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PROBLEMS OF THE SPECTRAL THEORY OF NON SELF ADJOINT OPERATORS

[Article by M. V. Keldysh, and V. B. Lidskiy; Russian, Trudy Chetvertgo
Vsesoyuznogo Matematncheskogo S'"ezda [Transactions of the Fourth AI1-Union
Mathematical Conference|, Leningrad, 3-12 July 1961, 1963, Vol 1, p 101-120].
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Introduction

One basic method of production of expansions for the Eigenfunctions of
linear Operator A, Operating in Hilbert space . is a method utilizing the
representation of the operator by a contoured integral of its resolvent.
This method was used by O. Cauchy, who applied it to the investigation of
series of Eigenfunctions of ordinary differential equations.

This method is based on the following formula, correct for any limited
operator A:

Ah=-2%"[). (4 — LE) M) 3

The integral is taken with respect tc the contour containing all specifics
of the operator resolvent. Equation (1) is established by calculating the
residue where A=,

Suppose, for example, A ii a fully continuous operator. Then, as we
know, its resolvent RA=(A-AE}™" is a meromorphic function with the point of
concentration of poles at 0, Suppose there is a sequence of closed contours
Cx approaching 0, such that

lim || IX(A <= \E)Wdh || =0.
k> ¢
’ ' )

Then, using the fact that the residue of the resolvents in each po.e is equal
to the projection operator Py on the corresponding root space, we produce the
converging expansion

Ak = > A Pk,
S ®

In particular, when all poles are simple, expansion (3) becomes

PTD-HC=-23-21U48-71 L)
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w?ere ¢y are the Eigenvectors of Operator A, while ¥y is the adjoint operator
At

We note that when A is a self-adjoint (or in the more general case, normal},
fully continuous operator, the secret of contours Ck always exists. This is
explained by the specifics of the self-adjoint operator, stating in particular
that the resolvent of this operator grows slowly as parameter A approaches the
spectrum. Equation (4) in the self-adjoint case is well-known as the "Hilbert-
Schmidt theorem."

In the case of a general self-adjoint limited operator, when the resolvent
is not meromorphic and the spectrum? may be continuous, integral (1), can still
be represented as

AN == jum
] 5)

and we can produce a spectral expansion® generalizing formula (3).

Whereas in the theory of self-adjoint operators, general results of a
final nature were produced relatively long ago, for linear non self adjoint
operators, an expansion has only been produced in a few particular cases.

The superficial reason for this lies in the difficulties arising in
estimation of the resolvent. The true reason, probably, is the complex spectral
structure of the non self adjoint operator.

The class of non self adjoint operators, for which the unconditionally
converging expansion of the Eigenfunctions is correct, has not yet been fully
defined (for example, it is not known whether elliptical differential operators
with partial derivatives belong to this class). However, it is now clear that
the spectral expansion converging on the norm is not a necessary characteristic
of the general linear operator,

Apparently, further development of the theory will be achieved by establish-
ing the generalized spectral expansion.

1 In the case of multiple poles in formula (4) the attached vectors appear
in addition to the Eigenvectors.
The spectrum meaas the set of all irregular points of the resolvent.
Expansion (5), first produced by Hilbert [1] (1904), has been produced
from integral (1) by Hellinger [2] (1909).

-2
FTD-HC-23-2148-71



e

We note that considerable material has been accumulated in the theory
of non self adjoint problems, and it is characteristic that in recent years
the theory has been supplemented with a number of new and important studies.
Successes have been particularly great in the area of operators with discrete
spectrum!. We will dedicate the first three sections in our review to this
theme.

§. Completeness of System of Eigenvectors and Attached vectors

Since D. Birkhoff produced an expansion of the Eigenfunctions of the
non self adjoint boundary problem for an ordinary, linear, nth order differ-
ential equation with regular homogeneous conditions at the ends of the finite
interval [a, b], in 1908, a number of studies have appeared [4, 5, 6]. In
these works, the results of Birkhoff have been extended to the case of other
boundary problems for ordinary differential equations and systems studied over
a finite interval. The expansions in all cases were produced by the Cauchy
method ¢ ._cribed in the Introduction.

The problem is that in problems for ordinary differential equations, the
asymptote of the solutions can be found if x changes over a finite interval,
while A is great. Using the asymptote of the solution, we can estimate the
Green function of the corresponding problem and prove the existence of an
appropriate sequence of contours.

The structure of the Green function is more complex in problems with
partial derivatives, apparently the reason why works dedicated to the boundary
non self adjoint problem for partial derivatives were extremely scarce for
some time.

The significant contribution to this area was made by the well-known
works of T. Carleman [7] (1936). In this work, in the case of a boundary
problem for an elliptical type equation

< M du :
L(u)—-‘.lz-lau (s)m+ gtb, (:)—‘;‘.+e(s)u-=|m (6)
lll.-o

™

where n=3, the primary term of the asymptotc of the Eigenvalues of uy was
found as k+, In his proof, Carleman developed a new method for producing
the asymptote of the Eigenvalues, based on estimation of the track of the
iterated Green function with subsequent application of the theorem of
Tauber.

1 As the operators are called, the spectrum of which consists of Eigenvalues
of finite multiplicity having only one collection point.

FTD-HC-23-2148-71 -3-



In his proof, Carleman also utilized his own preceding results, produced
in [8] (1921), in which he studied the resolvent of an integral equation with
a kernel having an integrable square (Hilbert-Schmidt kernel)!,

The works of Carleman played a leading role in the development of the
theory of non self adjoint problems. His methods allowed the resolvent to
be estimated as a function of the parameter in the case of problems with
partial derivatives. It is also significant that they can be used in the in-
vestigation of operators acting in an abstract Hilbert space.

