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DIFFUSION THEORY FOR ADSORPTION AND DESORPTION OF GAS ATOMS AT SURFACES 

* 
Patrick J. Pagnl and James C. Keck 

Massachusetts Institute of Technology, Cambridge, Massachusetts 

ABSTRACT 

The time evolution of a nonequlllbrlum ensemble of gas atoms adsorbed 

on a solid surface Is described. Adsorption and desorptlon rate constants 

and adatom (adsorbed atom) energy distributions are obtained In the steady 

state approximation from the appropriate master equation or an equivalent 

diffusion equation. Energy transition probabilities are obtained from a 

classical gas-surface collision model using an interaction potential com- 

posed of an oscillating harmonic repulsion and a stationary attraction. 

Calculations have been performed over the following range of similarity 

_2 
parameters:  Inertia ratio 10  < p = m /m < 2, frequency ratio 

g s 

1 < v - w8/w < 10, and well depth 2 < 6 ■ D/kT < 100. For "resonance" 

values of the frequency ratio, gas-surface collisions are sufficiently 

adiabatic that adatom energy dlstributionc are significantly nonequlllbrlum, 

and steady state rate constants are depressed below the equilibrium rate 

constants. Applications include prediction of adsorption and desorptlon 

Prestnt address: University of California, Berkeley, California 
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rate constants, uticking and accommodation coefficients, sublimation 

and condensation rates, and boundary conditions for the Knudsen layer. 

I.  INTRODUCTION 

This investigation concerns the evolution of a system of gas atoms 

adsorbed on a solid surface when that system is thrown out of equilibrium. 

A fundamental physical understanding of the nonequilibrium phenomena at 

such a surface is needed to delineate important similarity parameters and 

provide guidelines for definitive experiments in surface studies.  Consider, 

as an initial problem statement, an ensemble of gas atoms in equilibrium 

with a solid surface ac temperature T enclosed in a sealed container. The 

enclosure is instantaneously evacuated at t = 0.  The problem is to deter- 

mine the time history of the surface concentration and Che adatom (adsorbed 

atom) energy distribution. Experiments show that over a widp range of 

conditions the desorptlon process proceeds according to a first-order rate 

equation: 

^l=kaF(t)-kdA(t) (1) 

_2 
where A Is the surface concentration (cm ), F Is the gas concentration 

_3 
(cm ), and k and k. are the adsorption and desorptlon rate constants. 

A satisfactory quantitative understanding of temperature and atomic 

species dependence of the rate constants k and k. is sought. This 

analysis Is the first attempt the authors are aware of to describe the 

functional dependence of k and k. using noneoulllhrlum kinetics. An 

equilibrium approach which issunps a ^o^tzrann dfstrlbutlon for t^e 

adatom energy distribution and that all atoms which strike the surface 

adsorb gives the classical desorptlon rate constant 
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"dc-^C-llf) «' 
where w is a characteristic frequency, D Is the potential energy well 

depth, and T Is the surface temperature. The statistical description 

given here approaches this equilibrium expression as a limiting 

case. 

Many previous investigations of the interactions of gas atoms at 

(2-21) 
surfaces have been reported,     and excellent reviews of this work 

(22) (23) 
may be found in articles by Trilling    and Kogan.     Of particular 

Interest in connection with the present Investigation is the work of 

(2-9) 
Armand    who has made careful studies of the effect of lattice interac- 

(18) 
tions on the desorption process and Logan and Keck    who have developed 

a relatively simple "soft cube" model for scattering of gas atoms by 

surfaces. Also of interest is the analogous gas-phase problem of molecu- 

lar dissociation and recombination,  ~   and a review of this lltera- 

(32) 
ture has been published by Bunker.     The theory developed in this 

(27) 
paper is based on this analogy and parallels the work of Keck and Carrier 

and Keck.(28) 

Applications of the theory include prediction and correlation of 

adsorption and desorption lifetimes, accommodation and sticking coeffi- 

cients, sublimation and condensation rates, and scattering patterns.  In 

addition, potential parameters for gas-surface interactions may be deduced 

(33-39) 
from a comparison of the theoretical results t/ith experimental data 

obtained using modulated beam and flash desorption techniques. 

A general discussion of the theoretical model and the governing 

master equation used to obtain rate constants is given in the following 
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sectlon. The mechanism of the gas-surface collisions aid the dimension- 

less parameters characterizing the problem are discussed in Section III. 

The transition kernel appearing in the master equation and the steady 

state adsorption and desorptlon rate constants are derived in Section IV. 

Finally, a brief summary and conclusions are given in the last section. 

II. MATHEMATICAL MODEL 

A. Qualitative Discussion 

Consider first a single gas atom approaching the solid surface from 

the free state with a nondimensional energy E ■ E/kT as shown in Figure 1 

where r is the atom displacement from the surface. Far from the surface, 

the free atom feels an attractive van der Waals force represented as a 

potential with a positive gradient increasing as the separation distance 

decreases. In the immediate vicinity of the surface, the gas atom 

encounters a repulsive valence force represented by a potential with a 

negative gradient that approaches infinity as the separation distance 

goes to zero. At finite separation distances these two poentials over- 

lap to form a potential energy well which defines the collision mechanics. 

For the collision shown, the atom's energy after collision, e', is less 

than the well depth, and the atom is trapped on the surface. 

The distinctive feature of the collision between a free atom and a 

lattice atom is that the "inner" potential oscillates while the "outer" 

potential is stationary. The stationary outer potential results from 

averaging over palrwise potentials between the gas atom and several 

lattice atoms which, at large separation distances, are equidistant from 

the gas atom and hence have an equal influence on it. The oscillations 
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of the repulsive potential are not eliminated by averaging, since at 

small separation distances one lattice atom dominates the repulsion. 

Now consider an ensemble of adatoms trapped on the surface. The 

array of surface atoms Is modeled as a set of Independent simple harmonic 

oscillators and may be visualized as a "simple harmonic chess board" in 

which each square oscillates perpendicular to the plane of the board 

with a frequency approximated by a surface Debye temperature and with 

an amplitude probability specified by a Boltzmann energy distribution 

at the temperature of the solid. The well depth, which is a function 

of both time and position on the surface, is approximated by a constant. 

This approximation is possible since all Important energy levels are 

near the top of the well. A free atom at rest an Infinite distance 

from the surface is assigned an energy equal to the nondimenslonal well 

depth 6 = D/kT, placing the zero of energy at the bottom of the well. 

The adatom energy distribution can be found from a kinetic master equa- 

tion once energy transition probabilities are obtained from a gas-sui- 

face collision model. This is equivalent to treating the movement of 

adatoms among the energy levels of the potential well as a random walk 

process. Adatom energy transitions are statistically Independent since 

the relaxation time of a struck lattice atom, T , and the collision 
' r* 

duration, T , are less than the period, T , of the adatom oscillation 
c o 

In the gas-surface potential well. The kinetic equation used here only 

accounts for adatom-surface collision induced energy transitions, thus 

this analysis is restricted to low surface concentrations. 

The desorptlon relaxation process has three distinct time scales. 

Initially there is a transient regime of the order of the characteristic 
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adatom oscillation time, T , during which there Is negligible desorptlon. 

During the transient, the adatom energy distribution relaxes to a steady 

state form which Is the asymptotic energy distribution as t/x -♦• 00. The 

second time regime Is characterized by the mean desorptlon lifetime, 

Tj = k" .  Since T, Is of the order of T exp(D/kT) and the well depth 
a   d a o 

Is large compared to kT, T. » T . This difference In time scales allows 

the steady state distribution to be used during the entire second time 

regime while all significant desorptlon takes place. The third regime Is 

the equilibrium condition at t/T. •♦ 0O.  Here the adsorbing flux equals the 

desorblng flux.  It Is the second time regime which will be examined in 

detail to determine the temperature and atomic species dependence of the 

rate constants. 

