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1y APITRACT
In this paper, we will present and analyze en algorithm for finding x and )
such that Ax =)Bx, where A and B are n xn matrices. The algorithe does
not require atrix~ inversicr, and may be used when either or both Eatrices are
singular. -Qur method is a ge;.ev-a.h‘.z.t;ou of Rutishauser's IR metsod for the ;
standard eige:. ue problex = 3x and closely resembies the Q7 algoriths ‘
given by Moier a. 4 Stexart :‘or"’the Beneraiized problesx given sbove. “inlike the “
Q@ esigorithz, which uses ortnogonal transforzations, our methcd, the IZ algoritam, :
uses elerxertary transforretions. When either A or B is complex, our metnod ;
shcould be =ore efficient.
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A GENERALIZATION OF THE LK ALGORITHM

T0 SOLVE AX = ) BX

BY

Linda Kaufman

Abstract

In this paper, we will present and analyze an algorithm for

finding x and ) suck that

Ax = 3Bx (1)

where A and B are n x n matrices. The algorithm does not require
matrix inversion, and may be used when either or both matrices are
singular. Our method is a generalization of Rutishauser's IR method ([17]
for the stsndard eigenvalue problem Af =X and closely resembles the
QZ algorithm given by Moler and Stewart [10] for the generalized problem
given above. Unlike the QZ algorithm, which uses orthogonal transfor-
mations, our method, the IZ algorithm, uses elemenzary transformations.

When either A or B is complex, our method should be more efficient.

This research was supported in part by the National Science Foundation

under grant number GJ 29988X and the Office of Naval Research under

contract number NOOOl4-67-A-0112-00029 NR O4L-211. Reproduction in whole

or in part is permitted for any purposs of the United States Government. i
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The LZ algorithm is based on three observations:
1) If L and M ure nonsingular matrices, the eigenvalue »roblems
LAMy = ALBMy and Ax = ABx have the same eigenvalues and their eigen-

vectors are related by x = My.

2) If A 1is a triangular matrix with diagonal elements @
and B is a triangular matrix with diagcnal elements By» then for each
J
If for some i, ., is zero, then the polynomial, determinant (A-2B) >
is of degree less than n. If oy is not zero and the corresponding
Bs is zero, we say that infinity is an eigenvalue. If for =zme i,
both o, and B; are zerg, then det(A-AB) vanishes for all values

of A, and every scalar is an eigenvalue of Ax = ABx .

3) There exist matrices I, and M such that LAM and LEM are
upper triangular and L and M are the products of lower triangular and

permutation matrices.

The first two observations should be obvious; the third requires
explanation. In [18] 3tewart shows that there exist two unitary matrices

U and V such that

A’ = UHAV and B’ = UHBV

are upper triangular. The symbol UH indicates the conjugate transpose

of the matrix U. We oan certainly write
UH 4s RL and V as MS

vhere S and R are both upper triangular matrices and L and M are

products of lower triangular and permutation matrices. The matrices

1 1 1

R A'S—l =LAM and R B‘S "~ = LBM &re both upper triangular and nence

verify our observation.

N

5,1 =1,2,==,n, ai/ai is an eigenvalue of the generalized problem if g.#0.
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The LZ algorithm has three parts. In the first part, the matrix ;

= j4 f
ij 0 for 1> j+, }

and B 1is simultaneously reduced to triangular form. The first stage

A 1is reduced to upper Hesseuberg form, i.e. a

RV

of the LZ algorithm is very similar to the first stage of the Moler-

Stewart algorithm, and they may be freely substituted for each other. é
The advantage of using our method is that it is about 5/2 faster; the

advantage of theirs is numerical stability. The second stage of the LZ algorithm
is a generalization of the LR algorithm and iteratively reduces A to E
triangular form while preserving the triangularity of B. The last part
of LZ obtains the eigenvectors of the triangular matrices and transforms
them back into the original coordinate system. Throughout ihe algorithm

stabilized elementary transformations (see Wilkinson [19}, p. 164) are :

used to insure numerical stability. These transformations are the

products of lower triangular matrices and permutation matrices, and

(RN NI PP R O v

are easy tc compute and easy to use. The permutation matrices are
designed to help minimize the loss of accuracy in numerical operations.

A further explanation of the stabilized elementary transformations uced bi

CUSN

in the heart of the LZ algorithm is contained in the notation section

at the end o1 this introduction. )
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I. BACKGROUND

As Lancaster { 8] and Gantmacher [6 ] point out, the generalized

eigenvalue provlem often occurs in the physical sciences. Many mechan-

Mgyt Ly vyt it

ical and electrical systems are governed by a differential ecuation of

the torm

C¥ +Dx + Ex =0
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where C, D, and E are n x n matrices and the soclution is expected to

hav~ the form x(t) = eAtx(O). Solving the ordinary differential equation

entells finding the eigensystem of
2
(A\“C+AD +E)x =0

If no camping occurs and the D <term is missing, the problem is like
the one given in (1) in 12. If the system is damped and the D term
is present, the problem can be reconstructed to have the form of (1)

where now A is the matrix

D I

C 0
and B is the matrix

-E 0

0 I

In nrany problems, especially those which d2scribe physical systers,
A and B have sonie spacial structure and most of the algorithms in the
literature are designed for matrices having specific properties. In [ 9;
Martin and Wilkinson have given a method for A,B symmetric and B positive
definite. Crewford { 2] hec presented a modification of that algorithm
when B is a band matrix. In [ 7], Golub, Underwood and Wilkinson describe
a version of the Lanczos algorithm for £,B zymmetric and B positive definite.
Fix and Heiberger [ 3] have a method designed for illconditioned B which
requires the determination of the ramk of certain submatrices in A and B.
If symmetry and positive definiteness are not present and B is well con-
ditioned, the eigensystem of Ax = ABx can be found by forming B.lﬂ and
determining the eigensystem of B-lﬁx = \x, for wnich there exist

severel good methods. For & nearly singular B, Peters and Wilkinson (15]
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describe an algorithm which approximates the null space of B. This s

epproach involves determining the rank of submatrices which is often difficult

PP R

to do exactly on a finite precision computer.

Recently Moler and Stewart [ 10] have presented an algorithm for
30lving the generalized eigenvalue problem which may be used regardless
of the coraition and structure of the two matrices. Our algorithm
resembles the QZ algorithm in that we generalize Rutishauser's LR
algorithm { 17} in the same way that Moler and Stewart generalize Francis's
QR xetiad [5 ] for the standard eigenvalue problem Cx = Ax. Before
we describe our algorithm in detail and discuss its relationship to the
QZ method perhaps it is best to review the QR and the IR methods. 1In
practice, the LR method for the problem Cx =ix 1is essentially:

i) Reduce C to upper Hessenberg form using similarity
transformations.

2) Determine a shift A.

3) Find L, a product of stabilized elementary transfor-
mations, and R, an upper triangular mairix, so that
L(C - X) = R.

L) %t C %o LCL-l. The matrix C will oe upper Hessenberg.

5) If the subdiagoral elements of C are rot negligible, ;
return to 2. ;
6) The eigenvalues 0f %he original matrix are the diagonal

elements of C.

- v— el e v oy .~
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according to the ratios of the shifted eigenvalues. In practice, the shift i

usually an eigenvalue of the lowest 2 x 2 subblock on tne diagonal of

C which has not been triangularized. This policy often gives a good

5
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approximation to an eigenvalue of the whole matrix.
The basic QR method is approximately the same as the LR method
with an or*hogonal matrix Q replacing the matrix L in steps 3 and &.

In practice a double shift implicit version of the QR method is used in

which steps 5 and 4 read
%) Find Q, an orthogonal matrix, and R, an upper triangular

matrix, such that

R=ql=q(C -2I) (C ~AI) where A and

are complex conjugate shifts or a pair of real shifts.
L) Set C to QCQT.
Only the first column of T is ever explicitly formed.

The main advantage of the double shift algoritim is the preser-
vation of real arithmetic for real matrices. The Q7 algorithm also has
this property. Vith the double step GR and QZ methods the final matrix
is not necessarily triangular, but may have 2 x 2 submstrices on the
diagonal whirh must be resolved. The LR and the LZ ..gorithms do not
limit them-:elves to real arithmetic but avoid the 2 x 2 probiem. Double
shift LR and LZ methods are not found in practice because of the lack of
a theoretical basis. Francis [9 ] has proved ‘hat one iteration of the
implicit double shift QR method is equivalent to two iterations of the
basic QR method. His theorem i; based on the uniqueness of orthogonal
transformations which reduce a given matrix to tiriangular form with
positive diagonal elements. This unicguen:ss properiy is missing for

stabilized elementary transformations.
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II. The LZ Algorithm as & Generalization of the IR Algorithm

The LZ a}gorithm iz motivated by the LR method described sbove where
the matrix C is AB-l. However, we do not assume that B.l exists.
Briefly, our algorithm is: !

1) Reduce A to upper Hessenberg form and B to triangular

form.

2) Find a shift a.
3) Find matrices L and ‘M, stabilized elementary trans- :
formations, such that L(A - AB) is upper triangular and
LBM is upper triangular. |

L) Set A to LAM and B to LBM. The new A will be upper
Hessenberg. ; . i
5) If the subdiagonal elements of A :a.re not negligible, return to 2. ;
6) The e eigenvalue is aii/bii if " by, is nonzero.

Again the shift is used to hasten the convergence of the algo-
rithm. In practice it is usually a solution of the lowest 2 x 2 sub-
problem cn the ciagenal of A - AB which has not been triangularized.

If the matrix C in the LR method is AB'l, then the matrix L
in the third step of the LR method is precisely the metrix L in the
third step of the LZ method if both algorithms employ the same pivoting
strategy. This fact is verified by denoting the left hand transformation

in the third step of the LZ slgorithm by I and noticing that

E(AB’l -I)

T(c - aI)

T(a - w)B~l

an upper triangular matrix. Thus L is also e transformation which
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tgiangularizes C - AIL; and'if the pivoting sfratvﬂy 1s the same,

is the transformation L in step 3 of the method IR.
Moreove;,‘it can be shown that che two algorithms produce

corresponding.itgrates. Ir ¢’ denste; the.next:iterate in the LR

algorithm and A’ and B’ are the iterates in the IZ algorithm,

then in the LR 'algorithm , .

¢’ = ot
and in the LZ algorithm
a8t = ram et
, ' = st
R

In Chaptér One we will present .wu algorithms. The first is a
straight generalization of the LR method. The second is an implicit
scheme in which only the first column of A - AB is actualliy formed.

The second schemé requires fewer operations and is more stable.
ITI. KOTATION

To simplify the explanation in the remainder of this paper, we

introduce the following symbols:
For a complex scalar o, |lall will denote |Im(a)| + |Re(a)].

llod] corresponds to the 1 norm of o, if o 1is considered as a vector

in the complex plane.

In general, the (i,j)th' element of the matrix A will be denoted

ij° If a matrix A is the Kth element in a sequence of matrices,

it will be designated by Ak and its (i,j) element will be designated

by a

by ag‘l_;) .

<J
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£i will denote the subset of the set of stabilized elementary

matrices described in Wilkinson [ 19] having the form
.th

W cclumny
b
.th 1
i TOW ==t 1
M.

1
1

where ”nﬂi < 1, or the form

. th
i1 row —»

where ”nin < 1. Blank spaces indicate zeroes.

When a matrix is multiplied on the left by a matrix of £ of the first form
only its i+1$t row is changed, but when a matrix is multiplied on the

. . ti .., st R
left by a matrix of £i of the second form, its 1tn and i+l” rows are first

interchanged and then a multip .e of the new itn row is added to the

i+1St TOW. _

We will often use a member of £i to annihilate an element in

the i+15t row of a matrix. For example, we may want to zero LI e
J

If either the current g . or a,. 1is nonzero, then there exists
i+1,j ij

a unigque member of g, which will annihilate a PR Specifically,
- kat XV

oy

second form with T, given by ~aij/ai+l P If both the current a, ., .
3 .

and a are zero, then any member of £, will leave a zero in a4l
v

ij
9
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ﬂg. w1lll denote the subset ot stabilized matrices having the

form
ith column

1

i TOW =t

A STRRRIT CE TR,

vhere gl < 1, or the form

th
i rowe—e

winere ””f' <1.

