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The class of non self adjoint operators, for which the un- 
conditionally converging expansion of the Eigenfunctions is 
correct, has not yet been fully defined (for example, it is 
not known whether ellipltal differential operators with 
partial derivatives belong to this class).  'owever, it is 
now clear that the spectral expansion converging on the norm 
is not a necessary characteristic of the general linear opera- 
tor.  Apparently, further development of the theory will be 
achieved by establishing the generalized spectral expansion. 
We note that considerable material has been accumulated in 
the theory of non self adjoint problems, and it is character- 
istic that in recent years the theory has been supplemented 
with a number of new and Important siudies.  Successes have 
been particularly great in the area of operators with ais- 
erete npectru«. We will dedicate the first three sections 
4« our review to this theme. 
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PROBLEMS OF THE SPECTRAL THEORY OF NON SELF ADJOINT OPERATORS 

[Article by M. V. Keldysh, and V. B. Lidskiy;  Russian, Trudy Chetvertgo 
Vsesoyuznogo Matematncheskogo S"ezda [Transactions of the Fourth All-Union 
Mathematical Conference], Leningrad. 3-12 July 1961, 1963, Vol 1, p 101-120], 

Introduction 

One basic method of production of expansions for the Eigenfunctions of 
linear Operator A, Operating in Hilbert space St.  is a method utilizing the 
representation of the operator by a contoured integral of its resolvent. 
This method was used by 0. Cauchy, who applied it to the investigation of 
series of Eigenfunctions of ordinary differential equations. 

This method is based on the following formula, correct for any limited 
operator A: 

Aha-jzflnA-lE)- •Ad).; (1) 

The integral is taken with respect tc the contour containing all specifics 
of the operator resolvent. Equation (1) is established by calculating the 
residue where X=<«>. 

Suppose,  for example, A is a fully continuous operator.    Then,  as we 
know, its resolvent RA=(A-\E)"    is a meromorphic function with the point of 
concentration of poles at 0.    Suppose there is a sequence of closed contours 
Cfc approaching 0,  such that 

lim || \x{A-lE)-ihdk\\ = 0. 
f* (2) 

Then, using the fact that the residue of the resolvents in each poie is equal 
to the projection operator P^ on the corresponding root space, we produce the 
converging expansion 

^-.jjw*. (3) 
»«i 

In particular, when all poles are simple, expansion  (3) becomes 
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^-2X»'*'<'»)»»• 
>t C4) 

where (fk are the Eigenvectors of Operator A, while ^ is the adjoint operator 
A1. 

We note that when A is a self-adjoint (or in the more general case, normal), 
fully continuous operator, the secret of contours Cfc always exists.    This is 
explained by the specifics of the self-adjoint operator, stating in particular 
that the resolvent of this operator grows slowly as parameter X approaches the 
spectrum.    Equation (4) in the self-adjoint case Is well-known as the "Hubert- 
Schmidt theorem." 

In the case of a general self-adjoint limited operator, when the resolvent 
not meromorphic and the spectrum2 may be continuous, integral (1), can still 
renresented as 

Ak » jldPxk 

is 
be represented as 

(5) 

and we can produce a spectral expansion3 generalizing formula (3). 

Whereas in the theory of self-adjoint operators, general results of a 
final nature were produced relatively long ago, for linear non self adjoint 
operators, an expansion has only been produced in a few particular cases. 

The superficial reason for this lies in the difficulties arising in 
estimation of the resolvent.    The true reason, probably, is the complex spectral 
structure of the non self adjoint operator. 

The class of non self adjoint operators, for which the unconditionally 
converging expansion of the Elgenftmctions is correct, has not yet been fully 
defined (for example, it is not known whether elliptical differential operators 
with partial derivatives belong to this class?.    However, it is now clear that 
the spectral expansion con/erging on the norm is not a necessary characteristic 
of the general linear operator. 

Apparently, further development of the theory will be achieved by establish- 
ing the generalized spectral expansion. 

1 In the case of multiple poles in formula (4) the attached vectors appear 
in addition to the Eigenvectors. 
2 The spectrum means the set of all irregular points of the resolvent. 
3 Expansion (5), first produced by Hubert [1]  (1904), has been produced 
from integral  (1) by Hcllinger [2]  (1909). 
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We note that considerable material has been accumulated in the theory 
of non self adjoint problems, and it is characteristic that in recent years 
the theory has been supplemented with a number of new and important studies. 
Successes have been particularly great in the area of operators with discrete 
spectrum1.    We will dedicate the first three sections in our review to this 
theme. 

§.    Completeness of System of Eigenvectors and Attached vectors 

Since D.  Birkhoff produced an expansion of the Eigenfunctions of the 
non self adjoint boundary problem for an ordinary,  linear, nth order differ- 
ential equation with regular homogeneous conditions at the ends of the finite 
interval  [a, b], in 1908, a number of studies have appeared [4, 5, 6],     In 
these works,  the results of Birkhoff have been extended to the case of other 
boundary problems for ordinary differential equations and systems studied over 
a finite interval.    The expansions in all cases were produced by the Cauchy 
method f    bribed in the Introduction. 

The problem is that in problems for ordinary differential equations, the 
asymptote of the solutions can be found if x changes over a finite interval, 
while \ is great.    Using the asymptote of the solution, we can estimate the 
Green function of the corresponding problem and prove the existence of an 
appropriate sequence of contours. 

The structure of the Green function is more complex in problems with 
partial derivatives,  apparently the reason why works dedicated to the boundary 
non self adjoint problem for partial derivatives were extremely scarce for 
some time. 

The significant contribution to this area was made by the well-known 
works of T. Carleman [7] (1936). In this work, in the case of a boundary 
problem for an elliptical type equation 

nu)— 2 .yW^+ 2M*)-3r+*(»)«-i« W 

•|r-0 
(7) 

where n=3, the primary term of the asymptote of the Eigenvalues of p^ was 
found as k-*«.     In his proof, Carleman developed a new method for producing 
the asymptote of the Eigenvalues, based on estimation of the track of the 
iterated Green function with subsequent application of the theorem of 
Tauber. 