B. Master Equation 

Assuming that the state of an adatom is specified by it3 energy, 

the kinetic master equation for the reduced adatom energy population 

X(e, t) can be written: 

Ne(e) ft X(e, t) - /* R(e, e') [x(e', t) - X(e, t)]de' 

where 

+ R(e, f) [H(e, t) - X(e, t)]       (3) 

X(e, t) - N(e, t)/Ne(e) (4) 

is the ratio of the actual energy distribution, K(e, t), of adsorbed atoms 

to an equilibrium distribution, N (e) = (N/Q)e~e Cifl/de), at the surface 

temperature T, N is the number of atoms in that region of phase space for 

which the partition is Q, dfl/dE is the energy level density per unit e. 
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e = E/kT Is the nondlmenslonal adatoa energy, 6 « D/kT Is the nondlmen- 

sional well depth, R(e, e^dede' Is the one-way equilibrium transition 

rate from an energy band de at e to an energy band de' at e', 

R(E, f)de - /? R(e, e^de'de (5) 

Is the one-way equilibrium desorption rate from an energy band de at 

e to the free state, and H(e, t) is the ratio of the actual one-way 

adsorption rate to the equilibrium one-way adsorption rate, R(f, e). 

Note that by detailed balancing, we have R(e, e1) = RCe', e) and 

R(f, e) - R(e, f). 

X(e, t) is a useful measure of nonequilibrlum since it is unity 

at equilibrium. X(e, t) > 1 indicates over population of the energy 

level e, and X(c, t) < 1 Indicates depletion of the level e. The 

master equation simply states that the adatoms leave the energy level 

c either by making transitions to the level e' at a rate R(e, e') X(e, t) 

or by desorbing to the free state at a rate R(e, f) X(e, t) and enter 

the energy level e either by making transitions from the level e' at a 

rate RCe*, e) XCe', t) or by adsorbing from the free state at a rate 

R<f, e) H(e, t). 

The form of Equatlon(3)results from the following assumptions: 

1. The adatom concentration is sufficiently small that collisions 

between adatoms may be neglected,  if an equivalent Knudsen number 

Kn, is defined as the ratio of the adatorn-surface collision rate 

to the adatoro-adatom collision rate, this assumption is valid when 

Kn » 1. The adatorn-surface collision rate is the inverse period 

13   -1 
of oscillation In the well ^10  sec . The adatom-adatom colli- 

sion rate is a c A where A is the surface concentration, a the 
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colllslon diameter -v 10~ cm, and the mean speed c » 0rkT/2m )1^2'bl05 

-1 8 

cm sec.   The effective Knudsen number Is then Kh - T "Vfa c A) ■ 1016 A-1 
o 

and assumption 1 Is valid If A « 10  cm"2. 

2. A classical approach Is valid. Keck and Carrier^27^ have shown that 

quantum models fall when the average energy transfer per collision 

Is greater than the energy level spacing at the rate-limiting step 

in the well. For the transition rate derived here, the "bottleneck" 

is at the top of the well where the energy level density is high, 

and the quantum number is large. For very shallow well depths, 6^1, 

this approximation Is not valid. 

3. The nonequlllbrium transition probability is equal to the equilibrium 

transition probability. This assumption is always valid since the 

collision mechanics are determined by the temperature of the solid 

and the atomic parameters of the gas and solid and are independent 

of the energy distribution of the adsorbed ensemble. 

C Steady State Solutions 

To solve Equation (3)we now Introduce the steady state approximation 

by setting the time derivative on the right-hand side equal to zero. 

This gives 

/£ R(e, e') [x(e'. t) - X(e, t)]de' + R(e, f) [H(e, t) - X(e, t)l - 0 . (7) 

The form of Equation (?) indicates that energy and tire variables will 

separate if it is assumed that a steady state reduced population, xfe), 

exists such that 

X(e) f(t) - X(e, t) - H(e, t) : E < 6 (8) 

where f(t) gives the time dependence of the adsorbed population.  If 

the energy distribution in the free gas is steady, H(e, t) may also be 
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separated as H(£) F(t)/Fe where F(t) Is the time-dependent free gas 

concentration, and H(e) is the ratio of the adsorption rate at an 

energy level E from the actual Incident distribution to the rate from 

an equilibrium distribution.  In terms of the equilibrium transition 

rate RCe', e) and a time-independent incident atom energy distribu- 

tion Xg(e') - Fe Ng(G',t)/F(t) Nß(e.)f 

H(e) = /gR(e', e) xA*')  de'/RCf, e) . (9) 

H(e) is unity when the incident energv distribution is Boltzman about 

the temperature of the soHd so that X^1) = 1. 
g 

An integral equation for x(e) Is obtained by substituting Equation 

(8)into  Equation(7)and assuming 8H/8e « f(t) dx/dE 

f0  R(e, E') (x(e,) - x(e)) dE» + R(e, f) x(e) - 0 .      (10) 

The condition 9n/3E « f(t) dx/d£ is generally satisfied since near the 

top of the well the gradient of x(e) is large duo to depletion of the 

upper energy levels by desorbing adatoms.and H(E) does not have a large 

gradient at any energy.  The steady state population, x(e), is obtained 

from a iteration solution to Equation(lOJor by conversion of Equation(10) 

to an equivalent diffusion equation.   ' 

The surface concentration is given by 

A(t) = ;0 X(E, t) Ne(E) de , (11) 

where X(e, t) is obtained in the steady state approximation by assuming 

X(E, t) is separable, and setting x(0) = 1 in Equation^. This gives 

X(E, t) - X(0, t) x(e) + (H(E) - H(0) x(e)) P(t)/Fe .   (12) 
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Slnce N (e) Is a rapidly decreasing function of e, substituting Equa- 

tion (12) Into Equation (11) with H(e) slowly varying and x(0 ~ 1 

near e - 0 gives 

AU)« x(0, t) /Q Ne(e) de - X(0, t)Ae . (13) 

The rate constants are obtained as functions of transition rates R(f, c), 

and the steady state reduced population, X(c)t 'rom the energy Integral 

of the master equation. Integrating the original master equation (3) 

over energy using Equations (9) and (13) yields the phenonenological 

equation 

^tr^ " ka F(t) " kd A<t) ' (14) 

where the rate constants have the form 

ka -/J R(f, e) x(e) dG/Fe ^S) 

and 

kd " f0  ^^ e) x(e) de/Ae (16) 

If H(e) is unity. These are the steady state rate constants. The 

equilibrium rate constants are given by setting x(c) " 1 in Equations 

(IS) and (16). It is seen from these equations that the ratio of the 

forward to backward rates in both the steady state and equilibrium case 

is equal to the equilibrium constant. 

h-r-F-r (17) 
e   ae   a 

where K is the equilibrium constant, k. is the equilibrium desorption 

rate constant, and k  is the equilibrium adsorption rate constant. When 
ae 

H(e) is not unity; i.e,, an Incident gas stream exists which does not 
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have a Bcltzman distribution about the temperature of the solid, the 

ratio of the forward to backward rate constants is equal to the product 

of the equilibrium constant and !!(0), 

k./k - K H(0) . (18) aa   c 
The factor H(0) takes into account the dependence of the adsorption rate 

constant on the energy distribution of the incident atoms. In this 

case, the energy integral of the original master equation with Equa- 

tions (12), (13), and (14) giv«a the adsorption rate constant as 

km "^0 R(f' e) x(c) dG)  H<0)/Fe • (19) 

Since the desorption rate consr«nt is unaffected by the incident atom 

•nargy distribution, it remains unchanged and is given by Equation (16). 

III. COLLISION MECHANICS 

A* Equations of Motion 

The mechanics of a single collision between a gaa atom and a sur- 

face atom must be described in detail to obtain the energy transition 

probability, R(c*, c). The collision model used is similar to the soft 

(18) 
cube model of Logan and Kszk   with an oscillating half harmonic 

repulsion replacing the oscillating exponential repulsion since lower 

incident energies are of interest. It is assumed that: 

1. tangential momentum is conserved; i.e., the solid surface is fist. 

This is not true since the crystal structure produces a rough sur- 

face on the atomic scale. However, the roughness seen * an inci- 

dent a tots is energy dependent and at incident energies < 6 the 

ad«ton, rcsMlning relatively far outside the crystal structure. 
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would see an approximately flat surface.  Experimental data on 

out-of-plane scattering and the success of the soft    and 

hard    cube models in predicting scattering patterns 

support this assumption. 

