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CHAPTER I

INTRODUCTION

The importance of the Riccati equation (RE) in itself and

in connection with the optimal linear-quadratic control arid Kalman-

Bucy filtering theory, has motivated several works ,xamining the

behavior of its solution. In particular, results pertaining to

sufficient conditions for global existence, monotoneity properties,

asymptotic character, invariant sets and equilibrium points have

been reported in the literature. A discussion of the interesting

problem of a priori bounds for the solution is presented in (4].

As Willems 1191 has pointed out, various aspects of the RE

need further investigation. Specifically, one is interested in

i) performance criterion which are not positive, ii) the cost linear

functional in the control, iii) control with conflicting aims, and

iv) conjugate point structure in variational problems.

This latter case is of particular importance in the

numerical solution of the RE: although the solution of the differ-

ence matrix equation may be well behaved, in the sense of being

finite for all time and convergent tc an equilibrium solution, it

does not pertain to the problem under consideration since the

solution lies outside the interval of disconjugacy. The only indica-

tion that one gets from the numerical computation is a change of

I



2

the definiteness of the solution between two consecutives iterations.

There exists a duality principle between the optimal linear-

quadratic control problem and the optimal linear-gaussian filtering

problem. The duality is achieved by a simple change of the dynamics,

!;ensor, and actuator along with a reversal of time. See [10,

Section 5J . This correspondance allows one to formulate results

in either control or filtering form,3-1 obtain results for the

dual problem by a reinterpretation within the appropriate context.

Henceforth we will be concerned with solutions of the RE

with time running forward and the initial condition imposed at

the starting time. We will also concentrate on the autonomous case,

i.e., when the cocfficient matrices are time independent. Fur Lhis

case, under certain regularity conditions, it has been shown [6)

tbat there exists a fixed point of the RE, called P , which

generates a convex cone in the partial ordering induced by the

positive semi-definite matrices, such that if the initial condition

belongs to this cone then the solution exists globally. The result

was proved by the application of a theorem of Reid 116).

The importance of P in connection with the structure of

the solution of the RE was also recognized in f19) whereas its

physical interpretation as the steady state error variance of the

present state given future observations was made clear in 4)].

Also a solution !4, Corollary 3.2] of the RE is given when the

initial condition tends to infinity; this is a particular case of
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the general form presented in Chapter III.

The main results determined in this analysis are:

i) Necessary and sufficient conditions for global existence

of the RE as a function of the initial condition for the

autonomous case.

ii) Sufficient conditions for the solution to be in the

domain of global existence for the time dependent case.

iii) A general existence theorem for the equilibrium points

P and P . (The reader is referred to Chapter 11 for the
+

definition of P+, P and PO).

iv) A method for finding the equilibria.

There are several techniques available for the computation!

of the points P+, P and Pe. One vay to find P+ is by the method

of quasi-linearization or Newton's method in function space. What

results is a numerical computation [5, Chapter 8), [1,23 which can

efficiently compute P+ ; P. can also be determined by iterating

to a related equation [6). This method is not applicable for the

determination of Pe.

A second method oakes use of information contained in the

Hamiltonian matrix,HI , associated with the RE. One form of this

technique, due to Potter [14), is valid when'lis diagonalizable;.

Martensson 113) has extended the method to include a general

Hamiltonian matrix. In the present work we extend another form of
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the Hamiltonian method, due to Bdss and Roth, [I1, [51, and 1181,

which is based on a partition of 'the characteristic polynomial of'H

The use of the Hamilionian provides not only P+ and P-, but

also any Pif it exists, as well. as results concerning the number

of equilibria. 'In 191 a geometric method is presented which,

however, is not awenabl:e to computation.

The work on determination and structure of equilibria

presented here was done independently of that by Willems 119) (see

"comment in [61). We note that although he has presented some results

concerning the equilibria of the RE, many of these assertions are

without' proof. Furthermore, vVe feel our proofs are simple and

!direc't. In addition our method is numerically tractable because it

is eigenvector free, whe'reas' those of 113), 114)", and 1191 are
numerically impractical. In fact we have a digital program which

effectively computes all real symmetric equilioria and is quite

accurate.

No

*c Note that 114) concerns the deterrinat:Ln of complex equilibria.



CHAPTER II

FIXED POINTS

For real symmetric matrices we will use positive definite,

A>O, positive semi-definite, A0O, and strictly positive semi-

definite, ANO, to denote that the matrix A has all its eigenvalues

greater than zero, greater or equal to zero, and greater or equal to

zero but at least one equal to zero, respectively. The obvious dual

definitions and notations are used for negative definite, semi-

definite, and strictly semi-definite. Nonnegative definite will mean

a real symmetric matrix which is either positive semi-definite or

indefinite, rather than the normal use with the meaning of positive

semi-definite in the present form.

