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DIFFUSION THEORY FOR ADSORPTION AND DESORPTION OF GAS ATOMS AT SURFACES

*
Patrick J. Pagni and James C. Keck
Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

~The time evolution of a nonequilibrium ensemble of gas atoms adsorbed
on a solid surface i1s described., Adsorption and desorption rate constants
and adatom (adsorbed atom) energy distributions are obtained in the steady
state approximation from the appropriate master equation or an equivalent
diffusion equation. Energy transition probabilities are obtained from a
classical gas-surface collision model using an interaction potential com-
posed of an oscillating harmonic repulsion and a stationary attraction.-
Calculations have been performed over the following range of similarity
parameters: iInertia ratio 10-2 <us= mg/ms < 2, frequency ratio
1<va= ws/wg < 10, and well depth 2 < § = D/kT < 100, For "resonance"
values of the frequency ratio, gas-surface collisions are sufficiently
adiabatic that adatom energy distributionc are significantly nonequilibrium,
and steady state rate constants are depressed below the equilibrium rate

constants. - Applications include prediction of adsorption and desorption

*
Present address: University of California, Berkeley, California
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rate constants, sticking and accommodation coefficients, sublimation
and condensation rates, and boundary conditions for the Knudsen layer.
I. INTRODUCTION

This investigation concerns the evolution of a system of gas atoms
adsorbed on a solid surface when that system is thrown out of equilibrium.
A fundamental physical understanding of the nonequilibrium phenomena at
such a surface is needed to delineate important similarity parameters and
provide guidelines for definitive experiments in surface studies. Consider,
as an initial problem statement, an ensemble of gas atoms in equilibrium
with a solid surface at temperature T enclosed in a sealed container. The
enclosure is instantaneously evacuated at t = O, The problem is to deter-
mine the time history of the surface concentration and the adatom (adsorbed
atom) energy distribution. Experiments show that over a wide range of
conditions the desorption process proceeds according to a first-order rate
equation:

dA(t) _
rranidt W F(t) - kg A(t) (1)

where A is the surface concentration (cm-z), F is the gas concentration
(cm-a), and ka and kd are the adsorption and desorption rate corsiants.
A satisfactory quantitative understanding of temperature and atomic
species dependence of the rate constants ka and kd is sought. This
analysis is the first attempt the authors are aware of to describe the
functional dependence of ka and kd using nonequilihrium kinetics. An
equilibrium approach1 tvhich assumes a Roltzrann distrihution for the
adatom energy distribution and that all atoms which strike the surface

adsorb gives the classical desorption rate constant
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kdc = 2m exp(L ET') (2)
where wg is a characteristic frequency, D is the potential energy well
depth, and T is the surface temperature. The statistical description
given here approaches this equilibrium expression as a limitirg
case.

Many previous investigations of the interactions of gas atoms at

(2-21)

and excellent reviews of this work
(22) (23)

surfaces have been reported,

may be found in articles by Trilling and Kogan. 0f particular

interest in connection with the present investigation is the work of

(2-9)

who has made careful studies of the effect of lattice interac-
(18)

Armand

tions on the desorption process and Logan and Keck who have developed

a relatively simple ''soft cube' model for scattering of gas atoms by

surfaces. Also of interest is the analogous gas-phase problem of molecu-

(24-31)

lar dissociation and recombination, and a review of this litera-

ture has been published by Bunker.(32) The theory developed in this
paper is based on this analogy and parallels the work of Keck and Carrier
and Keck.(ze)

Applications of the theory include prediction and correlation of
adsorption and desorption lifetimes, accommodation and sticking coeffi-
cients, sublimation and condensation rates, and scatterirg patterns. 1In
addition, potential parameters for gas-surface interactions may be deduced
from a comparison of the theoretical results with experimental data(33-39)
obtained using modulated beam and flash desorption techniques.

A general discussion of the theoretical model and the governing

master equation used to obtain rate constants is given in the following

(27

)
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section. The mechanism of the gas-surface collisions ard the dimension-
less parameters characterizing the problem are discussed in Section III.
The transition kernel appearing in the master equation and the steady
state adsorption and desorption rate constantsare derived in Section 1V.
Finally, a brief summary and conclusions are given in the last section.
IT. MATHEMATICAL MODEL
A. Qualitative Discussion

Consider first a single gas atom approaching the solid surface from
the free state with a nondimensional energy € = E/kT as shown in Figure 1
where r is the atom displacement from the surface. Far from the surface,
the free atom feels an attractive van der Waals force represented as a
potential with a positive gradient increasing as the separation distance
decreases. In the immediate vicinity of the surface, the gas atom
encounters a repulsive valence force represented by a potential with a
negative gradient that approaches infinity as the separation distance
goes to zero. At finite separation distances these two poentials over-
lap to form a potential energy well which defines the collision mechanics.
For the collision shown, the atom's energy after collision, €', is less
than the well depth, and the atom is trapped on the surface.

The distinctive feature of the collision between a free atom and a
lattice atom is that the '"inner" potential oscillates while the '"outer"
potential is stationary. The stationary outer potential results from
averaging over pairwise potentials between the gas atom and several
lattice atoms which, at large separation distances, are equidistant from

the gas atom and hence have an equal influence on it. The oscillations
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of the repulsive potential are not climinated by averaging, since at
small separation distances one lattice atom dominates the repulsion.

Now consider an ensemble of adatoms trapped on the surface. The
array of csurface atoms is modeled as a set of independent simple harmonic
oscillators and may be visualized as a ''simple harmonic chess board" in
which each square oscillates perpendicular to the plane of the board
with a frequency approximated by a surface Debye temperature and with
an amplitude probability specified by a Boltzmann energy distribution
at the temperature of the solid. The well depth, which is a function
of both time and position on the surface, is approximated by a constant.
This approximation 1is possible since all important energy levels are
near the top of the well. A free atom at rest an infinite distance
from the surface is assigned an energy equal to the nondimensional well
depth 6 = D/kT, placing the zero of energy at the bottom of the well.
The adatom energy distribution can be found from a kinetic master equa-
tion once energy transition probabilities are obtained from a gas-sui~
face collision model, This is equivalent to treating the movement of
adatoms among the energy levels of the potential well as a random walk
process. Adatom energy transitions are statistically independent since
the relaxation time of a struck lattice atom, Tr’ and the collision
duration, Tc’ are less than the period, To’ of the adatom oscillation
in the gas=surface potential well. The kinetic equation used here only
accounts for adatom-surface collision induced energy transitions, thus
this analysis 1is restricted to low surface concentrations,

The desorption relaxation process has three distinct time scales.

