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1) ARNTRACT

This report describes a parametric quantization scheme for irregular line drawings.
With this scheme, different quantized versions of the same drawing can be obtained by
changing the values of the parameters. Three figures of noise are proposed for evalu-
ating the quality of quantized drawings and design formulae are developed for the
parameters of the quantization scheme as functions of bounds on the figures of noise.

The degradation of the quality of a quantized drawing resulting from a coordinate
transformation and requantization is studied in tcrms of transformed figures of noise.
Also, it is shown theoretically and by means of & number of examples how to choose
the parameters of the quantization scheme in order to meet the requirements on the
transformed figures of noise. This enables one to quantize a preprocessed satellite
picture so tnat after computation of a Mercator projection, the resulting geographic
map will have the required quality.

The theory presented in this report is applicable to any irregular line drawing
and to any transformation defined by a pair of functions that are continuous together
with their partial derivatives.
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AZSTRACT

An irregular line drawing is an abstractiocn of an image which can
be defined as & set of planar curved sxrcs. The geometric features of these
arcs are implicitly defined in the output of the preprocessing operations which
generated the drawing from the image.

In order to process sucih a drawing with a digital computer, it is
necessary first to describe it to the machine in a suitable language. Such a
description is complete if and only if it includes all the desired features of
the drawing. The precision of a complete descrivtion is then related to the
precision with which each of the preprocessed features is represented in it.

To represent a feature means essentially to substitute for it a feature for
which a stendaré machine description aiready exists. Therefore, the quality of
a description of a preprocessed irreguler line drawing is completely determined
by the resoiution cf tihe quantization scheme used.

Meny quantizatiorn schemes lave been studied in the past. In these
schemes, the r:solution is chosen independently from the type of processing
to be done latier on the quantized drewing. For e:emple a particular resolution
mey be chosen because the user wants the quantized version of a curved arc to
appear to him as smooth a3 tiie arc itself,

No mention exists in the current literature of the nore general
probliem of choosing tic resolvtion of the quantizaticn scheme so that the
quality of tle quantized drawing after processing is satisfactory in some
specified sense. This thesis describes an approach to the solution of this

proolen when the required processing is a coordinate transformation. A general




purpose quantization schere is presernted in a parametric form, Different
quantized versiops of the same drawing can ther te obtained by changing the
values of the pesremeters governing the guartization scneme. An optimal en-
coding scheme is described which utilizes the patterns in the cuantized drawing.

Three figures of noise are introduced for describing three different
aspects of the quality of the cuantization scheme. The first figure of noise
is related to the average area between tne quantized versior of the drawing
and the drawing itself. It azlso provides an incication of the difference
between the length of the drawing and vhat of its yuantized version. £ second
figure of ncise describes the sverage maximum displacerient between the quentized
version of the Srauing and the drawing itself. A third fisure of noise serves
as a measvre of the so-called steircose effeet, It sheuld be noted thét al-
tiough many references to the staircase effect can be found in the literature,
there has bheen no inom scheme for cuantifying it.

A figure of cost is nrecentad for evaluating how much "cost" has been
expenced Iun transforaing the gquantized version of a given drawing.

A figure of merit is defined to indicate how much has been spent
(figure of cos.) Jor achieving tle siven qualisy (Tig:ire of noize) after traps-
ferwation.

The effect of a coordinate-transforiration on the three figures of
noise is evaluated tc_ciher with tie necu-reversible contribution due to the
requantization followi.g the transformatiou.

The thesis concludes with & comparison between the proposed quantiza-
tion scheme end other schemes on the basisz of their figures of nerit. Bounds
on the distortions in engle and length occurrirg when the drawings are quan-

tized accordingly to a variety of quantization schemes are derived.
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I. INTRODUCTION

The problem of developing techrniques for the computer processing
of pictures has received increasing attention in recent years. Currently
most of the effort is dedicated to two classes of problems: the processing
of images and the processing of line drawings.

As the term will be used here, an image is a two-dimensional repre-
sentation of a scene, and its information is given by spatial variations of
brightness and color. In contrast, a line draving is an abstraction of an
image. The information it contains is given solely by the shape of thin
curves appearing on a contrasting background, where neither the actual
thickness of the curves nor the nature of the background are relevant.15

The abstraction of a line drawing from a given image is a subjective
matter. TFor instance, given a blurred aerial photograph of an island, it is
subjective to decide what the exact shape of the coastline is. Once this
has been decided, that is, once a thin line has been drawn to represent the
coast, then it can be said that a line drawing has been abstracted from the
image. In doing this abstracting, 21l the detail that is regarded as noise
is filtered away. The line drawing is then simply an assembly of smooth
curves with possible slope discontinuities at points where two curves are
Joined.

The abstracting process descrived here belongs to a class of opera~

tions that are commonly referred to as preprocessing. In the following

we will refer to a line drawing L as a drawing consisting of a set of smooth

thin curves containing inflections, separated by cusps, and linked by
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invisible arcs. Moreover it will be supposed that the curves are described
in such a way as to permit the measurement of their geometric features
(i.e., the radii of curvature, the slopes, etc.) to any required precision.
Examples of line drawings are provided by contour maps generated from pre~
processed terrain photographs, high energy particle trackes obtained from
bubble-chanber pictures, and the outlines of individual cells in biomedical-

application images.

1.1 Statement of the Problem

In order to process & line drawing L by means of a digital computer, it
is necessary to describe it first to the machine in a suitable language,
Such a description is complete if and only if it includes all the desired
features of the drawing. Description implies quantization, and the precision
of a complete description is dependent on the precision with which each of
the preprocessed features is represented in the description. To represent
a feature means essentially to replace it oy one for which a standard machine
description already exists. Ultimaetely, the precision of a description of a
preprocessed line drawing is determined by the resolution fineness of the
quantization schenwe used.

In order to clarify the concepts of preprocessing and quantizing,

consider the example of Fig. 1. The figure shows a blurred photograph of a
coastline which allows the detection of details to a precision of one meter.
Now suppose that a map is to be produced with a precision of 30 meters. By
a precision of 30 meters we mean that ‘there is a circle of uncertainty of

radius 30 meters about any point in the map.
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1. User Abstracted ILD Coastline (Preprocessing)

2. First Quantization Step (User Generated Curves)

3. Second Quantization Step (Approximation with
"Namable" Entities)

FIG. 1

AN TRREGULAR LINE DRAWING WITH USER
GENERATED CURVES AND THEIR APPROXIMATION
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Tke first operation (preprocsssing) to be carried out is thea the one
of identifying a coastline (line drswing) in the given picture.36 This may
require filtering to remove noise, thickering, thinning, and finally edge de~
tGCtiOR.h’7 Next the extracted line drawing is approximated by & sequence
of straight line sepments in such a way that the meximum distance of a coast-
line arc from its approximating segment does not exceed, say, 25 meters. This
can be regerded as the first line drawing cuentization operation. There was,
of course, a prior image quantization when tne data was input in the computer
throusrnt a digital scanning device.

The coordinates of the exbtreme points of each segment are next trun-
cated so that they can te expressed by numbers with the agreed-upon numter of
digits. This cperation can be regarciel as a seccond line drawing quantization
step, and it leads to a displaceirent of each segment. If such a displacement
does not exceed S meters, then the rew segment will be within 30 reters of

the coastline and tre reguired precision will be achieved. Turth¢r, the new

segment can now be described by the coordinates of its end points to exactly

i e v

the desired resolution (number of digits).

RN

Maayr line-drewing quantization schemes have ween studied in the past

)
and proposed in tae literature.g’14 Rowever, no rention exists of the prob-
lem of how to quantize a line drawing so that the features of interest will

be retained to the desirzd precisicn even after s coordinete-transformation.

PRSP

Ledt

This thesis offers a woriing solution to this problem.

in designing the quantization scheme one must take into account the

type of transforiation to be applied to the quantized drawing. This is
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illustrated by tine follovwing example. Let I be a line drawing consisting of
a straight line segment, and consider two epproximationsof it, C and P, as
indicated in Fig. Z2a. low suppose that ths required processing of L is to

be unifornm scaling by a factor of three. f C regresents the only available
information about the line drawing, the result is C', whereas if P is given,
the result is P', as shown in Fig. 2b. The ideal result is L', which has been
plotted in Fig. 2b by computing the position of a large number of points of L.
L' appears to be better represented by P' than by C' since P' retains the
straight-line feature. The shape deformation presented by C' is referred to
as "staircase effect".

In this thesis a general-purpose guantization scheme is presented and
an efficient encoding scheme is described. Three figures of noise are proposed
for describing three differeng,aspectsof the quality of the quantization scheme
and a related figure of cost is defined. The effect of coordinste-transforma-
tions on the quality of line-drawing descriptions is studied, and bounds are
shown to exist that relate the feature gqualities before and after a transtforma-

tion.

1.2 Literature Survey

This section reviews some of the past work bty others relating to the
problem of transforming quantized planar curves. It is divided inco three
gections, each dealing with a different aspect of the problen,

(Quantization of Smooth Curves

The problem of gquantizing a& closed smooth curve has been treated by

many authors by quantizing the planer region whose border is the closed curve.
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TWO QUANTIZATION EXAMPLES
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FIG. 2b

EFFECT OF A TRANSFORMATION ON QUANTIZED CURVES




Cheng ané Ledley7 consider digitizations of pictures using a flying
spot scanner ard progose &n error-vowicéeé digitizeation scheme. Using 2 least
nean-square criterion, they established the precisica of their reconstructing
method. An example of a mechanical scanrer is given by Pilipchuck26 for off-
line picture digitizetion. lNeither of these papers, however, is particularly
applicatie to the work of interest here because the curves with which we will
be conceraned mey be either closed or open.

15

Freeman - stresses the distinction between en image and a line drawing,
and clarifies the preoblems of line-drawing quantization and encoding. A useful
method for quantizing both closed and open curves was described in detail by
Freeman.9 He considers various methods for guantizing arbitrary planar curves,
with specific empnasis on the grid-intersect quantization method. He also pro-
poses the so-called chein code, in which a chain represents a translation-
invariant encoding of a curve yuantized cn a square grié. Combined quantiza-
tion and encoding is achieved by superimposing e grid on the given curve and
selecting the closer of the two grid nodes, Qg’ lying to either side of the
intersections between the curve and the grid. The reiative position of Qj+l
with respect to QJ can be defined simply by an octal digit. The sequence of
selected nodes can thus be represented vy a sequence of octal digits. This is
sufficient for encvoiinz the quantized curve with & precision depending only
on the grid size.

In the followirg, use will be made of Freemen's encodiny scheme for

eificiently encoding a cuzntized curve and directing a digital plotter for

drawving it.
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Freen:anlc presents a comparison tetween the sc-y3iied array digitizo~
tion and the chain cuantization anid encoding of the border of {inite plenar
regions, with pany interesting remarks op border length end smowtiness.
Freeman12 discusses s fast algorithm for generating the chain of & uivele.
Freepan and Glasslh prorose & criterion for selecting the appropriate grid
size to be used for chein encoding a curve. The curve is interpreted as au
elastic beam under flexure and the elementery grid size is selected so that
the curve can be reprasented by a beam of minimum strair energy. The problem
of reconstructing a curve from its chain is a vry complicated one, and a
methed is proposed by the authors for agproximeting the actual solution with
cubics. However, even this approximation leeds to very involved computations,
especiaily in the case of a curve with several points of inflection, selfinter-
sections or cusps.

17

Gless™ ' presents a note on the quantization of two-dimensional line

drawings which shows that the chain quantization process acts as a source of
wiiformly distributec noise, and Montanari20 discussas some limit properties
of digitization schemes with emphasis on continuity requirements for enrve
digitization.

Raudseps27

presents a new type of quentizatidniby'describing a curve
as 8 fuaction of tangent angle vs. arc length. From this, the curve can be
reconstructed uniquely. Quantization is achieved bty teking the coefficients
of the truncated Fourier transfor— of the function. Some of the ideas con-

tained in this work are applicable to the quantization scheme presented here,

especially those related to the definition of a figure of noise.

v
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Analysis and Pattern Recognition of Quantized Plenar Curves

From the point of view talien by this thesis, the problem of recogni-
tion of patterns in quantized curves is fundamental to the one of transforming
them. Two approaches are known to the author. The first one deals with the
properties of éuantized cwves directly; the second one first transforms the
curves into another representation, called skeletons, and then applies pattern
recognition techniques to the skeletons.

Basic work has been done by Freemanlo, wno studied different algo~ .
rithies for checking the topological properties of chains, such as closure,
symmetry, and intersections, and geometric patterns such as length, area,
moments, ete.

Freemanll presents an analysis of chain patterns in terms of a chein
directionality spectrum which shows the relative amount of the octal digits
of' various types in & given chain, and diiference sequence functions which are
defined on the differences of adjacent octal digits in a chain and which are
related to the curvature of the chein.

Freemanl3 proposes a classification scheme based on a hierarchy of
chainlet levels. Freeman and Feder8 present a contour correlation algorithm
for the problem of curve matching. Buainl presents computer program routines
for evaluvating chain cross- and auto-correlations for each possible value of

>

the shift index. Socci®’ describes a special correlation technique based on
the chain difference functions and proves its invariancy with respect to chain
rotation. Finally, for the case of array digitized regions (i.e., closed

curves), two works deserve to be mentioned. In ‘the first, Rosenf.‘eld‘?8 presents

via
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definiticns of courectivity and order of connectivity, and discusses their
topological arplications for array aigitized planer regions. In the second,
Lcurielg presents two algorithms for identifying and labeling connected
regions formed by sets of closed curves in interactive graphics.

The second approach for pattern recognition in guantized curves,
using new shape descriptors was originated by Blumg, who presented a pattern
recognition scheme which extracts new descriptors of the shape of a given con-
tour. The contour is interpreted as the origin of a wave front which propagates
with constant velocity end exiinguisnes itself whenever two or more arcs of the
same wavefront pass through the same points. These points define the medial
axis of the contour line and, togetier with the time of front extinction defined
for each of tzem, they describe in a compact way the shape of the original
contour. A contour can be reconstructed in a unique way starting from its
medial axis.

. : . . - < 125

Otinevr works on medial axis or skeletons were presented by Pnilbrick™",
who proposes a digitized version of Blum's analog propagstion. Pfaiz and
Rosenfeld2h use a different epproach for digitized skeletons bzsed on the idea
of neignovoring points, and prove the advantage oi using digitized sxeletons
whenever set-theoretic operations ere reguired on the given contouwr. Calabi
end Hartnet6 present a new definition of skeletons of closed regions, and

Montanarial’23

describes a rethsd for obbtaining skeletons using a gquasi~Eucli-
dean distance and a special method for generating continuous skeletons from
digitized images.

... 32 . . .
Rutowitz™" proposes a data structure for handling digitized pictures

and a grey-weighted distance for solving digitally the problem of correctly




S
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deternining the skeleton of a given contour. The possibility of using skeletons
for the problem ol transformation of guantized curves is not explored in the
following. One big disadvantage of using skeletons is that it involves the use
of curved arcs (e.g., parabolas) even for the case of polygoral contours.

A classic book on decision-meking processes in pattern recognition
is the one by Sebestyen3h in vhich are derived linear and non-linear methods

Tor separating pravterns from one another,

Transformations of Guantized Planar Curves and Noise Filtering

Zutt and Snivelyh presenc the PAX II picture processing system as a
collection of r.outines for curve manipulation such as scaling and rotation, and
Butt and Wells5 present a set of studies in visual texture manipulation and
synthesis insluding smoothing of cxpanded pictures, rotation techniques, and
picture enhancement algorithms bvased on the interpolation of grey levels., This
kind of approach to the problem of transformetior is, however, different Irom
the one taken here in the sense that in those works the patterns to be trans-
Tormed are tiose ¢f the cuantized curves and no attempt is made to determine
the relation between the features of the quantized curves and those of the
original curves. Mecveover, no theoretical proof is given to show the advantage

of smoothing and fTiltering after “ransformation as compared to the case in

which such filtering is done vefore transfermeticn to remove the quantization

noise. This last anpreech was presented for instance by Montansri — .

rimv e



Montanari proposes a filtering of the border of array-digitized regions using
polygonal reconstruction of quantized contours. The polygon used is the one
with minimal length and a proof of its uniqueness is given in detail.

Rosenfeld, Lee etc.29 present various methods for curve enhancement.
A non-linear method is also presented for enhancing smooth continuous curves.
An example shows thet their methods work even with levels of noise of 2u%.

Rosenfeld, Stroag etc.ah present a noise cleaning algorithm as a
modification of the classical scheme, which changes a one into & zero if the
number of zeros within a given distence exceeds a given threshold. They also
rresent a propagation process and show that it will give optimal results which
can be justified theoretically. As a general reference on picture processing,
see Rosenfeld.31

Finally it should be noted that the problem considered here is of
interest not only because of its theoretical aspects, but also because of very
real practical applications. This last point is well presented in the Pro-

.
ceedings of the Symposium on Mgp and Chart digitizing‘a, where many real-life

problems of transforuing digitized curves were discussed in detail,
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II. TLE QUAITIZATION METHCD

The quantizing of line-draviug deta to place the data into a form suit-
able for computer processing, storage, and display is usually a two level proc-
ess. In the first step the line drawing is derived from the source image
(e.g., photograph), either by scanning or by tracing. The resulting "given"
line drawing is oif'ten subjected to some preprocessing to remove noise, and then
cuantized oncc more into a more compact representation, efficient in terms of
svorage reguirements tut yet faithful in its preservetion of the significant
features., This tnesis is primerily concerned with the second level of quantiza-
tion, occurring after preprocessing. In the scheme to be described, e given
irregular line drawing is first apprcximated by a set of polygonal structures
wvhose vertesies telong to the drawing. Iext these vertexes are shifted to the
nearest nodes of a square grid and a new set of polygonal structures is gen-
erated. For the sake of simplicity, a polygonel structure will be called a
P-structurs in the sabsneguent discussion.

The criterion governing the generation of the first set of P-structures
is the one of guaranteeing a "shere" precision by requiring that for each
smoothly curving erc of the given line draving there ve at least one distinet
segment of a P-struciure. The "positroral” precisian is puaranteed by
choosing the fineness of the square grid in such a way that the length and
angular variations due to the grid quantization of th* semuents of the first
set of P-structures are iimited to a specified tolerance. This assures that
the final set of P-structures will be “cloze" to the original drawing in both

"shape" and "position".




Wﬁ?m:ﬂ;}y; EAGES) B AR e i o e
.