2. the surface atoms are independent simple harmonic oscillators 

with a single characteristic frequency obtained by approximating 

the lattice frequency spectrum with a delta function at the Debye 

frequency. Decoupling the surface array into independent oscillators 

has been shown to have small effect on the energy exchange process.  ' 

It is also assumed that only a single surface atom is Involved in any 

given collision.  It has been shown that most of the load for most of 

/l ON 

the collisions is taken by a single surface atom.     When the adatom 

velocity parallel to the surface is so large that the distance traveled 

during a collision is greater than the lattice space, this one-on- 

one approximation falls. 

3. the gas-surface potential consists of a stationary arbitrarily shaped 

attraction and an oscillating quadratic repulsion. The motivation 

for this assumption is discussed in the Introduction. The interac- 

tion is described classically and would not strictly apply to inci- 

dent atoms whose DcBroglic wavelength is of the order of the lattice 

spacing or to solid temperatures below the surface Debye temperature. 

The model interaction potential is illustrated in Figure 2. The 

inner half (r < 0) is an harmonic repulsion while the outer half 

(r > 0)ls a static barrier of height. Y(t) and Z(0 are the gas and 

surface atom displacements from their respective equilibrium positions 

which are separated by the equilibrium extension of the gas-surface 
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"sprlng." k and k are the lattice and gas-ourface spring constants, s     g 

m and tn are the surface and gas atom masses, r.id  6 Is the desorptlon 

energy divided by kT. The time origin marks the Initiation of a colli- 

sion. For t < 0, the gas atom Is force free, and the surface oscillator 

is in simple harmonic motion. 

Z(t) - ^- sin (w t + (|>) 
s 

and (20) 

Y(t) - - ut + J(- sin ♦ 
s 

where u Is the incident gas atom velocity In the well, u is the angular 

frequency of the surface atom, and V and 4» are the velocity amplitude 

and phase of the surface atom. The initial conditions are established 

as the gas atom impacts at the end of the gas-surface spring. At t * 0, 

Y(0) - Z(0) ml-   sin 4. 

. 8 (21) 

y(0) - -u ; Z(0) - V cos (J> . 

The equations of motion during collision (t > 0) arc 

m V(t) - - k (Y(t) - Z(t)) 
S ^ (22) 

mg Z(t) - - ka Z(t) + kg (Y(t) - Z(t)) , 

The collision ends when the gas-surface spring returns to its equilibrium 

extension with the gas atom moving away from the surface. For t > T , 
c 

Y(TC) - Z(Tc) (23) 

with Y(Tc) positive and greater than Z(T ). The collision duration, T , 

is the smallest non-zero root of Equation (23). The nondimensional 

energy transfer, Lie),  is defined as the increase in the gas atom kinetic 

energy during the collision divided by kT. 
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A(e) ■ e« - c - jgp (Y(TC)2 - Y(0)2)  . (24) 

B.    Similarity Parameters 

Defining W "    as a characteristic time and ucu "    as a characteris- 

tic length,  the nondlmenslonal equations of motion corresponding to 

Equations  (22) are 

v   V + (y - z) - 0 
, (25) 

v    (i + z) - y(y - z) - 0 

where p ■ m /m Is the Inertia parameter, V - w /w Is the frequency 

parameter, z - Z/uu " Is the nondlmenslonal surface atom displacement, 

y ■ Y/uu ~ Is the nondlmenslonal gas atom displacement, and time Is 
s 

nondlmenslonallzed with respect to m ~  .    The nondlmenslonal Initial 
s 

conditions are 

y(0) - z(0) - V8 

y(0) - -1 and z(0) - V (26) 

where 

v .V_£2Ll andv m U^J. (27) 
c    u       s    u 

are respectively the nondlmenslonal velocity and displacement of the 

surface atom at impact. One set of Initial conditions applies to all 

Incident energies since the Initial gas atom velocity no longer appears 

explicitly In Equations (25) and (26). Although the surface oscillator 

frequency is assumed to be give by the bulk Debye temperature, u - kO-Zlt, 

any surface oscillator frequency may be used to obtain u from the dimen- 

sionless ratio V ■ u /u . The original nine variables V, $, u , u , m , 
S  g S   g   8 

m , D, T, and u are thus reduced Ko three parameters v, u, 6, and two 

initial conditions V and V . c    s 
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From comparison with experiment, the parametric ranges of Interest 

-2 2 
are:  10  < p < 2, 1 < v < 10, and 2 < 6 < 10 . In the adlabatlc 

limit, v -♦■ « ,  the energy transfer goes to zero since the collision 

duration is large, and the Incident particle turns around slowly losing 

no energy.  In the impulsive or hard cube limit v -♦• 0, and the colli- 

sion duration goes to zero. Here the adiabaclty factor which is propor- 

tional to exp(- w T ) ■*■ 1, and the energy transfer is a maximum. 

C. Normal Mode Solutions 

General solutions to the equations of motion during collision. 

Equations (25), may be written as a linear superposition of normal 

modes: 

}U) - Z a q (t) and z(t) - Z  M.(t) (28) 

where j » I, 2 Indexes the two normal modes, q., of the system. The 

following algebraic equations defining the normal mode frequencies are 

obtained by substitution of possible solutions, y - a e   and z - ß e  , 

into Equations (25): 

(1 - V2w2) o - g - 0 

pa - (v2 + p - v2a)2)ß - 0 . (29) 

The resulting normal mode frequencies, u. and u., nondlmensional with 

respect to w , are 

U1.2 - t(v2 + M -^ 1) - [(v2 + p + I)2 - «v2]1/2}1/2/Av . (30) 

The amplitude coefficients In Equation (28) are related by ß - (1 - WV )0- 

Applyingthe initial conditions given by Equations (26) to Equations (25) 

yields the gas atom trajectory 
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5 v i + v
c - f^

2 

y(t) - - z 1   cos w-t —r-5— sin u t 
1 " ? 1        (1 - C)«^ 1 

2 2 V 1 + V    - u'v 
+ z—~ cos w-t + —s- 5- sin w-t  , 

1 " C Z        (1 - C)W^ v 

and Che surface atom trajectory: 

(1 - a£v2)CV (1 - w?V2)a + V    - w^v2) 
z(t) \   ■   r ~   c08 "i1 Tf sln "i1 

1-5 1 (1 - C)<VZ 1 
1 (32) 

(1 - wV)V (1 - ofyha + Vc - wjv2) 
+    T     ~r      cos  "ot  + 5 ^^ 8ln     S11 

1 " C    ' Z (1 - OWZü)2VZ 

2    2 where C " w /u .    The nondinensional collision duration,  T .  is the 

smallest non-zero root of y(T ) - Z(T ).    Using Equations  (31) and  (32), 
c     c 

the implicit expression for T is 

|a2l 
COS(W1Tc + t^)  - -   t^-p C C08((D2Tc + (J>2) (33) 

where a and $  are the amplitudes and phases of the normal modes. In 

terms of the initial conditions and similarity parameters, these are: 

2 2 2 2 2 
2   vf JT   (i + v - vV)z 

kl2- —i ö+    c   2 
1
   4(1 - O2      4(1 - C)2 wjv4 

(34) 

2 .2.2 
i2 V2     (1 + V - v2w2) 

«   ,      c    1 

and 

1 4(1 - C)   4(1 - C)Z (^Wjv* 

. -(1 + V^ - v2u2) 
* - tan"1 { 1 ^-} ; 

V  U* W. V 
8  4  1 

♦a ■ --i f-ilV-^ . 
V wf u_ vz si / 

(35) 



-17- 

Once the collision duration Is known, the energy transfer In a collision 

Is obtained directly from 

A - e[y(Tc)
2 - 1] (36) 

2 
where e - m u /2kT. 

g 

D. Collision Duration and Energy Transfer 

Contours of constant collision duration and energy transfer In 

Initial condition space are given In Figures 3a and 3b. The time con- 

tours In Figure 3a are given for relatively Impulsive parameters, 

y ■ V - 1, while the energy contours in Figure 3b are for v - 3.16 and 

y - .5. There is a "plateau" in the V , V plane, separated from the 
c  s 

remainder of the space by a discontinuity along the heavy dashed lines 

in Figures 3a and 3b given implicitly by y(Tc) - z(Tc) and y(Tc) - z(Tc). 