Initially there is a transient regime of the order of the characteristic
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adatom oscillation time, To’ during which there is negligible desorption.
During the transient, the adatom energy distribution relaxes to a steady
state form which is the asymptotic energy distribution as t/'ro +> o, The
second time regime i1s characterized by the mean desorption lifetime,

1, =k}, Since T

d d d
is large compared to kT, T

is of the order of T, exp (D/kT) and the well depth
d >> Ty This difference in time scales allows
the steady state distribution to be used during the entire second time
regime while all significant desorption takes place. The third regime is
the equilibrium conditiou at t/‘rd + o, Here the adsorbing flux equals the
desorbing flux. It is the second time regime which will be examined in
detail to determine the temperature and atomic species dependence of the
rate constants,
B. Master Equation
Assuming that the state of an adatom is specified by its energy,

the kinetic master equation for the reduced adatom energy population

X(e, t) can be written:
Ne(e) g—;x(e, t) = .fg R(e, €') [X(e', t) - X(g, t)]de’

+ R(e, £) [H(g, t) - X(g, t)] 3)
where

X(e, t) = N(g, t)/Ne(e) (4)

is the ratio of the actual energy distribution, N(e, t), of adsorbed atoms
to an equilibrium distribution, Ne((»:) = (N/Q)e-e @R/de), at the surface
temperature T, N is the number of atoms in that region of phase space for

which the partition is Q, d/de is the energy level density per unit €,
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€ = E/kT is the nondimensional adatom energy, § = D/kT is the nondimen-
sional well depth, R(e, €')dede' is the one-way equilibrium transition

rate from an energy band d€ at € to an energy band de' at €',

R(g, f)de = f; R(e, €')de'de (5)
is the one-way equilibrium desorption rate from an energy band de at
€ to the free state, and H(€, t) is the ratio of the actual one-way
adsorption rate to the equilibrium one-way adsorption rate,R(f, €).
Note that by detailed balancing, we have R(e, €') = R(e', €) and
R(f, €) = R(g, f).

X(e, t) is a useful measure of nonequilibrium since it is unity
at equilibrium. X(g, t) > 1 indicates over population of the energy
level €, and X(g, t) < 1 indicates depletior of the level €., The
‘master equation simply states that the adatoms leave the energy level
€ either by making transitions to the level €' at a rate R(g, €') X(g, t)
or by desorbing to the free state at a rate R(g, f) X(g, t) and enter
the energy level € either by making transitions from the level €' at a
rate R(e', €) X(e', t) or by adsorbing from the free state at a rate
R(f, €) H(e, t).

The form of Equation(3)results from the following assumptions:

1. The adatom concentration is sufficiently small that collisions
between adatoms may be neglected. If an equivalent Knudsen number
Kn, is defined as the ratio of the adatom-surface collision rate
to the adatom-adatom collision rate, this assumption is valid when
Kn >> 1. The adatom=surface collision rate is the inverse period
of oscillation in the well’\'1013 sec_l. The adatom-adatom colli-

sion rate is O c A where A is the surface concentration, 0 the
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collision diameter A 10"'8 cm, and the mean speed ¢ = (1rk'1‘/2m8)1/2'\,105

cm sec.-1 The effective Knudsen number is then Kn = To-ll(o CA) = 1016 Afl

and assunption 1 is valid 1f A << 1016 cm-z.

2. A classical approach is valid. Keck and Carrier(27) have shown that
quantum models fail when the average energy transfer per collision
is greater than the energy level spacing at the rate-limiting step
in the well. For the transition rate derived here, the "bottleneck"
is at the top of the well where the energy level density is high,
and the quantum number is large. For very shallcw well depths, § v 1,
this approximation is not valid.

3. The nonequilibrium transition probability is equal to the equilibrium
transition probability. This assumption is always valid since the
collision mechanics are determined by the temperature of the solid
and the atomic parameters of the gas and solid and are independent
of the energy distribution of the adsorbed ensemble.

C. Steady State Solutions
To solve Equation (3)we now introduce the steady state approximation
by setting the time derivative on the right=hand side equal to zero.

This gives

fo R(e, € [X(E', ) - X(, )1’ + R(e, £ [HE, &) - X(e, ©)] =0 . ()
The form of Equation(7)indicates that energy and tive variables will
separate if it is assumed that a steady state reduced population, x(),
exists such that

X(e) f(t) = X(e, t) - H(e, t) : €< 8§ (8)
where f(t) gives the time dependence of the adsorbed population. 1If

the energy distribution in the free gas 1s steady, H(e, t) may also be
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separated as H(E) F(t)/l-'e where F(t) is the time-dependent free gas
concentration, and H(€) is the ratio of the adsorption rate at an
energy level € from the actual incident dist;ibution tc the rate from
an equilibrium distribution. In terms of the equilibrium transition
rate R(€', €) and a time-independent incident atom energy distribu-

tion X (€') = F, N (E",e)/F(t) N ("),

H(E) = f'gn(e', €) Xy (€') de'/R(E, €) . (9)

H(e) is unity when the incident energv distribution is Boltzman about
the temperature of the solid so that xée') =1,
An integral equation for x(e) is obtained by substituting Equation

(8)into Fquation(7)and assuming JH/3e << £(t) dx/de

f3 RGe, € (X(e") = X(€)) de' + R(e, £) x(e) = 0 . (10)
The condition 911/3€ << £(t) dx/de is generally satisfied since near the
top of the well the gradient of Xx(€) is large duc to depletion of the
upper energy levels by desorbing adatoms,and 11(e) does not have a large
gradient at any enmergy. The steady state population, x(€), is obtained
from a iteration solution to Equation(lOﬂor by conversion of Equation (10)
(27)

to an equivalent diffusion equation.

The surface concentration is given by

At) = fg X(e, t) Ne(e) de , (11)
where X(€, t) is obtained in the steady state approximation by assuming

X(e, t) is separable, and setting X(0) = 1 in Equation(8). This gives

X(e, t) = X(0, t) x(e) + (H(e) - H(O) x(e)) F(e)/F, . (12)
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Since Ne(E) is a rapidly decreasing function of €, sutstituting Equa-
tion (12) into Equation (11) with H(e) slowly varying and x(€) = 1
near € = 0 gives

A= X(0, £) S5 N (e) de = X(0, OA_ . 13)
The rate constants are obtained as functions of transition rates R(f, €),
and the steady state reduced population, X(€), from the energy integral
of the master equation. Integrating the original master equation (3)
over energy using Equations (9) and (13) yields the phenomenological

equation

dA(t)
Gt "k F(t) - k, A(t) , (14)

where the rate constants have the form

)

k, = Jg R(, €) x(e) de/F (15)
and

ky = £ R(E, €) x(e) de/A, (16)
1f H(c) 1s unity. These are the steady state rate constants. The
equilibrium rate constants are given by setting x(€) = 1 in Equations
(15) and (16). It is seen from these equations that the ratio of the
forward to backward rates in both the steady state and equilibrium case

is equal to the equilibrium constant.

F k. k
e ce d

K "2 "k "k an
e ae a

where Ke is the equilibrium constant, kde is the equilibrium desorption
rate constant, and kae is the equilibrium adsorption rate constant. When

H(e) is not unity; i.e., an incident gas stream exists which does not
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have a Boltzmun distribution about the temperature of the solid, the
ratio of the forward to backward rate constants is equal to the product

of the equilibrium constant and H(0),

ky/k, = K, 1(0) . (18)
The factor H(0) takes intc azcount the dependence of the adsorption rate
constant on the encrgy distribution of the incident atoms. In this
case, the energy integral of the original master equation with Equa-

tions {12), (13), and (14) gives the adsorption rate constant as

kg = U RE, ©) X(€) de)  H(O)/E, . (19)
Since the desorption rate constant is unaffected by the incident atom
energy distritution, it remains unchanged and is given by Equation (16),
III. COLLISION MECHANICS
A. Equations of Motion
The mechanics of a single collision between a gas atom and a sur-
face atom must be described in detail to obtain the energy transition
probabilicy, R(c', €). The collision model used is similar to the soft

cube model of Logan and Ke:k(la)

with an oscillating half harmonic

repulsion replacing the oscillating exponential repulsion since lower

incident energies are of interest. It ig assumed that:

1. tangential momentum is conserved; i.e., the solid surface is flatc.
This is not true since the crystal structure produces a rough sur-
face on the atomic scale. However, the roughness seen b, an inci-

(16)

dent atom is energy dependent and at incident encrgies < § the

adatom, remainiag relatively far outside the crystal structure,
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would see an approximately flat surface. Experimental data on
(18) and

(40)

out-of-plane scattering and the success of the soft

hard(17)

cube models in predicting scattering patterns
support this assumption.
2. the surface atoms are independent simple harmonic oscillators
with a single characteristic frequency obtained by approximating
the lattice frequency spectrum with a delta function at the Debye
frequency. Decoupling the surface array into independent oscillators
has been shown to have small effect on the energy exchange process.(ls’lg)
It is also assumed that only a single surface atom is involved in any
given collision. It has been shown that most of the load for most of

(18) When the adatom

the collisions is taken by a single surface atom.
velocity parallel to the surface is so large that the distance traveled
during a collision is greater than the lattice space, this one-on-
one approximation fails.