R R iy o Bl AN

When & matrix is multiplied on the right by a matrix of the first

form, only its ith column is changed, but when a matrix is multiplied

on the right by a matrix of the second form, its i® and i+15%

B n o LR A AN

. . . . .. .5t .
colwnns are interchanpged and a multiple of the new i+l column is

Lh

added to Lthe 3 column.
The 5ef, T will denote the set of matrices in upper triangular
form. It A is in T , then a, . =0for i j. The set g will

1,J
denote the set of matrices in upper Hessenberg for~ If A is in %,

then a.. =0 for i> j+l.

3

J

Each iteration of the LZ algorithm invu.ves multiplying matrices o

2tk O 5 Y AN A A RN AT MNP S VWAl £ S ot AT

Are ~
71730

ctr

of transformations. 1In our discussion of the LZ aigorithm
the symbol A’ will usually denote the matrix A after all the trans-
formations for one iteration have been applied to it. The symbol A¥
will represent the matrix A after some but not all of the transfor-
mations for one iteration have been applied to it.

10
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CHAPTER ONE

In this chapter we shall describe the LZ algorithm in detail.

As mentioned in the introduction, the algorithm has 3 sections:

e e e VA Ve WA

1) Reducing B to triangular form and transforming A to upper

Hessenberg form.

2) Iteratively reducing A to triangular form while preserving

the triangularity of B.

3) Finding the eigenvectors of the triangular system and

transforming them into the eigenvectors of the original

system.

To obtain the eigenvectors of the original system all the right

hand transformations must be accumulated, for if L and M are nonsingular

matrices and

LAMy = ALBMy

then
Af = ng

where x = My. Thus, if y is an eigenvector of the triangular system,
My 1is an eigenvector of the original system.

In the second section of this chapter, where we present the
iterative section of the algorithm, we will describe two algorithms.
The first methed is an explicit scheme which, if B-l existed, would be

quite like the IR algorithm for AB-l. The second algorithm is a more

stable implicit scheme. In the third section we prove that the two

algorithms geuerate and use the same transformations.

11
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I. INITIAL REDUCTION TO HESSENBERG-TRIANGULAR FORM

In this section an algorithm will be described that reduces a
matrix A to upper Hessenberg form and reduces a matrix B to trian-
gular form by applying the same elementary transformations to both
matrices.

The first step is the standard Gaussian elimination process with
partial pivoting as described in Forsythe and Molei\} 4], We find a
matrix I, the product of elementary and permutation matrices such that
LB is upper triangular, and then replace A and B by LA and LB, respec-
tively.

In the next stage we reduce A to an element of % while main-
taining the triangularity of B. We begin by choosing an element Ln-l
from sn-l so that replacing A by Ln-lA puts a zero in the (n,l1)
position of A. Multiplying B on the left by Ln-l introduces a new
nonzero element in the (i1,n-1) position of B. If pivoting had been

necessary, B would still have ihe same form. Thus A and B now look

like
A B
XXXXX XXXXX
XXXXX O0XXXX
XXXXa OC XXX
XXXXX 000XX
O0XXXX 0CO0XX

Ye now focus on B, and choose & matrix Mn-l from My SO that

setting B to BMn- and A to AMn_ returns B to triangular form and maintzins

1 1

the zero we introduced into A. Thus we have

12
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: I
“ A .o B
; XXXXX X X.X XX
§ ° XXXXX © 0XXXX
1 XYXXX 00X XX
% XXXXXx ' 000X Xf
1 M 0XXXX 0000X |
% The process is continued until A is iJi N . As edch element in"~ |
% &G A is zeroed using a row transformation,!a nonzero element is intreduced
4 on the subdiagonal of B which must be immediately arnihilated using a
‘ column transformation. Elements a#é elimiﬁated=froﬁ A in the order given below:
&
XX x x '
l X XX %X X |
;’ oYX X x X
;gé "X x X x b a
? Xl Xu X6 X X
& Note that pivoting maintains stability.but do:s 'not afféct the :
zero structure of the two matrices an& more than a monpivoting algorithm
s would. . .
& There are other ways to annihilate elements of A and B whiéh
é might be more efficient or mo;e stable for any given problem. One such
i method involves reducing vo B t6 an elzment of T an& then uéing column
'; 4 transformations to reduce A to an elemer=1t ofl ¥. The }.nnzero ~lements,

which are introduced on the subdiagonal of B by the column transfor- ]
mations, are eliminated using raw transformations. Elements of A would

be zerved in the order given below:

R TE SRACLYICMR P YT
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.
| ' . X X X X X
i ‘ . Y X X X X
é ' : X X x x
5 | Xk ox X
S ‘ P x

This algorithm u}ould certainly be more efficient than the first
method described if B ‘were the identity matrix.and if A were the

nmatrix

11111

11110

* ' 11100
1 1.00 0

‘ 106000

Both algorithms just described require ahout 15n3 /6 mltipli-
cations and 13_n3 /6 additions. In terms of the first method the opera-

tion count can be broXen dowr in the following way:

Additions + Multiplications

1) Reduzing B to triangular form

Transformations on A n /2
Transformations on B . : 0 /3

2) Reducing A to an element of ¥ and pre-

serving the triangulariiy of B

a) T eliminate elements in the .jth
column cf A . ek
Transformetions on A (2n-3) (n-i-3)
Transformations on B (n+#2) (n-1-j)

.
T

.
-y

PO IR
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b) Total 2nd step
Transformations on A 5n5/6
Transforma’ions on B r5/2
If the eigenvectors are requested, then, as we explained at the begin-
ning of this chapter, the product of the M's must be accumulated. This
requires n’/2 additions and n5/2 multiplications.

In comparison, the first part of the QZ algorithm requires
17n5/5 multiplications, 17n5/ 3 additions, and 02 square roots. if
eircnvectors are also desired . the QZ algorithm expends an additional
5n°/2 multiplications and 3n°/2 additions.

It is interesting to compare the abore figures with the number
of operations needed to form AB_l and reduce this matrix to Hsssernberg
form. If iterative refinement is not done, the basic process requires
about15n§/6xmultiplications and 15n5/6 additions or the same number
required for the first section of LZ. If eigenvectors are desired,
n5/2 extra multiplications and n5/2 additions are needed. The figures
in this paragraph assume nonunitary transformations are being used.

The following table summarizes the cost of using the initial

Part of the three algorithms.

summary ol Uperation Counts

Without Eigenvectors With Eigenvectors
+ pd square + X sgquere
roots roots
12 1509/6  13n°/6 0 160°/6  160°/6 0
Qz 5hn5/6 5hn5/6 n2 h5n§/6 h3n3/6 n2
a7t 130/6  13a0/6 0 160°/6  160°/6 0
15
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ITI. FINDING THE E{GENVALUES

s irad A as

In this section we give an algorithm for determining the 2igen-~
values of the problem Ax = AB')S where A 1is upper Hessenberg and B is
upper triangular. As in Moler's and Stewart's QZ algorithm, the method
entails iteratively reducing A to upper triangular form while preserving

the triangularity of B.

Each iteration of the iterative procedure is essentially:

TINTYH WD

1) Find a shift A which could be a n/ bnn or an eigen-
value of the lowest 2 by 2 subproblem of A - AB .
2) Find a matrix L such that L(A - AB) is upper triangular.

3) Find a matrix M such that LBM is upper triangular.

4) Set A’ to LAM and B’ to LBM. A’ will be in ¥.

Most of this sectic 1 discusses the construction of L and M and
their application to our matrices to satisfy the requirements given above.
If the matrix T derotes A - AB, then it is obvious that LAM = LTM + \LEM
and that LAM is in % if and only if LTM is in %.

Each iteration begins vith an A which has ro zero subdiagonal
elements. If after the iteration A’ has a zero on its subdiagonal, we can
deflate the problem anl wo.k on a lower dimensional subproblem. Hence
the purpose of each iteration is to drive the elements on the subdiagonal

A’ closer to zero. In Chapter 2 we will specify conditions under which

the process,we are about to describe,accomplishes this goai.




triangule:, our matrices look like

T
XXXXX
XXXXX
OXXXX
00XXX

000XX

T
XXXXX
OXXXX
OXXXX
00XXX

000XX

M

nonzero element in the (2,1) position of B.

Our attention is now turned to B, and M

1 to T is delayed. We now return to T and annihilate 1.

B
XXXXX
OXXXX
0O0XXX
000XX

0000X

by forming T = A - AB. Since A is upper Hessenberg and B is upper

We now select an element Ll from £l so thet replacing T by L

In the 'explicit' version of the algorithm, we start an iteration

lT zeroes the

element in the (2,1) position of T. Then replacing B by L;B introduces a

T and B now have the form

B
XXXXX
XYXXXX
00XXX
000X X

00900X

1

32

by an

element 92 in £2. APplying the same transfcrmation to B produces

is chosen from 7/11 SO

that replacing B by BMl yields a triangular matri.. The application of

4
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The matrix Ml is now applied to T and M2 is chosen from m2

E’ so that BY, is in T. The matrices T and B now lock like
E
E T z
?
. XXXXX XXXXX
E XXXXX 0XXXX
4 00XXX 00XXX
% \ 00XXX 000XX
E 000XX D2000X
It is importent to notice that the element t31 is zero.
Future transformations will not touch this element, and hence it will

remain zero throughout the iteration. }urthermore, the situation had

not been influenced by the form of Ml’ i.e. whether pivoting had been

necessary to stably zero b21 .
In general, row transformations are applied to T and B simul-

taneously but column: transformations are applied first to B. If we

write M as M1M2 . e Mn-l’ then as we apply Mi to B we apply Mi-l to

T. Each row transformation will zero an element of T and introduce a

nonzero on the subdiagonal of B. Similarly, each column transformation

returns B to triangular form while introducing a new nonzero element on

the subdiagcenal of T. Delaying the application of the right transfor-

mations to T ensures us that the new nonzero element produced will nct

affect future row transformations on T, i.e., T will remain in % . According

te the ‘aw cf

In summa -y, the explicit algorithm for each main iteration step is given by: K

Set Tto A ~»B for i=1,2, ..., n-1.

1) Find L, to stably zero t, and set T to L.T and B to L.B.
by i+ by 1

1,1

18
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]
2) If i>1, set T to T, , - y
o 3) Find M, to stably zero bi+l,i and set B to BM,.
‘ Set T to TMn-l'
] et A to T + 1},
& As in the IR algorithm, the subdiagonal elements of A should
3 become small and approach zero at a rate determined by the ratio of the :
E eigenvalues. By using a shift A , we hope to hasten the process. >

& There is only one major drawback to the algorithm just described:

PO

ey Lok

it is potentially unstable. If the shift ) is large relative to the

oy

size of the elements of A, information needed to find future small

¢

eigenvalues can be lost when T is explicitly formed. This vill occur

when the shift is computed from the lower 2 x 2 submpiriy of AB = 2nd

AT NeR R hmes s e AW wmes v s swn
ST -

much smaller elements appear :n the bottom of B thzn in tha tor i B.

NPT AN

R
- e
fa

The following example indicates the deteraorstion chat can

occur with the explicit algorithm. The relative residucl 15 the guentity

ST TR U TS

2 g Ax - aiBz_qi!(Iail A, + logl 08)

where Bi is the ith diagonal element of the firfal “rianculsr mat. ix

S IBM and a; is the ith diagonal element of the final i1e¢ia.gular matcix
IAM. The significance of this quantity is that we have realiy szolived
the preblem B(A+E15 = a(B+F)f’. The 1M eigenvalue is given by ai/si

This problem was done on an IBM 360 machine in double precision.