1    As the operators are called, the spectrum of which consists of Eigenvalues 
of finite multiplicity having only one collection point. 
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In his proof, Carleman also utilized his own preceding results, produced 
in [8] (1921), in which he studied the resolvent of an integral equation with 
a kernel having an integrable square      (HiIbert-Schmidt kernel)1. 

The works of Carleman played a leading role in the development of the 
theory of non self adjoint problems.    Hi; methods allowed the resolvent to 
be estimated as a function of the parameter in the case of problems with 
partial derivatives.    It is also significant that they can be used in the in- 
vestigation of operators acting in an abstract Hubert space. 

However, one of the main problems, namely the question of the completeness 
of the system of Eigenvectors and attached vectors remained open in the case 
of problems with partial derivatives for some time following the works of 
Carleman. 

Tn 1951, M. V.  Keldysh succeeded in finding broad conditions of complete- 
ness in [10]. 

In this same work, a theorem was proven concerning the asymptote of 
the Eigenvalues of operators acting in an abstract Hilbert space.    It followed 
from this theorem, in particular that if Lj is an elliptical, self-adjoint 
differential operator with discrete spectrum, then when it is perturbed by 
a differential operator of lower order, the main term of the asymptote of the 
Eigenvalues is retained.    Although we cannot discuss this problem in detail, 
let    us formulate the theorem of M.V. Keldysh of completeness.    Ne will present 
it in the following abbreviated form: 

Suppose fully continuous operator A, for which 0 is not an Eigenvalue, 
has the form 

*«*(* + «. 
(') 

where Q is a fully continuous operator, while M is a self-adjoint, fully con- 
tinuous operator, such 'hat with a certain p>0 

1 Estimates of the resolvents for Hi Ibert-Schmidt kernels were then produced 
by another method in an important work by Hille and Taaarkin [9]. It was 
first shown in this work that the Fredholm determinant of the convolution of 
two Hi Ibert-Schmidt kernels has 0 order, and a number of other results were 
produced. 
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(v^ are the Eigenvalues of H). 

Then the sysien of Eigenvectors and attached vectors of operator A 

II. fl I».-; (10) 

is complete in Hilbert space A. 

In other words, no satter what light be eleaent h and no Batter what 
■ight be c, a N and a nuaber c^ are found, such that 

|*-jH<. 
(in 

The   systea of Eigenvectors and attached vectors will be referred to as the 
systea of uin vectors in the rest of this paper. 

The theorea of completeness of the systea of aain vectors was established 
not only for problea (6), but for the case of the boundary problea for ellip- 
tical equations of any order studied in a finite area of a space of n aeasure- 
■ents.    Actually, under these conditions the differential operator L is 

*-*i + ^. (12) 

where L. is the self-adjoint elliptical operator, while L2 is the operator of 
lower oner, so that operator I^Lpis fully continuous.    Equation (Lj*!^) 
u"uu can be represented in the foia (E»L2Lj )LjU"uu, froa which 

.-.^(i + i^'j-V. (1S) 

Assuaing here L:l»H, (.1*1211  )' aE«<) and u* "X , we arrive at the problea of 
the Eigenvalues for operator (S). Condition (9) in this case is fulfilled ». 

1 The completeness of the tystea of Eigenvectors and attached vectors of the 
elliptical differential operator was proven by F. Irauder in (45] without 
referring to the theorea of N. V. Keldysh. 
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Let us now present the proof of the theorem of M. V. Keldysh concerning 
completeness, retaining in essence the initial proof (cf.t45] and [48]). 

a) For the case of fully continuous operators of the form 

A-mKU (14) 

where H is a self-adjoint limited operator, satisfying condition (9), while 
K is any limited operator, the theory of Fredholm determinants can be applied. 

Suppose Xj, X2,... are not equal to 0 and are numbered considering the 
multiplicity of the corresponding values of operator A; vj, \>2,...,  as before, 
are the Eigenvalues of H. 

Ne find that the following inequality is always correct: 

Considering this fact and assuming Pk'^ü • * let us study the following 
integral function (Fredholm determinant of operator A): 

*'«-fl('-i)«4(^-V 
Here n is the least integer satisfying inequality n*l>p.    Obviously, with this 
selection of A^(ii), the operator function 

©»-AiWCÄ-Mr1 (I5) 

is also integral.    On the strength of known theorems from the theory of 
funct'ons, AA(g) is an Integral function of order not over o. 

Ne find that when condition (9) is fulfilled, the order of the integral 
function DA(w) is also not over p. 

Thus, the meromorphic operator function (E-uA)"1, where A is an operator 
of the form of (14) and the Eigenvalues of H satisfy condition (9), can be 
represented as the ratio of integral functions, each of which is of order 
not over p. 

1*4W|<"K,||>|'. \DäM\*nfCt\rf (16) 

1 The inverse values of Eigenvalues are generally called characteristic numbers 
of an operator. 



b) Estimates (16), of course, do not indicate the existence of a 
sequence of contours over which condition (2) would be fulfilled. However, 
there is no need to prove the coapleteness of the systea of main vectors 
in. this sequence. 

The problea is, and this is very significant for our further discussion, 
that investigation of the completeness of the systea of aain vectors of the 
fully continuous operator can be reduced to study of a certain fully continuous 
operator with the unique point of the spectrua as a 0. This allows us to 
avoid the difficulties which arise in the investigation of the aeroaorphic 
resolvent of an operator, and reduce the problea to the study of a certain 
integral function. 

For greater generality, we can perfora the corresponding discussion in 
the case of an arbitrary, fully continuous operator, although in the investi- 
gation of completeness of operators of a special fora (8) it is not used in 
füll voluae. 

Suppose A is an arbitrary, fully continuous operator. Let us represent 
by Q, the closed linear envelope of the aain vectors of this operator 

fi> **•••••*•  (17) 

relating to the non 0 Eigenvalues. Suppose 0| is the orthogonal coapleaent 
of O; Since Ol is the invariant space A, then 0* is the invariant space 
of the adjoint operator A*. 

