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ABSTRACT

This final report contains the results of an investi-

gation to use the conc-.pts of radiation from accelerating charges

to develop the radiation characteristics of pulse-excited an-

tennas in the time domain. The transition to antennas is accom-

plished through derivation of a radiation equation involving the

time-derivative of the antenna currents. For sinusoidal time

variation this equation reproduces well-known results for a

number of common antennas. For pulse-excited linear antennas,

the radiation equation produces a result derived previously by

retarded potential and other methods. Numerical comparison with

a published frequency-domain analysis of a pulsed dipole shous

reasonable agreement except for angles close to the end-fire

direction. Further work on this point is required. For a pulsed

loop, comparison with a published time-domain analysis using the

Sommerfeld radiation equation for a small dipole shows that both

approaches lead to the same final equation. Concerning tv'ansient

aperture antennas an analysis by Cherneusov is described, wherein

euivalent surface currents replace the aperture fields. The

Chernousov aperture results are shown to be expressable in terms

of equivalent surface accelerating charges, and for one-dimension

to reduce to results derived previously by Cheng and TFng. It

is concluded that while the accelerated charge approac! provides

a direct physical explanation of and an analytic basis for study

of impulse antenna radiation in the time domain, more work is

needed to establish its merits relative to other time-domain

methods. ijj



EVALUATION

1. Over the past few years there has been an active and increasing
interest in the behavior of antennas when excited by short
time duration impulsive like signals and fields. Moreover,
it is evident that conventional cw concepts and theories are
inadequate for describing and analyzing impulsive antenna
performance. The intent of the work reported on herein was
to examine basic underlying time domain principles and concepts
useful for understanding and analyzing the 'asic radiation
properties of short pulse antennas.

2. This report presents the results of a six month research
effort to develop the concepts of accelerating charges as the
underlying and basic radiation mechanism for impulse antennas.
It has been shown that radiation can be conveniently for.,iulated
in the time domain by the time derivative of current or accelerated
charges over differential elements. Appropriate expressions
were derived from basic principles for linear and small loop
antennas which resulted in direct physical explanations of
impulsive antenna radiation. Although these same results can
be obtained by other time domain representations, the accelerated
charge formulation provides physical interpretation and insight
into the radiation mechanism for these type antennas.

3. A promising method for analyzing high gain aperture antennas
was also identified and discussed. Although not developed fully,
the method was shown to reduce, giving results to previously
obtained for a one dimensional case.

4. Based upon the work performed under this preliminary short
term effot, it ir concluded that the accelarGted charge conzeptz
provide a valid analytic basis for impulse radiation. However,
before significant advantages over other approaches can be
demonstrated, additional effort will have to be expended to
extend the scope and detail of the work completed herein. Future
work has--keen identified and discussed in the report.

JOHN POTENZA
Project Engineer
Antenna Section
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SECTION 1

INTRODUCTION

1.1 GENERAL

This final technical report covers work performed from

1 Sept. 1971 to 29 Feb. 1972 under USAF Contract No. F30602-71-C-

0278/PMRA, entitled Time Domain Impulse Antenna Study, for the

Rome Air Development Center, Research and Technology Division,

Air Force Systems Command, Griffiss Air Force Base, New York, by

Dr. Morris Handelsman, Electrical Engineering Department, College

of Technology, University of Vermont, Burlington, Vt.

1.2 PURPOSE OF PROGRAM

The purpose of this program is to investigate, develop,

and apply the concept of radiation from accelerating charges to

antenna systems excited by impulsive signals or fields. Thus the

purpose is to develop in the time domain, an approach to the

understanding of the behaviour of impulse-excited antennas,

through the radiation characteristics of the accelerated charges

on such antennas.

1.3 CONTENTS OF THIS REPORT

In this final report, Section 2 discusses the nature of

radiation from accelerating charges. Sections 3 and 4 discuss

the radiation from a pulse-excited linear wire antenna in a

• ~-1I-



direction normal to the wire, and in any direction, respectively.

Section 5 discusses radiation from pulse excited loop antennas.

Section 6 discusses transient radiation from aperture antennas.

Section 7 contains conculsions and recommendations. Section 8

lists references. Seven appendices contain discussions and

results considered basic and pertinent to the understanding of

radiation from antennas through the mechanism of accelerated

charges as follows: I. Lienard-Wiechert Potentials, II, The

Fields of Moving Cha.ges, III. Wave Propagation on Tranmission

Lines and Linear Antennas, IV. Drift Velocity of Electrons in
(

Conductors, V. Derivation of the Radiation Fields of an Electric

Dipole Using Moving Charges, VI. Some Results of Delta Function

Integrals, and VII. Illustrations of Use of Equation (74) for

Some Standard Antennas with Sinusoidal Time-Varying Excitation.

1.4 PROGRAM ORGANIZATION

The person who performed this work is Dr. Morris

Handelsman of the Electrical Engineering Department, College

of Technology, University of Vermont. Acknowledgements are

gratefully made to Mr. Hugh C. Maddocks and Mr. Albert E. Ruehli,

Ph.D. candidates, for discussions -n the Lienard-Wiechert poten-

tials of the Hertzian dipole, and the frequency spectrum of

pulses, respectively.

-2-



SECTION 2

THE NATURE OF RADIATION FROM ACCELERATING CHARGES

2.1 INTRODUCTION

Given the position X'LL) of a moving charge I at all

times , as shown in Fig. 1, tl.e fields at an observation point

?Tjtý may be found through the Lienard-Wiechert potentials.

These potentials, developed in detail in Appendix I, are in MKS

units,

~ 2L~-(2)
4-Tr

where

C_

velocity l "- (4)

and V.et means that the quantity inside the brackets is to be

evaluated at the retarded time
1 " - " c(6)

Thust is the tim. at which a signal is emitted at so as to

arrive at)( at time t

S3 -



FIG. 1 Charge at retarded position •( (t').
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2.2 THE FIELDS OF MOVING CHARGES

The fields B and E are given by

",7 (8)

This results in the following equation for the fields (for de-

tails see Appendix II):

"-1 L53

+ - 2 (9)~

(ret.

(10)

Here 4 acceleration of the charge at

For a stationary charge, Eq. (3) shows that 5="

while 1 and j.. are zero. The E field then become- the static

Cvulomb field

N4- 'o y2

where dr unit vector in N direction, while 6=0. For a



charge moving with uniform velocity without acceleration, -1-

constant and iiEO. The E and B fields vary as 1 2 , and a'e

non-radiation fields (quasistatic or induction fields).

2.3 THE RADIATION FIELDS

When the charge has acceleration a, the last terms in

Eqs. (9,10) are the radiation fields, vary as 111K, and depend

upon a. These radiation fields, denoted by subscript a for

acceleration, are

Ea_ (k-12)

A A'c• 'l J9 13

Inspection of Eqs. (12,13) shows that

1E (14)
C.

Hence

0. ~J 0  ~(15)

That is, Ea, Ha, and 6-((the retarded position unit vector) are

mutually perpendicular, and the ratio ofkE' to 10.1 is

- oh(16)

ý-1j



a which are all familiar relationships to the antenna engineer.

2.4 LINEAR ANTENNAS

For a linear antenna extending along the Z-axis, as

shown in Fig. 2, velocity v and acceleration a are colinear.

Then, in Eq. (12),

Hence, omitting the ,0notation,

:• 4U • C2 5

4T,*I Eo 2 c~~

ftZ -IF

Using C---4 A ,

A /(20)

where %.is the unit vector in the increasing 9 direction,

using spherical coordinates. Then

. OL o-(21)

-7-
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FIG. 2 Linear antenna.
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The radiation patterns which result from Eqs. (21,22)

are shown in Fig. 3. For low velocity particles, which is the

usual csse for charges (electrons) moving in conductors (see

Appendix IV) for detailed discussion on the drift velocity of

electrons in conductors), 9-- , and

Thisis te "Uure(23)

This is the "figure eight" pattern, shown in Fig. 3(a), which

varies as :54f8 , again familiar to the antenna engineer. For

relativistic speeds fl-+ , Eq. (21) shows that there is a

"forwar!" bunching, as indicated in Fig. 3(b). The direction of

maximum intensity is now tipped forward.

The R field is

(j3'~e~(24)

To illustrate an application of Eq. (24) consider the

radiation field of an electric dipole or current element of len-

gth\ , extending along the Z-a.is, with a current distribution

along which is constant except at the ends where the current is

zero. ote Fig. 4. Let the current vary sinusoidally in time.

This case is examined in more detail in Appendix V. The sinu-

soidal case is examined initially principally because the i

fields for this cdsC, using conventional theory, are well-known.

A>,



(a) Velocity v<4 c

L2
(b) Velocity v approaching c

• FIG. 3 Radiation patterns of accelerating charges.
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FIG. 4 Electric dipole or current element.
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The i field for h small compared to wavelength , is (Ref. 20,

p. 498; Ref. 21, p. 93)

" C tti (25)

Ar7

where W =_tWC21T=)R , and the current by definition, is

T Zý Ci (26)

The charge a in a differential length J at (1 ,0,) on the

radiat r is

Aq - P A• Z1(27)

where JP is the moving (electron) charge density in coulombs per

cubic meter, and R is the appropriate cross-sectional area.

This charge moves through distance A in time 4± so the

current is

z -P A 4.2 (28)btf

where ---- ;It • is the velocity of the charge. The current

density (amperes per square meter) J is

- (129)

AssuringjP is essentially constant in O6_L74I tsee Appendix 11I

for discussion), then the acceleration ix is

- (30)

b •t' flg bt'

9



From Eq. (26),

bto_ T C (31)

Replacing q in Eq. (24) by the above t , then the term (IOL)

in Eq. (24) becomes, using Eqs. (27,30,31),

The retarded value of (C.L) is found by using Eq. (6) for

so that e ý Uc'--_ e SU3 (- R lr_ e- IR e0 •t (33)

Since A is at distance R from P at time + I , the 'r in the de-

nominator of Eq. (24) becomes R. Thus A due to (1 is

41r

and

For the radiation field (far-field distances)

(36)

13 -



Using XLL4, the integral in Eq. (35) reduces to

6L•- ~ (37)

Hence the field calculated from Eq. (24) becomes

ýLA~ r -~~ w e (38)
4i

which agrees with Eq. (25).

2.5 HOW RADIATION WAVES ARE PRODUCED BY AN ACCELERATING CHARGE

It is possible to derive the radiation equation Eq.

(23) using a graphical construction and simple analysis (Ref.

23, pp. 60-63 or Ref. 24, pp. 334-340). This derivation may be

of help in understanding how the radiation field of an accelerat-

ing charge arises, and is presented here. The charge 9 is taken

to move on a straight line. Three preliminary points are made

first, in the paragraphs below.

First it is noted that the term (N-J ) appears twice

in Eq. (9) and therefore deserves interpretation. Remembering

that V is the retarded position of the charge, let ýj be the

"virtual" present position (at time ¾) of 1, i,e. the position

it would occupy at time t if the acceleration F. is zero. In

Fig. 5 the time of propagation from the retarded position Q.

14 -



0o r

/ >

0 ~T-

FIG. 5 Virtual position of charge moving at
constant velocity along straight line.

-15 -

t



where the charge is at time k-ýiC to the observation point P is

simply
"[--- • I C.,(39)

During this time * ,the charge is moving with constant velocity

=r, and zero acceleration, along the line, so it reaches the

point Q,, at the same time that the energy which left from Qo

reaches P.

Hence

o = - t z,• (40)

It is seen that

y~ ~j3'~(41)

Thus the term ('-•i) is the virtual present position.

Second, the quantity S in Eq. (3) can be identified on

Fig. 5. Since

(ionpr(42)

then ( .J) is the projection of the vectorlJr on , i.e.,

the segment QT of the line T = Q&P. Then from (Eq. (3), it

follows that

T- 1--P " (43)

Further, S can be written in terins of Ir]- and 1t , the virtual

position and angle, respectively, of the charge at 0 . Thus in

the right triangle ,

JI r1 %Y



But the perpendicular H from P to the line of motion is

Hence

'A 2. 2

and

Third, the first term in Eq. (9), designated as E",

can now be written, using (Eqs. (111,46), as

~ t~¶~rj -~ (47)

"A -
where Ow. is the unit vector along , pointing from the pre-

sent position of I to P . It is seen that E,, which is the

total field of a charge moving at constant velocity, since accel-

eration &. is zero, is identical to the Coulomb field of a sta-

tionary charge, given by the quantity in the first brackets of

Eq. (47), modified by the quantity in the second brackets, which

is a function of the velocity. Eq. (47) agrees with Ref. 25

(p. 254). For low velocity particles, where P4Zj , the quantity

in the second brackets is essentially unity. Hence the impor-

tant result: The field of a charge moving at a low constant

velocity is essentially the ordinary Coulomb field associated

-17-



with a stationary charge. Thus, as put in Ref. 24 (p. 337), for

a charge moving with constant velocity, the lines of force di-

*verging radially from the charge move with the charge, acting

as if they were rigid wires attached to the charge.

Now the effects of acceleration can be ascertained.

Following Ref. 24 (pp. 334-340), let point charge I move along

a line as shown in Fig. 6, with constant velocity T'LC , arriv-

ing at point 0 it time to During a time interval &T , let

be accelerated to velocity VYAb61, reaching point 0, at time

to-V)t , after which it moves at the new constant velocity. As

established above, the E lines move with I as long as it does

not accelerate. The effects of any disturbance such as the

short period of acceleration are assumed to propagate outward at

the speed of light C , which is reasonable. Draw a sphere S.

around 0 of radius

S= (48)

where 7?•o" Any signal traveling at velocity C. reaching any

point in the region outside So at time t must have left c at a

time before to . Thus the E lines outside So are the same as

those of the charge moving with the original constant velocity

IY . Therefore, by the third point established above, the E

lines outside So are essentially the same as thcct s 'harge

- 18 -
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FIG. 6 Radiation due to an accelerated charge.
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at the point Q0 ,which is where the point where I would be at

time ± if it had not been accelerated. Hence the E line BC

outside S. is shown diverging radially from Qo "

Next draw a sphere S, centered at with radius r-

C-t. Any signal traveling at velocity C. reaching any point

inside S, must have left 1 after it reached 0, at time tatct

at which time it is moving with velocity AYc-T. Hence the

field inside S, is the same as that of a charge moving at con-

stant velocity 'C+4AY, and therefore diverges as the line QA

from Q , , which point is actually reached by ct at time t .