A 3
1.0 2.0 2.9 1.0 10.0 15.0
v .
5.0 5.0 6.0 0.0 10107 1 xi070
0.0 7.0 8.0 0.0 0.9 1.%¥107°7
19
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Eigenvalue Relative Residual
-.69999199994 56551;*1021 .72142069776&92181*10'17
-.1142870204249628%1 6 .8643463693672128%10

0.0 .266666666666666T

According to these results, zero is an eigenvalue of the problem,
which controdicts the fact that A is nonsingular, and in two instances
the relative residual is so large that their corresponding eigenvalues
must solre a problem which cannot be considered close to the original

problem.

The instability mentioned above can be avoided if T is never
formed. We will now describe an implicit algorithm which works with A
and B directly. When this new method was applied tuv the above example,

the following resuits were obtained:

Eigenvalue Relative Kesidual
- .699992000349999%10° L64L06751978657%10™ 7
-. 1400015 18315642107 .605693070547578%10™ 17
.18367 5576484812 . 149715391676453%10™2

The small relative residuals indicate that the eigenvalues solve

a problem which is close to the original eigenvalue problem.

We note that with the standard eigenvalue problem Ax = 1x,
Gershgorin's theorem (19) assures us that computing the shift from the

eigenvalucs of thne lower 2 by 2 of A will not give us a shift larger

than the norm of A.
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; In our description of the new implicit algorithm transformations

i ’ T

g P will be denoted by ;i and gi but, as we shall prove, the implicit and

explicit algorithms are essentially equivalent, in the absence of roundoff

TR7ANT

error, and except in one instance, the Li's of the impiicit glgorithm :are

RART,

the L,'s of the explicit algorithm. The same is true for the gi'sl

i

(Uil

The implicit algorithm begins by forming the same Ll that was

formed in the explicit algorithm from g and ).

117 P10 83
The matrix Ll is applfed to A and B and obviously ‘the same nonzero

element is introduced in the (2,1) position of B as in the explicit

algorithm. Ml is again formed so that BMl is in T , but

this time, Ml is also applied to A. At this point A and B look like

A = B
XXXXX | XXXXX
XXXXX 6xxxx. .
X1XXX © . 00X XX
00XXX 000XX , _ :
000XX 0000 X :

‘

Ve now snhui,éb from £, 50 that LA is in'uﬂ When E% is
applied to B, a new nonzero element is introduced in the (5,2) position
of B which is then annihilated by ﬂ2. ' :

In general, row transformations return A to upper Hessenberg
form and intrcduce a noszero element on the suodiagonal of B.

Column transformations return B ﬁo upper triangular form and

produce a nonzero element on the second subdiagonal of A. In contra:i

to what occurs in the explicit zigorithm, in the implicit method, cc'v n
transformations are app.ied simultaneously {o both matrices. Tn mou

detail each iteration of the implicit algorithm is given by:

21
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For the implicit method, about 2n° multiplications and ol

the M's. .In contrast, the QZ algorithm requires 1jn? additions, 15n? j
.multiplications and 3n squbre roots per iteration, and 8n2 additional

multiplications and additions if eigenvectors are requested. However,

to keep in mind that even for real matricés LZ uses complex arithmetic.
:Fcr comple; matriges a single shift version of QZ is probably preferable
to a d?uble shift version of QZ.‘ A single shift QZ iteration would
require 6n? mul%iplications,and 6n2 additions and 2n square roots and an
;xtra 5n? multiﬁlications and 5n? addiéions if eigenvectors are requested.
These statistics seem to ind&cate that the LZ method is the more efficient

than the QZ method for complex matrices.

)

1) Set Y to a), ~Ab); and & to a

21 ° ’
2) If 6] > |¥|, L, is the element of £, using pivoting with '
T, ==¥/6; otherwise L) is the element of £, withcut pivoting with X
, = -6/Y. Set Aito L A and B to L,B. Set i to 1.

and set A

5) Fird M, ,an elle::'ent of m,, to stably zero bi+l, i

If i =n-1, stop.

[

to Aﬂi and B to Bgi.

L) Set i to'i+l. Find Li,ah element’ of £ to stably ,

-Zero a.

i+,i-1 and set A to L;A wud B to L;B. Return

to 3.

additions are required per iteration. If eigenvectors are also requested,

n2 multiplications and n? additions must be spent to accumulate :

it should be pointed.out that to keep the arithmetic in “he real domain
for real matrices, each QZ iteration is a double step. Thus a fairer

comparison might be to compare one GZ iteration tq two Lz iterations and

22
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It is also interesting Lo compare each iteration of the LZ

R T
[R NP NP

algorithm with each iteration of the standard LR algorithm as given in

. 2 - . .
[ Iﬂ. The standard LR requires n additions and r? multiplications

. . 2 s s R 2 ¢
per iteration, and n~ more multiplications and n~ more additions if eigen- :
vectors are requested. Thus the basic LZ algorithm does twice as much

work per iteration as the LR method, but only 3/2 times as much work ;

T 4P O RS =PIV TR, TR T 7 TSRy L)

when the accumulation of matrices to obtain eigenvectors is considered.

2 Al ¢

3 s The operation counts given above can be summarized as follows:

Ml meU s wenan

OPERATION COUNTS PER ITERATION

those given in [10].

*
Always usecs complex arithmetic.

The operation counts reported for the double QZ algorithm are

If the left eigenvectors of the problem with

required per iteration.

25
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transposed A and B are computed, a: opposed to the right eigenvectors
of the original problem, then the left hand transformations must

be accumulated and only 186° additions &nd l8na multiplications are

E £ Without With
5 Eigenvectors Eigenvectors i
{ Square Squaie é
- 3 + X roots + X roots §§
*LZ ond 2n° 0 5n2 3n? 0 §§
2 - 2 K
Double QZ 13n 15n 3n 21ln 2ln 3n D
if
*Single QZ 6n° 612 2n 9n? 9n2 2n e

*IR o o 0 on 2n® 0
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III. PROOF OF THE EQUIVALENCE OF THE IMPLICIT AND EXPLICIT SCHEMES

In this section we will prove that the explicit and implicit
schemes,described in the previous section,generate and use the

same transformations.

Theorem. Let -Iij and 5“-3 represent the transformation in the implicit
method and Lj and M;j represent the transformations in the explicit

method. If the next iterate is A’ and a’

3531 is nonzero for j < i,
5=~

then for <i, L, =L,and M. = M..
d<1, Ly =1; and M; = M,

Proof. The proof is by induction on J. By construction Ll is equal

to I.l and _l_4_1 is equal to Ml' We assume that E'k = Lk and l‘_&k = Mk for
k< j, and let

* = . . . . L4 *
B =Dy ge o gAML M

BY Lo ge . LpBA. . M
TS Lo DT LM
A=, A¥
s
A* T B*
XXXXX XXXXX XXXXX
XXXXX XXXXX 0XXXX
5P rou -0 X X X X 00 XXX 00XXX
LU SR 21 LRI SRV § tyy o oY
0O00XX 0O0O0OX X 0000X
L——‘jth':olumn 4 J
ol
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1<¥3mq1
i

Because T = A - AB, we must have

¥ =
A% = TR )+ ABK

which implies that

** = DA% = LIWM, . + :
A ; STHM, )+ AL B

1

We know that LM, ) is in ¥. Since 13" is also inw , &

must also be in ¥ . But in the implicit method éj is the traasformation from £j

which returns A¥ to upper Hessenberg form and if either a*j+l -1 or
-

a*j i1 is nonzero, there is only one element belonging to £j which
sd”

can accomplish this. Oince transformations to A occuring after L, do

J

not affect the j-lSt column of A, the element a’, is nonzero only

% Jsd-1
if a§f3-1 15 noncero. Since 2y 4.3 is zero only if both
* * i
a 3,4-1 and a 5+1,3-1 are zero, the hypothesis to our theorem

assures us that there is only one transformation from 53 which couid
return A* %0 an element of #. Since both Lj andigj belong to £j’
we know they must be identical. By construction Mj and Mj must also be
jdentical and therefore we have proved our tl.eorem by induction.l

If alj,j~l is zero then we have no assurance that row and
colunn transformations subsequent to Mj-l in the explicit and implicit
algorithms are identical, but this is of little consequence. In fact,
the best policy in both algorithms is that as soon as a permanent zero
is detected on the subdiagonal of A’, then the iteration should be
discontinued and work begun on 2 problem of lower dimension. If in

both methods, this policy were adopted, tnen the algorithms would be

equivalent up to roundoff error.
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Iv. FINDING THE EIGENVECTORS

After A and B have been reduced to triangular form, the eigen~

vectors can be easily determined. let « and | denote the diagonal
By

:j’
elements of the triangularized A and B and let yd denote the corres-

-~

ponding eigenvector, that is
A-o,B =0
(aJ aJ ) !3 *

The components of ¥, can be obtained by solving this

Y13 23
triangular system as follows:

¥y =0 for i<y
Yyg =1 for 1= ,
iy ” _(Eja;a‘,s? D Bt - Pu) g
k=i+1
for 1 = j-1,§-2,...1.
th

The J eigenvector of the original system can be found by

multiplying by M.

y
~J
If the denominator in the above formula is zero, then it is

replaced by macheps *(j|A||  + [IB|| ). The denominator is zero when tne

ith and Jth eigenvalues are equal. If the numerator is also zero,

then linearly irdependent solutions will be produced. However, if the
numerator is not zero, then Y

~J
after normalization ¥y and xd will be nearly linearly dependent.

will hsve large components and

This occurs when the eigenvalue does not have & full set of eigenvectors.

See Peters and Wilkinson[16] for further discussion.
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CHAPTER TWO

CONVERGENCE RESULTS

' .
H

In this chapter we will prove several convergence theoremé; each
' '

of which restricts the problem in some way. A theorem migh} specify sbme
property of the eigenvalues themselves or characterize the matrices L and
M. Usually both types of restriétions are given. Many of the theorqms
refer to a nonshifting or constant shgfting version of the-IZ algorithm.
We have found that in most instances when ; shift policy has not worked,
the method has been using th; same shitt for each iteration. ,The chapter ends
with a partial listing of 5 x 3 examplé; for whic? the current algorit?m,
which uses a sclution of the lower 2 x 2 problem of Aﬁ'é ABx as a shift,
will not converge without the use of an app;opriate ad-hoc shift. v

We + 111 use Parlett's [11] terminology and say that a metrix is
an Unreduced Hessenberg matrix (UHM) if it.is an upper Hessenberg matrix
and none of its subdiagonal elements is zerp. To simplify our proofs
we will assume w: are working with the algorithm in its expiicit form.
The matrices will be n x n, and unless st;ted otherpise, we will.assume
that A is a UHM . d B is triangular. for uﬁiformity we will assumc that
the kth iteration in the algofithm is given by

1) Find a shift Ayt !

2) Form T, = A -%B.

~

el

5) Find ik such that LT, is vriangular.

4) Find ﬁk such that EkBkﬁk is upper triangular..

) Qnt .='-' }T_' =—A,_.
5) set. B L Btes Apyy = I T My * A

K+i LR kL

2y 5 RN Wy e oa S «’e,s*.*z'umﬂw;q?m, [E-L3t o o o2 el N APPSR Mo St
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P Ly is a p.roductlof matrices I‘k;n-ll'lc,n-2"’ .. "Lk,l and ﬁk is a

1 product of matrices M 1 Mk x Mk n lwhere gach Lk 1 is an ' | ,
’ ’ 2115 EX

,
7

X

element orf £;> and each M . is in m; as described in the notation sec- jﬁ

- ’ 3

tion of the introduction. In this chapter the multiplier in L, wil o :

. . . ',

be denoted by 1 and the muitiplier in Mk . will be denoted by %

' k,i .1 ) - 3

Pr,i - _ g

, In many of our theorems we will drop the iteration subscript and z

H . . : ;:

L . ' 3

designate the matrices Ak’Bk’ etc'. by A, B, and the matrices Al;+l’ B-k+1’ | 3
: ’ ’ . . <
etc.:by A, B’. The matrices I‘k,i and Mk,i will be denoted by Li and

M, respectively, and ‘thei; corresponding multipliers by 7, and i

e

. N ~ -~ », . 9 "rsls "
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I.