Let us represent by V the operator induced by A* in QJ- 

Me can now show that for coapleteness of systea (17) in the area of 
values of operator A, it is necessary and sufficient that 

K-0. (1«) 

Actually, if systea (17) is coaplete and, therefore. Ah (d with any h, 
then for any g C d we have (Ah, g)"0. Consequently, 

O-M*. «)-(*. 4*r)-('. Kf» (19) 

with any h, and therefore V-0. Conversely, if condition (18) is fulfilled, 
then, tracking equation (19) froa right to left, we conclude that Ah (Oi 
with any h, and, consequently, systea (17) is coaplete. 

Let us now show that fully continuous operator V has a unique spectral 
point at 0 or, as it is soaetiaes stated, it is a Walter operator. 



Let us ass-ac the opposite;    then Vg-)k0g«(K  Xo^0.    Applyir ■ scalar 
■ultiplication by arbitrary vector h. we produce 

(20) 

I; is known that the direct coaplenent to the subspace of all vectors 
such as (A-X0E)h li^s in   $,.      Therefore,  it follows from (23) thit g»0, and 
we arrive at a contradiction. 

Thus, proof of the coapleteness of the systea of sain vectors of a fully 
continuous operator can be reduced to proof of equality of a certain Malter 
operator to 0. 

c)    Under the conditions of the theore« in question, equation  (18)  is 
proven as follows. 

Let us study the function 

•I«—««-MT1«.»». (21) 

where g and h f0» Since V is a Malter operator, then M(II) is an integral 
function. Representing hy  P the projection operator in Oi. we have 

since operator A* has the fora of (14), then, according to (16), u'u) is an 
integral function of order not over o. 

Me shall now show that where u-*» along each ray differing frt» the real 
axis, function w(u) reaains liaited. from this, on the strength of the 
Fragaan-Lindelhoff theore«, it follows that w(b)>const. Since further the 

fraction -p i   • (Vg, h), consequently, (Vg, h)>0 HIUI all g and h (Of 

and therefore equation (18) actually obtains. 

Thus, it is sufficient to show that 

|»'i«*)|<C. 

when r*~.    Let us prove this fact. Me have 

(22) 

(t -HT1-(*-M*^ + C) «r»-(« + *-^i"«(*. Cr'— 
-(« + ^«-^)-,Jr'(^^-^«rM^ + 9•r,. (23) 



where S represents the fully continuous operator such that E*S«(E*Q*)'*. 
Assuaing u «oe **, let us estiaate the right portion of (23).    Ne note that 
the Eigenvalues of (E-HH)'1 are (l-re^vk)"1.      Since 

operator CE-uH*1) is evenly limited.    Furthenore, for fixed f we have 

"'-•^'«•-in^b^Xir^fo» (24) 
Selecting N sufficiently high, we can first sake the second SUB <C/2 after 
which, by selecting r, we can sake the first SUB <C/2. Thus, as r*«* 

(25) 

(26) 

l(c-iarr*/l-*o. 

Using this fact, we can show 

toKC-MTWI-O. 

Using the fixed c, let us represent the fully continuous operator S as 

«-*! + *. 

where ||Si||<c/2 sin a. while $2 is a finite-dinensional operator. Suppose 
eleaent h is such that ||h||<l. Me then have 

I«-,*)-• M|<i(*-iarr*«iM+i(t-Mrr*s«ft|< 

<Tl*l+i<,-^,^,^l- (27) 

And since set Sjh is a finite-dinenilonal and Halted set, on the strength 
of (25) the second coaponent la (17) with sufficiently large r is also <c/2 
||h||.   Thus, foraula (26) actually obtains.    Representation (23) now 
directly indicates Halted nora (E-itA*)'1 as r**.   Consequently,    |w(reia)|<C, 
which was stated. 

Let us separate the essential eleaent contained in this proof:    finite 
order of the resolvent of Walter operator V, resulting froa Inequality (9) 
allows us •- on the strength of the Fragaen-Lindelhoff theorea -•on the 
basis of the behavior of the resolvent in a spectrua not containing the 
spectxua of operator A*,   where it it coaparatively easily estiaated, to 
draw a conclusion concerning the resolvent of operator V as a whole. 



This theorea on coapleteness was subsequently developed in a maber of 
works, which we will discuss later. 

The later works were also influenced by a work of N.  S.  Livshits [11], 
in which a triangular aodel was produced for a limited operator of the for» 

*~*i+",, (28) 

where the iaaginary Hermith coaponent A] is fully continuous and has ■ track1. 
In  particular, this aodel leads to an integral representation of the Nalter 
operator.    N. S. Livshits established also the following fact. 

If operator (20) is fully continuous and Ai>0, then it is necessary and 
sufficient for completeness of the system of attached and Eigenvectors that 

(29) 

This theorea, produced by M. S.   Livshit* using a triangular model, 
was then proven significantly aore siaply by B.  R.Mukainob  [12]. 

It can be shown that formula (29)  imaediately indicates equality of 
Nalter operator V, acting in    C,: to 0;   the reverse is also true. 

12.    Further Theoreas on Coapleteness, Triangular Representation of 
Malter Operators 

Let us now go over to later results.    Suppose A is a fullv continuous 
operator.    Let us refer to the Eigenvalues sn of operator  v' A*A as the 
singular values of operator A. 

Obviously, always sn*0.    Ne will study only tho- ■ operators A for which 
with a certain p>0 

!/•<• (30) 

Exponent p characterizes the degree of deviation of operator A froa a finite- 
diaensional operator. Hie lower the value of p, the aore rapidly nuaber sn 
approaches 0, and th* better the operator is approximated by a finite- 

dimensional operator. 

1 It is stated that fully continuous operator A has a track if the series of 
Eigenvalues *„ of the non-negative operator ♦' A'A? 21 "n*" converges. Here, the 
track refers to Ä ..  „. where xt 1* • certain orthonoraalized base in ft. 
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If p»2, operator A is called a Hilbert-Schaidt operator. Integral operators 
of this type were studied by Carleun [8]. Nhere p«l, operator A is called 
a kernel operator (conceminc kernel operators, see [46]). Let us introduce 
one aore characteristic of operator A. It is known that the see of values of 
the qu.ulratic fom (Ah, h) in the coaplex plane fills either a certain angle 
m with its tip at the origin of the coordinates, or the entire plane. 