3. the gas-surface potential consists of a stationary arbitrarily shaped
attraction and an oscillating quadratic repulsion. The motivation
for this assumption is discussed in the introduction. The interac-
tion is described classically and would not strictly apply to inci-
dent atoms whose DeBroglie wavelength is of the order of the lattice
spacing or to solid temperatures below the surface Debye temperature.
The model interaction potential is illustrated in Figure 2. The

inner half (r < 0) is an harmonic repulsion while the outer half

(r > 0)is a static barrier of height. Y(t) and Z(t) are the gas and

surface atom displacements from their respective equiflibrium positions

which are separated by the equilibrium extension of the gas-surface
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"spring. ks and kg are the lattice and gas-purface spring constants,

mg and mg are the surface and gas atom masses, and § is the desorption
energy divided by kT. The time origin marks the initiation of a colli-

sion. For t < 0, the gas atom is force free, and the surface oscillator

is in simple harmonic motion.

2(t) = %— sin (wst + ¢)
8
and (20)

Y(t) = = ut + g— gin ¢
s

where u is the incldent gas atom velocity in the well, W, is the angular
frequency of the surface atom, and V and ¢ are the velocity amplitude
and phase of the surface atom, The initial conditions are established

as the gas atom impacts at the end of the gas~surface spring. At t = 0,

Y(0) = 2(0) = XT sin ¢
s (21)

Y(0) = =u ; Z(0) = V cos ¢ .
The equations of motion during collision (t > 0) are

m Y(t) = = k_(Y(t) - 2(t))
g R (22)

ms Z(t) = - ks Z(t) + k8 (Y(t) « 2(r)) .
The collision ends when the gas-surface spring returns to its equilibrium
extension with the gas atom moving away from the surface. For t = Tc’
Y(rc) - Z(Tc) (23)
with Y(Tc) positive and greater than Z(Tc). The colligsion duration, Tos
is the smallest non~-zero root of Equation (23). The nondimensional
energy transfer, £(c), is defined as the increase in the gas atom kinetic

energy during the collision divided by kT.
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, ten2  ornn2
Ae) = €' = € = &= (¥(1)" - Y(O)) . (24)

B. Similarity Parameters
Defining 02-1 as a characteristic time and uws-l as a characteris~

tic length, the nondimensional equations of motion corresponding to
Equations (22) are

V4 y-2)=0
2 (25)

Vi (z2+2z) -uly-~-2)=0
wvhere 4 = mg/ms is the inertia parameter, V = wslmg is the frequency
parameter, z = Z/umﬁl-1 is the nondimensional surface atom displacement,
y= ‘l/umﬁl-1 is the nondimensional gas atom displacement, and time is
nondimensionalized with respect to ws-l. The nondimensional initial

conditions are

y(0) = 2(0) = V_

y(0) = =1 and 2(0) = Vc (26)
where
v, = Y.E%E_i and V_ = !_2%2:1 (27)

are respectively the nondimensional velocity and displacement of the
surface atom at impact. One set of initiai conditions applies to all
incident energies since the initial gas atom velocity no longer appears
explicitly in Equations (25) and (26). Although the surface oscillator
frequency is assumed to be given by the bulk Debye temperature, w, = kBD/ﬂ.
any surface oscillator frequency may be used to obtain mg from the dimen-
sionless ratio v = wslwg. The original nine variables V, ¢, W wg. m,
mg. D, T, and u are thus reduced “o three parameters v, W, §, and two

initial conditions Vc and Vs.
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From comparison with experiment, the parametric ranges of interest
are: 10-2 <H<2,1<v<10, and 2 < § < 102. In the adiabatic
limit, v + « | the energy transfer goes to zero since the collision
duration is large, and the incident particle turns around slowly losing
no energy. In the impulsive or hard cube limit v + 0, and the colli-
sion duration goes to zero. Here the adiabacity factor which is propor-
tional to exp(- W, ‘rc) + 1, and the energy transfer is a maximum.

C. Normal Mode Solutions

General solutions to the equations of motion during collision,

Equations (25), may be written as a linear superposition of normal

modes:

Jit) = ;u aq, (t) and z(t) = ;I quj (t) (28)

where j = 1, 2 indexes the two normal modes, qj, of the system. The
following algebraic equations defining the normal mode frequencies are

obtained by substitution of possible solutions, y = & eiwt and z = B eiwt,

into Equations (25):

(1-vi)a=-8=0

Ha - (v2 + Y- vzwz)B =0, (29)
The resulting normal mode frequencies, Wy and Wy nondimensional with

respect to w_, are

Y2)1/2,,, | (30)

The amplitude coefficients in Equation (28) are related by Bj = (1~ mzvz)uj.

w o, = {0 +ue 1 T 0? +u+ - wd

Applying the initial conditions given by Equations (26) to Equations (25)

yields the gas atom trajectory
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(") 1+ Vc - wivz
y(t) = - = Z cos wt - 35 sin w,t
Q1 - c)mlv
(31)
Vs 1+ Vc - wivz
+ —=- cos w,t + sin w,t ,
l-2¢ 2 Q - c)mz w v2 2
1 2
and the surface atom trajectory:
a - wdv®)zv a - v +v - dd
1 8 1 c 2
z(t) = - 1 =% cos mlt - 33 sin w,t
- C)wlv
(32)
Q- wzvz)v Q- wzvz)(l +V - mzvz)
+ — 8 cos w,t + 2 £ 1 sin t
1-¢7 . 2 2 Wy

1 - c)mimzv
where [ = mi/mi. The nondimensional collision duration, L is the
smallest non=-zero root of y(Tc) = z(Tc). Using Equations (31) and (32),
the implicit expression for Tc is
la, |
cos(wl'rc + ¢1) = - FEIT 4 cos@nztc + ¢2) (33)
where a and ¢ are the amplitudes and phases of the normal modes. In

terms of the initial conditions and similarity parameters, these are:

) v2 2 A +V - vid)?
8 c 2
oy [© = 7 + 2 64
46Q1 - ) 461 - ) wv
(34)
3 v2 A +v - viud?
oy [© = 2 + = 412 A
4Q1 - ) 41 - ) mim,v
and
1 -Q+V - vzmz)
- c 2
¢, = tan  { 2 3 ;
VB Uz Ul \YJ
(35)
2 2
¢, = tanl {_(1 +V_ - V) .