DEFINITION OF CONVERGENCE

In general the algorithm will be said to be "convergent" if, as k
approaches infinity, one of the elements on the subdiagonal of Ak
apprﬁaches zero or if for some finite k, one of the elements on the
subdiagonal of Ak is zero. Because of the interrelationships that exist
between Ak’Tk’Lk’ and Mk , we will also regard the algorithm as convergent
if -one of the following conditions is satisfied:

1) As k increases, one of the elements on the subdiagonal of
Tk approaches zwro; or for some finite k , one of the elements
on the subdiagonal of Tk equals O .

2) For a fixed i, as Xk increases, Lk,i approaches

the identity matrix.

3) For a fixed i, as k increases, Mk,i approaches

the identity matrix.

The reason for the first criterion is that in the explicit algo-

rithm the subdiagonal elements of Ak and Tk are identical. The reason

for the sccond criterion is that if tgk) . 1is zero, then Lk . will
it+l,i s1
be Lhe identily matrix, and the reason for the third condition is that
(k+1)

il‘b% i iz T, then a will be zero.
2

i+l,i

It should be emphasized that when we say IZ converges, we

mean that the problem can be divided into two subproblems of lower
dimension. We do not necessarily mean the algorithm can find all

the eigenvalues.

29
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II. SINGULAR MATRICES

Fad

We begin by proving a theorem which substantistes our claim that

LZ works even when B is singular.

ATV

Theorem 1: If B is -ingular, the LZ algorithm converges in at most
n iterations if exact arithmetic is used.

Proof: If B is singular, one of its diagonal elements must be

PO A RN e I TP AN, TS WD,

zeroc. II bll is zero, then applying Ll to B will not change the O

in the (2,1) position of B. Thus Ml will be the identity matrix I and

the LZ algorithm will converge immediately.

atsaxicn)

.

SAORWIT

E Now let us assume that b, =0 and i>1 and let us look
i at the 2 by 2 matrix formed by the i-lSt and ith rows and columns of
B. It will look like
a b
‘ 0O © .
it Li-l involves pivoting this matrix will become :
0o 0
a b g
:
and, independent of the form of M. ,, the O will remain in the (i-1l,i-1)
position. Future transformations of B during this iteration will not
affect this O.
if Li-l does not involve pivoting, then we get

a b

UL PR I8



If a is zero, Mi-l is the identity matrix and bi-l,i-l is 0.
G If b is zero, then Mi-l permutes the ith and i-lst colums, and
b, . isalso O, If b 1is nonzero and a 1is nonzero, then
i-1,i-1
bi-l,i-l is either a-(ni_la/(ni_lb))b or b-(ni_lb/ni_la))b . In

& either case, it is zero if the arithmetic is exact. Again future trans-
formations on B during this iteration can not affect the zero in the

(i-1,i-1) position.

We see that with each iteration, a zero on the diagonal of B
moves up one row. Within n-1 iterations it must reach the (1,1)
position, at which point the algorithm must converge in one iteration.l

The following lemmas consider the case in which B is nearly
singular. The quantity € is assumed to be a small number relutive to

the norm or B.

lemma l:  IF b, 4 TF for i > 1 and L, , involves pivoting
—_— b

4 . '

Lhen | b i-l,i-ll| < ]lq]

Proot: 1f B reprosents the matrix

O PP Y- PR A

x
Lhen b, ¢ o 0 9, CThuae, will either

. b’
i-1,i i-1,i-1 " i-1,i-1

be ¢ oru ;€ and since;lpi_l" <k b'i will be <li¢]| .

1,1-2M

lerma 2: If p _ =€ for i>1 and L, . does not involve
R i,i i-1
pivoting, then
| b} s o=
j-1,i-1 L o I

A ———

o5

PG L AL S Y
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Proof: If B* is the matrix

L L pe » » <IBMy. o o WM 5

then we may write
* * =b
1-1,i-1 i-1,1

* _ *
by g7 M- b,y = My
If Mi-l does not involve pivoting, then

nl_la b
€+ ni—lb

']
bly.1,4-1 =a-

a€ € T5-18

€+1, 0 Myq  (€+m;_P)

and hence

' €
b". < || ==~
“ 1-1,1-]_” - ” ni-l '

If Mi-l does involve pivoting then

’
b

- b - (‘mi-.lb)”/(ni-l“)

i-1,i-1

The »revious two lemmas indics%e that small elements on the
diigenal ¢f B creep up the dis

jdea of what occurs when the small element reaches the tovo of B.
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C(k) :
Lemma 3: If bl 1 - € and Lk+i,l and Mk+i,l do not 5
involve pivoting for i < j, then there are constants cj and dj such that é
(k+3) _ (k+§) _ , _d !
bl,l = ch and a 2,1 dj€ i
&
for § > 0. %
Proof: Our proof is by induction on j. For j = 1, the §
hypothesis to our lemma implies that é
en, %
S ’ =cé€ ;
g b(k) + Tl b(k) ]
2,2 k,171,2 3
which means that
(k+1) € (k)
1+ = ¢.€
b,1 (1 +ebyy ) =c

and if Lk > does not involve pivoting
2

2 (K1) _

(k) (k)
{ =
2,1 € {ty 5 * Ty ity 5 ) =€

1,2

and if Lk 2 does involve pivoting
b

:).,(,k;l) = k,), - de.
<>

<'5tf
)y 1

If we assume our lemma is true for j, then

YR VRTINS O FT PR TR G TIPIRESE IS LT TS FECYIIATENEL £ PR FUC T ICR NI O N CR g e

= =4 j (k+j)
Ters,1 = "€ g
which means that
J¥L, (k+j)
d.c,
N #7050
k+j,1 b(k+j) + b(k+j) 3
2,2 'k+j,1 1,2

c€J+l

it}



,,,,,

so that

k+j+l)  _ k+j)
T R B R

If Lk+j > does nct use pivoting

k k+
ék;jﬂ) = Jﬂ( t( +J) + Ng+j,1 § 23) )

j+1
€3,

If Lk,e uses pivoting

(k+g+l) = cedtl (x+3) Z g it
2 1l j, J+1 . .

Our lemma did not state the size of the elements cj and dj

and there is no guarantee that they will be small.

Our next theorem is 2 counterpart f Theorem 1., We note that B
might be singular.

Theoren 2: If T is singular, i.e. A is an eigenvalue of the
problem Af'= Asif ther the I2 al:orithrm converges in one step in exact
arithretic.

Prootl:  The Cirsh n=1 cojums of 1 migl be Linearly independent.
or clse come subdiagonal olement of ' would be zero thus implying T is
not a UHM. The algorithm constructs a nonsingular matrix L such that
IT = R, an upper triangular matrix. Since the first n-1 columns of T
are linearly independent, the first n-1 columns ot R must also be.
Similarly, since T is singular, R must also be. This means that the
Jast column of R may be written as a linear combination of the first
n-1 columns, and because the last component of each of the first n-1

columns of R is zero, the last component of its nth colurn must also

be zero. Hence the last row of R is éT, the null vector.

3k
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Now in the next step of the algorithm we construct M so that

B’ = LBM is upper triangular and set A’ = T/ + kB’ where T° = LTM.

Since the last row of R is eT, the last row of T must also'be QT, . . 3

and hence g’ must be zero.l ; . 1
n.n-1 :

Our theorcms and lemmas indicate that in the future we can safely

1 1)

SACTBa R AT BTN A

ignorc problems where either A or B is singular. However, we would

like 10 include singular cases in the hext few theorems wherever

PSRRI PAPHILE S

possible,because many of these theorems not only guarantee convergence,

they also give some hints about rates of convergence,
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1II. GLOBATL CONVERGENCE

In . his section, we ;;hail prove several global convergence
Lhcqrems. Most of our results refer to a constant shifting algorithm, although
in pmc{;ice our shifts are usually difis‘e.ren:t for each iteration. How-
e\!rer, .we have ;aften 'founc'i that when' a shift policy. has not worked, the
same shift is beirg used for eac‘h iteration. Thus, our theorems do

have pmcticé.l significance although they do not refer Lo any actual

implementation of IZ. i

We begin by. proving four similar theorems. They all consider

the scq'uencés of matrices {A‘k} 5 {Bk} s {-f'k} » { lk} ) {Tk} and {Sk}

where Tk = Ak -- )‘kqx for s,ome scalar }\k

A‘k;+l' = -f'kA'kﬁk
By = LB

o S = LTy

and Lk and Mk are nonsingular f‘lor all’ k and Sk and Bk are upper
trianpular or all k.

Th-or-m ‘: 1 “l iz non.inyular,

i -1 - -1
! VK = ll 1’.1Z ......... Lk )
ani '
_ -1 ~1 -1
. Uk = SKBK k-uBgoptorrr e SlB.L
then '

' -1
v, = (A A, B )B. (A -x

- -1
Ay (BB ....(A -\ B )B

~

,
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Proof: Since

Ty = Ly (B =N B M )
and
-1
-l o
B =¥, k-. Lx-
we have

A
I
TeBe T =L (A, - A B l)Bk 1 g1

280 e SR e A AT RS O, e AT AT Y M S A S AN R 2D 1502 1 St it

-1 -1
Vi-1(8) - A BBV

Nl yrs s 14

which implies

-1
k lTkB-l (A -ka )B vk_l .

s _ =" -1
Now VU =V I SiBo Uyl

E . N

3 Vieerhe BB ue g

i ~1

; = V1B Uiy

:

% =(n -8 )Bll Vi1Y%-2

;

% =(a -2,B B - A )B (e - A,B B (A - A B et .

Corollary 3.1l. If the conditions of Theorem 3 are satisfied

and A, =p for all k, then V, e, is in the direction of ((a - pB)B’l)kgl
-1 .k . .
Proof. By Theorem 3. V.U = ((A - pR)B~)™. Since U, is

upper triaangular, ngl = i i l , end hence

37
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(k) RN |
Vi W, 85 = ((A-pB)B ) g
Theorem 4. If A -A;B is nonsingular for all i, then

-1 -1 -1 a1 -1
Uk]Vk =B (A -AlB) B (A —)\EB) ....B(a -ka) .

The proof of the above theorem parzllels that of the previous theorem.

Corollary 4.1. If the conditions of Tneorem U are satis-

fied and A, =p for all k, then V;Tgn is in the direction of
T Ty -1 T k
((A~ - pB") B ) e,

Proo.". By theorem &

k 'k
which means that

Since Uk is the product of upper triangular matrices, the matrix P EU';T must be

k
. e - (k)
lower triangular which implies that PkSn = pn,n en and hence
T (k) PP S NS XS |
V. pn,n e, = ((a pB”) "B") &

If the matrices described above represented the matrices in a
version of the LZ algorithm, which did not allow row irterchanges, then

for all k, the matrix Vk would be unit lower triangular.
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Thcorem 5, If B is nonsingular,
kTl - "] * '.L "'l
U o= gl e gt s
and
W = WM.
then
WU = B ¥a BB XA, -2, .B.). . ..Bla -1.B).
k'k 1 ‘B 17517\ T A1ty 1 T AR
Proof. Since
T = Doy (Bemy = MeBeoa My
and
-1 -1
-l g -l
B =M Bty 0
we have
-1p =%t p-l - =
BT = M Bta (B 1 - MMy
: 4
& = W g BTHAY - A B W
g
g which implies
-1 -
W BT, = BtA - N B W
‘ —
3 Now w0, =W, MBS T
1 = W B BAL ST,
1B
, = W18 Ty
: -1
1 =B (A -aB W _ U
J— _ 1 -
; =B*(A -AB)BF-(A -1, ;B).

