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A!2S¶PAACT

An irregular line drawing is an abstraction of an image which can

be defined as a set of planar curved se'cs. The geometric features of these

arcs are implicitly defined in the output of the preprocessing operations which

generated the drawing from the image.

In order to process such a drawing with a digital computer, it is

necessary first to describe it to the machine in a suitable language. Such a

description is complete if and only if it includes all the desired features of

the drawing. The precision of a complete description is then related to the

precision with which each of the preprocessed features is represented in it.

To represent a feature means essentially to substitute for it a feature for

which a standard machine description already exists. Therefore, the quality of

a description of a preprocessed irregular line drawing is completely determined

by the resolution cf the quantization scheme used.

Many quantization schemes have been studied in the past. In these

schemes, the r.,solution is chosen independently from the type of processing

to be done later on the quantized drawing. For e:;emple a particular resolution

may be chosen because the user wants the quantized version of a curved arc to

appear to him as smooth as tihe arc itself'.

No mention exists in the current literature of the more general

problem of choosin thc recolrtion of the quantizaticn scheme so that the

quality of the quantized drawing after processing is satisfactory in some

specified sense. This thesis describes an approach to the solution of this

problem when the required processing is a coordinate transformation. A general
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purpose quantizition scheze is presented in a parametric form. Different

quantized versions of the same dra'ing can ther be obtained by changing the

values of the parameters governing the quantization scheme. An optimal en-

coding scheme is described which utilizes the patterns in the quantized drawing.

Three figures of noise are introduced for describing three different

aspects of the quality of the quantization scheme. The first figure of noise

is relatei to the average area between the quantized version of the drawing

and the drawing itself. It also provides an indication of the difference

between the length of the drawing and Utat of its 4uantized version. A second

figvre of noise describes the average m6ximum displacement between the quantized

version of -the d,.'aFrng and the drawing itself. A third figure of noise serves

as a me•as".re of the so..called stairc'zso effect. :t should be noted that al-

t:ough many references to the staircase effect can be found in the lLterature,

there has heen no :ro:n scheme for cuantifyirg it.

A figuare of cost is presented for evaluating how much "cost" has been

expenCed in transfor.aing the quantized vorsion of a given drauving.

A figure of merit is definedi to inddicate how much has been spent

(figure of cost) for aLhieving the given quality° k'ig~re of noize) after trans-

formation.

The effect of a coordinate-transforration on the three figures of

noise is evaluated tc ether with the non-reversible contribution due to the

requantization followl-g the transformation.

The thesis concludes with a comparison between the proposed quantiza-

tion scheme and other schemes on the basis of their figures of merit. Bounds

on the distortions in angle and length occurrir,g when the drawings are quan-

tized accordingly to a variety of quantization schemes are derived.
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GLOSSARY

1. a relative coordinates of the terminus of a segment with

respect to the initium

2. a size of a square containing L

3. a' ratio between a and 4, ,e minimum length-detail parameter £

4. aC, aL areas associated wi~n a chain and a segment

5. a. area associated with the i-th segment of a P-structure1

6. A initiUm of a segment

7. A matrix

8. A(P) region containing a rotated chain element

9. A. initial point of the j-th arc

10. a(P.) angle betwieen the directions of the tangent to s. at P.
and the reference a:xis

11. a 'aix i-th chain element and the x and y comporents associated, i. i'ix, iY %.:i-th it

12. oa' angle between the tangents at A to s. and A..- to
i j+l

13. %min minimum angular discontinuity measured at the cusps of L

14. O.in application specified parameter

15. &'min minimum possible value of amin

16. b relative coordinatc, of the terminus of a segment with
respect to the initium

17. b0  integer identiPfing the first half of the first octant

18. b tangent to a paeallel

19. B terminus of a segment

20, B nwumber of bits required for storing the inrormotion
c contained in a P-structure of N vertices, in the chain code
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21. B. B ,B number of bits required for storing the informationof quantizdd data according to three different schemes

22. B8  number of bits required for storing the information

of ouanti.ed data according to the slope-length scheme

23. B1B2 transformation dependent constants

24. •. angle between the direction of the j-th segment and
C. the reference

25. angle between the j-th segment and the tangent to
S. at A0+l +

26. c displacement constant

27. C chain

28. Cj2 C,3, C constants for fast algorithm for generating a chain

29. d displacement constant

30. ds elementary arc of a lossodromia

31. 8 smallest of two scale factors (taken in absolute value)

32. 6. maximum distance between sj and the j-th segment of
the P-structure

33. za. angular difference between the 'rection of Vi. and t*j

34. • precision pa,-meter

35. 4P. angular difference between the directions of the j-th

and the (j+l)-th segments

36. &s finite value of an arp. f a lossodromia

37. eu cv percentage errors due to the approximation of a Class
III transformation with elementary transformations

38. f transformation function

39. fc figure of cost

'0. fi' f f fractions
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41. fm'a m f figures of merit associated with the figures of
a--£-S.E. noise of area-, displacezent-, staircase-effect-type

42. f deri vative of a function f with resuect to one of
x its variables, x

43. f figure of noise

44. f, 'f I f figure of noise of area-, displacement-, staircase-
aJ- 'IS.E. effect-t-vye

45. g transformation function

46. g integer

47. 7 largest between two scale factors (taken in absolute
value)

48. y angle of a lossodromia

49. h, i integers

50. I position of the last zero in C before the k-th one
k

51. j index of the arc s--whose minimum radius of curvature

is the minimum for the entire line drawing

52. k,!:kk precision parameters

53. K constant for fast algorithm for generating a chainmax

54. K cost for transforming the coordinates of a single
point

55. K constant for fast algorithm for generating a chain

56. L minimum length-detail parameter

57. A length of the j-th segment of the P-structure

58. 1 ntuber of zeros between the k-th and the (k+l)-th
k ones in a chain

59. ma precision parameter

6o. em smallest of the distances between the extremes of
any S-continuous arc



Xiii

61. T smallest of the distances bet-ween any two locally
min disjoint points

62. ".in minimum possible value of ia

63. 1 user defined constant for evaluating the average
s staircase effect in a quantized line drawing

64. AýOT length of a quantized line drawing

65. £1 tangent to a lossodromia

66. L irregular line drawing

67. L* appro::imated line draw.ing

68. La,b,cd linear transformation

69. x, S-continuous arc

70. m rational slope value

71. m' logarithm base two of the number of jws (or columns)
of a uniform square grid contaii.-. in the smallest
square containing an irregular line drawing

72. mlrm coefficients specifying the structure of the formula
for evaluating the staircase-effect-type of noise

73. 1M1 constant related to the number of vertices in a
closed P-structure

7. mr regular transformation

75. n precision parameter

76. no,n 1  number of zeros and ones in a chain

77. n, hnl,. numbers of sequences of zeros in C with lengths h
and h-1

78. "1 normal to a sphere

79. N number of chain elements in the shcrtest sesment
of a P structure

00. N M&IT.max minimum and ma;:imum number of chain elements
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81. Pi i-th point in a given list

82. pt length precision constant

83. PO angular precision constant

84. Q j-th node in a sequence of grid nodes

85. QL quantized line drawing

86. r largest displacement of a point due to quantization

87. r ratio between 'he minimum values of the radius
of curvature of s. and that of s- (C denotes the
arc containing thi smallest radI of curvature of
the drawing)

88. r maximum radius of curvature in the drawing

89. R constant radius of curvature

90. R rotation by an -nrgle X

91. R(S) subset of the ,plane which is characteristic of the
given quantization scheme

/
92. s ideal signal'

93. s j-th S-continuous arc associated with the j-th
segment of the P-structure

94. S isotropic scaling with a factor equal to a

95. S non-isotropic scaling with factors equal to a and

96. t grid ratio; ratio between the values of the grid
sizes used before and after a transformation

97. ti tangent to a meridian

98. t 1 ), &j unit vectors tangent to s• at its e::treme points

99. T grid size

100. T1!T2 grid sizes used before and after a transformation
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101. e minimut angular-detail parameter

102. 0 user defined constant for evaluating the average
staircase effect in a quantized line drawing

103. OTOT global angular variation defined by a quantized
line drawing

104. w noise

105. (xi, Yi) X-Y coordinates of the i-th point in a list



I. INITRODUCTION

The problem of developing techniques for the computer processing

of pictures has received increasing attention in recent years. Currently

most of the effort is dedicated to two classes of problems: the processing

of images and the processing of line drawings.

As the term will be used here, an inag is a two-dimensional repre-

sentation of a scene, and its information is given by spatial variations of

brightness and color. In contrast, a line drawing is an abstraction of an

image. The information it contains is given solely by the shape of thin

curves appearing on a contrasting background, where neither the actual

thickness of the curves nor the nature of the background are relevant.15

The abstraction of a line drawing from a given image is a subjective

matter. For instance, given a blurred aerial photograph of an island, it is

subjective to decide what the exact shape of the coastline is. Once this

has been decided, that is, once a thin line has been drawn to represent the

coast, then it can be said that a line drawing has been abstracted from the

image. In doing this abstracting, all the detail that is regarded as noise

is filtered away. The line drawing is then simply an assembly of smooth

curves with possible slope discontinuities at points where two curves are

joined.

The abstracting process described here belongs to a class of opera-

tions that are co=monly referred to as preprocessing. In the following

we will refer to a line drawing L as a drawing consisting of a set of smooth

thin curves containing inflections, separated by cusps, and linked by
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invisible arcs. Moreover it will be supposed that the curves are described

in such a way as to permit the measurement of their geometric features

(i.e., the radii of curvature, the slopes, etc.) to any required precision.

Examples of line drawings are provided by contour maps generated from pre-

processed terrain photographs, high energy particle tracks obtained from

bubble-chamber pictures, and the outlines of individual cells in biomedical-

application images.

1.1 Statement of the Problem

In order to process a line drawing L by means of a digital computer, it

is necessary to describe it first to the machine in a suitable language,

Such a description is complete if and only if it includes all the desired

features of the drawing. Description implies quantization, and the precision

of a complete description is dependent on the precision with which each of

the preprocessed features is represented in the description. To represent

a feature means essentially to replace it by one for which a standard machine

description already exists. Ultimately, the precision of a description of a

preprocessed line drawing is determined by the resolution fineness of the

quantization scheme used.

In order to clarify the concepts of preprocessing and quantizing,

consider the example of Fig. 1. The figure shows a blurred photograph of a

coastline which allows the detection of details to a precision of one meter.

Now suppose that a map is to be produced with a precision of 30 meters. By

a precision of 30 meters we mean that 'there is a circle of uncertainty of

radius 30 meters about any point in the map.
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The first operation (preprocessing) to be ea-ried out is then the one

of identifying a coastline (line drawing) in the given picture.36  This may

require filtering to remove noise, thickening, thinning, and finally edge de-

tection. 4 r' Next the extracted line drawing is approximated by a sequence

of straight line segments in such a way that the maximum distance of a coast-

line arc from its approximating segment does not exceed, say, 25 meters. This

can be regarded as the first line drawing quantization operation. There was,

of course, a prior image quantization when the data was input in the computer

through a digital scanning device.

The coordinates of the extreme points of each segment are next trun-

cated so that they can be expressed by numbers with the agreed-upon number of

digits. This cperation can be regarde, as a second line drawing quantization

step, and it leads to a displacement of each segment. If such a displacement

does not exceed 5 metcrs, then the new segment will be within 30 meters of

the coastline and tne reouired precision will be achieved. Furthz'r, the new

segment car now be described by the coordinates of its end points to exactly

the desired resolution (number of digits).

Many line-dra-w.ing quantizaticn schemes have been studied in the past

and proposed in zrne literature. '14 IHowever, no nmention exists of the prob-

lem of how to quantize a line drawing so that the features of interest will

be retained to the desirsd precision even after a coordinate-transformation.

This thesis offers a wo:.ing solution to this problem.

in designing the quantization scheme one must take into account the

type of transformation to be applied to the quantized drawing. This is



illustrated by the following example. Let L be a line drawing consisting of

a straight line segm.ent, and consider two appro::imatiorsof it, C and P, as

indicated in Fig. 2a. Now suppose that the required processing of L is to

be uniform scaling by a factor of three. .f C represents the only available

information about the line drawing, the result is C', whereas if P is given,

the result is P', as shown in Fig. 2b. The ideal result is L', wXhich has been

plotted in Fig. 2b by computing the position of a large number of points of L.

L' appears to be better represented by P' than by C' since P' retains the

straight-line feature. The shape deformation presented by C' is referred to

as "staircase effect".

In this thesis a general-purpose quantization scheme is presented and

an efficient encoding scheme is described. Three figures of noise are proposed

for describing thri-e differentAspectsof the quality of the quantization scheme

and a related figure of cost is defined. The effect of coordinate-transforma-

tions on the quality of line-drawing descriptions is studied, and bounds are

shown to exist that relate the feature qualities before and after a transforma-

tion.

1.2 Literature Survey

This section reviews some of the past work by others relating to the

problem of transforming quantized planar curves. It is divided inco three

sections, each dealing with a different aspect of the problem.

.uantiza~tion of Smooth Curves

The problem of quantizing a closed smooth curve has been treated by

many authors by quantizing the planar region whose border is the closed curve.
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Cheng and Ledley' consider digitizations of pictures using a flying

spot scanner and propose an error-ýbounded digitization scheme. Using a. least

nean-square criterion2 they established the precision of their reconstructing

method. An example of a mechanical scanner is given by Pilipchuck26 for off-

line picture digitization. Neither of these papers, however, is particularly

applicable to the work of interest here because the curves with which we will

be concerned may be either closed or open.

Freeman15 stresses the distinction between an image and a line drawing,

and clarifies the problems of line-drawing quantization and encoding. A useful

method for quantizing both closed and open curves was described in detail by

Freeman.9 He considers various methods for quantizing arbitrary planar curves,

with specific emphasis on the grid-intersect quantization method. He also pro-

poues the so-called chain code, in which a chain represents a translation-

invariant encoding of a curve quantized on a square grid. Combined quantiza-

tion and encoding is achieved by superimposing a grid on the given curve and

selecting the closer of the two grid nodes, Q , lying to either side Of the

intersections between the curve and the grid. The relative position of Q+1

with respect to Q can be defined simply by an octal digit. The sequence of

selected nodes can thus be represented by a sequence of octal digits. This is

sufficient for envodini the quantized curve with a precision depending only

on the grid size.

In the following, use will be made of Freeman's cncodinm' scheme for

efficiently encoding a quantized curve and directizg a digital plotter for

drawing it.
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Freeman1 presents a comparison between the so-,..jed1 array digiti a-

tion and the chain cuantization and encoding of the border of tinite planar

regions, with many interesting remarks on border length and syao:.aeas

Freeman discusses a fast algorithm for generating the chain of & .,',cle.

Freeman and Glass propose a criterion for selecting the appropriate igid

size to be used for chain encoding a curve. The curve is interpreted as an1

elastic beam under flexure and the elementary grid size is selected so that

the curve can be represented by a beam of minimum strain energy. The problem

of reconstructing a curve from its chain is a vwry complicated one, and a

method is proposed by the authors for approximating the actual solution with

cubics. However, even this approximation leads to very involved computations,

especially in the case of a curve with several points of inflection, selfinter-

sections or cusps.

Glass 1 7 presents a note on the quantization of two-dimensional line

drawings which shows that the chain quantization process acts as a source of

uniformly distributed noise, and Montanari20 discusses some limit properties

of digitization schemes with emphasis on continuity requirements for curve

digitization.

27Raudseps presents a nctv type of quantiiati6n:.by'-describing a curve

as a ftuaction of tangent angle vs. arc length. From this, the curve can be

reconstructed uniquely. Quantization is achieved by taking the coefficients

of the truncated Fourier transfor- of the function. Some of the ideas con-

tained in this work are applicable to the quantization scheme presented here,

especially those related to the definition of a figure of noise.
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Analysis and Pattern Recognition of Quantized Planar Curves

From the point of view tahen by this thesis, the problem of recogni-

tion of patterns in quantized curves is fundamental to the one of transforming

them. Two approaches are known to the author. The first one deals with the

properties of quantized curves directly; the second one first transforms the

curves into another representation, called skeletons, and then applies pattern

recognition techniques to the skeletons.

Basic work has been done by Freeman 10, who studied different algoA ?.

rithms for checking the topological properties of chains, such as closure,

symmetry, and intersections, and geometric patterns such as length, area,

moments, etc.

Freeman presents an analysis of chain patterns in terms of a chain

directionality spectrum which shows the relative amount of the octal digits

of various types in a given chain, and difference sequence functions which are

defined on the differences of adjacent octal digits in a chain and which are

related to the curvature of the chain.

Freeman13 proposes a classification scheme based on a hierarchy of

chainlet levels. Freeman and Feder8 present a contour correlation algorithm

for the problem of curve matching. Budin presents computer program routines

for evaluating chain cross- and auto-correlations for each possible value of

the shift index. Socci35 describes a special correlation technique based on

the chain difference functions and proves its invariancy with respect to chain

rotation. Finally, for the case of array digitized regions (i.e., closed

curves), two works deserve to be mentioned. in the first, Rosenfeld28 presents
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definitions of connectivity and order of connectivity, and discusses their

topological applications for array digitized planar regions. In the second,

Lourie19 presents two algorithms for identifying and labeling connected

regions formed by sets of closed curves in interactive graphics.

The second approach for pattern recognition in quantized curves,

using new shape descriptors was originated by Blum2 , who presented a pattern

recognition scheme which extracts new descriptors of the shape of a given con-

tour. The contour is interpreted as the origin of a wave front which propagates

with constant velocity and extinguishes itself whenever two or more arcs of the

same wavefront pass through the same points. These points define the medial

axis of the contour line and, together with the time of front extinction defined

for each of the=, they describe in a compact v.ay lhe shape of the original

contour. A contour can be reconstructed in a unique way starting from its

medial axis.
25

Other works on medial axis or skeletons were presented by Philbrick ,

who proposes a digitized version of Blum's analog propagation. Pfalz and

Rosenfeld24 use a different approach for digitized skeletons based on the idea

of neighboring points, and prove the advantage of using digitized skeletons

* whenever set-theoretic operations are required on the given contour. Calabi

and Hartnet 6 present a new definition of skeletons of closed regions, and

Montanari 2 1 ' 2 3 describes a method for obtaining skeletons using a quasi-Eucli-

dean distance and a special method for generating continuous skeletons from

digitized images.

