

:

)

The findings in this report are not to be construed as

an official Department of the Army position, unless so designated by other authorized documents.

Mention of any treds names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is so longer seeded. No not return it to the originator.

· · · · · · ·

UNCLASSIFIED Security Classification	N .
DOCUMENT CONT	ROL GATA - R& D
(Security classification of title, body of abstract and indexing a	unnotation must be entered when the overall report is classified)
Army Materials and Mechanics Research Cent Watertown, Massachusetts 02172	er Unclassified 25. GROUP
REPORT TITLE	
A REVIEW OF TEXTURES FOUND IN COMMERCIAL T	ITANIUM SHEET
DESCRIPTIVE NOTES (Type of report and inclusive dates)	
5. AUTHOR(5) (First name, middle initial, last name)	
Anthone Zarkades and Frank R. Larson	
REPORT DATE	74. TOTAL NO. OF PAGES Th. NO. OF REFS
December 1971	/5 20
I. CONTRACT OR GRANT NO.	SA. ORIGINATOR'S REPORT NUMBERIS
6. PROJECT NO. D/A 1T061102B32A	AMMRC TR 71-60
c. AMCMS Code Number 501B.11.85500-X032164	Sb. OTHER REPORT NO(3) (Any other numbers that may be stalghed this report)
a. Agency Accession Number DA OB4807	
Approved for public release; distribution	unlimited.
II. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
(1 C Ammy Material Command	
	Washington, D. C. 20315
A compilation of data generated during stuterization of titanium textures is present and plastic properties in tension, and mic the as-received condition and in some case A wide range of textures were found for ni pure, Ti-6A1-4V, Ti-4A1-3Mo-1V, Ti-8A1-1Mc Ti-16V-2.5A1, and Ti-7A1-3Mo. The texture barrier for application of texture strengt mill procedures for developing the desired	idies concerning the development and charac- ed. Results include pole figures, elastic crostructures. Materials were examined in es after various heat treatments. ine titanium alloys including commercially p-1V, Ti-6A1-6V-2Sn, Ti-8Mn, Ti-4A1-4Mn, es found indicate that the technological thening is due to the lack of established it texture and not that the specific preferred
orientations are unattainable in titanium	ailoys, (nucliors)
Ţù	
JO 1473 REPLACES DO FORM 1473, 1 JAN 64, W	

The state of the second second

ŧ

é

UNCLASSIFIED Security Classification

KEY WORDS		LIN	K A	LIN	K B	LIN	кс
	▼	ROLE	WT	ROLE	WT	ROLE	w
Metal sheets							
Titanium allovs		ĺ					
Texture							
Microstructure		1					
Heat treatment							
Mechanical properties							
Orientation							
orientation							
	× 4			İ			
	うや						
	-	U	NCLASS	IFIED			
			accurity	Ciessifi d	ation		

AMMRC TR 71-60

記たい日本シャント

A REVIEW OF TEXTURES FOUND IN COMMERCIAL TITANIUM SHEET

Technical Report by

ANTHONE ZARKADES and FRANK R. LARSON

December 1971

Details of illustrations in this document may be bottor studied on microfiche

D/A Project 1T061102B32A AMCMS Code 501B.11.85500 Research in Materials Agency Accession Number DA OB4807

Approved for public release; distribution unlimited.

DEVELOPMENT AND ENGINEERING LABORATORY ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

ARMY MATERIALS AND MECHANICS RESEARCH CENTER

「ないないない かいかんしょうし

والمستعدة والمعالية والمعادة والمستعلمة والمستعلم والمستعلم والمعالية

A REVIEW OF TEXTURES FOUND IN COMMERCIAL TITANIUM SHEET

ABSTRACT

A compilation of data generated during studies concerning the development and characterization of titanium textures is presented. Results include pole figures, elastic and plastic properties in tension, and microstructures. Materials were examined in the as-received condition and in some cases after various heat treatments.

A wide range of textures were found for nine titanium alloys including commercially pure, Ti-6A1-4V, Ti-4A1-3M0-1V, Ti-8A1-1M0-1V, Ti-6A1-6V-2Sn, Ti-8Mn, Ti-4A1-4Mn, Ti-16V-2.5A1, and Ti-7A1-3M0. The textures found indicate that the technological barrier for application of texture strengthening is due to the lack of established mill procedures for developing the desired texture and not that the specific preferred orientations are unattainable in titanium alloys.

CONTENTS

;.

.......

....

ABSTRACT
INTRODUCTION
TEXTURE IN TITANIUM
TEXTURE DETERMINATION
MECHANICAL PROPERTIES
RESULTS AND DISCUSSION
CONCLUSIONS
LITERATURE CITED
APPENDIX I - COMMERCIALLY PURE (UNALLOYED), RC-55-5-5032BM2 15
APPENDIX II - Ti-6A1-4V-M7199
APPENDIX III - Ti-4A1-3Mo-1V-M8018
APPENDIX IV - Ti-8A1-1Mo-1V-V1848
APPENDIX V - Ti-6A1-6V-2Sn-S
APPENDIX VI - Ti-8Mn-3442
APPENDIX VII - Ti-4Al-4Mn-B3319-2
APPENDIX VIII - Ti-16V-2.5A1-B24814
APPENDIX IX - Ti-7A]-3Mo-1295

T

 ϕ_{ij}

122.45

Rosee as general reasons

Page

/

INTRODUCTION

As a result of early interest in the anisotropic properties of titanium sheet, ¹ a continuing study of the preferred crystallographic texture found in commercial titanium alloy sheets has been carried out over the last several years. This study has resulted in the accumulation of a large number of actual pole figures along with the mechanical properties of these sheets. As time passed, various programs were carried out in order to ascertain how certain types of textures were developed, and a greater understanding is now available by which the known textures can be classified. Since the interest in textures is increasing, particularly from a research and development standpoint, it seems important to record the results of these findings. Another important factor is that it is becoming more and more apparent that texture is a basic parameter necessary to understand and control such properties as Young's modulus, yield strength, tensile strength, Poisson's ratio, and toughness.

The awareness of the commercial importance of texture has, for the most part, been confined to magnetic sheet materials; however, the utilization of texture for the improvement of other properties will undoubtedly follow. How soon effective commercial usage can come about depends upon how readily the textures can be controlled and also how much specific gain may be obtained. In other words, it becomes a matter of difficulties versus advantages. In order to speed the day when textures can be commercially employed, a large effort toward developing a greater understanding of the fundamentals will be necessary.

The first step in texture control originates with the various processing stages at the mill. In most cases, ingot texture is of little significance since the large shape change resulting from processing is usually sufficient to eliminate ingot texture; thus, the last stages of deformation and heating produce most of the changes in the texture. Therefore, effective texture control can be obtained via precision heating and deformation schedules.

In the case of titanium, which exhibits a high degree of preferred orientation, very little information has been published regarding texturing; therefore, the process control of textures is not very well understood. One of the first steps in developing understanding of textures in commerical titanium alloys would be to determine textures in different sheets within the alloys of interest. This therefore constituted the main part of this program. Another phase of this study was to report the effects of heat treatment and alloying on the texture and mechanical properties.

TEXTURES IN TITANIUM

The purpose of this section is to review the textures found in titanium sheets, so that those listed in the Appendixes can be classified according to type or past processing history (much in the manner of the characterization of microstructure). The excellent review of textures in wrought and annealed metals by Dillamore and Roberts² is a good starting point. A more detailed discussion of the actual mechanics of texture formation is available in previous reports.³⁻¹⁰ The most prominent of several basic types of titanium sheet textures found is the cold-rolled wheet.¹¹ A similar type is also found if the sheet is warm rolled between room temperature and about 1400F. This texture is characterized by an ing a basal (0002) pole intensity on the sheet normal (SN) transverse direction (TD), and a great circle at about 27 to 30 degrees from the SN. This texture is further defined by stating that the (1010) poles lie near, or in, the rolling direction (RD). This is shown in Figure 1 and is called an alpha deformation texture.

Figure 1. Alpha Deformation Texture

Annealing of cold- or warm-rolled sheets has only a slight sharpening effect upon the (0002) poles. However, the (1010) poles rotate through an arbitrary angle of approximately 30 degrees about the C axis, resulting in the texture shown in Figure 2. This is called an annealed alpha deformation texture.

Figure 2. Annealed Alpha Deformation Texture

In most cases, it is not necessary to distinguish between an annealed and a cold-worked texture since many properties are symmetrical about the C axis. Thus, a basal pole figure is sufficient to define the crystallographic influence, and the above texture can be modified by either hot rolling ¹² (above 1400F but not above beta transus) and/or alloying. Important observations in relation to texture hardening were the early discovery that additions of aluminum (approximately 4 percent) and the most recent disclosure that copper (approximately 0.5 percent) produce the "ideal" texture.⁴ It has also been established that the ideal texture can be produced by round rolling.⁵ In fact, it seems possible to change the angle at which the basal pole lies from the sheet normal by combinations of alloying and hot rolling.⁴ Figure 3 illustrates this for two cases.