TS o b n s

B -).m )E’

|
|
Ln el ¥



Corollary %5 .1l. If the hypothesis of Tneorem 5 is satisried and

=p for all k, then W, is in the direction of (3~ Xa - pB))kSl.

Proof. By Theorem 5

wkﬁk‘ = (B-1(a - pB))k.

= . . T . = gk
Since Uk is a product of upper triangular matrices, Ukﬁl = ul,l &1

which means thet

W 'ﬁ(”‘) L= (87M(a - pB))%e, - |

-
—
t o

Theorem 6. If A -\B is nonsingular for all i, then

=1 -1 _ -1 -1 _ -1
U W = (A -2,B)7B(a -3,B) 7B, . . .(A-2B)TB .

The proof of this theorem parallels that of the previous theorem. Note

4 lemd 3
v v v
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corollary 6.1. If the hypothesis of Theorem 6 is,satisfied : .
and Ak =p for all k then w;Tgn is in the direction of (BT(AT -'pBT)-l)kgn.

Proof. By Thoorem 6

T -
T A

St = (8 - 6B) RS

which means that ' : . . :

ngﬁiT = (sT(a - pB)-T)k..

Since ﬁ% is a oroduct of upper triangular matrices, Qk%ﬁ;? is lower -
triangular and Q¢ equals qgk% e . This in turn implies that
2

~n
]

Wt (k) e = (BT(AT - pBL).l)k e -

x %,n °n
1

If we again relate the above theorems to the LZ algorithm, then Wk : ' |
would be unit lower triangular if column interchanges were not permitted.
s ' . .

B H

i

If D is a diagonal matrix with diagonal eléments d1,d.9,...dn

then the Moore-Penrose pseudo {nversegof D, is the diagcnal matrix,denoted by

D+, nith elements 21’22”"'zn where

2; = ;],/di if d; 15 nonzero
= 0 if is zero.
and zg dg
]
1 -
. i '
by ¢ the projection matrix D D.
1 for i=J and di is nonzero.
$.. = :
i

0 elsewhere
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The ﬁext main theorem is a modification of one that appears in
Wilkinson [19] and Parlett [11] among other places. Our version of the -

theorem extends their' results to cover singular matrices. If a matrix

.
s AR Y M SN TR € b 8 D (L AP EI AN K 8 0 s 38 o8 A RN NRUATI St p ot ST g b

X ié said to have an LU decomposition, then there exists an upper

i

Vtriaqgu;ar matrix U &nd a lower triéngular'matrix L such that X = LU.

TIRAIT

! ‘ This decompasition is unique. . '

Theorem 7. If F is g matrix with eigenvalues of distinct

—

' * modulus satisfying

|dl|>|d2|>....>|dn|_>_o, . : | !
"and if F can be written as XDY where Y = X-lb D . is the diagonal

matrix of eiéenvalues and Y has an LU decomposition and ¥ has an

I decomposition ngx, then the lower triangular factor of the LU !

decomposition of fk goes to L as k- o,
. i

ot d e anT AL MY, v 1 Ak AL e Sth O R

To fecilitate the proof of Theorem 7, we first present a

few lemmas.

L elt

PRETRE I

SIPRTRVE PRI I SRR VRN

Lemma 4. If L is a lower triangular matrix and D is a diagonal

s

matrix whose elements satisfy

Hay > al>. .. >|dm|>|dm+l| =. . .=l

N .
.
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i Lhen Di, = DI D,
Proot'. It & = pl, then S5 j =0 for j>4i or i>m
. b
4 and =
) : Si,j di&i,j elsewhere.
Now the last n-m columns of S are zero because for Jd > m,
: s. . =0 for i>nm
.a 1>J
anda
s. . =0 for i< j, i.e. for i< m.
i, =
$ +
Multiplying S by D D zeroes the last n-m columns of S and leaves the
first m columns untouched. Since the last n-m columns of S are
2 already zero we have § = SD+D or

DL = DLD'D. l

Lemma 5. Let L be a unit lower triangular matrix, and let

D be the matrix o1 Lemma 4, and K +k
- Od vy _: . 8 - —
3 then Gk $ + H( where }k » () a kK —x

Proof. If g(k) is the (i,j) element of G

AR s then
1,3

Ofor i<j or j>m
g(k)= J J
i3

4 a./a. K elsewhere .
1,J ( 1/ 3)
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1 The fact Uat |dg/d] <& for > § and j<m
and dj/(li - L Jtor i < m, topether with Lhe fact that L is unit lower :
g 5
i . {k)
triangular implies that gj‘j =1 for j<m and ;
)y por 4 < .
F £33 or j<i and j<m as k approaches infinity. Thus 3
: Gk =¢ + Ek where Ek -0 as k approaches infinity. l
Lemma 6. If U is an upper triangular matrix gand D is

the diagonal matrix of Lemma 4, then
U§D=8%0UD ,

Pavamlod evanal e o

Proof: If G =W, then :

g .= 0 for j>m or i>j

1,) ‘

and g. .= u, . elsewhere. :
1,4 1,d ;

if H = GD, then )
h, .= 0 for j>mor i>j

i,3 J J ;

and h. .= u., .d. elsewhere, i
1)3 I,J J !

The formulae just

would be given for e. .
1,]

n-m rows of E are zero so that

¢g =H or

given for h

i
where E = UD. Thus H = E.

5 are exactly those which
3

Moreover, the last

$§E = E. Thus

¢yp = wsp. @

Wz can now give the proof of theorem 7.

Proof of theorem 7: Assume the eigenvalues of the matrix
F are of distinct moduli and assume F can be written as F = XD)(.l
where D is the diagonal matrix of eigenvalues and both X and X~

have IUJ decompositions. Let Lxe be the LU decomposition of

X and let LyUy be the LU decomposition of x"L. It can be easily shown
Ly
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k-1
xn X

I3
= XD L.yUy
)kayD+kaUy by Lemma 4.

that

If G

_ oKy FK -
k—DLyD , then by Lemma 5 Gk ] +Ek where EkbOes to 0 as

k goes to infinity.

Thus, Fk

X( + Ek)DkUy

Lxe( $ + Ek)DkUy

s s =

-1
Lx( ¢+ UBU )UkaUy by Lemma 6.

. -1 PR -1
«Q
Since UxEka goes to 0 as k goes to infinity, & + UxEka goes
to 8 as k -»20. Because QUXD Uy is upper triangular, the lower

triangular factor of F}’ epproaches LXQ as k becomes large. l

Theorem 8 : If

(1) B is nonsingular

(2) 1Lz is used with a constant shift p.

(3) The quantities r;-¢ for i =1,2,...n have distinct moduli

(4) Either no row pivoting is required and there exists a matrix
X such that (A - pB)B L = XDX™* where D is diagonal and

-1 -
both X and X = have LU decompositions or no colimn

- ———

pivoting is required and there exists a matrix X such that
- - -1
® B YA - pB) = XDX™* where D is diagonal and both X and X
have LU decompositions,

then LZ converges. §

R . \ ..n...
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Proof: We let F = (A - pB)B ~ and apply Theorem 7 and find that

RTINS

as k increases, the lower triangular factor of the LU decompesition

of Fl < approaches Lx§ . By Theorer 3 this lower triangular factor is

A R e P R T

given by V. If V. Lg and Voo LE and Vi, = Th, then T2

must be approaching the identity matrix which means that 1Z is convergent.
If F= Bml(A - pB) then by invoking Theorem 7 and Theorem 5 ;

we see that -ﬁk must be approaching the identity matrix as k + » which N

means that IZ is convergent. | i

The condition that both X and X~ have LU decompositions :
is partially satisfied since both (A - pB)B.:L and B-l(A - pB) are :
unreduced Hessenberg matrices. Parlett [14] has proved that if F is a UHM,
then there exists a matrix X such that XJX = is the Jordan canonical

form of F and XL has an LU decomposition.

The condition on the distinctness of the moduli of
the eigenvalues can be relaxed somewhat. Wilkinson's [ 19] treatment

of multiple eigenvalues for the LR algorithm can be applied directly !
to the LZ algorithm.

46
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Iv. ITERATION AND LZ.

Theorem 8 indicates that with a constant shift

the LZ algorithm converges for problems with shifted eigenvalues of distinct
moduli if row pivoting is not required or if columr pivoting is not
required. Some of these rest.ictions can be weakened by investigating the
relatiouships between LZ and various ilerative procedures. This approach
has been taken by Poole [ 13], Perlzit and Kahan [ 12}, and Buurema [1 ] :
in studying the QR algorithm.

Let us consider the LZ algorithm with constant shift p for

the problem having eigenvalues As and let us denote Ay =P by di

and assume that the {A,}'s are ordered so that

4] 2lalz ...z la -

Theorem 9. If any of the following 4 conditions is satisfied

PESTIN SRV RS

then the algorithm converges.

1) ]dll # !uel, e, is not orthogonal to the right eigen-

vector of (A - pB)B-l associated with 4 1 and row pivoting is
never .lone to zero tgki for all k.
]

2) !dn‘ # ;dn_lg, ¢, 1is not orthogonal to the left eigen-

C T IOPC VY PRI S JRU T P PTAUNE S

vector of B(A - pB)'l, associated with %/dn and row pivot 'ng

PRVRCRV

is never done to zero t(k) for all k.
n,n-1

3) |dl| # !62[, e, is not orthogonal to the right eigen- -

vector of B-l(A - pR) associated with d_ and co
. . . (x)
is never done in zeroing b 1 for all k.

by jall #Qd ., e, is not orthogonal to the left eigen-

n n-1:

vector of (A - pB)-lB associated with l./dn and column

pivoting is never uone to zero bﬁkz for all k.
,n-

1
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Proof. The proof of (1) entails looking at the power method
for solving (A - PB)x =4 Bx given by

1) set x, to e, and k to O. g

2) Find y such that By = X -

3)Set z to (A-pi)y .

Sl s AR A LN Yt Cen s i S D

k) set x5 = zlizll -
If|[§k+l - 5k“ is small then stop,

otherwise, s2t k to k+l and return to 2.

el i

e

If ldll>ldel and N is not orthogonzl to the left eigenvector of
(a - pB)Bﬂl corresponding to dl’ then the power ‘r~thod converges and
X, will be that eigenvector. We note that X, 1s in the direction

of ((a - pB)B-l)sgl, which, according to Corollary 3.1, is also the

L A A Bl e N S E s A I

direction of ngl' Thus if the power method converges, it should be

clear that ;

VierS1 = V81t L (2 - 1)

where Ck is some scalar and f + 6 a5 k 4 o,

k -
= v -1
Since Vk+l = kLk
T-1 _ -l .-l -1 <
and Lk = Lk,lLk,a"°'°"'°Lk,n-l where Lk,i is in £i

which means that Til either has the form

1 g*
Mk,1
0
X
0
0

48
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or the form

s Mg,y * ok ox o |
, I

1 : s : |

S |

° . X .

i ;?:

o »

3 : g
0 i : .

A bt o1 Y

then either . . ' s

& ST i T T, (2 -2) -
»
or v v f 4
1%l 7 S T T RE ) 8
‘ . (k) - -:
If pivoting is never done to zero t, 1 then equation 3
=] . 3
. . . 2
(2-2) holds for all k and Ve, is linearly independent of the other E
P : .
columns of V., and if equation (2-1) is also satisfied, M, , must g
& Ol z
be approaching O and Lk,l must be approaching the ideéntity matrix, é
i.e. the Lz algarithm must be converging. If equation (2-1) holds but %
:
¢ the first column of Vk is approaching a multiple of the ‘second column é
of Vk’ then we cannot assert that 1LZ will convérge. It is possible: g
! 4
for equation(2-1) to hold without L4 converging to the identity matrix. 3
b 3
. i
s . N §
The proot of (2) entails looking at an inverse iteration scheme z
for finding x such that (AT - pB')x =d3Tx . The iteration scheme can §
be summzrized as follows: .§
¢ _ z
1) Set X9 to &, k to O. | §
m T T 3
) Find z such that (A~ -=pB)z = B'x, - :
b <

3) If z is large, stop.