The set of positive semi-definite matrices is a convex cone,

which induces the following partial ordering over the space of real

symmetric matrices:

AŽB iff A-BŽO, i.e. A - BE

A maximal (minimal) element of the set B is an element Pe

such that there is no element in F -{P) which is greater (smaller)

than P. Firnally, the supremum (infimum) element of the set B is a

Pe5 such that P is greater (smaller) than any other e!r-ment of .

Notice that in the space of symmetric matrices it is not

possible to define the supremum as the least upper bound, since the

5
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common upper boun•ds of two given matrices may be not comparable

among them, for instance, given2A 0 [0 0 1° 1 0 0 [1 1] 11
then C>A, C>,B and D>A, D.•B but C and D are not comparable.See [2].

If A is a finite real symmetric matrix we define the pseudo-

supremum of A and 0, the zero matrix, as:

ps sup (A,O) = T'f.,i vOl T

where VAT = diag ;l] ,[ý:VOJj= diag[max(,,O)J , and then

ps sup(A,B) = ps sup(B,A) = ps sup(A-B,O) + B

0

As is normal ?D and b will denote the boundary and the

interior of the set $5, respectively.

We consider now the autoncmous RE:

dP = PF' + FP - PH'IHP + Q
(2.1)

P(t.) P

where prime denotes transpose and with Ml,n(R) the space of (1 x n)

real matrices, FEMnn(R), HelMs,n(R), Q =Q'cMnn(R),r=P'EFmn,n(R),

P = P'6 Mn,n(R). The right hand side of (2.1) will be denoted by

S (P), and let TTOt,T be the locally unique solution of (2.1), see

[5, Chapter 5J.

The Hamiltonian matrix associated with (2.1) is

[-F HH] (2.2)

Q F

For the definition of uniform asympLotic stability (u.a.s.)
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see 15,Chapter 1].

A simple subsztitution gives the following:

IDENTITY 2.1. For A+--I , a real number and Pl' P2 any two real

symmetric matrices

S ' PI + AP 2 ) =)'s (P1 ) + AS(P 2 ) +XR.(P1 , P2)

where R(PI, P2 )->0 for every PI, P2

DEFINITION 2.1.

s+ ={r=r' scr) o)
s_ = rr's r _oj

Notice that they are extensions of S+ and S. defined in [5, Chapter 51

Here we do not make the restriction that Pe

REMARK 2.1. S+ is convex. It follows from Identity 2.1.

In [19) the convexity is proved by the use of the linear matrix

inequality (LMI) and a complicated string of equivalences. A direct

proof from the LMI can be constructed by using results in [9].

REMARK 2.2. If P1e S+, P2F S_ (P 2 e S_) and X<O then P=2,PI++,P 2 6 S.

(PeS_-) where A+\= I.

THEOREM 2.1. If Pe S+, (leS_) thenTT(t, ,to) a solution of (2.1)

belongs to S+ , (S.) for all time tel1(interval of existence) and

is monotone increasing (decreasing).

PROOF: See B5, Chapter 53.

THEOREM 2.2. If MT(t, ,,tA) a solution of (2.1) exists in the interval

Sthen for r> 17,,M(t,zto) exists in the interval and



TT(t,f ,t•) •_-(tU ,t 0) for te

PROOF: See[ 16, Lemma 2.31.

DEFINITION 2.2. p M (R) is an equilibrium point of (2.1)n,n
iff S (P) =0.

REMARK 2.3. If {PJ fs the set of equilibrium points of (2.1) then
4{P) _sh Os..

{Pc + -.

THEOREM 2.3. If P! , (P 2) is a maximal minimal element of S+ then

PI ,(P2 ) is an equilibrium point of (2.1).
PROOF: Let P1 be a maximal element of S+ , then by Theorem 2.1.,
valid with Q = Q',I(t,P)>_pI , hence .l'(t,Pl) = P1 forV't >- 0 by

maximality and therefore P ] .6 For P2 the proof follows by
reversing the time i.e. t- - t.

The following three lemmas are basic for the proof of the
main theorem concerning the existence of maximal and minimal elements

of S+.

