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INTRODUCT I ON

The importance of the Riccati equation (RE) in itself and
in connection with the optimal linear-quadratic control and Kalman-
Bucy filtering theory, has motivated several works vxamining the
behayior of its solution. In particular, results pertaining to
sufficient conditions for global existence, monotoneity properties,
asymptotic character, invariant sets and equilibrium points have
been reported in the literature. A discussion of the interesting

problem of a priori bounds for the solution is presented in [4].

As Willems [19] has pointed out, various aspects of the RE
need further investigation. Specifically, one is interested in
i) performance criterion which are not positive, ii) the cost linear
functional in the control, iii) control with conflicting aims, and

iv) conjugate point structure in variational problems.

This latter case is of particular importance in the
numerical solution of the RE: although the solution of the differ-
ence matrix equation may be well behaved, in the sense of being
finite for all time and convergent tc an equilibrium solution, it
does not pertain to the problem under consideration since the

solution lies outside the interval of disconjugacy. The only indica-

tion that one gets from the numerical computation is a change of




2

the definiteness of the solution between two consecutives iterations.

There exists a duality principle between the optimal linear-

quadratic control problem and the optimal linear-gaussian filtering

problem. The duality is achieved by a simple change of the dynamics,

sensor, and actuator along with a reversal of time. See [10,
Section 5] . This correspondance allows one to formulate results
in either control or filtering form 2-1 obtain results for the

dual problem by a reinterpretation within the appropriate context.

2 Henceforth we will be conce;ned with solutions of the RE
with time running forward and the initial condition imposed at

the starting time. We will also concentrate on the autonomous case,
i.e., when thc cocfficient matrices are time independeni. For Lhis
3 case, under certain regularity conditions, it has been shown (6]
that there exists a fixed point of the RE, called P_, which

; generates a convex cone in the partial ordering induced by the
positive semi~definite matrices, such that if the initial condition
belongs to this cone then the solution exists globally. The result

? was proved by the application of a theorem of Reid [16].

The importance of P_ in connection with the structure of
the solution of the RE was also recognized in [19) whereas its
physical interpretation as the steady state error variance of the
E present state given future observations was made clear in 4],

Also a solution [4, Corollary 3.2] of the RE is given when the

initial condition tends to infinity; this is a particular case of




the general form presented in Chapter Il1I.

7hiadeant

The main results determined in this analysis are: :

) i) Necessary and sufficient conditions for global existence

\

of the RE as a function of the initial cgndition for the

autonomous case.

Spspa s L D

. |
Sufficient conditions for the solution to be in.the

-
-
—

3 domain of global existence for the time dependent case.

iii) A general existence theorem for the equilibrium points

" P+ and P_. (The reader is referred to Chapier It for the

definition of P.» P_and Pg) - | .
; iv) A method for finding the equilibriz.

3 There are several techniques available for the computation:
of the points P+, P_ and Pg. One vay to find €+ islby the method
of quasi-linearization or Newton's method in function space. What
results is a numerical computation [5, Chapter 8], [52] which can
efficiently compute P+ ; P_ can also be determined by iterating=

to a related equation | 6]. This method is not applicable for the

E determination of Py.

A second method makes use of information contained in the

] Hamil tonian matrix,?{, associated with the RE. Nne form of this

technique, due to Potter [lh], is valid whenlis diagenalizable;
Martensson [13] has extended the method to include a general

Hamiltonian matrix. In the present work we extend another form of

'
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the Hamiltonian method, due to Bass and Roth, [1], 5], and {181,

which is based on a partitfon of 'the characteristic polynomial of K

i The use of the Haﬁiltonian provides not only P+ and P_, but
alsa any Pe,lif it exists, as well as results concerning the number
of equilibria. 'In [19] a geometric method is presented which,

however, is not amepable to co%putation. ' ;
" The work on getermination and structure of equilibria
presen{ed here was done igdependehtly of that by Willems [IQJ {see
?omment in [6})f We note that although he has presented some results
;oncérniﬁg the equilibria of the RE, many of these assertions are
without proof., Fyrthermore, we feel our proofs are simple and
&iredt. In addition our method is numerically tractable because it
is eigenvectorlfree; whereas' those of [13], \14]*, and [19] are
numérically impractical. In fact we have a digital program vhich

effectively computes all real symmetric equiliwria and is quite

accurate.

.

* Note that [14) concerns the determinat:un of complex equilibria,




CHAPTER Il

FIXED POINTS

For real symmetric matrices we will use positive definite,
A>0, positive semi-definite, A20, and strictly positive semi-
definite, A>0, to denote tihat the matrix A has all its eigenvalues
greater than zero, greater or equal to zero, and greater or equal to
zero but at least one equal to zero, respectively. The obvious dual
definitions and notations are used for negative definite, semi-
definite, and strictly semi-definite. Nonnegative definite will mean
& real symmetric matrix which is either positive semi-definite or

indefinite, rather than the normal use with the meaning of positive

semi-definite in the present form.

