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ABSTRACT

This final report contains the results of an investi-
gation to use the concipts of radiation from accelerating charges
to develop the radiation characteristics of pulse-excited an-
tennas in the time domain. The transition to antennas is accom-
plished through derivation of a radiation equation involving the
time~derivative of the antenna currents. For sinusoidal time
variation this equation reproduces well-known results for a
number of common antennas. For pulse-excited linear antennas,
the radiation equation produces a result derived previously by
retarded potential and other methods. Numerical comparison with
a published frequency-domain analysis of a pulsed dipole shous
reasonable agreement except for angles close to the end-fire
direction. Further work on this point is required. For a pulsed
loop, comparison with a published time-domain analysis using the
Sommerfeld radiation equation for a small dipole shows that both
approaches lead to the same final equation. Concerning transient
apevrture antennas an analysis by Cherncusov is described, wherein
2 uivalent surface currents replace the aperture fields. The
Chernousov aperture results are shown to be expressable in terms
of equivalent surface accelerating charges, and for one-dimension
to reduce to results derived previously by Cheng and Tseng. It
is concluded that while the accelerated charge approac! provides
a direct physical explanation of and an analytic basis for study
¢f impulse antenna radiation in the time domain, more work is
needed to establish its merits relative to other time-domain

methods. iid



EVALUATION

1. Over the past few years there has been an active and increasing
interest in the behavior of antennas when excited by short

time duration impulsive like signals and fields. Moreover,

it is evident that conventional cw concepts and theories are
inadequate for describing and analyzing impulsive antenna
performance. The intent of the work reported on herein was

to examine basic underlying time domain principles and concepts
useful for understanding and analyzing the basic radiation
properties of short vulse antennas.

2. This report presents the results of a six month research
effort to develop the concepts of accelerating charges as the
underlying and basic radiation mechanism for impulse antennas.

It has been shown that radiation can be conveniently for.ulated
in the time domain by the time derivative of current or accelerated
charges over differential elements. Apprupriate expressions

were derived from basic principies for linear and small loop
antennas which resulted in direct physical explanations of
impulsive antenna radiation. Although these same results can

be obtained by other time domain representations, the accelerated
charge formulation provides physical interpretation and insight
into the radiation mechanism for these type antennas.

3. A promising method for analyzing high gain aperture antennas
was also identified and discussed. Although not developed fully,
the method was shown to reduce, giving results to previously
obtained for a one dimensional case.

4, Based upon the work performed under this preliminary short
term effort, it ic concluded that the accelerated charge concepts
provide a valid analytic basis for impulse radiation. However,
before significant advantages over other approaches can be
demonstrated, additional effort will have to be expended to
extend the scope and detail of the work completed herein. Future
work has _heen identified and discussed in the report.

4 Praoject Engineer
E Antenna Section
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SECTION 1

INTRODUCTION

1.1 GENERAL

This final technical report covers work performed from
1 Sept. 1971 to 29 Feb. 1972 under USAF Contract No. F30602-71-C-
0278/PMRA, entitled Time Domain Impulse Antenna Study, for the
Rome Air Development Center, Research and Technology Division,
Air Force Systems Command, Griffiss Air Force Base, New York, by
Dr. Morris Handelsman, Electrical Engineering Department, College

of Technology, University of Vermont, Burlington, Vt.

1.2 PURPOSE OF PROGRAM

The purpose of this program is to investigate, develop,
and apply the concept of radiation from accelerating charges to
antenna systems excited by impulsive signals or fields. Thus the
purpose is to develop in the time domain, an approach to the
understanding of the behaviour of impulse-excited antennas,
through the radiation characteristics of the accelerated charges

on such antennas.

1.3 CONTENTS OF THIS REPORT
In this final report, Section 2 discusses the nature of
radiation from accelerating charges, Sections 3 and 4 discuss

the radiation from a pulse-excited linear wire antenna in a



direction normal to the wire, and in any direction, respectively.
Section 5 discusses radiation from pulse excited loop antennas.
Section 6 discusses transient radiation from aperture antennas.
Section 7 contains conculsions and recommendations. Section 8
lists references. Seven appendices contain discussions and
results considered basic and pertinent to the understanding of
radiation from antennas through the mechanism of accelerated
charges as follows: I, Lienard-Wiechert Potentials, II, The
Fields of Moving Chenges, III. Wave Propagation on Tran:tmission
Lines and Linear Antennas, IV, Drift Velocity of Electrons in
Conductors, V. Derivation of the Radiation Fields of an Electric
Dipole Using Moving Charges, VI. Some Results of Delta Function
Integrals, and VII., Illustrations of Use of Equation (74) for

Some Standard Antennas with Sinusoidal Time-Varying Excitation.

1.4 PROGRAM ORGANIZATION

The person who performed this work is Dr. Morris
Handelsman of the Electrical Engineering Department, College
of Technology, University of Vermont. Acknowledgements are
gratefully made to Mr. Hugh C. Maddocks and Mr. Albert E. Ruehli,
Ph.D. candidates, for discussions ~-n the Lienard-Wiechert poten-
tials of the Hertzian dipole, and the frequency spectrum of

pulses, respectively.



SECTION 2

THE NATURE OF RADIATION FROM ACCELERATING CHARGES

2,1 INTRODUCTION
'
s '
Given the positicn X ({‘) of a moving charge(‘ at all
'
times f , as shown in Fig. 1, the fields at an observation point
P()(\t\ may be found through the Lienard-Wiechert potentials.

These potentials, developed in detail in Appendix I, are in MKS

units,
gad= (5]
?_CK\A- ATE, 9 wt (1)
NED= 7L )
Where o
S=y- = =¥ =V = (\-Bcese) (2)
velocity '\-S-" - AR'/CHZ, (%)

—

B

and [ l x means that the quantity inside the brackets is to be
e

Tlc (s)

i

evaluated at the retarded time

t=t-rlc (8)
{ -
Thust is the time at which a signal is emitted at X so as to

arrive at ;(- at time t .



(t).

FIG. 1 Charge C\ at retarded position X
4

Sl




2.2 THE FIELDS OF MOVING CHARGES

, The fields B and E are given by
B= xR 7y
- DA

€ = J@ - 2 (8)
ot

This results in the following equation for the fields (for de-

tails see Appendix 1I):

= L (F-B)(- 22
€= 23| ¢ N(-8%)

¥ s {vx[ﬁ ﬁ‘\mpﬂ (9)
Bz i [ﬁxr (-2*)+ e {rx[u-ﬁv)x&m

cet,

(10)

- -~ {
Here Q. = acceleration of the charge =dv/dt

For a stationary charge, Eq. (3) shows that S=C

hre w-—

while ﬁ and O are zero. The E field then becomes the static

Cuulomb field

— Y
= _Zf%éii;ir (11)
i

where O'T = unit vector in ¥ direction, while ®=0O. For a




charge moving with uniform velocity without acceleration, }32:
constant and @ =0. The E and B fields vary as l/“{a , and are

non-radiation fields (quasistatic or induction fielids).

2.3 THE RADIATION FIELDS

When the charge has acceleration a, the last terms in
Eqs. (9,10) are the radiation fields, vary as 1/¥, and depend
upon a. These radiation fields, denoted by subscript a for

acceleration, are

g = _9 [jx{(f-ﬁﬂxi} (12)

o~ 19
4TNEC® f§3 cot
B - q Cx 0 [ Forall s
o 4“E°C3 53‘
ret

Inspection of Egqs. (12,13) shows that

- o —
B. = _é_ﬂera (14)

-~

Hence
”-__\_"-3"""" = (15)
\-\o.“JJoB".- Ealdly Ak Eo.
- = A )
That is, Ea, Ha, and Q.¢(the retarded position unit vector) are

mutually perpendicular, and the ratio of\Ea\ to \Ha.\ is

\Ealua\: J»oleo ohms (18)



which are all familiar relationships to the antenna enginecer,

2.4 LINEAR ANTENNAS

For a linear antenna extending along the Z-axis, as

shown in Fig. 2, velocity v and acceleration a are colinear.

Then, in Eq. (12),

(T-Br)ka = (&
Hence. omitting the [ l“\notation,
q A (Cxa)
4T és C,253

- q at‘ )‘CQ‘\' 7*&)
4TWE, € ¢(I- Leose)?

ml
f

6]
I

n —
Ar r €,
Mo l€,

o =
)
i

- A
Using .= Q@ °e .
A n ..\ A
arlacxral)z asmd ag
A
where Qe is the unit vector in the increasing 8 direction,

using spherical coordinates. Then

€, — qo 50O
e — "o 3
4T E, €™ ¥ (=B wse)

Hy = e [Jaeles

(17)

(18)

(19)

(20)

(21)

(22)
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The radiation patterns which result from Eqs. (21,22)
are shown ir Fig. 3. For low velocity particles, which is the
usual cise for charges (electrons) moving in conductors (see
Appendix IV) for detailed discussion on the drift velocity of

electrons in conductors),ﬁéé\ , and

-

4TE, C2Y

retl

This is the "figure eight" pattern, shown in Fig. 3(a), which
varies as 5“\8 , again familiar to the antenna engineer. For
relativistic speeds £\, Eq. (21) shows that there is a
"forwari" bunching, as indicated in Fig. 3(b). The direction of
maximum intensity is now tipped forward.

The H field is

-

HQ - 2}0.3\;\-8 (Beety  (zu)
ne

vet

To illustrate an application of Eq. (24) consider the
radiation field of an electric dipcle or current element of len-
gth\\ , extending along the Z-a.is, with a current distribution
along \\which is constant except at the ends where the current is
zero. oece Fig. 4. Let the current vary sinusoidally in time.
This case is examined in more detail in Appendix V. The sinu-
soidal case is examined initially principally because the H

fields for this cdse, using conventional theory, are well-known.
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The H field for h small compared to wavelength )\ , is (Ref. 20,

p. 498; Ref. 21, p. 93)

g_. ik Tohswe
V4T

_&R( AwT A
e (25)

where\(E\DlC'—"—awﬂ » and the current by definaition, is
[

— Wt a

I:I°c~’3 a; (26)
The charge Aq in a differential length d2 at (O, ©,Z ) on the
radist r is

dq = Ph4AZ (27)
where P is the moving (electron) charge density in coulombs per
cubic meter, and A is the appropriate cross-sectional area.

/

This charge moves through distance AZ' in time dt ,» so the

current is

f - 99 ‘;}:f"}' _Biq"gzpﬁ{f' (28)
ot t!

where'\?zcbz"at'\ ag- is the velocity of the charge. The current
density (amperas per square meter) J is

T=I/an=p7T 2o
Assuring P is essentially constant in OLZLH {see Appendix 1II

for discussion), then the acceleration QLU is

a7 | >T (30)

a. =
ot PH >t

i!



From Eq. (26),

- Lt
_.B..I__:éonc“wt (31)

>t
Replacing q in Eq. (24) by the above Aq » then the term (qa.)

in Eq. (24) becomes., using Eqs. (27,30,31),

qQ: Q%i.'.\.ﬂd& :du)'.fcd?@sw* (32)
fa)

‘
The retarded value of (QQ) is found by using Eq. (6) for t

so that o . ot
e‘\wt — e (t- RIC\:@-‘\KR jw

© (33)

'
Since Aq is at distance R from P at time + , the ¥ in the de-

nominator of Eq. (24) becomes R. Thus d“Q due to dq is

d“? (f“c\ = 3‘4)3{; e ¥t e-‘“:s\ne' dz (3%)
c

and

. ’“ —
Ry (D= 2 T.e¥¥ k E¥%ume 4z (a5
4T R

For the radiation field (far-field distances)
'N
e %o
RxXY-Z2w56

(36)

- 13 -



Using \\LL} , the integral in Eq. (35) reduces to

n -
-dRR ' ALy
° 1)

Hence the field calculated from Eq. (24) becomes

- H ~ARC 3
He (T8N = IRToh gynp ¥t (38)

nwy

which agrees with Eq. (25).

2.5 HOW RADIATION WAVES ARE PRODUCED BY AN ACCELERATING CHARGE

It is possible to derive the radiation equation Eq.
(23) using a graphical construction and simple analysis (Ref.
23, pp. 60-63 or Ref., 24, pp. 334-340). This derivation may be
of help in understanding how the radiation field of an accelerat-
ing charge arises, and is presented here. The charge q is taken
to move on a straight line. Three preliminary points are made
first, in the paragraphs below.

First it is noted that the term (?—jsV ) appears twice
in Eq. (9) and therefore deserves interpretation. Remembering
that ¥ is the retarded position of the charge, let F;- be the
"virtual" present position (at time t) ofq, i.e., the position

it would occupy at time ¥ if the acceleration C. is zero. In

Fig, 5 the time of propagation from the retarded position Q.



s,

et e gy, Y

&

R
x

FiG. 5 Virtual position of charge moving at
constant velocity along straight line.
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where the charge is at time t-Y¥/C to the observation point P is
simply
t=rlc (39)

During this time t » the charge is moving with constant velocity
\?:ﬁc, and zero acceleration, along the line, so it reaches the
point QV at the same time that the energy which left from Qq
reaches P.
Hence

AQ, = Tt= B (40)

It is seen that

- w—

Vs = - B¢ (41)
Thus the term (?—jif ) is the virtual present position.
Second, the quantity S in Eq. (3) can be identified on

Fig. 5. Since

-8 =(BNwse (42)
then ('F~j§) is the projection of the vector.ﬁ;r on ¥ , 1.e.,
the segment EIT-of the line ¥ = 6;?. Then from (Eq. (3), it
follows that

S=v-¢8= TP (43)
Further, S can be written in terms of Yb- and E%r , the virtual
position and angle, respectively, of the charge at Q‘ . Thus in

the right triangle Q‘TP,
2

S

2 2 2 2
= Xy—-PR rsmne



But the perpendicular H from P to the line of motion is

\'\:- Yowe = v\y'ﬁ\“eq (uy)
Hence
2 2
r 2o’y = (o S O, (45)
and
{2
§ = 0y (8% simey) (46)

Third, the first term in Eq. (9), designated as E,

can now be written, using (Eqs. (41,46), as

o _.r.q gkw Vﬁaz
e .= S PP (47)
L4tea  Cr | [ (\-B%smie,)?

A -~
where C\Nv is the unit vector along ‘\r » pointing from the pre-

gent position of'-‘\ to ©. It is seen that E‘, which is the
total field of a charge moving at constant velocity, since accel-
eration & is zero, is identical to the Coulomb field of a sta-
tionary charge, given by the quantity in the first brackets of
Eq. (47), modified by the quantity in the second brackets, which
is a function of the velocity. Eq. (47) agrees with Ref. 25

(p. 25%). TFor low velocity particles, where jBLL\ , the quantity
in the second brackets is essentially unity. Hence the impor-

tant result: The field of a charge moving at a low constant

velocity is essentially the ordinary Coulomb field associated

- 17 -



with a stationary charge. Thus, as put in Ref. 24 (p. 337), for
a charge moving with constant velocity, the lines of force di-
verging radially from the charge move with the charge, acting
as if they were rigid wires attached to the charge.

Now the effects of acceleration can be ascertained.
Following Ref. 24 (pp. 334-340), let point charge q move along
a line as shown in Fig., 6, with constant velocity §44C , arriv-
ing at point 0 at time to . During a time interval AT , let q
be accelerated to velocity W&AV, reaching point 0, at time
t°+bt , after which it moves at the new constant velocity. As
established above, the E lines move with qQ as long as it does
not accelerate, The effects of any disturbance such as the
short period of acceleration are assumed to propagate outward at
the speed of light ¢ , which is reasonable. Draw a sphere S,
around 0 of radius

Yoz C-('t“'t'o\ (48)

where t?to . Any signal traveling at velocity C reaching any
point in the region outside S, at time ¥ must have left qQ at a
time before to . Thus the E lines outside S, are the same as
those of the charge moving with the original constant velccity
A\ . Therefore, by the third point established above, the E

lines outside Sy are essentially the same as thcce >+ zharpe



FIG., 6

Radiation due to an accelerated charge.
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at the point Q, , which is where the point where q would be at
time £t if it had not been accelerated. Hence the E line BC
outside S, is shown diverging radially from Q, .

Next draw a sphere §, centered at 0, with radius ¥, -
calV, Any signal traveling at velocity € reaching any point
inside S, must have left q after it reached 0, at time otat,

at which time it is moving with velocity U+oV . Hence the
field inside S, is the same as that of a charge moving at con-
stant velocity W+dV, and therefore diverges as the line 'Q—‘—K
from Q, , which point is actually reached by q at time t .

