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ABSTRACT

\In oirder to stu-dy efrfects of velocity and acceleration of a flow

to the pressure on an obstacle, a small sphere with a pressure hole

was placed in a periodically pulsating jet. Both the instantaneous

pressure on the sphere and the inst.antaneous velocity of the flow:1 field when the sphere was absent were measured. By using periodic

sampling and averaging techn.iques, only periodic or deterministic

component of the signal was recovered and any random componentI

caused by turbulence suppr-essed. The measured surface pressure

was expressed in terms of this measured velocity and acceleration •

of the flow. A simple inviscid theory was developed and the experimental

results were compared with it.
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1. INTRODUCTION

Measurement of the instantaneous value of the static pressure

inside a turbulent flow is still an unresolved problem because the

pressure probe placed in the unsteady flow field represents a solid

boundary and the surface pressure at a point always contains important

contributions from the inertial effects in the flow around the body. For

steady flows it is relatively easy to design "static" probes that read

the static pressure by using potential theory to calculate the pressure

distribution around the body of the probe, but the sa;n-e locations do

not give instantaneous static pressure in unsteady flow.

In order to understand better the behavior of small probes placed

in unsteady flows, an experimert was performed in a relatively simple

configuration. A small sphere was placed in a pulsating jet and the

instantaneous surface pressure fluctuations were measured. Since

in such a flow there is a strong random component of fluctuations due

to the turbulence, a special signal processing technique, namely periodic

sampling and averaging was performed on all signals in order to enhance

the periodic (or deterministic) componerit and to suppress the random

component.

Furthermore, in order to provide a guide for the assessment of

the results a simple inviscid theory was developed and the experirrental

results were compared with it.
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Z. EXPERIMENTAL FACILITY AND PROCEDURE

T'he time-dependent flow for measurements, the pulsating flow,

is produced by the scheme indicated in Fig. 1. The stez.dy air flow

provided by the centrifugal blower is divided into two streams, the

one flowing through the duct D1 and the other through the duct D7.

One flow component is discharged through the duct D1 and is periodically

ixtercepted by a rotating disc with 16 holes. As a result periodic

pressure fluctuations are induced also in the other branch, D 2 , through

which the other flow component is discharged and pulsating air jet is

S~produced. The frequency and •.mplitude of the velocity fluctuation in

I the jet can be varied within limits varying the speed of the rotating

disc and the stand-off between the disc and the nozzle attached to Dl.

The pulsating velocity of the jet was measured by a constant

(1) (2)temperature hot-wire anemometer followed by a linearizer.

Since hot-wire signal as obtained from the output of the linearizer

still contains random fluctuations due to turbulence in the jet, special

signal processing technique, periodic sampling and averaging, was

performed by using "Wavefrom Eductor" Model TDH9 of Princeton

Applied Research. The output of that instrument gives the ensemble

ave'" c.e of a large number (typically 1000 - 2000) of sweeps and the

random compor-nt is correspondingly reduced by a factor of

4F2000 or 30-40. As the result most of the random components is
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suppressed and only periodic or deterministic component is recovered.

The necessary synchronizing pulses were obtained from the rotating

disc by using a photo-cell pick up. Fig. 2 shows an example of the

periodic velocity fluctuation measured at a distance x = 6 cm from

the nozzle at a pulsating frequency of f = 450 Hz. The same technique

was used to obtain the periodic pressure fluctuation on the sphere as

described below. Schematic diagram of the instruntentation is shown in

Fig. 3.

Three spheres of the same diameter but with a pressure hole at

different locations along the meridian were used as models. They are

designated as S, 0 and R as shown in Fig. 4. The diameter of the

sphere is 6.35 mm and the diameter of the pressure hole is 0.5 mm,

located at the meridian angle e = 0° (opposite stem), 450 and 900 foi-

S, 0, and R respectively. The pressure hole is connected to a frequency

modulated condenser micnphone through the stem as shown in Fig. 4,

and the pressure fluictuations is converted to the electrical signal. In

earlier period of the experiment a transistiorized version of the circuit

used by Einstein and Li (l) was used as the FM oscillator and the detector.

In later period an improved circuit with the carrier frequency within the

range of commercial FM broadcast was built into the probe as shown in

Fig. 4 and an FM receiver EICO CORTINA 3ZOO was used as the detector.