"IDEAL" TEXTURE COLD ROLLED TI-4AI, TI-0.55Cu ROUND ROLLED TI-6AI-4V HOT ROLLING TEXTURE Ti-6AI-4V (1700F) COLD ROLLED Ti-8Mp

Sufficient amount of beta stabilizers (more than 15 percent volume retained beta at room temperature) or hot rolling in the alpha-beta field will cause a texture transition, and the new texture will have a basal pole figure which looks like the magnesium or zinc type as shown in Figure 4.

The final important texture found in titanium is that which develops from a beta-worked material and is a result of the Burgers transformation relationship $\{0001\}_{\alpha} \parallel \{110\}_{\beta}$, $<1120>_{\alpha} \parallel <111>_{\beta}$.¹⁵ It can be seen that since the basal plane in the alpha is parallel to the (110) plane in the beta, a determination of the (410) pole figure will give the basal pole figure after transformation. As in most bcc metals, hot or warm sheet rolling produces a texture which has a strong (100) [011] texture component.¹⁶

Other minor orientation peak components are not usually found in titanium. If the composition has sufficient alloying to retain the beta at room temperature, the texture in Figure 5 will usually be found. On the other hand, if the beta deformation texture is developed by hot working in the beta field and transformation occurs on cooling or on aging as part of the heat treatment, the alpha basal pole figure will bear a simple relationship to the beta texture, as shown in Figure 6. However, there are some other textures that can be formed, but, these are of less commerical importance because they are infrequent and are a result of special processing or heat treatments. For example, a cube or (100) [011] texture can be formed by heating very high in the beta field, but this rarely happens in production because of the excessively large grain growth. For the most part, the textures found in commercial sheet and shown in the appendixes are either single type, as described above, or a simple combination of two basic types.

Figure 5. Beta Deformation Texture

Figure 6. Transformed Beta Deformation Texture

TEXTURE DETERMINATION

One quadrant pole figure was determined utilizing a unique reflection technique described by Lopata and Kula.¹⁷ Specimen preparation for this method conists of cutting strips from the rolled sheet 45 degrees to the rolling direction, bonding them together, and grinding a surface which will have its normal equidistant from the rolling direction, transverse direction, and rolling plane normal. The whole thickness of the material is used, and the resultant pole figures are an average of the interior and surface textures. The position of the plane and the pole of this surface in a single quadrant are shown in Figure 7. The specimen after polishing is set in the goniometer with the proper 20 Bragg angle and is rotated through an azimuth and declination angle. X-ray intensities are recorded with corresponding angular alpha and beta positions and are then plotted to construct iso-intensity contour lines. The pole figures obtained in this manner have iso-intensities labeled 10, 20, 30 etc. and were determined by Strathmore Research Corporation.* Other textures illustrated in this report have the contour lines identified as 1, 2, 3....8. These pole figures were obtained on an automatic plotted pole figure which was developed at AMMRC.¹⁸ This setup concurrently plots intensity versus azimuthal and declination angle, thereby automatically producing a texture diagram. This has eliminated the tedious and time consuming hand plotting of data previously required. Depending on dominating phase, alpha or beta, the basal plane (0002) or (110) pole figure was determined.

Figure 7. Position of Oblique Plane for Determining One Quadrant of Pole Figure by Reflection¹⁷

*Strathmore Research Corporation, Contract DAAG-46-67-0-0019, Cambridge, Massachusetts.

MECHANICAL PROPERTIES

Sheet tension specimers were machined at various angles to the rolling direction. In some instances, data are shown for specimens from 0 to 180 degrees. The transverse specimen would coincide with 90 degrees and longitudinal tests would be marked as 0 or 180 degrees. The test setup and testing procedure are identical to those published in prior reports.^{19,20} A schematic of test setup and specimen orientation is shown in Figures 8 and 9. Some materials were subjected to various heat treatments, and these are indicated in the Appendices along with photomicrographs.

RESULTS AND DISCUSSION

For the most part commercially pure sheets show classical alpha deformation textures. However, there were two notable exceptions, RC-55-53230-2 and Ti-75A-N290, each of which has remnants of a transformed beta deformation texture. In an RC-55 heated between 1400 and 1700F, there is no change of the alpha deformation texture with increasing temperature (see Table Ia).

Table Ia. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR COMMERCIALLY PURE TITANIUM

Alloy	Heat No.	Thickness, in.	Condition*	Texture Type [†]
RC55 RC55 RC55 RC55 RC55 RC55 Ti100A Ti100A Ti100A Ti100A Ti175A Ti75A	5-5032BM2 53230-2 53284-bM4 NHN NHN NHN L730 L657 L658 L550 M290	0.125 0.050 0.130 0.140 0.140 0.140 0.140 0.140 0.065 0.030 0.060 0.060 0.100	A.R. A.R. ST 1400F 1 hr ST 1500F 1 hr ST 1600F 1 hr ST 1700F 1 hr A.P. A.R. A.R. A.R. A.R. A.R.	a Deformation Dual a deformation (ideal and TD Orienta- tions) a deformation a deformation a deformation a deformation bual a deformation a deformation a deformation a deformation a deformation a deformation a deformation a deformation a deformation bual a deformation a deformation
				p deformation

(SEE APPENDIX I)

*A.R. — As received. ST — Solution treated followed by air cooling. $\dagger(0002)$ Pole figure, except where noted.

Figure 8. Schematic of Testing Apparatus

202

deserved and a second

22.4

South Long Street

in the second

Figure 9. Tension Specimen Orientation

7

1.

The Ti-6Al-4V alloy sheets (Table Ib) had several different texture types. One common texture observed for this alloy was a dual- or two-component texture where one component was in the TD and the other was near the SN (Heat M7199). In some cases, the peak near the SN was very low and that near the TD very intense, Heat M2803 (0.070 in). However, there was a unique case where the texture was nearly random, Heat M27003. Heats M2803 (0.030 in) and B22075 had a transformed beta deformation texture. The effect of heat treatment (Heat M2803, 0.070 in) is also shown with the material undergoing a texture change from an alpha deformation to a transformed beta deformation type as it was heated higher and higher through the alpha plus beta field into the beta field.

Table Ib. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-6Al'-4V

Heat No.	Thickness, in	Condition*	Texture Type [†]
M7199	0.060	A.R.	Dual (T.D.a -deformation and Mg type)
B22075	0.130	A, R,	Transformed β deformation
M2803	0.070	A.R.	Dual (T.D.a-deformation
		· · ·	and weak Mg type)
M2803	0.030	A.R.	Dual (strong T.D.a -deforma-
			tion and remnants of β de-
		1	formation) .
M2803	0.060	STA-1450F 1/4 hr	a Deformation (TD peak)
		1000F 4 hr	
M2803	0.060	STA-1550F 1/4 hr	a Deformation (TD peak)
		1000F 4 hr 1	
M2803	0.060	STA-1650F 1/4 hr	a Deformation (TD peak)
		1000F 4 hr	
M2803	0.060	STA-1750F 1/4 hr	Transformed β deformation
		1000F 4 hr	
M27003	0.040	A.R.	Random ·
M27037	0.040	A.R.	Dual (a deformation
			and TD poles)

(SEE APPENDIX II)

*A.R.- As received. STA - Solution treated, water quenched and aged. \dagger (0002) Pole figure, except where noted.

The alloy Ti-4Al-3Mo-IV (Table Ic) showed several cases of transformed beta deformation textures (Heats M8018, M8577, and M8173) heat treated. A dual-texture type similar to that found in Ti-6Al-4V was found in the case of Heat M8018 and, with increasing temperature, it went to a beta transformation type texture. Heat X70006 displayed a nearly ideal texture and the associated R values were very high, as would be expected.

8

the tax we do not a transformed to the state of the definition of a state of the state of the

 Table Ic. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-4A1-3Mo-1V

 (SEE APPENDIX III)

Heat No.	Thickness, in	Condition*	Texture Type [†]
M8018	0.060	STA-1400F 1/4 hr	Dual a deformation and
M8018	0.060	STA-1500F 4 hr 1000F 4 hr	Dual a deformation and Mg type - slight neak
'M8018	0.060	STA-1600F 1/4 hr 1000F 4 hr	Complex a deformation and Mg
M8018	· 0.060	STA-1700F 1/4 hr	Transformed β deformation
M857'7	0.065	A.R.	Transformed β deformation
X70006	0.060	A.R.	Very near ideal
M8173	0.020	A.R.	Alpha phase transformed - β deformation - Beta Phase
			ł · ·

*A.R. — As received. STA — Solution treated, water quenched and aged. †(0002) Pole figure, except where noted

The Ti-8Al-1Mo-1V alloy single sheet examined had a transformed beta deformation texture. (See Table Id.)

