AFAPL-TR-72-45

STUDIES ON THE OXIDATION-CORROSION-DEPOSITION AND THERMAL STABILITY CHARACTERISTICS OF MIL-L-7808-TYPE LUBRICANTS

J. P. Cuellar B. B. Baber

Southwest Research Institute

· · · · ·

TECHNICAL REPORT AFAPL-TR-72-45

June 1972

Approved for public release; distribution unlimited.

Air Force Aero Propulsion Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio

> NA PONAL TECHNICAL INFORMATION SERVICE

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED			
Security Classification			
UCUMENT ((Security classification of title, body of abstract and inc	CONTROL DATA - R		overall report to clospilled
I ORIGINATING ACTIVITY (Corporate author)	Lexing aniolation must be		ECURITY CLASSIFICATION
Southwest Research Institute		U	nclassified
8500 Culebra Road		2b. GROUP	
San Antonio, Texas 78284			
3. REPORT TITLE			
STUDIES ON THE OXIDATION-CORROSION-DEPOS MIL-L-7808-TYPE LUBRICANTS	ITION AND THERMA	L STABILITY	CHARACTERISTICS OF
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Phase Deport June 1, 1070 through Echange, 1, 1070			
Phase Report, June 1, 1970 through February 1, 1972 ⁵ AUTHOR(5) (First name, middle initial, last name)			
J. P. Cuellar			
B. B. Baber			
6. REPORT DATE	78. TOTAL NO. C	F PAGES	76. NO. OF REFS
June 1972	68 plus 7 pr	elims	5
88. CONTRACT OR GRANT NO.	98. ORIGINATOR		
F33615-69-C-1295			
D. PROJECT NO.	RS-587		
3048			
c. Task No.	96. OTHER REPO	RT NO(S) (Any a	other numbers that may be assigned
304806	this report)	• -	
d.	AFAPL-TR-	72-45	
10 DISTRIBUTION STATEMENT			
Approved for public release; di	stribution unlin	nited	
11 SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	IVITY
	Air Force A	ro Propulsion	Laboratory
	Wright-Patte	rse 1 AFB, Ohio	o 45433
13 ABSTRACT			
This report describes test methods and pro (O-C-D) characteristics of aircraft turbine engine l evaluation of a light meter device for quantitative r experimental effort using eight MIL-L-7808-type l the factors of time, temperature, moisture, and m atmosphere. A similar, less extensive program atmosphere.	lubricants employing a p measurement of glasswa lubricants is described. netal types in relation t	glassware-type a re deposits are This study enco o lubricant bre	apparatus. Development and also discussed. An extensive ompassed an investigation of akdown in an oxidizing (air)
Ulis docun	illustrations in nent may be better ed on microfiche		
	Ia		

n	n	ļ	FORM		1	A	7	2
V		1	NOV	65	1	4	1	J

UNCLASSIFIED Security Classification

UNCLASSIFIED Security Classification 14. LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE WT WT wт ì Lubricants Oxidation-Corrosion-Deposition Thermal Stability Aircraft Turbine Engines Test Methods Specification MIL-L-7808 I.h UNCLASSIFIED

rhen van Galdeningen UNA Anzel Breizen weden der Albeiden man samten Staten alstende verbende entwerkende er de

ないであるのであると

Security Classification

·

STUDIES ON THE OXIDATION-CORROSION-DEPOSITION AND THERMAL STABILITY CHARACTERISTICS OF MIL-L-7808-TYPE LUBRICANTS

J. P. Cuellar B.B. Baber

Approved for public release; distribution unlimited.

FOREWORD

This report was prepared by Southwest Research Institute, 8500 Culebra Road, San Antonio, Texas, under Contract F33615-69-C-1295. The contract was initiated under Project No. 3048, "Fuels, Lubrication, and Hazards," Task No. 304806, "Aerospace Lubrication." The work was administered by the Lubrication Branch, Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The project engineers were Messrs. G.A. Beane, L.J. DeBrohun, and H.A. Smith (AFAPL/SFL).

This report covers one phase of work performed under the subject contract in the period of June 1, 1970 through February 1, 1972. The report was submitted by the authors in March 1972.

The contractor's report number is RS-587.

Publication of this report does not constitute Air Force approval of the findings or conclusions. It is published only for the exchange and stimulation of ideas.

K.J. Berkey

K.L. Berkey Chief, Lubrication Branch Fuels and Lubrication Division Air Force Aero Propulsion Laboratory

ABSTRACT

This report describes test methods and procedures used in the study of the oxidation-corresion-deposition (O-C-D) characteristics of aircraft turbine engine lubricants employing a glassware-type apparatus. Development and evaluation of a light meter device for quantitative measurement of glassware deposits are also discussed. An extensive experimental effort using eight MIL-L-7808-type lubricants is described. This study encompassed an investigation of the factors of time, temperature, moisture, and metal types in relation to lubricant breakdown in an oxidizing (air) atmosphere. A similar, less extensive program was conducted for four lubricants using an inert (nitrogen) a..no-sphere.

ŕ

TABLE OF CONTENTS

Page

I.	INTR	ODUCTION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
11.	TEST	APPARATUS AND PROCEDURES	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	2
	A.	General																					2
	В.	Heating Units																					2
	C.	Metal Test Specimens																					2
	D.	Test Procedures and Conditions																					3
	Ε.	Deposit Rating Procedure																					3
	F.	Lubricant Performance Criteria	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•		•	•	5
111.	TEST	LUBRICANTS	•	•		•	•		•			•		•	•		•	•	•				7
IV.	TEST	RESULTS AND DISCUSSION	•	•		•	•		•		•	•	•	•	•			•		•		•	8
	А.	General																					8
	B.	Evaluation of Light Meter Deposit Ra																					8
	C.	O-C-D Test Precision Data		-																			10
	D.	Effect of O·C·D Test Temperature .																					10
	Ε.	Effect of Metals and Air Moisture on	Lul	bric	ant	t 0:	xid	atio	วก														12
	F.	Corrosion-Deposition Results																					14
	G.	Thermal Stability Test Results	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		19
v.	CON	CLUSIONS	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•			23
APP	ENDIC	ES																					
	١.	Test Method for Corrosiveness and Os	xid	ativ	re S	itab	oilit	y o	of A	irc	raf	t T	urk	oine)								
		Engine Lubricants						•															25
	11.	Test Data Summary Tables																				•	35
LIST	r of r	EFERENCES	•		•	•	•	•	•	•	•	•	•	•		•			•	•	•	•	68

Preceding page blank

10.0

and the set of the set of the set of the

Canifar Sand Stranger

LIST OF ILLUSTRATIONS

:

Ŧ

1

Figure		Page
1	Schematic of Light Meter Device for Deposit Rating	4
2	Correlation of Revised Deposit Rating and Light Meter Rating	9、
3	Typical Sample Tube Deposits with Light Meter Ratings of 4, 10, 35, and 58 (Left to Right).	9
4	Effect of Temperature on Oxidative Deterioration	' 10
5	Correlation of O-C-D and Bearing Test Deposit Ratings	15 ·
6	Neutralization Number Change in 608°F Thermal Stability Tests on 0-67-20	21
7	Sample Tube	25
8	Sample Tube Head	25
9	Air Tube	26
10	Thermocoupie Tube	, 26
11	Air Moisturizer	27 '

LIST OF TABLES

Table		
I	Composition of Metal Specimen Sets	
11	Revised Demerit Scale for Visual Deposit Rating	
111	Description of Test Lubricants	ł
IV	O-C-D Test Repeatability Data	
v	Lubricant Performance Comparison at 401°F	
VI	Lubricant Performance Ranking Based on Neutralization Number Limit at 401°F 15	
VII	Correlation of O-C-D and Bearing Test Deposit Ratings	
VIII	Corrosion-Deposition Time Trends for O-67-7	
IX	Corrosion-Deposition Time Trends for O-67-8	
x	Corrosion-Deposition Time Trends for O-67-9	
XI	Corrosion-Deposition Time Trends for O-67-20	

LIST:OF TABLES (Cont'd)

.

:

!

i

:

۱

١

1

1

1

1

1

ł

Southern the second

The second states of the state of the second states of the second states

١

	Table	1	Page
	xii	Corrosion-Deposition Time Trends for O-68-17	18
	XIII	Corrosion-Deposition Time Trends for O-69-2	19
	XIV	Thermal Stability Test Results-Dry Nitrogen	20
•	xv	Thermal Stability Test Results-Moist Nitrogen	22
	xvi	Summary of O-C-D Test Results on O-66-11,	36
1	XVII	Summary of O-C-D Test Results on O-67-7	38
	XVIII	Summary of O-C-D Test Results on O-67-8	43
	XIX	Summary of O-C-D Test Results on O-67-9	47
	xx	Summary of O-C-D Test Results on O-67-20	. 51
! •	XXI	Summary of O C-D Test Results on O-68-7	54
	XXII	Summary of O-C-D Test Results on O-68-17	57
	xxiii	Summary of O-C-D Test Results on O-69-2	61
1	xxıv	Summary of Thermal Stability Test Results on O-67-7	64
,	XXV 1	Summary of Thermal Stability Test Results on O-67-9	65
	XXVI	Summary of Thermal Stability Test Results on O-67-20	66
	xxVii	Summary of Thermal Stability Test Results on O-68-17	. 67

1

ŧ

I. INTRODUCTION

The reported program was concerned with studies of lubricant deterioration in both an oxidizing and inert atmosphere. The lubricant characteristics of oxidative or thermal breakdown, corrosion, and deposition were examined, primarily in relation to the effects produced by moisture and various metals. The effort utilized eight MIL-L-7808-type lubricants.

Two prior reports $(1,2)^*$ on related work describe some background on the evolution of equipment, procedures, and test performance criteria.

^{*}Superscript r mbers in parentheses refer to the List of References.

II. TEST APPARATUS AND PROCEDURES

A. General

The test glassware and basic procedures employed in this study are described in the test method presented in Appendix I. The method was developed under this program and prepared in the format requested by AFAPL. It is expected that the method, possibly with some revision, will utimately be included as a formalized procedure in Federal Test Method Standard No. 791B, "Lubricants, Liquid Fuels, and Related Products; Methods of "esting," Method 5307.

Subsequent paragraphs in this section will discuss any variations from, or supplementary techniques to, the basic test method.

B. Heating Units

Two thermostated oil baths⁽¹⁾ were used in tests with an oxidizing (air) atmosphere over a temperature range of 374° to 428°F. A thermostated aluminum block⁽³⁾ was employed in all thermal stability (nitrogen atmosphere) tests at sample temperatures above 428°F. The oil bath and the aluminum block heating units both accommodate a maximum of eight sample tubes each. In both unit types, the sample tube immersion depth (into the oil or aluminum block) is 250 nm. Within the oil baths, an air space 30 mm in height separates the immersion interface and the top of the bath. The aluminum block construction employs a 100-mm thickness of insulation above the immersion interface.

C. Metal Test Specimens

The metal corrosion specimens are of the round washer-type of dimensions 3/4-in. CD and 1/4-in. ID by 0.032-in. thickness. The specific makeup of the metal specimen set was a subject of investigation, and in some series no metals were used. The composition of the various metal sets is identified in Table I by a letter code and abbreviated description. Metal set I is a seven-specimen set which is the standard group required by the method of Appendix I. The metal types are listed in Table I according to the order of stacking on the air tube, with titanium in the uppermost position. The abbreviated description refers to any variation from the standard, seven-metal set.

Letter code	Ti	Mg	M-50 steel	Mild steel	Туре 301 S.S.	Cu	CA674 bronze	AMS 4616 bronze	Ag	Al
A	None									
B	None,	seven g	lass disk	s			1]		
C		Х	1			X		1	X	X
D	X	Х		X		l	X		X	X
E	X	Х		X		1		X	X	X
E F G		X	X	X	1	!		1) X	X
	X		X) X				1	X	X
Н	X	X		x	X	ļ		ļ	X	X I
1	X	X	X		[1		X	X	X
1	x		x	¦ X				x	x	x
	·			Abbro	eviated Desc	riptio	n			<u></u>
A	No me	tals				2	No 4616			
B	Glass d	isks			(3	No Mg, no	4616		
С	No M-S	50, wit	h Cu, no	4616	1	H	No M-50, v	vith 301 S.S.,	no 46	16
D	No M-	50, wit	h CA674	, no 461	l6 I	l	Standard n	netals		
E	No M-	50			Ļ	j –	No Mg			

TABLE I. COMPOSITION OF METAL SPECIMEN SETS

The following material specifications apply to the various metal types which were used:

Titanium	AMS 4908
Magnesium	QQ-M-44, AZ31B, condition H24
M-50 Steel	AMS 6490
Mild Steei	QQ-S-698, grade 1009, cold rolled, condition No. 4 or 5
Type 301 S.S.	MIL-S-5059 (ASG), grade 301, half hard
Copper	QQ-C-576
Bronze	SAE-CA674
Bronze	AMS 4616
Silver	MIL-S-13282 (ord), grade A
A!uminum	QQ-A-250/4, T-3, or T-4

D. Test Procedures and Conditions

The O-C-D tests were conducted according to Procedure II (96-hr duration) of Appendix I. The only variation from the method was with respect to test duration. In many instances, the tests were terminated prior to 96 hr once it had been determined that lubricant properties exceeded performance criteria (breakpoints).

Some few O-C-D determinations were run for a period of 192 hr to increase the probability of breakpoint occurrence. In these tests, the intermediate sampling schedule was modified such that the initial sample was taken at 112 hr, and at alternating periods of 8 and 16 hr thereafter.

()-C-D test temperature was varied in increments of $9^{\circ}F$ ($5^{\circ}C$) from the basic temperature of $401^{\circ}F$ ($205^{\circ}C$), according to lubricant capability. The $401^{\circ}F$ temperature was selected as the target value since it generally allowed for a common comparison between all lubricants. All temperatures cited herein refer to sample temperatures, not the heat medium temperature which is normally 2° to $3^{\circ}F$ higher.

The thermal stability tests were performed with procedures identical to O-C-D testing, except for the use of nitrogen inerting gas in place of air. The inerting gas used was a high-purity, dry-grade nitrogen. Manufacturer specifications for this grade describe the gas as containing a maximum water content of 15 ppm and a typical oxygen content of 30 ppm. No attempt was made to reduce these levels further.

Prior to initiation of the thermal stability series, the air control system was repeatedly evacuated and purged with nitrogen. In addition, the assembled sample tubes, with fluid sample, were purged for 2 hr at room temperature with a nitrogen flow of 10 ℓ/hr just before test startup. Neglecting the inherent oxygen content of the nitrogen and any effect for oxygen solubility in the lubricant, it was calculated that this 2-hr purge would reduce the oxygen content within the tube to a theoretical value of 0.4 ppb by volume.

E. Deposit Rating Procedure

In previous studies⁽²⁾, a detailed deposit rating procedure was formulated for numerical description of deposits occurring within the sample tubes. The procedure includes a visual rating of deposit types and area coverage to arrive at a single deposit rating value.

The visual deposit rating technique was also utilized for a portion of the present study. However, the procedure was subsequently supplanted by a rating device employing a light-absorbance principle. A schematic of the prototype light meter device is shown in Figure 1. The light chamber is a closed, fiberboard cylinder with a smooth interior surface painted flat white. Cylinder dimensions are 18-in. ID by 18-in. length. Axial alinement of the sample tube in the chamber is achieved by a pair of 2-in. rubber shaft seals (not shown in Figure 1) in tandem. One seal is mounted within the chamber cover, and the second is contained within a mounting 1 in. above the cover.

The light source is a standard F15T8/CW fluorescent lamp. The lower metal end cap of the lamp is carefully removed from the glass tube to permit greater light dispersion at the lower end. Electrical leads to the bottom of the lamp are 24-AWG bare wire fixed to the lamp sides with a clear epoxy cement. The upper section of the lamp (below

- -

TO PHOTOMULTIPLIER POWER SUPPLY, CONTROL AND READ-OUT CIRCUITRY

126. Sec.

A Statistics

Comparison of the second s

FIGURE 1. SCHEMATIC OF LIGHT METER DEVICE FOR DEPOSIT RATING

the lamp holder) is covered with a black, opaque paper for a distance such that the exposed, lower end measures 9-1/2 in. in length. Lamp power, 75 volts, is supplied by a constant voltage transformer.

The light sensor is an RCA 1P21 photomultiplier tube fitted with appropriate housing, light aperture, and polarizing filter. The filter and reduced lamp voltage are required to avoid saturation of the photo tube. This phenomenon is indicated by very slow equilibration of the tube output. Power to the photo tube is provided by a high-voltage power supply at an approximate value of 350-V dc and 0.8-milliamp current flow. Photo tube output is monitored by a precision 0 to 100 millivoltmeter. It is this output which serves as the light meter deposit rating. It is noted that the photo tube is mounted off-center of the light chamber so that the tube does not "see" any part of the glass sample tube. In this manner, a partially integrated measure of the transmitted light is obtained.

In practice, the light meter device is zeroed with a clean glass sample tube inserted in the chamber. Power to the photomultiplier is adjusted to obtain an output of 100 mV. The clean sample tube is then replaced with a post-test tube and the tube is slowly rotated, in place. The minimum millivolt reading throughout complete rotation is noted. This value is subtracted from 100; thus, increasing light meter ratings are indicative of increasing deposit severity.

As subsequently discussed, an extensive analysis was performed in examining the extent of agreement between the light meter ratings and the visual deposit ratings. It was determined that excellent correspondence of results was obtained using a slightly modified demerit scale for the visual rating procedure in the categories of very light and medium light sludge. The revised scale is shown in Table II. The only distinction between this and the original demerit scale⁽²⁾ is the reduced values for very light and medium light sludge, which were formerly 3 and 4, respectively.

Using the revised visual rating, it was found that a high correlation is apparent with light meter ratings. A linear, virtually one-to-one relationship exists at least through a light meter rating of 60. Above this value, actually commencing

at about 70, there is noticeable curvature in the correlation. This is due to the fact that the maximum light meter rating is 100, whereas the visual rating could exceed 1000. In addition, the light absorbance phenomenon, as such, is a logarithmic function.

With the reliability of the light meter ratings established, the visual rating procedure¹ was discontinued except in instance, where the light meter rating was greater than 60. In this event, the revised visual rating was performed in order to determine the curvature of

TABLE II. REVISED DEMERIT SCALE FOR VISUAL DEPOSIT RATING

Deposit type	Very light	Med light !	Light	Medium	Heavy
Varnish	0.5	1	2	3.	5
Sludge	0.5	1	6	7	18
Granular carbon	`		9	10	11
Smooth carbon	····)	1	12	13	14
Crinkled carbon	···· /		15	16	. 17
Blistered carbon		1	18	19	20
Flaked carbon	1		21	22	.23

the relationship. Thus, in this report, no distinction is made bet. On the two ratings at values of 60 or below. It available, the light meter rating is given. In some early tests, only the visual rating is available and these ratings were calculated according to the revised demerit scale. All deposit ratings shown above 60 refer to the revised visual rating.

F. Lubricant Performance Criteria

Lubricant studies traditionally employ the sample performance criteria of viscosity change and neutralization, number as measures of oxidation stability. The work reported here also included a quantitative measure of sample deposition characteristics as evidenced by deposit ratings. In addition to these indices, oxidative and thermal stabilities were defined in terms of lubricant breakpoints as reported earlier.^(1,2) The breakpoints, as applied to lubricant viscosity and neutralization number change, are expressed as the test time required to reach a specific rate of increase:

- (1) Viscosity-time (hr) for the 100° F viscosity to reach a rate of increase of 1 cs/8 hr
- (2) Neutralization number time (hr) for the neutralization number to reach a rate of increase of 1 mg KOH/g/8 hr.

As in earlier use of lubricant breakpoints, the present study gave primary emphasis to the neutralization number breakpoint as the major criterion of performance. However, in the later stages of the program, a decision was made to place an additional restriction on the sample neutralization number. This modification of the criterion occurred as a consequence of results obtained in several moist air O-C-D tests, particularly with specific lubricants. It was found that sample acidity increase would proceed at a rapid and constant rate, but never reach the breakpoint definition of 1 mg KOH/g/8 hr. In such cases, the sample would be assigned a breakpoint of 96+ hr, according to definition, even though the fluid had a 96-hr neutralization number of almost 10 mg KOH/g. Since values of this magnitude are clearly beyond the point of acceptable stability, it was decided to impose a maximum on the absolute value of the neutralization number. In consultation with AFAPL, a value of 4 mg KOH/g was selected as the maximum permissible neutralization number level which could be considered as within the range of lubricant acceptability.

Consequently, all data generated under this program were recalculated on the basis of a neutralization number "limit." This limit is defined as the test time (hr) to reach a neutralization number rate of increase of 1 mg KOH/g/8 hr (breakpoint), or an absolute value of 4 mg KOH/g, whichever occurs earlier.

ı

Criterion		Definition	
100°F'Viscosity breakpoint Neut. no. breakpoint Neut. no. lįmit	; ``i	Time (hr) to increase of 1 cs/8 hr Time (hr) to increase of 1 mg KOH/g/8 hr Earlier of times (hr) to increase of 1 mg KOH/g/8 hr or to value of 4 mg KOH/g	

1 The following summary of definitions of performance criteria is listed for reference:

1

III. TEST LUBRICANTS

Eight test lubricants were used in the program described. All of the lubricants were originally intended for qualification under specification MIL-L-7808. Table III presents a listing of the lubricant codes and fluid property data, along with available information as to qualification status.

Lubricant	Viscos 100°F	ity, cs 210°F	Neut. no.,	Description
code	100 F	210°F	mg KOH/g	
0-66-11	16.41	4.30	0.16	MIL-L-7808 type
0-67-7	17.34	4.58	0.26	MIL-L-007808F
0-67-8	13.24	3.26	0.23	MIL-L-7808 type
0-67-9	14.87	3.69	0.04	MIL-L-7808G
0-67-20	13.48	3.25	0.21	MIL-L-7808G
0-68-7	13.69	3.38	0.08	MIL-L-7808G
0-68-17	12.96	3.45	0.25	MIL-L-7808G
0-69-2	13.53	3.25	0.04	MIL-L-7808G

TABLE III. DESCRIPTION OF TEST LUBRICANTS

IV. TEST RESULTS AND DISCUSSION

A. General

The subject program included two developmental goals. These were the final development and formal presentation of the test procedure given in Appendix I, and the construction and initial evaluation of the light meter deposit-rating device.

Experimental O-C-D test studies dealt with investigations of the effects of time, temperature, metals, and test air moisture. The influence of metal types and moisture received considerable attention. The variation of test temperature was briefly studied primarily in relation to low temperature data previously obtained. The parameter of time was utilized in several test sequences with selected lubricants and conditions to examine corrosion and deposition trends as influenced by time, up to and beyond the neutralization number limit. In these test series, the neutralization number limit was initially established in duplicate determinations at a given condition of metal set and moist or dry air. A subsequent series of runs was then performed whereby one determination was terminated at each intermediate sampling time. In this manner, lubricant deposition and metal corrosion were observed as a function of time and the state of degradation of the fluid. This concept of lubricant testing differs from the usual in that sample performance is not assessed on the basis of a fixed period of time. Rather, performance properties of interest are determined for the duration of the oxidative "life" of the lubricant, as evidenced by the neutralization number limit.

Consequently, the significance of deposit ratings was not extensively evaluated in relation to other deposition test methods, inasmuch as O-C-D test time and temperature were varied according to lubricant capability. However, all lubricants were examined in a 96-hr series at 401°F using the standard metal specimens (metal set 1). These data are compared with full-scale bearing deposition test results to obtain some indication of the validity of O-C-D test deposit ratings.

Experiments to investigate lubricant thermal stability by use of nitrogen blanketing were less extensive in scope. The study was limited to four lubricants using dry or moist gas, and metal set B (glass disks) or set I. The objective of the work was to establish the upper temperature limit of the test lubricants for each condition. While distinct performance differences were observed among the four lubricants, it was difficult to categorize the fluids according to a single criterion because of the diverse degradation modes. For example, in some instances, appreciable metal corrosion was noted although viscosity and neutralization number values showed negligible fluid deterioration. Two lubricants with metal set I exhibited violent vapor refluxing and were prematurely terminated due to the resulting drop in sample temperature on the order of 40° to 50°F. In these tests, the usual performance criteria indicated only slight sample degradation. Accordingly, thermal stability performance characteristics are necessarily stated in rather broad descriptive terms.

The total effort on O-C-D and thermal stability investigations included more than 1000 individual determinations. Consequently, it was not feasible to report all intermediate and final test data here. Data summaries for all final results and performance criteria from the O-C-D tests are given in Tables XVI through XXIII of Appendix II. Similar summaries for thermal stability are contained in Tables XXIV through XXVII of Appendix II.

B. Evaluation of Light Meter Deposit Ratings

After construction and initial checkout of the light meter rating device, a significant volume of data was accumulated in assessing light meter ratings in comparison with the visual deposit ratings. It was found that excellent agreement existed between the two procedures in instances wherein the deposit types were predominantly varnish or hard carbon. In cases wherein the principal deposit type was of the very light or medium light sludge variety, it was noted that the light meter rating was consistently lower. Although the latter constituted only a small percentage of tests, the demerit rating factors for both sludge categories were originally assigned somewhat arbitrarily and it was decided to formulate revised factors to obtain a "best fit" agreement between the two procedures for this deposit type. On the basis of results for some 100 determinations, the original factors of 3 and 4 were reduced to 0.5 and 1 for very light and medium light sludge, respectively.

Using these revised demerit factors, all visual deposit ratings were recalculated. Data for 560 determinations (N) were used in obtaining the correlation regression line shown in Figure 2. Since the visual rating

FIGURE 2. CORRELATION OF REVISED DEPOSIT RATING AND LIGHT METER RATING

must approach the maximum light meter rating of 100 exponentially, the regression line was restricted to the range of values indicating close linearity, i.e., those tests which gave a rating of 60 or less by both rating procedures. Data points beyond the 60 limit are shown in Figure 2 to demonstrate the curvature of the relationship at very high ratings.

As an indication of correlation, the correlation coefficient⁽⁴⁾ expressed as a percentage was calculated. This statistic is a measure of the variation of results from a constant ratio, and varies from 0 (no correlation) to 100 percent (exact correlation). It should be observed that the coefficient is unaffected by the value of the ratio, i.e., if all points fall on a straight line, the correlation coefficient would be 100 percent whether the slope of the line was one or one-half.

Using all rating data of 60 or less and the revised demerit factors, a 95.9 percent correlation with the light meter was obtained. This statistic, based on 560 determinations, represents a very high degree of correspondence between the two rating procedures. In addition, as evidenced by the slope and intercept of the regression line, the correlation is virtually on a one-to-one ratio.

Figure 3 is presented to illustrate the visual severity of typical sample tube deposits in relation to the light meter deposit rating.

FIGURE 3. TYPICAL SAMPLE TUBE DEPOSITS WITH LIGHT METER RATINGS OF 4, 10, 35, AND 58 (Left to Right)

C. O-C-D Test Precision Data

and the second states and the second second states and the second s

Several test series were conducted to evaluate the repeatability of O-C-D test performance criteria at selected conditions. As shown in Table IV, each series included eight to ten replications. With some few exceptions, all replications were not performed during the same test period. The usual practice involved duplicate determinations initially, followed by five repeat determinations, with the eighth determination being one of the series on the effect of time.

Although both are well within the range of acceptability, data for the pooled standard deviations indicated the neutralization number limit was superior to the neutralization number breakpoint with respect to test precision. In general, both neutralization number criteria, particularly breakpoint, demonstrated a lesser precision in moist air tests in comparison with dry air tests. While there were four instances wherein the neutralization number limit standard deviation for an individual series exceeded a relatively high value of 5, there appears to be no discernible association between this occurrence and the composition of the metal set. It is probable that the four cases were simply random events in the study.

The deposition data of Table IV indicate this property could exhibit a significant variation in values. Although the pooled standard deviation of 5.3 is regarded as an acceptable overall value, several test series gave much higher precision statistics. These were generally associated with the higher rating means and, in most cases, with the use of wet air. Here again, there was no apparent relationship between metal set and deposit rating repeatability. Of the

lubricant group, O-67-7 showed the poorest overall precision of ratings, but this fluid likewise produced the highest rating means at the conditions investigated.

D. Effect of O-C-D Test Temperature

As a rule, adjustment of test temperature from the primary reference of $401^{\circ}F$ was made only to permit extrapolation of the neutralization number criteria. Thus, if no neutralization number breakpoint occurred at $401^{\circ}F$, sample temperature was increased in $9^{\circ}F$ increments until, if possible, breakpoints at two temperatures were available. These data were then used to extrapolate to $401^{\circ}F$ by means of a formula subsequently presented.

Although the major criterion of oxidative stability used herein is the neutralization number limit, it is emphasized that this concept was introduced in the later stages of the program and, thus, selection of test temperature was generally based on the breakpoint. In most dry air tests, the neutralization number breakpoint and limit were the same, i.e., acidity change reached the breakpoint rate of 1 mg KOH/g/8 hr prior to the maximum neutralization number of 4 mg KOH/g. In many wet air tests, the reverse relationship was true.

Several determinations were conducted in early work to investigate oxidative degradation over a range of test temperatures. These series, using dry air and metal set C (copper present), were for comparison with previous data^(1,2), using a long duration (26 days) test procedure at the relatively low sample temperature of 347° F (175° C).

Test data for neutralization number limit as a function of temperature are illustrated in Figure 4, which employs the Centigrade scale. It should be mentioned that 347° F (175° C) results for 0-68-17 are those for 0-67-24, a previous batch of 0-68-17. In addition, the neutralization number limit with the 26-day procedure is differently defined in that the breakpoint uses a maximum rate of 1 mg KOH/g per 4 days.