However, one of the main problems, namely the question of the completeness
of the system of Eigenvectors and attached vectors remained open in the case
of problems with partial derivatives for some time following the works of
Carleman.

Tn 1951, M. V. Keldysh succeeded in finding broad conditions of complete-
ness in (10].

In this same work, a theorem was proven concerning the asymptote of
the Eigenvalues of operators acting in an abstract Hilbert space. It followed
from this theorem, in particular that if L; is an elliptical, self-adjoint
differential operator with discrete spectrum, then when it is perturbed by
a differential operator of lower order, the main term of the asymptote of the
Eigenvalues is retained. Although we cannot discuss this problem in detail,
let us formulate the theorem of M.V. Keldysh of completencss. We will present
it in the following abbreviated form:

Suppose fully continuous operator A, for which 0 is not an Eigenvalue,
has the form

where Q is a fully continuous operator, while H is a self-adjoint, fully con-
tinuous operator, such that with a certain p>0

.glvnl'<' . )

1 Estimates of the resolvents for Hilbert-Schmidt kernels were then produced
by another method in an important work by Hille and Tamarxin [9]. It was
first shown in this work that the Fredholm determinant of the convolution of
two Hilbert-Schmidt kernels has 0 order, and a number of other results were
produced.

-4-



(v are the Eigenvalues of H).

Then the system of Eigenvectors and attached vectors of operator A

R P e (10)

is complete in Hilbert space .

In other words, no matter what might be element h and no matter what
might be ¢, a N and a number cy are found, such that

3
"l-.gth<n. )
(11)

The system of Eigenvectors and attached vectors will be referred to as the
system of main vectors in the rest of this paper.

The theorem of completeness of the system of main vectors was established
not orly for problem (6), but for the case of the boundary problem for ellip-
tical equations of any order studied in a finite area of a space of n measure-
ments. Actually, urder these conditions the differential operator L is

Lemly4 Ly, 12)

where L. 1s the self-adjoint olupiicul operator, while L) is the operator of
lower oher. so that operator L2Li‘is fully continuous. Equation (Lj+L,)
usyu can be represented in the form (EsljL; )Ljuspu, from which

s L8+ L7 e, (13)

Assuming here L;lnﬂ, (Eotztil)'l-ﬂoq and u"laa , we arrive at the problem of
the Eigenvalues for operator (8). Condition (9) in this case is fulfilled 1,

1 The completeness of the system of Eigenvectors and attached vectors of the
elliptical differential operator wvas proven by F. Brauder in [45] without
referring to the theoream of M. V. Keldysh.



Let us now present the proof of the theorem of M. V. Keldysh concerning
completeness, retaining in essence the initial proof (cI.{45] and [48]).

a) For the case of fully continuous operators of the form

Aw=KH (14)

where H is a self-adjoint limited operator, satisfying condition (9), while
K is any limited operator, the theory of Fredholm determinants can be applied,

Suppose 1], 13,... are not equal to 0 and are numbered considering the
multiplicity of the corresponding values of operator A; v, vp,..., as before,
are the Eigenvalues of H.

We find that the following inequality is always correct:
- L]
P <IKD Y Ly
.;.:‘ 2 E‘I w |

Considering this fact and assuming uk-lil. 1 let us study the following
integral function (Fredholm determinant of operator A):

se=l(- £)e Z(£) 4

Here n is the least integer satisfying inequality nel>p. Obviously, with this
selection of 8,(u), the operator function

- - 1
O,(p)=d,(r)(E—pA)y as)
is also integral. On the strength of known theorems from the theory of
functions, AA(u) is an integral function of order not over p.

We find that when condition (9) is fulfilled, the order of the integral
function Dp(u) is also not over o.

Thus, the meromorphic operator function (E-yA)"1, where A is an operator
of the form of (14) and the Eigenvalues of H satisfy condition (9), can be
represented as the ratio of integral functions, each of which is of order
not over o.

18,0 )< 0pC,lpl, |o.(p)|<up_c',n-|' i)

1 The inverse values of Eigenvalues are generally called characteristic numbers
of an operator.

-6-



b) Estimates (16), of course, do not indicate the existence of a
sequence of contours over which condition (2) would be fulfilled. However,
there is no need to prove the completeness of the system of main vectors
in, this sequence.

The problem is, and this is very significant for our further discussion,
that investigation of the completeness of the system of main vectors of the
fully continuous operator can be reduced to study of a certain fully continuous
operator with the unique point of the spectrum as a 0. This allows us to
avoia the difficulties which arise in the investigation of the meromorphic
resolvent of an operator, and reduce the problem to the study of a certain
integral function.

For greater generality, we can perform the corresponding discussion in
the case of an arbitrary, fully continuous operator, although in the investi-
gation of completeness of operators of a special form (8) it is not used in
full volume.

Suppose A is an arbitrary, fully continuous operator. Let us represent
by ©, the closed linear envelope of the main vectors of this operator

Y T a7
relating to the non 0 Eigenvslues. Suppuse O; is the orthogonal complement
of ©. Since 9, is the invariant space A, then O; is the invariant space
of the adjoint operator A*,

Let us represent by V the operator induced by A* in ©O»
We can now show that for completeness of system (17) in the area of
values of operator A, it is necessary and sufficient that

V=0 as)

Actually, if system (17) is complete and, therefore, Ah ¢ O, with any h,
then for any g €0, we have (Ah, g)=0. Cousequently,

Oem (4D, g)us (B, 4%g)= (b, Vg) 19}

with any h, and therefore Ve0. Conversely, if condition (18) is fulfilled,
then, tracking equation (19) from right to left, we conclude that Ah €0
with any h, and, consequently, system (17) is complete,

Let us now show that fully continuous operator V has a unique spectral
point at 0 or, as it is sometimes stated, it is a Walter operator.