The thin shell of thickness cat is the region where
the acceleration effects must put a "kink" in the E line Q,ABC
as shown in Fig. 6. This kink travels along the E line at veloc-

ity €. Then,

- OV (49)
a= ot
o0, ¥ Vot (50)

Since VW|cee) , then 66—‘ ¢ C6T . Hence the shell is approxi-
mately due to two concentric spheres, with coincident centers at
0. To an approximation which negi..ts terms of the order of
(le) as well as ('\Tnlcz) , the situation is as shown in Fig. 6,
with 6;—}\_ ~ Yo (Ref. 24, p. 340) in the limit of very small

( vle)y,



The E field segment AB, which represents the accelera-

tion effects, is resolved into two components:

Ee AD  QGi3me

- (51)
Be 0O cat
But
Qo Q, = 0Q,-0Q, ¢ (t-t)(vrar)-(t-t)v
= (t-to\ov
G Qe QN Eﬂc—:i-:.—‘b%-"i (52)
Hence

Ea _ YGoome (53)
E" Cz

Continuity of the Ey component withthe usual radial field de-
mands that

4T ET?
Hence
B,: 4 “\29 (55)
&N, C° Vo

which agrees with Eq. (23) for the radiation field of an accel-

erating charge with velocity much less than c.




SECTION 3
RESPONSE OF A LINEAR WIRE ANTENNA TO PULSE EXCITATION

AND RADIATION IN THE BROADSIDE DIRECTION

3.1 TRAVELING PULSE ON WIRE ANTENNA; THE SOURCE OF RADIATION

A current pulse traveling on a linear wire antenna is
shown in Fig. 7. The current I(Z,t) satisfies a wave equation,
assuming no attenuation for simplicity, given by (see Appendix

I1I) 2

jl;llu — _L. _giigi_.-c) (56)
02% c* otz
The solution to Eq. (56), for a wave traveling in the +2 direc-
tion is the well-known equation
L (4,D= T(t-2Zlc) (57)
For ordinary conductors, it may be assumed that the
wave velocity is essentially the velocity of light ¢ (see Appen-
dix III). Skin effects will produce some round-off of sharp
wave-fronts. In the central part of the pulse shown in Fig. 7,

where the current is constant, no radiation is produced (a d.c.

current does not radiate). This foliows also from

o~

'X'_ = Sg:fVH = conatent = I, (58)
Thus velocity v is constant, acceleration a is zero, and there
is no radiation from that portion of the pulse where the current

is constant.

L3
.~
t
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The radiation arises solely from the leading and trail-
ing edges of the pulse, where the current (density) is changing
with time, which results in acceleration of charges. To sim-
plify the discussion of this phenomenon, consider an idealized
trapezoidal pulse with a very short rise time = fg seconds at
its leading edge, as shown in Fig. 8. This figure shows the
pulse at time &o (i.e., a "shapshot of J "frozen" at time tc ).

In time

te-ozlc (59)

J at point O changes from zero to J, . Thus the partial deriva-

tive of J with respect to time is

bI\ — S(to"&‘*?.?o\"j(fc .Zol - 3.0‘0 —So
Cﬂ? B °tQ tQ th

(60)

In Eq. (60), Z is fixed at its value Z, at point P. The partial

derivative of J with respect to distance 2 is

OF - T Z)-T(e Z2-08) _ 0-To _ =Je (s1)

oY - &2 b2 oz
From Eqs. (59,61),

>3 Jo
o2 cte




Differentiating the equation J=PV with respect to time results

XY U P
L8 . p N i oF (63)
T Y

The continuity equation, for this one-dimensional case reduces

to

_RAL gt = 23
._._._._b_t -\JsJ = x5 (64)

Combining Eqs. (60-64 incl.), the result is

Ja PY v X
- + (65)
ta » ot cte

Since v, the drift velocity of charges (electrons) in a conduct-
or is many orders of magnitude less than c (see Appendix IV),

Eq. (65) reduces to

¢ _ M PV P
e ol L e

Thus, alchough ajﬂbt can approach large values for very small

tR , the term W OPdt turns out to be smaller than POU(dt by a

factor equal to the ratio of the drift velocity to ¢, which is

considered to be on the order of 15'8 or less (see Appendix IV).
The above results for the trapezoidal pulse are a

special case of the more general result discussed in Appendix



III, which is

PE = p 2T N (67)

N————
~

ot ot
Hence, using Eq. (27), for charge q in length dz,

=T — 3 T(2.¢-vl)dzZ (68)
[qq']vﬂ‘_—at \

which is the same as Eq. (32). Thus the radiation arises from
the time derivative of the current, i.e., from the edges of a
flat-topped travelirg pulse, as previously asserted. Insertion
of Eq. (68) into Eqs. (23,24), and integration over the antenna
length variable Z, taking into account the retardation factor,
allows calculation of the radiation fields. Further discussion

of this is given in Section 4 (e.g., see Eq. (74)).

3.2 RADIATION NORMAL TO A WIRE ANTENNA

To illustrate the use of some of the concepts concern-
ing radiation which have been presented, they will be applied to
a well-known paper concerning the calculated and experimental
response of a thin cylindrical antenna to pulse excitation
(Ref. 26). 1In Ref. 26 the radiated field of a monopole at 6:'-):
is calculated by Fourier transform methods, and confirmed by
measurements. The monopole, of height V\ over a conducting

ground plane, is driven by a 50 ohm coaxial line, ac snown in



Fig. 9. The antennz length-to-radius ratio ( M/A& ) is given as
904. Several pulse lengths are used with space lengths CT vary-
ing from 0.2 h/c to 2.0 h/c. The exact shapes of the pulses
are specified in Ref. 26. In this report these shapes will be
taken as almest rectangular, with short risve ond decay times,
which greatly simplifies the discussion. Further, it will be
assumed that tne input surge inpedance of the monopole at its
base is approximately 300 ohms. This prod. s a current reflec-
tion coefficient of 0.72 on a 50 ohm line, which, as shown
below, gives good agreement with the published results.

The calculated radiated E field (Ref. 26, Fig. u,
top graph) for ¥% 0.2 h/c is sketched approximately in Fig. 10.
The amplitudes have been normalized so that the first pulse has
unity amplitude. The shape of this graph will now be explained.

As the leading edge of the pulse emerges from the
coaxial line onto the moncpoly, there is a reflection back into
the coaxial line, which is of 20 concern here, since that line
is terminated in 50 ohms. As explained in Section 3.1, the
leading edge of the pulse traveling on the monopole produces
radiation due to accelerated electrons from the instant it
emerges at local time f':o , which reaches P(R, 306) at time

t= tli-RiC. = Rlc . As the leading 2dge proceeds to a distance
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FIG. 9 Monopole over ground plane.
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FIG. 10 Radiation field of monopole.
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Z::Ctl, which is less than the space length of the pulse, radi-
ation continues to be emitted from the leading edge, arriving at
P at time t = th¥akk See Fig. 11. Hence the radiation emitted
in a period of time fl is received over the same period of time
at P. Neglecting line losses and the attenuation of the pulse
due to radiation, this radiation continues to arrive at P from
the leading edge, until the trailing edge of the pulse emerges
at time t‘z T from the coaxial line. At this instant, radi-
ation being emitted by deaccelerating electrons at the trailing
edge, with radiation opposite to that of the leading edge,
leaves to arrive at P at time VYt WR/C, where it cancels the
radiation from the leading edge. Hence the radiation at P con-
sists of a pulse of normalized amplitude equal to unity for a
time interval equal to T, and zero amplitude afterwards, during
the time that the entire pulse is traveling up the monopole, and
before the leading edge reaches the tip of the monopole. This
state of affairs is illustrated in Fig. 12, where the common
time delay of R/C has been dropped, and the traveling pulse has
a normalized amplitude of'¥\. At the leading edge, charge is
accelerated from zero velocity to unity (normalized) velocity,
while at the trailing edge, charge is deaccelerated from unity

to zero velocity. This is illustrated in Fig. 13, which shows

30O



(a) Pulse on monopole (b) Received waveform

FIG. 12 Initial radiated field when entire
pulse is on monopole.
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FIG. 13 Cancellation of radiation from leading
and trailing edges.



the resultant cancellation between the two edges. Due to the
ground piane, all of the above currents and charges have images.
However, for 6:3(?, the images merely duplicate and double the
radiation produced by the real monopole, so image effects need
not be considered separately.

When the leading edge reaches the monopole tip atZ:h )
and time ‘t' :\\/C. » the current goes to zero at the tip (approxi-
mately, since there can be cirrent flow over the end cap, unless
the end is sharpened to a needle-point (see Ref. 27)). Thus the
pulse breaks up into an incident and a reflected pulse, which
must appear as shown in Fig. l4 at some instant after the lead-
ing edge has reached the tip, but before the trailing edge has
reached the tip. The combined space lengths of both pulses is
CY . The radiation from the leading edge of the reflected pulse
and the trailing edge of :he incident pulse rzinforce each other;
hence the amplitude of the radiation field during the reflecticn
period of duration T is approximately -2 (normalized). That is,
the field amplitude®d~-2 in the time period:}c{'ﬁ%&-? , omitting
R|c . This reinforcement is illustrated in Fig. 15. The trail-
ing edge of the incident pulse deaccelerates charge from unity to
zero velocity, while the leading edge of the reflected pulse ac-

celerates charge from zero to negative unity velocity. In fact,
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FIG. 14 Pulse after reflection at tip.
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FIG. 15 Reinforcement of radiation from edges
during reflection from tip.




the reflection from the end is probably not perfect, and a cur-
rent reflection coefficient ¥ -0.9 leads to a field amplitude
=~\.9 which gives better agreement with the calculated field
amplitude = -1.93.

Summarizing the above, there is a burst of radiation
as the pulse emerges from the coaxial line, which ceases and
remains zero while the entire pulse length is traveling on the
line. This is followed by another burst of radiation when the
leading edge reaches the monopole tip, which ceases when the
trailing edge completes its reflection from the tip. After the
pulse has completed its first reflection from the tip, there
results a negative current pulse of amplitude —0.® traveling down
the monopole, as shown in Fig. 16. Again, as previously describ-
ed, the radiation from leading and trailing =dges cancel, leading
to zero radiation. Hence the radiated field appears as shown in
Fig. 17.

When the reflected pulse shown in Fig. 16 reaches the
base of the antenna, it is leaving a line with surge impedance of
(approximately) 300 ohms and encountering a coaxial line of char-
acteristic impedance =SOohms. Assuming for simplicity that the
surge impedance is largely resistive (there can be an apprecia-

ble reactive component; see Ref. (28), Figs. 5 and 6), the
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current reflection coefficient is
— @o“ GO - 3oc-50¢
e — =
¥+ EL 3oo £50

=0.712 (69)

The situation during this base reflection period is shown in

Fig. 18. The magnitude of the reflected current pulse is (-0.9)

(0.72) -0.65. The trailing edge of the incident pulse deaccel-
erates charge from -0.9 to zero amplitude, while the leading edge
of the reflected pulse accelerates charge from zero to -0.65
amplitude. The radiation field subsequent to the reflection of
the entire pulse from the base therefore appears as illustrated
in Fig. 19.

The reflected pulse of amplitude -0.65 travels back up
the antenna, and the previously described reflection phenomenon
at the monopole tip reoccurs., Assume (‘C_:_ 0. at the tip; the
reflected wave amplitude is 0.59, and the situation during this
reflection is shown in Fig., 20. The lagging edpe of the incident

pulse deaccelerates charge from-g.e& to zero velocity, while

the leading edge of the reflected pulse accelerates charpe from

zero te 0.59 velocity. The resultant radiation is then -(-0.65)
+ (0.59) = 1.24, The radiation waveform now appears a. shown in
Fig., 21.

Carrying the process through one more step, the reflec-

ted pulse of amplitude +0.59 returns to the base, where using
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c;. = 0.72, another reflected wave of amplitude 0,43 starts

back up the antenna. The situation during this second reflection
at the bas# i1s shown in Fig. 22, The radiation waveform is shown
in Fig. 23.

Comparison between the radiation waveforms of Fig. 23
and the calculated result (Ref, 26) shown in Fig. 10, shows a
fairly good agreement. Of course, the surge impedance and re-
flection coefficients have been selected, using previously pub-
lished data, so as to obtain good agreement. Nevertheless, it
is evident that the principal radiation characteristics of the
pulsed monopole antenna, at least for 8=3o°, can be explained
with the aid of the radiation mechanisms described above and some

simple transmission line calculations.

-3y -
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SECTION 4

RADIATION OF A PULSE-EXCITED LINEAR WIRE ANTENNA IN ANY DIRECTION

4,1 DERIVATION OF EQUATIONS

In this section, the equations are derived for the ra-
diation fields of a pulse-excited, linear, thin-wire antenna, in
any general direction at angle © with the antenna, using the ac-
celerated charge concepts previously developed. See Fig. 24
which shows a standard center-fed linear antenna. However, the
following discussion also pertains to any type of linear wire
anterna, including a monopole over a ground plane. These equa-
tions agree with those given by Manneback (Ref. 29, Eq. 12),
Schelkunoff (Ref., 30, pp. 102-109) and Ross et al (Refs. 31,32).
For an infinitely thin wire antenna, Refs. 29-32 inclusive give
the radiation field of a general current wave I (Z,t) traveling
undispersed at light velocity ¢ in the positive Z direction, cori-

ginating at origin 0, as

H, - T(t-vle) \tewose
® = T 4wy SNe

Ee: S'M(&- HQ (71)

An alternative form of Eq. (70) also appears, using the trigono-

(70)

metric identity

\reon e - 3Me (72)
awe \~or &
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which is

H —_ ‘I(f"vlc\ SUe (73)
¢ — 7 gwr \~058
From the accelerated charge viewpoint, the radiation
field due to an accelerated differential charge q of length d2

is found by combining Eqs. (24) and (68) to give

d'ﬂ-¢ — __Swe QT (B t-R/i) 42 (74)
4TWcR Ot

In Eq. (74), R appears in place of r as used in Eqs. (24) and
(68). In Eqs. (24,68) the distance from radiating element dZ
to field point P was designated as r, whereas in order to conform
to Refs., 29-32 inclusive, r will be used to designate the radial
distance from origin 0 to P, and R will designate the distance
from dZ to P.

The radiation field given by Eq. (74) is also that of
a Hertzian dipole, as given by Sommerfeld (Ref. 19), in the form
shown as Eq. (V-2) in Appendix V, where the dipole length 1 = dZ,

and

(75)

P : - RICHAZ
B(2,t-Rl) = g?.-(C{(Z)bRI(_)AZ) = 2 TR )

4n equation equivalent to Eq. (74) also appears in Manneback
(Ref. 29, Eq. (4)), where it is attributed to Hertz. In Appendix

VII, it is demonstrated that the use of Eq. (74) for a number of



standard antennas with a sinusoidally-time varying currents, such
as a dipole and a traveling-wave antenna, leads to agreement with
well-established results. In addition, in Appendix VII it is
also shown that for arbitrary time variation, dH obtained from a
vector potential A formulation is the same as given by Eq. (74).

Consider the field of a current wave traveling at ve-
locity ¢ in the positive Z direction on the upper half 0% Z-f'_\'\
of the antenna shown in Fig. 24, The field due to waves on the
lower half ‘\\ € 2%£0 of the antenna is calculated similarly as
shown later. From Eq. (III-13), the traveling current wave is
given by

T(2,t)= T(t-2/c) (76)

In order to postpone, for the time being, inclusion of the ef-
fects of terminal conditions at the end of the antenna Z = h,
(i.e., a reflected wave moving in the negative Z direction), let
I at any particular time extend from Z = 0 to Z = L, where L £ h,
as shown in Fig. 24. The field at P is then found by integrating

Eq (74) from 2 = 0 to Z = L,

W, — \ ML) BI(Z,&'—RIC\AZ (77)
® - "awc | R ot

For point P sufficiently distant, the variable R in

Eq. (77) may be replaced by the usual tar-field approximation

RYY-2@s 0 (78)

Eq. (78) is based upon the assumption that at any time the largest



spatial extent Z = L of the c~urrent on the antenna is small com-
pared to R and r, and Eq. (77) is based upon the assumption that
the current wave I has not yet reached the antenna end Z = h.
Then, and only then, R may be replaced with negligible error by
r in the denominator of the integrand i. Eq. (77), and sin © may
be regarded as constant, since R and r approach parallelism when

Eq. (78) holds trune. Then Eq. (77) becomes

L

Wy = 5mej D T(2E-RI)Z  (9)
¢ 4 rc ot

©

The function I (Z,t-R/c) in Eq. (79), can be rewritten,

using Eqs. (76,78), as

T (@ ROZT(-2-R)=T - L~ Fl-=d)

(80)
Thus Eq. (79) becomes
L
Wy — —SWne D TH--L - 2 (-wse)\dz
¢ 4nrc ot < < ( )) (81)

Now

- X __2f S W A S S - (WO P =T
.th_IU? - Z(oe)=T Flt-2 Z(r«se)) -




!
where I denotes the derivative of I ( t - -E—--f—(\-caso)) with
respect to the argument ( t - ’gf—'az_-(\‘(naﬁ)).