Rutowitz32 proposes a data structure for handling digitized pictures

and a grey-weighted distance for solving digitally the problem of correctly



11

determining the sI"cleton of a givern contour. The possibility of using skeletons

"for the problem of transformation of quantized curves is not explored in the

following. One big disadvantage of using skeletons is that it involves the use

of curved arcs (e.g., parabolas) even for the case of polygonal contours,

A classic book on decision-making processes in pattern recognition

is the one by Sebestyen in which are derived linear and non-linear methods

for separating patterns from one another.

Transformations of Quantized Planar Curves and Noise Filtering

Eutt and Snively presen'c the PAX II picture processing system as a

collection of r,.utines for curve manipulation such as scaling and rotation, and

Butt and Wells5 present a set of studies in visual texture manipulation and

synthesis inl'uding smoothing of expanded pictures, rotation techniques, and

picture enhancement algorithms based on the inzerpolation of grey levels. This

kind of approach to the problem of transformation is, however, different from

the one taken here in the sense 1.hat in those works the patterns to be trans-

formed are those cf the quantized curves and no attempt is made to determine

the relation between the features of the quantized curves and those of the

original curves. loIc-eover, no theoretical proof is givwýu to show the advantage

of smoothing and filtering after transfornmation as compared to the case in

which such filtering is done before transformation to remove the quantization

noise. This last approach was presented for instance by Montaar 2 2
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Montanari proposes a filtering of the border of array-digitized regions using

polygonal reconstruction of quantized contours. The polygon used is the one

with minimal length and a proof of its uniqueness is given in detail.

Rosenfeld, Lee etc. 2 9 present various methods for curve enhancement.

A non-linear method is also presented for enhancing smooth continuous curves.

An example shows that their methods work even with levels of noise of 24%.

Rosenfeld, Strong etc.24 present a noise cleaning algorithm as a

modification of' th-e cl-asbical scheme, which changes a one into a zero if the

number of zeros within a given distance exceeds a given threshold. They also

present a propagation process and show that it will give optimal results which

can be Justified theoretically. As a general reference on picture processing,

see Rosenfeld.1

Finally it should be noted that the problem considered here is of

interest not only because of its theoretical aspects, but also because of very

real practical applications. This last point is well presented in the Pro-

ceedings of the Symposium on Nap and Chart digitizing18, where many real-life

problems of transforming digitized curves were discussed in detail.
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II. TME QUA11TIZATION METHOD

The quantizing of line-drav•ing data to place the data into a form suit-

able for computer processing, storage, and display is usually a two level proc-

ess. In the first step the line drawing is derived from the source image

(e.g., photograph), either by scanning or by tracing. The resulting "given"

line drawing is often subjected to some preprocessing to remove noise, and then

quantized once more into a more compact representation, efficient in terms of

storage requirements but yet faithful in its preservation of the significant

features. This thesis is primarily concerned with the second level of quantiza-

tion, occurring after preprocessing. In the scheme to be described, a given

irregular line drawing is first approximated by a set of polygonal structures

whose vertexees belong to the drawing. :,t these vertexes are shifted to the

nearest nodes of a square grid and a new set of polygonal structures is gen-

erated. For the sake of simplicity, a polygonal structure will be called a

P-structure in the sab•oeuent discussion.

The criterion governing the generation of the first set of P-structures

is the one of guaranteeing a "shape"t precision by requiring that for each

smootbhly cuvi, ar. of the given lirie drawing there be at least one distinct

segment of a P-structure. The "posit-,or.al" preci.sn is guaranteed by

choosing the fineness of the square grid in such a way that the length and

angular variations due to the grid quantization of th, segments of the first

set of P-structures are limited to a specified tolerance. This assures that

the final set of P-structures will be "close" to the original drawing in both

"1shape" and "position".



2.1 Definitions for Irregular Line I)rawings

Definition 1: An irregular line drawing I is a finite set of smooth curves of

finite dimensions and infinitesimal thickness, containing inflections and

separated by cusps and invisible arcs.

Definition 2: The elementary line drawings are:

1. a point

2. a continuous slope varying (S-continuous) arc

3. a straight line segment

Note that any irregular line drawing can be regarded as a continuous

curve composed of an ordered sequence of S-continuous arcs separated at a given

point by a cusp or linked by invisible straight line segments.

Definition 3: The features of the elementary line drawings are:

1. the position of a point

2. the sequence of angles of the tangents,,with respect to a

reference axis, of an S-continuous arc

3 the length and angle, with respect to a reference axis, of

a straight line segment

Definition 4: T-o pwints P and Pj, belonging to an irregular line drawing

are called nt oint if there is no visible curve connecting them

in at least one of the two circular regions with radius PiP, and center in one

of them.

Examples of locally disjoint points are illustrated in Fig. 3.
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•2

P4

P1,P2 Locally disjoint points
P3,P4 Non Locally Disjoint Points

FIG. 3

EXAMPLES OF LOCALLY DISJOINT POINTS



Definition 5: The features of an irregular line drawing are:

1. the features of its elementary line drawings

2. the angular discontinuities defined by its cusps

3. the distances between the extreme points of S-continuous arcs

4. the distances between any two locally disjoint points

In the following an algorithm is presented which allows one to gener-

ate a P-structure for approximating an S-continuous arc with a required pre-

cision (i.e., for approximating its features with the required precision). Then

the problem of approximating an irregular line drawing (i.e., its features) is

reduced to the one of finding with which precision to approximate its S-contin-

uous arcs.

The minimum values of the features (2), (3), (4) of the irregular

line drawing will play a fundamental role in determining such precision. Next

the so-found P-structure is replaced by another one whose vertices are nodes

of a square grid. A design formula for the elementary size of the grid will

be given and the relations among the variou.,s precision parameters will be de-

rived. It will be shown that the precision with which an irregular line

drawing is represented by its quantized version is dependent on a length and

an angle measurable on the drawing itself, on the elementary size of the

square grid and on a precision parameter.

2.2 Algorithm for Approximating an S-continuous Arc

A P-structure will now be constructed on a finite number of points of

an S-continuous arc. The notation is illustrated in Fig. 4.
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ILLUSTRATION OF ARC AND CHORD OF A CURVE
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FIG. 5

ARC WITH CONSTANT RADIUS OF CURVATURE
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sj the J-th S-continuous arc associated with the J-th segment
of the P-structure

tl 1 , t2j the unit vectors tangent to s at its extreme points

the angular difference between the directions of tlj and t2j

the maximum distance between s and the J-th segment of
the P-structure

2. the length of the J-th segment of the P-structure

T index of the arc s- whose minimum radius of curvature is
the minimum for thg entire line drawing

rj ratio between the minimum values of th. radius of curvature
of s and that of sT

Definition 6: A P-structure P(X,k,t Aat amax ) approximating an S-continuous

arc A with precision k,2m m,Aamax is one whose '-th segment defines an arc

s £X such that:

1. si has no inflections

2. Act <_ Acma (2.1)
i- max,

3. 6T kZT (2.2)

4. T <. max (2.3)

5. k >. 2. < /72-- (2.4)

Let us note that for small valu.es of k and Atmax , the arc s will

be very close to an arc of a circle with radius Ri. The angle associated

with si, as seen from its center of curvature, is equal to the angle defined

by the directions tj and t 2j The notation used here is also shown in

Fig. 5.
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Since 64 = R- cos(&,1/2) and k. 2R. sinra /2) thenj Rj R

6/j = (1-cos(AwI /2))/(2sin(Aa /2)) = si2 n -- sin cos =

1 tan and

2 4

Since, in general, za will be small, it follows that sin and
max 2 2

tl and therefore -- A -- Rj8 9 and. - .%/

Let us now consider two different arcs, such that Hil > R 2 then

(K'Z 2 A )R/f. ; further assuming J <-" 9l 2' 'I 2

then 6J2 > 6Jl" In other words, when dealing with two vmall arcs it is pos-

sible to characterize them in terms of constant radii of curvature, Rjl and

Let us assume that R4 > RI then for a fixed length 2 it is always

possible to find for si, a value kjl >-" kJ such that its maximum deviation

from its chord is J < J2" This observation is used later to show that

the procedure for approximating an S-continuous arc with a P-structure always

halts and therefore is an algorithm.

Definition 7: Mhe segmentation of an arc is the generation of a pair of arcs,

obtained by dividing the original arc at the point of maximum distance from

its chord.

The following procedure generates P(X,k,. ma,Ax ax) for a

drawing consisting of a single S-continuous arc X given the values k,kmax 'Amax.

Procedure

Step 1: The arc X is subdivided into arcs with no inflections.

Step 2: The arc (s) sy containing the minimum radius of curvature is segmented
(in accordance with Definition 7) and this operation is repeated until-
a. the length Ry of the chord of sy is less than kmax
b. 6y'k -
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Step 3 If £-. is not the smallest among all Z 1 s,continue to segment s-
unti this condition is satisfied.

Stp l4: The following tests are made for all values of J:

a. a .L=.
b. kL <Vr -

If they are all satisfied, then the P-structure has been generated

correctly and the process ends. Otherwise continue to segment all the arcs

that do not satisfy at least one of the tests and return to Step 2.

Comment: It is sufficient to recall previous considerations on the possibility

of always finding an ZJ1 > Aj2 such that Sjl < 6J2' for Ril > R . This en-

sures that the above described procedure always converges to a unique solution

in a finite number of cycles.

In order to investigate the precision with which a P-structure approxi-

mates an S-continuous arc, let us introduce the following additional notation,

illustrated in Fig. 6.

'• X(P) angle between the direction of the tangent to arc s in P and
the reference axis

A initial point of arc

a. - a(A)

at uj angle between the tangents to sj at A1 and to sj+l at A

"01 B angle between the direction of the J-th segment and the reference
axis

angle between the J-th segment and the tangent to s4+1 at Aj+2
U -2

&aj angular difference between the directions of the tangent to sj
at Ai and AJ+l

Aaj angular difference between the directions of the J-th and the
(J+l)-th segments
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FIG. 6

* TwIO ADJACENT ARCS AND Cf llP~jS
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The following relations hold in general:

laj -0.1 <_ 8

OIa3 -0'j+;. 1_ ,x

a +1 -a(Pji it l•, a ...V P C S

ja3  -a (P)_<j •ja - +1 2:+ es

Ij - •(PI)j < max

Therefore it follows that

A tO =2 L-c &6 J+<& <c a+ a4+1<2j max max

It can be concluded that the J-th segment of a P-structure is an

approximation of the arc s belonging to an S-continuous arc with precision

guaranteed by the relations

6j i 6and 101 -amp, ax (2.5)

Mcreover the P-structure approximating an S-continuous arc defines a discrete

sequence of angular variations which approximates the continuous sequence de-

fined by the S-continuous arc itself, and with a precision specified by

Aaj < 2amax - (2.6)

To improve the precision with which the P-structure approximates the S-continu-

ous arc, it is sufficient to reduce progressively k and Aa max
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2.3 Approximation of an Irregular Line Drawing

Definiticn 8: The aopproximated line drawi.g L* of a given irregular line

drawing L, is the totality of all the P-structures which approximate the

S-continuous arcs of L, with precision k, maxAamax where:

k 14 n(min' min)ia,,ax =2k mn a

S 1 min(k . i)
max kk mn min

k,k akV are precision parameters; amin is an application specified parameter;

a . is the minimum angular discontinuity defined by the cusps of L; kmin is

the smallest of the distances between the extremes of any S-continuous arc or

straight line in L and Zm. is the smallest of the distances between any two

locally disjoint points of L.

Comment: amin is set to 100 or 200, for examples, in the case of artistic

drawings whereas it is set to few degrees in the case of drawings for scientific

applications, as was suggested in the Proceedings of the Symposium on Map and

Chart Digitizing18 .

Lemma: Any irregular line drawing L can be represented by an approximated
line drawina L* with any specified precision, by choosing appropriate
values for amin ,k,k , k .

Comment: It is sufficient to note that the algorithm for approximating an

S-continuous arc with a P-structure and the definition of L*, guarantees that

all the features of L(per Definition 5) are approximated with the required

precision.
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2ý.l soaer- r!atic.ý of an 1-uroxima~ted f DneTra'.ý-ng,

We shall next investic-ate Uthe prrcis.-on with, whicha an approximnated

~jedvai~ing is; representod by its quantized vrersion def-ined on a uniformn

r-.un~we grid. A desitgn form~ula is derived for thle coarsest r.d size wihich

r~till allo,.rs one to qy~antize the alpŽroximvated line, dra-.,intg with a srpee-itied

ton 9. -The inwu length-de-tail para,,,,ote.r of L" s

2. = (2.9)

~C~iton10: The -:,Aimiiur ansular-detail parameter ofo Lý is:

0 = min Z5,q (2.10)

Let us not-e that 01 and 0 arc the smal'lest details of jinrt-erest con-

tiiineod in L*. The precision with which -the square-,,.rid ayanti14zed veri'~on o..2

V~ approximates L- is thoen co~qpletely s-pecified in termns of thc- precision

... h which such details are represeýnted in the quantized. versilon. In fact J!,

and - are the nmaximumm pe! centage errors affctn k. and 0 as a consequence

u,"' the quantization on a unifor!, square rrid with elementary size T, then for

'Q' the remaaning, celoents of the P-stacuctures of' L, for whlichl in general

>2k and AO. ? 0, the pecnaeerrors will be less than A-P an

Ib":'iition 11: A well-mmpatizecd c.-rroxir-atrd line dirswhv!. is one in which the

Pevr- ý,t-a~e maximlun variations cf Y. and 0 due to taie q.uwint i zation process are

bQ14.Iea by th,.e constvants p. and 1), (called length and arn,,u)ar pr--cision

foraz~neturs, respectively).
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Let us note that when a point of an irregular line drawing is replaced

by a grid node in the quantization rxocess, the maximum possible distance

between these two points is

r = 2 T (2.11)

In the case of a straight line segment, it is then possible to elate t,,.

maximum angular and length errors due to the quantization pi -2ess to the

precision with which the positions of the extreme of the segmei . own,

as shown in Fig. 7. indicating with PA the length and with 0* the angle of

the j-th segment after quantization and recalling that Z and 8 are the

corresponding values before quantization, the following relations hold

2 a1 2: ~ 2rI < 2r and - <tan-l- -tan-S- • J - jg

Also note that in the worst case the angle between the directions

of two straight line segments is changed by the quantizetion process by an

amount equal to twice the possible angular variation occurring in quantizing

a single straight line segment. Therefore the following relations can be

established fcr U£ and MO.

Ak = 2r (2.12)

-l 2r
AO = 2 tan-12 'Z (2.13)

THEOREM 1: The largest grid size T such that L* can be well-quantized
(per Definition 11) is

T = Z (2.1i)

where p = min(p.,tan Pe (2.15)
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FIG. 7

LENGTH AND ANGULAR DISTORTION OF A STRAIGHT
LINE SEGMENT DUE TO QUA,,TIZATION

L-
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Proof: It is sufficiunt to note that according to Definition 11, L* can be

well quantized if and only if

<_ pp (2.16)

(2.17)

or equivalently < p and tan-I AT < Pe

and, therefore, min(p'tan P0 2

Let us note that in defining L* it has been shown that the maximum

deviation 6, of the J-th arc of L from its cord fulfilled the relation

6 < 6- < kk. where Z- is equal to the minimum-length detail 'parameter £.

If we now write

P (2.18)
v~Jn

where n is a precision parameter, we have

6j _ 6- < p -".9 •/ p Z:v' n : 2T/l!2 n= (2.19)

In other words, if the constant k used in defining L*, is equal to'p/V2n

then the maximum displacement of any curved arc of L from the corresponding

cord of L* cannot exceed T/n. Since T is the largest grid size which allows

one to well-quantize L*, then in general the grid nodes selected by L and

those selected by L* will tend to coincide as the value of n is increased.

This last consideration Justifies the use of P-structures as approxi-

mations for irregular line drawings. The importance of the precision parameter

n will become clearer later when it will be shown that all the precision
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parameters subsequently introduced are related to n and that bounds on the

quality of the description of an irregular line drawing before and after a

transformation are function of n only.

Let us note that the minimum and maximum number of chain elements for

the shortest straight line segment in L* can be computed as a function of the

precision parameter p alone. In fact, the following relations hold for Nmin

and Nmax

L. = AP 1 =I ý (2.20)Nmin '-PTJ-m€.o

11 Z+ z 1 /2 1+v-in~ (2.21)max ! p

Table i shows the values of Nm. and N ., and the angular variation A-
mi.n mx2

for a straight line segment as a function of the precision parameter p.

Let us note that if the given irregular line drawing can b& 6nclosed

by a square with sides of length a, and 2 is the number of rows (or columns)

of a uniform square grid superimposed on it, then from (2.11), (2.12), and

(2.14) the following relations hold:

pt, = At = •,•.T•a ý/2m'

2m' T2 a P'./,

a' =�/

a' - '/ ;I• inm' = log2 ( •a'/p)

Thus, for instance, if a' 1 O5 and p = 20%, then N = 9 and m' = 19. Thenmax

for representing the most detailed line drawing, that is, the one whose L*

contains only segments of the shortest length, the number of bits required

4
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TABLE I

m N N m Ae

50% 1 5 260 36? 530 12'

40% 1 5 210 42' 430 24'

30% 2 7 18' 30' 370

20% 4 9 110 21' 220 42'

10% 9 16 5° 36' 110 12'

5% 19 30 2 052' 50 44'

4% 24 37 20 18? 40 36'

3% 32 49 10 37' 30 14'

2% 49 73 1i 9' 20 18'

,1" 99 144 30' 10

0.5% 199 285 15' 30'

0.1% 999 1,415 30" 1'

0.05% 1,999 2,840 15" 30"

O.005% 19,999 28,500 0.5" i"
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for storing the coordinates of the N points of the P-structures of L* is

B-=2 m' N = 38N. Eowever, if the P-structures are chain encoded, then the

number of required bits becomes Bc = 2m' + 3Nma (N-1) = 38 + 27(N-l) and

the difference B - B = 9(N-1) is always positive and increases with N.p c

Chain encoding tends to be a better solution for encoding the in-

formation contained in a well-quantized L*, if a large number of arcs with

small curvature is present in it. In the following chapter, patterns are

shown to exist in the chain of a segment and advantage is taken of these for

improving the efficiency of the chain code.