The set of positive semi-definite matrices is a convex cone, &
which induces the following partial ordering over the space of real
symmetric matrices:

A=B iff A-B20, i.e. A-Be &

A maximal (minimal) element of the set D is an element Pek,
such that there is no element in © -{P} which is greater (smaller)
than P. Firally, the supremum (infimum) element of the set B is a

PeB such that P is greater (smaller) than any other clement of B .

Notice that in the space of symmetric matrices it is not

possible to define the supremum as the least upper bound, since the

5
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common upper bourds of two given matrices may be not comparable
ves :
among them, for instance, given

_[o2 Jeo _ [ HNER
A‘{zo] B"loo] c [ll] D’[lz]

then C2A, C28B and DA, DB but C and D are not comparable.See [2].

If Ais a finite real symmetric matrix we define the pseudo-

supremum of & and 0, the zero matrix, as:
ps sup (A,0) =T'[XvoO]T
where T'AT = diag [ N:] ,{\:v0]= diag[max (x;,0)] , and then

ps sup(A,B) = ps sup(B,A) = ps sup(A-B,0) + B

[
As is normal 9% and B will denote the boundary and the

interior of the set B, respectively.

We consider now the autoncmous RE:

dP )

T = PF' 4+ FP - PH'HP + Q

dt (2.1)
P(to) =T

where prime denotes transpose and with Ml,n(R) the space of (i x n)
real matrices, FeMn,n(R), HeMs n(R), Q =Q'eMn,n(R),1“=T"% Mn,n(R)’
P =P'e Mn,n(R). The right hand side of (2.1) will be denoted by

s (P), and let TIL,T') be the locally unique solution of (2.1), see
[5, Chapter 5).

The Hamiltonian matrix associated with (2.1) is

H= [‘Z' H;HJ (2.2)

For the definition of uniform asympiotic stability (u.a.s.)




see [5,Chapter 1].

A simple subctitution gives the following:

> IDENTITY 2.1. Ffor A+§=l, A a real number and Pl’ PZ any two real
E symmetric matrices

d -

S AP +APy) =2S (P}) +AS(Py) +AAR(P,, P2)

where R(Pl, PZ)ZO for every Py, P, .

LLERY e tie

DEFINITION 2.1,

s, ={r=r’{ Str) 2 0}
s ={r=r"s(M 20}
Notice that they are extensions of S, and S_ defined in {5, chapter 5]

Here we do not make the restriction that I'e & .

REMARK 2.1. S, is convex. It follows from ldentity 2.1.

+
tn [19]) the convexity is proved by the use of the linear matrix
inequality (LMI) and a complicated string of equivalences. A direct

proof from the LMI can be constructed by using results in [9].

REMARK 2.2, If P)e S, , P,eS_ (Pye 5 ) andA<O then P=)Pi+AP,e S_

+’
(Pe$_) where A+A= 1.

THEOREM 2.1. 1f Tes,, (Tes) then TI(t,T",to) a_solution of (2.1)

belongs to S, , (s_) for all time teJ (interval of existence) and

is monotone increasing (decreasing).

PROOF: See {5, Chapter 5].

THEQREM 2.2. lﬁTTYt,lT,to) a solution of (2.1) exists in the interval

.
Ry

9 then for L3107, TT(t, Ty ,to) exists in the interval 7 and




M, 5, e.) 2Tt ,¢e,) for te T

,é PROOF: Seel16, Lemma 2.3)

3 —_—

'3' DEFINITION 2.2. P =F'e M n(R) is an equilibrium point of (2.1)
s H

iff s (P) = o.

REMARK 2.3. If {P} is the set of equilibrium points of (2.1) then
’ fPles,Ns_.

E. THEOREM 2.3. If P} , (PZ) is a maximal minimal element of S+ then

P‘ (PZ) is an equilibrium point of (2.1).

PROOF: Let PI be a maximal element of S+ » then by Theorem 2.1.,

valid with Q = Q’,TI(t,Pl)zpl , hence ﬂ(t,Pl) = P, forvt> 0 by

san-m M e N

WA o3

maximality and therefore Ple {5} . For P2 the proof follows by

PNS\NE

.

.

.38

7
A

reversing the time j.e. t-- t.

3

The following three lemmas =zre basic for the proof of the

main theorem concerning the existence of maximal and minimal elements
of S+.

LEMMA 2.1. Let € be a closed convex cone with vertex at zero, and

o
S, be a clos. ! convex set such that OeS . If 5118 does not have a

maximal element in the partial ordering induced by & then there

exits an A& such tha’ ARESNE for every real number A3 0.

PROOF: Since s.n E does not have a maximal element it is possible
te find a totally ordered sequence An with no finite upper bound,

such that Ane SJ)E, for otherwise by Zorn's Lemma QJ)@ has a

maximal element. Without loss of generality An may be taken

increasing.




