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ABSTRACT 

The problem of determining the optimum allocation of aircraft to 

an alrstrlke against a transportation network is investigated.   The 

damage function is assumed to be exponential.   A solution procedure is 

developed utilizing dynamic programming and integer solutions are found. 

The number of aircraft to be assigned to the airstrike is considered a 

decision variable.   A sensitivity analysis is run to determine the 

optimum value for this variable. 
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I. INTRODUCTION 

A. OBJECTIVE 

The purpose of this paper is to present a procedure for determining 

the optimal allocation of aircraft to a single airstrike against a 

transportation network.   This allocation problem is solved by dynamic 

programming and a fbrtran-coded version of the program is Included in 

the paper. 

B. GENERAL 

Sustained ground operations require a military force to have some 

means of resupply.   This resupply capability is partially dependent 

upon a land transportation system.    The level of resupply effort required 

depends upon what type of forces are being supported.    Guerrilla forces 

enjoying local support require less resupply capability in terms of 

pounds per man per day than would a conventional army, but a greater 

percentage of this capability depends upon land transportation networks. 

Any reduction in the resupply capability of a military force will 

reduce its combat effectiveness.    Tactical air interdiction has been 

used extensively by the Armed Forces of the United States against its 

opponents in Southeast Asia to accomplish this reduction. 

There are at least three alternative means of using tactical air to 

reduce the resupply capability of an enemy.   Aircraft may be assigned 

to attack sources of supply to destroy war material before it enters 

the transportation system and/or to disrupt its production; aircraft 

can destroy war material as it moves in the transportation system; and 

finally aircraft can attempt to reduce the resupply capacity of the 

transportation system Itself by destroying bridges, roads, railroads. 



et cetera.   Conventional wisdom argues that the first course of action 

Is the most effective form of interdiction.   Unfortunately for military 

planners, political considerations may rule out this alternative.    This 

paper will focus on the last of these options, the reduction in capacity 

of the transportation system itself. 

C. BACKGROUND 

Considerable effort has been devoted to the interdiction problem. 

In particular two recent papers provided the background for the approach 

to the problem developed in this paper.    McMasters and Kustin [1] 

developed an algorithm that determines which arcs of a transportation 

network should be attacked and at what level of effort given a limited 

availability of resources.    In this formulation of the problem the 

relationship between arc capacity and resource allocation (damage 

function) was assumed to be linear.   The algorithm presented is based 

upon the max-flow min-cut theorem of Ford and Fulkerson [2] and the 

relationship between a primal network and its topological dual. 

Nugent [3] investigated the same problem under the assumption of an 

exponential damage function which exhibits diminishing marginal returns. 

An a»gorithm was developed that finds a non-integer solution to the 

problem. 

In this paper the transportation system will have the same network 

formulation as in Refs. 1 and 3.    The problem will be formulated differ- 

ently and dynamic programming will be used to provide integer solutions. 

D. INTERDICTION PROBLEM 

It will be assumed that, given unlimited aircraft availability, the 

assignment of aircraft to an airstrike would reach a point beyond which 

it would become uneconomical to assign further aircraft. In a problem 



with constraints on aircraft availability this point might or might not 

occur before all available aircraft were assigned.   For this reason, 

the objective of an operations officer planning an airstrike against a 

transportation network is not merely to minimize network capacity 

subject to aircraft availability, but to minimize the capacity subject 

to aircraft availability and the additional consideration that the cost 

of any Incremental assignment of aircraft to the strike is exceeded by 

the benefit resulting from that assignment. 

To accomplish the objective the strike planner must have information 

on the availability and cost of assignment of aircraft.   Detailed infor- 

mation must be available concerning the transportation network including 

the upper and lower bounds on the capacity of each arc and its vulnera- 

bility to attack.   The planner must also know the benefit to attribute 

to a reduction in resupply capability.   With this information and using 

the procedure that will be outlined the planner can determine:    how 

many aircraft to assigne to the airstrike; which arcs in the network 

should be attacked; how many aircraft to as ign to arcs that will be 

attacked; and the capacity of the network after the airstrike. 



II.    THE MODEL 

A.    NETWORK DESCRIPTION 

The transportation system under consideration is represented by a 

planar connected graph of nodes and undirected capacitated arcs.   Arcs 

represent road segments and nodes represent either a road intersection 

or any other point where it is necessary to distinguish between road 

characteristics on either side of the node.   Three constants are asso- 

ciated with each arc representing the upper and lower bounds on arc 

capacity and the arc's vulnerability parameter. 

It Is assumed that the network has one source node from which flow 

originates and one sink node at which flow terminates.    If the trans- 

portation system being modeled has more than one originating point or 

terminating point this may be handled by creating a super-source and/or 

sink with artificial arcs connecting these super-nodes to sources and 

sinks as needed.    These artificial arcs may not be attacked and their 

capacities are unbounded.    The arc between nodes i and J is represented 

by (i.j).    Nodes are numbered from 1 to n with 1 corresponding to the 

source and n the sink.    With the exception of the source and the sink, 

flow conservation is assumed to hold.    That is, flow out of node i 

equals flow into node i. 

The flow in arc (i,j) is designated as x.. if it is from node i to j 

and Xj^ if it is from node j to i.    This avoids the necessity of defining 

negative flows.    Flow is assumed to be from the source to the sink 

although it may be in either direction in the intermediate arcs.    The 

model as formulated considers only flows of a single commodity, tons 



of resupply per day. <^d the value of one unit of flow is assumed to 

be the same for al1 arcs. 

Capacities on arcs represent bounds en flow in either direction. 

The capacity on arc (i,j) Is given by n. . and is assumed to t-i the same 

In both directions.    The flow in arc (1,j) is restricted by 

0 1 x1j - "Hj ' 

The upper and lower bounds on tne capacity of arc (ij) are repre- 

sented by U|| and 1.. where 

The vulnerable portiun of an ire's capacity Is desionattd w^. with 

The amount of resource allocateJ to interdict ^.rc (i.Jj is denoted by 

Ic^j.    The relationship between t;.c   .apecity oi   ^rc (i.j) and tht  level 

of resource assigned to Its   nre^cution S dei'ln-id a> tne dawgc 

function of ar: (i.j) and is given b> 

m1j^    I    'ij f teij ex^-Dijki^  • 

In the above danage funcJcn tru   pd*air.eter b<,  \i » measure of the 

vulnerability of arc (i,j).    La* 'er values of b..  result In jreattr 

reductions In capacity for fl ed   'ö!ues of I*;, w., and k4. and hence 
ij 'j 

liiply greater vvlnerability.    If    by  ■ ''    '.her    n\\'.<  J ■ u^j    for 

all possible value* of kj, and no cc.vcity reduction    £ possible.    Mlth 

this damage function if no aircraft are assiqrtd n (1,1), 4:s capacity 

will be u«j and in the Hint is ttt nutrre:  of aircraft JSS1 jned to (1,j) 



beams Infinite tne capacity approaches 1^.   This iü*er bujnd kill 

be referred to as arc capacity after unlimited Interxiiction. 

B. DETERMINATION OF NETWORK CAPACITY 

The opposition is assuaed to have the ocans tc ostermire how to 

Mxlnlze the flow in the transportation netvork..    Let the capacUy of 

the network be dcfim.d as thu maximal  flow.      he deterwination of 

naxinur. flow Is the wtll-knc^n maximal  tioh protlem ano aay be found 

using the max-tlow löc.ing algorithm base«   jpon the max-flow ir.in-cut 

theorem of Fcra ano culke«son [Z}.    ford and FuUerson's thePriMi states 

that the maxinu." fUx possible in t network is eo«1;'  to the value of 

the nlnimal cut set.    in this paper the value of t cut set will be 

referred tc ü its caparity. 

C. ENUHiPAliÜN OP CUT SETS 

The network capacity has been defined to be equal  to the maximum 

flow possible In the network.    As discussed, this maximum flow Is equal 

to the value of the minimum cut set.    Therefore, the problem of mini- 

mizing this capacity Is equivalent to minimizing the capacity of some 

cut set.    11 is obviou;  intt . vrcau n. il b« tUocsted tc only om cut 

set since if this were not the case all  aircraft could have been assigned 

to the cut set that was minimal after the first allocation with a 

resulting decrease In network capacity. 

The complicating factor Is that there Is no easy way to find out 

which cut set should be selected for attack.    To solve the problem it 

Is necessary to have some means of Identifying cut sets.    In addition. 