Similarly
{
D TWH- - Z2(wse))= — lmwme T (83)

From Eqs. (82,83),

AT(t-f-Z(-wsp) = =S DI(-I- 2(rapo)

2t \~e56 o2 (84)
Eq. (84) is typical of the relationship between the t and 2
partial derivatives for traveling waves. Substitution of Eq.

(84) into Eq. (8l1l) gives

L
- __5W6 \ D +_ r _ 2
H“’“ \-98 4anazI( o~ = (-@s6)) 42 (o)

The partial derivatives of I with respect to either 2
or t cannot have infinite values, in the actual case. The slopes
of any real wave I traveling on a wire may be very large, but
must be finite, even for a hypothetical square pulse applied to
the input terminals. This is discussed in more detail in Appen-
dix III, subsection 3, entitled "Wave Travel of Step Funcrvions
and Pulses on Lossy Lines." However, the employment of step and
delta waveforms in concept, or as models of actual waveforms is

so useful and important that their radiation properties must be

- 46 -
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analyzed. This is done in Section 4,2, At this point, assuming

that I has no infinite slopes, the integral in Eq. (85) reduces

simply to

\—\Q(t,r): _i(@_{-:_[&- cy-T (-vlc-t Cl-(oae\lc]

&TY¢ (86a)
fley= S8 _ _Hwse (86b)
\-wne S

The retardation time r/c¢ identifies the first term in
the brackets of Eq. (86) as the current that was at the origin

0 at time r/c ago., The retardation time

X .+ .L — L, lese (87)
C*c(\%e\'_c{' c

of the second term is the sum of the time L/c for the leading
edge of the current wave I to travel along the antenna from the
origin to 2 = L, plus the time (Y—L(bbe\[C_ for propagation of
the field from 2 = L to point P, This identifies the second term
as the current that was at the origin 0 at time(-J:&Légzggﬁgi-)
ago, which is the current at the leading edge of I. But for

the use of non-infinite derivatives of I, the leading-edge cur-

rent must be zern, as illustrated in F 25. Hence Eq. (86)
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reduces to

H, (t X)) = L(-vleY  _itwse (88)
oLt IS & S8

Eq. (88) is the same as Eq. (70) or Eq. (73). The
field appears to be radiated in spherical waves from the origin.
Thus, although the radiation emanates from all parts of the
traveling wave where there is acceleration of charge (i.e., a
non-zero time derivative of current), the integration of this
derivative along the wave produces the interesting result that
the far-field radiation acts as if it emanated only from the
point of initial excitation, the origin. Similar results, but
for differing reasons appear in Refs. (29-32 inclusive).

Eq. (88) can be derived in an alternative manner,
which is shorter and instructive. In Eq. (85) make the follow-

ing substitutions:

Z'= 2 (1-©0s6) (69b)
L' = L (l-wse) (89c)
Then t
‘ /
X O\ — -Swe | Q T(t--=)dz (90)
p“%&*‘—”\" \- 058 eraz' <

'
Let I(t ,2 ) be a finite-slope function, as shown in Fig. 26.

Replace tt integral in Eq. (90), using equi-valued intervals

o - 49 -
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AEI given by
AZ= L /m (91)

by summation shown below:
‘

L O o, N t ‘- ¢ ¢
d - — 2 Tk-Z/co
JS_?I(‘( Zic)dg' = § 2, T-ZiNoz

M
o

:‘:[I"“"\ ¢ T2l oy 0Tt A
62 Az o2
Hence

[}

L . .
J D TWH-2%Vdz2 2 -Tlo, Y (42)
0 52'

. ry . .. .
Since I (0,t ) is the current at the origin, i.e.,

T (22 'Y= T(t-vic) (93)

then Eq. (90) reduces to Eq. (88), i.e ,

H — I(t“:{(o\ '\"’Cﬂ)e (9&)
Qu’"\’" 4TC S8

4,2 RADIATION DUL TO STEP-FUNCTION EXCITATION

The above method, based upon Eq. (90), also allows a
simple derivation of the radiation field due to current waves
with infinite derivatives, such as step-functions, rectanpular

pulses, or impulses. The transformation from the time deriva-

tive of Eq. (81) to the space derivative of Eq. (85) continues
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to hold, even for these cases, as can be shown by a limiting
process going from non-finite slopes to infinite slopes. Thus
Eq. (90), based upon Eq. (85), continues to hold.
Consider the traveling-wave step function
T(2,0=T Uit-2(c) (95)
vhere U(x) is the standard step function given by U=zl for x220

and U=0 for x< 0. Then Eq. (90) yields

Lf .
—~ —Swe | J A(I(o\UL’t'-Z‘/C\)AZI (96)

=058 4 TYr oaz"

The derivative of the step function inside the inte-
gral in Eq. (96) yields a delta function, which can be inte-
grated. However, the integral can be evaluated alternatively by
first allowing the traveling-wave to have a steep, but finite
slope at its leading cdge, performing the integration, and pass-
ing to the limit of an infinite slope. See Fig. 27. This mathe-
matical process, has real physical significance, since it shows
how a hypothetical step function can be approximated as closely

as desired bv an increasingly steep but finite-slope wavefront.

Hence i
L‘ { \‘ La I( ’ Xdz_(
p T - m 9. 2 -(-'
2 (To)UR-Z(dz = 1 ) s (97)
22 )
o)
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where I(Z',tl) is the finite-slope function shown in Fig. 27.

Since
DIt = - IO (-a2ez'2 ') (ssa)
bZ &2!
- 0o (oeZ2 4 L - 52) (98b)
then '
v ‘ 2' { t t
J—a—-,(ﬂo\u( -E N7z [- Idz=-TEe) 9
obz 52" &2

Since for a step function I(0) is also the current at the origin
0, then as before, I(0) = I(Z,=0,tl) = I(t-r/c, and Eqs. 96,
99) yield again Eq. (94).

An alternative derivation of Eq. (9u4), using the for-
mal mathematical properties of step and delta functions, proceeds
directly from Eq. (8l1). A traveling step function, using Eq.

(85), becomes

'L(Z\Jc-RIC\: IOUUT‘—CY_—— %(Hﬂﬁéﬂ (100)

The derivative in Eq. (81) ‘s

2 T Ult- T -Elree) = T, §(t- L -2 (rese)

65 ot (101)
= where § is the standard delta function. Eq. (8l) becomes

\44 —T _5W6 5( %_ic_(\@ﬁe\)dz(wn

S 'Y
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Substitute®

X - 2..(%2&1 (103)
42 = - —rC——AX (104)
-~ 058

Eq. (102) becomes

0
Hy = liwe T, X SO (L)X (105)

sSe L
4wy L(r-©38)

S0 4wr < (106a)

-0 otetwise (106b)

X
The interval —-é(\'(n363 by Z""tf-_ O can be rewritten as

{-.f_ t ¢ £+ _2."__(\.-. (059\. Using h for L, Eq. (1068) becomes

\’lq(ﬁ*\ — \Wwe L U(t-ric) (107
3ng 4y
r(_ c X \'\
- S v (107b)
—< te + 2 (ras o)
Thus the initial pulse of the radiation waveform ¢ Lo step

function excitation has the amplitude given by Eq. (106a) and
lasts over a duration time interval of %(\—w:e\ seconds, not

-\éseconds. This 1is discussed further below,

“An alternative evaluation of the integral in Eq. (102) is
gpiven in Appendix VI,
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Since any function can be represented as a sum (super-
position) of step functions, and Eq. (107) is the response of
the antenna to a step function inout, *hen by the linear super-
positien theorem (Ref. (33}, p. 113), tne antenna response to @

general current function input I, will be

\,\Q (e, 8) - Tl X(e) ks

(1282)
qv 300
Yeygcs -L+.\L(t-cose\} (108b)
C < c

Eq. (108) is the same as Eq. (94),

The radiated waveform for an input step functicn is
thus given by Ee¢. (107). Actually, according <o the accelerated-
charge radiation concepts, the sourze of the radiation is in the
moving leading edge (step) of this waveform. Tle distance R
between this moving step and P varies, but for P sufficientlv
far away, R may be replaced in the denominator bv r in %Ta. (77)
which is why r appears in the denominator of La. (207).

The radiated field as observed at P commences at time
r/c after the instant the step function enters the antenna at
the oripin 0, and remains constant at the value given by Ia,
(107) until the traveling current ~<tep wavefront reaches the an-
trenna «nd 7 = h, where a reflected wave o initigted, The “leld

at P rema‘ns constant at the value ~iyvan v A, 010



radiation from the reflected wave reaches . Therefore the du-
ration of this initial constant field a* P Iis -%%(i“uﬁé\ and not

h/c. This can be seen by examination of the following table and

Fig. 28
Observed tim2 of
Location of Local! time arrival of radiation

Event step wavefront at antenna atv P

1 entry at origin 0 r/c

2 z Z/c r/c L 2(\-ws8)(C

3 reflection at h h/c vic + WG/ C

y return to origin 2h/c vie © 2hic

In the local time frame at the antenna the timespan between
erents 3 and 1 is h/c, but to the observer at P, this time span
is h/c (kwoae\ , as measured by his observations of the received
field. This is illustrated by the upper waveform in Fig. 29,
The fact that the radiation-producing si.»> is travel-
ing towards the observer produces the chserved time comprecsion
factor of (J'Cﬂﬁfﬁ . Similarly, the t lme span between ecvents &
and 3 is again h/c in the local antenna tiwre, but i< h/c (Hwnbéh
as measured bv the observer at P, This 135 because the radlatinrs

wavefront is now traveling away from the observer, resulting in

. . I4 - .

a tire exnarsion factor of \\*Cesea\. The +*imae cspr3n between
events 4 and 1 is 2h/c to beth an onserver a1° the an*enna ond av
P, as it should '~, ~ince both events ccrur 1t g figed 1o.nt,

the origin.
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The reflection of an incidenu current wave I at the
open end Z = h is equivalent to =tarting two waves from that
end, each -I(t-h/c). One continues in the +Z direction (sup-
posed to be extended) along with the incident wave, thus can-
celing the incident wave for all Z2h, and the other propagates
back in the -Z direction (Ref. 29, p. 298), also (Ref. 30, p.
105). The fields due to these two new waves are as follows

(Ref, 30, pp. 104, 105 and Ref., 31, p. 1lul)

L =Tl-Ne-Y1)  \yusa' (109)
+2Z wove + H@ — 47 ¢! s\ne’
- 2 WaNes HCP = ~Tlt-hle- 1) \~se (110)
47Ty 3me’

In Eqs. (109,110), r’ is the magnitude of the vector ! drawn
from the end Z = h to P, and 6‘ is the angl: between the +Z axis
and ¥/. For P sufficiently far, r’ may be replaced by r in the
denominators, and 6' by ® . The radiation from these two waves
thus appears to emanate from the end Z = h.

To calculate the H¢ field for step-function excita-
tion of a center-fed dipole, or a monopole over a ground plane,
it is necessary to take intoc account the radiation from both
arms of the dipole, or the image in a ground plane. The icable

below gives the observed magnitudes and time durations of the



received radiation pulses due to both up and down-going current
waves on each arm, over one time cycle of wave travel, starting
with the step at the origin, followed by travel along the an-
tenna, then perfect refiection at the ends Z = +h, and return
to the origin where perfect absorption (no reflection) is assum-
ed for simplicity. Fig. 29(a) shows the radiation wave-forms
for HQ . multiplied by the common factor (4T ¥/ To) . The ¢ 2
symbols in Fig. 29(a) show the directions of travel of the step

on the antenna.
Number in Direction of 40 ¢ Duration of
Arm Fig. 29 wave travel HQ( 1'9“") radiation pulse

+2 bwe g ete B -oe)

Upper 1 (initial wave) 510
-2 _lwe M(lets
Upper 2 (reflected wave) ) c ” c
-2 A0 2. YIYn
Lower 3 (initial wave) SN cct c ¢ 3@\
+2 -l N gyt 20
Lower Y (reflected wave) SMme c c

The radiation response due to an impulsive excitation
may be found by taking the time derivative of the response due
to a step excitation. Thus the radiation due to an impulse, as
shown in Fig., 29(b), is obtained by time differentiation of the
radiation wave-form shown in Fig. 29(a) due to a step. Forezsoo

the two inner impulses in Fip. 29(b) erge at h/c to form a



negative impulse with amplitude twice that of the two outer posi-
tive impulses, as shown in Fig. 30(b). This impulsive response
at 8:900, as well as for other values of §, can also be obtained
from the response to a rectangular pulse of width T, by letting
iy approach zero, It should be kept in mind that these results
assume no reflection at the origin. The case when there is re-
flection at the origin is considered below.

For Bzqu;, the radiation waveforms of Fig. 29 reduce
to those shown in Fig. 30.

If the feeder transmission line impedance is not match-
ed to ibhe surge impedance of the antenna, then the step wave-
tronts are reflected on return to the origin Z = 0. Let the
current reflection coefficient at the origin be kb (- 0.72 in
Section 3. Further, for the sake of completeness, assume non-
perfect reflection at the ends Z = % h, and let the reflection
coefficients there be Ké(: -0.9 in Section 3). Then the radia-
tion waveforms shown in Fig. 29 must be modified in amplitude
and extended in time as shown in Fig. 31l. TFor the sake of defi-

niteness, © = HSO,\<O = 0.72, and\ve = -0.9 in Fig. 31.

4,3 RADIATION DUE TO PULSE EXCITATION; COMPARISON WITH A
FREQUENCY-DOMAIN ANALYSIS
In this subsection, the radiation due to a rectangu-

lar pulse will be calculated using the time domain techniques
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discussed in the previous subsections. Let the pulse duration
be Y seconds, where | is less than the travel time h/c on either
arm of length h of a center-fed dipole as shown in Fig. 24, or
on the length h of a monopole over a ground plane. Such a pulse
traveling on each arm of the antenna may be represented before
reflection at the ends as the sum of two traveling step func-

tions as follows:

U (k- 2{e) - U (t-T- Zle) (111a)
U (++2Icy =V (£-T+21) (111b)

upper arm:
lower arm:
The time history of the radiation waveforms due to the

first terms (leading edge of the pulse) in Eqs. (llla,1llb), in-
cluding reflections at the ends 2 = % h and at the origin 2 = 0
has been illustrated in Fig. 31. The radiation waveform due '
the second term (trailing edge of the pulse) has a similar shape,
except that the sign is revised due to multiplication by -1, and
the waveform is shifted to the right along the time axis by T,
due to the time delay of T seconds between leading and trailing
edges. Addition of the two sets of waveforme thus gives the
radiation waveforms for rectangular pulse excitation of a
center-fed dipole, with a current reflection coefficient K¢ at
the dipole ends, and “Q at the input (2 = 0), for a pulse width

less than the antenna travel time h/c.




The details of this time-domain calculation have been
carried out, but are not repeated here, to permit cor 'irison
with an example given in Ref. (34). In Ref. (3u4), the center-
driven cylindrical antenna has a length to radius ratio 2-2 304,
with a source excitation ulse of trapezoidal shape with a base
width of about 0.55 h/c¢c, a flat top width of about 0.26 h/c,
and a width o! about 0.38 h/c at the 50 percent peak amplitude
point, The transmission line has a 50 ohm impedance. To defin-
itize the comparison, the following numerical values were assum-

ed:
y-o.ahic

Ko =-0.9 (112)

KO ______300‘50 — .12
300450

i

The patterns in Ref. (34) are calcul ted for the far-
zone field using an inverse Fourier transform of the response to
sinusoidal excitation Cswt. A comparison between these patterns
as given in Ref., (34), and those calculated as explained above,
assuming a rectangular pulse of wiuthY = 0.4 h/c are presented
in Fig. 32, for different values of polar angle 8 . The patterns
of Ref. (34), as shown in Fig. 32 nave teen simplified . that
small amplitude oscillaticns have been ormittea, however the indi-
cated amplitudes, widths and tires of the rriucipal pulses follow

the values given in Fef, (3u) : ~<losely as can be read trem *re
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curves presented therein. Thc time-domain results have been
S

norialized so that the first pulse for O=90 (broadside) has
the same amplitude (=1.8£5) as the corresponding pulse in Ref.
(34), thereby afforaing ready comparison.

Inspectisn of the two sets of curves in Fig. 32 shows
a fairly reasonable agreement, considering the relatively ap-
proximate nature of the ime-domain calculations, except as &

- o o ©

approaches small angles. Fer ©® = 80 , 70 , 60 , and 45 , the
asreement is fairly rood as measured by the number of pulses,
their amplitudes, widths, and positions. For example, as B

decreases, the amplitude of the first pulse increases approxi-
mately as predicted by the (#%¢e%8)[8wWme factor of Eq. (107a),
until 8:20°. Further, using time-domain analysis, it is simple
to show tnat as O decreases from 30 , the received pulse width
rerains constant at T until t.e anple 8 is reached at which the
quantitv(\-(oseyx/c becomes less than T . For O less than this
angie, the pulse width, tor an ideal rectangular pulse, becomes

<]

fad . . 3
\ = u.« h/c, this angle is 53 . Inspection of

(\-0s@)h/c.  ltor

the -urves given in Ref. (34> shows that the received pulse

o
widcn tevains to decrease for ® around 5% , in agreement with the
tire-dorgin prediction, dand continues to Jdecrease as @ decreudses,
dFdln ln o Jdyreetent with o the tite-dor ain analvsis.,



——, r‘».—\v
N . ~

L5§

0.39

‘-4

o o.4

l 0h6 bt L3¢ 24

..--"\

N
s

( 890"

0.3%
”\~./“~.