The sphere was rotated around its center by a lathe turn table up

to a maximum angle of + Z0o (Fig. 5) so by using all three models it

SI-4
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was possible to orient the pressure holes on the sphere at every 5-

between-20 0 to 1100. The overall static sensitivity was found to be

57 and 2.4&S.V/Jgtr respectively. The overall frequency characteristic..

of the pressure probe depends on the diameter and length of the pipe

leading to the microphone as well as on the volume of the cavity in

front of the microphone diaphragm. Fig. 6 shows the calculated

frequency characteristics for the combination of a pipe of diameter

1. 0 mm and length 20. 5 mm and for two values of the cavity of volume

1. 65 and 89. 1 mm 3 , respectively. Resonances occur around 800 Hz

and 2500 Hz respectively. The dynamic sensitivity of the probe would

have been best obtained by the Coupler Method, which is based on a

comparison with a standard microphone. Unfortunately, however, no

standard microphone was available, so an alternative procedure was used

by utilizing a theoretical relation obtained for a sphere. According to the

theoretical calculation given in a later section, the pressure fluctuation

on a sphere is made up of two terms, one being proportional to the

fluctuating velocity itself and the other one proportional to the time derivative

of the :luctuating velocity. At the forward stagnation point the non-

dimensional coefficients of the two terms calculated by the theory are 1. 0

and 1. 5 respectively. By assuming a phase lag in the nmeasured pressure

fluctuation due to the lead pipe and the cavity volume, the ratio of the two

coefficients, dynamic sensitivity~for the stagnation point was calculated

as described in the following chapter from the fluctuating velocity and its

time derivative obtained by a hot-wire placed at the location of the sphere

center but in the aý.scnce of the sphere. T.'.- phase lag so determrined

- - - -
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varied between 10 and 300, and the dynamics sensitivity was found to be

10% - 40% higher than the static sensitivity.

3. EXPERIMENTAL RESULTS

First measurements were made within the jet which is discharged

from the duct DZ through a contracting nozzle to the ambient air (Fig. 1 ),

for a mean velocity of about 20 m/s at the jet axis. Fig. 7 shows the

velocity distribution across the steady non pulsating jet at two stations,

x = 3 and 6 cm do.rr.-"-earn from the nozzle. The core of the jet,

defined as the region in which the velocity is greater than 90% of the

velocity on the axis (To has a diameier 1.55 cm at x = 3 crn and 1.28 cm

at 6 cm, respectively. Fig. 8 shows the instantaneous velocity profiles

across the fluctuating jet at a station x = 5 cm for a frequency of 450 Hz.

The core diameter defined as above is about 1. 20 cm, which is a little

less than that of the steady jet. Fig. 9 shows the stream'vise variation

ef the amplitude and phase velocity of the velocity fluctuation along the

jet axis. Circles are described to indicate the location and size of the

sphere. When the sphere is placed at x = 3 cm, the ratio of the core

diameter of the steady jet to the sphere diameter is 2. 4, but the amplitude

of velocity fluctuation still varies by about 30 per cent over the region

occupied by the sphere. When the sphere is placed at x = 6 Lm, the

ratio of the diameters is reduced to 2. 0, but the variation of th.. amplitude

cf the velocity fluctuation becomes negligible. The phase velocity determined

by two-hot wires separated by a fixed streamwise distance is approximately
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constant over the region covered by experi;-nent. The actual value was

13. 2 m/s, about two thirds of the mean velocity at the jet axis. The

phase velocity is regarded as the velocity of the travelling vortex ring

produced at the nozzle traveling downstream.

Fig. 10 shows the mean (D. C.) pre sure distribution on the sphere

placed at x = 3 cm in the steady jet. The calculated value are also shown.

The Reynolds number based on the sphere diameter and the velocity on the

axis is ý---8 .8 x 103. As shown later in the theory, the instantaneous

surface pressure at a point can be expressed as

P=p9 + ALU' -t- B13 f U-
2-

where U is the instantaneous strearnwise velocity component a is

the diameter Mf the sphere, A and B are the coefficients of

the contribution from the instanteaneous velocity and from the

instantaneous acceleraticn rm:spectively.