3 . 9
3 Since 06§+ , there exists a sphere of radius k about 0,

; Bk ={A| A<k} c s, and aBk/zn& 'is compact. Define Ay 50 Fhét

‘f Cp=1/a, Ayand 11, 1l =k/2. - ! .

By compactness of 0B, ,0 € there exists a subse uenc;e C.. which
Y k/2 9 *m

: converges to C i.e. Cy* Ceaf)‘l/zﬂ e 3 '

Let Dy = Cpy + M (C = Cp) with A >0 and 11 D= C 11 =€ < k/2
with € fixed. By construction Dmé §+ as D is in the €-sphere :about -

€ which lies in the k-sphere about 0. ! ‘
i
Consider the two one-parameter families B

L(R,)
M( )

D + PulAy = D) for os/sm‘s ]
i

AC for A»0. o

L(f—’vm)es+ for ¥m, since é_'_ is'convex and D, » A€ S,

Suppose there exists a ?\‘ , such that M( }\l)%s+n{? . and‘

let choose /Bm such that: ' .

[ "lsm . )\ m '
y Pm T An = ! \ . :
‘ H
3 then L(B) =4 (1 -£) ces.nE , and since €=(A-1) 1] ¢C - ¢y I
)
' then A+ o . ' '
4 Suppose there exists a subsequence /tnl], such' that
%' /{m'(] ~Bm)— kj< o , this implies that ﬁ'm,-*l and B} N
contradicting the choice of /2 .

i
3

!

Hence there exists m, large enough, -far which/‘m (1 "/Bm)>)\i»
¥ L] (-] ‘
and ',\‘CC-S_‘['@ by convexity of Sy contradicting the supposition

that M( X)) ¢5,N & , therefore Ace s NE for vAr0. : -

3
.

LEMMA 2.2. A bounded monotone sequence converges.

PROOF: See [17]).
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LEMMA 2.3. _!_jls,‘_ associated with (2.1) has:a maximal element Pl. ”

' then there 'exists a matrix §P2> Py such _that Pye .

PROOF: Since Py is a maximal element of S, then :S(I")éff’ for V> Pl e

Let i = P + A with A>0 then: - _ R
S(U):s* (A) = i+F]A-AH HA#E for ¥ A>0, where

Fi =F-PH'H.

Con‘eider} the pe'rturb'ed operator , ! o

éf(A)a 3 ’: A?i +F 1A - - AH'HA' + kI (2.3)

“

I
with k a positive real number and I the (n x n) identity.matrix.

v
L} [

' .
S, corresponding to (2.3) is not empty as A = 065
) . i )
Suppose that 'S/ & associated with (2.3) does not have a

maximal element, thep by temma 2.1. there exists'an A2 0 such that
. " ‘

STVAPD 20 for VA0, but , ,

, sT(\A) =As* (A) + A(1 -A)AH'HA + KI

with s*(A)¢ & Let Nin = min{)M eigenvalue ioi’ sk(a))<o

hence for 'Al > k/1 Aminl we have that S;k ()\IA)-;' S, » contradiction,

therefore the set S_,ﬂt’ associated with (2.3) has a maximal element °

A2 0 and smce (2. 3) is complete\y controllable ‘we can apply

s, Theorem b IJ so that if ﬂ(t o, to)-ns the solutlon of' (2.3)
Wlth initjal condition 0, then ﬂ(t 0,t,)>0 for t>1t, and by
Theorem 2.2. Alé.ﬂ(c,o,to) therefore Ay> 0, and since W(t,o,to)
is a bound‘ed monotone sequehee it converges to A" such that A2 A'>0

® 8y L | ! *
and S|(A*) = 0, hence Py = Py + A

t

The next theorem shows that there 1s at most one maximal

(minimal) element P, , (P,) of S, and that




11
sic{M=TINep} 0 {M=T'|T2p,)

(minimal)
THEOREM 2.4, 1If Py » (Py) is a maximallelement of Sy then it is

the supremum (infimum) element of S, -

PROOF: Suppose BGS+ and B is not comparabie with Py . By Lemma 2.3.
there exists Ay > P] and Ale §. . Then with R-bi = 1,%<0, we have
X]l)

then XIPl + X‘ Ay >B and by Remark 2.2., P3 = )\]PI +3\|Ale g_ .

2P, +iA]> P, and for

Mmax(B = A/ Apin(A) - POl . A<,

: TT(t,P3,t°) is monotone decreasing as t increases, Theorem 2.1,
and bounded below by Py , Theorem 2.2., hence converges to an equi-
librium point which has to be P' , since otherwise PI will not be
a maximal element of S_ .

TT(t,B,to) is monotone increasing and bounded above by
TT(t,P3,t ) for all time, hence Py2P, , contradicting the
assumption that they were incomperable. The proof for the minimal

element goes simmilariy by reversing the time.

Once the supremum and infimum of S, are :haracterized as
equilibrium points, when they exist, will be denoted by P, , P.,

respectively. The use of this clasical notation will be justified

latier.