.0

-
-

34

0.97

0.4
sl

o4

-\l6

’ ~
o e,
3 .
.
L O&
B
* [}
’ L}
’ [}
.. e g e e —
.5
»
A
.
.
.
LY
LY

i -\.i'_';:.
\.O

-\s

2

Ywae dovatn
Re € (34)

24 266

jez7o°

Poc; 3.34 3.4

.

S oee

a4

—J-e2a |

—-0.\5

4.4

| A
~0.25%

4.6

~0.66




112

\.27

. 03

0.5 09 LW 4.445 qs

0 o4 2425 2.9 8.5 3.9 |

~0.28
85 1 o3

SO -\.60 ‘[
-\ \.00
<oy ¢ ST 085
: [ O-~o o ‘\ o". :
1 \ .-“\“”‘T "' AT P 2

..
-, e
[y

A : .v' * -0.20 N .
", : i n -0
A h \ .

- e (-vic) (hWic)
-5 -

2.\5

—_ 126

o.81

|
- Al
o4 0.1 \1 b4 43 44 A7
0.3 12> 23 T

3-7 1 L}

,t A5 o l -0.82 !
= )
o 249 e Ie

- X .9

. 1y
o, © .
% ; O We) 2.0 3.0 4.0 5.0

e twvme dowmann
5 o : Re £.(34)
o

Q
F Y FIG., 32(1) Radiation wivetorms for 8= 600.)45



>
>
B
.
Lo
©
. "
of
PR
2f
b i{;
R
k3
%I g
PO
i
o/\V
f
Lo
I

94 | 206

34
29

\-9

434 446
¥ _of

-2.9

S2¢ (Mo

-1.85

(—E —>
3
ne
O,

(- /) (hlc)A/

.
3 e
M “ K A
: . ,
3 3_ 0.25 ; . ’ h
4 .
\ W AW AL S . AN . AN DI b
i A R T AR VI . TR e N i N
> k
\ : : N |
i ' '
L sl
v P
. +
. 3
. L]
. ‘
.

.'O

FIG.

32(c

)

2.0

twme dowian
Re £.(34)

3.0

4.0 3.0

o
Radiation waveforms for =20 |,



However, it is clear that there is serious disagree-
o »
ment between the two sets of results for O €26 . The time-
domain analysis as presented in this report, which leads to eq-
uations such as Eqs. (70) and (107), which agree with previously
published work (Refs. 29-32 incl.), predic*s a field which con-

tinues to increase with decreasing 6 as

O-=3mll MO -

On the other hand, while the frequency-domain analysis of Ref.
(34), presents curves which show a field which does increase
approximately as (\-\'Coee)/ﬁma, from 90° to uOo , the e=20°
curve distinctly shows a field which has begun to decrease again.
The disagreement arises in the singular behaviour predicted by
Eqs. (70,107,113) for the field which increases without limit as
© approaches zero. This behaviour is discussed in more detail
in subsection 4.4 below.

However, it is stated in advance that while this dis-
cussion shows that the total radiated energy of the pulsed di-
pole antenna remains finite, and that the fields do not go to
infinity as O-O for an infinite-length antenna, nevertheless
the disagreement noted above for small values of & remains
unresolved. pxperimental investiyation of the fields of a

pulsed dipole for ©® = small might help to resolve this point.



4,4 DISCUSSION OF PULSED WIRE-ANTENNA RADIATION, ESPECIALLY AT
SMALL VALUES OF O

Eqs. (70,71) have been derived in this report for a
current wave traveling in the +Z direction on a finite-length
linear antenna, such as a dipole, the effect of the ends not be-
ing included. The same equations are derived using the retarded
vector potential A for a finite-length antenna by Ross et al
(Ref. 31, pp. 17, 117) and also for an infinite-length antenna
using a Green's function by Ross et al (Ref. 31, p. 142). The
effect of the ends is accounted for by a reflected current wave
by Ross et al (Ref. 32, p. 115). The same equations were pre-
sented without derivation by Manneback (R=f. 29, p. 294) for an
infinite-length wire; he showed that these expressions satisfy
Maxwell's equations, neglecting \/ Yz terms compared tol/r terms,
and that for © small, Eqs. (70,71) reduce to the expected fields
Ee> \'\Q of a plane electromagnetic wave traveling at velocity c
along a wire. Manneback also took into account end effects by
partial or total reflection at the ends; see Eqs. (109,110).
Schelkunoff (Ref. 30) shows that Eqs. (70,71) are really exact,

2
including \[ Y" terms, for an infinite-length wire; he also

accounts for end effects by equations such as Lgqs. (109,110).
. The purpose of the abcve “iscussion is to show that

w7 the radiation equations for finite-length antennas are the same




as for the infinite-length antennas, except that provision must
be made for end effects. For infinite-length antennas there are
no end discontinuities; the fields in the direction of the an-
tenna (small &) travel with the current wave along the antenna
at velocity ¢. For the finite-length case, the ends represent
a discontinuity, such as partial or total reflection, or absorp-
tion. The radiation from the finite-length antenna is thus cal-
culated using the same equations as for the infinite-length
case, modified by appropriate reflection coefficients for termin-
al conditions, with due regard to the direction of current wave
travel and time delays (e.g., Eqs. (109,110)).

For an infinite-lenpgth antenna, Eqs. (70,71) present
no special problems as OO . Ross et al (Ref. 31, p. 137) show

that Ampere's law in the form

é) H-dL =T (114)

is satisfied by Eq. (70) for & +0. 3ee Fig. 33, Thus
ﬂ: Y 36

éfr ﬂ(f\t\éi = HQ(r\ﬂzrrJZ = H¢(T‘*\2Wf51n8
— Ilt-dley  _tesd  2nysue

4TY( SN




Using \¥@s® =2 and Y2 as D =0 ,

b AT, Nedl = Tl-20C) (128)

Thus the line integral of H near the wire at distance Z from the
origin, at time t, is the current that was at the origin at time
Z/c ago. Since the current is assumed to travel undispersed
along t'e wire at velocity ¢, this is exactly the current that
is now (at time t) at Z, and has reached the loop area. It is
pointed out that Eq. (11lu4) is not the complete form of Ampere's
law, which is, for stationary boundaries,

R T8 ke fp| €4S (110)

2

The first term in the RHS of Eq. (116) is the conduction current,
and the second term is the displacement current. However, as
©8-~+0, and the surface of the wire is approached, c\,f; —=+d5 52 R
the radial component (Z-compone t) of L-#9, and thereforeé-Aé&Cl
Thus Lqs., (114,115) hold as ®&-=»0. Schelkunoff (Ref 30, p. 109)
arrives at the same results using a conductor which is a semi-
infinite cone of half-angle w . As(%*@ (surface ot the cone),
Ampere's law in the form of Eq (ll4) is invoked, the radial com-

ponent of E being zero at the surface. Ltee Fipy. 34,




FIG. 33 Line integral of H for semi-infinite wire.

FI6. 34 Line intepral of H for semi-intinite cone.




The soragoing discussion indicates that as far as cal-
culation of the fields due to traveling waves on infinite wires
is concerned, including the case of §—+0O , there is agreement
among the various writers cited. Fig. 35 illustrates how the
fields wavefront travels with the current wave along the antenna
at velocity c¢. Two wavefronts are shown at time t. The lead-
ing wivefront is due to a current element I\da now at Z= “
and formerly at the origin at time ¥-Yi{Cc , the second wavefront
is due to a current element xde' now at 2=Y2 , and formerly
at the origin at time t-velc.

For a finite-length antenni, Fiy. 36 illustrates how
the radiation field at a far-field j;oint I' varies in time. As-
sume a step-function excitation. .he :initial radiation to reach
P is due to the current wave traveliny in tne +2 directicn., At
tine \1(}‘CO$631C later, the radiation from the reflected cur-
rent wave arrives at P. At exactly B=0O , the two wavefronts arc
just tangent. Calculation of the resultant field at B=0O is
beset with a number of difficulties such as the boundary condi-
tions at tle end < = h, the effects of a finite wire diameter,
the discontinuity experienced by the traveling field wavefront
as it mcves off the end of the wire into space, and the zero
duration of tnis field. thowever, at non-.erc valies ot O, it

is clear that the radiation tnat arrives f.rot at ' is due only
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FIG. 35 Currents and wavefronts for current wave
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to the initial current wave traveling in the +2 direction; the
radiation change due to arrival of thz current wave at the end‘)
reaches P at time h(\“‘COSG)/C later. Hence during the time
interval Q% t € W(lr©056)[C, the curreni step has not yet reached
the antenna end, and the radiation at P must be independent of
what occurs at 2 = h. Therefore, during this non-zero time in-
terval, unaffected as yet by end conditions, the field is given
by Eq. (107a) for a step waveform, and by Eq. (108a) for a gen-
eral current wavetorm, All the cited references (Ref. 29-32
incl.) agree on this form of the radiation equation. Hernce the
bothersome question remains as to the behaviour of this field
for small O as 2[5\“9 , which disagrees with the calculations
of Ref., (34),

In terms of field amplitude or power per unit area,
the linear pulsed antenna appears to act as an end-fire antenna.
Ordinary (sinusoidal time variation) traveling wave linear
antennas also act to tilt the radiation pattern in the forward
direction, the tilt increasing with the ratio of antenna lensth
to wavelength. However, such antennas are terminated at the
ends so as to eliminate standing waves, i.e., an absorption
terrination instead of an open end. Hence any comparison with

ordinary traveling wave antennas mrust be t° ated with cauticen.



In terms of radiated energy, some interesting couclu-
sions are easily arrived at for tie pulsed dipole antenna. As-
sume step excitation, for simplicity, and perfect end reflec-
tion. For one cycle of current travel on the antenna oste ZHC,
Tig, 29(a) shows the radiated field, for esn/2 . Forgf_efﬂ s
it is simple to show that the total radiation waveform remains
unchanged in form, consisting of two pulses as shown of tne sanme
amplitude and time duration as for 82 Tl2. uence the radiated

energy per unit area (two pulses, at any angle8is
2hlc . Iz
E£(8)=) Jute Hdt =2 |& 22 W (- \@se))
(o}

£ (4ur\smy <

2
. o\ — M _._.I_Q..___ h _,_\ (117)
8(\ E 2-((2‘-2 el \*‘\0039\
_J_E(O e (118

L
Emzy  ?

Thus the energy per unit area is tinite at all anyles. Also the
. 2] . . .

broadside (8: %O) energv per unLit area is twlce thav in the end-
. . P o

fire directions (820 )\80_), decreas.ny srootaly from tae

broadside maximum. The singsular Lenv.our .o radiate il tuae
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and power as - 0‘:\800 is not manifested in the energy. In
terms of radiated energy, the antenna does not act as an end-
fire type.

The total energy Et radiated in cne cycle o,f:{-thlC.
by a step excitation on a dipole antenrna is found by integrating

Eq. (117) over the surface of a sphere. This leads to

2 (| -n'lzq'
oo Ik 2” ¥ 3mededd
=TV & 21 ¢ v (e
° 90
Using
T2
Sweade _\, 2
\twen®
o

_re AT h 2 e
Et-—Ia 5—5 o o (119)

Hence the total radiated energy is finite.

Before leaving the subject of the singular behaviour
of the field amplitudes as ©=~0, it is pertinent to note what
happens if the velocity of propagation 'm,yof the traveling cur-
rent wave along the antenna is very slightly less than ¢. Then
the factor of (\+¢o5®)/5WMO = 5O [(®36) in Eq. (107a) is re-
placed by ﬁﬁmel(l-ﬁ((ﬁ@s, where @=Upfc<} (Rex. 32, p. 123)
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Thé significance of this is ‘that the "infinity catastrophe at
©=0 disappears. The field now goes to zero at =0 , and has

a maximum at e‘,':COf:‘ﬁ given by ﬁ/ﬁﬂ‘lém . FPor example, for
£=0.9Q, ém-_;-“,5° . It is only a conjecture if some ef-~
fects of this nature are indeed taking place on bare wire an-
tennas. The discussion of propagation of sharp wavefronts on
lossy lines in Appendix III indicates that the definition of an
effective velocity of propagation depends upon the details of

build-up of the wavefront at a point along the antenna.




SECTION 5

RADIATION FROM LOOP ANTENNAS

5.1 INTRODUCTION

In this section, the radiation of a circular loop an=
tenna 's examined. Two examples are given. The first is a loop
driven with sinusoidal time-varying excitation, for which the
solution is well-known. The radiation field is derived from the
accelerated charge Eqs. (V-7,32), ghich for a linear element dZ
lead to Eq. (74). This example illustrates that these equations
produce correct results for known cases. The second example is
a loop driven by pulsed excitation, for which a solution has re-
cently been made available using both frequency and time-domain
analysis (Ref. 35), The time-domain analysis is examined to
verify that its formulation in the time domain agrees with that

developed in this report.

5.2 SINUSOIDAL TIME-VARYING EXCITATION

The loop is taken in the XY-plane, with radius b suffi-
ciently small compared to wavelength so that the current can be
assumed to be constant around the loop, to a good approximation
(Ref. 22, p. 56). In Appendix V it is shown that Eq (V-7), for
the radiation field of an accelerated charge moving at low relat-

ivistic velocities, becomes Eq. (V-32). For a loop, differential
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length dZ is replaced by the differential circumfe*ential length
- N T
dL :AL%’ = bACb 2 (120)
See Fig. 37. The coordinates of the current scuirce element dL
are ( 531‘/2 )Ql ), and those of the field pé¥ wtt P are (T‘e;fb).
Eq. (V-32) becomes
— Ad —
c\\'\: \ IA\—K(’\‘ (121)
4T R
tet

For point P in the far field, R may be replé.ed by r in the de-

nominator of Eq. (121). Using

.j—__ oz B% I (t- (?i~€§) (122)
vot
T=T @3““-‘- (123)
L0
it follows that
@.I(t—@{c}: 'w’if'@e"‘\k‘?e*mt (124)
ot J
Hence
- . ..‘k —— .
§

For P in the far field, K is essentially parallel to r, so unit

A n
vector N\ may be replaced by unit vector &y , and

Ry Tn\awﬂ) (126)
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FIG, 37 Loop geometry.
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where, from spherical trigonometry

CoS\P:wsw-é‘)sme (127)

Hence

e—;;KR _ e—;\Kf:e jkbeosy é-5\<r eskhwa({)—é'\)sxne (128)

By hypothesis, Wb = 2ub/hee | » hence

G ¥RR - “3“'(\\-(‘\\?5@55@-4,'\5‘“9 (129)

- A -
Resolving dL along the directions Q, parallel to S, the pro-~

jection of T on the XY-plane, and Ci.L (:&é\ perpendicular to Ja,
- A A
dL = 4L Eos (b-d') a, +oin (b-4") q“] (130)

Substituting Eqs. (120,129,130) into Eq. (125) and integrating

. /
over the variable ¢ ,

K= Jwl, e X0 5"3 J[\ﬂwbsmemﬂ(é-ds\]

4CY

. Eos (@@'\ a,t s (Q«@\a;\&b(xd\.r

Wb 8%, bwr(a‘r\b’tsme\\a_l_xqr\
MY

2
Using loop area A= Wh™, K=W[C | nagnetic moment M. = TA
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N
and Q) =

k]

¢

M 2

Bz =Me K™ smoe
4T Y

1(wt-Re) &
) Ao (131)

which is a well-known result (Ref. 21, p. 95).

5.3 PULSE EXCITATION

In Ref. (35) the loop is as shown in Fig. 37. The E
field is calculated in (Ref. 35) using the radiation field of an
infinitesimal dipole given by Sommerfeld. Using the equations

developed in this report, E is given by Eqs. (II-34, V-37) as

E = sﬂlg'(ﬁx?\) (132)

Hence Eq. (121) can be used, to yield

A€ -\ (TdLx ) x 0 (133)
4NEC? R
vet -~ -
From Eq. (V-22) for the differential current element hW=d\L ,
T - ° -
D" B-RI) = I *-RIA)AL (134)
24

In the far field R is replaced by r (except in the arguments of
- - - - AN = LN

P or I), and since R and r are parallel, then N =¢/r= ay |,
Hence Eq. (133) can be written as

2 - -
A€ =1\ R B-RIOKY LxT (135
ATE C2 Y3 ) at%

Eq. (135) is identical to the equation for dE developed in (Ref.