LEMMA 2.1. Let ý be a closed convex cone with vertex at zero, and
S+ be a clos,,: convex set such that OeS+ if S+t does not have a
maximal element in the partial ordering induced by e' then there
exits an AE such tha' MAES+1' for every real number A >-0.
PROOF: Since S+( & does not have a maximal element it is possible
to find a totally ordered seqijence A with no finite upper bound,

n
such that A e S nfL, for otherwise by Zorn's Lemma S OV has an + 

+maximal element. Without loss of generality A may be taken

I increasing.
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0

Since OeS+ , there exists a sphere of radius k about 0,

=tAI IIAII-< kj S+ and Bk/ is compact. Define ,n so that
k 2

Cn '1/An An and II Cn 11 = k/2
By compactness of 0 & there exists a subsequence Cm which

converges to C i.e. Cm-CG k/2O .

Let Dm = Cm +/m (C - Cm) with /4>n, >l and II Dm- C II = E- k/2mm

with G fixed. By construction Dm6 +S as Dm is in the 6-sphere about.

C which lies in the k-sphere about 0.

Consider the two one-parameter families

L( m) Dm + Pm (Am - D) for 0<,Pm'Il-I
I

M(ti ) - C for .O .

L( )mS+ for Vm, since S' is~convex and Dm AmE S+.

Suppose there exists a * such that M( )#S+Afl, and

let choose Pm such that:
-/am' I

7-__m /m

then L(Am) A/0(m( "m) ces-n •' , and since 6P(/Am-I) II C - Cm II

then //m o

Suppose there exists a subsequence /im, such that

/ (I -l/Sm,)- k < , th'is implies that AM;- I and /5 1,,m "O

contradicting the choice of P MI

Hence there exists m. large enough,.qfr which/<mo(I -/sm>)I,!

and C CeSfpLI by convexity of S+ contradicting the supposition

that N( kll s+n ,S therefore ýCe S+.1I for V2,ýO.

LEMMA 2.2. A bou:ded monotone sequence converges.

PROOF: See [ 17).
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LEMMA 2.3. If S+ associated, with (2.1). has a maximal element PI

then there 'exists a matrix P2 > PI such that .P2F, .

PROOF: Since PI is a maximal element of S+ then ;S(P)ý5' for v">,P.

Let TA = P + A with A>tO then:I}

S(T4 = S*(A) AFT' + F 1A -AH'HA•' for:VA_:O, where

F = F -PIH'H•

Consider the perturb~ed operator

,., ± -A AT, + - AH'HA'+ kl (2.3)I Id t

with k a positive real number and I the, (n x n) identity-matrix.
°"I *0 4

4S+ corresponding to (2.3) is not empty as A = 06S+

Supposý that'Sf'lf associated with (2.3) does not have a

max'imal element, thep by Lemma 2.1. there eists'an A1 0 such that
,S* (X A ),O for V'O, but.

I SI("AA) =,S (A) +)(I -I )AH'HA + kI

with S* (A), ''.Let ?min = min{2 + ei geovIlue of S0 (A))< 04

"hepce for A> k/l minl we have that S, () ,A)" S+ , cbntradiction,

therefore the set S+0? associated with (2.3') has a maximal element

AI> 0 and since (2.3) is completely controllableiwe can apply

1[5, Theorem 5.13 so that if )t,Ot o ),is the solution of' (2.3)

with initial condition 0, then TI(t,O,t.)>O for t>t. and by

Theorem 2.2. AŽ CT'(0,0,t,) therefore. A1> U, and si'nce " (t,O,to)

is a bounded monotone sequence it converges to A7 such th~at A1Ž A.>O

and SI0(A') =,0, hence P2  P +
4 

I

The next theorem shows that there is at most one maxirhal

(minimal) element PI , (P 2) of S+ and that

I

Iii i



s+c{r rF'Irr. 0 {=F'nr_>p2}

(m inimnal)
THEOREM 2.4. I.f PI ' (P 2 ) is a maximal -eement of S+ then it is

the supremum (infimum) element of S.

PROOF: Suppose BeS+ and B is not compara.ble ,,ith P. By Lemma 2.3.

there exists A,>Pi and AIe S . Then with A,+A ,<O, we have

\PI +A Al> P1 and for PI,4Xmax(B - A.)/2min(Al -

then ,iPI + A, A,>B and by Remark 2.2.: P3 = )iP1 +)ýIAie S-

I-(t,P3 ,tj) is monotone decreasing as t increases, Theorem 2.1,

and bounded below by P1 , Theorem 2.2., hence converges to an equi-

librium point which has to be P, , since otherwise PI will not be

a maximal element of S+

f'(t,B,to) is monotone increasing and bounded above by

)((t,P3 ,t ) for all time, hence Pl>-P2 , contradicting the

assumption that they were incomparable. The proof for the minimal

element goes simrnilarly hy reversing the time.

Once the supremum and infimum of S+ are ;haracterized as

equilibrium points, when they exist, will be denoted by P+ I P,

respectively. The use of this clasical notation will be justified

latter.