7=



Let us assume the opposite; then Vg-l,g=0. 1 ,#0. Applyir - scalar
multiplication by arbitrary vector h, we produce

(Ve—dg. B)s=lg. (A =g E)N)me0. )

It is known that the direct complement to the subspace of all vectors
such as (A-)oE)h lizs in . Therefore, it follows from (2J) thst g=0, and
we arrive at a contradiction.

Thus, proof of the completeness of the system of main vectors of a fully
continuous operator can be reduced to proof of equality of a certain Walter
operator to 0.

c) Under the conditions of the theorem in question, equation (18) is
proven as follows,

Let us study the function

wip) o= ((8—pV)ig.h), (21)

where g and h €0y Since V is a Walter operator, then w(u) is an integral
function. Representing by P the projection operator in ©, we have

(B—pV) P E—pa)t P,

since operator A® has the form of (14), then, according to (16), w'u) is an
integral function of order not over o.

We shall now show that where u+= along each ray differing from the real
axis, function w(u) remains limited. From this, on the strength of the
Fragman-Lindelhoff theorem, it follows that w(u)=const. Since further the
fraction g%l = (Vg, h), consequently, (Vg, h)s0 wiih all g and h €9,

ueo.
and therefore equation (18) actually obtains.

Thus, it is sufficient to show that

letrie) < C, (22)

when re=, Let us prove this fact. We have

B —=pA  m{E—p(E+Q VUV = (E+S—plVHE - @)V om
. (B (K= pU)I )N E—pHHE 2O (23)



where S represents the fully continuous operator such that Eos-(EOQ')'l.
Assuming u =pe “, let us ’stmto the rlghi portion of (23). We note that
the Eigenvalues of (E-uH)™' are (1-rei®y)~ Since

Ki—r"wr'ftc (o-l-;\%‘i-sh'c < lh‘rc 0

operator (E-ull'l) is evenly limited. Furthermore, for fixed f we have

© __lgk o leaft
HE—par P =B Pt 2 T 20

Selecting N sufficiently high, we can first make the second sum <e/2 after
which, by selecting r, we can make the first sum <¢/2. Thus, as re

Using this fact, we can show

Using the fixed ¢, let us represent the fully continuous operator S as

=8+ 8

where |[S)||<c/2 sin a, while S; is a finite-dimensional operator. Suppose
element h is such that ' h||<1. "We then have

NE —~ M) SA) S UIE — pHS SAL+1(E = pAY? Sl €
< FIM+UE—pAI SAL (27)

And since set Sph is a finite-dimensional and limited set, on the strength

of (25) the second component in (17) with sufficiently urgo T is also <c/2
lin|]|. Thus, formula (26) actually obtutns Representation (23) now
directly indicates limited norm (E-yA*)-) as rew. Consequently, |u(reid)|<C,
which was stated,

Let us separate the essential element contained in this proof: finite
order of the resolvent of Walter operator V, resulting from inequality (9)
allows us -- on the strength of the Fragmen-Lindelhoff theoream -- on the
basis of the behavior of the resolvent in a spectrum not containing the
spectrum of operator A*, where it it comparatively easily estimated, to
drav a conclusion concerning the resolvent of operator V as a whole,



This theorea on completeness was subsequently developed in a number of
works, which we will discuss later.

The later works were also influenced by a work of M. S, Livshits [11],
in which a triangular model was produced for a limited operator of the form

Ammdgtiay, (28)

where the imaginary Hermith component Aj is fully continuous and has a trazk!.
In particdar, this model leads to an integral representation of the Walter
operator. M. S. Livshits estabiished also the following fact.

If operator (20) is fully continuous and Ap>0, then it is necessary and
sufficient for completeness of the system of attached and Eigenvectors that

‘24 Im), = SpA,, (29)

This theorea, produced by M, S. Livshits using a triangular model,
was then proven significantly more simply by B. R. Mukminob [12].

It can be shown that formula (29) immediately indicates equality of
Walter operator V, acting in ©: to 0; the reverse is also true.

§2. Further Theorems on Completeness, Triangular Representation of
Walter Operators

Let us now go over to later results. Suppose A is a fully continuous
operator. Lect us refer to the Eigenvalues s, of operator V'A'A as the
singular values of operator A.

Obviously, always sp+0. We will study only the-: operators A for which
with a certain p>0

21 d<Ce.. (30)

Exponent p characterizes the degree of deviation of operator A from a finite-
dimensional operator. The lower the value of o, the more rapidly number s,
approaches 0, and tha better the operator is approximated by a finite-
dimensional operator.

1 It is stated that fully continuous operator A has a track if the series of

Eigenvalues =, of the non-negative operator v A*Al an« converges. Here, the

track refers to & (A1 1) where x, is a certain orthonormalized base in ¢.
E. ;

-10-



If o=2, operator A is called & Hilbert-Schmidt operator. Integral operators
of this type were studied by Carleman [8]. Where p=l, operator A is called
a kernel operator (concerning kermel operators, see [46]). Let us introduce
one more characteristic of orerator A. It is known that the sec of values of
the quadratic foowm (Ah, h) in the complex plane fills either a certain angle
= with its tip at the origin of the coordinates, or the entire plane.

If operator A is self-adjoint and non-negative, the values of (Ah, A) fill
the positive half axis. In the general case, multip'ying the operator by an
appropriate complex constant, it can be arranged that the bissectrix of the
angle of values of form (Ah, h) is the positive half axis. The aperture of
this angle can be used as a characteristic of the deviation of the operator
from a non-negative self-adjoint operator. The following theorem is correct.