35, p. 28).




o A
'

[N,

. —

B T L e Az

In Ref, (35) the source and field point coordinates are(b’%) Q‘_B

and (Rb‘eo)¢°\ respectively, whereas here they are (b, 12.1:") (b'}

and (‘(‘“)e’¢§ . The distance batween source and field points is

r in Ref., (35), whereas here it is R. Taking this into account,

Eq. (135) is the same as that used in Ref. (35) (p. 28, Eq. (u)).
A

A
Returning to Eq. (133), using Eq. f130), QAL<T Q‘i’ ,

R :ay , there is obtained
Na o A Y
(4T r1)x A =-dL Cas(tb-nt\a‘b roindd-d ose %]

(136)

From Eq. (123), dE has twn components
dE — - \ D T(t-Ric)dL s (cb-cb'\cwe(la,,a)
®T 4mectr ot

AEQ::_, \ ) I'U-"Rl‘-\d\“wﬁ (‘b"b“ (137b)
ARE c2r >t

In Ref. (35), the evcitation is a pulse applied to the
input terminals shown in Fig. 37. Similar to the case of the
linear dipole discussed in subsection 4,3, this produces a cur-
rent pulse traveling circumferentially on each arm of the loop,
in opposite CPI directions. Each pulse is represented, as in
subsection 4.3, as the sum of two separated step functions, re-

sulting in four step functions in all, It will suffice, for the
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purposes of this report, to investigate the radiation due tc one
step function; the detailed results of the superposition of the
four step functions is given in Ref. 35.

3 A step function of current traveling at linear veloc-

ity ¢ on a loop is given by an equation similar to Eq. (95),

’ /

F with 2 replaced by circumferential length L= b¢ + Thus
IZEOU({'—b&ﬁ) (138)

4 Using Eqs. (126,127,133)

4 R = \‘-bccﬁﬂb*d)‘\ﬁme (139)

T (4-RIO = T, 0t~ £ -2 [ cea(44I5m8) ) (200

o OTU-RIN = T, §(t- -2 (8- o 44"\ sn8))
ot (141)

{
Substituting Eq. (l41) into Eq. (137), using dL: b&@ , and

'
integrating over the variable (b gives

eV ¢
F —__bwseT, -¢' t-L+ 8@V (1420
® duwec?y Lsm * #dd -

2T ¢ ‘
NI .

o
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£V 2 - 2[4 -ws(4-Done] (40

The integrals in Eq. (142) are of the type discussed in Appendix
VI,

J 3(:1»'\8-[32-(@'\"6}6@‘5: |3!(§c; )\ (144)
Ao

] t

'
Here (b" is a zero of the argument of the delta function, i.e.,

£(4')=3. From Eq. (143),

_df@Y| - & |~ s (d-4:)sme (145)
d¢l ¢l c
Hence Eqs. (142} become )
o = Te w8 2 (b~ (146a)

4T ecy ,\- 3 ($-4 ) sne l

- - To o3(d-d ) { (146b)

4Tect | |-sm (-4 Ysme |

&

¢

Eqs. (146) are the same as those in Ref., (35) (p. 31,32, Egs.
(12,13)), using v; (traveling-wave velocity) = ¢, except thax
there is a + sign in front of the S\ (&-‘Qé\sme term. This
may be traced back to what appears to be a typographical or a

sign errox in Ref. (35). If one substitutes the equation
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RY2L.

R

|

-

(=R, —beos (@o—é,}fﬁmea

(Ref. 35, p.
into the argument of the delta function

30)

§ -T -~——~-A‘-\

(Ref. 35, p. 30,31
Eqs. (10,11))

one obtains the argument

t-T - Bﬁ- - ’%‘ e Jg—cos (dsd) 31E,

whereas a

— sign appears in front of the (©) (éo-ck,)am% term
in Ref. °% {p. 31).

I+ is ceoncluded ‘that the time-domain analysis of the

puined loop problem in Ref. (35) and the analysis developed in

this report are very similar to each other in basic formulation.




SECTION &

TRANSIENT RADIATION FRO¥ APERTURE ANTENNAS

1, INTRODUCTION

The radiation from aperture antennas such as horas and
paraboloids is calculated in many analyses from diffraction of
the aperture fields €5 . \"iﬁ For reflector types the reflec-
tor-surface fields or curreats can also be used (Ref. 21, p.
l44)., For wire antennas the preceding sections have shown that
the use of accelerated-charge radiation leads to a time-domain
formulation in terms of the time-derivative of the currents on
the ¢ntennas. A similar analysis for reflector-aperture an-
tennas, using the accelerated charges on the actual conducting
surfaces to cal..ulate the transient radiation has not been at-
tempted as yet. Instead, in this report, a general time-domain
method of calculating the transient radiation from aperture an-
tennas developed by Chernousov (Ref. 37) is reviewed, and some
important results are ncted., This method uses the antenna sur-
face or the aperture fields and the Huygens-Kirchhoff principle
to calculate the radiated fields. It is shown in this report
that the radiation from the equivalent current sheets which re-
place the aperture fields in Chernousov's analysis, may also be

obtained from equivalent acceleracing charge sheets over the




aperture. It is also shown that Chernousov's results for the
radiation of a planar in-phase aperture in principal planes
reduce to the resulis for a one-dimensional antenna given by
Cheng and Tseng (Ref. 38). Some recent work by Maddox {Ref. 3)

is also described.

2. REVIEW OF CHERNOUSOV PAPER ( JF. 37)
Consider the antenna apedture fields E’(r°‘£3a\¥CTo§€3 ’
which must be known, and their equivalent currents, which are

arbitrary functions of time,

Kg (-\:5)-5\ = M X _\-\(.\-‘;J’A (147a)
\.—?“ U’s“ﬂ =_-W R éCﬁJt\ (147b)

where‘(e 2\?“ are the usual equivalent ficticious electric-and
magnetic-current sheet densities over aperture S (Ref. 6, p.

486). The retarded potentials are (Ref. 6, Chap. 13)

E\.E(\’)t'\ ! [ \-v‘-_(r;;-t-mv\ ds  (1u8a)
S

4T R

ﬁ“(? ) =-_E Ku (¥ :J"'Ql“"\ AS  (1u8b)
) 4T .

See Fig. 38. Yg is the vector from origin 0 to aperture area

element 6.5, and v is the propagation velocity in the medium.
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Then, following well-known methods, the fields %(\39} ﬁ(‘%’h}
at P are expressed in tarms of vector operations on E‘E and E‘“ .
The results, which are not repeated here, are given in Ref. (37),
and hold for near-as well as far-fields.

Chernousov defines the far field ty the following

equations,

t- -
f Fer +) 4t \ (149b)

plus the requirement that R >? linear dimensions of the antenna,
where T denotes E or H. To illustrate these equations, for con-
ventional sinusoidal time-varyirz excitation, let ?‘:‘-E(%\Cs{nt .
Using W =C , Eq. (149) reduces to R>? \MZN » Which is a well-
known criterion for the far field for e;\u)t excitation., For
arbitrary time variation, using Chernousov's results (Ref. 37,
Eq. (8)) and Eq. (l47), the radiation field can be shown to be

- - - A

R = - X (14 & ke (6 ¢t Tool

4RCY ot g
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p A -
where T =t- Ylv, and ¥ is a unit vector along V .

3. ACCELERATED-CHARGE VIFWPOINT

It will now be shown that Eq. (150) is consistent with
the accelerated-charge radiation results developed in Egs. (68,
74, V-7). For a one-dimensional current flow along the Z-axis,

these equations show that

d U (F = — d I(2,t- £)dzxR (151)
4¢TMCR Dt

LY
where R is a unit vector along R, the vector from dZ to field

point P. In a similar fashion to Eq. (68), which replaces the
charge-acceleration product by a product of the time derivative
of the current and dZ- , for a surface sheet current flow \:E.
amps/aeter, the charge-acceleration product would be replaced

by the following product:
[clq_] — 2 We(¥,t- %\ds (152)
vet ot

Thet the radiation due to the equivalent (ficticious) electric

current sheet Rewhich replaces the true aperture field gd‘;,{ﬂ
can equally well be considered as arising from the radiation of
equivalent (ficticious) accelerated charges as given by Eq.

(152), leading to the following two-dimensional generalization

of Eq. (151):

- O -




AR (‘\}J{;) - \ 0 \—YE(\%“\:‘-QIC)&SX Qﬂ (153)

4icr ot
For the far field, RY ‘('-.Y;-\': , R is parallel to r, and Eq. (153)
becomes
S S N S
A“ L\' ’-t) - - 'y o) \e(vs\‘t’--a-*‘\'—va‘—‘)(lsu)

4 TCY ot

Eq. (154) is identical to the QQB term in Eq. (150) from Chernou-
sov's paper. A corresponding term arises from the ;Eu current;
this is the i;g term in Eq. (150). Thus the Chernousov results
for aperture fields can be interpreted in terms of equivalent
accelerating charges.

In the case of linear antennas, the charge-accelera-
tion product was formulated in terms of the time derivative of
the actual current. For an aperture antenna, the above shows
that a similar correspondence obtains between the time deriva-
tives of the equivalent (ficticious) aperture currents and ficti-
aperture charge acceleration products. A transient radiation
analysis in terms of the actual reflector currents has not been
attempted, but presumably would produce a similar correspondence
between these current time-derivatives and the actual surface

charge-acceleration products.




4. PLANAR IN-PHASE APERTURE

Chern-usov examines transient radiation from a planar,
rectangular aperture excited in-phase such that the aperture
field at any time has the same value at all points in the aper-
ture. Thus the aperture excitation may be written as

o (f, ) = B, E,(F,) (155)

where éa (?63 may be equated to unity over the aperture. The
aperture is taken in the XY-plane, radiating in the Z-direction,
of dimensions ~@[2 &Y & QlZ)-—blaf 85 bl2 . The aperture field

-

E.s is polarized in the Y direction, and H° is in the -X direc-
tion. For the case where Ea, \-\5 form the front of a free-space
TEM wave, Chernousov shows that the radiation pattern in a prin-

cipal plane such as X2 is of the form

{
c g — .ob (Wwse) _ | {E (t+ )\ -E (4- a}
e AR RN

(156)
where © is the usual polar angle with respect to the Z-axis,

t'= t-vlc , ana Taz= asine((2c). since T, is the time dif-
ference between radiation from the aperture edges and the origin,
it is seen that the radiation is the sum of two waves, which
appear to originate at the aperture ends, and have the same time
form as the excitation field.

Cheng & Tseng (Ref. 38) consider a one-dimensional an-

tenna with current evcitation LN“(:\ . When this function is
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separable then L(Y‘P\:>ﬁ(f\ £(¢) . For a comparable example
with the above Chernousov case, select the example in Ref., (38)
where MY\ =\ for -al2&6 x4 al2 . For (o5® ¥ | (Ref. 38,

footnote 3) so that (\tco9@\ ¥ 2 , the radiated field is (Ref.

38, Eq. (13))

Eloty= —Zho {Fccmu\—%(&]-u)} 157)

/
where (_= as\“Q/CZC\:']’“ » and G:]:‘t- 'lc:t . Hence

apart from differing amplitude factors, which is expected since
one analysis is based on aperture fields and the other on cur-

rents, the two patterns of Eqs. (156,157) are identical.

5. SOME ADDITIONAL RESULTS

Using Chernousov's formulation, Maddox (Ref. 3) has
investigated the scattered far-field due to a conducting disk
whose surface is perpendicular to an incident pulse-type plane
wave. In the broadside direction (© :o) , the time waveform of
this field is shown to be the negative time-derivative of the
incident waveform. Thus the response to an impulse illumination
is an inverted doublet. This has been verified experimentally
(Ref. 39). Maddox (Ref., 3) has also derived the equations for
the radiation E field on the axis of a paraboloid antenna illu-
minated by a pulse-type sperical wave whose orig'n is at the

focus, again using the Chernousov formulation. Calculations and
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interpretation of the results are not yet complete; however it
appears, depending upon the geometry of the problem, that it is
not always true that the radiated field is the negative time
derivative of the incident excitation.

A limited amount of experimentation has been done,
using available equipment. The transmitter is a Spencer-Kennedy
Laboratory pulse generator (mercury switch), with a one nano-
second pulse width (one foot retolution) and a rise time of
about 350 picoseconds. This excites a long vertical monopole
from a coaxial line., For a receiving antenna a linear string
of five carbon resistors has been used (Ref. 26). The display
oscilloscope is a H, P, 185B with a 187B preamplifier. With
this equipment in a non-anechoic roor, measurements have been
made of the returns from a parabola (3 ft., diameter, 9 in. focal
length) and two disks (1, 2 ft. diameter). Qualitative agree-
ment has been obtained with published results (Ref. 40). More
refined experiments on aperture and wire antennas would require

test equipment with considerably higher resolution.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

Based upon the results presented in this final report,
the problem of radiation from antennas excited by impulsive sig-
nals can be approached in the time demain from the viewpoint of
radiation from accelerated charges. The transition to antennas
is accomplished through derivation of a radiation equatjon which
expresses the accelerated-charge radiation in terms of the time-
derivative of the antenna currents, either real or equivalent.
Applied to pulse-excited dipoles, linear antennas and aperture
antennas, this radiation equation produces a result derived pre-
viously by retarded potential and other methods. For a pulse-
excited loop, the result is the same as that obtained by another
investigator using the Sommerfeld radiation equation for an in-
finitesimal dipole., For sinusoidal time excitation, the above
radiation equation reproduces well-knowr results for standard
antennas such as small dipoles and loops, a half-wave length
dipole, and a linear traveling-wave antenna.

It has been shown that the radiation characteristics
of antennas may be expressed in the time domain in a number of
equivalent ways, involving the integration of either the retarded

potentials, or the Sommerfeld dipole radiation formula, or the
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radiation from accelerated charges over the differential elements
of the antenna. If one accepts the premise, as preferred by

this writer, that the basic physical radiation mechanism is the
presence of accelerated charges; then the other methods may be
interpreted a&s alternative mathematical formulations.

In this report, the radjiation fields due to acceler-
ating charges in all cases have been expressed in terms of the
time-derivative of the actual or equivalent currents on the an-
tenna, which are assumed to be Xxnown. Then the method of rétard-
ed potantials, for example, could also be used, without any ref-
erence to accelerating charges. Thus, based upon the work com-
pleted thus far, it is concluded that while the accelerated
charge radiation approach provides, in the time domain, a direct
physical explanation of and an analytic basis for impulsive an-
tenna radiation, it has not been demonstrated that it has sig-
nificant advantages compared to other methods which also use
known or assumed antenna currents in their formulation. It is
probable that this conclusion will be altered by the results of
further work on transient antennas with new configurations, where
the currents or aperture fields are unknown and must be sclved
for (i.e., time-domain boundary value problems), or must be con-

trolled by new and novel techniques.
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In the report, the radiation from a pulse-excited’di-
pole is examined at various angles, using a time-domain equation
vwhich has also been derived by others. Comparison with a pub-
lished frequency-domain analysis shows reasonably good agreement
at all angles except for angles close to the end-fira direction.
Further work on this point is recommended. Experimental data on
the radiation from a pulsed dipole (or monopole) at all angles is
also recommended.

The receiving characteristics of antennas in incident
transient fields have not been investigated in this report. It
is noted that the receiving response of a monopole over a ground
plane, matched at the base, to an incident impulsive plane wave-
front, as given by Ross (Ref., 27) has a waveform identical to
that for the transmitted radiation of a step function given in
Fig. 29(a) (Ross's © is the complement of the © used in this
report). Investigation of receiving characteristics and reci-
procity relationships with transmitting characteristics is an
obvious recommendation.

A promising method due to Chernousov for analycis of
the performance of transient high-gain aperture-type antennas
has been identified and described. This is & gener- nach,

based upon replacement of known or assumed apertu by
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equivslent surface current sheets. It is shown in this report
that the Chernousov results can be recast alternatively in terms
of equivalent surface accelerating charge sheets. For a one-
dimensional case, it is shown thg* the Chernousov formulation
reduces to results derived previously by Cheng and Tseng. It is
recommended that the analysis of impulsive high-gain aperture-
type antennas be extended both in scope and in detail, including
primary feed antennas, to further the state-of-the-art of this

important class of antennas.
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APPENDIX I

LIENARD-WIECHERT POTENTIALS

1. SCALAR AND VECTOR POTENTIALS

The Lienard-Yiechert potentials are the notentials result-
ing from charges with arbitrary spatial and temporal distri-
butions. From taese potentials the E and H fields due to
accelerating charges may be found. For the sake of completen.. s
a derivation of these potentials is ircluded in this Appendix.