We now give necessary and sufficient conditions for the

existence of P+ and of the P

THEOREM 2.5. P+ , (P.) exists iff S+ is non-empty and there exists

a matrix L6S; (L9.)such that F - L H'H , (-F + L2 H'IH) is u.a.s.

PROOF: Suppose LES. and F L F LH'H is u.a.s. then for VKeS+
L +
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F + AFL H= H &H+ A (2.4)

with L= K - L and AŽ.O.

Suppose Ac, is a solution of (2.4) and Lois not negative

semi-definite, then

F tA+AF' =AH'HAN+ A (2.5)
L L(25

has by assumption at least one solution &0, but the solution to

(2.5) is unique as TL is u.a.s. and negative semi-definite since

e= -JeL [LtAH' HAo + A e FLt dt

Contradiction. Therefore ZA<_O and LŽ_K for V KF S+ i.e. L is an

upper bound for S+ which implies the existence of a maximal element

of S+ by Zorn's Lemma and by Theorem 2.4. of P+

If there exists + , then by Lemma 2.3 there exists and

L>P+ and such Lhat LeS., aad it is easy to see thatk

F L (L - P) + (L - P) L' = S(L) - (P+-L) H'H(P+ - L) < 0

and FL is u.a.s. by Liapounov's Theorem.

For P the proof goes simmilarly and is omitted.

The following two lemmas show why the notation P+ and P_

has been used although no definiteness for them has been assumed.

LEMMA 2.4. F - P H'H, -F + P H'H are u.a.s. iff S-1

PROOF: It follows from Liapounov's Theorem. See[19, Theorem 5).

0

LEMMA 2.5. With S+ - , P+ , and P are the only equilibrium

solution of (2.1) that make F+ = F -P+H'H , -F_= -F+ P.H'H u.a.s.

PROOF: Suppose K#P+ makes F K u.z.s., then
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S+(K-P+) + (K-P+)F+ (K-P+)H'H(K-P+) = 0

implies K - P+S<0. (See proof of Theorem 2.5.), and

FK(P+-K) + (P+-K)FI•- (P+-K)H'H(P+-K) = O

implies P+ - KS0, therefore K = P+. See also [19, Lemma 2] for

another proof.

REMARK 2.4. Theorem 2.4 or the proof of Lemma 2.5 shows that if

P. is any other equilibrium point different from P+ id P_, then

P.- Pe < P+; in Chapter III we will show that P_ Pe jk P+.

REMARK 2.5. In the case of Q = GG, i.e., Q Ž 0, then P =0

and hence if there exists P+ it has to be positive semi-definite.

With that constrain the following results are known.

i) If (F,H) is completely observable and (F,G) completely

controllable, then there exists an unique positive semi-

definite equilibrium point; it is positive definite and

is P+, and the matrix F - P+H'I H is u.a.s. See [5), 1 101.

ii) If (F,H) is completely observable, then lim -•(tO,to)

exists as t-co and equal to P. Further S(P) = 0 and

Pis positive semi-definite. See [5), [10]. For Q = Q1,

ig9).

iii) If (F' H') is stabilizable and(G', F') is observable,

then lim T-(t,O,t') = P+ as t- co and P+ is the unique

positive semi-definite solution of S(P) = 0. Further P+

is positive definite and the matrix F - P+H'H is u.a.s.

See [20).
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iv) If (F', H') is stabilizable and (G', F') is detectable,

then S(P) = 0 has at least one solution P positive

semi-definite and the matrix F - PH'H is u.a.s. See (201.

v) If (F', H') is stabilizable, then 1-(t,O,to) is bounded

on [toO).

Notice that Theorem 2.5 includes the above results as

particular cases but is more general since no assumption on the

definiteness of Q has been made, as in the following example.

EXAMPLE 2.1. Let

F H=( , 0) Q=l-]

S+ is non-empty as P r- S,, L = 0PS_ and FL is u.a.s.,

therefore there exists P+, in fact P+ = ["0 -' 5 ] However S+ is

unbounded below since there is no LGS+ such that -FL is u.a.s.

Indeed S÷ = { oi lc c,<-1.5)

The next problem to be considered is how to effectively

compute the equilibrium points of (2.1). Notice that any method

depending on eigenvectors is numerically troublesome as is well

known from perturbation theory, see [11, Chapter I1

We will use following Il , [ 5) the Hamiltonian matrix ' .

LEMMA 2.6. det(" -t I) = R(',A) = (_)n6(,) 6 (-^,)

where A/(ý) is a polynomial of degree n.