The thin shell of thickness C•t is the region where

the acceleration effects must put a "kink" in the E line QIABC

as shown in Fig. 6. This kink travels along the E line at veloc-

ity C.. Then,

SY(49)

00t Tbt(50)

Since VWIC4f_ , then 0O0 4- C6t . Hence the shell is approxi-

mately due to two concentric spheres, with coincident centers at

0. To an approximation which neg'-.ts terms of the order of

(".31C) as well as ( 2 (C?) the situation is as shown in Fig. 6,

with Q1 A % TO (Ref. 24, p. 340) in the limit of very small

(YIc2).

"C -20 -



The E field segment A-B, which represents the accelera-

tion effects, is resolved into two components:

.- Q-Q% 5 ___ _ (51)

C z.

Hence ___ 6t__ (53)

E _ Ca

Continuity of the E. component withthe usual radial field de-

mauds that

Hence

(55)

which agrees with Eq. (23) for the radiation field of an accel-

erating charge with velocity much less than c.
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SECTION 3

RESPONSE OF A LINEAR WIRE ANTENNA TO PULSE EXCITATION

AND RADIATION IN THE BROADSIDE DIRECTION

3.1 TRAVELING PULSE ON WIRE ANTENNA; THE SOURCE OF RADIATION

A current pulse traveling on a linear wire antenna is

shown in Fig. 7. The current I(Z,t) satisfies a wave equation,

assuming no attenuation for simplicity, given by (see Appendix

_It) 0 (56)

The solution to Eq. (56), for a wave traveling in the +Z direc-

tion is the well-known equation

For ordinary conductors, it may be assumed that the

wave velocity is essentially the velocity of lipht c (see Appen-

dix III). Skin effects will produce some round-off of sharp

wave-fronts. In the central part of the pulse shown in Fig. 7,

where the current is constant, no radiation is produced (a d.c.

current does not radiate). This follows also from

t: -- con0YX bta_ 'T1 (T8)

4 Thus velocity V is constant, acceleration a is zero, and there

is no radiation from that portion of the pulse whore the current

is constant.
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FIG. 7 Traveling current pulse on straight wire.
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FIG. 8 Leading edge of traveling trapezoidal pulse
shown at time
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The radiation arises solely from the leading and trail-

ing edges of the pulse, where the current (density) is changing

with time, which results in acceleration of charges. To sim-

plify the discussion of this phenomenon, consider an idealized

trapezoidal pulse with a very short rise time = TR seconds at

its leading edge, as shown in Fig. 8. This figure shows the

pulse at time *. (i.e., a "shapshot of J "frozen" at time

In time

4ZR-c• IC (59)

J at point 0 changes from zero to J. Thus the partial deriva-

tive of J with respect to time is

:V(_ to____•o_-___,o,_o. =_-o _ (60)

btR

In Eq. (60), Z is fixed at its value Z at point P. The partial

derivative of J with respect to distance Z is

) - 0-3 - - (61)

From Eqs. (59,61),

(62)

L• - c~=



Differentiating the equation T'Z" with respect to time results

in

2f S JP" (63)

bt t

The continuity equation, for this one-dimensional case reduces

to

- - (64)bt -b"

Combining Eqs. (60-64 incl.), the result is

1 1 P Z)T(65)
tfk b t tP

Since v, the drift velocity of charges (electrons) in a conduct-

or is many orders of magnitude less than c (see Appendix IV),

Eq. (65) reduces to

S C"- (66)

Thus, aichough cO•-can approach large values for very small

t , the term TYfot turns out to be smaller than JPUT(bt by a

"factor equal to the ratio of the drift velocity to c, which is

considered to be on the order of 10 or less (see Appendix IV).

The above results for the trapezoidal pulse are a

special case of the more general result discussed in Appendix

25



III. which is

~Y. ___(67)

hence, using Eq. (27), for charge 0 in length dZ,

D qj - D T_ v (68)

which is the same as Eq. (32). Thus the radiation arises from

the time derivative of the current, i.e., from the edges of a

flat-topped traveling pulse, as previously asserted. Insertion

of Eq. (68) into Eqs. (23,24), and integration over the antenna

length variable Z, taking into account the retardation factor,

allows calculation of the radiation fields. Further discussion

of this is given in Section 4 (e.g., see Eq. (74)).

3.2 RADIATION NORMAL TO A WIRE ANTENNA

To illustrate the use of some of the concepts concern-

ing radiation which have been presented, they will be applied to

a well-known paper concerning the calculated and experimental

response of a thin cylindrical antenna to pulse excitation

(Ref. 26). In Ref. 26 the radiated field of a monopole at(O:eO

is calculated by Fourier transform methods, and confirmed by

measurements. The monopole, of height ý over a conducting

"ground plane, is driven by a 50 ohm coaxial line, as snown in

•< : -.

P- 'C'



Fig. 9. The antenna length-to-radius ratio (I/O-) is given as

904. Several pulse lengths are used with space lengths CT vary-

ing from 0.2 h/c to 2.0 h/c. The exact shapes of the pulses

are specified in Ref. 26. In this report these shapes will be

taken as almost rectangular, with short rie Tid dtcay times,

which greatly simplifies the discussion. Further, it will be

assumed that tne input surge impedance of the monopole at its

base is approximately 300 ohms. This prod. s a current reflec-

tion coefficient of 0.72 on a 50 ohm line, which, as shown

below, gives good agreement with the published results.

The calculated radiated E field (Ref. 26, Fig. 4,

top graph) for I"V 0.2 h/c is sketched approximately in Fig. 10.

The amplitudes have been normalized so that the first pulse has

unity amplitude. The shape of this graph will now be explained.

As the leading edge of the pulse emerges from the

coaxial line onto the monopolt , there is a reflection back into

the coaxial line, which is of io concern here, since that line

is terminated in 50 ohms. As explained in Section 3.1, the

leading edge of the pulse traveling on the monopole produces

radiation due to accelerated electrons from the instant it

emerges at local time t•=0 , which reaches f(R, 500) at time

t= t'f-JC_- =/C . As the leading adge proceeds to a distance

-- 27
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FIG. 10 Radiation field of monopole.
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FIG. 11 Radiation from leading edge of pulse.
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-- C~t , which is less than the space length of the pulse, radi-

ation continues to be emitted from the leading edge, arriving at

P at time t t4ltc.. See Fig. 11. Hence the radiation emitte-d

in a period of time ± is received over the same period of time

at P. Neglecting line losses and the attenuation of the pulse

due to radiation, this radiation continues to arrive at P from

the leading edge, until the trailing edge of the pulse emerges

at time t =1 frorr the coaxial line. At this instant, radi-

ation being emitted by deaccelerating electrons at the trailing

edge, with radiation opposite to that of the leading edge,

leaves to arrive at P at time 'Y+RIC , where it cancels the

radiation from the leading edge. Hence the radiation at P con-

sists of a pulse of normalized amplitude equal to unity for a

time interval equal to T, and zero amplitude afterwards, during

the time that the entire pulse is traveling up the monopole, and

before the leading edge reaches the tip of the monopole. This

state of affairs is illustrated in Fig. 12, where the common

time delay of RIa has been dropped, and the traveling pulse has

a normalized amplitude of +1 . At the leading edge, charge is

accelerated from zero velocity to unity (normalized) velocity,

while at the trailing edge, charge is deaccelerated from unity

to zero velocity. This is illustrated in Fig. 13, which shows

30
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(a) Pulse on monopole (b) Received waveform
FIG. 12 Initial radiated field when entire

pulse is on monopole.
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FIG. 13 Cancellation of radiation from leading
and trailing edges.
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the resultant cancellation between the two edges. Due to the

ground plane, all of the above currents and charges have images.

However, for e0=5c, the images merely duplicate and double the

radiation produced by the real monopole, so image effects need

not be considered separately.

When the leading edge reaches the monopole tip at =•,

and time 4 El= c , the current goes to zero at the tip (approxi-

mately, since there can be ctrrent flow over the end cap, unless

the end is sharpened to a needle-point (see Ref. 27)). Thus the

pulse breaks up into an incident and a reflected pulse, which

must appear as shown in Fig. 14 at some instant after the lead-

ing edge has reached the tip, but before the trailing edge has

reached the. tip. The combined space lengths of both pulses is

C'T . The radiation from the leading edge of the reflected pulse

and the trailing edge of the incident pulse reinforce each other;

hence the amplitude of the radiation field during the reflection

period of duration T is approximately -2 (normalized). That is,

the field amplitude'Z-2 in the time periodc-4 ý4 , omitting

IC •This reinforcement is illustrated in Pig. 15. The trail-

ing edge of the incident pulse deaccelerates charge from unity to

zero velocity, while the leading edge of the reflected pulse ac-

celerates charge from zero to negative unity velocity. In fact,

32-
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FIG. 14 Pulse after reflection at tip.
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FIG. 15 Reinforcement of radiation from edges
during reflection from tip.
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the reflection from the end is probably not perfect, and a cur-

rent reflection coefficient ', -O.) leads to a field amplitude

_. which gives better agreement with the calculated field

amplitude =--.¶3.

Summarizing the above, there is a burst of radiation

as the pulse emerges from the coaxial line, which ceases and

remains zero while the entire pulse length is traveling on the

line. This is followed by another burst of radiation when the

leading edge reaches the monopole tip, which ceases when the

trailing edge completes its reflection from the tip. After the

pulse has completed its first reflection from the tip, there

results a negative current pulse of amplitude -s.' traveling down

the monopole, as shown in Fig. 16. Again, as previously describ-

ed, the radiation from leading and trailing edges cancel, leading

to zero radiation. Hence the radiated field appears as shown in

Fig. 17.

When the reflected pulse shown in Fig. 16 reaches the

base of the antenna, it is leaving a line with surge impedance of

(approximately) 300 ohms and encountering a coaxial line of char-

acteristic impedance =O5ohms. Assuming for simplicity that the

surge impedance is largely resistive (there can be an apprecia-

ble reactive component; see Ref. (28), Figs. 5 and 6), the

34
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FIG. 16 Reflected pulse traveling back to
base of monopole.
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FIG. 17 Radiation field after first reflection.
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current reflection coefficient is

?- _• - = - 0.12 (69)

The situation during this base reflection period is shown in

Fig. 18. The magnitude of the reflected current pulse is (-0.9)

(0.72) = -0.65. The trailing edge of the incident pulse deaccel-

erates charge from -0.9 to zero amplitude, while the leading edge

of the reflected pulse accelerates charge from zero to -0.65

amplitude. The radiation field subsequent to the reflection of

the entire pulse from the base therefore appears as illustrated

in Fig. 19.

The reflected pulse of amplitude-0.65 travels back up

the antenna, and the previously described reflection phenomenon

at the monopole tip reoccurs. Assume r, 7_0.n at the tip; the

reflected wave amplitude is 0.59, and the situation during this

reflection is shown in Fig. 20. The lagginp edpe of the incident

pulse deaccelerates charge from-*.&, to zero v~loc.ty, while

the leading edge of the reflected pulse accelerates charge from

zero to 0.59 velocity, The resultant radiation is then -(-0.65)

+ (0.59) = 1.24. The radiation waveform now appears au shown in

Fig. 21.

Carrying the process throuph one more step, the reflec-

ted pulse of amplitude p0.59 returns to the base, where using

3Vf
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FIG. 18 Incident and reflected waves at bast.

L.41'r

0 hi

FIG. 19 Radiation field subsequent to reflection
"from base.
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SC- = 0.72, another reflected wave of amplitude 0.J 4 3 starts

back up the antenna. The situation during this second reflection

at the base is shown in Fig. 22. The radiation waveform is shown

in Fig. 23.

Comparison between the radiation waveforms of Fig. 23

and the calculated result (Pef, 26) shown in Fig. 10, shows a

fairly good agreement. Of course, the surge impedance and re-

flection coefficients have been selected, using previously pub--

lished data, so as to obtain good agreement. Nevertheless, it

"is evident that the principal radiation characteristics of the

pulsed monopole antenna, at least for E)•oo, can be explained

with the aid of the radiation mechanisms described above and some

simple transmission line calculations.
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SECTION 4

RADIATION OF A PULSE-EXCITED LINEAR WIRE ANTENNA IN ANY DIRECTION

4.1 DERIVATION OF EQUATIONS

In this section, the equations are derived for the ra-

diation fields of a pulse-excited, linear, thin-wire antenna, in

any general direction at angle e with the antenna, using the ac-

celerated charge concepts previously developed. See Fig. 24

which shows a standard center-fed linear antenna. However, the

following discussion also pertains to any type of linear wire

antenrna, including a monopole over a ground plane. These equa-

tions agree with those given by Manneback (Ref. 29, Eq. 12),

Schelkunoff (Ref. 30, pp. 102-109) and Ross et al (Refs. 31,32).

