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1.  SUMMARY 

Part of Phase I of the work statement of Contract N00014-72-C-0335 

has been completed. This includes-the development of a ray tracing 

program for calculating the sound intensity from sources in the 

ocean with surface and bottom reflections. Salinity and temperature 

gradients have been taken into consideration to calculate the sound 

velocity and absorption loss. The sound intensity is calculated by 

energy considerations included in the ray tube of adjacent rays. 

A formula has also been developed for calculating the intensity along 

a ray without considering the variation in the ray tube area. This 

involves the calculation of the radius of curvature of the wave front 

along the ray. 

Future plans on ray tracing call for the development of techniques 

for calculating sound intensities in the caustic region and higher 

order ccircctions. 
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2.  DISCUSSION 

ENERGY ALONG A I'AY PATH 

Consider two-dimensional ray propagation in the (x,y) plane with sound 

velocity c = c(x,y) 

y 

ray path 

Fig, 1 

Let s be the distance measured along a ray and let n denote the local 

orthogonal direction as shown. If 6 is the slope angle of the ray, the 

Cs, n) vectors are obtained by rotating the (x, y) vectors counterclock- 

wise through 6. 

The curvature 1/R is given by 

1 
R 

de 
ds (1) 

Since the ray equations read 

d2x   ,  dx^     dy, dx 
ds2   ■ lcx ds      cy dlj dl 

cd!z 
C  ds2 

re ^L + .   dy-\ dy lCx ds + -y d^J di cy 

(2) 

f 
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It follows easily that 

c -nr = cx sinO - cv cos6 = 1£- 
ds   x       /        9n 

so that 

i iL 
R " 3n 

(£n c) (3) 

The rays are orthogonal to surfaces of constan»-. phase; for brevity, such 

surfaces will be termed wave fronts.    Denote the local curvature of a 

wave front by (1/RW); taken as positive n the rays are diverging. The 

immediate purpose is to compute d/ds(l/Rw). 

For convenience, introduce an orthogonal curvilinear cooidinate system 

with § constant on a ray and n constant on a wave front. 

increasing »i 

wave front: 

Fig. 2 

Clearly, 

and 

tan e = xn y§ 

1  6n i- = -^ cosO 
R  xn 

1 
Rw     yg 

0§ 
=   COS0 

(4) 

(5) 
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Thus, 

ds ,-Rw-' 
r
e§   Qx cose 
(— cos9)   
>r§     n xn 

COS6 , OEVBnCOSe 
[ e^cose ■■ -=i|3—   _ e§ensine] (6) 

§n 
§ 

Similarly, 

d    (L = coso cose _ ^xgncose 
dn  VR^      Xpyg   l  in x e§ensine]    (7) 

combining, we obtain 

i-r1—i - SL riw cp-5rx§r'     ^ 
dslRw

J  " dn  lRJ      5y^ R    '    RJ (8) 

Next, differentiate the first of Equations (4) with respect to § and 

the second with respect to n ; then solve the resulting equations for 

y, and x§ to obtain (with the help of Equations (5)) 

- füll fJL  tane.. 
'§n = cosO l'Rw " R •' 

0) 

= Mi (.l 
k§ri " cosö *■ R 

tan6 
Rw 

) 

Substitution into Equation (8) now gives the desired result: 

ds \/      dnV  R2  R2 w w (10) 

To obtain a convenient formula for d/dn(l/R), we observe that Equation (3) 

yields the following. 
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^ = k1^ c)*sine " Un c)y cose] 

d9 =   [(An c)x cose +   (£n c)y sinO] -^ 

[(£n c) .    sin2e  - 2(An c)      sine cose +  (£n c)      cos2e] 'xy yy 

• ib [57Un c)] - *F[tn c] (ii) 
nu 

where d2/dn2 is defined in the "straight line" sense via the progression 

between the last two lines of Equation 11. Carrying out the differentiation 

of (Un c) gives the alternative form 

ds ,'RV/ 

1  dc 
cRw ds 

1 d2( 
c dn2  Rw2 

(12) 

where 

d2c 
dn^ 

= c  sin2e 
xx 

2c  sine cose + c 
xy yy 

cos-6 (15) 

Suppose now that the source is located at some point on the (negative) 

y axis. At each point along a ray we know the range x, the slope angle 

e, and the wave front curvature 1/RW (as a result of Equation (12)). 

Let F denote the intensity (energy rate per unit area) along a ray. It 

now follows from simple geometry that 

1_ dF 
'F ds 

cose  1^ 
x    R 

(14) 
'W 

If A(x, y) denotes the acoustic attenuation in the water, then the 

final equation becomes 

1 dF 
"F ds 

cose  i 
+ ~- + A(x,y) 

Kw 
(15) 

In a program, it is worthwhile to record each term in Equation (15) 

separately; thus, F is divided into the three terms FR, FW, and FA 
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via 

so that 

F = FR • Fw • F. 

1  dFR _ cosO   1 dx 
FR ds-     X   ' x ds 

1  dFw   1 
FW ds    Rw 

(16) 

1_ dFA 
■FA ds" 

= ACx, y) 

The first of these equations yields 

„   const, F
R 

=
 -T~ 

when the constant is chosen to be the intensity of the source at unit 

distance (i.e., s = 1), along the chosen ray; thus, F^ and F^ are each 

unity at that point. 

r 

A knowledge of Fw has an interesting physical interpretation. Consider 

two rays emanating from the source at angle QQ,  at an incremental angle 

dÖn apart. At unit distance from the source, F^ = 1. At a terminal 

point x^, where the slope angle is O-j- and the value of F^ is F^> we can 

use the fact that Fw is inversely proportional to the normal spacing dn 

between adjacent rays to write 

(l)Cl)d0 = Fwt|dn| (17) 

so that  |dn/d0 |  = 1/Fwt 
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