If operator A is self-adjoint and non-negative, the values of (Ah, A) fill 
the positive half axis. In the general case, miltip'ying the operator by an 
appropriate coaplex constant, it can be arranged that the bissectrix of the 
angle of values of fox« (Ah, h) is the positive half axis. The aperture of 
this angle can be used as a characteristic of the deviation of the operator 
from a non-negative self-adjoint operator. The following theorea is correct. 

If operator A satisfies condition (SO) where p>l and if 

-Tj^AfjM». A)<ip (3D 

then the systea of aain vectors of operator A is coaplete in ft. 

This fact was initially established in a nuaber of particular cases by 
various aethods by V. B. Lidskiy. For the case p»2 in [13J using the results 
of T. Carlaun [S]; for the case p-1 in [14] based on the foraula of tracks 

&<*-&* (52) 

which, as was proven in [14], is correct for any kernel operator [in foiaula 
(32),' X^ are the Eigenvalues of A, while Xfc i* «n arbitrary orthonornalized 
base]. 

However, after ainiaality of the first Fredhola ainor D^(X) was proven 
under condition (30)1, the theorea foraulated above was proven by a strong 
aethod, applying the Pragaen-Lindelhoff theorea to function (21). 

As B. Ya. Levin and V.  I. Matsayev proved, the conditions of coapleteness 
of (30) and (31) are precise:   with the given convergence indicator of series 
(SO) p and a broader range of values of the quadratic fora then (31), we can 
indicate an operator with an incoaplete systea of aain vectors. 

Further progress in the investigation of coapleteness was achieved in 
the works of N. G. Kreyna, L. A. Sakhnovich and M. S. Brodskiy, 

1 See  [43].   As the authors have learned, V. I. Matsayev 
is a Nalter operator and sn-o(n   'p), then 

shotffcd that if V 

laKe-iiIT'l-'di»!«)- 
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L.  A.  Sakhnovich and N. S. Brodskiy produced new triangular representations 
of Kalter operators.    Let us discuss these works briefly. 

L. A.  Sakhnovich [15],  [16]. generalizing the results of N.  S.   Livshits, 
constructed a triangular «odeI of the liaited operator 

4-4, + M,. (33) 

having the property that no matter what the two invarient subspaces H| and H2 
of operator   *Hlittt   and dim    nteni>l    invarient subspace Hj of operator A 
is found, such that   Hi 6 "if"»   and 1/, * ff} * *,. 

In particular, .»s L. A. Sakhnovich deaonstrated, this property is shown 
by any operator (33) if A] is a Hllbert-Schaidt type.    In this case, when 
spectna A consists only of the 0.  and Aj  is a Hubert-Schmidt type, operator 
(33)  is uniquely equivalent to the operator 

where f(t)  is a vector function, generally infinite-dinrnsioned.  and N(x,t) 
is the matrix kernel satisfying the condition 

JJ   - 
(55) 

It iaaedUtely follows fro« representation (35) that if A is a Halter 
operator and A] is a Hilbert-Schaidt operator, then A is also of Hilbert- 
Schmidt type. 

This fact has significantly influenced a nuaber of later works  (see below). 
In particular, it allowed L. A. Sakhnovich to strengthen the theorem of 
V. B.  Lidskiy concerning completeness in the case 01 Hilbert-Schaidt operators 
in the following foxa. 

If A is a fully continuous operatrr, AR>0 and A{>0, and if Aj is a 
Hilbert-Schaidt operator, then coapleteness obtains. 

Another triangular presentation for the Walter operator was produced by 
N. S. Brodskiy [17].    The triangular presentation of M. S. Brodskiy is effective 
in the same Hilbert space as operator A, and corresponds with operator A fully, 
not with an accuracy to a supplementary component, as occurs in the models of 
M. S.  Livshits and L. A. Sakhnovich. 

Going over to a presentation of this problem, let us assume initially that 
A is a linear transform in an n-dimensional space, all Eigenvalues of which 
are equal to 0. 

Suppose 

•!• •» «. (36) 
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is an ortnonorulized base, in which the conversion matrix is a triangle1. 
Then 

4*1—0;   44t —atfi Ay—•|^^ + HA+•••+«•-l.A• 
l37J 

Let us represent by P^ the projection operator onto the space stretched 
onto the first k base vectors (36), and suppose APkB,>k~pk-l- It t>,en iaiae<1- 
lately follows froa fonula (37) that with any h 

& (38) 

Ne note also that according to (37),     V 4iV4',»-i — 0>    Going over in this 

equation to adjoint operators and assuaing Ai>l/2i(A-A*), we can write (38) as 

ii»-J«2;'»-iV»*. (39) 

This representation, as M. S. Brodskiy has shown, is generalized in the 
case of any Walter (fully continuous) operator A, acting in  &. Namely, any 
Walter operator can be represented as 

1—2* \ I'i* 
(40) 

Here Aj, as always, is the imaginary component of operator A,  gg is a certain 
closed set of sector [0,1], P(x),   x6??!,   is a chain of projection operators, 
continuous in 9t and monotonically increasing, projecting on the invariant 
subspaces of operator A, where P(0)«o, P(1)>E, and if (a, B) is the compli- 
mentary integral to set  <3H, operator P(6)-P(a) is unidimensional. 

Integral (39) is understood as the limit of the sequence of partial 
SUIT    in the ordinary operator norm. 

We note that proof of the existence of the chain of projectors P(x) 
is based on the Neuman-Aronshein theorem [18] on the existence of a non- 
trivial invariant subspace with a fully continuous operator acting in   S. 
A chain of this form was constructed independently by L. A. Sakhnovich in 
[15],  [16], and is the basis of the results produced there. 