2.5 Relations Among the Precision Parameters

Let us note that the chain of a well-quantized approximated line

drawing consists of a sequence of chain-encoded straight line segments. The

mnm'ber of elements in the chain of the shortest straight line will be

N > IN in(p) (2.22)

Let us note further that if two consecutive segments form an angie

less than 2Aa then the vertex of that angle does not correspond to anymax

cusp in L. However if such angle is greater than or equal to camin, then its

vertex corresponds to a cusp in L. Once vertice iave been so classified,

the chain can be segmented into chainlets, each corresponding to an S-continu-

ous arc in L. In order to guarantee the separability between the vertices

of a well-qvantized L*, a relation has to be established between 2Aamax and

amin. Let us note that the following relations follow from (2.6),(2.7),

(210), (2.13),(2.15)
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AO 2 tan-1 P Pe < 6 < A ;- < ninm)(a = 2ioa (2.23)
Pe *K min'min) max

then if all AU3 = 0, the minimum possible value a'. of aL. can be computedJmin mi
as a'. = k 8. Separation is then guaranteed if and only if a' > e and,min a min
therefore, k. > 1. Since the largest variation of any angle, due to the

quantization process, is A6, the above relation is maintained after quantiza-

tion on the square grid if it is at least: C'. - Ae > 6 + Ae ormin
a! > 8 + 2A0 and therefore a'. >(l+2pe )e which leads to the followingmin - min

relation between two precision parameters:

k > 1+2p8  (2.24)

A similar relation exists between k and p.. In fact the following

relations follow from (2.3),(2.8),(2.9),(2.16)

At W =Z kmin•Ainkmw
A£ p£ £< max k£ in'

A ma min
then 2.'

mn V min(Zmin ,min) k A. Before quantization on the square grid
min > X. Such a relation is preserved after quantization if and only if

man ma n k + At and therefore V 2 A + 2AM = (1+2p£)k. This leads to
the following relation between two precision parameters:

kA 11 + 2pt (2.25)

It is now possible to show that all the precision parameters can

be computed once the minimum detail- parameters A and 0 are given and n and

T are chosen.
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The following is a list of all such relations.

1. p TZ r (2.26)

2. pt > p (2.2T)

3. Pe tan'ip (2.28)

4. k> 1 + 2pt (2.29)

5. kc 1 + Pe (2.30)

6. k _p = T (2.31)

7. min(a > k) 0 (2.32)
min min - a

8. "cmax > (1+2pe)2. (2.33)

9. min(ki, i) >_ k£k (2.34)

10. k max >- (1+2pZ)Z/2 (2.35)

11. At <_ pkZ = /)T (2.36)

12. A 8  O .PeO = 2 tan-p =2 tan -- (2.37)

"13. IS-< kZ = T (2.38)
4 n

All these relations show that, given an irregular line drawing which

is characterized by the minimum-length and angular-detail parameters k and 8

and which is described in terms of a quantized version defined on a grid with

size T, the precision of its description is solely a function of the pre-

cision parameter n. The larger the value of n, the more precise the descrip-

tion will be. This result will actually be proved in a following chapter

when the bounds on three different types of quality indicators (i.e., figures
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of noise) will be shown to be proportional to the inverse of n, both before

and after a transformation.

2.6 Concluding Remarks

An algorithm for approximating an irregular line drawing and for

quantizing it on a square grid has been described. Relations between the

precision parameters have been shown to exist which guarantee that the

features of the drawing be preserved with the required precision. Also it

has been shown that the quality indicator of the description of an irregular

line drawing quantized on a given grid is t'-e prec~ision parameter n.
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III. TiRE ENCODING lMi¶OD

In this chapter, patterns will be shown to exist in the chain of

a straight line segment and advantage will be taken of these for compressing

the chain code of the segment. Then a comparison with other types of codes

will show the advantage of the one proposed here.

3.1 General Considerations

Let the segment £ be defined as the one connecting nodes A and B,

and defined to be positive in zhe direction A to B. Let us define a right-

handed coordinate system, X-Y, centered on A and with axes parallel to the

grid lines. The coordinates of B will be denoted by the ordered pair a,b,

where the unit of measure is the grid size T=l.

To obtain the chain C for the segment £, -ne determines the inter-

sections between £ and the grid, and selects the nodes closest to each inter-

10
section . Since a point moving on £ from A to B crosses these intersections

one after the other, the nodes associated with each intersection can be

ordered in a sequence. A segment, its chain and the plotter movements

(dotted) corresponding to the chain are shown in Fig. 8; the correspondence

between all possible chain elements and the plotter movements is shown in

16
Fig. 9. Denoting with ai the i-th element of C, a compact notation for

representing N such elements is

N
C= C -. .i " (3.1) N

i=1 i

The coordinates of the (i+l)-th node relative to the i-th node will be
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Iidenoted by aixi. In the folyo*:ing, segments are classified into three

classes. The determination of C for segments of the first two classes is

trivial. For segments of the third class, patterns will be proved to exist

and an algorithm given for the fast computation of C.

3.2 Chains for Segments of Class I

Definition 12: A segment of Class I is one for which either jal = Jbj or

a = 0, b j 0 or a # 0, b = O(jXj is the absolute value of X).

Statement: The elements of the chain C of a segment of Class I are of one
P

type only; that is the chain has the form C =iC a•' a. i = a i+ for
i=l1 1 il

1 < i < N-1, and 11 = lal = Ibi or N = b or N = a.

The first and the last node of a sequence are called the initium

and terminus of the corresponding chain.I0 Let us note that the segment

defined by connecting the initium and terminus of a chain containing only

elements of one type is of Class I. Then the chain of any non.-Class I seg-

ment may contain elements of more than one type. It will be shown later

that such a chain actually contains elements of two types only.

3.3 Chain Computation by Substitution

Let us consider the effect on C of a rotation of £, by an angle X

with respect to the origin A of the reference frame.

Na
Case 1: X + 1800, C C a. is changed into C'u = C with a-=c". + 4 (3.2)-- i=. i -1 1 i• 1_

where + .) denotes addition (subtraction) modulo eigb'..

Case 2: X + 90 , C C X. is changed into C' =C a! with -! a. + 2. (3.3)
--i=l i1 3

#, --. 4- . .. - •, ,-•% . .,.:• • _ .. >•
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The reader will note that it is always possible to find a segment

in the first quadrant of the reference frame such that its relative angle

with respect to a given segment is + 9O0 or + 1800 and its length is .-o,,•1

to that of the given segment. Hence it follows that the chain of any segment

can be computed by substituting the elements of the chain of a corresponding

segment in the first quadrant.

Let us also note that if k is the segment defined by the ordered
N N

pair a,b, with a > b > 0 and its chain is C = C a. and if C' = C a! is the
i=l 1 i~l

chain of the segment V2 defined by the ordered pair b,a, then the elements

of C' can be computed from those of C by means of the formula a! 2 a..

In other words, the general problem of finding C for a segment 9, given

the integers a and b can be reduced to the problem in which k belongs to the

first octant (i.e., a>b>0).

3.4 Chains for Segments of Class II

Definition 13: A segment is of Clas3 II if its ccrresponding seg•ment in the

a a+l
first octant hnas either b = if a is even or b = or b = if a is odd.22 o i sod

Statement: The chains of segme-ets cf Class II vhich belong to the first

octant are:
a

1. C = C a. with 0, == or i, =2j 0 for all l<_J<_2 if b = a
i=l a2J-1= 2j 2j-l = 2

a al

2. C = C wi at = 0, a2= 1 for all 1<j<a- and a 0 if b =
i=l 1 2j a 2

a a-1' a+l

3. C = C x. with 1, a = 0 for all <:< 2andt = 1 if b =a
i=l 1 2j-i= 2j 2 a

Examples of these three cases are shown in Figs. 10, 11 and 12.



39

-j.-

I)<I V)

:i) cl I
_ _ ~ ci. I

4Lt



C,)

L- -

C,)



coI

.-i

~~01
it w

I I.-

+ C~ -j

.. j.

Cr



112

3.5 Chains for Scguents of Class III

Definition 1i: A segment is of Class III if its corresponding segment in

> b O, hereb =a .fai vno
the first octant is defined by a > b > b >0, where b = if a is even or

o 02

bo =.-if a is odd (i.e. b = L where 1-J denotes the integer part

of X). In the following it will be said that such a corresponding segment

is in the first half of the first octant. Let us also note that such a seg-

ment" lo neither of Class I nor of Class II.

Lemma: The chain of a segment of Class III belonging to the first half of
the first octant contains only O's and l's.

Lemna: The number of l's, nl, in the chain of a segment of Class III be-
long!ing to the first half of the first octant is smaller than the
nunwver of O's, no. In particular no > bo > n1 .

Lemma: ELeients of value 1 in the chair of a segmert of Class III be-
longing to the first half of the first octant a'e separated by at
least one element of value 0.

a
THEOREM 2: The chain C' = C a' of a segment defined by a, a-b with

i=l oi
a > bo > b > 0 can be computed by substituting the elements of the

S~a
chain C = C a. of the segment defined by a~b. In particular

i=l

•' : - •.(3.4)

Proof: By construction ae. = =! I and a : i+l - i Fig. 8,x Ix iy a [a j i
• b

where [x] denotes ,whe integer closest to x; since b < b° , a < 1/2 and
0 a

a! = 1i+l- 3 ($+-)/a} - [i-bi/a. = 1- [b(i+l)/a] + [bi/al = 1 - a.
ly L 1 y

Then when a. C, u! 1 and conversely; therefore when a. = 0, a• = 1 and
2.Y ly 1

conversely. The fact that a. can only be 0 or I is ensured by a previous

lemma.
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Lemma: A segment is of either Class I or Class II or Class III.

Let us note that because of previous considerations, the chain of a

segment can be computed by substituting the elements of the chain of a corres-

ponding segment in the first half of the first octant. This in turn shows that

the properties and patterns detectable for such chains are valid in general

for the chain of any segment.

It can be stated now that the chain of any segment contains at most

elements of two types, whose difference modulo-eight is either 0 or 1, and

that in general the two types of elements are present in the chain with a

different number of occurrencec.

3.6 Chain Patterns

Froo. now on, only chains of segments of Class III belonging to the

first half of the first octant will be considered. The results of previous

paragrapns guarantee zhe generality of the results.

By definition the values a and b, specifying the segment Z, satisfy

the relation a > b. = _ 2*I >.b > 0; moreover the chain C of Z contains

n zeros and n1 ones with
0 2 _I >_ n. = b > 0. (3.5)

Let us denote with ij. the position in C of the last zero preceding the

k-th one. The nun.ber of zeros between the k-th and the (k+l)-th ones is given

by XA+, = Ik+1 - Ik - 1 which will be referred to as the length of the (k+l)-th

sequence of zeros in C.

-4• , . - ... .. •... ,.. . , • •' • r ' " • • ° ' ' ' . -
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Lemma: Since I is the largest integer such that b I - k < 1/2, then

Ik = i(2k+l)a/2hI (3.6)

Proof: Let i .ini f. be such that i is an integer, 0 < f. < 1 and
ka aa ~ IIH

= -. Sinceb <ka4. then I = Ik i =(2k+l)j

THEORP'M 3: For all 1 < k < b-1, kk+1 can only have two values, namely

h l/mi and h-1, (3.7) where rn w- is the rational slope of the
segment with respect to the horizontal axis of the frame of
reference.

I aProof: Let h and fh be such rhat h is integer, 0 <_ fh < 1 and h + fh

Also let n = 2k+l and i and f. be such that i is integer, 0 < f. < 1 and
i+ fi =• then h Lh+f±y [l/m; ja/bj and i = na/2b

- -- ii. "hi

k k+l [.(n+2)a/21I -L 6/2d- 1 i + h + [-f + lhJ- i - fij- 1 h-lI + Lfi~fll1
and, since by definition both f. and f are positive and less than one,

1 h

0O< fi + fh<2, _. I 0 or If+fh = 1 and,

therefore, ,k+l -h- 1=L.mI-l_ or k (38

THiEOREM 4: If 9, Z.b+1' then Z (3/J l9)/2
Proof: Let us note first that the segment JV defined by 2a, 2b can be

regarded as the concatenation of two segments X, V2 each defined by a,b and

that the chain C" of £" is the concatenation of the chains C, C' of k, V'

.(C'and C.' are identical since 1 and 9V are defined by the same integers).

In particular C" has the same value for h as C and C'. however, the

%- -
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(b+l)-th sequence of zeros in C" is generated by the concatenation of the

(b+l)-th sequence of zeros in C and the first sequence of zeros in C'; and

this last sequence is identical to the first one in C. Therefore, the

following relations hold for C:

£i+ " r £ £0 bl

1 Ab+ h or P. 1 b+l -h-i andkI £ b1 l

Case 1: h is even: 2Z1 = h, ki =h/2 or = [h/2J.

Case 2: h is odd; 2Z1 = h-l,,Z = 111+1/2i = I(hIl)2+l/2 IhII.

Therefore, it is always true that k1 = kb+l Lh/2j (3 10)

Let us note that because of geometric symmetries ki £b+l'with the

only exceptions being those cases in which there are ambiguities in the chain

as will be shown later in considering the effect of certain particular com-

binations of values fcr a and b.

THEORE14 5: The number of sequences of zeros with length h, nh, and the
number of seauences of zeros with length h-1, nhI, are given by

nh1 b- n (3.11)

n a - bh = (a/b - La/b )b bfhs bja (3.12)

where bla is the residue of a in base b.

Proof: If one concatenates the first and the last sequence of O's in C,

one obtains b sequences of O's whose length is either h or h-l. Since the

total number of O's in C is n = a-b and also n (h-l)b + n then
0

= a-bh = a-bLa/bj = bla. The expression giving the total number of O's

ta



can also be rewritten as no hr + (h-l)nh_, and, therefore,

nh- ý b- (a-b La/bj) b-n h'

3.7 Algorithm

Advantage is taken here of the fact that the length of a sequence

of O's in C can only assume two values for predicting the position of the

next element of type 1 in C. A test is then made for checking the correctness

of the predicted position and eventually this position is modified before

recycling the algorithm. This occurs when the actual length of the sequence

of O's is h. In the flow chart shown in Fig. 13, array I(k) specifies the

position in C of each of the elements of type one; Vl(k) and V2(k) are arrays

containing the even multiples of b and the odd mu1.tiples of a. Let us nofe

that a comparison between the integers VI and V2 corresponds to a comparison

between the ordinates of the intersections of the segment with the grid and

the ordinates of the horizontal straight lines passing through the centers

of the squares of the grid. In other words, instead of comparing bk/a with

i+O.5, one compares 2nb and (2i+!)a.

As can be seen by looking at the flow chart, the branching after

the test comparing VI and V2 corresponds to the two situations in which the

length of the k-th sequence of zeros is h-l(yes) or h(no). The constants

appearing in the flow chart are

C1  h Ia/b, C2  2bCI, C3  2a, C 4  2b, k =b-l, F 1=, I(l)= LC1/2J+l,

Vl(l) 2bI(1), V2(1) a.

The number of tests and additions required by such an algorithm can

be computed since the number of sequences with a given lergth is known.

• I • mlll•' ' .... -- ili I ! - ' I I I i
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a~b

C2 = 2bC I
C.3 = 2a

C4 = 2b

K b-1
IM1 = +

Vi (1) = 2ibf()
V201) = a

I (K+i) Ml+=

V1('F+1) = v 4

V2(7+1) = 27)C

i 1Vi(041) vif"K+i)+C4

Y E rSNO

STOP
FIG. 13

FLOW CHART
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Disregarding the setting of constants and the generation of the chain once

the positions of its elements of type 1 are known, the number of additions

s and the number of tests t required by this algorithm are t= (b-nh)2+2nh= 2b

and s = 4(b.-nh) + 6n = 2a - 2bh + 4b = 2a + 2b(2-h).
h h

The fastest previous algorithm known to the author for generating

the chain of a segment is the one described by Bresenhaec3 which requires

2(a+l) additions and 2a tests. By hypothesis 1a/21 > b and h = La/bj > 2, then

the proposed algorithm is faster than Bresenhamts. In fact we have the fol-

lowing results 2(a+l) - s 2 + 2b(h-2) > 0 and 2a - t 2(a-b) > a > 0,

and, if for example b = b0 = La/2J, h = 2, then 2(a+l) - s = 2 >0 and

2a - t = a > 0, which shows the advantage of the proposed algorithm even in

the worst case.

3.8 Ambiguous Chainlets

Let us recall that a chainlet is a sequence of adjacent chain elements

10
belonging to a given chain.

Definition 15: An ambiguous chainlet in C is one defined by two adjacent

chain elements generated by a grid intersection occurring at the midpoint

between two adjacent nodes of the grid.

Let us note, as shown in Fig. 14, that if the two nodes, defined by

the intersection of the segment with the grid, have x = k and respectively

y = i and y = i + 1, then the following relation holds bk/a i + 1/2 cr

bk = ia + a/2 with 0 < i < b - 1.

Statement: A necessary condition for the existence of ambiguous chainlets in

the chain of a segment defined by a,b such that a > b° = a/2J > b > 0

is that a is even.
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In the following it will be assumed that a = 2n, b° n an
0

n > b > O; ; bk = (2i+!)n with 0 <i <b-.

Statement: If a = ?n and bin = 0, where bin is the residue of n in base b,

then there are b ambiguous chainlets in C.

