M. Markov; o - ex-
periments of the authors.

Subsequently, in the calculation of characteristics of the
boundary layer, besides thicknesses é* and 6*¥, for an evaluation
of the energy losses it 1s necessary to determine the thickness
S#%%,  This problem at the known momentum thickness does not re-
present great difficulty, since the ratio H¥* = §¥¥3#/§#% both in
the convergent and diffuser regions changes weakly and can be
accepted for diffusers according to the experiments of N. M,
Markov [71] equal to 1.6-1.75.

For the refinement of the approximation (1-18) which was used
in the integration of equation (1-20), let us examine the depen-
dence given in Fig. 1-8 of the normalized coefficient T upon the
normalized parameter T, where accepted as normalizing values are
values of the coefficient %0 for the gradient-free flow and the
parameter of Buri at the separation point Ps. The dependence in

20




questlon is plotted on the basis of experiments of Nikuradze, N. M.
Markov and N. I. Konstantinov [61, 71, 1111].
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Fig. 1-8. Effect of the pressure gradient
on coefficient T. @ — experiments of
Konstantinovy; A — experiments of Nikuradze;
X - experiments of N. M. Markov.
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Here one should note the significant spread of experimental
points, which is largely connected with the indirect method of
determining the resistance coefficient. However, as a whole the
nature of this dependence is quite clear. If in the beginning at
T < 0.7 the reduction in the resistance coefficient is comparatively
small, then at T > 0.7 its jump occurs. In connection with this
it 1s advisable tc examine these two regicns separately, assuming
in each of them its law of the change in the resistance coefficient.

As follows from test data, in the first region the actual
curve can be approximated by the following equation:

T=1—0,9T. (1-29)
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In the second region'at T > 0.7 the linear approyimation in
the whole section is difficult. However, in order net to com-

plicate greatly the practical calculations we approximate the

actual distribution by the equation of a straight line:

T=30=T. S (-30)

]
H

i ' !

Having accepted for the normalization.coeffitient CO, which
corresponds to the resistance coefficient with gradient-free flow
most frequently encountering value Lo = 0ﬂ01@5, we obtain:

g , _
§=0,0125-—-~9-%?£-1-'~1‘ 1‘<0:7; ] f
| 003785 when - (1-31)
= 00375----r T>0,7. 1 . 3
s when

The magnitude of the parameter Fs incoming into expressions
(1-31) at the separation point according to data of different
authors changes in very wide 1imits from 0.028 to 0.12 and, con
sequently, is to a certain degree indefinite.

Below this guéstion
is examined more in detail, and it is shown that for calculations

the magnitfude P can be accepted équal to 0.036. Then, by using
expressions (1l- 23) and the experimental dependence H(T) given in

Fig. 1-7, and considering m = 0.25, let us find the following values

for coefficlents a, and b,, which enter into formulas (1-25) and
(1-26): '

f;,-.-.-:.0,0lS'T; -i;<0'7; . ;

== 4,92 } when
Qg = 0, 047;

] = '7. i
by = 4,0 } wheniﬂ>0
Y . |

As a result, for the calculation of the magnitudes T and. S*#
we will obtain:

I. At T < 0.7;

22 '
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B
. & 0 3,9
' T="i ~--3;;—-r.+o,01575e, 2dz
! ' 5 (1-32)
e 1 5o 8
| Tot = —gra | % R 17.1..0,0157 aozdz]
TRIIIH [ ,
¢ H i I‘ ' .
| , ;
. II. At T > 0.7
.| . .‘ ’ - o 4 6“ ;_
SRR S ---,9-r.+0047s-} 7|
G g
; ) .. - Xo
- | oo LI b %5 Re9. 2553 % 0,047 (24 0.8 (1-33)
y - =.Re°'252'6|, o + ¢ az o

; In formu}as (1-32) °0’ c!' b’ and 6**0 are the velccity, its
derivative, the Buri parameter and momentum thickness in the
L beginning of the turbulent bouhdary layer. Correspondingly in
formulas (1{33) Cgs C'gs I'p and T**, are the magnitudes in the
' cross section of the;boundary'layer, where T = 0.7.

The obtained expressions based upon semiempirical relations
allow conducting the boundary layer calculation in an incompressible
: fluld in the entire region of flow.

i

It must be notea that results of numerical computations
according to formulas (1+32) and (1-33) in the zone of the large
positive pressure gradicnts differ comparatively little (10-15%),
andL consequently,'for estihate calculations it is admissible to
use‘only these formulas.

) !

l As an example let us examine the change in the momentum thick-
ness and magnitude T 'in the diffuser channel with the linear law
of' the drop in velocity (31 = 1-0.5x). Results of the calculations
for the given law of the velocity change are given in Fig. 1-9.
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Here, besides the parameter ', values §*¥* = §¥%/5%%  are plotted,
where EO — the momentum thickness in the appropriate cross section
with gradient-free flow. It is interesting to no%e that here,
Just as in Fig.\l-6, the value T = 0.036 corresponds to the ratio
5;&/5**@ = 3,

Ti%ﬂb , 5'7&776 Fig. 1-9. Changes in mag-
-0 - ‘ nitudes 6*%¥, T and n in the
N 49 diffuser channel with the
KUk Mt "-//:/ 14 linear law of the velocity
o — Q%% *% .
-005 e 1Al change. 1 — §¥%/4%% ;
0025 - - »,//\/. N 4 2-T; 3—-n.
’ o L] s -
o a2 -y

§ 1-5. The Effect of Compressibility on Characteristics
of the Turbulent Boundary Layer

At high flow rates the method of calculation of the boundary
layer examined above requires a certain refinement. 1In this case,
it is necessary to use the more complex expression (1-2) and,
furthermore, consider the dependence of magnitudes H and Co not
only on the Re number but also on the M number. According to
experiments [25, 26], such a dependence proves to be noticeable.

At the sam .me one should emphasize that the compressibility
of gus at subsonlic speeds does not directly affect the velocity
profile in practice. Thus, the six veloclty profiles in the
boundary layer given in Fig. 1-10, obtalned at a constant Re number
and M number changing from 0.3 to 1, lie on one experimental curve'.
However, despite the invariability of the velocity profiles, with
an increase in the M number the integral thicknesses of the boundary
layer are changed.

'Let us note that with gradient flows, especially in the
diffuser regions, with a speed gain there occurs an increase in the
pressure gradients, which affects the velocity profile and can lead

in the diffuser range to an earlier separation of the boundary layer.

2l
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Dependences §*¥ = f£(M) and &% = £,(M) (Fig. 1-11), obtained
with a gradient-free cross section on a flat plate, show that with
an increase in the M number the displacement thickness grows, and
the momentum thickness drops. Such a nature of change in these
magnitudes is explained basically by the density change across the
layer. Since within limits of the boundary layer dp/dy = 0, as a
first approximation (not allowing for heat exchange, i.e., on the
assumption that the wall temperature is equal to the stagnation
temperature To) it is prossible to present the law of the density
change in the following form:

14 -2— M (1.34)

R

e




where Py density on the wall; M — dimensionless v/locity within
limits of phe boundary layer; Ml — dimensionless velocity at the
outer edge of the layer.

The presence of heat exchange somewhat reduces the difference
between the densitles at the outer edge of the layer and inside 1it,
and according to the test dava of Wilson [112] it is expressed by
relation

\ 1+3—-——;' M\
N . (1.35)
P -+ k > lMl

wheﬁe
n==0,35 = 0,42,

From a qualitative side the indicated density change at the
invariable velocity profile gives rise to the growth of the inter-

grand expression in formula (1-3) and to its reduction in formula
(1-4).

Thus, theoretically the nature of the experimental dependences
given in Fig. 1-11 proves to be entirely regular. Hence there
follows the existence of the dependence of parameter H upon the
M number. This dependence (Fig. 1-12) can be zpproximately
approximated by the following formula:

H=ilo(1403M). (1.36)
Here HO — the value of parameter H in an incompressible fluid.

Besides parameter H, the compressibility of gas substantially
affects the magnitude of the resistance coefficient Cps which can
be corrected by the successful selection of the determining
temperature. Being limited to low supersonic velocitles (M1 < 1.5),
for such temperature let us use the wall temperature Tw, and under
these conditions let us introduce into the calculation the density
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and kinematic-viscosity coefficient. Then the expression (1-1T)
takeg the form:

¢y = £ Rey "5 (1 4 ab), (1-37)

A\

or
W)
cl — cloonp-‘—.

where Cpg — the resistance coefficient in the incompressible flow.

As a result, by using formula (1-35) when M = 0, we obtain:

Bl \-n
€= (1 + "":;“_—" M)) Ciee
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Fig. 1-11. The effect of Mach number on the
momentum thickness and the displacement thick-
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Fig. 1-12. The effect of the Mach numbeg on
parameter H. o — Re = 105; @& — Re = 100;
A - Re = (3-6) 105,
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Further solution to problem no longer represents serious !
difficulties, since the consideration of the compressibility does
not change the type of the basic differential equation (1-2) but

leads only to a certain complic¢ation of the final formulas.,

The combined solution of equations (1-2), (1- 36) and (1-37)
gives rise to the following formulas for determining the dimension-

less momentum thickness (for k ‘= 1.4); , ;
i

at 0 < T < 0.7 ' s
_ I_ _ z “10.8
1
;']—* 01,25.Re(;..25 ,’:_'_ s’:’dg v (1-38)
Xs ' '
1 .
where A '

h=N" e ) .

f2=0,0026A37%(6 —Afzey; &+ ' (1-38a)
e AT 6 220,01 ! ' '
fa—% (6 ot . '

at 0.7 < T <1

i

. 3R ‘
- 1. 7 )
T4 o el Tt R0 S"” dzl. (1-39)
‘.’; Re," Jd !
% I
where ' :
0y == A‘«;.G (6-- ;\2)1,800,2'\2. .
9g = 0,0078A3 (6 — A%y2.2 0,313, (1-39a)
90 = R (0 — Aprenatt 3 ! | :

In formulas (1-38) and (1-39) critical speed a, 15 accepted
as a characteristic velocity,'and coefficients are calculated for

i

air. '
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; The Indicated formulas can be used not only at subsonic but
as calculations show, at 1ow supersonic velocities (M < 1.5) for

ranges, of the flow where shock waves are absent.

1 1 .
! [

§ 1-6. Condition and Criteria of the Boundary : .
Layer Separation ' I ‘

'
)

With external flow of potential flow about an arbitrary body,
on its sarface it is always possible to indicate two points in
which the velocity is equal to zero. The first is located on the
* leading and the second on the trailing edgeé of the streamlined .
body. Consequently, on the surface of the body the velocity cl\x)
'is first increased and then decreased to a zero value. ' Thus, in
the intake region there always exists the zone in which the fluid
is moved ‘against the increasing pressure. The' presence of fhe
bouhdary layer'gives rise to the fact that in this zone, under
specific conditions, the %inetic flow energy near the streamlined
wall is not sufficient for the flow against the increasing pressure

and the feed stagnation point is displaced towards 'the flow. A
. similarlpattern can take:place wlth the flow in the diffuser
channel. In this case, beginning from a certain point S (Fig. 1-13),
the,lines of flow will move away from the surface, and in the range
formed the recurrent fluid flow appears. The zone of separation is
the source of formation of stable vortices periodically carried by

{

L |
‘;uagalkau‘,,ye“"“Jl | Fig. 1-13. . Diagram of

R ’ detached, flow in a flat

— . — diffuser.
—ﬂm,,_\‘}\___,/“’:c: N 1 i

the main flow.!
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The separation of the'boundary layer from the surface of the
streamlined body leads to a sharp increase in drag and is accom-
pahied by increased energy flow losses., ‘Therefore, it is necessary
to strive for the displacement of point S towards the exit section
of the channel or the trailing edge of the streamlined body.

The position of the separation point is determined by the
positive pressure gradient dp/dx and velocity profile in the
boundary layer before the separation point. Any increase in
dp/dx when an invariable velocity profile gives rise to the dis-
placement in the separatlion point against the flow. On the other
hand, the more complete the velocity profile will be, i.e., the
greater the energy possessed by particles of fluid directly at the
wall at the assigned pressure gradient dp/dx, the later the
separation will begin., Hence there follows the well-known con-
clusion about the fact that at significant positive pressure
gradients it is advantageous to have turbulent flow conditions in
the boundary layer, since due to the greater kinetic energy of the
particles near the wall separation occurs considerably laier than
with laminar conditions. Classical experiments with a transversely
streamlined cylinder [69] confirm this conclusion.

For the calculation of losses in diffuser channels, just as
for the determination of the drag of bodlies with external flow, it
is necessary to know the position of the separation point deter-
mined from condition

de .
(‘?'l‘f):l::o:m (1-4o)

As was already mentioned, the velocity distribution in the
boundary layer depends upon the velocity of external flow Cy»
coordinate y, viscosity of fluid v, pressure gradient or velocity

derivative c¢', and a certain linear dimension, for which it is

1
possible to use the length of the body L, thickness of the layer

§** opr any other thickness. Then
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¢ =f(cys ¢'13 3*%; y; v). (1-41)

Having turned in expression (1-41) from dimensional magnitudes
to dimensionless, and using magnitudes cq and 6*%*, we obtain:

. ¢ ¢ 3% 3%
f(" L 68t Y ). (1-42)

c‘ 14 v s at‘

Let us expand (1-42) near the surface in series accorcding to
the argument y/§*¥:

& v !

. P LI L y
+'~l’n( 2 ’ - ')"gi‘t""“"

- / C| ‘l'

- 'c ":r 3¢ o.3**
. 'é'."=.‘".'(""";'”‘"—)+

(1-43)

When c'l = 0 expression (1-43) should coincide with the ex-
pression for the appropriate velocity profille on a flat wall. In
this case the expansion coefficients with laminar flow do not de-
pend upon the number Re*¥ = 016**/U [68]. For the turbulent
boundary layer the indicated condition for sufficiently large
Reynolds numbers also takes place [111].