Table 'Id. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-8A1-1Mo-1V

(SEE APPENDIX IV)

Heat No.	Thickness,	in	Condition*	Texture Type [†]
V1848 '	0.130		A.R. ,	Transformed β deformation
*A.R As	received.		······································	

+(0002) Pole figure.

I.

The sheets of Ti-6A1-6V-2SN (Table Ie) also have textures which appeared to be one of the transformed beta deformation type.

Table Ie. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-6A1-6V-2Sn (SEE APPENDIX V)

Heat No.	Thickness, in	' Condition*	Texture Type [†]
S	0.115	A.R.	Transformed β deformation
i H	0.115	A.R.	Transformed β deformation

Q

*A.R.— As received. †(0002) Pole figure. Ti-8Mn (RC-130A) (Table If), except for one sheet which was nearly random, had textures of the dual alpha deformation type with the TD pole being of high intensity.

Table If. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-8Mn

(SEE APPENDIX VI)

Heat No.	Thickness, in	Condition*	Texture Type [†]
3442 A3613 A5227-7	0.065 0.030	A.R. A.R. A.R.	Near ideal a deformation - TD Peak a deformation - very strong TD peak
A5221-16	0.120	A.R.	Dual (a deformation - strong TD peak + Mg peak)

*A.R. — As received.

(0002) pole figure.

Ti-4A1-4Mn (RC 130B) (Table Ig). Heats B3263-B1 and B3319-2 both showed a deformation type texture with a single peak near or at the TD. Upon heating, Heat B3263-B1 developed a secondary peak near the SN; then, at 1700 F, a transformed beta deformation texture resulted.

Table Ig. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-4A1-4Mn

Heat No.	Thickness, in	Condition*	Texture Type [†]
B3319-2	0.065	A.R.	a deformation - strong "D peak
B3263-B1	0.055	A.R.	a deformation - strong TD peak
B3263-B1	0.055	STA-1300F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1400F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1500F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1600F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak) slight PD neak
B3263-B1	0.055	STA-1700F 3/4 hr 1000F 8 hr	Beginning of β deformation type

(SEE APPENDIX VII)

*A.R.— As received. STA - solution treated, water quenched and aged. †(0002) Pole figure except where noted.

Ti-16V-2.5Al metastable beta alloy (Table Ih) developed textures characteristic of the (100)[011] beta deformation in either the beta structure component or in an alpha transformation counterpart.

10

Table Ih. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-16V-2.5A1

Heat No.	Thickness, in	Condition*	Texture Type [†]
B24814	0.030	STA-1200F 1/2 hr 975F 4 hr	β deformation
B24814	0.030	STA-1300F 1/2 hr 975F 4 hr	β deformation
B24814	0.030	STA-1400F 1/2 hr 975F 4 hr	Complex
B24814	0.030	STA-1450F 1/2 hr 975F 4 hr	Complex
B24814	0.030	A.R. + Aged 975F 4 hr	β deformation
B24814	0.030	ST + WQ	Complex
		1450F 1/2 hr	(coarse grain)
M22093	0.025	A.R.	β deformation
B22117	0.045	A.R.	β deformation
B22117	0.045	A.R. + 975F 4 hr.	Transformed β deformation
M24990	0.025	A.R.	Transformed 3 deformation
B24990	0.040	A.R.	β deformation
M23346	0.070	A.R.	Near transformed β deforma-
			tion
T22154	0.065	A.R.	Dual a deformation
T24762	0.130	A.R.	Dual a deformation

(SEE APPENDIX VIII)

*A.R. - As received. ST - Solution treated followed by air cooling. STA - Solution treated, water quenched and aged.
*(0002) Pole figure, except where noted.

The single sheet of alloy Ti-7A1-3Mo (Table Ii) had a dual texture of the alpha deformation type with a high intensity near the SN, probably similar to that observed in the Ti-4A1 binary alloys.

Table Ii. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-7A1-3Mo

(SEE APPENDIX IX)

Heat No.	Thickness, in	Condition*	Texture Type [†]
1295	0.060	A.R.	Dual (strong Mg peak +weak TD Peak)

*A.R. — As received. †(0002) Pole figure.

energy and a supervised of the second statement of the second and a second second second second second second s

CONCLUSIONS

It can be seen from examination of the appendixes that a wide range of textures are formed in the titanium alloy sheet. This wide range of textures is of commercial significance from two major points. First, from the standpoint of anisotropy of properties, it appears that a beta deformation or a transformed beta deformation texture will give the least anisotropy because it is orthotropic. The second main point is that an alpha deformation texture composed of basal poles in the transverse direction gives rise to highest degree of planar anisotropy. The technological barrier for the application of texture hardening or use of texture for dramatic improvements in many properties is not that the desired textures have not been found, since they do develop, but that the desired mill technique and procedures have not been determined and employed. It appears from textures found that virtually any described texture can be achieved and that the most sought-after texture of the "ideal" type can be achieved in several alloys.

are one filled substantional international in the subsequences and the

LITERATURE CITED

- 1. LARSON, F. R., and NUNES, J. Strain Hardening Properties of High Strength Sheet Materials. Seventh Sagamore Ordnance Materials Research Conference, August 1960, p. 101.
- 2. DILLAMORE, I. L., and ROBERTS, W. T. Preferred Orientation in Wrought and Annealed Metals. Metallurgical Review, Vol. 10, No. 39, 1965, pp. 271-380.
- 3. WILLIAMS, D. N., and EPPELSHEIMER. A Theoretical Investigation of the Deformation Texture of Titanium. Journal of the Institute of Metals, Vol. 81, 1952-1953, pp. 552-562.
- 4. LARSON, F.R., ZARKADES, A., and AVERY, D.H. Twinning and Texture Transitions in Titanium Solid Solution Alloys. Army Materials and Mechanics Research Center, AMMRC TR 71-11, June 1971.
- 5. Lockheed Missiles and Space Company, Palo Alto, California. Development of Improved Biaxial Strength in Titanium Alloy Rocket Motor Cases Through Texture Hardening. AF Contract No. FO 4611-67-C007Y, February 1969.
- 6. HOBSON, D. O. Textures in Deformed Zirconium Single Crystals. Transactions AIME, J. of Metals, Vol. 242, June 1968, p. 1105.
- 7. CALNAN, E. A., and CLEWS, C. J. B. Deformation Textures in Face-Centered Cubic Metals. Phil Mag., Vol. 41, Sec. 9, November 1950, p. 1085.
- 8. CALNAN, E. A., and CLEWS, C. J. B. The Development of Deformation Textures in Metals. Part II, Phil Mag., Vol. 42, Sec. 7, June 1951, p. 616.
- 9. CALNAN, E. A., and CLEWS, C. J. B. The Development of Deformation Textures. Part III, Phil Mag., Vol. 42, Sec. 7, August 1951, p. 919.
- 10. CALNAN, E. A., and CLEWS, C. J. B. The Prediction of Uranium Deformation Textures. Phil Mag., Vol. 43, Sec. 7, January 1952, p. 93.
- 11. KEELER, J. H., and GEISLER, A. H. Preferred Orientation in Rolled and Annealed Titanium. Transactions AIME, J. of Metals, Vol. 206, 1957, p. 80.
- 12. McHARGUE, C. J., HOLLAND, J. R., and HAMMOND, J. P. Hot Rolled Textures of Titanium Alloys. Transactions AIME, J. of Metals, Vol. 205, February 1965, p. 113.
- 13. McHARGUE, C. J., ADAIR, S. E., JR., and HAMMOND, J. P. Effects of Solid Solution Alloying on the Cold-Rolled Texture of Titanium. Transactions AIME, J. of Metals, September 1953, p. 1199.
- 14. SPARKS, C. J., McHARGUE, C. J., and HAMMOND, J. P. Effects of Aluminum on the Cold-Rolled Texture of Titanium, Transactions AIME, J. of Metals, Vol. 209, January 1959, p. 49.
- 15. NEWKIRK, J. B., and GEISLER, A. H. Crystallographic Aspects of the Beta to Alpha Transformation in Titanium. Act. Met., Vol. 1, 1953, p. 370.
- 16. BARRETT, C. S. Structure of Metals. McGraw-Hill Book Company, New York, First Ed., 1943.

and survey and the standard and a standard and the standard and the second standard and the standard and stand standards and stand

- LOPATA, S.L., and KULA, E.B. A Reflection Method for Pole Figure Determination. Army Materials and Mechanics Research Center, WAL TR 826.52/1, July 1961; Also Transactions AIME, J. of Metals, Vol. 224, August 1962, p. 865.
- 18. MARTIN, A. G., and LARSON, F. R. Automatic Off-Set Reflection Pole Figure Plotter. Army Materials and Mechanics Research Center, AMMRC TR 71-33, September 1971.