1k

2.1 Definitious tor Irregular Line Lrawings

Definition 1: An irregular linre drawing I is a finite set of smooth curves of
finite dimensions and infinitesimal thickness, containing inflections and
separated by cusps and invisible arcs.
Definition 2: The elementary line drawings are:

1. a point

2. a continuous slope varying (S-continuous) arc

3. & straight line segment

Note that any irreguler line drawing can be recarded as a continuous
curve composed of an ordered seguence of S-continuous arcs separated at a given
point by a cusp or linked by invisivle straight line segnments.

Definition 3: The features of the elementary line drawings are:
1. the position of a pecint
2. the sejuence of angles of the tangents,with respect to a
reference axis, of an S~continuous erc
3. +the length and angle, with respect to a reference axis, of
a straight line segment
Definition &: Two puints P and PJ’ belonging to an irregular line drawing

are called locally disjoint points if there is no visivle curve connecting them

in at least one of the two circular regions with radius P.P, end center in one
J

of then.

Examples of locally disjoint points are illustrated in Fig. 3.
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P].P2 Locally disjoint points
P3,P4 Non Locally Disjoint Pcints

FIG. 3
EXAMPLES OF LOCALLY DISJOINT POINTS
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Definition 5: The features of an irregular line drawing are:
l. the features of its elementaery line drawings
2. the angular discontinuities defined by its cusps
3. the distances between the extreme points of S-continuous ares

L. the distances between any two locally disjoint points

In the following an algorithm is presented which allows one to gener-
ate g P-structure for approximating an S-continuous arc with a reguired pre-
cision {i.e., for approximating its features with the required precision). Then
the problem of approximating an irregular line drawing (i.e., its features) is
reduced to the one of finding with which precision to approximete its S-contin-
uous arece.

The minimum values of the features (2), (3), (4) of the irregular
line drawing will pley & fundamental role in determining such precision. Next
the so~-found P-gstructure is replaced by another one whose vertices are nodes
of a square grid. A design rormula for the elementary size of the grid will
be given and the reletions among the various precision parameters will be de~
rived. It will be shown that the precision with which an irregular line
draving is represented by its quantized version is dependent on a length and
an angle measurable on the drawing itself, on the elementary size of the
square grid and on a precision parameter.

2.2 Algorithm for Apvroximating an S-continuous Arc

A P-structure will now be constructed on a finite number of points of

en S-continuous arc. The notation is illustrated in Fig. b.
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FIG. &
ILLUSTRATION OF ARC AND CHORD OF A CURVE

FIG. §
ARC WITH CONSTANT RADIUS OF CURVATURE




sJ the j~th S-continruous arc associated with the j-th segment
of the P-structure

%id’ %éd the unit vectors tangent to s, at its extrene points

J

-
AaJ the angular difference tetween the dairections of %iJ and tZJ

GJ the maximum distance between 54 and the j-th segment of
the P-structure

ZJ the length of the Jj-th segment of the P-structure

J index of the arc s+ whtse minimum radius of curvature is
the minimum for thé entire line drawing
r'j ratio vetweer. the minimum values of th2 radius of curvature
of s, and that of st
J J
Definition 6: A P-structure P(A,&,Rmat,éamax) approximating an S-continuous

arc A with precision k’gmax’Aamax is one whose j-th segment defines an arc

s,EA such that:

J
1. S5 has no inflections
2. loy < b (2.1)
3. ‘53 _<_k23- (2.2)
4, 55 S Ay (2.3)
5.8, 287 2L /?323- (2.4)

Lel us note that for small valuas of k and Aamax » the arc sJ will

be very close to an arc of a circle with radius R The angle associated

J.
with sj, as seen from its center of curvatwre, is equal to the angle defined
by the directions %ij and %23. The notation used here is also shown in

Figi So
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Since 6, = R, - R, cos{&,/2) and £
J J

3 = 2Rj sin(éajl2) then

J

Cw

Ax

Mo Ao
6./% (l-cos(AaJ/e))/(ZSin(AaJ/Z)) = sin2 ~Ei/2 sin ~Ei-cos ~u1-=

3

un

Ao
i —
2 tan

o]

and

~ .,
* o

Since, in general, Aamax will be small, it follows that sin
A La Ji%e]
: 2 neref = o 2R Ax end &, =2, /R
ten —tl -ﬂl and tnerefore Gj/lj g by TRyl en 3 J/

Let us row consider two different arcs, such that R

5
31 > 332 then
631/632 > (251/232)2 RJE_/RJl s further assuming £, < £y, < 2.32/33;71'{5;

then 6J2 3_6Jl. In other words, when dealing with two <mall arcs it is pos-
sible to characterize them in terms cf constant radii of curvature, Rsl and
RJQ' Let us assume that le > RJZ, then for a fixed length 232 it is always
possible to find for le & value 231 3.232 such that its maximum deviation
from its chord is 631 < 532. This observation is used later to show that

the procedure for approximating an S-continuous arc with & P-structure always
g

halts and therefore is an algorithm.

Definition 7: The seamentation of an arc is the generaticn of a peir of arcs,

obtained by dividing the original arc at the point of maximum distance from
its chord.
The following procedure generates P(A,k,zmax,Aamax) for a line..

drawing consisting of a single S~continuous arc A given the values k’zmax’Aamax’

Procedure
Step 1: The arc XA is subdivided into arcs with no inflections.

Step 2:  The arc (s) 33~containing the minimum radius of curvature is segmented
(in accordance with Definition 7) and this operation is repeated until:
&. the length f3 of the chord of st is less than &
b. 63'§_k £3' J g max
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Step 3: If %- is not the smallest among all £

J‘s,continue to segment st
until this condition is satisfied.

J

Step 4: The following tests are made for all values of J:
a. A“J < Lopayx
If they are alil satisfied, then the P-structure has been generated

correctly and the vrocess ends. Otherwise continue to scgment all the arcs

that do not satisfy et least one of the tests and return to Step 2.

Comment: It is sufficient to recall previous considereticns on the possibility

of always finding an £; > 2. such that §; < &8; , for Ry > R This en-
J1 =" J17 e d1

Jo*

sures that the above described procedure always converges to a unigue solution

in a finite number of cycles.

In order to investigate the precicion with which a P-structure approxi-
mates an S-continuous arc, let us introduce the following additional notation,

illustrated in Fig. 6.

a(PJ) angle between the direction of the tangent to arc 5 in I'-"j and
the reference axis

Aj initial point of arc 54
a, = oA
J (J)
aj angle between the tangents to 54 at A'j and to g4y at AJ+2
BJ angle vetween the direction of the j-th segment and the reference
axis ‘
[} o - v ¥
j angle between the J-th segment and the tangent to 5341 at AJ+2
o, angular difference between the directions of the tangent to s
J at A; and A J
3 g+l
ASJ angular difference between the directions of the j-th and the

(J+1)~th segments




Aj+2

FIG, 6

TWO ADJIACENT ARCS AND CHEPLY
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The following relations hold in general:

l p— 4
oy = Bt # [y ~apyl = tay <

wox
!BJ " Oy S B,y
o, - alpyd] < Iaj - “j-'z.l , P, ¢ 5,
i“j - a(PJ)I < laJ - aé+li R P, €3y
IBJ - a(PJ)I <t

Therefore it follows that

0By =B, =By, < BI<ol=ho 4o, <200
LR

It cen be concluded that the j-tn segment of a P-structure is an
approximation of the arc sJ belonging tc an S-continuous arc with precision

guaranteed by the relations
8, < &7 and lfsJ - d(P.J)I <lbe (2.5)

Mcreover the P-structure approximating an S-continuous arc defines a discrete
sequence of angular variations which approximates the continuous sequence de-

fined by the S-continuous arc itself, and with & precision specified by

b8y < 2ba ’ - (2.6)

To improve the precision with which the P-structure approximates the S-continu-

ous arc, it is sufficient to reduce progressively k and Aamax'
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2.3 Approximation of an Irregular Line Drawing

Definiticn 8: The approximated line drawing L* of a given irregular line

drawing L, is the totality of all the P-structures which approximate the

-COr i ision k,& Ao where:
S-continuous arcs of L, with precisio R ax?

X
1 . —
A = e a.a.
“ax 2k, min min® m1n)
1 . ry
= = n(f . % .
2max k2 min min’ mln)

—

k’ka’kg= are precision perameters; amin is an applicstion specified parameter;
amin is the minimum engular discontinuity defined by the cusps of L; zmin is
the smallest of the distances hetween the extremes of any S-continuous arc or
straight line in L and E;in is the smallest of the distances between any two
locally disjoint points of L.

- . 0 (o} . s s
Comment: is set to 10" or 20, for examples, in the case of artistic

min
drawings whereas it is set to few degrees in the case of drawings for scientific
applications, as was suggested in the Proceedings of the Symposium on Map and

Chart Digitizing™.

Lemma: Any irregular line drawing L can be represented by an approximated
line drawing L* witn any specified precision, by choosing appropriate
values for @ n’k’ka’kz‘

mi
Comment: It is sufficient to note that the algorithm for approximating an
S-continuous arc with a P-structure and the definition of L#, guarantees that

all the feetures of L(per Definition §) are approximated with the required

precision.
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2.4 Sauere-Crid Guenbizatien of an forroximated Line Drawing

. ——————nn

We shall next investigate the precision with vaich an spproximated
iine draving is represented vy its guantized verzion defix on a unirorm
eruave grid. A design formule is derived for the coarsest grid size vhich

s11.11 allous one to quentize the approximated line drawing with a specitied

prccision.

corinition 9:  «The minimur length-detail paramcter of L¥ is:

2 = z—d- (2.9)

-3
o2
[YQ
l...
H'
.)

1

nafinition 10: sizimun angular-detail paremeter of L¥

e
N

0 = nin 48 (2.10)
3 J

Let us note that & and 0 are the smallest details of interest con~

e
tained in L*. The precision with vhich the square-zrid quantized version o.
L¥ approximates L% is then complebely specified in terms of thie precision

vith which such details are represented in the quantized version, In fact if

i AY

~=and =5 ave the naximuz pe:centege errors affacting 2 and 6 as a consequence
LY

of the quantization on a uniforw sguere grid with elementary size T, then for

all the remeining elements of the P-structures of I, for which in general

. . » N £ Ao
v 2 & and AB > 0, the percentage crrors will be less than 4z, Y
J

definition 11: A well-guanticed conroximoted line drewing is one in which the

perenntege maximum veriations cof £ and O due to the quantization process ave
bownded by the censtants p, and Po (ealled length end ansuler pr-eision
A

farameters, respectively).
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Let us note that when a point of an irregular line drawing is replaced
by a grid node in the quantization jrocess, the maximum possible distance

between these two points is

/2,

r = ~§-f (2.11)

In the case of a straight line segment, it is then possible teo clate t. -
maximum angular and length errors due to the quantization p» :2ess to the
precision with which the positions of the extreme of the segmen . auOWD,

as shown in Fig. 7. Indicating with 2¥ the length and with R* the angle of

J J

the j-th segment after quantization and recalling that £, and B, are the

J J

corresponding values before quantization, the following relations hold

IRJ - Q;[ < or and e, - B:[ f_tan'l g%-:-tan-l %1
J v 9‘3 J

Also note that in the worst case the angle belween the directions
of two straight line segments is changed by the quontizeation process by an
amount equal to twice the possible angular variation occurring in quantizing
a single straight line segment. Therefore the following relabtions can be

established fcr 42 and AD.

4% = or (2.12)
= 5 paq=l 2r
AQ = 2 tan [} (2'13)

THEOREM L: The largest grid size T such that L* can be well-quantized
(per Definition 11) is

T = —’/:‘;: 2 (2.1k)
where p= min(pz,tan Pq g» (2.15)
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FIG. 7

LENGTH AND ANGULAR DISTORTION OF A STRAIGHT
LINE SEGMENT DUE TO QUANTIZATION
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Proof: It is sufTicient to ncte thet according to Definition 11, L¥* can be

well quantized if and only if

TPy (2.16)
e (2.17)
or equivelently —'/%11 <P, end tan™t -[2-%:- < Py -g-
end, therefore, -7;-’-?- = min(pgl,tan Pg % =p-

Let us note that in defining L¥ it has been shown that the maximum
deviation §, of the j-th arc of L from its cord fulfilled the relation
U
§, < 6+ < k7 where %7 is equal to the minimun-lengtn detail parameter .

J—= J J

If we now write

D
k - —: * (2018)
Y2 n

where n is a precision parameter, we neve

8, < 87< p 25//En=p 2//en = JET//E n= 2 (2.19)

In other words, if the constant k used in defining L¥, is enual to'p//é'n
then the maximum displacement of any curved arc of L from the corresponding
cord of L¥* cannot exceed T/n. Since T is the largest grid size which allows
one to well-quantize L¥, then in general the grid nodes selected by L and
those selected by L¥ will tend to coincide as the value of n is increased.

This last consideration Justifies the use of P-structures as approxi-
mations for irreguler line drawings. The importance of the precision parameter

n will become clearer later when it will be shown that all the precision




parameters subsequeiitly introducad are relsted to n and that bounds on the
quality of the description of an irregular line drawving beforc and after a
transformation are function of n only.

Let us note that the minimum and maximum number of chain elements for
the shortest straignt line segment in L¥ can be computed as & function of the

precision perameter p alone. In fact, the following relations hold for Nmin

and N
max
N R T )
Moo -/é‘T-! |_ 5 J (2.20)
I |~2;M'-] -1 -l-;;-‘l-| (2.21)

. oes A8
- th - ) ool
Table I shows the values of Nmin and Nmax’ and the angular variation 5
for a straight line segment as a function of the precision parameter p.
Let us note that if the given irreguler line drawing cen bé enclosed
— 1
by a square with sides of length a, and 2™ is the number of rows (or columns)

of a uniform square grid superimposed on it, then from (2.11), (2.12), and

(2.14) the following relations hold:

p? = A% = V3T =& /R

P = V2 afos

a' = a/t

Mo g Vel : n' = 1032(/5 a'/p)

Thus, for instance, if a' = 10S and p = 20%, then Nmax = 9 and m' = 19. Then
for representing the most deteiled line drawing, that is, the one whose L¥

contains only segrenss of the shortest length, the number of bits required
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YABLE I
P Nmin Nma.x o
50% 1 5 53° 12
0% 1 5 43° 24
30% 2 7 37°
20% b 9 22° 2!
10 9 16 11° 12
5% 19 30 59 L
A 2 37 4° 36!
3% 32 4o 3° 1y
2% 49 13 2° 18°
15 99 kb 1°
C.5% 199 285 30'
0.1% 999 1,k415 1
0.05% 1,599 2,8k0 30"
0.005% 19,999 28,500 1"
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for storing the coordinates off the N points of the P-structures of L¥* is
B=2 m' N = 38N. Eowever, if the P-structures are chain encoded, then the
number of required bits becomes B = m' + 3Nmax(N~l) = 38 + 27(N-1) and
the difference Bp - Bc = 9(N-1) is always positive and increases with N.
Chain encoaing tends to be a better solution for encoding the in-
formation contained in a well~quantized L¥, if a large number of arcs with
small curvature is present in it. In the following chapter, patterns are

shown to exist in the chain of a segment and advantage is taken of these for

-improving the efficiency of the chain code.

2.5 Relations Among the Precision Parameters

lLet us note thet the chain of a well-quantized approximated line
drewing ccnsists of a sequence ¢f chain-encoded straight line segments. The

mmber of elewents in the chain of the shortest straight line will be

N> Nmin(p) (2.22)

Let us note furthner that if two consecutive segments form an angic
-

less than 2Aamox then the vertex of that angle does not correspond to any

-,

cusp in L. However if such angle is greater than or equal to amin’ then its
vertex corresponds tc & cusp in L. Once vertice 1ave been so classified,

the chein can be segmented into chainlets, each corresponding to an S-continu-
ous arc in L. In order to guarantee the separability bvetween the vertices

of a well-quantized L¥, a relation has to ve established between 24u and

max

®oin Let us note that the following relations follow from (2.6),(2.7),

(2.10),(2.13),(2.15)
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- "l ~ ..1 o -~ - 2'2
46 = 2 tan " p Spg 6 <6 ﬁ_AbJ S—ﬁ;mln(amin’amin) gbamax (2.23)

then if all ABJ = @, the minimua possible value aéin of @ in C8B be computed
as aéin = kae. Separation is then guaranteed if and only if aéin > 0 and,
therefore, ka > 1. Since the largest variation of any angle, due to the
quantization process, is A6, the above relation is maintained after quantiza-
tion on the square grid if it is at least: al;]in - 08>0+ 08 or

a! > 6 + 248 and therefore o', >(1+2p,)6 which leads to the following
min =~ min — e

relation between two precision parameters:
.2h
k > l+2pe (2.2k)

A similar relation exists between kz and Py In fact the following

relations follow from (2.3),(2.8),(2.9),(2.16)
M Sp << =i—min{8 T )

then zéin = min(zmin’igin) = kgz. Before quantization on the square grid
zgin 2 4. Buch a relation is preserved after juantization if and only if
Zpin = 0% 2 2 + A% and therefore Rgn 2 %+ 208 = (l+2p2)2. This leads to

the following relation between two precision parameters:
ke 21+ 2py (2.25)
It is now possible to snow thet all the precision parameters can

be ccmputed once the minimum detaile perameters % and O are given and n and

T are chosen.
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The following is a list of all such relations.

l.

2.

30

o O

v (v {v
[

+
5

)
v
—
+
&

=

L]

fi
s1

min(oe . .06 . ) >
( min® win’ - “a

do > (1+2pg ).g,

min(4 [

.k ) >k
min® min’ =

2

% ox > (1+2p,)a/2

/2T

AR < pRIJ'L

1

48 < pyb

< =
85 < k2

B3

2 tan p = 2 tan

(2.26)
(2.271)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)
(2.34)
(2.35)
(2.36)
(2.37)

(2.38)

All these relations show that, given an irregular line drawing which

is characterized by the minimum-length and angular-detail parameters £ and 0

and which is described in terms of a quantized version defined on a grid with

size T, the precision of its description is solely a function of the pre-

cision parameter n.

tion will be.

The larger the value of n, the more precise the degerip-

This result will actually be proved in a following chapter

when the bounds on three different types of quality indicators (i.e., figures
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of noise) will be shown to ve proportional to the inverse of n, both before

and after a transformation.

2.6 Concluding Remarks

An algorithm for approximating an irregular line drawing and for
quantizing it on & square grid hes been described. Relations between the
precision parameters have been shown to exist which guarantee that the
features of the drawing be preserved with the required precision. Also it
has been shown that the quality indicator of the description of an irregular

line drawing guantized on a given grid is t*:2 precision parameter n.
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ITY. THE ENCODING MET:CD

In this chapter, patterns will be shown to a2xist in the chain of
a straight line segment and advantage will be taken of these for compressing
the chain code of the segment. Then a comparison with other types of codes

will show the advantsge of the one proposed here.