Therefore, the expanslon coefficlents by wl etc. should be
the function of the product of parameters (c'ls**/cl)nl and

(016**/u)n2, l.e.,
) e/ 0%\ [ £,0** \s .
@n'-‘"‘!’n[( ‘c;—l) ( 'V ) ]‘ (l-llll)

Thus, according to condition (1-40) and formula (1-U43), the
position of the separation point is determined from the expression

=0, (1-45)
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Let us expand (1-45) in series and, taking into account that

L )

the argument of the expansion [(f---‘é'----) 'Re“”’)] is small, let us
; )
? be limited to two terms of the expansion. Then
5 ol G \n, L
4 by -t 0y [("‘%’"") 'RQ"”’] =0,
Y 1
3 t Hence, at the separation point
e !
, C'] a *$ ny . .
3 ("1§—~) Re % = const, (1-452)
A
% When n, =n, = 1 the obtained expression gives the value of

: the constant — the shape parameter of L. G. Loytsyanskly at the

% separation point fs. The value of the constant for this case can
be shown with sufficient accuracy (fg = -0.089) [68]. Whenn; =1
and n, = 0.25, the conditions (1-45) gives the parameter of Buri
Ps at the separation point. At this point the magnitude PS
according to experimental data, changes over very wide limits.

P
o

M g ot

TERY E)

* s

Ny
S N R

& Thus, according to experimental data of N. M Markov IFs| =

% ] 0.028-0.035 [71]. According to Nikuradze, G. Shlikhting and Bay
% Shi-y [4, 111] IFSI = 0.05~0.12. N. I. Konstantinov's experiments
b [61] gave |FS| = 0.035-0.09; P. A. Romanenko and others [90]

obtained in their experiment |Ps| = 0.05-0.07.

55 Instead of the Buri parameter L. G. Loytsyanskily uses a

i3 parameter close to it fg, ==153,2 """?;_"'Re"llao, equal at the separation
4

i point to fg = 2-3, which corresponds to value IFSI = 0.026-0.038.

Such a spread of the numerical values of the Burl parameter at the
separation point indicates that the magnitude Ps is indefinite,
and it is difficult to use thls parameter as a criterion of

! separation.
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Furthermore, on the basis of test data in works on the boun-
dary layer, the conclusion is frequently drawn that the one-parameter
method of calculation in regions with large positive pressure
gradients proves to be irivalid, since near the separation point
old velocity derivatives, which characterize the prehistory of the

« * [flow, acquire vital importance [4, 70]. However, when the velocity
distribution at the boundary layer edge can be presented by an
analytical dependence, calculations of the thickness &6*¥ according

; to the one-parameter method glve an entirely acceptable agreement
with the experimental data almost up to the separation point [11,
23, 25].

.

S e e WA
S N

It 1s possible that the effect of the o0ld veloclty derivatives
near the separatlion zone 1s exaggerated, and the probable reason
for the spread of values Ps can be the low accuracy of measurements
in this region and the principal nature of the change in the
momentum thickness along the svrface at large positive pressure
gradients.

Actually the experimental data given in Fig. 1-6 indicate
that at T < -0,.025 the momentum thickness very weakly depends upon

o iy

the pressure gradient. In other words, from this moment the

Lo g2 MRS SR T RN, P 320 ey

st

magnitude of parameter T' 1s determined basically only by values of
the veloclty and its derivative, and the determination of these
magnitudes near the separation point, on the basls of drainage
measurements, is insufficlently precise because here the basic

dcy dey
condition of the boundary layer ~5;-<§w5§~ is not fulfilled, and

TR e, P
HEE R R 22

R v
N

the longitudinal velocity gradlent becomes commensurable with the
. ¢ de .
transverse, i'e""3£'2=7ﬂ7'
. Thus, from the structure of the Buri parameter it follows that
its utilization as a criterion of the separation of the turbulent
&, boundary layer is difficult because of the purely physical reasons.
& 33
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" From the aforesaid";gyfolléwséfhat for the criterion of .- ..
separatioﬁ,'it is"édvanfégeous to select the parameter dependent
directly on the shape of the velocity profile in the boundary
layer. The parameter proposed by Grushvits can be used as such a
magnitude [4, 111] and equals:

¢ \? 4
"2=l—-(;;' yeten” (1-46)
[
Here (1;' oo relative velocity in the boundary layer
y=

when y = §¥¥,

For the gradient-free flow of the turbulent boundary layer,
the magnitude n = 0.5. 1In diffuser regions the deformation of the
velocity profile leads to an increase in n, and at separation point
ng = 0.8. However, for the determination of the coordinate of this
point, it is necessary to construct the law of the change in
parameter n along the streamlined surface. For this purpose it is

possible to use the empirical relation of Grushvits [4]:

--—+o 00804 35 ,0 =0,00461 S',.,.'. L B (1-47)

where .
P14
-—-—2-—‘- n.

The differential equation (1-U47) is solved by the method of
successive approximations. Used as the flrst approximation are
values §¥* found from the equation of K4rmsn (1-2).

For a rapid estimate of the possibllity of nonseparable flow,

it is possible to use the relative momentum thickness %% = §#%/5¥¥
where 60** — the momentum thickness on a flat plate:
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Considering at the separation point that Gs** = 3, we obtain
the condition for determining the coordinate of the separation
point. Figure 1.9 gives the curve of the change in parameter n
along the wall of a flat diffuser with the lipnear law of the
velocity change. Kere the dependences I'(X) and s*#¥(X) are given.
The value of parameter n3 = 0.8 corresponds to the magnitudes rs
and 35**, equal to -0.036 and 3.1, respectively. Values are ob-
tained very close to these numbers with other laws of the veloclity
change. In connection with this, in the construection of calculation
equations, which determine the change in integral thicknesses along
the streamlined surface, the magnitude of the parameter Ps at the
separation point was accepted equal to ~0.036. Naturally, the
indicated value Ps, because of reasons noted above, 1s arbltrary.
However, for the majority of the problems the flow at Fs > -0.036,
apparently, is nonseparable, and for its calculation the use of
the derived dependences (1-32) and (1-33) is admissible.

Without discussing in detail the other criteria of separation,
let us say that as such a criterion Tetervin and Dengoff [4] pro-
pose using magnitude H relative to which is composed the experimental
equation analogous to the equation of Grushvits. However, as the
test data show (see Fig. 1-T), this magnitude at the separation
point changes from 1.8 to 3.0 [4, 25], which makes it Just as in-
definite as the parameter FS.

Using the dimensional theory as a basis, G. M. Bam-Zelikovich
[5] proposes using at the point of separation the following

parameter:

’ att
T 9y =0,005.

It is not difficult to see that this parameter results from
the parameter of Buri when m = 0, and consequently the indicated
value 0.005 cannot be recognized as being sufficiently reliable.
Furthermore, the magnitude of ¢0 = 0.005 is the first term of the
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expansion in series of a certaln functiop about the separation

point, and the degree of convergence of this series 'has not been !
investigated by the author. . ) !

i v
Quite convincing data on the éetermination of the separation
point are given in the work of Stratford [98]. Here, as a criterion
of separation. 1t 1is proposed td use the. folldwing magnitﬁde, which
is valid at Re > 106: '7 !

n—2 -

d 0,5 ' o
@5+ ( b fe) —1, cqx (10- ‘Re. )"'° ,

where ,

p= - L p°hngm5§ﬁB=Q%f Co

hcu »
2

The gliven set is obtained as a result of the examination of :
the form of the velocity profiles near the separation point and, |
apparently, can serve for the comparatively precise estimate of '
the possible boundary of separation. In any case the data on the \
estimate of separation given in work [98j are qﬁite convincing. | .

In conclusion let us give a table of various criteria at the
separation point and tentative ranges from measurements.

Table 1-1 |
. Value of ; ',
Parameter ) Separation
Point
I0s) . 0,025 — 0,12 |
Ns 1 08" ! : o
. Hs . 1,8—2.6.
ks=6**/6°’. ' '2,8-—-3.0 ‘ ‘
Cot '
pm( “',’L) (10-Re,) ° | 0,4

)
(o))
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§ 1.7, Effect of the Initial Turbulence on

the Boundary Layer Characteristics

!
H

The method of calculation of the boundary layer examined above
is valid for the certdin small turbulence level of external flow.
; In turbomachines, as ‘a rule, the turbulence level of the main flow
proves to be quite large (5-15%). Under these conditions one
‘should ecpect the noticeable effect of increased turbulence on
cnaracteristics of the boundary layer.

The investigation of the effect of the external turbulence
uptil: regently was reduch basically to an estimate of the effect
of the turbulence on the position of the zone of transition from
laminar to turbglent flow conditions. In this case it was con-

'sidered that with an incrlease in the degree of turbulence of the

external.flow,’thefe occurs a reduction in the critical Reynolds
number, i.e;, the extent, of the laminar section is sharply reduced,
and characteristics:of the turbulent layer are not changed.
However, V. A. Vrublevskaya's’experiments (13, 14] and the qualita-
tive analysis of equation (1-1) visually show that with an increase
in the initial turbulence a noticeable change in the momentum
thickness occurs. Thus, Fig. 1-14 gives curves of the change in
magnitude §*¥ on a flat pléte at different values of the initial
turbulence. A comparison of the curves shows that with an increase
in turbulence from 1,5 to 5% the momentum thickness increases almost
2 times. Anafogous results were obtained with tests of turbine

cascades [14].

e Th :

t i , . Fig. 114, Effect of the
&4 -—’/,r turbulence level on the
250 A momentum thickness on a

CevpETTT . ////"/ flat plate., x — €p = 5%;
16 ‘ 'x,/—-é( B — ey = UE3 A —cg = 2%

A
/'2 . )./pl—-% U‘-.-— eo = 105%.
ek
g3|—g2) == :
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Therefore, if the degree of turbulence of the flow exceeds
1-2%, it is necessary to introduce a correction into the appropriate
calculations of integral thicknesses., Such a correction, according
to data [14], 1s introduced comparatively easily, and for the cal-
culation iv 1s possible to recommend the formula

033 = (0, T) 8%, g, | (1-48)

Here 5**€=0 — the value of the momentum thickness calculated
from the relation (1-32), not allowing for the initial turbulence,
and function w(elr) according to V. A, Vrub. vskaya's experiments
is equal to:

0,0131.4. 0, 14154 p
e = (A ) s (1-49)
where Ae = ¢ -0,005, and T 1s the parameter of Buri found from
relations (1-32).

Thus, the calculation of the effect of the initial turbulence
level on characteristics of the turbulent layer 1s not particularly
difficuit: 1t 1is necessary to introduce the correction which con-
siders the increase in integral thicknesses.

§ 1-8. Boundary Layer Calculation on the Basis
of the Semiempirical Theories of Turbulence

The engineering method of calculation of the turbulant boundary
layer examined above permits finding quite simply 1ts integral
thicknesses &%, §%* and 6%** but does not give a concept about the
form of the veloclty profile. Furthermore, the possibilities of
the method are limited to the fact that with the integration of
the equation of K&rm4n the purely experimental dependence for the
resistance coefficient is used, and the accuracy of the calculation
}s determined actually by the accuracy of the utilized experimental
dependence.
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The portion of empiricism in the considered question can be
substantially decreased if we use the connection between the stress
of friction T and the velocity profile allowed by the theory of
turbulence. According to Prandtl this connection is expressed by
the relation

. . (e 3
1=ﬂ‘(¢)’ (1-50)

where 1 — mixing length.

If the dependence of T and 1 upon the transverse coordinate
y is known, then the differential equation (1-50) determines the
velocity profile in the following form [105]:

¢ - 03 /T (y)
oo S ccconst L V=1 —d | )
M:‘_ con”-S"\ o\ (1-51)

P
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Expression 1 —%— has a dimensicnality of velocity and is

frequently called "dynamic" velocity (cy). By changing in an
appropriate manner the dependences T/Tw = f(y) and I = ¢(y), it is
possible to obtain a broad class of the profiles whose conformity
to the experiment will be determined by how successful the

approximating functions are selected.

Thus, when T/Tw = 1 and 7 = ky, where * - experimental

constant,

¢ 1
ooy By =4 n-"—‘-l-Bx- (1-52)

Formula (1-52) determines the universal logarithmic velocity
profile on the plate and in the pipe and surprisingly ccrcurs
with the test data almost in the entire zone of flow, with the
exception of the small zone near the wall and exterior of the

boundary layer.
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In general K...K. Fedyayevskiy (193]) used the empirical
formula of Prandtl for the mixing length

&

y\? . y\*
-%—--_-_-0.14—-0.03 (l——‘%“) —0.0'0(1—'“3‘) (1-53)

and the polynomial approximation for the stress of friction in the
form:

y 'AY
;‘E'_.=|,x.,1~3-_(1+/l)(—3‘)o ' (1-54)

which results from the following boundary conditions:

wheny = 0

Oz e op, 0%

=Tl Gy T ok g = U0
when y = §
Ot

1*—0,dy =0, .
The parameter

___a- o

ox*

Substitution of the uccepted dependences into (1-51) deter-
mines the velocity profile in the turbulent part of the boundary
layer at small negative and any positive gradients.