19. ZARKADES, A., and LARSON, F. R. Experimental Determination of Texture and Mechanical Anisotropy of Commercially Pure Titanium Sheet. Army Materials and Mechanics Research Center, AMMRC TR 67-05, December 1967.

ł

NAME AND AND AND AND AND

ż

Ż

į

20. ZARKADES, A., and LARSON, F. R. Sheet Tensile Properties of Titanium Alloys as Affected by Texture. Army Materials and Mechanics Research Center, AMMRC TR 68-03, January 1968.

1

(0002) POLE FIGURE

มไม่รักมากเป็นได้ระก

ETCHED MICROSTRUCTURE (1000X)

Specimen Crientation a (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (KSi)
10 20 30 40 50 60 70 80 90 100 110	0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125	0.314 0.353 0.375 0.383 0.375 0.364 0.370 0.387 0.386 0.379 0.373	0.473 0.626 0.696 0.734 0.777 0.784 0.764 0.830 0.804 0.855 0.822	14.0 15.6 15.5 14.8 16.0 16.4 17.1 16.9 16.8 16.8 16.8 16.2	54.0 52.7 57.1 57.7 57.5 60.9 61.4 63.5 62.8 62.0 62.3	56.0 55.4 59.0 59.4 59.1 62.5 62.8 64.9 64.9 63.5 63.7	72.2 70.8 69.6 68.5 67.5 69.9 69.6 72.0 72.8 71.4 70.5
120 130	0.125 0.125	0.364 0.377	0.801	15.9 15.9	60.7 59.4	62.0 60.9	68.8 68.6
140 150 160	0.125 0.125 0.125	0.357 0.367 0.366	0.641 0.696 0.658	16.2 14.9 15.5	58.2 57.4 55.7	59.8 59.2 57.9	68.8 70.0 71.0
170	0.125	0.364	0.596	15.2	54.4	57.4	73.1

MECHANICAL PROPERTIES

RD 20

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	L1on.' (%)
0	0,050	0.333	0.483	16.1	59.3	61.2	82.4	31.0
10	0.051	0.343	0.510	16.3	61.0	62.7	83.3	28.0
20	0.052	0.389	0.698	16.0	68.7	70.8	85.6	30.0
40	0.053	0.378	0.815	15.8	.74.2	75.8	83.7	29.5
45	0.052	0.387	0.750	16.1	73.4	74.3	81.5	25.0
50	0.052	0.390	0.773	16.4	76.3	77.0	83.4	28.0
70	0.052	0.400	0.765	16.9	78.0	79.5	85.7	26.0
80	0.052	0.387	0.757	16.6	76.8	79.0	85.9	28.0
90	0.051	0.385	0.719	16.9	75.7	76.9	83.7	23.0

MECHANICAL PROPERTIES

RC-55-53230-2

ļ

ETCHED MICROSTRUCTURE (1000X)

MECHANICAL PROPERTIES

Specimen Orientation ! a (degrees)	Thick- ness (inch)	۲ ۲	^μ թ.	Ex10 ⁶ Strain , Gage (psi)	Y.S. at 0.1% (ksì)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
0	0.127	0.400	0.764	15.0	62.9	64.7	80.6	31.0
10 '	0.128	0.394	0.723	15.4	61.9	63.8	78.9	30.5
20	0.127	0.377	0.723	15.5	63.2	63.2	80.9	30.0
30	0.129	0.379	0.751	15.4	62.0	63.7	77.0	31.0
40	0.128	0.388	0.793	15.5	63.2	64.8	74.3	37.0
50	0.129	0.382	0.811	15.6	63.7	65.2	73.9	31.5
60,	0.129	0.400	0.839	15.6	65.9	67.3	76.5	31.0
70	0.129	0.393	0.838	15.8	65.8	67.5	75.4	32.0
80	0.131	0.387	0.821	16.0	67.5	69.4	77.1	32.5
90	0.129	0.398	0.824	16.1	67.0	68.9	80.4	27.0

RC-55-53284-BM4

17

ش.

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Construction of

HEAT TREATMENT

Solution treated at 1400F, 2 hr w...

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	^н е	۴p	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ks1)	Tensile Strength (ksi)	Elon. (%)
L	0.137	0.337	0.466	15.8	71.6		88.7	35.0

States and states

RC-55-1500F

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1500F, 2 hr w.q.

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	۴E	۳p	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
L	0.137	0,325	0.500	15.8	71.1	73.6	89.7	33.0

and a state of the second

 and the state of the state

U

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1600F, 2 hr w.q.

			MLCIMUT(SKD TROFLK	1160			
Specimen Orientation Q (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
L	0.137	0.337	0.529	16.3	72.3	74.9	92.7	31.0

MECHANICAL PROPERTIES

Egg

1.1.1.

RC-55-1700F

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1700F, 2 hr w.q.

MECHANICAL	PROPERTIES
ribulationu	1101101100

Specimen Orientation a (degrees)	Thick- ness (inch)	۴E	۹ ⁴	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
L	0.137	0.309	0.378	15.5	62.5	68.0	93.0	19.0

21

antan 134 Serve,

Ti-100A-L730

(0002) POLE FIGURE

.

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at ' 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	ا Elon. (%)
0	0.065	0.330	0.451	14.5	71.0	74.1	94.4	23.0
10	0,065	0.332	0.481	[•] 14.7	75.0	'77.2	97.8	21.0
20	0.065	0.349	0.545	15.0	76.9	80.2	99.4	24.5
30	0.065	0.340	0.545	15.3	72.1	75.2	94.5	25.0
40	0.065	0.360	*	15.7 ·	78.2	81.3	95.1	26.5
50	0.065	0.351	0.663	16.5	76.7	80.4	95.1	¹ 31.0 ¹
60	0.065	0.370	0.700	16.5	76.5	79.6	94.9	28.0
70	0.065	0.374	0.703	17.3	84.6	87.4	100.0	28.0
80	0.065	0.374	*	17.6	83.3	86.1	140.0	28.0
90	0.065	0.365	0.625	17.7	84.6	87.4	105.6	25.0

MECHANICAL PROPERTIES

*Premature gage failure

(0002) POLE FIGURE

:

ETCHED MICROSTRUCTURE (1000X)

(degrees)	(inch)	μΕ,	μ _p	(psi)	(ksi)	(ksi)	(ksi)	(%)
0 10 20 30 40 50 60 80 90	0.029 0.030 0.030 i 0.030 0.030 0.030 0.030 0.030 0.030 0.029	0.352 0.356 0.364 0.400 0.391 0.393 0.393 0.400 0.358	0.552 0.552 0.587 0.666 0.725 • • 0.622 0.713 0.631	15.4 15.7 15.2 15.4 15.2 15.2 15.5 16.0 15.7	72.8 70.0 70.3 68.9 68.3 68.7 72.0 74.0 73.8	76.6 74.0 74.3 71.7 73.0 73.3 76.7 78.0 77.6	96.6 94.3 , 93.3, 88.0 88.7 89.0 90.0 92.0 93.1	22.0 28.0 27.5 29.5 28.5 27.5 28.0 27.0 23.0

*Premature gage failure

Specimen[°] Orientation

Ti-100A-L658

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μp	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
0 10 20 30 40 50 60	0.030 0.030 0.029 0.030 0.030 0.030 0.030	0.349 0.357 0.353 0.362 0.381 0.375 0.386	0.547 0.523 0.516 0.614 0.683 0.677 0.719	15.5 15.7 15.7 15.9 15.9 17.2 17.2	69.7 73.3 75.9 75.7 78.7 78.1 82.8	74.0 76.7 79.7 81.3 81.5 86.4	96.0 96.7 97.9 95.3 94.7 94.7 98.7	20.5 23.0 22.0 31.0 26.5 28.0 28.5
70 80 90	0.030 0.031 0.031	0.381 0.411 0.390	0.714 0.692 0.692	17.5 17.0 16.5	77.7 79.0 79.6	81.7 82.6 84.2	95.3 95.8 100.7	25.5 26.5 23.0

MECHANICAL PROPERTIES

CONS.