PROOF: See [5,Chapter 81

DEFINITION 2.3. A factorization of R(\) is any set (Al, 22,.. in)
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of eigenvalues of '){, possibly repeated, such that R(e) =

(-1)nA(•) . (-\) where L'(k) is a polynomial of degree n with

roots (2i,22,...2n).

THEOREM 2.6. Every eguilibrium point P of (2.1) satisfies:

(-, Of 0 (2.6)

where Q(,) corresponds to some factorization and A(2)

det(F - PH'H - 21).

PROOF: If P is an equilibrium point of (2.1), let T 0~ ~ thený1 P

F 0 ]

H H .-F + H'HP

Let A (•) be the characteristic polynomial of F - PH'H which

corresponds to some factorization of R(2), then A(2()= [C D]

and

T A B [-PB + D C -PA+ (D -PB)P
Cr D T A1+ BP

ý (F - PH'H O0 ,

= F . H) (-F + H'HP)

therefore D = PB and C = PA and the theorem follows. See [5,Theorem

8.5).

COROLLARY 2.1. P+, ( P ) is given by (2.6) when the factorization

is such that Z (,) is a Hurwir.z, (totally non-Hu;rwitz) polynomial,

i.e., Re i< O, ( Re~iO ) for V i, where (A) = 0

It is now possible to know how many equilibria may exist.

If all eigenvalues are distinct and real, from each it is

possible to form two different factorizations, namely one with A

IG
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the other with - 2, then there are 2n different factorizations and

therefore there are 2n equilibrium points, since the half lower

part of the eigenvectors of If expand Rn.

EXAMPLE 2.2. [ 01 H [ 0[

then R(2) - 5 + 14 , and (-P , 0) Li()) = 0, i = 1,2,3,4

gives:

'P: [0 P =[ 0] '= [I'] 0 3

If all eigenvalues are real and one of them is repeated,

say of order s, then the (n - s) different ones can be combined

in 2n's ways and the s repeated gives (s + 1) possible combinations,

n-shence either there are (s + 1)2 equilibria as in example 2.3.

If however the minimal polynomial of if- coincides with one 'NI )

corresponding to some factorization, then (2.6) is satisfied for

every P, and yet P has to satisfy A (F - PH'I) = 0 and there is

the posibility of parametric families of solutions as in Example 2.4.

EXAMPLE 2.3.

From the different factorizations we get:

However R(A) 2( . I)2, since A2 1 is not a minimal polynomial

of 7'.

EXAMPLE 2.4.

H- [1ý ]
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In this case P+ = I and P. = -] . For P9, 4GP) is the minimal

polynomial of If, although the only P that satisfy Ate(F - PH'H) 0

cose sine
are P,= sine -cose , a family of equilibria.

The following example shows that P.,. P_ may be singular

and yet P+ - P be positive definite, i.e., F+ is ki.a.s.

EXAMPLE 2.5.

then P+ =[0201 and P [ _0] and P+- P_>0

If there is a complex eigenvalue and tF.e other.s real .and

distinct, then each factorization has to include that eigenvalue

and its complex conjugate as 6 (A) is the characteristicpolynomial,

of a real matrix. Then there are 2 n-l different factorizations.

EXAMPLE 2.6.

Inthis case there are uniy P+ = I and " = -l

If finally, there is a complex repeated eigenvalue of crdeý

s and the c.hers real and distinct, it is posiibla to h~ave

(s + 1) 2 n'2s diff.=rent factorization and posibilities isolated

euilibrium points or families of silutions.

The above consideration are simpi ,-)okeeping of the

combinatorial ways to factor the e , ijenvalues.

In the general case of real ;, i ict,real and repeated,

c,,mpiex distinct and complex repeated, we can count the possible

number -f t i=torizations by considering the different classes.
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;RE.MAgK 2.6. If [-P , 1• A ('). ) = 0 has no solution for a certain

factorization, then there is no equilibrium point F of S(P) = 0

such'that Z(F - PH H) ='0, since' (2.6) is in general a necessary

condition.

The following are exangples of those cases.

EXAMPLE 2.7. 0] [ ]:o]
1= 0H 1 1= 

0F - -i H 0 Qj

the eigenvalues are +1 ,!-], repeated and for

AX (4).= \2 3 +2 + I one getsP+ :
2

= - I' one gets, through the use of the characteristic

polynomial, of FO: [ )2
, I 0  (1-

'Le - +2e2

For \(A) = 22" 2 ý'+ 1 , (2.6) is a set of incompatible equations

and there is noP. Indeed Theorem 2.5 asserted it and S is

unbounded below.