2 2
szl wz v
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Once the collision duration is known, the energy transfer in a collision

is obtained directly from
3 2
A= e[y(rc) - 1] (36)

where € = m u2/2kT.
D. Collision Duration and Energy Transfer

Contours of constant collision duration and energy transfer in
initial condition space are given in Figures 3a and 3b. The time con-
tours in Figure 3a are given for relatively impulsive parameters,
U=V =1, while the energy contours in Figure 3b are for v = 3.16 and
u = .5, There is a 'plateau’ in the Vc, VB plane, separated from the
remainder of the space by a discontinuity along the heavy dashed lines
in Figures 3a and 3b given implicitly by y(Tc) = z(Tc) and ;(Tc) = ;(Tc).
This discontinuity follows from the definition of Tc as the smallest non-
zero root of a periodic function. The effect of higher V is to increase
the size of the plateau and the range of initial conditions for which
adiabatic collisions with longer duration occur. The approximately
radial, straight-line behavior of contours of constant collision time
in Pigure 3a follows from the definitions of V8 and Vc‘ Radial lines
in Vs, Vc space are roughly lines of constant phase angle, ¢. Figure 3a
illustrates that the duration of the collision is largely dependent on
the phase angle of the surface atoms at impact. Since the initial condi-
tions establish the nature of the collision, regions in Vc, Vs space may
be assigned a particular type of collision. For Vc < = 1, region III in
Figures 3a and 3b,no collisions are possitle since the surface atom is

moving away from the gas atom at t = 0, On the plateau and for most of
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the space off the plateau, region I in Figures 3a and 3b, the gas atom
strikes thLe surface, returns to the well, and rebounds off the attrac-
tive step before another collision begins. The dashed circle in Figure
3b indicates the vegion of interest in collision initial condition space
for calculation of steady state adatom energy distributions as deter-
mined by the equilibrium transition rate described in the next section.
It shows that only collisions in region I affect the steady state
reduced populations and rate constants.

In region 1I on Figures 3a and 3b, the gas atom strikes the sur-
face, begins and ends a collision, but strikes the surface again before
returning to the well and rebounding off the attractive step. To assess
whether these "double' collisions occur, the final conditions of the
normal mode solution are used to define the initial conditions of new
trajectories for the time t > L The gas atom is in free flight, and
the surface atom motion is approximated by simple harmonic oscillation
subject to initial conditions given by z(Tc) and ;(Tc). let T= ¢ - L
Then the gas atom and surface atom equations of motion are

g0 = (1) +y(r )t
. (37)
z(1) = z(Tc) cos T + z(rc) sin T .

If z(1) = y(1) for any T > 0, a double collision occurs. Region II in
Figure 4 defines the values of 1 and V for which double collisions occur.
It is clear that double collisions are not important for most values

of the similarity parameters except at very low energies., (This energy

1/2

dependence derives from the (u/e) radius of the region of interest in

Vs, Vc space defined by the 1/e point of the equilibrium transition rate,
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R(e', €). Double collisions may be important for cases where py =1,
v 1, and § is small, e.g., the subiimation and condensation of rare
gases on rare gases.(al)

Figure 5 shows sample gas and surface atom trajectories illustrat—
ing the various types of collisions. Nondimensional displacements are
given on the left with correcponding velocities on the right. The abscissa
is nondimensional with respect to ugl. Figure 5a with v = 3,16 and ! = .5
represents a relatively adiabatic collision at Vc = 1 and Vs = 0 in region
I (single collision) on Figure 3b. Figure 5b with v=py = 1, Vc = 0, and
Vs = ,2 is on the boundary between region I (single collision) and region II
(double collision) on Figure 3a. In this limiting case the initial condi-
tions for Figure 5b are on the collision duration discontinuity in Vc,
Vs space. Figure 5c, with v e y = ], Vc = 0, and Vs = ,86, shows a rela-
tively impulsive double collision in region II on Figure 3a.

IV. GENERAL SOLUTIONS
A. Equilibrium Transition Rate

The fundamental role of the one-wav equilibrium transition rate,
R(e', €)dede' is evident from the functional form of the master equation,
Equation (3), and the adsorption and desorption rate constants given by
Equation (15) and (16) where R(f, €) is defined in terms of R(e', €)
by Equation 5. The one=way differential transition rate may be expressed
as a flux in phase space from the state € to the state e':(38)

dR = p(v - n)ds (38)

where ds is a differential element of a surface in phase space separating the

states € and €' on which (v - n) > 0, v is the generalized velocity of a point
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in phase space, n is the unit outward normal ¢o ds, and p(q, p) 1s the
density of points representing the state of a system of n particles

in a 6n dimensional phase space, the axes of which are the conjugate
momentum, p, and position, q, coordinates of the particles.

For the case of a gas-atom, surface-atom collision, the only non-
ignorable coordinates are the momentum of the gas atom, pg, the momentum
of the surface atom Pg» and the position of the surface atom Z, The
one~way equilibrium transition rate may therefore be written in terms
of the initial gas atom energy, €, and the initial velocity and posi-

tion of the surface atom, Vc and Vs, using Equation (38):
R(F, Vc, Vs) dﬁdvcdvs - p(pg, P, Z)(Y - Z)dpﬁdpsdz . (39)

The surface in phasz space across which the flux is monitored is given
by Y- Z = 0 with the condition Y~ Z < 0,
With the definitions: dp8 = dEg/Zu, dps - mbdz, and ¥ = - u,

Equation (39) becomes
L[] z L[]
R(E, Vc, Vs)dedvcdvs - D(Eg’ Z, 2) st(l + ;)dEgdZdZ . (40)

Since it is assumed that the gas atom and surface atom are independent
prior to collision, the phase space density in the initial state p(E, ;, z)
can be separated as a product of the gas particle density, Og(Eg) and

the surface particle density, ps(Es)z

. ggexp(— Eg/kT) exp (- Es/kT)
D(Eg. Z, 2) = Dg(Eg) ps(Es) - Qg x a (41)

where N8 is the number of gas atoms, Qg is the gas partition function,

Qs - Zﬂk‘r/ws is the solid atom partition function, and it is assumed
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that for the equilibrium transition rate calculation, the phase space

points have a Boltzman distribution. Substituting Equation (41) into
1 2,.2 2 ¥

Equation (40) with Eg kTe, Ds = Fmu (Vc + Vs), dZ = uch, and

dz = uurldv yields
s 8

[ 3B

2

€2
- SV (1 + v )dedv av_ .
[od [od 5

N m
- B "€ (8
R(e, Vc, Vs)dedvcdvs T ( = ) e
g2
(42)
The one-way equilbrium transition rate, nondimensionalized with respect

to Ngkl‘/Qg is then
Ale, v, V, )dedv dv_ = ::r"ﬁ L+ V) expl- % (vi + vz + u)]dedv_av_ (43)
where the nondimensional initial gas atom kinetic energy, €, surface
atom velocity, Vc, and surface atom displacement, Vs, are Gefined in

the previous sections.