This discontinuity follows from the definll Ion of T as the smallest non- 

zero root of a periodic function. The effect of higher v is to increase 

the size of the plateau and the range of initial conditions for which 

adiabatic collisions with longer duration occur. The approximately 

radial, straight-line behavior of contours of constant collision time 

in Figure 3a follows from the definitions of V and V . Radial lines 

in V , V space are roughly lines of constant phase angle, $.    Figure 3a 

illustrates that the duration of the collisioti is largely dependent on 

the phase angle of the surface atoms at iDpact. Since the initial condi- 

tions establish the nature of the collision, regions in Vc, Vg space may 

be assigned a particalar type of collision. For vc < - 1» region III in 

Figures 3a and 3b,no collisions are possible since the surface atom is 

moving away from the gas atom at t - 0. On the plateau and for most of 
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the space off the plateau, region I In Figures 3a and 3b, the gas atom 

strikes the surface, returns to the well, and rebounds off the attrac- 

tive step before another collision begins. The dashed circle In Figure 

3b Indicates the veglon of Interest In collision Initial condition space 

for calculation of steady state adatom energy distributions as deter- 

mined by the equilibrium transition rate described in the next section. 

It shows that only collisions in region I affect the steady state 

reduced populations and rate constants. 

In region II on Figures 3a and 3b, the gas atom strikes the sur- 

face, begins and ends a collision, but strikes the surface again before 

returning to the well and rebounding off the attractive step. To assess 

whether these "double" collisions occur, the final conditions of the 

normal mode solution are used to define the initial conditions of new 

trajectories for the tine t > Tc. The gas atom la in free flight, and 

the surface atom motion is approximated by simple harmonic oscillation 

subject to initial conditions given by r(T ) and Z(T ). Let T - t - T . 
c       c c 

Then the gas atom and surface atom equations of motion are 

y(T) - y(Tc) + y(Tc)T 

/ v   , .       ' <37> 
Z(T) - 2(T ) COS T + Z(T ) Sin T • 

c c 

If Z(T) - y(T) for any T > 0, a double collision occurs. Region II in 

Figure 4 defines the values of \i   and v for which double collisions occur. 

It is clear that double collisions are not important for most values 

of the similarity parameters except at very low energies. (This energy 

dependence derives from the (p/e)1'2 radius of the region of interest in 

v
8» 

v
c »pace defined by the 1/e point of the equilibrium transition rate. 
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RCe', e). Double collisions may be important for cases where y = 1, 

VJ5? 1, and 5 Is small, e.g., the sublimation and condensation of rare 

(41) 
gases on rare gases. 

Figure 5 shows sample gas and surface atom trajectories illustrat- 

ing the various types of collrlsions.  Nondimensional displacements are 

given on the left with corresponding velocities on the right. The abscissa 

is nondimensional with respect to o1 . Figure 5a with v » 3.16 and ji = .5 
8 

represents a relatively adiabatic collision at V «1 and V = 0 in region 
c        s 

I (single collision) on Figure 3b.  Figure 5b with V-y-l,V =0, and 

V ■ .2 is on the boundary between region I (single collision) and region II 

(double collision) on Figure 3a.  In this limiting case the initial condi- 

tions for Figure 5b are on the collision duration discontinuity in V , 

V space. Figure 5c, with V ■ y ■ 1, V «0, and V - .86, shows a rela- 
S C 6 

tively impulsive double collision in region II on Figure 3a. 

IV. GENERAL SOLUTIONS 

A. Equilibrium Transition Rate 

The fundamental role of the one-way equilibrium transition rate, 

R(c', c)dcdc* is evident from the functional form of the master equation. 

Equation (3), and the adsorption and desorption rate constants given by 

Equation (15) and (16) where R(f, e) is defined in terms of Rte', e) 

by Equation 5. The one-way differential transition rate may be expressed 

(38) 
as a flux in phase space from the state c  to the state c': 

dR - p(v • n)ds (38) 

where ds is a differential element of a surface In phase space separating the 

states e and e' on which (v • n) > 0, v is the generalized velocity of a point 
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ln phase space, n Is the unit outward normal to da, and pO^, 2)  is the 

density of points representing the state of a system of n particles 

In a 6n dimensional phase space, the axes of which are the conjugate 

momentum, £, and position, c^, coordinates of the particles. 

For the case of a gas-atom, surface-atom collision, the only non- 

Ignorable coordinates are the momentum of the gas atom, p , the momentum 

of the surface atom p , and the position of the surface atom Z. The s 

one-way equilibrium transition rate may therefore be written In terms 

of the Initial gas atom energy, e, and the Initial velocity and posi- 

tion of the surface atom, V and V , using Equation (38): 

R(F« Vr' V dF:dv„dV« " P^P«' P.» z>^ - Z)dp dp dZ .  (39) Co        CS        £*    S ft       S 

The surface In phase space across which the flux Is monitored Is given 

by Y - Z - 0 with the condition Y - Z < 0. 
• • 

With the definitions: dp - dE /2u, dp ■ m dZ, and Y - - u, 
•g    g  * K8   s  ' ' 

Equation (39) becomes 

R(G. v-.. VJdedV dV    - 0(E , Z, Z) 2m (1 + -)dE dZdZ .   (40) cscs g sug 

Since It Is assumed that the gas atom and surface atom are Independent 

prior to collision, the phase apace density in the initial state p(E, z, z) 

can be separated as a product of the gas particle density, 0 (E ) and 
g g 

the surface particle density, P (E ): 
8  S 

N exp(- E /kT) exp(- E/kT) 
p(Eg, Z, Z) - Pg(Eg) P8(E8) - -

S—Q—^ x -S.       («D 
g 8 

where N is the number of gas atoms, Q is the gas partition function, 

Q - 2iTkT/u is the solid atom partition function, and it is assumed 
B S 
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that for the equilibrium transition rate calculation, the phase space 

points have a Boltzman distribution. Substituting Equation (41) into 

Equation (40) with E = kTE, ^s " j Tngu  (Vc + Vs), dZ - udVc, and 
g 

dZ = uur1dV    yields s      s ' 

N m u*" £rv^4.v^ 
R(e. V , V )dedV dVa - j^ e"e (4-) e" u^c V  (1 + V JdedV dV    . 

(42) 

The one-way equllbrlum transition rate, nondlmenslonalized with respect 

to N kr/Q is then 
g   g 

^(e. Vc. Vs)dedVcdVs - ^ (1 + Vc) expt- I (Vc + V8 + y)]dedVcdV8  (43) 

where the nondlmensional initial gas atom kinetic energy, e, surface 

atom velocity, V , and surface atom displacement, V . are defined In 
c s 

the previous sections. 

From the definition of the partition function, 

where the subscript g indicates all gas atoms, the subscript f indi- 

cates only free atoms, am'  no subscript refers to adatoms. Thus the 

transition rate given by Equation (43) may be nondlmenslonalized In 

a variety of ways.  In adsorption processes, Equation (43) is nondl- 

mensional with respect to 

0.   4xTOn 4 

- ,1/2 
where c is the mean speed of the free atoms, and Qf - UfltB kT) 

for gas atoms moving normal to the surface. The transition rate 
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In desorntlon processes is nondltnenslonallzed vlth respect to 

NkT      Vg 
— "  Tu ^6) 

where A is the equilibrium adatom concentration. 