It Is desirable to be able to identify these cut sets In order of 

Increasing capacity after unlimited Interdiction since once a cut set 

10 



ti found whose capacity after unlimited interdiction is greater than or 

eqia^ to network capacity before interdiction no more cut sets need be 

idenrified.    The network capacity before interdiction represents an 

upper uound on network capacity.    Define St as the cut set with the i^ 

sollest capacity after unlimited interdiction.   The set of S- whose 

capacities after unlimited interdiction is less than the upper bound on 

network capacity will be denoted by S. 

The method by which cut sets are identified makes use of the topo- 

logical dual of a network.    Arcs have lengths rather than capacities in 

the dual network.    The cut sets in the primal network have a one-to-one 

correspondence with the loopless paths in the dual.   The problem of 

finding the shortest path from the dual source to the dual sink corre- 

sponds to the primal problem of finding the minimum cut set.   The length 

of the dual shortest path equals the primal capacity. 

The topological dual of a given primal network is constructed as 

follows: 

(1) Connect the source and the sink of the primal with an artificial 

arc.    Call  the result the modified primal. 

(2) Place a node in the area surrounding the modified primal (external 

face) and one in each face formed by the arcs of the modified primal. 

Let the dual source be the node In the external face and the dual sink 

be the node in the face involving the artificial arc. 

(3) For each arc In the primal (except the artificial arc) construct 

a dual arc that Intersects it and Joins the two nodes in the faces 

adjacent to it. 

(4) Assign each dual arc a length equal to the capacity of the primal 

arc It intersects. 

11 



Once the dual network has been developed, the shortest path through 

the dual before interdiction is found.    This path is determined using 

the upper bounds on primal capacities as lengths of arcs in the dual. 

The length of this path represents network capacity before interdiction. 

Any shortest path algorithm may be used for this determination.    Dreyfus 

[4J evaluated several of these algorithms concluding that the procedure 

developed by Dijkstra is the most efficient.    Next the lengths of the 

dual arcs are changed to correspond to the lower bounds on primal arc 

capacities.   The lengths of the dual paths now represent the capacities 

of the corresponding primal cut sets after unlimited interdiction. 

Paths with loops need not be considered since they correspond to primal 

cut sets that either Include more arcs than necessary to sever the 

network or contain some arc more than once.    The dual paths are identi- 

fied in order of increasing length by means of an nth shortest path 

algorithm.    Clarke, Krikorian and Rausen [5] developed an algorithm for 

determining the n best loopless paths, but it is difficult to apply. 

Pollack [6] in an unpublished paper presented an algorithm which succes- 

sively develops the best loopless paths using extensions of shortest 

pats algorithms.    This procedure is less complex than that of Clarke, 

Krikorian and Rausen and appears to be more efficient.    It should be 

noted that depending on the number of elements in S and the total 

number of paths in the dual, the most efficient means of developing S 

may be to enumerate all paths through the dual and then compare lengths. 

12 



III.   ANALYSIS OF THE MODEL 

A.    MATHEMATICAL FORMULATION 

The problem, as outlined previously, is to find that allocation of 

aircraft to an airstrike against a transportation network which will 

minimize the capacity of that network.   This minimization is accomplished 

subject to a constraint on aircraft availability and the consideration 

that the incremental benefit of assigning aircraft must exceed the 

Incremental cost of that assignment.    If net benefit is defined to be 

the difference between the total benefit derived from the airstrike and 

the total cost of aircraft assignment the problem may be restated as 

follows:   maximize net benefit subject to aircraft availability. 

Let K represent the total number of aircraft available for assign- 

ment to the airstrike and let K* be the number of aircraft that have 

been assigned to the airstrike.   Then for any choice of K* the problem 

may be stated mathematically as 

min      [cut set capacity after optimal interdiction] 
sies 

or 

mln     [ mln       z        O,-, + w.. exp{-b, .k..})] 
VS (i.j)eSi   ^       ^ ^ ^ 

subject to E k,. < K* 
Cl.j)cSi  

1J- 

k^j     positive integer 

13 



The structure of this problem will allow the development of an 

efficient solution procedure.   Note that with respect to a particular 

cut set the objective is to minimize its capacity.    Since the cut set 

capacity is the sum of functions that are convex in k^, this capacity 

Is a convex function and is therefore unimodal with respect to minimiza- 

tion.   The overall objective function is the minimum of a set of convex 

functions and is neither concave nor convex.   This together with the 

problem of not knowing which cut set is going to be attacked requires 

that each cut set in S be the subject of a minimization problem. 

For a particular cut set, S-j, the problem is 

min     z Oi4 + w^ expC-b^k..]) 
(i.JhS.     1J       1J 1J 1J 

subject to   E    ku   <   K 
(i.J)tS1  

1J - 

k.jj positive integer . 

The term  z }ii   is constant and may be deleted during the minimization 
(i.j) 1J 

and then added back to give the solution in terms of capacity. This 

problem will be solved by means of dynamic programming. Each arc in 

the cut set under consideration will be represented by a stage in the 

dynamic program. 

Let the number of arcs be n and resubscript each arc (i,j) and its 

associated parameters in any order with the single subscript i running 

from one to n. The decision variable for stage i is k^ and the return 

function for stage i is given by 

^ = wi expf-b^) . 

14 



The state variable for stage i will be denoted by x^ and represents the 

remaining resource availability at stage i.   Ths problem may be restated 

as finding fn(xn) where 

n 
fn(xn)   =   min z   Mx.) 

subject to      x.j , = x. - k.    . 

F (xn) is the optimal return from stages n,n-l ,...,1 given xn units of 

resource.   The above problem may be solved by dynamic programming since 

fn(xn) can be decomposed into a series of single variable problems. 

Nemhauser [7] shows that problems with additive stage returns may always 

be decomposed.    Therefore, the following recursive relationship is valid 

fn(xn)   =    min [rn(kn) + V^x^)] 
0<kn<xn    , n>l 

and 

Mx,)   =   min Mxi) . 
Olkllxl 

The value of xn_]  is given by 

xn-l    =   ^n^"' n'   =   xn " ^n 

where tn is the transformation which gives the relationship between the 

amount of resource remaining after stage n given that xn was available 

before stage n and kn was utilized at stage n. 

The dynamic program is solved by starting at stage one and working 

to stage n solving a series of single variable minimizations. These 

minimizations are facilitated by the convexity of the individual stage 

returns. Nemhauser [7] provides a proof of the fact that in the 

15 



minimization of additive stage returns the convexity of each stage 

return ensures that Mx.,-) is a convex function of x^.    This means that 

each single variable optimization performed in the dynamic program is 

of a unimodal function and permits the use of Fibonacci search to find 

the optimal values of the decision variables.   An application of this 

technique is found in Ref. 7. 

After the optimal allocation of aircraft within each cut set in S 

is found for a given K*, their capacities are compared.    The cut set 

with the minimum capacity is the one that would be attacked if K* air- 

craft were to be assigned to the airstrike.    The capacity of this minimal 

cut set is by definition the network capacity and this capacity will be a 

strictly decreasing function of K*.    The remaining problem is to deter- 

mine how many aircraft to assign to the strike in order to maximize 

net benefit.    To make this determination it is necessary to know the 

cost of allocating aircraft to the strike.    This will be assumed to be 

a constant C dollars per aircraft.   The benefit derived from network 

capacity reduction must also be known.    It will be assumed to be a 

constant D dollars per unit capacity reduction. 

With the above information the problem of determining how many 

aircraft to allocate may be determined by comparing the incremental 

cost of assigning aircraft to the benefit resulting from that assign- 

ment.   To make this comparison it is necessary to define the beiisfit 

resulting from the assignment of a single aircraft.    This will be de- 

fined as the product of the benefit per unit capacity reduction (D) 

and the amount of capacity reduction that can be achieved by that 

aircraft. 

16 



The amount of capacity reduction that can be achieved by one 

additional aircraft is a function of the number already assigned and 

will be denoted as 6(K*).    A simple decision rule is to assign aircraft 

K* = 1,2,...    until a point is reached where benefit from the last 

aircraft assigned does not exceed the cost of assignment.   At this point 

D * 6(K*)    <.   C 

or 

6(K*)    <_   C/D 

and the optimal allocation of aircraft Is   K*-l .    If   6(K*) > C/Q 

for all K* the optimal allocation is K under this rule.    There would be 

no problems with this decision rule If 6{K*) were a non-increasing 

function of K*.    In this case once a K* was found such that   6(K*) <_C/D 

the cost of any further assignment of aircraft would exceed its benefit. 