From the definition of the partition function,

YT Nt mer (44)
Q Q Q
g f

where the subscript g indicates all gas atoms, the subscript f indi-
cates only free atoms, and no subscript refers to adatoms. Thus the
transition rate given by Equation (43) may be nondimensionalized in
a variety of ways. In adsorption processes, Equation (43) 1s nondi-
mensional with respect to

NgkT f;e(ak'r)uz 6 %_f - @59

™n
Q¢ e

where ¢ is the mean speed of the free atoms, and Qf = (anng)llz

for gas atoms moving normal to the surface. The transition rate
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NkT ' eg
0 27 (46)

where Ae is the equilibrium adatom concentration.
Equation (43) shows that the one-way couilibriur trausition rate
has a strong maximum in initial condition (‘.'C, VS) space. In the limit

€ > “,Ja(e, Vo Vq) resembles a delta function at:

v =0
s

1/2

v, = %[ (1 + 2u/e) -1] +0 , 47)

This behavior is useful in making the variable transformation from

R(e, VC, Vs) toR(e', €). The energv transfer, and therefore the final
energy for a given initial energy, 1s given as an implicit but exact
function of €, VC, and VS by Equation (36). This function is plotted in
Figure 3b for the particular but typical case, v = 2,16 and y = ,5. 1t
is seen that the surface, % (VC, Vs), is approximately a plane in the
neighborhood of the maximum of R (e, VC, Vs). The equation of that plane
is obtained by expanding g (VC, Vs) in a two-dimensional Taylor series
about the VC, VS values given by Cquation (47) and truncating the expan-

sion at the linear terms.

A
eV V)=a-14+bV +cV (48)

02 . . L] L]
vhere a = v (TC), b= 2y(TC) yvs(rc), and ¢ = Zy(rc) yvc (TC) uvith sub-
scripts indicating differentiation, and TC(O, 0) 1ie obtained from Equa-

tion (33). A rotation transformation to two nev coordinates, Vsr and

vcr’ vhose axes are parallel and normal to the intersection of the €'
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plane with the plane of the Vc, Vs axes, picks up the direction of the

normal coordinate Vct. This transformation is
2.-1/2 - p2 =172
Vo=V 1+ -V, a+=p (49)
b c
, b2 -1/2 ) c2 -1/2
Vo, " vc(l + ;59 +v Q1+ ;20 .
The Jacobian is unity. The vcr’ Vu_ axes can be located on Figure 3b
by an Vv 60-degree counter-clockwise rotation from the Vc, Vs axes.
Inverting Equations (49), substituting into Equation (43), and integrat-

ing over V“ gives
1/2 2 -1/2

€ b € 2
RO € dv de= (D (Q+V QA+ :7) ) exp{- 2V - eldv_ de .
(50)
The one-way cquilibrium transit{on rate is then obtained from Equation
dv
cr

(50) using K (e, €') de'de = R(vcr(e')' €)

v (€' €)= (e —ae)e 2 + 212

]
e de'de and

with the desired result

2 2 [ ] 2
R (e, €') = Ele_*+b) +cle - ac) exp{_—(g-—-'-'-.-gl--c} (51)

2 (ee? + 82072 T Le? + )

This approximate rate does not satisfy the symmetry required by detailed
balancing. A symmetric form can be cunstructed by taking the arithnetic
mean of R(€, €') and R(e', €). Numerical comparisons show negligible
distinction between the symmetric and unsymmetric rates.

Introducing the approximations: a ™~ 1, e VE = (¢ + €')/2, and

4/2¢ << 1 yields a simple symmetric kernel:

2
- €} (52)

R (€, 8) = - 1 exp { -
wre®? + 212 uE®? + ¢?)

where € = (¢' + €)/2 is the mean energy, and & = €' - € is the energy trans-

2

fer. This approximate one-way equilibrium transition rate is used in the
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calculations reported here. Figure & shows contours of constant non-
dimensional one-way equilibrium transition rate,R{c, z') in the

88 in €,c' space. The gradient of R(c, €') along the

range 10o to 10
4 axis 1is much greater than along the € axis. This difference allous
an expansion of the population X(€, t) about 4 = O to obtain an
equivalent diffusion equation for X(c, t) frcm the master equation.
The exponential decay in € follows from the Boltzman factor. A typi-
cal vell depth, 6 = 13, is indicated by the dashed line in Figure 6.
There are four transition regions separated by €' = § and € = §: for
€ and €' > §, the gas atom {s never traprzd; vhen € and c' < §, transi-
tions occur between states in the well; for € < § and =' > § desorption
takes place; and in the region €' < § and € > § gas phase atoms are
adsorbed.

Once the equilibrium transition rate is knuwn, the one-way equi-
1ibrium desorption rate, R(f, €), is obtained as the integral of
R(e', £) over § < €' < = given by Equation (5). This 1s equivalent to
integrating Equation (52) over .5(§ + €) <€ < ® using & = 2(€ = €)

vith € as a parameter. The result is

R(E, €)= % exp(- &4 qpe + aqzc) [erfc(pl - %%E) + esqpc erfc(pf + 2%5)]
(53)

vhere q = (u? + 2))~1/2

b= e+ M2 gL EEG2

The Caussian behavior of the kernel for Equation (5) given by
Equation (52) 1s clear in Figure 7 where the nondimensional transi-
tion rate is plotted versus energy transfer for u = .5 and v = 1.16,

The two curves, equivalent to slicing Figure 6 along € = 10 and € = 30,
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indicate thst the mean energy transfer {ncreases as the incident energy
increases. This {s reascnable since harder collisfons stwuld be more
impulsive. The broadening of the kernei half-uidth appears n Equa-
tion (52) as a Caussian scale factor of (€) 1.
B, Steady State Adatom Energy Distribution
Tvo methods wvere used to obtain approximate sclutions 8 the master
equation for the steady state adatom energy distribution.

1. Equivalent Diffusiocn Equation

(27)

Equation 3 may be converted to an equivalent diffusion equation
vhich identifies the desorption process with a diffusion process in

phase iplcefza) This {s a particular form of the more general trans-

(25)

formation to a Fokker-Planck equation. In the steady state approxima-

tion the equivalent diffusfon equation is

a,(c} .
5% (L _a.x%l) .0 (54)

vhere An«:) = l:, (c' - f-;)"R (c, ¢') dc* s the nm soment of tie energy
transfer with respect to the equilibrium transficion rate. Egquation (54)
is a valid approximation to the msster equation vhen the form of‘?(c, c')
is such that 4, % %—3&2/3:.

Figure 8, vhere V = 3,16 and U » .5, indicates this criteria s
satisfied for ¢ > 2 for the kemel given by Equation (52). This result
is typical for all values of the inertia and frequency parameters. Fig-
ure 8 also displays the exponential enargy dependence of An (c) due to
the Bolermam factor 1a K(c, €'). The normalfzation condition, X(0) = 1,
replaces the boundary condition at the bottom of the well since the solu-

tion of Equation (54) 1s not well defined with first derivative boundary
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conditions. The boundary condition at € = § 1s w - 2I'(8) x(6)

8,8 3
) ac
vhere § is the well depth and I'(§) 1s the 'one-way equilibrium desorp-

tion flux':
r'G) = lg fiRe, c') &' dc . (55)

Once the equilibrium transition rate is known, I'(§) can be integrated
directly. Using the approximate kernel given by Equation (52) and
changing variables to C and A, I'(§) 13 obtained by integrating over

26 ~c)<A<omfor-m<cc<Candover 2(c -~ 8) <A <wfor§<ec<m
vith the result

['(8) = exp(-5 + 6/16q%) art(s1/2

/4q) . (56)
This approximate equilibrium desorption flux is valid when a= 1, %i > 1
and qu >» 1.

The steady state reduced population in the diffusion approximation

is, integrating Equation (54) subject to the above boundary conditions:
xe) = 1= 15 8,@7 ae/tsfp, @ ac+ Fr @) L 6

Mumerical integration, using Equation (56) for I'(5) and Az(c) as given
in the Appendix gives the results described here.