TABLE IV. O-C-D TEST REPEATABILITY DATA

code O-66-11 O-67-7 O-67-8 O-67-8	Temp, °F 383 401 401 401 401 392 392 392 401 401 428 419 419 401 401	Metal set F A B B E F G 1 I I A B B E F	Condition of air Wet Wet Dry Wet Wet Dry Wet Wet Dry Wet Wet Wet Wet	Termina- tion, hr 96(9)* 96(8) 96(8) 96(8) 72(9) 96(9) 72(8) 96(8) 64(8) 48(8) 96(9)	Mean 19 65 62 47 27 73 30 95 26 14	t, hr SD 0.5 1.0 1.7 2.9 1.6 8.4 1.2 1.3 1.2 2.2	hr Mean 19 60 58 47 27 69 30 69 30	SD 0.5 1.4 0.6 2.9 1.6 6.2 1.2 1.4	Meter Mean 4.8 65† 63† 64† 74† 60† 5.4†	Rating SD 1.1 3.7† 3.5† 2.5† 18.0† 6.0†
O-67-7 O-67-8	401 401 401 392 392 392 401 401 401 428 428 419 419 419 401 401	A B E F F G I I I B B E	Wet Wet Dry Wet Dry Wet Wet Dry Wet Wet	96(8) 96(8) 96(8) 72(9) 96(9) 72(8) 96(8) 64(8) 48(8)	65 62 47 27 73 30 95 26	1.0 1.7 2.9 1.6 8.4 1.2 1.3 1.2	60 58 47 27 69 30 69	1.4 0.6 2.9 1.6 6.2 1.2	65† 63† 64† 74† 60†	3.7† 3.5† 2.5† 18.0† 6.0†
O-67-8	401 401 392 392 392 401 401 401 428 428 419 419 419 401 401	B B F F G I I B B B E	Wet Dry Wet Dry Wet Wet Dry Wet Wet	96(8) 96(8) 72(9) 96(9) 72(8) 96(8) 64(8) 48(8)	62 47 27 73 30 95 26	1.7 2.9 1.6 8.4 1.2 1.3 1.2	58 47 27 69 30 69	0.6 2.9 1.6 6.2 1.2	63† 64† 74† 60†	3.5† 2.5† 18.0† 6.0†
	401 401 392 392 392 401 401 401 428 428 419 419 419 401 401	B E F G I I B B E	Dry Wet Dry Wet Wet Dry Wet Wet	96(8) 72(9) 96(9) 72(8) 96(8) 64(8) 48(8)	47 27 73 30 95 26	2.9 1.6 8.4 1.2 1.3 1.2	47 27 69 30 69	2.9 1.6 6.2 1.2	64† 74† 60†	2.5† 18.0† 6.0†
	401 392 392 392 401 401 401 428 428 419 419 419 401 401	E F G I I B B E	Wet Wet Dry Wet Dry Wet Wet	72(9) 96(9) 72(8) 96(8) 64(8) 48(8)	27 73 30 95 26	1.6 8.4 1.2 1.3 1.2	27 69 30 69	1.6 6.2 1.2	74† 60†	18.0† 6.0†
	392 392 392 401 401 428 419 419 401 401	F G I I B B E	Wet Dry Wet Dry Wet Wet	96(9) 72(8) 96(8) 64(8) 48(8)	73 30 95 26	8.4 1.2 1.3 1.2	69 30 69	6.2 1.2	60†	6.0†
	392 392 401 401 428 428 419 419 401 401	F G I I B B E	Dry Wet Dry Wet Wet	72(8) 96(8) 64(8) 48(8)	30 95 26	1.2 1.3 1.2	30 69	1.2		
	392 401 401 428 428 419 419 419 401 401	G 1 I B B B E	Wet Wet Dry Wet Wet	96(8) 64(8) 48(8)	95 26	1.3 1.2	69		5.4†	0.63
	401 401 428 428 419 419 419 401 401	1 I A B B E	Wet Dry Wet Wet	64(8) 48(8)	26	1.2		1.4		2.5†
	401 428 428 419 419 419 401 401	I A B B E	Dry Wet Wet	48(8)			AC .		55†	4.4†
	428 428 419 419 419 401 401	A B B E	Wet Wet		14		26	1.2	76†	10.1†
	428 419 419 419 401 401	B B E	Wet	96(9)		0.3	14	0.3	40	3.2
O-67-9	419 419 419 401 401	B E			88	3.8	35	1.2	22	2.6
O-67-9	419 419 401 401	E		96(8)	89	0.8	34	0.5	24	3.5
O-67-9	419 401 401		Dry	72(8)	40	2.4	40	2.4	6.5	1.4
0-67-9	401 401	F	Wet	96(10)	42	4.6	35	2.1	33	4.3
0-67-9	401		Wet	96(8)	83	8.7	38	1.2	1.1†	1.2†
O-67-9		I	Wet	96(8)	93	2.3	78	1.3	12	2.8
O-67-9	401	1	Dry	96(8)	77	6.1	76	5.1	5.5	0.9
		E	Wet	96(10)	52	3.9	48	2.4	53†	9.0†
	401	F	Wet	96(8)	68	4.5	46	0.6	37	2.5
1	401	1	Wet	96(8)	47	2.5	47	2.5	67†	6.0†
	401	1	Dry	72(8)	40	0.5	40	0.5	51	5.3
0-67-20	410	A	Wet	72(8)	43	1.9	43	1.9	9.9	2.5
	410	В	Wet	72(8)	46	2.5	46	2.5	11	2.6
	401	В	Dry	96(8)	50	1.1	50	1.1	7.5	2.6
	410	F	Wet	96(9)	50	1.3	50	1.3	9.2†	3.5†
0-68-7	401	A	Wet	96(8)	95‡	1.2‡	50	0.9	2.4	0.5
1	401	E	Wet	96(8)	78	5.3	46	1.7	4.2	0.7
	410	F	Wet	96(10)	59	5.0	26	0.5	1.7†	1.5†
	401		Wet	96(8)	76	6.1	52	1.6	3.6	1.1
	401	1	Dry	72(8)	42	2.2	42	2.2	3.4	1.1
0-68-17	419	A	Wet	96(8)	44	2.9	26	1.6	29	5.3
	419	B	Wet	96(8)	38	8.6	26	0.7	37	10.3
	401	B	Dry	96(8)	49	3.5	49	3.5	12	12.4
	401	E	Wet	72(8)	43	3.4	38	3.7	14	9.0
	392	F	Wet	96(9)	88‡	11.9‡	42	3.1	0.1†	0.3†
	392	F	Dry	96(8)	67	3.4	67	3.4	0.0†	0.0†
	401	G	Wet	96(8)	92	1.6	32	1.2	7.6	0.9
	401 401		Wet Dry	72(8) 96(8)	49	0.7	44 49	1.2	10 5.9	8.5 1.4
		<u> </u>			}				·	
0-69-2	401	A	Wet	96(8)	54	1.1	54	1.1	5.2	1.0
	401	B	Wet	96(8)	60	8.2	59	7.1	4.6	0.7
	401	B	Dry	96(8)	26	0.5	26	0.5	4.6	6.7
ļ	401	E	Wet	96(10)	56	5.8	56	5.8	4.5	0.5
	401		Wet	96(8)	75	1.9	64	2.6	2.4†	1.6†
	401 401		Wet Dry	96(8) 72(8)	61 45	4.3	61 45	4.3	4.6	0.9
				<u> </u>		L		1	1	1

*Numbers in parentheses denote number of determinations comprising the means.

†Revised deposit rating.
‡A value of 96 hr was used in calculations for those determinations which showed 96+ hr.

Five of the eight lubricants shown in Figure 4 did not exhibit a neutralization number limit at 347° F within the 26-day period. However, the smoothed curves generally illustrate the very sharp response to temperature shown by lubricant deterioration. As evidenced by neutralization number limit, lubricant "life" is approximately doubled for each 10°C reduction in temperature. On the basis of these degradation curves, an equation relating temperature to the neutralization number limit and/or breakpoint was formulated for use in extrapolation outside the range of test temperature. An inverse exponential function was assumed, of the formula

Neut. No. Limit =
$$C/T^n$$
 (1)

where C is a constant and T is the Centigrade temperature. With test data at two different temperatures, the equation may be solved for the constant and the temperature exponent.

With certain conditions and lubricants which showed no neutralization number limit at 401° F, data were obtained at 410° and 419° F or 419° and 428° F and Eq. (1) was used to extrapolate to 401° F. It is believed that the extrapolation procedure gives a reasonable approximation provided the temperature range is not large. However, it is emphasized that the method yields only an approximation and extrapolation from, say. 401° to 347° F could involve appreciable error. This error may be due to the fact that the temperature exponent. *n*, is likewise a dependent variable of the temperature. However, it is felt more likely that the extreme sensitivity of the neutralization number limit to temperature change, which yields temperature exponents as high as 30, significantly magnifies any variation in test accuracy.

Although O-C-D test precision data indicated good overall repeatability, an example of a deviation in extrapolation accuracy may be illustrated by considering very minor variations in sample temperature. The test method of Appendix I specifies a maximum temperature variation of $\pm 2^{\circ}$ F. Through the use of precision calibration procedures and close monitoring of controls, the work reported here normally maintained sample temperatures within 0.5° to 1°F of the control temperature. However, even a slight deviation of this magnitude constitutes an error on the order of 10 percent when viewed in relation to data obtained at two test temperatures with only a 9°F separation. To illustrate further this effect, O-C-D results for lubricant O-67-20 using the conditions of metal set C and dry air are cited. The fluid showed corresponding neutralization number limits at 383° and 392°F of 171 and 91 hr. The limit criterion was not reached at 347°F in 26 days. Using the higher temperature data, an extrapolated neutralization number limit at 347°F of approximately 3500 hr is obtained. Applying a 10-percent error to the test data such that the error effect is additive, i.e., 100 and 154 hr rather than 91 and 171 hr, the extrapolation to 347°F gives 1280 hr. Thus, although the extreme example has been presented, it is seen that significant variation may occur in an extrapolation over a temperature range of less than 50°F.

E. Effect of Metals and Air Moisture on Lubricant Oxidation

The effects of dry and moist air and various metal specimen sets were extensively investigated in this study, and this phase of the effort constituted a major portion of the total program. Metal specimen variations were designed to examine the individual effects of copper, two bronze alloys, steels, magnesium, and the complete absence of metals. The latter condition included series with no metals or with seven glass disks of the same dimensions as the metal specimens. Use of glass disks was intended to evaluate the absence of metals while maintaining any physical effect of the specimens on dispersion of the inlet air stream.

Using the controlled temperature air moisturizer described in Appendix I, O-C-D test air moisture content was held at 10 ± 1 mg water per liter of air in runs employing moist air. The controlled temperature moisturizer was incorporated into the procedure early in the program, commencing with Test No. 506. However, prior to that test, an ambient air moisturizer had been used. This device was subject to seasonal temperature variations and, during summer months, gave moisture contents on the order of 18 to 20 mg/ ℓ of air. Where comparison was possible, the moisture content reduction to 10 mg/ ℓ showed no effect on lubricant performance criteria.

A comparison of the effect of metal sets and air moisture at $401^{\circ}F$ is given in Table V for the eight test lubricants. Lubricant O-66-11 exhibited very poor oxidative stability at this temperature and at most conditions indicated a neutralization number limit of less than 8 hr. The fluid did show an unusual, beneficial effect for the presence of copper (metal set C), using both wet and dry air.

Matel	Condition		М	ean neutra	lization nu	mber limit	at 401°F,	hr	
Metal set	of air	0-66-11	0-67-7	0-67-8	0-67-9	0-67-20	0-68-7	0-68-17	0-69-2
A (no metals)	Wet	<8	60	105*	59	77	50	46	54
B (glass disks)	Wet	<8	58	104*	59	74	47	46	59
B (glass disks)	Dry	<8	47	78	56	50	40	49	26
C (no M-50, with Cu,									•
no 4616)	Wet	18	18	62	35	70	44	<8	50
C (no M-50, with Cu,].	
no 4616)	Dry	16	14	60	28	66	48	<8	51
D (no M-50, with CA674,									
no 4616)	Wet	<8	24	79	48	96	38	35	68
£ (no M-50)	Wet	<8	27	74	48	74	46	- 38	56
F (no 4616)	Wet	<8	26	96+	46	86	42	36	64
F (no 4616)	Dry	<8	25	70	52	50	25	46	26
G (no Mg, no 4616)	Wet	<8	51	68-96+	45	90	39 .	32	68 🔅
H (no M-50, with 301 S.S.,	1]	}		}			1	
no 4616)	Wet	<8	25		46		·	33	-
I (standard metals)	Wet	<8	26	78	47	74	52	44	61
I (standard metals)	Dry	<8	14	76	40	70	42	49	45
*Result is extrapolated.									

TABLE V. LUBRICANT PERFORMANCE COMPARISON AT 401°F

Lubricant O-67-7 displayed most of the responses normally observed in this study. No performance effect was evident for the presence of glass disks in comparison with no metals (set A). Moist air resulted in slightly improved oxidative stability using glass disks and most metal sets, although the effect was insignificant with metal sets C and F. The presence of copper caused some reduction in O-67-7 life, however, results for metal set G indicated a significant, deleterious effect for magnesium. Of the lubricant group, O-67-7 was unique with respect to its reaction to magnesium.

The most superior overall performance in O-C-D testing was shown by lubricant O-67-8. The data of Table V indicate a beneficial effect for moist air in the series with glass disks and metal set F. With copper (set C) or 4616 bronze (set I vs set F) present, the advantage of moisture was 1.2 gligible. In moist air tests with no metals, it was necessary to extrapolate the neutralization number limits for O-67-8. An extrapolation was also in order for the moist air determinations using set F, but the technique was not applicable in this case. Runs with these conditions at 401°F did not reach a neutralization number limit in 96 hr with O-67-8. Experiments at higher temperatures showed a relatively small effect for temperature as listed here:

Sample	Neut. No.
Temp, °F	Limit, hr
401	96+
410	50
419	38
4.28	31

Extrapolation of the results obtained at 410°F and above yields a 401°F value of approximately 65 hr. This inconsistency is presumably related to the fluid's mode of deterioration with moisture present where by neutralization number increases at a rapid but constant rate such that no breakpoint occurs. This phenomenon $-a_0$ characteristic of tests on 0-67-8, 0-68-7, and 0-68-17, and resulted in the subsequent adoption of a neutralization number limit. Lubricant O-67-9 exhibited the usual response to moisture and metals although the effects were slight. Copper was noticeably deleterious with this fluid but there was little distinction between the other metal sets.

Results for 0-67-20 given in Table V indicate a strong beneficial effect for moisture with glass disks and metal set F. However, the effect was small with sets C and I. The use of copper with 0-67-20 was not noticeably harmful, particularly when comparing the dry air copper tests with glass disks or metal set F. In general, this lubricant showed essentially no reduction in stability as a consequence of metals being present and, in fact, gave increased neutralization number limits in many instances.

Lubricant O.68-7 exhibited reactions to moisture and metals very similar to O.67-20, but at a lesser overall stability level.

The performance of O-68-17 in the O-C-D test phase was characterized by significantly accelerated degradation in the presence of copper. In addition, the results of Table V show that O-68-17 was the sole fluid which did not indicate improved stability by the use of moist air with any metal set. In fact, with metal set F, the lubricant showed the better resistance to deterioration with the dry air condition.

The final test lubricant listed in Table V, 0-69-2, showed a significant moisture effect with glass disks and metal sets F and I. Data for the wet and dry air series using set C were in close agreement. C-69-2 was not adversely affected by the presence of any of the metal sets. Comparing the dry air series, it is seen that the neutralization number limit was actually lengthened in the series with sets C and I as opposed to the 26-br value for glass disks.

In classifying performance trends and the effects produced by moisture and various metals, it is obvious that firm, general rules are not applicable. The effects were diverse, depending on the test lubricant. The effects were also interrelated in some cases. In summary, moist air normally resulted in improved oxidative stability. O-68-17 was a notable exception to this trend, and the effect was negligible for other fluids with certain metal sets, particularly set C. The effect of copper was gc erally detrimental except in the case of lubricant O-66-11. Lubricant O-67-7, likewise, showed a significant reduction in stability associated with the presence of magnesium. As a general observation, it is not possible to state that metals, as such, were deleterious. There were several conditions with lubricants O-67-20, O-68-7, O-68-17, and O-69-2 which indicated either no effect or a favorable influence attributable to the presence of metals.

Because of these variable effects, it is apparent that lubricant evaluation tests intended to screen fluids would be appreciably influenced by the selected conditions, even at a given test temperature. This is illustrated in TableVI which presents a relative ranking of lubricants according to neutralization number limit. Based on the average ranking, O-67-8 was clearly the most superior of the group, and O-66-11 indicated the lowest ranking. The remaining lubricants showed considerable fluctuation of ranking depending on the metal or moisture condition. The largest spread of rankings was shown by O-68-17 which varied from third in the dry air, seven metals series to eighth in the series with copper.

F. Corrosion-Deposition Results

The lubricant characteristics of corrosion and deposition were usually investigated in relation to the neutralization number limit and test time. However, 96-hr O-C-D test data at 401°F were obtained with metal set I and wet air to examine the correspondence with full-scale bearing deposition test results⁽⁵⁾ similar to the test required in the MIL-L-7808G specification. It is noted that lubricants O-60-11, O-67-7, and O-68-17 were run far beyond their degradation capabilities in the 96-hr O-C-D test in order to obtain deposit ratings for a comparable test duration for all eight lubricants. Table VII presents these data in relation to the bearing test. A reasonably satisfactory correspondence between ratings is illustrated by the plot of these results in Figure 5. Both test procedures identified O-67-7 as least satisfactory in deposition characteristics. Some disagreement between the two tests was obtained for O-66-11 The O-C-D test deposit rating of 22 was low in relation to the bearing test rating mean of 76. However, it should be mentioned that the latter showed a large spread of ratings in four determinations, rang..., from 48 to 99. The remaining six lubricants indicated only slight separation in the bearing test with mean ratings ranging from 36 to 55 The O-C-D test ratings identified lubricants O-67-9 and O-68-17 versus O-67-20 or O-68-7.

Matalast	Condition			R	elative ran	king at 401	°F		
Metal set	of air	0-66-11	0-67-7	O-67-8	O-67-9	O-67-20	0-68-7	0-68-17	0-69-2
A (no metals)	Wet	8	3	1	4	2	6	7	5
B (glass disks)	Wet	8	5	1	3.5	23	6	7	3.5
B (glass disks)	Dry	8	5	1	2	3	6	4	7
C (no M-50, with Cu, no 4616) C (no M-50, with Cu,	Dry	6.5	6.5	2	5	1	4	8	3
no 4616) D (no M-50, with CA674,	Dry	6	7	2	5	1	4	8	3
no 4616)	Wet	8	7	2	4	1	5	6	3
E (no M-50)	Wet	8	7	1.5	4	1.5	5	6	3
F (no 4616)	Wet	8	7	1	4	2	5	6	3
F (no 4616)	Dry	8	6.5	1	2	3	6.5	4	5
G (no Mg, no 4616)	Wet	8	4	2	5	1	6	7	3
I (standard metals) I (standard metals)	Wet Dry	8 8	7 7	1	5 6	2 2	4 5	6 3	3 4
Average Ranking		7.7	6.0	1.4	4.1	1.8	5.2	6.0	3.8

TABLE VI. LUBRICANT PERFORMANCE RANKING BASED ON NEUTRALIZATION NUMBER LIMIT AT 401°F

The normal O-C-D test procedure used in assessing lubricant corrosion and deposition involved a test series whereby one determination was terminated at each sampling period, with the total duration greater than the neutralization number limit. In this way, all performance criteria could be evaluated in relation to the stable "life" of the fluid. Test series of this type were conducted only for selected lubricants and metal sets and, of course, only if the conditions produced significant corrosion and deposits. Prior to data presentation, it is observed that all determinations are single runs. Although additional runs for a given test duration may be available for averaging, it is believed that the effect of time is more clearly seen in the sequence specifically conducted for that purpose. Thus, the test precision is artificially enhanced by considering data obtained only in the same time and test sequence.

Sand a second second second and a second second

Results for O-67-7 in various test series of this type are given in Table VIII. Although the summary tables of Appendix II show that a number of metal types encountered significant attack (weight change of $\pm 0.20 \text{ mg/cm}^2$ or more) at various conditions, magnesium was the only metal which did so for

FIGURE 5. CORRELATION OF O-C-D AND BEARING TEST DEPOSIT RATINGS

any lubricant in the time-sequence series. The corrosion data for O-67-7 in Table VIII indicate that appreciable attack was not coincident with the neutralization number limit, but did initiate at a time near the limit. Magnesium corrosion also appeared to accelerate during the test period beyond the neutralization number limit. It is seen that very early magnesium attack occurred with metal set I and dry air, corresponding to the earlier neutralization number limit in this series compared to the moist air condition.

The deposition time trends for O-67-7 were generally consistent and showed no apparent relationship with neutralization number limit. The lubricant produced substantial deposit formations in the period of 0 to 16 hr. Thereafter, deposit ratings indicated only a slight, gradual increase with time. Little or no effect on the severity of O-67-7 deposits was attributable to metal specimen set or air moisture.

TABLE VII. CORRELATION OF O-C-D AND BEARING TEST DEPOSIT RATINGS

Lubricant code	Mean 350°/500°F Brg test rating	Mean O-C-D test deposit rating at 96 hr*
0-66-11	76(4)	22(2)
O-67-7	97(6)	172(2)
O-67-8	52(4)	12(8)
0-67-9	55(4)	67(8)
0-67-20	48(6)	8(3)
O-68-7	42(3)	4(8)
O-68-17	40(3)	30(2)
0-69-2	3C(3)†	5(8)

Numbers in parentheses denote the number of determinations comprising the mean.

*Test conditions: metal set I, 401°F, moist air. †Data for O-67-11, a different batch of O-69-2. Table IX presents the results for O-67-8 as a function of time. Significant magnesium corrosion with this fluid occurred only at a time some 20 to 25 hr beyond the neutralization number limit. With metal sets A, B, and E, the O-67-8 series was conducted at 419° or 428° F and deposit ratings were relatively mild even at these temperatures. Examined in relation to time, these ratings were essentially constant through 72 hr. However, the 88- and 96-hr ratings in these series suggest incipient acceleration of deposits in the later stages of the tests. The sequences with metal set I indicated virtually no change in ratings throughout 96 hr, although the neutralization number limit was reached in the 72-, 88-, and 96-hr determinations with both wet and dry air.

The performance of O-67-9 in the time-sequence series is tabulated in Table X. The corrosion-deposition trends with this lubricant were similar to those of O-67-7. Significant deposits were formed in the initial 16-hr of test with only slight increases in subsequent ratings. Magnesium attack generally accelerated in the later test periods past the

Test Time, hr	Neut. no. limit, hr	Mg weight change, mg/cm²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating		
	Metal	set A, 401°F, mois	air air	Metal set B, 401°F, moist air			Meta	Metal set B, 401 'F, dry an			
16 24 40 48 64 72 88 96	16+ 24+ 40+ 48+ 60 60 60 60	None present	36 43 50 51 54 60 61 67	16+ 24+ 40+ 48+ 59 58 58 58 58	None present	38 40 48 54 54 54 58 61 66	16+ 24+ 40+ 48+ 48 51 50 44	None present	36 35 40 46 52 58 65 62		
	Metal	set E, 401°F, mois	t au	Metal	set F, 392°F, mois	t air	Metal	set G, 401-1, mors	t air		
16 24 40 48 64 72 88	16+ 24+ 28 26 29 26	0.00 -0.16 -0.14 -1.76 -1.86 -5.78	35 40 47 58 61 60	16+ 24+ 40+ 48+ 64+ 69 69	-0.02 -0.06 -0.06 -0.16 -0.42 -0.50 -0.78	28 31 32 36 49 52 57	16+ 24+ 40+ 48+ 51 51	None present	32 38 43 43 44 47		
	Metal	set I, 401°F, moist	air	Meta	l set I, 401°F, dry :	air	1				
16 24 40 48 64 72 83 96	16+ 24+ 30 26 26	0.00 -0.22 -0.28 -2.06 -25.4	34 38 48 54 50	15 15 15 15	-0.70 -1.58 -18.56 -33.46	30 37 39 45					

TABLE VIII. CORROSION-DEPOSITION TIME TRENDS FOR 0-67-7

neutralization number limit. The corrosion data for O-67-9 with metal set I did indicate a unique effect for air moisture. Using wet air, significant magnesium corrosion occurred in the 72-hr determination with a 48-hr neutralization number limit. The corresponding determination with dry air gave a 40-hr limit but no

Test time, hr	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, ~1g/cm²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating
	Meta	I set A, 428°F, moi	st air	Meta	ıl set B, 428°F, moi	st air Meta		I set E, 419° F moist air	
16 24 40 48 64 72 88	16+ 24+ 34 36 37 36 35	None present	5 6 8 10 10 16	16+ 24+ 32 34 34 34 34 34	None present	5 7 5 7 9 11 18	16+ 24+ 36 39 38 37 37	0.00 0.00 -0.06 -0.12 -0.36 -2.10 -2.84	19 18 20 15 20 19 29
96	37 Meta	l set I, 401°F, mois	20 tair	34 Met	al set I, 401°F, ۲-y	28 air	37	-4.58	36
16 24 40 48 64 72 88 96	16+ 24+ 40+ 48+ 64+ 72 78 78	$\begin{array}{c} 0.00 \\ -0.02 \\ -0.02 \\ -0.06 \\ -0.04 \\ -0.02 \\ -0.08 \\ -0.18 \end{array}$	6 8 12 10 12 12 12 12 8	16+ 24+ 40+ 48+ 64+ 59 67 76	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ -0.02\\ 0.00\\ -0.02\\ -0.04\\ 0.00\\ \end{array}$	6 7 7 7 6 6 6			

TABLE IX. CORROSION-DEPOSITION TIME TRENDS FOR O-67-8

TABLE X. CORROSION-DEPOSITION TIME TRENDS FOR 0-67-9

Test time, hr	Neut. no. limit, hr	Mg weight change,ing/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/	Deposit	Neut. no. limit, hr	Mg reight change mg/cm ²	Deposit rating
	Metal	set A, 401°F, mois	st air	Metal	set B, 401°F, moi	st air	Metal set B. 40. 1. dry air		
16	16+	None	25	16+	None	30	16+	None	26
24	24+	present	33	24+	present	30	24+	present	32
40	40+		39	40+		36	40+		36
48	48+		40	48+		38	48+		41
64	57		42	59		42	54		- 38
72	59		44	60		42	54		40
88	58		47	60		41	53		46
96	59		47	61		45	59		46
	Metal	set E, 401°F, mor	st air	Meta	l set F, 392°F, moi	ist air	Metal	set G, 401°F, mois	t air
.4	16+	+0.02	31	16+	-0.02	21	16+	None	26
24	24+	+0.02	34	24+	0.00	25	24+	pre ent	31
40	40+	+0.04	37	40+	- 0.08	25	40+		34
48	47	+0.02	42	48+	0.00	26	43		38
64	49	0.00	45	58	-0.16	27	44		40
72	49	- 0.24	51	59	-0.18	27	43	}	40
88	49	- 0.42	54	59	2 74	28	43		36
96	49	1.40	\$5	59	-6.58	26	44		38
· · · · · · · ·	Meta	l set I, 401°F, mois	st air	Mei	al set 1, 401°F, dry	y air			
16	16+	-0.02	31	16+	- 0 02	22	1		
24	24+	-0.02	33	24+	0 00	28]]	1
40	40+	-0.04	36	40	000	34		1	
48	45	-0.08	40	40	0 00	40]	
64	48	-0.06	51	40	- 0 02	49	l	1	1
72	48	- 0.64	57	40	0.00	57			
88	48	- 1.16	61						
96	48	2.08	60		1				

magnesium weight change. In this instance, the data imply that moisture exerts a major influence in magnesium corrosion.

The corrosion results in Table XI for O-67-20 did not exhibit a noticeable effect for moisture with metal set I. Magnesium attack occurred in the later test periods for both conditions of air moisture. Deposit ratings for all O-67-20 series were mild and indicated virtually no change with test time.

Lubricant O-68-17, as shown in Table XII, indicated significant deposit buildup in the period of 48 to 96 hr in the series at 419°F with no metals or glass disks present. However, in both series, the neutralization number limit occurred at about 25 hr, with no apparent relation to the deposition trend. Deposits in the series at 392° and 401°F were slight. Corrosion results for O-68-17 showed significant weight losses for magnesium at some 20 to 30 hr following the neutralization number limit. In each series containing magnesium, the penultimate determination

Test time, hr	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm²	Deposit rating	Neut. no. limit hr	Mg weight change mg/cm ²	Deposit rating
	Meta	al set A, 410°F, mo	ist air	Metal set B, 410°F, moist air			Met	al set I, 401°F, moi	st air
16 24 40 48 64 72 88 96	16+ 24+ 40+ 42 42 41	None present	5 9 9 10 8 7	16+ 24+ 39 41 45 49	None present	6 8 15 12 12 12 14	16+ 24+ 40+ 48+ 64+ 72 73 73	+0.02 -0.02 0.00 0.00 -0.06 -0.14 -0.50	9 9 14 15 12 17 8 8
	Meta	al set I, 401°F, dry	air						
16 24 40 48 64 72 88 96	16+ 24+ 40+ 48+ 64+ 67 65 69	C.00 0.00 0.00 0.00 0.00 0.00 -0.72 -0.52	6 8 12 15 8 10 12 12						

TABLE XI. CORROSION-DEPOSITION TIME TRENDS FOR 0-67-20

TABLE XII. CORROSION-DEPOSITION TIME TRENDS FOR 0-68-17

Test time, hr	Neut. no. limıt, hr	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm²	Deposi rating
	Metal	set A, 419°F, mois	t air	Metal	set B, 419°F, mois	Metal	set F, 392°F, mors	t air	
16 24 40 48 64 72 88 96	16+ 24+ 25 16 24 24 24 26 25	None present	3 3 4 5 13 18 28 40	16+ 23 25 24 25 25 25 24 24 24	None present	\$ 5 9 12 19 34 46	16+ 24+ 40+ 40 40 40 40	0.00 +0.02 -0.04 +0.02 -0.02 -5.06 -0.48	0 0 0 0 0 0
	Metal	set I, 401°F, moist	air	Meta	al set 1, 401°F, dry :	air			
16 24 40 48 64 72 88 96	16+ 24+ 40+ 45 44 45	+0.02 +0.04 +0.04 +0.04 -4.68 -3.70	2 4 5 7 9	16 + 24 + 40 + 48 + 51 51 50 52	0.00 0.00 +0.02 0.00 -0.02 -0.32 -3.74 1.54	4 4 5 5 6 7 6 7			

showed a high metal weight loss, whereas the final run gave a somewhat lower loss. No explanation can be offered for this phenomenon. It is conceivable that the effect is simply due to the repeatability of the corrosion data; however, the consistency of the phenomenon tends to contradict that interpretation.