EXAMPLE 2.8. [ 3 [:1
F '= 111 H'H 1= 1 Q 1= 0

The set of equations (2.6) is i~ncompatible for the different factoriza-

tions and therefore there are no equilibr'ium points. It is interesting

to note that S+ is non-empty but S_

I, ,



CHAPTER ,•I

GEOMETRY OF THE RICCATI EQUATION

In the following we will consider mainly the solution of the

RE, in the form (2.2) of the previous chapter, i.e.,

dP = PF' + FP - PH'HP + Q.

(3.1)

P(tj) = ' =P 'e mn(R)

In this case it is possible to find necessary and sufficient

conditions on P for the global existence of TT(t,i ). The importance

of P in connection with this problem, it has gone unnoticed until

very recently 16), [ 19], maybe due to the fact that the principal

tool used was a solution connected with the Hamiltonian matrix

associated with (3.1) and due to Radon 115).

ASSUMPTION Al. S+ is bounded above and below

DEFINITION 3.1.

•p {r=r') r- R _ 0O

{p.= fIr rl-P- > 0)

similarly,

Finally let (F6 )eV be the set of all other equilibrium points of

(3.1) different from P+ and P and this set can be empty, see

19
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example 2.6.

DEFINITION 3.2.

c--{V'= P T'ef nn(R)

is an invarian set under the transformation detned by the RE it

for FeB then P(t,r)e B for Y't>,O.

ASSUMPTION A2. P+ - P is non-singular.

LEMMA 3.1. Suppose Al and A2 hold and F-P is non-singular ther,

the solution of (3.1) is given for' t e (the interval of

existence offl(t,F)) by

P(t)=P-t(P +- P) +~ ~f (tt,,) P-) - (P pr-)j I f't~t)

(3.2)

where y7(t,to) is the fundamental matrix of F =F-P-H H

PROOF: The proposed solution satisfies (3.1) since defferentation

gives

P=(P-P9{F r~~ -P~)-(P) Pi''1* (V-P9) -(p +-) 1

J (P-P.)

or

P=(P-P.)I_' [(p-p_)-1 -(P+.-P)- 1 ]+ [(p-P.)-I. (P+-P.)-] _} (P-P)

where a rearranged form of (3.1) has been used, namely

P=(P-P_) F+ F_ (P-P) - (P-P_)H'H(P-P)

and since P (t,P +) = 0 for Vt then (3.2) satisfies (3.1). The

initial condition P (t.) =ris satisfied as T (t 0 ,t 0 ) = ]

THEOREM 3.1. Under the conditions of Lemma 3.-.
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i) if Pe p. the solution tf(t,T ) exists globally and for

t-, ,TT (t, r-P+

ii) if e• •p and . r-P is non-singular, then the solution

TT(t,P) has a finite escape time.

PROOF: To prove i) we have to show that P(t,F) is finite for all

time t or equivalently, that

B(t) -- (P+-P.) 1!+ •"[ (P p (p.p_- T'

is non-singular for t c [tO0,c).

Lemma 2.4 gives the u.a.s. condition of -F_ hence "(t,t.)-O

as t-

Let

C(t) = (P+-P) -l " (P+- P-)
then C(t) is the solution of

C" =C - C CF + H'H

c(to) = 0

Therefore

C) .J ? ý(ts) H'H (t,s) ds 0

and

B(t) - '(r -P_) ''"+c(t)> 0 as P-P > 0

as t-'co iJK-,-0 , and P(t,')-. P

To prove part ii) we note that B(tj) is not positive definite

or semi-definite and for t--o , B(t) limits to a positive definite

matrix, namely (P+-P.)- , hence as the eigenvalues are continuous

functions of t, for some finite value t = T, B(T) will be singular
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and the solution will escape to infinity.

We have investigated the behavior of the solution for

r =' f n,n (R) and P-P non-singular. To study the case of

singular TP -P. we need some more results.

LEMMA 3.2. (Dual of Lemma 3.1.). Suppose Al and A2 hold and P -P+ is

non-s;ngular then the solution of (3.1) is given for te" ,

P(t)=P++t V"(t,t,)[(r-P+)-+(P+-P-)"l]I'(t, to) -(P+-P_)1

(3.3)

where ý(t,t0 ) is the fundamental matrix of F-P+H'H

PROOF: Same as Lemma 3.1.

This LIM,,MM gcnerai izes Corollary 3.2 ofi[l 4.

LEMMA 3.3. (Complementary) Let EAE =A-P_ suppose Al, A2 hold and

T'El p, then the solution of (3.1) is given for tel by
I j-' -1•" - -I Wry ire-

P(t)=P + 'y iEPr {i+ ry Ph12(C +P_ [Pp+ l +1
(3.4)

"with r and I as before.