The diffusion approximation is useful since its range of validity
includes sisnificant nonequilibrium effects, and the moments of the
transition rat=R (c, V. V) as shown in the Appendix are sufficient
to obtain a solution. A criterion for validity of the diffusion solu-
tion is given by the mean square energy transfer per collision Az(c)lbo(c),
shown in Figure 9 for v = 3,18, u = .72, and v = 3,14, u = 46, When
AZIAO < 1, the diffusion solution 4is accurate., When AZIAO > 1, the

terus 0(4") Jdropped in the diff: . ion approximation become important.
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Figure 10a shows equivalent diffusion equation solutions given by
Fquation (57) for the steady state reduced population for v = 3.16,
U= .5 and 8§ = 10 and 30. The ratio of the actual to the equilibrium
energy distribution is plotted versus energy below the top of the
vell. Those energy levels for which x(€) equals one have a Boltzmann
distribution. The levels for which X(€) is less than one are depleted.
The magnitude of the depletion is determined by the rate at which atoms
“diffuse’ up the well to replace the adatoms that desorb. When the
energy transfer in a collisiza 1s small, diffusive movement of adatoms
among the energy states in the well is slower than the desorption
process, and the upper levels deplete. However, when the energy trans-
fer is large, the desorbed atoms are rapidly replaced by adatoms from
lover levels, and the true population approaches ar equilibrium popula-
tion.

2, Iteration Solution

When the energy transfer per collision is large, AZIAO > 1, itera-
tion schemes converge rapidly, and the first iteration iz a valid
approximation to X(€). The steady state adatom energy distribution
is then obtained from an fteration solution to Equation (10) in the
form

xj(c) - IgR(c, e')xj_l(e') dc'/l:;k (e,c') de' (58)
vhere xj(c) is the jth iteration approximation to the steady state
reduced population. Assuming the trial function xo(c) = 1.0 for
€ < § and substituting Equation (52) into Equation (58) with a change

in integration variable from €' to (E)U2 gives
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x,(€) = SR (x, ©) dx/fyR(x, c) dx (59)

vhere R(x, €) = 2 exp -(pzx2 - 32;2 + pr) vith x = (al/‘-’ and g = 2qc.
"
Integratlon(‘zt‘3) yields a first interation approximation for the

steady state reduced population.

X (€) = 1 = Herfe(pt - 2 + ertelpt + 1) exp(8pac)) .(60)
A second iteration approximation for the steady state population at the
top of the well, x2(6). may be found by numerical integration of Equa-
tion (58) with § = 2 and € = § using Equation (59) for xj_l(c'). The
analvtic single {teration approximation, Equation (G0), is used in
calculations reported hera. Although no direct comparison is possible
Figure 10b shows the equivalent diffusion equatfion and iteration solu-
tion approximate steady state reduced populations for v = 3,18, u = ,72
at 8§ = 55.6. X indicates a second iteration, X2(5)- The mean energy
transfer per collision, 62(6)160(6). is 1,5, The actual population
is close to equilibrium, and similar ratios of the steady state to
equilibriunm rate constants are obtained from both sethods: Diffusion
equation kd/kde = .36, and {teration solution kd/kde = .88,
. Steady State Rate Constants

The energy integpral of the master equation yfelds the adsorption
and desorption rats constants in the steady state approximation. Two
methods have been described for obtaining the stoady state reduced
population and the equilibrium desorption flux, required bv Fquations
(15) and (16) for these rates, The iteration solution numerically
inteprates Eguations (15) and (16) usinp Equation (60) for the steady

reduced population, X(€), and Zquation (53) for the equilibrium lesorotion
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rate, R(f, €). The diffusion method formally integrates Equations (15)
and (16) ucing Equation (57) for the steady state reduced population,
x{e), and Equation (56) for the desorption fluxk, I'(§), required as
a bounda~y condition, Since the iteration method {s valid over a
restricted range of similarity parameters vhere the adatos ensesble
18 close to equilibrium, the diffusion method is used for the results
described here.

The steady state desorption rate constant, obtained in the diffu-
sion approximation from Equation (15) noting that NkT/Q = A‘u8/2ﬂ for

the collision model described in Section 11l ig
&n -1 1 =1,,~1
y = (G (75 851 ac + L reeh (61)

vhere &, 1s given by Equation (A9) and T'(5) 1s given by Equation (57).
The equilibrium desorption rate constant is obtained from Equation (15)

-

using x(c) = i:

w
kge = 75 TC6) . (62)

The classical desorption rate constant, kde’ is given by Equation (2).
The classical detivationl assumes that (1) the gas phase and the adsorbed
phase are at equilibrium; and (2) che sticking coefficient is unicy so
that the rate of arrival equals the rate of adsorption. These assump-
tioris are not physically realistic during the adsorption-desorption
relaxation processes. The equilibrium desorption rate constant, Equa-
tion (62), is valid vhen the first assumption is correct, and the
"steady state” desorption rate constant, Equation (61), does not require
either assumption. For reference the equilibrium constant for the

adsorption-desorption process is
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1/2

K, * [-g/uk'r] a)! exp (- §), (63)

and the classical adsorption rate constant is the arrival rate,

&40

k n
ac

- (ur/z:-sll’z : (66)
When Equation (16) is valid, the equilibrium adsorption rate constant
is

k,, = Ger/zm 1Y% 18y exp (6) (65)
8
and the corTespcading sceady state adsorption rate constant is

K, = terrzme 112 (2 55 8,07 de + T e (0.
(66)
Equotfon (17) shows that the ratio of steady state to equilibrium

rate constants is independent of the direction of the process. From

Equation (17) with Equations (61) and (62) or Equations (66) and (65),

k k
2w o beor@ /a0 aer™ (67)
ae de
ka kd
In the adfabatic limitc Az + 0, and vl 0. In the fmpulsive
ae de

11s4t Az is a maximua. Since v + » gives the adiabatic limit and
§ = « gives the impulsive limit, nonequilibrium effects generally
increase as V increases and decreases as § increases. Figure 11
presents the ratio of the steady state tc eq:ilibrium rate constants
given by Equation (67) for u = .2 and 1 with 6 = 10, Under this condi-
tion of fixed 8§, the classical desorption and adsorption rate constants
for a given gpas specie would be constants.

An interesting effect is shown by the contours of constant u in

Figure 11 which pinpoint the values of the similarity parameters



corresponding to highly nonequilibrium adatom energy distributions.
"Resonance"” occurs when the larger normal mode frequency given by
Equation (30) 1s an odd multiple of the smaller:

w - (2n + 1)w2 tne=1,2,3,,.. (68)
For normal mode frequencies which are not independent, the period
of both the gas and the surface atom notion is a multiple of the
longer of the two normal mode oeriods, 2“’”2' The end of a collision
occurs at t = 'rc = ﬂ/uz. and since y and z have a common perfod, the
velocities ;(1c) and ;(rc) return to their Saitial magnitudes. Thus
at resonance the energy transfer is

ale = (v (1% -y@H =0, (69)
and the adiabatic limit is reached. At frequency parameters near
resonance, the steady state rate constant is orders of magnitude smaller
than the equilibrium rate constant. Resonance is therefore a special
case vhere nonzquilibrium effects are extremely important. Including
anharmonic damping would round off the minima in Figure 11, but would
not change the qualitative nicture.

Using Equation (30) for the normal mode frequencies in Equation (68)
obtains the resonance values of v as a function of u plotted in Figure
12;

v, = @A+ -+l o a e unt/? (70)

vhere

per-l@orni-n? oo
(@2n + 1)% + 1)?

vr(u) goes to 2n + 1 4n both the limit n =+ ®, and the limit u = 0, With

these results and the steady state adatom energy distribution previously
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derived, the magnitude and regions of import of nonequilibrium effects
have bsen defined.