Lubricant O-69-2 was investigated only with metal set I in this phase of the study. As seen in Table XIII, lubricant deposits in both the wet and dry air sec. s were inagnificant. Magnesium corrosion with wet air was

Test time, hr	Neut. no. limit, hr .	Mg weight change, mg/cm ²	Deposit rating	Neut. no. limit, hr	Mg weight change, mg/cm ²	Deposit rating	
	Meta	l set I, 401°F, mois	t air	Met	al set I, 401°F, dry	air	1
16	16+	-0.02 ,	4	16+	-0.02	· 3 '	1
24	24+	0.00	4.	24+	· 0.00	4	
40	40+	+0.02 ·	5	40+	0.00	4	
48	48+	0.00	4	42	0:00	4	
64	64	-0.02	6	42	-0.06	1 4	
72	64	+0.02	6	42	-0.12	5	
88	54	-6.40	5]	1		
96	G4	4.10	6 .				ļ

TABLE XIII. CORROSION DEPOSITION TIME TRENDS FOR 0-69-2

obtained at approximately 25 hr past the neutralization number limit and, once again, the maximum weight loss was not for the maximum test duration.

G. Thermal Stability Test Results

This phase of the program was confined to four lubricants using a moist or dry gas (nitrogen) environment and glass disks (set B) or seven metals (set I). The original objective of the test schedule was to adjust the sample temperature in 9°F increments until a neutralization number limit was obtained for a given test condition and lubricant; however, for various reasons to be discussed, this was not accomplished in every case. A summary of all thermal stability test results is given in Tables XXIV to XXVII of Appendix II.

Thermal stability test performance briteria for all runs with dry nitrogen are shown in Table XIV. Lubricant O-67-7 indicated a 42-hr neutralization number limit at $482^{\circ}F$ with glass disks. The test temperature was raised to $491^{\circ}F$ and then $518^{\circ}F$ in an unsuccessful attempt to reach a viscosity breakpoint. At the highest temperature, the lubricant did yield significant deposits as evidenced by the deposit rating of 70. With the seven-metal specimen set present, O-67-7 gave the reverse relationship for acidity and viscosity, i.e., a viscosity breakpoint occurred rather early in the test but no neutralization number limit was reached. However, it is noted that all such tests were terminated prior to 96 hr as a consequence of severe and violent condensate refluxing which ultimately caused a sample temperature drop on the order of 40 to 50 degrees F.

Although O-68-17 exhibited a slightly higher temperature tolerance, the fluid's performance was in all other respects similar to O-67.7 in the dry nitrogen series. With both lubit ants, all determinations with metals showed severe magnesium attack, and the specimen was essentially destroyed. However, in every such test, the sample neutralization number was less than 1 mg KOH/g at the end of test. It is theorized that these data reflect a continuous process of acid consumption in the reaction with magnesium. The products of the process could also be responsible for the occurrence of viscosity breakpoints in metal tests for these two lubricants.

As seen in Table XIV, O-67-9 gave a 38-hr neutralization number limit at 527°F with no metals. With metal set I, lubricant performance was seemingly improved with respect to sample acidity, but severe corrosion was encountered as well as significant viscosity increases. Here again, it is suspected that corrosion and reduced neutralization number levels are interrelated.

The performance of lub/icant O-67-20 in the thermal stability series was similar to O-67-9, except that the former demonstrated a very high temperature capability. Testing with no metals and O-67-20 was suspended after

	Te	st Çondit	ions	Breakr	ooint, hr			
Lubricant	Temp,	Metal	Termina-	Neut.	100°F	Neut. no.	Significant	Deposit
Code	°F	set	tion, hr	no. \	vis `	limit, hr	corrosion	rating
						·		
0-67-7	482(2) :	В	96	96+	96+	42	-	4
	491(2)	B	96	<16	96+	1 <16		7
	518(1)	В	96	<8	96 + .	<8,		· 70
	473(2)	1	64*	1: 64+	54	64+	Mg	4 :
	482(2)	I	48*	48+	27	48+	Mg	6
•	491(2)	i	48*	' 48+	20	48+	Mg	8
0-67-9	527(2)	В	1 96	96+	96+	38		5
	536(2)	B	96	<16	96+	<16	l''	12
1	554(2)	B	96	<8	96+	<8 :		16
	509(2)	Ī	96 ; '	96+	93	96+	Mg, M-50, Fe	7
	527(2)	i	96	96+	57	62	Mg, M-50, Fe	20
	536(2)	l i '	96	96+	44	62 .	Mg, M-50, Fe	20
:	545(2)	i	96	60	36	1 44	Mg, M-50, Fe	19
0-67-20	518(1)	¹ B	96	 96+	96+	96+		· 14 ·
0.01.20	536(2)	B	96	96+	96+	' 96+		28
1	554(1)	B	96	00	96+	96+	·	25
	\$72(2)	• B	96	96+	96+	96+ '		26
	590(2)	B	96	96+	96+	96+ '	1	12
	608(2)	B	96	96+	96+	96+		17
	644(2)	В	96	96+	96+	96+	l!	47
	581(2)	Ĩ	96	96+	96+	96+	,Mg, M-50, Fe	13
, 1	590(2)	1	96	64	96+	64	Mg M-50, Fe	27
	1608(2)	i,	00	31	96+	31	Mg M-50, Fe	32
0-68-17	491(2)	в	.96	96+	96+	51		10 \
	509(2)	' B	96	<16	96+.	<16		7
	518(1)	В.	96	<8	96+	<8) ,	i n'
	473(2)		72*		66-72+	66-72+	Mg	4
	491(2)	li	48-	48+	30	48+	Mg	4
	509(2)	i.	16*	16+	16+	16+	Mg	4
				•	•	s shown in pa	renthesis. le temperature di	i

TABLE XIV. THERMAL STABILITY TEST RESULTS-DRY NITROGEN

runs at 644°F, at which point there was little change in sample neutralization number or viscosity, although significant deposit ratings were obtained. The fluid exhibited a much lower temperature tolerance with metals present with significant metal corrosion occurring at 581°F and an initial neutralization number limit occurring at 590°F.

In several thermal stability tests with or without metals, dry or wet nitrogen, a cyclical tendency was observed for sample neutralization number particularly with O-67-9 and O-67-20. The phenomenon is illustrated by data for O-67-20 shown in Figure 6. Intermediate sample results show that sample acidity passed through a maximum for both conditions. Thus, in the seven-metals tests, the data summary of Table XXVI lists a test time of approximately 40 hr to reach a neutralization number of 4 mg KOH/g, while the end of test neutralization number was in fact less than 4 mg KOH/g. It is conjectured that this cycling of values may be related to acid losses through volatilization and, with metals present, losses via acid-metal reactions to form insoluble salts. It is noted, for example, that instances of significant metal corrosion with O-67-20 (Table XXVI) were also frequently associated with high sludge percentages. If it is assumed that magnesium is the principal metal reactant involved, the neutralization number upturn in the later hours of the test, as shown in Figure 6, may simply be due to the metal's depletion.

The results of the moist nitrogen series are given in Table XV. There was no significant performance distinction attributable to moisture in comparison to dry $\frac{1}{2}$ for any of the lubricants investigated. There was a slight

deleterious effect for moisture when comparing neutralization number limits and viscosity breakpoints between Tables XIV and XV at a given temperature, but the effect was small.

Lubricants O-67-7 and O-68-17 also exhibited excessive refluxing with metals in the moist gas series (Table XV), and further examination of the effect was conducted in this instance. Both fluids were tested using metal set J, which is the same as set l but without magnesium. Removal of magnesium resulted in a pronounced effect on lubricant thermal stability. The absence of the metal eliminated the severe refluxing phenomenon and the viscosity breakpoints which were observed in metal set I runs. In addition, appreciable sample neutralization numbers were obtained with relatively early neutralization number limits. Lubricant O-67-7 evidenced significant corrosion of the steel and bronze specimens, while O-68-17 showed mild steel (Fe) attack with metal set J.

Lubricant		est condit	ions	Break	oint, hr	Neut. no.	Significant	Deposit
code	Temp,	Metal	Termina-	Neut.	100°F	limit, hr	corrosion	rating
coue	°F	set	tion, hr	no.	vis	nmu, ar	corrosion	rating
0-67-7	482	В	96	96+	96+	38	_	4
	491	В	96	<16	96+	<16		4
	473	1	48*	48+	42	48+	Mg	4
	482	1	40*	40+	33	40+	Mg	7
	491		24*	24+	19	24+	Mg	4
	491	J	96	96+	96+	31	M-50, Fe bronze	14
0.67.9	509	В	96	96+`	96+	51		5
	527	В	96	70	96+	21		8
	491	1	96	96+	96+	96+	Mg, Fe	4
	509	1	96	96+	92	85	Mg M-50, Fe	5
	527	1	96	70	52	47	Mg, M-50, Fe	10
O-67-20	590	B	96	96+	96+	96+		20
	608	В	96	96+	96+	96+		35
	644	В	96	96+	96+	96+		54
	491	1	96	96+	96+	96+	Mg	5
	590	1	96	96+	96+	71-96+	Mg, M-50, Fe	30
	608	I	96	<16	96+	<16	Mg, M-50, Fe bronze	19
0-68-17	491	В	96	64	96+	24		4
	509	В	96	<16	96+	<16	- 1	6
	518	В	96	<16	96+	<16		8
	473	1	48*	48+	48+	48+	Mg	4
	482	1	40*	40+	40+	40+	Mg	4
	491	1	24*	24+	24+	24+	Mg	6
	509	1 1	20*	20+	<16	20+	Mg	5
	509	J	96	<16	96+	<16	Fe	6

TABLE XV. THERMAL STABILITY TEST RESULTS-MOIST NITROGEN

V. CONCLUSIONS

كموالكا لأحمد والمعادية والالالا للمارية ومراجع المساوية والمحالية

Development and preliminary evaluation of a light meter device to rate glassware deposits were achieved. Light meter ratings indicate good precision of values and excellent correspondence with visual deposit ratings. The significance of O-C-D test deposit ratings in relation to other lubricant deposition tests was not extensively explored. However, one 96-hr O-C-D test series with a seven-metal specimen set showed reasonable agreement with full-scale bearing test data. It is concluded that additional study of this aspect of the O-C-D test, specifically directed toward investigation of deposit rating capability, is warranted.

On the basis of 392 individual determinations, the repeatability of major O-C-D test performance criteria was very satisfactory as evidenced by pooled standard deviations of 2.7 for the neutralization number limit and 5.3 for deposit rating. It is believed that the test method described in Appendix I provides a meaningful tool for the evaluation of lubricant stability in the presence of metals.

Conclusions with regard to the effects of metals and air moisture in the O-C-D test are dependent upon the test lubricant. In general, moist air usually enhanced oxidative stability; however, the effect was negated for some lubricants with metals present, particularly the metal set containing copper. As such, copper normally exhibited a detrimental effect. One lubricant, O-67-7, indicated a significant deleterious effect for the presence of magnesium in the O-C-D series. It is concluded that metals, as a class, do not necessarily promote lubricant degradation in an oxidizing environment. Four of the eight lubricants examined in this study showed either no change or improved oxidative resistance due to the presence of metals in particular test series.

As a consequence of the diverse responses to metals and moisture, it is evident that the relative ranking of lubricants in the O-C-D test is significantly influenced by these conditions. In a relative comparison of the eight test lubricants, it was found ranking for one fluid could vary from third to eighth, depending on the metal/moisture condition.

Test series to investigate corrosion-deposition phenomena in relation to neutralization number limit were performed for selected lubricants and conditions. Magnesium corrosion was generally seen to accelerate in later test hours, beyond the neutralization number limit. Use of the neutralization number limit as the criterion for test termination would have resulted in the absence of significant metal corrosion for all test series except those of O-67-7 This lubricant showed no consistent relationship between corrosion and the neutralization number limit. Deposition trends varied with lubricant type and indicated essentially no effect for the extent of lubricant degradation as measured by neutralization number limit.

Thermal stability experiments with four lubricants showed a much greater spread among the fluids with respect to temperature capability. Contrary to the O-C-D test series, moisture demonstrated a slight detrimental effect in thermal stability runs. However, an appreciable influence was shown for the presence of a seven-metal specimen set. Metals significantly reduced lubricant temperature tolerance and, for two lubricants, it was determined that magnesium exerted the major effect. It is conjectured that acid constituents generated through thermal break-down are rapidly consumed by reaction with magnesium, thereby affecting neutralization number performance criteria. The products of reaction likewise affected the occurrence of viscosity breakpoints.

In general, neither moisture nor metals noticeably altered deposit formation in the thermal stability tests.

APPENDIX I

TEST METHOD FOR CORROSIVENESS AND OXIDATIVE STABILITY OF AIRCRAFT TURBINE ENGINE LUBRICANTS

1. SCOPE

1.1 This method is used for testing aircraft turbine engine lubricants (synthetic lubricants) to determine their ability to resist oxidative degradation and the tendency to corrode various metals. The method specifies two test procedures: Procedure I of 48-hr duration and Procedure II of 96-hr duration.

2. SAMPLE

2.1 Approximately 250 ml of the lubricant to be tested.

3. APPARATUS

3.1 Sample tube, borosilicate glass, standard wall, 51-mm OD, 450 ± 10-mm overall length (see Figure 7).

3.2 Sample tube head, borosilicate glass, 371/60 male ground-glass joint with upper surface formed in a domeshaped contour (see Figure 8).

3.3 Air tube, borosilicate glass (see Figure 9).

FIGURE 9. AIR TUBE

のいたなななななななながないというないないないないないないないできょうないないないないないないないないないないないないないないない

FIGURE 10. THERMOCOUPLE TUBE

3.4 Thermocouple tube, borosilicate glass (see Figure 10). A bare-wire thermocouple is inserted to the bottom of the glass tube and a small volume of high-temperature fluid is injected to facilitate heat transfer. When inserted into the sample tube assembly, the closed end of the thermocouple tube should be at least 10 mm from the sample tube wall.

3.5 Condenser, Allihn type, borosilicate glass, 300-mm water jacket length, with lower end formed as a male T 24/40 joint.

3.6 Spacer, borosilicate glass, standard wall, 9-mm OD, 6-mm length.

3.7 Adapter, Telfon, **T** 10/18 joint, used to position and seal air inlet tube.

Note 1. The air tube adapter (3.7) may be obtained as Catalog No. K-17980 from:

Kontes Glass Company Vineland, New Jersey 08360

38 Oil sampling device, consisting of a convenient length of 4-mm borosilicate glass tubing with one end fixed by means of a one-hole stopper in a 25-ml filtering flask. The tubing is bent in a U-shape with one leg (sampling side) approximately 600 mm in length. The tube leg attached to the flask may be a much shorter, convenient length.

3.9 Heat medium, constant temperature, capable of maintaining the specified test temperature (sample temperature) within limits of $\pm 1^{\circ}C(\pm 2^{\circ}F)$, and allowing for a sample tube immersion depth of 250 \pm 20 mm.

3.10 Flowmeter, capable of an airflow measurement of 10 ± 1 l/hr, calibrated for standard conditions of 70°F and 1 atm.

3.11 Air supply, free of reactive contaminants. For lubricant specifications requiring "dry air" in conducting this test, the dewpoint of the air shall be -90° F or below. For lubricant specifications requiring "wet air," the moisture content shall be 10 ± 1 mg water per liter of air.

niha maharmi na kana na manana da mina manana na maharmi na manana da na manana da da na manana da da da da da

3.12 Air drier (if required). The precise method of air drying is optional. A satisfactory apparatus is a glass column containing 8 mesh anhydrous calcium sulfate. The column diameter is selected such that the face velocity of the airflow does not exceed 4 ft/min.

3.13 Air moisturizer (if required). The precise method of moisturizing the test air is optional. A satisfactory device is shown in Figure 11. Air enters through a length of 3/8-in. tubing and discharges through a 1-in. diameter diffuser stone. The controlled temperature is that indicated by the thermocouple near the air exit fitting. One heater is operated by an on-off switch and used only for initial preheating. A second heater is in circuit with a variable potential transformer (variac). The variac is adjusted to control the air exit temperature required to give the

proper moisture content. The stainless steel tank is insulated over the entire exterior surface and placed within a refrigerator. The air exit fitting and line are well insulated to avoid moisture condensation. The exit line length within the refrigerator is held to a minimum and the downstream portion of the line between the refrigerator and sample tube must not encounter a temperature region lower than the control temperature, or condensation will occur.

Note 2. The stainless steel tank may be obtained as Type C-1W from:

A.C. Tank Company Post Office Box 389 Burlington, Wisconsin 53105

The apparatus described above will satisfactorily serve as an air moisturizer for several sample tubes, up to a known total of 16 each. At this flow rate (160 ℓ/hr), the following control parameters are typical for achieving a moisture of 10 mg water per liter of air:

Exit air temp	59°F
Water temp	60°F
Refrigerator temp	54°F
Control heater power	<10 watts
The exit air temperature is monitored daily; however, with satisfactory insulation, the variac setting should not require adjustment during a 96-hr test.

The exit air temperature is selected to obtain the desired moisture content. Moisture content may be determined gravimetrically using a U-shaped Schwartz tube with standard taper glass stoppers. The tube is filled with anhydrous calcium sulfate and weighed to the nearest 0.1 mg. The air moisturizer is allowed to temperature equilibrate at the required total airflow. While maintaining the total flow through the moisturizer, the weighing tube is connected to any one of the sample tube air lines. After a 1-hr flow period, the tube weight gain should be 100 ± 10 mg. Any change in the total airflow necessitates recalibration of moisture content since the air velocity through the moisturizer could affect the relative humidity of the air. In the event that a test is performed with a lesser number of sample tubes than that for which originally calibrated, unused flowmeters should be left on to maintain the normal total airflow.

3.14 Balance, analytical, sensitivity 0.1 mg.

3.15 Balance, laboratory, 1500-g capacity, 0.1 g sensitivity.

3.16 Centrifuge, capable of producing a relative centrifugal force of 840 ± 40 .

3.17 Tube, centrifuge, ASTM cone-shaped, 100 ml (see method ASTM D 91).

3.18 Microscope, 20-diameter magnification.

3.19 Bath, electrocleaning, consisting of a 1-2 glass beaker, hot plate, and variable dc voltage source capable of supplying a current of 1 amp. A battery eliminator is a satisfactory voltage source.

3.20 Photographic equipment. Selection of equipment and procedures is optional. The equipment noted here is listed as one possible choice of selection:

- View camera, Graflex 4 × 5 Crown Graphic Special, with cable release accessory.
- Lens, Synchro-Compur-P, Xenar 1:4. 7/135.
- Tripod, Davis and Sanford Company, Floating Action Tripod.
- Filter, Kodak Photoflood No. 80B.
- Film holder, Graflex 120 roll, 4×5 Graphic.
- Film holder, Polaroid Land Holder No. 500.
- Light stands, two each, Smith-Victor Model CB-1.
- Lamps, two each, Sylvania No. 4 Superflood DXR.

4. MATERIALS

4.1 Metal specimens (one each), washer type, 1/4-in. ID by 3/4-in. OD by 0.032-in. thick, as follows.

- Titanium (AI4S 4908).
- Magnesium (QQ-M-44, AZ31B, condition H24).
- Steel, tool, M-50 (AMS 6490).

- Steel, carbon, mild (QQ-S-698, grade 1009, cold rolled, condition No. 4 or 5).
- Bronze, silicon (AMS 4616).
- Silver, (MIL-S-13282 (ord), grade A).
- Aluminum (QQ-A-250/4, T-3 or T-4).
- 4.2 Abrasive paper, silicon carbide or aluminum oxide, 240 and 400 grit.
 - Note 3. "Wet-or-dry" or "waterproof" cloths or papers, or iron containing abrasives such as natural emery, are not satisfactory.
- 4.3 Cotton, absorbent.

4.4 Benzene, reagent grade.

4.5 Acetone, reagent grade.

4.6 Cleaning solution, glassware, consisting of 1000 ml conc sulfuric acid and 35 ml saturated sodium dichromate solution (aqueous).

4.7 Nitric acid, conc, reagent grade.

4.8. Solvent, trichloroethylene, MIL-T-27602.

4.9 Carbon remover, glassware, such as Calgon Carb-N-Kleen.

4.10 Solution, metal specimen electrocleaning, aqueous solution of 15 g/ ℓ sodium hydroxide and 15 g/ ℓ trisodium phosphate.

4.11 Color film, such as Kodak Ektacolor Type S, ASA 100, CPS 120.

4.12 Color film packet, such as Polaroid Polacolor, Type 58, ASA 75, 4 × 5 Land film.

4.13 Photographic background paper, dove grey and white.

5. OPERATING CONDITIONS

5.1 Under normal operating conditions, the test is run continuously for a period \ldots 48 or 96 hr at 10-l/hr auflow. In a 48 hr test, intermediate 20-ml samples are taken at 16, 24, and 40 hr. In a 96-hr test, intermediate 10-ml samples are taken at 16, 24, 40, 48, 64, 72, and 88 hr. During the test period, the oil sample temperature is maintained within ±1°C (±2°F) of the specified test temperature. No specific requirements are made with regard to ambient conditions except that the condenser cooling water be 24° ± 3°C (75° ± 5°F), and the water flow controlled to maintain both the water in and out temperature within this range.

6. PREPARATION FOR TEST

6.1 Perform all necessary calibrations of thermocouples, flowmeters, etc.

6.2 Turn on heat medium and bring to a temperature that will maintain the oil sample within $\pm 1^{\circ}C$ ($\pm 2^{\circ}F$) of the specified test temperature.

6.3 If the test glassware is to be cleaned from a previous run, proceed as follows:

- (1) Rinse all glassware items and the air tube adapter with trichloroethylene to remove residual oil, and air dry.
- (2) Fill or immerse the sample tube, air tube, and 9-mm glass spacers in carbon remover for a period of 3 to 16 hr to remove carbonaceous deposits. Water rinse after removal.
- (3) Subject all glassware items and the air tube adapter to soap and water wash and rinse with distilled water.
- (4) Fill or immerse all glassware items with dichromate cleaning solution and soak for 3 to 16 hr.
- (5) Remove from the dichromate solution and rinse with warm water, followed by distilled water, and air or oven dry.
- (6) Store all items in a dust-free cabinet until required for test. If stored for more than 1 week, the glassware is again rinsed with distilled water and oven dried before use.

6.4 If new glassware is to be used, clean according to paragraph 6.3, omitting steps (1) and (2).

6.5 Assemble the appropriate number of clean sample tubes and accessory items and intermediate sampling containers. Only test oil is used to lubricate ground glass joints during assembly.

6.6 Determine the neutralization number of the original oil sample by method ASTM D 664, using a titration endpoint of pH 11.

- 6.7 Determine the kinematic viscosity of the original oil sample at 100° and 210°F by method ASTM D 445.
- 6.8 Collect the required number and types of metal specimens to be used for test.
 - (1) Clean and prepolish the specimen face surfaces and inner and outer edges using 240-grit abrasive paper. If the specimens are being reused from a previous test, no pitting, etching, or other signs of corrosion should be visible at this point.
 - (2) Finish with 400-grit paper, removing all marks that may have been left by the previous polishing. The specimens are handled only with forceps or ashless filter paper from this point.

Note 4. As a practical polishing procedure, place a sheet of the abrasive paper on a flat surface and rub the specimen against the paper with longitudinal strokes, holding the specimen with ashless paper. Do not use the same sheet of abrasive paper for polishing different metal types.

- (3) Cotton swab the specimens with benzene, followed .cetone, using fresh cotton pads until a pad remains unsoiled.
- (4) If there is a short delay before weighing, store the specimens under dry benzene.

6.9 As soon as the metal set is polished, weigh each specimen to within 0.1 mg.

6.10 Slide the specimens onto the air tube. The first specimen rests directly on the air tube collar and succeeding specimens are each separated by a 9-mm glass spacer (para. 3.6). Assemble the metals on the air tube in the following order: aluminum (bottom position), silver, bronze, mild steel, M-50 steel, magnesium, titanium (top).

6.11 Place the air tube, with metals, into the sample tube. Position the head on the sample tube with the air tube extending through the center glass joint. Seat the Teflon adapter on the air tube and tighten the gland. Insert the thermocouple tube and weigh the entire assembly to the nearest 0.1 g.

6.12 Add 200 ± 2 ml of oil to the sample tube, reweigh the assembly, and determine weight of sample added.

7. START OF TEST

7.1 Position the sample tube in the heat medium to an immersion depth of 250 ± 20 mm.

7.2 Insert the Allihn condenser and start the water flow.

7.3 After a 15-min warmup period, connect the air supply and adjust the flow rate to 10 ± 1 k/hr. Begin counting test time from this point.

7.4 Perform adjustment of the heat medium temperature such that the oil sample temperature is held within $1^{\circ}C$ (2°F) of the required test value.

8. TEST OPERATION

8.1 Verify sample temperature and airflow rate just prior to each intermediate sampling time.

8.2 Sample the test oil according to the following schedule:

Procedure I, 20-ml sample	Procedure II, 10-ml sample
16	16
24	24
40	40
48 hr	48
	64
	72
	88
	96 hr (20 ml)

8.3 Perform both intermediate and final sampling by withdrawing the thermocouple tube and inserting the 4-mm tube attached to a filtering flask. By means of a rubber bulb, exert a slight suction at the flask tube and draw the oil to a premarked level. Perform the sampling without interrupting the airflow or removing the sample tube from the heat medium.

8.4 Record the total weight of all samples removed during test.

8.5 Examine all samples for viscosity at 100° and 210°F and neutralization number.

Note 5. Due to the reduced intermediate sample volume available with Procedure II, viscosity measurement is made using the semi-micro viscometers listed in method ASTM D 445. In addition, it may be necessary to determine neutralization number using a titration sample size less than that required by method ASTM D 664.

8.6 Using Procedure I, terminate the test at 48 hr. With Procedure II, the test is terminated at 96 hr.

9. TERMINATION AND EVALUATION

9.1 After withdrawing the final sample, shut off the airflow and condenser water and remove the condenser.

9.2 Immediately remove the sample tube assembly from the heat medium, wipe the tube exterior, and weigh the assembly to the nearest 0.1 g. Compute the percentage of oil weight loss as follows:

Percent Loss =
$$\frac{W_2 - (W_3 + W_4)}{W_2 - W_1} \times 100$$

where:

ĝ١

 W_1 = Weight of tube assembly

 W_2 = Weight of tube assembly plus oil before test

 W_3 = Weight of tube assembly plus oil after test

 W_4 = Weight of accumulative sample removed

9.3 Remove the thermocouple tube and sample tube head.

94 Remove the air tube with metal specimens. Rinse with benzene and carefully slide the specimens off the tube onto a clean absorptive surface.

Note 6. If processing of the specimens is to be delayed, they may be stored under dry benzene.

9.5 Drain the test oil from the tube into a clean glass container. Invert the sample tube and allow to drain for a minimum of 16 hr.

9.6 Rinse the metal specimens, individually, in benzene followed by acetone to remove residual oil. Swab the specimens with benzene-wetted cotton pads until clean pads are noted. Rinse with clean benzene and acetone, air dry, and weigh to within 0.1 mg.

9.7 If, at this point, there are visible carbon deposits remaining on the specimens, they are electrocleaned. The individual specimens, *except aluminum*, are cathodically cleaned in hot $(170^{\circ} \text{ to } 190^{\circ}\text{F})$ electrocleaning solution for a period of 15 to 30 sec at a current density of 0.5 amp/in.² Remove from the bath, rinse in tap water, and cotton swab to remove loose deposits. (Repeat the electrocleaning step, as necessary, to remove all deposits.) Rinse the specimens in acetone, air dry, and reweigh.

9.8 Soak the aluminum specimen in conc nitric acid for 15 min, then water rinse and process as described in paragraph 9.7, but omitting the electrocleaning step.

Note 7. If metal types other than those cited herein are used, the compatibility of the electrocleaning procedure with metal composition should be determined and, if applicable, other appropriate procedures used.

99 Examine the metal specimens by microscope at 20X magnification. Record evidence of pitting, etching, color, etc.

9 10 Determine viscosity at 100° and 210°F and neutralization number on the final 20-ml sample taken at end of test.

9 11 Using a representative portion of the bulk oil sample (para 9.5), centrifuge a 25-ml aliquot for 1 hr at a relative centrifugal force of 840 ± 40 . Note the volume of solid or semisolid sludge obtained, estimating to 0.01 ml where possible. Record the percentage volume of sludge.

9.12 Following the minimum tube drain period of 16 hr, a color film exposure of the sample tube is taken and printed on 4×5 -in. glossy paper. Position the camera such that the major film dimension parallels the major tube dimension. A maximum of four tubes per exposure may be included. With multiple-tube exposures, the 4×5 -in. prints are cut in sections and each tube photograph attached to its corresponding test report data sheet. The photographic procedure is optional. The following procedure is based on the use of equipment and materials, also optional, listed previously:

(1) Place the inverted sample tube on a suitable stand or table which is covered with a sheet of dove grey paper. Also cover the vertical background with white paper at a distance of approximately 10 to 12 in. behind the tube.

(2) To reduce light glare, position the photoflood lamps on either side and directly overhead of the sample tube, with the lamps pointed downward.

(3) The camera is positioned approximately 40 in. (lens to objective) from the tube, and tilted at a slight angle below horizontal.

(4) A color Polaroid exposure is first taken to verify camera focus, position, and aperture. In addition, this photograph provides insurance in the event of loss of the roll film exposure during handling and processing. For the Polaroid exposure, typical camera settings are f 1:8 aperture and 1/10 sec shutter speed.

(5) Without disturbing camera position or focus, replace the Polaroid film adapter with the roll film adapter. With the Ektacolor Type S film, typical camera settings are f 1:16 aperture and 1/10 sec shutter speed.

Note 8. By inspection it is seen that the field of view for the roll film adapter is somewhat less than that outlined by the camera ground-glass viewer. To facilitate positioning, it is recommended that the smaller field be inscribed on the camera viewer, and that the Polaroid exposure be made within this field to avoid repositioning the camera between the two exposure types.

10. REPORT OF RESULTS

10.1 Report kinematic viscosity, expressed in centistokes, for original and all test oil samples at 100° and 210°F. Report percentage change from original viscosity for all intermediate and final samples at 100° and 210°F.

10.2 Report the change from original neutralization number for all intermediate and final samples, expressed in mg KOI1/g. Report both the initial and change in neutralization number a negative value represents a neutralization number decrease.

10.3 Report volume percent of sludge in oil obtained by centrifuging.

10.4 Report weight percent of oil loss during test.

10.5 Report the weight change of each metal specimen from the initial, expressed in mg/cm^2 , calculated to the nearest 0.1 me/cm^2 . Specimen area is based on the top and bottom surfaces; edges are ignored.

10.6 Report the color and appearance of the metal specimens after cleaning. Report any pitting, etching, or other ω trosion observed either without magnification, or with 20X magnification.

 $\omega =$ Submit color photograph of test sample tube with report of results.