For r•f]•='lPfll-oJ the solution, is given !bY(3.4) reolacing

PROOF: Essentially same method as in Lemma 3.1 with the use of the

positive square root of positive semi-definite matrices.

REMARK 3.1. Similarly there is a dual complementary lemma for

P-P+ being singular.
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LEMMA 3.4. Suppose Al, A2 hold then (P&) CG p_
0

PROOF: For re ý'p , P(t,P )-rP+ as t-?, hence there cannot be

equilibria other than in+Lon
I+

For 14 4 and P-P' ion-singular, P(t,r) escapes to ihfihity

in finite time, therefore there cannot be equilibria .in this

region. We are left then with the set of P's such that 1'-P. is

singular. Consider the subset r -P 0 of that W i, call it .

(boundary of the rear cone with vextex at P). Since by the ¶

change t--.-t the structure of the equilibri-um points does not'

change [8j, however, the u.a.s. ones change to totally non-u.a.s.

and vice-versa, then by considering the solution of this,new

equation, ct 'p.. is inside of the region of convergence of the

solution to the point P . Therefore there is not equilibria on

?•p. ,hence (Pe) Cp

LEMMA 3.5. Suppose A, A2 hold, then (P 0 )C' p

PROOF: Note that the transformation t-. -t makes this lemma the

dual of the previous one.

THEOREM 3.2. Suppose Al, A2 hold, then (Po)c_ e&p.nf

PROOF: Follows from Lemma 3.4 and 3.5.

REARK 3.2. If P. (P9) then PA Pe P+

There are several invariant sets, e.9 S+ and S Also

since A being a singular positive semi-definite matrix implies A2

is singular, then from Lemma 3.3 and its dual, it foIllows that

I!•
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S{'(r-P) singular)

and

{F=r'1 (r-p+) singular)

are invariant sets.

THEOREM 3.3. The set •pfl + is invariant under the

transformation defined by the RE.

O•••IROOF.', Fol lows ifrom the invariance of the, above,sets.*

We can sumarize the previous result in a graphic way. Refer'

to Fig. 3.1, where the structure of a'2 x 2'RE is represented via

the space R with axis PIII P12' P2 2. Fig. 3.1 is just a sugcstion,

since actuaflj the cones are cones with a maximum angle bf 1"/2 at,

the vertex and elliptical cross section with excentricity e=]/ VT.

We ran define the domain of attraction of a set B, hs the

set of P's such that P(tr')E Yý as t--o, . Then the domain of
011

attraction of P+ is . and the one of d p. n ý tp+ is s

"We see that if P(p -1 p. 1, exist, the signature of O• , e 'ee hat if + P.,- ,

and P.are irwuaterial for the behavior of the solution.

REMRK 3.3. The previous results are a remarkable generalization

of the one-dimensional case.

2 2p 2 f p -h p + q

where the domanin of attraction of p+ is (p ,co) as depicted in

Fig. 3.2.

V
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rP

FIG. 3.2

We can now better understand some of the unusual features

which appear in the numerical solution of the RE., see[13].
a

If r7e t M F-(t,l) will converge to P+ as t gets large, in

spite of round-off errors.

If P• • •'p the solution will escape to infinity in a

finite time.

If P & , theoretically -T(t,P)e tr for Vt and

tends to . as t-Po; this is the only way of reaching a

Pe and thus provides a cure or in some cases even an analytic

solution. See chapter IV. Excep for very special cases, the round-

off error will throw the solution outside ?p., and will therefore

escape in finite time or converge to P+.

This explains why in [13] the numerical solution of (2.1)

is unable to reach Pe with initial values in the domain of

attraction of P.

We now consider a time dependent RE.

I
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P(t) = P(t)F'(t) + F(t)P(t) - P(t)H'(t)H(t)P(t) + Q(t) (3.5)
P(to) = P =T"e Mn,n(R)

with Q.(t) = Q (t).

B- using the fundamental matrix of F(t) it is possible to

change (3.5) into:

PI(t) =-Pl(t) HI(t) Hi(t) P1 (t) + %l(t)

LP(to) = P

where

t t
W(t'to) = to (StH () s) (s td H= t l(s)Hi(s)ds

C(t'to) = (t, s) Q(s) ý (t, s) ds =fto sd== 0. (s)ds

with W(t,to), C(t,to) the observability and controllability matrix,

respectively. See [31

Hence without loss of generality we will consider a RE

with F(t) = 0

I(t) = -P(t) M(t) P(t) + Q(t)
(3.6)

P (to) =T = VE M n,n(R)

and M(t)>0, Q = Q' continuous functions of time, and let:

M= ps sup M(t)
t-E to, co)

ps inf Q.(t)
t 6 [toO)

Notice that ps sup and ps inf can be replaced by any other

convinient upper and lower bounds, respectively.