For an infinitely thin wire antenna, Refs. 29-32 inclusive give

the radiation field of a general current wave I (Z,t) traveling

undispersed at light velocity c in the positive Z direction, ori-

ginating at origin 0, as

- I Tlct)c' k (70)

1 _ ý (-1E ) (71)

An alternative form of Eq. (70) also appears, using the trigono-

metric identity

- 41
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which is

S= I(-rtc% 5t e(73)
).-rit r !.-5e

From the accelerated charge viewpoint, the radiation

field due to an accelerated differential charge q of length dZ

is found by combining Eqs. (24) and (68) to give

In Eq. (74), R appears in place of r as used in Eqs. (24) and

(68). In Eqs. (24,68) the distance from radiating element dZ

to field point P was designated as r, whereas in order to conform

to Refs. 29-32 inclusive, r will be used to designate the radial

distance from origin 0 to P, and R will designate the distance

from dZ to P.

The radiation field given by Eq. (74) is also that of

a Hertzian dipole, as given by Sommerfeld (Ref. 19), in the form

shown as Eq. (V-2) in Appendix V, where the dipole length 1 = dZ,

and

R = Z bt (75)

An equation equivalent to Eq. (74) also appears in Manneback

(Ref. 29, Eq. (4)), where it is attributed to Hertz. In Appendix

VII, it is demonstrated that the use of Eq. (74) for a number of
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4

standard antennas with a sinusoidally-time varying currents, such

as a dipole and a traveling-wave antenna, leads to agreement with

well-established results. In addition, in Appendix VII it is

also shown that for arbitrary time variation, dli obtained from a

vector potential A formulation is the same as given by Eq. (74).

Consider the field of a current wave traveling at ve-

locity c in the positive Z direction on the upper half 0± 2

of the antenna shown in Fig. 24. The field due to waves on the

lower half-\ •_ z-O of the antenna is calculated similarly as

shown later. From Eq. (111-13), the traveling current wave is

given by

In order to postpone, for the time being, inclusion of the ef-

fects of terminal conditions at the end of the antenna Z = h,

(i.e., a reflected wave moving in the negative Z direction), let

I at any particular time extend from Z = 0 to Z = L, where L 4 h,

as shown in Fig. 24. The field at P is then found by integrating

Eq (74) from Z - 0 to Z " L,

4I1C z JR J10 c- 'a Z (77)

For point P sufficiently distant, the variable R in

Eq. (77) may be replaced by the usual tar-field approximation

% Y- (e 78)

* i Eq. (78) is based upon the assumption that at any time the largest

S 4L4



spatial extent Z = L of the ,urrent on the antenna is small com-

pared to R and r, and Eq. (77) ;s based upon the assumption that

the current wave I has not yet reached the antenna end Z = h.

Then, and only then, R may be replaced with negligible error by

r in the denominator of the integrand i. Eq. (77), and sin () may

be regarded as constant, since R and r approach parallelism when

"Eq. (78) holds true. Then Eq. (77) becomes

L

5mne 1o (79)

*4Trc Jt

The function I (Z,t-R/c) in Eq. (79), can be rewritten,

using Eqs. (76,78), as

(80)

Thus Eq. (79) becomes

L

4-c. t (81)

Now

bt c c(82)
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where I denotes the derivative of I ( -.•__ (-(-C6O) ) with
C- C.

respect to the argument ( --E--- O )).

Similarly

3- 183)

From Eqs. (82,83),

Z)(--r CL -c' (9) 6-)
at (84)

Eq. (84) is typical of the relationship between the t and Z

partial derivatives for traveling waves. Substitution of Eq.

(84) into Eq. (81) gives

L

-L____ I ___C6)

j-(09 4 ntr io C.

The partial derivatives of I with respect to either Z

or t cannot have infinite values, in the actual case. The slopes

of any real wave I traveling on a wire may be very large, but

must be finite, even for a hypothetical square pulse applied to

the input terminals. This is discussed in more detail in Appen-

dix III, subsection 3, entitled "Wave Travel of Step Functions

and Pulses on Lossy Lines." However, the employment of step and

delta waveforms in concept, or as models of actual waveforms is

so useful and important that their radiation properties must be

- 14C)



analyzed. This is done in Section 4.2. At this point, assuming

that I has no infinite slopes, the integral in Eq. (85) reduces

simply to

(86a)

(e=_5e - __+ ___ ( 86b )

The retardation time r/c identifies the first term in

the brackets of Eq. (86) as the current that was at the origin

0 at time r/c ago. The retardation time

{-I- - L.(h1&-fte) = (87)

of the second term is the sum of the time L/c for the leading

edge of the current wave I to travel along the antenna from the

origin to Z = L, plus the time (Y*-L.*GStC for propagation of

the field from L = L to point P. This identifies the second term

as the current that was at the origin 0 at time( CC•'

ago, which is the current at the leading edge of I. But for

the use of non-infinite derivatives of I, the leading-edge cur-

rent must be zei, as illustrated in F 25. Hence Eq. (86)

X 47.
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FIG. 25 Leading edge detail.
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FIG. 26 Finite-slope function IC2,+)
at fixed time t,
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reduces to

Icic VIC Cosa_ (88)

Eq. (88) is tie same as Eq. (70) or Eq. (73). The

field appears to be radiated in spherical waves from the origin.

Thus, although the radiation emanates from all parts of the

traveling wave where there is acceleration of charge (i.e., a

non-zero time derivative of current), the integration of this

derivative along the wave produces the interesting result that

the far-field radiation acts as if it emanated only from the

point of initial excitation, the origin. Similar results, but

for differing reasons appear in Refs. (29-32 inclusive).

Eq. (88) can be derived in an alternative manner,

which is shorter and instructive. In Eq. (85) make the follow-

ing substitutions:

- - r/c (89a)

Z' -. (j-co ~e (89b)

H- L -(89c)

Then

Stin g a ~ (90)

Let I(t' ,Z) be a finite-slope function, as shown in Fig. 26.

Replace tl integral in Eq. (90), using equi-valued intervals

4L
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A, given by
z L / (91)

by summation shown below:

rj. _L r S1jk

Hence

L

Since I (O,t ) is the current at the origin, i.e.,

I ~ t") _ T(t- Vc)(93)
then Eq. (90) reduces to Eq. (88), i.e

r t- -K-i _ý.i_-_ (94)

4.2 RADIATION DUE TO STEP-FUNCTIOC' EXCITATION

The above method, based upon Eq. (90), also allows a

simple derivation of the radiation field due to current waves

with infinite derivatives, such as step-functions, rectangular

pulses, or impulses. The transformation from the time deriva-
tive of Eq. (81) to the space derivative of Eq. (85) continues



to hold, even for these cases, as can be shown by a limiting

process going from non-finite slopes to infinite slopes. Thus

Eq. (90), based upon Eq. (85), continues to hold.

Consider the traveling-wave step function

w•here O(x) is the standard step function given by U:l for x20

and U=O for x< 0. Then Eq. (90) yields
4 L

_ _- e -(96)

Tht derivative of the step function inside the inte-

gral in Eq. (96) yields a delta function, which can be inte-

grated. However, the integral can be evaluated alternatively by

first allowing the traveling-wave to have a steep, but finite

slope at its leading cdge, performing the integration, and pass-

ing to the limit of an infinite slope. See Fig. 27. This mathe-

matical process, has real physical significance, since it shows

how a hypothetical step function can be approximated as closely

as desired by an increasingly steep but finite-slope wavefront.

Hence

L

(~~o U ?'I- V ~.C 1 " (9 7)

0
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FIG. 27 Step function as a limiting process.
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FIG. 28 Geometry for traveling step function.



where I(Z' ,t') is the finite-slope function shown in Fig. 27.

Since

S __ I (LiL24' 4 L!• (98a)

-o C _o _ L'-A2'• (98b)

then

L~2

0

Since for a step function 1(0) is also the current at the origin

0, then as before, 1(0) = I(Z=O ) I(t-r/c, and Eqs. 96,

99) yield again Eq. (94).

An alternative derivation of Eq. (94), using the for-

mal mathematical properties of step and delta functions, proceeds

directly from Eq. (81). A traveling step function, using Eq.

(95), becomes

T_ ~~' -/c - oO-L(• (100)
'RC d10( C. C

The derivative in Eq. (81) 's

c. (101)

where is the standard delta function. Eq. (81) becomes

0L
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Substitute*

(103)

i C-

Eq. (102) becomes

(

S5nO 4" -C C - (106a)

-ot ue (W(106b)

The interval (jt C can be rewritten as

- "' L ""-+ Using h for L, Eq. (106) becomes
C- -C-

dy-.l~*~j56 T~Ut~-~~')(107

C C-
Thus the initial pulse of the radiation waveform '. step

function excitation has the amplitude given by Eq. (106a) and

lasts over a duration time interval of ŽýL (9e seconds, not
C.

seconds. This is discussed further below.C.

""An alternative evaluation of the interal in Eq. (102) is
given in Appendix VI.
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Since any function can be represented as a sum (super-

position) of step functions, and Eq. (107) is the response of

the antenna to a step function inDut, then by the linear super-

position theorem (Ref. (33), t. 113), tne antenna response to a

general current function input T, will be

+ C(-CW sN) (008b)
C

Eq. (108) is the same as Eq. (94).

The radiated waveform for an input step functicn is

thus given by Ea. (107). Actually, accordinr -o the accelerated-

charge radiation concepts , the sourze of the radiation is in the

'moving leading edge (step) of this waveform. Tte distance R

between this moving step and P varies, but for P iufficientiv

far away, R may be replaced in the denominator bv r i'n 1'. ('7)

which is why r appears in the denominator or Ea. (20?).

The radiated field as observed at P commences at time

r/c after the instant the step function enters the antenna at

the oriFin 0, and remains constant at the viJuo piven bv rn.

(107) until th- traveling current -ter wavy ront reachei the an-

tenna nO. 7 h, where a reflecte! w-'v'r n% t atr,. ?h° red

at P remains conitant at the vilu- -,ven ',v + . 7) the

SV



radiation from the reflected wave reaches Therefore the du-

ration of this initial constant field at P is Cw-(m.e and notC-

h/c. This can be seen by examination of the following table and

Fig. 28

Observed tim;,, of
Location of Local time arrival of radiation

Event step wavefront at antenna at P

1 entry at origin 0 r/c

2 Z Z/c

3 reflection at h h/c +dC +-cQe-z 1C

4 return to origin 2h/c ?Lc. t 2•iC

In the local time frame at the antenna the timespan between

e'ents 3 and 1 is h/c, but to the observer at P, this time span

is h/c (N-9Wt& , as measured by his observations of the received

field. This is illustrated by the upper waveform in Fig. 29.

The fact that the radiation-producinr s'; is travel-

ing towards the observer produces the observee time compression

factor of (A-W*56) . Similarly, th- t+.me span between events 4

and 3 is again h/c in the local antenna time, but i- h,/c

as measured by the observer at P. This i,; because the rad'ati.Af

wavefront is now traveling away from the observer, result n7 _"n

a time exnarsion factor of (C.k+CcbED . the ý •ran between

events 4 arid 2 is 2h/c to both an onserv-r t•rir a ,'n':i.a

P, as it should ,, 'nce both event- ocu" •t x, f !ed *o -t,

[c • the origin.

"yK-



The reflection of an incident current wave I at the

open end Z = h is equivalent to starting two waves from that

end, each -I(t-h/c). One continues in the +Z direction (sup-

posed to be extended) along with the incident wave, thus can-

celing the incident wave for all Z• h, and the other propagates

back in the -Z direction (Ref. 29, p. 298), also (Ref. 30, p.

105). The fields due to these two new waves are as follows

(Roll. 30, pp. 104, 105 and Ref. 31, p. 144)