We now give necessary and sufficient conditions for the
existence of P, and of the P_ .

THEOREN 2.5. P+ , (P.) exists iff S+ is non-empty and there exists

a matrix Lfs; (Lfstuch that F - L]H'H y (=F + LZH'H) is u.a.s.

et

PROOF: Suppose L€S_and ¥, =F - LH'H is u.a.s. then for VKes,
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=1
FLA +AFL

with A=K - L and A20.

=aH'HA+ A (2.4)

Suppose A, is a solution of (2.4) and A, is not negative
semi~definite, then

FLA+A?:- =AH'HA+ A (2.5)

has by assumption at least one solution A, but the solution to

(2.5) is unique as F, is u.a.s. and negative semi-definite since

Lo—- Py |
A= -JeFLt [AH' HA,+ A] e LY dt
o
Contradiction. Therefore A<0 and L>K for VKe S, i.e. L is an
upper bound for $+ which implies the existence of a maximal element
of S by Zorn's Lemma and by Theorem 2.4, of P -

If there exists P+ , then by Lemma 2.3 there exists and
L>P, and such hat Le §_ , and it is easy to see that

?L (L=P)+ (L-P) ?I'_ = S(L).- (P,~L) H'H(P_ - L) <0

-—

and F, is u.a.s. by Liapounov's Theorem.

L

For P_ the proof goes simmilarly and is omitted.

The following two lemmas show why the notation P, and P_

has been used although no definiteness for them has been assumed.

LEMMA 2.4, F - P.H'H, -F + P_H'H are u.a.s iff §#¢

PROOF: It follaws from Liapounov's Theorem. See[l9, Theorem 5}.

LEMMA 2.5. With S ¢, P, , and P_ are the only equilibrium

solution of (2.1) that make F, = F =P H'H , -F_= -F+ P_K'H u.a.s.

PROOF: Suppose K#P_ makes F, u.a.s., then

K




= =1 ' _

F (K-P,) + (K-P)F = (K-P,)H'H(K-P,) = 0

3 implies K - R+$'0. (See proof of Theorem 2.5.), and

, = - - ] - - i - =

: Fe(P,-K) + (P-K)F} = (P,-K)H'H(P -K) = O

implies P - K¢ 0, therefore K = P_. See also [19, Lemma 2] for

another proof.

REMARK 2.4. Theorem 2.4 or the proof of Lemma 2.5 shows that if
P, is any other equilibrium point different from P+ d P_, then

P_< B < P ; inChapter Il we will show that P_ g P

- . i} P,.

o+

J/a

REMARK 2.5. In the case of Q = GG', i.e., Q> 0, then P = 0 ¢ S,
and hence if there exists P+ it has to be positive semi-definite.

With that constrain the following results are known,

i) If (F,H) is completely observable and (F,G) completely
controllable, then there exists an unique positive semi-
definite equilibrium point; it is positive definite and

is P, and the matrix F - P+H'H is u.a.s. See[5], [ 10].

ii) 1f (F,H) is completely observable, then lim JT(t,0,t,)
exists as t—= o and equal to P. Further S{P) = 0 and
P is positive semi-definite. See [5], [10]. For Q = Q',

{19].

iti) |If (F' H') is stabilizable and(G', F') is observable,
then lim T{(t,0,t,) = P+ as t—-~oc and P+ is the unique
positive semi-definite solution of S(P) = 0. Further P,

is positive definite and the matrix F - P+H'H is u.a.s.

see [ 20).
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iv) If (F', H') is stabilizable and {G', F') is detectable,

then S(P) = 0 has at least one solution P positive

semi~-definite and the matrix F - PH'H is u.a.s. See [20]}.

st A

v) If (F', H') is stabilizable, thenTI(t,0,t,) is bounded

: on [t,,®).

Notice that Theorem 2.5 includes the above results as
particular cases but is more general since no assumption on the

definiteness of Q has been made, as in the following example.
EXAMPLE 2.1. iet

g _|-1 o© _ I R

3 F’[‘_‘J H"(I’O) Q"[]_3]

3

S+ is non-empty as P = [Té _2]& S, L

0eS_ and ?L is u.a.s.,

-1 0] .
l 0 '}-5J . However S+ is

unbounded below since there is no L €S, such that -F is u.a.s.

Indeed S, = { [-é 2] l cg-1.5}

therefore there exists P, in fact P,

The next problem to be consideied is how to effectively

compute the equilibrium points of (2.1). Notice that any method

LI Pt Tt e £

depending on eigenvectors is numerically troublesome as is well

known from perturbation theory, see [ll, Chapter l] .

We will use following [1], [ 5] the Hamiltonian matrix H .
LEMMA 2.6. det(H =21) = R() = (-1)"AQ) & (-3)

where A(A) is a polynomial of degree n.

PROOF: See [5,Chapter 8] .