Equation (A3) shows t^iat tlie one-way cqulllbriur. travmltlon rate 

has a strong naxinura in initial condition (V , V ) space.  In tho  limit 
c  s 

e ■*■ <o,ffi(e, V      V ) resembles a delta function at: 

V = 0 
s 

Vc = i[(l + 2y/e)
1/2 ~ 1] +0 . (47) 

This behavior is useful in making the variable transformation from 

Ä(e. Vc, Vs) to/?(£', e). The energv transfer, and therefore the final 

energy for a given initial energy, is given as an implicit but exact 

function of e, Vc> and Vg by Equation (36). This function is plotted in 

Figure 3b for the particular but typical case, v - 3.16 and p - .5. It 

is seen that the surface, - (Vc, Vg), is approximately a plane In the 

neighborhood of tho maximum of>?(e, V . Vg). The equation of that plane 

Is obtained by expanding - (Vc, Vs) In a two-dlmensionil Taylor series 

about the Vc, Vg values given bv Equation (A7) and truncating the expan- 

sion at the linear terms. 

| (Vc, Vs) - a - 1 + b Vg + c Vc (A8) 

where a - y (Tc), b - 2y(Tc) yv (TC), and c - 2y(Tc) yv (x ) with sub- 
s c  c 

scripts Indicating differentiation, and T (0, 0) is obtained from Equa- 

tion (33). A rotation transformation to two new coordinates. V  and 
* sr 

Vcr» who8e axes  are parallel and normal to the Intersection of the e' 
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plane with the plane of the V , V axes, picks up the direction of the 
c  s 

normal coordinate V . This transformation Is 
cr 

V sr -vc(i 
2 - -1/2 

-V1 ♦4>- c 

•1/2 

Vcr -vca +4> c 

-1/2 + V1 2 - •1/2 

(49) 

The Jacoblan Is unity. The V , V  axes can be located on Figure 3b 

by an ^ 60-degree counter-clockwise rotation from the V , V axes. ^ c  s 

Inverting Equations (49), substituting Into Equation (43), and Integrat- 

ing over V  gives 
mm 

1/2 2 -1/2 
? (Vcr, O dV^de -  (^        (1 + Vcr(l + y        ) exp{- £ V2

cr - e}dVcrde  . 

(50) 

The one-way ^qullibrliar transition rate Is then obtained from Equation 
dV 

(50) using R (e, e») de'de - Ä(Vcr(e
,), c) 

cr 
de1""! 

dc'dc and 

V (e1, e) - (e1 -aOe"1 (b2 + c2)"1/2 with the desired result 

P ir   ^tN . e(c2 * b2) + c(et - ac)  /-(e* - ac)2 p) «,> /f (e, e') - -*—^js A 5—*j% expl 5 * c) (51) 
(ny)1'2 (e(cz + bz))J'z   lic(bz + c ) 

This approximate rate does not satisfy the synaetry required by detailed 

balancing. A symmetric form can be constructed by taking the arlthnetlc 

mean of R(e, c') and R(G', C). Numerical comparisons show negligible 

distinction between the symmetric and unsymmetrlc rates. 

Introducing the approximations: a ^ I, c ^ c - (c + e')/2, and 

A/2c « 1 yields a simple symmetric kernel: 

i A2 
A (e, A) l  ___. eXp { _ —*  - c)      (52) 

(yTrc(bZ + cz))1/z      yc(bz + cz) 

where c ■ (c* + c)/2 Is the mean energy, and A • c* - c Is the energy trans- 

fer. This approximate one-way equilibrium transition rate is used in the 
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calculations reported here. Figure 6 shows contours of constant non- 

dloensionsl one-way equlllbrlua transition ratc,/'(c, g») In the 

0     38 
range 10 to 10  in c.c* space. The gradient of/2(c, c') along the 

A axis is «ich greater than along the c axis. This difference allows 

an expansion of the population X(c, t) about A > 0 to obtain an 

equivalent diffusion equation for X(c, t) frca the master equation. 

The exponential decaf in c follows fro« the Boltzaan factor. A typi- 

cal well depth, 6 ■ 13, is indicated by the dashed line In Figure 6. 

There are four transition regions separated by c' - c and c - i: for 

C and c* > 6, the gas atoa Is never traprv«d; when c and c' < 6, transi- 

tions occur between ststes in the well; for c < 6 and £* > £ desorptlon 

takes place; and in the region c' < 6  and c > 6 gas phase atoss are 

adaorbed. 

Once the equlllbrlua transition rate is kmnm, the one-way equi- 

librium desorptlon rate,^(f, C), is obtained as the Integral of 

AU', c) over 6 < C* < • given by Equation (5). This Is equivslent to 

Integrating Equation (52) over  .5(6 + e) < e < • using A ■ 2(c - c) 

with c as a parameter. The result is 

/f (f, C) - i exp(- 4 qpc ♦ 8q2c) lerfc(pl - 2-J^) •»• e8<,p€ erfc(pl + ^)J 

(53) 

where q - (M(b2 ♦ c2)r1/2. p - (4q2 * l)^2, I - t-tJi)1'2  . 

The Gaussian behavior of the kernel for Equation (5) given by 

Equation (52) is clear in Figure 7 where the nondimenslonal transi- 

tion rate is plotted versus energy tr^iisfer for y • .5 and v • 3.16. 

The two curves, equivalent to slicing Figure 6 along c - 10 and c - 30, 
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tadieac« tbae th« ew-sn coanty transfer lAertMM •• th« incident «ncrjey 

Increase».  Thi« In rra*enable since har-er COllistOttS thmU  b« sore 

InpuUlv«. the broedeninf of the kernel helf-vldth e^peers >n Equa- 

tion (S2) ae a Caueeien scale factor of (c)~ > 

8, Steady State Adeto« fnergv Dietribution 

Tvo sttthods were used to obtain epproxisste solutions tö the «aster 

equation for Che steady state adecoa energy distribution. 

I. Equlvlent Diffuslcm equation 

Equation 3 aay be converted to an equivalent diffusion equation 

which identifies the desorption process with s diffusion process la 

(24) 
phase apace.    This la a particular fon of the aore generel trens- 

foraation to a Fokker-Planck equation*    In the steady stste epproxlsa- 

tioo the equivalent diffusion equation is 

i <V- -^^ •0 (54> 
where tü(t} •/*,(£*- t)

nÄ (c, t*) de1 Is the t     mmnt of tie energy 

trsnsfer with respect to the equilibrium transition rste. Equation (54) 

is a valid spproxiMtion to the mister equation when the form of A'(c, e'} 

ia auch that  A|e f ?Ä2A3c. 

Figure 8f where v - 3.16 and M • .Sa indicates thia criteria is 

satisfied for c > 2 fot the kernel given by Equation (S2). This result 

is typical for all valoea of the inertia and frequency paraaeters. Fig- 

ure 8 alao displays the exponsntial energy dependence of A (c) due to 

the BoItaftamfactor ln/it(c, C*), The nonulisatlon condition, x(0) - 1, 

replecea the boundary condition at the botto« of the well since the solu> 

tinn of Equation (34) ia not well defined with first derivative boundary 



-26- 

A,(«) 

where 6 1« the well depth end I*(6) is the "one-way equllJbrlua deeorp- 

condltion».  The boundary condition «t c - 6 1«  y— —J ■' • - 2r(6) xW) 

tion flux**: 

r(ö) - 4 ^<c. «•> *' <te • <55) 
Once the equilihriuB transition rate la known, I*(6) can he integrated 

directly. Usins the approximate kernel given by Equation (52) and 

changing variable» to c and A, r(6) la obtained by integrating over 

2(6 - c> < A < • for - • < c < « end ove» 2(e -6)<A<«for6<G<» 

with the raault 

TW) - expW ♦ «/16q2) erf(ö1/2/4q) . (56) 
25 

Thia approximate cquilibrlun deaorption flux la valid when a « 1, jr" ^ 1 

and 8q2 » 1. 

The ateady state reduced population in the diffusion spproxiastion 

is, integreting Equstion (54) subject to the ehove boundary conditions: 

X(c) • 1 - /^ Aj^)'1 dc/C/^c)"1 dc + J TW)'1] . (57) 

Kuaerlcal integration, using Equstion (56) for Tio)  and A2(c) ss given 

in the Appendix gives the reeults described here. 

The diffusion spproxiaatlon is useful sines its range of vslidity 

includes siynifleant nonequllibrlua effect», and the noaents of the 

transition rsi<»#?(c, V , V ) ss shown in the Appendix ere sufficient c  s 

to obtain s solution. A criterion for velidity of the diffusion solu- 

tion is given by the asan squsre energy transfer per collision A2(c)/A-(c)l 

shown in figure 9 for v • 3.18, u - .72, end V • 3.14, u > .46. When 

A^/AQ < 1, the diffusion solution is sccurste. When A^^O > 1' chc 

tenus 0(in) dropped in the diffr ion approximation hecoae Important. 
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FiRurc 10a shows equivalent diffusion equation solutions given by 

Equation (57) for the steady state reduced population for v - 3.16, 

U - .5, and 6-10 and 30. The ratio of the actual to the equilibrium 

energy distribution is plotted versus energy below the top of the 

well. Those energy levels for which x(c) equals one have a Boltmann 

distribution. The levels for which v(c) is less than one are depleted. 