10.8 Report test conditions, and any irregularities or deviations from required test procedures and conditions.

· · · ·

APPENDIX II TEST DATA SUMMARY TABLES

•

1

Preceding page blank

TABLE XVI. SUMMARY OF O.C.D TEST RESULTS ON O-66-11

ł

ł

L

!											1									•		,		1						1								
Tere	1cSt .10.	- 430-1	431-1	451-1	471-1	471-2	471-3	471-4	482-1	482-2	482-3	4824	420.2	412-2	424-2	442-J	439-2	422-2	1-410	561-1	561-2	621-1	621-2	490-1-	522-2	522-3	5 <u>2</u> 3-1	523-2	457-1	493.5	493-6	515-1	515-2	515-3	5154	496-1	190.5	0.0.0
nber data	Test time to 4 mg KOH/g, hr	62	42	30	9.	26	27	_ 27	29	29	28	- 53	30	28	24	: 	21	23	2 2	13	- 13	11	11	- 24 - 33	24 -	24	- 23	24	23	17	. 11	1	16	17	17	12	0 12	2
Neutralization number data	Neut. no. at BP, mg KOH/g	0.45	0.66	0.68	0.62		0.58	0.58	0.58	-0.58	0.58	0.58	080	0.56	0.60	1	-0.94	0.60	1	I	I	, ' ;	I	0.55	0.50	0.50	0.55	0.56	0.94	<u>[</u>]	!	. 1	I	1	I,	I	1	i
	BP, hr	54	30	20	19	19	61.	19	20	20	19	-20	9 Q	21	16,	13+	ĩ	16	» «	° 8°	8~	- 8 V	%	81 01	. 18	18	17	12	1		; %	× 8	%	<8 <8	∾	°	» ۱	ŝ
100°E vie	BP, hr	63	42	32 '	28	28	29	29	31	32	30	31	00-	24	28	13+	-24	29	ci x	17	17	15	15	28 28	27	- 26	30.	30	23		17	16+	17	17	12	16	5	1
	Deposit : ating ised : Light meter	1	. 1	I	s.	S	s	S	s	S	9) N	۔ ۱ ۱		1	I	1	1.	4 4	5	s	s	9	30	21	22	29	28	1 \	0 4		, II	4	∞,		21	<u>+ c</u>	1/
	Depos Revised	`8 `	S	0	0	0		c	0	ę	0	• •	>	1 65	1	10 -	0	1 <	- c	• • •	. 0	1	: 1	6	24	26	26	30	. 17	<u> </u>		- 14	c	=	0	n :	≘' ≈	
lts	Sluđge. vol %	None	0.2	None	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	0.2	None	Trace	Trace	None	Trace	Trace	Nonc	None	0.4	Trace	Trace	0.6	0.6	None	Trace	Trace	None	None	None	None	~ 1	~ ~	-1
End of test results	Metal(a) attack	Mr	. Mg	None	Mg	Mg -	Mg. Fe+	Mg	Mg	Mg	Mg	Mc	Ci Me	Cu. Me	Bz, Mg	None	Mg	Mg. Fe+	1	, 1	1	1	1,	Cu. Mg	Cú. Me	Cu, Mg	Cu, Mg	Cũ, Aệ, Mệ	Mg	Br Mc	Me	None	None	Mg	Mr	Mg	- MF	Mc
	Neut. no mg KOH/g	19.25	21.2	15.22	23.2	23.2	26.1	26.3	24.3	26.8	28.0	24.5	3 25	29.7	24.3	0.44	23.6	23.5	10.11	20.3	21.1	19.71	17.87	16.06	14.78	14.99	17.38	15.55	16.09	24.2	18.29	3.39	9.53	14.69	17.05	23.4	4.1.7	7 77
ļ	100°F vis change, %	69	59	18	102	101		_102	108	86	88	88	2	3 33	721	^{[1}	26	80	32	32	, 23	44	42	16	17	61	IS	17	32	167		12	0	26	44	33	25	22
	Time, hr	96	96	48	96	96	96	96	96	96	96	96 96	? î	- 96	96	5	48	96	0 X	÷	48	48	48	8 7 0	84	48	48	48	48	0 0) 3	16	24	40	48 77 87	48	ž	
ditions	Air	Ϋ́J	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet Dev	No.	Dry	Wet	Wet	Wet	Wet		Wet	Wet	Dry	Dry	Wei Wei	Wet	Wet	Wet	Wct	y u	i i	Wei	Wet	Wct	Wct	Wet	Ŵct	Wei	
Test conditions	Metal	ں	۵	<u>ند</u>	<u>ن</u> د	<u>ت</u>	<u></u>	÷	<u>.</u>	<u>ن</u> ــــــــــــــــــــــــــــــــــــ	× :	. :	. t		۵	<u>ند</u>	<u>د</u>	Ŧ	< 4	: =	B	8	8	<u>د</u> ر	. ن	J	ပ ပ	ن ا	ن : 		2	-	<u>ن</u>	يت	-		÷.,	
	Temp. °F	374	374 -	383	- 2					,	- 53	183	56					392		1 6																	-	301

36

	Test conditions	ditions				End of test results	ults			100°E vie		Neutralization number data	mber data	Tect
Temp. °F	Metal	Air	Time, hr	100°F vis change, 7	Neut. no mg KOH/g	Metal(3) attack	Sludge. vol %	Depo Revised	Deposit rating ised Light meter	BP, hr	BP, hr	Ncut. no. at BP, mg KOH/g	Test time to 4 mg KOH/g, hr	- 10 ⁻
	щ	Wet	48	26	24.2	Mg	2	38	21	17	*		17	523-4
	ω	Wct	64	68	19.06	Mg	Trace	0	10	17	%	I	18	516-1
	ы	Wet	5	68	17.53	Mg	Trace	01	=	17	≈	ł	17	516-2
-	щ	Wet	96	198	28.6	Mg	None	6	17	17	%	I	17	514-1
	ш	Wet	96	Semisolid	20.1	Mg, l'e	1	9	4	17	%	I	17	514-2
	2	Wet	48	25	23.5	Mg	-	r	1	18	%	I	13	492-5
	٤.,	Wet	48	18	23.1	Mg	0.2	ę	6	18	°∼	I	13	492-6
	œ.	Dry	96	340	20.6	Mg. M-50+	Trace	6	4	91	% ∨	1	12	489-2
	Ľ	Dry	96	441	19.83	Mc. M-50+, Fe+	Trace	()	4	16	°	1	12	489-3
•	υ	Wet	48	23	22.3	Ac	lrace	0	9	17	80	1	12	493-3
	C	Drv	72	15	5 96	None	Trace	c	10	1	~	1	4	468-1
	Ξ	Ň	4	36	6.00	Me	-			8	; %	I	7	495-1
	: =	X	48	2 ×	0 ((No.	Tract) •]	2	. ~	, . ,	1	: =	495.7
_	: -) ×	17 03	Ma		2 1	10		? ~	!	2 9	1.963
			2		C0.11			12		1	? `		2 9	
			ç i	07	C0.11	31K		<u></u>	<u>،</u> د	≗ :	° ,	!	2 :	
		Ň	<u>م</u>	911	9.67	Mg. M-50+, I c+	Irace	!	77	1	×	1	2 :	1-666
	_	Wet	96	370	20.9	Mg. M-50+, Fe+	0.2	1	25	4	×	1	15	595-2
	_	Dry	48	43	17.30	Mk	None	11	8	12	%	I	16	580-1
	-	Dry.	48	7	17.35	Mg	None	=	6	17	%	I	16	580-2
410	ں ا	Wet	48	32	17.76	Cu, Mg	0.6	!	1	16	%	I	16	421-2
	J	Dry.	96	3.559	30.0	Cu. Mg	None	68	ł	12	%	I	14	415-2
	۵	Wet.	22	10,308	25.3	Bz. Mg	Trace	1	1	16	% V	I	14	425-2
-	<u>نن</u>	Wet	-18	36	26.0	Mg	0.2	s	ł	16	8		13	440-2
410	H	Wet	88	Solid	21.8	Fe, Mg	Solid	1	I	91	* *		14	423-2
														_
				-								-		
Def	ined as a	a weight	change c	of •0.20 mg/c	m² or more. A	(a) Defined as a weight change of +0.20 mg/cm ² or more. A weight increase is inducated by a "+" sign	indicated b	йr X	5n					

TABLE XVI. SUMMARY OF O-C-D TEST RESULTS ON O-66-11 (Cont'd)

	Test	0	430-2	431-2	436-3	486-2	420-3	412-3	424-3	448-1	448-2	448-3	448-4	448-5	448-6	448-7	448-8	442-2	439-3	460-1	460-2	460-3	460-4	460-5	460-6	460-7	460-8	463-1	463-2	463-3	463-4	465-1	465-2	465-3	465-4	470-1	470-2	470-3	4704	470-5	464-1	464-2	464-3
mber data	Test time to	4 mg KOH/g, hr	81	I	108	i	44	36	11	i	i	I	1	1	69	62	69	63	72	72	72	72	71	72	70	71	58	40	43	42	43	38	39	39	38	68	61	66	66	67	67	67	69
Neutralization number data	Neut. no. at	BP, mg KOH/g	2.08	1	6.31	I	2.34	1.50	4.10	!	1	!	I	!	1	4.25	4.40	I	4.90	4.15	4.44	4.12	4.21	4.14	4.99	4.17	2.95	1.65	1.73	1.65	1.81	1.49	1.49	1.50	1.49	4.39	4.62	4.15	4.41	4.35	6.28	6.07	5.92
	0 h.	11. IQ	74	+96	133	96+	37	28	72	16+	244	40+	48+	64+	72+	65	75	80+	80	73	76	73	73	73	83	72	53	30	32	õ	32	29	53	õ	29	75	76	67	1	73	96	66	7 6
- 900 -	100°F vis		- 16	9 6+	192+	96+	S 7	42	+96	16+	24+	40+	48+	64+	72+	8 0+	88+	80+	96+	96+	+96	9 6+	8 +	1 96	9 6+	+96	71	46	47	46	47	43	4S	44	44	96+	+96	96	9 6+	+96	9 6+	+96	6 +
	Ueposit rating	Light meter	1	1	1	46	1	1	1	1	1	I	1	1	I	I	I	I	I	I	1	i	I	1	1	I	1	I	I	I	I	1	1	I	1	59	55	58	52	55	ł	i	ł
	Depos	Revised	64	35	62	40	1	213	1	28	31	32	36	49	52	52	57	56	64	64	62	59	63	64	59	58	45	s	0	0	7	9	~	8	7	65	58	62	5 6	58	50	55	78
results	Studge.	% lov	None	Trace	Trace	Trace	Trace	Semisolid	Trace	None	None	None	Trace	Trace	Trace	Trace	Trace	None	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	əərij
End of test results	Mctal(3)	attack	ů	None	Mg	None	Cu, Mg	Cu, Mg	Mg	None	None	None	None	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	None	None	None
	Ncut. no	mg KOH/g	20.5	2.82	23.8	2.77	23.0	28.7	11.79	1.39	1.75	2.65	3.20	3.81	4.25	12.87	10.46	4.84	9.44	10.15	8.89	11.69	13.17	10.49	8.76	13.83	30.5	24.4	24.0	24.8	25.2	23.4	24.7	23.6	22.4	11.54	11.69	15.02	14.21	12.27	6.28	6.44	6.23
	100°I: vis	change, 7	~1	m	-	6	5	8.147	×	-	11	र्ग	s	7	30	6	01	6	11	2	=	11	7	10	=	30	38	46	65	69	44	68	52	52	53	01	10	Ś	2	6	01	10	2
Γ	Time.	۲	96	96	192	96	72	96	96	16	24	40	48	64	72	80	88	80	96	96	96	96	96	96	96	96	96	22	72	72	2	22	22	2	72	96	96	96	96	96	96	96	96
ditions	3		Dry	Wet	Wet	Dry	Wct	Dry	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wet	Wct	Wct	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wei
Test conditions	Metal	set	U	۵	۵	<u></u>	ن ن	ပ	Ω	<u>ند</u>	<u>ند</u>	<u>іч</u>	<u></u>	<u></u>	<u>ند</u>	<u></u>	من ة	<u>ند</u>	<u>.</u>	<u>ند</u>	<u>نن</u>	<u>ند</u>	<u>ند</u>	<u>ند</u>	<u>ن</u>	÷	÷	يت:	<u>ند</u>	<u>ت</u>	¥-	<u></u>	<u>ند</u>		÷	(<u>a</u>)-1	<u>9</u>	(p):	9.9 1	(<u>;</u>]	o	0	0
	1	ín °	374	374	383	383	392	-			_																	_															392

TABLE XVII. SUMMARY OF O-C-D TEST RESULTS ON O-67-7

KUMMANAQ

and the state of the

Test conditions				End of text results	results			100°F vis		Neutry-Ization number data	mber data	Test
	Tune. hr	100°1: viv change. 7	Neut. no mg KOH/g	(r)lrioM attrk	Sludge. vol %	Bevised	Deposit rating ised Light meter	BP. hr	BP. hr	Neut. no. at BP, mg KOH/g	Test time to 4 mg KOH/g, hr	no.
1	96	10	6.54	None	Trace	52		+96	93	6.07	68	464-4
	96	6	5.98	None	Trace	55	1	+96	96	5.98	70	464-5
_	96	6	5.91	None	Trace	60	1	96+	96	16.2	70	464-6
	96	6	6.05	None	Trace	60	i	+96	95	5.93	10	464-7
	96	6	6.06	None	Trace	57	i	+96	95	5.93	70	4n4-8
Wet	96	च	16.72	Mg	Trace	!	I	96+	60	3.35	64	422-3
Wet	16	(1	1.32	1	Trace	35	36	16+	16+	1	i	521-1
Wet	24	e	1.73	i	Trace	36	43	24+	24+	I	1	521-2
Wet	0 7	7	2.65	1	Trace	47	50	40+	40+	1	I	521-3
Wet	48	8	3.11	I	Trace	51	S1	48+	48+	I	I	521-4
Wet	64	-10	4,49	1	Trace	54	54	64+	63	4.36	60	521-5
Wet	12	- 12	6.31	1	Trace	60	60	72+	63	4.36	60	521-6
Wet	88	. 8	13.02	ı	Trace	61	66	88+	63	4.36	60	S21-7
Wet	96	~ ~	14.88	1	Trace	67	70	96+	63	4.36	60	521-8
Wet	96	S -	15.06	1	Trace	67	73	95	65	4.70	58	519-3
Wet	96	- • च	16.01	1	Trace	64	72	95	65	4.71	58	519-4
Wet	96	7	13.91	1	Trace	59	63	9 6+	66	4.57	61	526-3
Wet	96	2	13.77	I	Trace	64	67	6 +	66	4.57	61	S26-4
Wet	96	7	14.14	ł	Trace	63	67	1 96+	66	4.57	61	526-5
Wet	96	9-	14.59	1	Trace	71	11	6 +	99	4.S7	91	526-6
Wet	96	- S	15.52	1	Trace	68	72	96+ 	65	4.50	19	1-975
Wct	16	. i	1.32	1	Trace	Ę;	38	+91	+ o :	1	1	1-0/0
Wet	7	- 4	1.74	ļ	111Ce	6	40 10		++;	1	!	2-010
Wet	9		2.63	1	Trace	<u>s</u> :	40	404	+0+	1	!	2002
Wet	48	× ;	3.18	1	l race	2	4.5	40+	+	1	1 5	
Wet	64	- 1	4.47	1	201	90	4 G	÷.	+		<u>د</u> ه ۲	2022
Wet	72	12	6.80	1	Trace	85 3	80	+71	ż	4.6J	000	00/0
Wet	8	1 -	13.69	1	lrace	1 9 \	40	\$8+ \$	20		000	0015
Wet	8 5	4 •	16.01	1	Trace	99	5	+ 96	35	- 07 V	° 5	2012
wet	<u>ج</u>	ن	10.01	1	11400	<u>.</u>	3	101	30			567.7
Wet	\$ 2	^ (00.01	1	1 race	5 3	00	100	3 5	4 35	3 3	569.1
_	2	• •	06.01	i	11410	5 5	33	10/	5 0	104	3 ¢	569.7
Wet	\$ 2	,	15.8/	1		85	00	- 70F	20	461		2693
Nel	ç	+	C0.CI	1	2)FI1	5 3	5		5 (57 7		1075
Wet	96	ų.	16.17	i	Trace	69	21	+95	23	- t t t	00	1 4 4 4 4
Wet	96	~	16.27	i	Trace	49 49	7	+ 0, 1	1	· + · · +	00	
Dry	16	7	1.11	i	Trace	7	36	16+	19+	1	!	1-070
Dry	24	4	1.42	1	lrace	ŝ	35	24+	24+	1	!	7-970
Dry	40	2	2.22	1	l race	7	40	+0+	40+	!	I	6-28-3
Dry	48	6	2.79	i	l race	46	46	48+	48+	1	ł	628-4
•												

TABLE XVII. SUMMARY OF OC D TEST RESULTS ON O-67-7 (Cont'd)

A CONTRACT OF A CO

	lest	no.	628-6	628-7	628-8	621-3	621-4	625-1	625-2	625-3	625-4	625-5	490-3	4904	457-2	488-1	493-7	493-8	516-3	516-4	516-5	516-6	516-7	516-8	496-3	4964	506-1	506-2	506-3	5064	2.002	0-900	C-710	0-710	1-770	514-3	514-4	49.2-1	492-8	491-2	491-3	467-1	40/-7
mber data	Test time to	4 mg KOH/g, hr	56	55	52	54	56	52	52	54	54	52	27	26	22	22	32	31	1	!	37	32	37	32	38	30	32	34	46	5	34			31	67	30		55	33	31	31	1	1
Neutralization number data	Neut. no. at	BP, mg KOH/g	3.16	3.12	2.64	3.05	3.02	2.78	2.70	3.04	3.04	2.66	2.20	1.68	1.30	1.06	2.04	2.11	1	!	2.29	2.08	2.39	2.09	3.08	2.19	2.17	2.46	2.34	2.38	2.47	147	71.2	2.19	2.00	2.14	2.14	12.2	2.21	1.60	1.60	1	ł
	44	BP, hr	51	50	44	49	51	45	7	49	49	44	50	17	16	12	54	24		. 24+	28	26	29	26	32	25	24	58	28	27	58	87	3 2	ล :	22	25	22	56	26	ង	52	161	5 4 +
1 0001	100 F VIS	BP, hr	72+	88+	92	89	88	89	89	60	06	89	43	38	27	28	41	42	16+	24+	40+	44	46	4	52	43	39	43	43	40	4 6 9	47	6	₽	1	41	1 0	7	۲ ۲	4	417	16+	24+
	it rating	ised Light meter	58	64	63	64	68	60	60	64	68	66	49	55	ļ	74	18	36	35	40	47	58	61	66	64	61	79	66	11	75	72	2	Ŧ (69	89	83	18	33	30	37	31	2	38
	Depos	Revised	58	65	62	66	67	62	60	65	99	6 6	50	54	61	150	19	35	30	32	38	55	59	60	66	63	107	52	68	75	62	88	16	61	216	152	191	35	36	9 <u>0</u>	59	33	39
sults	Sludge.	vol %	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	68	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	0.6	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	!	0.3	0.2	0.2	0.2	1 race	Trace	Trace	Trace
End of test results	Metal(a)	attack	ł	I	I	i	!	i	1	ł	1	1	Cu, Mg	Cu, Mg	Cu, Mg	Cu, Mg	Mg	Mg	None	None	None	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg. M-S0+, I'e+	Mg. M-50+, I-e+	None	None
	Neut. no.	mg KOH/g	11.47	17.25	18.76	20.9	21.3	19.87	20.4	19.80	19.65	20.2	21.3	22.1	16.06	34.3	29.9	24.5	1.39	1.92	4.85	13.26	23.3	27.0	26.2	30.4	24.2	26.9	24.8	25.6	26.3	24.4	25.0	26.3	31.3	28.7	31.7	29.9	24.5	31.3	32.1	1.62	2.13
	100°F vis	change, 7	6-	0.4	ч	œ	×	7	×	و	2	×	0.2	6	293	2021	64	164	4	9-	12	ې	11	30	7	30	777	87	341	490	134	484	638	431	1605	3823	4552	59	102	779	698	7	4
	Time.	hr	72	88	96	96	96	96	96	96	96	96	48	8 7	48	96	72	72	16	5	40	48	5	72	64	5	5	72	72	12	72	72	12	72	%	96	96	22	72	96	96	16	54
iditions		Au	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Dry	Dry	Wct	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wct	Wel	Wet	Wet	Wct	Wet	Wet	Wet	Wet	Wei	Wet	Wet	Wet	Wet	Dry	Dry	Wet	Wct
Test conditions	Metal	sct	B	B	в	в	в	æ	æ	æ	8	B	<u>ن</u>	ں ا	ن ا	ن 	٥	۵	<u>ш</u>	ы	<u>ы</u>	<u>س</u>	ы	<u>بد</u>	<u>ш</u>	<u>ш</u>	<u>ш</u>	ш	<u>ند</u>	Э	٤		<u>ب</u>	:ц	<u>11</u>	-11	<u>ند</u>		÷	_	<u></u>	0	v
	Temp.	:I。	401	<	I													. <u> </u>			<u>.</u>																				1	-	401

TABLE XVII. SUMMARY OF OC-D TEST RESULTS ON O-67-7 (Cont'd)

	l csi	по.	467-3	467-4	467-5	467-6	467-7	466-1	466-2	466-3	495-3	495-4	545-1	545-2	545-3	545-4	545-5	536-3	5364	544-1	544-2	S44-3	544-4	544-5	595-3	595-4	291-1	591-2	591-3	4165	280-5	1000	1-060	2000	590-5	1060	590-5		
mber data	Test time to	4 mg KOH/g, hr	1	i	51	52	51	51	51	52	32	32	I	ł	38	33	32	31	34	31	31	37	31	31	33	35	1	24	24	5.4	47	0, 2	3 2	33	70	77	53		
Neutralization number data	Neut. no. at	BP, mg KOH/g	1	ł	ł	5.23	5.35	5.52	5.54	5.54	2.18	2.15	1	i	2.32	1.95	1.95	06.1	1.95	2.02	2.02	2.30	2.02	2.02	2.12	2.22	1.12	1.12	1.12	1.12	0.92	76.0	26.1	1.92	1.92	1.92	1.92		
	- T 40	Br.nr	40+	48+	64+	64	64	67	66	66	22	25	16+	24+	30	26	26	25	26	26	26	29	26	26	56	27	5	15	15	15	4 :	1:	1:	± :		<u>+</u>	ユ		
	DD F VIS	6F, N	40+	48+	64+	66+	72+	96+	96+	96+	41	40	16+	24+	40+	46	42	43	47	42	43	47	42	43	42	46	16+	24+	<u>0</u>	8	32	<i>s</i> , ;	5	5	31	31	30		_
	Deposit rating	Light meter	43	43	44	47	47	59	55	53	32	29	34	38	48	S4	50	56	50	58	60	66	53	50	76	82	30	37	39	45	7	÷;	2.2	<u>ج</u>		7	39		
	Depos	Revied	45	46	48	S1	52	56	51	51	32	26	36	ç	46	68	61	74	69	73	84	94	81	72	153	192	I	!	1	1	41	Ŷ	!	ļ	!	1	!	 	
results	Sludge.	vol 7⁄2	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	None	None	None	Trace	0.2	0.4	0.2	Trace	Trace	Trace	Trace	Trace	1	1	Trace	Trace	Trace	Trace	Frace	2021	2011	1 LACC	Trace	Trace	Trace	 	
End of test results	Metal(a)	attack	None	None	None	None	None	None	None	None	Mg	Mg	Ncne	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg. Bz	Mg	Mg	Яд	Mg	Mg	Mr	ž.	лк Х	Мр	Mg	Mg	Mg		
	Neut. no	mg KOH/g	3.29	3.72	5.31	5.45	6.91	15.06	15.71	14.63	18.36	18.55	1.32	1.75	4.84	13.36	25.0	22.9	25.7	22.8	25.2	21.3	23.0	24.2	33.4	34.0	1.30	4.66	14.32	16.45	16.56	5071	16.57	10.01	16.75	16.73	16.67	 	
	314 H.001	change. 7	ب	%	6	10	=	7	-	7	7	T	4	s	12	1	37	011	17	29	19	9	29	20	1542	1615	4	-	5	61	8	7 .	2	2	13	50	61	 	
	Time.	hr	40	48	64	66	22	96	96	96	48	48	16	치	40	48	5	64	64	64	64	64	64	64	96	96	16	5	ą	2	8	¥	÷	48	со Т	() 17	48	 	
Iditions		ц,	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Dry	Dry	Dry	È.	A A	Ury	Dry D	D 2 2	Dry	 	
Test conditions	Metal	ž	<u>.</u>	0	U	U	υ	0	0	0	H	Ξ	-	_	-	_	_	-	-	_	-	-		-	-	_	-	_	-	-				-		-	-	 	
	Temp.	: н	401	-																																-	401	 	

TABLE XVII. SUMMARY OF O-C-D TEST RESULTS ON O-67-7 (Cont'd)

تعماغه كالمحد

	_		
Test	e.	421-3 415-3 425-3 440-3 4223-3 423-3	
mber data Test time to	4 mg KOH/g hr	222122	
Neutralization number data Neut. no. at Test ti	BP, mg KOH/g	0.70 0.64 1.45 1.09 0.96	
	BP, hr	≅ = = = 2% %	
100°F vis	BP, hr	22 23 23 23 23 23 23	
Deposit rating	Light meter	1 1 1 1 1	
Depos	Revised	1 23 39 1 83 1	uzts t .
esults Sludge,	vol 72	Trace 14.0 0.2 Trace 1.0	dicated by "
End of test results Metal(a) Sh	attack	Mg. Cu Mg. Cu Mg Mg. Fe+	(a)Defined as a weight change of •0.20 mg/cm ² or more A weight increase is indicated by a "4" sign (h)Without T: (c)Without steel (d)Without AF.
Neut. no.,	ng KOH/g	20.3 17.56 34.2 30.6 30.6	r ² or more. A we
100°F viv	change, 7	231 2531 133 133	• 0.20 mµ/cn
Tume.	hr	8 8 2 = 2 8 8 2 = 2 8 2	hange of
_{뎣	Air	Wer Wer Wer Wer	s weight c el 50.
		000××=	(a)Defined Jo J w (b)Withou: Ti (c)Without steel (d)Without AF0. (e)Without Ap
Temp.	÷	0 0 0 0 0	(a)Der (b)Wr (c)Wr (c)Wr (d)Wr (e)Wr

TABLE XVII. SUMMARY OF O-C-D TEST RESULTS ON O-67-7 (Cont'd)

TABLE XVIII. SUMMARY OF O-C-D TEST RESULTS ON O-67-8

*:

	Test no.	453-3	453-2	453-1	671-1	671-2	671-3	671-4	621-5	621-6	455-2	490-5	488-2	457-3	455-1	671-5	514-5	514-6	671-6	671-7	506-7	506-8	468-2	671-8	548-1	548-2	548-3	548-4	548-5	548-6	548-7	548-8	542-1	542-2	546-1	546-2	546-3	546-4	546-5	1-665	599-2	\$99-3
mher data	Test time to 4 mg KOH/g, hr	81	92	I	1	i	1	82	62	78	66	58	99	وې	68	60	73	75	1	1	69	72	68	1	!	1	i	1	I	72	78	78	80	80	78	61	79	78	76	1	:	1
Neutralization number data	Neut. no. at BP, mg KOH/g	!	1	ļ	1	ł	ł	1	!	ł	3.87	6.53	3.62	3.01	!	i	5.35	5.00	ł	!	6.72	5.85	1	I	1	I	!	ł	1	ł	1	5.20	4.76	4.94	4.97	5.43	5.04	5.01	5.24	!	I	, !
	BP, hr	+96	96+	96+	96+	96+	96+	96+	96+	96+	66	86	63	58	+96	1 96	16	16	96+	+96	94	92	96+	6 +	16+	24+	40+	48+	64+	72+	88+	95	16	32	92	96	64	92	89	16+	54 +	101
	100°F vis BP, hr	+96	- 64	96+	96+	+96	+96	1 96	96+	9 6+	69	96+	496	496	496	96+	96 F	96+	+96	496	96 I	+96	+96	+96	16+	24+	40+	48+	64+	72+	88+	96 i	96+	96+	96 i	96+	496	496	+96	164	+ 70	1 07
	Deposit rating /ised Light meter	1	1	I	6	9	T	ŝ	77	s	1	12	=	1	i	9	13	12	s	7		7	12	s	9	×	12	01	2	21	2	20	6	9	7	16	7	2	01	¢	۲	2
	Depos	13	0	0	!	ł	!	!	1	!	9	9	2	m	•	!	ç	7	1	1	0	c	TT	!	~	ę	ه	9	6	∞	6	s	×	~	6	œ	×	8	\$	I	1	1
results	Sludge. vol 7	Trace	None	None	None	None	None	None	None	None	None	Nonc	None	None	None	None	Trace	None	Nonc	None	None	None	None	None	None	None	'l race	Trace	Trace	Trace	l race	Trace	None	None	None	None	None	None	None	None	None	None
End of test results	Metal ^(a) attack	5	None	Nunc	1	!	1	!	1	!	Mg. Cu	Ĵ	°,	C.	Mg	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Nume	None	None	None	None	None	Mr	None	None	None
	Neut. no mg KOH/g	5.11	4.34	3.75	3.76	3.75	3.78	5.04	5.71	5.85	12.63	8 13	60.6	9.18	5.27	4.27	6.64	6.04	3.86	3.81	6.49	6.74	5.06	3.60	1.55	1.93	2.65	2.95	3.52	10.4	4.S7	5 39	5.67	5.50	5 70	S 46	543	5 88 2	6.45	1 39	1.68	- IO
	100°F vis change, 7	20	IS	18	21	21	21	26	33	32	çi	33	37	39	7	5	27	26	5	21	38	36	53	5	2	Ξ	13	15	16	61	21	36	75	7	2	S S	2	S	27	2	1	ē
	Time, hr	96	96	96	96	3	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	91	5	40	48	3	72	88	96	96	96	96	96	96	96	96	16	5	ç
litions	Air	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Wet	Wet	Dry	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Wct	Wet	Wet	Wei	Wet	Wet	Wet	Wet	Wei	Wct	Wet	Wel	Wc1	Wet	Wei	Wet	Wet	Dry	Dry	Dry
Test conditions	Metal	J	۵	<u></u>	A	۲	8	20	8		J	ບ ບ	ں ا	ບ	2	a	-14	ند.		<u>نن</u>	<u>ند</u>	<u></u>	: :	ن	-	-		-	-		_	-	-	_	-	_		-		_	-	-
•	Temp.	392	**	392	401	-																_							_											1	-	- - - -