Figure 13 shows the variation of the adsorption rate constants
given by Equations (65) and (66) for v = 3,18, y e .72, and v = 2.66,
U = .38 over a range of dinmensionless well depths & from 10 to 80,

The adsorption rate constant provides a more accurate measure of noa-
equilibrium sffects sincs the exponential temperature dependence of

the desorption rate constant is not present. The steady state and
equilibrium rate constants shown are nondimensionalized vith respect

to the arrival rate, and the nondimcnsional well depth, §, is equivalent
to an inverse temperature. The displacement of the kae lines below

k.c ® 1 gives a2 measure of the effect of a non-unity sticking coeffi-
cient. The corresponding displacement of the k. lines belov the k.e
lines indicates the effect of a nonsquilibriwm surface population.

The results givan here are for adsorptioa from an incident gas
vith a Boltzman energy distribution about the surfacs tempersture.
When the incident gas stresm has any other energy distribution, the
adsorption rate constant is obtained from Equation (19). The result
s Equation (66) wultiplied by H(0) where H(0) is given by Equation
(9) as

HO) = SR (e, O x(€) de/fg R (c, 0)ac . (71)
Por the case of a gas with a Boltzman energy distribution at a temper:~
ture TR' ‘éc) - ﬂllz exp(- n(c - 6) + € - &) where n = T/Ta. Substituting
this expression and the value of & (¢, 0) obtained from Equation (51)

into Equation (71) and integrating gives
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2 1/2

2 . 22
H(O) = nllzlexpé(n - 1) Gtz eclfa g t n)lllz *

73 (72)
a’'q  +n erfc(6(a"q” + 1)]

For the case of a monoenergetic incident beam of energy co,
‘éc) - (4vo/2) 6(c~6-co) exp(€c - ), and Equation (71) gives

2.2 2.2
4v 22,4 g0 -exp[- aq’cy ~ (a7q" + 1)4)

0 ,a +
H(0) =» — (-zs—--3$0 — (73)
c W& & erfc[(n2q27+ 1)6]112}

1/2

vhera vo - (Zcho/ng)
1/2

i8 the velocity of the atoms in the beam,

in the mean thermal speed for a gas of atoms in

1/2

and ¢ = (BRT/ng)

equilibrium with the surface. Figure 14 shows 1(0) n given by

Equation (72) versus the frequency parameter, V, for n = 0, 1, and
10 with u = ,2 and 1. The well depth, &, vas fixed at § = 10; there

was no measurable variation of H(0) with well depth over 10 < § < 30.

1/2

HO) n = 1 for all v (i) and for n = 1.

/

Figure 15 shows the n dependence of 11(0) n'1 2 piven by Equa-

tion (72) for W = 3,18, u= ,72, and v = 2,66, u = .38, The effect

of the former set of parameters being 'off resonance"” while the latter

1/2

s "on resonance" is clear from the near unity H(0) n~ for the

resonance systea,

As a sample calculation of the steady state rate constants,
consider the case of a xenon gas impinging on a clean tungsten sur-
face. Comparison of the soft cube model with scattering pattern

(18)

data indicates a frequency parameter V = 2,0 and a vell depth

D = 4500 °K for this system. The inertia ratio is u = .72, If the

surface temperature were 100 °K. 6 would be &5, 1If 1‘g = 100 °R.

n e 1, and H(0) = 1; therefore, from Equation (66) k_= 2.0 x 10° cm sec”}
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If Ts = 1000 OK, N = 0.1 and from Equation (72) H(0) = .36; therefore,
from Eqiation (19) ka = .72 x 103 cm scc-l. The desorption rate
constant is the pame for all Ts; here kd = 4.5 x 10-8 sccpl. Note
that the energy distribution of the incident stream primarily affects
the sticking coefficient while the steady state distribution given
by Equation (57) remains a good approximation to the adatom energy
distribution for all n.
V. CONCLUDING REMARKS

In summary, the time evolution of a nonequilibrium ensemble of
gas atoms adsorbed on a solid surface has been described. The tem-
perature and atomic species dependence of the phenomenological rate
censtants in the experimentally observed first-order rate equation
has been obtained from the energy integral of the governing master
equation, The pertinent similarity parameters and energy transition
probabilities for gas atoms colliding with solid surfaces have been
derived from a classical interaction model using a gas-surface poten=
tial composed of an oscillating harmonic repulsion and a stationary
attraction. The master equation for the reduced adatom energy popula-
tion has been solved in the steady state approximation by interation
vhen the mean energy transfer per collision is greater than kT and
by conversion to an equivalent diffusfon equation with the second
moment of the energy transfer assigned the role of diffusfon coeffi-
cient in the case of mean energy transfer less than kT.

The magnitude of the departure from equilibrium due to the deple-

tion of the energy levels near tke top of the surface petential well
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is defined by the steady stote reduced adatom energy population. It

vas found that for ''resonance" values of the rario of surface-to-gas
oscillator frequencies, gas-surface collisions were aufficiently

adiabatic that the adatom energy distributions were appreciably non-
equilibriun, and the steady state rate conustants were depressed orders

of magnitude belov the equilibrium rate constants. Experimental verifica-
tion of this prediction would be extremely useful.

The ratio of the steady state desorption to adsorption rate
constants is the equilibrium constant, unless an incident gas exists
with an energy distribution vhich is not Boltzman about tﬁe.surfuce
temparature. If such a gas exists the adsorption rate constant is
modified by the ratio of the adsorption ratn at the botctom of the gas-
surface porential well from the actual incident energy distribution
to the adsorption rate at that energy level from an equilibrium inci-
dent energy diatribution. The desorption rate constant is unmodified;
therefore, the ratio of rate constants is the product of the equilibrium
constant and the ratio of adsorption rates at the bottom of the well.

Comparisons vith experimental data, as described in a later
paper, indicate the results of this analysis are reasonable; however,
insufficient experimental results are available at the present time
to say that the theory has been confirmed, This treatment obtains
the detailed time history of the energy distribution of the adsorbed
ensemble. The adsorption-desorption rate problem considered here is
but one of a large set of problems vhose solution may be described by

similar analysia. GCas-aurface potential parameters obtained from this
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approach permit prediction of many phenomena; therefore, rigorous
experirantal verification is feasible.