Representation (39) has been found quite convenient in the study of 
Walter operators.    New, important representations concerning'the convergence 

1    Existence of this type of base is established by the well-known theorem 
of I. Shur. 
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of integrals such as  (40) under conditions when P(x] is a monotonic chain 
of projectors, not necessarily generated by the fixed Walter operator, while 
Aj is a certain self-adjoint, fully continuous operator, were produced by 
I. Ts. Gokhoyerg, M. G. Kreyn and V.  1. Matsayev [19, 20, 21, 22],    These 
authors, using triangular representations,  established the following fact, 
generalizing the theorem of L. A. Sakhnovich presented above. 

Suppose V=VR+iVi is a Walter operator and suppose Tjj are the Eigenvalues 
of     i, while ok are the Eigenvalues of VR.    Then where p>l, the series 

Si*»!' 
(42) 

converge and diverge simultaneously. 

Let us emphasize that the statement formulated allows us to judge the 
growth of integral functions DA(W) and A^(w)  in the case of a Walter operator, 
with   iiformation only concerning the imaginary or real component of the 
operator.    The order of these functions with    p>l is not over p.    This allows 
us to strengthen the completeness theorem formulated above on page 10. 

If operator A is such that its imaginary portion Aial/2i(A-A*)  satisfies 
condition  (30) where p>l and if condition  (31)  is fulfilled, completeness 
occurs. 

Where pnl, convergence of series  (41) does not gene, ally produce conver- 
gence of series  (42).    One example is the operator       x 

Af«rf(t)dt, for which the 
imaginary component is unidimensional, while the Eigenvalues an=n(n=±l,+2,...). 

Walter operators, the imaginary components of which have tracks, were 
subjected to detailed study in the works of M.  G. Kreyn   |23|, |24|.       M.  G. 
Kreyn relates the Walter operator V=VR+iVj to the analytic function 

/(O^Dct«*-:!-•,) (t_iV)->). (43) 

Since  (E-zVR)(E-zV)"1=E+izVI(E-i'ZV)"1 and Vj has a track, the determinant in 
the right portion of (43) converges evenly and is an integral function (we 
recall that V is a Walter operator and, consequently,  (E-zV)-1 is an integral 
function); the nulls of f(z) are the numbers ar1.    As M, G.  Kreyn proved, 
function f(z) within the upper and lower half planes can be represented as 
the ratio of 2 limited holomorphic functions.    From this, based on the theorem 
of M. G.  Kreyn  [25] and the theorem of Levenson [26], it follows that there 
is a general finite limit 

Mm   *\   *;^llm   -\   H--^. (44) 
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Here, n+(r, VR) and n_(r, VR) represent the number of characteristic numbers 
aj^    of operator VR in the intervals  (0, r) and  (-r, 0) respectively.    Formulas 
(44) contain the asymptote of the Eigenvalues of the real component of the 
halter operator, the imaginary component of which has a track, and supplement 
the preceding result of Kreyn, Gokhyerg, and Matsayev.    It is remarkable that 
in the case when Vj>0, in formula (44) 

*-5l•^'/. (45) 

If therefore Vj>0 and the general limit in  (44) is equal to 0, then Vj-0, 
and   all of operator V, being a self-adjoint Walter operator, is equal to 0. 

This established fact relative to Walter operators leads to the following 
completeness theorem. 

If fully continuous operator A'A^iA. is such that Aj ^ 0 and if one of 
the two conditions 

„mJ!t£^£)=D    , (46) 

or 

»_(r, AM) 

is fulfilled, then the system of main vectors A is complete. 

This theorem contains the results of V. B.  Lidskiy concerning completeness 
of operators having a track (p»l) as a particular case, since if operator A 
has a track, then both conditions (46) and (47) of the theorem of M. G. 
Kreyn are fulfilled. 

Further, M. G. Kreyn finds a necessary and sufficient condition of com- 
pleteness for fully continuous operators A, such that A^O, SpAjo. 

Completeness occurs when and only when 

(48) 

under the condition that p-*», bypassing a certain set of finite logarithmic 
length. 

Here n(r. A) is the number of characteristic numbers in a circle of 
radius r. Simultaneously with the work of M. G. Kreyn, an important study 
appeared by B.Ya. Levin [27], in which the following estimate was produced 
under the same assumptions (A.>0 and SpAj<«) 
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jl<L^dr._\jLihJlär*fS,At + Ol9) (49) 

as p-M», bypassing a set of finite logarithmic length, as well as a number of 
other results. 

In all of these works concerning completeness of the system of main vectors 
in a fully continuous operator, conditions were stated under which the resolvent 
of the operator is represanted as a ratio of finite order integral functions. 
Incidently, an attempt to remove condition  (9) from the theorem of M. V. 
Keldysh, as yet unsuccessful, produces infinite order integral functions.    In 
connection with this, there is great interest in a recent result by V.  I. 
Matsayev [211, according to which the system of main vectors of operator 
A=H(E+Q)   [cf.   (8)]  is complete if only 

m 

where s^ are the Eigenvalues of     y/Q'Q.   Condition  (9)  can be discarded.    Under 
these assumptions, the resolvent is generally not represented by the ratio of 
finite order integral functions. 

We have not touched upon an interesting study by D. E. Allakhverdiev [40] 
concerning the conditions of completeness in the case of weekly perturbed 
normal operators, in which the author succeeded in extending the theorem of 
M. V. Keldysh to this case;   we have also not mentioned the new, deep theorems 
of V. I. Matsayev, based on precise estimates of the integral functions, or 
a number of other studies. 

However, even our complete review shows that the problem of the conditions 
of completeness has been greatly advanced in recent years. 

This progress has been achieved by a combination of geometric and analytic 
methods. 

§ 3.    Theorems on Integrability and Convergence of Series with Respect 
to Main Vectors 

It must be emphasized that since the system of main vectors is not orthogonal, 
its completeness does not indicate convergence of the Fourier series of elements 
of this system.    Furthermore, as examples have shown, under the conditions of 
completeness found, formally described series such as  (3) and (4) generally 
diverge.    It therefore becomes a pressing problem to define the coefficients 
of linear combination (11) of the attached and Eigenelements approximating 
a given element f with predetermined accuracy. 
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For one class of operators, this problem was solved in the work of 
V. V.  Lidskiy  [28], in which he set forth the idea of summation of series 
with respect to main vectors by the method of Abel.    Let us briefly discuss 
this  problem. 