Comment: It is sufficient to note that tilere exists an integer j such that

= n/b and k = (2i+l)j and, therefore, there s-e as many vt•ues for k as i's

in the set {1,...,bl, and hence the number of ambiguous chainlets in C is b.

Statement: If a = 2n but bin 0 0 and b is even, then there are no ambiguous

Chainlets in C.

Comment: It is sufficient to note that n/b is not an integer, and (2i+l)/b

cannot be integer either, since b is even and (2i+l) is odd. Since by

definition k is an integer, k = (2i+l)n/b has no solution for b even.

Statement: if a = 2n and bin # 0 and b is odd, then there is just one am-

biguous chainlet in C. Such chainlet will occur in the middle of the chain.

Comment: It is sufficient to note that n/b is not an integer, but that

(2i+l)b is integer ii i - (note that i < b - 1), and, therefore,

k = n = b° = a/2 which corresponds to the position of the midpoint of the seg-

ment and of its chain. Moreover, since the solution for k is unique, then

there is just one ambiguous chainlet in C.

Definition 16: A chain C is called non-ambiguous if either a is odd, or both

a and b are even and bl(a/2) $00;,

Definition 17: A chain C is called one-ambiguous if and only if a is even,

b is odd, and bl(a/2) • 0.



51

Definition 18: A chain C is called b-ambiguous if and only if a is even, and

b (a/2) = 0.

Let us note that a non-, one-, or b- ambiguous chain contains zero,

one, or b ambiguous chainlets. Each imbiguous chainlet allows one to build

two different chains according to which solution is accepted for the ambiguous

chainlet (i.e. the solution Olor the solution 10).

3.9 Pron)erties of Ambiguous Chains

As indicated in Fig. 15 an area can be associated with a segment and

its chain.. An algorithm for computing the area associated with a chain has
10

been derived by Freeman. In the following a. will denote the area associated

a serment A and a the one associated with its chain C. Areas will be measured
c

in terms of T?, where T = 1 is the elementary size of the grid.

Statement: If C is non-ambiguous, then a£ = a (3.13)
c

Statement: If C is one-ambiguous, then Ia.-acI = 0.3 (3.14)

Corment: The nroof is based on the fact that there is only one ambiguous chain-

let in C. According to which solution is chosen for such chainlet, a will bec

either larger or smaller tha a kby 0.5.

Statement: If C is b-ambiguous, then la.-acI < b/2 (3,15)

Comment: If the solution 01 is accepted for all the b-ambiguous chainlets in

C, then a will assume its minimim value. Because of previous statements, it
c

can be concluded that in such a case Ia.-ajI = b/2. The minimum value of

/aI-acI will occur when Lb/2J solutions for the chainlets are of the type 01
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and Lb/21 of the type 10. In such a case, if b is even, a = ac and, if b is

odd, Ja-aIc = U.5 as in the case of one-ambiguous chains.

We note that the arbitrary rearranging of a b-ambiguous chain, that is

the arbitrary selection of the solution 01 or 10 for its ambiguous chainlets,

may destroy the chain patterns that are typical of a straight line segment. In

particular this rearranging of ambiguous chainlets is responsible for the fact

that the first and the last sequence of zeros in C are in general not identical;

however, the absolute value of the difference of the lengths of these sequences

cannot exceed one; that is,

I <1-kb+i 1 (3.16)

3.10 Translational Invariance of Chain Patterns

We will now show the invariance of chain patterns with respect to

vertical translations of k by an amount c, which without loss of generality is

Icd < 1/2. Then the invax_-nce with respect to horizontal translations of k

by an amount Idi < 1/2 will be considered. As in the preceding paragraphs, it

will be assumed that C is the chain of a segment k defined by a,b with

a > b = La/21 > b > 0. Let i,gh be integers, and ffgfh be positive numbers

less than one such that the following are true with n = 2k + 1 and k integer

i + f. =na/2b, 0<f 21 , i=na/2b , n > 1

g + f ca/2b 0 < 1 f< 1 Ica/2bl ,jI < 1/2

h+fh =alb 0< f < 1, h= !albJ
h -h N

Let us also note that the following relations hold:

N)
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1. i + fi > a/2b > ca/2b = g + , i_> g

2. ea/b < a/2b = (h+fh)/2 , h + Fh> 2 g+ 2 f , h > 2g
ýh :h

3. n>1, h>2

THEOR)?M 6: For all 1 < k <b.l• £k. = h or t h-i for all c, lcI<1/2.
k+ k+1

Proof: I, n,k1 ,, La + i _ in ,i£k ! l b "g - , ._ _ -2.-1 - 1

-1i"-h--) (fi+f'g) - L(i-i") + (1'-fg ) - 1

By definition -1 < f;. - < 1. Thus there are two possible cases:"~. g

Cao: 0<' f < i,11 --. ri 0 , 0 <1fh+f.-f <
Case 1: 0 < f - fj -i -g 0i g

h-l
a. h = A•, f+ =h 1+A I

ai +i h 'g k+l I h- h

Case 2: - 1 < f - f < 0 < 1 + f. - f < 1

and 0 < 1 + f. + f. - f < 2. There . two further possibilities:I n g

Case 2a: i - 1 0 > g + 1 and then

h-1
i 4 g -1 + 1 + fi + fh - f - (i-g)+l-i -h

Case 2b: i - g -1 < 0 , i = g and then

h-i
P.k+ = h-i + + f. + fi -+ rfg h i

THEOREM 7: For all I < k< b - Is9, k+1  =h or kk+1 h - 1

for all d,ld < 1/2.
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Comment: The procf for this theorem is easier than the one for Theorem 6

since in the expression of 9k the constant d does not appear multiplied by
k+1

the inverse of the slope of k.

Let us note that since any translation in the plane can be regarded as

a combination of a vertical with a ho-i zont-] tran-lation, and since any segment

Z has chain patterns corresponrding to those of the chain of a segment of Class

III belonging to the first half of the first octant, it can be concluded that

such patterns are invariant with respect to any translation of k in the plane

and for any segment t. In the case of the first and the last sequence of zeros

in C, the translational invariancy is not guaranteed because of the truncation

effect caused by the grid-intersect quantization schemv, This truncation ef-

fect may cause either 91 or b+l' or both, to be reduced by one element. There-

fore the following relations hold:

1 91 + Zb+l is either equal to h or h-1 or h-2 or h-3, and

2. k 1 - Xb+÷l < 2. (3.17 )

3.11 The Encoding Scheme

In the previous section patterns have been shown to exist in the chain

of a straight-line segment. By taking such patterns into account it is now

posbible further to improve the efficiency of the standard chain code. The new

encoding scheme proposed here is essentially a modification of the standard

chain code.

The code we propose consists of two different formats, one for the

case of straight line segments of Class IIi and one for the cases of segments

of Class i or II.
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In the first case. the code bagins with a zero follot.ed by a bit

specifying whether the n:.ý;ent belovgz to t2xe lower part of' the octant (0)

or not (1). The following three bits specify the octant. Then a number re-

lated to the binary value of h-i is stored. The odd bits of such a number are

the corresponding bits of h-i and the even bits are all zeros except for the

one in position two which is a one, and which indicates that the last bit of

h-i is the one "ollowing it. For example if h-i is 51= 1011 the number to
10 2

be stored is 01 00 11. FAnally the code is completed by what can be referred

to as the structure of the chain followed by two bits equal to zero which

indicate the end of the code. The structure of the chain is a sequence of

strings of zeros separated by ones. Empty strings of zeros are used to encode

the inf'ormation re..arding the first, the last and those sequences in C whose

length is h-i. Strings containing a single zero are used to encode the infor-

mation regarding those sequences in C whose length is h. Since no two adjacent

zeros appear in this structure of the chain, a code consisting of two zeros

can be used to terminate it.

The number of bits required by the proposed code with the presented

format is

B= 1+1+3+2[ log2 (h-l)j +1] +b+nh+2 = 9+211og 2 (h-l)J+a-b(h-1) (3.18)

If the data had been stored by using the standard chain code, then the number

of the required bits would have been Bc = 3a. Then we have the following:

B -B = 3a-9..2 Log (.,-l) -a+b h-1) 2a-0-2o J+b(h-1)
c mc 0-~ho - Ig 2 (h-")
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Sincey = - log2 x >0 for all x > 1, theni x > 21og2 x >2 og2

and therefore

B -B > 2a-9-(h-1) + b(h-l) = 2a-9+(b-1)(h-l) (3.19)C mc0

which is always positive for a > 5, since b > 0 and h > 2, and which grows

linearly with a (see Table I, Chapter II, for relations between precision and

segment length).

For example the chain C=44344434443344 which requires 39 bits when the

standard chain code is used, will require only 16 bits when the proposed code is

used. In fact since a = 13, b = 3 then h = 4, h - 1 = 3 and the new code is

0 0 000 01 11 1 0 1 0 1 00

The proposed code requires 23 bits less than those required by the chain code,

in this case, and this is a saving which falls short of 60%.

In the case of straight line segments of Class I or II a different

format is used. Such format is identified because its first bit is set to one.

Then a five bit number identifies the particular case, to which the chain cor-

responds, among the 32 possible cases; for example

Case 1: a 0, b > 0 Case 3: b = a, a > 0 and a even

Case 2: b= lI a > 0 and a odd Case 4 b = ,a > 0 and a odd

Case 5: b = a > 0 , etc.

Then a number related to the binary value of the length N of the chain

is stored. The bits in odd position of this number are the bits of N and the

bits in even position are all set to zero except for the one in position two
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which is set to one and which indicates that the last bit of N is the one

fol~o1*'g it, For cxaxcle if N = 5)1 = 101)2 it be.ll be euc d as 01 00 11.

The number of bits required by this format of the proposed code is

Bi 1+5+2(1Log2NJ+1] = 8+21_og2I'J (3.20)

The number of bits requiued by the chain code is

B = 3N
and therefore

Ic 3-8-21og I > 31--8-N = 2(N-4) (3.21)

which is always positive for N 1 5 (as for the case of previous format) and

grows linearly with N (see Table I, Chapter II, for relations between precision

and segment length).

For example the chain C = .4344343434333 which requires 39 bits when the

standard chain code is used will require only 14 bits when the proposed encoding

method is used. in fact since N = 13) = 1101)2 the new code is
102

1 01101 0101 00 11

The proposed code requires then 25 bits less than those required by the chain

code, in this case, and this is a saving which is a little above 60%.

Let us note at this point that an efficient code not only has to

satisfy the recuirement of having the shortest length but it also has to be sucl

to ease the processing of the data. Often the two requirements generate con-

flicting requests and, therefore, the problem becomes the one of finding an

optimal solution.

For exaLaple, if the incremental coordinates a,b are the elements of th
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selected coding scheme, and they are encoded similarly to h-I in the first for-

mat of the proposed code, then the length of the code is given by

B = 2(Iloea•I+) + 2 (jlogbj+l)= 2L1oga1 + 2-ogb, + 4 (3.22)mc -'2- 2;1- -2 -2-0

However, if the inverse of the slope of the segment is used together with its

related b value and they are encoded similarly to h-1 in the first format of the

proposed code, then the length of this code will be given by

Bs= 2 (Llog2 k]+l) + 2(Llog2bJ+l)> 21.og2 '1+2 (3.23)

This last code is probably the shortest, however it does not make it possible to

transform the data easily as the chain-structure code proposed here. First of

all the actual chain will have to be generated every time the data has to be

displayed, and if it is required to rotate the segment from an octant to the

next, complicated operations will bU involved. If the encoding scheme proposed

here is used, then the last problem can be solved by simply changing the first

part of the code by applying chain substituzicn techniques. The same ease of

data transforming results in the case in which it is necessary to scale iso-

tropically by an integer factor. In fact, the octant and the value for h-l

are not affected by such a transformation. In both the latter cases the use

of the proposed code allows one to simplify the further processing of the data.

The proposed code is illustrated in Fig. 16.

3.12 Concluding Remarks

An analysis has been presented of patterns in chain-encoded straight

line segments. The classification of segments and the properties of their

chains have been discussed. The problem of computing the chain of a given
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segment has been shown to be equivalent to a simpler one in which the segment

is of Class III and belongs to the first half of the first octant. Chain

patterns have been found for such segments together with their invariance with

respect to translations of the segment in the plane. Special considerations

have been dedicated to the case of ambiguous chainlets and their area properties.

Moreover an algorithm has been described for the fast generation of the chain

of a straight line segment and its efficiency compared with that of a well-

known algorithm. Finally a new encoding scheme has been proposed which takes

advantage of the so-found patterns for improving the efficiency of the standard

chain code. Although for the case of short segments other codes may offer com-

parable or even better efficiencies, an indication has been given of the advan-

tage of the proposed code for simplifying the further processing of the data

whenever such processing is a quantized rotation or an isotropic scaling.
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IV. MEANSFOPUMATIOiTS

In this chapter regular transformations (Definition 20, page 60)

are considered. It will be shown that any regular transformation can be

apprc•ximated by a sequence of elementary transformations such as rotations

and scalings with any required precision. Relations among transformations

and properties of certain transformations -ill be investigated. The purpose

of this chapter is to show that the problem of trw~sforming a quantized draw-

ing is no more complicated than the one of rotating it or of subjecting it

to a constant non-isotropic scaling.

In the follco:ing chapter the quality of a quantized line drawing

is defined in berms of a set of figures of noise. In a later chapter the

results of this chapter applied to the so-defined figures of noise will lead

to the discovery of the relations between the bounds on the noise figures

before and after a transformation. Such relations will constitute a design

formula for the precision parameter n which controls the proposed quantiza-

tion scheme. It will be possible to find with which precision n one must

quantize an input irregular line drawing so that, after a given transforma-

zion has been applied to it, the quality of its description is still satis-

factory in some sense (i.e. the transformed figures of noise do not exceed

the prefixed bound).

4.1 General Considerations

The kinds of transformations considered here are those that map the

points of the plane into themselves. Let us denote with x and y the

|;I
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coordinates of a point with respect to a given frame of reference, and let

us denote with u and v the coordinates of the point of the plane correspond-

ing to the one with coordinates x and y through the given transformation M.

Then we can write, in general, that u = f(x,y) and v = g(x,y). In the

fol!bwing 14fl(f,g) will denote such transformations.

Let us note that something can be said abou.t f and g since the

transformations which one might want to apply to irregular line drawings

belong to the class of smooth functions and certainly do not include Dirac

or Weistrass functions.

Definition 20: A reitular transformation Mr1(f,g) is one for which f and g

are single valued functions whose first partial derivatives exist and are

continuous.

Let us note that a regular tansformation can be expressed in th-.

following local form:

du f dx + f dy (4.1)
x y

and

dv = gxX + g dy (4.2)
y

where f denotes the first partial dorivative of f with respect Lo z . It is

now possible to separate regular transformations into three classes.

Definition 21: A regular transformation is of Class I or elementary if

f, Cy' ~gy are constant and either f =gX = 0 and f$ g (non-isotropic
scaling, S ) or f = g =0 and £ g (isotropic scaling, Sf ) or

scx19 f y Y x x

2 2xf +1Y = 1, - < -- ,g =x'g = - f (rotation, R1, cos Tx)
X y -X- y x x y

IA



Definition 22: A regular zransformation is of Class II or composite, if fx"

fy, GX$ gy are constant and the transformation is not of Class I.

Definition 23: A regular transformation is of Class IiI or general if it

is neither Class I nor Class MI.

As will be shown in the following paragraphs, a composite trans-

formation can be reduced to a composition of elementary transformations.

It will also be shown that a general transformation can be approximated

with any required precision by a set of composite transformations and,

therefore, by a set of compositions of elementary transfornations. Let us

also note that non-linear transformations are always of Class III and that

linear transformations are either of Class I or Class II.

4.2 AP-r iatior. of General Transfornations

Statement: It is always possible to find a set of composite transformations

which will approximate a general transformation with the required
37

precision 37

Comment: Since the given transformation is regular, it can be expressed

in local form. If the infinitesimal dx and dy are replaced by the finite

Ax and Ay, then the percentage errors due to the application of the local

form of the transformation are:

f(x + &x, y + Ay) - f(x,y) - f Ax- f Ay
=u f(x + Ax, y + Ay) X (3)

g(x + Ax, y + Ay) - g(x,y) - g5X - •vAy
V g(x + Ax, y + Ay) (4.4)

:%, I
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Then if a bound is required on such errors (r~.,.ired precision) the maxi-

mum values for Ax and Ay can be computed from previous formulas. The

quadruplet x, y, Ax, Ay specifies a region of the plane within which the

given general transformation can be approximated with the required precision.

In fact, as Ax and Ay tend to zero the associated error tends to zero since

a general transformation is regular. In general, it can be said that it

is possible to decompose the finite region over which the general transfor-

mation is def.ned (an irregular line drawing is finite in extension) into

a set of smaller regions within which the general transformation is approxi-

mated with the required precisicn by a single composite transformation.

The foregoing demonstrates the importance of studying composite

transformations. Since a transformation of Class !I or Class I is charac-

terized by constant values for f , fy' g the local form of the trans-

formation can be rew:'izten as follows:

U= f x:x + f y (4-5)

v g x + g y (0;.6)

or, in matrix no+ationr, as 1.41 A w where w' =II W =

and A =Ifx Y

In order to simplify the following forniulas, the following notation

will be used from now on. A Class TI transformation will be represented by:

la b
a,b,c,d Ic d1



Rotations by an angleX with respect to the center of the reference frame

will be denoted by RA. Isotropic scalings by a factor a, S and non-

isotropic scalings by factors a and a, S are given by

cos -sin , a 0 s, 0

A sinX cosX 0 a 0

4.3 Relations Among Linear Transformations

In this paragraph some interesting relations among linear trans-

formations are shown. Their importancewill become clearer later when the

problem of decomposing a Class II transformation vill be studied. The

follcwing relations offer an insigh. into the transformation problem be-

cause they show that in general, the ordering of a composition of trans-

formations (i.e. ordering with which many transformations are applied one

after the other ) cannot be disregarded.