Second a South Stand Section 200

Scholar Statistics

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)
10 20 30 40 50 60 70 80 90 100	0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063	0.377 0.386 0.382 0.396 0.404 0.392 0.407 0.414 0.404	0.686 0.707 0.744 0.831 0.838 0.859 0.873 0.855 0.857	16.1 15.5 15.4 15.6 16.3 16.4 16.5 17.2 17.0 16.7	69.4 69.5 71.1 68.4 70.5 71.1 70.8 71.1 71.4 70.1	72.6 73.0 74.0 70.9 73.3 72.5 73.0 73.2 73.3 72.3	89.4 87.6 87.9 82.8 84.1 84.4 83.8 85.1 84.4 82.9
110 120 130 140 150 160 170	0.063 0.063 0.063 0.063 0.063 0.063 0.063	0.404 0.404 0.393 0.396 0.386 0.386 0.386	0.859 0.848 0.812 0.787 0.759 0.706 0.683	16.4 16.4 16.0 15.4 16.1 15.4 15.5	71.8 70.4 68.5 68.8 69.5 69.6 68.0	73.7 72.5 70.4 71.0 71.7 72.0 70.9	83.9 82.3 81.9 83.0 84.7 87.3 88.3

MECHANICAL PROPERTIES

Ti-75A-M290

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	۳E	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)
0	0.107	0.322	0.438	15.8	65.2	67.8	87.2
10	0.107	0.331	0.466	14.4	66.2	69.3	87.6
20	0.107	0.333	0.488	15.8	66.6	69.3	87.3
30	0.107	0.345	0.551	15.4	68.0	70.7	86.1
40	0.107	0.357	0.600	14.9	68.0	71.6	84.8
50	0.107	0.364	0.652	16.5	67.6	70.7	84.0
60	0.107	0.346	0.673	15.8	71.1	13.8	85.9
70	0.107	0.380	0.720	17.0	74.1	76.7	88.8
80	0,107	0.369	0.697	17.4	73.4	76.5	90.2
100	0.107	0.365	0.696	17.3	77.5	80.0	91.4
110	0.107	0.359	0.712	16.2	73.1	76.4	88.2
120	0.107	0.358	0.699	17.1	72.7	75.6	87.0
130	0.107	0.351	0.671	15.2	71.0	73.6	86.0
140	0.107	0.350	0.620	15.4	69.8	72.2	85.7
150	0.107	0.350	0.554	14.4	67.8	70.8	86.1
160	0.107	0.333	0.462	14.5	67.8	70.2	87.0
170	0.107	0.339	0.479	15.3	66.2	68.9	87.8

MECHANICAL PROPERTIES

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrccs)	Thick- ness (inch)	μE	q ⁴	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0 10 20 30 40 60 80 90 0 10 20 30 40 50 60 70	0.056 0.058 0.060 0.057 0.058 0.056 0.058 0.058 0.058 0.058 0.058 0.060 0.060 0.060 0.060 0.060 0.062 0.062	0.408 0.388 0.387 0.403 0.403 0.412 0.412 0.412 0.417 0.425 0.41 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.44	0.797 0.689 0.694 0.723 0.773 0.797 0.792 0.766 0.72 0.70 0.77 0.80 0.92 0.88 0.88 0.84 0.86	15.3 14.6 14.8 15.0 15.1 15.6 15.6 15.6 15.3 15.4 15.8 15.2 15.3 15.6 15.8 16.3	133,600 121,700 121,000 123,200 121,700 122,400 125,100 124,100 125,500 126,700 128,300 124,300 124,300 122,900 123,500 127,400 129,000	133,600 122,100 121,000 122,500 120,700 121,700 124,700 122,900 125,900 126,300 128,300 124,200 122,900 123,400 127,100 128,400	151,400 131,000 128,300 126,300 124,500 123,100 126,100 126,100 134,500 133,300 132,700 125,300 122,900 123,900 127,400 129,000
80 90	0.060 0.058	0.45 0.56	0.83	16.4 16.4	131,000	130,700 134,000	131,000 134,000

MECHANICAL PROPERTIES

APPENDIX II Ti-6A1-4V-M7199

RD

25 50 _

methological polynomials

ì

75 100

75

50

Ti-6A1-4V-B22075

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (100X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	q۴	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (ps1)	Elon. (°)
0 10 20 30 40 50 60 70 80 90	0.127 0.129 0.128 0.128 0.128 0.128 0.128 0.129 0.130 0.130 0.129	0.314 0.300 0.347 0.300 0.305 0.312 0.300 0.306 0.306 0.306 0.309	0.326 0.336 0.360 0.413 0.489 0.507 0.479 0.463 0.468 0.414	15.5 15.6 16.1 16.0 16.4 15.7 15.5 15.8 15.8 15.8 16.6	148,700 150,000 149,600 149,300 150,900 149,300 149,200 155,300 159,400	155,100 157,000 155,900 153,600 155,900 158,600 155,500 155,800 162,300 165,600	172,500 174,200 173,200 168,000 171,100 174,200 171,100 170,500 177,700 178,100	5.5 6.0 5.5 5.5 7.0 6.5 8.0 10.0 8.5 8.0

MECHANICAL PROPERTIES

and the first of the first of the second state of the second state of the second state of the second state of the

and a support of the second

Ti-6A1-4V-M2803 (0.07 in)

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0 10 20 30 40 50 60 70 80	0.07C 0.073 0.074 0.074 0.074 0.074 0.075 0.075 0.075	0.289 0.286 0.272 0.291 0.308 0.321 0.336 0.331 0.332 0.336	0.303 0.286 0.250 0.575 0.580 0.674 0.701 0.656 0.490 0.440	14.7 14.4 14.7 15.2 15.8 15.9 16.9 17.9 18.8 19.1	116,600 115,900 123,200 122,000 121,300 119,900 125,700 135,600 140,800 141,700	119,100 117,800 124,300 122,900 121,800 121,600 127,700 137,000 141,900 142,800	138,100 132,200 133,000 128,000 123,500 122,600 129,000 139,400 148,000 150,400	5.0 5.0 7.5 11.5 15.5 15.0 12.0 10.5 11.5 8 5

MECHANICAL PROPERTIES
Ti-6A1-4V-M2803 (0.03 in)

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0	0.036	0.240	0.150	11.7	93,900	104,400	116,100	-
10	0.037	0.225	0.129	12.7	90, 800	96,200	119,500	5.5
20	0.038	0.290	0.157	13.2	93,700	98,400	118,900	9.0
30	0.038	0.310	0.383	13.7	97,400	102,600	116,600	10.0
40	0.038	0.324	0.584	14.4	100,000	103,900	113,400	11.0
50	0 038	0.309	0.711	15.7	101,300	106,100	113,200	9.0
60	0.037	0.322	0.654	16.0	111,400	115,700	121,600	
70	0.038	0.299	0.457	17.0	120,300	123,700	133,700	7.0
80	0.038	0.285	0.210	17.4	121,800	124,700	133,200	4.0
90	0.038	0 316	0.221	17.3	121,109	124,700	133,200	2.5

MECHANICAL PROPERTIES

(0002) POLE FIGURE

ETCHED M1CROSTRUCTURE (1000X)

HEAT TREATMENT

'Solution treated at 1450F, 1/4 hr w.q. Aged at 1000F, 4 hr ac

Ti-6A1-4V-M2803 (0.06 in)

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

ないないできょうないないないないないないないないできょう

and the second se

33

1441 A441

Ti-6A1-4V-M2803 (0.06 in)

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Ti-6A1-4V-M27003

(0002) POLE FIGURE

فالمتلاحل والمتكامين وتوريد وكالمتار والمتلك فللمتكافئ فلتتم

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	ąµ	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
L1	0.040	0.34	C.44	15.8	127,000	135,000	153,000
T1	0.040	0.36	0.48	14.8	123,000	128,800	141,000

MECHANICAL PROPERTIES

TCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _F	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength . , (ps1)	Elon. (%)
0	0.037	0.318	*	15.4	121,600	128,600	. 154,600	10.0
10	0.038	0.308	0.322	14.5	119,500	126,300	155,800	11.5
20	0.038	0.311	0.458	14.6	188,400	:126,300	152,600	11.0
30	0.138	0.341	0.441	15.0	122,400	129,500	153,200	10.0
40	0.638	0.316	0.593	15.5	122,600	130,500	.153,100	7.5
50	5.038	0.320	0.403	150	117;400	124,700	151,600	10.5
60	1.039	311	0.618	14.21	119,500	125,600	149,200	13.0
70	ι.038	0.329	0.331	15.5	125,800	134,200	157,400	10 2
80	038	0.326	0.376	15.4	127,000	134,400	157,100	12:0
90	0.038	0.329	0,504	15.6	124,300	132,300	155,600	11.5
100	0.038	0.353	0.441	15.5	128,900	135,800	157,400	11.5

MECH J.ICAL PROPERTIES

*Premature gage failure

HEAT TREATMENT

Solution treated at 1400F, 1/4 hr w.q. Aged at 1000F, 4 hr ac

MECHANICAL PROPERTIES

Specimen Orientation	Thick- ness (inch)	μŝ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
L	0.064	0.300	0.444	16.1	113,200	116,400	135,200	14.0

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Aged at 1000F, 4 hr ac

MECHANICAL PROPERTIES

Specimen Orientation	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
L	0.062	0.337	0.524	16.6	120,300	124,800	147,700	11.0

to and the second the price of the price of the second for the second second second the trade of the second s

Party States

Phillips Store

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1600F, 1/4 hr w.q. Aged at 1000F, 1/4 hr ac

MECHANICAL PROPERTIES

Specimen Orientation	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
L	0.063	0.315	0.422	16.1	133,300	14(: 500	173,800	8.5