3.1 General Considerations

Let the segment £ be defined as the one connecting nodes A and B,
and defined to be nositive in the direction A to B. Let us define a right-
handed coordinate system, X-¥, centered on A and with axes parallel to the
grid lines. The coordinates of B will be denoted by the ccdered pair a,b,
where the unit of measure is the grid size T=1.

To obtain the chain C for the segment £, -me determines the inter-
sections between £ and the grid, and selects the nodes closest to each inter-
sectionlo. Since a point moving on £ from A to B crosses these intersections
one after the other, the nodes associated with each intersection can be
ordered in a sequence. A segment, its chain and the plotter movements
(dotted) corresponding to the chain are shown in Fig. 8; the correspondence
between all possible chain elements and the plotter movements is shown in
Fig. 9. Denoting with ai the i-th element of C, & compact notationl6 for
representing N such elements is

N

C=C u, =0
i

L ) a (3‘1)
1=1 N

i

The coordinates of the (i+l)-th node relative to the i-th node will be
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SEGMENT AND PLOTTED CHAIN
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FIT. 9

PLOTTER MOVEMENTS AND CHAIN ELEMENTS
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denoted by aix’diy' In the fTollowing, segments ere classified into three
classes. The determination of C for segments of the first two classes is
trivial. For segments of the third class, patterns will be proved to exist

and an algorithm given for the fast computation of C.

o

3.2 Chains for Segments of Class I

Definition l2: A segment of Class I is one for which either [al = lbl or

e=0,0#00ra#0,b=0(|X] is the absolute value of X).

Statement: The elements of the chain C of a segment of Class I are of one
Y

type only; that is the chein has the form C = C ae.p O, = a

5=1 i i+l for

1<i<h-1,andli=[a] =|pf]orW=DborN=a.

The first end the last node of a sequence are called the initium
and terminus of the corresponding chain.lo Let us note that the segment
defined by connecting the initium and terminus of a chain containing only
elements of one type is of Class I. Then the chain of any non-Class I seg-
ment may contain elements of more than one type. It will be shown later

that such a chain actually contains elements of two ‘types only.

3.3 <Chain Computation by Substitution

Let us consider the effect on C of a rotation of £, by an angle A

vith respect to the origin A of the reference frame.
o N i .
Cese 1: A =+180", C=C o, is changed into C'= C a! with a'=y, + )
=1 ° =1 P

where + (-} denotes addition (subtraction) modulo eigh’.

H .
¢, is changed into €' = C o with ¢! =, + 2,
i i i ie-

cese 2 A =% 90°, C =
i=1 i=l

1

1 O

4
:
Y
N T L - .y “ PP
(;;9-',“ ST NN IS b S Tipedn PR R T DNl o
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The reeder will note that it is always possible to find a segment
in the first quadrant of the reference frame such that its relative angle
with respset to a given seguent is _+__90c or 1_1800 and its length is vqu=l
to that of the given segment. Hence it follows that the chain of any segment
can be computed by substituting the elenents of the chain of a corresponding
segnent in the first quadrant.

Let us also note that if £ is the segment defined by the ordered
pair a,b, with a > b > 0 and its chain is € =4gl a and if C! =i§1 ai is the
chain of the segment L' defined by the orderea pair b,a, then the elements
of C' can be computed from those of C by neans of the formula ai =22 Q.
In other words, the gereral problem of finding C for a segment £, given

the integers a and b can be reduced to the probliem in which £ belongs to the

Tirst octant (i.e., a>b>0).

3.4 Chains for Segnments of Class II

Definition 13: A segment is of Class II if its ccrresponding sesment in the

R . . . a . . a-1 a+l . .
first octant hes eitner b = E-if a is even or o = "Er-or h= *E—-zf a is odd.

Statement: The chuins of segments c¢f Class II which belong to the first

octant are:
a

. - 4 a
. = . WA = = b = = © 1 2 5 = =,
l. ¢C igl a, with u23~1 0, a2J Lo aQJ-l 1, uad 0 for all 12§35 it v 5
& a-i a~1
. ' = . Wity = =] & S = . = &~
2, C 151 o, vith “23-1 0, aQJ 1l for all 1<j< z ard a, = 0 if b 5
& a-1 atl
3 NI~ i = = 1<Ci¢ == = i = e
3. C igl oy with “23-1 1, agj 0 for all i1%i< =5~ end a 1 if v 5

Examples of these three cases are showr in Figs. 10, 11 and 12.

[ o b eeen . . S . - L n Eendden
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3.5 Chains for Seements of Class IIT

Definition lk: A segment is of Class ITI if its corresponding segment in

the First octent is defined by a > b > b > 0, vhere b_ = % if a is even or
bo = 2““ if a is odd (i.e. b = I %—-J, where lﬁj denotes the integer part

of X}. In the following it will be said thet such a corresponding segment

is in the first half of the first octant, Let us also note that such a seg-

ment is neither of Class I nor of Class II.

Lemma: The chein of a segment of Class III belonging to the first half of
the first octant contains only O's and 1's.,

Lerma: The number of 1's, nj, in the chain of a segment of Class IIT be-
longing to the first half of the first octant is smaller than the
nupiwer ol 0's, ny. In particular ng > by > ny.

Lemna:  Elenents of value 1 ir the chain of a segsment of Class III be~
longing to the rfirst half of the first octant are separated by at
least one element of value O.

e
THEOREM 2: The chain C' = C ai of a segment defined by a, a-b with
i=1
a> Db, >b >0 can be computed by substituting the elements of the
a
ckain C = C ai of the segment cdefined by a.b., In particular
i=1
Lot
of =1 - (3.4)
- . y 3 -t = wil - ‘:o bl
Proof: By construction . =af =1 and A = 5{1+1)! 3 ] Fig. 8,

-

where [%] denotes vhe integer closest to x; since b < b > 1/2 and

m|d

ajy = (193 - v(1+3}/8] - [s-bi/al = 1 - (p{ir2)/2] + [vifal = 1 - %,

iy i:r

TS LT Pard thad 7 A .-l ’
conversely. The fact that u, can only be 0 or 1 is ensured by a previous

Then when a, = 0, «; = 1 and conversely; therefore wien o, = 0, a! =1 and
ES

lemma.
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Lemma: A seguent is of either Class I or Class II or Class III.

Let us note that because of previous considerations, the chain of &
o i segment can be computed by substituting the elements of the chain of a corres-
ponding segment in the first half of the first octant. This in turn shows that
the properties and patterns detectable for such chains are valid in general
s for the chain of any segment.
1t can be stated now that the chain of any segment contains at riost
] elements of two types, whose difference modulo-eignt is either € or 1, and

that in generzal the two tyves of elements are present in the chain with a
15

T Py &

5

.

different nunber of occurrences.

s R

3,6 Chain Patterns

s

. From now on, only chains of segments of Class III btelonging to the
- first helf of the Jirst octant will be considered. The results of previous
pe paragrepns guarentee the generality of the results.

By definition the values & and b, specifying the segment 2, satisfy

L~
NS

X

s . a . .
the relation a > v = | 3 J > b > 0; moreover the chain C of & contains
b

;} n, Zeros and n, ones with

:\ n sa-b>b = !_%-I >n =%>0. (3.5)

g Let us denote with Iy the position in C of the last zero preceding the
z k~th one. The nunler of zeros between the k-th and the (k+l)-th ones is given

? ’ by 2k+l = Ik+l - Ik ~ 1 which will be referred to as the length of the (k+l)-th

3 sequence of zeros in C.

S0 R 2
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. Lemma:  Since I, is the largest integer such that glk - k < 1/2, then

I, = i_(2k+l)a/2bj (3.6)
Proof: Let i ani fi be such that i is an integer, 0 < fi < 1 and

ﬁ_ 141, = %9—+ %5+ Since I, <ka + S then I, = lel =i= :—(2k+l) ZFJ

: '

THECREM 3: For all 1l < k < b-1, 2k+l can only have two values, namely

h = |1/m| and h-1, {3.7) where n= -E-is the rational slope of the

segment with respect to the horizontal axis of the frame of E
] reference.

Proof: Let h and f;, be such that h is integer, 0 < fy < land kh + f}, = %= %.

Also let n = 2k+l and i and fi be such that i is integer, 0 < £ < 1 and :

na , _
i+ £, = %% then h = Lh+ch

,l/mi = La/bl and i = 'na/2bl and

o

& e 2 S R

i+h+

L]

g'k-&-l = L(n+2)a/2b_| - l_{“‘-/QEJ" 1

T +f
i

wielt |el=n=1
i h| i l_ii_l l=h-1 + ‘_fi+f11_

and, since by definition both fi and fh are positive and less than one,

s

: O<Sf, +f <2, li‘.+f_| =0 or If.+f. =1 and,
- i a L'ih 1 Th

= - = - ) =l =
3 therefore, fypy =h -1 l-l/mJ Loor &=l Ll/mJ . (3.8)
* iEORE : = L= o| = }I 21 = .
1 THEOREM 4: If £, = .., then 2, Lh/..-l L&/_uil,/cl fi1® (3.9)
z Proof: Let us note first that tae segment &" defincd by 2a, 2b can be
regarded as uvhe concatznation of two seguments £, £' each defined by a,b and
3 that the chain C" of L" is the concatenation of the chains C, C' of &, &'

{C and C! are identical since 2 and %' are defined by the same integers).

W g NP

In particular C" has the same value for h as C and C'. However, the

.
H RS R Y 2 R
hﬁ“(ﬁ:\\‘wmv) e tAnh K MY L TR R N o D P o Nor ¥ L AN Ta AT IY 5 2t o SR <
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(b+1)-th sequence of zeros in C" is generated by the concatenation of the
(b+1)~th sequence of zeros in C and the first sequence of zeros in C'; and
this last secuence is identical to the first one in C. Therefore, the

following relations hold for C:

0 = h = he -
Rol + ~b+l = h or 21 + 2b+1 = h-1 and El 'Q’b*l.

"
o
-
>

]

Case 1: h is even: 221 1 h/2 or 21 = [P/%J .

Case 2: h is odd; 24

1 h-l,%l=|zl+1/2' ’(h—-l)/2+l/2l lh/2!.

Therefore, it is always true that

o
n
=
]

o+l i-h/Q-J' (32.10)

Let us note that because of geometric symmetries 21 = £b+l,with the
only exceptions being those cases in which there are ambiguities in the chain
as will ve shown later in considering the effect of certain particuler conm-
binations of values fcr a and b.

THEOREM 5: The number of sequences of zercs with length h, Bys and the
number of seaquences of zeros with length h-1, n g0 are given by

Ppoq = b - ny (3.11)

n, = & - bn

" (a/b - [2/v])b =bf, = v]a (3.12)

where bla is the residue of a in dase b.

Proof': If one concatenates the first and the last sequence of 0's in C,
one obtains L sequences of 0's whose length is either h or h-l. Since the

total nuuber of O's in C is no = a-b anrd alsc nc =z (h=1)b + n

"h

then
h

a-bh = a-b|a/b| = bja. The expression giving the total number of 0's

[P IO R
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can also be rewritten as n, = hnh + (h-l)nh_l, and. therefore,

n,_, = b- (a-bla/b]) = b-n, .

3.7 Algorithm

Advantage is taken here of the fact that the length of a sequence
of 0's in C can only assume two vaiues for predicting the position of the
next element of type 1 in C, A test is then made for checking the correctness
of the predicted position and eventually this position is modified before
recycling the algorithm. This occurs when the actual length of the sequence
of 0's is h. In the flow chart shown in Fig. 13, array I(k) specifies the
position in C of each of the elements of type one; V1{k) and V2(k) are arrays
containing the even multiples of b and the odd mulitiples of a. Let us note
that a comparison between the integers V1 and V2 corresponds to a comperison
between the ordinates of the intersections of the segment with the grid and
the ordinates of the horizontal straight lines passing through the centers
of the squares of the grid. In other words, instead of comparing bk/a with
i+0.5, one comperes 2£b and (2i+l)a.

As can be seen by looking at the flow chert, the branching after
the test compering V1 and Vz corresponds to the two situations in which the
length of the k-th sequence of zeros is h-1(yes) or h(no). The constants
appearing in the flow cirart are

¢, =h= la/bl, C, = 2uCy, C

vi(1) = 2bI{1), V2(1) = a.
The numoer of tests and additions required by such an algorithm can

be computed since the number of sequences with a given lergth is known,

5= 2, C), = 2b, k= b-1, K =1, I(1) = [c,/2+1,
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a,b 3
—e G-
Cp = 2bC]
E 03 = 2a
Cg = 2b
K=1
'; Knax = bE}
1) = |7
. V(1) = &I{1)
v2(1) = a

-
¥
A

+ ]
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4 V2(Re1) = V2(R)+Cy
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Disregarding the setting of constants and the generation of the chein once
the positions of its elements of type 1 are known, tne aumber of additions
s and the number of tests t required by this algorithm are t= (b-nh)2+2nh= 2b
end s= h(b--nh) + 6nh = 2a - 2bh + kb = 2a + 2b(2-h).

The fastest previous algorithm known to the author for generating
the chain of a segment is the one described by Bresenham3, which requires
2(a+1) additions and 2a tests. By hypothesis |a/2] > b and h = [a/b| > 2, then
the proposed algorithm is faster than Bresenham's. In fact we have the fol-

lowing results &(a+l) - s

2+ 2b(h~2) > 0 and 2a - t = 2(a-b) > a > 0,

and, if for example b = b_ = |a/2, h =2, then 2(a+l) - s =2 >0 and

28 -t = a > 0, which shows the advantage of the proposed algorithm even in

the worst cese.

3.8 Ambiguous Chainlets

Let us recall that a chainlet is & sequence of adjacent chain elements

belonging to a given chain.lo

Definition 15: An ambigucus chainlet in C is one defined by two adjacent

chain elements generated by a grid intersection occurring at the midpoint

between two adjacent ncdes of the grid.

Let us note, as shown in Fig. 14, that if the two nodes, defined by
the intersection of the segment with the grid, have x = k and respectively
y =1iand y =i+ 1, then the following relation holds dbk/a = i + 1/2 cr

bk = ia + a/2 with 0 < i < b - 1.

Statement: A necessary condition for the existence of ambiguous chainlets in

the chain of a segment defined by a,b such that a > b_ = [9/%] >b>0

is that & is even.

.
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3

In the following it will be assumed thet a = 2n, bo = n anu

2>b>0; 3 bk=(2i#ln with 0< i < b - 1.

Statement: If a = 2n and bjn = 9, where b|n is the residue of n in base b,

then there are b anbiguous chainlets in C.

Comment: It is sufficient to note that tiere exists an integer J such that
i = n/b and k = (2i+1)j anG, therefore, there s-e as many ve.ues for k es i's

'

in the set {1,...,b}, and hence the number of ambiguous chainlets in C is b.

Statement: If & = 2n but bjn £ 0 and b is even, then there are no ambiguous

¢hainlets in C.

Comment: It is sufficient to note that n/b is not an integer, ard (2i+1)/b
cennot be integer either, since b is even and (2i+l) is odd. Since by

definition k is an integer, k = (2i+1)n/b has no solution far b even.

Statement: If & = 2n and b!n # 0 and b is odd, then there is just oxe am-

biguous chainlet in C. Such chainlet will occur in the middle of the chain.

Comment : It is sufficient tc note that n/b is not an integer, but that

b=l

2
k=n= bo = a/2 which corresponds to the position of the midpoint of the seg-

(2i+1)b is integer iT i = (note that i < b - 1), and, therefore,

ment and of its chain. Mcreover, since the solution for k is unique, then

there is just one ambiguous chainlet in C.

Definition 1€: A chiein C is called non-ambiguous if either a is odd, or both

a and b are even and b|(a/2) # 0.,

Definition 17: A chain C is called one-ambiguous if and only if a is even,

b is odd, and b|(a/2) # 0.

S
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Definition 18: A chain C is called b-ambiguous if and only if a is even, and

bl (a/2) = 0.

Let us note that a non-, one-, or b~ ambiguous chain contains zero,
one, or b embiguous cheinlets. Each wmbiguous chainlet allows one to bui.d
two different chains according to which solution is accepted for the ambigluous

chainlet (i.e. the solution 01 or the solution 10).

3.9 DPronerties of Ambipuous Chains

As indicated in Fig. 15 an area can be associated with a segment and
its chain.. An algorithm for computing the area associeted with a chain has
been derived by Freeman.lo In the following g will denote the area associated
e segment f and a, the one associated with its chain C. Areas will be measured

in terms of TE, where T = 1 is the elementary size of the grid.

Statement: If C is non-ambiguous, then a =8 (3.13)
Statement: If C is one-ambiguous, then ]az-acl = 0.5 (3.1k)

Comment: The proo” is based on the fact that there is only one ambiguous chein-
let in C. According to which solution is chosen for such cheainlet, a, will be

either larger or smaller thea &y by 0.5.

Statement: If C is b-ambiguous, then Iaz-ac! < b/2 (3.15)
Comment: If the solution 0l is accepted for all the b-ambiguous chainlets in

C, then a, will assume its minimum value. Because of previous statements, it
can be concluded that in such a cuse |aj-z | = b/2. The minimum value of

Iag-acl will cccur when |b/2| solutions for the chainlets are of the type Ol

P
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and [b/2] of the type 10. Ir such a case, if b is even, 8, = a_ and, if b is

odd, |a2~ac| = U.9 as in the case o one-ambiguous cheins.

We note that the arbitrary rearranging of a b-ambiguous chain, that is
the arbitrary selection of the solution Ol or 10 for its ambiguous chainlets,
may destroy the chain patterns that are typical of a straight line segment. In
particular this rearrsngiug of ambiguous chainlets is responsible for the fact
that the first and the last sequence of zeros in C are in general not identical;
however, the absolute value of the difference of the lengths of these sequences

cannot exceed one; that is,

|2 | <1 (3.16)

1 b1

3.10 Trenslutional Invariance of Chain Patterns

We will. now show the invariance of chain patterrs with respect to
vertical translations of £ by an amount ¢, which without loss of generelity is
Icl < 1/2, Then the invar.~nce with respect to horizontal translations of £
by an amount |d| < 1/2 will Ve considered. As in the preceding paragraphs, it
will be assumed that C is the chain of a segment X defined by &,b with

a > bo = Ia/gj >b > 0. Let i,g,h be integers, and f,fg,f1 be positive numbers

1

less than one such tiaat the following are true with n = 2k + 1 and k integer

i+f =na/2b, 0<f, 11, i=fne/2d], n>1 .
o+ fs = ca/2% C g_fg <1, g= Lpa/Ebi » fe] < 1/2 3
h+ 1, =alb 9<r <1, h=la/p] ‘

Let us also note that the following relations hold:

[N W Hx:.: B

j
'h'w.
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1. i+fi>a/2b>ca/2‘o='g+fg, i>g

2. ca'o < af2b = (h+fh)/2 » b+ > 2g + 2fg » h>2g

3. n>1, h>2

THEORZM 6: For all 1 < k< b-l, &, =hor & ., =h-1 for all c, ic|<1/2.