Lemma: R X R A = RxA R l (4.7)

Comment: It is sufficient to note that since R A R Rl l1 '2 1 2

then R R+ =l R B
21 2 1 x1 X2

Lemma: S a,S S S , S a, (4.8)

Comaent: It is sufficient to note that since S ,ý SYa = S ¥,60

then S S *=S S

Lemma: RB S a Sa RP (h.9)
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aIComment: It is sufficient to note that Sct :4 0 11,- 01

Then R X Sa RX aI = a R >. 1 a R A aI R A SOX

Lemma: S S S S (4.10)
a,$ a 1, -6/a"= S a aM'l,

Comment:
S ja 01 all 0,aj aIll 0/.1 S Sa, 0 0 of 0 a 1,0/a

S a 0 ct/ý 0 ýj a/ý 0 S S
U'a 0 0 11 0 1 a/5'l

Lemma: R X S a',6 + Salý RX , a + 0 (4.il)

Comnent: It is sufficient to note that

R S -1a cos sin X a cos -a sin X S RX a'O I a sin A Cos X1 IC sin C cos Al aa A

if either a 0 or X= 0 , but these cases are to be excluded because either

A is not positive or a is not- diff"Lerent from 0. An intuitive explanation

of the apparently strange result of this ler=a is offered by Fig. 17. There

a rotation with X = 45 0 folLiwed by a non-isotropic scaling with factors 2

and 1 is applied to a square, which is, therefore, transformed into a rhombus.

When the scaling is applied before the rotation the result is a rotated

rectangle.

4.4 Standard Deccma)ositon of Class II Transformations

Let us note that given a Mass II transformation L, it is not

possible in Ceneral, to represent it in one of the following ways:



4;ýýOS 2,1

N ~

NON-COMMUTAT [VITY OF TUNSFORHATIONS



69

1)La,b=:c,d A a,03

2) Lab 3cd R

3) La bcd S 6 R, S,

In fCact, L is given in terms of four numbers wher,"as R, S and S R are
A x ,

completely specified by three ntvmbers. It is possible to show that if the

four numrbers specifying L, a,b,c,d are such that ab + cd = 0 then

L R S asd if they are such that ac + bd = O, then L S R•.
a,b,c,d A cL,ý a,blc,d ca,I

La,btc,d Sy,6 R A S because Sy6 R , S ( is a function of five nwnbers.

THEEOREM 8:

La,b~c,d R S a,f R

"".:here, denoting with a,b,c,d the elements of L, we have the
following

"J! l = 2 n" ="(n2 + n 3 + Anl1 + n 4)

, a2 d - a 22 + n2 (/n 2 + n 3  - 1

TI 2  - 3 ~ 0.13)

I bc A (tan- + ten-3
3 21 n n

1 2
c - b 1 nh 4_ n 3c-0 . -- (tan-I tan-I )

2n!n2

Proof: Let us note that

R6 Sa,f R sin± cosXl 0 : sinA cosX = La,b,c,dic di



and therefore

a cosS cosX~ -1 sin6 sinA =a

1-a cos6 sinX - 13sin6 cosX = b

a cosX sin6 +13cos6 sinX =
-a; sinS sinX +1 cos6 cosX =d

or

(13a) cosX cosc5 + ('3-a) sin2X sinES = (13-a) cos(X-6) d -a

(1-ce) cos6 sj.nX - (13-a) sin6 cosA = (03-a) sin(X%-6) c + b
0 1+0) cosA cc-c6 - O+a) si~iX sin6 = ($-m:.) cos(X+S) = d + a
(13+a) cos6 P*-nX * ((>ia) sianS cosX = (13+a) sin(X+cS) = c -b

c~1  2 2 2
(03-a) =(c+b) + (d-a)

(13+a) =(a+d)2+ (c-b)2
'tan(0.4 c + b

c.-btan(X+cS)=

Then

(c-- + tan -ý

-12 (a 1  c -b -1c+b
2a d~ tan

and for a and 13we have

2 2 2 2 2 2
IM+ F a + b + c + d

Lettia da aba- b c
Letin n2 a2 b.2 + 2+d 2and mn da-bc
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2The solutioh is given by $32 + •L= 2  or ' _ 282 + 2=0

2? b a /a b
= 2. /2  +/1-~

and therefore to n2 -n - e s fwnv
2 and 2 2

It can be shown that the follo Ving identity is true

"V- I..

22n 2r, + 1 +- 2r

Applyi~n the ident-ty to the .foove express.ion fo' $3 , we have:

/ /n
24 2 + n- n + m2

+_.. ( -d 4- (. •c2 + /ad 2 ) =

-• -1

-2

which leads -to a solution analogous; to the one found for r5. We have

1 ~ 2ad2 + 2)2

-1 (/(a(d) + (b+c) + (c..b)) QED

Let us note -that since a g~eneral transformation can be approximated

with an~y requaired precision by a set of composite transformations, then as

a consequence of the previous theorem, it can be approximated by a set of

sequences of elementary transformations.

The importance of hawing reduced all possible transformations to

sets of sequences of elementary transformations will become clearer oiater
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when these results will be applied to study the quality of the quantized

version of an irregular line drawing after a transformation. This quality

will be expressed in terms of a set of figures of noise in the next chapter.

In particular, for all the figures of noise which are invariant with respect

to rotation and which get worse with scalings proportionally to the largest

of the scale factors, the effect of a non-isotropic scaling S a or of the

linear transformeation Lbd R6 S R or of the non-linear transforma-
a~b~~d 6ao I

tion defined by the set {R6 Sya R•} with Y : a and 6 < 0, will be the same.

Since a Class !II transformation of particular interest is the

Mercator Projection, it will be presented briefly in the next paragraph.

It will serve as an example of how to simplify a transformation problem

5y taking into account the peculiar characteristics of a Class III transforma-

tion of known structure.

4.5 Mercator ?rojections

One of the possible applications for the procedures developed

here is that of automatically generating geographic maps from preprocessed

satellite pictures.

Consider a picture that has been taken from a satellite orbiting

the Earth and which has been preprocessed to abstract irregular line draw-

ings from it (continental coastlines). Then the quantization scheme pro-

posed here could be used for quantizing the irregular line drawings, and

this will lead to a set of P-structures. Using a digital computer it would

then be possible to simulate the projections of these P-struitures onto a

sphere from a point of projection specified by the position of the satellite

j I
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relative to the Earth at the time when the picture was taken. Then by

applying to the resulting data the required georgraphic transformation

(a Mercator Projection, for instance, or, in any case, a Class III transfor-

mation) the new data could be obtained and displayed by using a digital

plotter.

The input to the digital computer can be obtained by means of

a flying spot scanning device from the actual satellite picture, and the

output will be a geographic map drawn by a digital plotter.

Among the many types of maps which are of interest, those referred

to as Mercator M4laps are worth particular consideration. in the following

the specific reasons which make Mercator Maps so interesting are given,

together with the equations necessary for a clear understanding of the

Mercator transform:-.ation. Then a proposed method for computing the Mercator

Projection of a set of arcs of a circle given on a sphere is presented

(the projection on a sphere of a P-structure is a set of arcs of a circle)18 '36

Definition 21s: A Lossodromia (Greek work for curve with constant angle)

is a curve on a spherical surface making a constant angle with each inter-

secting meridian.

Definition 25: A. Mercator Projection is a Class I1I transformation which

maps a lossodromia, defined on a given sphere, into a straight line,

defined on a given plane.

In order to find the analytical expressions governing a Mercator

transformation, the following steps can be followed. First the unit vector
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tangent to a lossodromia is computed, and then the elementary arc of a

lossodromia and the polar coordinate equation of a lossodromia passing

through a given point on a sphere are found. This makes it possible to show

that meridians are mapped into vertical straight lines that are uniformly

spaced in the plane, and that parallels are mapped into horizontal straight

lines whose spacing in the plane is symmetrical with respect to a horizontal

straight line (the equator) and non-linearly spaced. Any lossodromia can

then be plotted by connecting with a straight line the two points of the plane

corresponding in the Mercator Projection to the extreme points of a losso-

dromia on the sphere. The symbols usually used in the literature for

representing points in the spherical coordinates are indicated in Fig. 18.

The following is to be noted:

1) The unit vector t.ngent in P to the local meridian and oriented

towards the north pole is

t I sin4l cosX 1 i - sin4I sinNI + cos(

2) The normal at P to the surface of the sphere is:

44 4.
n O cos /osl I + cosI sin J + sineI 1  (4.15)

3) The unit vector at P ts the local parallel and oriented towards

east is given by:

bI sinli - cos?! j (4.16)
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4) The unit vector tanpnt to a lossodromia characterized by a constant

angle y is given by:
S.i i =oOY + ÷ cosy, (4.17)

= Cos!yt + si eosi + cosJ+ cosyk

where

cosc£ = sin in -scos cosy X sin- l

coso8t = - siny cosX, - cosy cosX, sing!

coSy0 = cosy cosO1

5) An arc of a lossodromia is given in vector notation by:

ds d• i + dy j + dzi (4.18)

where dx ds costA, dy = ds cosO. , dz = ds cosy,

6) The equation of a lossodomia in spherical coordinates is, in

local form:
L = _ (4.19)

tany

7) The equhtion of a lossodromia passing through e. point with spherical

coordinates X and and with constant angly

-= n[tan - c) / tan -(4.20)

8) A Meruator Projection is a Class III transformation defined by the

following analytical expressions:

X, y = f(O) Zn tan 1(-W ) (4.21.)
2 2
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where x and y are the cartesian coordinates of a point in the

Mercator plane and A and 4 are the spherical coordinates of the

corresponding point on the sphere.

As was mentioned before, in the Mercator plane meridians are

represented by vertical, uniformly spaced, straight lines ar" parallels

are represented by horizontal non-uniformly spaced straight lines. The

points on the map corresponding to the poles are at infinity in the vertical

direction, since f(+ 1) = +

Finally, let us note that in Mercator Projections a single point

P with spherical coordinates (X,ý) is mapped into X + 2n¶,f( ) for all

integers n.

By construction any lossodromia corresponds to a straight line

¶ in the Mercator plane. The angle characteristic of each lossodromia can

then be measured on the map as the one between the straight line correspond-

ing to the given lossodronia and the vertical direction (corresnonding to

the one of each intersecting meridian). This feature makes the map ,,ery

useful for navigational purposes when the only available navigational

instrumentation consists of a magnetic compass. Fig. 19 shows the basic

structure of a Mercator Map as it has been presented here.,

For the saka of completeness let us note that since a lossodrumia

is not an arc of a circle, it does not represent the shortest path between

'wo points on a sphere. A lossoodromia is !'ompletely specified by three

numbers, nwiely the spherical coordinates of o,:e of its points (A." ±

and its characteristic angle T. The radius of the sphe. aoes not influence
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the lossodromia's equation or position on a Mercator Map but it does

effect the length of the path between two points on the same lossodromia.

Length can be easily determined, however, by making only one measurement

on the map.

Statement: The length of an arc of a lossodomia is given by:

As = R cos€ AX if "1 =22
LAs = - AO otherwise

cosy

Comment: The proof for the statement involves only routine processing

of analytical expressions and is not repeated here.

4A6 Mercator Projections of Circular Arcs

A problem of particular interest is the one of Mercator projecting

a set of circular arcs defined on a common sphere. Since the required

transformation is of Class III, the procedure presented earlier could be

applied for reducing the transformation into a set of sequences of elementary

transformations.

However, since the Mercator projection has been shoim to transform

"a grid defined on a sphere by uniformly spaced meridians and parallels, into

"a grid defined on a plane by uniformly distributed vertical lines and non-

uniformly distributed horizontal lines, it can be carried out in two steps.

,irst the intersections of the circular arcs with the grid on the sphere are

computed and the nodes closer to these intersections selected and connected

in a sequence, one after the other, by lossodromias, in a way that is dual
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of the one with which chain points are selected and connected with straight

line segments for the case of grid-intersect quantized straight lines.

(Incidentally this approach justifies the use of the chain code for repre-

senting a curve on a spherical surface). Let us also note that the precision

by which this set of lossodromias approximates the original arcs is a

function solely of the elementary size of the grid on the sphere since the

features of the given curve (arc of a circle) are already known. Once the

arcs of the circles have been approximated by sequences of arcs of losso-

domias, each of these lossodromias is mapped into the Mercator plane as a

straight line segment. Thus the problem of computing the Mercator projection

of a set of circular arcs is reduced to the problem of quantizing with the

necessary precision these arcs on a grid defined on the sphere by equally

spaced meridians and parallels.

An application of this method, with special attention paid to the

achieved precision, will be presented later with a description of a program

for automatically obtaining the Mercator Projection.

4.7 Concluding Remarks

The transformations which are of interest for applications in

computer graphics have been described in terms of a pair of regular functions

and subdivided into three Classes, A proof of the decomposability of any

regular transformation into a set of sequences of elementary transformations

that approximate the given transformation to any required precision has been

given. Emphasis has been placed on a special transformation of Class III,

involving the mapping of a lossodromia into a Mercator Map. A possible method

for Mercator projecting sets of arcs of circles defined on a common sphere

has been described to show the usefulness of the scheme.



V. FIGURES OF NOISE

In this chapter a set of three figures of noise is defined for de-

scribing the quality of the proposed quantization scheme. This chapter consists

of two main parts.

In the first part of the chapter a detailed description of the figures

of noise is given with an explanation of their meening in the context of the

proposed quantization scheme. The relations between the proposed figures of

noise and the precision parameter n presented in the second chapter are studied,

and some worst-case bounds are derived.

5.1 Classical Approach to the rDefinition of a FiWure of Noise

In this paxagraph some basic ideas concerning the definition of a

figure of noise are presented.

Definition 26: An ideal signal is a deterministic, single-valued function of a

variable, called time; the function is continuous together with its derivatives.

Definition 27: Noise is any unwanted signal component.

Definition 28: A real signal is the superposition in time of two components: an

ideal signal and noise.

Comment: Wnen signals are trcnsmitted th1ough physical channels, we say that

at the input there is an ideal signal, that is, the one which we want to trans-

mit and which we would like to receive at the other end of the channel. However

since a physical cbannel generates by itself spurious signals or receives

signals from sources diffferent from the one which is sending the ideal signal,

then the signal received at the output of the channel is different from the one
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transmitted at the input. This unwanted difference is ,ovilly random in nature

and, therefore, it constitutes the noisy signal compon•-r; of the real signal

received at the output of the transmission channel.

Let us denote with s the ideal signal, with the noisy signal and

with r the real signal. Then it is possible to statt, that in general r = s+w.

This formula suggests two ways for measurlj w:

Method I: By measuring the received signal when r'- input signal has been sent

through the channel. In fact, in this case s = 0 ýnd w = r.

Method II: By measuring the difference between th& received signal and the

input. In this case

S= r-s (5.1)

Let us note that since w is random in nature, measures on the function w = W(t)

in the interval 0 < t < T < co are not sufficient for guaranteeing the precision

of predictions of the values of w(t) at times outside the interval. However,

A from a study of the statistical properties of w(t), it is possible to predict

the probability of having w(t) above a given threshold at any time t. 3

Definition 29: The level of a signal is its average power.

Let us note that since s is the signal generated from a physical

source it starts at time t - 0 and ends at time t - T . If the transmission
S

channel is such as to delay a signal by a time T , then the levels of s,w and r

can be expressed by T

/ s (t)dt
s =Ts o

1 T s+T 2(t)dt

1 T w+ (t)dt

Sr rf(t)dt (5.2)
-T-

-- -- -- -
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A comparison between a real signal and its noisy component can now

be made in terms of their levels.

Definition 30: A figure of noise for the real signal r = s+w is the ratio of

the levels of the noisy component of the real signal, I and of the real signal

kr. Figures of noise will be denoted by fw
We thus have:

If the level of noise kw is much smaller than that of the ideal signal contained
IW W2

in r, then Zr - £s and fw w X " Then if fw v 1% it means that the "intensity"
r s 9.

of the noise is one hundredth of the one of the signal.

The value of a figure of noise is an indication of the quality of a

real signal, or, alternately, of the precision with which a real signal approxi-

mates its ideal component.

Finally let us note that because of the way it was defined, a figure of

noise must satisfy the following conditions: f. > 0 if 1w 0 0 and f. = 0

if and only if Z w = 0.

5.2 Figures of Noise for Quantized Line Drawings

The concepts presented in the previous section can be applied directly

to the case of quantized irregular line drawings if the following duality rultVs

are observed:

Time Domain Plane Domain

Ideal signal s IrregJular line drawing (as a set of features)L

Real signal r Quantized drawings (as a set of quantized

features) QL



Time Domain Plane Dcmain

Noisy Signal w Symbolic difference (as a set of feature dif-

ferences) L - QL

Level of signal x Level of signal x (as a functional defined

3, on a set of features) F(x)
x £

Figure of noise f = - Figure of noise f = F(L-QL)/F(QL)
fw

Comment: The set of duality rules is probably self-explanatory for the cases

of L, QL and the level of signal. In the case of symbolic difference no unique

definition can be given. According to the way the difference is defined in each

case, a different type of noise will be specified. It is possible and desirable

to have this feature of specifying the noise component so that according to the

required application, different emphasis can be placed on different disturbing

signals.

In the following paragraph three figures of noise oriented towards

three different types of applications are defined. The relations between these

figures of noise and the precision coefficient n will be given as worst case

bounds.

5.3 Area-Type Noise

In this paragraph we will associate a set of planar regions with each

P-structure of a quantized irregular line drawing. The symbolic difference

between L and QL is then the union of all such regions and the functional

defining the level of a signal is the area of the region associated with the
N

signal. As is indicated in Fig. 20, the level of noise is Iw = F(L-QL) = Z a
i=l i

where i denotes the i-th segment of a P-structure in QL, ai is the area defined
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N
by such a segment and L. The level of the signal is k. - F(QL) = T E k where

r i=l i

i i is the length of the i-th segment in QL. The associated figure of noise

is then

N

f i=1 i (5.)
a' T k .

-1

a.
Let us note that if £V = -IthenI T

N
• i=l1Sf J= 1- (5.5)S~N.• ~Wa I
S~i1, i

which shows that the proposed figure of noise not only has a meaning in

evaluating the precision with which QL approximates L (f. tends to zero as
a

QL tends to L) but also it gives an indication of the percentage difference

between the lengths of L and its quantized version.