If operator A satisfies condition (30) where p>1 and if

—'ﬁ“\n(‘.n i)‘;‘;o (Jl)
then the system of main vectors of operator A is complete in §.

This fact was initially established in a number of particular cases by
various methods by V. B. Lidskiy. For the case ps2 in [13] using the results
of T. Carlemin [8]; for the case p=1 in [14] based on the formula of tracks

[ . -
A -
PAC RN L i35
which, as was proven in [14]), is correct for any kernel operator [in formula
(32); Ax are the Eigenvalues of A, while x; is an arbitrary orthonormalized

base].

However, after minimslity of the first Fredholm minor Dp(A) was proven
under condition (30)!, the thecrem formulated above was proven by a strong
mothod, applying the Fragmen-Lindelhoff theorem to function (21).

As B. Ya. Levin and V. I. Matsayev proved, the conditions of completeness
of (30) and (31) are precise: with the given convergence indicator of series
(30) o and a broader range of values of the quadratic form then (31), we can
indicate an operator with an incomplete system of main vectors.

Further progress in the investigation of completeness was achieved in
the works of M. G. Kreyna, L. A. Sakhnovich and M. §. Brodskiy,

1 See [43]). As the authors havel}eamed, V. I. Matsayev showéd that if V
is a Walter operator and sy=o(n”"/®), then

I (E—pl) ' fm=e(in] o).

-11-
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L. A. Sakhnovich and M. S. Brodskiy produced new triangular representations
of Walter operators. Let us discuss these works briefly.

L. A. Sakhnovich {15]), [16], generalizing the results of M. S. Livshits,
constructed a tciangular model of the limited operator

‘-‘.+"'. (33)

having the property that no matter what the two invarient subspaces H; and H;
of operator 4. M,€l; and dim MeM>1 invarient subspace Hy of operator A
is found, such that H,CH;€8, and H, s Hyv By

In particular, as L. A, Sakhnovich demonstrated, this property is shown
by any operator (33) if Aj is a Hilbert-Schmidt type. In this case, when
spectrum A consists only of the 0. and Ay is a Hilbert-Schamidt type, operator
(33) is uniquely equivalent to the operator

ﬂ-!wm(m)ﬂ- 34

where f(t) is a vector function, generally infinite-dimensioned, and N(x,t)
is the matrix kernel satisfying the condition

11 -
H‘-;':'-' jag (s, )R dsdiC o, o

It immediately follows from representation (35) that if A is a Walter
operator and A is a Hilbert-Schmidt operator, then A is also of Hilbert-
Schmidt type.

This fact has significantly influenced a number of later works (see below).
In particular, it allowed L. A. Sakhnovich to strengthen the theorem of
V. B, Lidskiy concerning completeness in the case o: Hilbert-Schmidt operators
in the following form.

If A is a fully continuous operatcr, ARZ: and A[>0, and if Ay is a
Hilbert-Schmidt operator, then completeness obtains.

Another triangular presentation for the Walter operator was produced by
M. S. Brodskiy [17]. The triangular presentation of M. S. Brodskiy is effective
in the same Hilbert space as operator A, and corresponds with operator A fully,
not with an accuracy to a supplementary component, as occurs in the models of
M. S. Livshits and L. A. Sakhnovich.

Going over to a presentation of this problem, let us assume initially that
A is a linear transform in an n-dimensional space, all Eigenvalues of which
are equal to 0.
Suppose
€. 2, .oy O (36)

-12-



is an orthonormalized base, in which the conversion matrix is a triangle!l.
Then

Ay =m0; Asgmmayt), ..., Agm s + oty t ... 00, ot 7)

Let us represent by P, the projection operator onto the space stretched
onto the first k base vectors (36), and suppose APx=Py-Py_}. It then immed-
iately follows from formula (37) that with any h

[ ]
Ab == 3 Py AP,

[ 13 (38)
We note also that according to (37), }.:‘AP.AP.,H-O. Going over in this
1

equation to adjoint operators and assuming Ay=1/2i(A-A*), we can write (38) as

Ab w2t ‘2", Py A AP, ' (39)
aad

This representation, as M. S. Brodskiy has shown, is generalized in the
case of any Walter (fully continuous) operator A, acting in . Namely, any
Walter operator can be represented as

A -uir(:) AP,
(40)

Here Aj, as always, is the imaginary component of operator A, 2% is a certain
closed set of sector [0,1], P(x), 2632 is a chain of projection operators,
continuous in M and monotonically increasing, projecting on the invariant
subspaces of operator A, where P(0)=0, P(1)sE, and if (a, 8) is the compli-
mentary integral to set ¢, operator P(8)-P(a) is unidimensional.

Integral (39) is understood as the limit of the sequence of partial
sur- in the ordinary operator norm.

We note that proof of the existence of the chain of projectors P(x)
is based on the Neuman-Aronshein theorem [18] on the existence of a non-
trivial invariant subspace with a fully continuous operator acting in &,
A chain of this form was constructed independently by L. A. Sakhnovich in
[15], [16], and is the basis of the results produced there.

Representation (39) has been found quite convenient in the study of
Walter oper-tors. New, important representations concerning 'the convergence

1 Existence of this type of buse is established by the well-known theorem
of 1. Shur,

-13-



of integrals such as (40) under conditions when P(x) is a monotonic chain
of projectors, not necessarily generated by the fixed Walter operator, while
A1 is a certain self-adjoint, fully continuous operator, were produced by

I. Ts. Gokhoyerg, M. G. Kreyn and V. I. Matsayev [19, 20, 21, 22]. These
authors, using triangular representations, established the following fact,
generalizing the theorem of L. A. Sakhnovich presented above.