If network capacity after optimal Interdiction were determined by 

only one cut set for all  values of K* then 6{K*) would be non-increasing. 

This is not the case.    In general as K* ranges from 0 to K different cut 

sets are minimal (see Figure 1).   At K* = 0 the cut set that determines 

network capacity is by definition the one that is minimal before any 

interdiction takes place.    Unless this cut set is also minimal after 

unlimited interdiction, at some point another cut set must determine 

network capacity.   This crossover may, of course, occur after assignment 

of all available aircraft.   These points where a change in the constrain- 

ing cut set occurs represent points where 6(K*) Increases with respect to 

K*.   Therefore, there is no guarantee that stopping when   <5{K*) <_ C/D 

for the first time is optimal.    If at some point after further assign- 

ment of aircraft is made <s(K*) again exceeds C/D, it may be that further 

assignment of aircraft would have resulted in benefits outweighing costs. 

17 



Capacity 

network capacity 

——- — cut set capacity 

K* 

Figure 1. Network Capacity 

The problem of determining the optimal K* will be handled as follows: 

(1) Find the first value of K* for which 6(K*) <_ C/D. Subtract one 

aircraft and let the resulting value of K* be K-|*. If K* = K before 

K-j* is found then the optimal allocation of aircraft is K. 

(2) Check to see if ö(K*) > C/D for any values of K* > K^. If not 

go to step (4). If so find the next value of K* for which 6(K*) £ C/D. 

Let this number minus one be K2*. 

(3) Continue in this manner to Identify the K* at which 6(K*) becomes 

< C/D after there has been an intervening value of K* such that 

6(K*) > C/D. Subtracting one aircraft each time, label the resulting 

values K3*,K4*. .... 1^*. If 6(K) > C/D let K^ = K. Let KQ* be 

defined as 0. 

(4) Starting with 1 = 1 and continuing until 1 = n, check whether or 

not the cost to reach K^ from K^.-j is exceeded by the benefit. If it Is, 

18 



let K* . = Ki* , increment i by one, and go to the beginning of step 
opt  ' 

(4). If it is not, go to step (5). 

(5) Starting with 1 = 1 and continuing until 1 = n~i check whether the 

cost to reach K|+i from K^_i is exceeded by the benefit. If it is, let 

K* t = K*^+1 , let i = i+1+1 and go to step (4). If not, increment 1 

by one and go to the beginning of step (5). 

At the end of this procedure K*   t will be the optimal number of air- 

craft to assign to the airstrike and the problem will be solved. 

B.    STEPWISE SOLUTION PROCEDURE 

(1) Formulate the topological dual of the transportation network. Find 

the shortest path through the dual before interdiction. This represents 

an upper bound on network capacity. 

(2) Use Pollack's algorithm [6] to identify the first, second, third, 

.... shortest paths through the dual using the lower bounds.    Continue 

identifying paths until one is found whose length exceeds the previously 

found upper bound on network capacity.   Let the primal cut sets corre- 

sponding to these paths be denoted as set S. 

(3) For each cut set that is an element of S, use dynamic progratrming 

to find the optimal allocation of aircraft and the resulting capacity 

for K* equal to 1,2,...,K. 

(4) For each value of K* find the network capacity by taking the minimum 

of the capacities of the elements of S. 

(5) Construct the function 6{K*) and determine K]*, K2*,...,Kn*. 

(6) Using the procedure previously outlined determine which K^* is 

optimal. 

19 



C. SAMPLE PROBLEM 

The diagram in Figure 2 represents a hypothetical transportation 

network. The three numbers associated with each arc are bjj, 1-jj, 

and u-jj. 

(.08,350,450) 

(.20,475, (.24,0,130) 

(.18,320, 
300,400) 

Figure 2. An Example Network 
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Figure 3 shows how the topological dual of the transportation 

network is constructed. 

,---*-— 

— •*•-- 

Figure 3.    Construction of the Dual 

21 



Figure 4 shows the topological dual after the data for each arc 

has been transferred from the primal.    In the dual u^. and l^j represent 

bounds on arc length. 

(.20,475,550) 

(.15,280.405) 

200,280) (.30,270,3; 

(.24.0,1 160,280) 

0)      (>€. 320.440) 

(.25,200 

(.04,400.700) 
,190,400) 

Figure 4.    The Topological Dual 

To simplify notation, paths through the dual Mill be designated by the 

nodes over which they pass.    The shortest path through the dual before 

Interdiction Is 1,2,5,9 with a length of 1395.    This gives an upper bound 

on network capacity.    Table I lists all loopless paths through the dual 

in order of length after unlimited interdiction.    It should be noted 

that the length of path number 11, the 11th shortest path after unlimited 

22 



TABLM.    DUAL PATHS 

PATH NODES 

1.4.7.6.9 

1,4,7.8.9 

M,3,2.5.9 

' .*.>.' 

1.4,3,2,5,6,9 

1,4,7,6.5,9 

1,2,9,0 ,» 

1,3,2,5.6,9 

1,3,4,7,6.9 

1.3,4,7,8.9 

1,4,3,2,5.6.7.8.9 

1,2,3,4,7.6,9 

1,3,4,7,6.5.9 

1,2,5,6,7.8,9 

^.2,3,4,7.8.9 

1,3,2,5,5.7,8,9 

1.2.3,4,7.6,5,9 

780 

890 

960 

1075 

1090 

1 •     V 

1190 

1205 

1280 

1290 

1400 

1600 

1615 

1700 

1715 

1725 

1790 

2025 
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Interdiction, exceeds the upper bound on network capacity.    Therefore 

the cut sets conprising set S correspond to paths 1 through 10. 

It Is assumed for purposes of this example that there are 100 air- 

craft available for assignment at a cost of 30,000 dollars for each 

aircraft assigned.    It Is further assuaed that the benefit derived froa 

a reduction of one ton per day In network capacity Is 7,500 dollars. 

The dynamic program for each S, that Is constraining Including a 

sensitivity analysis on K* Is contained In the computer output.    A 

graph of the resulting network capacity Is given by Figure 5.    For K* 

In the rftnge 1 through 25 cut set 4 determines network capacity, for 

K* In the range 26 through 57 cut set 3 Is constraining, and for K* from 

58 to 100 cut set 1  Is minimal. 

From the giver values of C and C.  30.000 and 7.500 respectively, 

the points of interest «re those at which '(K*) becomes <_ C/D • 4.    Thi* 

occurs for the first tine when K* • 42.    Therefore, t\* •41.    At K* • 58 

6(R*) again exceeds 4 so it is necessary to search for another point 

where   6(K*) ^ 4.    This ne«t occurs at    K* • 62    and ty 1x ^•    S1nce 

«(K*) does not eiceed 4 for any    V » 62.    r* • t^*. 

It Is obvious that the benefit to get to Kf* eiceeded the cost 

since Kf* was the first point at which the allocation of another aircraft 

did not produce benefits exceeding costs.    However, it is not quite as 

obvious when the decision is made whether or not to allocate i* 

aircraft.    The benefit to get from K^* to ty u e^li*'  t0 the Incremental 

capacity reduction ■iltipiii'd by D. 

Benefit    •    62.23 X 7.500 

•    466.725. 
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This benefit is compared to the cost of allocating   K2* - K-j*   aircraft. 

Cost   *   20 X 30,000 

=   600,000. 

Thus the benefit is outweighed by the cost.    Since there is no allocation 

of aircraft greater than K2* that will result in benefits exceeding 

costs, it may be concluded that   K* = 41    represents the optimal number 

of aircraft to assign to the airstrike.   At this level of interdiction 

the network capacity will be 1056.06 tons per day.   This is a reduction 

of 338.94 tons per day with a resulting benefit of 2,542,050 dollars. 

The cost of this reduction is 1,230,000 dollars.   The cut set that will 

be attacked is the cut set corresponding to path number three which 

contains the following primal arcs :  (4,7);  (4,6); (2,6); (1,6); and 

(1,3).    These arcs correspond to dynamic progrartming stages 1,2,3,4, 

and 5 respectively.    Looking at the dynamic programming stages the 

optimal allocation of aircraft is:   ^4 7 = 9; k^ g = 6; k2 g = 7; 

k^g ■ 10; and k^ 3 » 9.   This completes the solution. 
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IV. DISCUSSION 

A. PROPERTIES OF THE SOLUTION TECHNIQUE 

The dynamic programming approach taken to the problem guarantees 

that the solution found will be a global minimum over the feasible 

region. The integer constraints pose no problem. In fact, the integer 

restriction limits the number of values the decision variables may 

assume and allows an exact solution to be found. Dynamic programming 

also provides a built in capability for sensitivity analysis. 