(0002) POLE FIGURE

and the second second second second and the second s

and the second second rest of the second
ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

MECHANICAL PROPERTIES

Specimen Orientation	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
L	0.062	0.300	0.374	16.1	159,400	165,900	179,600	2.5

\$

Wal . assistations

ŤÅ

ETCHED MICROSTRUCTURE (1000X)

Specimen .ientation 	Thick- ness (inch)	μE	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0	0.067	0.273	0.117	13.8	93,000	100,300	136,700	13.5
10	0.067	0.274	0.163	14.3	92,400	99,100	139,600	17.0
20	0.067	0.278	0.227	14.0	97,000	103,300	138,200	15.5
30	0.067	0.318	0.306	13.8	93,000	100,000	137,700	19.0
40	0.067	0.345	0.446	13.6	92,300	98,200	134,200	17.5
50	0.066	0.350	0.468	13.8	89,100	95,300	135,500	20.0
60	0.066	0.333	0.359	14.3	93,400	101,800	138,500	17.5
70	0.065	0.360	0.541	15.6	91,900	100,000	142,200	17.0
80	0.065	0.307	0.400	15.1	90,100	100,900	141,300	18.0
90	0.065	0.294	0.220	14.5	91,500	100,600	141,000	17.0

MECHANICAL PROPERTIES

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

نعتريت

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _Ε	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0	0.060	0.39	*	15.4	100,000	100,300	101,700
10	No specimen	made, lad	k of mate	rial			
20	0.060	0.48	0.96	14.9	99,700	99,000	99,700
30	No specimen	made, la	k of mate	rial			
40	0.062	0.43	0.91	15.0	97,400	97,100	97,400
50	0.060	0.46	1.23	15.1	98,700	98,700	98,700
60	0.060	0.45	0.96	15.4	100,000	100,000	100,000
70	0.060	0.43	0.95	15.2	100,000	100,000	100,000
80	0.058	0.44	*	16.2	103,800	104,800	103,800
90	0.060	0.43	0.42	16.1	105,300	104,700	105,000

MECHANICAL PROPERTIES

*Premature gage failure

ETCHED MICROSTRUCTURE (1009X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	գե	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (°)
0	0.021	0.243	0.060	13.0	68,600	76,200	130,950	13.0
10	0.021	0.267	0.066	10.3	69,700	79,300	133,650	12.0
20	0.022	0.276	0.178	12.6	64,900	75,000	139,900	13.5
30	0.021	0.328	0.271	12.2	68,200	76,800	139,500	14.5
40	0.022	0.339	0.416	13.6	75,700	84,300	146,700	15.0
50	0.022	0.389	0.362	14.1	71,800	81,400	146,400	16.5
60	0.022	0.346	0.365	14.1	80,450	90,450	146,400	16.0
70	0.022	0.339	0.299	13.8	88,200	97,300	149,500	15.0
80	0.022	0.314	0.189	14.4	90,900	102,700	147,300	13.5
90	0.022	0.340	0.271	13.9	95,000	105,900	147,700	12.0

MECHANICAL PROPERTIES

APPENDIX IV Ti-8A1-1Mo-1V-V1848

(0002) POLE FIGURE

Specimen Orientation (degrees)	Thick- ness (inch)	μE	μp	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.24 (psi)	Tensile Strength (psi)	Elon. (\$)
0	0.129	0.308	0.332	18.4	143,200	142.700	150,600	19.5
10	0.130	0.313	0.435	18.3	142,700	142,500	149.800	19.0
20	0.131	0.315	0.463	18.2	137.300	137.100	143.200	20.0
30	0.131	0.321	0.535	18.0	134,400	134,400	132.300	19.5
40	0.132	0.303	0.588	17.3	130,100	130.300	133,900	16.5
50	0.129	0.300	0.506	17.5	134.100	134.300	137.800	16.0
60	0.130	0.300	0.362	17.2	135,200	135.300	140,100	19.5
70	0.131	0.299	0.621	17.4	136,600	135.600	141,900	19.0
80	0.130	0.293	0.450	17.3	139,200	138.200	147.300	17.5
90	0.131	0.283	0.356	17.2	138,000	137.000	144.800	16.5

MECHANICAL PROPERTIES

Ę

APPENDIX V Ti-6A1-6V-2Sn-S

たいに、「たちにない」というないです。

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	: ۴E	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0	0.115	0.286	*	16.1	147,600	147,100	154,800
20	0.115	0.294	0.324	16.0	145,200	143,500	148,500
30	0.115 0.115	0.303	0.552	15.9 15.8	143,500	142,400	143,500 136,900
50	0.115	0.310	0.571	16.2	138,400	138,400	138,400
70	0.115	0.314	0.655	16.8	141,900	141,900	142,300
80 90	0.115	0.290 0.296	0.250 0.326	16.9 17.2	145,700 150,200	145,700 149,800	152,200 158,800

MECHANICAL PROPERTIES

*Premature gage failure

Ti-6A1-6V-2Sn-H

(0002) POLE FIGURE

1

ETCHED MICROSTRUCTURE (1000X)

Specimen Grientation a (degrees)	Thick- ness (inch)	۴E	۹۳	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0 10 20 30 40 50 60 70 80 90	0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115	0.310 0.294 0.307 0.312 0.318 0.320 0.315 0.308 0.306 0.292	0.412 0.327 0.372 0.488 0.559 0.571 0.517 0.419 0.333 0.312	16.2 16.3 16.2 16.0 15.8 15.8 16.2 16.8 17.0 17.1	159,000 159,500 158,200 153,900 150,600 150,000 151,600 157,600 160,200 159,500	159,800 159,500 157,000 153,900 150,600 150,000 151,600 157,600 160,500 159,500	167,500 166,300 162,000 155,900 151,900 150,200 153,800 161,000 168,300 167,200

MECHANICAL PROPERTIES

÷.'

時間になったいないのいろいろうちょう ひょう マー

ar district of a bill of the state of the properties of the state of the state of the state of the state of the

and the state of the

ţ

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	۳E	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
10 20 30 40 50 60 70 80 90 100 110 120 130 140	0 053 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063	0.313 0.317 0.324 0.329 0.354 0.340 0.333 0.345 0.345 0.345 0.345 0.345 0.343 0.343 0.38 0.343	0.33 0.40 0.46 0.55 0.80 0.67 0.52 0.56 0.56 0.56 0.56 0.55 0.76 0.53 0.51	16.0 16.9 16.0 16.4 16.6 17.0 16.9 17.4 17.2 16.9 17.2 16.6 16.6 16.2 16.2	103,400 110,900 112,800 114,800 123,300 133,300 141,400 138,000 141,600 141,600 141,900 140,400 140,800 126,400 115,700 113,600	115,600 120,700 122,400 122,000 131,100 140,800 145,600 145,600 145,500 146,100 145,700 146,500 134,400 122,300 124,200	135,000 134,900 134,200 130,300 135,000 149,500 151,800 151,000 153,400 153,400 152,900 153,300 139,200 139,200 134,700
160 170 180	0.063 0.063 0.063	0.325 0.393 0.312	0.42 0.31 0.42	16.2 16.6 15.2	104,700 116,000 105,700	115,800	131,300 138,400

MECHANICAL PROPERTIES

APPENDIX VI Ti-8Mn-3442 Ti-8Mn-A3613

記れたし

3

116.23.444

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

a ni (degrees) (ii	nch) μ_E	μ _p	Strain Gage (psi)	at 0.1% (psi)	at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0 0. 10 0. 20 0. 30 0. 50 0. 70 3. 80 0	064 0.316 .064 0.319 .064 0.317 .064 0.335 .063 0.349 .063 0.334 .063 0.334	0.492 0.466 0.474 0.522 0.588 0.472 0.474	15.9 16.2 15.7 15.2 16.1 16.8 16.6	130,800 130,800 129,000 125,400 134,200 138,600	135,800 135,500 133,500 131,600 137,700 141,100 142,900	149,400 147,700 139,400 139,400 140,000 146,000 149,200	24.0 24.3 3.5 28.0 24.5 24.0 12.0

•

MECHANICAL PROPERTIES

Ti-8Mn-A5227-7

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ps1)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
10	0.032	0.288	-	16.6	114,300	117,500	133,100
20	0.032	0.305	0.255	16.0	113,600	117,500	128,600
30	0.032	0.308	0.372	16.6	111,400	115,300	119,500
40	0.032	0.349	0.527	:5.6	114,900	116,600	116,900
50	0.032	0.338	0.587	16.2	119,300	121,300	123,000
60	0.032	0.327	n.569	16.5	129,000	132,000	132,000
70	0.032	0.304	0.407	18.0	141,300	141,300	145,300
80	0.032	0.30	0.415	19.0	136,700	138,700	152,000
90	0.032	0.327	0.500	20.6	132,000	135,000	
100	0.032	0.323	0.517	19.6	131,300	135,300	144,000
110	0.032	0.333	0.585	17.4	130,300	134,200	141,900
120	0.032	0.322	0.559	16.5	130,600	124,500	130,600
130	0.032	0.348	0.590	16.5	127,900	131,200	134,400
140	0.032	0.327	0.463	16.2	120,000	123,700	131,900
130	0.032	0.321	0.432	16.6	118,800	123,100	135,900
160	0.032	0.325	0.410	16.9	127,500	131,200	145,000
170	0.032	0.311	0.339	15.5	115,300	120,600	134,100

F

MECHANICAL PROPERTIES

Ti-8Mn-A5221-16

(0002) POLE FIGURE -

: > ETCHED MICROSTRUCTURE (1000X) i

1

ı.