Suppose V=Vp+iV] is a Walter operator and suppose 1k are the Eigenvalues
of 1, while ok are the Eigenvalues of VR. Then where p>1, the series

2|"ti' (41)
pATY

(42)
converge and diverge simultaneously.

Let us emphasize that the statement formulated allows us to judge the
growth of integral functions DpA(u) and A4(u) in the case of a Walter operator,
with information only concerning the imaginary or real component of the
operator. The order of these functions with p>1 is not over p. This allows
us to strengthen the completeness theorem formulated above on page 10.

If operator A is such that its imaginary portion Aj=1/2i(A-A*) satisfies
condition (30) where p>1 and if condition (31) is fulfilled, completeness
occurs.,

Where p=1, convergence of series (41) does not gene 411y produce conver-

gence of series (42)., One example is the operator
Afa’ f(t)dt, for which the

imaginary component is unidimensional, while the Eigensalues on=n(n=t1,+2,...).

Walter operators, the imaginary components of which have tracks, were
subjected to detailed study in the works of M. G. Kreyn [23), [24}. M. G.
Kreyn relates the Walter operator V=Vp+iV; to the analytic function

,(x) =3 Dct ((l:'-—sl-")(lz'—xV)'l). (43)

Since (E-zVp) (E- zV)' =E+izV, (EszV)~ -1 and Vi has a track, the determinant in
the right portzon of (43) converges evenly and is an integral function (we
recall that V is a Walter operator and, consequently, (E- zV)-1 is an integral
function); the nulls of £(z) are the numbers ozl. As M. G. Kreyn proved,
function f(z) within the upper and lower half planes can be represented as

the ratio of 2 limited holomcrphic functions. From this, based on the theorem
of M. G. Kreyn [25] and the theorem of Levenson [26], it follows that there
is a general finite limit

(r' ) = lim

r-on . oo
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HeIe, n (r, Vp) and n_(r, Vp) represent the number of characteristic numbers
gy~ of operator VR in the intervals (0, r) and (-r, 0) respectively. Formulas
(44) contain the asymptote of the Eigenvalues of the real component of the
halter operator, the imaginary component of which has a track, and supplement
the preceding result of Kreyn, Gokhyerg, and Matsayev. It is remarkable that
in the case when V;>0, in formula (44)

R SpV,, (45)

If therefore Vi>0 and the general limit in (44) is equal to 0, then V=0,
and all of operator V, being a self-adjoint Walter operator, is equal to 0.

This established fact relative to Walter operators leads to the following
completeness theorem.

If fully continuous operator A=Ap+iA; is such that A; > 0 and if one of
the two conditions

um 20480 _, (46)

reom
or

i =G (47)

is fulfilled, then the system of main vectors A is complete.

This theorem.contains the results of V. B. Lidskiy concerning completeness
of operators having a track (p=1) as a particular case, since if operator A
has a track, then both conditions (46) and (47) of the theorem of M. G.
Kreyn are fulfilled.

Further, M. G. Kreyn finds a necessary and sufficient condition of com-
pleteness for fully continuous operators A, such that A;>0, SpAj<e.

Completeness occurs when and only when

[ 4 [ 4
Il(r.'A.) ""I n(r;ﬂ dreol;
® [ ] (48)

under the condition that p+«, bypassing a certain set of finite logarithmic
length,

Here n(r, A) is the number of characteristic numbers in a circle of
radius r. Simultaneously with the work of M. G. Kreyn, an important study
appeared by B.Ya. Levin [27], in which the following estimate was produced
under the same assiumptions (AI:o and SpAj<=)
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Ay
I.(’r )[) dr-—I n(’; 4) dr<ps’l1’+‘o(:‘)

(49)

as p+», bypassing a set of finite logarithmic length, as well as a number of
other results.

In all of these works concerning completeness of the system of main vectors
in a fully continuous operator, conditions were stated under which the resolvent
of the operator is represented as a ratio of finite order integral functions.
Incidently, an attempt to remove condition (9) from the theorem of M. V.
Keldysh, as yet unsuccessful, produces infinite order integral functions. In
connection with this, there is great interest in a recent result by V. I.
Matsayev [21], according to which the system of main vectors of operator
AzH(E+Q) [cf. (8)] is complete if only

-]
Dwii<e
SFFI<e

where sy are the Eigenvalues of v@°Q. Condition (9) can be discarded. Under
these assumptions, the resolvent is generally not represented by the ratio of
finite order integral functions.

We have not touched upon an interesting study by D. E. Allakhverdiev [40]
concerning the conditions of completeness in the case of weakly perturbed
normal operators, in which the author succeeded in extending the theorem of
M. V. Keldysh to this case; we have also not mentioned the new, deep theorems
of V. I. Matsayev, based on precise estimates of the integral functions, or
a number of other studies.

However, even our complete review shows that the problem of the conditions
of completeness has been greatly advanced in recent years.

This progress has been achieved by a combination of geometric and analytic
methods.

§ 3. Theorems on Integrability and Convergence of Series with Respect
to Main Vectors

It must be emphasized that since the system of main vectors is not orthogonal,
its completeness does not indicate convergence of the Fourier series of elements
of this system. Furthermore, as examples have shown, under the conditions of
completeness found, formally described series such as (3) and (4) generally
diverge. It therefore becomes a pressing problem to define the coefficients
of linear combination (11) of the attached and Eigenelements approximating
a given element f with predetermined accuracy.
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For one class of operators, this problem was solved in the work of
V. V. Lidskiy [28], in which he set forth the idea of summation of series
with respect to main vectors by the method of Abel. Let us briefly discuss
this prohlem.