L) Set x, to zflizl! 5 k to k+l, go to 2.
kg

WM}A@&W‘MN'J e
10ty e s R b Thb AR Ve
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4 it |d | < |d | and gn is not orthogonal to the left eigenvector of

| B(A - pB) corresponding to l/dn , then the inverse iteration scheme
will converge and z will be that eigenvector. The vector X is always

3 in the direction (AT ) 15T e,> which, according to Corollary k4.1,

é: is also the direction of ViTgn. Hence if the inverse iteration scheme i

converges, then for large k e ﬁay write

e
. Vier1Sn T %%k &0 T Ik @-3)

where Cx is some scalar and fk approaches § as k approaches infinity. }

- -T T 7
Since szi = Vk Lk {
S R . T . i
and Lk = Lk,l ,2"""Lk,n;1 where Lk,i is in £i :
' ' , 3 . :
= * " ( L§ ) where X is a dense matrix TR
e’.[' 1 ,n-1 :
3 : :
then either n-2 :
’ -7 . uy~T -
e = V7% + c.V. (2-4
VI:'i'l ~n k'-n nk’n-l};l J k2] )
. n-2 :
-7 _ + T ;
or ' vk+l§n - Z CJ k ,.,:j nk,’l-l k &n .

wliere che cJ's are products of the multipliers involved in the iteration
step.

If pivoting is never done to zero téki_, , then equation (2-14)
’ S

holds for all k and the last column of Vk? must be linearly independent
)
of the other columns of VT . In this case if equation (2-3) is satisfied,

then nk,n-l must be approaching zero and LZ must be converging. If i

50

e AsNL = b
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equation(2-3) is satisfied but the last column of V.  ig approaching
3

a linear combination of the other columns of VI;T

to an eigenvector then we cannot assert that LZ will converge.

as fast as it is converging

The proofs of (3) and (4) closely resemble those of (1) and
(2). For (3) we consider the inverse iteration method for finding x
such that Bx = g(A - pB)x and use corollary5.1. For (4) we consider
the power method for determining x such that Br'r"(.AT - pBT)-lx z=q.x and

use corollary 6.1 . l

Theorem 9 requires more elaboration. It would seem that because
the matrices Vk and wk have determinant 1 for all k, the linear depen-
dence of the columns of these matrices and their inverses should not be
an issue. However, if we look at the singular values of these matrices
we can get a different picture of the situation. It is possible for these
matrices to become singular at the same rate as one of their columns is
avoroaching an eigenvector. If the last two columns of V;T ai'e approaching
the zame vecbor, then we cannot asswae that pivoting will stop and the
algorithm will converg:. This facl is brought out by the follcwing

2 by 2 example.

let B be the identity matrix and A the real) matrix

where Ib| > a] > 0. If LZ is applied to the above problem vith
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822/b22 as the shift policy, the shift is always O, and A and B
are left unchanged by each iteration and the algorithm does not converge. )
The least singular value of V;? is given by the smallest eigenvalue
value of
I= \j
1 -a/b \*
2
-a/b 1+ a2
b )
. . k
which is t where
2
8 8 a
2 + —— ~|— 2 +
02 % | W2

Since O < ja/b| <1, |t| <1, which means that as k increases, V;T
approaches a singular matiix and hence its columns become multiples of -
each other.

It is ironic that we seem to require that e, be nonorthogonal to

a right eigenvector of a UHM and that en be nonorthogonal to a left

eigenvector of a UHM. If the situation were reversed, there would be

no problem, for if e, were perpendicular to a right eigenvector of a UHM

then the eigenvector must be 8.

-~

The last interesting fact about Theorem 9 is that it suggests
pivoting schemes which should converge although perhaps very slowly.
If we find that pivoting is necessary to stably zero te 1 or 92.1
we could change the shift so that pivoting is no longer nec;ssary. W; ,

could then view the matrices as representing a new problem, and hope- g

fully the two new largest eigenvalues do not have the same modulus.
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COUNTEREXAMPLES

This section contains a partial listing of 3 x 3 examples for
which the¢ TZ algorithm will not converge when the shift is the eigen-
value of Lhe lowest 2 x 2 subproblem of Ax = ABx closest to

a n/b . The counterexamples share seversl characteristics:
nn' nn

1) The subdiagonal elements of A and the matrix B repeat
themselves every thiwrd iteration.

2) Row and column pivoting are necessary at each stage of the
process.

3) The shift is the same for each iteration.

The first property guarantees nonconvergence. The second
property is a nccessary condilion for the first property: if at some
stage pivoling is not required to maintain nuerical stability, then
cycling will not continue as befora., The third property indicates
that the constant shifting bypothesis of Theorem 8 is realistic in terms
of actual computation, In fact, a constant shift may be useful in -
practice ¢35 i warning c< nonconvergence, It is significant that no
condit ion is specified for the eigenvalues of a problem. There are
countcrexamples in which all the eigenvalues are of distinct modulus.

The first class of examples is the basic one. In this case the

matrices initially look like




where the following conditions hold:

la| < In| las/e| < ||
|as/n} < (gl law/&| < |2

o] <1l o/ (gf)] < |ef
fon/£) < gl Jomb/ (53] < 1=}

3
E
|
;:é

If B is the identity matrix and A is the matrix

1 2 3
L 0 0
0 5 0

: then the above conditions are satisfied.

ol

After one iteration the matrices are

A B

as/g bhm/(fg) h s 0 0
f 0 0] 0 m 0
0 c 0 0 0 g

After two iterations the matrices look like

A B

am/ g bhm/(cs) f m O O
c 0 0 0 g 0
0 h 0 0 0 s

lam/g| < ||
|8. | < |c:’
|om/s] < |cl

o | < fel.

For problems in class 1 the shift is zero for each iteration.

L

After three iterations the matrices return their original forms.

The second class of examples consists of those problems whiak

fall into the first class after one iteration but initially look like
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class have the form o

A B
a b c g o 0o
h 0 0 o s 0
0 f 0 i 0 0 "'m

where a and b are complicated expressions.

The third class of coimtere:xamples includes problems in which A

and B are initially given by '

A B
a b c m £ q
h d 0 , o m 0
0 £ d \O o) m/f.

The shift is d/m and after shifting., a,, and 853 are zero. If.

this new .problem is in class 2, then in one iteration before the shift

has been added back A and B would look like
X y h m 0] 0

£ 0 o} 0 m 0

0 0

Ggige aoa Y TS

A B I
X y Yy m P q
c d 0 0 g 0
0 h 0] 0 0 [}
- : x' l .
x| < le| o ly-Eacin
o - S8l <l C e v - 5 @syn] <l -
The first shift is O and after one Jj.teration thé matrices of this

P

T e A m e At h AL A s A s

b
M
£
i
M
3
4
4
i
i
4
K3
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where. x and y are again nbnsimple expressioqs. Shifting béck sets

8,

<

%4

will repeal themselves every.third iteration if their elements satisfy

thé appropriate magnitude relationships.

If in the previous example, a22l vwere initially zero, the

. 3 !
first shift would again be d/m . Performing one iteration and

to d and revert us to the previous

shifting back set the element 8np

example.

These counterexamples indicate that assuming the algorithm
uses a constant shift is reasonable znd that given
this assumption, the structure of L and M is important. The.above
examples were all constructed by a;suming that pivoting waé necessary
to maintain stability at every step of the algorithm. Indeed if
pivoting ceases at some stage, then “cycling" will not continue as

beforeﬂ It is coubtful that without an analysis of a given shift

strategy we can weaken significantly the criteria given earlier for global

convergence. Moreover, it is extremely doubtful that such an analysis

could give us more than assymptotic convergence results.

sy 0 and a, to d. From here it should be clear that the matrices

M L Saa CENS bt T s
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APPENDIX

NUMER1CAL RESULTS AND FORTRAN PROGRAM

The algorithm described in Chapter 1 has been implemented
in a Fortran program. The program is designed to find the eigensystem for
complex matrices, and consists of two subroutines which must be called
separately. The first subroutine,GELHES, reduces A to upper Hessenberg
form and B to upper triangular form. If A and B are already in these
ferms and no eigenvectors are required, then calling GELHES is unnecessary.
The seccnd subroutine GLR finds the eigenvalues and, if requested, the
eigenvectors of the system. The parameters involved in the subroutine
calls are described in the comments at the beginning of each subroutine.
Both subroutines use the subroutine RABS to compute the norm of a
complex number. )

I+ should be emphasized that the variable MACHEPS is machine
dependent. It is Bl-t where the machine gives t digits in base p. It
is set for the IBM 360 double precision mode.

Our program has been finding eigenvalues which correspond to
problems close to the given problems: our relative residuals have alwajys
veen ¢lone to the precision of the machine.

For our test cxamples the total number of iterations has been
roughly 3 times the order of the matrices. 1In general, for a matrix
of order n, the time required on the IBM 360 model 67 in Fort:an H,opt=2,
has been about 75nmilliseconds if eigenvectors are computed and A

miliiceconds if th

el
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The example given below were generated using integer arithmeti.

by multiplying two bidiagonal matrices by random nonsingular transformations. The

problems were run on che IBY 360 Fortran G compiler. The relative

residual is the quantity

| B3 A5 - oy |

XS RER L At AR TRt 20 S A o T

tesl 11all, + Loyl 11BI1,

th
where @y and Bi are the 1 diagonal =lements of the triangularized

A and B and Xs is the ith eigenvector.

In the first example A has rank 4 and B has rank 5 and their

null spaces intersect. Since the rank of B is less than the rank of A,

there is an eigenvalue which might be regarded as infinite because a
small perturbation in B would yield a large eigenvalue. Indeed an

eigenvalue of 1016 was found. The problem is also "ill -disposed”,

because for any vector x in the intersection of the null spaces,

any scalar A will satisfy Ax - ABx , and may be consider.d

an cigenvalue of the problem. The example also has three
renuine,inite eipenvalues which the alyorithm was able to find accurat ely
up to the precision of the machine despite the presence of the two
spurious eigenvalues.

In the second example there are two double roots. The first
corresponds to a quadratic elementary divisor and, as expected, is
accurate only up to the square root of the machine precision. The
second corresponds to two linear elementary divisors and is accurate

almost up to the machine precision.
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Example 1

THE MATRIX Az

575.+ i 205,.+ =460, 1
355, ¢+ | 8305,+ =324, 1
3u5,+ -19%,.1 500,+ -ui0,1
210, + |
545.+ 1

-215.+ 298,11
-115,+ 232.1

O AT TN W

7.1 33.+ 504.1

241, + 7.1 42,.+ 102.1
3.1 70.+ 558.1

b5,+ 4141 96,4+ -675.1
-91.+ 189,1 -112.+ -207.!