w -1t- ý/Ic -r'(c) k (109)

~~~C - I~t-1L ' -C=56' (110)

4ir
In Eqs. (109,110), r is the magnitude of the vector r drawn

from the end Z = h to P, and 6 is the angl, between the +Z axis

and r . For P sufficiently far, r may be replaced by r in the

denominators, and 6 by 6 . The radiation from these two waves

thus appears to emanate from the end Z = h.

To calculate the H field for step-function excita-

tion of a center-fed dipole, or a monopole over a ground plane,

it is necessary to take into account the radiation from both

arms of the dipole, or the image in a ground plane. The Lable

below gives the observed magnitudes and time durations of the

-57-



received radiation pulses due to both up and down-going current

waves on each arm, over one time cycle of wave travel, starting

with the step at the origin, followed by travel along the an-

tenna, then perfect reflection at the ends Z = + h, and return

to the origin where perfect absorption (no reflection) is assum-

ed for simplicity. Fig. 29(a) shows the radiation wave-forms

for Ht . multiplied by the common factor CTr•'a) . The± Z

symbols in Fig. 29(a) show the directions of travel of the step

on the antenna.

Number in Direction of +'V Duration of
Arm Fig. 29 wave travel radiation pulse

Upper 1 (initial wave) N1V% C

-z 1t-cLe _ .- \c•z _
Upper 2 (reflected wave) 10

-z •-oe o ( se
Lower 3 (initial wave) 51I4 C

Lower 4 (reflected wave) 150 0C.

The radiation response due to an impulsive excitation

may be found by taking the time derivative of the response due

to a step excitation. Thus the radiation due to an impulse, as

shown in Fig. 29(b), is obtained by time differentiation of the

radiation wave-form shown in rip. 29(a) due to a step. For&e%3O

the two inner impulses in Fip. 29(b) ierge at h/c to form a

K ,- 5{



negative impulse with amplitude twice that of the two outer posi-

tive impulses, as shown in Fig. 30(b). This impulsive response

at 0=900, as well as for other values of ( , can also be obtained

from the response to a rectangular pulse of width 'r , by letting

' approach zero. It should be kept in mind that these results

assume no reflection at the origin. The case when there is re-

flection at the origin is considered below.

For 3--o 0 , the radiation waveforms of Fig. 29 reduce

to those shown in Fig. 30.

If the feeder transmission line impedance is not match-

ed to i-he surge impedance of the antenna, then the step wave-

tronts are reflected on return to the origin Z = 0. Let the

current reflection coefficient at the origin be k,. (- 0.72 in

Section 3'. Further, for the sake of completeness, assume non-

perfect reflection at the ends Z = + h, and let the reflection

coefficients there be We(= -0.5 in Section 3). Then the radia-

tion waveforms shown in Fig. 29 must be modified in amplitude

and extended in time as shown in Fig. 31. For the sake of defi-

niteness, 0 = ,45 0.72, and We = -0.D in Fig. 31.

4.3 RADIATION DUE TO PULSE EXCITATION; COMPARISON WITH A

FREQUENCY-DOMAIN ANALYSIS

In this subse,-tion, the radiation due to a rectangu-

lar pulse will be calculated using the time domain techniques
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discussed in the previous subsections. Let the pulse duration

be 'T seconds, where 'e is less than the travel time h/c on either

arm of length h of a center-fed dipole as shown in Fig. 24, or

on the length h of a monopole over a ground plane. Such a pulse

traveling on each arm of the antenna may be represented before

reflection at the ends as the sum of two traveling step func-

tions as follows:

upper arm: c C -IC' - U (t%- I > (llla)

l ow e r arm : U ( t+ 2 IC '• - U [ *- " I . (lll b )

The time history of the radiation waveforms due to the

first terms (leading edge of the pulse) in Eqs. (llla,lllb), in-

cluding reflections at the ends Z ± h and at the origin Z = 0

has been illustrated in Fig. 31. The radiation waveform due i3

the second term (trailing edge of the pulse) has a similar shape,

except that the sign is revised due to multiplication by -1, and

the waveform is shifted to the right along the time axis by ,

due to the time delay of t seconds between leading and trailing

edges. Addition of the two sets of waveform,. thus gives the

radiation waveforms for rectangular pulse excitation of a

center-fed dipole, with a current reflection coefficient ko at

the dipole ends, and • at the input (Z 0), for a pulse width

lass than the antenna travel time h/c.

n- t



The details of this time-domain calculation have been
carried out, but are not repeated here, to permit cor- rison

with an example given in Ref. (34). In Ref. (34), the center-

driven cylindrical antenna has a length to radius ratio V 504

with a source excitation ulse of trapezoidal shape with a base

width of about 0.55 h/c, a flat top width of about 0.26 h/c,

and a width of about 0.38 h/c at the 50 percent peak amplitude

point. The transmission line has a 50 ohm impedance. To defin-

itize the comparison, the following numerical values were assum-

ed:

S-o (112)

The patterns in Ref. (34) are calcu! ted for the far-

zone field using an inverse Fourier transform of the response to

sinusoidal excitation • . A comparison between theseý patterns

as given in Ref. (34), and those calculated as explained above,

assuming a rectangular pulse of wiuth't 0.4s h/c are presented

in Fig. 32, for different values of polar aingle 6 . he patterns

of Ref. (34), as shown in Fir. 32 nave been simplifid " that

small amplitude osciIlatienu, have 'een orr tte,, how e ver the indi-

cated amplitudes, width, and t.re. of thi , •rin civl a ,u,.11:'s follow

the values given in Pef. (114) clo',eIv v can be read Irom ro,



curves presented therein. Ttc time-domain results have been

norrialized so that the first pulse for &-')C) (broadside) has

the same amplitude (=1.55) as the corresponding pulse in Ref.

(34), thereby afforcxing ready comparison.

"Inspecti-n of the two sets of curves in Fig. 32 shows

da f.irIy reasonable agreement, considering the relatively ap-

proximate nature of the ime-domain calculations, except as

approacties small angles. For - 9 , 70 , 60 , and 45 , the

a-rcement is fairly rood as measured by the number of pulses,

their dmplitudes, widths, and positions. For example, as

decreases, the amplitude of the first pulse increases approxi-

mateiv as predicted bv the (•, ¢8O)I5•ie factor of Eq. (107a),

until G= 2004. Further, using time-domain analysis, it is simple

a oto ;Iow that ds E decreases from 90 , the received pulse width

rtrrm aln• ,,k)stant at "1 until i,.e angle 1 is reached at which the

K :"'. ,uantitv(\-CoSO9)h/c becomes less than " . For e less than this

angle, the pule- width, for an ideal rectangular pulse, becomes

C"o-ro5 /c. tr I u.4 h/c, this anple is 530. inspection of

The :urv.s ~i ver, in Ref . (34ý sh!ows that the received pulse
o 0

wi,!(-i :,t 'in; tu derea.ce for & around 5) , in agreement with thv

""- t i' V,-[ ,, r, ;,red> t i on , ,in, conI •nue:; t< I e-rea';e as e decrease;

) r t
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However, it is clear that there is serious disagree-

ment between the two sets of results for e • 2 • The time-

domain analysis as presented in this report, which leads to eq-

uations such as Eqs. (70) and (107), which agree with previously

published work (Refs. 29-32 incl.), predicts a field which con-

tinues ro increase with decreasing • as

On the other hand, while the frequency-domain analysis of Ref.

(34), presents curves which show a field which does increase

approximately as (4+Co0 )/(LIG, from 90* to 40 , the 8 =2c

curve distinctly shows a field which has begun to decrease again.

The disagreement arises in the singular behaviour predicted by

Eqs. (70,107,113) for the field which increases without limit as

1 approaches zero. This behaviour is discussed in more detail

in subsection 4.4 below.

However, it is stated in advance that while this dis-

cussion shows that the total radiated energy of the pulsed di-

pole antenna remains finite, and that the fields do not go to

infinity as 6- 0 for an .nfinite-length antenna, nevertheless

the disagreement noted above for small values of e remains

unresolved. Experimental investigation of the fields of a

pulsed dipole for • small might help to resolve this point.



S4.4 DISCUSSION OF PULSED WIRE-ANTENNA RADIATION, ESPECIALLY AT

SMALL VALUES OF e
Eqs. (70,71) have been derived in this report for a

current wave traveling in the +Z direction on a finite-length

linear antenna, such as a dipole, the effect of the ends not be-

ing included. The same equations are derived using the retarded

vector potential A for a finite-length antenna by Ross et al

(Ref. 31, pp. 17, 117) and also for an infinite-length antenna

using a Green's function by Ross et al (Ref. 31, p. 142). The

effect of the ends is accounted for by a reflected current wave

by Ross et al (Ref. 32, p. 115). The same equations were pre-

sented without derivation by Manneback (Ref. 29, p. 294) for an

infinite-length wire; he showed that these expressions satisfy

Maxwell's equations, neglecting terms compared tol/r terms,

and that for ( small, Eqs. (70,71) reduce to the expected fields

of a plane electromagnetic wave traveling at velocity c

along a wire. Manneback also took into account end effects by

partial or total reflection at the ends; see Eqs. (109,110).

Schelkunoff (Ref, 30) shows that Eqs. (70,71) are really exact,

including \ terms, for an infinite-length wire; he also

accounts for end effects by equations such as Eqs. (109,110).

The purpose of the abcve 4•iscusssion is to show that

the radiation equations for finite-lenith aintennas are the same

K



as for the infinite-length antennas, except that provision must

be made for end effects. For infinite-length antennas there are

no end discontinuities; the fields in the direction of the an-

tenna (small 0 ) travel with the current wave along the antenna

at velocity c. For the finite-length case, the ends represent

a discontinuity, such as partial or total reflection, or absorp-

tion. The radiation from the finite-length antenna ýs thus cal-

culated using the same equations as for the infinite-length

case, modified by appropriate reflection coefficients for termin-

al conditions, with due regard to the direction of current wave

travel and time delays (e.g., , qs. (109,110)).

For an infinitE-length antenna, Eqs. (70,71) present

no special problems as 0-#0. Ross et al (Ref. 31, p. 137) show

that Ampere's law in the form

(114)

is satisfied by Eq. (70) for 0-O. See Fig. 33, Thus

Sr 5n
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Using 1-ý1O5 -0 Z and T-00 as 40,

ý ,tý.a - -Y(115)

Thus the line integral of H near the wire at distance Z from the

origin, at time t, is the current that was at the origin at time

Z/c ago. Since the current is assumed to travel undispersed

along tle wire at velocity c, this is exactly the current that

is now (at time t) at Z, and has reached the loop area. It is

pointed out thac Eq. (114) is not the complete form of Ampere's

law, which is, for stationary boundaries,

The first term in the RHS of Eq. (116) is the conduction current,

and the second term is the displacement current. However, as

0 and the surface of the wire is approached, (! --#s '0,

the radial component (Z-compone t) of L-*O, and thereforeE-S-4O.

Thus Eqs. (114,115) hold as 6--&. Schelkunoff (Ref 30, p. 109)

arrives at the same results using a conductor which is a ;emi-

infinite cone of half-angle 4 AsO-4 (surface -, the cone),

AmDere's law in the form of Eq (114) is invoked, the radial coin-

ponent of E being zero at the surface. /ee Vii'. 3,;.

C,

Ki~
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FIG. 33 Line integral of H for semi-infinite wire.

•-- 4 L o

•% }'FI,. 34 Line intep:ral of Ht for semi-intinite cone.
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Thp ioregoing discussion indicates that as far as cal-

culation of the fields due to traveling waves on infinite wires

is concerned, including the case of 6-#0 , there is agreement

among the various writers cited. Fig. 35 illustrates how the

fields wavefront travels with the current wave along the antenna

at velocity c. Two wavefronts are shown at time t. The lead-

ing wivefront is due to a current element 1 now at O= ,4

and formerly at the origin at time k-YWIC , the second wavefront

is due to a current element T2A• now at 2z T and formerly

at the origin at time t-(tlC.

For a finite-length antenni, Fig. 36 illustrates how

the radiation field at a far-field ;*oint P varies in time. As-

sume a step-function excitation. hc iritial radiation to reach

P is due to the current wave travelinv in tne +7 direction. At

tinle A(-05e)IC later, the radiation from the reflected cur-

rent wave arrives at P. At exactly 6=0 , the two wavefronts art.

just tangent. Calculdtion of the resultant field at e=c) is

beset with a number of difficulties such as the boundary condi-

tions at tLe end Z = h, the effects of a finite wire diameter,

the discontinuity experienced bv the travelinp field wavefront

as it moves off the end of the wire into space, atid the zero

duration of tnis field. Itowever, i t :,on- - r(, val es o0 e it

:- is clear that the radiation tiat ,irrive-; f r t it V is due only
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on semi-infinite wire.

,Yc



to the initial current wave traveling in the tZ direction; the

radiation change due to arrival of th,. current wave at the end

reaches P at time h - later. Hence during the time

interval Ot'2 (,-Co5I)/C,_ the current step has not yet reached

the antenna end, and the radiation at P must be independent of

what occurs at Z = h. Therefore, during this non-zero time in-

terval, unaffected as yet by end conditions, the field is given

by Eq. (107a) for a step waveform, and by Eq. (108a) for a pen-

eral current waveform. All the cited references (Ref. 29-32

incl.) agree on this form of the radiation equation. Hlence the

bothersome question remains as to the behaviour of this field

for small 0 as 215V19, which disagrees with the calculations

of Ref. (34).

"In terms of field amplitude or power per unit area,

the linear pulsed antenna appears to act as an end-fire antenna.

Ordinary (sinusoidal time variation) traveling wave linear

antennas also act to tilt the radiation pattern in the forward

direction, the tilt increa;ing with the ratio of antei.na len,7th

to wavelength. However, such antennas are terminated at the

ends so as to eliminate standing waves, i.e., an absorption

terrination instead of an open end. Hence an\ comparison with

ordinar; travelinp wave antennas; rrust t)e t, .tted with caution.

?,



In terms of radiated energy, some interesting coiclu-

sions are easily arrived at for tie pulsed dipole antenna. As-

sume step ex%.itation, for simplicity, and perfect end reflec-