Taking into account that near the wall the magnitude of eddy
viscosity is small as compared with the viscous friction, the
lower 1limit of integration in expression (1-51) is established by
the thickness of the so-called viscous sublayer n, = yn/é. More-
over, in the subsequent work [105] K. K. Fedyayevskiy showed that
the interval of the change in the argument n, <nc< 1 is advan-
tageously divided into two ranges: from n, to Ng» where the

bo
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dependence 1 0.4y 1s valid, and exterior part, where the "mixing
length" is determined by formula (1~53). Then the velocity profile
: LY

can be represented in the form
b

"‘“"’j 9 (4, PDdq-}- Y 0 (A, ) dq,
la

l!! 222

-

Vi A= (LA
\) 08 (l - 4])"“"‘0 LO(! —— c))‘

where
"0, 14
and
AR (R,
i A=
It is easy to calculate the second integral. As a result
R E st e
€Ll N e o = (L
s é;;”""‘S U,1% w(l R TR TR (R ~dyt
o .
+2, [W — {2+ A9+ 2VF)—
A (AL (1-55)
-—.--. arcslp A= -‘(--—;«)-.q]m -2, 511”“
2y A+ Na e
—1+An (14 A) 7t
The boundary of the laminar sublayer for the gradient flow,
according to work [105], is determined by the following expression:
* PJ/ 0%,
M=V dpldx 88
' The dependence (1-55) 1s extremely complex for practical
calculations, and this explains the fact that its successful use
became possible only with the use of electronic computers.
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Just as earlier, with the integration of equation, (1-2) with ! P
the use of experimental dependendes, the entire possible :anée of: ‘
the nonseparable flow is divided into .two regibns. For small !
positive gradients (0 < |TI'| < 2d), where 4 is the coefficient '
dependent on the number Re¥¥, the normal velocity p%ofile'(l-ﬁs)
gives rise to a quadrature of the type (1-27): i

' . ' 1
! ’ - J. . ﬁ’
.i.-.{:‘l;; X ) IFm |
‘l I + ' 1 - o8 " * '
Y ( 'S)Lm const -} S ‘l"!h gz |, . (1-56) “
Rc}‘-fm g, T¥m ! Xa l §

The specific value of constants m and d is determined by the |

range of numbers Re¥#, |
t

et e v ewn b

When lg Re** = 2,2-4,0d = 0.0103; m = 0.222 and

s
¥ ' !
RYTTEE
~

% 0,02
3** 1 9,099.4" a
. -1:.’_‘:........:{‘.‘;2.:;3::_7.’ [ 3% QQR 9,922.. 4,“-_{_ 0,0126 s‘ 89 d;aJ . (1-57a)
]7

'
\ i

When lg Re*#* = 3,0-5.5d = 0.073; m = 0.179 and :

0% N _l — [ 3 ’“Reo ”9(:8 891, 0,0086

2,08 ! )
-3,72
.. i é'edz ¢ (1-57b ;
L Re l K] 1 | ] . (1-570)

o 'lt-“"ékl

When 1g Re** = 4-6.5 d = 0.00521; m = .0.148 and

x 0,872 -
YT 1 . f" . . .
: PL'": Rel 15558 [ TR e 0 COI7J °°d:1‘] e -
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For the large pressure gradients (|I'| > 1.5d). the solution

proves to be close to the relation of Ross and Robertson [87]:
! | |

! ' - 4,75 2 . ;

3** 1 ¢, T Tm
‘ ! a'. c‘ ; hd

3

(1-58)

o

i

If instead of dependence (1-50) we use the relation of K4rmén

for the stress of friction in the turbulent boundary layer
\ . ' ¥ |

‘ ’ ' 0w0y o
, 1—' ©*p = (azc/oy:)z ', (1-59)

tﬁen, as A. P. Mel'nikoyv showed [42],lwhen using the polynomial
(1-54) it will be possible:to arrive at the following expression
for!the momentum thickness: : , I :

(1-60)

e l

0,83
7 les 2—1 4 -4, 2
‘.-L-.L..-- 0 g}‘“h) '; i [.0"' R\-L l" 0 0155‘ ] .

: oo &
Reproduced from % o . |
best availablé copy.

"1 The 'idea of the calculation proposed by K. K. Fedyayevskiy
was so fruitful that 1% the last decade it 1s used most frequently
in works on the boundary layer. ‘Despite the diversity of the.
procedures, the basis for contemporary calculated methods consists
of dependences of the type (1-50) or (1-59), which connect the
stress of friction with the profile of the averaged vglocltiesﬂ
In this éase,!Just as in work [105], it usually proves to be ad-
visable to use a two~layered ,or three-layered model of ‘the turbulent
boundary layer. In the first case the boundary layer across is
divided 1nto.a viscous sub}ayer, where Newton's dependence for the
s%ress'of frictionw:::ubg— is the basic,, and the external

) +
.

turbulent region.
and exterior layer. a transition region is located.

In the second case between the viscous sublayer
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An Important moment in the development of calculated methods
was the' research of Clauser, who introduced the concept about
equilibrium flows and showed that in the exterior region it 1is
possiblé to use not Prandtl's relation (1-50), but Boussinesq's
formula

de_ (1-61)
L l).‘ by »

with the coefficient of virtual viscosity Moo Under this assump-
tion solutions of D. B. Spolding [9l4a], Libbey Baronti, Napolitano
[67], D. L. Mellor and D. M. Gibson [79], Stratford [98] and others
are constructed. Unfortunately, all these methods require numerical
integration and do not give such simple expressions for integral
thicknesses as the approximation relations (1-27), (1-57) and (1-60)
examined above. Since for our purposes the accuracy of these re-
lations 1is entirely sufficient, the authors considered it possible
in this work not to discuss the details of stricter methods of the
calculat:on than the modified method of Buri used in the book.

For greater clarity, Table 1-2 gives a comparison of design
equations obtained by varicus authors.

It should be noted that, despite the different approach to the
problem in question, the final expressions differ little. The
distinction in the coefficients glves rise to noticeable deviations
in the computable magnitude in methods of A. P. Mel'nikov, G. M.
Bam-Zelikovich and Trukkenbrodt. In the remailning cases the final
results prove to be quite close. For a comparison Table 1-3 gives
values of the relative momentum thickness with the 1inea} law of
the drop in velocity in a flat channel (El = 1-0.5x) obtained by
calculation in various formulas.
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Table 1-2

Author Formula
:; ie?w&‘iikiy’AK'VK' g ! 341,22 022 1 n
5. olesnikov, . ——
i Smolyaninova, A. N. L Rﬁﬁ“”o?37 [ 0 Rey +

x 0,82
40,0126 &a}"‘” da']
%o

Mel'nikov, A. P.

g ! 399,21y 0.2:4,4
T pso 166 ; ?u[ Rapey -*':

x .,0,83
4-0,015 f j
;- .

memaes v e

Deych, M. Ye
Zaryankin, A. Ye.
formula (1-32)
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——— T2 — =] T 2% P‘ .25 4 l7|
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}-0,0157 S 2d;§]
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- —rven me =

Loyteyanskiy, L. G.

L S
e =z - 1,16 0,167 =3,
L r‘ie(}:l't\) 6?'4 [ ["])] ReL! 7 00 95+
I 0,856
+0,c3755 {238 da]

%
Maskell gre 1 03] £
L= R T TR 2gAt5
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Y 0,824
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Table 1-2 (Continued)

Trukkenbrodt aes {
(] - .
—p r.s—-»-—.-.._.'.' 8'.'o’67 e .10761.5
L. ;zu‘;;"“a,’[- Rel o ¥
=+ 0,855
: 40,6076 S&-““ dz]
%
Spence ge* l._ “310],29,.0,2:4,2-
P AR R 6’,"5 8y "“Rey &y
' 5 20,532
+o,0105( d:zJ )/
%
Tzble 1-3
r.2.
Author
at ReL = 105 at ReL =10
Fedyayevskiy, K. K.
Kolesnikov, A, V.
Smolyaninova, A. N.
fOI‘mu.la (1"57&)'000000.00000.0 000193 000127
fOI‘mUla (1-57b)0000l0l000000.0 0-01“5 000102
fOPlela (1—570)............... 0.01’42 0.(‘101
Mel'nikov, A. Pivieerrnnnnnnnnnas 0.0262 0.0178
Deych, M. Ye
Zaryankin, A. Ye
fOI’IﬂUla (1‘32).-...-0-....-000 0.016 000110
Loytsyanskiy, L. Geevevvvononnnes 0.015 0.0108
MaskellOOOOQUCOOOCOOO0.0.l‘..l.‘. 00018 0.0122
Trukkenbrodb.ecevevesseeessnsoosns 0.0115 0.0082
SPeNCE. v eaesssttarsassossssssnsns 0.0193 0.013
Bam-ZEI.ikOViCh, Go Mo-nonocaoo;oc - 0002"'8
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CHAPTER TWO

METHODS OF CALCULATION AND AERODYNAMIC
CHARACTERISTICS OF DIFFUSERS

§ 2-1, Types of Diffusers

Diffuser elements utilized for the conversion of the kinetic
energy of the flow into potential energy are completely diverse.
Because of this, we will discuss only the basic types of the
diffusers which are most frequently encountered in practice.

a) Flat diffusers are the channels, flow passage cross-
sectional areas of which are changed in the course of flow in one
plane, and the longitudinal linear dimension B (Fig. 2-1) of which
considerably exceeds thie transverse dimension Hl in the exit
section, The most widespread diffusers of this ‘type are the flat
rectilinear and curvilinear diffusers schemat}phlly depicted in
Fig. 2-la and b. Since at Hl/B << 1 the effett of the slde walls
as a first approximation can be disregarded, the flow in such
elements 1is examined usually only in the meridian plane.

The cross section of the flat rectilinear diffuser is deter-
mined by the assignment of the following magnitudes: the height
at inlet h, height at the outlet Hl and the angle of slope of
the generatrices a, Together with these magnitudes the length of
the diffuser L 1s frequently irntroduced into the examination.

Any combination of three of these parameters completely determines
the shape of the channel in cross section.
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. Fig. 2-1. Diagram of flat and conical

i diffusers. a) flat rectilinear diffuser;
b b) flat curvilinear diffuser; c¢) conical
E: diffuser; d) axisymmetric diffuser with
s curvilinear generatrices,

The number of geometrlc parameters can apparently, be reduced
. if we turn to the dimensionless values. Thus, having selected as
= the basic parameter the height h, we obtaln three values: n =
= Hl/h, ¢ and L/h, where n - the expansion ratio of the diffuser,
equal to the ratio of the area at the outlet F2 to the inlet area
Fl‘ In this case, since the transverse dimensions of the channel

are invariable, the area ratlo can be replaced by the ratio of
appropriate linear dimensions.

The similarity of flat rectilinear diffusers is provided by
the equality of any two dimensionless geometric parameters: n and
a, n and L/h, o and L/h. The first two parameters are used most

frequently.
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By examining the flat curvilinear diffuser (Fig. 2-1b), it
should be noted that here the minimum number of the geometric
parameters which determine the flowing part in meridian section
noticeably increases. Thus, for the diffuser depicted in Fig.
2-1b, it 1s necessary to assign 1ts length L, dimensions b, radii
ry and r, and helghts h and Hl‘

Having maintaned here as the determining dimension h, we
obtain the following dimensionless values:

n-__.-—h-; 1= F,::'-%’--; 1;::-%-; B:-Z—-._
. .

Considering, however, that the flow in the curvilinear channel
substantially depends upon radius ry [109], in certain cases it
makes sense to take for the determining dimension not h, but
radius ry. But both in the first and second cases, when evaluating
the similarity of curvilinear diffusers, 1t 1s necessary to
provide the equality of at least three dimensionless values:

n, r2/rl and b/L. The first of these parameters characterizes the
expansion ratio of diffusers, the second determines the shape
of the channel, and the third indicates its relative curvature.

b) Conical diffusers refer to the most widespread and very
simple diffuser elements formed by the surface of a truncated
cone (Fig. 2-lc). The meridian section of these diffusers
completely coincides with the cross section of the flat rectilinear
diffusers and, consequently, is determined by the same geometric
parameters., However, instead of heights h and Hl’ here 1t is
advantageous to examine diameters at the inlet D1 and outlet D2.
Then for conical diffusers we will have the following systems of
dimensionless parameters:

D3
a; LIDy; n= -1—)?-.

-

For the characteristic of the geometric shape of the diffusers
in question, just as for the flat ones, 1t is sufficient to use
any two values,
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¢) The curvilinear axisymmetric diffusers given in Fig. 2-1d
are determined by the diameters of the inlet D1 and!outlet Dz,"
the length L and the law of the change in area along the x axis
Fx = £(X). Here, for the similarity of tﬁe §iffusers, it s
necessary to provide the equality of 'the three values: the

expansion ratio n, relative length L/Dl and dimensionless flowing
area o

2
}7x‘==:?§ﬁ===i<}%})'
Dj e

d) Annular diffusers with rectilinear generatrices are the
necessary elements of the majority of exhaust pipes of gas-turbine

installations and are the channels formed by the two coaxial-

conical surfaces. The meridian section of such a diffusqr and

\ )
its basic dimensions are given in Fig. 2-2a.

It is not difficult

to see that in this case the geometric parameters which . 2termine
3 1

the shape of the flowing part are

2y D‘o .._.d’ . . . L

Dz——"‘b‘:v az:—- D, y Gy Gay D,’ ) '

where d2 and d1 ~ the greatest and least diameters of the internal
conical surface, and ay - angle at its vertex.

gyl '

a) | b)

Fig. 2-2. Annular diffuser with rectilinear

generatrices a) and a curvilinear annular
diffuser b).
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For the geometric similarity of two 'conical annular diffusers,
it is necessary to provide the equality of any four of the five
indicated values, since the fifth value is not independent. |

e) Annular diffusers with curvilinear generatrices (axiradial
diffusers), the flowing part ané geometrical dimcénsions of which
are givén in Fig. 2-2b, are formed by two curviiinecar coaxial
surface rotations° AB and CD. The shape of the cross sections
of these dirfusers coincides with the shape of cross sections of
flat cuyvilinear diffusers. !

In the simplest case, when 'the generatrices AB and CD are

qutlined_by radii ry and Ty, and the dimensionless geometric ;
parameters iwill be '

’ ' rn. L. D,

The first three parameters given ﬂere characterize the shape
of the meridian section value D2/Dl determines the "radiality" of
the d%ffuser, and 6 = Z/Dllcharacterizes the dimensions of ring
dat the inlet. ' ' '

f) Vanéd diffusers are the most widespread in centrifugal
compressors and some types of &axial turbines. As experiments showed
(301, the use of vaned diffusers in turbines in a number of cases
can give a suﬁstantial'economic effect.

|

For the characteristic of vaned diffusers it is advantageous
to 1se the following dimensionless values (Fig. 2-3): relative
pltch t /b (t/b - for axial cascades) or t /b (where b - chord of
the alrfOil section) relative height 1/b; the expansion ratio of
the diffuser as a whole n= F2/F1, fanning D/l or Dl/b and the
angle of deflection of the, flow 1In vane channels.

i
)
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Fig. 2-3. Diagram of
vaned axlal a) and radial
b) diffusers.

It is natural that for the similarity of vaned diffusers,
besides the equallty of the dimensionless geometric parameters,
it 1s necessary to provide complete geometric similarity of the
profiles which form the diffuser channel.