PR Sedos RO AAXEI RAG RN

TRUF EIGENVALUE
I'FIMITE ETGENVALUE
-0.,5000000009000000 99+
-N,5000000900209000D N0+
N, 16G66G6G66E666RRTD 01+
ANY SCALAR
HA
-0,183210RK9323370D 03+
-0,159921151742°93D 03+
-2 GL23753476326613D 93+
N, 143901600009000D N3+
-0, 14E3622019523°3N-12+
A
-N,575137927367557D=-13+
1.130793207779265D 95+
"L,1013279771%366720 N4+
" ~L13000690000000D 034+
3 T =N, 157564233160017D-12+
£l g Cy:pRTeEn CGEVALUE

D 0 RS UL Dyl it )

.7 ‘ "\L

8E

SO WSV DU & WO

1 A,367K955050158960 16+
2 =0,5747073900000010 004
3 =0,SARRINA%9A0000D 004+
L N 1FERGATCCRGRAETD N1+
5 0,912730603559031D 00+

RELATIVE ERROP

: 7.10209492227L9010 07
5.4579CC9587657577R-15
T B712557958R569 20-15
".4579061976572770-15
3.0

N =

—
-

-30,+ h5G6,1 ho,.+
~-070,.+ 184,1 730,+
-500,+ 352,10 €25,.+

199,.+ =-292.1 =115.+

=30,+ =276,1 -40,+

-6&.+ =F12.1 143, +
28.+ 36.1 139,+
-8.+ =504, 1€7.+

-56.+ 630,11 130, +
76.+ 396.1 =177.+

0.520000000000030D 00
-0.,50%000000020002D0 09
-0, 66566R666666667D 09

-N,296212E55635A07C8D 03
-0.11537853972€3304D 01
-0.37143L82425L403€61D 03
-0,701909090029900D 03

0.571615032881263D~1h

-0,7785360903625250D~14

N, 1519%9005715531D 03
-3.279939233786825€D 93
-7,3330023021020000 03
=0, 2201747092463 0D-13

N,305724254312RGHD 10
n.,55016009000000990 90
-1.50007209360290090 0
-0.AEEGECG6S66E6CED 00
-2,10276043531L16G4R 29
RFLATIVE RESIDUAL
N,4055563143962250-16
1.961773509715645D-16
9.1124301586551199-15
N, 107364026307 787D-15
3.923215101€4143AD-16

29

O OO

1S

-165.+ =332.1
235.+ 199.1
-100.+ =-16.1
115.+ 24,1
115.+ 243.1

36.+ L6331
-76.+ ~L468.1
“24.+ =72.1
-52,.+ 18.1
-3.+ =372.1

OF ITERATIODS

i
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Example 2

E | “ONLIYEAR DIVISOR
3 THE  HMATREX A

311.+ -3539.1 397.+ =993,1 0S,.+=1932.1 =250+ 240,1 -112.+ =-F72,1
6h,+ =273,1 -1953,+ 178.1 127.+ -694,1 ¢338,+-1209.1 1%%,+ ~308.1
=124,4+ 420,01 =253,+ 1023,] 81l.+ 176,1 £79.+ =5604,1 =3.+ 11241
29.+ <776, 1 531.+ 11,1 115,+ -139,1 =377.+ 843.1 =74+ L, |
=125.+ =709,1 <5G0,+ 1957,1 153,+ 1641 458, + 52.1 155.+ 212.1

S2TWMEI b sy bt

THE HATRIX 8@

v

180,+ 11.1 360.+ 7,1 72,+ 1c4,t -180.+ 0.1 =lbbL,+ 96,1
163,+ 5.1 =546+ 60,1 210.+ b6, | 588,+ 24,1 -42.+ 26.1

90,+ =61,1 =450,+ =471 132,+ =401 459, + b, =G.+ =124,

h2.+ 0,1 336.+ =51.1 =2h,+ 17.1 -258.+ =56.1 -60,+ bl 3
12.+ 77, <=354,+ =R5,1 GG+ =282,1 312.+ =52.1 30.+ =28.1 u

TRUE EIGENVALUE
1 N, 1IICRCH6GGGA6FLTD 01+ -0,133333333333333D 01

Lt o AP At s NN DL

2 0.1166FG66G66FGG7D 01+ =-0.133333333333333D 01

3 -0.900009900002800D 01+  0,100009009000008D 01

K =9,90060009000000080 01+ -0,109200929000903D 01 :

5 =0,900G4000N0N000NND 01+ -0,196006507000900D 91 ;
ALPHA 3

1 =-0,22022525932F7240 24+  5,253104871729474D 04 | ;

2 -0,G7008354123746GR 93+  2,72979L212204090D 03 | :

3 -0,4279796411156180 03+ 0, 152R88091F55233D ab | ;

4 N.,13026714542372319D N3+ n,50 7"147‘3 31421870 93 1§ E

5 =0,014G215335040130 N1+  0,715031183396420D 02 | 3
RETA *

1 =-0£.1393€7207223029D 04+ 9,5273639329225330 01 |

2 ~0,5527028071455020 23+ -0, 1560252249730 630 02 |

3 f.G6R75715471942510 N2+ -0,1701137513592120 93 |

b =0,270323L135710L40 N2+ -5,7232312797612030 32 |

5 n,1319295023512520 00+  -0,7959449759328430 01 |

COUPUTED EIGENVALUE

1 N.I1RGEGERFSR37220 N1+ -0,133333335202873€0 01 |
2 D ILCECLCCETHROG1IID 91+ -0,13353333160579510 01 |
3 =2,7000060000000000 N1+ 7.7199999999999850 03 |
Lo =",an39093690000290 91+ -n,2299999933329570 00 |
S =0,369006000000370D 01+ ~0.09qg?909ﬂ09ﬁ9780 0 i
RELATIVE ERNOR RELATIVF RESIDUAL (0. OF ITERATIDNS
1 7,7033337568128509D-01% N.5307112L6255343D-1F 1)
2 DTA33387294796970-07, G.5850711900607 820017 1
3 n,27127279232153100=-14 2,161571532177435D-15 3
) 5393459457239820-15 7. 127436297615855D-15 1
5 0.,2220446049250310=-11Y n.AN19465227544600-16 1

60
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SUBROUTINE GELHES(NDyNsAsBoWANTX 9 X9 EPSA¢ EPSB)

VA b G vt e 8 2
N .

THIS SUBROUT INE REDUCES THE COMPLEX MATRIX A TO UPPER
HESSENBERG FORM AND REDUCES THE COMPLEX MATRIX B TO
TRIANGULAR FORM

Aatesn N @ n

INPUT PAKAMETERS:
ND THE RUW DIMENSION OF THE MATRICES AyB+X 13
N THE ORDER UF THE PROBLEM |
A A COMPLEX MATRIX 55
8 A CUMPLEX MATRIX .
WANTX A LUGICAL VARIABLE WHICH IS SET TO .TRUE. IF -£

THE EIGENVECTORS ARE WANTED. OTHERWISE IV SHOQULD
BE SET TU JFALSE.

C et

UUTPUT PARAMETERS:

A ON OUTPUT A IS AN UPPER HESSENBERG MATRIX, THE
ORIGINAL MATRIX HAS BEEN DESTROYED

b AN UPPER TRIANGULAR MATRIX, THE ORIGINAL MATRIX
HAS BEEN ODESTROYED

X CONTAINS THE TRANSFURMATIONS NEEDED TO COMPUTE ;
THE EIGENVECTURS OF THE ORIGINAL SYSTEM '

EPSA THE NORM OF A*THE PRECISION OF THE MACHINE

EPSB THE NURM UF B*THE PRECISIUN OF THE MACHINE

2N ol aNaNaNoNaRa NN el ol alal ol ol o alal o sl ool s e al aN ool o N aN ol o N o) o¢

Ce%x% THE VALUE OUF MACHEP 135 MACHINE DEPENDENT ss*sses
Cresx¢|T S SET FUR THE IBM 360 MACHINE, DOUBLE PRECISION*#*s*%

PROBLEMS wiTH THIS SUBROUTINE SHOULD BE DIRECTED TO:

LINDA KAUFMAN

SERRA HOUSE

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

CCOOHOAC

COMPLEX %16 Y A(NDyNU)+BINDyND) X (NDyND) 1

REAL®S ANIoONI Lo RABSD,EPSAEPSA MACHED . ANORM . BNORM 1
LJGICAL WANTX
RM1=N-1

¢
C CUMPUTE EPSA,EPSH

T sl

Bde o vo Sxos o AR XY SRRy~ === T




C
C
C

10

[ §

12
15

18
19
20

30
C

MACHEP=2,22D~-16
ANORM = O,
BNORM = O,
00 S I=]l,N
ANI = 0.
IF (1.NE.1) AN] = RABS(A(l,1-1))
BNI = 0.
00 3 J=]4N
ANL = ANl + RABS(A(L94))
BNl = BNI + RABS{8(1,J))
CONT INUE
IF (ANI1.GT.ANGCRM) ANORM = AN]
IF (BN1.GT.BNORM) BNORM = BNI
CONTINUE
IF (ANORM.EQ.O.) ANORM = MACHEP
EPSA = MACHEPUGANORM
EPSB = MACHEP*BNORM

REDUCE B TO TRIANGULAR FORM USING ELEMENTARY TRANSFORMATIONS

D0 30 I=1,NNM]1
D=0.000
IPl=l+]
DO 10 X=IPl,N
C=RABS(BIK,1))
IF (C.LE-D) GU TO 10
D=C
iI1=K
CUONTINUE
IF (D.£Q.0.00) GO0 TO 30
IF "DelLE.RABS(B(1,1))) GO TO 15
DO LU J=],N
. =AllJ)
AllsJd)=Alll,J)
G STRIES §
DO 12 Jsi.N
Y:8(1,4)
Biledd=Billled)
BlileJ)=Y
DO 20 J=IP1,N
Y=B(Je1)/8¢81,1)
IF (RABS1Y).EQ.0.00) GO TO 20
00 18 K=l,N
AlJdoK)}=ALJK)~YEA[L,K)
DO 19 K=[IPLl,N
BlJoK)=B(JoK)=YSB (oK)
8{Jel }=(0.00,0.D00)
CONT INUE
CONTINUE

C INITIALIZE X

c

IF (.NOT.WANTX) GO TO 40
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00 38 I=1,N ' ' b4
DU 37 4=1,N i

37 X({19J)=00.0050.00) . ;
38 X(IeE)=(1.00,04000) R %
c _ ;
c REDUCE A TU UPPER HESSENBEXG FORM
c . i z
©0  NM2=N-2 !

IF (NM2.LT.1) GO TO 100 ; '
DO 90 J=1,NM2 :
JM2=NM1-J
JPl=J+l {
DO 80 [i=l,4M2 :
I=N+1-11 ’
IMi=f-1 :
IF (RABS(A(15J))+LE.RABS(ALINL,d))) GO TO 50 i
DO 45 K=Jg¢N 3
Y=zALIK) . .

TRSWORHY

BN L M b e LS VAL

A S

oy

A(lLsK)=A(IMLl oK) :
45 A(IM]lK)=Y . %
DO 46 K=[Ml/N :
Y=8(1,K) i
BlIsK)=B(IMLl,K) ‘
46 BliMi,K)=Y )
50 IF (RABS(A(I,J)).EQe0.D0) GO TO 58
Y=ACI,J)/ACIML,J) ;
DO 52 K=JPl,N
52 Al sK)=AL] 4K)~- Y‘A(l"loK’
All¢J)=80.000,0.00)
DO 54 K=[Ml,4N
54 BlI +KI=BL[,K)- Y‘B(lﬂloK.
(o TRANSFORMAT ION FROM THE RIGHT
58 IF (RABS{B(I,IM1)).LE.RABS(BI(I, ‘,’) GO T0 70
DO 60 K=1,1
Y3B(K,l) )
B(K,»I1)=BI(K,IM}1)
60 BIKeIML)=Y
D0 64 K=],4N
Y=A(K, 1)
AlKe 1 )=A(K,IML1)
64 A(KysIMl) =Y
[F (NOT.WANTX) GO TO 70
DO 68 K=14N
Y=X{K, 1) t
X{Kyl)=X1KyIM1)
68 X({KylM1l)=Y
70 IF (RABS(B(I1,IM1)).EQ.0.D0) GO TO 80
Y=B(L,IML)/8L1,1)
DU 72 K=1,1IM1 3
72 BIKs EML)=B (K, IML)~Y*B(K, 1) !
Bel1ML)=10.00,0.00) i
DU 74 K=1,N '
T4 A(K, IML)=A(K,IML)-YSA(Ky 1)
IF {NOT.WANTX) 60 TO 80
00 76 K=1,N
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T6
80
90
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CONTINUE
COUNTINUE