1 1

- —— o

Prooz: g = |BeLa
k+l  |2b " b bJ_

ne o ea -
'l;ab‘b_l'l'

$bheg) - P wf )] - | (Gp -f Y] -
|(ivng) = (41, fg)_1 [(i-e) + (£, fg._! 1
By definition ~1 < f, ~ fg < 1. Thus there are two possible cases:

Case 1+ 0< f. -=f <1, if. .-er—o, 0<f +f, -f <2
— i g i g o} i g

g I
h-1
3 = | -~ 7 = w0 = - = -
aad Al—Lfi-!-fh *g__ 21 s 'Q‘k+1 h 1+Al ~n
Case 2: -1<f, -f <0 sy 01+ -f <1
—— —-"i g i g
and 0< 1+ fi + fh ~ fg < 2. There ore two further possibilities:
Case 20 i-g=-120 i>g+ 1 and tien
- _ h-1
'Qk-!-l =i4 . ~g~-1+ l-l + iji + fh - ng - (i-g)+1-1 ="h

Case Zo: i-g—l<0 ) i=§ and then

= - by - - 1. =
Spqy = B 1+L1+‘h+fi ng+rfg £1 -1 .

THEOREH T: For alll< k<b -1, %, =h o &, =h-1

for a1l d,ld} < 1/2.
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Comment: Tne procf for this theorem is easier than the one for Theorem 6

since 1n thc expression of £ the corstan™ d does not appear multiplied by

k+1
the inverse of the slope of %.

Let us note that since any translation in the plane can be regarded as
a combination of a vertical witk a horizontal translation, and since any scgment
2 has chain patterns correspondisg to those of the chain of a segment of Class
IIT belonging to the first half of the first octant, it can be concluded that
such patterns are invarient with respzct to any translation of £ in the plane
and for any segment f. In the case of the first and the last sequence of zeros
in C, the translational invariancy is not guaranteed because of the truncation
ei'fect caused by the grid-intersect quantization scheme. This truncation ef-
fect may cause either 21 or 2b+1’ or both, to be reduced by one element. There-
fore the following relations hold:

1 21 + 2b+l is either equal to h or h-1 or h-2 or h-3, and
2. |0 - &y s 2 (3.17)

3.11 The Encoding Scheme

In the previous scction patterns have been shown to exist in the chain
of a straight-line segment. By taking such patterns into account it is now
possible furthor to improve the efficiency of the stendard chain code. The new
encoding scheme proposed here is essentially a modificetion of the standard
chain code.

The code we propose consists of two different Iormats, one for the
case of straight line segnents of Class III and one for the cases of segments

ol Class I or II.
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In the first case, the code bagins with a zero folloved by a bit
srecifying whether the «ezuent helongs to ile lower pari of the octant (0)
or not (1). The following three bits specify the octant. Then & number re-
lated to the binary value of h-l is stored. The odd bits of such a number are
the corresponding bits of h-1 and the even bits are all zeros except for the
one in position two whieh is a one, and which indicates that the last bit of
h-1 is the ore folloving it., For example if h-1 is 5|= 101] the number to
be stored is 01 00 il. Finally the code is completedlgy whit can be referred
to as the structure of the chain followed by two bits equal to zero which
indicate the end of the code. The structure of the chain is a sequence of
strings of zeros separated by ones. Enmpty strings of zeros are used to encode
the inforretion regarding the first, the last and those sequences in C whose
length is h-l. Strings containing a single zero are used to encode the infor-
mation regarding those sequences in C whose length is h. Since no two adjacent
zeros appear in this structure of the chein, a code consisting of two zeros
cen be used to terminate it.

The number of bits required by the proposed code with the presented

format is

Bmco= 141+3+2[ |1og,(h-1)| +1] +btn, +2 = 9+2|log, (-1) | +a-b(h-1) (3.18)
If the data had been stored by using the standard chain code, then the number
of the required bits would have been Bc = 3a. Then we have the following:

= 3a-0-2| 10, (-1)|-a+b{h-1) = 28-0- ; . |
Bc—Bmco 3a~9-2|10g, (.-1)|-a+b(h-1) = 22-9-2| Log,(h-1) [+b(h-1)
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Since y = 5 - log, x > 0 for all x > 1, then x > 2log,x > 2L;og24J
and therefore

BB, > 2a-9-(h-1) + b(h-1) = 2a-9+(b-1)(h-1) (3.19)
(o)

which is alweys positive for a > 5, since b > 0 and h > 2, and which grows
linearly with a (see Table I, Chupter II, for relations between precision and
segment length).

For example the chain C=LU3hLL3h443hl which requires 39 bits when the
standard chain code is used, will require only 16 bits when the proposed code is

used. In fact since a = 13, b= 3 then h= U4, h = 1 = 3 and the new code is
0 0 000 01 11 101011 0O

The proposed code requires 23 bits less than those required by the chain code,
in this case, and this is a saving which falls short of 60%.

In the case of straight line segments of Class I or II a different
format is used. Such format is identified because its first bit is set to one.
Then a five bit number identifies the particular case, to which the chain cor-

responds, among the 32 possible cases; for example

Case 1: a=0,b>0 Case 3: b = %3 8 > 0 and a even
Case 2: b= Ei?j ,a>0and aodd Case 4 b= Eglj, 8 > 0 and a odd

Case 5: b=a>0, etc.

Then a number related to the binary value of the length N of the chain
is stored. The bits in odd position of this number are the bits of N and the

bits in even position are all set to zero except for the one in position two
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waich is set to one and which indicates that the last bit of N is the one
folloving it, For ¢xamcle if N = 5)10 = lOl)2 it w1l b2 euwccled as 01 00 11.

The number of bits required by this format of the proposed code is

Bmc1 = 1+5+2[ | 1og,N|+1] = 8+2] 10, (3.20)

The number of bits requived by the chain code is
Bc = 3N

and therefore

Bc‘Bmcl = 30-8-2[log | > 3H-8-N = 2(N-k) (3.21)

which is alweys positive for N > 5 (as for the case of previous format) and

grows linearly with § (see Table I, Chapter II, for relations between precision

and segment length).

For exemple the chain C = 2434343434343 which requires 39 bits when the
standard chain ccde is used will require only 1l bits when the proposed encoding

method is used. In fact since N = 13)lo = llOl)2 the new code is
1 0110 0101 00 11

The proposed code requires then 25 bits less than those required by the chain
code, in this case, and this is a saving which is a little above 60%.

Let us note at this point that an efficient code not only has to
satisfy the requirement of having the shortest length but it also has to be suci
to ease the prceessing of the date, Often the two requirements generate con-
flicting requests and, therefore, the problem becomes the one of finding an

optimal solution.

For exemple, if the incrementel coordinetes a,b are the elements of th

AN\
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selected coding scheme, and they are encoded similarly to h-l in the first for-

mat of the proposel code, then the length of the code is given by
= a % ! = - ,
Bmco = Q(L}ogeﬁj+l) + 2 ({7052.J+l)~ 2L;032§J + 2[932Qj + 4 (3.22)
However, if the inverse of the slope of the segment is used together with its

related b value and they are encoded similarly to h-l in the first format of the

proposeG code, then the length of this code will be given by

w
N
(98]
~

B, = 2 Lloge %-‘4-1) + 2(|log,b|+1) > 2|logyal+2 (

This last code is probably the shortest, however it does not make it possible to
transform the data easily as the chain-structure code proposed here. First of
all the actual chain will have to be generated every time the data has to be
displayed, and if it is required to rotate the segment from an octant to the
next, complicated operations will be involved. If the encoding scheme proposed
here is used, then the last problem can be solved by simply changing the first
part of the code by applying chein substitutica technigues. The same ease of
data transforming results in the case in which it is necessary to scale iso-~
tropically by an integer factor, In fact, the octant and the value for h-l

are not affected by such a transformation. In both the latter cases the use

of the proposad code allovws one to simplify the further processing of the data.

The proposed code is illustrated in Fig. 16.

3.12 Concluding Remerks

An snalysis has been presented of patterns in chain-encoded straighv
line segments. The classification of segments and the properties of their

chains have been discussed. The problem of computing the chain of a given

s
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segment has been shown to be eguivalent to a simpler one in which the segment
is of Class III and belongs to the first half of the first octant. Chain
patterns have been found for such segments together with their invariance with
respect to translations of the segment in the plane. Special considerations
have been dedicated to the case of ambiguous chainlets and their aree properties.
loreover an algorithm has been described for the fast generation of the chain
of a straight line segment and its efficiency compared with that of a well-
known algorithm. Finelly a new encoding scheme has been proposed which takes
advantage of the so-found patterns for improving the efficiency of the standard
chain code. Although for the case of short segments other codes may offer com-
parable or even better efficiencies, an indication has been given of the advan-
tage of the proposed code for simplifying the further processing of the data

whenever such processing is a quantized rotation or an isotropic scaling.
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In this chepter reguler transformations (Definition 20, page 50)

are considered. It will be shown that any regular trensformation cen be

apprcximated by a sequence of elementary transformations such &s rotations

e eaaTian

and scelings with any required precision. Releticns among transformations

and properties of certain iransformations will be investigated. The purpose

P T

of this chapter is Yo show trat the problem of trasforming & quantized draw-
ing is no more complicated than the one of rotating it or of subjecting it
to a constant non-isotropic scaling.

In the follcuwing chepter the quality of a quantized line drawing
4 is defined in terms of 2 set of figures of noise. In a later chapter the

results of this chapter applied to the so-defined figures of noise will lead

to the discovery o the relations between the bounds on the noise figures

ey i

before and after a transformation. Such relations will constitute a design

Moy o

1 formula for the precision parameter n which controls the proposed quantize-
tion scheme. It will be possible to find with which precision n one must
quantize an input irreguler line drawing so that, after & given transforme-
. vion has been epplied to it, the quality of its Qescription is still satis~
factory in some sense (i.e. the transformed figures of noise do not exceed

the prefixed bound).

Rt P AT A BN B g IS e 47 43 AR E 00 0 AT A T s sl A !

. 4,1 General Considerations

4 The kinds of transfcrmations considered here are those that wmap the

2

points of the plane into themseives. Let us denote with x and y the

Ly L,\a
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coordinates of e point with respsct to a given frame of reference, and let
us denote with u and v the ccordinztes of the roint of the plane correspond-
ing to the one with coordinates x and y through the given transformation M.
Then we can write, in general, that u = £(x,y) and v = 8{x,y).

In the
following M=l(f,z) will denote such transformations.

Let us note that something can be said about f and g since the
transformetions which one might want to apply to irregular line drawings

belong to the class of smooth functions and certainly do not include Dirac

or Weistrass functions.

Definition 20: A repular transtormation Mr(f,g) is one for which f and g

are single valued functions whose first partial derivatives exist and are

continuous.

Let us note that a reguler transforrzation can be expressed in thec

following local form:

du

t

L, dx + ;ydy (4.1)

and

i

dv = g dx + gydy (4.2)

vhere £ denotes the first particl derivative of f with respect to z . It is
d

new possible to separate regular transformetions into three classes.

Definit.icn 21:

A regular transformation is of Class I or glementary if

ro=amies sh bvnst Lo

fx’ fy, &y> gy are constant and either ’y =8, = 0 and fx # gy(non-isotropic

. =s =0end £ = . . . 3 or
sealing, Sfx,gy) or f& g, C and . gy(lsotroplc scaling, fx)

2, 2. - . o
£+ fy =1, -1<f 2, g, = fx’ B, = fy {rotation, RA s A = cos rx).
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Definition 22: A regular transformation is of Class II or composite, if fy,

- f&, Gx’ gy are constant and the transformation is not of Class 1.

i ala il

3 Definition 23: A reguler transformetion is of Class III or general if it

is neither Class I nor Cliass II.

fis wiil te showa in the fullowing paragraphs, a composite trans-

RS T T WS )

i formation can be reduced to a composition of elementery transformations.

Sen X an

It will also be shown that a general frensformation can be aporoximated
with any required vrecision by a set of composite transformations and,
therefore, by a set of compesitions of elementary transformations. Let us
also note that non-linear transformetions are always of Class III end that

linear transinrmations asre either of Class I or Ciass II.

g k.2 Approxinaetion of General Transformations

p Statement: It is elways possible to find a set of composite transformations

which will approximate a general transformetion with the required
precision37.

A Comnent: Since the given transformation is reguler, it can be expressed

3 in locel form. If the infinitesinmel dx and dy ere replaced by the finite
Ax and Ay, then the percentage errors due to the application of the local

; form of tne transformetion are:

f(x + 4x, ¥ + by) ~ f{x,y) - fxﬁx - fyAy

; €2 © f(x + Ax, y + b&y) (k.3)
3

% g(x + bx, y + by) - glx,y) - g 4% - g Oy

.. - il (4.1
‘ v g(x + &x, y + dy) ’

P




Then if a bound is required on such errors (r2u-:ired precision) the maxi-
mum values far-Ox and Ay can be coumputed from previous formulas. The
quadruplet x, y, Ax, Ay specifies a region of the plane within which the
glven general transformetion can be approximated with the required precision.
In fact, as Ax and Ay tend to zero the associated error tends to zero since
a general transformation is reguler. In general, it czn be said that it
is possible to decompose the finite region over which the general transfor-
mation is def.ned {an irregular line drawing is finite in extension) into
a set of smaller regions within which the general transformation is approxi-
meted with the required precisien by a single composite transformation.

The foregoing demonstrates the importance of studying composite
trensfornations. Since a transformetion of Class II or Class I is charac-
terized By consient values for fx’ fy, 8, gy the local form of the trans-

formation can be rewritten as follous:

u=f xzx+7¢ k.
. - (4.5)
v = X + 4.6
B, xt g Y (4.6)
3 3 Food S . v |2 _ X
or, in matrix notation, as w' = A i vhere y 'lvl s W = Iyl
fx f|
and A = y!
S By

In crder to simplify the following foriwlas, the following notation

will be used from now on. A Ciass II transformation will be reprasented by:

Lav,e,a " e a

e L
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Rotetions by an angle A with respect to the center of the reference frame

will be denoted by RA' Isotropic scalings by a factor «, Sa’ and non-

isotropic scalings by factors o and B8, Sa 8 are given by i
]

o ©
0 B8

cosA =-sinA
- Q -—

RA sinh  cosA| ' o » -5 =

a,B

4.2 Relations Among Linear Transformations

In this paragraph some interesting relations among linesr trans-~
formations are shown. Their importance will become clearer later when the
problem of decomposing a Class II transformaticn will be studigd. The
follcwing relations offer an insighi., into the transformation problem be-
cause they show that in general, the ordering of a composition of trans-
formations (i.e. ordering with which many transformations are applied one

after the other ) cannot be disregarded.

Lemna: R, R, =R, R, (4.7)
)ll }\2 Ae :.l
Comment: It is sufficient to note that since R, R R
—— A, A AL+ A
1 2 1 "2
then R, R =R =R, R
Ae Al A2+ Al Al Ae
ma e (3 = g !
Lerma: 54,8 SYaa v.6 Sa,ﬁ (4.8)

Comment: It is sufficient t 51y S =
Comua is sufficient to note that since Sa’B 5v.8 SaY,GB

then § S
e Sy8

a,8'= Sa,B sy,é

Lemma,: RA o o B (k.9)




Comment: It is sufficient to note that Sa

n
R
H
(=]
[
Q
—

A A A oA

Lemma: Sa,ﬁ = Sa Sl,B/u= SB Sa/B,l‘ (4.10)
Comment:
———— _leof _Jro |- 1o -

0,8 = lo &] = %o gra| = “o 8/l = 5u S1,p/0

a - 1¢0 = a/8 0 = a/f 0 =

“6,B 08 8 0 1 Blio 1 SS Sa/B,J-
Lemna.: Ry Sy 3 Sy, gt > © +8, A%0 (4.11)

Comment: It is suificient to note that

_Jaueos X £ sin A} _ lacos A -u sin A

RA Sa,B o sin A B cos Al Iﬁ sin 2 { cos A ~ Sa,BRA
if either ¢ = 8 or A= £ , but these cases are to be excluded because either
A is not positive or ¢ is not different from f. An iuntuitive explanation
of the apparently strange resuit of this lemma is offered by Fig. 1T7. There
a rotation with A = hSo followed by a nen-isotropic scaling with factors 2
end 1 is applied to a square, which is, therefore, transformed into a rhombus.

tthen the scaling is applied before the rotation the result is a rotated

rectangle.

4.4 Standard Deccmpositon of Class II Transformations

Let us note that given a Class II transformation L, it is not

possible in general, to represent it in one of the following ways:

.
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1) La,bfc,d RA Sa,B

= Q
2) La,b,c,d Yo, B Ry

3) L S R.

a,bfc,d Y,0 TA Sa,B

In fact, L is given in terms of four numbers whernas R, S and S R, are

A ToLB (N
conpletely specified by three numbers., It is possible to show that if the
four numbers specifying L, a,b,c,d are such that ab + cd = 0 thea

= s id 3 > Q= ) = .
La,b,c,d R} oa,B aud if they are such that ac + ba = 0, ‘then La,b,c,d Sa,B RA

La,bfc,d sy,G RA sa,B because sy,G RA Sa,B is a function of five numbers.