Suppose A is a fully continuous operator and suppose si are its singular 
values (natural values of operator    SÄ*Ä).    Let us assume that operator A 
satisfies condition (30) with a certain p>l. 

I**" (50) 
and with a certain ?•> p, the condition 

-^r<^g{Ak.h)<^-. (S1) 

Assuming for simplicity that all characteristic numbers JJ^ of operator 
A are simple, we represent by ^ the Eigenvectors of A, by ^ the Eigenvectors 
of A*, normalized by the condition    (fy, «I^W« 

Suppose f>Ah, where h is an arbitrary element in a Hilbert space.    The 
formally written series  (4) for vector f-Ah generally diverges.    However, the 
following theorem is correct. 

If the fully continuous operator A satisfies conditions (SO) and (SI), 
with any t>0, the series 

«uj \».Vt-l / (52) 

converges and 

iliVW-'- (S3) 

In formula (52), a is any number satisfying the condition p'x» >^ p; Ns is a 
certain subsequence of numbers in the natural series, independent of t. 

Thus, by replacing condition (31) with the somewhat more rigid condition 
(SI), we can guarantee not only completeness of the system of main vectors, 
but integrability of the corresponding expansions. 

It can further be shown that under conditions  (S) and (SI), with any f=Ah, 
the following estimates are correct: 

l-O-j|•"""'V- W»l<«P«,{-<l«,#.r + l»*.r0(1)H'l (54) 

and 
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|/-a(<)|<<'i*C   (»>0). (55) 

These formulas allow us. using a fixed e, to select first a sufficiently 
small t>0, then with the selected t, a sufficiently large Ns, so that using 
the coefficients contained in formula (54), we satisfy inequality (11). 

Proof of the theorem is presented by converting the integrating factor 
to a Cauchy integral. 

Suppose1 

(56) 

where y is an infinite contour, encompassing all bands of the integrand, 
and containing the function exp(-pa)t> in the decreasing sector. Using 
estimates (16) and considering the minimal nature of type DA(u) and A^Cy) 
we can prove the existence of a sequence of contours y^,  which diverges at 
infinity, in which the integrand approaches 0. This allows us to represent 
the integral by a series of the residues of (52). 

In connection with formula (52) let us touch upon one problem which is 
of independent significance. 

Where a=l, the expansion of (52) becomes 

and, as we can easily see, is a solution of the cauchy problem for the equation 

^. + £««0 (£->--«). (58) 

with the initial condition 

"  .   , (59) 
Pita,-/. 

1    Integral (56) is converted to integral (1) if we make the replacement 
X=JJ     and assume t=0. 
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Convergence of series  (57) where t>0 aeans. therefore, that if operator L 
in equation (58) has a fully continuous inverse satisfying condition (50- 
51), the solution of the Cauchy problea (58-59) can be expanded into a 
Fourier series converging where t>0 with respect to the Main vectors of 
operator L (cf.   f49]). 

These conditions are satisfied, for exaaple, by the differential 
elliptic operators cf order 2B, greater than the nuaber n of independent 
variables.    Consequently, in these cases the solution of the Cauchy problea 
ca.i be found by the Fourier aethod.    As concerns equation (58) with its 
elliptical operator, this result apparently can be strengthened, since it 
was j-roduc-ü using a very general estimate of resolvent (16), not considering 
the special form of the operator. 

Ke note that for a resolvent of elliptical operator (6) with two indepen- 
dent variables, the following estimate is correct, produced by V.B.  Lidskiy 
[44): 

|{t-|i£)-«UMp   .»j(.| -'—I \% . 
Et^lr-Hll (60) 

with all p. In this formula, uy  are the Eigenvalues of operator (6). In- 
equality (60) is more precise than the general estiaate given by formula 
(16), and allows us to extend the result formulated above on convergence of 
the Fourier series to the case of elliptical operator (6) where n«2. 

The problea of convergence of series (57) t-0 even in the case of 
differential operators with partial derivatives, remains open. Generally, 
convergence of expansions with respect to main vectors has been established 
with respect to a very narrow class cf operators, as was noted in the intro- 
duction. In addition to the well-known old studies on convergence of series 
in the case of the problea for ordinary differential equations, we can note 
also the results of B. R. Mukainov [12], I. N. Glazaan [29], A. S. Markus 
[30], in which operators were studied, acting in an abstract Hilbert space 
A. Let us discuss briefly the results of I. M. Glazaan. The infinite 
system of elements tk(k*l, 2,...) is called the Riss base of its closed 
linear envelope, if with certain m and N and all N and c^, the following 
inequality is correct: 

M r jr 

»^CI«»I,< 2 (»«. v)«<«/<*jEi«»!». (61) 

We will not discuss the fact that when condition (61) is fulfilled, 
system   ^ is linearly independent and actually foras a base1.    Ne note 
only that condition (61) is obviously fulfilled, when the angles between the 
vectors of the systea are near a right angle. 

1    It can be proven that if systea lu foras a Riss base, there is a limited, 
continuously inversable operator C which converts systea ^ to an orthonoraalized 
base. 
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Ne find that if tk are the Eigenvectors of a certain dlssipative 
A (i. e., Aj>0), the angles between the« can be estimated using the 
corresponding Eigenvalues. Naaely, the following inequality is correct: 

" '^'^TS^ (62) 

(it is assuaed that  | Uj 11» | Uj 11"1.)    Using this inequality, the following 
theorea is proven. 

If +)( is an infinite systea of noraalized Eigenvectors of a Halted 
dissipative operator A and if 

5Bl^-UP^   ' (63) 

then systea ffc is a Riss base of its closed linear envelope. 

This theorea was produced earlier under more Halting assuaptions by 
B.  R. Mukainov by another aethod. 