DEFINITION 2.3. A factorization of R(A) is any set (A}, Ap,.. Ap)
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of eigenvalues of OH, possibly repeated, such that R{}) =
(-l)nA(i\) A (-A) where A(A) is a polynomial of degree n with
roots (A ”>‘2"'°)‘n)‘
THEOREM 2.6. Every equilibrium point P of (2.1) satisfies:

(-p, DA(H) =0 (2.6)

where A(}) corresponds to some factorization and A (}) =

det(F - PH'H -~ }1).

PROOF: If P is an equilibrium point of (2.1), let T = [? *I,] then

F - PH'H 0

H'H -F' + H'HP

T T =

Let A (A) be the characteristic polynomial of F - PH'H which

A 1
corresponds to some factorization of R(A), then A (H) = [" B

¢ o
and
A B 5. -PB+D C-PA+ (D-PB)P| _
cC D B A + BP
O{F - PH'H) 0
%  AO(-F + H'HP)

therefore D = PB and C = PA and the theorem follows. See [5,Theorem

8.5].

COROLLARY 2.1. P,, ( P_ ) is given by (2.6) when the factorization

is such that A(}) is a Hurwitz, (totally non-Hurwitz) polynomial,

i.e., ReX;j<0, (ReA;>0) for Vi, where 5 (}) =0

1t is now possible to know how many equilibria may exist.
If all eigenvalues are distinct and real, from each it is

possible to form two different factorizations, namely one with 2
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the other with ~ 4, then there are 2" different factorizations and
therefore there are 29 equilibrium points, since the half lower

part of the eigenvectors of N expand R".

NIRRT

then R(Y) = A = 522+ &, and (P , 1) A (H) =0, i = 1,2,3,4

EXAMPLE 2.2.

gives:
1o _{-10 _{ro _ -1 0
B [o 3] = [0 -1] o, = [0-]] o, = [o 3]
If all eigenvalues are real and one of them is repeated,
say of order s, then the (n - s) different ones can be combined

. n=-s
in 2

ways and the s repeated gives (s + 1) possible combinations,
hence ejther there are (s + I)Zn"S equilibria as in cxample 2.3.

If however the minimal polynomial of H coincides with one lki( )
corresponding to some factorization, then (2.6) is satisfied for

every P, and yet P has to satisfy & (F - PH'R) = 0 and there is

the posibility of parametric families of solutions as in Example 2.4,

- | 91 A B B
[0 e
From the different factorizations we get:

P, =1 P. = -1 pe=[(‘) _?]

However R(A) = ( )2 - l)z, since )2 - 1 is not a minimal polynomial

of K.

ft
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In this case Py =1 and P_ = =] . For Py, Ay (}) is the.minimal '

1
(=]

polynomial of N, although the only P that satis?y A@(F - ?H'H)

_ |cose sine . ey ep s
are Py = [sine -cose}’ a family of equ:?ubr:a.

The following example shows that P,, P_ may be singular

and yet P_ - P_ be positive definite, i.e., F, is v.a.s.

e o _No oo , ‘
F“[o-l] HH [o |] Q’[oo]

then P4 =[§ g] and P_ = [g _g] and P, - P_>0

EXAMPLE 2.5.

If there is a complex eigenvalue and tke others reai-anq
distinct, then each factorization has to include that eigenvalue
and its complex conjugate as A (1) is the characteristic polynomial,
of a real matrix. Then there are Zn"l different factorizations.
EXAMPLE 2.6.

F=_?(l)] HH=0Q=1

Inthis case there are cniy P, =1 and P_ = -1

If finally, there is a complex repcated eigenvalué of crdel
s and the c¢.hers real and distinct, it is possible to have
(s + 1)2"'25 diffarent factorization and posibilities isolated

euilibrium points or families of svlutions.

The above consideration are simpl  o~okeeping of the
combinatorial ways to factor the - + jyenvalues. '

In the general case of real < ‘i<t act,real and repeated,
compiex distinct and complex repeated, we can couﬁt the possible

number of 1 ctorizations by considering the different classes.
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EXAMPLE 2.8.

18
REMARK 2.6, If [«P , TV A (H) = 0 has no solution for a certain
factoriza;ion,‘then there i$ no equilibrium point P of S(P) =0

such'that A(F - ﬁH'H) ='0, since (2.6) is in general a necessary

condition.

The following are examples of those cases.
!

EXAMPLE 2.7. ;

[1 o] |, 1 0 0 o
F= H'H = Q=
o L1 - 0 0y 0 1

: 2 -1]
AQ) = ')\2 +2% + 1 one gets P, = [ ,
- - -1 1)
oA Q) = 22 - 1" one gets, through the use of the characteristic
polynomial of ?;: _ [b 0 )
R 1+8)
) | s ® le ] - ( 5 -

For Z&(X) = }2 - 234+ 1, (2.6) is a set of incompatible equations
aqd thére is no P_. Indeed Theorem 2.5 asserted it and S+ is

unbounded below. | |

'1*1] 1o 1 0
F = H'H = Q=
) L, 0 0

The set of equations (2.6) is incompatible for éhe different factoriza-

tions and therefore there are no equilibrium points. It is interesting

to note that S, is non-empty but S_ = ¢ 5

!