The convexity of the damage function allowed the use of Fibonacci 

search within the dynamic program resulting in a tremendous savings in 

the number of separate calculations made in each dynamic program. With 

K equal to 100 the reduction was on the order of 10"^ times the number 

of calculations needed for exhaustive search. Larger values of K will 

produce savings of an even greater magnitude. The execution time 

required for the sample problem was 15.06 seconds on an IBM 360/67. 

Utilizing Fibonacci search it was found that the increase in execution 

time for larger values of K was approximately linear. Execution time 

was also roughly linear with respect to the total number of dynamic 

programming stages required (45 in the sample problem). From the above 

observations the amount of computer time required for larger problems 

may be predicted. For example, a problem with 15 cut sets in S averaging 

6 arcs per cut set would require 90 dynamic programming stages. If 200 

aircraft were available a reasonable estimate would be that this problem 

would take approximately 4 times as long to solve as the sample problem. 

A further reduction in the number of calculations required may be 

achieved with a coarse grid. Aircraft can be allocated in packages of 
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five and the constraining cut sets determined.   These cut sets can then 

have aircraft reallocated one at a time and the optimal solution found 

as before.   This approach can not guarantee that the correct constraining 

cut sets will be selected, but if they are the solution will be optimal. 

Dynamic programming allows some generalizations to be made in the 

problem.   To begin with, since additive stage returns are always 

decomposable, the technique places no restrictions on the damage functions. 

The negative exponential damage function used in this paper has intuitive 

appeal since it does exhibit diminishing marginal returns.   This function 

also contributes to computational efficiency since its convexity allowed 

the use of Fibonacci search.    However, if actual interdiction data 

suggests damage functions of another form, the problem can still be 

solved with somewhat greater expenditures of computer time. 

Another generalization suggested by dynamic programming is to consider 

the allocation of two types of aircraft.    In this case a damage function 

of the form 

""ij^ij'^   =   ^j +wij exP^biJkij " aijhij) 

might be assumed with k-jj, l-jj, and w^j defined as before, h^ repre- 

senting the number of aircraft of the second type assigned to arc (i.j), 

and a^j denoting the vulnerability parameter corresponding to the 

second type of aircraft.   Dynamic programming may again be used to solve 

the problem, but two state and two decision variables are required. 

Although the new damage function preserves convexity, in this case 

the series of minimizations is of functions of two variables and 

Fibonacci search is not applicable.   A minimization problem was run for 

a hypothetical cut set containing five arcs.    The execution time required 
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for solution was 5.63 seconds when 10 aircraft of two types were 

available; with 19 aircraft of each type, the time required was 32.79 

seconds; and when 25 of each type aircraft were available, over a 

minute of computer time was used.   To deal with even relatively small 

networks the computer time requirements would become prohibitive if it 

were necessary to consider larger aircraft availabilities.   To assign 

three types of aircraft, dynamic programming would require three state 

and three decision variables and the technique would be impractical 

even for small problems. 

Another application of the dynamic programming approach is in a 

modification of Nugent's algorithm [3].   This modification will provide 

integer solutions.    Nugent presented a method of finding non-integer 

allocations of resources that would minimize network capacity subject 

to      z kj.! < K     and   k.. > 0 .   As previously discussed, the 
Ct.j)eSi    

ij- 1J- 
objective function in this problem is convex with respect to k^..    In 

Nugent's formulation the feasible region defined by the constraints is 

also convex.   Therefore, for any particular cut set the problem is a 

convex non-linear program and Kuhn-Tucker theory provides conditions 

that are both necessary and sufficient for a global minimum.    Nugent 

solves these Kuhn-Tucker conditions and using an upper bounding technique 

arrives at the cut set that will be minimal after optimum interdiction. 

In the modification the set S and the upper bound on network capacity 

are found as before.    The Kuhn-Tucker conditions are then solved to find 

non-integer constrained solutions that minimize cut set capacity for 

each element of S.   The minimum of these solutions represents the optimal 

solution without integer constraints.   When integer constraints are added 

this minimum represents a lower bound on network capacity.   The cut set 
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with the minimal non-integer solution is deleted from S and becomes the 

subject of a dynamic program to find an integer solution.    If this 

integer solution is less than the non-integer solutions corresponding 

to the remaining elements of S it is optimal.    If it is greater than some 

or all of the elements of S it represents a new, smaller upper bound on 

network capacity.   Any elements of S with non-integer solutions greater 

than this new upper bound are deleted from S.   From the remaining elements 

of S the cut set with the smallest non-integer solution is selected from 

S.   Again dynamic programming used to find a new integer solution.   The 

new Integer solution is compared with the old integer solution and the 

minimum is called the current integer solution.   The current integer 

solution Is then compared to the remaining non-integer solutions and 

the process is repeated.    This iterative procedure is continued until 

either S is the null set or until the current integer solution is less 

than or equal the non-integer solutions corresponding to all of the 

remaining elements of S.    In either case the current integer solution 

represents the optimal solution to the integer constrained problem. 

In general, if the number of aircraft to be allocated to the air- 

strike is known, this modification is more efficient that using dynamic 

programming on every element of S to solve the minimization problem. 

In solving the example problem from Nugent's paper it was necessary to 

run only one dynamic program and with exponential damage functions the 

Kuhn-Tucker conditions are easy to solve relative to solving a dynamic 

program.   However, this modification does not lend itself to the 

sensitivity analysis on K that is necessary when the number of aircraft 

to be assigned to the strike is taken to be a decision variable. 
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As already mentioned, there are limitations on the technique 

presented.   One difficulty that has not yet been discussed is in the 

measurement of the costs and benefits of aircraft assignment.    In this 

paper the problem was ignored and constant dollar values of C and D 

were selected arbitrarily.   This problem is important since the selection 

of C and D determines how many aircraft will be assigned to the strike. 

If D had been taken to be      ^00 dollars per ton of flow reduced vice 

7,500 and the rest of the pr    'em remained unchanged, the decision would 

have been made to allocate 77 aircraft in a strike against cut set one 

resulting in a network capacity of 938.19 tons per day.    On the other 

hand, if D was less than 1,519 dollars per ton of flow reduced the 

solution would be to make no attack against the network. 

B.    RECOMMENDATIONS FOR FURTHER STUDY 

The possibility of deriving damage functions from actual interdiction 

data was mentioned earlier.    If the method of this paper were to be put 

to use in solving a real-world interdiction problem some verification 

of the damage function would be essential.    However, due to the sensi- 

tivity of the solution to both costs and benefits, the measurement 

problem associated with costs and benefits should receive at least as 

much attention as the damage function. 

Another possibility for further study would be the utilization of 

the model described in this paper to represent real-world problems other 

than aircraft interdiction.    One obvious example might be the problem of 

allocating resources to the improvement of a highway system.    In this 

example it would probably be relatively easy to get data from which 

to derive improvement functions, but the measurement of costs and benefits 

would be as difficult as before. 
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The model presented could be refined by assigning different values 

to capacity reduction in the various arcs of the network.    The objective 

then would be to minimize the maximum value of flow possible in the 

network rather than to minimize network capacity.   The solution technique 

presented could still be used.    A further refinement might be to consider 

not only arc vulnerability, but also the repair capability of the 

opponent.   This would require capacity reduction to be taken as a 

function of time as well as aircraft allocation and would make the 

analysis of the model more difficult.   Many other refinements could be 

made in order to make the model more representative of the real world, 

but in general the increased realism gained would be at the expense of 

increased computational effort. 
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V.    SUMMARY 

A solution procedure has been developed for the problem of 

determining the optimal allocation of aircraft in planning an airstrike 

against a transportation network.    The damage function for arcs in the 

network is assumed to have a negative exponential form.   To make use 

of the procedure it is necessary to have available the following infor- 

mation:    the upper and lower bounds on the capacity of each arc, the 

vulnerability parameter for each arc, the number of aircraft available 

for assignment to the airstrike, the cost of assigning an aircraft to 

the strike, and the benefit resulting from network capacity reduction. 