Suppose A is a fully continuous operator and suppose sh are its singular
values (natural values of operator v4°¢4). Let us assume that operator A
satisfies condition (30) with a certain p>1.

[ ]
Mt< o
258 (50)
and with a certain p'> p, the condition

—2%<Arg(.4h. h)<2—:.-. (s1)

Assuming for simplicity that all characteristic numbers u, of operator
A are simple, we represent by ¢, the Eigenvectors of A, by ¥ the Eigenvectors
of A*, normalized by the condition (¢x, wk)-l

Suppose f=Ah, where h is an arbitrary element in a Hilbert space. The
formally written series (4) for vector fsAh generally d1verges. However, the
following theorem is correct. :

If the fully continuous operator A satisfies conditions (50) and (51),
with any t>0, the series

si)=3 ('@‘ T b )

vt \eeTin (52)

converges and

Lis e h)e=d. _ (53)

In formula (52), a is any number satisfying the condition p'>a > p; Ng is a
certain subsequence of numbers in the natural series, independent of t.

Thus, by replacing condition (31) with the somewhat more rigid condition
(51), we can guarantee not only completeness of the system of main vectors,
but integrability of the corresponding expansions.

It can further be shown that under conditions (5) and (Slj, with any f=Ah,
the following estimates are correct:

Ny s
s{t)— .2," U ) h' Soxpat (—tpy [*+ By, [fO(N)) - 1/] (54)
= .

and
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V- l<PphL (:>0), (55)

These formulas aliow us, using a fixed ¢, to select first a sufficiently
small t>0, then with the selected t, a sufficiently large Ng, so that using
the coefficients contained in formula (54), we satisfy inequality (11).

Proof of the theorem is presented by converting the integrating factor
to a Cauchy integral.

Suppose!

. (6) = é] SN -..4)%% '
v . (56)

where y is an infinite contour, encompassing all bands of the integrand,
and containing the function exp(-u®)t, in the decreasing sector. Using
estimates (16) and considering the minimal nature of type D,(u) and Ap(u)
we can prove the existence of a sequence of contours vy, whgch diverges at
infinity, in which the integrand approaches 0. This allows us to represent
the integral by a series of the residues of (52).

In connection with formula (52) let us touch upon one problem which is
of independent significance.

Where a=1, the expansion of (52) becomes

€) s ) -'.‘ ’n )
a(¢) g(.?, (1, @) 57)
and, as we can easily see, is a solutior of the cauchy problem for the equation
4 Lum0 (L1 A) . (58)
with the initial condition
(59)
II‘...-"

1 ITtegral (56) is converted to integral (1) if we make the replacement
A=u"" and assume t=0.
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Convergence of series (57) where t>0 means, therefore, that if operator L
in equation (58) has a fully continuous inverse satisfying condition (S50-
51), the solution of the Cauchy problem (58-59) can be expanded into a
Fourier series converging where t>0 with respect to thc main vectors of
operator L (cf. [49]).

These conditions are satisfied, for example, by the differential
elliptic operators ¢ order 2m, greater than the number n of independent
variables. Consequently, in these cases the solution of the Cauchy problem
caa be found by the Fourier method. As concerns equation (S8) with its
elliptical operator, this result apparently can be strengthened, since it
was produccd using a very general estimate of resolvent (16), not considering
the special form of the operator.

We note that for a resolvent of elliptical operator (6) with two indepen-
dent variables, the following estimate is correct, produced by V.B, Lidskiy
[44]):

N —ner <o it Ny ]
- atin D

o il ;:,“’TII‘-MI (60)
with all y. In this formula, uy are the Eigenvalues of operator (6). In-
equality (60) is more precise than the general estimate given by formula
(16), and allows us to extend the result formulated above on convergence of
the Fourier series to the case of elliptical operator (6) where ns2,

The problem of convergence of series (S7) t=0 even in the case of
differential operators with partial derivatives, remains open. Generally,
convergence of expansions with respect to main vectors has been established
with respect to a very narrow class cf operators, as was noted in the intro-
duction. In addition to the well-known old studies on convergence of series
in the case of the problem for ordinary differential equations, we can note
also the results of B. R. Mukminov [12], I. M. Glazman [29], A. S. Markus
(30], in which operato:s were studied, acting in an abstract Hilbert space
$. Let us discuss briefly the results of I. M. Glazman. The infinite
system of elements ¢x(k=1, 2,...) is called the Riss base of its closed
linear envelope, if with certain m and M and all N and ¢, the following
inequality is correct:

» r ¥
<v
-.‘-"lﬂfl"‘dz-l (% 7_1)¢‘£1‘IL’.§'|¢..". (61)

We will not discuss the fact that when condition (61) is fulfilled,
system ¢x is linearly indepencent and actually forms a basel!. We note
only that condition (61) is obviously fulfilled, when the angles between the
vectors of the system are near a right angle.

1 It can be proven that if system ¢, forms a Riss base, there is a limited,
continuously inversable operator C which converts systeam ¢, to an orthonormalized
base.
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We find that if ¢k are the Eigenvectors of a certain dissipative
A (i. e., Ap>0), the angles between them can be estimated using the
corresponding Eigenvalues., Namely, the followinz inequality is correct:

Al by

(it is assumed that ||¢;||=]|ej||=1.) Using this inequality, the following
theorem is proven.

If ¢k is an infinite system of normalized Eigenvectors of a limited
dissipative operator A and if

\ l.hlul. <e.
o=k (63)

then system ¢ is a Riss base of its closed linear envelope.

This theorem was produced earlier under more limiting assumptions by
B. R. Mukminov by another method.

A. S. Markus ([30]) generalized the theorem of Mukminov and Glazman,
introducing the concept of the Riss base from subspaces. Estimating the
angle between subspaces by an inequality similar to (62), A. S. Markus
established that with certain limitations on the Eigenvalues of dissipative
operator A, its root subspaces form a Riss base of their closed linear
envelope.