X(Kg INL)=XLK ,EME)~YEX(K,I )

100 RETURN I

END

SUBRUUIT INE GLRENDsNNoAsB %y X, liER'EP SALEPSBsWANTXyEIGA,EIGB)
THIS SUBROUTlNé SOLVES THt GENERALIZED EIGENVALUE PROBLEM
A X- = LAMBDA B X
WHERE A IS A CUMPLEX UPPER HESSENBERG MATRIX OF ORDER NN AND B IS
A COMPLEX UPPER TRIANGULAR MATRIX OF ORDER NN
INPUT PARAMETERS

NU ROW DIMENSION OF THE MATRICES A,BoXsITER,EIGA,EIGB
NN  OURDER OF THE PRUBLEM

A AN NN X NN UPPER HESSENBERG COMPLEX MATRIX

B8 AN NN X NN UPPER TRIANGULAR COMPLEX MATRIX

* ERROR RETURN; IF. AFTER 30 ITERATIONS, THE NORM OF THE
SUBDIAGONAL UF A HAS NOT SHOWN A SUFFICIENT DECREASE

X : CUNTAINS TRANSFORMATIONS TO OBTAIN EIGENVECTORS OF
ORIGINAL SYSTEM
IF - GELHES HAS NOT BESN USEUy X SHOULD BE THE IDENTITY MATRIX

WANTX LOGICAL VARIABLE WHICH SHOULD BE SET TO TRUE. IF EIGENVECTORS
ARE WANTED. OTHERWISE IT SHOULD BE SET TO FALSE

EPSA THE NORM UF A TIMES THE MACHINE PRECISION. NEED NOT BE
SET IF GELHES HAS BEEN USED

EPSB THE NORM OF 8 TIMES THE MACHINE PRECISION. NEED NOT
BE SET IF GELHES HAS BEEN USED -

OUTPUT PARAMETERS
L] THE ITH COLUMN CONTAINS 'THE ITH EIGENVECTAOGR IF EIGENVECTIRS ARE

REQUESTED :

ITER AN INTEGER ARRAY OF LENGTH NN WHOSE ITH ENTRY CONVAINS THE NUMBER
OF ITERATIUNS NEEDED TO FIND THE ITH EIGENVALUE

EIGA AN NN ARRAY CONTAINING THE DIAGONAL OF A
EIG8 AN NN'ARRAY CONTAINING THE DIAGONAL OF 8

THE ITH EIGENVALUE CAN BE FOUND BY DIVIDING EIGALI) BY EIGB(I)
WATCH DUT FOR EIGB(I) BEING ZERO

Cosssxses THE QUANTITY MACHEP [S MACHINE DEPENODENT#ss%63%s%s
Ceexsseses [T {S SET FOK TdEs}ﬂﬁ 360, DUUBLE PRECISION®sssssss
s




B S S RN L LS R
&

VLRI

a4

|

‘2XakaKa KN oK ol

10

11

12

13

15

16

nNeCoo

0

24

PROBLEMS WITH THIS SUBROUTINE SHOULD BE DIRECTED TO

LINDA KAUFMAN
SERRA HOUSE, COMPUTER SCIENCE DEPARTMENT
STANFURD UNIVERSITY

LOMPLEX*L6 AIND,ND) 8(NDyND)EIGA(ND)EIGBI(ND)
COMPLEX®16 SoTonsYoZoOCMPLX,CDSQRT TS

INTEGER ITER{NUL)

CUMPLEX*16 ALFM,BETMsDySL DOENy ANNoANMLIN, ANM1M]
REAL*B EPSAEPSB¢SSsRoOLDyNEMW

COMPLEX®*16 X(NDyND)

REAL*8 MACHEP/2.22D-16/:00,01 ,D24E04E1,RABS ;0ABS
LOGICAL WANTX

N=NN

IF (Ne.LE.Ll) GO TO 140
1715=0
NM L=N~1
DO 12 LB=24N
L=N+2-LB ’
[IF{RABS{A(LoL—1)) e LE.MACHEP*®(RABS(A(L-]1,L-1))
*+RABS{A(L,L))))

CONTINUE
L=1
IF{L.EL.N) GO TO 100
IF t1TS.LY.30) GO T0O 20
IF (I7TS.6Y7.450) GO TO 16

OLL=0.D0

DO 15 I=1,NML

OLD=0LD+RABS(A(I¢*1l,1))

GO Tu 20

NEW=0.00

DO 19 I=1,NMl

NEW=NEW+RABS(A(I+1+]1))
IF (NEW.GT.0.5%0LD) RETURN 1
ULD=NEW

CHECK FOR 2 CONSECUTIVE SMALL SUBDIAGONAL ELEMENTS

IFI{NLEQ.L+1) GU TO 25
D2=RABS (A(N-1,N-1))
EL=RABS(A(NsN-1))
01=RABS (A(N,N})
NL=N-(L#l)
DU 24 MB=1,4NL
M=N-MB
EO=Et1l
€ 1=RABS(A(M,M-1))
DO=0D1
D1=02
D2=RABS(A(M-LsM-1))
IF(EU*EL .LEJMACHEP®D1*(D0O+DL+D2)) GO TO 26
CONTINUE

65

GO 10
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» 26 CONTINUE
E C
: IFLITS.EQel0.0R.ITS.EQ.20) GO TO 38
: C
E C COMPUTE SHIFT AS EIGENVALUE OF LOWER 2 BY 2
g
ANN=A(NoN)
ANMLN=A {NML 4N)
ANMIM1=A(NML1,NM1)

() ;8

S=ANN®B(NML yNM1)-(AIN,NML))*B(NML14N)
WA(NoNML)*B (NyN)®{ ANMLIN® B (NML,NM1) -
I BUNM1yN)®ARNMIML)
Y={ANMLMLI®B(N.N)-S) /2.
LZ=COSQRT(Y®RY#+N)

IF (RABS(Z) .£EQ.0.D0) GO TO 36

DO=Y/2

IF‘DOOLTCOODO, l==/

36 DEN=(Y+Z)*B {NM]1 ,NM1)*B{N,N)

W2AIMMISDEN-B(MyM)*( (Y+Z)*S5-H)

T AT 7R o ? e TSR R Y AL BT

¢ L=A{M+1,M)*DEN
1 GO TO 40
: c
: C AD-HOC SHIFI
C

Cane e A

38 W=A{NsN-1)
Y2ALN-LoN=2)
W=A(MsM)-DCMPLX(RABS( W) ¢ RABSLY))*B( My M)

I=A(Me]l M)
490 CONTINUE
ITS=1TS+]
C
C FIND L AND M AND SET A=LAM AND B=LBM
C
NPL1=N+]
LUR1=L
NNORN=N
IF (JNOT.WANTX) GO TO 42
LORL=1
NNURN=NN
42 00 9C 1=MyNM]
Jxlel
C

C FIND ROW TRANSFORMATIONS TO RESTORE A TO
U UPPER HESSENBERG FURM. APPLY TRANSFORMATIONS

C TO A AND B

c
IF {1.EQ.M) GO TO 50
w=Alloi~-1}
L{=AlJy i-1)
50 If (RABS(w).GE.RABS(Z)) GO TO 6¢
c
C MUST PIVOT
C

Du 55 K=],NNORN
66
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Y=A{1,K)
All sK)=A(J oK)
A(JK)=Y
Y=B(1,K)
BUl K)=BlJpK)
55 B(JK)=Y
Y=w/l
IF (1.GTaM) A(Lo1-10=AlJsl-1)
GU T0 62
60 Y=1/u
62 IF(RABS(Y).EQ.0.D0) GO TO 65

D0 64 K=1,NNOUXN
Ald oK)I=ALJsK)~-Y*A(],K)

64 B(J yK)=BLJ,K)}-Y*B{]1,K)

IF (1.GTeM) AlJel-1)=(0.00,0.00)
C
C PERFORM TRANSFORMATIONS FROM RIGHT TO RESTORE 8 10
C TRIANGLULAR FURM
C APPLY TRANSFORMATIUNS TO A

C
65 IF (RABS(B(Js1)}).EQ.Q.D0) GO TO 11
IF {RABS(B{J2J))GE.RABS(B(J91))) GO TO 80
C
C MUST PIVOT COLUMNS
C
OG 70 K=L0OR]l,J
Y=A(K¢Jd)
A{K oy Jd)=A(Ky1)
AlK,1)=Y
Y=B(KyJd)
BIK ¢ J)=B{(K,yl)
70 BiK s 1)=Y
IF (1.EQeNM1) GO TO 75
=A({Jrl.Jd)
Aldtl3d=A(J+]1,1)
AlJ+l,1)=Y
75 IF{.NUT.WANTX} GO TU 80
DO 78 K=1,NN
Y=X(KqJ)
X{KeJd)=X(Kyl}
78 X{KsI)=Y
80 I+ (RABS(B(Js11).EQ.0.D00) GO TO 90

L=B{Jy1)/8(Jded)
D0 82 K=LURL,dJ
ALK I )=ALK,1)-L*®A(KyJ)
82 BIKs 1 )=BIKs I)-L%B(KyeJ)
B(Jel)=(0.00,0.00)
IF (1.LTNML) AlL42,1)=A(1#2,]1)-2%A([%2,4J)
IF(.NOT.WANTX) GO TU 90
DU 85 K=1,NN

85 X{Kyl)=X{KyI)=2*X(KoJ)
90 CONT INUE
GO TO 11
C
100 CUNTINUE
67
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EIGAIN)=A(N,N)
EIGBIN)I=B(NJN)

IF (N.EQ.1) GO TU 110
ITERINI=ITS

N=NM]1

IF (N.GT«L) GU TO 10
ITER(1)=0

GU TO 100

FIND EIGENVECTURS USING B8 FOR INTERMEDIATE STORAGE

[ XaXsKnl

10 IF{.NUT.WANTX) RETURM
M=NN
115 CONTINUVE
ALFM=A(M,M)
BETM=B(M,M)
B8(MyM)=(1.D0,0.00)
L = M1
IF (L.EQ.0) GO TU 140
120 CONTINUE
Ll = L+¢]
SL = 0.
DO 130 J=L1l .M
SL = SL ¢ (BETM®A(L,J)~-ALFM*B(L,J))*B(J)M)}
130 CONT I NUE
D = BETMsA{L L)-ALFM*B(L,L)
IF (RABS(D).EQ.Q0.) D = (EPSA+EPSB)/2.
8(LsM) = -SL/D
L =L-1
140 IF {(L.6GT.0) GO TO 12v
M=M-1
IF (M.GT.0) GO TO 115

T P oVin 21 TN TR )
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C
€ TRANSFORM TO ORIGINAL COOCRDINATE SYSTEM
C
M = NN
200 CONTINUE
D0 220 I=1¢NN
S = 0.
DO 210 J=1.,M
S =S + X{[pJ)*BlJs M)

210 CONTINUE
X{IeM) = §
220 CONTINUE
M= M-

IF (M.GT.0) GO TO 200

C
C NORMALIZE SU THAT LARGEST COMPONENT = 1. '
<
M = NN
230 CONTINUE

$S = 0.
DU 235 [=1sNN
R = RABSI{X(1I,M))
IF (R.LT&SS) 6O TO 235

68
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$S = R . : I
D = X(X,M) . , ' ) ;
235 CONTINUE '
s IF (SS.EQ.0.U0) GO T0 245
D0 240 I=1,NN
X{leM) = X(I,M)/D
240 CONT INUE "
245 M = M-] . ‘
IF (M.GT.0) GO T0 230 '
RETURN : S
2 END ' , T ’ .

&
S A emdomiopeteddn ot SOV . o
T
% i ok
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3 REAL FUNCTiON RA3S*8(4) 3
COMPLEX*16 2,21 o
REAL®8 Ti2) ,DABS - :
EQUIVALENCE (Z4,T (1)) :

L2=2

RABS=DABS(T(1))+DABS(T(2))
z RETURN

END
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