A. S. Markus  [30] generalized the theorea of Mukainov and Glazaan, 
introducing the concept of the Riss base froa subspaces.    Estiaating the 
angle between subspaces by an inequality siailar to (62), A. S. Markus 
established that with certain Haitations on the Eigenvalues of dissipative 
operator A, its root subspaces fox« a Riss base of their closed linear 
envelope. 

In conclusion, we note that condition (63) and siailar conditions place 
rigid Haitations on the Eigenvalues, so that the class of operators for 
which they are fulfilled in quite narrow. 

I 4,    Results of a General Nature and Singular Problems for Differential 
Operators 

Of the general probleas, let us first discuss works which develop the 
results of N. S. Livshits  [llj and are dedicated to conversion of Halted 
operator A to triangular fora. 

Ne have already indicated, in connection with the representation of 
Nalter operators, that L. A. Sakhnovlch [15] succeeded in constructing a 
triangular model of the Halted linear operator, having a sufficient reserve 
of invariant subspaces.    In this case, the aodel of L. A.  Sakhnovlch has 
the fora 

a 
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Operator (64) acts in Hubert space   -g    of vector functions f(t)>{f1(t).  ...), 
satisfying the condition 

11 II.WMO 

In foraula (64), N(x,t) is a certain utrix kernel.    Operator A is uniquely 
equivalent to the initial operator A with an accuracy Ao a certain invariant 
subspace relative to A and A*,  in which the equality AA*>A*A. 

Under certain additional conditions placed on operator A, differentiation 
can be performed following the integral sign in foraula (64), thus siaplifying 
the    aodel.    For exanple, if in foraula (33), A] is a Hubert-Schmidt type 
operator and the spectrua of operator A is real, foraula (64) becoaes 

i/-.■(.)/(«)+J *(..!)/(<)<«. 
(65) 

where H(x) is the Heraith operator, while N(x,t) is a aatrix kernel satisfying 
condition (35). Ne have already indicated the effectiveness of the triangular 
presentation in the case of Nalter operators. 

N. S. Brodskiy. in [31] (1960), generalixing his earlier result  [17], 
produced a triangular representation of United operator A with real spectrua 
and imaginary, fully continuous conponent A], under an additional assuaption 
concerning the structure of the invariant subspaces of operator A.    The 
triangular representation is as follows: 

*-f •(«)^W + «« I'WV'W- (66) 

In this foraula, P(x) is a aonotonic chain of projection operators, projecting 
onto invariant subspaces of operator A [cf.  (40)], while a(x) is a certain 
real function, the values of which correspond with the spectrua of A. 

As Yu.  I. Lyblch and V.   I. Natsaev showed [32], the conditions place on 
the invariant subspaces of operator A by M. S. Brodskiy are fulfilled if 

fla« 4-la*+ *(<)«< a,  "('l-wplM-"?)-»!)- 

This condition is quite broad;    as V.  I. Matsayev proved, it is fulfilled 
if the series    ^   |tf | converges where Tn are the Eigenvalues of A| 

and, consequently, practically with any fully continuous1 A|. 

*    Ha note that on the assuaption that r|tn|
0<», triangular representation 

(66) was produced earlier by I. Ts. Gokhbergoa and N. G.  Kreyn. 
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A further iwpnytment of the triangular presentations can be produced, 
apparently, by siaplifying the Val:er coaponent in fomila (65) and (66). 
Interesting results in this direction were produced by L. A.  Sakhnovich [33]. 
It  is also desirable to avoid the condition of reality of the spectnia of 
the operator.    Although a non-real operator spectna with a fully continuous 
iaaginary portion is discrete, separation of the corresponding invariant 
subspaces is a far fraa trivial problea. 

Let us now touch upon another trend in the theory of linear operators, 
the theory of spectral operators of N. Danford [3S],  (19S4).    It is assuaed 
in this theory that liaited operator T, acting in a Banach space has the set 
of projectors E(A)(6 is any set in the coaplex plane aeasurable after 
Borel).    Set E (4) is assuiwd to be evenly liaited with respect to 6: 

l«WI<* (67) 

as well as denuaerably additive:     for each sequence of non-intersecting 
Borel  sets 6n, 

r(W'-? «Ml. 
(68) 

where     the series on the right converges strongly. 

Under certain natural additional assuaptions concerning set E(4).  it has 
been established that the corresponding operator T called the spectral operator, 
can be represented as 

f - i + *. (69) 

where 

«•/>«(«). (70) 

while N is the generalized 0-power operator in the sense of I. N. Gel'fand 

hm JifM-O. 

and the operators N and S are coawtative.    Representation (61) is a full 
analogue of the Jordan for*.    As N. Danford shows, for any single-valued 
function f(\), analytic n specZnaa T, the fomuia 

BS 
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Meil-known in the finite-diaensional case, is correct. 

Works on further developaent of the theory of spectral ope.-ators were 
included in the objective review of N. Oanford [35], (19S8). He can see 
froa this review that the aatheaaticians working in this direction have 
directed their efforts toward the production of sufficient conditions in* 
posed on operator T and its resolvent, under which the operator is spectral. 
The conditions produced to date contain a requireaent of not over exponential 
growth of the resolvent as paraaeter X  approaches the point of the spectna. 
Furtheraore, it is required that for any two elements x and y such that the 
functions IU x and RXy have no coaaon points of irregularity, the inequality 
I M llcl lx*)'l I. be fulfilled with a certain constant e, independent of x 
and y. 

As is stateJ in the review, all differential operators with ordinary 
derivatives snd regular boundary conditions (operators studied by 0. Birkgof) 
are spectral operators. The work of N. Danford also presents certain singular 
probleas. For exaaple. it is stated that the operator 

IW 3+«"»»• (72) 

studied by N. A. Nayaark in [36], defined in a variety of functions 
y(x)fL2(0. *-), y,(0)-hy(0), under the condition that 

f (« + «f)UWl^<- 
• (75) 

is spectral (q(x) and h are generally not real). 