tion. For one cycle of current travel on the antenna Octt± 2/C,

Fig. 29(a) shows the radiated field, for e8IT/2 . For--'± T , IT

it is simple to show that the total radiation waveform remains

unchanged in form, consisting of two pulses as shown of tne sam"i

amplitude and time duration as for e:t7v2. nence the radiated ,

energy per unit area (two pulses) at -ny anple Gis o

00

2~K R-T

o K

Thus the energy per unit area i s 41nite at a i an),les. Al';o the

broadside (e: enerpv per uni t are,, if, twice that in the endV -'.A

fire directions Co = 1[i0, deC)* 1',.ti, 2ot .v ron t:I E3 0

broadside maximum. The i ' inct. iii' :,, •v our I'aidit, t - mt



and power as - 0 is not manifested in the energy. In

terisis of radiated energy, the antenna does not act as an end-

fire type.

The total energy E radiated in cne cycle o0 4.% 2WiC

by a step excitation on a dipole antenna is found by integrating

Eq. (117) over the surface of a sphere. This leads to

10 21 Y_ :3

00

Using

5 5 AYCke .

C -I

Hence the total radiated energy is finite.

Before leaving the subject of the singular behaviour

of the field amplitudes as e-.O, it is pertinent to note what

happens if the velocity of propagation 1T of the traveling cur-

rent wave along the antenna is very slightly less than c. Then

Sthe factor of .UJ- ) V(b- Gý in Eq . (107a) is re-

placed by J | 5MO -J3( where dFp~I/C<t (Rei. 32, p. 123).
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The significance af this is that the "infinity catastrophe"i at

e=: disappears. The field now goes to zero at 8= 0 , and has

a maximum at e COIJl given by . For example, for

0. - . It is only a conjecture if some ef-

fects of this nature are indeed taking place on bare w-lre an-

tennas. The discussion of propagation of sharp wavefronts on

lossy lines in Appendix III indicates that the definition of an

effective velocity of propagation depends upon the details of

build-up of the wavefront at a point along the an.tenna.

- 0



SECTION 5

RADIATION FROM LOOP ANTENNAS

5.1 INTRODUCTION

In this section, the radiation of a circular loop an-

tenna 's examined. Two examples are given. The first is a loop

driven with sinusoidal time-varying excitation, for which the

solution is well-known. The radiation field is derived from the

accelerated charge Eqs. (V-7,32), which for a linear element dZ

lead to Eq. (74). This example illustrates that these equations

produce correct results for known cases. The second example is

a loop driven by pulsed excitation, for which a solution has re-

cently been made available using both frequency and time-domain

analysis (Ref. 35). The time-domain analysis is examined to

verify that its formulation in the time domain agrees with that

developed in this report.

5.2 SINUSOIDAL TIME-VARYING EXCITATION

The loop is taken in the XY-plane, with radius b suffi-

ciently small compared to wavelength so that the current can be

assumcd to be constant around the loop, to a good approximation

(Ref. 22, p. 56). In Appendix V it is shown that Eq (V-7), for

the radiation field of an accelerated charge moving at low relat-

ivistic velocities, becomes Eq. (V-32). For a loop, differential

- 81 -



length dZ is replaced by the differential circumfe•-ential length

ALcL& 04 -= (120)

See Fig. 37. The coordinates of the current sciz<'e element dL

are ( )-a12 )C$ ), and those of the field p6 * it P are (rtte4).

Eq. (V-32) becomes

I ] (121)

For point P in the far field, R may be repl#.-ed by r in the de-

nominator of Eq. (121). UsingLII (122)

7= (123)

it follows that

_(124)

Hence

cI - ki+C.IV (125)

For P in the far field, R is essentially parallel to r, so unit
An

vector VI may be replaced by unit vector Or. , and

IV -j G r" (126)

-I
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FIG. 37 Loop geometry.
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where, from spherical trigonometry

CoS'1) ~(127)

Hence

S(128)

By hypothesis, 6b /Un I)•tI , hence

z w' (i K6csct (129),

Resolving dL along the directions CL. parallel to .P, the pro-

jection of r on the XY-plane, and =4) perpendicular to jo,

aL 05 (130)

Substituting Eqs. (120,129,130) into Eq. (125) and integrating

over the variable 21 ,

at

Using loop area P•- , •-'OIC I magnetic moment -
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and . 2

2 (131) t

4tt
which is a well-known result (Ref. 23,, p. 95).

5.3 PULSE EXCITATION

In Ref. (35) the loop is as shown in Fig. 37. The

field is calculated in (Ref. 35) using the radiation field of an

infinitesimal dipole given by Sommerfeld. Using the equations

developed in this report, E is given by Eqs. (11-34, V-37) as

TA (iA.~ (132)

Hence Eq. (121) can be used, to yield

4u(c.2 t-.' " (133)

From Eq. (V-22) for the differential current element C1_- ,

_=b-e

In the far field R is replaced by r (except in the arguments of
A A

P or T), and since R and _r are parallel, then f- r.

Hence Eq. (133) can be written as

Eq. (135) is identical to the equation for dE developed in (Ref.

35, p. 28).
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Iin Ref. (35) the source and field point coordinates are(6

and (R. c•o' respectively, whereas here they are ( 6 .

and (S )c) . The distance bztween source and field points is

r in Ref. (35), whereas here it is R. Taking this into account,

Eq. (135) is the same as that used in Ref. (35) (p. 28, Eq. (4)).

Returning to Eq. (133), using Eq. f130), 4I= CL

A , there is obtained

(136)

From Eq. (123), dE has two components

a1E 2) ~ 1L-tic) Lf5MV 13 7 a)aE cE r bt

_____zL__0- (137b)4 iP ce r bt

In Ref. (35), the eicitation is a pulse applied to the

input terminals shown in Fig. 37. Similar to Ache case of the

linear dipole discussed in subsection 4.3, this produces a cur-

rent pulse traveling circumferentially on each arm of the loop,

in opposite cI directions. Each pulse is represented, as in

subsection 4.3, as the sum of two separated step functions, re-

sulting in four step functions in all. It will suffice, for the
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purposes of this report, to investigate the radiation due to one

step function; the detailed results of the superposition of the

four step functions is given in Ref. 35.

A step function of current traveling at linear veloc-

ity c on a loop is given by an equation similar to Eq. (95),

with Z replaced by circumferential length L= b4j. Thus

o Oc~t--c ? (138)
Using Eqs. (126,127,13a)

tl (139)

~ L-~I TJRV C03( (140)

bt (141)

Substituting Eq. (141) into Eq. (137), using -L, and

integrating over the variable * gives

- L (142a)

ETO 2"t\ h r~ k\ I (142b)
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The integrals in Eq. (142) are of 'the type discussed in Appendix

VI)

J ~ (144)vI

Here is a zero of the argument of the delta function, i.e.,

From Eq.. (1:43),

.~ ~ -4~i~~e(145)

Hence Eqs. (142) become

Eq I.CO:3 (146a)

71:Q scr ol(-4'N1'G

(l46b)

C t

Eqs. (146) are the same as those in Ref. (35) (p. 31,32, Eqs.

(12,13)), using vZ (traveling-wave velocity) = c, except thaT

there is a + sign in front of the SM (4-41 ) term. This

may be traced back to what appears to be a typographical or a

sign error in Ref. (35). If one substitutes the equation
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IDCo Cty (Ref. 35, p. 30)

into the argument of the delta function

' k ." -- L - (Rqf. 35, p. 30,31
Eqs. (10,11))

one obtains the argument

b4~ _

whereas a -sign appears in front of the C01(50 -4i• term

in Ref. %5 ',p. 31).

is concluded that the time-domain analysis of the

puU~ed loop problem in Ref. (35) and tha analysis developed in

this. report are very similar to each other in basic formulation.
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SECTION 6

TRANSIENT RADIATION FROM APERTURE ANTENNAS

1, INTRODUCTION

The radiation from aperture antennas such as horns and

parabo~loids is calculated in many analyses from diffraction of

the aperture fields N. For reflector types the reflec-

tor-surface fields or curreits can also be used (Ref. 21, p.

144). For wire antennas the preceding sections haN shown that

the use of accelerated-charge radiation leads to a time-domain

formulation in terms of the time-derivative of the currents on

the 4ntennas. A similar analysis for reflector-aperture an-

tennas, using the accelerated charges on the actual conducting

surfaces to calý.ulate the transient radiation has not been at-

tempted as yet. Instead, in this report, a general time-domain

method of calculating the transient radiation from aperture an-

tennas developed by Chernousov (Ref. 37) is reviewed, and some

important results are noted. This method uses the antenna sur-

face or the aperture fields and the Huygens-Kirchhoff principle

to calculate the radiated fields. It is shown in this report

that the radiation from the equivalent current sheets which re-

place the aperture fields in Chernousov's analysis, may also be

obtained from equivalent accelerating charge sheets over the
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aperture. It is also shown that Chernousov's results for the

radiation of a planar in-phase aperture in principal planes

reduce to the results for a one-dimensional antenna given by

Cheng and Tseng (Ref. 38). Some recent work by Maddox (Ref. 3)

is also described.

2. REVIEW OF CHERNOUSOV PAPER ( iF. 37)

Consider the antenna apeiture fields C F:5

which must be known, and their equivalent currents, which are

arbitrary functions of time,

-A M Foýt (147a)

V\ A (147b)

where \ ,e are the usual equivalent ficticious electric-and

magnetic-current sheet densities over aperture 5 (Ref. 6, p.

486). The retarded potentials are (Ref. 6, Chap. 13)

A (15___a (148a)

4-11

See Fig. 38. rt is the vector from origin 0 to aperture area

element c., and v is the propagation velocity in the medium.
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FIG. 38 Apert re antenna.
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Then, following well-known methods, the fields Er

at P are expressed in terms of vector operations on and

The results, which are not repeated here, are given in Ref. (37),

and hold for near-as well as far-fields.

Chernousov defines the far field by the following

equations,

- -. - ? - (149a)

plus the requirement that R ;P linear dimensions of the antenna,

where T denotes E or H. To illustrate these equations, for con-

ventional sinusoidal time-varyirg excitation, let P=•(f'•Cs"

Using '--C- , Eq. (149) reduces to •;7 \L2i , which is a well-

known criterion for the far field for excitation. For

arbitrary time variation, using Chernousov's results (Ref. 37,

Eq. (8)) and Eq. (147), the radiation field can be shown to be

54-tcr C~t (150)

d93
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where t =t- r-1, and r is a unit vector along r

3. ACCELERATED-CHARGE VIWPOINT

It will now be shown that Eq. (150) is consistent with

the accelerated-charge radiation results developed in Eqs. (68,

74, V-7). For a one-dimensional current flow along the Z-axis,

these equations show that

4- _ -Ck b t- (151)

where • is a unit vector along R, the vector from dZ to field

point P. In a similar fashion to Eq. (68), which replaces the

charge-acceleration product by a product of the time derivative

of the current and ca , for a surface sheet current flow •C

amps/Aeter, the charge-acceleration product would be replaced

by the following product:

Ire"- - 6t.s,

Thei the radiation due to the equivalent (ficticious) electric

current sheet N(which replaces the true aperture field •AC",t)

can equally well be considered as arising from the radiation of

equivalent (ficticious) accelerated charges as given by Eq.

(152), leading to thc followinr two-dimensional generalization

of Eq. (151):

.t. - n}I. -



A

e_4_\_5_ (153)

4.b

For the far field, R - is parallel to r, and Eq. (153)

becomes

\X± - C__ (154)
V, C bt

Eq. (154) is identical to the V term in Eq. (150) from Chernou-

sov's paper. A corresponding term arises from the \'ý current;

this is the Wt term in Eq. (150). Thus the Chernousov results

for aperture fields can be interpreted in terms of equivalent

accelerating charges.

In the case of linear antennas, the charge-accelera-

tion product was formulated in terms of the time derivative of

the actual current. For an aperture antenna, the above shows

that a similar correspondence obtains between the time deriva-

tives of the equivalent (ficticious) aperture currents and ficti-

aperture charge acceleration products. A transient radiation

analysis in terms of the actual reflector currents has not been

attempted, but presumably would produce a similar correspondence

between these current time-derivatives and the actual surface

charge-acceleration products.
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4. PLANAR IN-PHASE APERTURE

Chern'usov examines transient radiation from a planar,

rectangular aperture excited in-phase such that the aperture

field at any time has the same value at all points in the aper-

ture. Thus the aperture excitation may be written as

CE5 ( ý)= ELi 5 týý s (155)

where rCO C t) may be equated to unity over the aperture. The

aperture is taken in the XY-plane, radiating in the Z-direction,

of dimensions :-E_ a t12 -b2 Uz 2 . The aperture field

_ is polarized in the Y direction, and 4 is in the -X direc-

tion. For the case where T:, , form the front of a free-space

TEM wave, Chernousov shows that the radiation pattern in a prin-

cipal plane such as XZ is of the form

E(CW 4Tt Vr es

(156)
where G is the usual polar angle with respect to the Z-axis,

t t-'rlc , and 0o..$lnef(2c). Since T', is the time dif-

ference between radiation from the aperture edges and the origin,

it is seen that the radiation is the sum of two waves, which

appear to originate at the aperture ends, and have the same time

form as the excitation field.

Cheng & Tseng (Ref. 38) consider a one-dimensional an-

tenna with current excitation . When this function is
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separable then L(•i\: • f(t . For a comparable example

with the above Chernousov case, select the example in Ref. (38)

where I'-• for - _ C For Cce) L (Ref. 38,

footnote 3) so that C•cob\ ' . , the radiated field is (Ref.

38, Eq. (13))

A.. o. ECL= (157)

where L=. L5j,49 -C , and TIC- = Hence

apart from differing amplitude factors, which is expected since

one analysis is based on aperture fields and the other on cur-

rents, the two patterns of Eqs. (156,157) are identical.

5. SOME ADDITIONAL RESULTS

Using Chernousov's formulation, Maddox (Ref. 3) has

investigated the scattered far-field due to a conducting disk

whose surface is perpendicular to an incident pulse-type plane

wave. In the broadside direction (E--=) , the time waveform of

this field is shown to be the negative time-derivative of the