Haxwell's equations in Gaussian units (Ref., 1) are

x| = ,_TL]+J~S§- (1-1)

\T]xé '::---Z,_,_L g% (1-2)

’{7.0 :4“:{’ﬂ (1-3)

'v .é = (I-4)
The constitutive equations are

DzeE; Bzuk; I=6€E (1-5)
Because of Eq. (1-4) and the vector identity div curl = 0, B
can be derived from the curl of a vector potential A:
é-_—_—-_ Ty N (1-6a)

Similarly, because curl grad = O, E may be aerived from a

scalar potential i and A by

= Oh -
E:"\/§ ._é..é.:th. (1-6b)
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Thus the curl of Eq. (I-6b) recovers Eq. (I-2). The Lorentz

condition (Ref., 1, p. 180) defines div A by

v.“:_._&\:.éé% (I-7)

Vector manipulation of the above equations leads to the

standard wave equations 2
Vé‘ é_i;_amo (1-8)
c? ot?

9K - L 2R . _4r T (1-9)

2 2
c* 2t <
where J is the impressed current density due to external sources.
For static fields Eqs. (I-8,9) reduce to the Poisson
equations
V’z@:_@mp (1-10)
2 & T -
N\ A__-_ﬂéﬁ.l‘ (I-11)

The solutions of the static Eqs. (I-10,11) are the particular

integrals

@(X \ S R,__/_ AB (1-12)
A ) —_-S R) g(') C\SX' (1-13)

Here X is the position vector of the field point P(x‘, X

x! is the position vector of the source volume a3 Ax\dﬂ;d&

2 X ),
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J 4
at point P ( X, ) J(Q', Xal ), and R is the magnitude of the
vector §:‘. x-i' from P' to P . see Fig. 39.
For dynamic fields, the time-dependent Eqs. (I-8,9) are of

the form

2, L 3% __anfiid) (1-1%)
AU e ot2 !

The time-retarded solution of Eq. (I-14) is (Ref. 1, p. 186)

§G0) = [ AR fR AL o

where 5 is the Dirac delta function. The integration over {" s
using the properties of the delta function

é‘(_t‘__.t'\_glc\ =0 (1-16)
eXcept at

+'=%t-Rlc (I-17)

yields

\D({\‘c\'-:j Lfcé" t'-]fe" ! (I-18)

4
where [ ]ve‘\' means that ¥ is the "retarded time" given by
Eq. (I-17). The time-varying solution Eq. (I-18) of the dynamic
Eq. (I-1u4) is a generalization of the static solution Eq. (I-12)

of the static Eq. (I-10), incorporating time retardation.
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FIG. 39 Charge € moving on path r (t').
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From Eqs. (I-8,9,14, and 18), the intiegrals for Q and A are

3¢,0= | LEL) St RI) X A (10

5 ci«c\:H 36;'.:6) St RI)AHA L (1,0

2, LIENARD-WIECHERT POTENTIALS
The Lienard-Wiechert potentials are given in the literature
for moving point charges of fixed magnitude. These potentials
can be extended to the case of a fixed-poesition charge of time-
varying magnitude, as shown in this appendix.
Consider first a fixed-magnitude charge @ meving on a
prescribed path ?ttr)with prescribed velocity (see Fig.39)
A= ¢ Bt (1-21)
The current density at a point ¥/ due to @ is (Ref. 1, p. 465)
TE = ,Tzec AENSEF@Y] @22

The vector delta function in Eq. (I-22) is defined such that
— - - 8¢ -y
j{'CX')‘S(X‘—YSdX:QC\") (1-23)
v

. . ’ bl d . » I3
if volume V contains point r, otherwise the integral is zero.

Substitution of Eq. (I-22) into (I-20) gives

A= ej jiéﬂ-é(i‘- F)S -t 4RI AN At

(I-24)
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¢
Integration of Eq. (I-24) over X; gives

R\ = B §(+ _t+ REY /) &t (1-25)
b X ej R () o

where

- =t )
Lt\‘ EX X(t\]X(‘\ e X—'T(‘('3 (1-26)

-l ¢
Similarly, write for the charge density at (.(t\

y(z',t‘\: oS C¥'- "r'(f‘\] (1-27)

which, when substituted into Eq. (A-19), and integrated over
¢
X( yields

BAA = | L § (E-t RV & G
(t

Consider now a charge in fixed position at r’, but with
time~varying amplitudeq (t‘). Such a charge must, of course,
be supplied by a current, to satisfy the continuity equation
7.3 =-0PL. Then the charge density at 7(t') can be written

as

- l w {
PEN= QYS[R-FieD] -2
Substitution of Eq. (I-29) into Eq. (I-19) gives

P&y :‘ [ %%‘3 Sty RI)§(R- FEN) K At

(I-30)
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The vector potential & for<{(t') is zero, since‘i{t‘) has zero
velocity.

Returning to fixed-magnitude moving charges Eqs, (I-25,28)
are now reduced to the standard Lie;ard-Wiechert forms

(Ref, 1, p. 465). Write Eq. (I-25) in more convenient notation

A - BU) 5(e6N-+\at (1-31)
A‘GX Ry S LFED >

where
("({'\E ‘t‘-b RtV /¢ (1-32)

The integral in Eq. (I-31) is evaluated using the following

property of the delta function (Ref. 1, p. 465):*

jg($\§ (FR\-a\d =3

iéf‘ (1-33)
a fN\=a
Hence
N = L8 ..‘.L(i‘f’c(?{i'“)/C) (1-34)
Rty /ot
where Eq. (I-34) must be evaluated at
tertN e =t
i.e., at the retarded time
"(‘ =t - RtY /e (1-35)

*See Appendix VI.
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Now
AR _ d (e re)fe) = L 4L 4REY e
i gt A

¢
The derivative 6@&'\[&'{ is found from
a

R tt'\::\':fi (X - XN (x-a7

=t
/
which shows R(‘k“\ as an explicit function of X¢ . Hence

ARW s AR dri
dt‘ - H bx‘! d-t"

{
= — T (%R b
R T dt'
— _ B) |, T

Rt

Define the unit vector IO\ from source charge at i to field

-

point at X . Then

M = é‘Ct\/Q(‘\'\ (1-38)
Hence
A;:('t'\“ ——mit) Y (1-39)

From Eqs. (A-21, A-36), it follows that

L)z é&%&l — - AE B N2 0 (1-u0)
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Hence Eq. (I-34) becomes

o Bt X (1-41)
— @
NERA [Rw\ LAY J et

Comparing Eqs. (I-24) and (I-28), the solution Eq. (I-ul)

to Eq. (I-24) implies that the solution to Eq. (I-28) is

(- - @ \ (I-42)
REe [ew\ut‘\]tﬁ

Equations (I-41,42) are the standard Lienard-Wiechert potentials

which apply to a point charge of fixed magnitude € , moving at
—— ._'
prescribed velocity \yttf\ on prescribed path Y (tr).
Consider now a point charge q(t?X , fived in position, but

varying in magnitude with time. Integrating Eq. (I-30) first in

N = (-0t e
G (KA -3(;\—(%3((\ (1-43)

t
X gives

Using Eqs. (I-33, I-40), and the fact that for this case

E(t’\:ﬁ(t')/c =20, so LU=, Eq. (1-43) yields

Q(Ja Y_R(f‘ ] (I-44)

Equations (I-41, I-42, I-44) can be combined to give the

following generalized forms of tl: Lienard-Wiechert potentials:
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B (L Jt\:[ q(*:‘\ﬁ(f'\ (I-u5)
\

REYLID cet
(£ .5 —_:K- q(t") (1-46)
b REMLAN |

For a fixed-magnitude charge q(thSZ € , while for a stationary
charge L= , So that Egs. (I-u45, I-46) reduce in each of
these cases to Eqs. (I-41, I-42) and Eq. (I-44) respectively.
Equations (I-u45, I-46) were derived by Maddocks (Ref. 3).

In MKS units, and using the notation of Ref. 2, Eqs. (ul,

42) become

RI\= Mo | T (1-47)
INERAE = [5 ]M_ | I-47

- —& | L -
@Cﬁ\ﬂ_ AmEL [5 ]m- (I-48)

where

S:_".‘." ("?‘i ) Y-—F'ﬁ_ (I~49)
(45

a— —

and ¥ is used in place of R = X—-X
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APPENDIX II

THE FIELDS OF MOVING CHARGES

1. EQUATIONS FOR THE FIELDS

The fields of moving charges may be derived from the
Lienard-Wiechert potentials Eqs. (I-41,42) and the dirferential
operations of Eqs. (I-5,6) (Ref. 1, p. 466 in CGS units; Ref. 2,
p. 345 in MKS units). The derivation below follows Ref. 1

closely, and is included here only for the sake of completeness.

From Eqs. (I-5,25)

] (
50,8 =4 T x [BE) -t RIVRTH oy

The iji operator is in XC coordinates and operates only on the

R inside the integral. Using
% x[h()(;\ ?CX}\‘J:VNM()‘.;\K Fr)  area
Eq. (II-1) becomes

@Ln) ﬁ = ej vﬁ@ ({Z'-'t'\' RICVR] I(.B'[tzsdfl( 11-3)

Define

qeR)= § (t-t +RIC) IR (11-4)
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Using Eqs. (I-37,38)

33“&_. 9J(R) DR _ PRUDR Xi-*¢
DAL DR DX PR R

R 28 24
< 4R = 33(9\5 L= == m (1I-5)
J cg YO

Thus the _\-7,(‘-. operation is equivalent to

n 9
.= _— 11-6
N‘MBR ( )

A o
where M is the unit vector along Y . Hence

A [s({:’-’cwld/ﬂ — 0 SH-tERIO/R?
v _m 3 R RIS
RC

(I1-7)

{
where () denotes differentiation with respect to the argument

of () . Eq. (II-3) becomes

= J' SH-teRlc) |

- -t @'&](Ex M) dt

R? CR (11-8)

Similarly, from Eqs. (I-6,25,28,32, II1-7)

- - DA
E=-v8-2 5%
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= GSVES(‘C'-’H-RJCVR] dt’

—ad-e K J(&R‘tzi-mc) _ S'4- 'NR/C\M-‘M:

(II-9)

off _ _ e | 86 Q&({;'--&«-Rlc\dt(
R ot

(11-10)

Using

A §(R-trRI) == S (H-t+RIc)
ot

Eq. (II-10) becomes

R _ o
ot

_L
C

j B S ({- -H-Rlc\dt’ (11-11)

Hence
— A ] \ T A t ¢ Rlc Ai’
E= e& [-gg-s (t-teRIC)+ E'é“m M) (-t 1&]

(I1-12)
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The integrals in Egqs. (II-8,12) are evaluated using the

properties of the<§ -function given by Eq. (I-33) and by Eq.
(II-13) below (Ref. 1, p. H4).

jk(l\slﬂ‘a\dlr-\'\{(a\ (11-13)

The first integral in Eq. (I-8) is reduced as follows:

£ = -t{.\- RN /c (II-14)

£ A dR _ i (1I-15)
o%g: +2 8% = LI

K at = Af /LIt (I1I-16)

Then

ej LBx8) § (-t 4RI At = 95’ BeR) §(F-Daf
R? R2L
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Using

it RIS ()L

the second integral in Eq. (B-8) becomes

CS (ﬁéx‘.n)(s (f-t)af= £ %(“@—E.C"')]fc

. R
The equation Q:t means that ?-"—k‘\'a"zt’or that the retarded

{
time ¥ =t-Rlc . Eq. (II-8) becomes

Sriv\z=e ﬁ*’% ﬁ"“ ] (11-17)
BC*\'\:\ [RQ L CL d'& ( vot

In simila,~ Ffashion the integrals in Eq. (II-12) can be reduced
by comparison with the integrals in Eq. (II-8) reduced to the
forms appearing in Eq. (II-17). It is seen that

n
= - \ d / m-B .
—e M o g ( (11-18)
B (Xt) [R’L cL at'\ RL ) ot
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Henceforth, the []\'c'\' symbol witl be omitted; it being
understood that the R.H.S. of equations for B and E are
evaluated at retarded time T .

To decompose the fields given by Eqs. (II-17,18) intc
"static," "velocity," and "acceleration" components, the

differential operations in these equations must be evaluated.

A R 4aR LAQ
1dn _ . , (R(R) =- 2M APl

C
g ( o
h A
Now 3 A . _ \
R NG - 5_ 8% =Vt Y-
d_.—’? :dfr' Z(‘ﬁ -+ d 2T 4. = (1I-19)
et t
Using Eqs. (I-39, II-18), ,\ (/ﬁ X.fS)
Aan — J~ [m (MU~ vl s (11-20)
c at!

The derivative in Eq. (II 17) is av\
at' U RL dt‘ (RL)’“ Pt

A*‘ 3”\\- A G [L/v'\‘-fgm’ﬁl(u-zl)

Equation (II-17) becomes

—

_ Cn =
= BN 4. B B érﬁ M- ﬁ}
=€ ’é'{f*élio\t‘ RL) V‘*Qzu (m-»

which, after some recombination, reduces to
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é - (?[ S ,‘-ELL—T‘ Xlxm (11-22)

Equation (II-18) becomes X
B —'C{R\. o d‘\" 3 Cl-d*' ]

which, after considerable recomblnatlon, reduces to

n -
= m__ B \(11-23)
€ =c ‘é"{[{ RzLa cL df'(RL\) C.Ld"" RL.}A
From Eq. (II-23) it is seen that
A = 8

Hence

B \‘ —ma® \ (II-24)

ot T lwt

- = A
Thus, E, B, and M form a mutually orthogonal set of vectors.
The derivatives in Eqs. (II-22,23) are now evaluated.

I x
Denoting differentiation on t by a dot,

4 B8\ «é: RLYLR ( )
d_-\-'( = 3 p\_’-( ) I1-25

From Eq. (I-40)

L4

-\-—‘:__//(\\_E__,{‘,\,ﬁ (11-26)
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Using Eq. (I-39)

AR =RLYLR= REM- B-MA.B)+LERcB)

ax’
which, after some recombinaﬁ}ons, becomes — m
_d_LRL\ —RM-B +cp-chd.m (11-27)
att

Equation (I-25 then reduces to

_9\_(_;8“__)__ 2 +(m S8 BB | ca-Mi
at! rL RL2 E L2 R*L* (11-28)

Similarly, Eq (I-23) becomes

'@[ {ee RL3 RLB} {R“L’

(11-29)
_g 3 Mg N M) B B(M.8)
\'\) \.3 R L3 C.RLS C.RLZ CRL®
Now _ 2
\ 823 .B;/g \2 3 (\“*’ﬁ.m “'BQ): \R—i\’ﬁ‘__a
e, 2
R°L R - R7L RL (11-30)
Alsc
AM-8) B AR.3)
CRL? CRL? CcR\3
- Ena.gw_\,ﬁ-(«'e.mﬁ]
CRL?>
— ___L_m'r\\x LIP\—B\KEJ (11-31)
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Substituting Eqs. (II-30,31) into Eq. (II-29), there is
obtained (Ref. 1, p. 467)

E = e[e TE (m- m(\-ﬁ3+ ’S‘X{Cﬁ B)xﬁﬂ

(11-32)
From Eq. (II-20),

g:e“ \ (\_ a\CﬁXT\B*' ELSM;((/?\X{(VI\\—E)XE})]

R3L2 (11-33)

To convert Egs. (II-24,32,33), which are in CGS units to MKS

units, replace E by

E J4ns | e we/lane, me B oy BT,

For the sake of completceness, these equations in MKS units are

given below as they appear in a standard text (Ref., 2, p. 356):

B} = _TxE (I11-34)
e

= _ L (v- X&) 2

€= 4\\8 [ S < )O c?
x[@f-%@.)xi]}] (1I1-35)
=, LAC (1 u?

© = weocz[tga (\ C‘B

-\— 3 %’ X{V X ‘:(\-.. ) u]‘g (11-36)
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The following relationships hold between the symbols in Egs.

(II-34,35,36) taken from Ref. 2 and those used heretofore, taken
from Ref. 1:

2, DISCUSSION OF THE FIELDS

The E field given by Eq. (II-36) has three terms which

depend differently upon the particle velocity J§==1Y/C. For a

stationary charge B=f = o, L= \) and the field reduces to

the ordinary static field (MKS units)

- n

E ~-—_¢€"
411, R=

(11-38)

e

For a charge moving at constant velocity, O ==C>’ and another

term varying as \/E?z appears, which is termed the quasi-static




or induction field. For an accelerating charge, J§ qtc5 and

the third term in Eq. (II-32), which depends upon acceleration

[
-

B varies as \/R and therefore represents radiation. Similar

remarks apply to the B fields. Equation (II-33) shows there is
. . . . 2 . .

an induction field varying as \/R’ which depends upon velocity

B, ana a raagration field varying as \UR which depends upon

Ld
-

acceleration B .
3. RADIATION FIELDS FOR THE LOW-VELOCITY CASE

Equations (II-32,33) apply to all possible veloecities. The
physies literature is replete with examples and applications to
high velocity particles (relativistic case). However, the r, f.
antenna engineer is concerned mostly with charges that move in
or on conductors. While the field waveforms (also current and
voltage waveforms) can move at essentially the speed of light c
dlong antennas or transmission line conductors, the charges
themselves move only at very low velocities compared to c. This
is discussed in detail in Appendix IV, For such low-velocity
particles, f3=\rﬁ5 is very small compared to unity, and the

following approximations hold:
Bl
L=|-MB8%
-8 %\

A - n

M- X M

(11-39)
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The radiation terms in Eqs. (II-32,33), denoted by subscript

"a" for acceleration, become

- £ [’?\M”"\"a\] (II-40)
o c® R et

E - e [ 5:.7‘& ] (IT-41)
o c%* R cet

[T}

- :n
where a =V ':Cﬁ = acceleration.