The Magnitude of the depletion is detemlned by the rate at which atons 

"diffuse" up the well to replace the adatoas that desorb. When the 

energy transfer in a collisicn is snail, diffusive aoveaent of adatoiw 

aaong the energy states in the well is slower than the desorption 

process,and the upper levela deplete. Howrver, when the energy trans- 

fer is large, the desorbed atons are rapidly replaced by adatoas fron 

lower levels, and the true population approaches an equilibriun popula- 

tion. 

2. Iteration Solution 

When the energy tranafer per collision is Urge, A.MQ > 1, itera- 

tion scheaes converge rapidly, and the first iteration is a valid 

approximation to v(c). The steady state adatoa energy distribution 

is then obtsined fron an iteration solution to Equation (10) in the 

fora 

XjCe) - /*#?(e, Ox. jCc1) dcV/^(e,c') dc»       (58) 

where \.U)  is the j  iteration approximation to the steady state 

reduced population. Aasuaing the trial function XQ(C) ■ 1.0 for 

C < 6 and substituting Equation (52) into Equation (58) with a change 

- 1/2 
in integration variable fron c' to (c)   gives 
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X^c)  - /Jä(X. C) dx/7jÄ(x. c) dm (59) 

whereX(x, c) - — exp -{p2x2 - R2x"2 ♦ pg) with x - (c)1'2 end R • 2qc. 
/i 

Integration^2»43' yield* a flrat Interatlon approxlaatlon for the 

steady »täte reduced population. 

X^c) - 1 - i{erfc(pl - ^ + arfc(pl ♦ ^) exp(8pqG)) .(60) 

A second iteration approxiMtion for the ateady etate population at the 

top of the well, X?^). —J  be found by nurserleal integration of Equa- 

tion (58) with j ■ 2 and C - 6 uaing Equation (59) for Xj.^C*)* ^^ 

analytic aingle iteration approximation, Equation (60), la uaed in 

calculation« reported here. Although no direct coopariaon la poaalble 

Figure 10b ehowa the equivalent diffuaion equation and Iteration eolu- 

tion approxiaate ateady atate reduced populations for v • 3,18, .. - .72 

at 6 ■ 55.6. X indicate« a aecond iteration, >.,('). The Man energy 

transfer per collision, /.,(')/.'.0(i>. la 1.5. The actual population 

la cloae to equilibrltn, and alvilar r«tioa of the ateady atate to 

equilibrluB rate constants are obtained fron both oethods: Diffusion 

equation kjA*. • .36, and iteration solution k./k. • .88. 

€. Steady State Pate Conatants 

The energy Integral of the master equation yields the adsorption 

and desorption rat« conatanta in the steady state approximation. Two 

aethods have been described for obtaining the stoady stste reduced 

population and the equilibriua desorption flux, required bv Equations 

(15) and (16) for these rates. The iteration aolutlon nusterlcally 

integrates Eouatlona (15) and (16) uaing Equation (60) for the ateadv 

reduced population, v(c). and Equation (53) for the equillbrlun Jesorocion 
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ratc,/?v', c). The diffusion aethod fonully Integrates Equations (IS) 

and (16) 't&lng Equation (57) for the steady state reduced population, 

>,(c). and Equation (56) for the desorptlon flux, TO,),  required ss 

a boundary condition. Since the Iteration aethod la valid over a 

restricted rsnge of slallarlty paraaeters where the adato« ensetdtle 

is close to equllibriuM, the diffusion Mth>>d is used for the results 

described here. 

The steady state desorptlon rate constsnt, obtsined in the diffu- 

sion approxlnution fron Equation (15) noting that KkT/0 • A u /2s for 

the collision »odel described in Section III is 

kd - ft [f0 h1 6c*i r«)-1!)"1 (61) 

where &2  is given by Equation (A9) and r(6) is given by Equation (57). 

The equilibriuM desorptlon rate constsnt is obtsined fror Equstlon (15) 

using x(c) • *.: 

kde " Ji rW) ' <62> 
The classical desorptlon rate constant, k. . Is given by Equstlon (2). 

The classical derivation1 assuaes that (1) the gas phase end the adsorbed 

phase are «t equilibrlim; and (2) the sticking coefficient is unity so 

that th« rate of arrival equals the race of adsorption. These assuap- 

tlons are not physically realistic during the adsorption-desorption 

relaxation processes. The equillbriua desorptlon rste constant. Equa- 

tion (62), is valid when the first assuaption is correct, and the 

"steady state" desorptlon rate constant, Equation (61), does not require 

either assuaption. For reference the equillbriua constant for the 

adsorption-desorption process is 
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K • I« /2iikTj1/2 « exp(- 6), (63) 

and Che classical adsorption rate constant is the arrival rate, 

k«c ' I " lkT/2»»gl1/2 • G^ 

When Equation (16) ia valid, the cquilibriua adsorption rate constant 

is 

It  - (kT/2f» J1/2 r(«) exp (6) , (65) 

and the corr*«pondlng sceady state adsorption rate constant is 

k4 - lkT/2w.gJ
1/2 12 /J A2(cr

l dc ♦ ^ r«)"1!"1 exp (6). 
(66) 

Equation (17) shows that the ratio of steady stste to equilibriua 

rate constants is independent of the direction of the process. Froa 

Equation (17) with Equations (61) and (62) or Equations (66) and (65), 

k   k 
JL.» ci. - |i * :r(-/ /; .w.r' d. rk ui) r* * r" • ^ *2rW) 4 A2(G)"1 dcrl • 
ae  de 

*-  Kd 
In the adlabatic liait A, ♦ 0, and -— - r—♦ 0. In the lapuleive 

2       kae  ^de 
1 it it A. ia a ■axiwai. Since W ♦ • %lv  the adiabatic limit and 

6 •♦ • gives the iapulsive lisdt, nooequilibriue effects gmcrallv 

increase as V increases snd decreases as 6  increases. Figure 11 

presents the retio of the stesdy stste tc eqeilibriuB rate constants 

given by Equation (67) for u a .2 and 1 with ^ • 10. Under this condi- 

tion of fixed 6, the classicsl desorption snd adsorption rste constsnts 

for s given gss specie would be constants. 

An interesting effect is shown by the contours of constant U in 

Figure 11 which pinpoint the values of the siailarity paraatttera 
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corresponding to highly nonequllibrlum adaton energy distributions. 

"Resonance" occurs when the larger normal node frequency given by 

Equation (30) is an odd multiple of the saaller: 

u1 - (2n + Duj : n - 1, 2, 3 .... (68) 

For normal mode frequencies which are not independent, the period 

of both the gas and the surface atom motion is a multiple of the 

longer of the two normal mode oeriods, 2ir/u2. The end of a collision 

occurs at t ■ Tc - -/w,, and since y and z have a cooaon period, the 

velocities y(Tc) and I(TC) return to their Initial magnitudes. Thus 

at resonance the energy transfer is 

A/c - (y (TC)
2
 - y(0)2) - 0 . (69) 

and the adiabatic limit is reached. At frequency parameters near 

reaonanee,the steady state rate constant is order« of magnitude smaller 

than the equilibrium rate constant. Resonance 1« therefore a special 

case where nonaqullibrium effects are extremely important. Including 

enharmonic damping would round off the minima in Figure 11, but would 

not change the qualitative picture. 

Using Equation (30) for the normal mode frequencies in Equation (68) 

obtains the resonance value« of v aa a function of u plotted in Figure 

12; 

vr(li) - (2^(1 ♦ (1 - »HI ♦ W))I/2) - (1 + u))1/2     (70) 

where 

, . ! - Lü"_t_l4^i4 , ..x.2. ,.... j 
t«n + I)1 * I]2 

v (M) goe« to 2n ■(• 1 in both the limit n -► », and the limit u ■»' 0. With 

these results and the steady state adatom energy distribution previously 



-32- 

dcrlved, the Mgnltude and regions of laport of oonequillbrlum effects 

have been defined. 