incident waveform. Thus the response to an impulse illumination

is an inverted doublet. This has been verified experimentally

(Ref. 39). Maddox (Ref. 3) has also derived the equations for

the radiation E field on the axis of a paraboloid antenna illu-

minated by a pulse-type sperical wave whose orig,',n is at the

focus, again using the Chernousov formulation. Calculations and
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interpretation of the results are not yet complete; however it

appears, depending upon the geometry of the problem, that it is

not always true that the radiated field is the negative time

derivative of the incident excitation.

A limited amount of experimentation has been done,

using available equipment. The transmitter is a Spencer-Kennedy

Laboratory pulse generator (mercury switch), with a one nano-

second pulse width (one foot resolution) and a rise time of

about 350 picoseconds. This ex(ites a long vertical monopole

from a coaxial line. For a receiving antenna a linear string

of five carbon resistors has been used (Ref. 26). The display

oscilloscope is a H. P. 185B with a 187B preamplifier. With

this equipment in a non-anechoic roor., measurements have been

made of the returns from a parabola (3 ft. diameter, 9 in. focal

length) and two disks (1, 2 ft. diameter). Qualitative agree-

ment has been obtained with published results (Ref. 40). More

refined experiments on aperture and wire antennas would require

test equipment with considerably higher resolution.



SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

Based upon the results presented in this final report,

the problem of radiation from antennas excited by impulsive sig-

nals can be approached in the time domain from the viewpoint of

radiation from accelerated charges. The transition to antennas

is accomplished through derivation of a radiation equathin which

expresses the accelerated-charge radiation in terms of the time-

derivative of the antenna currents, either real or equivalent.

Applied to pulse-excited dipoles, linear antennas and aperture

antennas, this radiation equation produces a result derived pre-

viously by retarded potential and other methods. For a pulse-

excited loop, the result is the same as that obtained by another

investigator using the Sommerfeld radiation equation for an in-

finitesimal dipole. For sinusoidal time excitation, the above

radiation equation reproduces well-known results for standard

antennas such as small dipoles and loops, a half-wave length

dipole, and a linear traveling-wave antenna.

It has been shown that the radiation characteristics

of antennas may be expressed in the time domain in a number of

equivalent ways, involving the integration of either the retarded

potentials, or the Sommerfeld dipole radiation formula, or the
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radiation from accelerated charges over the differential elements

of the antenna. If one accepts the premise, as preferred by

this writer, that the basic physical radiation mechanism is the

presence of accelerated charges, then the other methods may be

interpreted as alternative mathematical formulations.

In this report, the radiation fields due to acceler-

ating charges in all cases have been expressed in terms of the

time-derivative of the actual or equivalent currents on the an-

tenna, which are assumed to be known. Then the method of retard-

ed potentials, for example, could also be used, without any ref-

erence to accelerating charges. Thus, based upon the work com-

pleted thus far, it is concluded that while the accelerated

charge radiation approach provides, in the time domain, a direct

physical explanation of and an analytic basis for impulsive an-

tenna radiation, it has not been demonstrated that it has sig-

nificant advantages compared to other methods which also use

known or assumed antenna currents in their formulation. It is

probable that this conclusion will be altered by the results of

further work on transient antennas with new configurations, where

the currents or aperture fields are unknown and must be solved

for (i.e., time-domain boundary value problems), or must be con-

trolled by new and novel techniques.
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In the report, the radiation from a pulse-excited di-

pole is examined at various angles, using a time-domain equation

which has also been derived by others. Comparison with a pub-

lished frequency-domain analysis shows reasonably good agreement

at all angles except for angles close to the end-fire direction.

Further work on this point is recommended. Experimental data on

the radiation from a pulsed dipole (or monopole) at all angles is

also recommended.

The receiving characteristics of antennas in incident

transient fields have not been investigated in this repolrt. It

is noted that the receiving response of a monopole over a ground

plane, matched at the base, to an incident impulsive plane wave-

front, as given by Ross (Ref. 27) has a waveform identical to

that for the transmitted radiation of a step function given in

Fig. 29(a) (Ross's G is the complement of the 0 used in this

report). Investigation of receiving characteristics and reci-

procity relationships with transmitting characteristics is an

obvious recommendation.

A promising method due to Chernousov for analyzi' of

the performance of transient high-gain aperture-type antennas

has been identified and described. This is a gerner: nach,

based upon replacement of known or assumed apertv by
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equiv.-lent surface current sheets. It is shown in this report

that the Chernousov results can be recast alternatively in terms

of equivalent surface a'ccelerating charge sheets. For a one-

dimensional case, it is shown the, the Chernousov formulation

reduces to results derived previously by Cheng and Tseng. It is

recommended that the analysis of impulsive high-gain aperture-

type antennas be extended both in scope and in detail, including

primary feed antennas, to further the state-of-the-art of this

important class of antennas,
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APPENDIX I

LIENARD-WIECHERT POTENTIALS

1. SCALAR AND VECTOR POTENTIALS

The Lienard-Wiechert potentials are the potentials result-

ing from charges with arbitrary spatial and temporal distri-

butions. From these potentials the E and H fields due to

accelerating charges may be found. For the sake of completenv:i

a derivation of these potentials is ircluded in this Appendix.

Maxwell's equations in Gaussian units (Ref. 1) are

"" VA (I-b)

9_1Q_(1-2)

(1-4)

The constitutive equations are

Because of Eq. (1-4) and the vector identity div curl 0,

can be derived from the curl of a vector potential A:

(I-6a)

Similarly, because curl grad 0 0, E may be aerived from a

scalar potential , and A by

(1-6b)
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Thus the curl of Eq. (I-6b) recovers Eq. (1-2). The Lorentz

condition (Ref. 1, p. 180) defines div T by

j •.(1-7)

Vector manipulation of the above equations leads to the

standard wave equations

4fjo (1-8)

C2 b t 2-C,.C

where 5 is the impressed current density due to external sources.

For static fields Eqs. (1-8,9) reduce to the Poisson

equations

`72 4-(1-10)

The solutions of the static Eqs. (I-10,11) are the particular

integrals

PCX a~x (1-12)

S Ck X(1-13)

Here x is the position vector of the field point P(x 1 , xa, x3 ),

x is the position vector of the source volume d 3 X' I oct,
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at point ( ) ( t, ), and R is the magnitude of the

vector - •-'from P' to * See Fig. 39.

For dynamic fields, the time-dependent Eqs. (1-8,9) are of

the form

(1-14)(: bt2-

The time-retarded solution of Eq. (1-14) is (Ref. 1, p. 186)

where S is the Dirac delta function. The integration over

using the properties of the delta function

except at

(1-17)

yields

where L • means that t is the "retarded time" given by

Eq. (1-17). The time-varying solution Eq. (I-18) of the dynamic

Eq. (1-14) is a generalization of the static solution Eq. (1-12)

of the static Eq. (I-10), incorporating time retardation.

- 109 -



'R

FIG. 39 Charge e moving on path r (t
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From Eqs. (1-8,9,14, and 18), the integrals for 4 and A are

fP~' ~() 't'/~ 1 V'4At' (1-19)

-- (1-20)

2. LIENARD-WIECHERT POTENTIALS

The Lienard-Wiechert potentials are given in the literature

for moving point charges of fixed magnitude. These potentials

can be extended to the case of a fixed-position charge of time-

varying magnitude, as shown in this appendix.

Consider first a fixed-magnitude charge e moving on a

prescribed path •'t')with prescribed velocity (see Fig.39)

'\-_t' C J3t) (1-21)

The current density at a point • due to e is (Ref. 1, p. 465)
i* ~~~~~_ ') [X'"•• "- f•' =O ,-•f' [-'([tl) (1-22)

The vector delta function in Eq. (1-22) is defined such that

(1-23)

if volume V contains point r, otherwise the integral is zero.

Substitution of Eq. (1-22) into (1-20) gives

SR (1-24)
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Integration of Eq. (1-24) over Xe gives

where

- (1-26)

Similarly, write for the charge density at (t

,-P ( 1tt)= Cz ~ rf~I (1-27)

which, when substituted into Eq. (A-19), and integrated over

t( yields

~L ~L~t±XLt'V ) At(1-28)

Consider now a charge in fixed position at P1 , but with

time--varying amplitudel (Ct). Such a charge must, of course,

"be supplied by a current, to satisfy the continuity equation

i bK•Y j-?lt. Then the charge density at r('t) can be written

as

Substitution of Eq. (1-29) into Eq. (1-19) gives

R (1-30)
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The vector potential A forl(t') is zero, since*(t) has ze-ro

velocity.

Returning to fixed-magnitude moving chargez. Eqs. (1-25,29)

are now reduced to the standard Lienard-Wiechert forms
(Ref. 1, p. 465). Write 'Eq. (1-25) in more convenient notation

as

where

ý :+ ()t"a1+ (1-32)
The integral in Eq. (1-31) is evaluated using the following

property of the delta function (Ref. ., p. 465):*

Hence

- eS3(f%(1-34)

where Eq. (1-34) must be evaluated at

t'k -k- F0
i.e., at the retarded time

t' t-¶ (±1C (1-35)
"*See Appendix VI,

4/ 
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Now

-__--- - -- •C At'

II
I ~~The derivative • 'I 'is found from •

which shows as an explicit function of AC/ Hence

-- -ý_ ) - Ck

-V'•- •Lt'•~ *e •t

- R,'\

Define the unit vector A from source charge at ) to field

point at ) . Then

;•_.:/• -- (1- 38)

Hence

c•'th - ., ('-39)

From Eqs. (A-21, A-36), it follows that

- I_
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Hence Eq. (1-34) becomes

Ie* (1-41)

Comparing Eqs. (I-24) and (1-28), the solution Eq. (1-41)

to Eq. (1-24) implies that the solution to Eq. (1-28) is

Equations (1-41,42) are the standard Lienard-Wiechert potentials

which apply to a point charge of fixed magnitude e , moving at

prescribed velocity on prescribed path

Consider now a point charge J(t'f , fixed in position, but

varying in magnitude with time, Integrating Eq. (1-30) first in

)e gives

Using Eqs. (1-33, 1-40), and the fact that for this case

itftý/c =0 , so LUt") , Eq. (1-43) yields

(1-44)

Equations (1-41, 1-42, 1-44) can be combined to give the

following generalized forms of t1 3 Lienard-Wiechert potentials:
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For a fixed-magnitude charge 1(tI') e , while for a stationary

charge UO'z- , so that Eqs. (1-45, 1-46) reduce in each of

these cases to Eqs. (1-41, 1-42) and Eq. (1-44) respectively.

Equations (1-45, 1-46) were derived by Maddocks (Ref. 3).

In MKS units, and using the notation of Ref. 2, Eqs. (41,

42) become

N (Tit)4- (1-47)

L'JjYet (-8

where

5~~-~w ~(1-49)

and is used in place of -
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APPENDIX II

THE FIELDS OF MOVING CHARGES

1. EQUATIONS FOR THE FIELDS

The fields of moving charges may be derived from the

Lienard-Wiechert potentials Eqs. (1-41,42) and the differential

operations of Eqs. (1-5,6) (Ref. 1, p. 466 in CGS units; Ref. 2,

p. 345 in MKS units). The derivation below follows Ref. 1

closely, and is included here only for the sake of completeness.

From Eqs. (1-5,25)

The Vj• operator is in XZ coordinates and operates only on the

F inside the integral. Using

Eq. (1--1) becomes

Define

(11-4)
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Using Eqs. (1-37,38)

((11-5)

Thus the • operation is equivalent to

__ (11-6)

where /A is the unit vector along . Hence

A

~L A

IRC- (11-7)

where C) denotes differentiation with respect to the argument

of C) . Eq. (11-3) becomes

Rz 2R (.1-8)

Similarly, from Eqs. (1-6,25,28,32, 11-7)

~ cbt
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J

S(11-90)

-~ -t at--•-R •( -o

Using

bi
Eq. (II-10) becomes

C R

Hence

(11-12)
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The integrals in Eqs. (11-8,12) are evaluated using the

properties of the S -function given by Eq. (1-33) and by Eq.

(11-13) below (Ref. 1, p. 4).

.S ~ (11-13)

The first integral in Eq. (I-8) is reduced as follows:

0 / (11-14)

- (11-16)

Then

iR1 L



Using

S 'C•'-t •-RI•cW- --t' /L

the second integral in Eq. (B-8) becomes

-•- RL C LA%1

The equation 9=t means that t4 2 'I C • - or that the retarded

time t!%- 'IC . Eq. (1-8) becomes

L-. CI 0 (11-1

L 2 LCL at" ) ýlyeLaC a L • R L tot

In simila., Fashion the integrals in Eq. (11-12) can be reduced

by comparison with the integrals in Eq. (11-8) reduced to the

forms appearing in Eq. (11-17). It is seen that

k_ . ~ ~ (11-18)
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Henceforth, the [ et symbol wi:.l be omitted; it being

understood that the R.H.S. of equations for B and E are

"evaluated at retarded time

To decompose the fields given by Eqs. (11-17,18) into

"static." "velocity," and "acceleration" components, the

differential operations in these equations must be evaluated.

Now

Using Eqs. (1-39, 11-18),

A (11-20)

The derivative in Eq. (11-17) is

R W L 7R R L AJ

Equation (11-17) becomes

S L CL '~R L J 2  ~J

which, after some recombination, reduces to

- 122



A ~(11-22)

Equation (11-18) becomes

which, after considerable recombination, reduces to

From Eq. (11-23) it is seen that

Hence

~ A A (11-24)

Thus, ', B and tVA form a mutually orthogonal set of vectors.

The derivatives in Eqs. (11-22,23) are now evaluated.

Denoting differentiation on t/ by a dot,

d( 4 - = -y- . - i'ýrLtL ) (11-25)

From Eq. (1-40)

. A A (11-26)
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Using Eq. (1-39) A A

which, after some recombinations, becomes

Equation (1-25 then reduces to

t. r% C C (.-,Y

W L ) L -O RL2 ýR2 (11-28)

Similarly, Eq (1-23) becomes

A-
~L C FL"(11-29)

A-4- /Y1 .~,__ .

~IR2 20 C' L CRL IRO C RLP j