The importance of having a figure of noise of the area-type showa

here was also stressed in the Proceedings of the Symposium on Map and Chart

Digitizing18 for scientific applications such as those of automatic chart

generation from preprocessed satellite pictures.

THEOREM 9: If an irregular line drawing is quantized according to the rules
of the quantization scheme proposed here, then :; < 1/n.

a

Proof: The largest value for ai can be computed by recalling the rules with

* which an irregular line drawing is approximated by a set of P'structures.

Letting xi = and k Z (5.6)
X tan Aamax TOT il

and recalling the usual notation in Fig. 21, we have
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ARC AND APPROXIMATING CHORD
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N ,N
La. -Si=l 1=

-f <
w. N d

STE. 2. TE £i
T i=l

N
i=l i tan •A% <N= .. . x. < k_ (kR)2 N 1

N -T T tan &Lmax £TOT

•---•.•,i=l

In the worst case, when all 61-assume their maximum value, we have:
i- T N 2

9-(- L i 2

i~l n2 tan'imax 1 TN
wa N n tan &max £TOT -n

i=1

and, therefore, f <.I (5.7)•, wa -n

5.4 Dis'.lacement-Type Noise

Another type of noise indicator which has been recommended in the

Proceedings of the Symposium on Map and Chart Digitizing18 is the one in which

the average distance between a quantized drawing and the original drawing is

measured. A figure of noise of this variety will now be proposed and its rela-

tion with the precision param.eter n investigated.

Thi symbolic difference L - QL will be interpreted here as being gen-

erated by the finite maximum distance between an S-continuous *1-c and its cor-

responding segment in the P-structure of the q':.antized drawing. Tht level of a

signal is then defined as the length of its associated segrient. Therefore
S~N

$ F(L-QL il 1

= F(QL) = T

A'-"
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and for the figure of noise we have:

f = 6 = 1i-' (5.8)

Statement: If an irregular line drawing is quwatized according to the rules

of the quantization method proposed here, then fw < n

Comment: It is sufficient to note that in the worst case 6 = m a k1I max

and therefore

N 6 N NT Nw• fL, N i--! "T -- l W nX T Ni n n

5.5 Staircase.-Effect-Type Noise

A completely different type of noise is the one which goes under the

name of staircase-effect noise. It is due to the fact that the smooth S-

continuous arcs of an irregular line drawing are actually represented with

non-smooth P-structures. In particular it has been noted by many authors18

that such an effect is proportional to both the distances between each two

consecutive vertices of a P-structure and the angles formed by each two con-

secutive segments of a P-structure. Tha majority of authors agree that it is

more important to minimize the average staircase effect than the local one.

A figure of noise will now be proposed for measuring such average

staircase effect in quantized irregular line drawings. It should be men-

tioned that although there is much talk on hour to describe the staircase

effect, no figure of noise for measuring it has been proposed up to date to

this authorls knowledge.

Denoting with N the number of vertices in the P-structures of QL and
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letting M = N if QL is closed and otherwise M = N-1, let us define the following

entities:

N
r max r. T - 'Ail (5.10)

m i.

m m (5.1)
k/i

7T I_ S (5.12)
m2 =TOT

-TOT¶ •(5.13)

s m 2

X. X9 rn =Yrr JFLn
s m x m

= r, nkk = m1 n 6-3 = rIT (5.14)

and let us recall the following relations which were shown in Chapter II

S= 2r = r2 T from (2.1n),(2.Ji•)

r = r T from (2.11)

A = pt, from (2.15), (2.16)

R. < z < 9 max< /V9- from (2.3), (2..,,), (2.9)

9j < from (2.4)

Because of the special nature of the staircase-effect noise, a formal defini-

tion of the symbolic difference QL-L is omitted here. The levels of noise and

real signal are defined as
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X =i £i+l t+ n 1 An i I

k = (QL) --2 er s s

and the staircase-effect-type figure of noise as

s. i ki+l .. (5.16)
fw - E s ks e s

Let us note that I is the set of the indices of the vertices of the P-structures

of QL which do not correspond to cusps or initium or terminus points of L.

Let us ncte that 2. and 6 are essentially user chosen parameters ofS 5

reference. It could be said that if all ki and taijai < e then there

would be little or no staircase-effect at all whereas if 0, > k and
IV S

tanjuil >Os then the effect would be larger and fs.E: > 1. An example is

shown in Fig. 22. These examples clearly manifest the importance of the pro-

posed figure of noise. Fig. 22a shows that the drawing coiresponding to a chaip

encoded quantized irregular line drawing has a small staircase effect if the

elementary size of the chosen grid is small, and this in spite of the fact that

the angular variations due to the quantization are rather coarse (AO% = 450).

For the case of Fig. 22b the staircase effect is much larger than before because

long segments are now associated with large angular variations. Fig. 22c shows

that a small staircase effect can be achieved even when long segments are

present provided that the associated angular variations Lre very small.

Previous comments show the importance of the figure of noise pre-

viously defined for describing the average staircase effect present in quantizec

irregular line drawings. Also as Fig. 22a has shown, a figure oli noise as
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defined here is not only an original contribution to the solution of the

problem of defining the staircase-effect noise but it is also a powerful

means of investigation which allows one to obtain insight into the peculiar

nature of this type of noise.

The reason for defining f w in terms of the trigonometric

tangent of AOi rather than in terms of the angles themselves will become

clear later when the bounds on the transformed figures of noise will be

studied. It should be noted, however, that since, in general, the A8i will

be small in order to guarantee a minimum level of precision, it follows that

for all practical purposes f can be regarded as if it were d fined in

terms of the angles directly.

THEOREM 10: If an irregular line drawing is quantized according to the
rules of the quantization scheme proposed here, then f < -

wS.E n

Proof: Since we have from (2.4), (2.11), (2.12), (2.16)

r <' 2v-/12 T = T2-

- r mp i p p

it follows that by assuming small A$i's:

M 2r-T /•m Tm

WS.E. i=l P . p l

iSI

f < "1 i-1 Jai

iCI

1M 2r m 2ri
i"= 2r21A~i21 2r1 m2 0TOT 2

2 2 M p2 2 n pi l ml p m1
i-C!



T
and since k nZ

then f < 2n(__T)2 2n -T )2 1 (5.17)"I.-~ n v2t

5.6 oncludlnjp Remarks

A solution has been given in terms of the classical approach of

the problem of identifying the *ntensity of the noise component in a real

signal and of defining a figure of noise for measuring the relative importance

of the noise with respect to the signal. Three types of figures of noise

have been presented, justified and studied in relation 4-- the erecision

parameter n which governs the proposed quantization scheme. This has lead

to the interesting result that all three figures of noise have the same

worst case bound. This in turn means that when the proposed quantization

scheme is used, it is pcssible at one time to control area-type, displace-

ment-type and staircase-effect-type noise.

In the next cbpnte-. we shall study the effect of a transformation

on the figures of noise defined here and the relations between the bounds on

the figures of noise before and after a regular transformation.
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VI. TRAIISFOPRATIONS OF FIGURES OF NOISE

6.1 General Considerations

In this chapter the effect of a transformation on a figure of

noise is studied. In particular, let us note that since it has been shown

that any regular transformation can be reduced to a set of triplets of

elementary transformations approximating it with any required precision,

only elementary transformations need be taken into account here. First,

the invariancy of the figures of noise with rotation will be proved. Then

the effect of requantization will be studied, both for constant as well as

variable elementary grid size. Then the effects of isotropic and non-isotropic

scalings will be considered.

The analysis presented here will lead to the discovery of a parameter

which is completely defined once the elementary transformation is given. As

will be shown, the product of such a parameter with the figure of noise before

transformation will give a bound for the figure of noise after transformation.

Since a bound has been established already for the figures of noise

before transformation in terms of the precision parameter n, it will become

possible to relate a bound on the figures of noise after transformation to

the parameter n.

The chapter is concluded with the definition of the figures of ccst

and merit, associated with each figure of noise. The figure of cost will be

shown to be constituted of two factors. The 1.rst one expressing the cost of

transforming the coordinates of a point and the second one related to the
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number of points to be transformed. The figure of merit will describe how

much has been spent in order to achieve a given quality after a given trans-

formation. Since a particular transformation is the identity transformation

which maps a point of the plane into itself, the figures of merit for the

identity transformation can be regarded as descriptors of the merit of the

given quantization scheme. In this case the cost of transforming one point

wi±± be unitary and the figure of merit will become the product of the figure

of noise and the number of points in the quantized irregular line drawing.

This provides insight into the problem of Judging the merit of a quantization

scheme since the higher the quality, the lower its figure of noise but the

larger the number of points necessary in the quantized version of the drawing.

Finally, let us point out that only the theory of the transformed

figures of noise, cost and merit is developed here. Examples with typical

values for such figures will be presented in a later chapter with the results

of an application program.

6.2 Rotations

Let us note that in general there are two contributions to the value

of a figure of noise after a transformation. The first one is completely

defined in terms of the given transformation. The second one represents

the contribution due to requantization on a given grid of the transformed

irregular line drawing.

For each transformation these contributions will be computed

serarately. In the first case thfz contribution due to requantizastion, which

will be referred to as grid-contribution, will be disregarded. Then the
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grid-contribution will be studied both for the cases in which the elementary

grid size T2 used for requantizing the transformed quantized irregular line

drawing is equal or not to the one T used for quantizing the input irregular

line drawing.

6.2.1 Noise After Rotation Without Grid-Contribution

With reference to the symbolism used in Fig. 23, we have the fol-

lowing relations among the following positive entities (the primed symbols refer

to values after transformation):

a i 3. e1a.= i U

The new values of the three figures of noise after rotation are:

f, E a£/T1Z 'f" = f (6.1)
a i=l a a

= Z (6.2)w k NTI =

f £i i+If, 1 N4 '' tnAl

wS.E. 1 s s s sW S.. (6.3)
ieI

In the following it will be assumed that

ItanAa il -. Ia~il (6.4)

6.2.2 IRoise After Rotation with Grid-Contribution
T2

Let us define the grid-ratio t as t = T1, where T and T2 are,

respectively, the elementary grid sizes before and after transformation, and

0 < t < 1 since TI is the largest grid size which allows us to well-quantize L.
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ARC AND CHORD BEFORE AND AFTER ROTATION
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The following relations are easily established:

I l-a-%1 VT 1  t (6.5)1s 2 2

<= -2 Tlt (6.6)'ii 2 2

29 £ T 2  =tT 1 V (6.y

Tr2_ t T /4
IAO!-Asil < 2 tan -T- < 2 tan~l 1 (6.8)

1 '1

Since L is well-quantized, k. > £ >> T F t T r (6.9)
1-2 1

In other words, t T 1 V can be disregarded with respect to £i and,

therefore, also with respect to V2. Moreover, since t T -y- is in general1 1

a small number we have tan-I t T = t T 1 -
1 2 12

and therefore

2 AT Tt N v'•TIi t N
<< (a.+ T E =f w t (6.10)

i 2i=l a

which shows, as expected, that the influence of the grid-contribution

decreases with the grid size T2 , In particular, if T2  TI, then

f, <f +
wa - (6.1)
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It can be concluded that a rotation foPlowed by requantization on the

same grid leads to a constant increment in the noise figure, in the worst

case. Similar relations hold for the two other types of figures of noise.

We have

N42w' 3. 611• E (6 1÷T 1 42'tl2)/511N- f *- W T(.2
S =1 i w t (6.12)

Again the grid-contribution decreases with T2 . In particular if T2 a T1 then

w -I 'y r2W (6.13)

As before it can be concluded that a rotation followed by requantization

on the same grid leads, in the worst case, to a constant increment in the

figure of noise.

In the case of the staircase-effect-type figure of noise we have

f M 1 m .' j i+l Jail
wS.E. M i=l 2s £s s

iCI

and since by hypothesis the variations of ki, ki+l' AUi due to rotation

and requantization are small, this can be written as

Ati At+_ i+l Ala•il (,6.14)
A( z i+I il%)= 4 .%+•l6ilAq- - i+ I- + +

z ~~i i+l + .2±.

S.E. s s i
ieI

r ... .
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and since

AtT iA< T2  Alat A 2r2 T2 Tit

ti i

Then

f -w (+ + / 2 (T+_ --- 1lt

'S.E. < f-S.E. ( + f-S.E.

This result shows that also in this case the grid-contribution decreases

with t. In particular if T2 = T1 we have the following worst-case bound

f < f ( -) (6.18)

Ws.E. - 'S.E. -

Comment: It has been shown that the effect of the grid-contribution to

the transformed figure of noise is a function of the size of the grid on

which the transformed data are requantized. In particular this con-

tribution can be kept as low as necessary by choosing a suitable grid size

T2 •

In the case of linear and non-linear transformations which can be

decomposed into a set of triplets of elementary transformations, containing

two rotations each, the grid-contributions for the two rof ,, can be

considere:d exactly zero since the quantized drawing iL- -1 ... 7cd only once

after transformation and not after each of the elementary fr r.±formations

of the given triplet. Such unique requantization will he.ve an effect which

can be taken into account either -t the end or when applying the non-

isotropic scaling to the tripleý. Let us also note that if t>l,. that is T2>Tit
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the grid-contribution to rotation increases, as expected. This can be

understood by considering the case of zero rotation and change of grid size.

Finally let us note that the grid-contribution has been evaluated in terms

of a worst-case bound which' is likely to be much higher than the actual value.

6.3 Isotropic Scalings

As in the case of rotation, two cases will be considered; in the

first one the grid contribution will be disregarded, and in the second one

the effect of a new grid will be studied.

6.3.1 Noise After Isctrouip Scaling Without Grid-Contribution

"With reference to Fig. 24 let us note the following relations:

X, = ak (6.19)

61 = las1  (6.20)

at -a2 a(6.21)

JO = Jail1  (6.22)

The new values of the three figures of noise after an isotropic scaling are:

N N N 2 NV, E a! /Tl / o= s,• ai/ jlI=£ ~ (6.23)
- 1 i1 i=l a

N i1

2, 1 M Zil, kill lI.I = 2

Ws.. M= l 2. = a f (6.25)i1 X s s S.E.

_i --
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ARC AND CHORD BEFORE AND AFTER AN ISOTROPIC SCALING



6.3.2 Ncise After Isotropic Scaling with Grid-Contribution

Two cases will be considered. In the first one the case Yi"

expansions, that is isotropic scalings with jaIli, will be coasidered;

then the case of contractions, that is isotropic scalings with ll<i,

will be studied.

6.3.2.1 i .par-•ions

Since by hyT.cthesis IjL 1, we have q'»/r tTI and,

therefore, V =Ic0I1

N ai V2 TI 1,
f,<A (JIa±i I a t)/T1  Z 1 L = Ialc.w + -t (6.261wa-i=l 2 1i=l a 2

Let us note that this result is similar to the one obtained in

the case of rotation in the sense that the grid contribution decreases with

T2. Siwilarly we have the following relations for the other two figures

of noise:

Etf(I 6i+ I aI) + fjj t (6.2T)
"w " Vl i= 1 -it = -_

S.E.-M i=l £ s £k £ e P - W .E. e k

iCI (6.28)

As in the case of rotation the grid-contributions decrease with the grid size

T2. If T2 = T the three worst-case bounds computed here are the same as

those found for the case of rotation with the only obvious difference that

here Nicl.
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6.3.2.2. Contractions

By hypothesis laI<l. In general t*h output will no

longer be a well quantized irregular line drawing. However, if we assume

that the size of the grid on which the output will be quantized is specified

by t < •-- then ical2 > 12 T lt and since k.i > Z, it follows that

1al2i + VT1 t = jujZi and then

N 2 N
Wa -- i=l "i=l w

Similar considerations hold for the other two types of figures of noise.

If for example t < Jci 2 mrin i MYTI then
i

Ici 6i + -TI t > hai min 6. + -=-Ja min 6."" 2 2 i 1

I1i 2+ T 1 t hi 6!1
N

W I 1 il ija i cIi r (6.30)

while if t < IJai /2.T1 , JaI 2i +/ Tai ti

and since Z. > k then as before we have

2/• T1
ftSE I12 f (1 + "t) (6.31)

S .E. 'S.E. Z e

Finally let us note that if T = Jio, then the noise after a contraction is

equal to the one before this transformation only if the grid-contribution is

not taken into account.
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Let us note that from the theory dev-.oped so far there are iden-

tical bounds for the figures of noisc "h~n the Crid-contributions are taken

into account, both for the case of expansion and for the one of contraction.

In the case of contractions the grid-contributions may tend to dominate over

those due to other types of noise. This is an obvious consequence of the

fact that the original grid size T is the largest possible for well-quan-

tizing the given irregular line drawing. To contract such an input is equiva-

lent tc requantizing it on a coarser grid, and in this case the output cannot

be considered a well-quantized line drawing any more. If the grid size for

the input was chosen so to minimize the noise after contraction, then it means

that the input irregular line drawing was quantized on a Grid much finer than

the one strictly necessary, for well-quantizing it. In this case contractions

defined by an IaI such that in the worst case the irregular line drawings will

be requantized on a grid smaller or equal to the one with the largest elemen-

tary size will still lead to well-quantized line drawings and to reduced values

for the figures of noise. This can be clearly understood by ref'erring to the

following example in which an expansion is followed by a contraction and the

grid-contribution is disregarded. Let L, with figure of noise fw be an ir-
1 1

regular line drawing which has been well-quantized on a given grid. If L1
is expanded than L is obtained with noise f > f ; if L = L with noise

f = fw2 is now contracted so that L4 = L1 is obtained, then the value ofw3
che output figure of noise will be fw4 = f w < f w This process in which

noise has been reduced is, of course, a theoretical one since in practice the

grid-contribution will always prevent fw4 to equal fw 1 Still it is possible
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that fw fw for very small grid-contributions. This apparently strange

result can be Justified by saying that the previous transformation has

generated the non-redundant L4 from the redundant L 3. This example also

points out the different nature of the two components of a transformed

figure of noise: the one associated with the given transformation which is

reversible and th4e one associated with the size of the grid on which the

output is requant.ý.zed, which is not reversible.