In conclusion, we note that condition (63) and similar conditions place
rigid limitations on the Eigenvalues, so that the class of operators for
which they are fulfilled in quite narrow.

§ 4. Results of a General Nature and Singular Problems for Differential
Operators

Of the general problems, let us first discuss works which develop the
results of M, S, Livshits {11) and are dedicated to conversion of limited
operator A to triangular form.

We have already indicated, in connection with the representation of
Walter operators, that L. A. Sakhnovich [15] succeeded in constructing a
triangular model of the limited linear operator, having a sufficient reserve
of invarient subspaces. In this case, the model of L. A. Sakhnovich has
the form

‘ o
A= N(s, )/ () ds.
N 2?! (64)

-20-



Operator (64) acts in Hilbert space 3 of vector functions f(t)-{f (t), ...},
satisfying the condition

Sfumeace.
o o

In formula (64), N(x,t) is a certain matrix kernel. Operator A is uniquely
equivalent to the ini*ial operator A with an accuucyﬂo i iertain invariant
subspace relative to » in which the equality

-+

Under certain additional conditions placed on operator A, differentiation
can be performed following the integral sign in formula (64), thus silplifying
the wmodel. For example, if in formula (33), Aj is a Hilbert-Schaidt type
operator and the spectrum of operator A is real, formula (64) becomes

. -
A= E(z)f (s)+ ]} N(s. )1 ()1,
! _ (65)
where H(x) is the Hermith operator, while N(x,t) is a matrix kernel satisfying
condition (35). We have already indicated the effectiveness of the triangular
presentation in the case of Walter operators.

M. S. Brodskiy, in [31](1960), generalizing his earlier result [17],
produced a triangular representation of limited operator A with real spectrum
and imaginary, fully continuous component Aj, under an additional assumption
concerning the structure of the invariant subspaces of operator A. The
triangular representation is as follows:

A= I.(.)df(;)-g-: I P(s) AP (2). (66)
o« =

In this formula, P(x) is a monotonic chain of projection operators, projecting
onto invariant subspaces of operator A [cf. (40)], while a(x) is a certain
real function, the values of which correspond with the spectrum of A.
As Yu. I. Lybich and V. I. Matsaev showed [32), the conditions place on

the invariant subspaces of ope:stor A by M. S. Brodskiy are fulfilled if

[

]....4.|.,+uu)a<-. N (1) = sup] (4 = 1E)Y).

H [LEUF )

This condition is quite broad; as V., I. Matsayev proved, it is fulfilled
if the series E 1] converges where 1, are the Eigenvalues of A
+ .

and, consequently, practically with any fully continuous! A

1 We note that on the assumption that tltn|°<-. triangular representation
(66) was produced earlier by 1. Ts. Gokhbergom and M. G. Kreyn,
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A further improvement of the triangular presentations can be produced,
apparently, by simplifying the Wal:er component in formula (65) and (66).
Interesting results in this direction were produced by L. A. Sakhnovich [33].
It is also desirable to avoid the condition of reality of the spectrum of
the operator. Although a non-real operator spectrum with a fully continuous
imaginary portion is discrete, separation of the corresponding invariant
subspaces is a far from trivial probles.

Let us now touch upon another trend in the theory of linear cperators,
the theory of spectral operators of N. Danford [35], (1954). It is assumed
in this theory that limited operator T, acting in a Banach space has the set

of projectors E(8)(8 is any set in the complex plane measurable after
Borel). Set E (8) is assumed to be evenly limited with respect to §:

1EQICH . (67)

as well as denumerably additive: for each sequence of non-intersecting
Borel sets 4p,

™ o
£(gn)r=3ean
Y 2‘ (68)
where the series on the right converges strongly.
Under certain natural additional assumptions concerning set E(8), it has
been established that the corresponding operator T called the spectral operator,
can be represented as

TS+ N, (69)

where

8-[ 1B (). (70)

while N is the generalized O-power operator in the sense of |I. M. Gel'fand
lm y{Fl=o,
[ A X ]

and the operators N and S are commutative. Representation (68) is a full
analogue of the Jordan form. As N. Danford shows, for any single-valued
function f(\), analytic n specivum T, the formula

-
Ao
“n..zn-[;m())sul)_ (1)
sad

-22-



weil-known in the finite-dimensional case, is correct.

Works on further development of the theory of spectral ope.;ators were
included in the objective review of N. Danford [35], (1958). We can see
from this review that the mathematicians working in this direction have
directed their efforts toward the production of sufficient conditions im-
posed on operator T and its resolvent, under which the operator is spectral.
The conditions produced to date contain a requirement of not over exponential
growth of the resolvent as parameter ) approachtes the point of the spectrum.
Furthermore, it is required that for any two elements x and y such that the
functions R: x and R\y have no common points of irregularity, the inequality
[Ix|l<cl|xey]], be fulfilled with a certain constant c, independent of x
and y.

As is stated in the review, all differential operators with ordinary
derivatives and regular boundary conditions (operators studied by D. Birkgof)
are spectral operators. The work of N. Danford also presents certair singular
problems. For example, it is stated that the operator

'(’)-_g +els)y. (72)

studied by M. A. Naymark in [36], defined in a variety of functions
y(x)fL3(0, +=), y'(0)shy(0), under the condition that

fatmipmace
. (73)

is spectral (q(x) and h are generally not real).

Among the differential operators for which no expansion into a Fourier
integral was produced earlier, this review states, the following operator
is spectral

o)== Th e I +etab. .

where Reag0, q(xew)zq(x). With real q(x) and a=0, operator (74) is self-adjoint:
its spectrum, as is well-known,i: an infinite series of intervals moving off
to ¢=. All points in the spectrum are double.