THEOREM 6:

= ] N
La,b,c,d R sa’ﬁa}\ (k.12)

vhere, denotirg with a,b,c,d the elements of L, we have the

following

at+a I - A TN
/ n, = =5 [ + (th + oy 4+ nh)
1 1
1 H y— E
{ - 2
et | eerhenl s A2
{ . Le]
\,l | Y nl _ n.
P ong = b ; < z A= d (tan™ =k gent 3)
; ! 2 n, n,
1 H
) oy - . n L n
\ ny, = < 5 § = %-(tan L tant =3 )

n, ny

Proof: Let us note that

A : bia 0]lezsy -sindd
S R.,= . i =
8 “a,R A L sing coséj L0 B tsinA cosA La,b,c,d__c dJ

v cos8 ~5ing

. Civa s Aeemen 3 P

SRS NP RN

or An A m———
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and therefore

%
H
3
a cos6 c¢osA - B siné sink = a %
é ~0, cos§ sind - B sind cosd =D §
0 cosA sind + B cos§ sind = ¢ %
{ ~o sind sinA + B cos§ cosh =4 §
§A or %
l‘ (B-a) cosA cos§ + (8-a) sink sing = (B-a) cos{A-§) =d - a 7
X i (B-a) cos§ sind - (B-a) sing cosi = (B~a) sin{i~8) = c + b ,f
%' ﬁ (R+a) cosA ccsd - (B+a) sind sind = (8+0) cos(A+8) = d + a
‘Q ((B+a) cos§ #ink + (f+a) sind cosd = (B+a) sin{A+d) = ¢ ~ b
k:
. or /
L (B-0)® = (c+0)? + (d-a)?
(84a)® = (a+a)? + (c-b)°
i, v c+b
] \ tan(r-6) = s
4 _ec~-D
. : tan(A+§) = e
A
R Thenr
clipaletd . o “le.b
|A = 2(tan 3. ttan T a)
= Lfe,ml = b -lc+bd
i. 16 = 2(uan T tan 3 a)

and for ¢ and B we have

-

Ia2 + 82 - a2 n bz + c2 + d2

) *1{‘ .

i as

de->be¢

"
Letting n2 = a2 + 1" 4 o2 a2 and m = da - be
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2
The solutioh is given by 82 + B n2 or Sh - n282 + m2 =0

B2

PN
n2 + Vnh = in
2

N

/o [ 2
and B:i//n i'gh'hm .

and therefore 82 =

It can be shown that tie following identity is trus

Applying the identlty To the -bove expression Tor § , we have:

7 — s ey
8 = L / n2 - bt gﬁ_ b + /Qe + JQE - nh - hm2 _
/ 2 -V 2 ) =

) 1

T ———

+ %-(Vha - 2m + /n? + 2m ) =

£ 5 a2+ (v & Aard)® + (bmc)?

2
. m e _ 2 Y 2
In the case of o we have 45 +0°=n° or a - n2a2 +m =0

o
which leads to a solution enalogous to the one found for f. Ve have

o= ':-12- (Na-a)® + (b+e)? ¥ Mara)® + (c0)?) QED

Let us note that since a general transformation can be approximated
with any recuired precision by a set of composite transformations, then as
a consequence of the provious theorem it can be approximated by a set of
sequences of elementary transiormetions,

The importance of having reduced all possible transformastions to

sets of sequences of elementary trensforztions will become clearer later

il
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when these results will be epplied to study the quelity of the quantized
version of an irregular line drawing after a traunsformation. This quality
will be expressed in terms of a set of figures of noise in the next chapter.
In particular, for all the figures of noise whick are invariant with respect
to rotation and which get vorse with scalings proportionally to the largest

-} of the scale factors, the effect of a non-isotroric scaling S or of the

o8
3 ' linear transformetion La,bfc,d RG sa,B RA or of the non-linear transforma-
tion defined by the set {R Sy.0 Ry} with ¥ < o and & < B, will be the same.
- Since a Cless III transformation of perticular interest is the
Mercator Projection, it will be presented briefly in the next paragraph.

K It wvill serve as an example of how to simplify a transformation problem

by taking into account the pecuiiar characteristices of a Class III transforma-

tion of known structure.

4.5 Mercator Projections

-3 One of the possible applications for the procedures developed
A here is that of autometically generating geographic maps from preprocessed
satellite plictures.

Consider a picture thet has been taken from e satellite orbiting

e

ey

the Earth and which has been preprocessed to abstract irregular line draw-

ings from it (continental cosstlines). Then the quantizstion scheme pro-

T,

posed here could be used for guantizing the irregular line drawings, and

this will lead to a set of P~structures. Using a digital computer it would
then be possible to simplate the projections of these P-strustures onto a

sphere from a point of projection specified by the position of the satellite
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relative to the Earth at the time when the picture was tsken. Then by
applying to thne resulting data the required georgraphic transformation

(a Mercator Projection, for instance, or, in any case, a Class III transfor-
mation) the new data could be cbtained and displayed by using a digital
plotter.

The input to the digital computer can be obtained by means of
a flying spot scanning device from the actual satellite picture, and the
output will be a geographic map drawn by a digital plotter.

Among the many types of maps which are of interest, those referred
to as Mercator iMaps are worth particular consideration. In the following
the specific reasons which make Mercator Maps so interesting are given,
together with the equations necessary for a ciear understanding of the
Mercator transformation. Then a proposed method for computing the Mercator
Projection of a set cf arcs of a circle given on a sphers is presented

(the projection on a sphere of a P-structure is a set of arcs of a circle)18’36.

Definition 24: A Lossodromia (Greek work for curve with constant angle)

is a curve on a spherical surface making a constant angle with each inter-

secting nmeridian.

Definition 25: A ilercator Projection is a Class III transformation which

naps a lossodromia, defined on a given sphere, into a straight line,

defined on a given plane.

In order to find the analytical expressions governing a Mercator

transformation, the following steps can be followed. First the unit vector
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tangent to a lossodromie is computed, and then the eismentary arc of a
lossodromie and the polar cocrdinate equation of a lossodromia passing
through a given point on a sphere are found. This makes it possible to show
that meridians are mapped into vertical streight lines that are uniformly
spaced in the plane, and that parallels are mapped into horizontal straight
lines whose spacing in the plane is symmetrical with respect to a horizontal
straight line (the equactor) and non-linearly spaced. Any lossodromia can
then be plotted by connecting with a straight line the two points of the plane
corresponding in the Mercator Projection to the extreme points of a losso-
dromia on the sphere., The symbols usually used in the literature for
represerting points in the spherical coordinates are indicated in Fig. 18.
The following is to be noted:

1) The unit vector tengent in P to the local meridian and oriented

towards the north pole is
-+ > > -
= - 5i -~ s1 i > )
tl singy cos)\l { sxn¢l s:.n,\l J o+ LOS¢1 k (4.1%)

2) The normel at P to the surface of the sphere is:

> + . + . T
n, = cos$; cosky i+ cosdy sindy J + sing, K (4.15)
3) The unit vector at P t- %he local parallel and oriented towards

east is given by:

> .
b, = sind; E ~ cos)y 3 (4.16)
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L) The unit vector tangnt to a lossodromia characterized by a constent

angle Y is given by:

_ — s 4 e A
Il T oSy t, + sinyb; = cosGyl + cos,ezj + cosypk (k.17)
vhere
cost, = siny sin)\l - cosy cos), sind,
cosBz = - siny cos\, - cosy cosdy sing,

cOSY, = COSY cos;

5) An arc of a lossodromis is given in vector notaticn by:

ds}:

L ax3+ayj+azk (4.18)

where dx = ds cosozz, dy = ds cosBQ , dz = ds cosYR

6) The equation of a lossodomia in spherical coordinates is, in

local form:
¢ . _ cos¢ (4.19)
da - )
tany

7) The equution of a lossodromia passing through e point with spherical

coordinates )‘J ead ¢>l end with constant angiz Y

)\ - A
1 1.7 1,7
= Inftan (5 - ¢ / ten ZHz - ¢.)] (k.20)
tan'f 2'2 2'2 1l

8) A Meruator Projection is a Class III transformetion defined by the

following enalytical expressions:

x =2, y=£{¢) = n tan -;-(’21 ~5) (4.21.)
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where x znd y are the cartesien coordinetes of e point in the
ifercator pléne end A and ¢ are the sphericel ccordinates of the
corresponding point on the sphere.

As was mentioned before, in the Mercator plare meridians are
represented by verticel, uniformly spaced, straight lines ar® parallels
are represented by horizontal non-uniformiy spaced straight lines. The
points on the map corresponding to the poles are at infinity in the vertical
direction, since f(+ g—) =+ o,

Finally, let us note that in Mercator Projections a single point
P with spherical coordinates (A,$) is mepped into A + 2um,f(¢) for all
integers n.

By construction any lossodromia corresnonds to a siraight line
in the Mercator plane. The angle cheracteristic of each lossodromia can
then be measured on the map as the one between the straigni line correspond-
ing to the given lossodromia and the vertigal direction (corresponding to
the one of' each intersecting meridian). This feature maskes the map very
useful for navigationel purposes when the only available navigational
instrumentation consists of a magnetic compass. Fig. 19 shows the basic
structure of a Mercator Map as it has been presented here.

For the sake of conipleteness let us note thut since a lossodroumia
is not an arc of a circle, it does not represent the shortest path between
“wo points on & sphere. A lossodromie is ~ompletely specified by three
numbers, namely the sphericel coordinutes of oue of its points (A1,¢l)

and its cheracteristic angle Y. The radius of the sphere woes not influence
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the lossodromia's equetion or position on a Mercator Map but it does
effect the length of the path between two points on the same lossodromia.
Length can be easily determined, however, by making only one measurement

on the mep.

Statement: The length of an arc of a lossodomia is given by:

—-_ T
As = R cosd AA if Y=z
{ o 2 {4.22)

As Ad otherwise

coé?
Comment: The proof for the statement involves only routine processing

of enalytical expressions and is not repeated here.

4,6 Mercator Projections of Circular Arecs

A problem of particular interest is the one of Mercator projecting
a set of circular arcs defined on a common sphere. Since the required
trensformation is of Class III, the procedure presented earlier could be
applied for reducing the transformation into a set of sequences of elementary
transformations.

However, since the Mercator projection has been shovn to transform
a grid defined on a sphere by wniformly spaced meridians and parallels, into
a grid defined on a plane by uniformly distributed vertical lines and non-
uniformly distributed horizontal lines, it can be carried out in two steps.
Jirst the intersections of the circular ares with the grid on the sphere are
computed and the nodes closer to these interscctions selected and connected

in a sequence, one after the other, by lossodromias, in a way that is dual
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of the one with which chein points are selected and connected with straight
line segmerts for the case of grid-intersect guantized straight lines.
(Incidentally this approach justifies the use of the chain code for repre-
senting a curve on a spherical surface). Let us also note that the precision
by vhich this set of lossodromias approximates the original arcs is &
function solely of the elementery size of the grid on the sphere since the
features of tiue given curve (arc of a circle) are already known. Once the'
arcs of the circles have been approximated by sequences of arcs of losso-
domias, each of these lossodromias is mapped into the Mercator plane as a
straight line segment. Thus the problem of computing the Mercator projection
of a set of circuiar arcs is reduced to the probiem of quantizing with the
necessary precision these ares on a grid defined on the sphere by equally
spaced meridians and parallels.

An epplicetion of this method, with special attention paid to the
achlieved precision, will be presented later with a description of a program

for automatically obtainiug the Mercator Projection.

4,7 Concluding Remarks

The transformations which are of interest for applications in
computer grephics have been described in terms of a pair of regular functions
and subdivided into three Classes. A proof of the decomposability of any
regular transformation into a set of sequences of elementary transformations
that approximate tue given transformation to sny required precision has been
given. Emphasis hes been placed on a special transformation of Class III,
involving the mepping of a lossodromia into a Mercator Map. A possible method
for Mercator projecting sets of arcs of circles defined on a common sphere

has been described to show the usefulness of the schene.
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V. FIGURES OF NOISE

In this chapter a set of three figures of noise is defined for de-
scribing the quality of the proposed quantization scheme. This chapter consists
of two main parts.

In the first part of the chapter a detailed description of the figures
of noise is given with an explanation of their meening in the context of the
proposed quentization scheme. The relations between the proposed figures of
noise and the precision parameter n presented in the second chapter are studied,

and some worst-case bounds are derived.

5.1 Classical Approach to the Definition of a Figure of Noise

In this peragraph some basic ideas concerning the definition of a

figure of noise are presented.

Definition 26: An ideal signal is a deterministic, single-valued function of a

variable, called time; the function is continuous together with its derivatives.

Definition 27: Noise is any unwanted signal component.,

Definition 28: A real signal is the superposition in time of two components: an

ideal signal and noise.

Comment: When signals are transmitted through physical channels, we say that
at the input there is an ideel signal, that is, the one which we want to trans-
mit and which we would like ‘o receive at the other end of the channel. However
since a physical channel generates by itself spurious signals or receives
gsignals from sources different from the one which is sending the ideal signal,

then the signal received at the output of the channel is different from the one
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transmitted at the input. This unwanted difference is 1.¢31lly random in nature
and, therefore, it constitutes the noisy signal compon.v% of the real signal
received at the output of the transmission channel.

Let us denote with s the ideal signal, with ' the noisy signal and
with r the real signal. Then it is possible to state that in general r = g+w.

This formula suggests two ways for measurlss w:

Method I: By measuring the received signal when r- input signal has been sent

through the channel. In fact, in this case s = O snd w=r.

Method II: By measuring the difference between the received signal and tae
input. In this case

w = Y-S (5.1)
Let us note that since w is random in naturz, measures on the function w = w(t)
in the interval 0 < t £ T < o are not sufficient for guaranteeing the precision
of predictions of the values of w(t) at times outside the interval. However,
from a study of the statistical properties of w(t), it is possible to predict

the probability of having w(t) above a given threshold at any time £.33

Definition 29: The level of a signal is its average power.

Let us note that since s is the signal generated from a physical
source it starts at time t = 0 and ends at time t = TS. If the trensmission

channel is such as to delay a signal by a time T , then the levels of s,w and r

can be expressed by Ts
s osB(e)at
o

o
i
|

i:2°
n
5-3]5-'

T
T P )at
T

‘!—'

=
[{]
-

S+T r2(t)dt (5.2)
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A comparison between a real signal and its noisy component can now

be made in terms of their levels.

Definition 30: A figure of noise for the real sigral r = s+w is the ratio of

the levels of the noisy component of the real signal, 2w, and of the real signal

zr. Figures of noise will be denoted by fw'

We thus have:

£, 21 (5.3)

If the level of noise Qw is much smaller than that of the ideal signal contained
L

inr, then 4, ~ & end £_ = 'EK - Then if f_= 1% it means that the "intensity"

s
of the noise is one hundredth of the one of the signal.

The value of a figure of noise is an indication of the quality of a
real signal, or, alternately, of the precision with vwhich a real signal approxi-
mates its ideal component.

Finally let us note that because of the way it was defined, a figure of
noise must satisfy the following conditions: fw >0 if kw # 0 and fw =0

if and only if £w = 0,

5.2 Figures of Noise for Quantized Line Drawings

The concepts presented in the previous section can be applied directly
to the case of gquantized irregular liae drawings if the following duality ~ul~s

are observed:

Time Domain Plane Domein
Ideal signal s Irregular line drawing (as & set of features)L
Real signal r Guantized drawings (as a set of quantized

features) QL




8k

Time Domain - | Plane Dcmain
Noisy Signal w Symtolic difference (as a set of feature dif-

ferences) L - QL

Level of signal x Level of signal x (as a functional defined
L, on a set of features) F(x)

L
Figure of noise f, = -,-L-"- Figure of noise f_ = F(L-QL)/F(QL)

r -
Comment: The set of duality rules is probably self-explanatory for the cases
of L, €L and the level of signal. In the case of symbolic difference no unique
definition can be given. According to the way the difference is defined in each
case, a different type of noise will be specified. It is possible and desirable
to have this featwre of specifying the noise component so that according to the
required application, different emphasis can be placed on different disturbing
signals.

In the following paragraph three figures of noise oriented towards
three different types of applications are éefined. The relations between these
figures of noise and the precision coefficient n will be given as worst case

bounds.,

5.3 Area-Type Noise

In this paragraph we will associate a set of planar regions with each
P-structure of a quantized irregular line drawing. The symbolic difference
between L and QL is then the union of all such regions and the functional
defining the level of a signal is the arez of the region associeted with the
signal. As is indicated in Fig. 20, the level of noise is %, = F(L-QL) =igl a

i
where i denotes the i~th segment of a P-structure in QL, ay is the area defined
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by such a segment and L. The level of the signal is &, = F(QL) = Tigl % where

Li is the length of “he i-th segment in QL. The associated figurz of noise

is then
:
Loa
fw. = i=l i (Soh)
A T§%
i=1
&
Let us note that if 25 = §~'then
N ]
f"’a = g . (5.5)
i=l 1

which shows that the proposed figure of noise not only has a meaning in
evaluating the precision with which QL epproximates L (f,, tends to zero es
QL tends to L) but also it gives an indication of the perZentage difference
between the lengths of L and its quuntized version.

The importance of having & figure of noise of the area-type showa

here was also stressed in the Proceedings of the Symposium on Map and Chart

Digitizingl8 for scientific appliceations such as those of automatic chart

generation from preprocessed satellite pictures.

THEOREM 9: If an irregular line drawing is quantized according to the rules
of the quantization scheme proposed here, then f, < 1l/n.
a

Proof: The largest value for &, can Ye computed by recalling the rules with

i
which an irregular line drawing is approximated by a set of Psstructures.
& N )
Letting x, = %Eﬁ?fﬁi“’ and  Rpom = izlzi (5.6)
max

and recalling the usual notation in Fig. 21, we have
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FiIG. 21
ARC AND APPROXIMATING CHORD
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1 Z a Z 6y(e,-x.)

] _ i=1 i=l

g fw&. N < i

3 \ i=1 * i=

e N 5

R

1 _dm P vl o )? N 1
3 v g 0 - T T tan Aumax zTOT
j=1

In the worst case, when all GI-assume their maximum value, we have:

E 3 g TN
sy 1 2 ;
fw < i=1 - n“ tan %a_x‘
. a Ty zi max ~TOT
i=1

i
=B
o~
[

and, therefore, ' f 5_% (5.7)

5.4 Disnlacement-Type Hoise ‘

i Another type of noise indicator which has been recommended in the
i Proceedings of the Symposium on Mep and Chart Digitizing18 is the one in which
the average distance between a cuantized drawing and the orizinal drawing is
} measured., A figure of noise of this variety will now be proposed and its rela-
; tion with the precision param:ter n investigated.

The symbolic difference L - QL will be interpreted here as being gen-
erated by the Tinite waximum distance between an S-continuvcus sy and its cor-
g responding segment in the P-structure of the guantized drawing. 7The level of a

signsel is then defined as the length of its associated segmuent. Therefore

N
Loy o,

: 3 = ML~ =
R P,w F(L-QL IMi=1 1




and for the figure of noise we have:

i

() a.];N 6.1
NT

f = 15 W __l-;i,’ (5.8)

Y

—
o=
(U3}

i=1

Statement: If an irregular line drawing is quuatized according to the rules

of the quantization method proposed here, then fw < %
/A

Comment: It is sufficient to note that in the worst case Gi = Smax = kf

and therefore

N &, . N v
foF L gl Bal T E s i-1 (5.9)
& i=1 % i=1 i=1 ® =27 "

5.5 Staircase-Effect-Type Noise

A completely different type of noise is the one which goes under the

name of staircase-eff'ect noise. It is due to the fact that the smooth S-

continuous arcs of an irregular line drawing are actually represented with
non-snooth Pestructures. In particular it has been noted by many authors18
that such an effect is proportional to both the distances between each two
consecutive vertices of a P-structure and the angles formed by each two con-
secutive segments of a P-structure. The majority of authors agree that it is
more important to minimize the average staircase effect than the local one.