CHAPTER 111

GEOMETRY OF THE RICCATI EQUATION

s Gyl AR A N S S R

5 In the following we will consider mainly the solution of the

RE, in the form (2.2) of the previous chapter, i.e.,

: gf_ = PF' + FP - PH'HP + Q
; t

, (3.1)
P(to) =T =T e (R)

In this case it is possible to find necessary and sufficient
conditions on I" for the global existence of T[(t,"). The importance
of P_ in connection with this problem, it has gone unnoticed until
: very recently 16), 1 19], maybe due to the fact that the principal

tool used was a solution connected with the Hamiltonian matrix

associated with (3.1) and due to Radon {15].

A ASSUMPTION Al. S+ is bounded above and below

DEFINITION 3.1.

ER-:{T‘zr"] P"'P.?.O}
éP_={P=T'] T-P.>0)
: ggp_:{r:r"l T-R 2,0}

similarly,

Finally let (Fg )Gek be the set of all other equilibrium points of

(3.1) different from P, and P_ and this set can be empty, see

19
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example 2.6.

DEFINITION 3.2.

Beil= | Ten 0}
is an invarian set under the transformation det:ned Ly the RE it

for TeB® then P(t,T)e B for Yt2o0.

ASSUMPTION A2. P+ - P_ is non-singular.

LLEMMA 3.1. Suppose Al and A2 hold and f’-P_ is non-singuiar then

the solution of (3.1) is given for t e T (the interval of

existence of T|(t,I")) by

' -1
P(e)=p_(p,-p )" ¥ (e e (TP )T -, -p ) Y (e )7
(3.2)

— 1
vihere ?I(t,to) is the fundamental matrix of F_=F-P-H H

PROOF: The proposed solution satisfies (3.1) since defferentation

gives
-1

pa(p-p )[FL YU, p )Y Y () e, Y
F_}(P-P_)

or

p=(p-p_){F_' [(p-p) " (p,-p ) " T4 [(p-p ) ' (p, P ) I (PP )

where a rearranged form of (3.1) has been used, namely

1

ﬁ:(p-p_) F_+ F_ (P-P) - (P-P_)H'H(P-P)

]
and since P (t,P+) = 0 for Yt then (3.2) satisfies (3.1). The

initial condition P (t,) =T is satisfied as Q’(to,to) = ]

THEOREM 3.1. Under the conditions of lLemma 3.1
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Q
i) if Te EE the solution]{(t," ) exists globally and for

trw ’ﬂ(t:r) -'P+

i) if T¢ E%_gggl“-P_ is non-singular, then the solution

TT(t,T") has a finite escape time.

PROOF: To prove i) we have to show that P(t,T" ) is finite for all

time t or equivalently, that

8(e) = (PP ¥ L(r-p ) e ) Y
is non-singular for te [t,,°).

Lemma 2.4 gives the u.a.s. condition of -F_ hence #Fd(t,ta)* 0
as t-—~-nm

Let
-1

-1 P -1
c(t) = (P -P) - Y (P -P) 'Y
then C(t) is the solution of

C=-F'C-CF_+HH

Therefore

c(t) = JE ?*%tﬁ)ﬁﬂi?’%ns)dszo
and
B(t) = Y#'(P 2 )7 1P ()0 as P-p_> 0

as tw»oo Y’-I—vo , and P(t,P)-’P+

To prove part ii) we note that B(t,) is not positive definite
or semi-definite and for t—~o , B(t) limits to a positive definite
matrix, namely (P+-P_)-‘, hence as the eigenvalues are continuous

functions of t, for some finite value t = T, B(T) will be singular

PEEIIERS
[
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and the solution will escape to infinity.

We have investigated the behavior of the solution for
m=r'e M n(R) and " -P_ non-singular. To study the case of

singular T" -P_ we need some more results.

LEMMA 3.2. (Dual of Lemma 3.1.). Suppose Al and A2 hold and T -P+ is

non-singular then the solution of (3.1) is given for te 7 » by

p(0)=p,+l B (e e [T e, P ) Flese)-e,p )7 ]!
(3.3)

where §(t,to) 1s the fundamental matrix of F-P H'H

PROOF: Same as Lemma 3.1.
This Lemma goneraiizes Corollary 3.2 of [ 4].

LEMMA 3.3. (Complementary) Let [AL =A-P_ suppose Al, A2 hold and

T e 9 then the solution of (3.1) is given for teJ by

r= e VOB Y- 1,37 E )
(3.4)
with }i'fand 7 as before.

For e{T‘=T"|r“F-§°} the solution is given bv(3.4) replacing
X X
rl= by (-Ir3)2

PROOF: Essentially same method as in Lemma 3.1 with the use of the

positive square root of positive semi-definite matrices.