;

٤.

l

ł

-

TABLE WVIII. SUMMARY OF O-C-D TEST RESULTS ON O-67-8 (Cont'd)

599-4 599-5 599-5 599-5 599-8 580-6 593-1 593-3 593-3 593-3 458-2_. 509-1 509-2 458-3 502-1 502-2 520-1 520-2 559-4 559-4 559-4 638-1 638-2 458-1 629-2 640-1 640-2 640-3 640-4 640-5 640-6 475-1 593-5 498-1 517-1 517-2 517-2 517-3 517-3 593-4 459-1 Test no. Test time to 4 mg KOH/g, hr 1 44448888841188 Neutralization number data Neut. no. at BP, mg KOH/g ! BP, hr ł 100°F vis BP, hr Deposit rating Revised -Light meter 11 00044021111112202200 11111 Sludge, vol 7. None None None None None None -None None None None lrace lrace Trace None None None None None Frace None None Trace End of test results Metal⁽³⁾ Mg: Cu Cu Cu None None None None None MR. BZ MF MR None None None None attack None Neut. no., mg KOH/g $\begin{array}{c} 2.3\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 5.02\\ 6.01\\ 6.02\\$ 7.35 7.18 17.18 13.67 2.39 2.39 2.39 2.39 2.92 5.98 100°F vis change. 57-228423 Time, hr Air---Test conditions Uct Wet W.et Wet Dry Wet Wet Wel Wet ž 25 20 ž Dry Di Z Vet à Vei Wei Wc Wel Wei Metal set **υ** α ω ω μ Temp. 410 410 419 <u>5</u> 401 ٨

'44

÷.

a
<u>ک</u>
Ř
ŭ
<u> </u>
œ
5
Ā
~
á
~~
r.
1
2
<u> </u>
2
F
ŝ
H
SUMMARY OF O-C-D TLST RESULTS ON O-6'
- 3
X
~
Ë
~
2
1
÷.
9
5
TABLE XVIII.
П
2
X
ų
BI
<
F

18	-†-	+	-†-		+		Find of test results	r results			100°F vis		Neutralization number data	mber data	Test
thou P. vis Neut. no., A change, 2 mg KOH/g	100 T- vis Neut. no change. 7 mg KOH/g	P vis Neut. no nge. 7 mg KOH/g	100 T- vis Neut. no change. 7 mg KOH/g	P vis Neut. no nge. 7 mg KOH/g		~	detaive	Sludge. vol 7	Dcpo Revised	Deposit rating	BP. hr	BP. hr	Ncut. no. at BP, mg KOH/g	Test time to 4 mg KOH/g, hr	Ч
36 9.32	36	36	36		9.32		Mg	Trace	6	20	63	40	4.17	38	517-5
	44	44	44		16.01		Mg	Trace	2	61	63	40	4.34	37	517-6
	66 13.64	13.64	66 13.64	13.64		****	Мg	Trace	1	29	64	40	4.30	37	517-7
14.97	78 14.97	78 14.97	78 14.97	14.97		-	Mr.	Trace	5	26	. 63	40	4.33	37	517-8
	67	67	67		15.02		Mg	None	5	34	68	49	5.94	31	501-1
	1 10	1 10	1 10		15.27		u N	None	56	38	69	52	5.97	32	501-2
77 15.27					15.27		Mr	None	12	54	63	6	4.37	36	507-1
	26	26	26		15.66		Мg	None	8	32	65	39	4.55	34	507-2
15.08	75 15.08	75 15.08	75 15.08	15.08			Mk	None	15	34	64	40	4.59	36	507-3
15.25	80 15.25	80 15.25	80 15.25	15.25			Mg	None	22	38	64	36	4.08	36	507-4
13.80	81 13.80	13.80	81 13.80	13.80		~.	Mg	None	8	33	60	40	4.31	37	507-5
82 15.28	82 15.28	82 15.28	82 15.28	15.28			ME	None	15	28	56	42	4.68	30	507-6
15.37	84 15.37	84 15.37	84 15.37	15.37			Mg	None	18	32	58	40	4.37	36	507-7
10.44	43 10.44	43 10.44	43 10.44	10.44		Ň	Mg. Ag	Trace	0	1	95	85	7.09	40	474-1
10.72	38 10.72	38 10.72	38 10.72	10.72			Mg	Trace	-	I	96+	87	7.44	38	474-2
9.33	36 9.33	36 9.33	36 9.33	9.33		Ŵ	c. Ag	Trace	-	I	9 6+	88	7.51	38	474-3
12.60	47 12.60	12.60	47 12.60	12.60	_	Z	Mg. Ag	Trace	-	!	귫	20	6.10	40	474-4
10.11	41 10.11	41 10.11	41 10.11	10.11			Mg	None		6	96+	8:	6.84	38	483-1
10.94	42 10.94	42 10.94	42 10.94	10.94			Mg	None	-	6	96+	70	6.39	37	483-2
	38 8.01	38 8.01	38 8.01	8.01			ЧĔ	None	4	81	96+	92	7.32	37	483-3
	6 8 8.52	8.52	6 8 8.52	8.52			М	None	0	9	96+	91	7.38	38	483-4
12.45	66 12.45	66 12.45	66 12.45	12.45		•	al a	Trace	-	2	90	29	2.73	37	487-1
12.68	74 12.68	74 12.68	74 12.68	12.68			Mg	None	s	20	57	30	2.75	37	507-8
8.64	36 8.64	36 8.64	36 8.64	8.64			Λr.	Trace	7	1	96 	6	7.50	40	475-2
	39	39	39		8.50		Nunc	None	4	10	+96	93	8.02	33	479-4
	69	69	69		15.55		Mg	None	60	41	6 6	38	4.17	37	541-6
15.42	71 15.42	71 15.42	71 15.42	15.42			Mr	None	45	7	66	ç	4.29	38	541-7
	12	12	12		2.64		ł	None	0	ग	16+	16+	1	i	534-1
	12	12	12		2.65		i	None	0	s	164	161	I	I	533-1
	15	15	15		3.19		ł	None	•	9	24.4	24 #	I	I	533-2
	20	20	20		4.84		!	None	(1	×	40+	40+	1	¥	533-3
	23	23	23		5.47		1	None	5	×	48+	48+	I	36	533-4
	30	30	30		19.9		1	None	ŝ	0	64+	644	1	37	533-5
36 6.97	36		36		6.97		!	None	01	9	72.4	72+	!	36	533-6
43 8.57	43	43	43		8.57		1	None	16	16	884	88+	ł	35	533-7
	59		59		9.28		i	None	18	50	95	92	8.56	37	533-8
51 10.35	51	51	51		10.35		1	None	ιs	26	1 96	83	8.07	34	525-1
	54	54	54		10.08		i	None	29	7	96+	81	7.81	36	525-2
	15	15	15		9.89		!	None	80	2	96+	90	8.28	34	527-1
_	20	_	20	_	10.05		1	None	2	저	96+	16	9.06	34	527-2
54 9 66	3	3			0.66		i	Name	9	2	96.4	88	8 09	3 K	527-3
	- 				1 00 0				-					2	

(p,1
8 (Con
7-8 (
0 0
NO
SUMMARY OF O-C-D TEST RESULTS ON O-67-8 (
sut
RE
EST
DT
ý
OF C
۲ç.
MAI
NMU
I. S
VII
ъх Т
ABLE X
F

.

	Test conditions	litions				End of test results	t results					Neutralization number data	nber data	l
	Metal	, v	Time,	100°F vis	Ncut. no.,	Metal ⁽³⁾	Sludge.		Deposit rating	BD hr	BD hr	Neut. no. at	Test time to	l cst
:Io	set	AU	ž	change, %	mg KOH/g	attack	vol %	å	Light meter	DF, 10	Dr, IL	BP, mg KOH/g	4 mg KOH/g, hr	2
428	<	Wet	96	S1	16.6	i	None	27	23	96+	16	8.99	34	527-4
-	<	Wet	96	51	9.81	1	None	22	61	+96	90	8.59	35	527-5
	A	Wet	96	51	9.66	ł	None	23	18	- 64	89	8.41	34	527-6
	æ	Wet	16	15	2.67	1	None	0	s	16+	16+	1	1	573-1
	B	Wet	24	18	3.42	I	None	•	•	24+	24+	!	1	573-2
	8	Wet	40	23	4.78	1	None	0	S	40+	40+	1	32	573-3
	8	Wet	48	28	5.15	1	None	0	7	48+	48+	!	34	573-4
	æ	Wet	64	34	6.97	ł	None	٣.	6	64+	64+	1	34	573-5
	8	Wet	22	38	7.59	i	None	2	Π	72+	72+	!	34	573-6
	8	Wet	88	49	9.25	1	None	16	18	88+	88	9.25	34	573-7
	æ	Wet	96	56	10.33	1	None	26	28	+96	89	9.05	34	573-8
	æ	Wet	96	53	10.22	i	None	19	22	96+	90	8.97	33	564-1
	8	Wet	96	53	10.28	I	None	20	24	96+	89	9.00	33	564-2
	æ	Wct	96	56	10.11	i	None	17	18	1 96	90	9.13	34	572-1
	8	Wet	96	54	10.22	1	None	18	21	96+	89	9.13	34	572-2
	8	Wet	96	55	10.73	1	None	20	23	96+	88	9.22	34	572-3
	8	Wet	96	54	10 33	i	None	20	26	9 6+	88	9.18	34	572-4
	8	Wet	96	55	10.53	!	None	21	28		88	9.18	34	572-5
	æ	Dry	48	31	6.35	ł	None	!	2	48+	28	3.21	34	641-1
	8	Dry	48	32	6.32	1	None	1	~	48+	27	2.99	34	641-2
	D	Wet	72	44	16.11	Mg	None	6	22	72+	40	5.12	30	511-1
	D	Wet	72	50 50	11.11	Mg	None	12	24	72+	35	4.63	30	511-2
	۵	Wet	96	80	16.67	Mg. Bz	Trace	23	28	72	31	4.03	27	476-3
	ш	Wet	96	120	17.48	Mg	None	32	34	48	26	4.85	19	505-1
	<u>ب</u> د	Wet	96	06	16.83	Mg	None	34	38	53	28	4.73	20	505-2
	<u>نن</u>	Wet	72	41	10.01	Mg	Trace	5	н	72+	45	5.25	33	511-3
	<u>ن</u> ـ	Wet	72	38	7.50	Mg	None	ę	11	72+	68	6.95	33	5114
	÷	Wet	96	62	13.60	Mg	Trace	2	18	84	69	7.40	27	476-1
	ц	Dry	96	96	15.83	Mg	None	14	16	43	28	3.13	32	499-1
	<u>ند</u>	Dry	96	88	15.15	Mg	None	s	15	40	25	2.98	31	505-3
	J	Wet	96	57	10.96	None	Trace	7	18	+96	89	9.71	26	476-2
428	ა	Wet	96	56	11.30	None	None	21	32	+96	60	9.74	22	499-2
												-		
							_							
			j											
(in De	tmed as .	t weich	(a) Defined as a weight change of a		0.20 me/cm ² or more	А мею'н п	N asran	A weight increase is indicated by a "+" sgn.	, , [,] , , , , , , , , , , , , , , , ,					
						6								

Test	Test conditions				Erd of text results	sults					Neutralization number data	nber data	ŀ
Temp. Metal	tal let		-	Neut no	Metal ^(a)	Sludge,	Depos	Deposit rating	100 1: VIS	BD he	Ncut. no. at	Test time to	I CSI
3		hr	change. 7	mg KOH/g	attack	2 lov	Revised	Light meter			BP. mg KCH/g	4 mg KOH/g, hr	2
	Dry	96	0	1.84	None	Trace	29	!	96+	+96		1	434-1
.	Dry	192	133	32.8	None	Trace	63	!	120	105	2.44	112	430-6
<u>م</u>	Wet	96	ŝ	3.97	Mg	Trace	27	ı	96+	- 96	1	86	434-2
<u>م</u>	Wei	192	116	20.5	Mg	0.6	52	!	163	156	4.97	86	431-6
ن 	Wet	96	46	19.35	Mg. Cu	None	ł	i	70	57	3.72	59	420-4
ن 	Dry	96	112	26.0	.Ĉ	Trace	53	!	56	47	1.85	53	412-4
<u>م</u>	Wet	96	32	16.58	Mg	1 race	i	1	83	67	4.50	62	424-4
	Wet	16	~	1.23	None	None	5	i	16+	16+	ł	I	449-1
	Wet	54	17	1.81	None	None	2S	i	24+	24+	1	ł	449-2
<u>نہ</u>	Wet	40		2.92	None	Trace	25	ł	40+	40+	1	I	449-3
	Wet	48	~	3.46	None	Trace	26	!	48+	48+	I	1	449-4
<u></u>	Wet	64	2	4.62	None	Trace	27	!	64+	64 1-	I	58	449-5
<u> </u>	Wet	72	~	5.00	None	Trace	27	1	72+	72+	1	59	449-6
<u> </u>	Wet	88	s	9.27	Mg	Trace	28	i	88+	76	5.32	59	449-7
	1.01	90	s	9.16	Mg	Truce	27	ł	÷06	85	5.92	59	449-8
ڪ د يہ .	Wet	96	53	16.59	Mg	Trace	26	1	87	75	5.01	59	449-9
	Wet	74	~	5.82	Mg	Trace	30	ł	74+	72	4.74	57	444-1
ىن. 	Wei	90	20	16.59	Mg	Trace	33	1	82	74	4.90	60	442-3
<u></u>	Wet	96	8	11.76	Mg	Trace	28	I	94	90	5.79	58	439-4
Ξ	Wet	96	38	17.99	Mg	Trace	1	1	85	75	5.01	57	4224
<	Wet	16	~	1.32	1	Trace	30	25	16+	16+	ł	ł	530-1
<	Wet	5		1.75	1	Trace	38	33	24+	24 F	1	I	530-2
<	Wet	40	•	2.73	1	Trace	40	39	40+	40+	1	1	530-3
<	Wet	48	c	3 33	!	Trace	42	40	48+	48+	I	I	530-4
<	Wet	3	c	4 63	!	Trace	43	42	64+	64+	I	57	530-5
<	Wet	22	~1	5.39	I	1 race	42	44	72+	72+	ł	59	530-6
<		88	*7	6.62	!	Trace	7	47	88+	88+	!	58	\$30-7
<		ŝ	ى	7 69	1	anul	43	47	9 6+	6	7.32	59	530-8
<		96 	-	7.58	!	1 race	45	\$?	+96	95	7.49	60	519-5
<		96	2	293	1	Frace	46	49	96+	95	7.84	58	519-6
~		2	~	1.40	i	Trace	32	30	16+	16+	1	I	575-1
∞	Wet	7	•••	1.92	1	Trace	32	30	24+	24+	1	ł	575-2
~	Wet	Ŧ	c	2.82	1	Trace	34	36	40+	1 0+	1	1	575-3
æ 	Wei	48	0	541	1	lrace	39	38	48+	48+	i	1	575-4
~	Wet	5	•	£4,4	ł	Jrace	7	7	64+	5+	i	59	575-5
3	Wel	2	2	5,10	1	Irace	7	÷	724	72+	1	60	575-6
.	Wer	88	77	6.45	i	ןנירה	÷	7	88+	88∔	!	60	575-7
=	Wet	96	v,	6 94	1	العدو	46	57	96+	1 96	1	60	575-8
æ	Wet	96	v,	7 59	ł	Line	÷	47	964	32	6.93	58	562-3
	-	96	s	7.51	!	וניוים	÷	4	964	32	6.92	58	562-4
-			•				-	2					

TABLE XIX. SUMMARY OF O-C-D TEST RESULTS ON O-67-9

•

. , **(** धि

a t

.

and the second

	Test	no.	637-2	637-3	637-4	637-5	637-6	637-7	637-8	621-7	621-8	490-6	490-7	488-3	488-4	494-I (494-2	518-1	518-2	518-3	518-4	518-5	518-6	518-7	518-8	496-5	496-6	500-1	508-1	508-2	508-3	5084	508-5	208-6	484-1	484-2	484-3	484-4	472-1	472-2	472-3	472-4	7167
mber data	Test time to	4 mg KOH/g. hr		1	1	60	60	60	63	61	61	40	40	36	36	48	47	1	I	1	1	52	52	52	52	47	46	43	52	52	8	53	23	23	4S	46	46	46	47	46	47	46	60
Neutralization number data	Neut. no. at	BP, mg KOH/g	1	1	I	3.13	3.13	3.08	3.55	3.02	3.02	3.16	3.32	1.73	1.73	5.32	5.16	i	1	ł	3.52	3.57	3 66	3.66	3.66	5.21	4.75	5.53	3.69	3.69	3.65	3.69	3.69	3.69	5.27	5.62	5.1 4	5.05	6.08	5.34	6.04	5.85	2.82
	-1 07	Br, nr	24+	40+	48+	54 24	S4	53	59	55	55	35	35	58	58	67	65	16+	24+	40+	47	49	49	49	49	5 9	53	59	49	20	20	20	20	20	65	64	65	64	73	65	7	73	25
	DU F VIS	Br, ar	24+	40+	48+	64+	72+	88+	96+	+96	96+	47	47	42	42	76	68	16+	24+	40+	48+	64+	72+	88+	96+	89	89	76	96+	+96	+96+	96+	964	96+	68	65	67	5	17	20	79	78	961
	Deposit rating	Light meter	32	36	Ŧ	38	40	46	46	52	50	54	73	62	62	49	55	31	34	37	42	45 45	51	54	55	60	62	60	57	S	55	55	56	60	38	32	37	1 0	37	37	40	37	55
	Deposi	Revised	I	ł	1	I	1	!	ł	ł	I	71	73	51	60	37	46	26	IE I	36	38	45	50	54	55	36	38	62	5	56	55	57	58	56	36	36	37	Ŧ	43	12	ç	4.	ę
ults	Sludge.	vol %	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	1 0	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Irace	LIACE	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Jrace	Lince
End of test results	Mctal ⁽³⁾	attack	ŀ	i	1	1	1	!	i	1	1	Mg, Cu	Mg, Cu	Mg. Cu	Mg. Cu	Mg	Mg. Bz	None	None	None	None	None	Mg	Mg	Mg	Mg	Mg	Mg	Mg	None	Mg	Mk	Mg	Mg	Mg, M-50+	Mg. Fe+	Mg. Fet. M-50+	Mg, Fet, M-50+	Mg	Mg	Mg	Mg	None
	Ncut. no	mg KOH/g	1.29	1.90	2.40	4.61	5.92	7.55	7.85	8.64	8.49	21.6	23.3	24.8	25.9	18.74	17.21	1.30	1.82	2.84	3.64	6.43	8.05	10.45	10.95	12.44	13.17	21.2	12.39	12.79	11.69	66.11	11.29	12.24	15.26	13.03	12.38	13.15	19.03	18.59	19.15	18.74	9.27
	100°F vis	change. 🖓	0		-	-	m	6	9	=	1	750	126	106	124	S 7	6 6	~1		c	0	~	و	13	16	17	81	64	18	61	51	17	15	18	S	SI	£ 1	59	4 3	57	34	39	2
	Time.	hr	54	0 7	48	64	2	88	96	96	96	<u></u> 96	96	96	96	9ý	96	16	5	1 0	48	64	72	88	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	- 96	96
Iditions	A ir		Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Dry	Dry	Wct	Wet	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wei	Wet	Wet	103	Wet	Wet	Wet	Wet	Wet		Wet	Wet	Wet	Wet	Wct	Wet	Wet	Dry
Test conditions	Metal	¥	B	æ	B	8	æ	B	-	æ	æ	د	ں	د	د	<u>_</u>	۵	ш			i 1.	<u>ند</u>		<u>بد</u>		<u></u>			. مد		ш.		الك			<u></u>	<u>ند</u>	<u>ند</u>	<u>ښ</u>	÷	<u>ن</u>	<u></u>	÷
	Temp.	а. С	401															_																	_							-	[0 7

FABLE XIX. SUMMARY OF O-C-D TEST RESULTS ON O-67-9 (Cont'd)

										•				_				•	•									1		•		1											1.
	l cst	01	485-1	469-1	469-2	469-3	469.4	469-5	469.6	469-7	469.8	469-9	466-4	466-5	495-5	495-6-	551-1	551-2	551-3.	551-4	551-5	551-6	551-ĵ	551-8	536-5	536-6	549-1	549-2	549-3	\$494	549-5	1-109	601-2	601-3	601-4	601-5	9-109	581-1	581-2	1.763	597-2	597-3	£-165
nber data	Test time to	4 mg KOH/g, hr	62	1	I	!	43	44	43	4	43	44	46	46	46	-45	ł	1	, 1	I	50	50	.50	50	54	55	48	48.	48	48	48	1	, , ,		- 47	. 47	47	45	45 .	46	46	- 36 -	46
Neutralization number data	Neut no at	BP, mg KOH/g	2.76	I	I	1	i	1	i	1	8.35	8.02	7.89	7.78	4.89	6:11	1	1	1	3.42	3.65	3.70 -	3.69	3.61	341	3.50 .	3.56	3.56	3.61	3.56	3.56	;		2.36	, 223	2.30	2.25	, ,∓	14.0	2.25	2 25 -	2.25	2.25
	RD hr		53	16+	24+	+0+	48+	64+	72+	88+	89	06	16	92	63	73	16+	24+	+0+	42 <u>-</u>	48	₽	8	48	50	51	45 、	ţ	46	45	45,	16+	141	ę	9 7	97	ţ	65	£,	ę	, 1 0,	Ę	ş
100 1	RP hr		68	16+	24+	40+	48+	64+	72+	88+	964	96+	96+ -	1 6+	69	74	16+	24+	40+	48+	64+	72+	76	62	+96	1 96	69	69	74	69	69	16+-	24+	101	÷	60	69	25		12	55	s,s	8
	Deposit rating	Light meter	53	26	31	₹	38	10	07	36	77	38	4	- 01		7	31	33	. 36	40	51	57	61	60	, 56	58	- 20	60	64	68	68	22	38	ž	ş	67	57	60	S	46	7	52	\$\$.,
	Depoy	Revised	89	25	27	32	36	37	7	39	ç	2	37	40	÷	96	Ē	37	37	37	51	56	65	63	61	60	78	68	68	- 20	11	1	1	1	!	i	i	68	. 53	:	i	i	i
esults	Sludge.	101	Trace	Trace	Trace	Trace	Trace	Jrace	Trace	Trace	Trace	Frace	Trace	Trace	Trace	Trace	None	None	Trace	Trace	Trace	Trace	Trace	Irace	Trace	Trace	Trace	Trace	Trace	Trace	Jrace	Trace	Irace	- Trace	Trace	Trace	1 race	Jrace	əəril	Trace	Jrace	- Irace	Jrac 1
I nd of test results	Metalla	JILICK	None	None	None	None	None	None	None	None	None	None	None	Nonc	Mg	Mg	None	None	None	None	None	Mg	Mg	Mg	- Mg	Ń ĸ	Mg	Mg	Mg	Mg	Mg -	None	None	None	None	None	None	None	None	None	None	None	None
	Neut no.	mg KOH/g	8 64	691	2.51	3 87	4 57	16'\$	6 68	7.93	8 86	8 35	8 80	8 57	15 17	17,26	1 46	2.06	3.07	3.89	8.89	10.90		13.88	11.00	10.58	15 26	J14.16	14.90	15.52	16 99	1.14	1.41	2.36	44,4	10 60	12.45	14.69	14 57	13 55	1361	1363	14 56
	100 1 11	change, '	н	2		-	-	~	m	S	7	7	9	9	40	20 77	~1		0	0	-		29	35	8	91-	39	Ŧ	38	0	- 46	-1	_	1	•	11	54	8	59	7	S.	26	30
	T mc.	ž	96	16	저	1 0	ж Т	64	22	88	6	96	96	96	96	96	16	れ	0 7	1 8	64	72	- 88	96	96	96	96	96	- 96	96-	96	9	7.	Ģ	8 7	3	5	72	72	72	22	72	22
Fest conditions	Air		Dry	Wei	Wet	Wei	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wel	Wet	Wel	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wel	Dry	Dry Dry	Dry	24	ŝ	Dr	Dry	Dry	Dry	â	Dry	Dry
- h	<i>.</i>	ž	-	: -	ن	: 	ى ا	<u>ა</u>	ლ	د	5	0	υ	<u>.</u>	=	Ŧ	-		<u> </u>		-,			-	-	-	_	-	-	7		-		-	-	_		-		-		-	-
	lemp.	-	10 1	-																_																							101

:

ł

١

TABLE XIX. SUMMARY OF O-C-D TEST RESULTS ON O-67-9 (Cont'd)

ł

AND REAL PROPERTY IN

1

• 597-5 421-4 415-4 425-4 425-4 440-4 -423-4 Test no. ; . • Test time to 4 mg KOH/g, hr ł 46 33 35 35 35 ۰ Neutralization number data 1 Neut. no. at BP, mg KOH/g ł i 2.25 2.34 2.34 2.00 2.00 3.10 3.75 3.69-BP, hr 33 25 55 23 14 ī 100°F vis BP, hr Deposif rating Revised | Light meter 1 211111 ł (a) Defined is a weight change of \cdot 0.20 mg/cm² or more. A weight increase is indicated by a " \cdot " sign . ; 1.12.182.1 ł Sludge. Trace Trace Trace None 0.2 Trace End of test results Metal(a) Slud attack vol None Mg. Cu Mg. Bz None Mg. Bz Mg. Fe+. S.S. 4 1 Neut. no.. mg KOH/g 13.72 18.88 25.2 23.2 4.30 18.26 13.60 100°F vis change, ت . 25 212 212 212 212 10 0 0 110 Tmč. hr Dry Wet Wet Wet Wet Fest conditions Air Metal ž <u>ت د د ۵</u> <u>د</u> Temp. 107 110

1

:

0
- Ži
-67
0
õ
TS C
5
RESUL
2
H
TEST
\sim
3
5
-
101:0-0
~
R
2
SUM
S
ĸ
2
÷
B
Ē

E	l csi	.01	430-5	431-5	435-1	436-1	420-5	412-5	424-5	439-5	422-5	532-3	532-4	562-5	562-6	622-1	622-2	635-1	635-2	635-3	635-4	635-5	635-6	1-77-1	490-8	1-16+	197-7	500-3	200-1	500-2	496-7	496-8		672-1	485-2	491-5	468-3	477-2	552-1	552-2	552-3	552-4	552-5
mber data	Test time to	4 mg KOH/g, hr	1	1	176	192	ł	i	I	i	1	81	80	78	11	58	55	55	55	55	55	60	55	19	76	74	70	96	95	76	78	78	95	78	57	57	88	92	1	1	i	i	I
Neutralization number data	Neut. no. at	BP. mg KOH/g	ł	ł	2.76	3.61	ł	1.26	1	I	1	3.37	3.40	3.28	3.31	2.02	2.25	2.07	2.07	2.07	2.07	1.94	2.07	3.42	3.58	2.28	2.05	3.97	4.10	3.81	3.20	3.33	1	3.11	1.88	2.02	!	1	i	1	i	I	1
	RP hr		192+	192+	171	190	1 96	16	96+	6 +	1 96	11	11	75	74	50	49	49	49	49	6†	52	67	68	73	61	64	96	96	75	73	7	96+	74	46	51	9 6+	96	164	244	40.	-18+	64 8
1000	RP hr		192+	192+	178	1924	96+	64	9 6+	96+	96+	84 84	83	18	78	56	52	\$	\$5	ş	53	58	54	76	18	71	66	96 F	96+	85	80	82	96+	<u></u>	53	55	96+	9 6+	164	14+	107	184	1 54
	Denosit rating	Light meter	1	1	ł	1	!	1	1	1	i	و	7	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	11	01	ę	7	8	Ŧ	7	25	=	=	7	و	61	7	9	ł	2	s.	2	Ξ	2	÷	÷	2	1	2
	ő	Revised	15	(1	13	•	!	6	I	8	1	7	7	9	e	i	1	i	!	1	!	I	1	•	5	6	×	e S	~	m	~1	-	17	:	~	16	×	~~	×	~	7	1	~
results	Sludge.	2 lov	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Trace	None	None	None	None	None	None	None	None	None	None	None	None	None	None	line	العدو	J race	Jrace	וזיי
Lnd of test results	Mctul(1)	attack	None	None	None	None	None	None	None	None	None	1	1	ļ	1	1	ł	1	i	i	1	i	!	Mg. Cu	Mr	Mg, Cu	M£, Cu	None	None	Mr	Mg. B7	Nr.	None	Ar.	Nr.	٨r	None	None	None	Nerne	None	None	None
	Neut. no	mg KOH/g	1.14	2.43	11.52	4.02	2.78	3.14	2.10	2.58	2 65	10,49	10.55	10.93	11.03	12.10	12.95	11.81	12.03	11 78	11.71	11.44	66.11	12 72	9 34	12.36	12.17	10.4	=	7.97	9.41	11-6	4.08	18.6	11.03	9.80	4 35	4 46	0 67	96 0	1 48	1 73	2.24
	100°F VIA	~, ozurto	16	1	58	Ŷ	2		<u> </u>	13	1	1 1	46	46	50	96	112	103	111	105	110	88	105	65	65	71	82	81	18	5	ą	38	8	46	78	65	61	61	x	6		2	ż
Ì	Time,	ž	192	192	192	192	96	96	96	96	96	96	96	9,6	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96 96	96	96	96	96	96	96	16	2	Ę	48	I
ditions	λ		Dry	Wet	Dry:	Wet	Wer	Ury	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Div	Dry	Dry	Dry	Dry	Dr.	Wet	Wet	Dry	Dry	Wet	Wet	Wet	Wet	N.C.	Wet	Net	Dry	Dry	Wet	Wet	Wet	Wel	Wet	Wet	net
Test conditions	Metal	¥.	J	۵	:	۵	<u>ل</u>	-	۵	-	Η	<	<	2	æ	m	×	æ	8	æ	æ	æ	m	ú	U.	-	Ċ	a	_		-	مند			-		3	ა		-	-	-	-
-	Temp.	,	374	374	383	383	392		(-	192	101		۹																												-	107