In the solution procedure every cut set that is designated a 

candidate for attack is the subject of a dynamic program.    A sensitivity 

analysis is performed on the number of aircraft to be assigned and this 

gives the network capacity after optimal interdiction as a function of 

the number of aircraft assigned to the strike.   A cost benefit analysis 

is then made to determine the largest number of aircraft that can be 

assigned before costs of further allocation begin to outweigh the 

benefits resulting from that allocation. 

At the end of the procedure the solution consists of the following: 

the number of aircraft to assign to the airstrike, the cut set that will 

be attacked, the number of aircraft to allocate to each arc of the cut 

set chosen, and the capacity of the network after this assignment of 

aircraft. 
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COMPUTER OUTPUT 

DP  SOLNS  CUT   SET   1 

ACFT  AVAIL CAPACITY 

0 1500.0000 
1 1472.2615 
2 L450.4417 
3          1430.5337 
4          1413.3696 
5          ] 1397.6652 
6          1384.3635 
7          1372.2888 
8          ] 1360.5256 
9          1349.2236 

10          1 L338.3647 
11           1327.7441 
12          1317.3113 
13 1307.2874 
1A          1297.5332 
15          ] 1267.9023 
16          ] L278.4985 
17          1269.2200 
18          ] 1259.9668 
19          1251.0762 
20          1242.2502 
21 1233.7065 
22 1225.3132 
23          1216.9587 
24          3 1208.7517 
25          1200.7656 
26          ] 1192.8806 
27 1165.2842 
28          1177.7083 
29          ] 1170.3845 
30 Llt3.1057 
31          ] .155.8796 
32 .148.8862 

.142.0127 33 
34 ,135.2935 
35 .128.7214 
36 .122.1831 
37 .115.7273 
38 .109.5078 
39          1 .103.3052 
40          ] .CS7.3457 
Al .091.4297 
42 ,085.7039 
43 .060.0000 
44 L074.3726 
45          ] ,068.8713 
46         : .063.5181 
47       ; L058.2324 
48 ,053.0627 
49          1 1047.9707 

CHANGE   IN  CAPACITY 

0.0 
-27.7385 
-21.8198 
-19.9080 
-17.1641 
-15.5044 
-13.5017 
-12.0747 
-11.7632 
-11.3020 
-10.8589 
-10.6206 
-10.4329 
-10.0239 
-9.7542 
-9.6309 
-9.4038 
-9.2786 
-9.2532 
-8.8906 
-8.8259 
-8.5417 
-8.3953 
-8.3545 
-8.2070 
-7.9861 
-7.8850 
-7.5964 
-7.5759 
-7.3237 
-7.2788 
-7.2261 
-6.9934 
-6.8735 
-6.7192 
-6.5720 
-6.5283 
-6.4558 
-6.2195 
*6.2026 
-5.9595 
-5.9160 
-5.7258 
-5.7039 
-5.6274 
-5.5012 
-5.3533 
-5.2856 
-5.1697 
-5.0920 
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ACFT AVAIL 

50 
51 
52 
53 
5A 
55 
56 
57 

II 
I? 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
8A 
85 

|67 

II 
90 
91 
92 
93 
94 
95 
96 
97 
98 

100 

CAPACITY 

1042.8923 
1038.0132 
1033.169^ 
1028.4817 
,023.8743 
019.3701 
014.9280 
010.5452 
006.2178 
002.0488 
9<;7.8911 
993.8245 
S89-8296 
985,8640 
982.0259 
S78.2537 
974.5659 
970.9778 
967.4346 
963.9751 
S60.5618 
957.1577 
953.8872 
€50.6404 
947.4414 
944.2991 
941.2104 
938.1914 
935.2534 
932.3528 
929.5581 
926.7710 
924.0769 
921.3992 
918.7407 
916.1680 
913.6394 
911.1230 
908.6511 
906.2458 
903.8708 
901.5830 
899.3010 
897.1086 
8'>4.9324 
692.8259 
890.7275 
888.6572 
886.6335 
884.6541 
882.6848 

CHANGE   IN   CAPACITY 

-5.0784 
-4.8792 
-4.8435 
-4.6879 
-4.6075 
-4.5040 
-4.4421 
-4.3828 
-4.3274 
-4.1691 
-4.1577 
-4.0666 
-3.9947 
-3.9657 
-3.8381 
-3.7723 
-3.6876 
-3.5883 

-3.4595 
-3.4133 
-3.4041 
-3.2706 
-3.2469 
-3.1989 
-3.1423 
-3.0885 
-3.0191 
-2.9379 
-2.9008 
-2.7946 
-2.7870 
-2.6942 
-2.6777 
-2.6583 
-2.5727 
-2.5287 
-2.5164 
-2.4719 
-2.4053 
-2.3749 
-2.2880 
-2.2818 
-2.1924 
-2.1765 
-2.1064 
-2.0983 
-2.0703 
-2.0238 
-1.9794 
-1.9693 
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STAGE  NUMBER     1 

ME I DEC I STATE 

S S 1 
4 

6 6 7 

ll 9 

16 

H 18 
21 

19 
22 

11 24 25 
27 28 

li 30 31 
33 34 

36 36 37 
39 39 40 
42 42 43 
45 45 46 
48 48 49 
51 51 52 

11 54 55 
57 58 

60 60 61 
63 63 64 
66 66 67 
69 69 70 

75 ?i U 
78 78 79 
81 81 82 
84 84 85 
87 87 88 

IS 90 91 
93 94 

96 96 97 
99 99 100 

I DEC     I STATE I DEC 

I 
4 1 1 
7 8 8 

1! 11 w 
11 IS IS 
28 

26 
29 

26 
29 

31 
34 II 11 
37 1! 38 
40 41 
43 44 44 
46 47 47 
49 50 50 
52 53 53 
55 56 56 
58 59 59 
61 tl 62 
64 65 
67 68 68 
70 71 71 
73 74 74 
76 77 77 
79 80 80 
82 83 83 
85 86 86 
88 89 89 
91 92 92 
94 95 95 
97 98 98 
100 



STAGE NUMBER     2 

r 

ISIAT« IMC     1ST»« IDtC     ISTAI« 

I 
4T 

! 
is Ji $ 

31 

I? 

49 

H 
58 
61 
64 
67 
?0 
T3 
76 
79 

II 
91 
94 
97 

100 

I DEC 

XI 
47 

f. 
Si 
68 
71 
74 
77 

« 
86 
89 9I 95 
98 

V 



STAGE  NUMBE«     3 

ISTATE 10EC     ISTATE lOfC     ISTATE I DEC 

4 

t 

9 
9 

U 



STAGE  NUMBER     * 

I STATE IOEC     ISTATE IDEC     1ST ATE IDEC 

5   11 
8 

I If In \ 
' n ? I? i\ 
l ♦» " y 'i 1 49 4 SO 1* 
4 « 15 53 15 
2 55 16 56 16 

1* 59 7 59 6 
}• »1 'S Jl JO 19 64 19 65 JO 

li P i? 27 85 27 86 28 
28 88 28 89 29 
29 91 30 92 30 

I? ^7 11 ?! ll2 
32 100 33 
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OP   SOLNS CUT  SET  3 

ACFT  AVAIL CAPACITY 

0 1535.0000 
1 1497.06 32 
2          1469.3250 

I 443.3813 
421.5618 

5           1401,7942 
6          1384.0525 
7          1366.6409 
8           1349.4768 
9          1332.9653 

10          1317.1670 
11           1302.1807 
12           1288.3894 

U    I 274.8879 
261.9890 

15          1249.3105 
16 1 
17 1 

237.1775 
225.6582 

18           1214.5559 
19          1203.9353 
20          1193.7605 
21           1184.1384 
22          i 174.5828 
23          1 166.2283 
24          1 157.9309 
25          1 149.7063 
26          1 141.5410 
27          1 133.5042 
28          1 126.4250 
29          1 119.7122 
30          1 113.1401 
31          1 106.5872 
32          1 100.4941 
33          1 094.8201 
34          1 089.2129 
35          1 083.9541 
36          1 078.7097 
37          1 073.5400 
38          1 068.8567 
39          1 064.34:8 

«     1 060.1226 
056.055<; 

42           1 05 2.1440 
43          1 048.2588 
44          1 044.3787 
45          1 040.9917 
46          1 037.6477 
47          1 034.3801 
48          1 031.1814 
49          1 028.3032 