Anong the differential operators for which no expansion into a Fourier 
integral was produced earlier, this review states, the following operator 
is spectral 

IW 3 + -£+«<•>•• (74) 

where Rea^O, q(x*ir) q(x). With real q(x) and ••0, operator (74) is self-adjoint: 
irs spectrum, as ts we 11-known,i.- an infinite series of intervals Moving off 
to ♦*». All points in the spectrua are double. 

As N. I. Serov (41] has shown, in the cue of the coaplex-va «d function 
q(x) and a«0, the picture changes little: the intervals are deto ied into 
curved sectors, asyaptotically retaining their length and distance between 
neighboring n's. If, however, we assume in (74) that Rea^O, the spectna 
changes significantly. Several of the first intervals are split into ovals; 
all remaining lacunas are extended and the twice-added ray is split into a 
curve asyaptotically close to a parabola. 
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M. I. Serov, studying operator (74) on the suggestion of I. M. Gel'fand, 
estimated the resolvent of the operator,with approxiaation of the parameter 
to the spectrum. However, he did not succeed in producing expansion into a 
Fourier integral. It is even more interesting that this problem is solved 
from general considerations. 

It should be noted that proof of the results announced by N. Danford 
has unfortunately never been published. However, the incomplete formulation 
of the «suits and the absence of proof lead to disagreements. For example, 
in contrast to a statement contained in the review, B. S. Pavlov [42] has 
shown, but constructing a contradictory example, that operator (72) under 
condition (73) is not spectral. The corresponding statement is incorrect even 
if 

'    « ' (75) 

In connection with the theory of spectral operators, we note an interesting 
attempt jndertakcn by V. E. Lyantse [37] to construct a theory of spectral opera- 
tors under conditions of completeness of the system of invariant subspaces, 
without assuming even limitation of the spectral set (67) or denumerable 
additiveness (68). It is to be hoped that this theory will be applied. 

In conclusion, let us discuss the problem of expansion ^ith respect to 
Eignefunctions of an orJinary differential operator in the case of an unlimited 
area of definition of the functions. 

Me have mentioned the well-known theorem of M. A. Naymark [36] of expan- 
sion with respect to Eigenfunctions of the Shtura-Uuville equation with 
unreal potential q(x), satisfying condition (73). Tills theorem of M. A. Naymark 
was extended by V. N. Funtakov [38] to the case of an even order differential 
operator 

I (,) - ^»■) + f, («) 1«»^ + ,.. + ^ (,) f. 

acting in 1-2(0. ♦•>), on the assumption that the coefficients ps(x) decrease 
exponentially as x-**. 

A new approach to problems of expansion with respect to Eigenfunctions 
of a differential operator was suggested in a work by V. A. Narchenko [39]. 

Suppose 

1(f) -S-«W' 
(76) 

is a differential operator, defined in t^O,») in a manifold of functions 
satisfying the boundary condition 

»•(0»-»f(0). (77) 
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q(x)  is an arbitrary coaplex function, integrable in each finite interval, 
while h is a coaplex nuaber. 

Suppose u(s, x) is the solution of equation l(y)*s y*0,  satisfying the 
initial conditions 

«(.. 0)-l. -;(.. 0)-». 
(78) 

Let us coapare ;ach finite function f(x) to a Fourier « transform 

*/(•)-//(»)-(•.»)<«• (79) 

If E.(s) is the Fourier u transform of function g(x), then in the case of 
real q(x) and h, as we know, the following equation of Parseval is correct: 

• +• 

i Jm (80) 

where p(A) is a non-decreasing real function. The right portion of this 
forwila can be interpreted to aean that the Parseval equation is retained with 
arbitrary q(x) and h, i. e.,in the non self adjoint case. 

Going over to the presentation of this problea, we note that u(s,x) and 
cos sx are related by the transforas 

*(«, s) —eMM+J*(«, i)eM(Mi ( ' 

«M«I-.(«. i)4.Jff(«. 0o(t,')"• (82) 

where K and H are saooth kernels. Substituting u(ß ,x) from  foraula (81) into 
(79), it is easy -- on the basis of the Paley-ffiener theorea -- to tee that 
Ef(s) is as even, exponential-type function with integrable square on the 
real axis. Let us represent by Z the topological space of all integral even 
functions, integrable on the real axis with the following definition of 
convergence: Fn(l)-» F(X), if 

+• 

■ ••• ' 

and the p ior o   of functions F„(A) are Halted as a sat.    It is easy to see 
that the product Ef(/>)E|(/r) belongs to Z, and it can be shown that this set 
of such derivatives is coapact in Z. 
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The right portion in fonula (80) can therefore be looked upon as a 
linear functional in Z, fixed in a coapact aanifold. The latter can be 
extended to all of space Z. 

Thus, in the self-adjoint case, operator (76) generates a certain 
continuous functional in Z for which formula (80) is correct. As V. A. 
Marchenko proves, this affirmation retains its force in the general case, 
that is, operator (76) can always be related to continuous functional 
(R, F(X)), F(l)Cz> for which the following fonula is correct; 

J/(.)»(.)i.-(«.«, (/!)£, (•!)). (83) 
• 

It is remarkable thit V. A. Marchenko succeeded in solving the reverse 
oroblem:    restore function q(x) and h on the basis of fixed functional 
"(". F(X)). 

Me note, however, that determination of the analytic expression for 
functional  R can be fully performed only with certain additional  limitations 
placed on function q(x).    For example, under condition (73) it can be shown 
that •     fijT\ 

(fl. / (.)) - J jy^pijj < (-Vl) - 2 lit. ■, (•) ^ (•!). 

where **(M-»(* ± «.«)*-»(* fO-O). 

-.w-ifSlü.- 
m{t)  is an analogue of the Neil function. 

In the more general case, the functional can be represented by an 
integral with respect to the contour encompassing the spectrum of the 
operator.    This contour has not yet been successfully extended to the spectrum. 

It can be shown that the idea of comparison of a linear operator of a 
functional in a certain topological space of analytic functions with subsequent 
study of the carrier of this functional can be applied in the case of a general 
linear operator.    However, up to now this has been realised only in the case 
of a problem for one ordinary differential second order equation and system 
(»•e (47]). 
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