Tar		чо,	552-6	552-7	552-8	536-7	536-8	603-1	603-2	603-3	603-4	603-5	603-6	603-7	603-8	581-3	581-4	528-1	528-2	528-3	528-4	528-5	528-6	524-1	524-2	529-1	529-2	5-670	529-4	529-5	1-090	202-2	202-2	565-4	565-5	565-6	S66-1	566-2	566-3	566-4	566-5	566-6	
mber data	Test time to	4 mg KOH/g, hr	I	78	12	80	82	i	i	I	!	i	1	72	17	79	7.8	1	1	1	48	48	47	46	1 6	20	49	10	49	48	i	1	1	9 ⁷	49	53	46	52	53	50	51	50	
Neutralization number data	Neut. no. at	BP, mg KOH/g	2.97	2.90	2.90	2.67	2.69	!	1	i	I	I	2.10	2.24	2.42	2.40	2.35	i	i	I	2.61	2.60	2.65	2.70	2.77	3.23	2.88	2.98	2.88	2.72	I	1	7.71	2.72	3.15	315	7 80	9 I 0 8	2.97	3.06	22	2 85	
	00 1	вг, ш	72	73	73	75	75	16+	24+	40+	48+	64+	67	65	69	71	71	16+	24+	40+	7	4	7	7	7	46	.	Ŷ	÷	÷.	16+	÷.	5	7	45	67	4	17	\$ 7	57	17	7	
1000 Lone		151°, AF	72+	77	76	80	86	164	24+	+0+	48+	64+	72	67	73	73	76	16+	241	40+	48	48	47	4 7	4	20	\$ 7	5	46	41	191	7	÷	ž	ž	53	2	58	51	55	\$3	S	
	Deposit rating	Light meter	17	×	œ	~	6	ę	×	12	15	8	9	2	2	9	10	s	6	6	0	× I	6	2	15	×	<u>б</u>	£.	9	6	د د	× ·	5	2	12	7	œ	15	2	12		÷	
	Depov	Revised	16	6	∞	-	2	I	i	I	1	I	ì	i	i	16	16	7	Q	2	2	13	20	13	18	13	= '	6	<u></u>	12		च ?	9	17	91	61	و	Ξ	×		×	s	
results	Sludge.	to lov	Trace	Trace	Trace	None	None	Trace	Trace	Trace	Trace	Trace	Trace	None	None	None	Nonc	Nonc	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	
End of text results	Mctal(J)	attack	None	None	Mg	Mg	None	None	None	None	Nonc	None	None	Mg	Mg	Mg	None	1	1	;	ł	1	1	I	1	!	1	!	1	1	ł	ł	ł	!	ł	1	ł	1	ł	ł	ł	I	
	Neut no	ing KOH/g	2.97	7 69	10.12	16.9	8.33	0.66	0.21	131	1.41	1.98	3.17	9.11	10.27	9.54	10.75	1.16	1.68	2.55	4.06	8.70	10.25	10.37	19.20	10.02	10.18	9 86	9.94	9.97	57	1.64	2.95	4.60	9 59	10.24	= =	69.6	10.74	10.53	9 56	36 OI	
	100.1 \	change, "	17	37	60	4	38	x	с С	=	12	15	20	51	61	58	67	6	10	13	17	17	57	57	55	52	56	53	55	\$¢	×	2	5	17	4	15	55	ş	46	52	4	56	
	Inne	ĥ	72	8 8	96	96	96	96	÷.	ę	1 8	5	22	88	96	96	96	9	7.	40	48	64	22	22	5	5	21	22	2	22	9	7. 5	Q7	48	z	52	72	72	72	72	2	22	-
dition		۶.	Wei	Wet	Wet	Wet	Wet	Ω,	D-y	Dry	Dry	Dry	Dry	Dry	D3	ς. Σ	Dry	Wet	Wet	Wei	Wet	Wel	Vet	Net	Wet	Wet	Wei	Wei	Nei	Wet	Wei	Net	Wei	W.ct	Wet	Wct	Wet	Wet	Wet	Wet	Wet	Wet	-
Test conditions	Netal	¥		_				-				-				-	-	<	<	<	<	<	<	~	<	*	<	A	4	<	22) 	m :	~	~	æ	~	*	*	æ	æ	s	# 	
	I cmp.	-	101				<u></u>										401	410		į																				;	~	310	

TABLE XX. SUMMARY OF O-C-D TEST RESULTS ON O-67-20 (Cont'd)

TABLE XX. SUMMARY OF O-C-D TEST RESULTS ON O-67-20 (Cont'd)

area and an and a state of the cases.

and a start of the second second second second second

And Andrews

	Test conditions	titions				End of test results	t results					Neutralization number data	nber data	
F	1.1.1		Time	100°E uic	Neur no	(E) (3) (3)	Shidoe	10000	it rating	100°F vis	1	Neut no at	Tast time to	Test
	set	Au	hr hr	change, %	mg KOH/g	attack	vol %	Revised	ised Light meter	BP. hr	BP, hr	BP, mg KOH/g	4 mg KOH/g, hr	no.
410		Wet	22	٤y	11.33	i	None	2	6	48	42	2.66	47	566-7
-	د	No.	96	96	7 78	Me Cu	None	i	1	52	90	3.70	62	421-5
-	, c	N.	8	051	14.48	D and	None	24	I	5	8 0	2.21	47	415-5
	, c	Wer	8	56	17,44	Ma Br	None	; 1	I	53	57	3.03	62	425-5
	1 22	Wet	¢,	2	3.47	None	None	*1	1	49+	48	3.07	1	443-3
_	. :-	Wei	96		61.11	٩W	None	c	I	23	46	3.12	S4	440-5
	÷	Wer	96	35	10.62	e N	Trace		I	3	52	3.68	55	473-1
	. (L	Wet	8	. 72	10.54	a a	Trace	, -	i	; 09	51	3.76	53	473-2
	. ::.	Wet	96	69	10.41	Me	Trace	6	1	58	SI	3.55	54	473-3
	. ii.	Wei	96	74	10.88	Me	Trace	01	1	58	50	3.55	52	473-4
	<u>د</u>	Wet	96	78	10.77	Me	None	16	17	56	49	3.26	54	481-1
	- 124	Wet	96	72	10.37	Me	None	11	12	56	51	3.30	54	481-2
		Wei	96	69	10.74	Mg	None	6	12	55	48	3.15	54	481-3
	11	Wet	96	70	10.02	Mg	None	4	6	56	49	3.29	52	4814
	с U	Wct	96	19	10.66	None	None	Π	13	64	54	3.44	57	478-1
	- 0	Wet	96	96	10.57	None	None	1	2	51	48	2 94	53	643-1
	- 0	Wet	96	011	11.24	None	None	ł	10	52	46	3.00	54	643-2
10		Wet	36	67	8 43	Mp	None	ļ	I	60	47	2.73	58	423-5
419	. •	Wet	96	167	11.30	- -	None	12	101	30	23	2.13	32	520-3
}	: <		2	571	35 11		None	1 2	51	9	Ň	2.09	3	520-4
4-	< 11	1	2 2	i c	515	None	None	22	2	184	3 X	00.0	3 1	445.2
			3 6	4 -		None	None	2 2				2.78	35	445-1
		Met.	21	3	07.01	a :	None	2 :	1 2	÷;	9 2	0 00 0		1-023
	<u>.</u>	Wct	72	75	9.72	М	Trace	1	16	5	97	7.00	5 :	1-600
	<u>:-</u>	Wel	2	93	9.20	Mg	Trace	4	7	27	25	2.23	32	559-2
•	υ	Wei	96	129	10.99	Ag	Trace	Ś	ł	33	26	2.40	34	475-3
419	υ	Wet	96	146	11.79	None	None	27	30	37	26	2.64	33	479-1
	ł		,											
											_			
1.1 1206		, thurso	(A Defined is a wombt of an of a 0.00		mede m at mate. A	weicht mere	e ive iv indi	A weight indicate is indicated by a "+" sign	+ " sten					
		a mana							۱. ۲.					
]

5
N O-68
No
SL
RESUI
OF O-C-D TEST RESULTS ON
, Ci-D
0:10
SUMMARY
TABLE NNI.

A STATISTICS AND A STATISTICS

12 - 24 HILL AND A

A Cash and the

A SALE OF COMPANY AND A

Sarah Bar

Tare	No.		453-6	453-5	453-4	526-1	526-2	538-1	538-2	538-3	538-4	538-5	538-6	562-7	562-8	576-1	576-2	576-3	576-4	576-5	576-6	622-3	622-4	492-1	455-4	457-4	488-5	455-3	494-3	497-1	497-2	508-7	508-8	512-1	55	512-3	512-4	477-3	672-2	485-3	9-161	7897	477-4
		_	45	45	45	52	52	53	53	53	53	53	53	56	56	57	57	57	57	57	53	62	62	49	45	45	48	45	49	49	6	50	50	S	IS I	51	ls	-	[63	3 7	57	7	÷7
mber data	Test time to	4 mg NUH/g, nr	62	59	58	48	48	50	50	50	50	50	50	46	46	47	47	47	47	47	47	44	43	43	44	53	50		35	44	77	48	48	46	46	48	47	3 6	47	36	35	107	×.
Neutralization number data	Neut. no. at	BF. mg NUH/g	I	I	i	6.65	6.70	i	6.74	i	6.58	1	ł	7.27	1	7.32	i	!	1	!	1	3.33	3.33	5.08	5.95	3.34	3.41	7.48	I	7.28	7.20	6 70	6 85	6.05	6 9	6 06	6.03	!	ł	2.26	1 95	1	•
	BP, hr		96+	96+	96+	93	7	96+	96	96+	96	96+	96+	93	1 96+	96	64	96+	6 4	+96	96+	40	40	57	62	6†	47	93	+96		84	2	82	73	12	73	52	96+	96+	5	12	964	96+
100° b. u.e	BP. hr		+96	964	96+	96+	96+	96+	96+	+96	96+	96+	96+	+96	96+	96+	96+	+96	+96	96+	+96	53	S4	67	68	54	53	96+	96+	92	64	06	90	86	79	79	8	96+	96+		ą	961	496
	Deposit tating	Light meter	1	:	1	~1	ŝ	~	~	~		ŝ	e	4	77	m	s	S	4	ग	s	4	ŝ	9	1	1	œ	0	s	77	s	ŝ	শ	4	s	7	v,	~	٣,	~	~	-	77
	Depo	Kevived	~	~	w	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	!	!	7	9		=	6	•	•	-	0	0	0	0	ວ	•	0	1	•	•	-	-
t results	Sludge.	2.101	Trace	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	ż	None	None	None	0.2	None	Trace	None	None	None	None	None	None	None	None	None	None	None	Trace	None	None	None	None	None
End of test results	(r)(r)	ALLICK	None	None	None	!	!	ł	1	!	!	1	1	!	ł	1	ł	!	1	1	1	i	ł	Mg	Mg	None	None	None	None	Mg. Ag	Mg. Ag	None	None	None	None	Mg	None	ME	AF:	Mr	Mr. Ar	None	Λr
	Neut. no.	mg NUH/g	6.33	6.22	6.13	7.09	696	6.56	6.74	6.67	6.58	159	6.65	7 86	747	7 32	7 12	7 06	7.22	7.21	7 12	15.09	14.17	17.49	18.48	14.56	21.2	8.10	7.51	13 33	11.87	14.16	13 32	14.93	15 54	17.17	16.10	8.29	696	16.04	15 65	817	793
	100° I VIS	<	61	61	19	\$¢	26	26	ž	36	S	52	5	87	27	8	53	26	27	26	28	72	67	50	76	47	106	29	27	34	ñ	38	36	45	52	55	51	30	53	82	83	5	58
	Fune.	×	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	56	96	96	96	96	96	88	96	72	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96
litions	Au		Wet	Wet	Wet	Wet	Wet	Wei	Wer	Wet	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wer	Net	Wet	Dry	Dry	Wet	Vet	Dry	Dry	Wet	Wet	Wct	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wet	ίΩ	Dry	Wer	Wet
lest conditions	Metal	ÿ	Ċ	a	<u>ن</u>	<	A	<	<	~	Ā	V	ĸ	В	в	æ	8	8	в	в	B	æ	8	Ċ	J	J		۵	a	<u>ب</u> ت		<u> </u>				<u>بد</u>		μ.	í			U	U
	1 cmp.	-	392		262	101	-	« ~					_																													-	401

Tau	19. 10.	537-1	537-2	553-1	553-2	553-3	553-4	553-5	553-6	581-5	581-6	615-1	615-2	615-3	615-4	615-5	615-6	524-3	524-4	543-1	543-2	543-3	543-4	543-5	543-6	4584	459-2	458-5	458-6	473-5	473-6	473-7	473-8	478-3	481-5	481-6	481-7	481-8	502-3	478-2	2005	10.0
	Test time to 4 mg KOH/g, hr			51				54 5											30		30 5			30		32											26					
Neutralization number data	Neut no. at BP, mg KOH/g 41		5. 25	5.51	5.42	6.01	5.54	6.80	5.48	3.12	3.10	3.30	3.63	3.31	3.10	3.08	3.00	•	ł	1	!	i	-	1	1	3.65	2.00	8.14	د 05 1	7.50	7.12	8.13	7.25	6.71	7.25	7.57	7.40	7 0.2	8 48	9.06		;
~	BP, hr	36	76	12	20	79	72	89	72	42	41	43	47	43	Ŧ	41	40	<16 <16	:16	<16	<16	<16	<16	<16	<16	30	61	64	61	60	54	65	57	49	58	65	60	59	11	73	0	××
100 1. 01	RP, hr	*	86	80	76	90	8.4	+96	88	49	48	54	59	55	52	52	67	76	75	69	20	68	74	71	69	7	28	17	76	69	99	73	68	66	67	70	71	74	72+	16	36	2
	Deposit rating ised Light meter	~	~		-7	~	S	s	4	s	s	~	ŝ	~1	~ ·	m	m -	9	Ś	4	ŝ	m	4	m	7	•	!	:	ł	1	;	1	:	0	×	×	6	 9	~	~	0	;
	Deposi Revised	0	e		•	-	•	0	0	0	c	!	!	!	!	!	!	0	•	0	0	0	0	0	0	6	0	- 17		0	-	•	0	ग	ę	m	ŝ	_	0	0		
test results	Sludge.	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Trace	None	None	None	Trace	Trace	Trace	Trace	None	None	None	None	None	None	None	None	
I nd of test	Victal ⁽²⁾	None	None	None	Me	None	None	None	None	None	None	None	None	None	None	None	None	1	!	1	!	!	!	1	!	Mg	None	MF	MF	Mg. Ag	Mg. Ag	Mg. Ag	Mg. Ag	Mg	Mg. Ak	Mg. Ag	Mg. Ag	Чr.	, av	Ŷ,		
	Veut no ing KOH/g	13.28	1375	14.54	15 22	13 11	1394	8 31	1343	15.20	14.99	14.26	13.47	14.76	15.27	14 37	15 42	11-50	11.88	11.29	11.33	11 71	11 66	10 78	11.11	18 07	13.94	00 +1	14.68	15.47	15 79	14.02	15 40	14 79	15.49	15 35	14.60	14.05	8 62	11.66	12.4.4	
	officer of the second second	2	17	50	53	Ŧ	7	26	14	54	56	46	39	20	53	50	S7	28	58	63	61	64	3	54	60	61	52	9	19	11	11	3	73	65	11	5	64	64	31	<u>50</u>	100	
	Func. hr	% %	96	96	96	96	96	96	96	22	22	22	72	2	2	2	22	96	96	96	96	96	96	96	96	72	48	6	96	ş,	96	96	96	96	96	96	96	96	72	96	96	27
ditions	Air	Wet	We1	Wet	Wet	We [.]	Wet	Wet	Wei	Dry	ŝ	Dry	Dry	Dry	Dr)	Dry	â	W.ci	n ci	Wet	Dry	Wet	Wet	Wet	Wet	WCI	Wet	Net	Wet	Wet	Wet	Wet	Wet	Wet	West							
lest conditions	Victal	-		-	-	-	-	-	-		-	-	-			-		<	<	<	<	<	4	~	<	J		<u> </u>		_			-	-	-			-	9	U	~	<
-	l emp. I	- Ę	-	•													Ę	0	-																			1	-	110	110	- >

TABLI VNI. SUMMARY OF O-C-D TEST RI SULTS ON O-68-7 (Cont'd)

Test no.	4 498-3 4 75-4 4 75-4 4 75-4 4 99-3 4 99-3 4 99-3 4 99-3	
		4
Test time to	88788120	
Neutralization number data Neut. no. at Test ti	2 ,	
BP, hr	\mathfrak{G} \mathfrak{G} \mathfrak{G} \mathfrak{G} \mathfrak{G} \mathfrak{G} \mathfrak{G}	
100°F vis BP, hr	8 8 7 7 7 8 9 6 8 7 7 7 8 9 7 9	
Deposit rating	5 9 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2	• งเนิน.
Depo	22-0-22	uted by a '
t results Sludge,	None Trace None None None None	ipui vi avr.
End of test results Metal(a) Sludge	Mg Mg Ag Nonc Nonc Nonc	weight incre
Neut. No.,	10.96 13.98 13.46 13.46 12.91 15.83 15.83	(a) Defined as a weight charge of +0.20 mg/cm² or more. A weight increase is indicated by a '+" sign.
100°F vis	90 89 97 92 161	•0.20 mg/cm
Tume.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Jo aduri
Air	Wet Wet Wet Wet Wet	eight ef
Test conditions Metal Air		n r sr pa
Temp.	419 419 428 428	(1) Defir

TABLE XXI SUMMARY OF O-C-D TEST RESULTS ON O-68-7 (Cont'd)

いたたいにないというないないないない。ないでい

ABLE XXII. SUMMARY OF O-C-D TEST RESULTS ON O-68-17	
÷	

	lest no.	430-3	431-3	436-2	420-6	412-6	424-6	450-1	450-2	450-3	450-4	450-5	450-6	450-7	450-8	442-4	439-6	452-1	452-2	452-3	452-4	452-5	452-6	452-7	452-8	462-I	462-2	462-3	462-4	462-5	462-6	462-7	462-8	461-1	422-6	672-3	672-4	672-5	672-6	622-5	622-6	632-1
mber data	Test time to 4 mg KOH/g, hr	70	74	I	27	33	42	I	1	I	40	40	40	40	40	37	36	43	45	45	44	43	42	38	41	72	78	69	70	20	68	70	70	41	32	46	46	46	46	52	51	56
Neutralization number data	Neut. no. at BP. mg KOH/g	2.05	I	8.94	3.10	2.23	8.40	1	I	1	1	i	5.46	5.74	7.36	1	7.11	!	t	5.81	ł	ł	5.50	8.75	i	2.94	3.60	3.10	3.25	3.05	3.14	3.11	2.93	i	6.90	I	1	I	i	3.35	3.65	3.35
	BP, hr	64	9 6+	151	22	26	88	16+	24+	40+	48+	64+	58	65	82	81+	81	+96	1 96	74	+96	96+	65	94	496	66	75	65	66	99	65	65	66	1 96	72	96+	1 96	1 96	+96	49	49	53
1000 C	BP, hr	65	+96	157	42	41	96+	16+	24+	40+	48+	64+	67	67	88+	81+	96+	96+	96+	17	+96	96+	74	+96	+96	+96	+96	+96	+96	96+	96+	96+	96+	+96	89	+96	+96	+96	+ 96	+96	96+	+96
	Deposit rating ised Light meter	1	ł	1	1	ł	I	1	1	i	1	I	!	1	1	1	1	;	1	1	1	1	1	1	1	I	i	1	i	1	t	ł	i	!	1	∞	∞	•7	4	7	8	4
	Depos Revised	m	-	б	i	34	I	0	0	0	0	0	0	0	0	0	0	0	0	e	0	0	9	0	0	6	0	0	0	0	0		-	0	ł	i	ł	1	ł	1	i	1
t results	Sludge. vol 7	None	None	Trace	Nene	Trace	None	None	None	None	Nonc	None	Trace	Trace	Trace	None	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	None	None	None	None	None	Nonc	None	None	None	Trace	None	None	None	None	None	None	None	None
End of test results	Metal ⁽⁴⁾ attack	Mg. Cu	None	Mg	Mg, Cu	Mg. Cu	Mg	None	None	None	None	None	Ыg	Мg	Mg	Mg	Mg	None	Mg	Mg	Mg	None	Mg	None	None	None	None	None	None	None	None	None	None	None	Mg	•	!	!	1	1	!	1
	Neut. no mg KOH/g	25.4	5.00	44.0	29.7	43.9	16.42	2.13	2.87	3.99	4.40	5.58	17.25	20.3	8.18	6.84	8.20	7.34	7.27	25.6	7.47	7.50	28.5	8.95	8.15	9.34	9.70	12.53	12.56	10.16	11.69	9.19	10.48	7.55	20.2	7.40	7.39	7.15	7.34	17.72	17.87	12.00
	100°F vis change, 7	57	4	75	54	286	9	1	~	Э	ю	6	18	26	s	4	6	4	च	37	S	s	80	s	Ś	10	10	15	14	Ξ	13	10	11	S	22	s	s	S	s	24	24	15
	Time, hr	96	96	192	12	96	96	16	5	9	48	64	5	81	88	81	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96
ditions	Air	Dry	Wet	Wet	Wet	Dry	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wet	Wct	Wet	Wct	Wet	Wct	Wet	Wct	Wet	Wet	Wet	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet	Wel	Wet	Wet	Dry	Dry	Dry
Test conditions	Metal set	.ပ	۵	۵	ი	ပ	۵	<u>ند</u>	<u>.</u>	<u>ند</u>	u.	ш.	<u>ند</u>	ir.	μ.	نت	Ľ.,	<u>ن</u> ـ	<u>ن</u> .	٤.,	<u>د</u>	L .,	<u>ــــ</u>	<u>ب</u>	(ت	Ľ.	نئ	<u>ن</u>	ند	í.	í . .		÷	ი	H	×	<	a	æ	æ	æ	a
	Temp. °F	374	374	383	392		•												_											_				-	392	401	-	ł			-	101

ŝ

ł

TABLE XXII SUMMARY OF O-C-D TEST RESULTS ON O-68-17 (Cont'd)

ł

•

T

494-5 497-3 510-1 510-2 510-5 510-5 510-5 510-5 510-5 510-6 511-8 5110-8 511-8 632-2 632-3 632-3 632-5 632-5 632-5 632-6 492-3 492-3 488-6 488-7 493:2 491-7 480-1 480-1 480-2 480-2 480-5 480-5 480-5 486-6 496-6 495-7 555-35 494-4 Test no. Test time to 4 mg KOH/g, hr i Neutralization number data Neut. no. at BP, mg KOH/g 3.31 3.33 3.33 3.31 3.10 3.10 8.26 6.12 111ភ្នីភ្នី 1111 ÷۲ $\begin{smallmatrix} & 5 \\ &$ BP. 100°F vis BP, hr 10 16 14 15 15 9 Deposit rating Revised | Light m 30 12 11111042508---200053 0 Sludge, vol 7 Nore Nore None None None End of test results Metal⁽³⁾ attack \mathbf{I} Neut. no.. mg KOH/g 14.99 15.42 16.17 14.38 27.0-20.9 20.1 49.0 100° I: vis change, % Time. hr Fest conditions Au Wet Vet Vet Vct Vet Wei Wei Wei Wei ; Metal Temp. <u>4</u>0 40

ŧ	l est no.	T	555-6	537-3	537-4	554-1	554-2	554-3	554-4	554-5	595-5	595-6	608-1	608-2	608-3	608-4	608-5	608-6	608-7	608-8	581-7	581-8	583-1	583-2	606-1	606-2	606-3	6064	606-5	S24-5	524-6	565-7	565-8	421-6	415 5	425-6	443-4	440-6	423-6	531-1	531-2	531-3	531-4
nber data	Test time to 4 mg KOH/g hr		45	42	42	44	44	44	44	45	42	42	1	1	I	I	53	55	53	55	49	48	47	45	53	53	53	56	56	34	35	35	35	15	81	26	25	21	23	i	1	25	16
Neutralization number data	Ncut. no. at BP_me_KOH/o	9/11/2 9 11 1 11	4.36	4.59	4.59	4.45	4.45	4.45	4.45	4.47	4.40	4.40	1	I	I	I	3.66	3.34	3.50	3.46	3.26	3.20	3.15	3.20	3.20	3.20	3.21	3.35	3.35	8.06	8.25	6.66	6.52	0.63	0.85	6.05	4.93	5.17	6.26	ł	ł	1	7.20
	BP, hr		48	49	49	67	48	48	49	50	46	46	16+	24+	40+	48+	51	51	50	S 2	45	44	43	42	50	50	49	S 2	52	82	82	6 6	64	4	6	47	32	32	47	16+	24+	40+	47
	BP, hr		57	53	56	<u> 59</u>	52	S2	59	59	55	55	16+	24+	40+	48+	64+	72+	75	90	72+	72+	65	6 6	90	73	76	9 6+	89	9 6+	+96	+96	9 6+	22	23	49	32+	49	65	16+	24+	40 +	484
	Deposit rating		6	9	7	2	7	11	31	9	28	32	4	4	S	s	9	7	9	~	9	10	7	Ś	S	9	4	∞	s	17	22	18	24	I	I	I	1	1	i	ω	ŝ	7	s
	Depos Revised		s	Ś	S	~	~	ę	18	-	!	1		I	i	1	1	ł	I	i	-	m	•	•	ł	1	1	i	ł	61	20	17	22	!	94	I	c	~	1	0	0	0	
t results	Sludge. vol 7		Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	Trace	(1)	None	None	None	None	None	None	None	None	None	None	None	None	None	None	0.2	60.0	Trace	Nonc	Trace	Trace	None	None	None	None							
End of test results	Metal(a) attack		Mg	Mg	Mg	Мε	Mg	Mg	Mg	Mg	Mg	Mg	None	None	None	None	None	ЯК	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	1	!	i	ł	Cu, Mg	Cu, Mg	Mg	None	Mg	Mg	i	1	ł	!
	Neut. no me KOH/e	3	21.6	22.5	21.8	21.4	24.1	22.2	19.34	21.5	33.8	36.2	1.64	2.21	2.87	3.23	96.6	12.08	25.2	21.1	13.96	13.06	37.3	37.2	23.1	29.8	29.3	16.81	22.7	10.32	10.34	10.20	16.24	20.1	38.7	35.2	4.93	28.6	33.8	2.96	3.97	S 72	7.35
	100°F vis change. %	0	30	33	32	28	37	34	25	29	175	448	-	0	~	••	6	13	43	28	16	14	108	67	32	63	57	20	33	6	6	8	18	131	2440	178	4	65	73	-	c 1	ę	9
	Time, hr		72	22	22	22	2	72	5	5	96	96	16	2	9	48	64	2	88	96	72	72	96	96	96	96	96	96	96	96	96	96	96	48	72	96	32	2	96	91	57	1 0	\$ 7
ditions	Air		Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	۵	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet	Wet	Wet	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wei
Test conditions	Metal		-				-	-	-	-	-	-		-	-			-	-	-	-	-	-	-	-	-	-	-	-	۲.	<	8	B	ს —	U —	۵	<u></u>	÷	Ξ	×	<	<	<
	Temp. °I:		401	-				,																				-	401	4]0 4	-							-	410	419		-	419

TABLE XXII. SUMMARY OF O-C-D TEST RESULTS ON O-68-17 (Cont'd)

	Test conditions	ditions				End of test results	t results			100°E vie		Neutralization number data	pper data	Teet
Temp.	Metal	Air	Tume, hr	100°F vis change, %	Neut. no mg KOH/g	Metal ^(a) attack	Sludge. vol ¾	Depo	Deposit rating ised Light meter	BP, hr	BP, hr	Neut. no. at BP, mg KOH/g	Test time to 4 mg KOH/g, hr	no.
419		Wet	64	2	9.17	1	Trace	4	13	64+	45	6.47	24	531-5
_	•	Wet	72	6	9,98	i	Trace	18	18	72+	40	5.65	24	531-6
	A	Wet	88	=	12.19	i	Trace	30	28	88+	52	6.87	26	531-7
	A	Wet	96	26	20.4	ļ	Trace	38	40	-96	40	5.54	25	531-8
	×	Wet	96	14	13.77	1	None	29	28	96+	42	5.70	27	541-1
	A	Wet	96	:5	13.97	i	None	21	22	+96	42	5.70	27	541-2
· · · ·	×	Wet	96	13	13.11	1	None	26	27	+96	47	6.05	27	541-3
	×	Wet	96	24	18.44	1	None	26	30	+96	48	6.15	26	5414
	<	Wet	96	13	12.86	1	None	29	31	96+	44	5.70	28	541-5
	V	Wet	96	7	14.22	i	Nonc	33	31	+96	44	6.18	23	520-7
	V	Wet	96	4	13.64	1	None	21	25	96+	47	6.05	27	520-8
	B	Wet	16	6	3.39	I	None	•	s	16+	16+	1	I	578-1
	2	Wet	24	7	4.11	1	None	-	s	24+	24+	ł	23	578-2
		Wet	40	~	5.48	1	None	6	9	40+	40+	1	25	578-3
	. <i>c</i>	Wet	48	4	6.60	!	None	s	6	48+	44	6.06	24	578-4
	. c	Wet	77	2	12.00	ļ	None	2	12	64+	40	5.56	22	578-5
	<u>م</u>	Wer	33	: =	1519	I	Trace	17	61	72+	33	4.85	25	578-6
	<u>م</u> د	11/20	; ;	2 2	18 87	1	Trace	; 2	34	88+	: :::	4.88	24	578-7
	a a	MCI N/	8 8	ţ ;	10.02		Trace	; œ	46	+96	36	4.21	24	578-8
-	a 1	ACI	2	2	č.1.3	1		2			2	10.1		2022
	m	Wet	8	5	21.9	ł	Lace	4 .	8 8 8	+ 05	3 5	4.99	9 2	2022
	æ	Wet	96	45	24.3	1	0.0	5	2	D :	97	4.00	9	0-400
	æ	Wet	96	22	17.98	1	Trace	55	28	496	40	5.48	2	5/1-1
	ŝ	Wct	96	13	13.73	1	Trace	27	26	+96	51	6.57	26	577-2
	В	Wet	96	21	17.64	1	Trace	23	28	+96	40	5.40	26	S77-3
	æ	Wet	96	7	13.70	ļ	Trace	26	28	496	44	5.83	26	577-4
	2 6		2	: :	10.07		Tro 2	11	UF	TYO	40	5 50	26	577-5
	<u>n</u> -	Ň	2	5	16.61	1	JUL 1			102	, ,	2	3 2	\$35 <u>3</u>
-	<	Wet	2	25	20.8	1	Irace	ç	22	+?;	°	1	01	
	A	Wet	2	46	23.6	1	Trace	27	47	63	≈	1	18	5254
<u></u>														
ן ז].													
)efi	r vr pəu	n cigh.	(a) Defined as a weight change of •0 20	if •0 20 mg/cr	mg/cm^2 or more A weight increase is indicated by a "+" sign.	weight inci	ieave is inc	litated by a				:		l
										the second s				