A figure of noise will now be proposed for measuring such average
staircase effect in quantized irregular line drawings. It should be men-
tioned that although there is much talk on how to describe the staircase
effect, no figure of noise for measuring it has been proposed up to date to

this authort*s knowledge.

Denoting with N the number of vertices in the P-structures of QL and
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letting M = N if QL is closed and otherwise I = N-1, let us define the following

entities:
x i
r, =mexr, 3 Orgp = I IABi, (5.10)
i 1=]1
vr_
m, = -2 (5.11)
xv/n
= LK (5.12)
m2 eTOT
Bm
o = -t (5.13)
s i m2
£ =% vn=+ 2+
s mex n
=n nkg = m, n 63- = mlT (5.1h)

and let us recall the following relations which were shown in Chapter II

AL =2r = /2T from (2.11), (2.12)
!
r = -/-—g- 7 from (2.11)

2 < “3 < S /,:n:z from (2.3), (2.b), (2.9)

2, 5_/17;2 from (2.h)

Because of the special nature of the staircase-effect noise, & formal defini-
tion of the symbolic difference QL-L is omitted here. The levels of noise and

real signal are defined as
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and the staircase-effect-type figure of noise as

S Yy Ry, ten]dg] : 16
T, . Y z %5 0 ) (5.16)

Let us note that I is the set of the indices of the vertices of the P-structures
of QL which do not correspond to cusps or initium or terminus points of L.

Let us ncte that zs and Gs are esgentially user chosen paraumeters of
reference. It could be seid that if all £, < £ and taﬁ[AGi! < 8 then there
would be little or no stairnese~-effect at all whereas if ui > 28 and
tanlASiI > 0 then the effect would be larger and f, > 1. An example is

S.E:

shown in Fig. 22. These exomples clearly manifest the importance of the pro-
posed figure of noise. Fig. 222 shows that the drawing corresponding to & chaip
encoded quantized irregular line drewing has a small steircase effect if the
elementary size of the chosen grid is small, and this in spite of the fact that

= 145°).

the angular variations due to the quantization are rgther coarse (ABJ
For the case of Fig. 22b the staircase effect is much larger than before because
long segments are now associated with large angular variations. Fig. 22c shows
that a small staircase effect can ve achieved even when long segments are
present provided that the associated angular variations vre very small.

Previous comments show the importance of the figure of noise pre~

viously defined for describing the average staircase effect present in quantizec

irregular line drawings. Alszo as Fig. 22a has shown, a figure «f noise as
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_ STAIRCASE-EFFECT IN QUANTIZED DRAWINGS
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defined here is not only an original contribution to the solution of the
problem of defining the staircase-effect noise but it is also a powerful
means of investigation which allows one to obtain insight into the peculiar
nature of this ‘type of noise.

The reason for defining fw in terms of the trigonometric

o o
tangent of ABi rather than in termsmég.the angles themselves will become
clear later when the bounds on the transformed figures of noise will be
studied. It should be noted, however, that since, in general, the ABi will
be small in order to guarantee a minimum level of precision, it follows that
for all practical purposes fw . can be regerded es if it were d fined in

5.8,
terms of the angles directiy.

THEOREM 10: If an irregular line drawing is quantized according to the 1
rules of the quantization scheme proposed here, then fw < o
5.E,
Proof: Since we have from (2.4), (2.11), (2.12), (2.16)

po<vim g =V M. 22T, T
J— n np n P P

it follows thet by essuming smell Ab‘i's:

. »
. L M /2‘rmT 1 fe“rmee IAeil i}
“sp. T Mim POy oop mpoow
igl
n <5
. 2 M (VZrm T).-( 1 )2 lABiI .
Wsp Ty | P T, w2
iel
hY
1 151 ar,m, |48, | 1 % E%eTOT_Qn(l_'_)Q
T 2 2 M2 2 w  “p
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. T
and since 4 =-H~

then £ < 2n(—)? = on(—2)2 = 2 (5.17)
WS'E. - n-v.p nfa-T n

5.6 {oncluding Renmuris

A solution has been given in terms of the classical approach of
the problem of identifying the intensity of the noise component in a real
signel and of defining a figurc of noise for measuring the relative importance
of the noise with respect to the signal. Three types of figures of noise
have been presented, justified and studied in relation *~ the _recision
parameter n which governs the proposed guantization scheme. This has lead
to the interesting result that all three figures of noise have the same
worst case bound. This in turn means that when the proposed quantization
scheme is ueed, it is pcesible at one time to control area-type, displace-
ment-type and staircase-effect-type noise.

In the next chenize we shall study the effect of a transformation
on the figures of noise defined here and the relations between the bounds on

the figures of noise before and after a regular +ransformation.
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VI. TRANSFORMATIONS OF FIGURES OF NOISE

6.1 General Considerations

In this chapter the effect of a transformetion on a figure of
noise is studied. In particular, let us note that since it has been shown
that any regular transformation can be reduced to a set of triplets of
elementary transformations approximating it with any required precision,
only elementary transformations need be taken into account here. First,
the invariancy of the figures of noise with rotation will be proved. Then
the effect of requantization will be studied, bdoth for constant as well as
variable elementary grid size. Then the effects of isuiropic and non-isotropic
scalings will be considered.

The analysis presented here will lead to the discovery of a parameter
which is completely defined once the elementary transformation is given. As
will be shown, the product of such a parameter with the figure of noise before

transformaetion will give a bound for the figure of noise after transformation,

Since a bound has been establiished already for the figures of noise
before transformetion in terms of the precision parameter n, it will become
possible to relate a bound on the figures of noise after transformation to
the parameter n.

The chapter 1s concluded with the definition of the figures of ccst
and merit, associated with each figure of noise. The figre of cost will be
shown to be constituted of two factors. The i1.rst one expressing the cost of

transforming the coordinates of a point and the second one releted to the
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number of points to be transformed. The figure of merit will describe how
much has been spent in order to achieve a given quality aefter & given trans-
formation. Since a particular transformetion is the identity transformation
which maps & point of the plane into itself, the figures of merit for the
identity transformation cen be regarded as descriptors of the merit of the
given quantization scheme. In this case the cost of transforming one point
will he unitary and the figure of merit will become the product of the figure
of noise and the number of points in the quantized irregular line drawing.
This provides insight into the problem of Judging the merit of a quantization
scheme since the higher the quality, the lower its figure of noise but the
larger the number of points necessary in the quantized version of the drawing.

Finally, let us point out thet only the theory of the transformed
tigures of noise, cost and merit is developed here. Examples with typical
values for such figures will be presented in a later chapter with the results
of an application program.
6.2 Rotations

Let us note thet in general there are two contributions to the value
of a figure of noise after a transformation. The first one is completely
defined in terms of the given transformation. The second one represents
the contribution due to requantization on a given grid of the transformed
irreguler line drawing.,

For each transformation these contributions will be computed
serarately. In the first case the contribution due to requantization, which

will be referred to as grid-contribution, will be disregarded. Then the
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grid-contribution will be studied both for the cases in which the elementary
grid size T2 used for requantizing the transformed quantized irregular line

drawing is equal or not to the one Tl used for quantizing the input irregular

line drawing.

6.2.1 Noise After Rotation Without Grid-Contribution

With reference to the symbolism used in Fig. 23, we have the fol-

lowing relations among the following positive entities (the primed symbols refer

to values after transformation):

L]
o
-

R S ey

o
o)

The new values of the three figures of noise after rotation are:

N N
= ! ! = .
£e. .E ai/il ‘E’ 2 =1, (6.1)
a i= i=] a
n
£ =;‘-_¥,— L 8! (6.2)
1 4 ] t
. 1 ? fir21+1 tan|48, | _
o e Mooy R & o, LR (6.3)
iel
In the following it will be assumed that
ltanad, | ~ |28, ] (6.4)
i’ - i
6.2.2 lloise After Rotation with Grid-Contribution
T
Let us define the grid-ratio t as t = fgs where Ti and T2 are,
1

respectively, the elementary grid sizes before and after transformation, and

0<t <1l since Tl is the largest grid size which allows us to well-quantize IM,
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FIG. 23
ARC AND CHORD BEFORE AND AFTER ROTATION
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The following relations are easily established:

@T22i=/§leit

L . .
la.i a.il < 5 5 (6.5)
, T, V2 /2
1676, | € 2 = — 1% (6.6)
18 2l T, /g =t 1 /2 (6.7)
V2 t T /2
[ap!-48.| < 2 tan™ -2"m ¢ 2 tan™t 2 (6.8)
i il - zi L.
i
Since L* is well-quantized, 2’1 >8> T2/§ =t Tlv’§ -+ (6.9)

In other words, t Tl v 2 can be disregarded with respect to ’Q'i and,

therefore, also with respect to R.i. Moreover, since t Tl-/g-— is in general

a small number we have tan ~ ¢ T. Y2 = £ 7 2
12 12
and therefore
/2Tt N v2 7.8, t N
|081-08] €« ——te | £1 < I (a4 —ti) /0 Taer 2t (6.10)
A W o, . i 2 1 ..,7iw 2
a 1= i=l e

which shows, as expected, that the influence of the grid-contribution

decreases with the grid size '1‘2. In particular, if ‘1‘2 = Tl then
?

3"
£1 41, +Z,§.. (6.11)




It can be concluded that a rotation followed by requantization on the
same grid leads to o constant increment irn the noise figure, in the worst

case. Similar relations hold for the two other types of figures of noise.

We have
N N /5
fo = L 8i/umy < I (847 /27 ¢/2)/m N = £ +5-t (6.12)
£ =1 i=l "2

Again the grid-contribution decreases with T2. In particular if T2 = Tl then

h, - (6.13)

As before it can be concluded that a rotetion followed by requantization
on the same grid leads, in the worst case, to & constant increment in the
figure of noise.

In the case of the staircase-effect-type figure of noise we have

' 1 MR R (88 ]
£ == 2 ) -1
¥s.E. =1 % *g %

iel

and since by hypothesis the variations of »i. £i+l’ ABi due to rotation

and requantization are small, this can be written as

A2, AR p|28, l
_ i 1+1 (6.14)
8(ay 2y, 108,1) = 2, £1+1|A31|(2i ¥ * Tag, l
Moo, R0 108] 4% Al |
g =Lz G L (1r2 = A, * T3 { (6.15)
S.E. ‘s s 5 i
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and since

f_"_i_<Az</2'T2:/§T1t A“‘B:L’:Ae <2/§T2:2/§Tlt (6.16)

i -2 L ? IABiT— ABi - 28 [T} .
Then
2Tt 2/217.¢ J5 1.t

' 1 1 941 7 N1

1“’s.;::. if"s.E.(:l+ Tt = £, (s ) (6.17)

5.E.

This result shows thet also in this case the grid-contribvution decreases
with t. In particular if T2 = Tl we huve the following werst-case bound

2/2 T
1o o<r, (B

(6.18)
S.E. ~ s.E. 8 2

Comment: It has been shown that the effect of the grid.contribution to

the transformed figure of noise is a function of the size of the grid on

which the transformed date are requantized. In particular this con-~

tribution can be kept as low as necessary by choosing a suitable grid size

T2.

In the case of linear and non-linear transformations which can be
decomposed into a set of triplets of elementary transformations, containing
two rotations each, the grid-contributions for the two rot.. ons can be

considered exactly zero since the quantized drawing is .y ized only once

after transformation &nd not after each of the elementary tr  .;formations

of the given triplet. Such unique requantization will heve an effect which

can be taken into account eitiar 2 the end or when applying the non-

isotropic scaling to the triple.  Leb us also note that if t>1,, tkat is T2>Tl,
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the grid-contribution to rotation increases, as expected. This can be
understood by considering the case of zero rotation and change of grid size.
Finally let us note that the grid-contribution hes been evﬁluated in terms

of a worst-case bound which is likely to be much higher than the actual value.

6.3 Isotropic Scalings

As in the case of rotation., two cases will be considered; in the
first one the grid contribution will be disregarded, and in the second one
the effect of a new grid will be studied.

6.3.1 Noise After Isctroviz Scaling Without Grid-Contribution

With reference to Fig. 24 let us note the following relations:

5, = a2, (6.19)
8} = lalsi (6.20)
aj = aaai (6.21)
gyl = [a8,] (6.22)

The new values of the tiree figures of noise after an isotropic scaling are:

N h N o N
fo0= L al /T, L 2= % o amfa| & 8 = lels. (6.23)
s =1 * i=1 *  i= A T | a
L5 ogeful L6, =l (6.24)
£ me=— I §'e=lal =~ I & =alt 2
A e N v,

“Hsh 1 % g - ¢ I, (6.25)

Se e e T s S SIS ci raed FT
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FIG. 24
ARC AND CHORD BEFORE AND AFTER AN ISOTROPIC SCALING
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6.3.2 Koize After Isotropic Scaling with Grid-Contribution

Two cases will be considered. In the first one the case of
expansions, that is isotropic scalings with ialz;, will be coasidered;
then the case of contractions, that is isotropnic scalings with Ial<1,

will be studied.

6.3.2.1 Fxpansions
Since by hypcthesis |af> 3, we have zi>>/§'tTl and,
thereiore, 2} = |c~.|2.i
_ . )
)/2 T 4N /;

N
2 1 1 /e \
£! <A (|o|%a,t]al L.t/ £ el = felf, + 5t (6.26
LAY i 2 i 1 i=1 i LA 2

Let us note thet this result is similer to the one obtained in
the case of rotation in the sense that the grid contribution decreases with

T2. Similarly we have the following relations for the other two figures

of noise:
1 ¥ /" /3
o Lo T (lals ¢ S me) = 5, | ] +-—-t (6.27)
o#7 =1
A 1i=
. AIAB | "m

' L B2 l | 2l lAﬁill 'AQ. By o4l 2/§TT1c
S ) A T W YN [‘)< o f (== ——)

S.E. ' i=1 s s 1 Y ¥s.E.

iel (6.28)

As in the case of rotation the grid-contributions decrease with the grid size
T2. It T2 = Tl the three worst-case bounds computed here are the same as
those found for the case of rotation with the only obvious difference that

here |a|>1.
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6.3.2.2, Contrections
By hypothesis |a)<l. In general +h= output will no
longer be a well quantized irregular line drawing. However, if we assume
that the size of the grid on which the output will be quantized is specified

i
by t < J-9‘--'--1’-'---‘l:hen lale > /E'Tl’t and since £, > &, it follows that

I
2

i

Ialzi + /E'Tl t = iulzl end then

£ o< g(aza.ﬂfé‘l’ t o, a]/2)/m 1;:1 2. le] = |ajr ot l/?-:t (6.29)
Wy == i 1 i 1 g=1 & W 2

Similar considerations nold for the other two types of figures of noise.

If for example t < |a] 2 min di//E'Tl then
i

/5 _ /ETlt
laf 5, + LE-Tl t > |af min §, + 5= = fa] min 8
/2 .
|l 6, + 5Tt Hci
L3 lals,=leln
£! == 1 |a| 6, = |a| £ (6.30)
wn JTl i=1 i wz .
while if t < [af 2/2_‘1‘1 , el gy + /2_1‘1 5= |of 84
and since zi > 2 then as before we have
2/2 7
o o=lafr et LEly (6.31)
S.E. ¥SL.E.

Finally let us note that if T = Ia], then the noise after a contraction is
equal to the one before this transformetion only if the grid-contribution is

not taken into account.




106

Let us note that from the theory deve .oped so far there are iden-
tical bounds for the figures of noisc when the pgrid-contributions are taken
into account, both for the case of expansion and for the one of contraction.
In the case of contractions the grid-contributions may tend to dominate over
those due to other types of noise. This is an obvious consequence of the

fact that the original grid size T. is the largest possible for well-quan~

1
tizing the given irregular line drawing. To contract such an input is equiva-
lent tec requantizing it on a coarser grid, and in this case the output cannot
be considered a weli-quantized line drawing any more. If the grid size for

the input was chosen so to minimize the noise after contraction, then it means
that the input irreguler line drawing was quantized on & grid much finer than
the one strictly necessary, for well-quantizing it. In this case contractions
defined by an |a§ such that in the worst case the irregular line drawings will
be requantized on u grid smaller or equal to the one with the largest elemen-
tary size will still lead to well-quantized line drawings and to reduced values
for the figures of noise. This can be clearly understood by referring to the
following example in which an expansion is followed by a contraction and the
grid-contribution is disregarded. Let Ll with figure of noise fw be an ir-

1

regular line drawing vhich has been well-quantized on a given grid. If Ll

o is obtained with noise fw2 > r“l y if L3 = L2 with noise

is expanded than L

f =1  is now contracted so that L, = L. is obtained, then the value of
i3 L L 1
che output figure of noise will te f =f < f . This process in which
Wh Vl W3

noise has been reduced is, of course, a theoretical one since in practice the

grid~contribution will always prevent fw to equal fw . Still it is possible
4 1
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that fw 2 fwl for very small grid-contributions. This apparently strange
result can be justified by saying that the previous transformation has
generated the non-redundant Lh from the redundant L3. This example also
points out the different nature of the two components of a transformed
figure of noise: the one associated with the given transformation which is
reversible and ilie one associated with the size of the grid on which the

output is requan’.zed, which is not reversible.

6.4 Non-Isotropic Scalings

The grid-contributions for the case of non-isotropic scaling will
not be explored in detail since it has already been shown in previous
paragraphs thet a figure of noise always increases with the scale factor «.
Bounds for the figures of noise can ve found for Sa,s by studying the case
of 5 where y=max(|o],|8]).