For the special case where a is perpendicular to R

("broadside" radiation),

é - ,._S"__[_E‘T:—} (I1I-42)
* c? R vt
8 = ¢ E Exna} (1I-43)
o 2
c R et

In MKS units, Eqs (II-u42,43) are

]

Eo.:._ e [ a ] (1I-44)
A('-Tgoca R \'Ut

EQ:— € {EH’\\] (11-45)
4TEx C2 R vev

which agree with Ref., 4 (pp. 376,387).
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APPENDIX III
WAVE PROPAGATION ON TRANSMISSION LINES

AND LINEAR ANTENNAS

1. TRAVTI TS WAVES ON LOSSLESS TRANSMISSION LINES

This section is intended to intrcduce traveling wave
concepts. VYoltage and current waves, which may be arbitrary
functions of itime, travel on the idealized, lossless,

transmission line at a velocity given by

vV - . wmis (I1I-1)
JLc

where L is the distributed inductance in henrys per meter and
C is the distributed capacity in farads per meter of line
(Ref. 5, p. 12). For an air medium, v = ¢ = veloecity of
light = 3 x 10 m/s. The ratio of voltage to currznt is the

characteristic impedance

Zo:s L/c ohms (I11-2)

The argument of traveling-wave functions ¢ ( E{t ) on such
lines i¢ of the form (t X 2/¥ ). A step-function traveling-

wave current is given by

t@EH=1 U(t-21v) (I111-3)
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where U (t-a.) is the step function of unit amplitude for tza.,
and of zero amplitude for t4a . A step function at (2=0,{=0)
will arrive at Z at timetz=Z[V .

The above transmission line is a special case of the
broader class of guided systems using the TEM mode of
propagation (Ref. 6, p. 177). For such systems, assuming
lossless conductors and dic‘ectrics, the fields and their
associated currents and voltages again may be arbitrary

functions of time, and again travel undistorted at the velocity

-
R (I1I-4)

Jue

2, TRAVELING WAVES WITH SINUSOIDAL TIME VARIATION ON LOSSY LINES

For air media, v = c.

A sinusoidally-time varying traveling-wave on a lossy line

is of the form

l(Z\t\:I@"é?cQscwt’ﬁZB (I11-5)

where & is the attenuation constant ( neps/m ) and j3 is the

propagation constant ( rad/m ). The propagation function § is

f :&_‘_;\ﬁ (III—G)

and is given by

y
s = [(RwO (e twe) - (111-7)
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where R,G are the series resistance and shunt conductance per
meter, respectively. The phase velocity and characteristic
impedance are now functions of frequency, whose equations are
given in the literature (Ref. 5, Chap. 4). The various
frequency components of any time waveform now travel at
different velocities and also attenuate differently, resulting
in distortion of any original waveform.
3. WAVE TRAVEL OF STEP-FUNCTIONS AND PULSES ON LOSSY LINES

Many of the characteristics of pulse waveforms traveling
on linear antennas depend upon the propagation of such signals
on linear transmission lines. The propagation of pulses or
step-function wavefronts on lossy lines has been investigated
(Ref. 5, Chap. 7). Such waveforms imply wide-band frequency
components. There are at least two approaches to this problem.
The first assumes that L, C, R, and G are frequency-independent.
The second approach, which is claimed to be more realistic
(Ref. 5, pp. 5 and 112), includes skin effects, and ausumes that
the resistance and the inductance arising from internal flux
linkages vary as the square root of frequency, the same as the
high-frequency asymptotes of these parameters. G is assumed to
be ignorable, and C is assumed constant.

For the solutions (based upon Laplace transform methcds)

and graphs of the behaviour of step-function voltages and
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NF

currents on such lossy lines, details are available (Ref. 5,
Chap. 7). In this appendix, some conclusions will be reviewed.

For both of the approaches mentioned above, a time delay
t‘l’\“é = L JLc (11I-8)

elapses before the voltage (or current) at distance Jl from an
applied step function becomes non-zero. The velocity of
propagation of a step-function may te said to be J = \/JT:ZT
only in the sense that this governs the elapsed time between
switch-on time and the time when some effects begin to take
place at distance JL away. The calculation of these effects
(i.e., rise time) depends upon which of the two approaches
mentioned above is taken.

For the variable-parameter approach, at the instan: of
arrival of the wavefront at distance .Q from the source, the
solution predicts a smoothly changing rise in voltage and
current, with finite rates of rise inversely proportional to
~Qz. Thus the practical result of skin effect is to produce
finite slopes of rise and fall of applied square pulses.

4, VELOCITY OF PROPAGATION ALONG A THIN WIRE ANTENNA

The current prcduced on an antenna by a transmitter is

a boundary value problem. Several methods have been used to

solve this problem (Ref. 7, pp. 176-180). In this section,




-

a method due to Pocklington (Ref. 8) will be reviewed briefly,
following Jones (Ref. 7). The details give insight into the
phenomenon of wave propagation along a wire antenna.
Pocklington was able to show that the current on a thin wire
is sinusoidally distributed for sinusoidal time excitation,
and that the velocity of the wave 22 the velocity of light c.
The mathematics involved will be described mostly in words.
The field E is written as an integral of the current, which in
turn is used to set up an integral equation for the current.
Assume a perfectly conducting body S (antenna less feeder and
receiver) in an external applied field §° e{)u)t' . The
resultant total field & ¥ o the sum of E, and an
integral of the surface current linear density ji over 3
By using the boundary condition that thz tangential component
of E =O ondS , the integral equation for 55 is obtained.
Restriction to thin wires, with radius a small compared
to antenna length and to the wavelength, reduces the integral
equation to one dimension. The wire need not be straight, but
sharp changes in curvature are not allowed. To find how a
disturbance propagated along the wire, Pocklington set éo =,
and retained only the dominant terms in the integral equation

—

for 35 . To this approximation, the solution for the antenna
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current ]:(.9.\: Zﬂajsat distance ~.Q from the origin is found

to be
-\ ' ol
I(Q\:(RG‘XK'Q&-B@JM\GA (111-9)
where
\ce.—_u?,ue (II1-10)
Using

Re [6’“‘“('0“@3“5’(}: o5 (wi- ‘r:!l\ (ITI-11)
the velocity of propagation is seen to be

T M o A (111-12)

—

'N Jue
Thus, for air, the propagation velocity along the wire is v = ¢,
5. SOME CHARACTERISTICS OF WAVE FROPAGATION ALONG A THIN-WIRE
LINE
A traveling wave of current along a thin-wire line extend-
ing along the 2Z-azis may be represented by
I'(Z-\t—\:f(t-:?l(h (I11-13)
for propagation in the positive 2 direction., The velocity of
propagation has been taken as essentially equal to that of light
c. The current I is related to the current density J (amps. per

sq. m.) by

I(Z\'t\:"(sfc‘?\a°cig (IIX-14)
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where S is the cross-section of the wire. Determination of the
variation of J with depth is a boundary-value problem which is
not addressed here. The integral of J over the cross-section
in Eq. (III-14) may bhe replaced by the product of a mean J taken
as constant over some cross-section area A characteristic of the
particular problem. Thus

A ERACRIERNT (I11-15)
For example, for a round wire, A might be taken, as a first ap-
proximation, as the cross-section area of the layer of thickness
J beneath the wire's surface where 6 is a mean skin depth. Then

T =N Tt-210N (111-16)

We now investigate the magnitude of the ratio of Qf>B“Yae

to (\TOL[Ot), where S° is the electron charge density, and U~ is
the electron drift velocity. These quantities arise when the
time derivative of I(Z,t) is used in calculation of radiation.
The term (S O[Ot ) represenrts charge acceleration in the Z-
direction and will be shown to be much greater than the other
term (AT OP(Ot), which represents time-rate-of-change of charge
density,
Ueing

T=pPV (I1II1-17)

there results

- labh -




N\ aT _ aﬁ__\P _3__\.5:*-’\,3" oFf (111-18)
O

The continuity equation <7-55:-Djﬂatreduces, in this one-dimen-

sional case to

@_;_:_ -Fa (ITI-19)
o2 >t

From Eq. (III-16)
ol _ _ N oY (I11-20)
0z C

{ .
where I is the derivative of I with respect to its argument

(t-2/¢). Likewise

.B.;\.P - p;‘(:[l (111-21)
ot
Combining Eqs. (III-20,21)
—~co¥ = '_5__:3- (111-22)
02 »t

Substituting Eqs. (III-19,22) into Eq. (III-18),

C 28 = P 2V Ly 2f

ot ot ot
D P lav /2t - _C_Z_,Q.. .15.‘_\ (III-23)
v (Lt v “
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Since VIC¢e| , as shown in Appendix IV, then

Lldv/dt) . ¢

’\Y(_é.Plbt\ ~ T >7 1 (III-24)

Thus the "acceleration" term ( QOU(dt) dominates the (TOL[IL)

term in OT /2t by many orders of magnitude (about 108). That is,

-t oY L o A (I11-25)
RS~ F 3¢

6., SURFACE CHARGES

From Eq. (III-19) it is seen that there is no change of
charge density LPuherever the current is uniform (i.e., cons-
tant) in 2. However, if the current is not uniform along Z
(at fixed time t), then Eq. (III-19) shows that there must be a
change in S with time. Such an antenna can be represented as a
chain of small current elements or Hertzian dipoles each of
length dl, with end charges which change differentially from
element to element (Ref, 6, p. 322). These adjacent charges do
not cancel, and the non-cancelled charges appear on the surface
of the wire, where they produce an electric field normal to the
wire's surface (Ref. 6, p. 322)., This is illustrated in Fig.uyg,
based upon figures in Ref, & (p. 322). For a Hertzian dipole,
discussed in Appendix V, the radiation fields can be obtained
from the longitudinal (Z-direction) acceleration of the charges

in the wire,oraequivalently, the time-derivative of the current.
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FIG, 40 Chail f dipeles and curreat, charge and
oca ia

cle
1d distributions.




The continuity equation automatically takes into account the net
charges present at the dipole ends. This comment holds equally
well for a finite-sized linear antenna with non-uniform current
distribution, by superposition of the elementary dipoles.

Some comments are now made about surface charges on a bent
thin-wire line. According to Torre and Longo (Ref. 9, p. 391)
the current and current density J must follow the bends, and
therefore the internal E field given by f:Gg must also follow
bends. Thus electric flux follows the bends with the current
(Ref, 9, p. 391). In order for this to be possible, additional
surface charges must appear at the bends, as shown in Fig. ul,
(Ref. 9, p. 391). The net result of this, for the time-varying
case, has not been investigated by this writer, except that it
appears clear that the centripetal acceleration experienced by
charges moving in the wire around bends must be due to the fields
produced by these surface charges. These remarks apply strictly
to a generator-driven loop, and not a loop being driven by an
externally-applied changing magnetic flux. In the latter case
the induced E field has nonzero curl, and forms closed loops

without requiring any charges.
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FIG. 41 Surface charges at a bend in a
conductor carrying current.
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APPENDIX IV

DRIFT VELOCITY OF ELECTRONS IN CONDUCTORS

1, FREE ELECTRON THEORY OF METALS

According to tae free electron theory of metals, a
conductor is a lattice of positive ions among which some
electrons are free to move under the influence of external
fields. In mcnovalent metals such as copper, siiver, and gold,
the number of electrons averages about one per atom (Ref. 9,
pP. l44)., For copper this constitutes a free electron density
N \Oa’per o> (Ref. 9, p. 147)
2. RELAXATION TIMES

A net (nonzero) charge density _° (coulombs per~Vﬂ3)
cannot exist permanently inside a conductor (Ref. 10, p. 15,
also Ref. 11, p. 78). In the absence of an external time-
varying field, any pre-existing charge inside a conductor decays
exponentially and flows to the surface, The transient decay

equation may be derived as follows (Ref. 10, p. 15):

I -G E (1V-1)

v.fy— = - a—a—ﬁt (1v-2)

Equation (IV-1) is Ohm's law, which will be modified subse-

quently, and Eq. (IV-2) is the continuity equation.
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Hence

L _ & p=o (1v-3)

The solution of Eq. (IV-3) is

.t-
£ =LEOYExP(~ 5 ) (19-4)
The decay time ( £[6 ) is called the relaxation time constant
(Ref. 11, p. 78) T, , so

Y, = £l (19-5)

2 sec.,, which is far less than any

For copper Ty ~& W0~
characteristic times in microwaves or radio impulse systems.

This decay process is entirely independent of an applied field,
if present (Ref. 11, p. 78).

There is another time constant referred to as the electron
"relaxation time¢” of a metal (Ref. 9, p. 358; Ref. 12, p. 292),
which is the mean free time 't¥ between collisions of an average
electron and the lattice ions, and is on the order of \cf‘* secs.
for copper (Ref, 13, p. 48l1). This is the time constant of the
exponential decay of the electron drift velocity after all

excitation is removed, as shown below. Again, this time constant
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2
=
i
£

I

Thus the drift velocity \{1 decays exponentially with time
constant f$ , 1f an applied field is removed suddenly, as
previously stated.

The Qd which results from a sinusoidally time-varying

é({\‘:eo (1"3“)t is (Ref. 13, p. 485

m({xwﬁ-éz\vd:_eé (1V-15)

which is obtained from Eq. (1V-12) by replacing -é- by jw .
at v d

Since V‘t‘g.??tu , Eq. (IV-15) becomes

mVd =
_:%.._...x..eﬁ (Iv-16)
{
which is the same as Eq. (IV-8) for a constant field E.
Therefore, even up to frequencies on the order of \0‘3 Hertz,

Vd and 3 remain in phase with € , and Eqs. (IV-10,11) remain
valid. This has been verified by experiments at K-band using

W\ = -

W= 2%\ fvedlsec (Ref. 13, p. 481). Thus Ohm's law J=6 €

remains valid up to frequencies on the order of \0‘2

Hertz,
where ® is the d.c. value. In turn, this implies that <Zi
is given correctly by Eqs. (IV-7,8),

An alternative approach to the behaviour of conductors

at high frequencies is through the concept of the dynamic

conductivity (Ref. l4, p. 237). The force equation on the
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L electron is written in the standard form

wm SV s\ =-cE (IV-17)
at
where
velocity of th electron

o &I
n

1]

a constant to account for the frictional
resistance encountered by an electron,
proportional to velocity.

Ref. 14 defines

y
gz—zev‘- ) ; (IV-18)

From Eqs. (IV-6,7) it is seen that
—f}—:f:—\\\@\—id (IV-19)

Multiplying Eq. (IV-17) by—€ , and summing over N electrons,

m 2T Ly T=WLE {1v-20)
ot

For the stationary (d.c.) case, J = cornstart and Eq. (IV-20)

rvduces to

3 = \tez € (1V-21)

For the stationarvy case, write Ohm's law as

- - = v-22
I _6‘05 (I )

REN




6}“4? ok ‘ 'Q\
&

v
e, .,

where 6; is defined as the stationary value (zero frequency)

of the conductivity. Hhence

2
6y = Ne (1v-23}

b

Equation (IV-20) becomes

— — 2 -
>t ¥ m
where
~x= _é_“_. = ————9-:\“6‘2 (IV-25)
. o

- 4" -
For copper Y = 2.4 A iO : sec. 4 10 \%

sec. (Ref. 14, p. 238).
From Eqs. (IV-11,25) it is seen that T:'-{' » provided it is
unders tood that the 6 ih Eq. (IV-11) is the stationary
conductivity 6, . In other words, the derivation leading to

Eq. (IV-11), (Ref. 13), assumes ¢hat 6 =6, . This assumption
is valid for frequencies up to about w'® Hertz, as will now

be shown,

Write Eq. (IV-24) as
v oF +T =6,€ (1V-26)
ot

which is recognized as the dynamic generalization of Ohm's law

e Jot

Eq. (IV-22). For harmonic fields, E end J vary as and
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Eq. (IV-26) becomes
(;\w/Y{_OX:G‘OE (I1v-27)
Defining the dynamic conductivity 6" by
J =GE (1v-28)

it is seen that

G—= —O0 (1V-29)
Jw T+l

which is analogous to Eq. (IV-15). For frequencies less than
10 \2 Hertz, WT<¢cl, and 6% 65 , so the dynamic Eq. (IV-26)
reduces to the static version
T=6,g (1v-30)
Hence \Lg may be calculated from
T = -NeVy =G, E (IV-31)
4, ESTIMATION OF ELECTRON DRIFT VELOCITIES IN CONDUCTORS

The drift velocity \4; will be calculated first for several
limiting stationary (d.c.) cases, and then estimated for the
time-varying case.