TABLE XXII. SUMMARY OF O-C-D TEST RESULTS ON O-68-17 (Cont'd)

fest condition	ł			I nd of test results	t results			100°E vic		Neutralization number data	nher data	Tret
Au	lime.	100 F viv change. 7	Ncut no., ing KOH/g	Metal ^(a) attack	Sludge, vol 7	Deposi Revised	Deposit rating rsed Light meter	BP, hr	BP, hr	Ncut. no. at BP, mg KOH/g	Test time to 4 mg KOH/g, hr	ou
2		2	1 30	None	None	0	i	96+	1 96	!	1	430-4
à	192	61	1 79	None	Nonc	0	I	192+	192+	1	1	437-1
WC.		=	2 65	None	None	0	1	+96	+96	I	1	4314
We	_	16	4 07	None	None		1	192+	192+	1	192	437-2
ž		54	591	None	None	~1	!	93	89	3.40	93	454-2
Wei		:5	361	None	None	6	1	+96	1 96	ļ	1	454-1
Wei		18	3.95	None	None	0	;	96+	1 96+	1	ł	439-7
Wei		92	11 22	None	None	6	4	58	54	3.60	56	539-1
Wet		16	11.12	ł	None	ñ	9	60	54	3.61	57	539-2
Wei		86	11.22	1	None	61	4	60	55	3.52	57	539-3
Wet	96	82	10.82	1	None	2	s	62	54	3.62	57	539-4
Wei		16	[1,4]	1	None	6	9	65	54	3.53	57	539-5
We:		86	11.35	!	None	~	s	57	53	3.55	56	539-6
le l		20	1053		None			5	:0	3 70	54	519-7
io a		9 9	(())		None	· • •		S 0	; 0	3.54	55	519-8
	R 2		2	1	Marta	- ^	. v	, v	, e	2.25		567.9
No.			8/ II	1	None	1	~ ·	6	<u>,</u>			2.700
Wei	96	86	8/11	i	None			6	2 :	24.6	*0	1-700
Ve		75	11.35	1	None	• •	••	69	3 3	4.10	40 (1-6/0
Wc		68	11.29	ł	None	7	s	74	89	4.48	63	2-61.5
Ve		8	11.82	1	None	~	s	65	65	4.19	63	579-3
We		68	11.18	1	None	0		12	67	4.10	66	579-4
le,		74	11.71	1	None	~	9	63	65	4.19	63	579-5
Wei		94	11 75	1	None	0	4	58	52	3.46	55	579-6
Dry		148	12.03	•	None	1	s	33	25	1.88	34	622-7
, y		155	12.39	1	None	1	9	33	25	1.88	34	622-8
Dr		149	11.50	ł	None	1	s	33	26	1.95	34	633-1
Ĩ		152	11.69	!	None	1	4	33	26	1.95	34	633-2
		151	11.62	ļ	None	ł	S	33	26	1.95	34	633-3
ā	_	158	61.21	1	None	:	•7	33	26	1.95	34	633-4
		151	11.41	1	None	ł	44	31	26	1.95	34	633-5
ìd		146	11.55	ł	None	ł	7	34	26	1.95	35	633-6
, A	_	f	9.24	Me	None	6	ł	54	48	2.75	55	455-6
We		05	1077	Me. Cu	None	01	15	60	52	3.17	57	492-4
Dry		49	8.97	None	None	•	i	54	52	2.22	60	457-5
20		118	12.95	Чr.	None	•	•	52	50	2.21	57	488-8
Ň		20	12.66	We	None	×	!	69	65	3 87	66	455-5
Wet	96	59	12.08	Чe	None	-	v,	77	74	4.15	72	494-6
We		69	11 32	Me. Br	None	•	v.	66	62	3 50	65	497-5
We.		76	10 11	Чс.	None	=		66	61	3.63	64	497-6
Wet		104	13.49	Mg	None	•	-7	60	52	2.88	59	513-1
	-			:								

FABLE XXIII. SUMMARY OF O-C-D TEST RESULTS ON O-69-2

. •

Teer			513-3	513-4	513-5	513-6	532-1	532-2	447-I	472-5	472-6	472-7	472-8	480-6	480-7	480-8	441-2	491-8	485-5	4934	468-5	558-1	558-2	558-3	5584	558-5	558-6	558-7	558-8	537-5	537-6	1-000	7-000		4000	556-5	613-1	613-2	613-3	613-4	613-5	613-6	582-1
nber data		4 mg KOH/g, hr	59	57	58	57	65	68	67	64	64	63	67	62	67	64	59	34	34	70	67	1	I	ł	ł	1	67	60	68	64	9	8	6	8	90	66	1	i	1	48	50	50	56
Neutralization number data	Neut. no. at	BP, mg KOH/g	2.65	2.59	2.59	2.59	3.34	3.38	4.35	5.08	4.78	4.65	4.37	4.50	4.44	4.38	4.70	1.85	1.70	4.77	4.46	ł	!	1	I	3.41	3.41	2.74	2.95	2.75	2.50	5.19	3.00 2.0	5.19	3.05	3.07	ļ	ł	ł	2.02	2.02	2.02	2.25
	RP hr		52	51	51	51	61	65	73	78	74	74	73	74	72	76	76	26	26	81	72	16+	24+	40+	48+	64	64	\$ 4	64	55	<u></u> 23	3	23	5	19	3	16+	24+	40+	ç	7	ç	37
1000	RP hr		61	56	59	58	65	66	76+	82	75	17	71	75	75	19	79	32	31	88+	18	16+	24+	40+	48+	64+	65	60	66	65	G :	66 2	8 :	99	65	99	16+	24+	40+	46	47	47	5
	rating	Light meter	s	s.	4	s	**	4	1	2	8	s	s	s	9	s	I	s	5	وي	∞	4	4	s		9	9	s		न	ন ,	۔۔۔ ہ ہ	~ ·	4	4	4	~ ~	-7 ·			•7	s	y
	12	Revised	c	0	0	0	0	0	-	4	4	7	m	1	6	0	2		1	ŝ	s	0	0	6	0	-	64	-	-	0	• •	~ ` `	- (•	0	0	i	ļ	ł	:	:	:	•
results	Sludge.	vol ؟	None	None	Noile	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Trace	Trace	None	None	None	None	None	None	None	None	Nonc	None	None	None	None	None
End of test results	Metal(a)	attack	Mg	Mg	Mg	Mg	Mg. Ag	ME, Ag	None	None	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	Mg	None	None	None	None	None	None	None	None	Mg	Mg	Mg	N.	Mr.	ang Si Si	Яß	Mg	Mg	None	None	None	None	Nonc	None	None
	Neut. no	mg KOH/g	13.15	13.91	13.65	13.60	13.16	12.62	5.61	00.11	11.41	11.39	12.87	12.16	68.11	11.67	11.17	10.20	10.13	5.84	10.51	0.94	1.45	2.04	2.36	3.41	7.39	11.00	11.95	12.11	12.56	11.62	00.11	11.63	16.11	11.15	1 07	1.39	2.01	4.13	8 70	10.22	10.08
	100°F vis	change. 7	105	120	114	141	94	16	50	S 3	90	59	67	64	63	61	53	129	113	26	53	∞	6	12	12	17	32	69	72	87	64	***	80 80	ŝ	06	85	œ	2	2	20	4	5	05
	Time,	ų	96	96	96	96	96	96	76	96	96	96	96	96	96	96	96	96	96	%	96	91	5	40	4 8	5	72	88	96	96	96	96	\$	96 2	96	96	91	54	-F	48	64	72	;
ditions	Air		Wet	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wct	Wet	Wct	Wet	Wet	Wet	Wet	Vet	Wet	Dry	Dry	Dry	Dry	Dry	Dry	
Test conditions	Metal	sct			<u>بد</u>	<u></u>		۔ ب	<u>ب</u>	منہ	<u>ند</u>	÷	<u>.</u>	-i	<u></u>	<u>ب</u>	<u>ند</u>	<u>ند</u>	<u></u>	υ	o		_	-	-	-	-	-	-	-	-	-			-	-		-		-		-	-
	I emp.	÷	IOr	-	ŧ																											_							_			-	UUF

TABLE XXIII. SUMMARY OF O-C-D TEST RESULTS ON O-69-2 (Cont'd)

1

ないたちになると

Stranger Strate

TABLE XXIII. SUMMARY OF G-C-D TEST RESULTS ON 0-69-2 (Cont'd)

and the active Kore in the bar

13

																											,	 	!			+	1
Test no.		582-2	610-1	610-2	610-3	610-4	610.5		426-1	438-I	438-2	443-5	440-7	I			•			1				I			1	 	_				
Test time to	4 mg NOH/g, nr	56	50	50	51	15	40		- 41.	31	34	ŋ	32	ı		,		-	;		:						ı	1	ı		I	•	
Neutralization number data Neut, no. at Test ti DD mor VOU/2 4 mor VO	br, mg NUH/g	2,31	. 2.17	2.17	2 17	212	212	11.7	s.0.5	1.26	2.75	3.00	2.88			•	¥				1			,	,		1	3				ļ	
BP, hr		48	44	44	44	44	44	;;;	36	16	26	24	27						•		1			I					•				
100°F vis BP, hr		52	46	45	48	48		÷	4	27	37	27+	34								,							•	_	1			
Deposit rating	Lignt meter	6	-	80	ŝ		5 U	°	!	1	ł	!	ł	•				1			•		1		,		1	 £ 4	•	1			- : sten
Depos		0	1	1	1	ļ		1	01	∞	6	c	~			÷									•								A weight increase is indicated by a "+" seen
Sludge,	9% IOA	None	None	None	None	Non	None	anon	None	None	None	None	None		i																		ave is indu
End of test results Metal ^(a) Shudge	attack	None	Mg	Mg	Me	None	None	21ION	None	Mg	Mg	None	Mg						•				1		1		•		,	-	1	- 1	weight incre
Neut. no.,	mg NUH/g	10.08	10.04	10.47	9.87	0.70	0.80	00.2	6.94	11.56	12.92	3.90	11.08				•	•	;						•		I						
100°F vis	change. *	60	66	65	61	: 5	55	5.6	3	95	89	12	76					ł				ł											tai Defined as a weight change of +0.20 my/cm² or more
Time.	7	72	72	5	72	1	; ;	2 9		72	72	27	72															 1			ł		banee of
ditions Air		Dry	Dry	Dry	Drv		32	, Y	Wet	Dry	Wet	Wet	Wet											•				 •					u cicht c
Test conditions Metal Air	ž		-			-	• ••	- (5	د	۵	(1	<u>ند</u>																				ned as a
Temp.	-	401					401		-10 +	-)=		410				;									1							(a) Defin

1

TABLE XXIV. SUMMARY OF THERMAL STABILITY TEST RESULTS ON 0-67-7

•

1

Station and a state

Ň

1

;

;

ŧ

J

1

1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weth. Tool. Metallor Studge. Depositiating. BP-In PP. In Return on all Properties. 0.77 Nig. Trace - 4 41 - - - - 0.77 Nig. Trace - 4 41 - - - - - 0.77 Nig. Trace - 4 42 - - - - - 0.73 Nig. Trace - 4 41 - - - - - - 0.73 Nig. Trace - 4 42 64+ - - - 65112 0.74 Nig. Trace - 4 45 64+ - - 65124 7.46 - Nig. Trace - 4 96+ 96+ 64+ 0.75 Nig. Trace - 3 64- - - 6593 0.74 Nig. Trace - 3 96+ 16+ - - 6124 0.74 Nig. Trace - 3 96+ 16+ - 0.75 Nig. <td< th=""><th>Neur (no., Matal^(M) Sludge, Deposit atting art SOH() BP, Ir BP, Ir Neur, no. at Neur, no. atting (0) Tarting (0) mo. 0.75 Ng Trace 4 41 84+ - - 651-1 0.75 Ng Trace 4 42 48+ - - 651-2 0.39 Ng Trace 4 65+ - 651-2 0.39 Ng Trace 4 65+ - 651-2 746 Ng 65+ - 3 659-1 746 Ng 65+ - 659-1 0.10 Ng Trace 4 96+ 66+ - 659-2 0.11 Ng Trace 4 96+ 66+ - 669-2 0.13 Ng Trace 1 36+ <</th><th>Neur. Ino., Meal^{ed} Sludger, Revised Depositi rating Light meter BP, In- BP, In- I</th><th>Lime, hr</th><th>100^T vis</th><th>Neut. no., 1</th><th>Metal(4)</th><th>Sludge,</th><th>1 Denot</th><th>sit ratine</th><th></th><th></th><th></th><th>Teel time to</th><th></th></td<>	Neur (no., Matal ^(M) Sludge, Deposit atting art SOH() BP, Ir BP, Ir Neur, no. at Neur, no. atting (0) Tarting (0) mo. 0.75 Ng Trace 4 41 84+ - - 651-1 0.75 Ng Trace 4 42 48+ - - 651-2 0.39 Ng Trace 4 65+ - 651-2 0.39 Ng Trace 4 65+ - 651-2 746 Ng 65+ - 3 659-1 746 Ng 65+ - 659-1 0.10 Ng Trace 4 96+ 66+ - 659-2 0.11 Ng Trace 4 96+ 66+ - 669-2 0.13 Ng Trace 1 36+ <	Neur. Ino., Meal ^{ed} Sludger, Revised Depositi rating Light meter BP, In- BP, In- I	Lime, hr	100 ^T vis	Neut. no., 1	Metal(4)	Sludge,	1 Denot	sit ratine				Teel time to	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.73 Mg Trace 4 41 48+ - 64+ 0.34 Mg Trace 4 41 48+ - 64+ 0.34 Mg Trace 4 42 48+ - 6512 0.34 Mg Trace 4 45 64+ - 6512 7.64 None 4 96+ 96+ 96+ 642 7.64 None 4 96+ 96+ 642 7.64 None 4 96+ 96+ 642 0.62 Mg Trace 4 96+ 96+ 642 0.63 Mg Trace 4 96+ 64+ 0.64 Mg Trace 8 96+ 96+ 647 0.65 Mg Trace 8 96+ 64+ 0.65 Mg - 6 64 0.65 Mg - 6 64 0.64 <th>075 Mg Trace 4 41 48+ - 611 0.34 Mg Trace 4 41 48+ - 611 0.34 Mg Trace 4 42 48+ - 611 0.34 Mg Trace 4 42 48+ - 611 746 Nore 4 96+ 96+ 96+ 643 - 746 Nore 4 96+ 96+ 96+ 643 0.56 Mg Trace 4 96+ 96+ 643 0.56 Mg Trace 4 96+ 96+ 643 0.56 Mg Trace 4 96+ 643 0.56 Mg Trace 6 643 0.61 Mg Trace 6 643 0.62 Mg Trace 6 643 0.63 Mg Trace 6 643 0.63 Mg Trace <td< th=""><th>0.75 Mg Trace 4 41 48+ 0.77 Mg Trace 4 41 48+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 95+ 96+ 7.46 None 4 96+ 76+ 7.46 None 7 96+ 76+ 0.05 Mg Trace 6 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 19 96+ 0.05 Mg Ng Trace 7 19 0.35 Mg Trace</th><th></th><th>change.</th><th>mg KOH/g</th><th>attack</th><th>vol %</th><th>21-</th><th>Light meter</th><th>BP, hr</th><th>BP, hr</th><th>BP, mg KOH/g</th><th>4 mg KOH/g, hr</th><th>ло.</th></td<></th>	075 Mg Trace 4 41 48+ - 611 0.34 Mg Trace 4 41 48+ - 611 0.34 Mg Trace 4 42 48+ - 611 0.34 Mg Trace 4 42 48+ - 611 746 Nore 4 96+ 96+ 96+ 643 - 746 Nore 4 96+ 96+ 96+ 643 0.56 Mg Trace 4 96+ 96+ 643 0.56 Mg Trace 4 96+ 96+ 643 0.56 Mg Trace 4 96+ 643 0.56 Mg Trace 6 643 0.61 Mg Trace 6 643 0.62 Mg Trace 6 643 0.63 Mg Trace 6 643 0.63 Mg Trace <td< th=""><th>0.75 Mg Trace 4 41 48+ 0.77 Mg Trace 4 41 48+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 95+ 96+ 7.46 None 4 96+ 76+ 7.46 None 7 96+ 76+ 0.05 Mg Trace 6 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 19 96+ 0.05 Mg Ng Trace 7 19 0.35 Mg Trace</th><th></th><th>change.</th><th>mg KOH/g</th><th>attack</th><th>vol %</th><th>21-</th><th>Light meter</th><th>BP, hr</th><th>BP, hr</th><th>BP, mg KOH/g</th><th>4 mg KOH/g, hr</th><th>ло.</th></td<>	0.75 Mg Trace 4 41 48+ 0.77 Mg Trace 4 41 48+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 45 64+ 0.39 Mg Trace 4 95+ 96+ 7.46 None 4 96+ 76+ 7.46 None 7 96+ 76+ 0.05 Mg Trace 6 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 96+ 76+ 0.05 Mg Trace 7 19 96+ 0.05 Mg Ng Trace 7 19 0.35 Mg Trace		change.	mg KOH/g	attack	vol %	21-	Light meter	BP, hr	BP, hr	BP, mg KOH/g	4 mg KOH/g, hr	ло.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.73 Mg Trace - 4 41 484 - - 6513 0.34 Mg Trace - 4 41 484 - - 6513 0.34 Mg Trace - 4 41 484 - - 6513 0.34 Mg Trace - 4 44 644 - - 6513 0.39 Mg Trace - 4 45 644 - - 6513 7.46 - None - 4 964 964 964 647 7.64 - None - 4 964 964 647 0.61 Mg Trace - 4 964 647 - 0.62 Mg Trace - 4 964 647 - 0.63 Mg Trace - 4 964 647 - 0.64 Mg - - 3 964 616 - 0.64 Mg - - 3 964 616 0.64 Mg - - 3 0.64 <td< td=""><td>0.73 Mg Trace - 4 41 484 - - 6512 0.34 Mg Trace - 4 42 484 - - 6512 0.39 Mg Trace - 4 43 644 - - 6512 7.46 - None - 4 45 644 - - 6512 7.46 - None - 4 45 644 - - 6512 7.46 - None - 4 964 964 964 647 0.62 Mg Trace - 4 964 964 647 - - 0.63 Mg Trace - 4 964 646 - - - 0.64 Mg - - 7 27 484 - - - 0.65 Mg - - 64 - - - 6473 0.65 Mg - - 6 64 - - - 0.65 Mg - - 6 64 - -</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0.73 Mg Trace - 4 41 484 - - 6512 0.34 Mg Trace - 4 42 484 - - 6512 0.39 Mg Trace - 4 43 644 - - 6512 7.46 - None - 4 45 644 - - 6512 7.46 - None - 4 45 644 - - 6512 7.46 - None - 4 964 964 964 647 0.62 Mg Trace - 4 964 964 647 - - 0.63 Mg Trace - 4 964 646 - - - 0.64 Mg - - 7 27 484 - - - 0.65 Mg - - 64 - - - 6473 0.65 Mg - - 6 64 - - - 0.65 Mg - - 6 64 - -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1						
	0.1/1 Mg Trace 4 4.2 444 - 6451 0.39 Mg Trace 4 4.2 444 - 6451 10.09 None 4 4.2 644 - 6451 7.46 None 4 954 964 964 964 7.66 None 4 964 964 964 7.61 Mg Trace 4 964 964 647 0.62 Mg Trace 4 964 964 647 0.63 Mg Trace 4 964 647 0.64 Mg 3 964 616 11334 3 964 616 0.64 3 964 616 0.133 Mg Trace 3 964 616 0.37 Mg Trace 3 964 616 0.37 Mg	0.1/1 Mg Trace 4 42 44 564 564 564 564 564 564 564 564 564 564 564 564 564 564 566 564 566 564 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>48(5)</td><td>-</td><td>c/.0</td><td>Mg</td><td>Lace</td><td>1</td><td>4.</td><td>14</td><td>+<u>8</u>+</td><td>1</td><td>1</td><td>1-100</td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48(5)	-	c/.0	Mg	Lace	1	4.	14	+ <u>8</u> +	1	1	1-100
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.34 Mg Trace 4 45 644 10.08 None 4 95 954 954 7.64 None 4 954 954 7.64 None 4 954 954 7.64 None 4 954 954 7.64 None 4 954 954 0.50 Mg Trace 6 27 484 0.55 Mg Trace 6 27 484 0.55 Mg Trace 6 27 484 0.56 Mg Trace 6 27 484 0.51 Mg Trace 6 27 484 0.33 Mg Trace 6 27 484 0.35 Mg Trace 114 964 516 0.35 Mg Trace 12 12 0.35 <t< td=""><td>48(b)</td><td></td><td>0.77</td><td>a Mg</td><td>1 race</td><td>1</td><td>4</td><td>47</td><td>48+</td><td>1</td><td>I</td><td>7-1 69</td></t<>	48(b)		0.77	a Mg	1 race	1	4	47	48+	1	I	7-1 69
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.39 Mg Trace 4 64 64 6491 7.46 None 4 96+ 96+ 6491 7.46 None 4 96+ 96+ 96+ 6491 7.46 None 4 96+ 96+ 96+ 6991 0.20 Mg Trace 8 26 96+ 96+ 124 0.65 Mg Trace 8 26 40+ 6991 0.65 Mg Trace 6 27 48+ 6941 0.95 Mg Trace 6 27 48+ 6473 0.95 Mg Trace 7 96+ <-66	0.39 Mg Trace 4 64 64 7.46 None 4 96+ 96+ 7.46 None 4 96+ 96+ 0.62 Mg Trace 8 96+ 96+ 0.61 Mg Trace 8 26 40+ 0.65 Mg Trace 6 40 40+ 0.65 Mg Trace 6 27 48+ 0.65 Mg Trace 6 27 48+ 0.64 Mg Trace 7 27 48+ 0.65 Mg Trace 6 26+ 46+ 0.135 Mg Trace 7 21 48+ 0.037 Mg Trace 7 21 48+ 0.33 Mg Trace 7 21 48+ 0.33 Mg Trace 7 21 48+ 0.33 Mg Trace 14 96+	64(b)	26	0.44	Mg	Trace	1	4	45	64+	I	I	645-1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.08 None 4 96+ 96+ 39 66921 7.46 None 4 96+ 96+ 39 66921 0.62 Ng Taxe 4 96+ 96+ 96+ 42 6923 0.63 Ng Taxe 8 96+ 96+ 42 0.64 MS Taxe 8 96+ 66+ 40 0.65 Mg Taxe 6 40 40+ 6993 0.65 Mg Taxe 6 40+ 6993 0.65 Mg Taxe 6 96+ 56 5673 0.65 Mg Taxe 6 96+ 56 5673 0.92 Mg Taxe 6 96+ 56 5673 0.93 Mg Taxe 14 96+ 56 5673 0.93 Mg Taxe 14 96+ 56 5673 0.93 Mg Taxe 14	10.08 None 4 96+ 96+ 7.64 None 4 96+ 96+ 7.64 None 4 96+ 96+ 0.70 Mg Trace 6 27 48+ 0.65 Mg Trace 6 27 48+ 0.65 Mg Trace 6 27 48+ 0.65 Mg Trace 6 27 48+ 0.93 Mg Trace 6 96+ 56+ 1338+ None 3 96+ 56+ 0.93 Mg Trace 4 96+ 56+ 0.33 Mg Trace 10 40+ 0.33 Mg Trace 4 96+ 56+ 0.33 Mg Trace 14 96+ 96+ 0.33 Mg Trace 14 96+ 56+ 2.2.1 <td>64(b)</td> <td>2</td> <td>0.39</td> <td>Mg -</td> <td>Trace</td> <td>!</td> <td>4</td> <td>64</td> <td>64'+</td> <td>1</td> <td>1</td> <td>645-2</td>	64(b)	2	0.39	Mg -	Trace	!	4	64	64'+	1	1	645-2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1019 None 4 96+ 96+ 38 6692 7,46 Ne 4 96+ 96+ 42 6121 0.65 Ng Trace 6 20 96+ 96+ 42 6124 0.65 Ng Trace 6 27 48+ 6 6473 0.65 Ng Trace 6 27 48+ 6 6473 0.64 Ng Trace 6 27 48+ 6 6473 0.93 Ng Trace 6 96+ 516 6 6473 0.33 Ng Trace 13 96+ 516 6 6473 0.33 Ng Trace 14 96+ 516 6 6473 0.33 Ng Rs 11 96+ 516 <t< td=""><td>1019 None 4 96+ 96+ 7.46 None 4 96+ 96+ 7.65 Mg Trace 8 26 90+ 0.65 Mg Trace 6 20 40+ 0.65 Mg Trace 6 27 48+ 0.65 Mg Trace 5 27 48+ 0.65 Mg Trace 6 26+ 56+ 1335 None 3 96+ <16</td> 1097 None 4 46+ <16</t<>	1019 None 4 96+ 96+ 7.46 None 4 96+ 96+ 7.65 Mg Trace 8 26 90+ 0.65 Mg Trace 6 20 40+ 0.65 Mg Trace 6 27 48+ 0.65 Mg Trace 5 27 48+ 0.65 Mg Trace 6 26+ 56+ 1335 None 3 96+ <16	96	-10	10.08	!	None	1	4	+96	96+	. 1	39	649-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.46 None 4 96+ 96+ 7.64 Ns Trace 4 96+ 96+ 0.63 Ns Trace 6 40 40+ 0.65 Ns Trace 6 27 48+ 0.64 Ns Trace 6 27 48+ 0.65 Ns Trace 7 27 48+ 0.133 Ns None 3 96+ 516 0.32 Ms Trace 4 96+ 516 0.33 Ms Trace 13 24+ 0.33 Ms Trace 14 96+ 516 0.33 Ms Trace 14 96+ 66+ 0.33 Ms Trace 14 96+ 66+ 0.33 Ms Trace 14 96+ 96+ 22.1 12	<u>9</u> 6	6 1	10.19	1	None	!	4	+96	96+	1	-38	649-2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.64 None 4 96+ 96+ 42 6123 0.70 Nis Trace 6 40+ 6993 0.65 Nis Trace 6 27 48+ 6993 0.65 Nis Trace 6 27 48+ 6993 0.65 Nis Trace 6 27 48+ 6934 0.65 Nis Trace 3 96+ <16	7,64 None 4 96+ 96+ 0,70 Nig Trace 6 26 40+ 0,65 Nig Trace 6 27 48+ 0,65 Nig Trace 6 27 48+ 0,65 Nig Trace 6 27 48+ 0,1037 None 4 96+ <.16	96	-12	7.46	1	None	1	4	+96	1 96	1	42	612-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.700 0.64 Mg Mg Mg Mg 17ace Trace 17ace 8 26 401- 48+ 0.65 Mg Mg 13395 Trace 6 27 48+ 0.65 Mg Mg 13395 Trace 6 27 48+ 0.65 Mg 13395 Trace 3 96+ <16	96			I	None	1	•	TYD	TYD	- -	47	612.2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.64 Mg Mg Mg 17ace Trace rate 6 40 6 40 6 40 	10,11	::	+0-		T of t		• •	10/ -			4	540.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.62 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.62 Mg Trace 6 40 40+ - 0.64 Mg Trace 7 27 40+ - 0.65 Mg Trace 7 27 40+ - 0.65 Mg Trace 7 27 40+ - 1335 None 3 96+ <16	(a) 0+	::	00			ł	0	9	+0+	i	i	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.64 Mg Trace 6 27 48+ 612.3 13384 None 3 96+ <16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.64 Mg Trace 6 27 48+ 13.95 None 3 96+ <16	40(b)		0 62	Mg	Trace	ļ	و	40	40+	I	; I	649-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65 Mg Trace 7 27 48+ 6124 13.95 None 3 96+ <16	0.65 Mg Trace 7 27 48+ 6173 13395 None 3 964 <16	0.65 Mg Trace 7 27 48+ 13.95 None 3 96+ <16	48(b)	102	0.64	Mg	Trace	!	9	27	48+	1	1	612-3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 13.95 \\ 13.84 \\ - \\ 10.97 \\ - \\ 10.87 \\ - \\ 10.47$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48(b)	601	0.65	Me	Trace	!	7	27	48+	ł	!	612-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	96	5	13 05		None	1		туб	~16	1	76	647.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				1	י, ר	107	<u>}</u>	, !	2 4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.97 None - 6 96+ <16	10.97 None 6 96+ <16	96	-12	13.84	1	None	1	4	3 6+	<16	I	26	647-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.44 8 964 <16	10.44 None 8 964 <16	96	-13	10.97	1	None	1	9	6 +	<16	1	27	604-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.82 Mg Tase - 4 18 244 - - 6471 0.82 Mg Tase - 7 19 484 - - 6471 0.35 Mg Tase - 7 19 484 - - 6471 0.35 Mg Tase - 7 19 484 - - 6471 0.35 Ms Tase - 14 964 964 - - 6471 8.97 M50, Fe, B2 None - 14 964 964 - - - 6471 2.21 - 0.2 70 - 72 -964 <	0.82 Mg Trace 4 18 24 647-1 0.35 Mg Trace 5 20 24+ 647-1 0.35 Mg Trace 5 20 24+ 647-1 0.37 Mg Trace 7 19 48+ 647-1 0.37 Mg Trace 7 19 48+ 647-1 7.52 Ms0, Fe, B2 None 14 96+ 96+ 96+ 1670-2 22.1 14 96+ 96+ 56+ 1670-2 22.1 14 96+ 56+ 31 670-1 22.1 14 96+ 56+ - - - 31 670-2 22.1 - 0.2 70 72 -96+ <8	- 0.82 Mg Trace - 4 18 24+ - 0.82 Mg Trace - 5 20 24+ - 0.35 Mg Trace - 5 20 24+ - 0.35 Mg Trace - 7 19 48+ - 7.52 M:50, Fe, Bz None - 14 96+ 96+ 96+ 96+ - 22.1 - - 12 14 96+ 96+ - - 22.1 M:50, Fe, Bz None - 14 96+ 96+ - 22.1 - - 0.2 70 72 -96+ <	0	77	10.44	1	None	1	0	TYO	716	, ,	38	60427
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0.82 0.33 Mg Tace - 4 18 24+ - - 6471 0.33 Mg Tace - 7 19 24+ - - 6472 0.37 Mg Tace - 7 19 24+ - - 6472 0.37 Mg Tace - 7 19 24+ - - 6473 752 Ms0.1Fe, Bz None - 14 96+ 96+ 96+ 67+ 670-1 2201 - - 14 96+ 96+ 66+ - 31 670-1 221 - - 14 96+ 96+ 66+ - - 31 670-1 22.1 - - 124 96+ 56+ - - - 31 670-1 22.1 - - 124 96+ 56+ - - - 31 670-1 22.1 - - 0.2 70 - -	- 0.82 Mg Trace - 4 18 24+ - 0.82 Mg Trace - 5 20 24+ - 0.33 Mg Trace - 7 19 48+ - 7 19 48+ - 7 12 2.0 2.0 48+ - 1 2.0 2.0 48+ - 1 2.0 2.0 48+ - 1 4 96+ 96+ 96+ - 1 4 96+ 96+ - 1 4 96+ - 2.0 2.0 1.2 70 70 72 -96+ <8 1 4 96+ - 1 4 96+	2.	-	11.01	ļ		!	•	+04	2	1	. 07.	7-100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.82 Mg Trace 5 20 24+ 6472 0.35 Mg Trace 7 19 48+ 6043 752 Mr50, Fe, Bz None 14 96+ 96+ 31 6704 8.97 Mr50, Fe, Bz None 14 96+ 96+ 31 670-1 8.97 Mr50, Fe, Bz None 14 96+ 78 31 670-1 22.1 70 72 -96+ <8 <8 586-8 	0.82 Mg Trace 5 20 24+ 6472 0.35 Mg Trace 7 19 48+ 664-3 7.32 M-S0, Fe, B2 None 14 96+ 96+ 96+ 31 670-1 8.97 M-S0, Fe, B2 None 14 96+ 96+ 96+ 31 670-2 22.1 - 14 96+ 96+ 31 670-2 22.1 - 14 96+ - - 31 670-2 22.1 - 14 96+ <	0.82 Mg Iface 5 20 24+ 0.35 Mg Iface 7 19 48+ 7.22 M50, Fe, B2 None 14 96+ 96+ 7.37 M50, Fe, B2 None 14 96+ 96+ 22.1 14 96+ 96+ 22.1 0.2 70 72 -96+ <-	24(b)	4-	- 0.82 -	Mg	Trace	!	4	18	24+	1	1	647-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.35 Mg Trace - 7 19 48+ - - 604-3 7.32 MS0, Fic. Hz None - 14 96+ 96+ - 31 670-1 8.97 MS0, Fic. Hz None - 14 96+ 96+ - 31 670-2 2.2.1 M-50, Fic. Hz None - 14 96+ 96+ - 31 670-2 2.2.1 - - 14 96+ 96+ - - 31 670-2 2.2.1 - - 14 96+ 96+ - - - - 2.2.1 - - 14 96+ 56+ - - - - 2.2.1 - - 14 96+ 56+ - - - - 2.2.1 - - 14 96+ 56+ - - - - - 2.3 - - 14 96+ 56+ - - - - - - - - - 14 96+ - - - - - -	0.35 Mg Tace - 7 19 48+ - - 604-3 7.20 Mg Trace - 14 96+ 96+ - 31 670-1 7.21 Ms0. Fe. Bz None - 14 96+ 96+ - 31 670-1 22.1 M.50. Fe. Bz None - 14 96+ 96+ - - 60+3 22.1 M.50. Fe. Bz None - 14 96+ 96+ - - 31 670-2 22.1 M.50. Fe. Bz None - 14 96+ 26+ - - 31 670-2 22.1 M.50. Fe. Bz None - 14 96+ 26+ - - 31 670-2 22.1 M.50. Fe. Bz None - 14 96+ 26+ - - 38 566-8 23.1 M.50. Fe. Bz None - - 14 96+ - - - 31 670-2 - <t< td=""><td>0.35 Mg Trace - 7 1 9 48+ - 7 7.52 Mg Trace - 9 20 48+ - 1 8.97 M50.Fc, Bz None - 14 96+ 96+ - 14 2.2.1 - 0.2 70 - 72 - 96+ <8 14 2.2.1 - 0.2 70 - 72 - 96+ <8 14 70 - 72 - 96+ <8 14 70 - 72 - 96+ 66+ 14 70 - 72 - 96+ 66+</td><td>24(h)</td><td>- 10</td><td>0.82</td><td>Mo</td><td>Lace</td><td>ļ</td><td>~</td><td>20</td><td>24+</td><td>1</td><td>I</td><td>647.2</td></t<>	0.35 Mg Trace - 7 1 9 48+ - 7 7.52 Mg Trace - 9 20 48+ - 1 8.97 M50.Fc, Bz None - 14 96+ 96+ - 14 2.2.1 - 0.2 70 - 72 - 96+ <8 14 2.2.1 - 0.2 70 - 72 - 96+ <8 14 70 - 72 - 96+ <8 14 70 - 72 - 96+ 66+	24(h)	- 10	0.82	Mo	Lace	ļ	~	20	24+	1	I	647.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.37 Mg Trace 9 20 48+ - 004-3 7.37 Mg Trace 9 20 48+ - 604-4 7.3 Ms0, Fe, Bz None 14 96+ 96+ - 31 670-1 8.97 M:50, Fe, Bz None - 14 96+ 96+ - - 31 670-1 22.11 - 14 96+ 96+ - - 31 670-1 22.1 - - 14 96+ 56+ - - 31 670-1 22.1 - - 14 96+ 56+ - - - 38.6-8 22.1 - - 14 96+ <	0.35 Mg Irace - 1 19 484 - 1 7.37 Mg Trace - 14 964 964 - 1 8.97 Mr50, Fe, B2 None - 14 964 964 - 1 2.2.1 - 0.2 70 72 - 964 < 8 - 14 964 - 6 - 22.1 - 14 964 14 - 14 - 14 - 14 - 14 - 14 - 14												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.37 Mg Trace - 9 20 48+ 6044 7.52 Mr.50, Fe, Bz None 14 96+ 96+ 96+ - 31 670-1 8.97 Mr.50, Fe, Bz None 14 96+ 96+ - 31 670-2 2.2.1 0.2 70 70 72 - 96+ <8 - <8 586-8 <8 586-8 <8 586-8 <	0.37 Mg Trace - 9 20 48+ 6044 7.52 M(50, E, Rz None 14 96+ 96+ - 31 670- 2.91 M(50, E, Rz None 14 96+ 96+ - 31 670- 2.14 96+ 48 31 670- 2.14 96+ 48 31 670- 2.14 96+ 48 31 670- 2.14 96+ 48 31 670- 3.16 670- 1.4 96+	0.37 Mg Trace - 9 20 48+ - 752 M-50, Fe, B2 None 14 96+ 96+ - 8.97 M-50, Fe, B2 None - 14 96+ - 96+ - 22.1 0.2 70 72 - 96+ <8 - 14 96+ 	48(b)	787	0.35	Mg	lrace	!	~	4	+2+	1		004-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.52 M:50. Fe, Bz None - 14 96+ 96+ - 31 670-1 8.97 M:50. Fe, Bz None - 14 96+ 96+ - 31 670-2 22.1 - 0.2 70 72 -96+ <8	7.52 M:50, Fe, Bz None - 14 96+ 96+ - 31 670-1 8.97 M:50, Fe, Bz None - 14 96+ 96+ - 31 670-2 22.1 - 0.2 70 72 -96+ <8	7.52 M:50. Fe. Bz None - 14 96+ 96+ - 8.97 M:50. Fe. Bz None - 14 96+ 96+ - 22.1 - - 14 96+ 46+ - - 22.1 - - 0.2 70 72 -96+ <8	48(b)	341	0.37	Mg	Trace	!	6	20	48+	ł	1	6044
ri 96 -16 8.97 M:50, Fc, Bz None - 14 964 964 -3 16 670-2 22.1 31 670-2 22.1	8.97 M:50, Fc, Bz None - 14 96+ 96+ - 31 670-2 22.1 - 0.2 70 72 96+ <8+	8.97 M:50, Fc, Bz None - 14 96+ 96+ - 31 670-2 22.1 - 0.2 70 72 96+ <8	8.97 M:50, Fe, Bz None - 14 96+ 96+ - 22.1 - 0.2 70 72 -96+ <6	96	-17	752	M-50, Fe. Bz	Non	!	1.4	+96	796	I	31	670-1
	22.1 m-30, Fe. hz houe - 14 - 30 +	0.271 m.30t, Fe, IIZ 0.01 70 72 964 58 5868 22.11 0.2 70 72 964 58 5868 - - - - - - - - - - - 0.2 70 72 -964 58 5868 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	0.27 m-30, Fe, B2 0.02 70 72 -96+ 58 - 22.11 0.2 70 72 -96+ 58 - 21.1 0.2 70 72 -96+ 58 - 21.1 0.2 70 72 -96+ 58 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2023</td>						1						2023
	22.1 - 0.2 70 -72 -96+ <8 - <8 386-8	22.1 - 0.2 70 .72 -96+ <8 - <8 386-8	22.1 0.2 70 72 764 22.1 22.1 22.1 22.1 26.1 28		'	0.71	N-20, PC, BZ	NUSIC	1	1	105	102	1	10	10.0
	r or more. A >: ht increase is mdicated by a "+" sign.		r of more. A st. ht increase is mdtcated by a "+" sign.			22.1	ļ	0.2	20	72	- 96 -	×		≈	586-8
	1 ² or more. A >: ht increase is mdicated by a "+" sign.	at a state of the	² or more. A → ht increæe is indicated by a "+" sign.												
	² or more. A >: ht increase is mdicated by a "+" sign.		<pre>2 or more. A ~* ht increase is mdicated by a "+" sign. refluving and avv. sted simple temperature drop.</pre>										`		,
	² or more. A >: ht increase is mdicated by a "+" sign.		<pre></pre>									_	:		
	1 ² or more. A >: ht increase is mducated by a "+" sign.	ar and the second	² or more. A -ic tht increase is indicated by a "+" sign.	-			,		•			_			
	1 ² or more. A >: ht increase is mdtcated by a "+" sign.	ar more. A set ht increase is indicated by a "+" sign.	² or more. A -e. ht increase is indicated by a "+" sign.												
	1 ² or more. A >: ht increase is mdtcated by a "+" sign.		<pre>2 or more. A ~* ht increase is mdtcated by a "+" sign. refluving and avv- ated simple temperature drop.</pre>							7	-		4	,	
	r ² or more. A >: ht increase is mdicated by a "+" sign.		² or more. A set hit increase is mdicated by a "+" sign. refluxing and associated semple temperature drop.				1			,		"1			•
	1 ² or more. A >: ht increase is mdtcated by a "+" sign.		² or more. A →e ht increase is indicated by a "+" sign.											ł	
	1 ² or more. A - th increase is indicated by a "+" sign.	1 ² or more. A ht increase is indicated by a "+" sign.	² or more. A →e ht increæe is indicated by a "+" sign.			,									
	1 ² or more. A -: ht increase is indicated by a "+" sign.	af or more. A → th increase is indicated by a "+" sign.	² or more. A → ht increæve is mdteated by a "+" sign. refluvng ant av-, sted sample temperature drop.									1	1		
· · · · · · · · · · · · · · · · · · ·			1º or more. A st. ht increase is mdtcated by a "+" sign.		-			1							;
			a² or more. A ⇒∈ ht increese is indicated by a "+" sign. refluving and a∞+, ated simple temperature drop.	ŀ						ł					
	1² or more. A → ht incre≅se is mdtcated by a "+" sign.		a ² or more. A st									1			
	1² or more. A → th increase is indicated by a "+" sign.		a ² or more. A -t					'							
					,		,							•	
		a² or more. A → e ht increase is indicated by a "+" sign.													
	n ² or more. A -t	1 ² or more. A ⊸t refluxing and 454	1 ² or more. A we are			:		;			,				
	1 ² or more. A -+	1 ² or more. A set	1 ² or more. A set trefluxing and ave	-											
veight	d nu		·		96 96 96 96 48(b) 48(b) 96 96 96 96 56 56 56 56 56 56 56 56 56 56 56 56 56	96 -12 96 -12 96 -13 96 -13 24(b) -4 24(b) 341 48(b) 341 96 -17 96 -10 0 20 mg/cn		13.95 13.84 10.97 10.42 0.35 0.37 7.52 8.97 8.97 22.1 -	13.95 13.84 10.97 10.44 0.35 0.37 7.52 8.97 8.97 22.1 22.1	13.95 13.84 10.97 10.42 0.35 0.37 7.52 8.97 8.97 22.1 -	13.95 None 3 10.97 None 4 10.97 None 6 - Na Trace 4 10.97 None 6 - Na Na None 8 0.35 Mg Trace 14 0.37 Ms60, Fe, Bz None 14 752 M50, Fe, Bz None 14 22.1 0.2 70 72 22.1 0.2 70 72 22.1 0.2 70 72 22.1 - 14 22.1 - 14 22.1 - 17 22.1 - 14 22.1 - 14 - 22.1 - - 14	13.95 None 3 13.84 None 4 10.97 None 6 None 6 4 -0.82 Mg Trace 6 7 0.035 Mg Trace 14 7 9 0.37 M50.Fe. Bz None 14 14 2.21 M.50.Fe. Bz None 14 14 2.21 M.50.Fe. Bz None 14 14 2.21 M.50.Fe. Bz None 14 14 2.21 0.2 70 70 72 14 2.21 - 0.2 70 70 72 2.21 - - 14 14 2.21 - 0.2 70 <t< td=""><td>1395 None 3 96+ < 16 10.97 None 4 96+ < 16 10.97 None 8 96+ < 16 10.97 None 8 96+ < 16 10.32 Mg Trace 4 96+ < 16 0.32 Mg Trace 4 18 $24+$ 0.33 Mg Trace 14 96+ 96+ 0.37 Mg Trace 14 96+ 96+ 0.37 Ms0, Fe, Bz None 14 96+ 96+ 2.1 0.2 70 -72 -96+ -68+ 2.21 0.2 70 -72 -96+ -68+ - - - 14 96+ 96+ 96+ - - - 12 - -96+ -68+ - - <td< td=""><td>1395 None 3 96+ <16</td> 10.97 None 4 96+ <16</td<></td> 10.97 None 8 96+ <16</t<>	1395 None 3 96+ < 16 10.97 None 4 96+ < 16 10.97 None 8 96+ < 16 10.97 None 8 96+ < 16 10.32 Mg Trace 4 96+ < 16 0.32 Mg Trace 4 18 $24+$ 0.33 Mg Trace 14 96+ 96+ 0.37 Mg Trace 14 96+ 96+ 0.37 Ms0, Fe, Bz None 14 96+ 96+ 2.1 0.2 70 -72 -96+ -68+ 2.21 0.2 70 -72 -96+ -68+ - - - 14 96+ 96+ 96+ - - - 12 - -96+ -68+ - - <td< td=""><td>1395 None 3 96+ <16</td> 10.97 None 4 96+ <16</td<>	1395 None 3 96+ <16	13.95 None 3 96+ <16