Figure 13 «hows the variation of the adsorption rate constant» 

given by Equations (65) and (66) for v - 3.18, y - .72, and v- 2.66. 

U - .38 over a range of dimnalonless well depths 6 from 10 to 80. 

The sdsorption rate constsnt provides s «ore accurate aessure of noo- 

equlllbrlua effects since the exponential teapersture dependence of 

the desorption rste constsnt is not present. The stesdy state end 

equlllbrlua rate constants ahown are oondlaensionalised with respect 

to the arrival rate, and the nondiacnsloosl well depth, 6, is equivalent 

to an inverse teaperatore. The displaceaent of the k  lines below 

k
ac " 

1 8lvM • ■••sure of the effect of s non-unity sticking coeffi- 

cient. The corresponding displaceaent of tba k linea below the k 
• ee 

lines indicates the effect of s oonequilibrita surface population. 

The results given here are for edsorptioa froa an incident gas 

with a Boltsaan energy distribution about ths surfsee temperature. 

When the incident gas streaa haa any other energy dlatrlbution, the 

adsorption rste constant is obtained froa Equation (19). The result 

is Equation (66) aultlplled by H(0) where H(0) Is given by Equation 

(9) as 

H(0) - yJ/?(C, 0) ^(G) d€//Ji? (c, 0)dc . (71) 

for the case of s gss with s Boltxasn energy distribution at a terpcrr 
1/2 

turc Tg, ^(c) • n   exp(- n(c - 6) + c - 6] where n - T/T . Subatitutlng 

this expression and the value of Ä (G, 0) obtained froa Equation (51) 

Into Equation (71) and integrating gives 
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U/A%       l/2f      */*       IM  /*V ± UU2   <rfc[g(a2q2 + n)]l/2        .... 
H(0> - n     lexp6(n -   Dl  (-y^ ) '      2 i l/i '    ^   ' 

a q + n     crfc(6(a q +1)] 

for the case of a aonoenergedc incident bean of energy C». 

c) - (4V0/c) «(C.<-C0) exp(c - d), and Equation (71) gives 

H(0) - — (n    ' ft) 5-5 T77- (73) 
c     Wo*6' erfct(aV + «fiJ 

«her» v. - (2kTc0/a )1'2 Is the velocity of the atoms In the beaa, 

— 1/2 and c - (8kT/-n )   In the «ean thenul speed for s gss of atone In 
P -1/2 equlllbrlua vlth the surface. Figure 14 shows H(0) n    given by 

Equation (72) versus the frequency psrsaeter, v, for n - 0. 1, end 

10 with U • .2 snd 1. The well depth, 5, wss fixed at 6 - 10; thsre 

wss no Mssurable variation of H(0) with well depth over 10 < d < 30. 

M(0) n"l/2 - 1 for all vr(w) and for n - 1. 
-1/2 

figure IS shows the n dependence of 11(0) n   Mven by Equa- 

tion (72) for « ■ 3.18, u  • .72, and v ■ 2.66, u - .38. The effect 

of the foraer set of paraaeters being "off resonance" while the latter 

-1/2 Is "on resonance" Is clear fron the nesr unity H(0) n   for the 

resonance systsa. 

As s ssaple cslculatlon of the steady stste rste constsnts, 

consider the case of s xenon gss laplnglng on s clesn tungsten sur- 

fsce. Coaparlson of the soft cube aodel with scattering pattern 

data   Indicates a frequency paraaeter v • 2,0 and a well depth 

D - 4S00 0K for this systea. The Inertia ratio Is U ■ .72. If the 

surfsee teapersture were 100 0K, 6 would be AS. If T - 100 K, 
3     -1 

n - 1. sod H(0) • 1; therefore, froa Equation (66) k - 2.0 x 10 ca sec . a 
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If Tg - 1000 
0K, n - 0.1 and from Equation (72) H(0) - .36; therefore, 

from Eq lation (19) ka - .72 x 10
3 cm aec'1. The deaorption rate 

constant is the tmme for all T ; here k - 4.5 x 10~8 sec"1. Note 

that the energy distribution of the incident stream primarily affects 

the sticking coefficient while the steady state distribution given 

by Equation (57) remains a good approximation to the adatom energy 

distribution for all n. 

V. C0NCLUD1NC REMARKS 

In summary, the time evolution of a nonequilibrium enaemblo of 

gas atoms adsorbed on a solid surface lias been described. The tem- 

perature and atomic species dependence of the phenomenological rate 

constants in the experimentally observed first-order rate equation 

has been obtained from the energy integral of the governing master 

equation. The pertinent similarity parameters and energy transition 

probabilities for gas atoms colliding ulth solid surfaces have been 

derived from a classical interaction model using a gas-surface poten- 

tial composed of an oscillating harmonic repulsion and a stationary 

attraction. The master equation for the reduced adatom energy popula- 

tion has been solved in the steady state approximation by interation 

when the mean energy transfer per collision is greater than kT and 

by conversion to an equivalent diffusion equation with the second 

moment of the energy transfer assigned the role of diffusion coeffi- 

cient in the case of mean energy transfer less than kT. 

The magnitude of the departure from equilibrium due to the deple- 

tion of the energy levels near the top of the surface potential well 
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io defined by the steady stote reduced «daton energy population. It 

wee found tbet for "reeonence" values of the rer.io of surface-co-gas 

oscillator frequencies, gas-surface collisions were sufficiently 

ediebetic tbet the edetoa energy distributions were eppreciebly non- 

cquilibriun, end the eteedy etete rete constants were depressed orders 

of aegnitude below the equilibrium rete constants. Experiaentel verifica- 

tion of thin prediction would be extremely useful. 

The retio of the eteedy etete desorption to adsorption rete 

constents ie the equilibrium COMtent, unless en incident gee existe 

with en energy distribution which is not Boltsaen ebout the eurfece 

temperature.  If such e gee exlets the adsorption rete consteot ie 

■odified by the retio of the adsorption ret«* et the bottom of the gas- 

surface pocentiel well from the actual incident energy dietribution 

to the adsorption rate et tbet energy level from en equilibrium inci- 

dent energy dietribution. The desorption rete constant is unmodified; 

therefore, the retio of rete constants is the product of the equilibrium 

constant end the retio of edsorpclon retes et the bottom of the well. 

Comparison* with experlmentel data, ee described in e leter 

peper, indicete the results of this analysis are reasoneble; however, 

insufficient experlmentel results are available et the present tine 

to say that the theory bee been confirmed. This treatment obtains 

the deteiled time history of the energy distribution of the edsorbed 

ensemble. The edsorption-desorption rete problem considered here ie 

but one of e lerge set of problems whose solution may be described by 

similsr analysis. Ges-surfece potentiel parameters obtsined from this 
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«pproach permit prediction of nany pheooMna; therefore, rigorous 

experimental verification la feaalble. 