Now

e3 ( 11-30)

Alsc

- I (•71-1
- 1. In -3

C~~~ kL5C RL3

-~ ~ 1 rI



Substituting Eqs. (11-30,31) into Eq. (11-29), there is

obtained (Ref. 1, p. 467)

eL 2L? itL (11-32)

From Eq. (11-2L'), A

C CL• (11-33)

To convert Eqs. (11-24,32,33), which are in CGS units to MKS

units , replace E by

eby and B by J1/U
For the sake of completeness, these equations in MKS units are

given below as they appear in a standard text (Ref. 2, p. 356):

r )c• (11-34)

e

t ___ [ (11-36)

K. C



The following relationships hold between the symbols in Eqs.

(11-34,35,36) taken from Ref. 2 and those used heretofore, taken

from Ref. 1:

Ref. 2 Ref. 1

'R --
•-Z c- I'= -(I-y

2. DISCUSSION OF THE FIELDS

The E field given by Eq. (11-36) has three terms which

depend differently upon the particle velocity J=31 /C. For a

stationary charge L--J " L k.3 and the field reduces to

the ordinary static field (MKS units)

________(11-38)

For a charge moving at constant velocity, . •O and another

term varying as I/a appears, which is termed the quasi-static

S~- 12b-



or induction field. For an accelerating charge, -8 *t0. and

the third term in Eq. (11-32), which depends upon acceleration

'8 varies as 11R and therefore represents radiation. Similar

remarks apply to the B fields. Equation (11-33) shows there is

an induction field varying as which depends upon velocity

,ati a eai4tion field varying as %IR which depends upon

acceleration .j•

3. RADIATION FIELDS FOR THE LOW-VELOCITY CASE

Equations (11-32,33) apply to all possible velocities. The

physics lit#-rture is replete with examples and applications to

high velocity particles (relativistic case). However, the r. f.

antenna engineer is concerned mostly with charges that move in

or on conductors. While the field waveforms (also current and

voltage waveforms) can move at essentially the speed of .light c

"along antennas or transmission line conductors, the charges

themselves move only at very low velocities compared to c. This

is discussed in detail in Appendix IV. For such low-velocity

particles, _6= VC is very small compared to unity, and the

following approximations hold:

L=2' 1 (11-39)

A A

n 27
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The radiation terms in Eqs. (11-32,33), denoted by subscript

"a" for acceleration, become

"C (11-40)

G A je (11-41)

where 6.3 =C acceleration.

For the special case where a is perpendicular to R

("broadside" radiation),

-_ -_ E (11-42)C2 >

C (11-43)

In MKS units, Eqs (11-42,43) are

C-0. 1 F11-44)

t~, 
e -- 1

which agree with Ref. 4 (pp. 376,387).
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APPENDIX III

WAVE PROPAGATION ON TRANSMISSION LINES

AND LINEAR ANTENNAS

".. T�FV-., WAVES ON LOSSLESS TRANSMISSION LINES

This section is intended to introduce traveling wave

concopts. Voltage and current waves, which may be arbitrary

functions of time, travel on the idealized, lossless,

transmission line at a velocity given by

'IT"-Yt (11i-1)

where L is the distributed inductance in henrys per meter and

C is the distributed capacity in farads per meter of line

(Ref. 5, p. 12). For an air medium, v = c = velocity of

light = 3 x 10 m/s. The ratio of voltage to current is the

characteristic impedance

Fo LI ohms (111-2)

The argument of traveling-wave functions . ( 1t-) on such

lines is of the form ( t ± )i ). A step-function traveling-

wave current is given by
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where U (t-a..) is the step function of unit amplitude fort7oL,

and of zero amplitude for tio.L. A step function at (;O-t=O O)

will arrive at F at time t= .21.

The above transmission line is a special case of the

broader class of guided systems using the TEM mode of

propagation (Ref. 6, p. 177). For such systems, assuming

lossless conductors and dic'ectrics, the fields and their

associated currents and voltages again may be arbitrary

functions of time, and again travel undistorted at the velocity

(111-4)

For air media, v = c.

2. TRAVELING WAVES WITH SINUSOIDAL TIME VARIATION Oil LOSSY LINES

A sinusoidally-time varying traveling-wave on a lossy line

is of the form

Lt--1

where k is the attenuation constant ( neps/m ) and j3 is the

propagation constant ( rad/m ). The propayation function '6 is

and is given by

ý LI)Cý Lo(111-7)
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where R,G are the series resistance and shunt conductance per

meter, respectively. The phase velocity and characteristic

impedance are now functions of frequency, whose equations are

given in the literature (Ref. 5, Chap. 4). The various

frequency components of any time waveform now travel at

different velocities and also attenuate differently, resulting

in distortion of any original waveform.

3. WAVE TRAVEL OF STEP-FUNCTIONS AND PULSES ON LOSSY LINES

Many of the characteristics of pulse waveform.s traveling

on linear antennas depend upon the propagation of such signals

on linear transmission lines. The propagation of pulses or

step-function wavefronts on lossy lines has been investigated

(Ref. 5, Chap. 7). Such waveforms imply wide-band frequency

components. There are at least two approaches to this problem.

The first assumes that L, C, R, and G are frequency-independent.

The second approach, which is claimed to be more realistic

(Ref. 5, pp. 5 and 112), includes skin effects, and assumes that

the resistance and the inductance arising from internal flux

linkages vary as the square root oF frequency, the same as the

high-frequency asymptotes of these parameters. G is assumed to

be ignorable, and C is assumed constant.

For the solutions (based upon Laplace transform methods)

and graphs of the behaviour of step-function voltages and
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currents on such lossy lines, details are available (Ref. 5,

Chap. 7). In this appendix, some conclusions will be reviewed.

For both of the approaches mentioned above, a time delay

•aU•--• _LC (111-8)

elapses before the voltage (or current) at distance IL from an

applied step function becomes non-zero. The velocity of

propagation of a step-function may le said to be

only in the sense that this governs the elapsed time between

switch-on time and the time when some effects begin to take

place at distance I away. The calculation of these effects

(i.e., rise time) depends upon which of the two approaches

mentioned above is taken.

For the variable-parameter approach, at the instan: of

arrival of the wavefront at distance I from the source, the

solution predicts a smoothly changing rise in voltage and

current, with finite rates of rise inversely proportional to

A .Thus the practical result of skin effect is to produce

finite slopes of rise and fall of applied square pulses.

4. VELOCITY OF PROPAGATION ALONG A THIN WIRE ANTENNA

The current produced on an antenna by a transmitter is

a boundary value problem. Several methods have been used to

solve this problem (Ref. 7, pp. 176-180). In this section,



a method due to Pocklington (Ref. 8) will be reviewed briefly,

following Jones (Ref. 7). The details give insight into the

phenomenon of wave propagation along a wire antenna.

Pocklington was able to show that the current on a thin wire

is sinusoidally distributed for sinusoidal time excitation,

and that the velocity of the wave t the velocity of light c.

The mathematics involved will be described mostly in words.

The field " is written as an integral of the current, which in

turn is used to set up an integral equation for the current.

Assume a perfectly conducting body S (antenna less feeder and

receiver) in an external applied field E4  t . The

resultant total field E is the sum of E, and an

integral of the surface current linear density Js over .

By using the boundary condition that the tangential component

of =0 on 5 , the integral equation for S is obtained,

Restriction to thin wires, with radius a small compared

to antenna length and to the wavelength, reduces the integral

equation to one dimension. The wire need not be straight, but

sharp changes in curvature are not allowed. To find how a

disturbance propagated along the wire, Pocklington set E,=Q

and retained only the dominant terms in the integral equation

for * To this approximation, the solution for the antenna
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current . •2TT 6 SYat distance Q from the origin is found

to be

where

•e=• •a(III-lO)

Using

the velocity of propagation is seen to be

LAD--• = "-[- (111-12)

Thus, for air, the propagation velocity along the wire is v = c.

5. SOME CHARACTERISTICS OF WAVE PROPAGATION ALONG A THIN-WIRE

LINE

A traveling wave of current along a thin.-wire line extend-

ing along the Z-azis may be represented by

(111-13)

7 for propagation in the positive Z direction. The velocity of

propagation has been taken as essentially equal to that of light

c. The current I is related to the current density J (amps. per

sq. m.) by

S(111-14)

- 1J'4



where S is the cross-sec.tion of the wire. Determination of the

variation of J with depth is a boundary-value problem which is

not addressed here. The integral of J ove-r the cross-section

in Eq. (111-14) may be replaced by the projuct of a mean J taken

as constant over some cross-section area A characteristic of the

particular problem. Thus

1 (111-15)

For example, for a round wire, A might be taken, as a first ap-

proximation, as the cross-section area of the layer of thickness

beneath the wire's surface where • is a mean skin depth. Then

We now investigate the magnitude of the ratio of (• C

to (IYt7), where J is the electron charge density, and I\ is

the electron drift velocity. These quantities arise when the

time derivative of I(Z,t) is used in calculation of radiation.

The term (%P3WT(Et) represents charge acceleration in the Z-

direction and will be shown to be much greater than the other

term (qTCj'B-t), which represents time-rate-of-change of charge

density.

fUsing

(111-17)

there results

K



_ (111-18)

bt bt bt t

The continuity equation Q/.T=-2Y3It'reduces, in this one-dimen-

sional case to
• _ 5•(111-19)

ba bt

From Eq. (111-16)

--- •- (111-20)

where I is the derivative of I with respect to its argument

(t-Z/c). Likewise

--_ (111-21)

Combining Eqs. (111-20,21)

(111-22)

Substituting Eqs. (111-19,22) into Eq. (III-1-),

b tm• bt-

13
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Since ^'iTC1i|J , as shown in Appendix IV, then

T/ C :,7| (111-24)

Thus the "acceleration" term (,J?3cJl"t) dominates the ('ya..PJat)

term in 6I1bt by many orders of magnitude (about 10 ). That is,

' b 6 (111-25)

6. SURFACE CHARGES

From Eq. (111-19) it is seen that there is no change of

charge density JPwherever the current is uniform (i.e., cons-

tant) in Z. However, if the current is not uniform along Z

(at fixed time t), then Eq. (111-19) shows that there must be a

change in-@Pwith time. Such an antenna can be represented as a

chain of small current elements or Hertzian dipoles each of

length dl, with end charges which change differentially from

element to element (Ref. 6, p. 322). These adjacent charges do

not cancel, and the non-cancelled charges appear on the surface

of the wire, where they produce an electric field normal to the

wire's surface (Ref. 6, p. 322). This is illustrated in Fig.4O,

based upon figures in Ref. 6 (p. 322). For a Hertzian dipole,

discussed in Appendix V, the radiation fields can be obtained

from the longitudinal (Z-direction) acceleration of the charges

in the wireorequivalently, the time-derivative of the current.
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The continuity equation automatically takes into account the net

charges present at the dipole ends. This comment holds equally

well for a finite-sized linear antenna with non-uniform current

distribution, by superposition of the elementary dipoles.

Some comments are now made about surface charges on a bent

thin-wire line. According to Torre and Longo (Ref. 9, p. 391)

the current and current density J must follow the bends, and

therefore the internal E field given by T=-1 must also follow

bends. Thus electric flux follows the bends with the current

(Ref. 9, p. 391). In order for this to be possible, additional

surface charges must appear at the bends, as shown in Fig. 41,

(Ref. 9, p. 391). The net result of this, for the time-varying

case, has not been investigated by this writer, except that it

appears clear that the centripetal acceleration experienced by

charges moving in the wire around bends must be due to the fields

produced by these surface charges. These remarks apply strictly

to a generator-driven loop, and not a loop being driven by an

externally-applied changing magnetic flux. In the latter case

the induced E field has nonzero curl, and forms closed loops

without requiring any charges.
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FIG. 41 Surface charges at a bend in a

conductor carrying current.
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APPENDIX IV

DRIFT VELOCITY OF ELECTRONS IN CONDUCTORS

1. FREE ELECTRON THEORY OF METALS

According to tae free electron theory of metals, a

conductor is a lattice of positive ions among which some

electrons are free to move under the influence of external

fields. In monovalent metals such as copper, siiver, and gold,

the number of electrons averages about one per atom (Ref. 9,

p. 144). For copper this constitutes a free electron density
2• •3

S0 per n (Ref. 9, p. 147)

"2, RELAXATION TIMES

A net (nonzero) charge density .P (coulombs per Yf )

cannot exist permanently inside a conductor (Ref. 10, p. 15,

also Ref. 11, p. 78). In the absence of an external time-

varying field, any pre-existing charge inside a conductor decays

exponentially and flows to the surface. The transient decay

equation may be derived as follows (Ref. 10, p. 15):

(IV-l)

C (IV-2)

Equation (IV-l) is Ohm's law, which will be modified subse-

quently, and Eq. (IV-2) is the continuity equation.
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Hence OX-q

Thus the differential equation for -P is

3 _ ' _ j--• (IV-3)

bt
The solution of Eq. (IV-3) is

The decay time ( Ej6 ) is called the relaxation time constant

(Ref. 11, p. 78) '1 , so

For copper to- " sec., which is far less than any

characteristic times in microwaves or radio impulse systems.

"This decay process ts entirely independent of an applied field,

if present (Ref. 11, p. 78).

There is another time constant referred to as the electron

"relaxation time" of a metal (Ref. 9, p. 358; Ref. 12, p. 292),

which is the mean free time t; between collisions of an average

electron and the lattice ions, and is on the order of 16- secs.

for copper (Ref. 13, p. 481). This is the time constant of the

exponential decay of the electron drift velocity after all

excitation is removed, as shown below. Again, this time constant