The types of diff'users examined here are the basic elements
of the majJority of exhsust pipes of turbomachines used for the
removal of the working medium in the assigned direction with
maximum use of the outlet speed. It 1s natuvral that both these
requirements should bz connected with the arrangement of the entire
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machine as a whole. The last fact 1s rather often the declsive
one when selecting the design of a diffuser element and scheme
of the removal of the working medium,

§ 2-2. Aerodynamic Characteristics
of Diffusers

For the characteristic of the aerodynamic qualities of
diffusers, today a good many different coefficients are used.
If with a comparative evaluation there is no vital importance
with respect to which of them the comparison is produced, then
for aerodynamic calculations it makes sense only to have those
coefficients which allow according to the assigned conditions of
flow before the diffuser element to determine the flow conditions
at its outlet section. From this viewpoint the coefficients of
losses of energy ¢ and the pressure recovery g are sufficiently
convenlent. For the clarification of their physical sense, let
us examine the process of diffuser flow in the is-diagram (Fig.
2-4). Here the state of the flow before the diffuser is determined
by the point 1 characterized by pressure Py temperature tl
and the available kinetic energy, which corresponds to velocity
at the inlet ¢y and equivalent dirference in enthalpy HO.

L
ot " . l\ [Ilpo.' 0’/’}2/
r . ‘l““"“ - gremme g ame L e v o
o1 C’/ ¢ A/ r
- —d e e e PRI s -4
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Fig. 2-4. Process of

~N

compression in a sub- T
,//// ///ﬁl

o

sonic diffuser. a) - O N
diagram; b) - process i -

in an is-diagram. . ;///;;u----——*F
s
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The state of the flow after diffuser (point 2) is determinod
by pressure Py by temperature t2 and the kinetic energy equivalent
to the difference in enthalpy ha.c‘ The parameters of total
stagnation Poys t01 and Pgos g2 before the diffuser and after
correspond to points 0l and 02.

With isentropic stagnation of the flow, its final state for
the assigned diffuser will be expressed by the point which
corresponds to maximally possible pressure Py, However, the
energy lcsses give rise to the fact that the process of stagnatilon
occurs with an increase in entropy along a certain line 1-2, and
the pressure in the outlet section p, proves to be lower than tro
pressure p,_.

As a result the energy losses inslde the diffuser can be
estimated by value Ah, and entering here are both the frictional
losses AhT and losses connected wlth the separation of flow from

the walls, AhOTp (in the case of detached flow).

The coefficlent of losses of energy can be obtained either
as the ratio of Ah to the kinetic energy at inlet HO, or, as is
done during cascade tests of turbomachines, as the ratio to the
available energy ho. Thus, for an estimate of the energy losses,
we will obtain two coefficlents:

A
Al
o = s (2-2)

However, these coefficlents are insufficient for determining
the state of flow at point 2, since in the diffuser element there
occurs anot only power losses but also the conversion of the kinetic
energy of flow into potentlial energy. The degree of the perfection
of this process ca: be estimated by the coefflcient ¢f the re overy
of energy, which %s the ratiu of the increase in potential energy
hl.? to kinetic energy at the inlet HO:
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For an incompressible fluld the coefficient £ 1is frequent.iyv
called the coefficient of the recovery of pressure and 1is
determined directly according to pressures Pys Py and Po1’

J L Skl 4
Pa—p

The introduced characteristics are connected by the simple
dependence:

=8 (1 —8). (2-4)

In other words, of the three introduced coefficlents only
two are independent. Let us use coefficients 7 and £ as these
independent values., Let us note that sometimes the coefficient
of the losses in energy 1is called the resistance coefficlient of
the diffuser.

When the kinetic energy at the outlet from the diffuser is
not used in subsequent elements of the apparatus, an important
energy index 1is the total loss factor ;n. To determine this
value, let us turn again to Fig. 2-4b. Let us examine the initial
(point Ol) and final (point 2) states of the gas.

It 1s ~vident that with respect to the outlet pressure Py the
flow has avallable energy equivalent to a drop in ho, and all
this energy 1s completely expended for the provision of the
assigned flow through the diffuser in question with a definite
velocity Coe

Let us express the value h0 in portions of Ho. As a result
we will obtain the total less factor:

g o= o (2-5)




1 ‘l H
From the physical point of view the 1ndicated coefficlent '
includes the coefficieﬁb of “internal losses ¢ ‘and the coefficient

of outlet losses Cs.c? being their sum: . ‘

.).1 = t g_} .‘o . v ) ' . !

[}

Understanding as the coefficient‘z;soc the ratio h, C/Ho,'let ’

us write the energy balance:ofnthe diffuser in the following form:
1 |

Hyz=ly oIy o0t !
’1‘ 3 ,1 g Lh ' .
1=~ “Hy 'L'“’if‘ i, “"* r’“"“ e b . S

| Hence it follows that for the characteristic of the state of ,
i flow in the outlet section of the diffuser instead of values g

! and £, a combination of coefficients ¢ and §_ or,;_ and ;a c can:
! be used.
|
{

The introduced total loss factor, Just as the doefficient of

i the recovery of energy &, quite fully characterizes the energy

possibilities of the diffuser and recently increasingly more ' !
frequently 1s used both for calculations and for a comparison ‘ ‘

ol of the quality of various diffuser systems and branch ccnnections b
of turbomachines. Furthermore, it 1is easy to show that with its

4 help the relative pressure differential Ap/pOl necessany for ‘

- ) passage through the diffuser of an assigned flow is comparatively '
22 simply found. ‘ )

¥E .

b Actually, the enthalpy drop h0 1s equivalent tc the square of

A

a certain arbitrary velocity o If at the outlet section of the :
diffuser the pressuare of total stagnation in the center of the .
channel 1s equal to the pressure 501,,i.e5, flow with a potential
i nucleus takes place, and velocity o corresponds withlthe maximum

Otherwise ¢, > ¢ \

outlet velocity c omakc"

2maKkc”’

Pressures Po1 and Py and velocity ¢, are connected by the
relation ' !
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By using the continulty equation, i-c: formula (2-7) it is ' ‘
possible to, introduce ,the gas f1.. G. Then

Ap ‘ G¢ . '
. Pa ,-IC“ PlFZ 2" . (2=-Ta)

i '
i

‘Here Py and Fl -~ density and area in the narrow cross section
i
of the diffuser. !

! !
| ]

Used frequently for the diffuser characteristic is its eff s
equal to the ratio of the actual increase in potential energy to !

the maximally possible with - isenfropic compression, 1l.e.,
. }

. ' . hl! ) ‘ . 1

m‘——. “hy zng

In turn h * Ah. ; |

l.QHA 1 2
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Having divided the numerator and denominator of the expression
in question by HO’ we obtain the connection of the eff of the
diffuser with the coefficients introduced earlier:

R SRR SR ot
[ B S Bt AP B A (2-9)

For the incompressible fluid, the eff of the diffuser is
determined by pressures Pys Py and Pyt

If during the calculatlion of the losses we do not consider
flow velocity component, then the coefficient of losses with the
outlet velocity will be uniquely determined by t.le expansion
ratio of the diffuser n and will be equal to [54]:

[\ _l~' -
em(2) 3 =

where pl/p2 is the ratlio of average densities in the inlet and
outlet cross sections of the diffuser.

Then when p = const the connection between n’u and cn is
established by the following relation:

. 2
= (1 -~§n);,7'1—:1-l (2-10)

From the other utilized coefficlents, let us distingulsh the
loss factor of total pressure 9 and the coefficient of the
pressure increase (compression) o.

The first value is the ratio of the mean pressure of total
stagnation after the diffuser Po» to the pressure of total
stagnation before it Egys and the second gives the ratio of
static pressures Py and Py il.e.,

58




Having expressed these values in terms of the dimensionless
velocity at the inlet Al and coefficlents ¢ and cn, we obtain:

k—1 k
=7 iM T
0. — -PL Po_ i . (2-11)
0 Pa’ Py 1 EI:LE\? 1—2) ’
LImEgTh-
B—1 :
d___'__:.__f_S_.,[’ng . (2-12)
P P 1——55’-:—:4? '
: <4

With the transitlon to supersonic diffusers, the process of
the flow is substantially complicatzd, and here some additional
characteristics are introduced. For the development of thelr
physical sense, let us again turn to the thermal diagram (Fig. 2-5).

Point 1 corresponds to the state of flow at the inlet into the
diffuser, Line 1-2 conditionally depicts the process of compression
of the gas in the system of discontinuities in the supersonic
part of the diffuser. The appropriate increase in entropy Asl
characterizes wave losses and losses of friction at th» inlet part.
Behind the discontinuities pressure Pog 1s established. If
p2s/p02 < gy, then after the discontinuities the flow is still
supersonic and in the narrowing part of the diffuser the gas
compression 1s continued. At pzs/p02 > €4 the flow behind the
discontinuities 1s subsonic. This means that in the narrowing
part up to the minimum cross sectlon the flow will be accelerated,
and its pressure will drop. If in the minimum cross section the
rate of flow reaches the critical value, then in the expanded
part A > 1, 1In this case the stagnation of flow will occur in
the system of discontinuities after the narrow cross section.

The increase in entropy A32 is conditioned by losses in the sub-
sonic part of the diffuser.
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Fig. 2-5. The process of compression
in a supersonic diffuser. a) diagram;
b) process in an is-dlagram.

KEY: (1) Supersonic section; (2)
Subsonic section.

Let us note that the total change in potential energy 1in the
supersonic diffuser Hon can be considered as the sum of changes
in potential energy in the system of discontinuities hOS and
subsonic part hOg'
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For an estimate of energy losses in the supersonic diffuser,
let us introduce the energy eff into the examination. This value
is defined as the ratio of avallable energy behind the diffuser
to the kinetic energy at the inlet (Fig. 2-5b).

' k—l

nm-—g:: [l ("“"};, l),.] -l (2-13)

The magnitude H02 is the sum of the kinetic energy of flow
behind the diffuser HOR and changes 1n potentiai energy HOn'
The energy eff n'r”3 can be expressed also in terms of losses in
kinetic energy Ah:

'qa.a"_':. ———}i;‘—-—'-—— l ?-'c, (2"1”)

where, as before, £ - the coefficient of losses of energy in the
diffuser.

Let us note that n‘11 5 can be presented in the following form:
k~l
(ps/ Pez)

Mo —

alj'_

(0s/par) -1

The eff of diffuser introduced above nA, after elementary
conversions, can be expressed in terms of dimensionless mean flow
velocities Al and A2 and the pressure ratio pl/p2 in the following
manner:

g k= 7\2" f=1

oo k] k+* IANE
R

If the velocity after the diffuser is low (Az x 0), then the
formula (2-15) is simplified:
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: One should emphasize the distinction in concepts n'n 5 and nA.
A f The energy eff depends only upon power losses 1in the diffuser and
does not depend upon the compression ratio ¢. Magnitude n.n depends

upon the diffuser losses and upon compression ratio. It 1s easy
The connectlon between these characteristics

B

: > .

4 to see that Moo > N4

b is 1llustrated by the formula

.
3 o= — (1 —qp)~; ~=1-—8(—,;—;—-l)- (2-16)

For the computation of the increase 1n entropy As, let us use
the following expression:

As Tog k—1: Po o\ __ .t T,
n-—-——In A = (1 —n'y) In =,

e

i Z-;— T,

»%5 where As - the increase in entropy in the diffuser; Cp - the heat
ij capaclty of the gas at constant pressure; n'A - the arbitrary eff
i‘ of the diffuser:

. 7)' _ k=1 _!igqg]._o__t__.__k l . In Po.u 14

A ART TR Tty Tk

3 vi n(1+550m)

“ . — k— l In Pol/l’oz '

3 . H' ' =T v

3 - ' UV"WO

The dependence between nA s and n"q is defined by the relation

k-1

)
o, e 1 —(p/po2) .

L i+ } .“ T h—1 .

k ’
1 — {1/ Po2) Ta _.
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The connection between na and n'A is expressed by the formula

2onn

At the fixed values M; number at the inlet into the diffuser,
the eff ”a.a’ nA and n"u are changed in one direction. Therefore,
the comparison of various diffusers with an ildentical velocity at
the inlet can be ccnducted by any eff. However, the substantiated
comparison of the diffusers operating at various Ml numbers can
be accomplished only with the correct determination of eff. 1In
this connection let us note that the coefficient of losses of

stagnation pressure % is not the single-valued characteristic

of the effectiveness of diffusers. In the comparison of diffusers,

this magnitude should be augmented by the compression ratio ¢ and
Ml number. Only at equal M1 and p2/p1 does the coefficient %

appear as the single-valued diffuser characteristic. The dependence

between the energy eff of the diffuser and the ratlo of stagnation
TR weme mmmroTe U721 pressure is shown in
- Fig. 2-6.

Mig. 2-6. Dependence
of the energy eff upon
the Mach number and
ratio of stagnation
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Thus, from an examination of the various coefficients their
close interconnections follows.' For clarity this connection is

given in Table 2-1, where all the coefficlents are expressed in '
terms of the coefficlent of losses and the coefficient of pressure
recovery.
Table 2-=1. e
Clozuzionse : Copatyall cnasy '
Q) e 2 . .
g - ' e : ?
g SO
& . § == (1 —8)-} |
Ea . )  Epe=1—§ '
5
N === ;S
ia Na E5Tg |
coof ) = |
. '-a’:l—-—' =l-—-¢'/“‘""¢-—l
RIR 11,9 4 b\.,h )
k-1 ' '
° “=ipTM I
R
' ——
, ) lff?t k=1
° O ETER (=g b
NE“.
k-‘ ‘
. . [ 1= mé:n_]
- l — U‘
t
i
KEY: (1) Symbol; (2) Connecting formula.

§ 2-3. Procedure of the Experimental
Determination of Aerodynamic Characteristics
of Diffusers :

The experimental investigation of diffusers is connected hith
the great expenditure of time, since the nature of the flow in them
1s determined by the significant number of geometric and mode

6u
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parameters. Because of this, those ¢oefficients which can be

‘ obtained with .minimum difficulties are determined by experimental

éeans. fhe indicated condition, to the greatest degree, 1is
satisfied by the eff of the diffuser n_ and, the total loss factor
Zh connected with it by.realtion (2-8). For their experimental
determination, it 1s necessary tq know the pressure Po1 and
temperature TOl of total stagnation before the diffuser, static
pressures at the inlet, into the diffuser Py and at the outlet
section Py - Then we will obtain:

: G
‘ . p.?- &
C;.Ag*.l—(pm)
n—-";;..{ foes L RS ""'""':{E':i‘o (2"17)
1 l . _.‘.D_l__ k
. Pa

Static pressure in the outlet section of the diffuser Py is
determined by.the environment. At the outlet into the atmosphere
p, = B, where B - harometric pressure.

t The pressure Po1 is found so simply and with high accuracy.