Possible extensions of the model are (1) to account for aurface 

rougnneaa by Introducing a distribution of aurface orientation» or 

well depth»; (2) to Include energy tranaitlona induced by adatoa-adatoa 

collialona in the raster equation, thu» eliMlnatlng the low aurface 

concentration reatrlctlon; and (3) to add another degree of freedoa 

to the Beater equation to account for internal energy exitatlon. thu» 

extending the analyal» to adaoleculea. 
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AFPENDIX:  ENERGY THANSFER KOMENTS 

The aoaents defined In Section IV ere evelueted here for the 

collision model described In Section III. Using the equlllbrlua 

transition rate given by Equation (43^ for the required kernel end 

recognising thst integration over c* Is equlvslent to Integration 

over V    end V   yle: ' c s 

Vc) ■ C On • Sjr(1 + V ««p - J <vc + V^ + u)dVc ^e 
(Al) 

where the lover limit of V hes ben extended to -^ vlth e negligible 

additional contribution to the Integral. Since l*;s energy transfer, 

A, is lepllcitly dependent on V end V through the collision deration 

T , it is necesssry to spproxlaste A by s two-diaensionel Tsyior expen- 

»Ion shout the pvaxlBoffl in the kernel teken here to second order. This 

expansion is 

aon^) - A + ^   (vc - vc) ♦ ^   (vt - vs) 
c s 

♦ifovV    (Vc-Vc)
2*2^v    (Vc - S^CV, - V*g) 

c C V s 

+ A,. v    (V. - V,)2) (A2) 
s s     •       ■ 

where the tilde superscript indicstes evaluation st the kernel naxieaa 

1/2 
(V, " 0t Vc - .S((l ♦ 2u/t) '    -D) end subscripts indlcste differentia- 

tion. Third-order tents ere odd end contribute negllglbily to the 

integrel. The coefficients in Equetion (A2) sre 

2 * 2       '  * 
A    - c(y   - 1) ,     Ay v   - 2 c(yv  ■♦• y yv v ) 

e c e c c 

Ay-icyyy,     Ayy-2 c(yv   yv   * y yv v ) (A3) 
c c cs .sc cs 

Ay-Zcyyy.     Ayy-2 e(yy   + y yy ) 
s s s s s s 



-38- 

MhUM 

i - V,^ ♦ Vcf2 ♦ fj ,    ^    - fj ,    i?   - ^ (A4) 
c a 

«nth 

f j • (C Wj «In ialrc - u-, «In «2Tc)/(l - C) 

f2 • (co« «j^ - coc M^^z/C«? - «^)v2 (A5) 

fj - ((1 - v2«J) co« Wj^ - (I - v2w*) cos W1TC)/<WJ - w2)v2 

and where 

c c c 

yV V   ' l(wl •in wlTc ' W2 •ln w2Tc)/(wl " W2)v2,TcV        (A6) 

• 2 
TV V    " lu2<c09 MiT

c " co« «2Tc)/(1 " C)ItcV 

«rich 

TcV * (ul •ln wlTc " w2 •ln w2Tc)/(ul " «^Xy * «)v2) (A7) 

TcV " u2(co* wlTc " "• w2Tc)/(<l - «Xy - «)) 

vher« TcCVa( Vc) la evaluated via Equation (33). theae expreaaiona 

were obtained by differentiating Equation (31). Subatitutlng Equa- 

tiona (A2) through (A7) into (Al) and integrating obtalna the follow- 

ing aoMaca. 

A0(c) • exp(r C) (A8) 

A1(e) - («xp f €)){A ♦ (^ - Vc) ^ (A9) 
c 

*fe((^v"2.2;c*i)ivv ^yj) 
c c   a a 
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A2(c) - (exp (- c)) (A
2 ♦ (]fj - Vc) AAy (MO) 

c 

^ fe l(r ^ - ^c ♦" (^ 4 ^v v > ♦ AJ 4 ^ y J) . 
C      C C     8      • • 

The zoroth nooenc Is «iwly the col 11 «ion rate. The firat «oocnt, a« 

Indicated In Fi«ure 8 aatiafiea the criteria(27) A1(c) - .5 3A2(c)/Sc 

required for validity of the diffusion approxiution. A aeaaure of 

the »ean energy tranafer per colliaion ia given by the ratio of the 

second to zeroth aoaenta. The dominance of aecond-order term in the 

energy transfer Tsylor expansion is exhibited in the linear dependence 

of A2^0 on C M >hown in Figure 9. Using Equation (A 10) to evaluate 

A2 in Equation (30) gives the desired steady state solution to the 

approxiaate diffusion equation for the adatotä energy distribution. 

In addition to these eoaents an approxiaate one-way equilibriun 

desorptlon flux is given by the first moment, of the absolute value of 

the energy transfer 

r(c)  ^ lAlj <e) - j/^,, |A| R(e, e')de' . (All) 

Using a rotation transforuation similar to that used to obtain/?(£. e') 

fromÄ(e,VcVa), Equation (All) may be separated into a sunmatlon of 

integrals in which A has a constant sign, thus bringing the absolute 

value outside the individual integrals. Asymptotically expanding the 

resulting parabolic cylinder functions obtains 

lAl^e) - .5G (Aj + Aj )1/2 exp(- c  - ü^2-) {f. sinh t(5e/M)1/2 C] 
s    c 

2 
+ 2  (1 - BC)   (y/7re)1/2 exp(- g- cosh [ (3E/y)1/2C]} 

(A12) 
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B -  (I + äJ /AJ )-1/2 

•     c 

C - (A - V^ )/(A;   + Aj )1/Z 

C 8 C 
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FIGURE CAPTIONS 

Fig. 1  C48-surfa,',e potential well forned by superpositiro of 

dynanic repulrlw» and static attractive potentials. 

Pig. 2  Collision oodfil. Attractive potential is an arbitrary shape 

of height Ö at fixed position several lattic spacings from 

the surface. Repulsive quadratic potential follows the 

surfAce oscillator notion. 

Fig. 3  Contours in Initial condition space: (a) contours of 

constant collision tines for V ■ y ■ 1; (b) contours of 

constant energy transfer for v - 3.16 and u - .5. Region I 

has single collisions, and Region II has second collisions. 

In ^Tegion III no collisions occur. Heavy dash Indicates 

plateau bounded by a discontinuity in T and A. 

Fig. A  Second collisions are not significant at the Incident gas 

atom energies Indicated when the system frequency and 

inertia parameters lie in Region I on this figure. 

Fig. 5  Gasy(t)   , and surface 2(t) atom trajectories. 

(a) adiabatic collision (v - 3.16, p - .5, V - 0, V - 1.0) 
s     c 

with TC - 3.06 and A/e - - .007; (b) limiting case between 

single and second collisions (v " p ■ 1, V -.2,V «0) 
s       c 

with T »2.80 and A/e « - 1 at the end of the first colli- 
c 

slon; (c) second collision (v " p ■ 1, V = .86, V =0) 
s       c 

here T =1.71 and A/e = - .69 at the end of the first colli- 
c 

slon. Length and time are nondimensional with respect to 

u a)  and u , respectively. 



Plg. 6   Contours of conscaoc one-way cquilibrlua tranalelon rate In 

c, G' apaca for v - 3.16 and U - .5. Sasplo uell depth 

shown at 6 ■ 13. 

Fig. 7   Koreallzed tranaltlon kernel versus energy transfer for 

V - 3.16 and M - .5 with c - 10 and 30. Similar results 

are obtained for all u and v. 

Fig. 8   Energy transfer aoaents versus incident energy for v - 3.16 

and u - .5. Criterion  A1 - 1/2 OA2/3c) in  itatisfied 

for c >  2. 

Fig. 9   Plot of nean square energy transfer per collision versus 

incident energy for V - 3.18, M - .72 and v - 3.14, u - .46. 

Iteration is useful for A2/A0 > ^ 1 and the diffusion equa- 

tion is useful for A./AQ < 'v. 1. 

Fig, 10  Steady state reduced adatom energy population,  (a) diffusion 

approximation for v - 3.16 and y - .5 with 6 « 10 and 30; 

(b) comparison of iteration and diffusion approximations 

for V - 3.18 and u - .72 at 6 - 55.6. X indicates second 

Iteration, X2i&). 

Fig. 11  Ratio of the steady state to the equilibrium rate constant 

versus frequency parameter, v for 6-10 with contours of 

M - .2 and 1 shown. The steady state rate constant is orders 

of magnitude below the equilibrium rate constant at "resonance" 

values of v. 

Fig. 12  Resonance values v (p) of the frequency parameter In \i, 

v space. The adiabatic limit is reached, and the mean 

energy transfer goes to zero on the contours Indexed by n. 
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lift. 13     MoBdltniion«! steady state and equillbrlu» adsorpcion 

rat« conatanta vanua «fall depth for v - 3.18, u - .72 

and V - 2.66, |l ■ .38. 

-1/2 
Flf. 14  H(0) n   varaus the frequency paraaeter v for the Inertl« 

paraaeter, u - .2 and 1 with the teaperature parameter, 

n - 0, 1, and 10. At resonance and «t n - 1, H(0) - 1. 

-1/2 
fill. IS  H(0) n   varaus the ratio of the surface teaperature to 

the gaa teaperaturc, n - T/T for v • 3.18. y - .72, and 

v - 2.66, u ■ .38. 
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