Possible extensions of the model are (1) to account for surface
Tougnness by introducing a distribution of surface orientations or
well depths; (2) to include energy transitions induced by adatom-adatom
collisions in the master equation, thus eliminating the low surface
concentration restriction; and (3) to add another degree of freedons
to the master equation to account for internal enerpy exitation, thus
extending the analysis to admolecules.
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APPENDIX: ENERGY TRANSFER MOMENTS
The moments defined in Section IV are evaluated here for the
collision model described in Section III, Using the equilibrium
transition rate given by Equation (43) for the required kernel and
recognizing that integration over c' {s equivalent to integration
over Vc and V' ylel®
8,60) = [ f7" s e (v axp - £ v 4] eV, oy,
(Al)
where the lower limit of Vc has béi extended to =» with a negligible

additional contribution to the integral. Since tl:2 energy transfer,

4, is {ewplicitly dependent on Vc and V. through the collision duration
Ter it {s necessary to approximate 4 by a two~-dimensional Tayior expan-
sion about the maximum in the kerncl taken here to second order. This
expansion isg

BV YY) =8+ Avc Ve = V) + AV. (Vg = V)

-~ -~

l ~ - 2 -~

+3 (A"c"c v, -v)" + z“vvv. (v, =V, - V)
N 2

+ v -v)] (A2)
AV.Vi s 8

vhere the tilde superscript indicates evalurtion at the kernel maximum
(V. -0, Vc = 5((1 + Zuls:)l/2 ~1)) and subscripts indicate differentia-
tion. Third-order terms are odd and contribute negligibily to the

intearal, The coefficients in Equation (A2) are

4 -c(yz-l), 8y v -Zc(y‘z, +Y Yy
cc c ccC

& =2cyy, » Oy =2¢€lyy, vy *y¥y) (A3)
c c cs . 8 c cs

-~ -

* L 2 02 [ [
& =2cy Yy o bdyy =2 c(yv +yyy )
s s s's s s
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vhere
YoV tVE vty mfh yy o ) (%)
c s
with
fl o (¢ w, sin WT, = w sin wzrc)/(l - L)
; » (cos W,T_ = cO8 W, T ‘i(mz - 2)\’2 (AS)
2 2'¢ 15c/7/V) = W
5 2 2 2 2 2 2, 2
t3 « (1 -v "’1) cos w,T. - (l1-v "’2) cos ml't'c)/(w1 - wz)v
and vhere
v o [(w, oin W,T = w, sin W, T V(w2 - uz)\'zlr
"vcvc 820 9% =9 b NLAL T v,
Yo v ® [, 8fn 0T = @ sin w,t )/ @ = wIvi]T (A6)
chV. 1 l¢ 2 2°¢ 1 2 cVn
° I2 \
Yoy ° [wy(cos ¥ T, = cos w,T )/ (1 - C)hcv
ss s
vith

‘cvc - (m1 sin w T - w, sin wz‘rc)/(uf - ug)(; - ;)Vz) (A7)
Tey, g0 uyT, = con LTI/ = DG - 2)

vhere TC(V., Vc) is evaluated via Equation (33). ‘these expressions
vere obtained by differentiating Equation (31). Substituting Equa-

tions (A2) through (A7) into (A1) and inteprating obtains the follow-

ing moments.
Ao(c) = exp( €) (A8)
3,(¢) = {exp & )} (8 + (‘215 - ;rc) Evc (A9)

te LGV -2v_+1) Avcvc + Av.v.))
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Sy e
8,(c) = {exp € ) ac + Gz - V) anvc (A10)

+ 5 1(35 5: - zGc +1) (33 + Z&V R 53 + £5v g I
c cc s s s

The zeroth mozent {s simply the collisfon rate. The first moment, as
indfcated in Figure 8 satisfies the criterln(27) Al(c) .5 abz(c)lac
required for vaiidity of the diffusfon approximation. A measure of
the mean energy transfer per collision {s given by the ratio of the
second to zeroth moments., The dominance of second-order terms in the
energy transfer Taylor expansion is exhibiied in the linear dependence
of 62/60 on € as shown 4in Figurc 9. Using Equation (A10) to evaluate
62 in Equation (30) gives the desired steady state solution to the
approximate diffusion equation for the adatoui energy distribution.

In addition to these moments an approximate vne-way equilibrium
desorption flux {s given by the first moment of the absolute value of

the energy transfer
1 1 o
rey g laly © =5/, 18] Ree, €"yee’ (k11)

Using a rotation transforuwation similar to that used to obtain R (e, €')
from R(E,VCVS), Equation (All) may be separated into a summation of
integrals in which A has a constant sign, thus bringing the absolute
value outside the individual integrals. Asymptotically expanding the

resulting parabolic cylinder functions obtains

8], (e) = .5¢ (AV + A 2 exp(- € - 1%83-) (3 stan [(se/wl/?
1/2 c? 1/2
+ 2 (1 - BC) (u/we) exp (- 555 cosh [(3e/u)~'“cl}

(A12)

cl
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vhere

B = (1+33/Zf, y-1/2
[ c

Co(a-va @ +82)?
[ 8 [«
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Fig. 1

Pig. 2

Fig. 3

Fig. 4

Fig. 5

by

FIGURE CAPTIONS

Gas-surface potential well forwed by superposition of
dynamic repulsive and static attractive potentials.
Collision modecl. Attractive potential is an arbitrary shape
of height & at fixed position several lattic spacings from
the surface. Repulsive quadratic potewiial follows the
surface oscillator motion.

Contours in inlitial condition space: (a) contours of
constant collision times for v = p = 1; (b) contours of
constant energy transfer for v = 3.16 and y = .5. Region I
has single collisions, and Region Il has second collisions.
In Region III no collisions occur. lleavy dash indicates
plateau bounded by a discontinuity in t and A.

Second collisions are not significant at the incident gas
atom energies indicated when the system frequency and

inertia parameters lie in Region I on this figure.

Gas y(t) » and surface z(t) - - - atom trajectories.

(a) adiabatic collision (v = 3,16, u = .5, V8 =0, Vc = 1,0)
with T, = 3.06 and A/e = - .007; (b) limiting casc between
sirgle and second collisions (v = py =1, Vs = ,2, Vc = 0)
with 1_ = 2.80 and d/e = - 1 at the end of the first colli-
sion; (c) second collision (v = p =1, Vs = ,86, Vc = 0)

here T = 1.71 and A/e = - .69 at the end of the first colli-
sion. Length and time are nondimensional with respect to

U w and w;l, respectively.



Fig. 6

Fig. 7

Fig., 8

Fig. 9

Fig. 10

Fig., 11

Fig. 12

Contours of constant one-way equilibriux transition rate in
€, €' space for v = 3,16 and ¥ = .5. Sample well depth
shown at 6 = 13,

Normalized transition kernel versus energy transfer for

Ve 3,16 and b = ,5 with € = 10 and 30. Similar results

are obtained for all u and v.

Energy transfer moments versus incident energy for v = 3,16
and U = .5, Criterion 4, = 1/2 (362/35) is satisfied

fore > 2,

Plot of mean square energy transfer per collision versus
incident energy for v = 3,18, u= ,72 and v = 3.14, u = 46,
Iteration 18 useful for AZIAO > " 1 and the diffusion equa-
tion is useful for AZIAO <A1,

Steady state reduced adatom energy population. (a) diffusion
approximation for v = 3,16 and u = .5 with § = 10 and 30;

(b) comparison of iteration and diffusion approximations

for v = 3,18 and u = .72 at § = 55.6. X indicates second
iteration, x2(6).

Ratio of the stcady state to the equilibrium rate constant
versus frequency parameter, V for § = 10 with contours of

W= .2 and 1 shown. The steady state rate constant is orders
of magnitude below the equilibrium rate constant at "resonance"
values of v,

Resonance values vr(u) of the frequency parameter in yu,

V space. The adiabatic limit is reached, and the mean

energy transfer goes to zero on the contours indexed by n.



Fig. 13

Fig. 14

Fig. 15

~46~

Nondimensional steady state and equilibrium adsorption

rate constants versus well depth for v = 3,18, y = 72

and V= 2,66, u = 38,

H(0) n.llz versus the frequency parameter V for the inertia
parameter, U = ,2 and 1 with the temperature parameter,

n =0, 1, and 10. At resonance and at n = 1, H(0) = 1,
H(0) n’llz versus the ratio of the surface temperature to
the gas temperature, N = T/T8 for V= 3,18, uy= .72, and
Ve 2,66, u=,38,
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