Ii -14,2
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Thus the drift velocity \Vd decays exponentially with time

constant , if an applied field is removed suddenly, as

previously stated.

The Qa which results from a sinusoidally time-varying

1E. cSt •is (Ref. 13, p. L185,

L Cýt #-e (IV-15)

which is obtained from Eq. (IV-12) by replacing -4 by 3LO

Since ti -;)UO , Eq. (IV-15) becomes

-"V (IV-l6)

which is the same as Eq. (IV-8) for a constant field E.

Therefore, even up to frequencies on the order of k0 LB Hertz,

Va and remain in phase with • , and Eqs. (IV-lO,1l) remain

valid. This has been verified by experiments at K-band using

U3=-PM% road15&r- (Ref. 13, p. 481). Thus Ohm's law S"-E

remains valid up to frequencies on the order of Hertz,

where 6 is the d.c. value. In turn, this implies that Va

is given correctly by Eqs. (IV-7,8).

An alternative approach to the behaviour of conductors

at high frequencies is through the concept of the dynamic

conductivity (Ref. 14, p. 237). The force equation on the
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L~ electron is written in the standard form

at

where

Vý = velocity of tl' electron

b = a constant to account for the frictional

resistance encountered by an electron,

proportional to velocity.

Ref. 14 defines

i t

From Eqs. (IV-6,7) it is seen that

Multiplying Eq. (IV-17) by-e , and summing ove. N electrons,

Vn -T CZ2 IV-2o)

bt

For the stationary (d.c.) case, :T= constant and Eq. (IV-20)

rvduces to

o w h aw (IV-21)

For the stationary case, write Ohm's law as

(IV-22)



K

where 6' is defined as the stationary value (zero frequency)

of the conductivity, hence

-(IV-23.

Equation (IV-20) becomes

~42
(IV-2z4)

where

0 b T(IV-25)

For copper • 2.4 ALO sec. • 10 sec. (Ref. 14, p. 238).

From Eqs. (IV-11,25) it is see'n thft , provided it is

understood that the 6" in Eq. (IV-ll) is the stationary

conductivity 6" . In other words, the derivation leading to

Eq. (IV-li), (Ref. 13), assumes ihat G-=C0 • This assumption

is valid for frequencies up to about 10 %. Hertz, as will now

be shown.

Write Eq. (IV-24) as

bt

which is recognized as the dynamic generalization of Ohm's law

Eq. (IV-22). For harmonic fields, E oind J vary as e and

"- 1. 7



Eq. (IV-26) becomes

Defining the dynamic conductivity G by

='(IV-28)

it is seen that

O"• (IV-29)

3"-- +

which is analogous to Eq. (IV-15). For frequencies less than

; 10 Hertz, WTZ.L I, and G 6"%Eo , so the dynamic Eq. (IV-26)

reduces to the static version

'T = 66(IV-30)

Hence 'Ja may be calculated from

4 4. ESTIMATION OF ELECTRON DRIFT VELOCITIES IN CONDUCTORS

The drift velocity \4 will be calculated first fur several

limiting stationary (d.c.) cases, and then estimated for the

time-varying case.

As a first example consider a pair of parallel wires in

air, each I r. in area (AWG No. 17), spaced I cm. center-to-

center (Ref. 15, p. 126). Let the current be 6 amps, which is

the maximum permissable for air-cooling, "ind tbe voltage be

2,200 volts, which is almost equal to the voltage breakdown

limit in air. The excess (surface) charre on each wire,



resulting from the capacity and impressed voltage, is 0.04

microcoulombs per meter, which is completely insignificant

compared to the free electron charge transported by the

current. For copper, with W toz electrons IM3 , the

number of free electrons per meter is .O"AV (* -L 0

Hence the conduction electron charge is to K 1.(•m•"Z• L6

kilocoulombs per meter, as compared to the surface charge of

0.04 microcoulombs per meter. The electron drift velocity

follows from Eq. (IV-31):

3"= Ii = eVc1

It is seen that this value of \14 is negligible compared to the

velocity of light C-= 3'kO/%V1jS.

'.s a second example, consider the discussion of electric

current and an example of the calculation of VA4 by Sherwin

(Ref. 16, p. 162-165). At any time t the free charges in all

parts of a conducting loop have the same velocity \1a , the

sdme magnitude of acceleration a, the same 4.Ia" , etc.,

that is, the charges move in unison. Then if /YMo-= number of
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charged particles per meter whose flow is the current, and Va

is their average velocity, then the current i = coulombs/sec

passing a point is given by

7= MO(IV-32)

Since MO and P are assumed constant, then the linear charge

density Jo-; ( is constant. Then

k._ =. /'Ae A = /Y\O o I-3

Ckt.

(IV-34)

Sherwin (Ref. 16) gives an example of a wire of diameter 1 mm,

carrying current i = 100 amp., which is a large current for

Z9 - (a 23
this size wire. Then MNo= Z k .eo.Z0 A t -o =LO electrons

per meter, and

,YX X.. ..?

Sherwin (Ref. 16, p. 164-165) star,, that 100 amp, would cause

serious heating in this wire, ats a practical matter
-z

conduction electron velocities are rarely above LO VA I5

Summarizing the above two examples, for currents which

are uniformly distributed across the cross-section of a wire

- 15 -



!

(d.c. and low frequency for small wires), the order of

magnitude of the electron drift velocity is not more than

0.01 m/s.

The high frequency or short pulse case 1i now considered.

Due to the skin effect, currents are not uniformly distributed

across a conductor's cross-section. From Eq. (IV-7), the drift

velocity VA will vary with the distribution of the current

density : across the cross-section. This also follows from

Eq. (IV-8), since the field E varies similarly with the depth

of penetration in the conductor. Hence calculation of V•

requires knowledge of either J or E, per Eq. (It 31). An

estimate of \ can be obtained by following the well-known

assumption that a given wire at a given frequency carries its

entire current uniformly distributed within the skin depth.

Since the skin depth varies inversely with the square root of

the frequency, the solution fo? a given exciting waveform will

depend upon the frequency content of the waveform. Hence if

we assume that a given total current I is confined uniformly

with a skin depth determined by one of the higher frequency

components of the waveform, the calculated T and V1a will be

larger than the actual average J and Vk respectively. Since

the Va calculated in this manner is a high estimate of V,
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and since the resultant Vcj is still many orders of magnitude

less than c, as shown below, more accurate calculations for

VA , involving averaging, are not required.

As an example consider a pulse shaped as a symmetrical

trapezoid, with rise and fall times = t sec. and with

duration of the flat portion T sec. The amplitude spectrum

is (Ref. 17)

(IV-35)

where sinc X = sin (U9) ( ). 11orT = , the shape is

that of an isosceles triangle, with base width 2 t sec,

and spectrum given by

The first zero in lco as given by Eq. (IV-36) occurs at

frequency •1± \. Hertz. Fcr a relatively short pulse

specified by T-ZO , t L =LO picoseconds, lOO-i00,000 tz

Fcr copper, the skin depth dillimeters) at frequency

(Hertz) is

- I\Y-~T (IV-37)

Hence for this example, '" )L. Let us apply this

to the case considered previously (Ref. 15) of a circular wire

of diameter 1 mm., carrying I = amps. of current. For the
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short pulse, assume that this current is crowded uniformly

into a croso-section consisting of a layer just beneath the

wire's surface of thickness S • Without external cooling,

this would be impossible, due to the increased heating compared

to the already-marginal d.c. case. For the d.c. case. I is

spread uniformly over the cross-section = 1TA9"•. For the

pulse case, I is assumed to be distributed over the layer

cross-section = 7 . It then follows that

-\A - T.-L- R. '- (IV-38)

where ? is the resistance per unit length. Equation (IV-38),

as far as the resistance is concerned, is a well-known result

(Ref. 18, p. 176). It is based upon the assumption that the

dynamic conductivity E = c , which is valid up to kotz

Hertz, as discussed previously. For d = 1 mm. and 5 2A6t'\mm.,

the ratio Q(AS) is approximately = 10. Using 4 4AtL& 4*

m/s, as previously obtained, it is seen that VA for even this

extreme case is 0.4 m/s, which is still negligible compared to

c 3)(11, m/s.

It is concluded, therefore, that even for extremely short

pulses of relatively large current amplitides, an upper-bound

estimate of \Ik is about 1 m/s.
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APPENDIX V

DERIVATION OF THE RADIATION FIELDS OF AN

ELECTRIC DIPOLE USING MOVING CHARGES

The term "Hertzian dipole" is used to describe the follow-

ing configuration (Ref. 19, p. 148): A charge +e moves along

a straight line about a stationary charge-( to form an

electric dipole moment p g' given by

m = ý) i(V-l)

where i is the vector denoting the separation of the charges,

drawn from -e to 0e . For convenience, take . along the

S-axis of a spherical coordinate system ((% e1 c. The

radiation fields of this dipole, in MKS units, derived from a

Hertzian vector, are given by Sommerfeld as follows (Ref. 19,

p. 150):

_. 5l8_ • •-rl(V-2)

E1 *knq~ L-CC (V-3)

Here () denotes differentiation with respect to time ± , and

p is the time-varying amplitude of p
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Then, integrating over the interval A)

Multiplying by A, the desired equation is obtained,

Ae

where

ým I P (V-20)

The dipole moment of the above isolated current element

dipole is then

e(V-21)

Thus

and the radiation field, from Eq. (V-2) is

c- rtc.r bt (V-23)

For the harmonic oscillation case, it is assumed that

(V-24)

1- 59 9



From Eq. (V-23) the radiation field is

-- -(V-25)

4-T(c C

which is a well-known result (Ref. 20, p. 498). To obtain

this from Sommerfeld's results, note that the complex PC+) is

Since

•uo (V-27)
~'LtW 0 L(Ot -(-i

it follows that

AoA (V-28)

Then the Sommerfeld resu.t Eq. (V-5) reduces immediately to

Eq. (V-25).

Equation (V-25) will now be derived directly from che

fields due to roving charges for the sinusoidally time-varying

current element dipole of lenpth ý described above. Consider

a differential length ( at position (o30O1 ) along the dipole.

The charge d in this length is



Q
0

which is taken as the term C in Eqs. (V-7,8). The accelera-

0° tion of this charge is found from differentiating -

Thus

AP (V-30)

Then

(V-31)

<X • Thus Eq. (V-7) becomes

~ I (V-32)

where R is the magnitude of the vector • from element

tG observation point P(ttO1e,. The total field is found by

integratin. Eq. (V-32) over the dipole lengthh f Since f. is

in the • direction, then for this time-harmonic case it is

>o I (V-33)
0 7

and

e5~ne ~(V-34)



g

I",R By definition the dipole length is small enough so that the

integral

$ \A- .4e- \ tk(-

(V-35)

may be replaced by .V V

Equation (V-36) is identical to Eq. (V-25).

The . field of the dipole may be found from Eq. (V-36) and

the far-field Equation (11-310), which in MKS units is

000 (V-37)

This gives

Eb •C2 V, (V-38)

Equation (V-38) can also be derived from the generalized

Lienard-Wiechert potentials (see Eqs. (1-45,46)) and the

differential operations described its Appendix I, or from the

integral formulations for and A riven by Eqs. (1-30,31).

These derivations will not be reproduced here; for details see

Maddocks (Ref. 3).

K
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APPENDIX VI

SOME RESULTS OF DELTA FUNCTION INTEGRALS

An integral ,Aiich appears at several places in this

report (e.g., Eqs. (102, 1-33)), is of the following type:

In Ref. 1 (p. 465) this appears as

- C (VI-2)

This is not quite correct. From Ref. I (p. 4, example (5)),

VL- 2ýX. (VI-3)

the correct result is

-(VI-4)
'A /a'/Y jy' +t= a

This can also be shown stdrting from the basic equation (Ref. 36,

SK p. 76)

(VI-5)

CL

In Eq. (1-33), the variable is t instead of x. Since

mO (see Eq. (1-40)), no error results in omitting thel Isymbol.
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Eq. (102) is of the same form as Eq. (VI-1), the vari-

able being £ , and ( -1. Let

A4L> - _ _..-- ___

Using .\ in Eq. (VI-4), Eq. (102) becomes

_____ C. (VI-6)

at

or,

- ~ + J---C &' (VI-7)

SO C

Since (It CO:56YO , C)coEDl may be replaced by OtCCd')•

For O±,i Eqs. (VI-6,7) yield

____ ____(VI-8)

• vn

C..

which is the same as Eq. (107).



APPENDIX VII

ILLUSTRATIONS OF USE OF EQUATION (74)

FOR SOME STANDARD ANTENNAS WITH

SINUSOIDAL TIME-VARYING EXCITATION

1. TRAVELING-WAVE ANTENNA

rhe traveling-wave current distribution on a terminated

wire antenna of length L placed along the Z-axis from -L/2 to L/2

is (Ref. 6, p. 342)

7= (V11-1)

Lq. (74) yields
LIZ2

______ e(VII-2)

The usual far-field approximation, f77 ,

R,,Y k(0)I (VII-3)

substituted into Ea. (VII-2) yields

eL 2___ C9~

'4



A -LT- 2 (Ob Cl-CO56')L]

(VII -4

E~ 0IA (VII-5)

Eq. (VII-5) agrees with (Ref. 6, p. 342).

2. IIALF-WAVE LENGTH DIPOLE

"Consider a dipole along the Z-axis, centered at the

origin, of total length 2 '1 1MZ . See Fig. 24. For sinu-

"soidal time-variation, the currents on the antenna are known to

be closely approximated by (Ref. 6, p. 328)

SSi Y\ OTWt. (VTI-7)

Then

c- t', -

•- "" ---- •(VII-8)



Using Eq. VII-8,

(VII-9)
Introducing Eq. (74), and integrating, there is obtained

o (VIi-10)

4'9C r (vii-n1)

The integral in Eq. (VII-lO) is (Ref. 6, p. 329)

2 _ _0 _ _ _ _ , _

Hence, using W owIc

- - _C (VII- 2)

which is a well-known result (Ref. 6, Eq. (10-59)).

3. LINEAR ANTENNA WITH ARBITRARY CURRENT DISTRIBUTION I(Z,t)

For sinusoidal time-varying current discributions such

as discussed in subsectionsl and 2 above, the current can be

represented as the product of two separaze functions

S(vii-13)

16I 7 -



Then

R IC- 7= 3(VII114)

Using Eq. (74), in the far field

41c r dvntennol ( vii-15 )

Eq. (VII-15) is a peneral irýesult for sinusoidal time variation.

It can also be shown that for a more general case,

where I(Z,t) is not necessarily separable, and represents a

general (non-sinusoidal in time) variation, that Eq. (74) gives

the same result as obtained from the usual vector potential

formulation. Thus, the standard A formulation proceeds from

(Ref. 6, p. 315)

For the linear antenna AV. =I a and using Eq. (VII-8)

for the far-field, Eq. (VII-16) states that

VC (VII-17)



Hence, using

_A = as' ________

-IT(vi-l)

The curl operation is with respect to the coordinates (0"10 1 4

of field point P. The function in the brackets of Eq. (VII-18)

is not a function of , hence I =0 •O Further, since

6- C- 51n ,the function has noc -component. Then

the curl operation yields

(vII-19)

where I has the argument oxr (.') t- rdc +Z'Cozea l)

Retaining only the radiation term-Ct/r) , then

Using ZýIIbr (bT(Z7 /c , and • • in the denominator,

which is the same as Eq. (74), derived from the accelerated

charge viewpoint.
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