. The estimate of ‘the mean static pressure p, in the inlet section
of the dlsfuser proves to be more complex. Ibts direct measurement

witn the heip of drainage selectlions 1s applicable only for flat
i
and axisymmetric diffusers. When symmetry does not exist, it is

, hecessary to conduct the traverse of the entire inlet velocity

field, which is connected with great experimental difficulties,
or determine the mean value p, on the basis of indirect measure-

" ments. The latter way is used most frequently and consists in

the fact that besides pressure pgy and temperature TOl’ the mass
flow weight rate G of the working medium through the diffuser is
meadured, and for the assigned inlitilal parameters the critical
flow through the diffuser in question C Ko is calculated.

As a result it is rvossible to find easily the given flow Qq-

Since GHp = ApOlrl// 01° the formula for the estimate of q, assumes

the form:
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Q= et (2-18)

Here A 1s the constant dependent on the properties of the
working medium, and Fl is the intake area of the diffuser. For
air the coefficient A = 0.396, if the flow rate is measured in
kg/s, the area - in m2, and pressure - in kg/mz.

Further, by using the single-~valued connection between the
pressure p, and the given fiow q with the help of tables of
gas-dynamic functions all parameters and velocity Al in the inlet
section of the diffuser are found.

In certain cases, when the power of the feed source allows
achieving the critical flow through the diffuser, the magnitude
of the given expenditure ay is determined on the basis of direct
measurements, since now

Gypr= A -
* Potinave
q — _EME@... G_.....
! Pov Guaxe
B § Here Gmauc ~ maximum critical flow through the diffuser
»%i ' obtained at “he initial pressure P01 mane'

The given method of the integral estimate of the total loss
- factor and eff of the diffuser require the minimum expenditure of
éi experimental time, and lts accuracy is determired actually by

2 the accuracy of the determination of the flow. If the magnitude
of’ eritical flow can be successfully determined directly from

the experiment, then the accuracy of the estimate qQ; proves to

i be even higher. The <omparison of coefficients n and nA,

£ obtaired on the basis of direct pressure measurements Py and

: calculated by the integral method, shows almost complete
convergence of results [44].

¥
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Thus, it can be considered that the experimental estimate
of the total loss factor is quite rellable. 1In this connection
it 1s expedient to conduct a comparison of experimental data
with data obtained by theoretical ‘methods of the calcuiation of
the diffusers directly according to the total loss factor ¢, or
according to the eff of the diffuser nA. If a comparison is
conducted according to the magnitude of internal losses , then
it is necessary to indicate clearly by what manner these losses
are obtailned.

Most simply the coefficilent of internal losses can be found
from relation

E=0n—0Cn.cs (2-19)
where
cép TEANR. (2-20)
— ez i) —, 2-2
KB.C c.‘.l), ( P2 ) n?

The estimate of the outlet losses of the kinetic energy from
relation (2-20) is valid only at a uniform velocity profile in
the exit section of the diffuser.

In general for the computation of coefficlient Ce o? it is
necessary to use a more complex expression obtained as a result
of the averaging of local losses in flow [541.

!

o e (B 2 .1‘- & 3 "[_:_,\

Co. 0= (—p—2 ) . Y( Cren ) d (F,).
0

Having designated by N2 the magnitude or the integral, we obtain:

2
z:n.c:(.‘fp{.) L. (2-21)

Coefficlent N2
section of the diffuser and always, besides a uniform profile,
exceeds one.
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Consequently, the internal losses calculated on the basis of
formulas (2-19) and (2-29) include any (sometimes significant)
portion of the outlet losses, and zhese formulas cannot be used
for a comparison with the theoretical methods of calculation
which consider the flow velocity component.

At the same time itis necessary tonote that themost widespread
today semiempirical and purely empirical methods of the calculation
of diffusers [34, 39] are based basically on relation (2-19). If
for the ca culation of total losses such a conditional estimate
of internal losses 1s entirely permlssible, then in the determin-
ation of the state of flow in the outlet section the accepted
conditionality can lead to an appreciable error.

From the aforesaid it follows that the magnitude or total
losses and eff of the diffusers do not make it possible to
obtain the actual value of the lnternal losses, for the determin-
ation of which a detailerd investigation on the outlet velocity
field is necessary with the measurement of losses at each point.
In this case usually the local coefficient of losses ;'1 is
determined with respect not to kinetic energy HO at the inlet
cross section but to the available enthalpy drop ho.

For the transition from coefficient ' to the coefficient ¢,
calculated with respect to HO, it 1s sufficient to make use the
relation (2-4), since

&b hy oy
K —_— ",;;‘.Ti‘o" '—"‘K t;n'

The determination of local values of the coefficient of
losses, taking Into account inass flow, glves:

» ) r
i 21 s ] rl . dF__..
—_— . (1) === st e KA ==
C Ins {é 3 pgengcpl"z “ > 4 2 ai

=t (o (o) LNy F
—2;"5" ‘(02\:’)‘)'02(:[) /d (Fg). (2-22)
0 .




20

3eyid

Db M el

The connection between the coefficient of local losses c'i
and the velocity in the exit section Coy results from the determin-
ation of value c'i. Actually,

7 ooen My Iv=-hy e Cop
il G R b
Q [} 00
? 2
] Cu (2(.‘])
- — — ""'Q‘T.
cch ‘%
C.zt Co o 1 ET
——ES e —&t (2-23)
Cacp  Cacp P’

Here Cy - the conditional velocity equivalent to the avallable
enthalpy drop hO'

Having substituted the obtained relat! n into formula (2-22),
and disregarding the density change in the outlet section, we

obtain
’ L]
) N T F
_u——zptngq‘Vl—' ﬂ.(i (F’)o
.

The ratio of velocities co/c2Cp is easily connected to the

total loss factor and the expansion ratio of the diffuser, since

2 L N Y Vg 1> QR g o
Cogir . € Czc.) ./m Plrl V x.‘ 9‘

As a result the relation for determining internal losses,
according to data of probe tests, takes the following form:

.. 1
Ge=Per /O Lo,y T8 g (L
b ll/.ﬁn})l/l ‘;‘d(["z .
0

It will be possible to present the derived formula of
averaging in a somewhat different form, if in correlation (2-22)
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'

we replace the local coefficient of losses ' by the ratio of .the

squares of the appropriate velocities from expression (2-23).
3 ¥
Then . '

]
2 :
¢ Cat o F '
o b 2 V22V 2t g [ =),
n Caop Co ;cé Fy
0

The obtained integral determines vhe well-known relative area '
of the power losses, 1f velocity oy 1s equal to the maximum speed
at the outlet section. . . ' . !

i

The indicated condition is fulfilled ‘automatically with the

equality of the pressure of full stagnation in nucleus P02 i mand

to the initlal pressure Pgye Otherwise the energy los§ thickness,

calculated with - .pect to the maximum spe~d Comanc? in exit
section will be less than the examined integral. :

Let us introduce the following designations: I

2 ' :
TERw 3**% 00, | ot 1 Cop d F
T Fo T caame e T )
: : Comake 2

AR o R
A‘.(\a___q)axx*z;

H2 - the perimeter of the channel in the outlet section; ¥ - the
coefficlent of the conformity between the introduced values;

with Po1 = P02 manc b= 15 1f Po1 ? Po2 makc’ then ¥ > 1; for
instance, for the turbulent velocity profile and Poa MaKC/p01 = 0.95

¢ = 1.2; for Pgo MaHC/pOl = 0.9 ¢y = 1.57.

Thus, to estimate the internal difiuser losses according to
the known velocity profile in the outlet section, we will obtain

the fellowing relation:
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Having replaced'here'K* *2\by‘the common thickness' of the energy
' : , : '
loss, we' obtain: !

e 2 i P2op C )
E= L g SR (2-24)

Formula '(2-24) alloﬁs, on the basis of experimental-&ata,
dividing the total losses in diffusers into internal los3es‘and
losses with an outlet velocity, since it uniquely connects the '
outlet normal velocity distribution with coeffmcients & and ¢.
Moreover, this formula solves the problem about the theo*etical
calculation of total losses in diffusers.l

'

From (2-24) 1t follecws that o )

. : ‘ )
au':_:: (_?'...._'_.:.5_1__.)2,3 . : - (2-2ka)

re " aggroe,

In such a recording formulas (2-24) and {2-24a) are valid.
without any restvrictions 1mposed on the flow pattern in the
diffuser.

, [} . 1
. ' : 1
From the given analbsis it 1s clear that the experimental
estimate of the internal losses,: taking into account the velocity .
flow component, is a sufficiently prolonged and complex operation.

Because of this, in experimental practice estimates from ‘mean

flow velocities are more widespread with an arbitrary determination

of the coefficient of internal losses ¢ according to relation

! 1
f=fn— . (::)' nT, : (?“25)

It is natural that the results of the calculation according
to formula (2- 25) cannot be compared with results of the calcu-
lation obtained by thedretical methocs, which consider the form of

1 '

[
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the normal velocity distribution in the outlet section. Because
of the aforesaid, more convenient for such comparisons is the

total loss factor [ which we will subsequently use. Furthermore,
from the experimental values of magnitude tn it is possible to

find the relative artiirary areas of the boundary layer dis-
placement K*a in the outlet sectlon of the diffuser, since between
gn and A*2 there exists a unique dependence which results from
formula (2-17).

Actually,
2 2
L B
L Y D
A€

Let us find the ratio of velocities co/c1 from the equation
of continuity written for the minimum and outlet sections of
the diffuser.

With a uniform velocity field in the inlet section, we will
obtain:
P04 F == p.LspFa.

Further from the average speed in the outlet section c2cp

l2t us turn to the arbitrary velocity o and arbitrary effective
output area F23¢, considering the velocity distribution ¢y over
this entire area aniform. Then

0.04F = 120,F 29 (2-26)

If we introduce into examination the arbitrary area of
displacement, equal to

1
Y Cat dF
A*Q—..:S(l e ‘z-)';-?'t (2-27)
0

then

paa«b"—-:Fa"‘K*a- (2-28)
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In the case when in the exit si:ction of the diffuser there
is at least one point where the pressure of full stagnation
P02 makc - Po1* %0 T ©2 manc® formula (2-27) determines the common
area of displacement &%, (1f the density ratio is considered to
be vqual to unity).

c

From expressions (2-28) and (2-26) we will obtain the following
relation, which connects coefficient Cn with the area of dis-~
placemernt K*az

2

€ n\? 1 )
£ o= ez .__.) et e e (2.29)
" ct fa J n2(l —2a%)?

Formula (2-29) is valid for any diffuser channel and reduces
the calculation of the total loss factor to the problem of
the determination of the arbitrary relative area of displacement
rX.; = A¥ = 3%
A¥., When Po2 make - Po1 A 5 8 5 and the prodblem is reduced to
the calculation of the integral area of displacement in tlie outlet
section 5*2 on the basis of the common relatlions of the boundary
layer, and equation (2-29) assumes the form:

2 1
Cu=(-p~'-) v (2-29a)
fa

At (1 —o%)r

% Expression (2-29a), obtained by A. S. Ginevskiy [18, 95],

is valid for nonseparable flow with the existence of the potential
nucleus in the outlet section of the channel. If such a nucleus
is absent, then

AT S
wee(3) sy (290

where wl 2 1 - the coefficlent of correction dependent on the
degree of the loss of pressure of full stagnation in the range
of maximum delivery speed.

The given formulas (2-29) and (2-29a) make it possible, on
the basis of simple tests, to obtailn vast test data on integral
thicknesses of the boundary layer and explain the possibility
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of the use of a theory for the boundary layer calculation in
diffuser channels at various positive pressure gradients.

Let us show further that the use of the integral method does
not only make it possible to obtaln coefficients [ and nA, but
it also allows finding the loss of :ressure of full stagnatilon 0g°
For this purpose, by using relation (2-18) and keeping in mind
that along the diffuser the mass flow does not change, let us
record the equality

=AF, p°1_‘ll_---_AF Do
Via 3/73:

{
where Pg2 and a5 - vdlues averaged over the flow, and A - the
coefficient dependent on properties of the working
medium,

Hence, since for the insulated system TO1 = T02,

Posth :
Puy=
Let us introduce the average static pressures Py and Ps into
the last equality in the following manner: ¢
Pafa . P2 Fa pogs (2-30)

141 hoE p
Magnitude po/p is uniquely determined by the dimensionless

velocity A [25]:
1

P, kA 1\ k-1 o
¥ (2) Jl'(l N ) : (2-31)

Then from formula (2-30) we will obtain the equation for
determining the average flow veloclity at the known values of
pressures p, and Pyt

L—1,9 D2 fp—1,91-1
2 —re wmall — e -
.,‘[l 1M l ma B, [l /e-‘.17°2] ‘ (2-32)
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For the facilitation of the calculatlions, Fig. 2-7 gives the

_ -1
dependence of the complex A,[lu--@~—l 251 on velocity A.

62 o 08 g . 40
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A . 6’L-£é;32'-'-*-—-—*;% Fig. 2-7. Determination of
3 gl . /] the mean flow rate in the
- outlet section of the diffuser.
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4 As a result, having calculated from equation (2-32) the
§ﬁ ; velocity A2, according to tables of gas-dynamic functions it is
Qﬁ X easy to find the pressure ratio p2/p02 and, consequently,
. coefficient o,:
B k
. Doz D2 khe1,0\ &+l
o, =P P () _3— 1) . (2-33)
- ° Pa Pn ( k4172

The examined methods of determining the basic coefficients
which characterize the operation of diffusers and the systematic
considerations must be considered with the setting of the

. experiment. Specifically, the system of measurements should
provide a reliable determination of the flow of the working
medium, initial parameters and pressure in the outlet section of

. ‘ the investigated diffusers,

Besides the indicated basic values, it 1s extremely advisable
to provide the possibility of direct measurements of static
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pressure in the inlet section of the diffuser and provide the
traverse of the outlet velocity field.