1.

MECHANICAL PROPERTIES : 1

Spesimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۹ ^μ	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (*) [:]
0	0.122	0.286	0.252	16.1	118,900	120,200	137,700	22.5
10 (0.122	0.286	0.264	16.4	118,000	120,000	137,700	24.5
20	0.122	0.306	0.341	16.4	120,300	123,000	134,400	22.5
30	0.122	0.320	0.400	15.7	119,500	120,200	127,700	26.0
40	0.122	0.333	0.568	16.4 .	119,700	120,700	124,600	28.5
50	0.122	0.333	0.615	15.9	121,700	123,400	126,200	26.5
70	0.122	0.326	0.428	. 17.6	132,700	134,400	142,700	25.5
80	0.122	0.303	0.368	17.9	130,900	132,600	147,100	15.0
90	0,122	0.338	0.401	18.3	139,390	139,900	148,800	8.8

ETCHED MICROSTRUCTURE (1000X)

÷

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick-, ness (iṇch)	μ _E	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0/1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	٤ lon . (۴)
0 10 20 30 40 50 60 70	$\begin{array}{c} 0.061 \\ 0.063 \\ 0.063 \\ 0.064 \\ 0.064 \\ 0.063 \\ 0.063 \\ 0.063 \\ 0.063 \end{array}$	0.291 0.236 0.296 0.303 0.326 0.325 0.334 0.330	0.313 C'.295 0.411 0.447 0.521 0.583 0.754 0.754	16.1 16.0 16.4 15.9 16.4 17.2 17.3 18.2	140,500 134,200 137,700 142,200 144,500 142,900 151,900 161,700	142,500 136,700 139,600 143,300 145,600 145,600 145,500 152,500	163,400 156,500 152,500 144,900 145,600 143,500 152,500	15.0 20.0 20.0 18.5 18.0 12.5
80 , 90	0.063	0.330 0.328	0.415 0.330	19.0 19.8	167,100 168,000	167,700 168,800	167,700 169,000	16.0 13.0

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10" Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	11on. (°.)
0 0 10 0 20 0 30 0 40 0 50 0 60 0 90 0 10 10 20 0 10 10 20 30 40 60	0.051 0 0.052 0 0.052 0 0.053 0 0.053 0 0.053 0 0.054 0 0.054 0 0.054 0 0.054 0 0.054 0 0.054 0 0.051 0 0.052 0 0.052 0 0.052 0 0.052 0 0.053 0 0.053 0	0.240 0.267 0.264 0.281 0.305 0.317 0.308 0.308 0.308 0.321 0.262 0.289 0.288 0.308 0.288 0.308 0.297 0.325 0.316	0.092 0.239 0.171 0.153 0.610 0.767 0.653 0.368 0.389 0.273 0.304 0.344 0.344 0.344 0.344	16.1 16.3 16.2 15.3 17.0 17.2 17.9 19.2 19.1 19.6 16.8 16.7 17.3 17.1 16.2 18.1 19.4	134,800 135,200 136,209 137,900 140,600 143,(00 148,509 159,500 162,100 166,000 132,700 129,000 130,900 133,900 138,300 148,700 157,800	134,400 135,800 136,500 137,900 139,500 143,600 148,700 158,300 162,100 165,500 134,200 130,200 131,600 133,900 138,300 147,900	156,250 152,500 146,300 140,600 143,600 143,600 148,700 155,600 166,400 169,800 152,300 146,300 141,400 134,100 138,300 148,900 159,600	13.5 14.5 16.5 18.5 22.0 15.0 11.5 15.0 15.5 14.0 12.5 15.5 19.5 17.0 19.0 9.0 14.5

MECHANICAL PROPERTIES

والعناط المدلا مسعطيون للالا

114 900

ł

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

r, i

ز ن (0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

فلأعتمن

Bertand Mallinger

1

í.

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

APPENDIX VIII Ti-16V-2.5A1-B24814

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

Selution t	reated at	1200F,	1/2	hr	w.q.
Aged at 97	75F, 4 hr a	ac			•

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	Β	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
AT-4	0.026	0.278	0.152	15.5	127,700	130,000	138,800 [:]	2.5
AL-4	0.028	0.342	0.077	16.2	113,500	116,700	120,200	1.0

58

i

(0002) POLE FIGURE

.ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

ł

Solution treated at 1300F, 1/2 hr w.q. Aged at 975F, 4 hr ac

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	μE		Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tonsile Strength (psi)	Elon. (%)
AT-6	0.028	0.261	0.152	15.5	142,100	145,000	158,900	6.0
AL-6	0.027	0.258	0.140	15.7	141,900	145,200	152,200	2.5

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	In	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
AT-8 AL-8	0.028 0.028		, ;14	15.0 15.0	166,100	171,400	180,700 -	1.5 0

*Premature gage failure

Statistical and a second

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۳p	Ex10 ⁶ Strain Gage (psi)	Y,S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength ιpsi)	Elon. (°)
AT-3	0.028	0.311	*	14.9	160,700	170,700	182,500	3.5
AL-3	0.028	0.344		14.2	162,200	168,000	174,800	1.5

*Premature gage failure

man Routh and the All Sciences of the Rolling and the

I Panda

61

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Aged at 975F, 4 hr ac

MECHANICAL PROPERTIES

Sper en Orient n (a.	Thick- ness (inch)	μĒ	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0 ?% (psi)	Tensile Strength (psi)	Elon. (°)
L: 45-1 45-2 T1 T2	0.028 0.029 0.029 0.029 0.029 0.028 0.027	0.250 0.263 0.364 0.369 0.271 0.263	0.111 0.166 0.571 0.714 0.149 0.133	14.8 14.6 13.0 13.4 15.5 15.3	159,000 153,800 147,300 145,800 157,900 154,100	163,100 156,600 149,300 149,300 162,100 157,000	174,500 170,300 154,100 153,500 175,000 166,700	5.0 5.5 7 5 8.0 2.5 5.0

(110) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1450F, 1/2 hr w.q.

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2° (psi)	Tensile Strength (psi)	Elon. (°)
		1					<u> </u>	
-10	0.024	0.353	0.319	11.6	52,100	58,300	100,000	9.0
0	0.025	*	*	10.6	63,500	71,000	125,000	-
10	0.025	*	*	-	56,800	64,000	109,600	7.0
20	0.026	0.363	0.345	10.6	53,800	61.600	114,500	12.0
30	0.025	J.353	0.304	10.7	53,900	61.500	108,700	5.5
40	0.026	0.364	0.359	11.9	59.900	67.600	117,200	10.0
50	0.025	0.364	0.352	11.1	55.600	63,500	113,500	8.0
60	0.026	0.375	0.346	10.6	56,900	63.700	113,000	8.0
70	0.025	0.389	0.439	11.1	53,200	62,000	109,200	4.5
80	0.027	.346	0.328	9.6	58,900	65.600	111,900	9.5
90	0.027	0.400	0.407	11.6	58,900	66 600	112 500	
100	0.026	0.365	0.404	10.6	50,800	57,600	107.600	6.0

MECHANICAL PROPERTIES

*Premature gage failure

And a standard and a standard and a standard and a standard and a standard and a standard and a standard and a

and the second

ETCHED MICROSTRUCTURE (500X)

1

;

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	۲p	Ex10 ⁶ ; Strain Gage (psi)	Y.S. at 0.1° (psi)	Y.S. 'at 0.2% (psi)	, Tensile Strength (psi)	Elon. (%)
0 10 20 30 40 50 60 70 80 90	0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.025 0.025 0.026	0.114 0.220 0.287 0.350 0.390 0.404 0.369 0.291 0.214 0.191	* 0.071 0.230 0.333 0.435 0.459 0.317 0.151 *	11.1 11.0 10.6 9.6 9.4 9.7 9.7 10.2 11.9 11.8	60,000 56,000 53,500 48,500 50,000 :44,200 46,200 55,000 61,600 61,500	55,600 61,600 59,600 55,000 55,500 51,900 52,300 60,700 66,400 66,900	110,000 107,600 113,100 125,400 128,800 124,200 128,800 114,600 102,000 100,800	18.5 19.0 13.5 14.5 13.0 14.0 14.5 11.0 19.0 19.0

MECHANICAL PROPERTIES

:

*Premature gage failure

e.