As a first example consider a pair of parallel wires in
air, each |\ W“n?in area (AWG No. 17), spaced 1 cm. center-to-
center (Ref. 15, p. 126). Let the current be 6 amps, which is
the maximum permissable for air-cooling, “nd the voltage be
2,200 volts, which is almost equal to the voltage breahdown

limit in air. The excess (surface) cherre on each wire,

Vi -




resulting from the capacity and impressed voltage, is 0.04
microcoulombs per meter, which is completely insignificant

compared to the free electron charge transported by the

2
2 electrons lm3 , the

28 - 22
number of free electrons per meter is \O X \06 =0 .

2 -\9
Hence the conduction electron charge is \O a}( LeXlo ™ ¥ L6

current. For copper, with NY o

kilocoulombs per meter, as compared to the surface charge of
0.04 microcoulombs per meter. The electron drift velocity

follows from Eq. (IV-31):

J= cocveat T — NeVd
oaxea B

\y —

i 4 -4
= 25 s __“.‘(,4-)(\6 nlis
Neh CREs WS FLRESRTS
It is seen that this value of VA is negligible compared to the
velocity of light C<= 3$\°8ml,s.

’s a second example, consider the discussion of electric

current and an example of the calculation of VA by Sherwin

(Ref. 16, p. 162-165). At any time t the free charges in all
parts of a conducting loop have the same velocity VA , the
same magnitude of acceleration a, the same daldl , etc.,

that is, the charges move in unison. Then if M\g= number of
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R

¢ ,j.\?

charged particles per meter whose flow is the current, and Vol
is their average velocity, then the current i = coulombs/sec
passing a point is given by

L= M ey

Since My and @ are assumed constant, then the linear charge

(1vV-32)

density »Po:'“oe is constant. Then

— M€ __A_ M, Co. (1V-33)
d’c

2.
AL = M,C da (IV-34)
Atz d-'t
Sherwin (Ref. 16) gives an example of a wire of diameter 1 mm,
carrying current i = 100 amp., which is a large current for
. . . 29 o 3
this size wire. Then ’“o: N;&oxeo.?\.‘ \0 xm":toz electrons

per meter, and

P-

Vy = pd \or v 6 xS s
a M, @ 0% x e xig*®

Sherwin (Ref., 16, p. 164-165) stat. * that 100 amp. would cause

serious heating in this wire, - 55 a practical matter

conduction electron velocities dre rarely above W wis
Summarizing the above two examples, for currents which

are uniformly distributed across the cross-section of a wire
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(d.c. and low frequency for small wires), the order of
magnitude of the electron drift velocity is not more than
0.01 m/s.

The high frequency or short pulse case iz now considered.
Due to the skin effect, currents are not uniformly distributed
across a conductor's cross-section. From Eq. (IV-7), the drift
velocity V& will vary with the distribution of the current
density § across the cross-section. This also follows from
Eq. (IV-8), since the field E varies similarly with the depth
of penetration in the conductor. Hence calculation of 'V&
requires knowledge of either J or E, per Eq. (I' 31). An
estimate of \Jd can be obtained by following the well-known
assumption that a given wire at a given frequency carries its
entire current uniformly distributed within the skin depth,
Since the skin depth varies inversely with the square root of
the frequency, the solution for a given exciting waveform will
depend upon the frequency content of the waveform. Hence if
we assume that a given total current I is confined uniformly
vith a skin depth determined by one of the higher frequency
components of the waveform, the calculated J and \41 will be
larger than the actual average J and Na respectively. Since

the \IA calculated in this manner is a high estimate of VJ,
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and since the resultant Vo\ is still many orders of magnitude
less than c, as shown below, more accurate calculations for
\fo\ » involving averaging, are not required.

As an example consider a pulse shaped as a symmetrical
trapezoid, with rise and fall times = {fr sec, and with
duration of the flat portion = T sec., The amplitude spectrunm
is (Ref. 17)

|A®O| = (_T-\-tf\\smc o) sine %LTi-*r\\
(1V-35)
where sinc X = sin ( TY )/ (ML ). ror\ =0 , the shape is
that of an isosceles triangle, with base width = Z'tr sec,
and spectrum given by )
| A = £ 20 (10 (1V-36)
The first zero in \,Px(.(-\l as given by Eq. (IV-36) occurs at
frequency ‘Q’ '.‘:.\[JC‘- Hertz. Fur a relatively short pulse
specified by V=0 , t"- = |0 picoseconds, 'FO::. 100,000 thitz .,
For copper, the skin depth 8 iillimeters) at frequency ":
(Hertz) is
S—=ee(JE (1V-37)
Hence for this example, SN 2 *\&%wmm. Let us apply this
to the case considered previously (Ref. 15) of a circular wire

of diameter % 1 mm., carrying I = & amps. of current. For the




short pulse, assume that this current is crowded uniformly
into a crosa-section consisting of a layer just beneath the
wire's surface of thickness é‘ . Without external cooling,
this would be impossible, due to the increased heating compared
toc the already-marginal d.c. case. For the d.c. case, I is
spread uniformly over the cross-section = 'WA-Q'M- For the
pulse case, 1 is assumed to be distributed over the layer
¢cross-section = 'ﬂds . It then follows that
M- T R __d (1v-38)
(VA\AC I.dc. edc_ 43

where R is the resistance per unit length. Equation (IV-38),

as far as the resistance is concerned, is a Well-known result
(Ref, 18, p., 176). It is based upon the assumption that the
dynamic conductivity e = 6:,\(_ , which is valid up to £= \0‘2
Hertz, as discussed previously. For d = 1 mm. and S =2Xl5\*mm.,
the ratio CUL‘(S§ is approximately = 103 . Using(\{a)dczl\-mo"q'
m/s, as previously obtained, it is seen that \/A for even this
extreme case 1s 0.4 m/s, which is still negligible compared to
c = 3x0® ns.

It is concluded, therefore, that even for extremely short
pulses of relatively large current amplitaides, an upper-bound

estimate of \(& is about 1 m/s.
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APPENDIX V
DERIVATION COF THE RADIATION FIELDS OF AN

ELECTRIC DIPOLE USING MOVING CHARGES

The term "Hertzian dipole'" is used to describe the follow-
ing configuration (Ref. 19, p. 148): A charge + @ moves along
a straight line about a stationary charge~€ to form an
electric dipole moment p (t) given by

Py = e L (v-1)
where ji is the vector denoting the separation of the charges,
drawn from =€ to +@ ., For convenience, take E along the
# -axis of a spherical coordinate system ((\Gﬂb\. The

radiation fields of this dipole, in MKS units, derived from a

Hertzian vector, are given by Sommerfeld as follows (Ref. 19,

p. 150):
B, = SW06 {'S(JC"‘”lC\ (v-2)
® ~ T4mer
Eo = _5we P -l (V-3)
4T E,2Y

.
Here () denotes differentiation with respect to time t ., and

p is the time-varying amplitude of p e .
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Then, integrating over the interval (\-tsi,“ )

w h
J _Ldiz—ft*%xﬁdz
W-o2 03 o h-a2

Multiplying by A, the desired equation is obtained,

h
T = I8 '—‘-%S@Hd? = 8‘%‘[8“\ (V-19)
o

n-o2
where
\ " A&
Yend = o g“_f;\ z (v-20)

The dipole moment of the above isclated current element

dipole is then

oy = qdh = ({Tat)h (v-21)

Thus

QS(J(-_H(_\ = f[(t—\*l(.\\'\ (V-22)

and the radiation field, from Eq. (V-2) is

b = SM8 B (t-ricy = 21 D It-¥lcYh

ATICY 2t
qmcy (V-23)
For the harmonic oscillation case, it is assumed that
T = T, ot (v-24)
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From Eq. (V-23) the radiation field is
Jutl ~jr(

e

&= Znev
which is a well-known result (Ref. 20, p. 4388). To obtain

this from Sommerfeld's results, note that the complex PC&3 is

P = q(thh = -;-"—L et (V-26)

du)

Since

W Juwt
Py = Rocesu)“( = Re | -5;5'@ l (v-27)

it follows that

p‘o: _;..\'.\— (v-28)
QUJ

Then the Sommerfeld resuxt Eq. (V-5) reduces immediately to
Eq. (V-25),
Equation (V-25) will now be derived directly from che
fields due to roving charges for the sinusoidally time-varying
current element dipole of length “ described above., Consider
a differential length az at position ( ©,0,2 ) along the dipole.

The charge dq. in this length is

AC\ = P RAAZ2 (h=area) (Vv-29)

-~ b .




which is taken as the term € in Eqs. (V-7,8). The accelera-

tion of this charge is found from differentiating J =,V .

Thus
i:é_xf._.p._é::afé_‘?:ﬂﬁd" (V-30)
At at' dt'
Then . ':‘d
—_ X - Ta2 (v-31)
pa = phaz =4

Thus Eq. (V-7) becomes
A\:‘-\ - \ \'I:AZ'X“ (v-32)
o ATIC R et

where R is the magnitude of the vector ® from element 4.2

te observation point P(1&4). The total \—‘\-a field is found by

integrating Eq. (V-32) over the dipole lengthh . Since L. is

in the # direction, then for this time-harmonic case it is

4
T = Eoekwté\ (V-33)

and

-\RR \
— 'S: @ J SN0 C,l\@ m&d\‘ (v-3u)




By definition the dipole length\\ is small enough so that the

£ integral

ot .
— [ - RR ﬂ
s 0 = jwIl _ 279" "aune ay @3‘“{,\2
’ o- 4-1C R
o (v-35)
may be replaced by ]
: 4R ¢ Just
SN SWe Auﬂ?o\/\@ c
4Tex (V-36)
e
Equation (V-36) is identical to Eq. (V-25).
EEL} The . field of the dipole may be found from Eq., (V-36) and

the far-field Equation (II-34), which in MKS units is

g —

> g = (e (R xm) (V-37)

o, This gives

= JoThione de¢3 et
4MEC?Y (v-38)

Equation (V-38) can also be derived from the generalized
Lienard-Wiechert potentials (see Eqs. (I-45,46)) and the
differential operations described iu Appendix I, or from the
integral formulations for q> and A siven by Eqs., (I-30,31).
These derivations will not be reproduced here; for details see

Haddocks (Ref. 3).




APPENDIX VI

SOME RESULTS OF DELTA FUNCTION INTEGRALS

An integral which appears at several places in this

report (e.g., Eqs. (102, I-33)), is of the following type:

I= Sg(x\s (£00)-3)dY (VI-1)

In Ref. 1 (p. 465) this appears as

T = _.ﬂ(i\_‘.\
T Afdy lfm=d

This is not quite correct. From Ref. 1 (p. 4, example (5)),

SHEN) = AU \ (vI-
\df‘/d\(\ fliyzo
the correct result is
T= L (VI-

\d€/av | \\cu\:a

This can also be shown stdrting from the basic equation (Ref.

p. 76)

§ (ax)= -\%—‘\3 (vi-

(VI-

2)

3)

4)

36,

5)

{
In Eq. (I-33), the variable is t’ instead of x. Since d#(&qldt

ZO (see Eq. (I-40)), no error results in omitting the | ‘symbol.
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Eq. (102) is of the same form as Eq. (VI-1), the vari-

able being & , and 3(2\ =1. Let

£(D = - 20wy /¢

4402 =)
T P
A = - (t-rie)

Using 3(2\ =\ in Eq. (VI-4), Eq. (102) becomes

H«Q: Josuwe C (VI-6)
dnrc | \-cooo |
at
=2 (oY = - (L= I

- 2 Z ((-wse (VI-7)
t= c+c. a 2

Since (\"_’_(059\20 . \\t (,oge\ may be replaced by C\t“ﬁ@\ .

For 0%2<W , Eqs. (VI-6,7) vield

Wy = ToUl-tle) \rwe (VI-8)
@ 4'«( S0
fo‘ _ﬁ_“_ C\"wbe\ (VI-9)

which is the same as Eq. (107).
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APPENDIX VII
ILLUSTRATIONS OF USE OF EQUATION (74)
FOR SOME STANDARD ANTENNAS WITH

SINUSOIDAL TIME-VARYING EXCITATION

1. TRAVELING-WAVE ANTENNA
The traveling-wave current distribution on a terminated
wire antenna of length L placed along the Z-axis from -L/2 to L/2

is (Ref. 6, p. 3u42)
T2 =T, 6 NeT (vi1-1)

Eq. (74) yields

o w2 s
16 FIR2 SIRR
) ¢’ ¢ d (VII-2)

HQ(‘\{.\ .y ._.5_\3_%_5(01‘“\ o
4 TWC s

The usual far-field approximation, Y22 2 |
R L ¥~ 2wse (VII-3)

substituted into Eq. (VII-2) yields

L2
L = _SW8 (e T, WOTSIN | o R 20 sd)
Z=— 4.2
A dure “~ua

LR ¢
-~ Ine ¢ 5\“93 s\N [—-——-‘;‘- (\- cose\j
2uv \=os




Ha

-‘-
- dn ¢ v “o —2M8__15- 2 o5k (-s)L
Q 4q( \-es8

(VII-u)

EQ:HQ ) 4o €0 (VII-5)

Eq. (VII-5) agrees with (Ref. €, p. 342).

2, HALF-WAVE LENGTH DIPOLE

Consider a dipole along the Z-axis, centered at the
origin, of total length 2h = M2 . Ssee Fig. 24, For sinu-
soidal time-variation, the currents on the antenna are known to

be closely approximated by (Ref. 6, p. 328)

T2,)= Ty snk(a-2) @5“)\- Cz??o\ (VII-6)
T(26) = T 3w K(“*Z\@émt (2¢0y  (vr1-m)

Then

jw (£~ RIS
T@E-RO=TsmkMF 2)e'”

. RR _jwt
T, sk (hEDET

(ViI-8)

. DT(2t-RIQ = Jw T S\ RNED 6
at

1ht v




Using Eq. VII-g,

IRZo_
31(2{ Ric me swmk(hWiAe 3‘""06‘0*'
t

o) (VII-9)

Introducing Eq. (74), and integrating, there is obtained

© k2 IR2c0re
’c\Q = ¢ [J smi(ht2) e Ai‘ \»js\nk(\\ Ne A2
M (VII-10)

£= SO juw Ty @I®H-EN

ATCY (ViI-11)

The integral in Eq. (VII-10) is (Ref. 6, p. 329)

2 o5 (2 wes)
K an?e

Hence, using Wz Wjc¢

. “ \ -
AR W X cos(‘z"@w)_@‘um‘- ) (VII- 2)
¢~ 2T XY

which is a well-known result (Ref. 6, Eq. (10-59)).

3. LINEAR ANTENNA WITH ARBITRARY CURRENT DISTRIBUTION I(z,t)
For sinusoidal time-varying current discributions such
as discussed in subsectionsl and 2 above, the current can be

represented as the product of two separate functions

TEH=I D edet (VII-13)
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TEE e T

K

Then

jlot-tery IR 2
. i e
5&%1(2»}“R’C3 =jwe T.(2\eC (VII-1Y)
Using Eq. (74), in the far field
jlot-\ IKZwne
W, =—swe e @M 1y et e,
4Tcy antenna (VII-15)

Eq. (VII-15) is a general vesult for sinusoidal time variation.

It can also be shown that for a more general case,
where I(2,t) is not necessarily separable, and represents a
general (non-sinusoidal in time) variation, that Eq. (74) pgives
the same result as obtained from the usual vector potential A
formulation. Thus, the standard A formulation proceeds from
(Ref. 6, p. 315)

- gy |
AR D= M EU;{"R’C\ av! (VII-16)
4T R

V!

- t IS
For the linear antenna Y4V — L 47 Q@2 , and using kg, (VII-8)

for the far-field, Eq. (VII-1l6) states that

{ ¢
AF — M T(2 t-T+ Zw0)d? g,

ATV (VII-17)




R SR S S

Hence, using é:'\?#ﬁ R

aF =42 gu[IF 4+ S woe) o

41 v
(VII-18)

The curl operation is with respect to the coordinates (¥, 6, Q\
of field point P. The function in the brackets of Eq. (VII-18)
is not a function of Q , hence 3!3¢ =0 . Further, since

&2,_0.((9&9 a 3m® , the function has nocp -component. Then

the curl operation yields

'”__Af a - 9 (vswe X —écmeE_\
ST ¢ Fleleer )

(VII-19)

where I has the argument o.ré (2 t-vlc -\-Zlco:)GIC) .

Retaining only the radiation term~({l/y) , then

!
dl, —_ M8 43 D T (F t-I+ B we) (vir-20)
@ ATIYC oY

Using BIlb( =~ (3T (D) /c_ , and Y¥ R in the denominator,

d% —_SMe 2 ICZ +- RIc)dZ (VII-21)
4TCR ot

which is the same as Eq. (74), derived from the accelerated

charge viewpoint,
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