The diagram of the steam experimental circuit of Moscow Power
Engineering Institute [MEI] (M3W) given in Fig. 2-8 satisfies all
the requirements indicated above most fully. Steam to the instal-
lation will be fed through the valve [PZ] (N3) with by-pass
value [PB] (NB) and small tank 1. Receiver 2 and straight
section 3 serve for “he damping of the flow. For the purpose of
measuring the pressure and temperature along the damping section,
measuring ports are provided. The diffusers to be investigated
are fastened to flange U between the damping section 3 and
operating section 5. 1In the outlet section of the diffuser there
is a measuring adapter connected with a traversing probe 7.

After the operating sectlion the steam enters into the exhaust
section, where there is the throuvvle valve 6, with the help of
which it 1s possible over a wide range to change the counter-

pressure p,.

The exhaust steam enters Iintvo the condenser whence the
condensate being formed is evacuated by the pump [EKN] (3HH) into
the measuring tank. The small area of cross section of the
measuring tank allows with high accuracy the measuring of not
only large but also low flow rates of the steam. From the
measuring tank the condensate is dumped into drain tank. The
draining of the damping and operating sections 1is accomplished
periodically, and dralnage 1s dumped Into a small callbration
tank 8 and further into the condenser. The small tank has both
vacuum and atmospheric drains. To control the drain there are
valves 9 and 10, and a checking of the level is accomplished with

the help of gauge glass 1l1l.

The examined diagram allows conducting an independent change
in the Al and Re1 numbers in the following ranges: Al = 0.1-1;
Re = 3.10°-5-10°,
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Fig. 2-8. Diagram of the steam experimental
circuit of the MEIL.

KEY: (1) Selected steam; (2) Bat, 250°C;

(3) To condenser.

Designations: B = by-pass valve; N3 = valve.

The photograph of one of the open-type air test stands
" utilized at the MEI is given in Fig. 2-9. In this case all the
measurements are considerably simplified. However, the accuracy
of determining the flow decreases, and the possibility of the
independent simulation of the flow according £o M and Re numbers
is eliminated. The latter shortcoming can be removed at instal-
latlons with a closed system of exhaust where it 1s possible
to change counterpressure, but in this case the range of the

17




Fig. 2-9. Experimental
installation for investi-
gating conical diffusers.

possible changes in regime paraheters proves to be considerably
narrower than that during steam tests.

1

§ 2-4. Diffuser Losses and Their .
Calculation . '

The flow pattern in diffuser elements is quite complex, which
substantially impedes their analytical calculation. As a result
until now the most reliable proves to be not the calculated but
experimental means of the determining the losses.‘ '

However, for an analysis of experimental data and the
construction of approximation calculated circuits, it 1is advan-
tageous to discuss in more detail the mechanism of the formation
of diffuser losses. By examining the latter as devices for the
effective conversion of the kinetic energy of flow into potential
energy, 1t should be noted that the perfection of this conversion
depends both upon the internal losses directly on the diffuser
element and on the magnitude of the kinetic energy of flow
leaving this element. In general the internal losses in any
channel are determined by frictlonal losses and losses connected
with the formation of separation zones. With nonseparable’flow
a unlque source of the losses 1s internal friction. For flow
with the potential nucleus these Losses are usually determined
according to the integral boundary layer characteristics in the
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final cross sections. Using this method, it is possible to
obta'in comparatively simple calculation formulas for diffusers.
Before turring directly to the derivation of such formulas, let
us expla;n the probability of nonseparable flow in diffusers.

KR Sy

T&eoretical inveséigations in the indicated direction,
generally speaking, are inconsistent. Thus, according t» calcu- o
lations of N. A. Slezkin [93],S. M. Targ [99] and O. N. Obchinnikov
[82] even with laminar fiow conditions in the boundary layer the
existence of nonseparable flow with expansion ratios n < 2 is
possible. At the séme pime an analysis conducted by G. M. Bam-
Zelikovich [4] for the turbulent layer showed that at a small
intake section before the diffuser separation should occur
 directly in the throat, if the angle of opening o > 6°. Certain
clarity into this question has been introduced by the work of

Kline [142, 143] who generalized a number of test data and showed
ion this basis that the range of the limiting geometric parameters,
which separate the nonseparable flow from the separable, in flat

and conical diffusefs is quite significant and actually encompasses
the hasic group: of diffusers used'in technolog .

For confirmation .of the aforesaid, plotted in Fig. 2-10 is
the limiting curve 1 with the utilization of data [142, 143],

' which divides the whole range o(n) into two parts: nonseparable

diffusers (range I) and separable (rangé II); numerals at the
ekperimental points correspond to values of the coefficient of
the recovery of ene?gy. Here data obtained at MEI are plotted.

. The given experimentel results establish a close conrection
between the expansion ratio n and the maximum angle of opening of
thg diffuser a. With an increase in fhe expansion ratio for
obtaining nonseparabile flow it 1s necessary to substantially
decrease the angle, and with an increase fromn = 2 to n = 45

% anc drops from 24° to 9°. Such a connection between the
1}m1ting parameters 1s conditlioned by the opposite effect of the

boundary léyer on the flow in the potential nucleus of the flow.
' ) ) i
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Fig. 2.10. Line of limiting parameters of
nonseparable flat and conical diffusers,
1 - depend~ace a = f(n); 0 - MEI experiments;

A - data of Kline; 2 - dependence Nyy = f(n).

This effect can be taken into account if we introduce into the
examination not the geometric but the effective expansion ratio
of the diffuser determined by relation
A *
n;;;,=n( -—FL), (z-31)

2

where, as before A*2 - the area equivalent to .he arbitrary dis-
placement thickness in the outlet section, and F2 - the geometric
arca of the outlet from the diffuser.

By analyzing data in Fig. 2-10 now, it is possible to note
that at the large angles of opening and small expansion ratio the
length of the diffuser proves to be small. As a result the
geometric expansion ratio almost coincides with the effective.

An increase in the geometric expansion ratio n with a
simultaneous decrease in a gives rise to more significant
deviation of na¢ from n.

Since the drop in velocity 1n the nuecleus of the flow is
determined by the effective value of the expansion ratio, along
curve 1 (Fig. 2-10), which corresponds to the limiting drop in
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velocity, which ensures the nonseparable flow, n3¢ should be
changed within comparatively small limits. Actually, by calcu-
lating for the diffusers in question from relation (2-29) the
displacement thickness in the outlet section, we obtain along
the entire curve value Nye ® 1.8-2.5 (curve 2).

In other words, the nonseparable flow in the diffuser proves
to be possible only when in the rucleus of the flow the ratio

of velocities co/cl < 2.5.

By estimating as a whole the given results, it is necessary
to note that the nonseparable flow is possible both at wide angles
of opening o and at large geometric expansion ratios, if, of
course, with this the correlation established by curve 1 in Fig.
2-10 is not disturbed.

Consequently, the question of the theoretical estimate of
frictional losses in diffuser elements represents an entirely
specific interest. Considering the aforesaid, liet us examine this
problem in more detail. Let us assume that as a result of the
boundary layer calculation, known to us are all the integral
thicknesses in the outlet section of the diffuser, and at the
inlet to it the boundary layer is absent. Then according to the
physical sense of value §¥¥¥ losses of energy inr the outlet section
1s expressed by relation

1 3 “Qinin
| — A S 4
.An.———2 p:"mnxos ¥ (2-35)
Here Py and 02mch - density and velccity in the nucleus of
the flow at the outlet from the diffuser, and Q;**._ the area of

the loss of momentum in this c¢ross section.
The magnitude of kinetlc energy HO at the inlet section of

the diffuser at the uniform iniet velocity field and mass flow m
1s expressed in the following manner:
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Then according to the definition the coefficien* of 1nternal )

logses wlll be equal to: . . - |
oz !-:".—: 02 c"”“‘(d 8-‘ ~.‘-.. F, 1 .

O RS o
2mans in the . ;
outlet section and velocity Cqys let us use the equation of con- ,

tinulty and let us introduce into the examination the effective

For the connsction between maximum velocity c

area F'23¢, i.e., the area necessary fon the admission of the

assigned flow at maximum velocity c 'and density in tpe center

2maKe
923
plclr "“p-c"cpl 3““") c' ‘an ci o»(b
Hence '
_0_» ANg __.g!.. _’.‘:!_..
7] 93 ° Flagp . '
and the formiula for estimating the coefficlent of internal losses
¢ takes the form: _ . L L
g T H
6 *t#a
C=(,ﬂ-) ot . ' (2-36)
be ngy, _ P
Taking into account that n'3¢ = n(1-&*), let us preseént (2-36) .
in the following form: ' '
-— )
a#‘. . !
()2 :
\ —ay ‘ (2-36a)!

Here 3***2 = §¥*¥ /F, - the relative area of -the energy loss,

and 3‘2 = 6*2/1?2 - the relative area of the displacement thickness. ‘
: . |

We arrive immediately at expression (2-363) ds a result of o
the common solution of equation (2-24) and (2-29) when 5*2 = 332

SRR = PAREN i
and § > A X

Formula (2-36a) was derived by A. S. 'Ginevskiy [18] and is
generalized by him for flow with heat exchange and flow with the

initial boundary layer. . !
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' In the latter case when Py = Py relation (2-36a) assumes the
form‘ . '

-

' S _3';::«## : :
! . ga: PU— 2 — ':-?.‘-—, (2-36b)
T RIS (1=

where!the subscript “1“ refers to vdlues at the inlet 'section.
] ! ! | ‘

The obtained relations solve the problem of e:timating the
coefficient of losses in’ diffusers en the condition that velocity
2M o? determined from the equation of continuity, coincides ‘

with the velocity Cys equivalent to the enthalpy drop hO (see

Figo 2"”)

!
! 1

v ' A

The indicated condition is reduced to the equality of'pressures

of' full stagpation in)the. inlet section Poy and maximum pressure
of full stagnation in the outlet section of the diffuser p02
'Otherwise at Poomand < Po1. the calculations according to formula
(2-36a) substantially understate the magnitude of the coefficient
 of internal losses. ’ ‘ '

§
H
) 1

Let us note that the drop in pressure of full stagnation in

the nucleus of the flow 1is not unique and, perhaps, even not the |
decisive cause for the divergence of calculated and experimental
‘values. More, serious'ls the alsence of reliable test data sultable
'for a comparison. Even for the simplest conical diffusers in the
majority there are given experimental values of coefficlents of
' internal losses obtained not ‘allowing for the flow velocity
,compenent, which greatly overstates the magnitude g and doés not

allow:the comparing of these data with results of the calculation :

according to the theoretical methods based ubcn integral tnickd
, nesses of che boundary layer. For an example, let us say, that
in a detalled investigation of conical difrusers the following
results were obtained by us. The diffuser with a flare angle
= 7° .and expansion ratio n = 3 and A = 0.8 had a total loss
factor of g = 16%. Its internal losses were with averaging,
not allowing for the velocity flow component, t = 9.5%, and
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taking it into account, 5.8%. Correspondingly, losses with the
outle% velocity were in the first case 6.5, in the second, 10.2%.
Above we already indicated that having reached the solution to
the problem of the advisability of the utilization of a certain
method of calculation, it 1s necessary to proceed from the
comparable total loss factors.

Leaving asilde the systematic side of the question, for an
agreement’ of calculated and experimental data when Poomakc < Po1
it 1s possible to introduce an additional coefficiert wz dependent
on the degree of the loss in pressure of full stagnation in the
nucleus of the flow or use the arbitrary boundary layer character-
Istics A% and A#*#* calculated with respect to the arbitrary
velocity cy. In this case instead of (2-36a) we will obtain:

. i Toos g, a \? Aers .
e B 9T .—.—.(.E!.) BT 2-
¢ ( W) B (1—5%)  \pa/ n2(1—=B%)" (2-30)

Formula (2-37) generalizes the expression (2-36a) for the
general case of nonseparable flow cf the flow in channels.

Inequality Poomanc < Po1 takes place at the Jolning of the
boundary layer. More disputable is the question of the existence
of the indicated inequallty in the case when the normal velocity
distribution at the outlet from the diffuser in the cross section
has a clearly expressed section of constant velocity (nucleus
of the flow). The accepted division of the examined regilon of
flow into the zone of the boundary layer and potential nucleus
with formal approach automatically gives rise to the constancy
of the pressure of full stagnation in the nucleus of the flow.

One should, however, keep in mind the asymptotic nature of
the normal velocity distribution in the profile of the boundary

layer and the condltlonality of the determination of its outer
edge.
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If for problems of the external flow of bodies =hen the
region of the boundary layer is incommensurably sm::1 as compared
with the external flow, the noted conditionality °: antirely
permissible, then in conformity with the internal problems, where 3
the boundary layer occupies a greater part of thr glow, it is
hardly possible to speak about the existence of .e potentlal
nucleus in the complete sense of the word. The presence in the
central region of a diffuser channel even of a . vy small eddying
of the flow can be the cause of the drop 1in p:e.rure of full
stagnation.

D B i i B 054

The expressed consideratlions are confirm:i by numerous
experiments by the determination of losses irn different kinds of
channels and diffusers. Thus, during tests c¢f turbine cascades
the losses are concentrated not only in the 2zone of the edge
trace, but they exist outsiae !t where the fileld of average
speeds 1s uniform [25, 26, 27]. The level of losses here is
determined basically by the turbulence lJevel of the incoming flow.
The same picture 1s observed in diffuser channels. For example,
in Fig. 2-1la relative loss in pressure of full stagnation in !
the center of the conical diffuser at various expansion ratios
and velocitles at the inlet Al is plotted. The normal velocity
distributions in the outlet section corresponding to these curves,
glven in Fig. 2-11b, show that the joining of the boundary layer
occurs at n > 3.5, and the pressure loss Po1 is noted already at
n > 2.5. Subsequently, this reduction becomes sufficlently large
and increases with an increase in the dimenslonless velocity Al.