6.4 Non-Isotropic Scalings

The grid-contributions for the case of non-isotropic scaling will

not be explored in detail since it has already been shown in previous

paragraphs that a figure of noise always increases with the scale factor c1.

Bounds for the figures of noise can be found for S. by studying the case

of S where y=max(¢a.ji31).

Using the symbolism of Fig. 25 we have:

"ai 11 xlyl + ("2 -x1 )yl + (x2 -x1 )(y2 -y 1)2+

+(y 2 -yB)(X3-x2 ) 1 + y3 (x3-x2 ) - Y 1x3 1 =

1 1 + x2Y2  xly, xlyl x3Y2  x3 Y3
2 I'-xly1 +•x2 Y 2--+--- 2 2 2 2

x2 Y2  x2 y3  x3
7- '- 7F_+ y 3x3 - Y3x 2  Y3

"a i •((ylx2 + x3y2) - (xly2 + xz3)] I

1 2 12.2 1 j-
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ARC AND CHORD BIFORE AND AFTER A NON-ISOTROPIC SCALING
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And since y= y and xi' = w i e have the following result

ai [ 0 ylx2 + ' x3y2 -a x1 Y2  x2y3 ] -Ia I a. (6.32)

Using the symbolism of Fig. 26 we obtain:

V4x' + a 2Yý

1 / 12A! 2Y

tan A =i = (y2/x2 -YlXl )/(l+yly2/xlx2)

tan n8j - (xly2 - xvly/(a•xlX2 + Y2YlY2)

Let us now introduce the followving constants:

y= max(jcaj,J13) (6.33)

6 %a*in'(lc a 8I (6-34)

Then the following relations hold

(6)2 tan A fi = 162 Xlx2'2yl <.-.tan AOI < I xlY2-x2Y!y -I=:(.)2tan A$

=.21 y 62 (x x +6 2
""2 ----x2 +• (XlX2+ylY2

(6.35)

/ .62( AX2 + LAyý) < to<V2(X + Ay2) = (6.36)

As a consequence of the relations established so far, we have:

N N
ft .' Z a /T1  E Liwa i=1 i i

N

a ii i1Nil
- --1wa-YTI E ZIil
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ANGULAR VARIATIONS DUE TO NON-ISOTROPIC SCALINGS



Ill

Since laaj / 6 y and jaIc- / 6 6 then

6f=~L~-ft <r <J~ f =y f'= (6.3T)
a a a a a

Also we have 6 i- < 6! <y6

Then
6 f < f' < yf (6.38)

In the case of the staircase-effect figure of noise, we have

Sk M k tan A'!•s

WS.E. M ils s es
iCI

and since it was shown that
S• -< 2!z < 7•i (-)"1 tanIA0i1 _< tanjA•.1 _ (6)2 tan]A~ii

then
262

2' Ws 6 2w t ,)
(-) fs <f < y(a) . (6.30)

y .E.- 'S.E.- w S.E.

6.5 Summary of Noise Transformations

In previous paragraphs the effects of transformations on figures

of noise have been presented. In particular the cases of absence and

presence of grid-contributions have been studied. Since in most practical

applications these grid-contributions will be small with respect to the

actual values of the figures of noise, only the cases of absence of grid-

contributions will be summarized here. Let us first define the following

constants:

B 2 B 2

y6
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and let us note that they depend only on the particular transformation

under consideration. In fact

1) Rotation R B 1 = B2 = I

2) Isotropic scaling S , B1 = B2 = lal
s2 y 2

3) won-isotropic scalin ,B = B 2-B=

where as usual y = max (IaI,161) , min (Jal,101)

Then when grid contributions are disregarded we have

< ft B2 f < (6.4o)

0< f <Bf <B f < (6.41)-- w -W wit - 2 wX -n

0 < B2 f < ft < B2  f < B.. (6.42)1 WSS.E. .SE. B2 wS.E. -n

As can be seen from these relations the value of a figure of noise

after a transformation is bounded by the product of a constant which is

dependent on the transformation only and of the value of the figure of

noise before transformation. Since there is an upper bound relating the

figure of noise before transformation and the precision parameter n, then

is also possible to establish such a relation between the value of the

figure of noise after transformation and the precision parameter n. Of

course, this relation is true in general only if the grid-contributions

are neglected. As was shown in studying such grid-contributions to the

figures of noise the following condition has to be fulfilled:

v2 T 0+lI
2 ir- . 0 +

T -6 < < 1 (6.17); (6.28), (6.31)

If this is the case and for example bound B is imposed on the staircase

effect figure of noise after a transformation characterized by B2 , it will

be sufficient to let: n > B2/B.be2



113

Finally let us note that since B, and B2 are functions of a and 0,

in the case of a non-linear transformation it will be sufficient to study

the values of a and S for each of the non-isotropic scalings in the triplet

approximating it. Since a figure of noise increases with the larger of

a and 0 it wfll be important to search the region of existence of the given

irregular line drawing for finding the largest values of a and 0. A worst

case bound on the transformed figures of noise will then be a function of

such zaaximuyr- value.

For example s.nce a Mercator projection can be regarded a3 a

transformation mapping the polar coordinate, ( into (A,f(½) =In tan!-¢))

then such a transformation can be regarded as one mapping a grid, defined

on a sphere by uniformly spaced meridians and parallels, into a non-linear

rectangular grid in the Mercator plane. This concept is shown in Fig. 27.

Using the symbolism presented there it can be seen that the highest non-

isotropic scale coefficient in thB piecewise linear approximation of the

Mercator projection is a function of the larger of the two values €i' 02"

6.6 Figures of Cost and Merit

As was mentioned before, an important aspect of the problem of

efficiently quantizing irregular line drai;ings is the one of defining the

cost of the achieved precision (figure of noise). In particular since the

proposed quantization scheme is oriented towards the problem of transforming

quantized irregular line drawings it is important to define a figure of cost

related to a gzvz'n transformation.
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Since a quantized irregular line drawing can be regarded as an

ordered set of points and a tranformation as a mapping of the points of

the plane into themselves, a figure of cost for describing the cost of

transforming a quantized irregular line drawing consisting of N points

is

f =rN (6.43)c p

where K defines the cost of transforming one point and N is the numberP

of points in the drawing.

A figure of merit f associated with a given figure of noise fw can

now be defined as:
f -- f .fc (6.44)
m w c

Such a figure of merit tells us that for a constant merit a higher quality

(lower figure of noise) is achieved with a higher cost, while if the quality

is poorer (higher figure of noise) then there will be in general fewer

points in the quantized irregular line drawing and the figure of cost will

be lower.

Since each figure of merit is associated with a figure of noise,

the following relations hold

0 < ' <I B2 If (6.45)-- m
ma p n

o < f' < K B2  (6.46)
p. n

o < f, 2< : P B2  N (6.47)S- mS.E. -- n

Since K PB2 and Kp B depend only on the transformation, it follows that

the value of a figure of merit after the given transformation is bounded

by N/n where N is the number of points in the quantized drawing and n is

the precision parameter for the proposed quantization scheme.
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VII. CO TAPISO![S IYITH OTIR !?FTCHODS

7.1 General

We shall consider the effect of requautization on a square

grid of a rotated straight line segment for various types of quantization

schemes. The scheme which on the average case Will lead to the least

distortion of the segment will be chosen as the best. Scalings are not

considered here since the length of the segment is chosen equal to the

smallest possible value within the frame of the given quantization scheme;

in this case the largest possible distortion due to requantization occurs

after a rotation of the segment with respect to an arbitrary point of

the plane.

In the case of quantization schemes defined in reference to a

square arid the .problem can be stated as the one of exploring how an ele-

ment with length 1 and another with length r2 are changed after a rota-

tion followed by requantization.

In the followinp figures, P and Q, are the initium and a possible

terminus node (the actual terminus node being defined once the value of

the rotation angle is given) of the new element generated by requantizing

the old one after rotation. L(P) will denote the region centered in P

and within which the rotated element is contained. It should be noted

that whereas PeA(P), it is not true in general that QicA(P). R(S) will

denote a region of the plane associated with a grid node S. In particular

for the grid intersect quantization method, R(S) is a cross centered in

S and containing all the points, on the grid lines, .hose distance from S
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is less or equal to 1/2. For the square box and the rounding of co'or-

dinates methods, r..S) is a square box with size equal to the elementary

grid size Tl eand centered in S and parallel to the grid lines. For the

diamond box and circular box methods, R(S) is, respectively, a rhombus

centered in S and with axes directed alonp the arid lines and with lengths

ecual to the elementary grid size T=l and a circle centered in S and with

radius half the elementary grid size T=l.

Case 1: Grid Intersect fethod

In Figs. 28a and 28b the regions AC?) and R(S) for elements with

length 1 and 112 are showm, and the possible O.'s are encircled. In both

cases there are four Qi's outside A(P). If one of them or the degenerate

case Qi=P is selected as terminus point, then a length distortion of the

original element will occur by a factor r2 or 0, for the case of Fig. 28a

and of l/v2 or 2/F2 = Yýor 0 for the case of Fig. 28b.

In . case of Fig. 28a to each input element there corresponds

no more than one output element while for t'he case in Fig. 28b the out-

put may consist of either one or two elements, or zero elements in the

degenerate case. When two elements are generated, however, they are

identical, as easily verified by looking at A(P) in Fie. 28b. As in-

dicated in Fig. 2Ca the naximu,. angular distortion for a single element

is ±-45 0 . The situation is the same for Fig. 28b when a unique element

is generated in the output. When two elements are generated, no angular

distortion can exist; by construction when this happens the original
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element must be coincident with a segment of a grid line (as shown in

Fig. 28b) and in this case its slope is not altered.

Anigles betvteen adjacent elcments are not conserved during

the quantization proc,!ss becuse they depend on the positions of the

elements within the regions A(P) associated writh them. Even in the case

of parallel ard equal-length elements, the extremie p-.Int Q may be a point

wit•;hin A(P) and then for the next element it may be outside A(Q) and,

therefore, an angle of ±h50 is introduced as shown in Fig. 29.

This is, however, the maximum angular distortion for two equal

elements because, as ve have already shown, the maximum change for a

single elemeut is ±h50 , and from geometric considerations, it is not

possible that one element be distorted by +45 0 and the other by _450.

In the case of two different adjacent elements, angular distor-

tion has maxinum values which change according to the types of the tuo

elements; moreover a single element may be generated from acouple of in-

rut elements as shown in Fig. 30, for the case of t-,o orthogonal unit

elements. This disa-.-earance of an element however, is really important

only for the case of the last element of an open sequence of elements be-

cause for an intermediate one the intersection of the next element with

the grid will provide the new element which was not generated previously.

As shown in Fig. 31a, the angular d.stortion for a couple of

orthogonal unit length elements may be i,5° or -900.

Tha unlikely case of two opposite unit-length elements is shown

in Fig. 28b; they may give rise to a couple of inverse elements or dis-
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FIG. 30

LENGTH DISTORTION
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LENGTH AND ANGULAR DISTORTION FOR A PAIR OF ORTHOGONAL ELEMENTS
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appear, pos.-b-._- -ener&ting a point as sho'wn in Fig. 31b.

For the case of two 2" length orthogonal elements, the output

may have an angu].ar distortion of _1,1o as shown in Fig. 31c, and even
for the case in which no angalar distortion occurs, there 4ight be a

length distortion because at least one of the two eleme1nts r,.Sy change

its length from /2 to 0 or from 1 to 2. in the case of two 12 length

inverse elements the outout may be either equal to the input or it may

present length distortion from r2 to 0 or from 1 to 2 for both elements.

Finally we have to explore the cases in t:hLch the two adjacent

elements have different lenpths. If the first has a unit leongth and the

second r2 and their angle is ±)450 then when the first element generates

one element in the output the result may present no angular distortion or

no length distortion or both of them as shown in Fig. 32a.

When the first element does not generate an element in the out-

put, then the angular distortion is a function of the type of element pre-

ceding the unit element in the input, and, therefore, as shown in Fig. 32b,

there may be length distortion together with angular distortion.

When previous elements form an angle of ±1350, this pattern is

preserved with the exception of special cases, as shown in Fig. 33a, where

the couple of eleme:-s may degenerate into one point or one element immedi-

ately before and after the..original pair. The situation is a little dif-

ferent when the first element of the pair has FP length and the second

unit length. If they form an angle equal to ±4150 , either this situation

is unchanged in the output or a lengtn and angle distortion are introduced
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as illustrated by the pictures in Fig. 33b.

When the input pair form an angle equal to i1350 this pattern may

be preserved in the output or be altered as shorn in Fig. 33c.

Previous analysis ox distortions due to requt.:tizet'ioa of seg-

ments by applying the grid intersect auantizaticn schKr:e cain be stuafarized

by saying that suh a scheme -ay lead to 2ength distcz.tions -.ith ratios:

0, "/•, l/V2, for single elemt-nts and angular distortions up to ±9C0 for a

pair of adjacent elements. Also elements with unit length may disappear

or degenerate into one point. In general given an angle of rotation 6 and

a sequence of four adjacent elements, it is possible to specify the type

of the worst output which the second and the third element of the sequence

will generate after rotation and requantization.

Finally let us note that in previous analysis the case of elements

which after rotation are in ambiguous positions like those in Fig. 34 -,ere

not included since a solution can always be found by looking at the elements

preceding or following them or by sorting a solution arbitrarily (for ex-

ample in the case of a horizontal straight line _gment passing through the

midpoints of the grid, as shown in Fig. 3h).

Case 2: Square Box :.Vet!od

Figs,, 35a and 35b show the regions A(P) for the case of an element

with unit length and F2 length respectively. In the case of Fig. 35a, no

point exists outside A(P), .:boreas for Fig. 35b there are more points out-

side A(P) than inside. Length distortion may occur in both cases. For the

one of Fig. 35a in terms of the ratios 0 (when the element is entirely in-:

I . . .• ~ r "1",w•
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side R(P), or r2, and for the case in Fig. 35b in terms of the ratios:

0 or lF or 2 or v7,/;1. With this method a point P is assigned as the

extreme of an element of the new sequence when there is an arc of input

which after rotation passes through the square box centered at point P.

Let us note that the region A(P) of Fig. 35a leads to the same

number of selectable points as the one in Fig. 28a, whereas the one in

Fig. 35b allows a much Vider possibility in terms of selectable points

around P than the one in Fig. 28b. Again it is not claimed that each

element in the input sequence will generate at least one element in the

output because even an element with length equal to r'2 may be completely

inside R(P) after rotftion.

Both in the case of Figs. 35a and 35b, no diagonal element can

be generated unless after rotation the input element passes precisely

through the center of a square of the grid. If this possibility is ex-

cluded either on the basis of its low probability of occurrence or because

an assignment is given in such situations either on the basis of the po-

sitions of other elements, or aribtr~orily when no choice can be made

uniqviely (for example in the case of a straight line segment with unit

slope passing through the nodes of the grid), then in both cases of Figs.

35a and 35b an element is either unchanged or it generates zero to two

elements (and with an angle of 900 between them in the last case). This

last situation may occur when the input element has a length equal to r2;

these situations are shon.,m in rig. 16. Moreover with the assumption of

no generation of diagonal elements, the output sequence will consist en-

tirely of elewents of unit length.
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The method described in this section, when compared to that of

grid intersection, is subject to more extensive shape distortion in length,

angle and number of elements and, moreover, it involves complicated com-

putations for testing which box has sensed the input srcuence after ro-

tation. A way for improving this method is to modifr it into the one

described in the next paragraph.

Case 3: Hounded Coordinates Method

Consider a scheme in which the coordinates of the extreme points

of each element after rotation are rounded off and the resulting values

used to define the grid points for generating the output. Domains A(P)

of Figs. 35a and 35b are still valid, but now diagonel elements can be

generaced in the output; the ambsguity of an P.civient in a position such

as the one described by Fig. 3'• leads now to four possible points which

can represent each center of a grid square. Ee will suppose here that

such ambiguous situations will never occur. However, they may be resolved

by giving simple decision rules as hinted before.

A different kind of ambiguity arises for the case of Fig. 35b

when a Y' length element generates two elements in the output. In this

case one may assume that a choice is made by rounding the coordinates of

the midooint of the input element. W1.hen one elernent in the input gener-

ates one element in the output, length distortion may be specified by

factors like 0 or v€ for the case of Fig. 35a, and 0, 1//i or r" for

the case of Fig. 35b; when a iv'-length element generates two elements in

the output, there is both the generation of a corner of 1150 and a length

p
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distortion of VýIr•. Angular distortion is ±450 for the case of Fig. 35a,

which corresponds to the one described in Fig. 28a, and the same is true

for the case of Fig. 35b, where one element is generated; when tuo elements

are generated their angle may be either 0 with length distortion equal to

v, or 45' with length distortion equal to V//2-. In the case of pairs

of elements, the many possible configurations are similar to the ones

studied before for the case of the grid-intersect quantization method.

Case 4: Diamond and Circular Boxes Methods

Regions A(P) for the cases of diamond and circular-box methods

are shown in Figs. 37a and 37b and in Pig. 38a and 38b respectively. Since

they do not offer any significant advantages over the previous methods

but do recuire more involved computations, these two methods will not be

studied in further detail.

Case 5: Modified C-id-Intersect T?4ethod

A modified grid-intersect method can be defined for which each

input element generates only one output element. Such a method, for ex-

ample, will exclude from A(P) of FRg. 28b the four points lying outside of

A(P), and when an element in a non-ambiguous position disappears, then the

rounded coordinates method will be used if it leads to an output; other-

wiAse the length of the element is changed in such a way as to allow the

generation of an output (for example the le:.th can be changed from 1 to 2).

It is easy to check t"-at this scheme does not :.nterrupt the con-

tinuity of adjacent elements in the output. Also note that it generates

r
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length distortions which are at most given by factors 1/12 or /2, and

angular distortions of at most ±41/ for a single element.

An analysis has been presented of the noise generated by re-

quantizing rotated data in terms of a variety of quantization schemes.