As M, I, Serov [4]1] has shown, in thc case of the complex-va .ed function
q(x) and a=0, the picture changes little: the intervals are defc -ved into
curved sectors, asymptotically retaining their length and distance between
neighbering n's. If, however, we assume in (74) that Reag0, the spectrua
changes significantly. Several of the first intervals are split into ovals;
all remaining lacunas are extended and the twice-added ray is split into a
curve asymptotically close to a parabola.

-23-



M. I. Serov, studying operator (74) on the suggestion of 1. M. Gel'fand,
estimated the resolvent of the operator with approximation of the parameter
to the spectrum. However, he did not succeed in producing expansion into a
Fourier integral. It is even more interesting that this probleam is solved
from general considerations.

It should be noted that proof of the results announced by N. Danford
has unfortunately never been published. However, the incomplete formulation
of the msults and the absence of proof lead to disagreements. For example,
in contrast to a statement contained in the review, B. S. Pavlov [42] has
shown, but constructing a contradictory example, that operator (72) under
condition (73) is not spectral. The corresponding statement is incorrect even
if

-«
[+ iemiace. a>n.
* (75)

In connection with the theory of spectral operators, we note an interesting
attempt undertaken by V. E. Lyantse [37] to construct a theory of spectral opera-
tors under conditions of completeness of the system of invariant subspaces,
without assuming even limitation of the spectral set (67) or denumerable
additiveness (68). It is to be hoped that this theory will be applied.

In conclusion, let us discuss the problem of expansion with respect to
Eignefunctions of an ordinary differential operator in the case of .n unlimited
area of definition of the functions.

We have mentioned the well-known theorem of M. A. Naymark ([36) of expan-
sion with respect to Eigenfunctions of the Shturm-Liuville equation with
unreal potential q(x), satisfying condition (73). This theorem of M. A. Naymark
was extended by V. N. Funtakov [38) to the case of an even order differential
operator

Hy) =™ + oy (3) )™+ ...+ Pala)0e

acting in L2(0, +=), on the assumption that the coefficients pg(x) decrease
exponentially as x+e,

A new approcch to problems of expansion with respect to Eigenfunctions
of a differential operator was suggested in a work by V. A. Marchenko [39].

Suppose
. - -—
) ;;‘ sa)y (76)

is a differential operator, defined in L;(0,) in a manifold of functions
satisfying the boundary condition

v (0 =4y (0), ¢2))
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q(x) is an arbitrary complex function, integrable in‘each finite interval,
while h is a complex number.

Suppose w(s, x) is the solution of equation l(y)#szyso, satisfying the
initial conditions

(s, O)emt, w (s, O)=mh.

(78)

Let us compare sach finite function f(x) to a Fourier w transform

L ]
Ey(s)em ] f(x)% (s, 3) dz.
! (79)
If E‘(s) is the Fourier w transfora of function g(x), then in the case of
real q(x) and h, as we know, the following equation of Parseval is correct:

- +o
[reema= | 5,008 D00,
[ — (80)

where p()) is a non-decreasing real function. The right portion of this
formula can be interpreted to mean that the Parseval equation is retained with
arbitrary q(x) and h, i. e.,in the non self adjoint case.

Going over to the presentation of this problem, we note that w(s,x) and
cos sx are related by the transforms

oo, s)emcon o+ [ K (. )eon atat (s1)
[ ]

® »
wstmele, ) +[AG 000 0o, (82)
[

where K and H are smooth kernels. Substituting w(3,x) from formula (81) into
(79), it is easy -- on the basis of the Paley-¥iener theorem -- to see that
Eg(s) is as even, exponential-type function with integrable square on the
real axis. Let us represent by Z the topological space of all integral even
functions, integrable on the real axis with the following definition of
convergence: F,())+ F(1), if
4+
tim [ 1= r.y =0
IO.—.

and the pewar o of functions F,(A) arec limited as a set. It is easy to see
that the produc? Eg( n)E‘(vﬂ celon;s to Z, and it can be shown that this set
of such derivatives is compact in Z.
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The right portion in formula (80) can therefore be looked upon as a
linear functional in Z, fixed in a compact manifold. The latter can be
extended to all of space Z.

Thus, in the self-adjoint case, operator (76) generates a certain
continuous functional in Z for which formula (80) is correct. As V. A.
Marchenko proves, this affirmation retains its force in the general case,
that is, operator (76) can always be related to continuous functional
(R, F(2)), F()) ¢Z, for which the following formula is correct:

1616018 = (0. 5, D) £, (VD). (83)
[

It is remarkable that V. A, Marchenko succeeded in solving the reverse
oroblem: restore function q(x) and h on the basis of fixed functional
(R, F(2)).

We note, however, that determination of the analytic expression for
functional R can be fully performed only with certain additional limitations
placed on function q(x). For example, under condition (73) it can be shown

that - 7 (YY) T
(n, ’('))-I md(-‘—n)-znu-.mr(m
[ ]
where BE()myL 20, 0)A—y (Lt 0)

-.(-)-1—_:-'%-5;;

m(:) is an analcgue of the Weil function.

In the more general case, the functional can be represented by an
integral with respect to the contour encomp.ssing the spectrum of the
operator. This contour has not yet been successfully sxtended to the spectrum.

It can be shown that tho idea of comparison of a linear operator of a
functional in a certain topological space of analytic functions with subsequent
study of the carrier of this functional can be applied in the case of a general
linear operator. However, up to now this has been realized only in the case
of a probles for one ordinary differential second order equation and system.
(see [47]).
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