Consider the following constant RE:

P -P M' P: + Q:" (3.7)

P*(tl) = P

and assume therp exists the minimum element of S+ associated with



28

THEOREM 3.4. If M(t)>O, Q(t) = Q'(t) are continuous functions of t

and there'exists •. , then 1-(t,P,to), solution of (3.6), exists

in te[to,oo) for r Ž

PROOF: Tfl(t,ri,tb) solution of (3.7) exists in te[t.,co), from

Theorem 3.1 and with rt '-l(t,T ,t.) - l•"(t,' ,to), then satisfies

"= =- - IMT: - 'M• + (Q - Q*) - -I"(M - M*) ,F-
t(t.) =0
therefore ý(t) •0 for a Il t, i .e. , M•'t, r to)_]IT"(t,r , to).



CHAPTER IV

2-D RICCATI EQUATION

Through this research numerical computations and theoretical

results for the 2-dimensional RE were useful since the space M2 2 (R)

is isomorphic with R3 over the field of real numbers and addition of

matrices and vectors, for symmetric matrices.

The equation of the motion of the solution of the RE with

ro~p,.(kwill be presented here. It is remarkable the natural way

in which improper rotations, 171, appear in the two-dimensional

case. It should be expected that something similar will happen in

a higner dimension, although we did not investigate this case any

further.

IDENTITY 4.1. For (2 x 2) resl matrices the following identities

are valid:

i) det(A±B) = det(A) + det(B) Z (trace A)(trace B);tracc(AB)

or, if A is non-singular:

ii) det(A:B) = det(A) + det(B) ± dot(A) trace(A"1 B)

where det(C) = determinant of C.

LEMMA 1o.l, If P+ - P..is non-singular then for (2 x 2) reals

metric matrices the solution of:

29
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det (P- P+) = 0

.(4.1)
det (P - P+) = 0

is given by:
(0 +To)

PS,= P. + (4.2)
trace{(P+ - P.)'I (I + To)}

where: rcose0 sine]
T sine -cosol

PROOF: Let P. - P_ = a] . To satisfy the second equation of (4.1)

and P. - P.>ŽO the following relations have to be met:

2ac - b = 0, a, c;O (4.3)

This family of solutions can be represented by the two-parameter

function:

Pe " P. (1 + Te)

where \ is a positive real number and EE[O, 21T].

Indeed the transformation:

a = (I( + cos )

b = ?sin8

c = (•( - cos )

satisfies relations (4.3) and (a, b, c)-e(G\,o) is one-to-one
a + c

;.: 2 2 c

9= sin I (lc
where 0 is fully determined from the other relations, and is well

defined since -- .9
a 4. c

Now by the use of Identity 4.1. ii), it is possible to

determine the value of ), so that the first equation of (4.1) is
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also satisfied and the proof is complete.

MOTI ON ON

Sustitution of (4.2) into the RE gives:

STe(I + Te) trace{(P+ - P_).•JT01

tracet(P+- P.)-I(I + T0 )] [trace{(P+ - P.)'(i + TO))J2

(4.4)
F. (I + TO) + (I + Te) F. (I + T9)H'H (I + T9 )

trace{(P+- P.)-1(1 + To)) [trace {(P+ - P_)' (I + To}2

where

S=[2 '1
Since P?0 1'p is an invariant set under the transformation

defined by the RE, the three component equations derived from (4A4)

should be non-independent; therefore we are permitted to choose the

most convinient linear combination for the solution.

CASE I: trace[(P+ - P.ITT.P 0

By taking the trace of (4.4) the solution of the RE with

initial condition re'?.01O?+ is given by:

P(t) = P . + ( + To)

trace{(P+ - P.) (I + T")}

where a satisfies:

trace{F.(1 + Tor)) trace{(P+ - P-)-(I + To) + trace{(I + Te),H'HJ

trace{(P+ - P_)-lJ' T0j

0(to) = Go

where trace(AB) = trace(BA) and trace(JYTe) = 0 , have been used.
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CASE II: trace{(P+'-.P.)-IJ'TG1=0 3

6

in this case (4.t.) reduces to

(I + Te) H H (1 + To)TeJ'
'{I =F(I + Te)Te X+ (I+ To)F- Tej'

trace-(P+ - P_) (I + Te))

or taking the trace and since TJ'T,=.J , then the solution is given

as in case I with 9 satisfying:

6• =' tracet{F..(] + IT)JJ

0(t0) = O

F I

II
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