Using the symbolism of Fig. 25 we have:

1 . ) 1
ag = |5 xyy + Opmx)yy + (%) ) ypmyy )5+

's —l- 1 - - .l -
+ (42-Y3)(x3-x2) 5+ Js(x3 x2) y3x3 3 | =

XY, X¥. XV, XY, XY
o1 1 Yo H¥a XN X¥p Xy
=l asxy 5 5T TS )
XY, XY x
22 23 - ey 31 =
z +tTp T3~ YKo m V33 i T
a. = | ;-[(y x, +xy,) - (xy, + xy.)] |
173t E T X, 172 ¥ *oY3
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Vi=hy1
X]=ax.|
FIG. 25

ARC AND CHORD BLFORE AND AFTER A NON-ISOTROPIC SCALING
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And since yi =B Yy and xi =a Xy we have the following resulit

1
| = -— - - N =
a | 5 [a B Y%, + 0 B X¥p = O Bx,y,-0Bx, J3] |og]| a

Using the symbolism of Fig. 26 we obtain:

R, = fos 2
i thi + byy

1 -
5 '»@Axi + Bszi

tan ABi

(vp/xy = yl/xl)/ (1+y,y,/%%,)

t = - 2 2
tan ABi aB(xly2 xayl)/(a Xy Xy + B ¥1¥)
Let us now introduce the following constants:
y= max(lel,|8])

& = 'min(ju|,|8])
Then the following relations hold

X X yr"xny
(—)2 tan A8, = |62 1_2_.__22___ | <ten 48! < | ¥ i 2%y
Y \')‘l 2+yly2) é (Xl "'ylya,

/cz(Ax; * byd) < z;gﬂ’(mﬁmﬁ) = vy

As & consequence of the relations established so far, we have:

N
£! = |aB| I e /T z 2!

a i=1 =1
N
logl 2 8 N N
<|oB] I a, /7,6 I 2
< L oay/Ty i
. Ty a 1=1 1=1

(6.33)
(6.34)

(%-)ztan AB
(6.35)

(6.36)

(6.32)

Loamy L e e
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FIG. 26
ANGULAR VARIATIONS DUE TO NON-ISOTROPIC SCALINGS
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Since |aBf /6=y and Ja® /yY=6 then

§ ¢ = 9B oo <Ml oy o AT
vy wo—"w = § ¥ Wy
a a a 8 a

Also we have §¢ <68'<y$
i—-"1- i

Then
6f <f' <yf_
BT M T N
In the case of the stecircase~effect figure of noise, we have

M &, & tanf&ﬁil

1 i i+l
£ =+ 3 1
Ve, Moty O
ieI

and since it wzs shown that

N

6%, <21 < ¥Ry (-Yl)“': tan]ABiI < tanIAB:!_I < (-é’-)': tan|Ag, |

then

2,6,2
(=) r < £
(Y) 1 Lo

S.E. L’.E. S.l."'.:‘

f.5 Summary of loise Transformations

(6.37)

(6.38)

(6.39)

In previous paragraphs the effects of transformations on figures

of noise have been presented. In particular the cases of absence and

presence of grid-contributions have been studied. Since in most practical

applications these grid-contributions will be small with respect to the

actual values of the figures of noise, only the cases of absence of grid-

contributions will be sunnarized here. Let us first define the following

constants:
_ & 2 Y
BTy BT
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and let us note that they depend only on the particular transformation
under consideration. In fact

1) Rotation R

[o+]
H

o
i

A0 By EBysl

2) Isotropic scalirng 5, > B, = B, = |af

3) Non-isotropic scaling Sa,g ’ 157 3 3
where as usual y = max (|a|,|8]) , § = min (]a],|B])

Then when grid contributions are disregarded we have

0<8, £ < £ < B, f < k2
-1 "W, - W - 2 Vg -

0<3 f < ' < By
2Aat, 0 f v, < B Twy, <%

. B2

0<B2t < 1 < B f < =2
1 s E. Ys.5. = 2 Vg T B

4Ls can be seen from these reletions the velue of a figure of noise

after a transformation is bounded by the product of a constant which is
dependent on the transformation only and of the value of the figure of
noise before transformation. Since there is an upper bound releting the
figwre of noise defore transformation and the precision parameter n, then
is also possible to establish such a relation between the value of the
figure of noise after transformation end the precision parameter n. Of
course, this reletion is true in general only if the grid-contributions
are neglected, As was shown in studying such grid-contributions to the
figures of noise thne following condition has to be fulfilled:

s T 0.+1
2v2 ¢ T << (6.17), (6.28), (6.31)

If this is the case and for example tound B is imposed on the staircase

effect figure of noise after a transformation characterized by Bg, it will

be sufficient to let: n > Bg/B.

(6.40)
(6.41)

(6.42)
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Finally let us note that since Bl and 32 are functions of o and B,
in the case of & non-linear transformation it will be sufficient to study
the values of & and B for each of the non-isotropic scelings in the triplet

approximating jit. Since a figure of noise increeses with the larger of

1
i
3
!
3%
4
b,
.

@ and B it w’il ve important to zsarch the regioa of existence of the given

irregular line drawing for finding the largest values of a and 8. A worst

Tt oe s o

3 cese bound on the transformed figures of noise will then be a function of
such moximur value.

For exampie since a Mercator projection can be regarded asz a
transformation mapping the polar coordinates (A,$) into (A,f(6) =ln tan%{—g«-zb))
then such a transforration can be regarded as one mapping a grid, dgfined
on & sphere bty uniformly spaced meridians and parallels, into a non-linear
2 rectangular grid in the Mercator plane. This concept is shown in Fig. 27.

‘? Using the symbolism presented there it can be seen that the highest non-
isotropic scale coefficient in th: piecewise linear approximation of the

g Mercator projection is a function of the larger of the two values ¢la ¢2-

6.6 Figures of Cost and Merit

As was mentioned before, an important aspect of the problem of
efficiently quentizing irregular line dravings is the one of defining the
3 cost of the achieved precision (figure of noise). In particular since the
proposed quartization scheme is oriented towards the problem of {ransforming
ks quantized irregular line drawings it is important to define a figure of cost

3 related to a gaven transformation.
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EXAMPLE OF NON-LINEAR TRANSFORMATION
(MERCATOR PROJECTION)
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Since a guantized irregular line drawing can be regarded as an
ordered set of points and a tranformztion as a mapping of the points of
the plane into themselves, a figure of cost for describing the cost of
transforming a guentized irregular line drawving consisting of N points
is

£, =8N (6.43)

where KP defines the cost of transforming one point and N is the number
of points in the drawing.

A figure of merit fm associated with a given figure of noise fw can
now be defined as:

fm = fwofc

(6.4k)
Such & figure of merit tells us that for a constant merit a higher quality
(lower figure of noise) is achnieved with a higher cost, while if the quality
is poorer (higher figure of noise) then theve will be in general fewer
points in the quantized irregular line draving end the figure of cost will
be lower.

Since each figure of merit is associated with a figure of noise,

the following relations hold

0 < £ < ¥ Ba L (6.45)
- By - p " n >

0 < ¢! <€ I B, <&
RPN (6.7
g.E. "~ P n 4T

Since Ksz and KpB% depend only on the transformation, it follows that
the value of a figure of merit after the given transformation is bounded
by N/n where N is the number of points in the quantized drawing and n is

the precision parameter for the proposed quantization scheme.
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VII., COMPARISONE VITH OTHER I'EXIODE

AT

T+ General

T

3 Ve shall consider the effect of requantization on & square
gcid of a roteted straight lire segment for various tyres of guantization

schemes. The scheme which on the average case will lead to the least

G AN Y

distortion of the segment will be chosen as the best. Scelings are not

AR AR

considered here since the length of the segment is chosen equal to the
3 smallest possitle value within the frame of the given quantization scheme;
in this case the largest possible distortion due to requantization occurs
3 after a rotation of the segment with respect to an arbitrery voint of

the plane.

In the case of guantization schemes defined in reference to o

square grid e .problem can be stated as the one of exploring how an ele-

\]
s

fam e
X

ment with length 1 and another with length V2 are cranged after a rota-

e

tion Polloved by requantization.

§ In the following tfigures, P and Qi are the initium and a possible
»? terminus node (the acuual terminus node being defined once the value of
;% the rotetion angle is given) of tke new element generated by requantizing
; the old one after rotation. /(P) will denote the region céntered in P
% and witirin which the rotated element is comtained. It should be noted

that whereas PeA(P), it is not true in general that QieA(P). R(8) will
4 dencte a region of the plane associated with a grid node S. In particular

for the arid intersect cuantization method, R(S) is a cross centered in

sl

i S gnd containing all the points, on the grid lines, whose distance from S
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is less or equal to 1/2. For the square box ané the rounding of ccor-
dinates methods, F/S) is a square box with size ecual to the elementary
grid size T=1 ané centered ir S and parallel tc the grid lires. Tor the
dismond box and circuler box methods, R(S} is, respectively, a rhombus
centered in $ and with axes directed along the grid lines end with lengths
equal to the elementary grid size T=1 and e circle centered in S and with

redius half the elementary grid size T=1.

Case 1: CGrid Iantersect ¥ethod

In Figs. 28a and 28b the regions A(P) and R(S) for elements with
length 1 and V2 are stiown, end the possibic Qi's are encirecled, In both
cases there are four Qi's outzide A(P). If one of them or the degenerate
case Qi=P is selected as terminus point, then a length distortion of the
original element will occur by a factor Y2 or D, for the case of Fig., 28a
and of 1/v2 or 2/¥2 = V2 or 0 for the case of Fig. 260,

In s cese of Fig. 28a to eech innut element there corresponds
no more then ore outpui element while for %he case in Tig. 28b the out-
put may consist of either one or two elements, or zero elements in the
degenerate cese. When two elements are genersted, however, they are
identical, as eesily verified Ly looking at A(P) in Fig. 28b. As in-
dicated in Fig. 20a the maximun angular distortion for a single element
is th5°. The situation is the same Tor Fig. 28b when a unique element
is generated in the output. When two elements are generated, no angular

distortion cen exist; by construction when this happens the original

S
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element must te coincident with a segment of a grid line (as shown in
Fig. 28b) and in this case its slove is not ailtered.
Engles betuween adiacent elements sre not conserved during

the quantization process veczuse they depend on the positions of the
elements within the regions A(P) associsted with them. Even in the case
of parallel ard equal-length elements, the extreme point Q may be a point
vithin A(P) and then for the next element it may be outside A(Q) and,
therefore, an angle of k5% is introduced as shoun in Fig. 29.

This is, however, the meximum angular distortion for two equal
elements because, as we heve already shown, the meximum change for a
single elemeut is thso, and from geometric considerations, it is not
vossible that one element he distorted by +h5° ané the other by -h5°.

In the cese of twe different adjacent elements, anguler distor-
tion has maximum velues which change according to the types of the two
elements; moreover a single element may te generated fromacouple of in-
rut elements as sihoun in Fig. 30, for the case of tio orthogonal unit
eiements, This disarpeerence of an element however, is really important
on.y for the case of the last element of an open seguence of elements be-
cause for an intermediate one the intersection of the next element with
the grid will proviie the rew element which wes not generated previously.

As shoun in Fig. 31a, the engular distortion for a couple of
orthogonal unit length elements mey be *i=° or -90°.

Tha unlikely case of twc gpposite unit-length elements is shown

LAl

in Fig. 28b; they may give rise to a couple of inverse elements or dis-
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FIG. 31
LENGTH AND ANGULAR DISTORTION FOR A PAIR OF ORTHOGONAL ELEMENTS
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appesr, possibly ~enereting a voint &s shown in Fig, 31b.

For the cese of two vZ lensth orthogonal elements, the output
may have en eangular distortion of -45% as shown in Fig. 3lc, end even
for the case in which no angular distortion occurs, thore might be a
lengbth distorticn because at least cne of the two elemzuis nsy change
its Jergth from V2 to C or frem 1 to 2. In the case of two /E'length
inverse elements the outovut may te either equal to the input or it may
presernt length distortion from V2 to 0 or from 1 to 2 for toth elements.

Finally we have to explore the cases in vhich the two adjacent
clements have different lengthis, If the first has a unit length and the
second V2 and their angle is +45° then when the first element generates
one element in the output the result may present no angular distortion or
no length distortion or both of them as shown in Fig. 32a.

When the first element does not generate an element in the out-
put, then the anguler distortion is a function of the type of element pre-
ceding the unit element in the input, and, therefore, as shovn in Fig. 32b,
there may be length distortion together with angular distortion.

When previous elements form an engle of il35°, this pattern is
preserved with the exception of special cases, as shown in Fig. 33a, vhere
the couple of elements may degenerate into one point or one element immedi-
ately before and after the.original peir. The situetion is a little dif-
ferent when the first element of the vair has /2 length and the second
unit length. If they form an angle equal to ihso, either this situation

is unchenped in %iie output or a lengta and angle distortion ere introduced
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DISTORTIONS FOR PAIR OF ELEMENTS WITH DIFFERENT LENGTH
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as illustrated by the pictures in Fig. 33b.

When the input peir form an angle equal to t135° this pattern may
be preserved in the output or be altered as shovn in Fig. 33c.

Previous analrsis ol distortions due to requuntizetion of seg-
ments by applying the grid intersect quentizaticn schume cen e svmnarized
by saying that such a scheme may leed to length distcriions with retios:

0, /5; l/VE; for single elements and angulur distortions up to t9cO for a
pair of adjacent elements. Also elements with unit length may disappear
or degenerate into one point. 1In general given an angle of rotation 6 and
a sequence of four adjacent elements, it is possible to specify ths type
of the worst output which the second ané the third element of the sequence
will generste after rotation and requantization.

Pinally let us note that in previous analysis the case of elements
which after rotation are in ambimuous positions like those in Fig. 34 were
not included since a solution can slways be found by looking at the elements
preceding or following them or by sorting a solution arbitrarily (for ex-
ample in the case of a horizontal straight line ._gment passing through the

midpoints of the grid, as shown in Fig. 3k).

Case 2: Square Box Method

Figs, 352 and 350 show the regions A(P) for the case of an element
with unit length and V2 length respectively. In the case of Fig. 35a, no
point exists outside A(P), wheress for Fig, 35b there are more points out-

side A(P)} than inside. Length distortion may occur in both cases. For the

one of Fig. 35a in terms of the ratios O (vhen the element is entirely in- ..

A o o
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side R(P), or /E; and for the case in Fig. 35b in terms of the ratios:
0 or 12 or 2 or vS/iZ. With this method a point P is assigned as the
extreme of an element of the new sequence when there is an arc of input
which after rotation passes through the square box centered at point P.

Let us note that the region A(P) of Fig. 35a leads to the same
nurber of selectable points as the one in Fig. 28a, whereas the one in
Fig. 35b allows a much wider vossibility in terms of selectable points
around P than the one in Fig. 28b., Agein it 1s not claimed that each
clement in the input sequence will generate at least one element in the
output teceuse even an element with length equal to /E'may be completely
inside R(P) after rotation.

Both in the case of Figs. 352 and 35b, no diagonal element can
be genersted unless after rotation the input element pesses precisely
through the center of a square of the grid. If this possibility is ex-
cluded either cn the tesis of its low probability of occurrence or because
en assignment is given in such situations either on the basis of the po-
sitions of other elements, or aribtrerily when no choice can be made
uniquely (for exampl: in the case of a straight lire semment with unit
slope passing through the nodes of the grid), then in voth cases of Figs.
35a and 35b an elerent is either unchanged or it generates zero to two
elements (and with zn engle of 90° between them in the last case). This
last situation may occcur when the input element has a length equal to V2,
these situations are showm in Tig. 2€. Morcover with the assumption of
no generation of diagonal elements, the output sequence will consist en-

tirely of elereats of unit length.
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FIG. 36
LENGTH DISTORTIONS
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Thie method descritec in this section, vwhen compared to that of
grid intersection, is subject to more extensive shape distortion in length,
engle and number of elements and, moreover, it involves complicated com-
putations for testing which box has sensed the input seguence after ro-
tation. A way for improving this method is to modifyy it into the one

described in the next paragraph.

Case 3: Rounded Coordinates Method

Consider a scheme in vhich the coordinates of the extreme peints
of each element after rotation are rounded off and the resulting velues
used to define the grid points for generating the ouliput. Demains A(P)
of Figs. 35a and 35b are still valid, bul now diagonel elements can be
generacted in the output; the amb{guity of an e~lcment in a pesition such
as the one 2escribed by Fig. 3% leads now to four possible points which
can represent each center of a grid square. We will suppose here that
such ambiguous situations will never occur. However, they may be resolved
by giving simple decision rules as hinted before.

A different kind of ambiguity arises for the cese of Fig. 35b
vhen a /E.length element generstes two elements in the output. In this
cese one mey assume that & choice is made by rounding the coordinates of
the midpoint of the input element., Vhen one element in the input gener-
ates one element in the output, length distortion may be specified by
factors like C or v2 for the case of Fig. 35a, and O, l//§'or V2 for
the case of Fig. 35b; when a /Ellength clement generates two elements in

the output, there is both the generation of & cormer of hSo and & length
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distortion o= VBHZE, Angular distortion is thSo for the case of TFig. 35a,

vkich corresponds to the one Gescribed in Fie, 23a, end the same is true
for the case cf Fig. 35b, vhere one element is genereted; vhen tio elements
are genersted their angie may be either 0 with length distortion equal to
V2, or 45% with length distortion equel to ¥5/v2. In the case of pairs

of elements, the many possible configurstions are similar to tiie ones

studied before for the case of the grid-intersect quantization method.

Case 4: Diamcnd end Circular Boxes Methods

Regions A(P) for the cases of diemond and circular-box methods
are shown in Figs. 37Ta end 37b and in Fig. 38a and 38b respectively. Since
they do not offer any significant advantages over the previous methods
but do recuire more involved computations, these two methods will not be

studied in further detail.

Case 5: lodified Crid-Intersect ilethod

A modified grid-interséct method can bte defined for vwhich each
input element generates only one output element. Such a method, for ex-
emple, will exclude from A{F) of TFig. 28b the four voints lying outside of
A(P), and when an element in a non-ambiguous position diseppears, then the
rounded coordinates method will be used if It icads to an output; other-
wise the length of the element is changed in such a wey as to allow the
generation of an output (for example the length can be changed from 1 to 2).

It is easy to check thet tiis scheme does not lnterrupt the con-

tinmuity of adjacent elements in the cutput. Also note that it generates

N T - .
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B) Element Length is /2
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DISTORTIONS DUE TO CIRCULAR BOX METHOD
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25 length distortions vhich are at most given by factors 1/V2 or /5, and
angular Gistortions of at most *45° for a single element.

An analysic has been presented of the noise generated by re-
- quentizing rotated date in terms cof & variety of guentization schemes.

Tmpriasis has been placed on the grid-intersect method which offers a lower

S Bk o o

: length and angular distortion with respect to eny other standard quanti-

zation scheme. It hes been shown, hovever, thet such a method leads to

LA
LAV

more complicated computetions than the rounded coordinates method, which

oot

3 can be easily simulated on a digital computer by simply trunceting numbers.
Wher the quality of the output is more importentv than computational cost,
then one should use the grid-intersect method rether than the one of rounded

coordinates. Iinally, a modified grid-intersect method, which combines

the advantages of both the grid-intersect method and the one of rounded
coordinetes, has been prorvosed.

d In the next section £he modified grid-intersect quantization scheme
will bte compared witn the one proposed in this thesis. Such comparison will
be based on the values of the figures of merit for the two quantization

) metheds. As will be shown, the quantization scheme d&escribed in Chapter

IT tends to have a smaller figure of merit end, thercfore, to give better

resulis on avereze.