The noted fact of the drop in pressure of full stagnation in
the nucleus of the flow in unjoined bhoundary layers substantially
complicates the theoretical methods of the calculation, even if
all boundary layer characteristes in the outlet section of the
channel are known. In many cases the ratio Apo/p01 1s small, and,
for example, Reno and Johnston in work [89] consider it possible
for practical calcnlatlons to disregard the magnitude Apo = Poy

- Ppoe
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Nevertheless, until now in practice of engineering calcui:‘ions
for estimating the coefficlents of losres 1n diffusers either
test data or semlempirical methods have been used. To a consider-
able degree their distribution 1s explained by the simplicity of
design equations and by the apparent universality, while the use
of the formulas of the type (2-36a) requires sufficiently complex
calculations for the determination of the integral boundary layer
thicknesses, and the region of the uge of the obtained results is
limited by cases of nonseparable flow.
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Because of this let us examine the most wldespread method of
the calculation of losses based upon the separation of 1lnternal
losses into losses of friction and expansion. In this method in
the calculation of frictional losses, accepted as the 1n1tiai is
the well-known hydraulic formula [34, 547.

Ah;p——' E‘ 2 D ’ (2"38)

which/determines the magnitude of losses on the section of tube
with length L and diameter D with stabilized flow. Such a flow
takes place at a conslderable dlstance from the inlet section

where the joining of the boundary layer occurred, and the typilcal
turbul ant normal velocity distrlbution was established. As a

whole it 1s possible to consider that formula (2-38) gives good
agreement with the experimental data in the removal of the examined
section at 20-30 gauges from inlet section.

Coefflcient E,, which enters into expression (2-38), depends
upon theReDrnmmer and at ReD < 106 is most frequently used in the
following form:

k,=0,316Re; /",

Let us use formula (2-38) for the calculation of the conical
diffuser, For this purpose let us divide 1t into an infinilte
number of cylindrical sections with length dx, and let us record
formula (2-38) for an infinitesimal section:

d(Ah)""' El 2 D n (2—38a)

Here p, ¢ and D - current values of density, veloclty and
diameter along the x axis.

Having integrated expression (2-38a) over the entire length,
we obtaln the complete magnitude of frictional losses in the
diffuser. Preliminarily, however, let us establish the connection
of diameter D with coordinate x.
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From the geometric relations
- D— D,

v= 2si :
n———-
and 2

dx =42 _, (2-39)

- o
2.sin D)

For an incompressible fluid (p = const) the connection between
the velocity and diameter is established from the equation of
continutty:

D?
e=¢,—J (2-392)

Having substituted (2-39) and (2-39a) into (2-38a), as a
result of integration from D, to D, we will obtain:

' D,

. 2 D! "
Myp==SL 21 Ige db - (2-40)

a 1 v
25!9—5- .

At large values of the ReD number coefficient El weakly depends
upon the diameter and can be carried out from under the integral.
Then

2 .
__ & 1
My =1 (1= ok

and for the coefficient of. losses ch let us arrive at the following
expression:

!
c-;p =.’—-§‘—;— (l - _I-l-;>' (2-'1;1)
' 85111-7

The calculation of losses for the diffuser, the geometric

parameters of which are given in Table 2-2, gives the following
results.

The compiuted values prove to be quite different from the test
data. Howevev, in this case their agreement should not take place.
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Table 2-2. | —— S

(a=3") 1.5 ’2,0 I 2,5 3,0 l 3,5 4,0

e cwmn aw s o -

:ﬂac‘h °/° l 1.41
Sowns % | 3,2

am———— s

S
1,50 1,68 | i,78 | 1,92 | 2.42
58 | 7 g, M

*Here values of the losses obtained not allowing
for the flow velocity component are yiven,

In fact, with the derivation of formula (2-41) the coefficient
of frictlon is taken as constant not dependent on the expansion
ratlo of the diffuser, and for its computation expression (2-38a)
(34, 54], obtained for the basic section of the circular pipe,is
used where there occurs the established normal velocity distri-
bution in the cross section,and the joining of the boundary layer,
which 1s developed on walls of the tube, occurred.

As was already 1ndicated above, the cross section where

Blasius's formula is used 1s located at a distance of 20~-30 gauges
from the entry into the tube.

At the same time, in analyzing the flow in the diffuser, one
should note that on its greater part at n < 3.5 and angle a > 7°
the joining of the boundary layer does not occur (Fig. 2-11). In-
other words, when in front of the diffuser a long inlet section

does not exlst, the flow in it is similar to the flow in the
initial section of the tube.

Furthermore, it is necessary to show that the normal velocity
distribution in the initilal secticen of the tube is substantially
distinguished from the normal velocity distribution in 1its baslec
section for which the formula (2-38a) is obtained. Therefore, the
utilization of this formula for the calculation of frictional
losses to a certain extent 1s equivalent to the determination of
losses in the initial section of the tube according to the relations
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valld for the basic section. It is natural, therefore, that
frictional losses calculated from formula (2-41) prove to be
substantlally smaller than the experimental values. This difference
can be decreased 1f into expression for the coeffiqiént El we |
introduce as the determining dimensioh not the hydraulic diameter
out the boundary layer thickness. In this case, however; El
becomes the velocity distribution function along the axis of the
diffuser, i.e., the function of the expansion ratio of the diffuser
n, and expression (2-40) even for o = const is integrated in a
considerably more complex manner. ' I '

\

In connection with this in the calculation of losses according
to the indicated procedure, it is necessary to introduce into the
examination even with nonseparable flow the so-called "losses" of
thé expansion Ahp whose ratio to the kinetic energy at the inlep
into the diffuser determines the second component of the coef-
ficient of Iinternal losses - the linear coefficlent of thermal
expansion ;_. All additional losses not being coﬁside:ed by
formula (2-41) are included here. , '

By estimating the physical essence of losses of e;pansidn, !
A. S. Ginevskiy [17] connects them with the deformation of the .
velocity fleld 1n the cross section of the diffuser; I. A. Bindler
[7] attempts to explain their increasing turbulence in the céurse
of the flow; N. D. Gryaznov refers these losses only to vortex ’
formation, and in work [35] explanations of losses of expansion
actually are not given. L

All the expressed points of view give a partial concept about
the losses of expansion, but it hardly is worth searching for an
explanation of the physical essence of losses being determined '
by the difference betwueen the experihental values of internal
losses % and losses calculated from formula (2-41), since the
latter, as already mentioned, cannot correctly estimate the order
of the frictional losses.
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é ' As a result it has been accepted to def*ne all the losses
;€ : unaccountvo for in portions of losses wifh sudden expansion,
§' ! considering that , oo * - ;
b ‘ 1 \?
7 | . Co=1 (‘ - 7:).- (2-42)
v . v
- i . . Vo
254 A {
o # The proportionality factor, which obtained the name of the
PRY::
s 1 coefficient of the "softening of impact," is considered usually
-f? v _the function only of angle o. According to data [34, 54] its
fﬁ i value 1s weakly changed with a'change in the expansion ratjo n
4 , and harely depends upon the regime parameters,
& , ,

'(

T .

3 Considering the small absolute value of frictional losses
£ = calculated from formula (2-41), in a number of cases it is

: advantageous not at all to separate them, estimating internal

1 1 diffuser losses according to relation [54]:

%, a
| . {o=tp 'l(l""','l,‘> . (2-42a)
% | ‘ The:cogfficient ¢A entering here is determined on the hasls
b 'of test data and inc .udes both losses to expansion and lesses of
i . frictlion. Jts values, depending on angle o for flat and conical

diffusers, are givén in PFig. 2~-12,

5 . ‘ \
< It 1s neoessary to note that formula (2-42a) 1s sufficiently
general and convenlent for utilization; sin<c 1t allows calculating
the valve of the losses both in gseparation and nonseparable
diffusers. Essentially we are deallng here with the suowmlempirical
. method of the estimation of losses. Bzcause of tn'e the peng of
use of formuix (2-42a) 1s limi.2d, generally speaihing, by those
diffusers for which the .xperimental dependence ¢ () is obtained.
However, the simplicity of the method and absence of reliable
theoretical aolutions led ty 1ts widespread use for various classes
This method has been developed most fully in works
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of diffusers.
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Fig. 2-12. Dependence of coefficlent ¢

A
upon angle a. 1 - conical diffusers [54];
2 - diffuser of square cross section [54];
# - experimental data of L. G. Golovina [21].

(34, 114], where in general it is proposed to estimate losses
according to the following relations:

n
& df
by = \ ———; (2-43)
’ 4 ) f’ﬂn-g- '
i
. -
£,=2 I¢(a)(1»——+) -‘;{— (2-4b)
!

Here a - the local angle of the diffuser; ¢(a) - the local
coefficient of softening of the impact; f = F/Fl - ratio of flowing
area to area at iniet into the diffuser.

When a = const these formulas convert into the common
expressions (2-41) and (2-42) examined above.

For the sclution to the problem of the legitimacy of the
expansion of the range of use of the initial semiempirical methed
of calculation, it is advisable to conduct an analysis of the
history of internal diffuser losses.
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In general losses in the diffusers are dzteimined by regime
and geometric parameters. Therefore, for conical and flat
diffusers

c——:&(Mv Re, a, Il). (2—“5)

Having expanded expression (2-45) in series with respect to
parameter 1/n and having been limited to a square term, we obtain:

= Lo Lo 1 -
L=¢, (1 Lo +9,°,.=)' (2-46)

For very small expansion ratios the diffuser losses coincide
* in practice with losses in the tube equal in length to the diffuser
b and with diameter Dl’ equal to the inlet diameter of the diffuser,
Therefore, at n, striving for unity, losses ¢ asymptotically
approach losses in the tube, i.e., do not depend upon n. The

second asymptote for expression (2-46) takes place in the case of
E n - oo,

Therefore,
05
(;;;;) =0; {2-47)
n=1
0%
(()n )n-»oo__ ., (2—“73)

Condition (2-47a) 1is fulfilled automatically, and from
relation (2-U47) it follows that

o —— 0 92
0yf9e = 2%

As a result dependence (2~46) is converted:

c=9[/1 )-!— '—( )] (2-48)
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With respect to coefficients ¢i let us note that they should.
be functions M, Re and angle a. At the same time, considering
the uniformity of values ¢0 and ¢. , 1t is possible to expect the
comparatively weak dependences o. their ratio ¢2/¢0 upon the
indicated parameters. Further, for the convergence of series (2-46)
the fuliilliment of the condition ¢2/¢0 < 1 is necessary. In this
case, by using experimental data as a basis, it is admissible,
apparently, to consider the ratio ¢2/¢0 closer in magnltude to one
than to zero. Then, disregarding the second term in the parentheses
as compared with the first term in expression (2-48), we obtain:

n{1- 4]

n

(A = ?2./ Po)e

(2.49)

By comparing formulas (2-49) and (2-42a), we see that in
structure they prove to be similar and express essentlally the
same losses. However, the presence in expression (2-49) of
coefficlent A, generally speaking dependent on the geometric and
regime parameters, gives the basis to assume that between valucs
¢O and ¢A a certain distinction should exist.

If in formula (2-49) ¢0 is a function of only M and Re numbers
and angle a, then coefficient ¢A must, evidently depend upon the
expansion ratio, whereupon this dependence will be determined
by the value of coefficient A, since from a comparison of

expressions (2-42a) and (2-49) it follows that

[ ——\?

n
(PJI = (Po 1 .

n
Since the ratio ¢2/¢0 = A < l,wlthan increase in the expansion

ratio ¢A should somewhat decrease.

The data given by I. Ye. Idel'chik [54] with respect to
coefficlient ¢ indicate that its value depends upon n and in a
certain angular region decreases with an increase in the lavter.
The weak dependence of ¢A upon n indicates the fact that the value
A 1s actually close to one.
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The analysis conducted here does not pretend to be strict and
is oriented basically on the qualitative investigation of formula
(2-42a).

Returning now to the question of the posslbility of the
distribution of the basic dependence (2-42a) on the calculation
of more complex diffusers, 1t should be noted that in thils case
it is not possible to consider function ¢A to be dependent only
on the local divergence angle a.

In fact, by turning to circular and curvilinear diffusers
and conducting a similar analysls, it is easy to note that in this
cas2 the coefficient of the softening of the impact depends not
upon one angle o, but also on a number of other parameters which
determine the geometry of tr. fuser, the effect of which is
studied insufficlently. True, the degree of the effect of these
additional parameters can be notlceably decreased by means of
the successful selection of the so-called "equivalent" angle,
but in this case there i1s always place for the known arbitrariness
in its selection.

Furthermore, in the examined works (34, 54] essentially absent
are the experimental data which characierize the dependence of
coefficient ¢A upon the regime para.aclers, which does not allow
with sufficient basis considering tnis dependence to be self-
similar with respect to the numbers i a2d Re.

Moreover, the test work conducted at MEI by L. G. Golovina
(21], with an independent variation in Mach and Reynolds numbers
showed that the indicated parameters decisively affect the value
of coefficient ¢A. Experiments were conducted with conical
diffusers with an expansion ratio n = 3 and 4 and angles o = 4,
7, 10, 15, 20 and 30°, The velocity kl at the inlet was changed
from 0.3 to 0.98, and number Re ~ from 5 x 10" to 8°105.
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The results of the experimentél determination of coefficlent
¢A at moderate velocities (Al < 0.6), given in Fig. 2ﬁ12, indicate .
that even in the subsonic range the.change in number Re1 within
limits of (5-8) x losgive rise to the change in coefficient ¢‘
2-3 times. With an increase in the initial speed (at xl > 0. 7)
the effect of the Reynclds number on value ¢ prev es to be even
1 more significant. Furthermore, it should be noted that the '
| dependence ¢A(a) does not consider the cqnditions of the entry
and initial turbulence level, and these factors under specific
i conditlons can decilslvely change the diffuser performances.

' | )

{ The glven considerations to a.considerane degree lower the'
| value of the procedure in question and do not give basls for 1ts
‘ formal distribution beyond the limits of those:conditions under
which experimental dependence ¢A(a) is determined. In this '
connection it is advantageous to turn to the, calculation met.iod
| of frictional losses for the purpose of its possible reflnement.

1}

As was already mentioned, the main disadvantage of formula
(2-38a) is that losses in an elementary cylihdrical section with
open boundary layers were estlmated accérding to the cérrelaticn ;
valid for the section with the closed boundary layers. Therefore,
by preserving the whole methodology of the: derivation of constant
given above, let us compute the losses in the elementary cylinirical
section dx, on the basis of the theory of the boundary layer. In
such a section the density and velocitj can be considered to be .
constants, and the frictional losses will be equivalenf to the
change in the area of the energy loss. Therefore, in this cése

d(AR)= -;—— peld8***, ' | (2-50)

If we recognize that for the elementary gection of the
cylindrical tube losses can be expressed in terms of the area §#¥%
according to formula (2-50), then a further derivation will be '
nothing different from that examined above; it is presented in
the works [34, 54].
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' Let us pass in relation (2-50) to the dimensionless quantities.