Bina c

ETCHED MICROSTT 'CTULE (1000X)

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	fhick- ness (inch)	μĒ	۳p	kx10 ⁶ Strain Gage (psi)	Y.S. ac 0.1. (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. '(%)
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 45 71 20	0.044 0.045 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.045 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.21 0.25 0.25 0.37 0.40 0.41 0.38 0.32 0.23 0.23 0.21 0.196 0.202 0.275 0.358 0.358 0.358 0.364 0.403 0.364 0.229 0.222	0.11 0.14 0.08 0.36 0.45 0.46 0.41 0.24 9.10 0.11 0.044 0.038 0.178 0.310 0.389 0.350 0.492 0.353 0.228 0.154	12.4 13.3 .1.0 10.3 10.6 10.9 11.6 12.4 13.6 11.7 11.3 10.1 9.1 8.8 9.9 8.8 9.4 11.1 12.1 13.1	71,400 78,300 82,300 90,900 87,600 87,600 89,400 90,400 90,000 89,400 62,000 59,783 55,652 51,087 47,826 82,969 50,400 50,000 58,200 64,348 68,606	75,900 81,400 86,100 97,000 96,400 96,400 97,400 93,600 93,600 92,800 66,700 65,200 62,000 57,800 54,800 93,900 56,500 56,500 64,900	105,200 110,600 112,600, 116,900 118,600 117,400 118,100 115,700 112,300 110,600 111,100 110,900 119,600 127,200 130,400 111,400 129,300 123,900 117,800 108,300 111,700	19.5 15.5 14.0 16.0 15.5 16.0 14.0 14.0 10.0 13.0 20 5
Ti-16V-2.5A1-B22117

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Aged at 975F, 4 hr ac

abbita state and the second state of the

n in get nam ter bin der nien gebiere en die 24 gehieren ein der en gete gehieren en der der der der der der de

Ti-16V-2.5A1-M24990

(0002) POLE FIGURE

Sugar Labor

ETCHED MICROSTRUCTURE (500X)

Specimen Orientation Q (degrees)	Thick- ness (inch)	μĒ	۳p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0 10 20 30 40 50 60 70 80 90	0.022 0.023 0.024 0.024 0.024 0.024 0.023 0.023 0.023 0.023	0.250 0.262 0.287 0.318 0.340 0.339 0.333 0.286 0.267 0.250	0.136 0.179 0.243 0.300 0.581 0.353 0.353 0.232 0.192 0.154	15.2 14.7 14.7 13.4 13.1 12.9 14.0 14.5 14.5 14.8	152,700 153,900 153,500 142,500 143,300 141,700 147,800 152,200 148,300 150,900	156,400 156,500 156,500 146,300 146,300 144,600 151,700 155,500 151,300	170,000 169,100 155,400 152,100 149,600 159,100 168,700 162,600	4.5 4.5 7.5 5.5 6.5 7.0 5.0 7.5 3.5

MECHANICAL PROPERTIES

ETCHED MICROSTRUCTURE (1000X)

',

MECHANICAL PROPERTIES

Specimen Orientation a (degrees)	Thick- ness (inch)	۴Ŀ	۹'n	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (°)
0 10 20 30 40 50 60 70 80 90 0 10 20	$\begin{array}{c} 0.039\\ 0.040\\ 0.040\\ 0.040\\ 0.041\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ 0.041\\ \end{array}$	0.336 0.313 0.352 0.384 0.408 0.400 0.403 0.377 0.361 0.338 0.327 0.333 0.348	0.42 0.30 0.40 0.45 0.52 0.51 0.56 0.46 0.43 0.38 0.255 0.306 0.363	11.7 11.0 10.9 10.0 10.5 11.9 11.3 11.7 12.6 12.6 12.6 11.4 11.6 10.6	65,800 66,000 65,000 64,300 62,700 62,300 67,800 73,800 92,200 78,400 63,500 63,400 62,200	71,800 73,300 71,500 71,000 69,500 70,300 76,500 82,000 82,000 86,800 69,300 69,500 68,800	114,400 115,000 117,000 119,500 119,000 122,000 121,300 118,000 113,200 111,800 110,500 112,200 115,900	- - - - - 20.5 17.5 17.0
30 40 50	0.041 0.041 0.041	0.373 0.394 0.413	0.421 0.476 0.513	10.3 10.1 10.6	62,200 62,200 62,200	68,300 68,300 71,500	118,300 118,800 116,600	17.5 15.5 17.0
60 70 80 90	0.041 0.041 0.041 0.040	0.405 0.393 0.345 0.370	0.525 0.534 0.423 0.466	11.0 11.4 12.2 11.8	64,600 69,800 75,100 75,000	72,000 77,300 82,900 82,500	116,100 114,600 112,700 108,800	16.5 15.0 14.0 14.0

68

Ti-16V-2.5A1-M23346

(0002) POLE FIGURE

and a ballow share a second state and

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	۴E	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0	0.070	0.281	0.206	14.8	127,5C0	129,600	143,900	11.5
10	0.071	0.289	0.252	14.8	132,000	134,600	148,200	12.5
20	0.070	0.296	0.276	14.2	126,400	129,200	139,000	12.0
30	0.070	0.307	0.360	13.4	128,900	131,100	139,600	12.5
40	0.070	0.325	0.442	14.3	125,700	126,900	132,600	12.0
50	0.070	0.335	0.454	14.3	128,900	131,100	135,800	10.0
60	0.070	0.329	0.423	14.9	133,000	134,700	141,000	14.0
70	0.070	0.304	0.282	15.3	137,200	140,200	149,100	10.5
80	0.071	0.290	0.287	15.6	138,900	142,200	152,100	11.0

MECHANICAL PROPERTIES

Ti-16V-2.5A1-T22154

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	۴Ē	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2° (psi)	Tensile Strength (psi)	Elon, (°)
0 10 20 30 40 50 60 70 80 90	0.061 0.065 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066	0.320 0.307 0.330 0.333 0.538 0.542 0.337 0.325 0.321 0.333	0.336 * 0.453 0.424 0.473 0.515 * 0.384 0.427	14.9 14.3 14.4 14.4 14.3 14.3 14.3 14.6 14.8 14.7 14.9	158,800 159,500 155,900 156,000 158,900 159,500 163,100 165,900 167,100 166,600	163,100 162,000 159,800 159,800 162,800 164,000 167,800 169,500 171,900 171,600	179,100 176,700 175,500 174,200 175,200 175,000 178,200 180,700 182,800 181,600	6.0 9.0 8.0 5.5 8.5 6.5 5.5 5.5 5.5

MECHANICAL PROPERTIES

*Premature gage failure

ì

and all in social descent states and

1. Sec. 1.

Ti-16V-2.5A1-T24762

Kizlermä

Show Street and

24.03

and the second as particular the second so

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	۴p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	T isile Strength (psi)	Elon. (%)
0	0.130	0.303	0,296	15.3	158,500	161.700	174.200	8.0
10	0.129	0.298	0.310	14.9	158,100	162.000	177.500	7.0
20	0.130	0.335	0.332	14.7	159,200	163,100	175,400	8.0
30	0.130	0.324	0.390	14.7	156,200	160,800	173,800	9.5
40	0.130	0.327	0.446	14.4	160,000	165,400	173,800	8.5
50	0.131	0.335	0.477	14.2	158,800	164,100	174,800	10.5
60	0.130	0.346	0.445	14.4	163,800	169,200	178,500	7.5
70	0.129	0.323	0.392	15.9	170,500	179,100	189,100	8.0
80	0.129	0.340	0.277	15.5	171,300	177,500	190,300	7.0
90	0.130	0.314	0.309	15.2	172,300	177,700	188,500	5.5

MECHANICAL PROPERTIES

APPENDIX IX Ti-7A1-3Mo-1295

(0002) POLE FIGURE

ł

;

ł

ETCHED MICROSTRUCTURE (1000X)

Speciren Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (°,) 1
0	0.062	0.354	0.656	16.2	154,200	155,200	167,100	13.0
20	0.062	0.365	0.663	16.4	162,400	156,600	162,400	11.5
40	C.062	0.376	0.778	16.0	149,500	150,300	151,900	15.0
50	0.062	0.385	0.795	17.0	149,200	149,500	150,200	14.0
60	0.062	0.392	0.795	16.7	153,500	154,800	154,800	12.5
70	0.062	0.384	0.719	17.1	157,400	158,700	159,700	11.0
80	0.060	0.375	*	18.2	163,200	161,200	163,900	7.0
90	0.060	0.375	*	18.4	159,200	159,200	161,500	6.0

MECHANICAL PROPERTIES

*Prematur gage failure

72