CHANGE   IN  CAPACITY 

0.0 
-37.9368 
-27.7383 
-25.9436 
-21.8196 
-19.7676 
-17.7417 
-17.4116 
-17.1641 
-16.5115 
-15.7983 
-14.9863 
-13.7913 
-13.5015 
-12.8989 
-12.6785 
-12.1331 
-11.5193 
-11.1021 
-10.6208 
-10.1748 
-9.6219 
-9.5556 
-8.3547 
-8.2972 
-8.2246 
-8.1655 
-8.0369 
-7.0790 
-6.7130 
-6.5720 
-6.5529 
-6.0930 
-5.6741 
-5.6072 
-5.2589 
-5.2442 
-5.1697 
-4.6835 
-4.5138 
-4.2203 
-4.0666 
-3.9120 
-3.8850 
-3.8803 
-3.3869 
-3.3439 
-3.2675 
-3.1989 
-2.8781 
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ACFT  AVAIL CAPACITY 

50 1025.5740 
51 1022.8560 
52 1020.2021 
53 1017.6858 
54 1015.2087 
55 1012.9290 
56 1010.7476 
57 1CC8.6155 
58 1006.6360 
59 1004.7319 
60 1002.8967 
61 1001.08 20 
62 999.3315 
63 997.7410 
64 996.1616 
65 994.6045 
66 993.1997 
67 991.8401 
68 990.5115 
69 989.2705 
70 988.0457 
71 S86.8755 
72 985.7483 
73 984.6384 
74 983.6313 
75 982.6680 
76 ?ei.7410 
77 980.8362 
78 979.9695 
79 979.1208 
80 978.3464 
81 977.5886 
82 976.8425 
83 976.1165 
84 975.4697 
85 974.8276 
86 974.2314 
87 973.6487 
88 973.0684 
89 972.5156 
90 911.9753 
91 971.4998 
92 971.0308 
93 970.5630 
94 970.1121 
95 969.7024 
96 969.3057 
97 968.9287 
98 968.5535 
99 968.1846 

100 967.8320 

CHANGE   IN   CAPACITY 

-2.7293 
-2.7181 
-2.6536 
-2.5164 
-2.4772 
-2.2797 
-2.1813 
-2.1321 
-1.9794 
-1.9042 
-1.8352 
-1.8147 
-1.7505 
-1.5905 
-1.5795 
-1.5571 
-1.4048 
-1.3595 
-1.3285 
-1.2410 
-1.2249 
-1.1702 
-1.1274 
-1.1096 
-1.0072 
-0.9635 
-0.9269 
-0.9048 
-0.8669 
-0.848 7 
-0.7742 
-0.7579 
-0.7461 
-0.7261 
-0.6466 
-0.6422 
-0.5962 
-0.5827 
-0.5804 
-0.5527 
-0.5401 
-0.4757 
-0.4690 
-0.4676 
-0.4511 
-0.409 5 
-0.3969 
-0.3768 
-0.3753 
-0.3689 
-0.3524 
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STAGE  NUMBER     1 

VTE I DEC I STATE IDEC I STATE I DEC 

0 0 1 1 2 2 
3 3 4 4 5 5 
6 6 7 7 8 8 
9 9 10 10 11 11 

12 12 13 13 14 14 
15 15 16 16 17 17 
18 18 19 19 20 20 
21 21 22 22 23 23 
24 24 25 25 26 26 
27 27 28 28 29 29 
59 30 31 31 32 32 
33 33 34 34 35 35 
36 36 37 37 38 38 
39 39 40 40 41 41 
42 42 43 43 44 44 
45 45 46 46 47 47 
48 48 49 49 50 50 
51 51 52 52 53 53 
54 54 55 55 56 56 
57 57 58 58 59 59 
60 60 61 61 62 62 
63 63 64 64 65 65 
66 66 67 67 68 68 
69 69 70 70 71 71 
72 72 73 73 74 74 
75 75 76 76 77 77 
78 78 79 79 80 80 
81 81 82 82 83 83 
84 84 85 85 86 86 8Z 87 88 88 89 89 
90 90 91 91 92 92 
93 93 94 94 95 95 
96 96 97 97 98 98 
99 99 100 100 
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STAGE  NUMBER     2 

I STATE I DEC     I STATE I DEC     1ST ATE IDEC 

i     1     I     i     I     t 
I? S \l % ii IP 

43 



STAGE  NUMBER    3 

I STATE 1DEC     I STATE I DEC     I STATE 

69 26 70 26 

I DEC 

-       8       \       ?       I       ? i 

it * }t J 20 6 
ii 7 22 f *3 A 

ii   i   if  J   if   i? 

« I I? i II o' 11 |1 
5« I1, I! 23 *! i? J? 24 
t* 25 tl §5 
*o II ?i §8 

I? II U 11       It        ^ 

11 It H ? 
il 11 if " ii 11 r7 r,    si     II 

«    it ti ti «     t? 6i si {| fo 
Q 52 1^ 53 

? II i? || 
jl II « I 6T81 16 

f if i i   it   if 
I? Ii I 
Ii II 4          11    h 
H 38 100 38 

44 



STAGE  NUMBER    A 

1 STATE IOEC     I STATE IDEC    1STATE IOEC 

6 
9 

11 
\\ 
11 
30 
33 
36 
39 
42 
A5 
48 
51 
54 5I 
& 
66 
69 
72 
75 
78 
81 
84 
87 
90 
93 
96 
99 

0 
0 
1 
2 
3 
4 
5 
6 
7 
8 

11 
13 
14 
.5 
.6 
17 
18 
20 

II 
23 
24 
25 
26 
28 
28 

11 
32 
33 
34 
35 

1 
4 

II 
28 
31 
34 
37 
40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 

100 

8 
1 
2 
3 
4 
5 
7 
8 
9 

10 u 
13 
;4 

6 
7 
8 
.9 
20 
21 
22 
23 
25 
26 
26 
28 
29 

1? 
32 
33 
34 
36 

2 
5 
8 

11 

IS 
26 
29 
32 
35 
38 
Al 
44 
47 
50 
53 
56 
59 
62 
65 
68 
71 
74 
77 
80 
83 
86 
89 
92 
95 
98 

8 
1 
3 
4 
5 
6 

I 
9 
10 
.1 

5 
.6 
.7 
18 
19 

I? 
23 
23 
25 

IS 
28 
29 
30 
31 
33 
33 
35 
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STAGE  NUMBER     5 

tncr     1ST ATE IOEC     I STATE ISTATE IDEC    1ST Alt 

s   1 
I! 
24 

IS 
33 
36 
39 

4 
5 
5 
6 
7 
7 
8 
9 

A2 1° 
A5 10 
48 }\ 

11 il 
57 I3 
60 \% 
66 IA 
72 16 
75 1' 
78     lg 

i    | 
96     22 
99     23 

1 
4 
7 

0 
0 
1 

10 2 
3 
3 
J 

3 
6 
9 

5 
5 22 

25 
28 6 

7 
n 31 

34 8 
8 37 

40 9 
43 iS 
46 10 
49 U 
II \23 

1! 
64 
67 

13 

\\ 
15 

70 U 
73 u 
76 \l 
79 18 
82 
85 1 88 ^9 
91 21 
94 22 
97 l\ 
100 23 

IDEC 

2 ? 
8 1 

11 2 
14 3 * 
17 4 
20 4 
23 5 

5 
7 26 

29 
32 7 
35 8 

9 38 
41 
44 I? 
47 
50 il2 
II 11 
n n 65 \5 
68 16 
71 1^ 
74 VI 
77 18 
80 \l 
83 
86 Is 89 ?9 
92 21 
95 
98 

22 
23 
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DP   SOLNS CUT   SET 4 

ACFT   AVAIL CAPACITY 

0 13S5.0000 
1 1375.2324 
2         1357,8208 
3         1341.3096 
4         1326.3232 
5         1 312.5320 
6          1298.9368 
7         1286.0381 
8          1274.5186 
9          1263.3877 

10         1252.2856 
11          1242.6638 
12          1233.1082 
13          1223.9949 
14          1215.7703 
15          1207.7334 
16         1200.2722 
17          11S3.1934 
18          1186.4802 
19          1160.3716 
20          1174.2786 
21          1168.6714 
22          1163.4272 
23          1 158.4258 
24 153.7424 
25          L 149.2285 
26          I L45.1338 
27 .41.2219 
28          L L37.3367 
29           [ 133.9841 
30 130.6404 
31 .27.3728 
32 .24.4946 
33 .21.7500 
34          i .19.0205 
35 116.5435 
36 114.2637 
37 112.0164 
38 109.8843 
39          L 1C7.9800 
40          L 106.1401 
41 104,3049 
42          I 102.7146 
43 101.1350 
44 099.6287 
45          L 098.2690 
46 096.9407 
47 095.7073 
48 094.5371 
49         1 093.4275 