’ Using as scale factors density PP maximum speed Comane and
integral area 6***2 in the outlet section of the diffuser, we will'
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9 . : -‘— . ~ . (2-—50a)
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.g The integral of expression (250a) gives the absolute value .
K . . ' of frictional losses: , _

N 1 '

b ¢! gree -

A = — L, Yo (e-s1)

3? 2 P 2ma Kc . ra 07,,,1“ anlvz '/ . (2-51)
B ‘, ' H | . o .

;ﬁ; Hence, for the coefficient .of losses we wii1|obtain the

7 following formula: ‘ '

, . [ ’ 'y o \ ) ‘ .
t . . YTT c; . 6#*# l H

. &=(b \‘ : d 27 L (6*“" ) (2-52) . '
: ' | P2,/ n?(l—o* P2 “"’\nm. : :

: I Relation (2-52) according to'the sense of the conducted ‘
derivation, should be 1dentical to expression (2-37), which is
pdssible under the cqndition

. 3 )
_ (2 o? Adee ’
' _ q’R‘T j‘ P2 :chaKc d (-A*“’ ).‘ -‘(2_53)
' ] o v

) !

If the consideretions given above are conducted on the basis
of the arbitrary area of the energy loss A¥## and the arbitrary
area of uisplacement A*, or if we earlier specify. that flow with
the potential nucleus is examined, then relation (2-52) will be

‘ identical with A. S. Ginevskiy s formula and the right side of
formula (2+34). This idéntity gives rise to the condition y =
|i‘e' ’i ' , ' '
- ' H
y 3 AvE
P AsS ~-54)
o 8 P2 Coue o
[
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In other words, with a correctly calculated boundary layer
equation (2-54) should become identical. Hence the reverse
sufficlently tempting prospect rfollows: to use equation (2-54) for
the boundary layer calculation. It 1s understandable that the
integral areas A*2 and A***z, found from relation (2-54), should
colncide for plane and axisymmetric diffusers with analogous
values found from equation (1-38).

The comparison given below (see Chapter Three) for conic
diffusers confirms well the aforesaid and gives a basis for wide
utilization in the calculations of equation (2-54). The found
integral areas agree well with results obtained by direct
measurements of the boundary layer in the outlet sections of the
diffusers and allow with satisfactory accuracy the designing of
nonseparable conlcal and annular diffusers ithout the attraction
of coefficients of correction and additional losses of the type
of losses to expansion. The degree of accuracy of such calculations
can be judged according to data given in Chapter Three (see Fig.
3-31), Chapter Five (see Fig. 5-11), and tables placed in the
appendix.

§ 2-5. The Influence of Conditions of the
Inlet on the Gas Flow in Diffuser Elements

The question of the influence of the uniformlity of the
velocity fleld at the inlet into the diffuser on the gas flow has
been studied comparatively weakly. However, in a number of cases
it proves to be possible to indicate the nature of this influence
and for some problems to obtailn even quantitative estimates.

From a fundamental point of view the greatest interest is
a comparison of three possible cases: .uniform, convex and concave
in the center section c¢f the velocity profiles. These three
characteristic input veloclty profiles, studied by 0. I.
uvchinnikov, are given in Fig. 2-13 [82]. From a pracilical point
of view the greatest interest 1s in the convex profile of type 2,
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Flg. 2-13. Velocity profiles
at the inlet into the dif-
X fuser [82]. 1 - uniform; 2 -

%, o |
1;\' ;zpa convex; 3 - concave,
1
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A
1
ae A ;
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since this form of inlet nonuniformity takes place when before the
inlet into the diffuser element the diffuser or gradient-free
section are located. '

It 1s not difficult to show that the indicated nonuniformity
shculd lead as compared with the uniform rield of velocitles, to
a substantial increase 1n losses in diffuser elements and causes
an earlier boundary layer separation.

Actually the presence before the inlet into the diffuser of
considerable rectilinear sections gives rise to a braking of the
flow, and before the diffuser there is already located a more or
less developed boundary layer whose growth in the subsequent
diffuser section occurs more intersely than at zero thickness of
the layer at the inlet (i.e., at a uniform velocity field). As
a result an 1ncreass in losses to friction takes place, and the
possibility of nonseparable flow is sharply decreased.

The aforesaid is confirmed well by curves given in Fig. 2-14
[54]. Here as a characteristic of nonuniformity has been accepted
the deviation of maximum velocity on the axis from the average
flow rate k = cmauc/ccp’ and depending on this parameter and
flare angle of the conical diffuser a curves of correction factor

K = CHep/Cpaaa’ which characterizes the degree of 1ncrease in
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Filg. 2-14. Correction coefficient K, which con-
slders the nonuniformity of the velocity fileld at
the inlet into the diffuser according to I. Ye.
Idel'chik [54].

.—.
t
1
Lt
{
¢
H
-
|
4

W,

internal losses ¢ with the nonuniform velocity field at the inlet
with convex profile as compared with the uniform profile.

From the curves it 1s distinctly evident that in the field
of narrow angles there takes place a steep increase 1in factor K,
which reaches a peak value at a = 5-6°. A further increase in
the angle gives rise to a reduction in value K, and at o = 25°
the influence of the inlet velocity profile on the diffuser
characteristics proves to be insignificant.

The indicated nature of the change in the correction coef-
ficlent for the convex 'elocity profile at the iniet 1s regular,
At small angles a and the uniform inlet velocity field on the
entire length of the diffuser, nonseparable flow takes place.

The braking of the flow in the boundary layer of the lnlet section
leads (depending on the length of this section) first to an

increase in the boundary layer loss of the diffuser and then to

the emergence of the flow separation. The peak value of factor

K corresponds to the case of transition from nonseparable flow to
flow with separation. In thls angular region o almost a crisis
increase in losses takes place with an increase in the nonuniformity

in question.
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With the emergence of separation the influence of the lnlet
nonuniformity noticeably decreases, since in this case the
initial ievel of losses proves to be high, and a certain dis-
placement of the separation point of flow with an increase in
factor k has a slighter effect the relative increase in losses.

Finally, at wide angles (o = 15-20°), when separation occurs
near the inlet section, tne nonuniformity of the inlet velocity
profile can affect basically only the intensity of eddy currents.
Since for such angles losses are zreat (30-40%), the relative
influence of nonuniformity becomes small.

For an illustratlion of the aforesaid, Fig. 2-15 gives curves
of the change in losses depending on M1 number for two conical
diffusers with angles a = 6 and 20° and a radial diffuser tested
at the uniform velocity field (curves 1, 2, 3) and the input
nonun? formlty characterized by a convex profile with factor
k = 1.16 (curves 4, 5, 6).

T, ~
l_ Flg. 2-15. Change in the coef-
| ----- - ficlent of losses ¢ depending

| on M; number with a uniform and
| _.r. ﬁarabolic inlet profile. 1 and

- conical diffuser, a = 6°,
— n=2.34; 3 and 5 - conical
. diffuser, a = 20°, n = 2.34; 2

i and 6 radial diffuser.

| ; ) M,
~ g2z 830 038 OLF 05

.

If for a diffuser with angle a = 6° the transition to a
nonuniform velocity fleld led almost to a triple increase in
losses, then for a diffuser with angle o = 20° this increase was

a total of 60%. It is necessary to show that the absolute increase

in losses in both cases compared was noticeable, For a = 6°
this increase was Af = 50%, and for a = 20° Az = 15-25%. An
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analogous influence can be noted for the radial diffuser where
the transition to the nonuniform veloclity field Iincreased losses

Since parabolic nonuniformity examined here is defined
basically as the length of the inlet section located in front of
the diffuser, in some problems 1t i1s advantageous to characterize
it by integral boundary layer thicknesses at the inlet into the
diffuser, since connected with this are the probability of the
emergence of separation In it and, as a consequence, a drop in
efficlency.

For representation about the degree of the influence of the
inlet boundary layer on the operation of the diffuser, let us
examine the experimental dependence given in Fig. 2-16. These
data obtained in the work [118] for the diffuser with a flare angle
o = 8° and expansion ratio n = 4, show that an increase in the
relative momentum thickness 26**1/D1 at the inlet from 0.2 to 3%
causes a decrease in the eff by 20%. Such a pronounced reduction
in efficiency is caused not only by an increase in internal losses
but 1s also connected with an increase in the outlet losses,
which depend upon the velocity profile 1n the outlet section, and
the shape of the latter is found to be closely connected to the
state of bourdary layer at the inlet into the diffuser. These
losses increase especially sharply with *“he emergence of
separation, which, apparently, took place here at a large boundary
layer thickness at the inlet.

Theoretically the question of the influence of the inlet
profile on the efficiency of the diffusers was examined in [95].
The authors used three values ag factors which characterize the
velocity profile: the coefficient of irregularity of velocity
kl = 1/1 - &%, the coefficient cof irregularity of the momentum
| — 8% — o%*
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Fig. 2-16. Change in the eff of a
conical diffuser depending on the
inlet boundary layer thickness [118].

and the coefficient of irregularity cof kinetilc energy
l_;ib__g?ta

T(1--3%)
However, basically the influence of only one coefficient kl
equivalent to coefficient k in Fig. 2~-14 was analyzed. With an

increase in thls value a reductlion in eff was also noted. True,

b

.3=

in the analysis of internal losses the authors come to the con-
clusion that for nonseparable diffusers the nonuniformity
characterized by value kl causes a reduction in coefficient .

Such a result gontradicts the curve given above (see Fig. 2-1.'),
obtained by I. Ye. Idel'chik [54], where the growth in nonuniformity
at any flare angles of the diffusers gave rise to an intense
increase in losses. This contradiction is explalned, apparently,

by the insufficiently accurate estimate of the energy loss

thickness in the final cross sectlion of the diffuser with non-
uriform inlet velocity profile.

As a whole the given data give a clear representation of the
influence of the inlet nonuniformity on the efficiency of the

diffuservrs.

By examining the influence of the profile concave in center
section, it 1is natural to assume that with such a nonuniformity

103




the possibility of the emergence of the separation of flow in
the diffusers should be reduced. !

The velocity profiles in the outlet section of the 11ffuser
(Fig. 2-17), taken at various velocity profiles at the inlet 1
show that at the uniform velocity fleld at the inlet in the outlet
section a parabolic profile takes place, and with a convex ’
profile there appears the boundary layer separation, as a result
of which symmetry of the outlet velocity diagfam is disturbed,
and the peak value of velocity 1nduced by the decrease in efrectivb
area sharply increases. !

H

¥

Flg. 2-17. Velocity profiles
at the outlet from the dif-
fuser at uniform (1), convex
(2) and concave (3) profiles
at the inlet.

/4

14

By estimating the influence of concave 1nlet profile, one
should indicate that, by decreasing the possibility of separation,
this profile at large input nonuniformity gives rise to a syb—
stantlal increase in fraictional losses. The }ést fact 1s
explaineu by the lu.'ge transverse gradlent of veloclities along
the length of the diffuser, wirich glves rise to an increase in
turbulent stresses in tnre flow.
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The very characteristic curves of the change in losses,

depending on the degree of irregularity, are given in Fig. 2-18.
Here, for the characteristic of nonuniformity, coefficient k

3
? defined from the relation [82)
o t'cre
| ==\ — —1)dF
. ok F'g\fcv
is accepted. I i
. ' ! '
%|4 T : : |
401~ As— Fig. 2-18. Dependence of the ;
: A : coefficient of losses in conical X
' ‘ Z ‘ ' diffusers upon the nonuniformity f
"ol \\\ﬁ nﬁgAm_ | . of the inlet velocity profile. :
; : "~‘“7£ l-a=6°n=2,33; 2 -
’ . a = 20°, n = 3.J3
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From the formula it is evident that for convex profiles
kB > 0, and for concave profiles k3 <0

The dependencee were diverse for the nonseparable diffuser
(¢ = 6°) and for the diffuser having separation even with the
uniform velocity field at the inlet (a0 = 20°). If in the first
case both the positive and negative nonuniformities gave rise
to an increase in losses, then in the second case the transition
to negative nonPniformity gave rise to a certain reduction in
losses.

The purely qualitative analysis conducted above of the
influence of the inlet nonunifbrmity on the operation of the
diffusers to a considerable degree can be supported by the
theoretical solutions of S. M. Targ [99] and 0. N. Ovchinnikov
[82]. These solutions refer to laminar flows, but their
importance 1s not restricted to this case, since they allow
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explaining the features of the influence of the degree of

irregularity of the inlet field, flare angle and Rel number
on the operatlon of the diffusers.

Without discussing in detail all the results, let ug examine
only the question of the position of the separation poiat
depending on the velocity dlagram at the inlet to the dilffuser.
Figure 2-19, borrowed from [82], gives curves which characterize
the position of the separation point in the plane diffuser at
various inlet velocity profiles and values of the complex Rela
for laminar flow. Distinetly visible on the graph are substantial
displacements of the separation point along the flow for concave
and against the flow for convex velocity profiles. Confirming
from the qualitative side the considerations given above, these
results can in certain cases be used for guantitative calculations.

T
"--3;;5“ Fig. 2-19. Displacement of
4= 1 the separation point of laminar
d flow ir a plane diffuser at
=" <4 various veloclty profiles at
the inlet (see designations in
Fig. 2-13) [82].
~NIot
e
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The influence of the inlet nonuniformity on the operation of
more complex diffusers (circular axial, axial radial, diagonal
and i.e.,) has beer studied extremely weakly. However, the
avallable data allow assuming that in this case the inlet non-
uniformity seriously deteriorates the operation of the diffusers,
whereupon the degree of deterioration also depends upon the form
of this nonuniformity.

An interesting investigation in the examined direction was
conducted by Johnston [137] for a series of circular axial
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diffusers with a constant expansion ratio n = 3.19. Teai. were
conducted at the Reynolds number Re = 2.5-105 on the model whose
diagram and basic designations are given in Fig. 2-20a. For -
change in the inlet velocity profile in front of the internal
cone 1 there was installed an interc