REMARK 3.1. Similarly there is a dual complementary temma for

F-P+ being singular.
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LEMMA 3.4. Suppose Al, A2 hold then (Py) ©3%

PROOF: For Te &, o(t,T")~— P, as t+ hence there cannot be |

-] ) 1
equilibria other than P+ in & ) ' )
) 1

For T¢ gﬁ and I'-P non-singular, P(t,T") escépes to ihfinity

in finite time, therefore there cannot be equilibria .in this

region. We are left then with the set of T''s such that I=-p_is

i \
singular. Consider the subset T"-P_¢ 0 of that > <, call it OR&
) i

(boundary of the rear cone with vextex at P_). Since by the

change t— -t the structure of the equilibrium points does not
. . ' v

change [8]), however, the u.a.s. ones change to totally non-u.a.s.

and vice-versa, then by considering the solution of this new

L
& &

equation, 0N Ep. is inside of the region of convergence of the
' ]
solution to the point P_. Therefore there is not equilibria on

\ .
H ]

3B, , hence (Pp) c 38, IS o

| :
LEMMA 3.5. Suppose Al, A2 hold, then (Py)< o Ep \

PROOF: Note that the transformation t-- -t makes this lemma the

dual of the previous one.

. o |
THEOREM 3.2. Suppose Al, A2 hold, then (P)< 0 & N0 Ep

PROOF: Follows from Lemma 3.4 and 3.5.

REMARK 3.2. If Po€ (Py) then P_gPg g P, ,

There are several invariant sets, e.g S_and S_. Also
i

o

since A being a singular positive semi~definite matrix implies A

is singular, then from Lemma 3.3 and its dual, it follows that




» - 2k
‘ {f'=T'! (T-P) singular}

and ' i !

{T=l“ ‘ (V-P+) singular}
: ' H

are invariant sets. v

i 1

THEOREM 3.3. ‘The set 8 Ep N 9 8?* is_invariant under the

ST RSL -

oy

~|transformatibn defined by the RE.

G Ui

. PROOF: Follows.frém the invariance of the above.sets.’

i

CrA oo

! . '
, We can sumarize the previous result in a graphic way. Refer’
I

! N .
to Fig. 3.1, where the structure of a 2 x 2'RE is repfesented via

with axis Pll’ EIZ’ P22. Fig. 3.1 is just a sugestion,

since actually the cones are cones with a maximum angle of /2 at.

!
\ 1 i .

i
. ‘ the vertex and elliptical cross section with excentricity e=1/ V2.
v \ I 3
' i

3 ! . We can define the domain of attraction of a setB, &s the

pazibemet i wiip

1 '
3 : the space R
[}
]

oo o 23

A 1
2 ' set of T"'s such that P(t,")e B as twe . Then'the domain of :

° H ]
L attraction of P is & and the one of N?P_OQE’& is 38k

We see that if P.v P_s (P;-P_)T‘ exist, the sigﬁature of Q

f and I are imvaterial for the behavior of the solution.
A i ! i * ’ i
t

| REMARK 3.3. The prevjous results are a remarkable generalization

" of the one-dimensional case.

. p=2fp-h’pl+q » ' o

where the domain of attraction of P, is (p_,o) as depicted in

i

Fig. 3.2.
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e o 1

FIG., 3.2

We can now better understand some of the unusual features

which appear in the numerical solution of the RE., see[l13].

if Te by, TT(t,F ) will converge to P, as t gets large, in

spite of round-off errors.

if T ¢8

>, the solution will escape to infinity in a

finite time.

I f T‘eBEP_ , theoretically ﬂ(t,l‘)e}aa for vt and
tends to 3?,;_“3?& as t-»o; this is the only way of reaching a
P¢ and thus provides a cure or in some cases even an analytic
solution. See chapter IV. Excep for very special cases, the round-

of f error will throw the sclution outside 9 & , and will therefore

escape in finite time or converge to P+.

This explains why in [13] the numerical solution of (2.1)

is unable to reach Py with initial values in the domain of

attraction of Py -

We now consider a time dependent RE.
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P(t) = P(E)F'(t) + F(t)P(t) = P(t)H' (L)H(t)P(t) + Q(t)
P(t,) =T =T'e #, ((R)
with Q(t) = Q'(t).

(3.5)

By using the fundamental matrix of F(t) it is possible to
change (3.5) into:
P (t) = =P (t) HI() K (t) P(t) +Q(t)
Py(ty) =T

j (s t)H' (s) H(s)d)(s t)ds =Jt H (s)H (s)ds
c(t,t,) L P(t,s) a(s) g>(t s)ds =[" @ (s)ds

Wt 3, c(t,ty) the observabnlf%y and controllability matrix,
respectively. See {3].

Hence without loss of generality we will consider a RE

with F(t) =0
P(t) = -P(t) M(t) P(t) + Q(t)
P(t.) =T =T e (R)

and M(x) >0, Q = Q' continuous functions of time, and let:

(3.6)

N

i}

ps sup  M(t)

G[to,w

ps inf Q(t)
té[to:w)

Notice that ps sup and ps inf can be replaced by any other
convinient upper and lower bounds, respectively.