CHANGE   IN CAPACITY 

0,0 
-19.7676 
-17,4116 
-16,5112 
-14.9861 
-13,7914 
-13,5952 
-12.8988 
-11.5195 
-11.1308 
-11.1021 
-9.6219 
-9,5556 
-9,1131 
-8.2246 
-8.0369 
-7,4612 
-7.0790 
-6.7130 
-6,1087 
-6,0930 
-5.6072 
5.2442 

-5,0014 
-4.6835 
-4.5138 
-4.0948 
-3,9120 
-3.8850 
-3.3525 
-3,3439 
-3,2675 
-2.8781 
-2,7448 
-2,7293 
-2.4772 
-2.2797 
-2.2473 
-2,1322 
-1,9042 
-1,8399 
-1,8352 
-1,5905 
-1.5795 
-1,5064 
-1,3595 
-1.3285 
-1,2333 
-1,1702 
-1.1096 
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ACFT  AVAIL CAPACITY 

50 10?2.4177 
51 1091.4106 
52 1090.4836 
53 1089.6169 
54 1088.7900 
55 1C88.0159 
56 1087.2698 
57 1086.5930 
58 1065.9463 
59 .085.3042 
60 :084.7500 
61 064.1973 
62 083.6570 
63 083.1814 
64 1082.7275 
65 1082.2764 
66 1081.8669 
67 1081.4902 
68 1081.1187 
69 lCeO.7661 
70 1080.4514 
71 1080.1472 
72 1C79.8440 
73 1079.5811 
74 1079.3201 
75 1079.0710 
76 1078.8462 
77 1078.6267 
78 1078.4229 
79 1078.229 2 
80 1C78.0459 
81 1077.8789 
82 1077.7126 
83 1C77.5593 
84 1077.4160 
85 1077.2793 
86 1C77.1514 
87 1077.C281 
88 1076.9163 
89 1076.8093 
90 1076.7031 

II 1C76.6116 
1076.5203 

93 1076.4309 
9A 1076.3523 
95 1076.2773 
96 1076.2026 
97 1076.1350 
98 1076.0728 
99 1C76.0112 

100 1075.9531 

CHANGE   IN CAPACITY 

-1.0098 
-1.0072 
-0.9269 
-0.8669 
-0.8267 
-0.7742 
-0.7461 
-0.6769 
-0.6466 
-0.6^22 
-0.5542 
-0.5527 
-0.5401 
-0.4757 
-0.4537 
-0.4511 
-0.4095 
-0.3768 
-0.3715 
-0.3524 
-0.3148 
-0.3041 
-0.3033 
-0.2629 
-0.2611 
-0.2490 
-0.2247 
-0.2196 
-0.2039 
-0.1934 
-0.1834 
-0.1669 
-0.1665 
-0.1532 
-0.1433 
-0.1367 
-0.1280 
-0.1233 
-0.1119 
-0.1069 
-0.1062 
-0.0916 
-0.091A 
-0.0893 
-0.0 78 6 
-0.0750 
-0.0746 
-0.0677 
-0.0623 
-0.0614 
-0.0583 
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STAGE  NUMBER 

HE I DEC ISTATE I0EC ISTATE I DEC 

0 0 1 1 2 2 
3 3 4 4 5 5 
6 6 7 7 8 8 
9 9 10 10 11 11 
12 12 13 13 14 14 
15 15 16 16 17 17 
18 18 19 19 20 20 
21 21 22 22 23 23 
24 24 25 25 26 26 
27 27 28 28 29 29 
30 30 31 31 32 32 
33 33 34 34 35 35 
36 36 37 37 38 38 
39 39 40 40 41 41 
42 42 43 43 44 44 
45 45 46 46 47 47 
48 48 49 49 50 50 
51 51 52 52 53 53 
54 54 55 55 56 56 
57 57 58 58 59 59 
60 60 61 61 62 62 
63 63 64 64 65 65 
66 66 67 67 68 68 
69 69 70 70 71 71 
72 72 73 73 74 74 
75 75 76 76 77 77 
78 78 79 79 80 80 
81 81 82 82 83 83 
84 84 85 85 86 86 
87 67 88 88 89 89 
90 90 91 91 92 92 
93 93 94 94 95 95 
96 «56 97 97 98 98 
99 99 100 100 
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STAGE NUMBER  2 

ISTATE IDEC  ISTATE I DEC  ISTATE 

1 

0 
3 
6 
9 
2 
5 

18 
21 
24 
27 
30 
33 
36 
39 
42 
45 
48 
51 
54 
57 
60 
63 
66 
69 
72 
75 
78 
81 
84 
87 
90 
93 
96 
99 

0 
2 
4 
6 
7 
9 

\l 
14 

II 
19 
21 
23 
25 
26 
28 
30 
31 
33 
35 

15 
40 
A2 
43 
45 
47 
49 
50 
52 
54 
55 
57 

1 
4 
7 

10 
13 

\% 

II 
28 
31 
34 
37 
40 
43 
46 
49 
52 
55 5? 61 
6* 67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 
100 

1 
3 
5 
6 
8 

10 
1 
3 
5 
7 

IS 
22 n 
27 
29 
30 
32 
34 
35 

11 
41 
42 
44 
46 
47 
49 
51 
53 
54 
56 
58 

I 
8 

1 
23 
26 
29 
32 
35 
38 
41 
44 
47 
50 
53 
56 
59 
62 
65 
68 
71 
74 
77 
80 
83 
86 
89 
92 
95 
98 

I DEC 

I 
I 
9 

IS 
.4 

I 
22 
24 
26 

li 
33 
34 
36 
38 
39 
41 
43 
45 
46 
48 
50 

li 
55 
57 

50 



STAGC  NUMBER     3 

1ST ATE ICEC     ISTATE IDEC     I STATE I DEC 

I 
7 

'1 
.6 
9 

il 
I 

46 
49 

U 
58 
61 6i 67 

1 
79 

11 
94 
97 
100 

6 
11 
14 
17 
20 
13 
t6 
!9 

i! 
%4 
47 
50 

U 
59 

t| 
66 
71 

\' 
It 
I 
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COMPUTER  PROGRAM 

THIS   PROGRAM   IS   DESIGNED  TO   FIND   TM£  MINIMUM   OF   A 
SfOUcNCE OF FUNCTIONS,    EACH FUNCTION IN TH; SEQUENCE 
IS   A  SUM  QP  NrGATlVE   EXP3N?NTIAL   FUNCTIONS  OF   THc 
FCRM  BLO*W»txPC-*»IO£C).      IOEC   REPÄEStNTS   THE   AMOUNT 
OF   RESOURCS   ALLOCATED   TO   RcDJCE   THE   VALUE   CF   A 
PARTICULAR  NEGATIV«   ExPONcNTlAL   AND   IS   THE   DECISION 
VARIABLt.      THE   MlNfMlZATICN   IS   SUBJECT   TO   CONSTRAINT 
THAT   THE   SU»« OP   THE   IDEC'S  FOR   EACH  FUNCTICN   IN   THE 
SIOUJNCE   IS  LESS   THAN   OP   EQUAL   TO  K  UMEP?   K 

"NTS   TH;    TOTAL   PESOUP-CE   AVAILABILTV RfPPESENTS   TH;    TOTAL 
PROGRAMMING   IS   THE   SOLUTION fECHNlOUE  USED, 

DYNAMIC 

THE   IMPUT  PARAMETERS   FOR   THIS   PRCGRAN ARE   AS   FOLLOWS   - 

NCUT-NU-B5R   OF   FUNCTIONS   TO   P«   MINIMUED. 
K  -   MAXIMUM  A-OUNT   OF   äCSOUPCE   AVAILABLE. 
UPBNO   -  PRt0;T5o»«lN^C   U^PFR   POUND. 
N  -   NUMBER   0^   IxF^NiMtALS   JN   t ARTICULAR   f OK 
B.W.PLO  -  CONSTANTS   ASSOC   M 

IN   C 
ITH EACH 

.   < ,-T10N. 
ExPONeNTiAL. 