Emphasis has been placed on the gr:d-intersect method which offers a lower

length and angular distortion with respect to any other standard quanti-

zation scheme. It has been shown, however, that such a method leads to

more complicated computations than the rounded coordinates method, which

can be easily simulated on a digital computer by sImply truncating numbers.

When the quality of the output is more important than computational cost,

then one should uase the grid-intersect method rather than the one of rounded

coordinates. Finally, a modified grid-intersect method, which combines

the advantages of both the arid-intersect method and the one of rounded

coordinates, has been proposed.

In the next section the modified grid-intersect quantization scheme

"will be compared with the one proposed in this thesis. Such comparison will

be based on the values of the figures of merit for the two quantization

methods. As wtill be shown, the quantization scheme ýescribed in Chapter

II tends to have a smaller figure of merit and, therefore, to give better

results on average.

7.2 Comparison Between M¶odified Grid-Intersect Scheme and Proposed New

Scheme

A ccmnarison will now be made between the proposed scheme and

the modified grid intersect quantization scheme in terms of their figures
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of merit, as these are defined in this thesis. In carrying out this

comparison it will be supposed that in both cases the original line

drawing has been finel-y quantized, that is, its local behavior around

any grid node is essentially that of a straight line segment. The as-

sumption is then made that in its quantized version such a drawing con-

sists of N, chain-encoded straight line segments with an average of N1

chain elements each.

Case 1: Area-Tyme Figure of Merit

From (5.4), (6.45), (6.46)

N l
fta= N a!T /Ta i1l i=1

For the proposed qfaantization scheme we have:

T M '-2  112 N2fma = '2 k £i/T Z . =--2 (7.1)
1iJ.l2 i=!

and for the modified grid intersect quantization scheme, we have:

2N4% T T1 14l• 1 N1U, /T TN. N• = I 1`1 - (7.2)
"ma2 2 '

clearly,

S > f for > 2 (7.3)
m P- m

Case 2: Displacement-Type Figure of Merit

From (5.8), (6.-15), (6.46)
(I

f 1I1 6.lTNMa ~
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For the propoos.d nuantization scheme ie have:

f% / N Tn1TN 1(7.4)' M. 2 2 -2 2= 2 2(.

and for the modified grid intersect quantization scheme we have:

T = N2
p 1 fN Ii/TNI112 = t,112 (7.5)

2 -1'2 1  I2 1 1 2

Again,

2 if 11, >2 (7.6)

Case 3: Staircase-Effect-_l.-pe Fiure of Verit

From (5.16), (6.h5), (6.46)

, 1. 1 Zi P, i+l tanliAlj

m.. "i=l,icI s s s

For the proposed quantization scheme we have:

1 N1 'I . tan AO 2f = -- 2

'2 / tan AO
21' 2 (727)

S s

and for the modified grid intersect auantization scheme we have:

N1 T2 -s s

ST12

N 2 -- 'r (7.8)1 2 k 2
S s
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Therefore, we can write

tan AO N (7.9)
'.E1 fmIs. IE. 2 F

A '1

as shown in Table II (which has been derived directly from Table I by
N . +N

assuming an average numnber of chain elements N1 = Min2 max) it is

always true that

N1 tan Ae << r (7.10)

for 11 > 2. Hence it can be concluded that, as in the previous two

cases,

f t if "i> 2 (7.11)
n,S.E. I s. 1.2

Since the higher the figure of merit, the higher the cost for the

same quality, or the lower the quality for the same cost, ie can conclude

that, in teins of their average figures of merit, the proposed quantization

scheme tends to give a more satisfactory performance in term.s of quality

of description and transformation cost.
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tan AOG N1 tan AO

1 1 1

10 0.03 0.3

100 0.002 0.2

1,000 0.0003 0.3

2,000 0.00015 0.3

20,000 0.000005 0.01

TABLE II
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VIII. APPLICATIOIT PROGRAM AND RESULTS

8.1 General

In this chapter after a brief outline describing an application

program in terms of its input and output data and type of computations

executable by it, the results of such a program will be shoim and explained.

A copy of the listings of the prcgram may be obtained from Professor

H. Freeman of NI'ew York University.

A) InputData

A set of connected straight line segments represents the draiTing,

as an abstraction of an image, as a digital covputer sees it through an

input flying spot scanning unit. 'The proposed quantization scheme is

then applied to it and a quantized version is obtained. By comparing the

input with the quantized version, the input values for the figures of noise

are obtained.

B) Output Data

Consists of t-wo transformed data: the first for the input drawing

and the second for the quantized version, Again noise finures are evaluated

by comparing the transformed input with the transfornred quantized version

of it. Checks are then made to verify the predictions of the theory pre-

sented in this thesis, like for example the relations between input and

output noise and their dependence on the particular transformation. Also

the figures of cost and merit are evaluated and the bounds predicted by

the theory here developed checked.
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C-) General Comments

The program executes rotations, isotropic and non.-isotropic

scalings, linear transformations and Mercator projections of quantized

data (with the restrictions on the dynamic range of the input datal imposed

by the Basic Fortran formats for single precision operations). The pro-

gral also evaluates the figures of noise, cost and merit by computing

areas and lengths and by plugging these values in the formulas presented

in this thesis. Also the program allows one to select the precision of

the input quantization so that a given boumd on the output noise can be

satisfied.

8.2 Results of the Program

In order to give a complete presentation of the options offered

by the proposed quantization scheme, three types of examples are shown

in the following pages.

The first example refers to a direct approach in quantizing the

data to be transformaed, The transformation M, the drawing L and the pre-

cision parameters k, k , kZ5 a p , p0 are given. (Note that because

of the relations shown at the end of Cha-:ter Ii only :our of previous

parameters are independent from the others). Then the quantized drawing

L* can be generated and t, Oj T, n car he evaluated. The transformed L*

TL*, the input and output figures of noise, cost and nerit are computed

by making measures on L* and TL*. Fig. 39 sho.:s the block structure of

the system. When the direct approach is taken the loop in the system is

open and no bound on the output is applied at the input (SWl and SW2 are
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open).

The second example refers to an indirect approach because the

precision parameters are not given directly: but through P., 0, T, n by

applying (with the equal sign) the inequalities shown at the end of

Chapter II. Such relations are k=T/nk, k =1+4/e tan-l ! r+ T
a 29.' '

Si=+4tan-1 T/P_ r 2 -1 T/Z
a , =o+p•T - , and p0,= tan ( L--). Again the loop in the

system is open (SI1 is closed and SW2 is open) and L` is generated by finding

first k, ka, kt, ai, pZ, p. and by applying the algorithm, presented in

Chapter II.

The third examnle refers to an inverse approach. In this case

a bound B on the output figures of noise is the only given input value in-

stead of the four parameters Z, 0, T, n. However n can be computed from

B as was shown at the end of Chapter VI by assuming that the grid contri-

bution to the figures of noise is negligible, that is that the following

relation is fulfilled

2F2T 0+1£<< 0

This relation defines T once k and 0 are given. On t:e other hand k and

0 are the minimur, detail pareaeters of L that is the already quantized

drawine. In order to find then their values are predicted and generated.

Then the new values for k and 0 are measured on I, and a new value for T

is computed frorm previous formula. (n is still thv sarie since it only

depends on B). Then the new values are used to requantize L and generate

a new L* and the process is repeated. This procedure halts once the old
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and the neu values of k and 0 coincide (or differ, say, by less than 10%

as in the example). In this example SWi is open and SW.!2 is closed and

stays closed up to when the condition on X and 8 is verified.

A) Direct Anproach

In Fig. 40a, 40b, 40c, 40d are shown, respectively, the input

drawing L, its quantized version L*, and the transformed L and L*. The

transformation is a rotation by 600. The following precision parameters

have been used:

k = 0.36

S= 1.8h

k- = 1.072
ami = 180(0.33 rad)

P;. = 0.036

p0 = 0. 42

They define Z, 0, T, and n as follows

k = 19.1

0 = -10 (0.17 rad)

T= 1

n = 0.15

Input and output fIN-ures of noise vere computed by coiparing L with and

TL with TL' (i.e., the transformed L and L*). All the const,-aints pre-

dicted by the theory are satiffied both for the figures of :Oise and those

of merit. The f.gures of merit, their bounds as well as the figuw'e of

cost have been normalized by assuming K = 1. We have:
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FIG. 40

PROGRAM RESULTS FOR ROTATION
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f =5.1;l < 7 ; f = 6.23 < 7
aVa

f 5.8 < 7 ; f = 6.35 < 7

f 4.E -e .66 < 7 ; = 4.71 < 7
~S.E. <7 ~ E

f = 5 P =31.15 < 35

_= 31.75 < 35 ; f 23.25 < 35

B) Intermediate Approach

Figs. 41a. 41b, hlc, 4id show, respectively, the dr.awing L, its

aurutized version L*, and the transformed L and L*. M h trarisfcr:.;ation is

a non-isotropic scaling by a factor of 1 in the " direction and a factor of

2.3 in the Y direction. (Then we have B2 = 2.3 and B2 = 5.29). Precision22

parameters Z, 0, T, n were chosen as follows:

z = 19.1

e = 00 (0.17 rad)

n = 0.15

They lead to the followaing values for the precision parameters

k = 0.36 a •. = 170 (0.33 rod)

mn.n

ka = 1.810 pt = m36

kz = 1.0 2 ;P) = 0.42

Input end output figuras of noise, cost and me'.I -are

.1 = L8.5 < 37 531

f =5.8 < 7 ;fc= 5

7 =65.05 < 80.5

Cf" = 13.01 < 16.1 ; = 71.5 < 80.5
w
f = J14.3 < 16.1 if. = i)42.5 < 185.15

V9Wk.'~

S-- 

.,
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FIG. 41
PROGRAM RESULTS FOR NON-ISOTROPIC SCALINGS
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As can be easily seen all constraints predicted by the theory are satis-

fied.

C) Inverse Approach

Figs. 4 2a, 42b, 42c, 42d show respectively L, L$ TL, TL . The

transformation is a Mercator Projection defined by the following constants

R=150, F=150, ALP=O, P4=50 respectively the radius of the sphere, the

focal length of the camera, the latitude of the satellite from which

the picture was taken (the longitudeis assumed to be zero) and the dis-

tance of the center of projection from the center of the sphere.

The bound on the output noise was chosen as B=20. Since the

transformation is characterized by B2 1.8 (B2 3.24) then we have
2

no0.16(l/n=6 ).

Two cycles were necessary for finding a stable solution. We had

the following:

Cycle #1

Predicted Value Measured Value Error in %

.Z=30 Z=23 21
0=2110 (On.l rad) e=i8°(o.31 rad) 20

The computed value for T was T = 3

Cycle #3

Predicted Value Measured Value Error in %

Z=23 k=22.5 2

0=130 (o.31 rad) 0=17°(0.29 rad) 5

The computed value for T was T = 1
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cd

FIG. 42

PROGRAM RESULTS FOR MERCATOR PROJECTION
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The precision parameters are

k = 0.26 = 24(0(.418 rod)

k = 1.06 pz = 0.03

k9 == .4 PO 0.2

and the input and output figures of noise, cost and merit are:

f =4.81 < 6 ft =15.7 e 20
Wa '"S.E.
fwz = 5.32 < 6fc = 3

f = 4.57 < 6 27.9 < 60
w fna

f 3 < 20 fm 33.0 < 6o
a

f£ =11.0 < 20 fm 7.1 < 60

D) Concludina Remarks

Fi-ally the following example shois the effect of changing n on

both tend _,res of noise. The drawii.,'L , is showr. in Fig. 43 (it

represents the coas4_-ine of the ilslan• &f Sicily as seen from the Nimbus I

satellite). In Fir. 44 a Ouand,.zt-; version is prese*nted which was computed

by setting:

•=3

0= !00 (0.17 rad)

S"2=!

In 0.16 (!/n=6)

These values specify the followinF input figures of noise

f =5.4 < 6 f =4.57 < 6
Wa WS.E.Sf Wi 4.61 < 6

"5;0

F•
L.
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-- "-NORTH

FIG. 43

COASTLINE
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NORTH

FIG. 44

OUANTIZED COASTLINE
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However if the following values are chosen

= 50 (0.08 rad)

T= 1

n=5

then all the points of L are selected for the quantized version and L

becomes identical to L. Since there is neither area nor displacement

difference between L and Le it should not come as a surprise that

fa =0 ; fu 0

whereas there is still a nonzero staircase-.effect noise due to the fact

that L consists of a finite number of points. We have:

f 0.1

"WS.E.

Figs. 45 and 46 show the result of applyinp a linear transformation

to L and to the quantized version of Fig. 4h. The transformation consists

of an isotropic scalinp, by a factor of 0.5 followed by a rotation of 600.

As can be seen the output figures of noise are smraller than the input

since the reversible contribution to the figure of noise has been multiplied

by a factor smaller than one. This is an obvious result since it only

means that in the new drawing (output) the average distance between arc

and chorC, is smaller than for the input drawing. The same is true for

f since it is defined in terms of a ratio of areas and lengths; this
a

also holds for f which is defined in terms of products of lengths.

E.A
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FIG. 45

TRANSFORMED COASTLINE
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FIG. 46

TRANSFORMED QUANTIZED COASTLINE
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We have:

'I a . 6 fm a = 476.33 < 96o

f"r, = 2-.15 < 6 fir = 410.52 < 960

-2.26 < 6 355.91 < 960

wS .E. fS.E.

fc = 160
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IX. SU!ARI•Y A•ID CONCLUSIONS

9.1 General

In previous chapters the problem of hoe to quantize an irregular

4line drawing, defined as an abstract.on of an image, has been presented

and a paranetric quantization scheme proposed. Such a scheme Fenerates

different results when for the same drawing, a b'.-tter quality description

is required. It has been shcwn that the qualities of the description of a

drawing before and after a rc:'ular transfornation are directly related.

Hence it has W'een possible to obtain meaningful guidelines for quantizing

a given input drawinF.

An encoding scheme has been proposed .,hich has the advantage of

leading to a code which is both shorter than the standard chain code and

easier to manipulate wfhen the applied transformation falls into a certain

class. Decomposition of general regular transformations into sets of ele-

mentary transformations have been presented and the special case of I'ercator

Projections has been considered to show how to simplify a transformation

problem once the peculiar characteristics of the given transformation are

known.

Figures of noise which describe various aspects of quantization

noise have been proposed and their relations with the precision parameters

ruling the quantization scheme have been studied. Also the effect of a

regular tranbfoif.hatibn on each of"the proposed figures of noise has been

studied and bounds on their values after a transformation have been obtained.

In order to give a complete presentation of the transformation
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problem, a figure of cost of a transformation was proposed and a set of

figures of merit defined. guch figures of merit specif'j how much has been

spent (fia.ure of cost) in order to achieve a certain quality after a

transformation (figure of noize).

In this chapter the specific conftributions of this research

are pointed out to the reader and possible future extensions are indicated.

9.2 Spec2fic ¢ctribtions of Thin, Rese•-ch

A) A new cuantization scheme for irrsegul&r line c'awi~is has been

presented which offers new insight into the problem of qua-,zing multi-

dimensional data. In this presentation an approach, different frcn a clas-

17 -sical one described by Freeman and Glass is introduced. The irregular

line draw.ng, is assumed to be an abstraction of an imape, that is, an

ideal signal. A quantization scheme is then seen as a set of rules which

enables one to describe such a'bstraction in an approximated form. There-

fore, it is in the abstracting process that one defines the features of

the drawing and chooses the resolution of the quantization scheme so that

the features of interest are renresented in the cuantized version with

the desired precision. Accordina to the Freeman and Glass17 approach the

quantization scheme is chosen on the basis of a general curvature criterion

and then the features observeble in the quantized version of tCe drawing

are determined in terms of the resolution of the quantization scheme.

Since the transformation problem is the one of renderinF the transformed

features of a drawing, a different approach for ouantizing drawinps has

been taken here.
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B) Patterns for chain encoded straipht line zegments have been found

by applyin'ý the techniques cf mathematics of integers and residue arith-

metic to the study of special chains. 'Iso a nev encodirg scheme has

been presented rhich is more efficient thai2 the standard chain code and

simplifies the transformation of e!nccded d.ota.

C) A measure for s%.aircase e'ffect noise has been i-a ro aced. Although

many caizs Lan be f,. j.% Th.he li ratt? abou'; algorithms which reduce

the sta.rcase e!fec-. to scke'e for meas,:ring it has over .•i-n gitien before.

D) Siriple formulae for evaluating the cost and m',-.:it o1 a qu-.ntization

scheme have been proposed. in particular, the figulre of coct offers insight

into the probS.ei of ev-.luatinu the cost of transformiPg one point and the

number of points in th. quantized drawing.

E) A scheme has been proposed for solving the problem of how to quantize

a given drawinr so that after a transformation applied to its quantized

version the results will have a specified minimum quality.

F) As a practical application, the proposed scheme offers a means for

evaluating the quality of computer generated ;:ercator 'aps. This is some-

thing which has not been possible in the' past.

G) A scheme for non-linearly transforming pictorial data by applying

rotations and scalings on a local basis has been presented, together with

a theory for decomposing any general transfornation into sets of elemen-

tary transformations.

H) This thesis has shown that a direct relation exists between the

number of chain elements and the Percentage length and angle distortion



in quantized straigIht line segments,

I) The advantage of requaantizing on finer grids has been shown in-

directly, by studying the grid contributions to the transfurmed figures

of noise. Also a systematic vay for investigating requantization dis-

tortions has been described in terms of geometric regions which depend

both on the type of transfcrmation and on the type of quantization scheme

used for the tran'% .. :... d,÷a

9.3 FA,)'re Extens• c;ns

As a poss.ble extension of the work dJA cri h ... s Sug-

gested t:at a new quantization scheme be studied in which hieher-order

curves, %:ot only straight line segment.s, are used in the approximation

of an irregular line drawing. The properties of such a quantization

scheme and a suitable encoding scheme should be analyzed. The manner

and cost of transforming curves encoded in this way would be of consider-

able interest.

I
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