The coefficients A and B are strong functions of the coordinates

(the azimuth angle) and they may also weakly depend on the Rr-nolds

number.

For the periodically pulsating flow, the above equation can be written

more specificaly as
P'fz)AU'-) -- A o-CO")

2

where /TT = Period

dat

for a particular location on the sphere. After the periodic sampling and

averaging, values of all oi pZ) , l(-r and were

-S. -T
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sampled at ten equaliy spaced points over the entire period, and the

coefficient A and B were determined by the method of least square

so that the mean square error

becomes minimum.

Fig. 11 to14 show the experimental values of A and B, the tv o coefficients

of influence. The values determined on the three models S, 0 and R are

indicated in these figures by the symbols of square, circle and triangle,

respectively. Solid curves give the theoretical prediction based on the

assumption of inviscid irrotational flow described in the following chapter.

4. THEOP.

With a view to gaining an insight into the problem, a theory is

developed to predict the pressure acting on a sphere placed in a time-

dependent flow of an inviscid fluid. A solution of the problem relevant

(4)
to the subject was treated by Lamb as follows. The pressure p on a

sphere moving g'th time-dependent velocity V in an infinite mass of

fluid at rest a. infinity is given as

( .1 ..oz 9)Y.. - CCsP9.- ai()

"where po is the pressure at infinity, t the time, y the densiLy of fluid,

a the radius of the sphere, and & the ,neridian angle measured from the

rear stagnaion point. Unfortunately, however, the problem treated there

doer not exactly correspond to the present experiment, since the time-



8.

dependent flow that can be readily produced in the laboratory is a steady

uniform flow with sutwrimposed traveling disturbances with no associated

pressure fluctu*itions in the free strea.-n.

It is not difficult to illustrate the possibility of such a time-dependent

flow. With the Cartesian coordinates (X, Y, Z), for example, the

momentum equations are satisfied by ta,.ng a flow field

V = U V = f(x-J t), V = 0 = constant, (2)x 0 y 0 z

which represent a steady flow of velccity U on which a two-dimensional

traveling disturbance is superimposed. No change in pressure is produced

by the disturbance. Since, however, the disturbance is rotational having

a component of vorticity in z-direction, the vortex filaments are stretched

by the introduction of a three-dimensional body such as a sphere. This

means that the "compensating flow" introduced to satisfy the boundary

conditions on the sphere must be also be rotational. It does not seem to

be impossible to find such a compensating flow, but in view of the limited

range of application of the present theoretical calculation, it is doubtful

whether the solution warrants the extra complication involved.

In order to simplify the calculations it is assumed that the disturbance

is fufficiently small, irrotational and traveling with a velocity equal to that

of the steady uniform flow. Using spherical polar coordinates (r, 9, •

such that

X r cost, Y rcinI cos;, Z -- in 9sin, , (3)

the velocity potential is assimed in the form 4

+ =. z (4)
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where

~0u~I + ~Cos (5)

is the velocity potential for the steady flow of velocity TI past a sphere
0

of radius a with center at origin. The second term

, U.sin k(rcoS V -Uot) I0 (&rsin 1)

is the velocity potential for the superimposed disturbance traveling with

the phase velocity U and wave number k, and finally

is the velocity pe antial for the compensating flow, F is a non-

dimensional constant, I. is the modified Bessel function of the first kind,

Pn the Legendre polynomial of order n, and Cn the non-dimensional

constants (n = 1, 2, 3, . . .) to be determined by applying the boundary

conditions on the sphere. If • is assumed to be small compared to unity,

the disturbance represented by 1, gives a velocity fluctuation of order

7 0- U. for finite values of Arsin 9 , and, when superimpos on the

steady uniform flow, produces a change in static pressure of crder E

which is second order and is considered negligible. Although the velocity

fluctuation increase indefinitely as !k~ifl1 tends to infinity, this does not

stem to affect seriously the results provided that the consideration is

limited to the regior close to the sphere and an additional assumption is

made that ka is small compared to unity, namely, the radius of the sphere

is small compared to the wavelength of the disturbance. Fig. 15 shows

the instantaneous streamlines (with equi-distant values of the Stokes stream

function if,) for the velocity potential ,for a value E I A i
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Under the assumption that ka is small, the normal velocity

produced by the disturbance on the sphere is given by expanding eq. (6)

and keeping the first two terms

4 ,CoS19,coS U~t + ~*0-(,3 C0xA'S-T-/r- = a- ,LU os•

which must be cancelled ve the normal velocity calculated from (,flar),.4

The constants in the expression for a are then determined as

The pressure on the sphere is obtained from the equation

-+ FIOt
f 2 (8)