7.2 Comparison Beitween Modified Grid-Intersect Scheme and Proposed HNew
bot
Scheme

i

3
3

A ccmperison vwill now be mede between the proposed scheme and

the modified grid intersect quantization scheme in terms of their figures
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of merit, as these are defined in this thesis. In carrying out this
comperison it will be supposed that in both cases the original line
drawing has been finely quantized, thet is, its local behavior around
any grid rode is essentially that of & straight line segment. The as~
sumption is then made that in its quantized version such a drawing con-
sists of N2 chain-encoded straight line segments with an average of Hl

chain elements each.

lase 1: Area-Type Figure of Merit

From (5.4), (6.45), (6.45)

i

N
£ =0 ) e /T 5.
m, igl : 121 i

For the proposed cuentization scheme we have:

No )

T 2
f =5 H DL ) L, =
= =

=t

(1.1)

and Tor the modified grid intersect cuantization scheme, we have:

)

—4

"'-T- '-: m = i —‘—2-v
fh&? =5 TN, hlh2/¢ ™, N, =1 3 (7.2)
cleerly,
£ > for ¥ > 2 {7.3)
2 o

Case 2: Displacement-Type Figure of Merit

from (5.8), (6.45), (G.U6)
fl
£ =0 ] 6./m

n o
3 i=1
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For the prorcs2d quantization scheme ve hava:

/5 3
3 £ = w~= N Wl = e 1T .
’ "mfll 7 N, TN /TN, = S, (T.14)
<$ and for the modified grid intersect quantization scheme we have:
3 N
¢ T . 2
. = =1 M Wi 7 = —
f‘mg 5 Wl M T, /TN I, = Ny 5 (7.5)
: e
: Again,
E fm9 > £, 3F N> 2 (7.6)
§ "2 "1
E Case 3: Staircase-Effect-Type Fipure of llerit
i From (5.16), (6.k5), (6.46)
: ]
5 1
‘,, _ l i R’i 9¢i+l tanlAﬁil o
; i\m; T H E_‘ 2 e H
S.E. oi=l,iel s s S
? For the prcposed qusntization scaeme we have:
.i . N e Te tan AO
K _ 1 i 2
g e "J 2
i Sl 1 < 23 es
¢
2
A = LN ™ V2 tan 46 N ( )
A = gty ! .
: 2’1 202 0, /5 1 T.7

»
N,

: ——— _" 2..__ k
f f = i iy 1“2

2 172

= LN, == (7.8)
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Therefore, we can vrite

n 48
gy o=, LSy (7.9)
$.E.) 5.8., /2
as shown in Table II (which has been derived directly from Table I by
. +N

assuming an aversape number of chain elements Nl = —E=§—§-—£Ehﬁ) it is
always true that

Ny ten A << ) (7.10)
for Nl > 2, Hence it cen be concluded thet, as in the previous tvo
cases,

£ if 1, > 2 Al

B o > fms . 3 (7.11)

Uo-.ol ou02

Since the higher the fipure of merit, the higher the cost for the
same quality, or the lower the quality for the same cost, ve can conclude
that, in temms of their average figures of merit, the proposed quantization
scheme tends to give a more satisfactory performance in terms of quality

of description and trensformetion cost.
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N

ten 46 it

tan AO

10

0.03

0.3

100

0.002

0.2

1,000

0.0003

0.3

2,000

0.00015

0.3

20,000

0.000005

0.01

TABLE II

T At TS




kS
&
B
&
24
o

kS

149

VIII. APPLICATION PROGRAM AND RESULTS

8.1 General

In this chapter after a brief outline descriding an application
program in terms of its input and output date and type of computations
executable by it, the results of such a program will be shown and explained.
A copy of the listings of the prcgrem may be obtained from Professor
H. Freeman of lNew York University.

A) Input Deto

A set of connected straight line segments represents the draving,
as an sbstraction of an image, as a digital copputer sees it through an
input flying spot scauning unit. The proposed quentization scheme is
then aspplied to it and &« quentized wersion is obtained. By comparing the
input with the cuantized version, the input values for the figures of noise
are obtained.

B) CQutput Dsta

Consists of two transformed data: the Tirst for the input drawing
and the second for the quantized version. Agein noise fimures are evaluated
by comparing the transformed input with the transforred quentized version
of it. Checks are then made to verify the predictions of the theory pre-
sented in this thesis, like for example the reletions between input and
output noise and their dependence on the particular transformation. Also
the figures of cost and merit are evaluated and the bounds predicted by

the theory here developed checked.
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C) General Comments

The program executes rotations, isotropic and non.isotropic
scalings, linear transforma?ions and Mercator projections of quantized
data (with the restrict;ons on the dynamic range of the input data imposed
by the Basic Fortran formats for single precision operations)., The pro-
gram alsc evaluates the figures of noise, cost and merit by computing
arees and lengths and by plugging these velues in the formules presented
in this thesis. Also the program allows one to select the precision of

the input quantizetion so that a piven bound on the output noise can be

satisfied.

8.2 Results of the Prozram

In order to give a complete vresentation of the options offered
oy the proposed quantization scheme, three types of examples are shown
in the following pages.

The first example refers to a direct apprecach in quantizing the
data to be transforned, The transformation M, the drawing L and the pre-
cisivn parsemeters X, kQ, kz, E;ax’ pz, Py are given. (Note that because
of the relations shown at the end of Chauter II only Zour of previous
parameters are independent from the others). Then the quantized drawing
L* can be genersted end 2, €; T, n car ‘e evaluated, The transformed L*,
TL#, the input and output figures of ncise, cost and merit are computed
by meking measures on L¥ and TL*. TFig. 39 shouws the block siructure of
the system. When the direct approach is taken the loop in the system is

open and no bound on the output is applied at the input (SW1 and SW2 are

G L vaste ST R e . by s e At o nin ' RS L
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open).
The second exemple refers to an indirect apnroach because the
precision parameters are not given directlr vut throuph 2, 6, T, n by

applying (with the equel sign) the inequelities shown at the end of

-1 m
Chapter ITI. Such reletions are k=T/n£ k =1+h/e tan 4 =é%: ’ k2‘1+/~“ ,
- -1 /2 o V2 1T2 .
amin-0+htan 5i— » P,=T 57 » and po=z e ( *). Agein the loop in the

system is open (SW1 is closed and SW2 is open) and L* is generated by finding
first k, ka’ kg, a‘.n, Pys Py and by applying the algorithm presented in
Chapter II.

The third example refers to an inverse approech. In this case
a bound B on the output figures of noise is the only given input value in-
stead of the four perameters 2, 6, T, n. However n cen be computed from
B as was shown at the end of Chapter VI ty assuming that the grid contri-

bution to the figures of noise is negiigible, that is that the following

relation is fulfilled

227 8 +1 ,
D) g -

This relation defines T cnce £ and 0 are given. On tle other hand £ and

6 are the minimum dctail perareters of ", that is the alreedy auantized
draving. In order to find them their values are predicted and Lt generated.
Then the newv values for 2 and § ere measured on 1¥ end a new volue for T

is computed from previous formule. (v ie stxll th ; same since it only

depends on B). Then the new values ore used to requantize L and generate

a nev L¥ and the process is repeated. This procedure halts once the old




o
O e

: by

‘é end the nev velues of % and 8 coincide (or aiffer, say, by less than 10%
2 as in the examplej. In this example SW1 is open and SW2 is closed and

{ stays closed up to when the condition on £ and 6 is verified.

3 A) Direct Avproach

9 In Fig. 40a, UCOb, 4Oc, 404 are shown, respectively, the input

} drawving L, its quantized version L*, and the transformed L and L*. The
A

i transformaetion is a rotation by 60°. The follovwing precision parameters
i3

% have been used:

4

k = 0.36

9 k = 1,84

i o

4

{ k, = 1.072

3 - _ 20

: %in = 187(0.33 rad)

.? By = 0.036

‘g Dy = 0.42

'g They define 2, 6, T, and n as follous

4 2 = 19.1

f 6 = 12° (0.17 rad)

T=1

n = 0.15

p? Irput and output figures of noise vere computed by comparing L with L* and

TL with TLY (i.e., the transformed L and 1¥). A1l the consiraints pre-
dicted bv the theory ere saliufied both for the figures of noise cnd those

of merit. The Slgures of merit, their bounds ss well as the figuce of
G ? >

cost have been normelized by assuping X = 1L, We have:

T
L

AR
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PROGRAM RESULTS FOR ROTATION
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2,
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i8

¥

1k6
L
£,o=5481 < 7 ., =6.23¢<7
T o
f"o =58 < 7T : fw,n = 6,35 < 7
~ '
£, =466 < 7 : £ = 4,71 <7
¥s3.E. Yo n,
£, =5 : fha =31.15 < 35
%n = 31.75 < 35 fh = 23,25 < 35
2 SQE&

B) Intermediate Apvreach

Figs. bla, 41b, blc, 41d show, respectively, the drawing L, its
. . * . s
aquentized version L*, end the transformed L and L. The transfcrmation is
& noa-isotropic scaling by a factor of 1 in the X direction and & factor of

2.3 in the Y direction. (Ther we have B, = 2.3 and Bﬁ = 5.29), Precision
L

2

parameters £, 6, T, n were chosen as follows:

= 19.1
10° (0.17 red)
=1

.15

3 ©
"

=
]

They lead to the Tollowing values for the precision parameters

= 0 2 . i - o] .
k = 0.35 . . = AT (0.35 rod)
. =1, l K =
k= 1.8 . p, = 0.036
k, = 1.072 : Py = 0.2

Input end output figurss of noise, cost and merii .are

£ =35k < 7 X £, =2z8.5 < 37 33
w@ “S.E.
fﬁz = 5.8 < T ; fo =5
2 = 4,65 < 7 ; £ = 65,09 < 80.5
WS.E. ’ My
f =13.01 <161 £ =171.5 < 80.5
o mg,
1
£, = 14,3 < 16.1 f = 142.5 < 185.15
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PROGRAM RESULTS FOR NON-ISOTROPIC SCALINGS
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As can be easily seen all constraints predicted by the theory are satis-

fied.

C) 1Inverse Approach

Figs. 42a, 42b, 42c, 42@ show respectively L, L', 7L, TLY. The
transformation is a Mercator Projection defined by the following constants
R=150, F=150, ALP=0, P=U50 respectively the radius of the sohere, the
focal length of the camera, the latitude of the satellite from which
the picture was taken (the longitudeis assumed to be zero) and the dis~
tance of the center of projection from the center of the sphere.

The bound on the output noise was chosen as B=20. Since the
transformation is characterized by By=1.8 (Bg=3.2h) then we have
n=0.16{1/n=6).

Two cycles were necessary for finding a steble solution. We had

the following:

Cycle #1
Predicted Value Measured Value Error in &
£=30 2=23 21
6=24° (0.41 rad) ©=18°(0.31 red) 20

The computed value for T was T = 3

Cycle #3
Predicted Value  Measured Value Error in 7
2=23 2=22.5 2

(921

0=15%(0.31 rad)  6=17°(0.29 rad)

The computed value for Twas T =1
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PROGRAM RESULTS FOR MERCATOR PROJECTION
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The precision parameters are

k= 0.26 24°(0,418 rod)

min =
ka = 1.00 p2 = 0.03
1«:2' = 1.4 Py = 0.2

end the input and outout figures of noise, cost and merit are:

f =L48l < 6 ; £ =15.7 ¢ 20

Ya “S.E.

fwg =5.32 < 0 3 f, =3

=k,57T < 6 : fn 27. < 60

’vl,s © o

» "-l.

f%a =93 < 20 ; fn, =33.0 < 60

£ =11.0 < 20 s f,. . =41 o< 60

Yo S.E.

D) Concluding Remarks

Finally the folloving example shows the effect of changing n on
both L and the fisures of noise. The draviunr . is shown in Fig. b43 (it
represents the coastline of the islan. of Sicily as scen from the Nimbus I
satellite). In Fig. Bi g Quan’.'ze. version is presented which was computed

by setting:

=3

o = 10° (0.17 rad)
]

n = 0.16 (1/n=06)

These values specify the following input figures of noise

f =354 < 6 f = 4,57 < 6
wa ¥3.E.

f =hB1< 6

Wy
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FIG, 43
COASTLINE
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FIG. 44
OUANTIZED COASTLINE
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However if tie following values are chosen

2 =1
6 = 5° (0.08 rad)
T=1
n=5

then all the points of L are selected for the guantized version and L
becomes identical to L, Since there is neither ares nor displacement

difference betveen L and L¥ it should not com2 as a surprise that

vhereas there is still a nonzero staircase-effect noise due to the fact

that L consists of a finite number of points. We have:

f = 0.1
Wo

S.E.

Figs. 45 and 46 show the result of aprlying a linear transformation
to L and to the quantized version of Fig. bi. The transformation consists
of an isotropic scaling by a factor of 0.5 followed Dy a rotation of 60°,

As can be seen the output figures of noise are spaller than the input
since the reversible contribution to the firure of noise has been multiplied
by a factor smaller than one. This is an obvious result since it only
means that in the new drawing (output) the average distance between arc
and chorc. is smaller than for the input drawving. The seme is true for
fw since it is defined in terms of a ratio of areas and lengths; this

a

elso holds for fw vhich is defined in terms of products of lengths,
S.E.

¥+
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FIG. 45
TRANSFORMED COASTLIKE
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FIG. 46
TRANSFORMED QUANTIZED COASTLINE




156

Ve have:
£, =294 <6 ; = 476.33 < 960
f.,',l = 2,15 < 6 ; fm, = 410.52 < 960
!
. . =2.26<6 ; = 355.9 0
f“vs'E. > fmS‘E. 355 1 < 96
f, = 160
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IX. SUIVARY AfD CCHCLUSZONS

9.1 General
In previous chapters the problem of hov to quentize en irreguler

ine drawing, delined as au abstraction of en image, nas been presented
and e parsretric quantization scheme proposed. Such a scheme penerates
different results when for the same drawing, & better ouality description
is required. It has been shcwn that the qualities of the description of a
draving before and after a recrular trensforrmetion are directly related.
Hence it has ieen poscitle to obtain meaningtul guidelines for quantizing
a given input éreving.

An encoding schemo has been propnosed vhich has the advantage of
leading to & code vhich is both shorter than the standard chein code and
easier to manipulate vhen the epplicd transformetion falls into a certain
class., Decomposition of general reguler trensformations into sets of ele-
mentary transformations have been presented and the special case of l'ercator
Projections has been considered to shov how to simplify e transformetion
protlem once the peculiar characteristics of the given transformation are
known,

Figures of noise which describe various aspects of quantization
noise have been proposed and their relations with the precision parameters
ruling the quantization scheme have been studied. Also the effect of a
regular trensformefion on eéch of the propoééé figures of noise has been
studied and bounds on their values after a transformation have been obtained.

In order to give a complete presentation of the transformation




problem, a figure of cost of a transformation vas proposed and a set of

-

figures of merit defined. €uch fipures of merit specify how much has been

AT AT A IR

spent {(fimure of cost) in order to achieve & certain quality after a
transformation {rigurs of neize).
5 In this chepier the specific contributions o this reseerch

2 ere pointed ovt to the reader and possinie future extensions are indicated.

e

9.2 Spec, fic Centribriicons ¢f This Resexrch

A) A rev cuontization scheme for irregulsr line érawings has been
presented vhich offers new insight irto %ie probdlem of quencizing multi-
dimensionel data. In this presentation en approoch, different f£rom a clas-
3 . . I & SR A a
E sical one describved by Freeman and Giass™ ' is introduced. The irregular
3 line draving is assumad to ke an abstraction of an imape, that is, an
. ideal signal. A gueantization scheme is then seen as e set of rules which
enables onc to describe such abstraction in an approximated form. There-
,i fore, it is in the sbstracting process that one defines ithe features of
3 the drawing end chooses the resolution of the quantization scheme so thal
the features of interest are represented in the quantized version with

i - . o G AT .
the desired precision. According to the Freeman oand Glass™ ' approach the
quantization scheme is chosen on the basis of a general curvature criterion
end then the features observeble in the quantized version of tie drawing
are determined in terms of the resolution of the quantization scheme.

Since the transformation problem is the one of rendering the transformed

features of a drawing, a different approach for ouantizing drewvings has

been taken here.




[
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B) Fatiterns for chain encoded straipht line zepments have been found
by applyinm the techniques cf mathematics of integers and residue arith-~
metic to the study of speciezl cheins. £1s5o e nev encoding scheme has
been presented which is moxe efficient than the standard chain code and
simplifies the iransformation of erccded data.

C) A measure for svaircase effest noise has bean iaSroduced. Although
meny ciaims can be £ynd i vhe literaturs about algarithins which reduce

the stairczise offecy, o sokeme

’

for measuring it has ever teen piven before.

D) Simple formulue for evaluabing the cost and nmerit of a quantization
scheme have teen proposed. 1In particular, the figure of cost offers insight
into the provlen of evaluating the cost of transforming one point and the
numver of points in the quantized drewing.

E) A scheme has VLeen proposed Tor solving the problem of how to quentize
a given drawing so that after a transformetion applied to its quantized
version the results will have a specified minimum quality.

F) As a practical application, the proposed scheme offers a means for
evaluating the quality of computer generated ilercator teps. This is some-
thing which has not been possible in the past.

G) A scheme for non-linearly transforming pictorial deta by applying
rotations and scalings on & local basis has been presented, together with
& theory for decomposing any general transforrmation into sets of elemen-
tary transformations.

1) This thesis has shown that a direct relation exists between the

number of chain elements and the vercentage length and angle distortion
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in quantizzd straight line segments.

I) The advantage of requantizing on finer grids has been showm in-
directly, by stuéying the grid contributions tc the transfurmed figures
of noise. Also a systematic way for investigating requantization dis~
tortions has been described in terms of geometric regions which depend

both on the type of transfcrmetion and on the type of quantization schieme

used for the transTorned drta.

9.3 Faivre Ixtensicns

As a possinle extension of the worx dwscri

v

226 hove il 1s sug-
gested th:t e new guantization scheme be studied in which nigher-order
curves, not only straight line segments, are used in the approximation
of an irregular line drawing. The proverties of such a quantization
scheme and a suitable encoding scheme should be anclyzed. The manner

and cost of transforming curves encoded in this way would be of consider-

able interest,
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