Consider the following constant RE:

'P 03 - _P'.': M. P-.': + Q'.':
Pe(te) = T

and assume there exists the minimum element of S+ associated with

(3.7)
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it, P.

THEOREM 3.4. 1f M(t) >0, Q(t) = Q'(t) are continuous functions of t

and there exists P, then TI(t,T,t,), solution of (3.6), exists

in telto, ) for T > 2

PROOF:  TT¥(t,Pyto) solution of (3.7) exists in telt,, @), from
Theorem 3.1 and with %= T, T, te) -ﬂ “(t,T,t,), then y satisfies
n--ﬂﬁq T - M (e - Q) - T - YT

M(te) =

therefore ‘7(t) >0 for all t, i.e., ﬂ(t,]",to)zﬂ*(t,r‘ o).




CHAPTER [V

2-D RICCAT! EQUATION

Through this research numerical computations and theoretical
results for the 2-dimensional RE were useful since the space Hz 2(R)
[
is isomorphic with R3 over the fleld of real numbers and addition of

matrices and vectors, for symmetric matrices,

The equation of the motion of the solution of the RE with
1‘63(?9.03{%\.,;]] be presented here. It is remarkable the natural way
in which improper rotations, [7], appear in the two-dimensional
case. It should be expected that something similar will happen in
a higner dimension, although we did nct investigate this case any

further,

IDENTITY 4.1. For (2 x 2) real matrices the following identities

arc valid:
i) det(AtB) = det(A) + det(B) ¥ (tracc A)(trace B)jtracc(AB)

or, if A is non-sinqular:

'+

i) det(ATB) = det(A) + det(B) ¥ det(A) trace(A™' B)

where det (C) = determinant of C.

LEMMA L. 1. 1f P, - P_ is non-sinqular then for (2 x 2) recal sym-

metric matrices the solution of:

29
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det (P - P.) =0

(4.1)
det (P -P,) =0
is given by:
(1 + Tp)
Pp= P. + - (4.2)
trace{(P+ -P) (14 Tb)}
where:

cose sine
T:

sing =-cos e

PROOF: Let Py - P- =[§ 2] . To satisfy the second equation of (4.1)
and Py = P_20 the following relations have to be met:

ac = b"'z =0, a, c‘zo (4.3)
This family of solutions can be represented by the two-parameter
function;

Po = P_=A(1 + Tp)
where A is a positive real number and 0¢[0, 27].

Indeed the transformation:

a= A(l + coség)
b= Asin®
c= A(1 = cosH)

satisfies relations (4.3) and (a, b, ¢c)—(}, ©) is one-to-one
a+c

A=—3

/20
8= sin
a+c

where @ is fully determined from the other relations, and is well
2b

defined since |-

a+c
Now by the use of ldentity 4.1, ii), it is possible to

$‘ L]

determine the value of A so that the first equation of (4.1) is
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also satisfied and the proof is complete.

MOTION ON O Ep N3 &, : ;

Sustitution of {%.2) into the RE gives:

6 J T B+ %) trace{(p, - P_)'U'Te} _
trace{(Py - P.)"N(1 + To)}  [trace{(P, - P-)"](I + 7)) '
(b.4)
Fo (I+To) +# (I+T,) Fl (1+ To)H'H(I +Tg) '+ '

trace{(Py - P.)"1(I + To)} ) [trace {(P, - PN+ T }]2

[0 ' |

Since 9&N3&; is an invariant set under the transformation

where

defined by the RE, the three component equations derived from (4.4)

should be non-independent; therefore we are permitted to choose the

most convinient linear combination for the solution.
wl ol '
CASE 1I: trace{(P,+ =P J T}t 0 ' . :

By taking the trace of (4.4) the solution of the RE with

initial condition I'ed& & s given by: ‘ i
(1 +Tg)

P(t) =P + - :
trace{(P+ - P-)" (1+ Tp)} i

where 8 satisfies: '
~trace{F.(® + Tg)}trace{(P+ - P_)'](I + T )} + trace{(1 + Tg)H'H}

trace {(Py - P.)"1J' T}

6=

g(to) = 6,

where trace(AB) = trace(BA) and trace(J'To) = 0 , have been used.
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' e 1.
GASE I1: trace{(P,'-P )7 'J Tg}=10 !
i ‘ N
In.thisl case (b4.l) reduces to

1

. .
BT = F_(1 + Te)Ted'+ (1 + T)F. T,d - -
e ! ? :a trace {(P, ~ P_) Y1+ o)}

(I +7Ty) H.H (1 + Tp)Ted'

or Faking the t.race .and since TOJ'T9=J , then the solution is given
as in <’:ase | t‘Nith 6 satisfying: _

a | e = trac;e;{'ﬁ_(l + To) J }
0 (ty) = 6o
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