S~P 0 beir~g the pressure at infinity. The pressur?• onI the sphere is thus

given by

where

(-5F ?Pr& t jo1 ' br4CS( 5L 6) (0

If the velocity V and the acceleration dVUdt at the location of the sphere

center (r o) are introduced by

Vka. U. 2rs

dt (11) + U

2. r



the pressure on the sphere is expressed in the form

±Z4L(12)

Eq. (12) indicates "Inat the pressure on the sphere consists of two terms,

the one being proportional to the instantaneous dynamic pressure (1/Z))PV .

and the other proportional to the time derivative of velocity Pa(dV/dt). The

coefficient A of the first term is the same as for the classical solution (1),

but the coefficient B of the second term is considerably different.

On writing

i9•--e V=Uo1- L (13)

where B is the meridian angle rmeasured from the forward stagnation

point, and u is the velocity fluctuation, (12) and (10) are written in the

form

2,(14)

-4 5 f- 9 CO:S '8) c05 (-3 - -O'6

5. DISC USSION

In the theoretical calculation it was assumed that E and ka are

small compared to unity, namely, the amplitude of velocity fluctuation is

small compared to the mean velocity on the jet axis, and the radius of

sphere is small compared to the wavelength of velocity fluctuation. These

conditions were not exactly satisfied in the experiment, wherr the

maximum values of E and ka are 0.40 and 0. 63, respectively. Moreover,

the observed phase velocity of velocity fluctuation was only 213 of the mean

velocity, whereas in the theory the phase velocity is assumed to be equal

* -°•~-



to the mean velocity.

In spite of these circumstances, however, the experinental va',.es

of the coefficients A and B agree fairly well with theoretical results

for the sphere location at x = 6 cm (Figs. 13 and 14). The agreement is

I, nc. as good for the location at x = 3 cm (Figs. 11 to 12), and this may be

due to the undesirable variation of the velocity fluctuation amplitude around

that location.

As seen from Fig. 2. the observed velocity fluctuation is not exactly

simple sinusoidal, but a slight distortion in the wave form is apparent that

results in higher harmonics. The distortion increases as the fundamental

frequency decreases. This seems to account for the fact that the root-

mean-square residual error of representing the observed pressure fluctua-

':1 tion by two terms amounts to 10. Z, 9.7 and 6. ' per cent of the fluctuation

- amplitude for the fundamental frequency f = 300 Hz (x 3 cm), 350 Hz

(x =6 cm) and 450 Hz (x = 3 and 6 cm), respectively.

No measurement on pressure was made on the rear side of the sphere,
where the separation of flow is expected to -nodify the pressure distribution.

The effect of separation can be traced in the pressure distribution for

meridian angle greater than e = 700, where the experimental value of

A begins to deviate from the theoretical curve (Figs. 13 and 14). On the

other hand, the .xperimental value of B agrees fairly well with the

theoretical result up to as far as • - 900 (Figs. 13 and 14). It is not

certain whether the agreement is real or fortuitous.

fi~~ -~A
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6. CONCLUSIONS

Measurements of the instantaneous values of the surface pressure

were carried out on a small sphere in a periodic pulsating flow and the

experimental values agreed moderately well with a concurrently developed

inviscid theory. t is apparent from the above theoretical and experimental

work that simila.r calculations can be performed on bodies other than

spherete. or even on a combination of bodies. By judicious choice of

such bodies points may be found on the surface where the coefficienta

A = B = 0 so the measu-ed pressure has no contribution from the

acceleration. Pressure transducers at such points or appropriately

coupled to pressure holes at such points would indicate static pressure

fluctuations in the flow corresponding to the location of the body but with

the body absent quite sirnilarlrly to -tatic probes used in steady flows.

The principal difference is that two terms must be cancelled instead the

usual one in steady flow.
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