THE   OUTPUT   FROM   TMI§ 
TI 

PROGRAM   IS   AS   FOLLOWS   - 
ACH   FUNCTION   N  DVriA»«IC    PROGRAMMING   STAGES 
QUIRED,      FOR   «ACH   SUGc   TU- 

VALU?   OF   THc   Of CI SIGN  VARIABLE   IS   PRINTED 
OF   THE   STATS   VARIABLE.I 

I FOR   «A 
ARE   RFQ 
OPTIMAL    V*LUC    U»-     I"C    U 
FOR   EACH POSSIBLE   VALU1 

I STATE   -   VALUE   OP   STATF   VAR1ÄBIC. 
IOEC   -  OPTIMAL   VALUE  FOR   DSCISI^N  VARIABLE, 

«AT   THE   fNO   OF   TH«   STAGES   THE   SOLUTION   IS 
PRINTED   FO^   EACH   FUNCTIONI 

AIRCRAFT  AVAIL   -   AMOUNT   OF   P«SnURCE   AVAILABLE. 
CAPACITY -   SOIJTION   TO   Ml VI "WA TI OS   CRC6L£,'. 
OELCAP   -   INCfi    «NTAL   I«<PROVL»«tNT   IN   SOLUTION. 

EMI 200» .CAP(200I 
<PLANt(20C»,DcLCAP(20CI 

cNSION   lF!e.NJ(20i 
A   IFIBNO/LZ.*. 7.i:t20. 33.54,8811<.3.232,376.609, 

1MFNSIQN   FCN« 2C0I.FC 
MFNSION   IPVA*"1(20O: 
MeNSION   IFI 
TA 

186 

PEAO   «   PATHS   IN   NeTMüRK, 
(   LUB   ON CAPACITV 

•   PLANES   AVAIL 

\ 

\ 

READ(5,<.0I   NCUT.ir.UPBND 
AC   F0RMAT(2(1 31 ,c<».w» 

00   1200    IPATM.i.NCUT 
DATA   FCN/20C»3.0/.FCNN5w/200*0.0/fCAP/200*0.0/ 
DATA   IPLAN?/200«0/.«<PLANE/2OO»O/ 
DATA  OELCAP/20U«0.0/ 

READ   i  ARCS   IN CUT   SET 

READ(5.50)   N 
50   F0RMAT(I2» 

M>K«1 

READ   IN ARC   PARAMETERS   (1ST   ARC» 

REA0(5,60I   9tW,BL0 
60   FORMAT«3(F10.61 I 

BLOSUM-BLO 

DP   STAGE   1 
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100 

FCNm=W*EXP(ARG» 
IPLANE(II=I-1 
KPLANE(n»IPLANE(II 
CONTINUE 
ISTAGE=1 
WRITE (6,1000 I   ISTAGc, (KPLANE( 1), IPLANE( I» t I»1,M) 

OP   STAGES 2   TWU N 

00   900  ISTAGE=2,N 

READ  IN  ARC  PARAMETERS   (REMAINING ARCS) 

READ(5.60)   B.W.BLO 
BLOSUM=BLOSUM+BLC 
IF(BLOSUM.GE.UPBNO) GO  TO  2550 

SET STATE VARIABLE S RUN FIB SEARCH 

00  800  J*2.M 
IX«J-1 
DO  200   NO«It 20 
IF(lFIBNOCNO).GE.J»   GO TO  300 

200 CONTINUE 
300   NCM«N0-1 

1B»IFIBN0(N0)-1 
00   500   ITER = 1,N0M 
N01«N0-ITER 
N02«N0-lTEo-l 
IFTlA*IFI3NC(N01I.GE.J» GO TO 400 
ARG1=-B*(I A-«-!PIBKa(N01 )) 
1TI=IX-IA-IFIBN0(N01I+1 
iPCNC2.E0.0l   GO  TC   350 
ARG2«-BMIA*IFIBMa(NC2 )) 
n2=lX-IA-lFIBNO(N02)*l 
GO   TO  360 
ARG2«-P-*IA 
1T2=IX-IA*I 
Fl«W*cXP(ARGn*FCN(ITl) 
F2»W»FXP(ARG2)*FCN(IT2) 
JF(P2.LT#F1)   GO   TO   400 
'A»IFIBNC(N02)+1*IA 
0   TO   500 

IB»IFnN0(N01)-l*IA 
CONTIMUH 
FCNNEW(J|=AMINI(F2,F1) 
IPLAMc(J)«IA 
iF(ISTAG3.iO.N)   CAP( Jl =FCNNEW( Jl ♦BLOSUM 
IF(jfTAGr.:Q.N.AND.J.GT.2) 

10ELCAP«J)=FCNNcW(J)-FCNNEW(lX) 
800 CONTINUE 

FCN<l)«FCN(l)*W 
DO   850  I=2,M 
FCN(I» = FCNNEW( I) 

850  CONTINU- 
WRITE(6,10001   I STAGE,(KPLANE(I»«I PLANE! I) 11=1 

900  CONTINUE 
CAPID^FCNd J + BLOSUM 
DELCAP<2)»FCN(2)-FCN(1I 

350 

360 

400 
500 

U 

M) 

END  OP  STAGES 

1000  FOÄMATC •!•////////«   »^QX.» STAGE   NUMBER   «.12///// 
I*   • ,1AX,3(,ISTATE,,4X,M0EC,.2X)/// 

,14X,3<16,AX,I4,2X)/ l» •fHX,3(l6,4XfI4f2X)/ 
1* ••lAX.S!I6.4X.I4,2X)/ 
1« •tl4X,3(l6f4X,I4t2X)/ 
)• •,KX,3(16,4X,14,2X1 / 

• ,ii4X,3(l6,4X,U,2X)/ 
• •,14X,3(I6,4X,I4,2X)/ 
• •• 14X*3(l6f4X.l4f 2X) / 

.14X,3(I6,4X,I4,2X|/ 
,14X,3(I6,4X, 14,2X)/ 
,1<.X,3(I6.4X.I4.2X)/ 
, 1<.X,3( 16,4X,14,2X)/ 
,14X,3(I6,4X,I4,2X)/ 
.14X.3(I6.4X.I4.2X)/ 
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1 
1 
1 
1 
1 
1 
1 
I 

1050 

,14X,3(16,4X,Kt2XJ 
,14Xv3(l6t'tXtI4,2X) 
.14X.3(I6,4X.K.2X) 
,14X,3(I6,4X,K,2X) 
,14X,3(I6,4X,H,2X) 
tl4X,3(I6,4Xf !A,2X» 
I14X»3(I6,4X,H,2X) 
tl4X.3(I6«4X.K.2X) 
tl4Xt3(l6,AXf K,2X) 
,14X,3(I6,4X,I4,2X) 
tl4X.3(I6,4X.l4*2X) 
TE(6,1050J   IPATH 

'   ~       • t 
tS 

CAPACITY«// 

• 
MR 
FORMAT« *!•////////• 
• •.12X.«ACFT AVAIL« 
•CHANG? 

»I4X, 
fl4X, 
.lAXt 
tlAX, 
»14X, 
tl4Xf 
,14X, 
«14X. 
»14X, 
»1AX, 
.14X. 

3(16,4X, 
3(16,AX, 
3(16.AX, 
3(16,AX, 
3(16,AX, 
3(16,AX, 
3(16,AX, 
3(16.AX. 
3( 16,AX, 
3(16,AX, 
3(16.AX, 

IN 
M12=M/2 
M12l=M12+l 
DO 1100   1=1,Ml 2 
WRITt(6.1075)   KPLANSd 

1075   FORMAT(«   «,10X,110,3X, 
1100  CONTINUE 

WRITE(6,U25) 
1125   FORMATCl«//////// 

1«   «,12X,«ACFT  AVAIL» ,5 
1«CHANGE   IN  CAPACITY«// 

27X.«DP   SCLNS  CUT 
X,«CAPACITY«,5X, 

IA,2X»/ 
IA,2X)/ 
IA.2X)/ 
1A,2X)/ 
IA,2X)/ 
IA,2X)/ 
IA,2X)/ 
IA.2X)/ 
IA,2X)/ 
IA,2X)/ 
IA.2X)) 

SET»,12///// 

DO 115C 
WRITE(6. 

1150 CONTINUE 
1200  CCNT1NU5 

GO TO   2600 
2550   WRITc(6,2575) 
2575  FORMAT(///«   • 
2600   STOP 

END 

).CAP(n .DELCAPd) 
FIO.A,13X,F10.A» 

X,»CAPACITY« ,5X, 

I=M121,M 
1075»   KPLANE(I).CAP(I» .DELCAPd) 

IPATH 
,25X,«LUB EXCEEDED  BY   PATH #   «,121 
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