.

ł

TABLE XXV. SUMMARY OF THERMAL STABILITY TEST RESULTS ON 0-67-9	

	Test conditions	ditions				End of test results	sults					Neutralization number data	nber data	
Temp.	Metal	z	Time.	100°F: vis	Neut. no	Metal ⁽³⁾	Sludge.	Depos	Deposit rating	BP hr	RP hr	Neut. no. at	Test time to	lest
÷	set	ŗ.	ä	change, 🕫	mg KOH/g	attack	vol %	Revised	Light meter	D1, 11	Bf, III	BP, mg KOH/g	4 mg KOH/g, hr	.01
491		Wet	96	0	2.76	Mg. Fe	Trace	1	4	96+	95+	i	I	648-1
491	-	Wet	96		2.71	Mg, Fc	Trace	1	4	96+	96+	1	ł	648-2
509	B	Wet	96	6	5.62	5 1	None	1	Ś	+96	96+	I	48	652-1
-	8	Wet	96	-	5.65	1	None	!	. م ا	96+	96+	ł	54 S4	652-2
t		Wet	96	14	4.56	Mg. M-50, Fe	Trace		s S	92	96+	1	81	652-3
		Wet	96	14	4.13	Mg. Fe	Trace	1	s	16	96+	I	68	652-4
	-	Dry	96	80	2.71	Mg. M-50, Fe	None	1	80	93	96+	I	1	636-1
509	-	Dry	96	∞	2.78	Mg, M-50, Fe	None	!	9	93	496	1	1	636-2
527	دە	Wet	96	10	9.65	1	None	1	80	96+	72	7.80	21	653-1
-	8	Wet	96	=	9.88	1	None	1	6	96÷	67	7.35	21	653-2
	æ	Dry	96	4	6.33	1	None	!	s	96+	96+	1	38	619-1
	8	Dry	96	4	6.57	1	None	1	s	+96	96+	1	38	619-2
	-	Wet	96	54	8.06	Mg, M-50, Fe	Trace	1	11	51	69	4.91	44	653-3
;	-	Wet	96	46	6.62	Mg, M-50, Fe	Trace	ł	10	52	71	4.64	50	653-4
	-	Dry	96	73	4.43	Mg, M-50, Fe	5.6	1	19	57	96+	1	62	619-3
527	_	Drv	96	72	5.53	ME. M-50. Fc	4.4	1	20	57	496	ł	62	619-4
536	. æ		3	0	9.54		None	1	9	+96	<16	1	23	589-1
) a		28		02.0		Nore		71	190	216	1		589.2
4-1	: -		2 2	, c	2.0	Me W CO Pe	2004				20		3 5	1-202
		ĥ	۶ ک	200	10.0	ME. M-JU. FC	- ,	1	9	;;	107	1	5	1-170
536		ory	\$	82	6.10	Mg. M-50. Fc	11	1	17	44	+96	1	89	7-170
545		Dry	96	53	7.79	Mg, M-50, Fe	7	!	22	35	51	4.68	44	630-1
545		Ē.	8	74	90.9	Mg. M-50. Fe	m	1	16	36	89	5.15	44	630-2
554	æ	Dry	96	39	13.10	1	None	1	15	96+	%	1	6	592-1
554	ß	Dry	96	38	12.19	ł	None	1	16	96+	%	1	6	592-2
(a) Defin	r e ve par	weight c	hange of	(a) Defined as a weight change of •0 20 mg/cm	² or more. A	cm2 or more. A weight increase is indicated by a "+" sign	tudicated	۹×+ r Aq	- - -					
]

TABLE XXVI. SUMMARY OF THERMAL STABILITY TEST RESULTS ON 0-67-20

	Test conditions	litions				End of test results	ults			1000 I		Neutralization number data	mber data	F
Temp.	Metal	2	Time.	NA :1.001	Neut. no	Metal ⁽³⁾	Sludge,	Depos	Deposit rating	up hr	RD hr	Neut. no. at	Test time to	
÷	set	ŗ.	hr	change, 7	mg KOH/g	uttack	x lov	Revised	Light meter	Dr. 11		BP, mg KOH/g	4 mg KOH/g, hr	
191	_	Wet	96	~	0.21	Me	None	1	Ś	- +96	96+	i	I	648-3
165		Wet	96	-	0.26	Mr	None	1	ŝ	+96	+96	ı	i	648-4
518	~	"Jry	96	(1	0.26	1	None	I	14	9 6+	4 96	1	I	586-4
536	~	Qry.	96	ñ	0.44	1	None	1	24	9 6+	+96	i	1	589-3
536		Dry	96	-1	0.47	1	None	1	31	96+	9 6+	1	ł	589-4
554	~	Dry	96	च	0.53	i	None	1	25	+96	96+	1	1	592-4
572	8	Dry	96	77	0.75	;	None	;	27	96÷	496	ł	I	594-1
572	~	Dry	96	च	0.79	1	None	1	26	96+	96+	i	1	594-2
581		Dry	96	ę	2.00	Mg. M-50, I c	Trace	1	16	96+	1 96	i	I	644-1
581	-	Dry	96	9	09.1	Mg, M-50, I-e	Trace	I	10	+96	964	I	I	644-2
590	~	Wet	96	7	2 38	1	Trace	1	18	96+	96+	!	I	657-1
-	æ	Wet	96	9	2.49	ł	Trace	1	23	496	9 6+	I	1	657-2
	æ	Dry	96	6	0.19	I	None	1	13	96+	96 ÷	1	1	596-1
	×	Dry	96	9	0 14	t	None	1	01	96+	+96	1	1	596-2
	-	Wet	96	11	4.77	Mg, M-50, Fe	0.2	i	30	+96	9 6+	!	71	657-3
	-	Wel	96	6	3.96	Mg. M-50, Fe	0,4	1	29	1 96	+96	I	1	657-4
	-	Drv	96	9	.62	Mg. M-50, Fe	-	1	36	+96	57	2 14	68	596-3
590	-	â	96	9	5.70	Mr. M-50, Fe	Trace	1	18	+96	71	2.43	82	596-4
608	2	Wet	96	00	2.62	1	Trace	1	36	1 96	4 96	ł	1	658-1
	20	Wet	96	00	2.50	1	Trace	1	34	+96	9 6+	I	I	658-2
<	æ	Div	96	6	0,70	1	None	ł	20	96+	+96	!	1	1-009
•••••	8	Drv	96	×	0.72	1	None	1	7	96+	+96	i	1	600-2
	-	Wet	96	01	5.17	Mg, M-50, I c, B2	Trace	1	81	96+	<16	ł	21	658-3
		Wei	96	0	1 23	Me. M-50, Fe. B7	Trace	1	20	9 6+	<16	ł	22	658-4
-)=	• •	Drv -	3	1	3 70	My M-S0-Le	Truce	ł	30	496	30	2.22	39	600-3
1 404		ŝ	č v	2	210	No M-SO Fo	~	1	2	496	: 2	2.21	41	600-4
2000	• •	() (28	2			Trace		, et	796	490	i	: 1	666.1
5			2 2	2 2			Trace		: 9	190	170	I	1	666.2
	<u>م</u>			2	10.1	1	T	}	\$ \$					1.003
-	× .	, îu	\$	3	0.10	1	1 race	1	ę	404	+ 0, 2	i	1	1-100
644	<u></u>	Dry.	96	2	0.86	1	Irace	1	4 X	494	+9,6	1	I	7-/ 00
											_			
				_		_								
														T
(r) Detu	a r vr pat	rencht el	jo əzuru	(a) Detued as a weight change of +0.20 mg/cm ²		or more A weight increase is individed by ""	vd parvi	וובור " י " L						
		L												

Mich Drugs, Nig Explore table table IP, Ir PP, Ir	I Time	Time	100	i he	Naur 20	End of test results	t results Studae	Uand 1		100°F vis		Neutralization number data	mber data	1 Test
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N ₂ hr change. 7	change. '		mg KOH	: ±	uttack	vol 7	Revised	Light meter	BP, hr	BP, hr	BP, mg KOH/g	4 mg KOH/g, hr	no.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48(b) 11	48(b) 11	11 0.86	0.86		Mg	Trace	1	4	48+	48+		1	651-3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48(b)	48(b) 12		0.81		Mg	Trace	1	s	48+	48+	ļ	1	651-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72(b) 20	72(b) 20	•	0 63		Mg	Trace	I	4	66	72+	ł	I	645-3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72(b) 4	72(b) 4		0.67		Mg	Trace	1	4	72+	72+	ł	1	645-4
Trace - 4 40+ 40+ 40+ -1 -1 Nome - - 4 96+ 63 7.87 23 23 Nome - - 9 96+ 63 7.79 55 23+ 24+ - 5 50	40(b)	40(b) 13		0.63		ЧĘ	Trace	;	4	40+	40+	1	1	649-5
Nome $-$ 4 964 63 7.87 24 Nome $-$ 5 964 63 7.79 25 Nome $-$ 10 964 964 $-$ 53 7.79 25 Nome $-$ 10 964 964 $-$ 53 244 $-$ 7.79 25 Nome $-$ 10 964 964 $-$ 53 244 $-$ 7 Tace $-$ 3 244 $ -$ 524 $-$ 244 $ -$ 520 Nome $-$ 7 3 484 $ -$ 23 Tace $-$ 4 3 3 484 $ -$ 20 Nome $-$ 7 964 < 16 $-$ 20 Nome $-$ 7 964 < 16 $ -$ 20 Nome $ -$ 7 964 < 16 $ -$ 20 Nome $ -$ 7 964 < 16 $ -$ 20 Nome $ -$ 20 Nome $ -$ 20 Nome $ -$ 20 Nome $ -$	Wet 40(b) -12	40(b) -12		0.64		ЗК	Trace	1	•1	40+	40+	ł	I	649-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4 1 13.05	13.05		1	None	1		96+	63	7.87	24	647-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wet 96 4	96	4 12.72	12.72		1	None	!	s i	+96	64	7.79	2S	647-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	36	S	11.		1	None	1	0 :	+96	496 7	1	20	639-3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 :	7 06		907		1 :	None	1	2,	96+	96+	1	52	639-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.80		ang Sing	4 C	1	0 0	24+	744	1	1	648-5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24(0) - 11 - 102	24(0) - 11 - 102		77.0		3 2 2	, .	!	~ ?	447	+ + 7	1	1	04840
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40(0) 155	40(0) 155		1.0		ale Si	1 1300	1	~ ·	97	+2+4	1	ł	639-1
None = = $\frac{1}{2}$ $\frac{964}{11}$ $\frac{516}{16}$ $\frac{964}{16}$ $\frac{516}{16}$ $\frac{964}{16}$ $\frac{516}{16}$ $\frac{1}{204}$ $\frac{516}{16}$ $\frac{1}{204}$ $\frac{516}{16}$ $\frac{1}{204}$ $\frac{516}{16}$ $\frac{1}{204}$ $\frac{1}{11}$ \frac	48(0) 52	48(0) 52		17.0	-	ык	l race	ł	4 /	55	484	1	1	0.59-2
None $$ 7 96+ < 66 $$ < 66 $$ < 66 $$ < 20 None $$ 7 96+ < 66 $$ < 20 None $$ 7 96+ < 66 $$ < 20 None $$ 7 96+ < 66 $$ < 20 Trace $$ 5 < 66 -20 + $$ < 20 Trace $$ 5 < 16 $$ $$ 20 Trace $$ 5 $$ $$ $$ $$ 20 Trace $$ 5 $$ $$ $$ $$ $$ $$ $-$	wet 90 8	70 2	8 18.78	18.78		!	None	!	۰	404	919 V	I	912	660-1
None -1 7 96+ < 16 -1 20 None -1 7 96+ < 16 -1 20 Trace -1 5 < 16 -1 20 Trace -1 5 < 16 -1 20 Trace -1 5 < 16 -1 -1 20 Trace -1 5 < 16 -1 -1 -1 20 Trace -1 8 96+ < 16 -1 -1 -1 -1 -1 -1 -1 -1	Wet 96 8	96	8 18.23	18.23	-	ł	None	1	7	96+	<16	F	<16	660-2
None $$ 7 964 < 16 $$ 20 Trace $$ 5 < 16 $$ 20 Trace $$ 5 < 16 $20+$ $$ 20 Trace $$ 5 < 16 $20+$ $$ 20 Trace $$ 5 < 16 $$ $$ 20 Trace $$ 5 $$ $$ $$ 20 Trace $$ 5 $$ $$ $$ $$ $$ $$ $-$	Dry 96 6	96 6	6 11.69	11.69	_	1	None	1	-	96+	<16	!	20	636-3
Trace $=$ 5 < 16 $20+$ $=$	96 6	96 6	6 11.78	11.78		!	None	1	7	96+	<16	1	20	6364
Trace - 5 < 16 $20+$ - -	20(b) 1	20(b) 1	1 0.78	0.78		Mg	Trace	!	s	<16	20+	ļ	1	660-3
Trace 1 Trace 1 Trace 1 Trace 5 Trace 5 Trace 1 Trace 5 Trace 1 Trace 1 Trace 1 Trace 1 Trace 1 1 964 1 964 1 964 1 964 1 964 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20(b) 5	20(b) 5		0.77		Mg	Trace	1	s	<16	20+	ł	I	660-4
Trace $=$ 5 16+	(q)91	16(b) -3		0.66		Mg	Trace	1	4	16+	16+	1	i	636-5
Trace - 5 96+ <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 - <16 <16 - <16 <16 <16 <16 <16 <16 <16 <16 <16 <16 <td< td=""><td>16(b) 0.1</td><td>16(b) 0.1</td><td></td><td>0.77</td><td></td><td>Mg</td><td>Trace</td><td>!</td><td>s</td><td>16+</td><td>16+</td><td>1</td><td>1</td><td>636-6</td></td<>	16(b) 0.1	16(b) 0.1		0.77		Mg	Trace	!	s	16+	16+	1	1	636-6
Trace - 6 96+ <16	∞	8 96		18.99		Fe	Trace	1	s	96+	<16	ł	<16	660-5
Trace - 8 96+ <16		96 10		21.1		Fe	Trace	1	9	96+	<16	ł	<16	660-6
Trace 8 96+ <16	B Wet 96 13 26.3	96 1 13		26.3		1	Trace	!	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	96+	<16	i	<16	662-1
Nono Non Non Non Non Non Non Non Non Non	Wet 96	96		227		ł	Trace	1		TY0	116	į	716	662.2
Nonc									;		2 9	ł		
		01 IO	10 10.45	10.45		1	None	1	-	+96	× V	I	01	0000
	(b) Test terminated prematurely due to violent refluxing and associated sample temperature drop	prematurely due to violent refluxing	y due to violent refluxing	nt refluxing	ŭ	d associated	sumple te	mperature d	lrop					

TABLI XXVII. SUMMARY OF THERMAL STABILITY TEST RESULTS ON 0-68-17

LIST OF REFERENCES

- 1. Cuellar, J.P., and Baber, B.B., "Evaluation Study of the Oxidation-Corrosion Characteristics of Aircraft Turbine Engine Lubricants," AFAPL Technical Report 70-10, Vol. 1, May 1970.
- 2. Cuellar, J.P., and Baber, B.B., "Evaluation Study of the Oxidation-Corrosion-Deposition Characteristics of Aircraft Turbine Engine Lubricants," *AFAPL Technical Report 70-59*, Vol. 1, October 1970.
- 3. Baber, B.B., Cuellar, J.P., Ku, P.M., et al., "Development of Lubricant Screening Tests and Evaluation of Lubricants for Gas Turbine Engines for Commercial Supersonic Transport," ASD Technical Documentary Report 63-264, Part I, March 1963.
- 4. Brownlee, K.A., Industrial Experimentation, Chemical Publishing Co., Inc., New York, N. Y., 1952.

5. Baber, B.B., Cuellar, J.P., and Montalvo, D.A., "Deposition and Degradation Characteristics of Aircraft Turbine Engine Lubricants," *AFAPL Technical Report 70-8*, Vol. 1, June 1970.